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ABSTRACT

The response of an Echinodome to static and dynamic point loads, and explosive type
loadings was examined both theoretically and experimentally. The finite element method of
analysis was employed in the theoretical investigation. Semi-loof thin shell elements were used

to model a GRP prototype on which the experiments were performed.

The stress distribution of the Echinodome under a static symmetric point load was
investigated both experimentally and theoretically. Then the Southwell technique was employed in
estimating the critical buckling load from deflection measurements. Experimental estimates were
then compared with the numerical predictions in the form of non-linear collapse and non-linear

bifurcation buckling loads.

A free vibration analysis was performed to determine the structural natural frequencies and
typify the mode shapes. The shock response spectra of several pulse shapes were determined using
the finite element method. The mosi severe loading function was established to be a step loading
with infinite duration and zero ramping time and was then employed as the load—time history in
an axisymmetric and symmetric non-linear dynamic buckling analysis. The dynamic collapse

buckling loads were found to be smaller in magnitude than their static correspondents.

A modal testing was then carried out on the Echinodome prototype to determine the
experimental modal parameters (natural frequencies, damping values and mode shapes). Newly
developed correlation techniques were adopted in the comparison of the experimentally derived
parameters with those predicted and poorly modelled regions were identified. Great improvement
was achieved by correcting the experimental data and updating the finite element model’s

boundary conditions,

A set of underwater free field experiments was performed to determine the pulse
characteristics for a specific explosive charge, followed by another set while the prototype was in a
floating submerged state and acting as the target for the same_expiosive charge. A theoretical
simulation was accomplished by employing a finite element—boundary element approximation for
the modelling of the structure and infinite fluid media respectively. Measured responses were
compared with the numerical predictions and means of acquiring better theoretical approximations

are mentioned.



ABSTRACT — iV

The loading conditions to be experienced by an underwater LNG Echinodome vessel are
reviewed with emphasis on accidental dynamic loads (impact and explosion). A state of the art
storing configuration is proposed for the Echinodome in order to limit the extent of damage and
hence minimise risk during upset conditions. Finally, appropriate design, construction and

prestressing procedures were recommended.
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CHAPTER 1

INTRODUCTION

1.1 VARIOUS NEEDS FOR STORAGE TANKS

For many years shell structures have been utilised for industrial as well as domestic
purposes.
Today, containers are being used widely in different application fields such as agriculture,

sewage, oil industry, . .. ... , etc., to name but a few.

Their structural fom1, wall strength and composmon are pnmanly dependent on the amount

and type of contained material. Smrage vessels may retain anythmg from granular rnacenals 10

cryogenic liquids. Another parameter affecting the shape of such structures and their construction

material is the media in which they are 10 operate, e.g. air, sea or underground.

In the following subsections some applications for storage tanks are presented.

1.1.1 Apgriculture

Over the years cylindrical storage bins have been used for storage of grains. Recently
however, research was conducted at the University of Illinois at Urbana—Champaign (UTUC) ! on

dome type shell structures to investigate their potential for storage of grains or fertilisers.

1.1.2 Water Desalination

In water desalination plants sea water is brought to onshore intake houses with the aid of
suction pumps. It is then processed to produce desalinated water which is eventually stored in

large reservoirs for distribution.

1.1.3 Chemical Industry

Containment structures are very common in the chemical industry. Storage of hazardous

substances. (e.g. . high.explosives) is ‘one of their uses. -Another .is the retaining of industrial
. chemical waste .materials for.long periods of time or treating it to produce less harmful substances

having minimum:impact on.the environment.
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Cylindrical, cubical and spherical containments are typical structural forms used in the
chemical industry.

1.1.4 Oil Industry

Oil is a major source of energy. Over the years considerable research has been carried out

on storage structures for such a material before, during and after purification.

With the dramatic fluctuation in oil prices substantial efforts were made towards oil
exploration offshore. New problems appeared : is it more economic, efficient and safe to operate
on crude oil offshore or onshore? If offshore, where is it best to store the crude oil and its
extracts? In caissons under the drilling rig or in separate containments? How to export material to
onshore; expensive piping systems or ferrying tankers?

All of the above questions were new challenging engineering problems and in the current

research an attempt is made towards finding answers to some of the above questions.

1.2 VARIQUS STRUCTURAL FORMS

Storage tanks may vary in shape, e.g. spherical, cylindrical with flat, toroidal or spherical
ends, etc. . ... .. , with choice depending on their economy, efficiency and safety.

During the last two decades intensive research was undertaken at the UNIVERSITY OF
EDINBURGH / CIVIL ENGINEERING DEPARTMENT to assess the potentlal of the drop shaped

tank 24 which will be described in the followmg ‘subsection.

1.2.1 The Drop Shaped Tank

The drop shaped tank is a shell of revolution having constant wall thickness and strength
under a specific uniform pressure (see Fig. 1.1). Such a structure would utilise uniform material .
throughout the meridional profile and consequently the design principle can be considered as an

optimum one.

For each pressure head there is a new shape. The differential equations governing the shape
of the meridional profile and methods for solving such equations (graphical and numerical) have
been described elsewhere 2337 | It was observed that as the value of pressure at the apex

increased the reservoir approached the form of a sphere.

The drop shaped tank is exactly similar to a drop of liquid resting on a flat horizontal plane.
The liquid would be under constant tension due to capillarity while the inside hydrostatic varies

linearly.
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By 1980, a shape prediction program in Fortran IV was developed by Royles et al. 2 and
refined by Sofoluwe 3 . This was later transformed by the current author to Fortran 77 and
employed in the current research. The program used an explicit modified Euler method to solve
the non—linear differential equations governing the profile of the shell. Sofoluwe then investigated
the response of the drop shaped tank to hydrostatic pressure both experimentally and theoretically

{using the membrane theory and linear elastic finite element analysis).

Later, by 1985, Llambias 4 investigated the stability of the shell of constant strength under
hydrostatic pressure load, studied the shell response to axisymmetric and symmetric point loads
and carried out a free vibration analysis. The above investigation was conducted experimentally

and theoretically utilising the finite element method.

From a library of finite elements Llambias recommended a particular element for each
specific load case and used each accordingly to design a full size shell based on a linear elastic
static analysis except for structural stability under hydrostatic pressure where geometric non—

linearity was considered.
arlier 2 the drop shaped tank or shell of constant strength was observed to be similar to a
Sea Urchin of the phylum Echinodermata and hence the generic name — The Echinodome.

Throughout the current research the terms drop shaped tank, shell of constant strength and

Echinodome are used interchangeably to refer to the same shell structure.

1.3 APPLICATIONS OF ECHINODOMES - S -

Echinodomes have a great potential serving as storage tanks in air or water media,
Application fields vary from agricultural, sewage, chemical, water or oil industry. Employing
Echinodomes on board LNG and LPG carriers instead of spherical tanks is just another attractive
application as buckling is the main mode of failure for large self—supporting cargo tanks 8 which

was proven earlier 4 not to be the case for the drop shaped shell.

Underwater, the shell of optimum shape is applicable to storage of hazardous and other

liquids or for use as a one atmosphere enclosure for human habitation or industrial type activities.

In 1984 9 a proposal was made for the storage of LNG in an Echinodome (or a series of
therh) tethered underwater in a floating submerged state with the aid of tension legs. It was
suggested that the tank would be proximate to an oil production platform and that the LNG would
then be ferried onshore using tankers. The feasibility of storing LNG underwater safely in such a

container is assessed later in Chapter 6.
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1.4 SCOPE AND SUMMARY OF THE THESIS

With recent developments in fixed and compliant offshore structures dynamic loads are

gaining ever increasing attention by design engineers because of their apparent detrimental effects

on structures when compared with their static counterparts.

Therefore the main objective of the thesis is to determine the Echinodome response to

dynamic loadings (impact and explosion) and to establish a design procedure for such a structure

when operating underwater to sustain operational and accidental dynamic loads.

The work carried out during the course of the current research (relating to the Echinodome

shell structure), described in the following chapters, is summarised as follows :

1.

Examination of the principal stresses distribution under axisymmetric and non—
axisymmetric static point loads, and studying the structural stability under such
loadings (Chapter 2).

Determination of the shock response spectra for various transient loadings.
Establishing'the dynamic response to step functions and examining the structural
stability under the preceding dynamic load {(Chapter 3).

Identifying and updating poorly modelled regions in a finite element mesh by
performing a modal test on a test structure and hence achieving a better simulation
{Chapter 4).

Assessment of the performance of a-numerical technique used in predicting. structural .

response of underwater structures to shock waves (Chapter 5).

Examination of the dynamic response of a full size Echinodome underwater storage
vessel to impact loads induced by accidentally dropped slender or bulky objects
(Chapter 6).

Establishing a design and construction procedure for Echinodomes operating

underwater and subject to accidental dynamic loadings (Chapter 6).
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CHAPTER 2

Tuae Ecamopome Unper A Static Point Loan

2.1 SUMMARY

This chapter reviews the Echinodome response to a static symmetric concentrated load. An
experiment was carried out using a glass reinforced plastic(GRP} prototype (see Fig. 2.1).
Theoretical simulation was achieved by means of the finite element method. Subsequently

experimental and theoretical results are compared.

Two non—destructive methods for determining the critical buckling load are presented and
one was applied to the prototype. Numerical buckling analyses for various types of instability, to a

symmetric point load, are reported and compared with the experimental value,

2.2 INTRODUCTION

The emphasis in the previous chapter was on the increasing requirement of shell structures

- for storage. One of the most optimum shapes to be used for such a purpose, is the Echinodome.
Habitation of the Echinodome shell structure can take place in air or underwater, being subjected

to a wide variety of load cases ranging from static (e.g. hydrostatic pressure} to dynamic

{e.g. impact, explosion). In order to assess the severity of dynamic loadings comprehension of the

Echinodome behaviour under static loadings must be achieved.

2.3 SYMMETRIC POINT LOAD EXAMINATION

There are three possible point loadings on the Echinodome namely axisymmetric, symmetric
and asymmetric (see Fig. 2.2). The first and last load cases have been discussed elsewhere %10,

The following sections relate to symmetric point loadings.

2.3.1 Experimental Appreach

No numerical procedure is declared viable without experimental proof and in order to assess
the performance of the finite element method applied to thin shells, an experiment on the
Echinodome prototype was undertaken. A point load of 300 N was applied via a wooden strut.

The load was normal to the surface and 60° away from apex.
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2.3.1.1 Test structure— The test shell meridional profile {see Fig. 2.3} was determined by

a shape prediction program. It was designed for an apex pressure head, z, = 1.525 m of water,
with a uniform design stress, © q4= 0.446 MPa, and a mean shell wall thickness, t. = 3.8 mm
(average thickness values along the meridian and circumference are given in Ref. (11)). The
material used-was GRP having an epoxy matrix and 0.26 glass fraction, the fibres being in the
form of layers of randomly arranged chopped strand mat fabric, The shell was constructed in two
halves each from the same mould and then bonded together along a meridional seam using a slow
curing araldite. The shell was later fixed to a tufnol square base of dimensions
200 x 200 x 20 mm. Variations in the wall thickness were determined utilising an ultrasonic
thickness tester 12 | The material properties were determined from material control tests 3 and

were as follows :

Young’s modulus (E) = 8800 MPa ({extrapolated)

Poisson’s ratio (v) = 036
Ultimate tensile strength = 55.4 MPa
Mass density (p) = 1100 1<glm3

2.3.1.2 Loading set—up— Fig. 2.4 shows the prototype in the loading rig under a normal

point load acting at an angle, ¢ = 60° away from apex. The shell was fixed to a rotating table
which in turn allowed it to rotate between 0° and 90° in a vertical plane. Static point loading
normal to the surface was applied to the shell via a vertical stiff wooden strut using a dead load

lever system.

2.3.1.3 Disposition of displacement transducers— In the current research 12 meridians

were marked on the prototype each 30° apart. The meridians were named starting from the loaded
meridian onwards as M1, M2, M3,. .. ... » M12. In symmetric loading the first seven meridians

were necessary only as the shell is axisymmetric (ignoring imperfections) (see Fig. 2.5).

For the present load case nine rectilinear potentiometric displacement transducers
model S30FLP100A were arranged around M1 and M7 normal to the surface as seen in Fig. 2.6.
Due to the obstruction from the lever arm it was impossible to mount two extra displacement
transducers between transducers & and 7 and between 7 and 8. Each transducer was characterised
by a_full scale resistance of 2 k2 and a full scale output of 5 V d.c. for a maximum mechanical
stroke of 100 mm with a linearity of 0.25 percent and a resolution of 1 micron. Energisation of

5 V d.c. for the displacement transducers was supplied from a power supply TECHNI MEASURE
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model TPU-30.

2.3.1.4 Data acquisition system— A multi_channel system !3 was used to scan the output

of the displacement transducers, a block diagram of which is shown in Fig. 2.7. The system
consisted of a microcomputer CBM model 8032 to which an 80 column tractor printer CBM
model 4022 and a 1-MBYTE dual floppy disk drive CBM model 8052 for backup storage were
attached. The microcomputer controlled a multi—channel scanner via its user port. The scanner
accepted signals from up to 32 channels either electrical resistance strain gauge half bridges or
other low frequency voltage sources in the range & — 10 Hz, or any combination of the two. A
KEITHLY programmable digital multimeter model 192 was used to measure the voltage incoming
from the scanned channels which was in turn connected to the microcomputer through the general

purpose interface bus (GPIB).

The whole operation was managed by a computer program of two parts, the first of which
controlled the scanning while the second processed the results (transformed voltage values into
displacement or strain values). The program also instructed the microcomputer to store the datum

readings and subtract them from the results of subsequent scans as an experiment progressed.

2.3.1.5 Test procedure— After securing the test structure in its position, a maximum point

load of 300 N was applied via a stiff wooden strut normal to the surface at an angle ¢ = 60° away
from the apex. The load was incremented by 50 N from O to 300 N. Three initial runs were
performed in order to put the system into a cyclic state. Following this, 10 runs were carmried out
to scan the 9 displacement transducers from 0 to 300 N and the results were listed to the line
printer, A 5 min. duration was allowed between each of the 13 runs to allow for creep recovery, a
characteristic of GRP 14 | The scanning was done using the computer program on the ascending

part of each run and the loading rate was kept constant for the series of runs.

2.3.1.6 Test results— The average displacement values are listed in Table 2.1(a) for the

individual transducers at each load increment. Corresponding coefficients of variation ¥ follow in
Table 2.1(b). Values not listed were erratic because of the small displacement magnitudes

associated with the low load levels.

§ The Coefficient of Variation ¥ is the ratio of the standard deviation to the mean. This statistic quantifies the
spread of data as il provides a normalised measure of the spread.
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DISPLACEMENT AVERAGE NORMAL DISPLACEMENTS
TRANSDUCER AT DIFFERENT LOAD INCREMENTS
NUMBER (mm)
(EQUIVALENT NODE NUMBER

IN FINITE ELEMENT SIMULATION) | 50N | 100N | 150N | 200N | 250N | 300N
1 (501) 0.050 | 0.107 | 0.164 | 0220 | 0284 | 0336
2 (@21 0.060 | 0.134 | 0207 | 0272 | 0356 | 0433
3 (321) 0.078 | 0.157 | 0239 | 0319 | 0.399 | 0482
4 (221) 0.073 | 0.169 | 0263 | 0337 | 0412 | 0.480
5 (121) ‘ | 10023 ] 0052 | 0093 | 0.116
6 (1) 0.025 | 0.048 | 0062 | 0.074 | 0.086 | 0.101
7 (215) 0.076 | 0.182 | 0280 | 0391 | 0499 | 0.601
8 (415) 0.063 | 0.138 | 0217 | 0301 | 0383 | 0466
9 (495) 0.043 | 0.099 | 0.156 | 0217 | 0275 | 0338

TABLE 2.1(a) — AVERAGE NORMAL DISPLACEMENT VALUES FOR A NORMAL POINT LOAD
ACTING 60° AWAY FROM APEX

DISPLACEMENT COEFFICIENT OF VARIATION FOR DISPLACEMENT VALUES

TRANSDUCER AT DIFFERENT LOAD INCREMENTS
NUMBER (%)

(EQUIVALENT NODE NUMBER
IN FINITE ELEMENT SIMULATION) | 50 N | 100N | 150N | 200N | 250N | 300N

1 (501) 9.2 5.5 44 1.9 2.2 2.0
2 (421) 5.0 25 2.4 9.2 13 12
3 (321 5.1 2.6 22 1.2 1.1 1.0
4 (221) 4.1 2.1 2.5 5.0 1.1 5.4
5 (121) | 215 17.3 20.3 9.5
6 (1 18.6 8.2 10.0 8.5 7.6 49
7 (215 12.8 6.1 9.8 2.7 3.3 22
8 (415) 73 42 28 2.3 25 2.2
9 (495) 6.7 5.3 3.0 2.5 3.0 24

TABLE 2.1(b) — COEFFICIENT OF VARIATION FOR EXPERIMENTAL DISPLACEMENT VALUES
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2.3.1.7 Discussion— Table 2.1(a) shows that the shell was slightly following a non—linear

behaviour in the loading range from 0 to 300 N with a maximum deformation under the point load

and a minimum at the apex.,

It is also noted that the following pairs of transducers had equal displacement values : 1, 9
and 2, 8 while 7 had a higher value than 4 and this may indicate that the general profile of the
Echinodome prototype was not distorted except under the point load, meaning that the shell
deformed both locally and globaily.

2.3.2 Theoretical Approach

Theoretical analysis of shell structures can be approached in two different ways : either
analytically or numerically. Analytical methods are limited to a certain class of problems and
those include problems which can be approximated with linear models and those that have simple
geometry. As a result analytical methods are of limited practicality in studying the response of
Echinodomes to complex loadings (e.g. static and dynamic point loadings, explosions, etc.), and

recourse must be made to numerical procedures, one of which is the finite element method.

2.3.2.1 Brief introduction to the finite element method— The finite element approach is a

growing technique for structural analysis. It is based on a discretisation method 1617 by which a
continuum is replaced by a computational mesh. Since a number of authoritative texts are
available no detailed explanation of the finite element method is attempted. A typical analysis can

be summarised as follows 16 :

1.  Continuum Discretisation : imaginary lines are utilised in dividing a continuum
structure into a number of finite elements assumed to interact only at a discrete

number of points known as nodes.

2.  Element Equilibrium : a system of forces concentrated at the nodes that equilibrate
external loads is determined. The result is a stiffness relationship involving internal

loads, external loads, and nodal displacements for each element,

3.  Element Assemblage : individual element data are assembled into overall matrices
and solutions for nodal displacement are obtained after imposing the prescribed
boundary conditions.

4.  Displacements : the nodal displacements are used to describe the state of

displacement over the individual elements.
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5. Strains and Stresses : the state of strain within an element is defined in terms of
nodal displacements. These, together with the constitutive properties of material will
define the state of stress.

. Two finite element codes LUSAS (London University Stress Analysis System) and PAFEC
(Program for Automatic Finite Element Calculations) each with its graphics partner MYSTRO and
PIGS respectively were implemented on a VAX 8550 at the University of Edinburgh Computing
Centre.

LUSAS 1818 jncorporates facilities for linear and non—linear static stress analysis, step by
step linear and non-linear dynamic analysis, eigenvalue extraction, linear buckling, steady and

transient field analysis and spectral response analysis,

The PAFEC 20,21 finite element system consists of a general program, carrying the name
PAFEC, together with a number of optional subsystems, two of which are SNAKES and
DOLPHIN. SNAKES is the non—linear subsystem used for performing a more accurate non—linear
analysis. DOLPHIN is an acoustics subsystem used for calculating the natural frequencies,
sinusoidai response and transient response of systems in which the inertiz and flexibility of a

surrounding or a contained fluid play an important role in determining the behaviour of a structure,

2.3.2.2 The semi_loof shell element— Each of the above mentioned systems included the

semi-loof shell element (see Fip. 2.8) as a member of its elements library. The following
paragraphs state briefly the theoretical development of the semi-loof element which is due to
Irons 22

The family consists of two elements ; eight noded quadrilateral and six noded triangular
generally curved thin shell elements with eight and six loof points respectively located at 1/¥3 of
the distance from a midside node to a corner node. Most of the following discussion applies to
both the quadrilateral and triangular elements and for this reason the thecretical basis for the

former cnly will be presented.

The semi-loof element is assumed to consist of a stack of membranes with equal surface
area to that of the midplane. Prior to the application of any constraints there are forty three

degrees of freedom which are itemised as follows :

1, Translation : there are three translational degrees of freedom (u, v, w) at each of the

eight nodes corner—midside family accounting for twenty four of the total.
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2.  Rotation : at each of the loof points and the central node (at the centre of the
element) there are two rotational degrees of freedom (rotation to introduce difference
in displacement between upper and lower surface) loof family adding an extra

eighteen,

3. Bubble function : this extra degree of freedom is introduced at the centre of the

element to warrant its success in the quadrilateral patch test,

The forty three degrees of freedom are reduced to thirty two by applying the following shear

constraints §:

1.  Loof point rotations : the shear strain Tys is equal to zero at each of the loof points
giving eight constraints.

2. Central node rotations : the integral of the components of shear strain in the
curvilinear directions & and m at the central node is equal to zero giving two

constraints,

3.  Bubble function : the integral of the shear strain Y, around the boundary is equal to

zero giving one constraint.

For the programming logic the loof rotations on each side were grouped along with the
midside variables in five degrees of freedom at midside nodes and three degrees of freedom at
comer nodes. The semi—loof shell element can be used to simulate generally curved shell
geometries with multiple junctions and/or variable thicknesses. As discussed earlier the
formulation takes account of both membrane (in plane) and flexural (out of plane) deformations
while transverse shearing deformations are not catered for which is a basic assumption for the thin

shell theory.

2.3.2.3 Idealisation of the test strncture— The complete structure was idealised using

336 semi—loof shell elements twelve of which were six noded triangular elements comprising the
apical cap while the rest were eight noded quadrilateral elements. The theoretical model was
formed of twelve axisymmetric segments each extending an angle (8) of 30° in the horizontal
plane as shown in Fig. 2.9. Nodal coordinates were determined using a shape prediction program 3

and shell thickness was assumed to vary along the meridional direction only.

§ %, y, z form a set of local cartesian axes with x always outwards normal to the element boundary, y parallel to the
¢lement boundary and z nommal lo the element surface and &, § are the natural coordinate system lying in the shell
midsurface.
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Table 2.2 contains a summary of data for different forms of the finite element mesh.

DATA COMPLETE HALF QUARTER

TYPE MODEL MODEL MODEL

Total number
of elements 336 168 84

Total number
of nodes 1009 561 309

Maximum bandwidih
of stiffness
matrix 125 72 48

Total number of
degrees of
freedom 4371 2411 1319

TABLE 2.2 — DATA SUMMARY FOR VARIOUS FORMS OF THE FINITE ELEMENT MESH

2.3.2.4 Symmetric point load simulation— Linear static stress analysis using the finite

element method assumes that structural displacements are infinitesimally small, the material is
linearly elastic and the state of the boundary conditions remains unaltered. For real structures the
previous assumptions are in doubt and as a result a non—linear analysis is necessary. Non—linearity

is classified into the following three categories :

1.  Materially non—linear only : the stress strain relationship is non—linear, at the same

time displacements and strains are infinitesimally small.

2. Large displacements and small strains : displacements are large while strains are

infinitesimally small, the stress—strain relationship can be linear or non—linear.

3.  Large displacements and large strains : both displacements and strains are large, the

stress—strain relationship can be linear or non—linear.

The term *‘Geometrical Nonlinearity’’ is often used to cover the last two divisions. The
response of the experimental structure to a symmetric point load acting at ¢ = 60° away from the
apex was studied using a linear and geometrically non-linear (large displacements and small

strains) finite element analysis. Due to symmetry, half of the finite element model was considered.
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The mesh was restrained along the plane of symmetry from translation normal to plane and

rotation out of plane.

Initially, perfect rigidity was assumed for the base fixity by specifying a ring of restrained
ncdal supports for the lowest parallel circle, but displacement results under the point load were
almost 60 percent of their experimental correspondents. As a result a new material test was
performed on small specimens cut from the shell base which resulted in the following set of

material properties :
E = 8800 MPa

v =036

" " Then the stiffness at the base of the finite element_model was varied until the predicted and (

the measured displacements were almost equal and this was performed by declaring a ring of
spring supports instead of the normal supports. The stiffness of the springs was established to be
4% 10° N/m for the translational degrees of freedom and 4 X 10° N/m/rad for the rotational
degress of freedom. The updated finite element model was used throughout the remaining part of

the current chapter.

2.3.2.4.1 Linear analysis— The linear approach is based on the following equation :

[KI{s}={r} . " w21

where  [K] represents the assembled stiffness matrix;
{6} represents the vector of unknown nodal displacements; and,
{P} represents the vector of applied loads.

Evaluating the stiffness matrix and inverting it the nodal displacements can be calculated.

Displacements are then used to compute the strains within each element using

{e} = [B]{5} - (22)

where  {&} represents the generalised strain vector; and,
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[B] represents the strain—displacement matrix.

Stresses are obtained employing the following relationship :

{o} = [P1({e} - {e&,}) + {o0} @.3)

where {c} represents the generalised stress vector;
D] represents the stress—sirain modulus matrix;
{eo} represents the generalised initial strain vector; and,
{ao} represents the generalised initial stress vector.

The word *‘generalised’ is used only to include curvatures and moments in strains and

stresses, respectively.

- oa

2.3.2.4.2 Geomeirically non—linear analysis— Control tests carried out earlier on the

prototype material (GRP) indicated that the stress—strain relationship was linear until failure and as
a result the theoretical model was assumed to be materially linear. Therefore the appearance of
non—linearity in the experimental results was due to the changes in the geometrical stiffness of the
deformed prototype. A geometrically non-linear analysis was undertaken using LUSAS to be
compared with the linear analysis and experimental results. This type of analysis implies a non—
linear load—displacement relationship making a direct solution to the resulting non—linear

eguations unviable,

Appendix A contains the mathematical formulation of the non-linear equations and an

optimum solution procedure for such equations.

For the 300 N point loading the load was incremented in steps of 50 N and convergence was

achieved when all of the following conditions were satisfied :

DLNORM < 107
RLNORM < 1073

WLNORM < 107°
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where  DLNORM represents the limit for the sum of the squares of all the iterative
displacements as a percentage of the sum of squares of the total
displacements (only translational degrees of freedom are considered);
RLNORM represents the limit for the sum of the squares of all the residual forces as
a percentage of the sum of the squares of all the external forces (only
translational degrees of freedom are considered); and,
WLNORM represents the limit for the work done by all the residuals acting through
the iterative displacements as a percentage of the work done by the loads
on the initial iteration of the increment (both translational and rotational

degrees of freedom are considered).

2.3.2.5 Finite element results— Principal stresses, magnitude and direction, are illustrated

for the various meridians in Figs 2.10(a — d) and 2.11(a, b) while the equivalent stresses are
shown in Figs 2.12(a and b). Throughout this work tensile and compressive stresses are considered
positive and negative respectively. In these figures the stresses are plotted for pairs of meridians (a
meridian and its complement) and the distance is measured along the meridian from the apex as
the origin to the base at the extremities with the load on the negative side. The preceding graphs
contain both linear and geometrically non—linear results for a 300 N symmetric point load acting

60° away from apex normal to the surface of the updated mesh.

A typical deformed shape for the preceding load case is depicted in Fig. 2.14 (plots were
prepared using SWANS a surface modelling graphic software 2526 )and the corresponding
displacement results are listed in Tables 2.3 and 2.4.
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NODE NORMAL DISPLACEMENTS
NUMBER AT 300N

(mm}

501 0.393
421 0.533
321 0.523
221 0.371
121 0.169
1 0.054
215 0.604
415 0476
495 0.300

TABLE 2.3 — DISPLACEMENT RESULTS FROM A STATIC LINEAR
ANALYSIS FOR A NORMAL POINT LOAD ACTING 60° AWAY FROM APEX
{(UPDATED MESH)

NODE NORMAL DISPLACEMENTS AT DIFFERENT LOAD INCREMENTS

(mm)

NUMBER
50N 100N | 150N | 200N | 250N | 300N

501 0.066 | 0.131 0.197 0.263 0.330 0.396
421 0.089 | 0.178 0.267 0.357 0.447 0.537
321 0.087 | 0.174 0.262 0.350 0.438 0.526
221 0.062 0.124 0.185 0.247 0.310 0.372
121 0.028 0.056 0.084 0.112 0.140 0.168

1 0.009 0.018 0.028 0.037 0.047 0.057
215 0.101 0.202 0.304 0.406 0.509 0.612
415 0.079 0.159 0.239 0.319 0.399 0.480
495 0.050 0.100 0.150 0.201 0.251 0.302

TABLE 2.4 — DISPLACEMENT RESULTS FROM A GEOMETRICALLY NON—LINEAR
ANALYSIS (LARGE DISPLACEMENTS AND SMALL STRAINS)
FOR A NORMAL POINT LOAD ACTING 60° AWAY FROM APEX
(UPDATED MESH)
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2.3.2.6 Discussion— It was clear from Fig. 2.15 and Table 2.4 that the 300 N symmetric

point load was too low to invoke any geometrical non—linearity of the Echinodome prototype, a
conclusion which was confirmed by the coincidence of the linear and geometrically non—linear

stress results.

When viewing Figs 2.10(a — d) discontinuities were observed in the principal stresses
distribution in two regions, near the base (covering the region 8¢ — 100 percent of the meridional
length) and in the vicinity of the point load (covering the region 20 — 60 percent of the
meridional length on M1 in a band about the loaded parallel circle and to a diminishing extent
with other meridians up to M7). The figures indicated as well that the rest of the structure was

under negligible stresses.

Limiting attention to the region around the point load it was noticed that the principal
stresses were at their maximum posmve or maxnmum negatlve on the loaded menchan and the

further along the meridian from the point load the lower the pnncnpal stresses became

However when exammmg the base zone the stresses were found t0 be decreasing from the
loaded meridian M1 (0 = 0°) up to M4 (8 = 60°) and then increasing until M7 (8 = 180°) was
reached. Such a behaviour was consistent with the overturning effect on the structure consequent

upon the application of the symmetric point load.

On the whole, although the principal stresses were larger in magnitude on both surfaces of
the structure in the base region they did not even exceed one quarter of the ultimate strength of
the material. If by increasing the load level the structure was to collapse by buckling, failure
would initiate in the local regions of destabilising bending and high compressive stresses which
are evident in the stress distribution diagrams. The principal angle (Bp) distribution along any pair
of meridians was measured with reference to the meridional direction, anticlockwise positive,
eg. if Bp =90° it meant that o, and G, were in the circumferential and meridional directions
respectively.

In Figs 2.11(a and b), directly under the point load the principal angles were approximately
90° and 0° for the outer and inner surfaces respectively. Indicating that o, for the outer surface
and o, for the inner surface, which were shown in Figs 2.10(b and ¢) to be the most critical
principal stresses under the point load for both surfaces, were in the meridional direction. The
previous remark suggested that the meridional stresses were more critical than the circumferential

in the vicinity of the point load.

In general the principal angle tended towards either 0° or 90° in the critical zones with some
fluctuations, while it varied between 0° and 180° for the remaining parts. Yet it can be concluded
that reinforcement would generally be in the meridional and circumferential directions because

regions of the loaded structure with a principal angle other than 0° or 90° were suffering from
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minimal stresses.

The equivalent stress distribution disclosed in Figs 12(a and b) indicated that the stresses
were at their peak near the base for the meridian complementing the loaded one for both surfaces.
The equivalent stresses in the base zone decreased from M7 to M4 where it increased again up to
M1.

While around the loaded area, the peak equivalent stresses became more accentuated the

closer the meridional section approached the loaded meridian.

The stress distributions (0'1, o, and Ge) described above were suitable for the behaviour of
the shell prototype under a symmetric point and as a result of the destabilising stresses induced
under the point load and at the base a buckling investigation was carried out as described in later

subsections.

2.3.3 Comparison Between Experimental and Theoretical Results

When comparing the measured displacements with their theoretical correspondents
(excluding results for the point load) it was clear that both sets of resuits had a similar erend
except for measurements of displacement transducer number 5 which indicated deformation in an
opposite direction to that predicted by the finite element method (see Fig. 2.16). Earlier readings
for the same transducer at lower load levels were erratic which cast doubts on its general

behaviour.

Some discrepancies existed between the experimental and theoretical results and this was
atiributed to the geometrical imperfections inherent in the test structure in the form of thickness
variations along the parallel circles as well as the existence of the bonding seam and neither were

simulated in the finite element model.

24 BUCKLING STUDIES

Thin walled structures under compressive loads may fail to remain safe due to material
failure or buckling (the term buckling will refer only to static buckling through this chapter). Thin
shell structures have to be designed to avoid overstressing the material used in their construction
under general types of loadings. Equally important, critical buckling loads must be predicted

accurately to avoid reaching such loads.
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2.4.1 Introduction to Buckling

The following subsections explain the buckling phenomenon of thin shells and the reasoning

for it, as well as its various forms. Numerous examples of shell buckling are given in Ref. {27).

2.4.1.1 Buckling of thin shells— The buckling phenomenon is said to have taken place

when structures undergo large deformations leading to a catastrophic failure. Thin shells are
characterised by having a large membrane stiffness several times the bending stiffness. When
subjected to membrane compression loads such structures absorb high membrane strain energy
while experiencing small deformations and if that energy is transformed into bending strain energy

the structure suffers large deformations accompanied by a sudden failure.

2.4.1.2 Various types of buckling— Theoretically there exists two types of instabilities for

thin shells ;: “Non-linear Collapse’’ (often termed ‘‘Snap Through’’ or ‘‘Limit Load’’) and
‘‘Bifurcation Buckling’’ . The non-linear collapse buckling load is defined as the load at which
ilic load—deflection curve from a non—linear analysis has zero slope and when using the finite
element method this means that the total tangential stiffness matrix [KT] is non—positive definite
(zero or negative values on the leading diagonal of the matrix). The bifurcation buckling load is
predicted using an eigenvalue analysis and in the finite element method this involves solving the

following equation :

([x.] + [Allx,])[e] = [o] - Q24

where [Ko] represents the small displacements stiffness matrix;
[A] is a matrix containing the load multipliers A on its leading diagonal and
zero elsewhere;

[KG] represents the initial stresses or geometric stiffness matrix;

3] is a matrix containing the buckling mode shapes (eigenvectors) associated

with each load multiplier (eigenvalue); and,

[0] represents a null matrix.

This is often termed linearised buckling analysis. The estimated bifurcation buckling load
can be considered accurate only if the elastic solution using [K ] gives deformations such that the
terms contained in the large displacements stiffness matrix, [KL], are almost or equal to zero.

Bifurcation buckling analysis can be combined with a non—linear analysis by performing an
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eigenvalue analysis after each load increment on the deformed structure.

Modal displacements due to bifurcation buckling are orthogonal to the prebuckling
deformations of a perfect structure and as a result their amplitudes are equal to zero until

bifurcation takes place, The post—buckling behaviour can be typified as follows :

1.  Unstable : if the load carrying capability decreases with the increase in the amplitude

of modal displacement (e.g. cylindrical shells).

2. Neutral : if the load carrying capability remains constant with the increase in the

amplitude of modal displacements (e.g. centrally loaded columns).

3.  Stable : if the load carrying capability increases with the increase in the amplitude of
modal displacements (e.g. plates).

Though bifurcation buckling is imaginary and does not take place in real structures which
contain initial imperfections it often offers a good approximation to the true critical buckling load
and its corresponding mode. Buckling behaviour of structures with geometric imperfections is
similar to non—linear collapse buckling analysis in that it follows a non—linear load-deflection

path with its post—buckling behaviour classified as for bifurcation buckling.

2.4.2 Experimental Investigation

An accurate estimate of critical buckling loads experimentally can only be achieved by a
destructive test on a real structure or a model of it and such a method is expensive. In addition,
precise buckling loads are not always attainable because structural failure can occur as a result of
material overstressing not due to buckling. Various non—destructive experimental and theoretical
buckling determination techniques have been evolving during the last few years some of which are

explained in the following paragraphs.

2.4.2.1 The Souza method 2* — The concept of this technique is based on making use of

the relationship between the natural frequency of a statically loaded elastic structure and the
magnitude of the applied load to predict the critical static buckling load. Earlier reports 2°
suggested the use of other dynamic characteristics (dynamic mass) as well. The technique was
nominated the ‘‘Souza Method’’ because a similar procedure will be adopted in the current

investigations as to that suggested by the former researcher.

Souza assumed that the graph of @ versus P is of hyperbolic shape for structures
characterised by unstable post-buckling behaviour with zero frequency at the buckling load.
Therefore when plotting the experimental results in a parametric (normalised) form of (1 — P)?

versus (1 — P) (where P is the applied load normalised by the load corresponding to zero
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frequency P_ coinciding with the centre of the above hyberbola and T is the natural frequency of
the loaded structure normalised by the natural frequency of the unloaded structure fo), a straight
line should be obtained.

The Souza method has been applied to cylindrical shells with success 3 and will be adopted
in this theoretical investigation to check the validity of applying such an approach to

Echinodomes.

2.4.2.2 The Southwell method— Southwell proposed a simple method for predicting the

theoretical buckling load Pcr of perfect columns from experiments on real columns with small
initial imperfections. Basing the technique on the small deflection theory the deflection parameter
was expanded using Fourier series and assumed equal to the first component of the series as the

load level approached Pu_. This produced the following formula :

where 80 represents the initial deflection of the neutral axis of a column or initial

geometrical imperfections; and,

3 represents the additional deflection.

This is an equation of a rectangular hyperbola in a P versus 8 plane with the P—axis and
the horizontal line passing through Pcr as its asymptotes, indicating that the method is applicable
to columns characterised by a neutral post-buckling path. Rewriting Eqn (2.5) after arranging

terms

8 . %
PCI’ PCI‘

: (2.6)

3
P

The above formula represents an equation of a straight line with slope 1/P_ when plotted in a

S/P versus & plane and is known as the ““Southwell Plot”’.

Roorda 3! investigated the Southwell plot for post—buckling cases other than neutral and
found that the relationship between &/P and 8§ becomes non—linear resulting in an underestimation
or overestimation of P_ depending on the post—buckling buckling path type. After mathematical

manipulation Roorda proved that the slope of the tangent to the initial part of the non—linear curve
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of &/P versus 8 lent itself to the value of I/P__ for small imperfection cases.

In 1975 Spencer and Walker 32 argued that non_linearities in the Southwell plot may arise
at low load levels due to any inherent zero error in the deflection and proposed the use of the

“Pivot Point” concept from which the following equation was obtained :

PP . P's — Ps’
[P _p (S — 8 )l = Pcr I*T_—F;-l + Pcrso ™ e 2.7
where s represents the deflection transducer scale reading;
s, represents the true (but unknown) transducer scale reading at 8§ = 0 ; and,
P., s represents the load—displacement pair known as the Pivot Point i

Detailed derivation of Eqn (2.7), due to Spencer and Walker, is given in Appendix B,

The above named non—destructive buckling load determination technique can be summarised

as follows :

1.  Make displacement (or strain} measurements at a number of observation points (on the

structure for which the buckling load is to be determined) for several load increments.

2.  Plot &P (cr &/P) versus & (or €) and obtain the equation of the best fitted line, with
the reciprocal of its slope as P,

3. If non-linearities exist at low load levels make use of a pivot point to plot
[PP(P - P) s —s")] versus [(P's—Ps)P—-P)]. Fit the best straight line
through the points to obtain P__ which is the slope of that line,

2.4.2.3 Linear regression— Least square regression is one of the techniques used to fit a

curve through data points and when the fitted curve is a straight line the process is known as
“Linear Regression”’. The method is based on minimising the discrepancy between the data

points and the fitted curve.

Minitab 3 is a general purpose statistical system designed to analyse data. Regression
analysis is one of the numeroys facilities it offers, The program was utilised to analyse and fit

curves to the experimental displacement results listed in Table 2.1(a).

§ The Pivot Point constitutes a }oad—displacémem pair (P°, s} which, in the judgement of the experimenter, is
sufficiently accurate to be used in analysis.
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For each displacement transducer data was submitted in the form of 5 columns : P, w, w/P,
[P'P® - P (s - s")] and [(P"s — Ps")P — P')"'], where w represents the normal deflection.
Then the regression operation was carried out to acquire the linear equations for the following

relationships :
P—w, w/P—w and [P'P® — P*) (s — s )1—[(P°s - Ps)(P - P
where the pivot point (P', s') was assumed to be the maximum load level data (P* =300 N).

A lineat equation will have the following form :

Y=b,+bX (2.8)
where X is known as the predictor;
Y is known as the response;
b, represents the intercept of the fitted line with the Y—axis; and,
By ‘represents the slope of the fitted line measured from the X—axis.

Thus when performing linear regression between P and w the coefficient bo was specified as

zero to force the fitted line to pass through the origin.

Minitab outputs statistical characteristics of the data and the fitted curve which can be used

in assessing the quality of the regression equation 34 some of which are :

1. Standard error of estimate (sy) : often called ‘‘the Standard Deviation’’ of Y about
the regression line. The value of sy can be used as a measure of the difference
between the observed and the fitted Y values (Y| and Yf I), and it is calculated using
the following formula :

n 2 )0S
Z(Yl - Yf I)
sy = .'-_l.,ll_zz_ (2.9)

where n is the number of data points.

2. Coefficient of determination (rz) : which is the square of the correlation coefficient
{r} between Y| and Y“ values. The quantity r is always in the range of -1 to +1. If
the correlation coefficient is evaluated between two columns of data C1 and C2, thenr ~

will have a positive value if C2 data increases with the increase of C1 data and a



CHAPTER 2 — THE ECHINODOME UNDER A STATIC POINTLoAD 258

negative value if C2 data decreases with the increase of C1 data. The correlation
coefficient is a measure of how closely the points lie on a straight line thus r will be
equal to +1 or -1 if all the data points lie on a straight line with a positive slope or a
negative slope respectively while it will be equal to zero if there is no linear

association between C1 and C2.

2.4.2.4 Non_destructive buckling estimates— The Southwell technique was used to

predict the critical buckling point load when applied normal to the surface and 60° away from
apex., Graphs of P versus w and w/P versus w under the point load are shown in
Figs 2.17(a and b). While graphs of load versus displacement and the Southwell plot, for
displacement transducers numbers 6 and 5, can be seen in Figs 2.18(a, b) and 2.19(a, b)
respectively. Tables 2.5 and 2.6 contain the results of the regression analysis where load is in

Newtons and displacement in millimetres,

DISPLACEMENT Sy
TRANSDUCER | LINEAR REGRESSION MODEL r
NUMBER o

1 Y= 8299 xX 0.0070 | 0.998
2 Y= 7092 xX 0.0131 | 0.996
3 Y= 6250xX 0.0046 | 1.000
4 Y= 606.1 xX 0.0160 | 0.994
5 Y=32258x X 0.0207 | 0.957
6 Y=27548 x X 0.0091 | 0.975
7 Y= 5102 xX 0.0202 | 0.996
8 Y= 6579 xX 0.0124 | 0.999
9 Y= 909.1 x X 0.0103 | 0.998

TABLE 2.5 — REGRESSION ANALYSIS RESULTS FOR THE P-w PLANE
X=wandY =P}
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DISPLACEMENT Sy P
er
TRANSDUCER LINEAR REGRESSION MODEL r
(mm/N) N
NUMBER

—

Y= 0.001000 + 0.000443 x X | 0.0000506 | 0.661 22573
Y= 0.001210 + 0.000598 x X | 0.0000617 | 0.783 1672.2
Y= 0.001550 + 0.000125 x X | 0.0000385 | 0.409 8000.0
Y= 0.001560 + 0.000275 x X | 0.0001081 | 0.342 3636.4
Y= 0.000053 + 0.003210 x X | 0.0000376 | 0.972 3115
Y= 0.000564 — 0.002260 x X | 0.0000570 | 0.724 | stiffening
Y= 0.001580 + 0.000837 x X | 0.0001343 | 0.738 1194.7
Y= 0001260 + 0.000721 x X | 0.0000587 | 0.866 1387.0
Y= 0,000875 + 0.000848 x X | 0.0000488 | 0.871 1179.2

LU~ - RS N = UL~ TR - VLR 8 ]

TABLE 2.6 — REGRESSION ANALYSIS RESULTS FOR THE SOUTHWELL PLOT
USING UNAVERAGED EXPERIMENTAL DATA
(X=wand Y =wP)

2.4.2.5 Analysis of results— In an earlier section it was concluded from the theoretical

analysis that the 300 N point load was relatively low to invoke any inherent geometrical non--
linearity of the Echinodome prototype. At the same time, the experimental load—displacement
‘relau'onship exhibited some non-linearity as is apparent in Fig.2.17(a} (correlation
coefficients # 1.0 — see Table 2.5) for the various displacement transducers. This could be
attributed to either random errors, (electrical noise, . ... .. , etc.), initial structural imperfections or
both. Initially, the Southwell technique was applied to the unaveraged displacement measurements

and results are listed in Table 2.6 together with the buckling load estimates.

When viewing Figs 2.19 (a and b} it is clearly seen that the experimental data was erratic
although the correlation coefficient indicated otherwise and therefore it is always very important to
inspect the plot of the data points along with the regression line even for high correlation
coefficient values. Attempts were made to improve the quality of the fits using the pivot point
concept but this resulted in more scattered data points and consequently a worse fit was the

outcome.

On examining the Southwell plot for each transducer it was noticed that the experimental
results corresponding to the first load increment (50 N} were more widely dispersed than those for

the higher load increments. As a result, the regression analysis was repeated excluding
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measurements for the first load increment. In addition, the best fitted line was determined for the
measurements average of each load increment rather than individual unaveraged measurements (in
order to minimise any random errors) and averages possessing a coefficient of variation greater
than 6 percent were omitted with the purpose of enhancing the quality of the fit. The new buckling

load estimates are listed in Table 2.7 with the correlation coefficients of the fitted lines.

DISPLACEMENT Sy Pcr :
TRANSDUCER LINEAR REGRESSION MODEL . r ™~
NUMBER
1 Y=0.001050 + 0.000250 x X | 0.0000127 | 0.902 3997.1
2 Y= 0001290 + 0.000339 x X | 0.0000185 | 0.928 2947.3
3 Y= 0.001560 + 0.000095 x X | 0.0000068 { 0.910 | 10499.8
4 stiffening
5 erratic data
6 stiffening
7 Y=0.001870 + 0.000230 x X | 0.0001332 | 0.932 4346.9
8 Y=0.001330 + 0.000514 x X | 0.0000192 | 0.971 1946.4
9 Y=0.000947 + 0.000557 x X | 0.0000136 | 0.976 1794.1

TABLE 2.7 — REGRESSION ANALYSIS RESULTS FOR THE SOUTHWELL PLOT
USING AVERAGED EXPERIMENTAL DATA
X=wand ¥ =wlP)

In general, the Southwell technique predicted different buckling loads for different points on
the structure and it was observed from Table 2.7 that some parts of the structure were stiffening

rather than softening,

When inspecting the preceding table it was noticed that parallel circles near the base
predicted lower buckling loads than under the point load, suggesting that the former was more
critical than the latter. The minimum estimated buckling load (Pcr) was found to be equal to

1794 N and corresponded to a point on the lowest parallel circle under consideration (¢ = 150%).
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2.4.3 Theoretical Investigation

The two theoretical buckling load types, collapse and bifurcation, were estimated using the
finite element package LUSAS.

2.4.3.1 Collapse buckling estinate— A geometrically non—linear analysis was performed

on the updated mesh to predict the collapse buckling load. In order to avoid singularity in the
incremental stiffness matrix, at the extremum points of the load-deflection curve, an incremental
displacement was prescribed normal to the shell surface and the reaction evaluated at a point 60°
away from apex. The solution procedure crossed the snap—through point by enabling the load level

to vary between iterations and the change was computed to satisfy the following constraint :

. .
{Bi_|+1} n{slj+1} - 12 " - 2.10)
where {53”} - represents the i™ incremental displacement vector for the j+1'h iteration;
! represents the incremental displacement length; and,
. indicates vector product.

The derived load—deflection curve is depicted in Fig. 2.20.

In Refs (35) and (36) a quantity known as the current stiffness parameter (Sp) was proposed
to provide a global measure for the stiffness of the structure. It is defined by the following

formula :

S - [Ap; ]Z{ASI}T[KM]{M]}

= = (2.11)
Pr ) {a&} [Kril{a8}
{ar} = Ap{P.} R X . (212)
where {Pr e‘.} represents the normalised external load vector;
Ap represents the load parameter increment (when the external load is

incremented the load parameter changes by Ap while {P__} remains

constant);
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{Aﬁl} represents the i incremental displacement vector corresponding to Ap, ;
{ASI} represents the linear displacement vector corresponding to Ap1 :
[Ko 1] represents the small displacement (linear) stiffness matrix corresponding to

the first load increment; and,

K represents the i tangential stiffness matrix.

T

The current stiffness parameter which has an initial value of 1.0, increases and decreases
with the stiffening and the softening of the structure respectively. For stable post-buckling
behaviour S]J is positive, for unstable behaviour Sp is negative and at limit point (collapse) Sp is

ZETO.

Figs 2.21(a and b) show the current stiffness plotted against load and displacement
respectively. From these graphs an accurate estimate of the non—linear collapse buckling load for
the updated mesh was established, Pnc = 7.64 kN. A typical deformed shape is illustrated in
Fig. 2.22.

In order to assess the validity of using the Souza method to predict buckling loads for the

Echinodome, a similar concept was applied to the theoretical results.

Natural frequencies of the updated mesh were determined after each prescribed displacement
increment (simulating a point load acting normal to the surface, 60° away from apex) using the

following eigenvalue formulation :

([,] - [@1MD)[¥] = [0] - (2.13)

where [92] is a matrix with diagonal elements equal to the natural frequencies squared

(mz) and zero elements elsewhere;

M d] represents the mass matrix of the deformed structure; and,

(W] is a matrix containing the mode shapes (eigenvectors) associated with each

natural frequency (eigenvalue).

For zero load the tangential stiffness matrix is equal to the small displacement (linear)
stiffness matrix [KO] while [M d] becomes the mass matrix of the original (underformed) structure
[M].

Horton et al. 2° found that the frequency mode to be considered when plotting the frequency
squared against the applied load was the one similar to the collapse shape. For the Echinodome

this meant :
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¢ axisymmetric mode —  axisymmetric loading

s symmetric |:1_nod_el — symmetric loading

« torsional mode - torsional loading

One of the symmetric vibrational mode shapes (see Chapter 3) was related to the current
load case by having motion in the direction of the applied load. The w’ versus P indicated that the
relationship between both parameters is of hyperbolic form with Pnc corresponding to the vertex of
the hyperbola. Unlike what has been suggested by Souza 28 for cylindrical shells the Echinodome
under a load equal to Pcr did not have a zero natural frequency but rather a minimum value for

the natural frequency was reached.

Consequently, the direct application of the Souza method to the Echinodome is not suitable
(because of the dependency of the technique on the premise that the vertex of the hyperbola lies
on the applied load axis). Instead, if a vibration test was carried out to determine the structural
natural frequencies under various load increments it is possible to estimate the buckling load P__

by carrying out a non—linear regression analysis on the assumption that w* versus P is hyperbolic.

2.4.3.2 Bifurcation buckling estimate— When undertaking an eigenvalue analysis

(employing the subspace iteration method described in Chapter 3) using Eqn (2.4) to predict the
linear bifurcation buckling load the LUSAS finite element system indicated that the initial stress

matrix [K ] was non—positive definite. Consequently Eqn {2.4) had to be reformulated as follows :

(([x) + [K,]) - [¥l[x,)Ie] = [0] —@19)

where  [v] is a matrix with the values (1 - I/A) on its leading diagonal and zero

elsewhere.

The resulting eigenvectors are similar to those of Eqn (2.4) and as a result the load

multipliers were computed using the following formula :

Al=—— . - - (2.15)
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where i is a subscript denoting the eigenvalue and eigenvector number.

From the previous equation it can be noticed that when ll is large, , will be close to 1.0
and any small error in the estimation of 7y, results in a large error in ll. Consequently the
bifurcation buckling load was specified to be multples of 20000 but this caused failure in the
solution of Eqn (2.14) because the computed eigenvalues were negative (LUSAS is unable to carry
a convergence check on negative eigenvalues). To overcome this problem a shift p was applied to

form a modified eigensystem, which had the same eigenvectors, as follows :

(([x.] + [Ko] + [MIK.]) = FIKI®] = [0]  ovmomssssmsses (2.16)

where  [p] is a diagonal matrix and the actual eigenvalues were calculated as

follows :

Y=Ti— K , Q.17

The minimum bifurcation buckling load P for the updated mesh was 10.75 kN
(c.f. Pm = 7.64 kN) which indicated the significance of the structure’s geometrical changes and
hence the large displacements stiffness matrix [K, ] might have a great influence on the buckling

load estimate,

Consequently a non—linear bifurcation buckling analysis was undertaken by performing an
eigenvalue extraction using Eqn (2.16) after each application of the prescribed incremental
displacement described in the previous subsection. The estimated bifurcation buckling load P“b
was equal to 9.90 kN and the accompanying mode shape can be seen in Fig. 2.23. It can be
concluded that the non-linearity of the prebuckling state was important for the bifurcation

buckling model.

Although Pnb was almost 90 percent of Plb it was still of a less engineering significance
than P .
nc

2.4.4 Comparison Between Experimental and Theoretical Estimates

For the current case a direct comparison between experimental and theoretical buckling load
estimates is inappropriate. The reason is that the values determined using the Southwell technique

were dependent on local points on the test structure and therefore local geometrical imperfections
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in the form of local thinning or thickening of the shell wall can greatly affect the buckling load
estimates. Each position on the test structure had its own imperfection and stiffness hence the

variation in the determined Pcr.

Nevertheless, it was interesting to notice that both the Southwell technique and the collapse
buckling analysis predicted the region near to the base as the most critical zone for buckling
failure. The preceding remark was made on the basis that experimentally the minimum Pu_ was for
a position lying on the nearest parallel circle to the base and theoretically at Pnc a few elements

comprising the last ring of semi—{oof elements towards the base collapsed.

Both approaches (experimental and theoretical) predicted that the Echinodome prototype
would fail by buckling after exceeding the maximum strength of the material. Thus, indicating that
buckling of this specific shell under the given loading was not to be considered as a design

criterion,

2.5 CONCLUSIONS

Limiting attention to the current Echinodome test structure, the following observations could =

be made :

1.  For a symmetric point loading the critical zones were identified to be in the vicinity of
the applied load and near the base of the structure because of the induced bending

stresses which could initiate a buckling failure.

2. Away from the critical regions the structure suffered from minimal stresses and a

membrane action dominated.

3.  The principal angle distribution on both outer and inner surfaces indicated that at peak
principal stresses 0 = 0° or 90° . Thus, any reinforcement for the structure should be

generally in the meridional and circumferential directions.

4,  When performing a bifurcation buckling analysis the non-linearity of the prebuckling
state is important because the prebuckled shape of the structure is more likely to lose
its stability.

5.  The non-linear collapse buckling load is less than the bifurcation buckling load and

hence it is more critical.

6.  The material strength is expected to be exceeded before a static buckling failure takes

place.
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The Southwell technique employed in the non—destructive buckling tests produced
consistent results by predicting the minimum P__ from a point near to the base which

was one of the critical regions.

The Souza method for buckling load determination might be an expensive test to
perform because of the high costs of hardware and software involved. Unlike the
former technique which is dependent on the degree of local imperfections inherent in a
structure the Souza model is based on measuring a global property of the structure
(natural frequency) under various load increments. A prerequisite step before applying
the Souza concept is to carry out a modal test (see Chapter 4) in order to typify the
vibrational mode shapes of the unloaded structure under consideration. Extreme care is
necessary when applying the static load to ensure that any loading arrangement used

does not introduce extra modes.

For full size Echinodome shell structures it is important to take account of the following

points during the design, launching and operating stages :

1.

The last 10 percent of the meridionai profiie is tw be siiffened by the gradual
thickening of the shell wall or extra reinforcement bars in that zone to avoid any

premature failure due to buckling.

Extra reinforcement is required around openings and towing points to resist any local

buckling,

In real structures sensitivity to construction or manufacturing imperfections is much
less important and therefore the finite element method evolves as the most appropriate
numerical method to be used in predicting the general behaviour of the Echinodome

under static concentrated loads.
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FIG. 2.5-NOMENCLATURE OF MERIDIANS ADOPTED IN CURRENT ANALYSIS
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CHAPTER 3

Tueorericar. Stupies On Tre EcumnwoboMe REesponse

To Dynamic Pomnt Loaps

3.1 SUMMARY

Theoretical dynamic analysis of the Echinodome was carried out employing two finite
aier‘pent systems, LUSAS and PAFEC.

Natural frequencies and mode shapes of the finite element mesh described earlier were

computed using two different techniques.

Shock spectra for symmetrical pulse shapes, triangular pulses and response to step functions

were determined disregarding damping and assuming linear relationships.

Non-linear dynamic analysis was performed for an axisymmetric and a symmetric point

loading to determine the dynamic collapse buckling load.

3.2 INTRODUCTION

In their operational life, underwater storage vessels can be subjected to transient

concentrated loads, e.g. as a result of dropped objects or sudden release of pressure.

Dynamic loads excite a frequency range dependent on the time duration of the loading
pulse. If one or more of the structure’s natural frequencies falls within that range then the
structural response will be magnified when compared with its static correspondent, depending on
the pulse duration. In order to study the general behaviour of the magnification factor a dynamic

analysis must be carried out to determine the shock spectra for a wide variety of pulse shapes.

3.3 FREE VIBRATION ANALYSIS

The linear equation of motion for forced excitation may be written in matrix form as

follows :

[MI{5} + [C1{5} + [KI{s} = {P} - GO

-50.
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where [M]
[c]
K]
{8}
{8}
{8}
{P}

represents the mass matrix;

represents the damping matrix;

represents the stiffness matrix;

represents the acceleration vector {time dependent);
represents the velocity vector (time dependent);
represents the displacement vector (time dependent); and,

represents the external load vector (time dependent).

For free v1brat10n analy51s the external load vector is equal to a null vector and the dampmg

can be dlsregarded o glve

[M]1{5} + [K]{6} = {0} ... (3.2)

The solution of the previous equation can be assumed to be of the following form :

{8} ={wle . 3.3)
where  {y} is a vector of order n, and n represents the number of degrees of freedom
(time dependent);
el represents a complex function = cos(wt) + i sin{wt) ;
i is equal to the square root of -1 ; and,
o represents the vibration frequency of vector {y}.

Substituting Eqn (3.3) into Eqn (3.2) it follows that

[K{v} =My} (3.4)

The eigenproblem in Egn (3.4) yields n eigenvalues and n eigenvectors which are assembled in

two matrices

[@?] = .
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Eqgn (3.4) can be written for n solutions as

[¥]=[{v} {v} {v} -+ {v}]

([x] - [@?1IMD)[¥] = [0] (3.5
The eigenvectors are characterised by being orthogonal, which may be stated as follows :
T
[¥] [K]l¥] = ke (3.6)
T
[¥] [M][¥] = m, 3.7
]
where k,m represent the modal stiffness and mass for the ™ mode respectively.

Since the eigenvector matrix may be scaled by any factor, the values of k and m_ are not
unique. Mass—normalisation is used to obtain a set of unique eigenvectors. This process is carried

out by normalising each eigenvector with the square root of its corresponding modal mass.

{6}, = —le_f-{w}r . e (3.8)

The mass—normalised eigenvectors have the following properties *

[o] TK][@] = [0] ) 3.9)
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[@] [M][e] = [1] . (3.10)

where  [I] represents the identity matrix.

If damping is taken into consideration then the eigenvalues and eigenvectors would in

general be complex.

3.3.1 Natural Frequencies and Mode Shapes Extraction

There are several techniques to solve the eigenproblem of Eqn (3.5) a variety of which are
reported in Ref. (17). The following subsections present a brief description of two methods for the
solution of eigensystems, one is accurate and another is approximate. For a complex structure such
as the Echinodome shell, the accurate technique requires an enormous amount of computer
resources (memory and time), while the approximate technique if used effectively can produce

relatively accurate results for the lowest eigenmodes using much lower computer resources.

3.3.1.1 The subspace iteration method— The main aim of the subspace iteration method

is to extract the lowest p eigenvalues and corresponding eigenvectors satisfying the following

equations :

([x] - [e2lMD)[@} = [0] ... @.11)

Meaning that this technique extracts mass—normalised eigenvectors satisfying Eqns (3.9) and
(3.10).

The method was developed by Bathe !7 and can be summarised in the following three
steps :
1.  Starting procedure : a set of q starting iteration vectors are established where q > p
and p is the number of required eigenvalues and eigenvectors to be computed.

2.  Tteration : an iteration procedure is followed to extract the best eigenvalue and

eigenvector approximations.

3.  Sturm sequence check : when convergence is achieved a sturm sequence check is

carried out to verify that none of the intermediate eigenvalues have been missed.

w
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The mathematical representation of the subspace iteration technique is given in Appendix C.

LUSAS adopts the subspace iteration method for solving eigenproblems and was utilised in
extracting the eigenvalues and eigenvectors, for the initial mesh (perfect fixity at the base), by

specifying

q=16
Convergence tolerance = 1072

Numerical results of the analysis are listed in Table 3.1 for the first eight vibrating modes with
praphic presentation of the lowest six mode shapes in Figs 3.1(a — f), which are the most

significant.

MODE NATURAL ERROR
NUMBER | FREQUENCY o
NORM
(Hz)

7340 | 01547 x 10710

7340 | 0.1412 x 1010
27320 | 0.1826 x 10711
57797 | 02091 x 10712
1036.76 | 0.5671 x 10712
103676 | 02277 x 10°12
153342 | 0.1184x 109
154545 | 03584 x 1009

00 =1 N Lth B W N

TABLE 3.1 — NATURAL FREQUENCY EXTRACTION RESULTS
USING THE SUBSFPACE ITERATION METHOD
(AFTER 41 ITERATIONS)

A sturm sequence check was performed after convergence was achieved and LUSAS stated
that it had found the lowest eight eigenvalues. The results of the error norm associated with each

eigenvalue indicate that the estimates of the natural frequencies were accurate.
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3.3.1.2 The static condensation method— The whole finite element assemblage

representing the Echinodome possessed 4371 degrees of freedom and to undertake a direct

eigenvalue extraction process on such a mesh would be impractical.

Static condensation can be encountered in the solution of static equilibrium equations or in
the calculation of natural frequencies and mode shapes, When utilised for an eigenproblem its
main purpose is to lump the structural mass at specific degrees of freedom while leaving the

stiffness intact causing small inaccuracies in the natural frequency and mode shape estimates.

One of the methods used to perform static condensation in a dynamic analysis is the Guyan
reduction technique 37 . The reduction is carried out by neglecting the inertia effects of certain
degrees of freedom characterised by the highest frequencies and modes thus retaining the lowest in

the analysis. The Guyan reduction technique is summarised in Appendix D,

The standard technique used in PAFEC for the solution of eigenproblems is the static
condensation method, The structural degrees of freedom are subdivided into masters and slaves.
Master degrees of freedom are chosen to describe the deformations of the lowest modes of

vibration. The eigensystem in Eqn (3.5) is rewritten as follows :

([K.] - [@2]M.Die] = [o] . (12

PAFEC transforms the generalised form of Eqn (3.12) into a standard eigenproblem form
represented by

([K2] = [Q2IIDIB] = [0]  coeerrmesessrmrmsesmsssmssssemssssssssasssssens (3.13)

Then a most efficient technique known as the Householder tridiagonalisation method, ?! is used in
the solution of the preceding equation. Once [®] is computed it is back substituted to obtain [®]

the required matrix of eigenvectors.

For the Echinodome the number of master degrees of freedom was 144 specified at four
parallel circles and three translational at the apex giving a total of 147. Each parallel circle

possessed 36 translational degrees of freedom located at 12 nodes lying on 12 meridians 30° apart.

The results of the analysis are listed in Table 3.2 and a comparison between the subspace

iteration method and the static condensation method is presented in Table 3.3.
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MODE

NUMBER

NATURAL
FREQUENCY

(Hz)

00 ~3 O th b W N e

7347
7347
274.37
58241
1098.19
1098.99
1806.00
1806.60

TABLE 3.2 — NATURAL FREQUENCY EXTRACTION RESULTS
USING THE STATIC CONDENSATION METHOD

65

NUMBER OF

METHOD USED DISK NUMBER OF CPUTIME | NUMBER OF ACCURATE
OF SPACE EXTRACTED COMPUTED NATURAL FREQUENCY
(min)

EXTRACTION (MBYTE) EIGENVALUES | EIGENVECTORS ESTIMATES
Subspace

iteration 54 8 8 73 8
Static

condensation 17 147 8 27 32

TABLE 3.3 — COMPARISON BETWEEN THE SUBSPACE ITERATION METHOD
AND THE STATIC CONDENSATION METHOD

3.4 _TRANSIENT RESPONSE ANALYSIS

Structural response to dynamic loadings can be classified into 38.39 ;

1. Early time response : highly localised deformations take place in structures subjected

to severe impact or shock loadings. Stress waves are generated and interact with

structural boundaries sometimes causing structural failure. Typical loading and

response times are in microseconds.
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2.  Transient response : transient loads containing low frequency components excite the
lowest vibrational modes of the overall structure, in which case loading and response
times are of the order of milliseconds. Under such transient loading, structures respond

globally and highly stressed points may not be in the vicinity of the loaded position.

In the current analysis only transient response will be considered.

3.4.1 Definitions

Prior to any discussion in the field of transient response analysis it is necessary to define the

following list of terms :

¢ Shock response spectrum — is a plot of the maximum structural response at a

specific point for a particular pulse shape against the ratio, T, of the time duration of

d!
the pulse (t,) to the longest structural natural period (T,). From such a plot the effect

of the pulse duration (relative to Tl) on the structural response can be observed.

e Initial shock spectrum — is a shock response spectrum of the maximum structural
response while the shock pulse is acting, i.e. during the forced vibration state of the

structure.

¢ Residual shock spectrum — is a shock response spectrum of the maximum structural
response after the shock pulse is over, ie. during the free vibration state of the

structure.

e Maximax shock spectrum — is a shock response spectrum representing the overall
maximum between the initial and residual shock specira, i.e. during the motion of the

structure.
s Rise time (tl)'— is the time for a triangular shock pulse to increase from zero to its
maximum value (see Fig. 3.2(a)).

* Decay time (t,) — is the time for a triangular shock pulse to decrease from its

maximum value to zero (see Fig. 3.2(a)).

e  Skewness factor (x) — is a characteristic of triangular pulses and can be defined as
the ratio of the rise time (t,) to the total duration time of the triangular shock pulse
(td = tl + tz).

* Ramp time (t) — is the time taken by a step loading to reach its maximum value
(see Fig. 3.2(b)).
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¢ Dynamic Load Factor (DLF) — is defined as the ratio of the maximum displacement

resulting from a dynamic load to the displacement which ensued from the same load
applied statically, '

3.4.2 Various Pulse Shapes

Structural response to a transient shock pulse depends primarily on the pulse shape and its
duration. In general standard pulse shapes have been used to represent impact and blast loads. A
half sine or a symmetrical triangle pulse shape would simulate an impact load while a pulse with a

vertical rise (k = 0) and constant or exponential decay would be an example of a blast loading.

Transient loads when applied to structures excite a frequency range 0 — f where f is the
cut off frequency above which there is not enough energy to cause v1brat10n The frequency
spectra of such loads are periodic with a maximum amplitude at 0 Hz and decaymg amplitude
with almost zero load at equal frequency intervals the size of which depends on the pulse shape
(cf. Fig. 3.3 for a symmetric triangular pulsershape). Table 3.4 contains the zero load frequency
interval of the frequency spectra for some of the standard pulse shapes.

PULSE SHAPE | ZERO LOAD FREQUENCY INTERVAL
Symmetric
triangular QJtd
Half sine 1.5/t
Rectangular L’t‘:l

TABLE 3.4 - ZERO LOAD FREQUENCY INTERVALS OF THE FREQUENCY
SPECTRA FOR A SAMPLE GF STANDARD PULSE SHAPES

From the above table it can be concluded that the cut off frequency depends on both the
pulse shape and its overall duration time (t d).

Step functions with a constant front are often used to represent dynamic loads with the
ramping time as the factor controlling the width of the excited frequency range. A wide variety of
pulse shapes together with their shock spectra for a SDOF oscillator can be found in Ref. (40).
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3.4.3 The Discrete Fourier Transform (DFT)

Fourier transform is used in moving an independent variable of a signal x(t) from the time

domain to the frequency domain. As a result of the transform no data is lost or added.

For a discrete periodic time signal with N samples, equally spaced in a period T, its DFT

can be computed by

Z

-1

Xy = [x.. e-'@*‘“m)] (k=0,1,2 .00ty (N-I)  srrrrrrrreene (3.14)

1pv

L
N

It is possible to reconstruct the original time signal by an inverse discrete Fourier transform
(IDFT} as follows :

N-1
X = 3, [xk e’@""’"‘“] iT=0,L2, 00000y N-1)  srirscrssnsnens (3.15)
r=)

The fast Fourier transform (FFT) is an efficient algorithm used to compute the DFT of a
block of sampled data. The technique takes advantage of the periodicity of the weighting function
PN s reducing the number of multiplication operations, required for an FFT algorithm
with radix 2, from N to N x Log2 N. Consequently higher accuracy is achieved because of the

lower round off errors due to fewer computer operations. -

According to Shanon’s sampling theorem 41 for a band limited signal with the highest
frequency @, the sampling frequency o should be at least twice the highest signal frequency of

interest which is represented mathematically as follows :

O = 2005 o (3.16)
where « =1;
N represents_the Nyquist frequency (maximum frequency of interest); and,
® represents the sampling freque_nc—y._ T T e

5 e

The resulting frequency spectrum X(w) (DFT of a time signal x(t)) would have a frequency

range 0 — @ and a resolution Aw where

N



CHAPTER 3 -~ THEORETICAL STUDIES ON THE ECHINODOME RESPONSE TO DYNAMIC POINT LOADS 69

A =2n/T v (307)

(
Pitfalls of the DFT (e.g. aliasing, leakage, wrap round error, picket fence effect) together

with ways of minimising their effect or avoiding such errors, are discussed elsewhere 41,42 |

A modified version of the DFT subprogram listed in Ref. (43) (in FORTRAN 77
programming language) was mounted on the main frame. The program took in a block of real data
representing a time domain signal and vielded the DFT in magnitude and phase format. Other
formats such as root mean square (RMS), power (PWR), power spectral density (PSD) or energy
spectral density (ESD) were also possible to produce. The second half of the output data was

discarded because of aliasing defects and only the first half was considered as being valid.

3.4.4 Stability Examination of Numerical Integration Schemes

Transient response analysis is carried out by solving the set of second order differential

Eqns in (3.1) taking damping and inertia forces into consideration,

In LUSAS the transient response analysis is performed by numericaiiy integraiing the iime
domain and with the assumption of some variation of displacements and velocities duﬁﬁg small
time intervals the set of second order differential equatons are transformed into a set of
simultaneous equations. Knowing the initial conditions at a time t the simultaneous equations are
solved to obtain the displacements after a small time interval At. Two different recutrence

schemes are implemented in LUSAS 12 as follows :

1.  The three—point recurrence scheme

(fv] + yat[CD {8 a}
+ (2[M] + (1 - 298 C] + (5 - 28 + o[k {5}

+ ([M] - (1 - Dadc] + (5 + B - DA[K]) {5}

- = AP(B{Pun} + (% —2p+p{pr} +_(—; + B V{Peal) e (3.18)

where {81} represents the displacement vector at time t ;
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{Pt} represents the external load vector at time t ; and,

B,y represent the time integration constants.

2. The four—point recurrence scheme

(IM1Gr- 1) + (38 -1+ Daidcl + Ga- 2+ Inaclk{sunl
+ (- 3y + )Ml + (- 38+ 4y- 2)adcl + (- Sa+28 - SpaclkD{s}
+ (Gy-s)M] + (%B - 5y+3)atlCc] + (G- 2B + 3ACIKD {3 o}
+ (= v+ M) + (- 3B+ 2y~ ~D)atdc] + (= 2o+ B v+ DAEIKD{8n}

~ ((ga-3B- §y){n+m}+(— larap-2y{p}+ (-;-a—-;-wv){n_A.}

+ (- _m +B-— + D{Pnl)Ag .. S (3.19)

where o, B, ¥ represent the time integration constants.

To start the three—point integration scheme the following equation would be used :

(] + o[k {8x} = (IM] - (5 - PaflKD){s,}
+ (atm] - (5 - pacc]{s,}
+ (5 - BA){P} + (BAC){Pu} v . 320)

where {50} represents the vector of initial displacements computed from an initial

hnear analys1s using [K] and {P }: and,

{I.S,,} represents the vector of mma] velocmes supphed by the analyst

To initialise the four-point integration scheme the same equation is employed succeeded by

a three—point integration scheme to calculate the displacements {82 M}.
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An explicit integration method is a numerical integration procedure which solves for {8t+ add
by using the equilibrium conditions at a time t while an implicit integration method uses the

equilibrium conditions at time t+At,

A temporal operator can be described as unconditionally stable if the solution for any initial
conditions does not grow without bound for any AtJ'Tm ratio (where T represents the natural
period of the highest natural frequency -of interest I‘m) but if there exists a certain limiting value
for Atle below which the solution does not grow without bosnd then the numerical integration

procedure can be characterised by being conditicnally stable.

Unconditionally stable implicit temporal operators suffer from two main errors,

i period elongation causing frequency distortions; and,

ii.  amplitude decay causing an increase in damping.

Amplitude decay is someﬁmes favourable to damp out any spurious participation of higher
modes.

Earlier studies . were carried out to_investigate the stability and accuracy of numerical
integration procedures for linear and non_linear dynamic response problems 17:4448  Various
temporal operators are obtained when assuming different time integration constants for Eqns (3.18)

and (3.19). Table 3.5 summarises the characteristics of such temporal operators.
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TEMPORAL | INTEGRATION INTEGRATION PERIOD AMFPLITUDE
TIME INTEGRATION CONSTANTS
staBLITY | an
OPERATOR |  SCHEME METHOD ELONGATION | DECAY
o B t
Cenira] conditionadly
difference Three—point 0 12 Explicit stable _ _ Ya o
uncorditionally
Newmark Three—point 4 172 Implicit sisble yes no
unconditicnaily
Houboalt Four—point 27 9 3 Implicit Bable yes yes
unconditionally
Wilson—40 Pour—point 20287125 457775 125 Lmyplicit stable yes yes
Galerkin
higher canditionslly
order Pow—point 0235 36/5 13/5 Implicit stable yes yes (S0
Hilber—
Hughas— unconditionafly
Taylor FPouor—point 22772000 9177200 2 Implieit stable yes yes

TABLE 3.5 — CHARACTERISTICS OF DIFFERENT TEMPORAL OPERATORS

It is apparent that for the central difference numerical integration procedure to achieve

stability the time step (At) should be less than a critical value Atu_. Another observation is that if

damping is neglected ([C] = [0]) and the [M] is diagonal the central difference procedure becomes

more economical as it requires less matrices manipulation but a small time step would still be

necessary for a solution stability.

R

§ The general stability conditions for three and four—paint integration schemes are stated in Appendix E together

with their application on the tabulated temporal operators.
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The choice of a temporal operator is guided by accuracy and economy, and because of the
availability of a large number of conditionally and unconditionally stable numerical integration
procedures in LUSAS tests were performed on some procedures to check their characteristics.
Choice was made of unconditionally stable procedures (as described in the user manual 18 } only

because of their economy, and time steps used for each solution procedure are listed in Table 3.6.

TEMPORAL OPERATOR m1 At2
T /Ay | TJay T /Ay | T at

(ms) {ms)
Newmark 0.6250 58 2 1.250 29 1
Houbolt 0.3125 | 115 4 0.625 58 2
Wilson—6 0.3125 11.5 4 0.625 58 2
Galerkin higher order 0.3125 | 115 4 0.625 58 2
Hilber—Hughes—-Taylor | 0.6250 5.8 2 1.250 29 1

TABLE 3.6 — TIME STEPS USED FOR DIFFERENT TEMPORAL OPERATORS

Different ratios of At/'l‘m and AtJf'I‘c were used in the investigations where T_ is the periodic
time of the highest natural frequency of interest, f , and T_ is the periodic time of the cut off

frequency, f, above which there is not enough energy to cause structural vibration.

A dynamic force was applied at a point 60° away from apex normal to the surface, having a
symmetrical triangle pulse shape with a maximum magnitude of 30 N and a duration time (t d) of
2.5 ms. Graphic representation of the force—time history and the initial part of its energy spectral
density (ESD) are shown in Fig. 3.3. The ESD was computed using the DFT program mentioned
earlier, taking in 8192 samples (N) representing a time domain data block of 2.56 s length (T} and
yielding 4096 frequency elements (N/2), approximately 0.4 Hz (Af) apart.

The four point integration schemes (Houbolt, Wilson—6, Galerkin and Hilber—Hughes—
Taylor) were started up using a Newmark temporal for the first three time steps (t = 0, At, 2At).

The ihvestigation results are presented in Figs 3.4 — 3.8. Dynamic displacements were

normalised by their static correspondents resulting from a static force with a magnitude equal to
the maximum value of the force—time pulse, while time was divided by the largest natural period
of the mesh (T1 = 1/73.4 s). For the current investigation Trn = 1/278 s and Tc = 1/800 s.

Fig. 3.4 shows that doubling the size of the time step for the Newmark procedure does not

seriously affect the shape of the structural response or the peak to peak magnitudes. There is no

amplitude decay but an increase in the period length when using At, can be noticed towards the
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end of the signal due to the accumulation of the period elongation error. Therefore it can be
assumed that decreasing the time step size will not change the general shape of the structural

response or the peak to peak magnitudes and that the Newmark results are exact.

Observing Figs 3.5 — 3.8 for the Houbolt, Wilson—8, Galerkin higher and Hilber_Hughes—
Taylor numerical integration procedures respectively, it is noted that the peak to peak magnitudes
decrease as the time step size decreased. Nevertheless agreement between both results (At and
Atz) was possible for some procedures (Houbolt) as the time record increased since the solution

with At, suffered from a higher amplitude decay error than that when using At .

The Galerkin solution presented in Fig. 3.7 was unstable because the required stability
conditions were not satisfied (vide Appendix E) and this meant that in order to achieve solution

stability At would have had to be decreased enormously, thus making the solution very expensive.

Only the Hﬂber—Hughes—Taylor procedure produced results, when usmg Aty _ which were in
good agreement wnh ﬂ1e Newmark procedure In. conclusmn the Newmark solution scheme was

found to be the most accurate and economic of all the five procedures.

The dynamu: response of a .JIDO" system is a combination of the response of single mode_
shapes -excited by the tran51ent load In Figs 3.4 — 3.8 a dlSCOIlT.lIIUIty is ai)-p_arent in the normal
direction of the response and not in the meridional direction. This is an indication of the
predominant influence of the axisymmetric mode which is characterised by motion normal to the

surface of the structure,

To summarise, if a transient dynamic analysis is to be carried out on a finite element mesh
adopt the following steps :

1.  Compute the natural frequencies of the structure.

2. Determine the highest frequency component (F) of the dynamic load applied to the

structure.
3. Establish the highest excited structural frequency (fm).

4.  Estimate the size of the time step to be used by the most accurate and economic
numerical integration procedure, e.g. when adopting the Newmark procedure
At = 1/(10fm) is recommended.

3.4.5 The Frequency Response Function (FRF)

The dynamic characteristics of a linear system can be described by its FRF which is defined
as follows :
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R{w)
H{®) = ——F  crcrsrrnnnnennns - 3.21
@)= Fo) @.21)
where F(w) represents the complex frequency spectrum of the excitation;
R(w) represents the complex frequency spectrum of the response; and,
H(w)

represents the complex FRF,

In general the FRF is the structural response to a standard excitation which is a unit
amplitude sinusoidal force.

34.5.1 Various forms of the FRF— The structural response to an applied dynamic force

may be displacement, velocity or acceleration and for a MDOF linear system the FRF may take
one of the following forms :

5_5(0))

W) = T - . 322)

Fu(@) B

ereseressesecesanassessasararasnersass 3.24
Fi(w) ©:24)

where o k((s))

| represents the receptance FRF;
yjk(m) represents the mobility FRF;
Ajk(co) represents the accelerance or inertance FRF; and,

are subscripts denoting the response and excitation locations respectively,

Eqgns (3.22), (3.23) and (3.24) are inter—related as follows : _ ]

Ty L

o(®) = io Y () = —6" Ajlw)

(3.25)
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A point receptance (mobility or accelerance) 4% is an FRF obtained by exciting and

measuring response at the same location and in the same direction (j = k).

A cross point receptance is an FRF obtained by exciting and measuring response at the

same location but in different directions (j = k).

A transfer receptance is an FRF obtained by exciting and measuring response at different
Iocations (j # k).

3.4.5.2 Graphic representation of the FRF— The FRF is complex and can be presented

graphically in three different formats ,

i the magnitude and phase values versus frequency (Bode plot);
ii.  the real and imaginary parts versus frequency (Co—quad plot); or,

iii.  the imaginary part versus the real part (Nyquist plot).

"3.4.5.3 Theoreiical estimation of the FRF— A dynamic force with a symmetric triangular

pulse shape was applied at a point 60° away from apex having three components in the global
X, Y and Z directions each with a maximum amplitude of 30 N (see Fig. 3.9). In order to obtain a
convenient value for the frequency spacing the pulse duration was chosen as
16 x 0.12208 = 1.95328 ms and the time step At used in the analysis was 0.12208 ms. Graphic
representation of the resultant pulse shape accompanied by its ESD can be seen in Fig. 3.10. The
resulting transform had 8192 frequency elements (N/2), 0.5 Hz (Af) apart giving a frequency base
band up to 4096 Hz.

The three force components constituted an asymmetric resultant thus enabling the excitation

of all structural frequencies within the considered frequency band 0.0 — 1024 Hz.

The structural response was computed using the Newmark numerical integration scheme for
the first 1896 time steps {consuming over 300 hours of CPU time). Dynamic response in the form
of translation and rotation under the dynamic point load are plotted in Fig. 3.11. The response of
only one loof point rotation (see Fig. 2.8) was presented because the results for both loof points

were almost equal.

It is observed that there is no decay in the amplitude of the structural response when the
structure is in a free vibration state since damping was neglected. An exponential weighting
function with a time constant € of 30 ms was applied to the time history signals in order to
decrease its amplitude gradually to zero (see Fig. 3.12) to avoid leakage errors when discrete

Fourier transformed.
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As the earlier mentioned DFT subprogram was based on a radix two FFT a block of time
domain data containing 16384 (214) elements was formed by zero filling the rest of the sequence
(the first part containing one element for the initial conditions and 1896 elements computed by
LUSAS). The zero elements had no contribution in the DFT summation and the transform had the

following characteristics :

T - (16384 — 1) x 0.12208 X 10 =2 5
f, = 0.5 x (1638412) = 4096 Hz
Af=1/2=05Hz

Though the DFT permitted the analysis of a frequency band 0 — 4096 Hz the dynamic
force applied excited a frequency range 0 —» 1024 Hz and the time step At used for numerical

integration was sufficient only for such a span.

A different version of the DFT subprogram was prepared to take in the force and response
data sequences and generate the FRF. Cross point receptances were computed and are depicted in
Fig. 3.13.

Taking a frequency response peak as the criterion for the occurrence of a natural mode, the
period elongation error was calculated for the excited modes relative to the free vibration results

determined using the subspace iteration method (see Table 3.1). The results are listed in Table 3.7.

MODE PERIOD
NUMBER | ELONGATION

ERROR

(%)

1 33

2 33

3 1.0

4 0.9

TABLE 3.7 — PERIOD ELONGATION ERROR FOR THE FIRST FOUR MODES
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It can be concluded that the size of the time step At employed in the current analysis was

acceptable as it caused very small period elongation errors.

3.4.54 Applications— Recalling Eqn (3.21) it is obvious that with the knowledge of any

two parameters the third can be computed , e.g.
i. if F{®) and R{w) are known, H(®) can be derived;
ii. if F(w) and H(w) are known, R{w) can be derived; and,
iii. if H{(w) and R{w) are known, F(w) can be derived.

In the previous subsection the first case has been presented by the calculation of the cross
point receptances and in the following two subsections the second case will be applied to calculate

the shock spectra for the Echinodome with the knowledge of the FRF and force spectrum,

3.4.6 Shock Response Spectra

Different forms of the maximum shock response spectrum have been defined earlier and

there are two approaches to calculate such a spectrum :

1. A direct method is to apply a dynamic pulse with a known shape and duration,
compute its corresponding transient response and then estimate the maximum initial,
maximum residual and maximax response values, The process will need to be repeated

several times until a specific range of pulse durations has been investigated.

2. An alternative method is to apply a dynamic pulse of any shape with a very short
duration in order to excite a wide frequency band. With the knowledge of the dynamic
force and transient response histories the FRF can be computed from the
corresponding spectra through Egn (3.21). The FRF is then used to calculate the
transient response to any dynamic pulse with any duration on the condition that the

excited frequency band does not exceed that used in the calculation of the FRF.

Though the first procedure is simple it is inefficient and uneconomic and as a result the
second approach was used in the following analysis. A program called SRSTRA was prepared to
calculate the shock response spectra of a number of dynamic pulses, e.g. full versed sine, half sine,
rectangular, triangular symmetric and asymmetric shapes. A flow chart of the program is depicted
in Fig. 3.14. The program takes in force (F(t)) and response (8(t)) histories as well as an indicator
for the pulse shape. The transient response is weighted by an exponential window (e'dtw) to
dampen the signal’s amplitude to zero before the end of the time period (T) considered. The FRF
is computed after the calculation of the DFT of both the force (F(@)) and transient response
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(8(w)). In the next stage the program enters a loop to perform the following steps for pulses with
different durations : -

1.  Generate a dynamic pulse Fg(t) with a certain duration (t ) and discrete Fourier
transform it (Fg(m)).

2. Calculate the transient dynamic response (8,(@)) and inverse discrete Fourier
transform it (3, ().

3.  Estimate the maximum initial (MAXI), maximum residual (MAXR) and maximax
response (MAXM). '

4.  Normalise each of the above peak dynamic responses By a static response value Ss
resulting from a static force with a magnitude equal to the maximum value of the
dynamic force—time pulse to obtain MXIN, MXRN and MXMN.

The number of times the loop is entered depends on the range of pulse durations of interest.

It is worth noting that by not compensating in the results for the exponential weighting
function assisted in simulating damping which has been neglected throughout the current analysis

and would exist for real structures..

3.4.6.1 Comparison of shock response spectra for a sample of symmetrical pulses— The

shock response spectra for a set of five symmetrical dynamic pulses were computed using the
above mentioned program. The pulses were selected on the basis of equal pulse area (or equal
impulse} resulting in different maximum amplitudes for the various pulse shapes (see Fig. 3.15).
The previously derived cross i)oint receptances were utilised in the calculation of the maximum

initial, maximum residual and maximax shock response spectra for each of the transient forces.

In Figs 3.16 — 3.20 the maximum dynamic response was normalised by the displacement
which ensued from the application of a static load with a magnitude equal to the maximum
amplitude of the corresponding force—time pulse. While response in Figs 3.21(a — d) and
3.22(a — d) was normalised by the displacement resulting from the application of a static force
having a magnitude equal to the maximum amplitude of the FVS, RCT2 and TRG pulses. In
Figs 3.16 — 3.20, due to the normalisation carried out, the Y—axis represented the DLF and from

those figures the following deductions were made :

1.  For all five pulses considered the meridional and normal dynamic load factors were
the maximum and minimum of a DLF range respectively whilst circumferential and
edge rotation dynamic load factors were approximately equal and in between both

extremes of the range,



CHAPTER 3 ~ THEORETICAL STUDIES ON THE ECHINCDOME RESPONSE TO DYNAMIC POINT LOADS 80

Any of the five transient forces possessing a time duration (t,) greater than 0.5

resulted in a maximum response equal to the maximum initial response.

As the time duration (T o for FVS, HSN and TRG pulses approached the value of 4.0
the DLF tended towards the value of 1.0 leading to the following interpretation : as
the time duration of the three preceding pulses increased the dynamic displacements

(translation and rotation) inclined towards their static correspondents.

Each directional dynamic response for rectangular pulses tended towards its own DLF,
e.g. normal DLF — 1.25, meridional DLF — 2.15, circumferential DLF — 1.75 and
edge rotation DLF —> 138. -

The next set of observations were made by noticing Figs 3.21(a — d) :

1.

Dynamic pulses with a time duration less than 0.25 produced similar response—time
histories leading to the conclusion that for such transient forces the pulse shape does

not influence the dynamic structural response.

As the pulse durations increased the maximum response varied in magnitude and time

of occurrence for different pulse shapes.

High frequency components of small amplitudes were evident in the dynamic response
resulting from the application of RCT1 and RCT2 pulses because of the sharp rise and
decay of such pulses. The preceding effect was a result of the high sampling rate and
was more pronounced in the normal response—time histories than in circumferential or

edge rotation responses, while in the meridional direction it was almost non—existent,

The succeeding remarks were acquired by observing Figs 3.22(a — d) :

1.

The dynamic pulse RCT2 produced the maximum shock response spectra though the

transient force had a time duration half that of any of the other forces.

Although the FVS and TRG pulses had equal time duration, maximum amplitude and
impulse, their shock response spectra varied, in essence meaning that altering the pulse

shape influences the dynamic structural response.

The maximum amplitude of a dynamic transient force is one of the parameters

affecting any structural response—time history,

The maximum dynamic response occurs for pulses with a time duration T ranging

d
from 0.5 to 1.0, except for RCT2 which occurs during T a= 0.25 - 05.
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2 Comparison of shock response spectra for triangular pulses with various

skewness factors— The earlier mentioned program was used again to compute the shock response

spectra for

a set of triangular pulses with different skewness factors. The forcetime pulses had

equal maximum amplitude, time duration and pulse area, the only varying parameter was the

skewness factor (see Fig. 3.23).

Dynamic response in Figs 3.20, and 3.24 — 3.27 was normalised by displacement caused by

the static application of Fo and as a result the Y—axis represented the DLF in the latter set of

figures. The undernoted remarks were drawn from Figs 3.20, 3.24 and 3.25 :

1.

Circumferential and edge rotation dynamic load factors were almost equal and lay
within a DLF range defined by a maximum and minimum represented by the

meridional and normal dynamic load factors respectively.

For a TSO pulse type as the time duration (T d) of the transient force increased the
maximum initial response increased suggesting that as T, tended towards infinity the

DLF would approach the value of 2.0 and might overtake it.

The following conclusions were made from Figs 3.26(a — d) :

1.

More

Pulse shape of transient forces with time durations less than 0.25 has little influence

on the dynamic peak response.

For larger time durations (t 1> 0.25) variation in the skewness factor resulted in an
alteration of the magnitude and occurrence time of the maximum dynamic response,
e.g. when considering the free vibration state for T, = 1.0 the TS0 and TS1 transient
forces generated dynamic responses which are opposite in phase and the TRG pulse
produced dynamic response with a maximum occurring at the minimum dynamic
responses of the TSO and TS1 pulses. While for t g = 1.5 the TRG pulse resulted in
dynamic response opposite in phase with that of TSO and TS1.

High frequency components were apparent in the response—time histories of the TS0

and TS1 pulses because of their sharp rise and decay respectively,
remarks were possible to be drawn by noticing Figs 3.27(a — d) :

Except for TSQ all other triangular pulses with different skewness factors generated a

DLF tending towards the value of 1.0 as T 4 approached higher values (1 M 4.0).

The maximum shock response spectrum for TSP2 was the maximum spectrum when
compared with the spectra of other triangular pulses of different skewness factors, for
T, > 2.0 when considering the normal direction response and 7T a> 1.0 for other
directional dynamic responses.
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3. In general for triangular pulses with different skewness factors the maximum dynamic

response occurs for pulses having a time duration T, ranging from 0.5 to 1.5.

3.4.7 Step Loads

A forcing function starting instantaneously with a maximum value and stayiﬁg constant is
generally known as a step loading. In such a case the ramping time is considered very small when
compared with the structure’s natural period. In some cases dynamic step loadings take a
considerable amount of time to reach a maximum constant value and as a result their effect on

structures become similar to that of a static load,

The Echinodome response to step loading was studied with LUSAS using two different
ramping times, T =00 and T, = 1.5. Three mutually perpendicular components (normal,
meridional and circumferential) were applied at a point 60° away from apex for each of the latter

cases. Displacement—time histories under the point load are depicted in Fig. 3.28.

It was noticed that structural response to a step load with T = 0.0 was more critical than
that for T, =15 and as the ramping time of the forcing function increased the structural response

tended towards static response (DLF — 1.0).

When comparing the structural response of T_= 0.0 with that of response to TSO pulse with
duration T, =4.0 it was found that the DLF for the former exceeded that of the latter and
subsequently, it can be concluded that a step loading which reaches its maximum in a very short

duration is the most severe dynamic load to be applied to the Echinodome.

3.5 DYNAMIC BUCKLING ANALYSIS

If a thin walled structure is to be subjected to a dynamic loading in real life then it is

extremely important to investigate the dynamic stability of the whole structure under such loads.

In the previous section it was established that the step load was the most critical dynamic -
loading to be applied to the Echinodome and consequently it will be used in the current

investigation,

LUSAS was used to predict the dynamic collapse buckling load of the Echinodome
prototype. A dynamic buckling state was said to have been reached when LUSAS gave a warning
stating that one or more of the leading diagonal terms in the stiffness matrix had become zero or
negative. Although other investigators 30 employed different definitions for the dynamic buckling
of a thin shell, based on describing changes in the enclosed geometrical volume, the pivot

elements criterion was considered as the most representative of the structural stiffness.
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The non-linearities of the problem entered the equilibrium equations through the tangential
stiffness matrix and the equivalent nodal forces which were re—evaluated for each iteration within
each time step, The finite element program computed the dynamic displacements for each time
step by performing several iterations to achieve dynamic equilibrivm, details of the solution
technique can be found elsewhere 1%:51 | LUSAS incorporates formulations for both geometry and

material non—linearities.

For the current study the previously described finite element mesh was used assuming
perfect base fixity and adopting total Langrangian formulations for geometrical non-linearity while

the material properties were defined as being linear.

Two load cases were investigated, the first was for 2 concentrated step force acting at the
apex, normal to the surface simulating an axisymmetric dynamic loading. The second was for a
concentrated step force acting 60° away from apex, normal to the surface representing a symmetric
load case. An analysis was performed using a different time step At for each case, 0.375 ms for

the former and 1.25 ms for the latter.

In previous work 52 it was found that artificial damping encountered when solving the
equations of motion resulted in an overestimate of the dynamic bucidiné lo'a;i and cc;nseciuenﬂy a
choice was made of the Newmark time integration procedure to be adopted in the current
investigation as it suffers from no amplitude decay even by varying the size of time step. In
_ _gddition, structural damping was ignored ([C]=0} in order to generate a conservative estimate of

the dynamic collapse buckling load.

It was necessary to restrain the whole finite element model against any translation or rotation
at time t = 0 in order to obtain zero response for the initial conditions because of the non—zero

force at t = 0.

To establish the dynamic collapse buckling load (P ac) several computer runs were performed
using the trial and error concept until it was determined to the nearest 250 N according to the
above mentioned criterion. Typical responses for both load cases are depicted in Fig. 3.29. The
results indicate that for an axisymmetric case the ratic P 3Py Was equal to 0.378 and for the
symmetric case 0.833, The accompanying mode shapes are shown in Figs 3.30 and 3.31 It is
worth mentioning that at such high load levels the induced stresses exceeded the ultimate strength

of the material,

From the above results it was clearly indicated that the dynamic collapse buckling load was
smaller in value than its static correspondent and hence more critical. Thus, if dynamic loads are
to be exerted on thin walled structu.res in their operational life then it is a prerequisite to carry out
a dynamic stability analysis preceded by a static stability analysis to determine if the designed

structure can sustain such loads without experiencing serious damage or any form of instability.
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The dynamic bifurcation phenomenon 53 is another form of dynamic buckling which could

occur for the Echinodome shell structures and would require investigation. Due 10 the complexity

of the Echinodome shape no attempt was made to establish such a parameter analytically and

currently available software did not possess the facility for solving the involved equations

numerically.

3.6 CONCLUSIONS

After studying the behaviour of the Echinodome under dynamic point loadings of various

pulse shapes and time durations the following conclusions were drawn :

1.

Structural response to transient loadings, with a time duration T, = 0.5, reaches its

d
maximum during the initial response phase (forced vibration state).
Pulse shapes, peak magnitudes and duration are all parameters which control the

maximum structural response to transient Ioads.

The pulse shape effect on the peak structural response would be lost if the time

duration (7} decreased less than 0.25.

As the rise time of a dynamic load increases towards large values, when compared
with the structure’s periodic time, structural response tends towards static response
(DLF — 1.0).

For triangular pulse shapes characterised by zero skewness factor, as the time duration

T, increases the DLF tends towards a value of 2.0 (double the static response).

If the structure is to be subjected to dynamic point loads during its operation then it

becomes necessary to carry out a dynamic buckling analysis.

Step loading with infinite duration and zero ramping time is the most severe dynamic
load—time history to be applied to a structure and consequently, it is that type of load
which is to be considered when studying structural dynamic stability.

The dynamic collapse buckling load is more critical than its static correspondent for
the Echinodome. It is beneficial to perform a static non—linear analysis to determine if
the load—deflection relationship was characterised by having a limit point (i.e. point of
zero stiffness), because if such a poin_t’was non—existent, material fracture would be

the most likely mode of failure.
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CHAPTER 4

MobpaL Tresting Or Tue Ecumnobome

4.1 SUMMARY

A comprehensive modal testing of the Echinodome was carried out adopting a
monoreference technique. Coordinates used in the modal test were selected and an oblique degree
of freedom was added to the prototype, t0 be used as the driving point, in order to excite all
vibrational modes. A triaxial accelerometer was utilised in the measurement of response data. Four

different excitation techniques were investigated and the best used in the modal test.

Data were collected and stored using the SMS modal analysis software which provided a
wide range of curve fitting techniques in both frequency and time domains. A comparison between
the various curve fitting techniques was carried out. Non-linearities of stiffness and damping

were carefully considered.

A comparison between the test structure and the finite element modal models was carried
out, in five different forms, to identify poorly modelled areas. Then updating of the finite element
mesh and comrection of experimental data were performed and a better modelling of the test

structure was achieved.

4.2 INTRODUCTION

Modal testing is a vibration test carried out with the purpose of determining the modat
properties of a structure which are : natural frequencies, damping and mode shapes (modal

vectors).
A modal test may be composed of the following three stages,
1 data acquisition and signal processing;
ii. = modal properties extraction; and,

iii. forming a spatial mathematical model.
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Firstly, a known excitation is applied to a structure and the corresponding structural response

is measured. Acquiring both input (excitation) and output (response) signals a relationship in the
form of the FRF is obtained.

Secondly, curve fitting techniques are applied to the measuwred FRF to extract the modal

properties of the structure under consideration.

Thirdly, spatial models are constructed, from the structural modal parameters, in the form of

stiffness, mass and damping.

Results obtained from a modal test have three widely used applications.

1.  Model Verifications : a theoretical analysis, using the finite element method or any

other theoretical procedure, is carried out to obtain structural dynamic properties hence

permitting a theory—experimental comparison. In some cases such an application ends

by carrying out a comparison for the modal properties. Recently, new methods have

been developed for correlating finite element and modal testing results 346 | These

methods make it possible to identify inaccurately modelled regions thus enabling the

updating of the finite element model.

2. Modification Simulation : once a verified theoretical model is obtained it can be used

in determining the effect on the structural modal properties resulting from physical

modifications (mass, stiffness, damping and substructures).

3. Response/Force Predictions : the availability of an experimental set of response

characteristics (FRFs) enables the prediction of structural response to any combination

of excitations and in the same manner force can be derived from response

measurements.

In conclusion, to obtain a validated finite element model for the Echinodome to be used in

the dynamic analysis a modal test must be performed on it.
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4.3 STRUCTURE PREPARATION

Before a modal test is started the following three main elements must be considered,

1. distribution of measurement points;

ii.  supporting conditions; and,

iii. driving point location and direction.

In the current investigation a monoreference modal testing technique was adopted which is

based on measuring a group of FRFs between a set of degrees of freedom and a common

reference degree of freedom.

After initial trials for the test structure supporting conditions response was measured at a
number of spatially distributed stations on the prototype and excitation was applied to the
structure’s surface obliquely.

4.3.1 Measurement Points

A total of forty nine measurement stations were marked, one of which was the apex and the
rest were located on twelve equally spaced meridians 30° apart M1 — M12 (see Fig. 2.5). On
each meridian four points were positioned, separated by an angle ¢ = 30°, starting from the apex
downwards (¢ = 30°, 60°, 90°, 120°) as shown in Fig. 4.1(a).

Using a triaxial accelerometer, response was measured at each position in three mutually
perpendicular directions —radial, meridional and circumferential— (see Fig. 4.1(b)), thus giving a

sum of 147 degrees of freedom (147 measurements),

4.3.2 Supporting Conditions

The test structure was tested in two different supporting conditions, free and grounded. For
the free state the prototype was soft mounted to ground using a mat of rubber foam, as shown in
Fig. 4.2(a). The structure was excited using a modally tuned impact hammer. Excitation was
applied normal to the surface at several points while response was measured at a single reference

point, in three mutually perpendicular directions, using a triaxial accelerometer.

After the acquisition of a number of FRFs it was noticed that two of the natural modes
existed in the frequency range 12 — 21 Hz and for some measurements the FRF was highly
contaminated with noise in that range, thus casting some doubt on the quality of modal parameters
(@, Cr, {6}, which would be extracted.
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Consequently, attention was reversed to the grounded state. A cubical steel mass, with a
linear dimension of 350 mm, was placed on a vibration isolator to seclude any ground vibrations.
Several FRF measurements were performed on the mass block at a number of stations to

determine the vibration level in the range 0 — 1600 Hz.

A tufnol plate of dimensions 350 X 350 x 25 mm was fixed to the cubical steel mass using
four bolts, on top of which the Echinodome with its tufnol base (200 x 200 x 19 mm) was secured
by means of another set oi" four bolts. A thin layer of grease was applied between the large tufnol
plate and the steel cube, and between each of the tufnol plates with the advantage of enhancing

coupling between each of the surfaces (see Fig. 4.2(b)).

FRF measurements were carried out on the test structure using the impact hammer and the
triaxial accelerometer, and on comparing the vibration levels with those of the steel block
measured earlier it was established that the latter levels were too low thus amriving at the
conclusion that the test structure was attached to a sufficiently rigid base which provided the

necessary grounding conditions,

4.3.3 Driving Point

To excite all vibrational modes within a specific frequency range careful consideration must
be given to the choice of the common reference degree of freedom because of the axisymmetry of

the Echinodome.

From earlier numerical investigation of the mode shapes (vide Chapter 3) it was established
that the first four modes were two repeated symmetric modes, one axisymmetric and one torsional.
If excitation was applied normal to the surface only one of the symmetric modes would be excited
as well as the axisymmetric mode. The driving point degree of freedom would be a vibrational
node for both the second symmetric mode and the torsional mode and, as a result, they would not
be excited. In order to excite all four modes the driving force must be applied at an angle to the

plane containing the meridian on which the driving point lies (an asymmetric direction).

An oblique degree of freedom was introduced by attaching a steel adaptor to the test
structure at the driving point. The adaptor weighed less than 4 gm and was glued firmly to the
surface of the prototype. A hole was drilled and tapped along the adaptor’s centreline to allow for
a push rod (stinger) attachment. A similar idea was developed by Ddssing 57 .

The excitation force was applied to the structure using a freely supported electro—magnetic
shaker. The force was transmitted from the shaker to the structure through a 3 mm diameter
stinger. FRF measurements were performed with stingers of three different lengths, 275 mm,
50 mm and 10 mm. The measured FRFs were compared together and it was noticed that in

changing the length of the stinger from 275 mm to 50 mm the second peak was shifted from
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112 Hz to 93 Hz while no significant change was observed when using the 10 mm long stinger.
Consequently it was decided to apply the excitation to the structure utilising the shortest stinger
(10 mm). Details of the orientation of the oblique degree of freedom relative to the test structure
are shown in Fig. 4.3 and photographic presentation of the driving point is in Fig. 4.4.

When measuring the cross point FRFs the triaxial accelerometer was placed as close as

possible to the driving point.

4.4 INSTRUMENTATION

Fig. 4.5 shows a block diagram of the instrumentation and data acquisition system employed
in the current modal test. In the following subsections a brief description of the modal testing
set—up is given while more detailed information for individual instruments can be found in the

relevant instruction manuals 38

4.4.1 Excitation

Usage of two different exciters was possible in the form of non—attached and attached
exciters represented by an impact hammer and vibration exciter (shaker) respectively. Choice of a
vibration exciter was preferred for two reasons : firstly, it was possible to generate a wide range of
various signal waveforms and secondly, the excitation signal could be band limited (not possible
when employing an impact hammer for excitation) thus enabling the concentration of the
excitation energy in the frequency band of interest, hence achieving a minimum dynamic range for

the measurement which results in a better signal to noise ratio.

A B&K type 4809 vibration exciter was utilised to apply an excitation to the test structure
via a push rod of 10 mm length and 3 mm diameter. The excitation signal was generated using an
HP model 3562A dual channel dynamic signal analyser and was routed to the exciter after being
fed to a B&K type 2706 power amplifier. The input force signal to the structure was measured
with a KISTLER model 9001 force cell which was signal conditioned by means of 2 B&K
type 2635 charge amplifier. The force cell weighed fess than 4 gm and was fixed between the steel

adaptor and one end of the stinger.

44.2 Response

The response signal was acquired for three global axes at each station on the test structure
with the aid of a miniature triaxial quartz accelerometer PCB model 303A06. The response
transducers had a total mass of 22 gm and an operating frequency range 10 Hz — 1000 Hz. A
combined power supply and signal amplifier unit PCB model 480D06 was used to power the

electronics of each response transducer and amplify its signal. Petro wax was utilised in mounting
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the triaxial accelerometer on the surface of the prototype.

4.4.3 Accelerance Measurement

Both excitation and response signals were captured and digitised using the HP model 3562A
dual channel dynamic signal analyser. Once the time records for each channel were filled with
2048 samples, fast Fourier transformations were performed to compute the FRFs according to the

following formula :

Grr(w)
H;(w) = - . (4.1)
! Gprl(@)
where GFR((:)) represents the cross spectrum between the. excitation and the response
signals; and,
GFF(m) represents the auto—spectrum of the force signal.

The information of the FRF was presented in 801 equally spaced spectrai iines in the form

of accelerance.

Several trials were carried out to select the most optimum frequency range of interest which
was established to be 29.69 — 654.69 Hz with a frequency resolution Af = 0.78125 Hz.

For each measured FRF the coherence function (Eqn (4.2)) was computed and displayed on

the analyser’s monitor.

2
|Gra(e)|
Coherence(@) = ————— . 4.2)
Gpr(0) Grr(w)
where Gor(@) represents the auto—spectrum of the response signal.

The coherence magnitude varies between zero and unity and values of 0.9 and over indicate
a measurement of high quality. Low coherence values do not necessarily point to poor quality

measurements and can be attributed to any of the following reasons,

i bias error which is due to a low frequency resclution at rapidly changing resonances

and antiresonances;
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ii.  presence of noise in input and/or output signals;
iii.  structural non—linearity; and,

iv.  existence of secondary unwanted excitations arising due to incorrect attachment of the
shaker.

4.4.4 Data Acquisition and Analysis

Once an FRF measurement was made the 801 data points were transferred from the analyser
to an HP 9000 model 236 desk top computer, running the SMS MODAL 3.0 modal analysis
software, via its HPIB (interface bus). Each individual FRF was then stored by the program in a
data file for later analysis on a mass storage medium (disk) after recording information concerning
the location of the excitation degree of freedom and the degree of freedom at which response was

measured. The computer was connected to a plotier and a printer for documentation purposes.

4.5 EXCITATION TECHNIQUES

Employing a vibration exciter necessitated the usage of a signal generator. The HP 3562A
analyser is capable of generating several waveforms which can be classified as follows :

1.  Steady state or harmonic — fixed sine

2 Periodic — periodic chirp

3. Random — pure random

4 Transient -» burst random and burst chirp

In the following subsections the advantages and disadvantages of the above waveforms are

stated with emphasis on the signals generated by the analyser. Several other excitation techniques

are discussed elsewhere 49,59-63

4.5.1 Steady State Excitation

Excitation is applied to the structure at a single frequency using a fixed sinuscidal wave and
by either stepping or sweeping a frequency range of interest is encompassed. Such a technique
produces a high signal to noise ratio because of the concentration of the excitation energy at each

particular frequency.

The harmonic excitation technique can be used to identify non—linear systems. By exciting
such systems with different excitation levels different FRFs are obtained describing the non—

linearity characteristics.
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The main disadvantage of the current excitation method lies in its slow speed especially for

lightly damped structures.

The frequency spectrum of steady state signals must be scaled whether in terms of mean

square (power — PWR), in units squared or in terms of root mean square (RMS), in units %4 ,

4.5.2 Periodic Excitation

Periodic chirp, periodic random and pseudo random signals are examples of periodic
waveforms used in the cumrent excitation technique. Characteristics of the latter two signals are
discussed in detail in Refs (59) and (60).

The analyser was capable of generating a periodic chirp signal which is a fast sine sweep
over a specified frequency span characterised by an almost flat spectrum. The process of weighting
the time signals needed to alleviate the problem of leakage was unnecessary as the signal was
repeated exactly every time record (the periodic time of the signal was equal to the length of the
time record).

The pericdic chirp can be used to characterise non—linearities in a similar manner to that

described in the previous subsection.

The periodic chirp waveform is a deterministic signal and its frequency spectrum should be
scaled whether in terms of mean squared (PWR) in units, squared or in terms of root mean square
(RMS), in units.

4.5.3 Random Excitation

The dynamic signal analyser had the facility of supplying continucus random noise across a
selected frequency span. Because of the randomness of the magnitude and the phase of the spectral
components it is not possible to characterise a non—linear system using the current excitation

technique as the non—linear distortion reduces to zero on averaging a number of time records.

The main disadvantage of random excitation is that the time records for both excitation and
response are not periodic and Hanning windows are utilised to reduce the effect of leakage errors.
Multiplication in the time domain is equivalent to convolution in the frequency domain and as

both excitation and response spectra are unequal, the Hanning weighting distorts the true FRF.

A smooth spectrum can be produced by using a high number of ensemble averages and to

reduce the measurement time overlap averaging can be employed.

Random signals are scaled in terms of power spectral density (PSD) in units squared per Hz

which can be achieved by normalising the mean square spectrum by the frequency resolution (Af).
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4.54 Transient Excitation

Burst chirp and burst random are classed as transient signals. A succession of bursts of

signal are generated for a specific percentage of the time record.

If the response decays to zero before the end of the time record then no weighting is
necessary. But for lightly damped structures this might not be the case and as a result an
exponential window for both excitation and response time records would be used to force
sufficient decay at the end of the time record. The previous weighting process does not introduce
any leakage errors and a mathematical proof has been provided in Ref. {(65).

Similar to periodic chirp, burst chirp excitation can describe non—linear systems while a
burst random excitation would produce a least square estimate of the structure’s linear response.

Transient signals should have specira scaled in terms of energy spectral density (ESD) in
units squared times seconds per Hz and is obtained by scaling the mean square spectrum by the
time record length (T), to obtain the total energy, and by normalising the resulting spectrum by the
frequency resolution (Af).

4.5,5 Comparison Between Various Excitation Techniques

The triaxial accelerometer was mounted at the apex of the test structure and four accelerance
measurements were performed for each of the radial, meridional and circumferential directions. A
different excitation waveform was employed in each of the four measurements and can be listed as
follows : periodic chirp, true random, burst chirp and burst random. After viewing the measured
FRFs a decision was made to study the effect of various excitation techniques on the meridional
accelerance only as it possessed the worst of the three coherences (radial, meridional and
circumferential). Table 4.1 contains extracts of the individual measurement set-ups while

Figs 4.6(a — d) contain the results of the various measurements.
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SIGNAL SOURCE WINDOW AVERAGING {BURST LENGTHY/T
LEVEL
TYPE TYPE NUMBER OF | OVERLAP (%)
(mV)
AVERAGES (%)
Periodic chirp | 250 (RMS) uniform 10 0 .
Random 250 (peak) | Hanning 20 50 _
Burst chirp 250 (RMS) uniform 10 0 50
Burst random { 250 (peak) uniform 10 0 50

TABLE 4.1 — MEASUREMENT SET--UPS FOR VARIOUS EXCITATION TECHNIQUES

The excitation frequency spectra for all measurements were characterised by a low force

level adjacent to the first two peaks which can be explained as foltows.

In the vicinity of structural resonance the velocity of the shaker armature (drive coil and
assembly table) is at a maximum and such a motion within a magnetic field produces a back e.m.f.
of maximum magnitude at structural resonance which results in a marked reduction in the force
level. Consequently, to measure the true force applied to the structure a force cell is required
between the structure and the shaker armature which was the case for all current and future

measurements.

In order to detect the existence of any non—linear characteristics the level of the periodic
chirp excitation was increased from 250 mV RMS to 500 mV RMS.

Accelerance magnitudes at seven different peaks are listed together with their corresponding

frequencies and coherence magnitudes in Table 4.2.
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TABLE 4.2 — ACCELERANCE MEASUREMENT RESULTS FOR THE MERIDIONAL DOF

AT APEX USING VARIOUS EXCITATION WAVEFORMS AND LEVELS

SIGNAL FREQUENCY
(Hz)
TYPE PEAK NUMBER
1 2 3 4 5 6 7
Periodic chirp (500 mV RMS) | 60.94 | 8281 | 24531 | 327.34 | 508.59 | 511.72 | 577.34
Periodic chirp (250 mV RMS) | 61.72 | 8594 | 246.09 | 338.28 | 509.38 | 512.50 | 575.78
Random (250 mV peak) 61.72 | 8594 | 246.09 | 33228 | 509.38 | 513.28 | 575.78
Burst chirp (250 mV RMS) | 61.72 | 8594 | 246,09 | 338.28 | 509.38 | 512,50 | 575.78
Burst random (250 mV peak) 6172 | 8594 | 246.09 | 338.28 | 509.38 | 513.28 | 575.78
(i1}
SIGNAL ACCELERANCE MAGNITUDE
(dB)
TYPE PEAK NUMBER
1 2 3 4 5 6 7
Periodic chirp (500 mV RMS) | 18.73 | —12.38 | -15.55 | -19.36 —6.03 -349 | 2369
Periodic chirp (250 mV RMS) | 18.31 =323 | -15.54 | -16.77 -5.08 1.08 -8.15
Random (250 mV peak) 15.23 446 | -14.92 | -16.15 —£6.92 -3.23 -9.38
Burst chirp (250 mV RMS) | 18.92 =323 | -1492 | -16.15 -5.69 -1.38 -8.15
Burst random (250 mV peak) 18.31 -323 | ~-15.54 | ~-16.15 -6.92 -2.62 -9.38
(iii)
SIGNAL COHERENCE
PEAK NUMBER
TYPE
1 2 3 4 5 6 7
Periodic chirp (500 mV RMS) | 1.00 | 1.00 | 0.99 | 0.99 | 1.00 | 1.00 | 0.92
Periodic chirp (250 mV RMS) | 1.00 | 1.00 | 098 | 098 | 1.00 | 1.00 | 0.99
Random (250 mV peak) | 077 | 097 | 098 | 098 | 0.59 | 0.83 | 0.93
Burst chirp {250 mV RMS) | 1.00 | 1.00 | 097 | 098 | 1.00 | 1.00 | 0.99
Burstrandom (250 mV peak) | 1.00 | 095 | 0.98 | 094 | 097 | 1.00 | 1.00
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It was observed from the resulis of the last four excitation techniques listed in Table 4.2 that
except for the random technique all coherence values were greater than or equal to 0.95 which
indicated good quality accelerance measurements. The reason for the low coherence encountered
when using random excitation was due to leakage though an attempt was made to minimise it by

Hanning weighting of the input and output time domain signals.

When comparing the peak positions on the frequency axis of the accelerance functions
obtained by periodic chirp signals of different levels (see Table 4.2(i)) no marked difference was
noticed for peaks 1, 3, 5 and 6, while peaks 2, 4 and 7 suffered a considerable shift. As will be
explained later the fourth peak corresponded to a torsional mode which makes the apex a node in
both meridional and circumnferential directions. Consequently, it becomes very difficult to measure
accurate response levels because the response signal would be highly contaminated with noise

which leads to incorrect estimates of peak locations.

A choice was made to carry out the modal testing using a periodic chirp waveform
excitation with a level of 500 mV RMS as it produced a high signal to noise ratio and at the same

time the excitation force was considered t00 low to invoke structural non—linearity.

In recent years, simple methods have been developed to detect the non-linearity of either
stiffness or damping of a system in a structural dynamics test, but such techniques were only
applicable to SDOF systems. By limiting the excitation frequency range to encompass one mode at
a time it was possible to identify if either types of non-linearity (stiffness and damping) existed.
Such a process appeared to be unnecessary due to the low force level which induced a nominally
linear elastic structural response thus making it possible to apply conventional modal analysis

procedures, based on linear models, to extract the modal parameters.

4.6 CALIBRATION

Calibration tests, before and after the modal test, were carried out to ensure that the overall
sensitivity of each accelerometer and the force transducer was conformable with that computed

from the manufacturer’s certificates.

A stainless steel, rigid steel mass of cylindrical shape and 4.198 kg mass was used in the
current calibration test. An attempt was made to excite the mass along its centreline, while freely
suspending it, with the shaker—stinger—force cell—adaptor combination but it was unsuccessful.
This was because of the difficulty of joining the adaptor and the rigid mass due to the small area

of contact.
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As a result, a different calibration arrangement was used as depicted in Fig. 4.7. Excitation
was applied with the aid of an impulse hammer on the force cell which was fixed on one end
along the centreline of the rigid mass while the triaxial accelerometer was mounted on the other
end along the same line. An accelerance measurement was carried out by acquiring the excitation
and response signals through the force cell and the relevant accelerometer. The calibration
constants fed to the analyser for both channels were unit volts and a frequency range 0 — 800 Hz
was selected. The average overall sensitivity was deduced for each accelerometer—force cell

combination from the corresponding accelerance function (see Fig. 4.8) according to the following

formula :
8 .V
—= =8,— ‘ 43
F 0 VF ( )
where & represents the average of the acceleration spectrum;
¥ represents the average of ihe force specirum;
Vi represents the voltage output from the electronics of the accelerometer;
VF represents the voltage output from the electronics of the force cell; and,

represents the overall sensitivity of an accelerometer and force cell

combination in kg'1 units.

Table 4.3 lists measured and computed (from manufacturer’s calibration constants) overall
sensitivities for each of the three accelerometers with the force cell. In the calculation of the
overall sensitivity from the measured accelerance functions the total rigid mass was considered to

be composed of the rigid mass (4.198 kg), triaxial accelerometer (22 gm) and force cell (4 gm).



CHAPTER 4 — MODAL TESTING OF THE ECHINODOME 146

ACCELERANCE OVERALL MEAN SENSITIVITY
NUMBER ' (ms™2/N)
MEASURED
(DIRECTION) BEFORE | AFTER |  opoieeo

MODAL MODAL

TEST TEST

1 (meridional) 3075 | 3260 | 3323
2959 | 3060 | 3.73

3 (circumferential) 2.904 3.053 3.267

2 (normal)

TABLE 4.3 — COMPARISON BETWEEN MEASURED AND COMPUTED OVERALL SENSITIVITIES
FOR TRIAXITAL ACCELEROMETER—FORCE CELL COMBINATION

4.7 EXPERIMENTAL MODAL ANALYSIS

Experimental modal analysis is the stage in a modal test where structural modal properties
are extracted‘from an FRF data base using curve fitting techniques. In order to achieve good
results in experimental modal analysis it is necessary to understand the theory behind it. The
mathematical development of the equations of motion for the general cases of viscous and

hysteretic damping can be found in Appendix F,

4.7.1 Curve Fitting Techniques

From Appendix F, the receptance FRF can be represented for the general case of viscous

damping by
N R R;,
op(@) = 3 |——F— + — @.4)
=1 (im - Sr) (im,_ S,-)
where s, = — L0, + o1 — {Z and represents the s pole location of the FRF
on the frequency axis;
€ represents the critical damping constant;
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erk represents the jkth element of the residue matrix for the r™* mode; and,
Bk are subscripts denoting the response and excitation locations respectively.

While for the general case of hysteretic damping the receptance FRF can be written as

N R
o =Y Ik e (4.5
=t | (0 - 0 + in,0?)

where n, represents the structural damping loss factor.

A curve fitting process is required to extract the modal parameters (natural frequency,
damping and residue) from a measured FRF and such a transformation is often thought of as a
data reduction process. The data points of the measured FRFs could then be described by either of
the above analytical functions (Eqn (4.4) or (4.5)) the coefficients of which are o, t_',r (or m ) and
erk.

At present, several curve fitting techniques are available in both frequency and time
domains. Ref. (68) lists a.summary of most of the currently used parameter estimation methods
together with the assumption used by each technique and their capabilities as well as the

evaluation criteria.

It is important to emphasise that the success of the curve fitting process is largely dependent

on the type of model used to represent the dynamic characteristics of the structure under test.

4,7.1.1 Local curve fitters— MODAL 3.0 %9 , the modal analysis software used in the

current research offered two types of curve fitters for analysing a whole set of measured FRFs,

The first class is known as a local curve fitting. After measuring a set of FRFs one is chosen in
which all of the modal peaks appear and is characterised by having the least contamination of
electrical noise as well as possessing a good coherence function throughout the encompassed
frequency range or at least around the resonance peaks. Then any of the implemented curve fitting
techniques (SDOF methods : Coincident or Quadratic Fitting, Peak Value Fitting, Circle Fitting,
Rational Fraction Polynomial Fitting — MDOF methods : Rational Fraction Polynomial Fitting,
Pole/Zero Fitting, Exact or Least Squares Complex Exponents Fitting) is used to extract the modal
parameters (@, Cr, erk) of the chosen function. The natural frequency and damping are global
dynamic characteristics of a structure and do not change from one station to another. As a result,
the previously identified o and Cr values are kept constant for all of the rest of the measured

FRFs and only the residues (erk) are determined from each newly fitted function.
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Local curve fitting was implemented in MODAL 3.0 in such a way that the frequency and

damping tables may be updated from different FRFs which avercome the problem of the need for

the appearance of all modes with high coherence values in the same measuyrement,

4.7.1.2 Global curve fitters—— The second class of curve fitters available in MODAL 3.0 is

known as a global curve fitting which differs from the local curve fitting in that the natural

frequeﬁcy and damping for each mode are estimated u_sing_ail of the_measuredu FRFS. Thus the '

pole (_s') location on the frequency axis is determined in a least squares sense. The second step

— fm— e

performed using the curve fitter is to extract the residues and hence mode shapes by processing
each individual FRF.

The main benefit of such a technique is that the natural frequencies and dampings are
identified accurately which results in better estimates of residues especially when nodal points are
encountered. Details of the mathematical background behind the current technique will be

described briefly in the following subsection.

4.7.2 Applications of Curve Fitting

MODAL 3.0 offered two of the often used curve fitting techniques in the experimental
modal analysis field which were : the least squares complex exponential fitting and rational
fraction polynominal fitting. The former method fits a summation of complex exponential
functions to an impulse response function which meant that the measured FRF had to be inverse
Fourier transformed to the time domain and because of the limited frequency range of the FRF on
which the IDFT was to be performed, the wrap around error (time domain leakage) would have
occurred which would lead to serious inaccuracies in the estimates of the modal parameters.
Conversely, the rational fractdon polynomial technique undertook a frequency domain MDOF

modal analysis and consequently it was the one to be used in the current research.

The rational fraction polynomial form of FRF was first introduced in 1982 by Richardson
and Formenti 70 . In this technique the usual partial fraction expression of Eqn (4.4) is replaced by

a ratio of two polynomials in the following form :

|
|
= - | . 4.6)
|
|
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where a, bk represent the k™ coefficients of the numerator and denominator

polynomials respectively.

The direct analysis of the previous formula is difficult because of the ill_conditioning which
sometimes occurs in the solution equations and as a result Eqn {4.6) is reformulated in terms of

orthogonal polynomials as follows :

m
)y [Ck ¢i.k]
h=H®)=o—— ;i=123...... I VR . @n
) [dk Oix
k=
i[_ ] {0.0 i k#j @8
Z by =Tos ; k=j - .
L [6' Ihlze ] 00 ; k+#j 49
g: ik L9 )= Jo5 o k=j e “ (4.9)
where Cpr dk represent the k'™ coefficients of the numerator and denominator orthogonal

polynomials respectively; and,

hl represents the i™ value of the FRF.

In addition to the orthogonal properties stated in Eqns (4.8) and (4.9), the preceding
Eqn (4.7) takes advantage of the Hermitian symmetry of the FRF about the origin of the frequency
axis and that the real part of the FRF is even while the imaginary part is odd. The transformation
of the FRF expression from Eqn (4.6) to (4.7) removes the ill_conditoning of the solution
equations and reduces the number of equations to be solved to approximately half of the initial

representation.

The global version of rational fraction polynomial 7! modal analysis method split the modal
extraction task into two steps. The first step was to identify the natural frequencies and the
corresponding damping values using the whole set of measured FRF, while the second step was to
analyse each individual measurement to extract the modal residues. Richardson 71 proved that the
global rational fraction polynomial algorithm performs favourably for measurements containing

heavy medal coupling and random noise.
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4.7.2.1 Determination of the number of modes— When viewing all of the measured

accelerance functions it was noticed that the Echinodome prototype exhibited some motion in
seven clear regions on the frequency axis and as a result the frequency ranges of interest were

chosen to be as listed in Table 4.4,

RANGE LOWER AND UPPER | NUMBER OF
NUMBER CONTAINED
FREQUENCY BOUNDS
PEAKS

1 50.00 —» 71.88 1

2 75.00 — 125.00 1

3 200.00 — 380.47 2

4 494,53 — 529.69 2

5 566.41 — 586.72 1

TABLE 4.4 — FREQUENCY RANGES OF INTEREST FOR THE ECHINODOME PROTOTYPE

When using the global rational fraction polynomial curve fitting technique tw6 ways were
possible to compensate for the out of band modes. The first 7! was to specify extra numerator
polynomial terms while the second 72 was by overspecifying the number of modes. In general the
first approach is preferred as it eliminates the requirement of sorting computational modes, which

is a necessity for the latter approach.

The introduction of an oblique degree of freedom through which excitation was applied
(details of which are given in an earlier section) ensured that all vibrational modes were excited
and as a result the existence of double modes with identical natural frequencies and damping
values was expected due to0 the axisymmetry of the test structure. Though such modes were
expected to uncouple because of the geometrical imperfections present in the prototype in the form

of non—yniform shell thickness and the seam.

Maia and Ewins 73 described an approach to overcome the problem of identifying the
correct number of modes within a frequency range and a similar technique was adopted in the

current investigation to analyse the measured accelerance functions of the test structure,

For the first frequency range a single measurement was chosen and a global curve fitting
was performed to extract the matural frequencies and critical damping values of the specified
number of modes (N). The previous step was repeated for each of the remaining measurements

using the same number of modes and the same frequency range.
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Initially it was assumed that a double mode existed within the frequency range of interest
and then a computer program called INTEL, which will be described in the following paragraphs,
was used to identify the correct number of modes. The out of band modes were compensated for
using two different approaches, the first was by using two additional modes while the second was
by utilising 16 extra numerator polynomial terms and then the output for each case was examined

separately using the INTEL program.

The flow chart of the INTEL program is shown in Fig. 4.9. The program takes in the
number of identified modes (N) for each measurement (which is kept constant for all of the
remaining measurements) together with the identified natural frequencies and damping values. The

bounds of the frequency range of interest are given as well,

Afier the input data is submitted the program removes the computational modes from any

future analysis. The computational modes were selected on the following bases,

i if the natural frequency (mr) of the considered mode lay outside the frequency range

of interest; or,

ii.  if the critical damping value (Cr) of the considered mode was less than or equal to

zero, or if it was greater than 5 percent.

Next the program enters a loop to count the number of times the following conditions are

satisfied for each of the remaining measurements :

1. (I—F.T.)xmr £ <(1+FT)Xxo

2. (1-DT)x Qr < I;r <1+DT)x gr
where ro= 1,2,3 ...... » 147N and roETS

F.T. and D.T. represent a frequency and a damping tolerance respectively,

specified by the operator.

The preceding conditions represent a check of the existence of the considered mode in any
of the remaining measurements and consequently if the number of times the above conditions are

satisfied for an individual FRF is greater than one then the program counts it only once.

Once the loop is ended the two maximum number of repetitions (NMAX1 and NMAX?2) are
determined (they could be equal) for two different modes. A comparison between NMAX1 and
NMAX?2 is carried out to establish the number of existing modes. The comparison was based on

the following rules :
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1. IfNMAX12>147x03 %
and NMAX2 > 147 x 0.3 §
and (NMAX1 — NMAX?2) < 147 x 0.15 °

= There are two modes.

2. IfNMAXI 2 147 x 0.3
and NMAX2 2 147 x 0.3
and (NMAX1 — NMAX2) > 147 x 0.15

= There is one mode.

3. If NMAX1 2 147 x 0.3
and NMAX2 < 147 % 0.3

= There is one mode.

4. If NMAX]1 < 147 x 0.3
and NMAX2 < 147 x 0.3

= There are zero modes.

Then the number of modes is output together with the mean and coefficient of variation of
both the natural frequencies and damping values. Several frequency tolerances (F.T.) were
specified for the modes identified using the global rational fraction polynomial technique of
MODAL 3.0 (the damping tolerance was kept constant, D.T. = 0.15) and the results are listed in

Table 4.5 for the first, second and fourth frequency range of interest.

§ Various limits introduced in the INTEL program were similar to those adopted by Maia and Ewins 7 although it
is necessary to emphasise that the frequency and damping tolerances were different because of the difference in the
degree of modal coupling between the Echinodome prototype and the circular disc used in Ref. (73).
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COMPENSATION FOR THE OUT OF BAND MODES

FREQUENCY | FREQUENCY
TWO ADDITIONAL MODES 16 EXTRA NUMERATOR POLYNOMIAL TERMS
RANGE TOLERANCE
FREQUENCY DAMPING FREQUENCY DAMPING
NUMBER | NUMBER NUMBER | NUMBER
NUMEER (%)
on OF MEAN | CO.v. | MEAN | COV. OF OF MEAN | CO.V. | MEAN | Ccov.
MODES | REPETITIONS | (Hz) (%) %) (%) | MODES | REPETITIONS | @) %) %) (%)
43 60.56 | 013 182 821
0.25 2 1 45 6068 | ©.13 1.41 7.64
a6 6141 | 014 130 7.41
65 6061 | 023 183 8.62 58 6068 | 021 1.42 2.04
0.50 2z 2
61 6143 | 023 1.3 7.92 63 6165 | 027 145 M
1
76 60.67 | 036 160 | 18.43 64 6073 | 030 142 8.05
0.75 z 2
78 6071 | 036 13t 4100 70 6163 | 034 150 9.18
1.00 1 103 6073 | 1.42 132 | 40.458 1 110 6083 | 11 1.44 13.85
0.25 0 o I N 0 _ I I e
0.50 0 _ I R _ _ ¢} . | _ o
2
0.75 0 o I e 0 _ N N R
1.00 0 _ 1 ] 9141 | 356 191 9.05
028 0 _ 1 74 51049 | 07 0.06 8.18
0.50 0 _ 1 8 51060 | 036 0.06 10.80
4
65 51045 | 0.41 007 1072
0.715 0 . I D e 2
87 51317 | 0.50 006 | 1398
1.00 0 - 1 28 51040 | ©.56 0.06 10.69

TABLE 4.5 — RESULTS FROM THE INTEL PROGRAM USING VARIOUS FREQUENCY TOLERANCE FACTORS
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It can be seen from the previous table that in general a 0.25 percent frequency tolerance was
considered very tight for the INTEL program to identify the existence of more than one mode, if
any. As a result the frequency tolerance was increased and the effect on the number of identified

modes was noted.

For the first frequency range, by increasing the frequency tolerance two clear modes were
identified for both cases of residual energy compensation (two additional modes and 16 extra
numerator polynomial terms) until the frequency tolerance contained both modes and then the
INTEL program output the characteristics of a single mode, yet it was evident that the first peak
was composed of two almost identical (in frequency and damping) vibrational modes. The
program suffered some difficulty in identifying the comect number of modes forming the first peak
because of the heavy modal coupling as well as the considerably large frequency resolution around

such a peak.

When observing the results for the second frequency range, in most of the cases the program
failed to identify any modes because the number of repetitions was less than the limit specified in
INTEL, although viewing the measured accelerance functions there was a clear mode within the
considered frequency range. The failure of the mode identification by the program was attributed
to the reason that the second peak varied its position on the frequency axis between 85 — 105 Hz
throughout all of the measurements and thus it was difficult for such a mode to fall inside the

specified tolerance.

The application of INTEL on the curve fitting results of the fourth frequency range was not
as effective as for the first range for several reasons,

L the modal coupling was of a higher degree than the first range;

ii. the critical damping value was very small; and,

iii.  the low accelerance magnitudes of modes considered.

In summary, it can be concluded that there were two modes in the first frequency range, a
remark which can be substantiated by the evidence available in Table 4.5. Therefore, changing

either the compensation technique or the frequency tolerance values had little influence on the

number of identified modes.

In addition, the use of the INTEL program has proven to be effective in detecting whether a

specified peak changes its position along the frequency axis.



CHAPTER 4 — MODAL TESTING OF THE ECHINODOME 15 5

4.7.2.2 Natural frequency and damping estimates— The above conclusions assisted in

specifying the correct number of modes within each frequency range. The global rational fraction
polynomial curve fitter of MODAL 3.0 was applied to all of the measured accelerance functions
for each frequency range to determine the least square estimates for both the natural frequency and
critical damping value of each mode. Compensation for the residual energy of the out of band
modes was carried cut using the maximum number of extra numerator polynomial terms. The
global curve fitter in MODAL 3.0 could analyse N modes with 2(10 — N) extra numerator
polynomial terms provided that N is not greater than ten.

The specifications of the input for MODAL 3.0 are listed in Table 4.6 while the frequency

and damping estimates can be found in Table 4.7.

FREQUENCY CURSOR MODE NUMBER OF EXTRA
RANGE POSITIONS NUMERATOR
RANGE
NUMBER (Hz) POLYNOMIAL TERMS
1 5000—> 7188 | 1->2 16
2 75.00 — 125.00 3 18
3 200.00 — 38047 | 4> 5 16
4 49453 - 52060 | 6 = 7 16
5 566.41 — 586.72 8 18

TABLE 4.6 — SPECIFICATIONS OF INPUT DATA FOR MODAL 30
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MODE FREQUENCY | CRITICAL
NUMBER DAMPING
(Hz)
(%)

1 60.67 1.448

2 61.64 1.467

3 95.06 1.495

4 - 243.69 1.787

5 333.12 3.196

6 510.37 0.060

7 513.06 | 0.065

8 576.17 0.064

TABLE 4.7 — FREQUENCY AND DAMPING LEAST SQUARES ESTIMATES

It is encouraging to note from the above table that the first and second modes were detected
correctly and the damping estimates were approximately equal (it will be demonstrated later that
the motion of both modes was very similar) thus confirming the earlier derived conclusion

concerning the number of modes in the first frequency range.

4.7.2.3 Modal constants identification— The modal constants (residues) were calculatable

following the determination of the global estimates of the natural frequencies and damping values.

Three different procedures using the global rational fraction polynomial curve fitter were
adopted in an attempt to determine the most accurate mode shape estimates for later analysis. All

three procedures used the same frequency and damping estimates listed in Table 4.7.

The first procedure was based on curve fitting all of the measured accelerance functions for
one frequency range using the maximum exira polynomial numerator terms to compensate for the
out of band energy (similar values to those in Table 4.6 were used). The process was repeated for
each of the frequency ranges and at the end the modal constants for all measurements and for all

modes were determined. The procedure was named LFIT.

The second procedure was slightly different in that the curve fitting process was carried out
on a single measurement for the entire frequency domain without compensating for the out of
band modes as none should have existed. The previous step was performed for all of the

measurements and the whole process was called GFIT.
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The third and last procedure was similar to the above procedure, GFIT, with the exception
that four extra numerator polynomial terms were used in curve fitting for the modal constants. The
procedure was termed GFIT4.

The complex modal constants extracted using the above mentioned procedures are listed in
Table 4.8. As observed, attention was concentrated on one of the cross point accelerance functions

as it contained all of the vibrational mode shapes.

MEASUREMENT MODE LFIT GHT GFIT4
STATION NAME
AND NUMBER MAGNITUDE FHASE MAGNITUDE PHASE MAGNITUDE PHASE
DIRECTION (kgls) (Degs ©) (kg ls) (Degs ©) &gle) (Degs %
1 89.2 3413 922 347.4 87.8 345.5
2 39.9 50.5 36.0 65.5 353 56.8
3 09 372 123 33, 1. 17.
5B 4 2227 196.8 213.2 1933 224.0 195.5
Meridional 5 448 217 753 30.3 40.6 26.1
6 45 497 57 411 50 52.0
7 49 234.7 3.3 239.8 47 229.6
8 11.9 220.1 9.9 227.3 11.0 219.2

TABLE 4.8 — COMPARISON BETWEEN VARIOUS CURVE FITTING PROCEDURES FOR MODAL CONSTANTS

It can be noted from the previous table that each curve fitting procedure resulted in a
different set of modal constants and a decision concerning which was the most correlated to the

measured data was established with the aid of graphic representation.

4.7.2.4 Regenerating cross point accelerance functions— Using the above estimates of

modal parameters (mr, Cr and ) theoretical FRFs were generated and superimposed on

erk
experimental measurements in order to assess the quality of various curve fitting procedures,
Fig. 4.10 contains a comparison of LFIT, GFIT and the experimental measurements of the cross
point accelerance functions. It is obvious that both curve fitting procedures result in theoretically

regenerated accelerance functions that do not conform with the experimental measurements.



CHAPTER 4 — MODAL TESTING OF THE EciIvopoME 158

A comparison between GFIT, GFIT4 and experimental data is presented in Fig. 4.11 from
which the effect of introducing an additional set of four extra polynomial numerator terms can be
seen. In theory, compensation for the out of band modes was unnecessary because the excitation
spectrum was band limited in the frequency range 26.69 — 654.69 Hz, but the variation of the
third mode (second peak) along the frequency axis presented a problem. In regions away from the
third mode it was possible to minimise the mismatch of theoretical and experimental data using

the four extra polynomial terms yet no possible cure was available for any local disagreement.

4.7.2.5 Mode shapes extraction— Once the modal constants were extracted a sorting

process was performed to calculate the mode shapes and the results were transformed to a global
set of axes. The MODAL 3.0 estimates of mode shapes had to be mass normatised 74 for later
analysis, a job which required the modal constants of the direct point accelerance function, The
application of the driving force on the test sﬁ'ucture through an oblique degree of freedom made it
difficult to measure the latter FRF but a derivation was possible through coordinate transformation
using the cross point accelerance functions measured at that station. When mass normalising the

mode shapes MODAL 3.0 assumes that the structure under test is lightly damped.

After the sorting process was carried out the phase angles of the modal displacements were
plotted for each mode shape as shown in Fig, 4.12 to assess the degree of complexity of the
modes. The radial lines represented the relative magnitudes of the modal displacements. Although
the phase difference for some eigenvector elements of modes 1 and 2 were of an angle claser to
90° than to 0° or 180° their magnitudes were relatively small and unlikely to affect the overall
behaviour of the mode shapes. Consequently, they were assumed to be real modes, an assumption
which was deservedly extended to modes4 and 5. From Fig.4.12 it was observed that
modes 3, 6, 7 and 8 were highly complex and any whitewashing (taking the magnitmde of the
eigenvector elements and attaching a + or — sign to it, depending on the closeness of the phase

difference to either 0° or 180%) would significantly change the experimental mode shapes.

4.7.2.6 Orthogonality of experimental modal vectors— As it was concluded in the above

paragraph that some of the experimental mode shapes were highly complex a whitewash exercise
was performed on the modes in order to check their orthogonality property (characterising real

modes) which can be stated as follows :

1

?r ; i=k=r
{odrfoh=1o | jex = 4.10)
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where m represents the modal mass of the ™ mode shape.

The orthogonality check results of the experimental mode shapes are depicted in Fig. 4.13
for the various curve fitting procedures (the plots were prepared using UNIMAP 73 | a part of the
comprehensive graphics software UNIRAS). The diagonal elements of the 3-D grid maps
represented the product of the same mode shape vectors (j=k) and the large peaks along the
diagonal indicated that modes 1, 2, 4 and 5 confirmed the assumption of real modes. On the other
hand it would be wrong to apply the previous assumption on the highly complex modes 3, 6, 7
and 8.

When comparing the grid maps of Fig. 4.13 it was deduced that some of the mode shapes
resulting from GFIT4 followed the orthogonality property for real modes to a higher extent than
their correspondents from GFIT. Though LFIT produced a number of real modes similar in
quantity and quality to those of GFIT4, a decision was taken to consider results of GFIT4 only, as

they yielded theoretically regenerated FRFs with least variance to experimental measurements.

4.7.2.7 Identification of reai and complex mode shapes— Theoretically, complex mode

shapes exist for structures characterised by a distribution of damping which is not proportional to
either the structural stiffness or mass. Complex modal vectors can as well be the result of

experimental errors ' as described below.

In the current study higher modes 6, 7 and 8 had a weak amplitude when compared with the
initial modes of vibration and the mass loading from the triaxial accelerometer could indeed result
in inaccurate estimates of natura! frequencies and damping values which in turn would produce
complex mode shapes. In regions where the frequency resolution was too low, as was the case for
the last three modes, the damping estimates will be incorrect thus the yielding of complex mode

shapes.

The main characteristic of complex modes is that they possess non—stationary nodal points,
as a cdnsequence of that the modal deflection of the various degrees of freedom of the test
structure do not reach their maximum simultaneously. The experimental mode shapes are plotted
in Figs 4.14(a — h) after whitewashing the elements of the modal vectors and their types were

identified with the aid of animated displays on the computer monitor.

4.7.2.8 The spurious mode shape— The third mode shape can be described as being

complex with a symmetric motion similar to that of the first mode (in the driving direction — see
Figs 4.14(a) and 4.14(c)) with an almost equal damping value. When curve fitting various

measured accelerance functions it was generally observed that some local discrepancies occurred
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between the experimental measurements and the theoretically regenerated FRFs indicating
inaccuracies in the modal parameter estimates, an error which existed because the resonance peak

varied its position along the frequency axis.

The previous remarks suggest that the spurious mode was incurred on the test structure from
the driving point set—up. The variation of the peak position was because the fixation of the adaptor
to the prototype broke off more than once and each time it was rebonded a different stiffness was
achieved, causing variation in the boundary conditions and hence resulting in a different natural

frequency and damping value.

To overcome such a problem, a curve fitting process was needed to fit for different
frequency and damping values for each individual measurement and in this way accurate modal
parameters for the remaining modes would be achieved while results for the non—stationary mode
would have to be ignored. Another method to remove the effect of such a mode from the modal
parameters of other modes is by using either extra numerator polynomial terms (a technique which
was adopted in the current analysis) or additional modes, more than two for the current case
(which was not possible because it meant the specification of a number of modes greater than that
allowed by MODAL 3.0) as the use of two modes resulted in large discrepancies between the

theoretically regenerated accelerance functions and the measurements.

4.7.2.9 Regenerating cross point and transfer FRFs— In order to assess the quality of the

GFIT4 curve fitting procedure the three cross point accelerance functions and three transfer
accelerance functions for a staton on the lowest parallel circle were theoretically regenerated,
using the corresponding modal parameters, and compared with the experimental meas;urements.
Results are presented in Figs 4.15(a — ¢) and 4.16(a — ¢) which comprise a bode graphic
representation of the considered FRF with a zoom on the heavy coupled mode regions {modes t, 2
and modes 6, 7). In addition, a Nyquist plot of the mobility function around each peak is
disclosed.

Studying the above figures it was clear that in general the theoretically regenerated FRFs
agreed well with their corresponding measurements thus indicating good estimates of modal
parameters except in regions close to the second peak that suffered from a non—stationary position

on the frequency axis for which reasoning was given earlier.

When zooming on heavy coupled modes it can be noted that the global rational fraction
polynomial curve fitting technique functioned well in identifying the modal characteristics of
repeated or closely spaced modes although the correct number of modes was determined using a

separate program (INTEL). - B
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4.7.2.10 Checks on measured FRFs— The initial part of any of the measured accelerance

functions, plotted on a Log frequency scale, was asymptotic to a stiffness line (positive slope) as
well as for the upper end of the frequency range which is a characteristic for grounded

structures 49 .

Using the viscous damping model, the Nyquist plot of a mobility function of a resonance
region is expected to follow a circular arc 4° . The above mentioned accelerance functions were
numerically integrated (divided by i® ; @ = 2r % (29.69 — 654.69)) to yield mobility functions
and each was split into six regions containing a modal peak. The Nyquist plot for each frequency
range is depicted in Figs. 4.15(a — ¢) and 4.16{a — ¢) where it was noticed that, with the
exception of nodal points for some of the modes and for heavy coupled modes, the mobility
functions traced out at least a part of of a circular arc. From the Nyquist plot of the theoretically
regenerated mobility functions it was observed that as the magnitude of the modal constants
(represented by the diameter of the circular arc) decreased the phase estimates became inaccurate,

which could account for the complexity of the small mode shape elements.

In general, it can be concluded that the global rational fraction polynomial curve fitting

method has proven to work excellently when nodal points and noisy data were encountered.

4.7.2.11 Derivation of the direct point accelerance function— Applying linear coordinate

transformation to the three cross point accelerance functions the direct point accelerance function
was obtained. Fig. 4.17 shows the driving FRF in both Bode and Co—quad formats. The two
following checks 4 were indicating a set of good quality measurements (concerning the driving

stations only) ,

i, an antiresonance existed between each pair of resonances; and,

ii.  all imaginary peaks corresponding to modal peaks occurred in the same directions (all

peaks were negative) meaning they were in all phase,

4.7.2.12 Synthesising FRFs— Rewriting Eqn (4.4),

N R R
o) = ¥ |[——E— + & — (4.4)

= | (io-s) (io-5s)
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Considering a real normal mode approximation and assuming unit modal mass scaling

= Ry = '¢k1'¢j " @.11)
It can be deduced that if {¢}r (wherer=1,2,3,...... » N) were determined it is possible

to derive the modal parameters for any of the unmeasured FRFs, e.g. o can be synthesised since

k

B Oy and s have been estimated where o . represents an unmeasured receptance function.

Kk
Accordingly, the accelerance functions of three different stations, lying on the same parallel

circle, namely 4B, 5B and 6B were synthesised. For each set of FRFs (Normal, Meridicna! and

Circumferential) its local radial (normal) direction was taken as the reference. The nine measured

accelerance functions were :

A4BN/4BN’ AdBMMBN’ AdBCMBN’ ASBN.'SBN’ ASBMISBN’ ASB(‘JSBN’ AﬁBNISBN’ AGBM/&BN and AEBCIGBN'
Thus if the test structure was perfecily axisymmetric only one of the symmetric modes and its
higher correspondent would be excited as well ag the axisymmetric mode and the last combined

mode. In addition, the following conditions would have been satisfied :

A4BNI4BN = ASBN!SBN = AgmnienN
A pvann = Pspsen = AepmieaN
A4BCJ4BN = Aspessen = AﬁBCIEBN

Fig. 4.18 shows that the preceding equalities were in general fulfilled except for the higher
modes. The presence of the torsional mode and the discrepancies for higher modes was due to the
geometrical imperfections of the test structure as well as inaccuracies inherent in the modal

parameter estimates of the higher modes.

In summary, all previous checks made indicated good measured data and reliable extracted
modal parameters for only the first four vibrational modes (excluding the spurious mode). Some
doubt was cast on the remaining fitted data for the rest of the modes due to the heavy coupling

encountered combined with weak amplitudes and large frequency resolution.

4.8 COMPARISON BETWEEN EXPERIMENTAL AND THEQRETICAL MODAL
PROPERTIES

The main objective of the current modal test was to verify dynamically the theoretical model
(finite element mesh} described in the previous chapter, Earlier modal tests ended with the
comparison of both experimental and theoretical in the form of tables for natural frequency

estimates and graphic representations for the mode shapes. However recently, new methods 34-56
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have been evolving with the purpose of identifying the origins of discrepancies between both test
structure and finite element modal models following which attempts can be made to correct for

existing errors in either one.

The techniques are described in the following subsections and were applied to compare
experimental results with both an initial and updated finite element mesh. All results for both
theoretical models are presented side by side whether in table or graphic forms in order to

manifest the effect of updating.

4.8.1 The Number of Modes to Be Considered

Because of the orthogonal properties of the vibrational mode shapes of a structure any
dynamic response can be expressed as a linear combination of the response due to individual
modes. As a result, the degree of importance of a mode depends on how much it participates in

the overall structural response.

The effective mass concept has been used effectively on other structures 77 and was used
herein to determine the number of modes to take into account in the current investigation. Tt is

defined as follows :

o [y, |

My =1, T (4-12)
{v} (MIH{v}
where urx represents the effective modal mass for the ™ mode in the X direction
(similar expressions can be derived for p ¥ and p %) ; and,
{I}x is a vector containing unit values for each row of the mass matrix, that is

associated with the X direction and the remaining elements are zeros.

Basically, the effective mass can be interpreted as that part of the total mass responding to a
dynamic load in each mode and if the number of modes is equal to the total numBer of degrees of
freedom then the sum of the effective masses of each mode in a specific direction will be identical
to that of the rigid body mass. The effective masses were calculated for the initial and updated
theoretical models and the reselts as percentages of the rigid body mass of the test structure
{2.334 kg) are listed in Table 4.9,
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MODE INITIAL MODEL UPDATED MODEL
EFFECTIVE MASSES EFFECTIVE MASSES
NUMBER X Y z SUM X Y z SUM
(%) (%) (%) (%) (%) (%) (%) (%)
1 1632 | 3381 | 000 | 5013 | 1.99 | 5090 | 000 | 5289
2 3381 | 1632 | 000 | 5013 | 5090 | 199 { 000 | 52.89
3 0.00 | 000 | 9979 | 9979 | 000 | 000 | 98.37 | 98.37
4 0.00 | 000 | 000 | 000 [ 000 | 000 | 000 | 000
5 34,11 | 000 | 000 | 3411 | 3504 | 101 | 000 | 3605
6 000 | 3411 | 000 | 3411 | 101 | 3504 | 000 | 3605
7 000 | 000 | 000 { 000 | 000 | 000 | 000 | 000
8 000 | 000 | 000! o000 | 000 | 000 | 000 | 000

Summation for

84.23 | 8423 | 95.75 | 268.27 | 88.94 | 88.94 | 98.37 | 276.25
8 modes
147 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Summation for

147 modes

B6.25 | 86.25 | 99.87 | 27237 | 89.55 | 89.55 | 98.37 | 27747

TABLE 4.9 — EFFECTIVE MODAIL, MASSES FOR INITIAL AND UPDATED THEORETICAL MODELS

No rotational directions were considered in the above table as the 4371 degrees of freedom
were condensed on to 147 translational master degrees of freedom using the Guyan reduction

technique {see Appendix D) in order to match their experimental counterparts.

It can be noted from the preceding table that more than 80 percent of the total mass was
accounted for in the X and Y directions using the first six modes and beyond 99 percent for the
Z direction when using the third mode only., The results of the updated model followed a tend
similar to that of the initial model results but with even larger effective modal mass values for the

leading mode shapes.



CHAPTER 4 — MODAL TESTING OF THE ECHINODOME 105

It is fmportant to emphasise that if rotational degrees of freedom were introduced among the
master degrees of freedom the torsional mode would have had a relatively high effective mass in

the ez direction (rotation about the axis of symmetry — Z—axis ),

From the previous conclusions it was found that the first eight modes were more than

sufficient to consider in any model verification analysis.

The notion of effective mass was not applied to experimental results for the following

TE4S0NS :
1. The mass of the shaker, stinger, force cell, adaptor and triaxial accelerometer would
influence the results.

2.  The higher experimental modes were complex thus complicating the calculation if not

invalidating the whole concept.

3. Tt is clear from Eqn (4.12) that estimating the effective modal mass parameter
necessitated the use of a theoretical mass matrix which might contain undetected large

approximations thus producing poor estimates.

4,  If a dynamically verified finite element model is achieved the above calculation would

be a repetition if it has already been performed for the finite element mesh.

4.8.2 Identification of Correlated Experimental and Theoretical Mode Shapes

Before carrying out any experiment—theory comparison on modal parameters it is necessary
to identify those modal vectors which correlate with each other. One of the available techniques is
to calculate a statistical parameter known as the modal assurance criterion (MAC) 78 for m

experimental modes and n theoretical modes. The MAC value for a pair of modes is defined as

follows :
T .2
MaC({,v}, {whd = TI{"W}’ .{‘w}"TI PR (- & )
{ol vl {whe{wk
where {x\p}j represents the jlh experimental mode shape;

{vh represents the k™ theoretical mode shape;

J k are subscripts denoting the mode numbers;
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Xt - are subscripts indicating an experimental and theoretical mode; and,

* indicates a complex conjugate.

The result is a matrix of order mxn with values varying between zero and unity for perfectly
uncorrelated and perfectly correlated modes respectively. It is clear that although the output of

Eqn (4.13) is a scalar quantity complex mode shapes can be used.

A unity MAC value does not necessarily indicate two correct modes as both modes can
contain similar systemic errors and yet be consistently correlated. High MAC values can be
encountered as well for two different modes when the number of degrees of freedom is too low to

define a higher mode, such an effect is known as “‘Spatial Aliasing”’.

Table 4.10 includes the results of the MAC calculation for the test structure and theoretical

models while Fig. 4.19 is a graphic representation of the MAC matrices in the form of 3-D grid

maps.
(i}
TEST INITIAL THEORETICAL MODEL
STRUCTURE MODE NUMBER
MODE
NUMBER 1 2 3 4 5 6 7 8

1 0332 § 0,538 | 0001 | 0.001 | 0.003 | 0.004 | 0.003 | 0.000
2 0.520 { 0.445 | 0.000 | 0.000 | 0.008 | 0.003 | 0.000 | 0.000
3 0216 { 0.002 | 0.003 | 0002 | 0.003 | 0.024 | 0.015 | C.000
4 0000 | 0.000 | 0.978 | 0.002 | 0.000 | 0.000 | 0.000 | 0.000
5 0.000 | 0.000 | 0.000 | 0985 | 0.004 | 0.005 | 0.000 | 0.000
6 0.723 | 0.041 | 0.001 | 0.000 | 0.046 | 0.067 | 0.000 | 0.000
7 0.015 | 0.609 | 0.000 [ 0.021 | 0.032 | 0.088 | 0.007 | 0.001
8 0.000 [ 0.000 | 0.965 | 0.003 | 0.000 | 0.001 | 0.000 | 0.000

TABLE 4,10 — MODAL ASSURANCE CRITERION BETWEEN EXPERIMENTAL AND
THEORETICAL MODAL VECTORS (CONTD)
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(i1)

TEST UPDATED THEORETICAL MODEL
STRUCTURE MODE NUMBER
MODE
NUMBER 1 2 3 4 5 6 7 8

1 0.954 | 0.009 ‘| 0.000 | 0.001 { 0.001 | 0.001 | 0.001 | 0.000
2 0.003 | 0.970 | 0.000 | 0.000 { 0.004 | 0.001 | 0.000 | 0.000
3 0.128 | 0.090 § 0.003 | 0.002 | 0.002 | 0.008 | 0.012 | 0.000
4 0.001 | 0.000 | 0982 | 0.002 | 0.000 | 0.000 | 0.000 | 0.000
5 0.000 | 0.000 | 0,000 | 0986 | 0.003 | 0.006 | 0.000 | 0.000
6 0.206 | 0.555 | 0.001 | 0.000 | 0.084 | 0.057 | 0.000 | 0.000
7 0406 | 0.214 | 0.000 | 0.020 | 0.023 | 0.126 | 0.006 | 0.001
8 0.000 | 0.000 | 0.965 | 0.003 | 0.000 | 0.001 | 0.000 | 0.000

TABLE 4.10 — MODAL ASSURANCE CRITERION BETWEEN EXPERIMENTAL AND
THEORETICAL MODAL VECTORS

Real modes (whitewashed modal vectors) were used to represent the experimental mode
shapes in the preceding calculation although Eqn (4.13) permitted the inclusion of their complex
version. The reason was that the experimental real modes were to be used in any future analysis
and it was necessary to determine their general characteristics. Appendix G contains tables of

MAC values obtained using complex experimental mode shapes.

The high MAC values in Table 4.10 indicated that the mode pairs {xq;} & {tqa}3 and {x¢}5,
{ ttj)} 4 were correlated while the effect of spatial aliasing’ was the cause of a 96.5 percent
correlation coefficient between {x¢}8 and {t¢}3. It was clear as well that some correlation existed
between {6}, {81, and {81, {#}, -

When considering the pictorial representation (in the form of animated mode shapes) of the
experimental mode shape estimates modes 6 and 7 appeared to have similar motion to that of

theoretical eigenvectors 5 and 6 respectively.

The following table contains a list of experimental and theoretical natural frequency

estimates for the first six correlated mode pairs.
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CORRELATED | EXPERIMENTAL INITIAL MESH UPDATED MESH
MODE FREQUENCIES
PAIR FREQUENCY | |DIFFERENCE| | FREQUENCY | |DIFFERENCE|
NUMBER 2 (HD) (%) Hz) (%)
1 60.67 73.78 2161 511 478
2 61.64 73.78 19.70 5717 6.28
3 243.69 275.64 13.11 22320 8.40
4 333.12 606.47 82.06 336.37 0.01
5 510.37 111542 118.55 878.52 7213
6 513.06 111542 117.41 878.52 71.23

TABLE 4.11 — COMPARISON BETWEEN EXPERIMENTAL AND
THEORETICAL NATURAL FREQUENCY ESTIMATES

A comparison between the first four correlated mode pairs magnitudes was performed by
plotting each experimental modal vector element versus its theoretical correspondent as depicted in
Fig. 4.20(a). Both sets were mass normalised. The points for the first and second correlated mode
pairs showed very poor tendencies to be on a straight line. Plots for correlated mode pair number
(CMPN) 3 and 4 almost lay on straight lines with slopes 1.2 and 0.9 respectively {(the slope of the
best fitted line through the points) indicating that although each mode pairs were highly correlated
a difference in the scaling existed.

4.8.3 Identification of Coordinates with Large Discrepancies

In the following analysis only the first four correlated mode pairs will be used due to the
inaccuracies encountered in higher modes in addition to their weak influence on any dynamic

structural response.

The identification of coordinates which harbour large discrepancies between experimental
and theoretical mode shapes has been carried out with the aid of newly developed statistical
parameters 33 and matrix methods 345679 | The adopted techniques have been evolving recently
aiming to explain low MAC values as well as identifying the poorly modelled regions of a

structure when using the finite element method.
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4.8.3.1 Coordinate modal assurance criterion (COMAC)— The coordinate MAC is

complementary to the modal assurance criterion for mode shapes. It attempts to locate parts of the
structure which cause low MAC coefficients.

In the current study the COMAC was calculated for each degree of freedom using the

following equation :

Lonax 2
( E.l {x‘l’i}L'{:‘I’i}L)
COMAC(®3) = r— - Z e (4.14)
( > {x\l"l}L)( > {t‘I’i}L)
1=l L=1
where i is a subscript indicating the i degree of freedom;
L represents the correlated mode pair number; and,

{xwi}, {t\pi} represent the it eigenvector element of the experimental and theoretical

modal vectors respectively.

Lieven er al. 3 when suggesting the COMAC value, used a slightly different expression,

(Lﬁxl{x% }L'{:WI}LD

L~=1

(S Lnd(E k)

COMAC(G) = (4.15)

The modulus sign in the preceding expression was inside the summation thus limiting the
interest to that of the relative magnitude at a specified coordinate over all the correlated mode
pairs. By comparison the more comprehensive format of Eqn (4.14) takes magnitude and phase

into consideration.

It is important to mention that in order to comrectly estimate the COMAC, all correlated
mode pairs had either to lie in phase or out of phase,

4.8.3.2 Modulus difference matrix (MDM)— The elements of the MDM are computed for

two sets of correlated eigenvector pairs using the following formula :

{avh=Hande - {whl sL=123 . Ly s (416)
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where {A\yl}L represents the difference for the i™ element of the L™ CMPN.

Again Lieven et al. > used a different expression listed below,

{Avi} = “{x‘l‘l}Ll - |{t‘lfi}L” iL=1,23,...... s Lnax oo (417)

In Eqn (4.17) the modulus of the eigenvector elements is taken before the difference is

calculated while Eqn (4.16) accounted for both magnitude and phase information.

In a later subsection it will be demonstrated how the MAC, COMAC and MDM can work

together 10 locate the position of errors, whether for test structure or finite element modal model.

4.8.3.3 Error matrix method (EMM)— The EMM is a technique developed with the aim

of identifying local errors for either the stiffness or mass matrices. It makes no assumption
concerning the accuracy of either matrices whether theoretical or experimental, instead it uses a

sei of modal parameiers as a reference basis,

Several approximations are involved when calculating the error matrices. In most cases the
experimental degrees of freedom are much less than those of the finite element mesh (in the
current case a ratio greater than 1 : 29). In general, it is possible to follow two routes in order to
match both sets of freedoms, the first of which is to expand the experimental degrees of freedom
to be compatible with those of the theoretical model giving the benefit of regaining the rotational
degrees of freedom results without measuring their corresponding FRFs. The other route, which
was adopted for the current study, is to condense both the stiffness and mass matrices on master
degrees of freedom which are the experimental degrees of freedom with the consequence of not

considering rotations.

When viewing the following formulae for error matrices it will be noticed that only a few
modes are considered in the calculation — another approximation which is encountered due to the

difficulty in measuring all vibrational mode shapes.

An additional approximation is inherent in the formulation of the analytical stiffness and

mass matrices,

The theory behind the EMM can be stated as follows :

[AK] = [K,] = [K] e " " e (4.18)
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where  [AK] represents the stiffness error matrix;
[Kt] represents the theoretical stiffness matrix; and,
[Kx] represents the experimental stiffness matrix.

As it is not possible to measure the stiffness matrix the above equation was approximated 34

ignoring higher order terms as follows :
-1, T -1 T
[2K] = [k J([®]lo?] [o] - [edle] [ed K] e @19

where  [®], [@ ] represent the theoretical and experimental mass normalised vibrational
mode shape matrices respectively, having an incomplete set of modal

vectors and an incomplete set of coordinates; and,
[Qtz], [QXZ] represent the corresponding theoretical and experimental estimates

respectively of the square of the natural frequencies in rad%s?.

Eqn (4.19) is based on the assumption that the discrepancies between the theoretical and

experimental stiffness matrices is small ({AK] <<). A similar expression was derived for the mass

error matrix :
T T
[am] = M ]([ed[@] - [@][@,] )[M] s 4.20)
where [AM] represents the mass error matrix; and,
[Ml] represents the theoretical mass matrix.

Because of the limited number of measured modes a new method was developed 3¢ to

localise the errors between the experimental and theoretical models using the following equation :

[ak]([@,][.]) = IM]([e,][2[e]) - K)(@J{e]) ... @.21)

and its symmetric version could be written as follows :

[4K,] = ([@,][@,] H[aK] + [aK]([@,][@,]") } 4.22)
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where  [AK ] represents the modified stiffness error matrix.

The preceding equation was applied to models with a single measured mode and excellent

results were obtained 80 .

4.8.4 Application of Error Locating Techniques

A Fortran 77 program (called COMP) was prepared to calculate the COMAC, MDM, [AK],
[AM] and [AKm] for a given number of correlated mode pairs using Egns (4.14), (4.16), (4.19),
(4.20) and (4.22) respectively. It required the input of the theoretical condensed mass and stiffness
matrices [Mt] and {K:] as well as the theoretical and experimental modal parameters including

mass normalised modal vectors (theoretical information was supplied using PAFEC).

4.8.4.1 Raw experimental data and initial finite element model— Initially, theoretical

data provided to the program was that of the finite element mesh described in the previous chapter

{with perfect fixity at the base) and the raw experimental data. COMAC results are listed in the

A1l 5
following table,
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STATION POSITION INITIAL THEORETICAL MODEL | UPDATED THEORETICAL MODEL
ON TEST WITH WITH
NUMBER RAW EXPERIMENTAL DATA CORRECTED EXPERIMENTAL DATA
STRUCTURE
X Y Z X Y VA
1 apex 0.496 0.324 0.981 1.000 0.968 0.981
2 0.477 Q.705 0.977 0.992 0.957 0.967
3 0.491 0.555 0.930 0.987 0.998 0.992
4 0.546 0.443 0.913 0.990 0.993 0.988
5 0.585 0.399 0.911 0.993 0.983 0.980
6 0.580 0.489 0.937 0.998 0.992 0979
7 seam 0.477 0.450 0.965 0.996 0.974 0.973
8 0.256 0.541 0.487 0.997 0.994 0.987
9 0.468 0.517 0.925 0.993 0.997 0.991
10 0.525 0.369 0.905 0.994 0.975 0984
11 0.620 0.371 0.902 0.995 0.974 0973
12 0.613 0.427 0.923 0.997 0.975 0.968
13 seam 0.521 0.565 0.911 0.991 0.999 0.986
14 driving point 0.395 0.625 0.770 0.978 0.980 0.945
15 0.443 0.564 0.823 0.967 0.976 0970
16 0.597 0.419 0.808 0.975 0.968 0,977
17 0.639 0.316 0.688 0.975 0.962 0.974
18 0.513 0.350 0.551 0.940 0.957 0.916
15 seam 0.334 0.495 0.629 0.926 0.944 0.924
20 0.109 0,491 0.607 0808 0.926 0.369
21 0.252 0.431 0.816 0.834 0.916 0.959
22 0.677 0.416 0.790 0.992 0.965 0.977
23 0.753 0.343 0.766 0.995 0.958 0.957
24 0.736 0.521 0.810 0.998 0.978 0.954
25 searm 0.610 0.699 0.828 0.998 0.997 0.965
26 0.461 0.813 0.752 0.998 0.992 0.995
27 0.606 0.765 0.759 0.981 0.990 0.9%4
28 0.779 0.577 0.681 0.992 0.978 0983
29 0.837 0.307 0.715 0.979 0.955 0.985
30 0.803 0.606 0.837 0.981 0.985 0.978
31 seam 0.588 0.738 | 0.857 0.940 0.983 0.985
32 0.429 0.825 | 0.734 0,976 0.994 0.994
33 0.638 0.749 0.759 0.995 0.988 0.996 .
34 0.589 0.376 0.741 0.870 0,884 0.993
35 0.850 0304 | 0.658 0.996 0.925 0.968
36 0.827 0.622 | 0.842 0.988 0.964 0.967
37 seam 0.645 0.798 0.892 0.979 0.993 0.970
38 0.497 0.921 0.806 0.984 0.996 0.9%96
39 0.857 0.877 0.792 0.867 0.991 0.985
40 0.887 0.761 0.731 0.986 0.977 0971
41 0.921 0.322 0.758 0.991 0.931 0.966
42 0.877 0.728 0.891 0,989 0.983 0.953
43 seam 0.719 0.898 | 0.854 0.955 0.994 0.993
44 0.405 0.935 0.743 0.957 0.998 0.995
45 0.793 0.908 0.795 0.995 0.997 0.996
46 0.922 0.619 0.754 0.991 0.894 0.992
47 0,937 0.332 0.752 0,959 0.861 0.984
48 0.982 0.790 | 0.825 0.977 0.986 0.989
45 seam 0.805 0.931 0.874 0.988 0.998 0.984

TABLE 4.12 — COMPARISON OF THE COMAC VALUES FOR INITIAL
AND UPDATED FINITE ELEMENT MODELS
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Three dimensional grid maps were plotted as in Figs 4.21 — 4.25 to represent the modulus

difference and error matrices.

The MAC values for CMPN 1 and 2 were relatively low (see Table 4.10) and when
observing the COMAC results in Table 4.12 it was noted that low values were randomly scattered,
giving no clear indication. Very low values existed at some stations as can be observed from the

previous table,

Figs 4.21(a — c) indicated that in both the X and Z directions for the first correlated mode
pair at the 8™ measurement station large differences between experimental and theoretical models
occurred. Relatively high peaks were also observed in the vicinity of the 21* and 35™ stations for
all degrees of freedom in the X, Y and Z directions for CMPN 1 and 2.

When plotting a stiffness error matrix as in Figs 4.22(a — ¢) it is important to mention that
while the diagonal elements quantified the amount of error between the two models at a given
station, in a given direction, the off diagonal elements were influenced by more than one station.
As a result, the diagonal elements of the stiffness error matrices using individual correlated mode
pairs for the X, Y and Z directions were plotted as shown in Figs 4.23{(a — c). A similar policy
was followed for the modified stiffness error matrix and results are depicted in Figs 4.24(a — ¢)
and 4.25(a — c).

The preceding observations relating to the error locations were reiterated in all figures

concerned with the stiffness error matrices.

4.8.4.2 The route to error location— Careful inspection of both sets of listings of the

modal vector estimates indicated that some error existed in the raw experimental data at the gt
measurement station for CMPN 1 — 4 in the X and Z directions. The error was attributed to the
weakening of the adaptor fixation to the test structure at the driving point. Depending on the type
of mode, its direction of motion and the relative position of the considered degree of freedom with

respect to the axis of symmetry, the experimental data was adjusted.

The previous correction did not improve the difference between the experimental and
theoretical natural frequency estimates and as a result further corrections or updating was

necessary and consequently attention was directed to the finite element model.

In general, the difficulties in obtaining similar or identical modal parameters for the test

structure and finite element model could be due to any of the following reasons,

i inaccurate representation of the material properties;
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ii.  inaccurate representation of the geometrical properties; and,

iii.  inaccurate properties of the boundary conditions.

Accordingly, a material control test was carried out in order to eliminate any doubt with

regards to the material properties and the average results were

E = 8800 MPa
v = (.36
p = 1100 kg/m>

Following this, attempts were made to decrease the shell element thickness at selected parts
of the finite element model but almost no effect was observed on the natural frequency
predictions. This was because as the thickness decreased the mass and structural stiffness
decreased with nearly the same rates thus resulting in no change in the natural frequency

estimates.

The last available route was to review the boundary conditions. Springs with compatible
degrees of freedom were attached to the nodes of the last parallel circle. Keeping the spring
stiffnesses equal, their magnitudes were varied several times and each time a new set of theoretical
modal parameters was computed. The MAC and COMAC were used as indicators to establish an

optimum stiffness value for the base fitting which was found to be 3 X 10%N/m,

4.8.4.3 Corrected experimental data and updated finite element model— Results for

both finite element models were presented side by side in order to demonstrate the effect of
updating. The MAC calculation results listed in Table 4.10 assisted in identifying the correlated
mode pairs. Subsequently, a consistent comparison between experimental and theoretical modal
parameters was carried out and results are represented in Tables 4.10, 4.11 and Figs 4.20(b),
421 — 4.25.

From Table 4.10 and Fig. 4.19 it is clearly shown that the correlation of the first two modes
has greatly improved and in Fig. 4.20(b) the points are lying on almost straight lines with slopes
0.98 and 0.91. In addition, the difference between experimental and theoretical natural frequency

estimates has been greatly narrowed.

The COMAC values for the correlated mode pairs were found to be superior to their earlier
estimates and with the exception of a scarce number of freedoms the COMAC was in excess of
90 percent, It was noted that the degrees of freedom in the X direction in the vicinity of the 20™
and 34" stations for CMPN 1 and 2 possessed minimum COMAC, an indication of some

disagreement between the corrected experimental and the updated finite element modal models.
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When viewing Figs 4.21(a — ¢), the above sequel was repeated for the degrees of freedom
in the X, Y and Z directions, Peak stiffness errors were observed in regions near to the latter
stations in Figs 4.22 — 4.25.

The mass error matrices for both finite element models (initial and updated} led to no

conclusive direction and consequently, its results were not considered in the current study.

In conclusion, although the updating performed on the finite element model and correction
of experimental modal vector estimates has greatly improved the correlation coefficients (MAC
and COMAQ) still some randomly scattered errors existed. The non-symmetric distribution of the
errors indicated that either geometrical imperfections or measurement errors could account for
such discrepancies. It is interesting to note that neither low COMAC nor large error peaks were
observed at the driving point nor for stations lying on the seam. Thus it is possible to conclude
that neither the driving point set—up nor the existing seam did grossly change the dynamic

characteristics of the test structure.

4.9 CONCLUSIONS

The main aim of the modal test was to acquire an accurate finite element model which
correctly represents the dynamic characteristics of the Echinodome prototype. Such a demand was
fulfilled up to a certain extent. Greater improvements were possible by observing the following
points :

1.  The inclusion of more vibrational modes as well as increasing the number of

measurement stations and hence the total number of experimental degrees of freedom.

2. Due to the heavy coupling of the test structure vibrational modes, experimental modal

parameters can be accurately extracted by exciting one mode at a time.

3.  Complex mode shapes, if occurring, could be used without whitewashing in order to
retain the damping characteristics which could be included in new correlation

techniques 89,

4.  Attempting to expand the experimental mode shapes rather than condensing theoretical
model is a process which benefits from including rotational degrees of freedom in any

correlation thus enhancing the theoretical model.

5. Introducing updating iteration techniques eventually leads to a correct theoretical
model.
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It is important to emphasise that the verified finite element model is suitable for dynamic
analysis but not necessarily for static, as the theoretical model obtained was correlated consistently
1o the test structure at the natural frequencies only. While a static loading would require a finite

element mesh which correctly represented the test structure at 0 Hz frequency.

To summarise, a thorough modal test can be used to validate a theoretical model
representing a real structure for dynamic analysis, e.g. structural response prediction to a given

dynamic force.
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CHAPTER 5

Ecunobome REesponse To AN Unperwater Exprosive Loaping

5.1 SUMMARY

The explosion phenomenon is described starting from the detonation process and ending

with the venting of the gas bubble. The effects of nearby free or rigid surfaces are also discussed.

A free field experiment was carried out to determine the general characteristics of the
pressure pulse generated by a detonator underwater. Then the Echinodome was subjected to a
shock wave from the same detonator while it was in a floating submerged state. Structural

response was measured with the aid of strain gauges.

A theoretical analysis was undertaken using the finite element method to model the
prototype and boundary element technique to simulate an infinite region of water surrounding the
structure, Subsequently, experimental and theoretical principal stresses—time histories were

compared.

5.2 INTRODUCTION

When a spill of a refrigerant liquid becomes superheated to an extent that permits
homogeneous nucleation to take place, an overpressure is produced and such a phenomenon is

known as rapid phase transition (RPT).

Liquefied natural gas (LNG) is generally stored under high pressure, or at very low
temperatures, or a combination of lower levels of both and if leakage took place from an
underwater container the cold liquid would be superheated after contacting the surrounding
medium (water) resulting in an RPT which resembles an explosion and consequently, shock waves
would be transmitted to nearby structures. Therefore it is necessary to consider RPT loadings on
underwater reservoirs such as Echinodomes, containing highly volatile liquids at very low
temperatures.

The doubly asymptotic approximation (DAA) is a numerical approach implemented in
PAFEC-DOLPHIN to analyse shock problems. Good agreement was obtained earlier 81 between
the theoretical DAA and exact solutions for a submerged spherical shell impinged upon by a plane

step pressure wave. An underwater explosion test was carried out using the Echinodome prototype
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as the target and measured strains were compared with their predicted correspondents in order to

assess the performance of DAA,

5.3 SEQUENCE OF THE UNDERWATER EXPLOSION PHENOMENON i

An explosion is a rapid release of energy in a considerably short time. Explosive materials

undergo chenucal reactlons releasmg _gaseous materials at L very high temperatures. Underwater the

exploswe gases are compressed by the surroundmg medlum (watery eventually taking the shape of

a sphere. In the followmg subsections the behaviour of the gas sphere (often known as the bubble)

is described and the effect of rigid and free surfaces is mentioned. More details can be found

elsewhere 82

5.3.1 Detonation Process

Detonation is the initial phase of the explosion phenomenon in which the chemical reaction
takes place rapidly so that it can keep up with the resulting physical change and it is accompanied
by the evolution of large amounts of heat. A detonation wave develops, behind the shock front of
the initiated explosive, separating the unstable substance (explosive material in its initial form)
from the stable product of the reaction. The detonation wave propagating speed is a characteristic

of each explosive material and is several times that of the shock wave.

5.3.2 Shock Wave

At the boundary between the explosion gases and the surrounding water compression waves
are generated, developing very steep fronts as they progress. Such waves are known as shock
waves and they travel at an average velocity of 1400 — 1500 m/s when they are considerably

away from the charge.

In practice, the rise time of a steep fronted shock wave is usually less than the resolving
time of the experimental measurements and therefore, the time histories of the pressure pulse is

generally characterised by having a discontinuous rise followed by an exponential decay.

For spherical shaped charges the pressure level drops off with a rate higher than the first
power of the inverse of the stand off distance from the source of the explosion. The decay rate of

the pressure pulse is slower as the shock wave spreads away from the charge.

Pulse shapes measured off the side of cylindrical charges are similar to those of spherical
charges in that the discontinuous rise is followed by an exponential decay. However, the
pressure—time curves differ in shape and peak level if measurements are made along the axis of

symmetry, often possessing two pressure peaks.

R — Y
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A large amount of energy is dissipated to heat in the vicinity of the charge with the
propagation of the shock wave outwards. This is caused as a result of the steep pressure and

velocity gradients occurring at the shock front.

5.3.3 Gas Sphere and Secondary Pulses

A gas sphere (bubble) is formed as a result of an underwater explosion. Initially, the gases
are under maximum compression and thus occupy a minimum volume, With the emission of the
shock wave the bubble expands and the pressure drops. The water behind the shock front flows
outwards, remaining in such a condition as long as the inside pressure of the bubble is larger than

the sum of the atmospheric and hydrostatic pressures (p_ + p_).

At later times the outward flow of water drops until the gas pressure is slightly below the
equilibrium value @, + ). The gas sphere at this stage is characterised by having a maximum
diameter, the outward motion stops and contraction of gases starts. The inward motion continues
until the bubble reaches its minimum radius. Several cycles of expansion and contraction are

repeated ending by the collapse of the bubble.

The shock wave pressure is determined by the degree of compressibility of gases inside the
bubble and therefore, at maximum contraction of the gas sphere (minimum bubble radius) the

pressure value is at a peak.

After the emission of the shock wave the first occurring peak pressure is known as the first
“Bubble Pulse’” or ‘‘Secondary Pulse’’, The first bubble period is equal to the time elapsed

from ihe iniiiation of the explosion io ihe occurrence of the first bubbie pulse.

The maximum pressure of the first secondary pulse is much less than the shock wave peak
pressure and later pulses are of even much less strength due to the energy losses in successive
contractions. However, it cannot be concluded that the bubble pulses are of no (or less)
significance than the shock wave. This is because the areas under both pressure—time curves are
comparable since the time duration of the secondary pulse is much longer than that of the initial

pulse (see Fig. 5.1).

As the bubble is experiencing expansion and contraction it rises towards the surface because
of the buoyancy effect. The maximum upwards migration taking place when the volume occupied
by the gas sphere is at its minimum. Gas spheres are attracted to rigid surfaces while free

boundaries have the opposite effect.

Therefore, the effectiveness of secondary pulses produced by the bubble to cause damage
depends not only on the charge size and stand off distance but also on the depth at which the

charge is fired and the proximity of free and rigid boundaries relative to the charge position.



CHAPTER 5 — ECHINODOME RESPONSE TO AN UNDERWATER EXPLOSIVE LOADING 233

5.3.4 Surface Effects

In real life, a water media is finite due to the existence of top and bottom surfaces. The

effect of such surfaces on the propagation of pressure waves varies.

When a pressure wave strikes an infinitely rigid boundary the net component of particle
velocity normal to the surface becomes zero. This condition is satisfied by the reflection of the
incident wave back into the water medium with a positive pressure value (a compression shock

wave).

A free surface (boundary between water and air media) possesses very low resistance to
compressibility and as a result no compression can develop along such a boundary. There is no
opposition to the motion of the surface and consequently, the necessary condition for equilibrium
is that there will be no pressure change at the free surface, a requirement fulfilled by the

generation of a reflected wave with negative pressure (a tension shock wave).

Due to the reflected negative pressure waves incurred at free surfaces there will exist regions
in the water medium where the resultant pressure is negative, Water is generally weak in tension
and therefore, if circumstances occur in which considerable negative pressures are encountered, the
water mass is pulled apart from itself and holes are formed in order to prevent an increase in

tension. Such a phenomenon is known as “‘Cavitation’’.

The effects of reflection from boundaries are easily determined for the shock wave pulse and
if encountered for bubble pulses they complicate its shape, hence errors can set in during the

analysis stage.

54 ECHINODOME BEHAVIOUR UNDER A BLAST LOADING

An experimental investigation as well as a numerical analysis were carried out in order to

determine the Echinodome dynamic response to underwater explosive loading.

Experimentally, the test structure was submerged in a water tank and tethered to a known
position with the aid of four tension legs. The Echinodome was said to be in a floating submerged

state.

The foliowing subsections contain a description of the experimental work involved and

details of the theoretical simulation using the finite element—boundary element methods.
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5.4.1 Experimental Approach

The experimental investigation was divided into two parts, The first part compris.ed a set of
free field experiments which were carried out in order to determine the pressure pulse
characteristics (peak pressure, decay rate, impulse and energy) for a cylindrical charge of a specific
mass at a given position, While in the second part the cylindrical charge was detonated at a

predetermined stand off distance from the Echinodome prototype.

5.4.1.1 Charge design— The extent of damage caused by an underwater explosion depends

on the dimensions and characteristic (periodic) times of the structure upon which the generated
pressure wave acts. The time duration of the pressure pulse relative to the structural periodic times
is one of the parameters controlling the dynamic response to such transient loadings. The longer
the duration of the pulse the more likely the response will be similar to that invoked by a static

pressure. Thus, the initial peak of the shock wave would be the influential factor. From Cole 32

Wll3 o
P, & [T] (5.1)
=> structural response ©€ pg  eeen . (5.2)
_Wus o
oC —_—
[ R ] " (5.3)
where P, represents the peak pressure of the shock waves;

represents the mass of the explosive charge;
R represents the stand off distance; and,

o represents a constant.

. In the other limiting case, a pressure wave with a duration much less than the structure’s

natural period, damage would be proportional to the impulse of the wave.

=» structural damage ©< I (5.4)
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~oc T (5.5)

where I represents the impulse of the shock wave.

In between the above two extremes structural damage may then depend on a fraction of the
impulse of the emitted wave. Cole 82 mentioned that if cavitation occurred in water near the
structure the resultant deformation would roughly be proportional to the square root of the incident

shock wave energy.

= structural deformation o< Ef”? ... (5.6)
Wle
=oc R werarie CN))
where Er represents the energy of the shock wave per unit area (or energy flux
density).

The variation of the peak pressure (pm), impulse {I) and energy (Ef) with the charge mass
(W) and stand off distance (R} are empirical laws and therefore, the above relationships cannot be
taken literally, However, their use may be beneficial in determining the charge size that would or

wouid noi cause structurai damage.

A similar idea ¥ was adopted in estimating an explosion charge mass placed 5 m away
from the target that would not invoke any geometric non--lineatity of the Echinodome prototype

and at the same time produce measurable strains.

The estimated charge mass was found to be equal to 1 gm and a standard electric
detonator 79 was selected for the purpose of the current experimental study. The charge was of

cylindrical shape,

5.4.1.2 Free field set_up— For a given charge size and type the pulse characteristics of the

shock wave, in the form of peak pressure, decay rate or time duration, impulse and energy, vary
with the increase or decrease of the stand off distance. Consequently, a set of free field
experiments were carried out in order to estimate such properties as well as to determine the pulse
shape at the point where the shock wave would impinge the Echinodome prototype in a later

experimental set—up.
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The changes in the pressure field surrounding detonator 79 when initiating it were measured
utilising seven tube like tourmaline pressure gauges. Pressures of up to several hundreds of MPa
could be measured. Calibration was performed at site, The sensitivity of each gauge was
determined by applying a standard pressure pulse of 6.88 MPa (1000 psi) and measuring the

corresponding voltage change using a digital oscilloscope.

A frame made of steel was erected on which the pressure gauges were fixed as shown in
Fig. 5.2. The frame was then lowered in a water tank of dimensions 12.1%0 X 6.100 m in a
3470 m of water depth. The tank walls and base were made of reinforced concrete with thick
steel plates lining it. The position of pressure gauge 7 was identical to that of the nearest point of
the test structure to the explosive charge. Pressure gauges 2 and 3 were used in order to determine
the characteristics of the reflected shock waves from the bottom of the tank (rigid boundary) and

the water surface (free boundary) respectively.

The transducer signals were conditioned using MELEC model M124 charge amplifiers and
recorded with a THORN EMI model SE7000 magnetic tape recorder (FM type).

5.4.1.3 Target set_up— When the test structure was to be subjected to an underwater

explosion a different experimental set—up was prepared. A set of four cables was used to position
the prototype at a depth of 1.525 m of water from its apex (the design pressure head of the test
structure). Each cable was made of six strands and a single core. The four cables acted as tension
legs supporting an underwater structure because of the buoyant forces acting upwards on the

empty shell structure.

Part of the steel frame used in the free field experiment was again employed with some of
the attached pressure gauges to gain more confidence in the measured pressure pulses as well as to
position the detonator at the same water depth as the maximum diameter of the Echinodome
prototype.

Structural response was measured using electrical resistance foil strain gauge rosettes with
each gauge having a resistance of 350t 10, 3 mm gauge length and an average gauge factor equal
-to 2.15. The rosettes were bonded on the outer surface of the shell at five different positions in the
same meridional plane with angles ¢ = 30° 60° 90° 120° and 150° away from the apex as
depicted in Fig. 5.3. For each rosette one gauge was aligned with the meridional profile, another
along the cormesponding parallel circle and the third in between them at an inclination of 45° .
Voltage excitation of the strain gauges, filtering and conditioning of the strain signals were carried

out using special signal conditioning amplifier units.
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The detonator was set at a position approximately 5 m away from the prototype. The strain
gauge rosettes, the explosive charge and the three pressure gauges were in the same vertical plane

as shown in Fig. 5.4,

A newly developed miniature tourmaline piessure gauge PCB model 105M114 was attached
to the test structure at its maximum diameter (¢ = 90, 30 mm from the strain gauge rosette lying
on the same parallel circle and was nominated P.G. 8, The gauge has a maximum range of
6.88 MPa, Wax which was employed in the waterproofing process acted as a bonding agent
between the transducer and the prototype. {The pressure gauge was on loan for an evaluation of its
performance). Energisation and signal conditioning was performed using PCB model 480D06
power supply—signal amplifier unit.

The PCB model 303A06 triaxial accelerometer described earlier was mounted on the
Echinodome prototype at its apex to measure the dynamic response there but unfortunately the
recorded signals were erroneous because the excitation frequency was much higher than the
accelerometer’s mounted resonant frequency.

All time domain signals were recorded in analogue form wusing RACAL
model STORE 14DS and THORN EMI model SE7000 FM magnetic recorders for response (strain

and acceleration) and excitation (pressure) histories respectively.

5.4.1.4 Data acquisition and analysis instrumentation— Analogue pressure and strain

signals were digitised by means of a KONTRON model 700 transient recorder which possessed a
" maximum sampling rate of 10 MHz. Digital data was then stored on fioppy discs for later analysis.

Post processing of the digital signals was carried out using the signal processing software
DADISP 8 |, mounted on an IBM PS$/2 model 555X desk top computer. DADISP enabled
averaging of signals, d.c. shift removal, calibration, filtering, discrete Fourier transformation and
many more mathematical applicaticns,

A block diagram showing the instrumentation employed in the current experimental

investigation for the data acquisition and analysis stages is presented in Fig. 5.5.

5.4.1.5 Digital signal processing— Digital signals stored on floppy disks were recalled

using the DADISP program for data correction and processing. The current analysis Stage

comprised the following five main steps :

1. Common triggering : before performing any averaging process on any ensemble of
time domain signals it was important to adjust the trigger points to have the same time

of occurrence.
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2.  Ensemble averaging : time domain signals were averaged in order to reduce inherent

random errors in the form of noise.

3. Offset removal ; d.c. offsets were determined by averaging all sample points prior to
trigger, then such transitions were subtracted from the corresponding ensemble

averaged signals.

4.  Digital filtering : low pass filters were designed to be applied to pressure and strain

signals with the purpose of attenuating the high frequency components.

5. Calibration : all digital signals were scaled by the comresponding calibration constants

to transform their amplitudes from voltage units to pressure or strain units,

The above operations were applied for each data set of a given transducer in an identical
order.

5.4.1.6 Digital filtering— Only the initial part of each pressure signal comprising the shock

wave pulse was considered in the filtering process because of the enormous number of

computations involved if the secondary pulses were to be included.

Discrete time pressure signals, each formed of 2048 samples equally spaced by 100ns, were
transformed to the frequency domain in order to determine the maximum excitation frequency
above which any data were considered to be highly contaminated with electrical noise. The ESD
of the pressure pulse for pressure gauge 1, depicted in Fig. 5.6, indicated that the frequency
comporents above 100 kHz were buried in the noise floor. Consequently, the cut off frequency,
(f), o be used in designing a low pass digital filter was equated to 100 kHz, (a low pass filter

passes all low frequency components and stops high frequency components).

Before analysing the strain signals, with N =4096 and At =40 ps, it was necessary to
establish that the structural dynamic response had decayed to at least the noise floor level 61 of the
pretriggering level or else exponential weighting would be required. This was achieved by using a
Hilbert transform to display the magnitude of a strain signal in the time domain with a logarithmic
vertical axis as is show in Fig. 5.7 . The magnitude function resulting from a Hilbert transform

represents the positive envelope of the signal under consideration.

A Fortran 77 program was prepared to calculate the envelope function of the strain records
employing DFT and IDFT techniques. The equations involved in the derivation are listed below
and more details concemning the mathematical formulation leading to the Hilbert transform can be

found elsewhere 85:86

2(t) = x(t) +] i i(t)_I , (8.8
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2(t) = lz()| 4O ... (5.9)

where  z(t) represents an analytical signal, its magnitude |z(t)] is known as the

envelope signal;

%(t) represents the Hilbert transform of x(t); and,
o(t) represents an instantaneous phase signal.
2X(w) ; >0
Z(CO) = 0 ; O < 0 shien (5.10)

where Z(®) and X(@) represent the Fourier transform of z(t) and x(t) respectively.

It was observed from Fig. 5.7 that the response level at the end of the time record was
below that of the noise floor. Therefore, a procedure similar to that adopted for the pressure
signals has been applied to the strain records to determine the cut off frequency, fc, of the digital

filter which was established to be 6 kHz.

The design of the low pass linear phase finite impulse response {FIR) digital filter was
carried out using the window method 87.3% | The window technique starts by assuming the desired

frequency response of the filter,

1 ; 191<86,
Ha®) =15 . otherwise (.11)
where 0=2xn [ﬂ] H
(Ds
0,
0. =2m [—‘] ;
ms
o, represents the sampling frequency in rads/s; and,
o) represents the cut off frequency in rads/s.

c

The corresponding impulse response can be cbtained by evaluating the following series :

hy(k) = eisin(kec) i k=0,1,2......,% . . (512
€
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In specifying the number of filter coefficients N the length of the filter becomes finite and

hence its impulse response is approximated as follows :

hy(k) = hy(k) = elsin(kac) k=012 000ty Nl v (5.13)

Truncation of terms involved in the above series is equivalent to multiplying the infinite
h d(k) by a rectangular window which results in oscillations or ripples in both the passband and
stopband of the filter’s frequency response. These oscillations are known as the ‘‘GIBBS”
phenomenon. It is known that lengthening the filter, by increasing the number of its coefficients,
results in faster ripples but no reduction in their amplitudes. To alleviate the ringing effect a
window with tapered edges (decaying to zero gradually) should be used instead of uniform
weighting.

In the current study, the length of the digital filters depended on the number of samples
forming a digital signal. For pressure and strain records the length was 2049 and 4097
respectively. Once the cut off frequency and length of the low pass digital filter were determined it
was possible to construct it using DADISP as follows :

1.  The truncated form of the filter’s impulse response is generated at discrete times.

2.  The above function is multiplied by a given window (rectangular, Hanning, Hamming,
Kaiser, etc. ... ... ) to obtain ihe approximate impnlse response, h_(k), of the desired

FIR low pass linear phase filter,

Then, digital filtering was performed by multiplying the filter’s frequency response by the
DFT of the signal under consideration. Then an IDFT was carried out to acquire the filtered

discrete time signal.

A comparison between different FIR low pass filters can be seen in Fig. 5.8. In the current
analysis, the Kaiser window was utilised in the filtering process of both the pressure and strain
signals because of the good characteristics its frequency response possessed, less rippling in the
passband and stopband as well as lower side lobes. Figs 5.9 and 5.10 show the effect of digital

filtering on a sample of a pressure and a strain record respectively.
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5.4.1.7 Analysis of pressure records— When viewing the pressure peaks of individual

measurements for a given gauge some variation was observed. Such scatter of the data suggested
dissimilarity in the detonators used resulting from either different densities of materials composing

the explosive charge, different lenpth to diameter ratios or both.

The average filtered pressure records can be seen in Fig. 5.11 for the various gauges. It is
worth mentioning that the pressure pulses of gauges 2 and 3 were measured in the same vertical
plane below and above the cylindrical charge, the axis of which was in a horizontal plane and

pointing towards the target position, while the shots were being fired (see Fig. 5.2 and 5.4),
Observing Fig. 5.11 it was noticed that all pulse shapes possessed more than one peak with

the first having the maximum value of pressure and the rest on a decreasing level. However, pulses

of pressure gauges 2 and 3 had their second peak absorbed by the first.

In general, as the pressure gauge was positioned further from the explosive charge, the
duration of the shock wave pulse was longer.

The miniature tovrmaline pressure gauge on trial appeared to perform satisfactorily in
measuring the peak of the pulse impinging the test structure but failed to trace the rest of the
pulse. This can be explained by splitting the pressure surrounding the structure into the following

components :

1.  Incident pressure (pl) is that which would occur in the absence of the target.

2.  Reflected pressure (pg) is that which would occur if the target represented a perfectly
rigid boundary.
3. Radiated pressure (pr) is the rémaining component of the pressure field and is

dependent on the surface motions of the submerged structure.

The scattered pressure (ps) is defined by the following formula :

Ds=DPRFPr  wee . (5.14)

Initially, when the shock wave struck the Echinodome prototype, the miniature tourmaline pressure
gauge was measuring the incident pressure P but at later times the scattered pressure from the
structure decreased the pressure magnitudes. This explanation was confirmed by observing the
relevant pressure pulse for pressure gauge 8; a correct measuring of the peak pressure, P for the

shock wave followed by an uncharacteristic rapid decay.
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In many cases of structural damage, the effectiveness of shock wave pulse depends on either

of the following three parameters :

. p

2. Impulse per unit area given by

t
I= l[p(t) - pwldt . (5.15)
where  p(t) represents the total pressure as a function of time; and,
P, represents the hydrostatic pressure.

3. Energy flux density given by

t
1 2
E = —|lp®-ps]at . (5.16)
P<y .
where ¢ represents the shock wave speed underwater; and,
p represents the mass density of the surrounding water medium.

Therefore, it becomes important to study the characteristics of a shock pulse for a given A

charge type.

The filtered pressure pulses depicted in Fig. 5.11 indicate that the pressure values did not
reach zero {p(t) = pw) by the end of each record and for Eqns (5.15) and (5.16) to converge to a
limiting value a very long time record was necessary which was considered time consuming. In
most cases, integration is performed over a time span including the initial pressure pulse with its
main features until the pressure values are very small when compared with the initial peak (pm)

which is considered to be a reasonable approximation.

Cole in his book 82 suggested that the characteristics of shock wave results for a particular

explosive can be represented using power laws as follows :

wis |*
Pm=k [T] - - (5.17)
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eassssrer s ssasten (5.18)

(5.19)

The above laws can be regarded as fair approximations depending on the range of (WIB/R).
Using the experimentally measured pressure records a linear regression analysis was carried out to
determine the constants k, /, m and «, B, ¥ for detonator 79 excluding experimental observations

of pressure gauges 2, 3 and 8. (see Fig. 5.12). The resulting characteristic formulae were found to
be as follows :

win 1.36
Pm= 7320 = (5.20)
092
173 WIB
1=6124.18 x W _ (5.21)
N r 3 12.41
E; = 189236.45 x Wi/ [EVR— ....... (5.22}
where  p_ is in units of MPa ;
W is in units of kg ;
R 18 in units of m ;
I is in units of Nm'2s ; and,
Ef is in units of Nm™' .

Shock wave pulse properties @, I and Ef) were determined utilising the above equations
(named theor, 1) as well as empirical formulae 8% (named theor. 2) derived from experimental
measurements of bigger charges at various stand off distances. Table 5.1 contains a comparison

between the preceding predictions and the current average experimental observations.
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PRESSURE PEAK PRESSURE IMPULSE ENERGY FLUX DENSITY
GAUGE (MPa) (N %) Nm'1)

NUMBER | 1per | THEOR1 | THEOR2 | TEST | THEOR.1 | THEOR2 | TEST | THEOR.1 | THEOR2
1 2.66 2.78 3.07 70,72 67.70 69.41 67.34 61.83 521
4 1.19 1.15 1.59 34,92 37.78 38.29 14.87 13.03 14.84
5 0.68 0.67 1.06 2547 26.02 26.64 1.08 504 6.85
6 0.46 046 .80 20.17 20.15 20.62 343 2.58 397
7 0.31 0.34 0.64 17.35 16.56 16.94 1.87 1.54 261

TABLE 5.1 — COMPARISON BETWEEN AVERAGE EXPERIMENTAL OBSERVATIONS AND PREDICTIONS
OF SHOCK WAVE PULSE CHARACTERISTICS ALONG THE AXIS OF DETONATOR 79

The above table indicated that Eqns (5.20) — (5.22) were suitable for small charges while

other empirical formulae 8 were best suited for larger charges.

In conclusion, empirical formulae are useful in predicting peak pressures of shock waves
which enable experimentalists to optimise the dynamic range of the instrumentation used.
Additionally, when designing the size of an explosive charge, to be fired in front of a structure,
predictions of pressure pulse characteristics assist in avoiding stuctural damage which after all

may be necessary.

5.4.1.8 Analysis of strain records— After the averaging and filtering of strain records the

results for each rosette were processed to produce the principal stresses (0'1, 0‘2) and equivalent

stresses (Ge) which can be seen in Figs 5.13(a, b) and 5.14 respectively.

The experimental principal angle distribution versus time (not shown) was uneven which
meant that at a specific point on the shell’s surface, the principal stresses are likely to vary their

direction unsystematically between 0% — 180° and not be constant at any time,

From the above stress figures it was noticed that the maximum stresses were experienced by
the nearest point on the shell’s surface to the explosive charge. The figures indicated that the
stresses at ¢ = 30°%, ¢ = 60° were greater than at ¢ = 120° ¢ = 150° and could be attributed to the
higher rate of curvature change in the bottom part of the shell’s meridional profile, which made
the structure appear more stiff in that region. Beneath ¢ = 90° the stresses were on the increase
on approaching the base of the shell, thus conforming with an earlier conclusion (vide Chapter 2)

that the lower region of an Echinodome shell was a critical zone for design.
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In all cases, the maximum, minimum and equivalent stresses were much less (= 5 percent)
than the maximum strength of the test structure material (55.4 MPa). It can be concluded that the
pressure pulse, generated using 1 gm of explosive charge (detonator 79) and located approximately
50m away from the test structure, was too low to invoke the structure’s geometrical non—
linearity to a degree which could cause serious inaccuracies if ignored in the theoretical analysis.
In general, inm Figs 13(a and b), the principal stresses tended to be on one side of the abscissa

because they were the most positive and negative stresses respectively.

For all stress records the magnitudes appeared initially to be decaying but at later times
another peak with a relatively high level evolved. This was caused by the bubble secondary pulse

as will be shown in the following subsection.

On examining the strain records of gauges bonded on the steel links (part of the tension leg)
the magnitudes were found to be very low and highly contaminated with electrical noise. This was

because of the considerably large cross sections of the link elements,

54.1.9 Secondary pulses— As was shown earlier in Fig. 5.1 for a 1 gm explosive charge

(detonator 79) a secondary pulse occurred 27 ms after the initial peak. This corresponded to the
second peak recorded in the strain—time histories. The time difference between both peaks could
be determined from either the pressure records as in Fig. 5.1 or using the magnitude functions for

a strain record as in Fig. 5.7 .
Typical bubble periods were established to be approximately equal to 27 ms and 45 ms for
1gm and 4 gm explosive charges respectively. Table 5.2 contains a comparison between

characteristics of both the shock wave and bubble pulses.
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PRESSURE | CHARGE PEAK PRESSURE . IMPULSE ENERGY FLUX DENSITY
GAUGE SIZE (MP2) Nm%s) ol

NUMBER (gm) SHOCK WAVE BUBBLE SHOCK WAVE BUBBLE SHOCK WAVE BUBBLE
PULSE PULSE PULSE PULSE FULSE FULSE
1 1 2.80 0.73 T70.39 189.80 68.27 39.88

4 5.08 0.99 149.15 265.36 111.52

2 1 1.78 0.54 4543 164.98 32.00 29.80

4 3.72 0.70 100.71 242.49 139.68 79.47

TABLE 5.2 — COMPARISON BETWEEN SHOCK WAVE AND BUBBLE PULSE CHARACTERISTICS

From the above table it can be observed that although the peak pressure of the secondary
pulse was much less than that of the shock wave, the area under the pressure—time curve (impulse
per unit area) was more than double. A clear indication of the importance of considering the

effects of the bubble pulse in structural damage.

5.4.1.10 Surface effects— It was concluded earlier that the miniature tourmaline pressure

~ gauge performed commendably in measuring peak pressures and hence it was used in determining
the effects of free and rigid boundaries on the shock wave. It was established from ihe pressure
records of P.G.8 and other pressure gauges that at both surfaces, free and rigid, the shock wave

was reflected fully with negative and positive magnitudes respectively.

By knowing the dimensions of the tank together with the pressure gauge positions and by
determining the time delay of reflected signals the average shock wave speed (¢} was estimated to
be equal to 1418 m/s.

5.4.2 Theoretical Approach

The PAFEC-DOLPHIN acoustics subsystem was used to study the fluid—structure
interaction phenomenon between the floating submerged test structure and the surrounding medium
{water). The software is capable of modelling finite, infinite, compressible and incompressible fluid

regions but does not take account of fluid flow viscosity and cavitation effects.
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54.2.1 Problem idealisation— In the current investigation the Echinodome prototype was

assumed to be surrounded by an infinite fluid region. Because of symmetry only half the staucture
and the infinite medium were necessary to model. Idealisation of the test structure was carried out
using conventional semiloof shell elements (as was described in Chapter 2). Each meridional
segment subtended a circumferential angle of 30° and was discretised into 20 elements (one
triangular and 19 quadrilateral) along the profile. While the fluid region was simulated employing
a single boundary element made up of triangular and quadrilateral patches, forming a closed
surface coinciding with the wet surface of the structure., This meant that the flat base of the
prototype had to be included in the analysis.

In practice, the base was composed of two materials, a circular nominally 2.75 mm thick
GRP base having a diameter of 170 mm and a square 19 mm thick tufnol plate with 200 mm
linear dimensions. However, due to the enormous memory requirements of the boundary element
technique a single set of six triangular semi—loof shell elements was used to model half a 19 mm
thick circular base with a 170 mm diameter. An additional six triangular patch elements were
coupled with the previous structural elements to form a complete surface together with the plane
of symmetry. The existing extra material (tufnol) making up the rest of the square base was

modelled by increasing the density of the base material in the numerical analysis (see Table 5.3).

MATERIAL BASE MATERIAL

GRP TUFNOL USED IN
PROPERTIES
THEORETICAL ANALYSIS

E (MPa) | 8800 | 13200 13200
v 036 | 0.284 0.284
p (kg/m>) | 1100 | 1360 3350

TABLE 5.3 — COMPARISON BETWEEN ACTUAL MATERIAL PROPERTIES AND THOSE ASSUMED
IN THE THEORETICAL ANALYSIS FOR THE STRUCTURAL BASE

It can be observed from the above table that the E and v used in the current theoretical
analysis were those characterising the tufnol material. The density, on the other hand, was deduced

from a preliminary eigenvalue analysis described as follows.

Another finite element mesh modelling the whole structure was prepared with an accurate
representation of the structural base, and the natural frequencies for the first eight modes were

determined assuming the structure was in vacuo. Various densities were considered for the initial
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approximate mesh and the corresponding eigenvalues for the structure in air were compared with
those of the latter accurate mesh until both sets of results were virtually identical. The higher
modes {post the first eight modes) were not considered in the preliminary analysis because their
contribution to the dynamic response was considered small, based on an equivalent mass analysis
{vide Chapter 4) and in any case variations between both sets of natural frequencies were bound to

occur for higher modes due to the inherent approximations.

It is important to emphasise that the above approximation was necessary in order to avoid
the use of the 3-D family elements (15 and 20 noded isoparametric wedge and brick elements
respectively) in the modelling of the structural base which would have made an exceedingly large

demand on the existing computer resources ¥

The finite element library of the PAFEC software comprised no cable elements to simulate
the tension legs and therefore, linear spring elements were employed to model the supporting
members having only axial stiffness. The disadvantage of using such elements was that their
tensile properties were equal to their compressive counterparts which resulted in an inaccurate

representation of the supporting conditions.

The size of the detonator and the stand off distance from the target were selected in the
experimental tests so that minimal structural geometric non—linearity was invoked and this was
because the only available software did not take into account either geometric or material non—
linearities for dynamic load cases. Thus, any discrepancies occurring between experimental and

theoretical results would be due to the following causes,

i inaccurate modelling of the structural base;

ii. inaccurate representation of the true supporting conditions in the theoretical
model; and,

ili. too few finite elements and boundary patches idealising the interaction between the

structural and fluid regions.

A separate finite element analysis was carried out to determine the effect of the imposed
hydrostatic pressure head, during the explosive experimentat tests, on the Echinodome shape under
the above supporting conditions but very small deformations were found to be experienced by the
structure. Consequently, it was concluded that the degree of geometric non—linearity ensued by the

static load would not affect its dynamic response to the explosive loading.

§ The requirements of the current job were 40 MB virtual memory, 14 MB physical memory and 45 MB disk space,
consuming a total of 23 hours of CPU time on a VAX 6410 with a processing power of 7 mips.
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The selected master degrees of freedom had an identical spatial distribution to those
described in Chapter 3 and included as well all of the base’s unrestrained translational degrees of

freedom giving a total of 139 masters.

5.4.2.2 Analysis techniques— In the cumrent analysis a boundary element formed of a total
of 126 patches, covering the wet surface of the structural mesh, was used to model the surrounding
infinite fluid medium. The patches were interconnected at 409 fluid nodes which were coincident
with the structural nodes on the wet surface, each having a single pressure degree of freedom
normal to the surface with its positive direction pointing from the infinite region to the finite
region (out of the fluid into the structure). Unlike finite element techniques where assembled
element matrices are stored in banded form because of their sparseness, the fluid matrices in the
boundary element method are stored in full and this explains the current demand for considerably

large computing resources.

The PAFEC-DOLPHIN software possessed three approximation techniques for the solution
of the boundary element integrals involved in the analysis of an underwater structure excited by
incident spherical pressure waves, The suitability of an approximation for a specific analysis was
dependent on the compressibility of the surrounding medium and the domain in which the shock
wave presure magnitudes were provided (time or frequency domains). The approximation methods

were namely :

1.  Virtual mass approximation (VMA)
2. DAAl

3. DAAX

In the VMA the surrounding fluid is assumed to be incompressible and since the only effect
of the fluid would be to increase the inertia of the submerged structure a fluid mass matrix is
formulated and then added to the structural mass matrix. When undertaking such an analysis the

fluid freedoms are eliminated and hence the problem size is greatly reduced and the analysis is
made more efficient. The VMA is valid for long acoustic wavelengths (la = cfl’) when compared
with the structural wavelength (A.s), i.e. late stapes of response or low frequency analysis
(?Lal >> ls).

The DAA are differential equation§ for a simplified analysis of transient motions of a
submerged structure. These approximations approach exactness in the limit of low and high
motions (Po.a >> 7«.5 and la << ls) and effect a smooth transition in the intermediate frequency
range. Hence, such approximations are applicable to complete response calculations. In addition,

the general theory of the DAA takes the compressibility of the surrounding infinite medium into



CHAPTER 5 — ECHINODOME RESPONSE TO AN UNDERWATER EXPLOSIVE LOADING 250

account.

In PAFEC-DOLPHIN two formulations of the DAA existed. The DAA] was suitable for
transient shock analyses only, while the higher order approximation DAA2c was valid for both
transient and sinusoidal response analysis. Although the DAA2c initially appears to be more
computationally efficient for applying to a steady state vibration analysis, because of the frequency
independency of the fluid matrices, it is generally accompanied by inherent inaccuracies at
structural resonances and antiresonances. Moreover, because of the excited high frequencies, the
long measured strain records and the small time step involved, the previous advantage was
obliterated. Therefore, based on the above discussion and earlier made conclusions 31,9092 (he
DAA1 was adopted in the current simulation due to the relatively short shock pulse duration
(t a" 200 pus) and a At of 1 s was selected for the numerical integration of the structural and

fluid equations.

5.4.2.3 Explosion sources— It was noted that the dynamic response of the Echinodome

prototype would be influenced to a certain extent by the existence of both the rigid boundaries
(side walls and base} of the tank and the free water surface. As described earlier (Section 5.3.4), a
shock wave is reflected with positive pressure magnitudes if striking an infinitely rigid boundary,
while a negative pressure wave would be reflected from a free surface. Therefore, the rigid
boundaries and the free surface were modelled using multiple point sources. Because of the short
response—time history to be taken into account in the current analysis (5 ms) only reflections from
the side walls paraliel to the plane of symmetry, the bottom of the tank and the water surface were
considered and due to symmetry a total of four explosion point sources were declared to PAFEC—
DOLPHIN (one original point source, and refative to it two positive and one negative image point
sources — modelling the shock wave of the original explosion source, its reflection from the rigid

boundaries of the base and one side wall, and the reflection from the free surface respectively).

In PAFEC-DOLPHIN the pressure magnitude of an incident wave varied with the inverse of
the stand off distance from its source (pi e< (1/R)) but Eqn (5.20) indicated that the peak pressure
of the shock wave pulse for detonator 79 was proportional to a higher power than unity
(pm oc (1/R)1'36 ). Consequently, it was necessary to compensate for such a difference in the
pressure tables provided for the software. This was carried out by scaling the pressure magnitudes

using a constant derived from Eqn (5.20) on the basis of the length of propagated distance.

Although in performing the above step the pressure field surrounding the structure was
modelled more accurately, it was not possible to compensate for the variation in the decay rate of
the shock pulse. As the shock wave spreads out from the source the duration of its pulse increases

and hence part of the energy (or impulse) utilised in exciting the prototype during the
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experimental tests was not represented in the theoretical analysis. The difficulty in simulating such
an effect was due to the low pressure magnitudes involved and with the added complication that
shock pulses emitted by cylindrical charges possessed multiple decay rates, it was not possible to
derive an empirical formula. In addition, experimentally-no pressure gauges were dedicated to
measure the reflected shock wave pulses at a point where it would have struck the target or even
measure the original pressure pulse at a distance equal to that which the reflected wave would

have travelled.

5.4.3 Comparison Between Experimental and Theoretical Results

On viewing the experimental principal stresses in Figs 5.13(a and b}, it was noted that an
initial peak response occurred in the first 10 ms. Then at a much later time t = 28 ms another peak
response was observed which was attributed to the energy released by the bubble pulse in a
secondary stage of contraction. In adopting the DAA for the solution of the fluid—structure
interaction the damping effect of the surrounding medium on the structure would be overestimated.
Hence any late time response calculations would be overdamped and incorrect response
magnitudes would be yielded. Because of this and due to local restrictions on the maximum CPU
time permitted for a single job the time history for the acoustic analysis was limited to Sms, (in

PAFEC no restarts were possible during a transient response analysis).

A comparison between the predicted and measured dynamic response of the Echinodome
prototype to the symmetric explosive load was camried out for the maximum, minimum and
equivalent stresses (0, ©, and o). Graphic representation of the comparison is shown in
Figs 5.15(a, b) and 5.16 for five positions (¢ = 30°, 60° 90° 120° and 150°) on the nearest

meridian to the explosive charge (meridian M1}.

It can be noted that for the upper three locations (¢ = 30% 60° and 90%) the DAA was
unsuccessful in predicting the correct magnitudes of the peak responses and their time of
" occurrence. As the response time progressed the theoretical stresses tended to zero which was an

indication of the overestimation of the surrounding fluid damping effect by the DAA.

On the other hand, the peak stresses were greatly exaggerated in the early stages of response
for the lower two positions on the shell (¢ = 120° and 150°). A higher frequency mode appeared
to be superimposed to the dynamic stresses. This could be attributed to the fact that several time
steps were necessary for the pressure wave to cross each element of the flat base which resulted in
the increase of the total force applied to the structure in a discontinuous manner and hence
artificially exciting a higher vibrational mode. Due to the high density characterising the material
at that part of the structure the mode appeared to be more pronounced on approaching the base.

The consequence was that, unlike experimental measurements, the acoustic analysis failed to
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predict that the nearest point to the explosive source was to experience the maximum (most
positive and most negative) stresses and instead considered the base to be the most critical part of
the structure.

It was worrying as well to note that, along the same meridian, the peak stresses at comer
nodes were approximately double those at midside nodes for the same semi-loof shell element
(see Table 5.4). Similar behaviour evident in other parts of the structure suggested an inaccurate

approach adopted for the transformation of the equivalent nodal forces from the incident pressure

pulse.
NODE NODE POSITION
o, gy
ON STRUCTURE
POSITION
ELEMENT
NUMBER ON 0 ¢ | MAGNITUDE | OCCURRENCE | MAGNITUDE | OCCURRENCE
TIME TIME

ELEMENT | (Degs %) | (Degs®) (MP3) (MPa)
(s) (us)
corner 0 28 1.19 32 =228 10
25 midside 0 30 0.62 32 -1.28 10
corner 0 a2 0.85 s 32 212 10

corner 0 58 0.57 22 -1.56

49 midside 0 60 0.31 22 -0.78
_ corner 0 62 _ _ 060 o222 | 152 B 8

corner 0 85 0.99 20 2.15

67 midside 0 20 0.55 20 -0.83

corner 0 95 0.87 20 212
corner 0 114 1.08 37 -3.30 8
85 midside 0 120 0.65 37 -145 8
corner 0 126 1.63 37 -3.52 ]
corner ) 147 251 15 349 7

103 midside 0 150 1.65 15 -2.13

corner 0 153 2.57 15 -4.29

TABLE 5.4 — COMPARISON BETWEEN PEAK STRESSES FROM AN ACOUSTIC ANALYSIS
AT CORNER AND MIDSIDE NODES ON THE OUTER SURFACE OF SEMI-LOOF SHELL ELEMENTS
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In spite of the above observations which could be used to condemn the DAA technique and
its current implementation it is encouraging to note that for most of the considered locations on
the theoretical model the stresses were of identical type (compressive) during the early stages of

the response. In addition, the discrepancies were not extremely large.

It can be concluded from the above results that the reasons for the disagreement between
both predicted and measured dynamic responses (maximum and minimum principal stresses) were
as follows,

i inaccu;atc modelling of the structural base;

ii.  inexact description of the pressure field surrounding the theoretical model; and,

iii,  inaccurate incident pressure transformation to equivalent nodal forces.

5.5 CONCLUSIONS

The main aim of the earlier described explosion tests was to assess qualitatively the ability
of the available PAFEC-DOLPHIN version to predict the dynamic structural response to blast
pressure waves. The structure was simulated using conventional semi—loof shell elements and the
surrounding infinite medium was modelled with a single boundary element. A DAA formulation
was employed in the solution of the fluid-structure equations. The boundary element approach
based on the use of the DAA appeared to be attractive as it allowed a large percentage of
computational resources o be devoted for structural modelling, unlike fluid finite elements which
would consume a larger percentage and would require the application of proper boundary
conditions at an appropriate distance from the structure, Supported by experimental strain

measurements and predicted responses the following conclusions were reached :

1.  The theoretical results could be greatly improved by discretising the finite element
model into a finer mesh and by remeshing the structural base to represent more

accurately the prototype base.

2. Although the DAA can be considered an accurate scheme for the prediction of early
time response it overestimates the fluid resistance to the structural oscillations and
would not be useful in the prediction of intermediate and late time oscillatory type
response (e.g. free vibration analysis) or in the application to dynamic stability

problems because of its overstabilising effect.

3.  The current PAFEC-DOLPHIN software should be reformed to do the following ,
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- adopt a more accurate approach for the transformation of incident pressure to

equivalent nodal forces;

- enable the input of blast overpressures as point sources if a VMA was to be

adopted in an acoustic analysis;

- facilitate the output of incident pressure (pi), reflected pressure (pR), radiated
pressure (p ), scattered pressure (ps) and total pressure ) and forces at any

specified instance for any point on the structure or in the fluid; and,

- provide cable elements for the simulation of tension leg members, i.e. uniaxial

elements with no compressive strength.

4. If the above improved software was to be employed in the modelling of new
experimental tests using the same prototype it would be advisable to observe the

following recommendations during the experimental work ,

- use of a spherical shaped explosive charge with well defined characteristics (p_,

decay rate, I and Er);

- site where the experiments are t0 be carried out should have no proximate
boundaries (minimum time delay between incident and reflected shock waves

must be greater than 250 ms);

- explosive source should be located at an appropriate distance from the structure
to avoid exciting it with strong shock waves or pressure pulses containing large
amounts of energy which might invoke the structural geometrical non—
linearity; and,

- it would be useful to mount several miniature tourmaline pressure gauges on the
prototype’s surface in addition to response measuring gauges,

e.g. accelerometers and strain gauges.

It is clear from the above conclusions than an acoustic analysis would be relevant for linear
shock analysis problems only. In the design stages of a full size underwater Echinodome vessel,
with the purpose of storing a hazardous liquid, structural stability against strong shock waves
would have to be investigated. An acoustic fluid model would be incomrect as it would yield a

reflected pressure of only twice the incident pressure.

Therefore, it would be necessary to employ a numerical technique in which the non—linear
terms of both the structure and fluid models are retained 93 and the coupling boundary conditions
at the fluid—structure interface are required to accommodate the possibility of the cavitation
phenomenon occurring. Tnitially, a static buckling analysis would be performed and if a limit point

(i.e. a zero stiffness point) existed in the load—deflection curve then the dynamic stability of the
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underwater structure when subjected to shock waves would have to be investigated thoroughly.
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CHAPTER 6

Desicn Anp Construction Or A State Or T ArT

Ecuinopome For UnperwaTtER STOrRAGE OF LNG

6.1 SUMMARY

A proposal is made for an offshore LNG peak shaving facility using Echinodomes for
storage. The design loads for an underwater floating submerged tank are reviewed with emphasis
on dynamic loads (impact and explosion). Then a summary is given for the loading conditions
against which it is necessary to design the underwater storage vessel, during its various life

stages : construction, launching, towing out, commissioning, operation and decommissioning.

The assessment of response of a reinforced concrete Echinodome, with an inner steel tank
containing LNG, to accidentally dropped slender and bulky objects employing empirical formulae

is discussed.

An outline: for construction works is described along with the general principles and practice
of prestressing the Echinodome structure to overcome any developed tension cracks in the

reinforced concrete outer shell.

6.2 INTRODUCTION

In earlier chapters, the research work was concentrated on assessing the use of the finite
element method as a numerical procedure to predict the Echinodome response to static and
dynamic loadings. The current chapter makes use of the previously reached conclusions in the
design procedure of a full size Echinodome emphasising its function as an underwater storage

vessel for a hazardous material; liquefied natural gas (LNG).

LNG is a cryogen used in space programs, energy and chemical industries as a pollution—
free fuel. It is stored under atmospheric pressure at very low temperatures (—162°C) or under a
higher pressure and temperature not higher than its critical temperature (—82.5°C), the temperature
above which the gas cannot be liguefied by compression alone. Hence, LNG must be stored in a

perfectly insulated container.
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Underwater LNG storage vessels may experience impact loadings as a result of accidentally
dropped objects which can cause local structural damage. Another extreme load case can occur
when the stored cold liquid leaks into the surrounding media (in the current case water) forming a
spill which is superheated originating an RPT. As a consequence an overpressure is created which

is transmitted to nearby structures through a shock wave.

Therefore, an underwater Echinodome storing a cryogenic liquid (considered to be
hazardous) is required to be safe against a wide variety of load cases including deterministic and
probabilistic loads. It is imperative that such vessels are designed to resist structural failure when

subjected to severe loadings, static or dynamic, during their operational life.

The main aim of the current chapter is to establish a design and construction procedure for

the Echinodome structure and assess its performance as an underwater LNG storage tank.

6.3 AN OFFSHORE LNG PEAK SHAVING FACILITY

An LNG peak shaving facility is a plant where means exist for processing and liquefaction

of natyral gas. The facility responsibilities include, . - .. -- - - - — - — "=

i. pretreatment and purification of feed gas;
ii.  liquefaction;

ili.  storage;

iv.  distribution : pump out and vaporisation;
v. control and instrumentation; and,

vi.  fire protection and safety.

Economy of an LNG processing plant and its operating costs depends greatly on the proper
integration of the pretreatment, purification and liquefaction facilities with the type of storage of
the gas. Natural gas can be stored in the liquid state fully pressurised at a temperature not higher
than its critical temperature (-82.5°C), non—pressurised at a very low temperature (~162°C) or a
combination of both cases. The most economical method of storage is dependent on parameters

such as the size of the stored LNG and the filling rate.

In 1984, Royles et al. © proposed an offshore system for LNG processing and underwater
storage. A similar concept is adopted in the current investigation with some modifications
introduced to the storage tank configuration and more details concerning plant processing. The

system is described in the following paragraphs.
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An LNG peak shaving plant is to operate offshore with feed gas pretreatment, purification
and liquefaction taking place on board a production platform sited on top of a natural gas field.
Pretreatment and purification of the inlet gas is an important process for the removal of any
substances that may solidify during the liquefaction stage, hence avoiding fouling and plugging
problems. An integrated pretreatment, purification and liquefaction process would be most
advantageous to implement rather than other single use systems for simplistic and economical

reasons.

The purification process would have to be reliable in removing carbon dioxide, water and
mercaptans from LNG and should be capable of handling wide variations and concentrations of
contaminants with minimal effect on the liquefaction capacity. The combined system could
involve the use of a mixture of refrigerants in a single loop to obtain lower temperatures, The

mixture would be condensed under moderate pressure at ambient temperature,

LNG would then be stored under 2 — 3 bars at -162°C in a single or a chain of insulated
Echinodomes, situated proximate to the production platform. The pump out system comprised of a
pump and motor drive is to be mounted inside the storage tank in order to take advantage of the
cryogenic fluid for motor cooling. Extra pumps would be installed as spare capacity for the
distribution system,

The storage vessel would be supported in a floating submerged state with the aid of tension
cables in order to avoid adverse weather conditions encountered at the airfsea interface and at the

same time minimise the effect of ground motions on the structure.

The apex of an underwater Echinodome is a critical part of the structure and would be prone
to accidentally dropped objects. Therefore, liquid filling and withdrawal lines would be located in
the circular base. Insulated flexible hoses would be employed in the tansfer of LNG from the
Storage vessel to tankers for transportation to onshore satellite plants where LNG would be stored.
The liquid would then be pumped to sufficient pressure before vaporisation in order to enter the
distribution system.

The control and instrumentation of the offshore plant would be located on the production
platform where controls would be automatically operated.

6.4 DESIGN PROCEDURE

The current section is concerned with the design procedure for the underwater storage
system of the above described LNG peak shaving facility.,
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6.4.1 Site Considerations

It is important to consider the characteristics of the chosen site when designing an

underwater Echinodome for mainly four reasons.

Firstly, the water depth during favourable weather conditions at the selected site is required
to enable the designer to generate the meridional coordinates of the Echinodome and hence

determine its dimensions.

Secondly, a thorough geotechnical investigation is to be carried out to determine the soil
characteristics at the sea bed. The provided information is paramount in the design of the

foundations to which the floating submerged Echinodome is to be attached.

Thirdly, a seismic evaluation of the location is necessary in order to predict the effect of

ground acceleration on the integrity of the structure and connection outlets to pipework.

Lastly, severe environmental conditions of the locality must be considered in assessing the
types of environmental loadings (waves, currents, sea ice and icebergs) that might affect the
strength and stability of the Echinodome.

6.4.2 Material Selection

The Echinodome under consideration is to possess two walls separated by an insulating
material, all acting as a full containment system. Typical wall and base cross sections can be seen
in Fig. 6.1,

6.4.2.1 Exterior shell wall—~ When considering the safety of the surroundings the zim

should be the prevention of a catastrophe in case of a structural failure %4 . In today’s technology
concrete is recognised as the best available construction material for protecting structures against
explosions and striking objects. Therefore, reinforced concrete would be selected as the

construction material for the outer shell,

The outer skin is to be covered with a fender layer made of lightweight concrete having a
very low strength. The idea has been suggested before and tested on small scale dome type
models 95 | The thickness of the fender must be enough to ensure the absorption of energy
imparted to the structure through an impacting object by crushing and penetration of the
lightweight concrete directly beneath it. At the same time the structural concrete must not be
activated to impact respond in order to minimise the contact force. Lightweight concrete would be
chosen rather than other fender materials (e.g high density polystyrene) because of its ability to
hold its shape in deep water under relatively high hydrostatic pressure.
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6.4.2.2 Interior shell wall— The inner tank would be constructed from 9 percent nickel

(9% Ni) steel characterised by high toughness at very low temperatures and hence improve the
safety of the inside tank containing the LNG. Welded joint strength tests and fracture toughness
tests carried out earlier °6 confirmed that 9% Ni steel plates were adequately applicable for the
construction of LNG tanks.

6.4.2.3 Insulation material— Insulating the Echinodome would be achieved using two

different systems, one between the tank walls and another for the base.

The basic insulation system for the annular space between the inner and outer shell would
be composed of loose granular perlite, which is an inorganic, non—flammable, lightweight material
produced from special volcanic rock. In order to minimise moisture and air voids in the insulation,
the perlite would be finely ground and expanded within in—situ portable furnaces and then placed

in the gap between the steel inner and concrete outer shells 97 .

The powdered form of perlite is subject to settlement and consolidation and therefore a
resilient blanket would be wrapped around the steel tank. The flexible layer would prevent the
build—up of pressure on the cutside surface of the inner tank, a situation which might arise when

the vessel walls expanded and contracted due to thermal and/or hydrostatic load variations.

A wall liner is to be installed on the inner surface of the outer shell which would act as a
liquid and vapour product boundary, thus preventing any LNG leakage into the surrounding media
(in the current case water) in the event of a spill into the annular space. Under such conditions
perlite loses its effectiveness as an insulating material and hence a secondary insulation system
would be introduced in the form of polyurethane foam (PUF). The material is sprayed on the wall
liner to prevent it from direct contact with the spilled LNG and in that way the rate of vapour
evolution would be kept to a minimum. The PUF insulating material would then be sanded and

coated with a layer of glass reinforced epoxy.

Foamed glass blocks would be utilised in insulating the Echinodome base. The blocks would
be stacked normally in layers on a bituminous bedding membrane covering the inner surface of the
reinforced concrete base. The load bearing insulating system would be organised with fifled and
staggered vertical joints and interleaved with bituminous layers %8 , The above insulating material
is of limited strength and brittle nature and hence, care must be taken not to overload the foamed
glass slabs from the hydrostatic pressure of the liquid contained in the steel tank. Such a
requirement could be fulfilled for large tanks by installing a ring beam of perlite concrete (cast in

place or precast oven dried sealed blocks) under the bottom edge of the inner tank.
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A secondary 9% Ni steel plate would be installed below the base of the inner steel tank
separated from it by a reinforced concrete layer. The plate would be introduced to contain any
spill from the inner reservoir and would normally be at product temperature. In addition, a bottom
liner would be provided under the foamed glass layer to enclose the load bearing insulating
system. The bottom insulation would be connected to the annular gaps via a pipeline. If a leakage
was to occur the connecting pipe could be shut off and the base insulation purged. In the case of
continuous leakage it would be possible to detect LNG in that space using thermocouples, attached

to both the liner and the steel plate, which would measure temperature variations.

6.4.3 Structural Dimensions

The meridional profile of the outer shell would be generated by the Echinodome shape
prediction program with the structural dimensions depending on the selected design stress and wall
thickness. The coordinates of the inner jacket profile would be determined from the outer shell
meridian, by specifying an adequate gap for the insulation system between the two walls and

floors.
Llambias in his thesis 4 determined the centreline of both meridional prEufiles and stiffened
the structure in the critical zones by gradually increasing the thickness of both walls in the bottom

tenth. The previous step was necessary in order to achieve a higher factor of safety against
structural instability.

The same structural dimensions are employed in the current investigation after performing

some modifications to the Echinodome outer shell and insulation system.

General characteristics of the storage system are listed below and the Echinodome wall and

base composition are depicted in Fig, 6.1.

CONCRETE SHELL

* Height from inner surface of base  (m) = 34.80
e Maximum diameter (m) = 52.55
» Base diameter (m) = 30.00
* Enclosed volume (m3) = 51968
¢ Fender thickness and material {mm) = 250 of lightweight concrete
¢ Wall thickness and material {mm) = 250 minimum and
500 maximum of grade 80 concrete

- Base thickness and material (mm) = 2000 of grade 80 concrete
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STEEL SHELL

e Height from inner surface of base  (m) = 31.97

» Maximum diameter (m) = 48.34

* Base diameter (m) = 30.00

» Enclosed volume (m3) = 42861

* Wall thickness and material {mm) = 50 minimum and

8O maximum of 9% Ni steel
» Base thickness and material (mm) = 88 of 9% Ni steel
INSULATION SYSTEM

* Wall insulation thickness (mm) = 1500

» Resilient layer thickness (mm) = 100

* Load bearing inéulation thickness (mm)}) = 750

¢ High load bearing ring beam depth (mm) = 500

* Polyurethane foam layer thickness {mm) = 60

In the critical zone around the base the insulating material (powdered perlite) thickness

would be less than at other parts due to the narrower gap between the two walls,

6.44 Design Loads Assessment

In order to assess the design loads of an underwater Echinodome vessel storing LNG it is
necessary to establish the degree of safety required. The requirements dictated by the safety
measures involved in achieving a state of the art design of the Echinodome are mentioned in the

following subsection.

6.4.4.1 Safety requirements— The probability of accidental events occurring in an LNG

bulk storage installation is usually small but such facilities are characterised by an inherent high
risk level. Risk can be defined as the product of the probability of occurrence and the potential
amount of damage. Therefore, limiting risk by attempting to decrease the probability of occurrence
of hazardous incident does not suffice. The main objective should rather be limiting the extent of
damage during upset conditions, hence preventing a catastrophe from occurring and achieving a

higher quality of safety.

Safety systems can be classified as either active or passive. A computer controlled safety
system and structural safety are examples of such systems respectively. Active safety systems

require a high standard of quality and high redundancy level and, when employing computers, are



CHAPTER 6 — DESIGN AND CONSTRUCTION OF A STATE OF THE ART ECHINODOME FOR UNDERWATER STORAGE OF LNG 281

subject to computer bugs. On the other hand, measures in the structural field to limit damage are
more reliable because of their deterministic nature and hence are considered more attractive than
other safety systems, especially in developing countries where human error (the main source of

accidents) is more probable.

Safety at an underwater LNG bulk storage facility could be enhanced by employing
burstproof Echinodome vessels. Normally, the criteria for designing a tank to contain a cryogenic
flammable substance are specified by the customer but if a state of the art configuration (as is
considered for the current case) is necessary to limit potential damage in the event of any upset
condition (e.g. zipper type tearing of the inner steel tank, an overpressure wave from nearby

explosions or impact by striking objects) then the following requirements must be satisfied,

i. safe, efficient and economic operation under normal conditions;

ii.  safe containment of product spills under upset conditions — the primary tank storing

the product liquid is to be protected by a secondary tank which should be,
- vapour and liquid tight,

- highly resistant to perforﬁﬁon and pﬁnching, and,
- burstproof; and,

iii.  high availability and repairability after being subjected to severe loadings.

In general, the storage configuration must be safe under all prescribed design loads,
e.g. loads experienced by the structure during construction, testing, initial floating, towing out,
installation, operation and severe dynamic loads. High quality of safety is possible but the

questions remain — how safe is safe and how expensive is safety?

It is beneficial in the current investigation to gain experience from already existing
vessels 99100 (o ensure that the above—described underwater Echinodome storage vessel (see

Fig. 6.1) is within the current state of art concerning design, construction and operation.

Reinforced concrete is considered as the most attractive choice for the protective outer tank.
If in a prestress state the concrete would be under compression and thus could take up the space
enclosing function as well, while the prestressing tendons and the reinforcement bars would be
carrying the tensile forces. Zipper type tearing and bursting employing this type of design are
resisted by the discontinuous absorption of tensile forces and consequently the concrete vessel
relieves any sudden overpressure through material softening, a behaviour known as

“‘Structural Blowdown’' 100
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In the event of a single prestressing tendon failure (the probability of this occurring is very
low) the tensile stresses are redistributed in the adjacent tendons resulting in the increase of the

steel stress state and it is very unlikely that a catastrophe would result from such an effect.

When designing the Echinodome vessel it is not advantageous to use prestressing to
counteract upset conditions as such action would cause the structure to behave according to the
theory of elasticity. But if material softening of concrete is the acting mechanism (through the

formation of ¢racks) then the concrete outer tank could behave as an overload relief system.

It can be concluded from the above discussion that an adequately reinforced and prestressed
concrete outer shell can limit the amount of damage in a hazardous situation by acting as an
effective, efficient and economic passive safety system which would make the use of an expensive

active safety system redundant.

6.4.4.2 Upset loading conditions— Transient dynamic loadings may be exerted on an

underwater Echinodome as a result of any of the following incidents,

i.  sudden failure of the inner tank; D -
ii.  anearby explosion initiating a shock wave which impinges the outer shell; and,

iii.  striking and dropped objects impacting the outer concrete shell.

In the event of zipper type failure of the inner steel vessel the liquid product would suddenly
be released causing a hydrodynamic load on the outer tank, the duration of which lies in the range
0.15 — 0.48 s *° . Both experimental and analytical work 99 indicated that if the annular space
was filled with perlite the hydrodynamic pressure would approximately be 2.5 times the LNG
hydrosiatic pressure, Since LNG has a much lighter density 424 kg."m3 than that of sea water
(1025 kg/m3) the end effect would be a non—critical situation. The reason is that the total inner
hydrodynamic pressure would be counteracted by a portion of the outer hydrostatic pressure

depending on how far the Echinodome was from the sea surface level.

If an LNG spill was to occur from a pipeline or storage vessel underwater the spilled liquid
would be superheated by the hotter, less volatile surrounding media (water). The hydrocarbon then
vapourises transforming into a more stable state. Under such circumstances the course of events
can change rapidly to produce an explosion like phenomena (RPT) which in turn generates shock
waves. Depending on the rate and amount of spilled LNG a small scale incident can propagate and
escalate the RPT phenomena through premixed and fragmented LNG and sea water. Consequently,

proximate structures may suffer severe transient overpressures.
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Impact loads may be exerted on underwater Echinodomes as a result of objects dropped
from above the sea surface, e.g. a pump or a ship anchor. Following a nearby explosion concrete
fragments and debris may strike the storage vessel at relatively high speeds which may cause local

structural damage in the form of spalling, scabbing or perforation 19! (see Fig. 6.2).

6.4.4.3_Summary of design loads— Table 6.1 contains a list of the loading conditions for

which an underwater Echinodome should be designed. The types of loads described vary with

respect to structural geometry : axisymmetric, symmetric and asymmetric.
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DESIGN LOADING CONDITIONS

* CONSTRUCTION LOADS
Temporary omissicn of wall panels
Temporary erected structures

e DEAD LOADS
Structural self—weight
Permanent attachments and ancillaries,
{e.g. pipes, valves, pumps and stairways)

« PRESTRESSING FORCES

» IMPOSED LOADS
Internal hydrostatic pressure of water during testing
Internal hydrostatic pressure of LNG during operation
Internal gas pressure and vacuum
External hydrostatic pressure of water

* ENVIRONMENTAL LOADS
Wind loading during construction, launching and tow out -
Wave loading during operation
Current loading
- Wave height increase
« Current drag forces
Sea ice and icebergs

« THERMAL LOADS
Temperature gradients during commissioning (initial cooling)
Temperature gradients during operation (filling and emptying)
Temperature gradients during accidents (LNG leakage)
Temperature gradients during decommissioning (warming)

» SUPPORT LOADS
Base reaction during construction, floating, towing out and operation
Structural behaviour under unsymmetric supporting conditions

¢ ACCIDENTAL LOADS
Impact forces induced by striking or dropped objects
Blast overpressures caused by a proximate explosion
Sudden failure of a single or multiple tension leg members

TABLE 6.1 — DESIGN LOADING CONDITIONS FOR AN OFFSHORE
FLOATING SUBMERGED ECHINODOME STORING LNG

Except for impact and explosive loadings most of the above load cases were assessed and
their effect on a slightly different storage configuration was examined by Llambias 4 . Therefore

only transient loadings will be considered herein.
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Four important parameters determine the effect of impact on the Echinodome vessel which
are,

i. the mass of the striking or dropped object;

ii.  the terminal velocity at which the object impacts the structure;

iii.  the shape and dimensions of the impacting object; and, |

iv.  the structural stiffness of both bodies at the point of contact.

When studying the effect of impact on the Echinodome structure it is necessary to derive
values for each of the above variables in order to assess the magnitude of the contact force
between both bodies. If the contact stiffness is low the impact load is classified as soft impact
characterised by long duration and low contact force. While a hard impact load can be experienced

by the structure having a much shorter duration and a higher force magnitude, if the contact

stiffness is high.

When considering explosive loadings, structural response is dependent on the following
controlling parameters :

i. the stand off distance from where the explosion occurs;

ii.  the duration and decay rate of the pressure pulse;

iii.  the peak pressure pulse; and,

iv.  the structural stiffness.

Other dynamic loadings which are less critical but require consideration are the sudden

failure of a tension leg member and sudden release of product jets. The risk of resonance from

liquid motions or production pumps need to be assessed as well.
In general, an underwater Echinodome LNG storage tank should be designed to sustain
prescribed impact and explosive loadings without the spilling or leakage of the contained liquid.
Examples :
- Impact by slender deformable objects (soft impact) 192 .
- Impact by slender and bulky non—deformable objects (hard impact) 102 ,

- Blast wave having a pressure pulse varying linearly from maximum (at t = 0) to

zero 103
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6.4.5 Structural Analysis

To date, the most powerful numerical procedure available for analysing the Echinodome
under various loadings is the finite element method. It can predict structural response to almost all
types of loads under normal and upset conditions. Consequently, it would be employed in the
design of a storage tank having a configuration similar to that described above (see Fig. 6.1),
Recommendations for a finite element simulation of the underwater Echinodome vessel are
mentioned in the following subsections regarding element types, material models and types of

loads necessary to include in the analysis and check against for structural failure.

6.4.5.1 Element types— Three dimensional shell elements, allowing for strains in the plane

‘normal to the shell surface, would be used to idealise the outer concrete tank. The fender layer and
the structural concrete would be represented using two different sets of elements each possessing
its own material properties. Thin shell elements qualified for attaching to the surface of the above
shell elements would be required to model the liner, the inner steel tank and the secondary steel
base. Additionally 3-D compatible solid elements would be assigned for the insulation layer in the

annular space between both tanks and the load bearing insulation system.

Depending on the reinforcement and prestressing layout, 3—D bar elements along the side
nodes or in the body, parallel to the curvilinear axes, of the three dimensional shell elements
would be employed in modelling reinforcement bars and prestressing tendons. In the case of a
bond slip analysis 3-D link elements or springs would be attached to the finite element mesh
between the concrete shell elements and the bar elements. If shear reinforcement in the form of
stirrups was to be introduced in the outer concrete shell in order to enhance its perforation
resistance against soft and hard impact, then it would be essential to define such reinforcement
explicitly in the theoretical model. A finite element mesh discretisation scheme for a 90° segment
of the apex zone is depicted in Fig. 6.3. Lastly, cable elements would be utilised to simulate the

tension leg supporting syster,

6.4.5.2 Material models— Concrete behaviour varies according to its stress state. When

reaching a limiting stress value it fractures either by crushing if in a state of compression or by
cracking if in a state of tension. A concrete constitutive model would be assigned to the concrete

3-D shell elements to represent such behaviour.

If concrete is in a compression state the constitutive model would have to allow for material
softening following the crushing failure mode. Only after reaching an ultimate strain the strength
of elements in such a state would cease and the stresses would be redistributed in the neighbouring

elements. While, if under tension, assumptions for the numerical model would have to be made
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regarding initiation, closure and reopening of cracks. A crack is formed as a result of exceeding a
limiting tensile strength or strain, in a plane normal to the maximum principal stress. Thereafter,
the surrounding concrete material could be represented by an orthogonal model with the local
material axes coinciding with principal stress directions. Cracked concrete could not carry tensile
stresses normal o the crack plane, on the other hand stresses parallel to the crack could be
supported according to the constitutive laws of the material model. For small cracks shear could
be resisted by the interlock of aggregate along the parallel crack faces. The previous shear stresses
could be assumed to vary linearly with strains caused by the parallel differential movement of both
opposite crack faces. The interlock phenomena would cease to exist for large cracks. Cracked

sections of concrete could support compressive stresses orthogonal to the crack plane.

The insulation material in the annular space between both shells was considered to be in
powdered form and could be assumed to possess no resistance to either compressive or tensile
stresses. The description of such a material in the finite element method would present a problem
when evaluating the structural stiffness and hence it could be provided with some compressive
strength if in a confined state with its value depending on the original material properties in such a
condition. The foamed glass material of the load bearing insulation system would be represented

with a similar constitutive model.

Contrary to concrete, steel is considered to be a strain hardening material and consequently
an elasto—plastic strain hardening numerical model would have to be used to represent the various
steel components (reinforcing bars, prestressing tendons, liner, inner tank and secondary base) of
the storage tank,

The bond between concrete and steel is due to the combination of chemical adhesion,
bearing action and friction. Initially, the concrete fine particles are adhered to the surface of the
reinforcement bars and prestressing tendons, but when slippage starts the adhesion drops to zero.
Slip is initiated as a result of concrete failure at the steel surface and complete bond failure is
dependent on the friction level at the failure surface. Friction is destroyed for large slippage. The
bearing action is caused by the deformation of steel members in contact with the concrete
material. In general, it is vital to consider the bond—slip relationship for bonded structures subject
to incremental and ultimate loads. Therefore a bond—slip model should be provided for the 3—
D link elements in the finite element analysis by assuming a non—linear relationship between the

bonding stress and the amount of slip.
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6.4.5.3 Types of loads and solution methods— The types of loads that would be used in

the preliminary analysis of the Echinodome under normal operating conditions and severe weather
conditions are static pressures, initial stresses or strains and concentrated loads. The structural
stability of both the inner and outer shell would be checked taking both geometrical and material
non-linearities into consideration. Since hydrostatic pressure is a non—conservative type load then
an appropriate geometrical non-linear formulation should be used by referring ali relevant
variables to the deformed configuration of the structure. A high factor of safety would be required

against the lesser of the non—linear collapse and non—linear bifurcation buckling pressure heads.

A thermal shock analysis would be carried out to simulate incidents of LNG leakage in the
annular space or in the base area. The structure is required to be vapour and liquid tight under

such circumstances and therefore no cracks would be permitted in the outer concrete shell,

If impact loads resulting from dropped objects are to be analysed using the finite element
method then provisions should be made in the formulations for large deformations, slide lines and
rezoning. Slide lines would be necessary between the striking object and the target and would be
required between portions of the target to permit the formation of a plug ahead of the impacting
body. If large deformations are encountered and the finite element mesh becomes excessively
distorted, rezoning could be used to permit the division of the structure into changing sets of
elements during the course of the calculation. It is necessary to establish dynamic stability of the

structure under such impulsive loads with a considerable factor of safety.

The response to explosive type loadings, having a prescribed pulse occurring at a specified
distance from the Echinodome, should be determined. It is important that the numerical procedure
employed in such an analysis would allow for both geometrical and material non—linearities. The
structural stability of the Echinodomf_: should be examined for the case of a shock wave
propagating through a fluid medium thén striking the structure and a reasonable factor of safety
would be required. The DAA could not be employed in the analysis of such problems and

therefore more experimental work is needed to validate newly developed numerical techniques.

For the latter two dynamic loadings (impact and explosion) the applied constitutive laws
should include the strain rate dependency of the material properties and structural damping could

be ignored as its effect, if considered, would be to attenuate the structural response.

When analysing an underwater Echinodome vessel the structure would behave according to
the theory of elasticity if under operating loads. If it were subjected to severe loads under upset
conditions then permanent deformations could be permitted on the condition that the outer shell

was capable of safely containing any internal spilled product.
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6.4.54 Empirical damage assessment induced by dropped objects— The types of objects

that might impact an underwater Echinodome can be classified as follows 102 ,

i, slender deformable objects impacting end—on or broadside, e.g. pipe;

il.  slender non-deformable objects impacting end—on or broadside, e.g. drain

caisson; and,

iii.  bulky objects, e.g. pump.

A falling slender object can either strike the structure end—on or with its broadside. The case
for end—on impact is considered here to have a more serious effect on the protective concrete shell
than broadside impact because the impact force would be concentrated on a smaller area and its

terminal velocity at collision would be higher,

If after the impact event the slender object suffered large deformations then some of the
energy to be imparted to the target would be lost. The duration of the transient phenomenon would
be longer and therefore the maximum peak force would drop. Conversely, a non-—deformable

-object would experience very little deformation and hence the pulse shape of the impact force

would be characterised by a shorter duration and a sharper peak. Consequently, impaci by
deformable and solid non—deformable objects can be described as soft and hard impact
respectively.

From the above discussion it can be concluded that the most critical impact load cases are
those of a slender non—deformable objects falling end—on and collision by a bulky object. For the
former case a sufficient amount of experimental data exist to enable the understanding of the

impact phenomenon under such conditions.

When a non—deformable object strikes a structure, having no fender, with a very low
velocity the object rebounds in a non—predictable fashion, away from the target without inducing
any local damage. With the increase of the impacting velocity of the object damage can be
inflicted upon the structure in any of the following defined forms (see Fig. 6.2} ;

1. Penetration — is the measure of indentation on the struck face.

2. Spalling — is the cratering damage with target material ejection from the struck face.

3. Scﬁbbing — is the fracturing and detachment of target material from the remote face.

4. Shear plug — is formed as a result of inclined cracks through the target thickness.

5. Perforation — is the complete penetration of the projectile through the target.
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On the other hand, forms of impact damage caused by dropped bulky objects can be any of

the following,

i. punching shear;
ii. local bending; or,

iii. dynamic collapse buckling.

In their report, Brown and Perry 194 recommended the use of certain empirical formulae to
predict the extent of damage to offshore structures caused by dropped objects (5 —» 25 mv/s). In a
separate study, Dinic %5 proposed with qualifications another ‘set of empirical relationships
(0 — 10 m/s) based on his own experimental results. The former and latter relationships could
predict penetration, scabbing, shear plug formation and perforation but could not be applied to
structures with fender layers. Such formulae take no account of the hydrostatic pressure imposed
on the structure, any existing prestressing forces, the membrane action of curved shells which is

likely to increase the target’s punching shear resistance or the effect of any disposed shear links.

Considering the above described Echinodome and assuming an object of 10.4 t mass falling
freely, its terminal velocity in water would be 19.3 mys 192 | If the structure had no fender layer
the striking object would cause severe damage to a 250 mm thick concrete shell in the form of
scabbing and shear piug movement. Depending on the concrete compressive strength and bending
reinforcement level the object might even perforate the concrete shell. In either the case of
scabbing or perfo'ration it is obvious that a 250 mm wall thickness would not be sufficient to
protect the storage system against such severe loadings and hence the choice of a 250 mm fender
layer of lightweight concrete. The protective covering is intended to act as an energy dissipating
system (energy absorber) by accommodating gross deformations, between the striking object and

the structure, which is required to neutralise the incoming kinetic energy.

Therefore, to predict structural damage of such configurations induced by impacting bodies it
is necessary to perform experimental tests on scaled models to enable the derivation of relevant
empirical formulae. This approach is considered as the most attractive because the experimental
results would be beneficial in validating numerical procedures such as the finite element and finite

difference methods.

6.5 CONSTRUCTION AND PRESTRESSING PROCEDURES

Design engineers and constructors can influence their portion of the development effectively
by adopting a sound design, construction planning and construction management. The latter two
aspects are often encompassed by the single term ‘‘Constructibility’” which involves the

employment of work simplifications and standardisation to overcome the inherent difficulties of
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complex and sophisticated fabrication processes.

As described earlier the Echinodome goes through a series of very distinct stages starting
with fabrication, to testing, to towing, to installation, to operation and ending with
decommissioning. In construction planning, fabrication is a major stage and can be subdivided into
several actual steps to allow the selection of the most efficient method for each step. Such a
procedure should be accompanied with sketches, preferably isometric drawings, to portray the key
element of each individual step. Once the constructor is satisfied that all steps have been set forth,
then structural analysis should be carried out for each step to ensure that a safe structural design
has been achieved. This is because some parts of the storage vessel can be subjected to higher

stresses during the construction stage than under operational conditions.

In general, the various construction steps of an underwater Echinodome, with the purpose of
storing LNG, could be itemised as follows :

1.  Preparation of a dry basin where the Echinodome construction and initial floatation
could take place. The structure would be fabricated on a platform which would allow
easy access and movement of facilities and equipment to the inside of the structure

through its base.

2. Concrete base construction would start with the arrangement of the reinforcement
cage, the dispensation of the meridional prestressing tendons and any extra
prestressing members necessary to strengthen the structural base against the buoyancy
forces. Spacers would be used to provide a margin for the concrete cover. Reinforcing
bars would have additional lengths to permit the embedment of enough longitude in
the concrete structural wall. The prestressing tendons would be of endless form and
therefore would be placed only partly in the concrete base. Space required for
penetrations and appurtenances would be accommodated by employing a weak
material which would occupy the predetermined locations of such openings during
concrete pouring. Such a weak material would be detached after the concrete
hardened.

3. The steel liner attached to the inner surface of the outer shell would be erected and
studs welded on its outer surface to tie it permanently to the concrete tank. A
temporary supporting system would be provided for the liner during its construction
and the concrete placement of the outer shell wall. The inner reinforcement layer, the
prestressing members and the outer reinforcement layer would be laid according to the
design layouts on the outer side of the liner. The prestressing tendons would run all
over the structure in the form of endless loops, while the reinforcing bars would be

disconnected at three mutually perpendicular planes passing through the structural wall
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and base as depicted in Figs 6.4(a — ¢). Two vertical orthogonal planes passing
through the apex would intersect a third horizontal plane at the maximum, diameter. If
required, shear links (stirrups) would be installed at specified structural zones {which
were prone to impact loads) to increase the punching shear resistance of the structural
concrete wall. Before the pouring of the high strength concrete layer and the
lightweight concrete fender, seams would be located along the three predetermined
planes to allow the fabrication of the outer concrete shell in eight separate parts joined

only by the prestressing tendons.

4. A preshaped PVC fabric form would be attached to the concrete base and inflated,
using water, to a pressure level sufficient to create a specified gap distance along the
seams, The structural parts would be linked by placing concrete in the space joints to
form a monolithic Echinodome shell. After curing of the seam concrete the flexible
membrane would be deflated and taken away. Following this, the concrete vessel

would be water tested for anS( existing leaks especially around the construction joints.

5. The concrete base would be covered with a steel liner on top of which thermocouples
would be fitted. A high bearing ring beam made of lightweight concrete biocks with
embedded steel bars would be constructed around the base edge of the inner steel
tank. Pipes connecting the tank base and annular space would be fitted, and the
necessary space for the tank appurtenances including manholes would be preserved.
The various layers forming the load bearing insulation system would be placed
according to the layout shown in Fig. 6.1. Then the steel base of the inner tank would

be erected on top of a thin concrete layer.

6.  The steel liner located on the inner side of the outer tank would be sprayed with PUF
acting as a secondary insulating system after attaching a number of thermocouples.

The surface would then be sanded and coated with a layer of glass reinforced epoxy.

7. Crane units would be moved to the inside of the concrete shell through the structural
base. Such units would assist in the movement and disposition of the heavy steel
plates forming the inner tank. As the tank is being constructed in circular rings hot
powdered perlite would be placed in the annular space. Thermocouples would be
mounted on the inner shell tank for operational purposes. An automated welding
procedure would be employed in the fabrication of the inner tank and should take
place in a dehumidified environment to ensure the quality of the work and increase its
efficiency. Integrity of the weld would be checked for surface flaws and liquid/gas

_ tightness.
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8.  Pressure relief systems would be provided for both the inner and outer tank for the
putrpose of preventing any overpressure incidents during normal or upset conditions, In
addition, vacuum vents should be installed in order to avoid excess vacuum

developing in either of the tanks.

9. A carefully selected list of fittings and appurtenances would be provided for the
Echinodome vessel including pump wells inside the tank. A special railing system
holding a hoist would be installed for pump manoeuvring. All nozzles and penetrations
into the tank would take place through the base and access to most of the tank
equipment, piping and valves would be achieved by an internal stair tower. The

penetrations through the structural base would perform at least the following functions,
- perlite refill nozzles;

- nitrogen purge connections for the tank pumps;

- instrument connections;

- liquid filling and withdrawal lines; and,

- passage for spares.

10. The inner tank would then be cleaned by broom sweeping it thoroughly of all loose
residue followed by a degreased filtered gas drying.

6.6 FLOATING, TOWING, INSTALLATION AND OPERATION

After the completion of the construction, prestressing, testing and cleaning stages of the
Echinodome the construction basin would be flooded with water by opening the closure system.
On floating, tugs would tow the vessel from a series of locally stiffened points on the structure to
the required location. The general procedure and relevant precautions concerning the initial

floating and towing out stages have been discussed elsewhere 4 and should be adopted accordingly.

On arrival at the installation site the vessel would be lowered to the sea bed by admitting
water to the inner tank. In the next step the storage tank would be attached to a preplaced concrete
base or a set of anchoring piles using several mooring lines in the form of catenary or wire rope.
By emptying the tank it would float again because of the buoyancy forces and the structure would
be held in its position by the tension leg members,

The vessel would then be connected to the production platform where degreasing filtered gas
would be circulated inside the inner tank to dry it. Finally, the Echinodome vessel would be ready
for operation and after securing the tank in its position LNG would be pumped to the inner steel
shell.
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Thermocouples mounted on various parts of the structure would be utilised in monitoring the
temperature of the cyrogenic liquid and the detection of any LNG spills from the primary tank.
Several of the submerged pumps would be used for loading purposes and the rest would be
employed in the circulation of the product to prevent its stratification in the tank and to keep the
loading lines cold. The inner shell would normally have a maximum allowable filling limit of
98 percent of its enclosed geometrical volume. This is to ensure that the pressure relief valves
would always remain in the vapour space and would receive only vapour when blowing off and

therefore they should be placed on the highest location within the vapour space.

LNG would be exported to onshore satellite plants via shuttle tankers for later distribution.
A catenary anchor leg moored {CALM) buoy would be positioned at an adequate distance from
the production platform and the storage system. Transference of LNG from the storage tank to the
carrier would be accomplished through the CALM buoy employing a floating flexible hose.

In the event of repairs being carried out on the buoy bearings, the floating loading hose or
any other related problems the LNG would be pumped for storage into adjacent Echinodome
vessels without halting production and hence a higher overall production uptime would be
achieved. The same would be applied during tanker changes on the single buoy mooring (SBM) or
in the case of severe weather conditions preventing the LNG carrier from approaching the buoy.

The overall proposed operating scheme is depicted in Fig. 6.5.

6.7 CONCLUDING REMARKS

In atempting to assess the structural response of a state of the art Echinodome operating
underwater for storage of LNG, to general loadings, the following remarks were drawn regarding a
double wall vessel :

1. The secondary tank (outer concrete shell) should limit the extent of damage in the event of
any upset loading conditions rather than minimise risk and this could be achieved by

designing it to withstand the following loadings safely,

- impact by bulky and slender non—deformable objects;

- transient overpressure shock waves resulting from nearby explosions; and,
- the sudden failure of the inner tank containing LNG.

2. The proposed configuration of the Echinodome vessel would satisfy the state of the art

qualifications which are,

- safe, efficient and economic operation under normal conditions;
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- safe containment of product spills under upset conditions; and,
- high availability and repairability after being subjected to severe loadings.

3. More experimental work is required to assist in the prediction of failure modes by impact
and explosive loadings. The experimental results would be beneficial in both the derivation

of empirical formulae and the validation of existing or new numerical procedures.

4.  The structural wall thickness of the outer shell would first be determined from the previous
empirical relationships and would be provided for the shape prediction program which then
would generate the coordinates of the meridional profile.  the resulting enclosed volume
was less than required the structural thickness could be increased, while if it was larger then
the material strength input to the program could be decreased and a higher factor of safety

would be acquired.

In summary, it can be concluded that the Echinodome storage vessel is possible to design,
construct, prestress and install employing existing procedures, without the need of any complicated

unpredictable methods.
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CHAPTER 7

Concrusions ANp Recommenbations For Furure Work

7.1 CONCLUSIONS

The research work of this thesis dealt with the effects of dynamic loads (impact and
explosion) on the shell of uniform strength. Experimental tests were performed on a GRP model
and theoretical simulation was achieved by employing the finite element method and in some
cases accompanied with the boundary element technique. The main aim was to assess qualitatively
the applicability of the previous numerical methods to the static, dynamic and non—linear analysis
of the Echinodome. Both experimental and theoretical work carried out in the scope of this
research led to the following conclusions with regaid to full size Echinodome shell sauctures, with

the purpose of storing LNG :

1. The last 10 percent of the meridional profile would have to be stiffened either by
gradually thickening the shell wall, using extra reinforcement bars or a combination of
both. This would increase the structure’s resistance against buckling by preventing the

development of high bending stresses near the base area.

2. Around towing or hose attachment points extra reinforcement is needed to resist any

local bending stresses which might initiate a local buckling failure mode.

3. The maximum structural response to transient loadings is affected by the pulse shape,
peak magnitude and pulse duration, The effect of pulse shape is lost for very short
pulse durations and as the rise time of the pulse increases with respect to the
structure’s periodic time, the structural response tends towards static response
(DLF — 1.0).

4. Step loading with infinite duration and zero ramping time is considered to be the most
severe dynamic loading function to be applied to the Echinodome and hence it should

be employed as the load—time history in a dynamic buckling analysis.

5. Before performing a dynamic collapse buckling analysis for an impact load case it is
necessary to determine the load—deflection relationship under a similar form of loading

applied statically. If a limit point existed then dynamic collapse due to geometrically
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non—linear effects is likely to occur at a much lower magnitude than that of the static

value,

If dynamic tests are to be carried out on an Echinodome prototype then modal testing
would be useful in validating the finite element model. Newly developed correlation
techniques would assist in identifying poorly modelled regions thus enabling the
correction of the theoretical model, It is important to emphasise that modal testing is

suitable for verifying a finite element model to be used in dynamic analyses only.

It would be incorrect to employ an acoustic fluid model in the theoretical investigation
of strong blast pressure wave effects on a floating submerged Echinodome vessel as it
would yield a reflected pressure from the structure of only twice that of the incident.
It is important to preserve the non—linear terms of both the structure and fluid models,
as well as accommodate the possibility of the cavitation phenomenon occurring at the
fluid—structure interface. Initially, a static non-linear buckling analysis would be
performed and from the load—deflection curve an appropriate decision would be taken

concerning the determination of the dynamic collapse buckling pressure load.

A double wall Echinodome vessel, inner steel and outer reinforced or prestressed
concrete covered by a fender layer, would satisfy the state of the art qualifications.
This would be achieved by designing the secondary tank to limit the extent of damage

in the event of any of the following upset load conditions,
- impact by bulky and slender non—deformable objects;
- transient overpressure shock waves resulting from nearby explosions; and,

- the sudden zip failure of the inner tank containing LNG.

7.2 RECOMMENDATIONS FOR FUTURE WORK

The cutrent investigation comprises a relevant part of the Echinodome behaviour under

dynamic loadings and unveiled the cover for other interesting areas.

1.

Without a doubt static and dynamic stability is one such area. The Souza method,
which is based on observing the structure’s natural frequency under different loading
increments, could be employed in the determination of the critical buckling load. Then
a comparison could be carried out with the Southwell predictions and numerical
bifurcation and collapse estimates. The merit in using the Souza technique is that it
relies on measuring a global characteristic of the structure, unlike the Southwell
approach which predicts different critical loads at different parts of the structure,

depending on local imperfections.
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The ability of shock analysis programs to predict structural response to underwater
explosions needs a thorough review by applying numerical techniques other than the
DAA or the VMA.

The effect of liquid sloshing and earthquakes, acting as lateral loads, on the global and

local sliding of the inner tank for a double wall configuration requires investigation.

Impact resistance would have to be a design criteria of Echinodome vessels containing
hazardous liquids in order to limit the extent of damage during upset conditions.
Therefore, experimental tests are necessary on large Echinodomes to determine the

effects of the following parameters on the structure’s impact resistance,
- fender layer;

- membrane action of curved surfaces;

- prestressing;

- extra bending reinforcement;

- extra shear reinforcement in the form of stirrups;

- .mass, shape and the terminal velocity of the striking object; and,

- prestressing from the hydrostatic pressure.

The results of the above tests would then be used in deriving empirical formulae
relevant for the prediction of wall thickness, safe  against spalling, scabbing,
perforation and shear plug formation. A finite element model which simulates the
material behaviour during crushing, cracking and high strain rates would be employed
in the theoretical investigation. Hence, the quality of the finite element formulations
could be assessed by comparing the numerical predictions with the experimental

measurements.

With the advent of parallel processing on computers a great deal of computing time
could be saved when generating the Echinodome design curves for the selection of a
particular shape. Experimentally derived relationships, regarding the prediction of an
adequately safe wall thickness which could resist the various impact failure modes,
need to be incorporated in the shape prediction program. In addition, it would be
beneficial 10 modify the program to generate the coordinates of the meridional profile
for more than one skin, with a specified gap separating each profile. Depending on the
available finite element program and the type of finite element (shell or 3-D element)
to be employed in the theoretical analysis, a subprogram should be .included to
generate the coordinates of a discretised mesh. Triangular shell elements or 3

D wedge elements should be avoided where possible, especially around the apex zone.
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An intelligent computer aided design system could even be developed adopting
knowledge based system techniques to combine all of the above functions which

would in turn generate input data files for an existing finite element analysis program.

The finite element method of analysis is being enhanced every day by the rapid development
of computers and the improvement of the solution algorithms which enable the handling of large
finite element systems. It has dominated the scene of structural analysis due to its versatility in
modelling complex structures, its ability to predict structural response at any point on the model to
almost any load case and the possibility of incorporating constitutive models other than linear for
describing the material properties under various loading conditions. Regardless of the previous
statements, a theoretical analysis technique cannot be declared viable without the support of
experimental evidence on scaled models or full size structures. Therefore, whenever possible
during this type of research theoretical analysis was accompanied by experimental tests for

comparative purposes.
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APPENDIX A

Sorurion Procepure For A GEOMETRICALLY

NON_LINEAR ANALYSIS

The non—linear system can be written as a set of algebraic equations as follows 23 :

{rR(8)} = [k(3){5} - {P} = {0} (A1)

where  {R(8)} represents the vector of residual loads; and,
{0} represents a null vector,

and when using the Newton—Raphson technique to solve Eqn (A.1) it may be rewritten as

follows ;
{dR} = [Kr}{as} (A.2)
[K:] = [K]+ [K.] + [Kg) " Y % )
where (K] represents the total tangential stiffness matrix;
[Ko] represents the small displacements stiffness matrix;
[KL] repregents the large displacements stiffness matrix; and,
[Kc] represents the initial stresses or geometric stiffness matrix,

After using a Taylor series expansion and rearranging terms Eqn (A.2) is replaced by the
following (for more details see Ref. (23) ):

(K5 a8} =~ R} e s ()
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{87} = {8} + {as} v (AS)

where r is a superscript indicating the ' iteration; and,
i is a subscript indicating the i™ increment.

The optimum solution procedure 24 employing a modified Newton—Raphson approach can be

summarised as follows :

1. The total load is divided into several increments with the size of each dependent on
the amount of deformation the structure undergoes when subjected to the load

increment,
2. For the first iteration of each load step a linear solution is carried to estimate {87}.
3. The tangential stiffness matrix [K{;] corresponding to {8{’} is determined.
4. The residual load vector {R['} is computed using Eqn (A.1).

5. The correction to the displacements is calculated using the following equation :

{25} = - K+ ] {R/} ... e (A6)

6. An improved approximation to the displacements {8} is obtained using Eqn (A.5).
Steps 3,4, 5 and 6 are repeated, each time updating the tangential stiffness matrix, until some
convergence criterion is satisfied indicating that {Rf} is sufficiently small, then the solution
procedure shifts to start from step 2 for the following load increment. '

In LUSAS another modified Newton—Raphson solution procedure was possible by keeping
the initial tangential stiffness matrix constant throughout the subsequent equilibrium iterations.

The former approach was adopted in the current research.

4



APPENDIX B

Dertvation Or Tue Mobimien Sourawer., Pror Equations

From Eqn (2.5)

5 & , 8
= —=— 4 (B.1)
P Pcr Pcr
Let s= the transducer’s scale reading; and,
S, = the true (but unknown) transducer reading at s = 0 .
= d=5-5, (B.2)
Substituting in Eqn (B.1)
(S - So) (S - So) 8(:n
= = + (B.3)
P P(‘.l‘ Pcr
Multiplying both sides by ” -fs.,)
5 1 SSo
= —= s+ (B.4)
P Pcr (5 - so)

The previous equation contains three unknown constants Pcr, 80 and S, Introducing the pivot
point (P*, s') into Eqn (B.4)

. $'5
Lol e =22 | S X

sl
= o0
P P, (s" ~s,)
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* st -
=8, = [Pc,%—s ]-—-S_—o

Using Eqn {B.4)

S So 5
= Pap = 5= Pap + 5= Purr

P P

. [(s— ) (s

LUNCEL) A

------------------------------------

------------------------

~ P, [(P's -Ps") +s,(P-P")

PP’

P'P

Multiplying both sides by ~—————
plying ¥ ® - P

P-Pp*

. [_PP_()],,[P__P_

]=(S—S')

P-P

(B.6)

®B.7

(B.8)

(B.9)

(B.10)

(B.11)

(B.12)
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Tue Susspace Iteration METHOD

The technique is presented mathematically as follows :

1. Subspace iteration

[K][Xyu] = [MI[X.] = [Y,]

[Kiar] = [Kiwr] ¥

[Yin] = MI[X;1]

M. = [YkH]T[YkH]

[Kind[Quii] = Mo llQu 1[024]

[Yk+1] = [Tk+1][Qk+l]

2. Convergence check

2 1)
2™ - .
<tolerance ~;i=1,2,3,...... » P

and as { — oo

2 2
Qk+1 — 0" and [Xk+1] — [@]
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3. Sturm sequence check

[K] = [K] - [n][M] evesessssssis (C.8)

[K]= [L][D][L]T ....... " (C.9)

4. Error estimates

{1+1)

IK1{e}, " ~ 02 Mo }""|l,
lk1{e} L,

(C.10)

where k is a subscript denoting the iteration number;
! is a superscript denoting the last iteration number; and, o
I ||2 indicates an Euclidean vector norm.

From the previous presentation it is observed that a set of q iteration vectors must be
established to start the solution procedure and this is achieved by assuming the first column in
[M][XI] ([Y]l) to be the diagonal of [M] and the other columns are unit vectors {el}§ with
entries +1 corresponding to the degrees of freedom that have the smallest ku/mIi ratios, where k,

and m, are diagonal elements in [K] and [M] respectively. - — —

The number of q iteration vectors was recommended by Bathe 17 to be a minimum of either

of (2p, p+8), where p is the required number of eigenvalues and eigenvectors to be computed.

The matrix [K] is to be factorised into [L][D][L]T, where [L] is a lower triangular matrix
and [D] is a diagonal matrix. The number of negative elements in [D] will be equal to the number
of eigenvalues smaller than the applied shift [u] and as a result a conservative estimate for the

region in which the exact eigenvalues lie may be given by :

§ {el} is a unit vector which contains zero elements throughout except for one element having a value of +1.
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09902 %" < 02 < 1.0102 ™" . (C1D)

2 (#+1)
i

= [u], =001 0 (C.12)




APPENDIX D

TrE Guvan Repucrion TecuniQue

The displacement vector is partitioned into master and slave degrees of freedom as follows :

{eat| (1]
5}= = St =[1"1{5 " (D.1)
TS P Km {8} = [1H{5.}
where {Sm} represents the displacement vector for the master degrees of freedom; and,
{SS} represents the displacement vector for the slave degrees of freedom,

Partitioning the structural equations {P} = [K]{&}

| [[K,,.,.,l (Kol | {80} o
(P} | [[Km] [Ka] [}{8}
Substituting {P } = {0} into Eqn (D.2) o
= [Komd{0m} + [Knsd{8:} = {Pa}  cossssnsmsmsmensssmsnsnsmnnnns (D.3)
= [Kinl{8n} + [K1{5,} = {0} Y (1 7 )
= {8,} = - [K] [Kan] {5} — ®.5)
Substituting Eqn (D.5) into Eqn (D.3)
= {Po} = (K] — [Knel (K] [KamD 80} o (D.6)
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= [Kn] = (K] = [Kpnal (K] [Kore]

From Eqns (D.1) and (D.5)

{5} [[1]

KT K]

o

o ([
= [T ] - [_[Km]_l[Ksm]}

The structural energies are written as follows :

T

SE.=—{8} [K]{8} (strain energy)

Nl-

KE. = %{S}T[M]{S} (kinetic energy)

Partitioning the mass matrix [M]

oooooooo

i [[Mm,,.] [Mm]]

M] [M]

Using the principles of coordinate transformation 16 |

SE. = 2{8,} [rTKIT1{5.}

KE. = {8} [T M50}

D.7)

(D.8)

(D.9)

(D.10)

(D.11)

(D.12)

(D.13)

(D.14)
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= [Ka] = [T] [KI[T]

(D.15)

= [M,]1= [T [MI[T] .

(D.16)

Substituting Eqn (D.9) into Eqn (D.16),

Mol = [Mud = (Kol (K, [M] - MK ] K]

# (K [K] MK (Kol

(D.17)



APPENDIX E

StasiLity Connimions For Various NumericaL

IntEGRATION ScueEMes NecLecting Damring

Stability conditions for a three—point integration scheme 16 (zero damping) :

2
B > %(1/2 +v) . . . (ED
Y2 U2 e (E2)
12~y+B20 ‘ (E3)

Stability conditions for a four—point integration scheme 16:47 (zero damping)

2 <y<P3+ 112 (E.4)

4 +9B12 - 5y< o< —97 + 3PBy+ 13y—6 (E.5)

Application of stability conditions to various temporal operators :

i Central difference (§ =0, y= 1/2)

When applying the stability conditions of Eqns (E.1 — E.3) the first relationship fails.

ii. Newmark (B =1/4, y=172)
The three stability conditions of Eqns (E.1 — E.3) are satisfied.

iii. Houbolt (o =27, =9,7=13)
The stability conditions of Eqns (E.4 and E.5) are satisfied.
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iv.

vi,

Wilson—0 (o = 2028/125, B = 457/75, v = 12/5)
The stability conditions of Eqns (E.4 and E.5) are satisfied.

Galerkin higher order {a = 702/35, B = 36/5, y = 13/5)
When applying the stability conditions of Eqns (E.4 and E.5) the second relationship

fails.

Hilber_Hughes-Taylor (o = 22777/2000, B = 917/200, v = 2)
The stability conditions of Eqns (E.4 and E.5) are satisfied.




APPENDIX F

MateEMaTicAL Backerouno Or Experiventar, MobaL ANALYSIS

In the following appendix a mathematical development of the equations of motion for the
general cases of viscous and hysteretic damping will be presented. Special cases of negligible
damping and proportional damping as well as other cases will not be described but can be found

elsewhere 99,66

1. Viscous damping

Rewriting Eqn (3.1)

[M1{5} + [c]{5} + [K]{s} = {P} . (F.1)

and in the case of no excitation the previous equation does not reduce to a standard eigenproblem

and as a result it is necessary to define the following :

{r}= {g} N (F.2)

Eqn (F.2) can be used with Eqn (F.1) to form a standard eigenvalue problem as follows :

5 Wl Is s0f)- )

[aMi} + [Bl{y}={r} e (F.8)

In the case of no excitation,

[Al{3} + [B{y} = {0} (F.5)
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The solution of the preceding equation can be assumed to be of the following form :

{y}={wle" (F.6)

Substituting Eqn (F.6) in Eqn (F.5) yields

s(Al{w} + [B{w} = {0} R (F.7)

which is a standard eigenproblem and leads to a set of 2N eigenvalues and eigenvectors,

[s]= .

[‘P]=[{‘I’}1 {v}: {v} - - {‘V}ZN]

Because the damping distribution is not proportional to either the stiffness or mass distributions
the resultih;g eigenvalues [S] and eigenvectors [¥] are complex and for a resonant system both

occur in conjugate pairs,

81
5

[s]= N
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[¥] =[{‘I’}1 {vh {vkh - - {vIx {v} {v}h {v} -~ {W}N]

where  * indicates a complex conjugate.

The eigenvectors are characterised by being orthogonal with respect to both [A] and [B]

=[] [A][¥] = a, (F.8)

=[] [BI[¥] = b, R (F.9)

Premultiplying Eqn (F.7) by {\l’}rT

T ) - __ L o o
= s{vk Ay}, + {9}, [B{w} = {o} (F.10)
= sa.+b=0 .. . - (F.11)

by
= §p=—— - veeresasesssrararass w (F.12)

A

{r} ={Fletet .. “ . - (F.13)
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Then seeking a sclution of Eqn (F.4) in the following form :

{r}= {§}= {io?Q}ﬁ'“” = {v}e . (F.14)

Eqn (F.4} can be rewritten as follows :

io[Al{Y} + [BI{Y}={F} ..... s sstrs st pes s saessben (F.15)

and since the eigenvectors of [¥] are linearly independent in a space of dimension 2N

= {Y}= g(vr{w}r) (F.16)

indicating that the solution of Eqn (F.15) can be written as a linear combination of the 2N
eigenvectors in the eigenproblem of Eqn (F.7). Substituting Eqn (F.16) into Egn (F.15) and
premultiplying by {\y}pT

—io{y}, [A]zzf;(vr{w}r) + {yh 8] g(yr{w},) 0 0 1) F.17)

=> inayy, + by, = {w}p{F} . . (F.18)

T
{W}p {F}
=Y = w ..... “ “ (F.19)

Hence substituting Eqn (F.19) into Eqn (F.16) yields

{v}= E I et (F.20)

ima, + b,
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and from Eqn (F.12)

= {Y}-= 2 Ly} {F}{‘"} v (F21)

= afio-s)

Multiplying both sides by el

o~ {w} vl
b

r=1 a (lm - s,

Considering response at point j due to a single harmonic excitation force at point k the

corresponding receptance can be written as follows :

IN
(@) = ¥, |[— e (F.23)
r=l a,.(i(l) s Sr)
N L ] -
ajk(m) - z Vi PV + - Wi vV - " (F.24)
= |aio + Go, - 01— 0D a/(io + Lo, +ie1- D)
where se=- Lo, +ioN1 - L?; and,
C,r represents the critical damping constant.
Eqn (F.24) is frequently written as,
N R Ry
o) = ¥ | —= L (F.25)

r=I (im - s,) (im -5 )

where S, represents the ™ pole location of the FRF on the frequency axis; and,
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erk represents the jkLh element of the residue matrix for the r'™* mode.

It was demonstrated before 87 that each eigenvector exhibited the following property :

{vintr=s:{w} i=1,23,...... D . SR (F.26)

Thus using the orthogonality Eqns (F.8) and (F.9), and considering the first N components of each

eigenvector

fvhIclv)l
= T T = =2 ,C, : (F.27)
vhMI{y) ™

. {\v}:.-r [K]{w}r: LT (F.28)
{vh MUy} ™

where k, m and ¢, represent the modal stiffness, mass and damping respectively.

For the case of light damping the real part of the eigenvector terms dominate

= Real({y},) = Imaginary({w},)

= [‘I‘]T[M][‘P] = m, (F.29)

= [‘P]T[C][‘P] = c, srrsnesseseassasssmesssnessanases veessinonene (F.30)
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= [¥]"[K][¥] = K, (F.31)

where  [W] represents the vibrating mode shape matrix containing N vectors and each
vector is formed of N components ({W}r i=12,...... ,Nand r
denotes the mode shape number).

= {o} = {v}./ v, R (F.32)
where {s1>}r represents the ™ mass normalised mode shape vector.

2. Structural (hysteretic) damping

To derive an expression for the FRF in terms of hysteretic damping the equation of motion

is rewritten as follows :

[M]{8} +i[nl{a} + [K]{5} = {P} (F.33)

Assuming zero excitation and seeking a solution of the form {8} = {Y}eimt

= (- o?’[M] +i[H] + [KD{Y}= {0} ... " (F.34)
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The preceding equation is a standard eigenproblem and its solution yields N complex eigenvalues

and N complex eigenvectors of the following form :

[s?] = .

[¥]1=[{v} {v}: {v} - - - {vh]

2_ .2 L
where s, = a+ mr) ; and,

n, represents the structural damping loss factor of the ™ mode.

The eigenvectors possess the following orthogonal property :

(%] [M][¥] = m, (F.35)

[w] Glad + [K][w] = k, ) (F.36)

—=sl=k [ m, . ) . . (F37)

= {o}. ={y}/m, s st - (F38)



APPENDIX F — MATHEMATICAL BACKGROUND OF EXPERIMENTAL MODAL ANALYSIS 334

As [W] forms a set of linear independent vectors the solution of the equation of motion for forced

vibration can be achieved by adopting a procedure similar to that described in Eqns (F.13 — F.22)

and thus
N N
Vi rY rOx
@) =Y 2’ "2' L ~|=X ‘2‘ ! | e (F.39)
r=1 mr(mr -+ lTlrmr) r=1 (mlg -0+ iTlrmr)
N R
ap@) = Y b (F.40)

=1 [ (0f - @+ inof)



APPENDIX G

MobaL Assurance Crrrerion CALCULATION

Using Comrrex Expermventar MobeE SHares

0]

TEST INITIAL THEORETICAL MODEL
STRUCTURE ‘ MODE NUMBER
MODE
NUMBER 1 2 3 4 5 6 7 8
1 0.346 | 0491 | 0.002 | 0.001 | 0.002 | 0.005 | 0.003 | 0.001
2 0440 | 0496 | 0.000 | 0.000 | 0.009 | 0.00177 0.002 | 0.000
3 0314 | 0.010 | 0.001 | 0.005 | 0.001 | 0.022 | 0.010 | 0.001
4 0.000 | 0.000 | 0977 | 0.002 | 0.000 | 0.000 | 0.000 | 0.000
5 0.000 | 0.000 | 0.000 | 0.980 | 0.004 | 0.004 | 0.000 | 0.000
6 0.580 | 0.040 | 0.007 | 0.001 | 0.042 | 0.071 | 0.001 | 0.001
7 0.023 | 0.544 | 0.000 | 0027 | 0.025 | 0.050 | 0.002 ; 0.001
g 0.002 | 0.000 | 0.824 | 0.003 | 0.004 | 0.005 | 0.000 | 0.000

TABLE G.1 —MODAL ASSURANCE CRITERION BETWEEN COMPLEX EXPERIMENTAL AND
REAL THEORETICAL MODAL VECTORS (CONTD)
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(ii)

TEST UPDATED THEORETICAL MODEL
STRUCTURE MODE NUMBER
MODE
NUMBER 1 2 3 4 5 6 7 8

1 0.832 | 0.006 | 0.002 | 0.001 | 0.001 | 0.003 | 0.003 | 0.000
2 0.023 | 0.912 | 0.000 | 0.000 | 0.004 | 0.000 | 0.001 | C.000
3 0.215 | 0.108 | 0.001 | 0.005 | 0.000 | 0.009 | 0.008 | 0.001
4 0.000 | 0.000 [ 0.976 | 0.002 | 0.000 | 0.000 | 0.000 | 0.000
5 0.000 | 0.000 | 0.000 | 0981 | 0.003 | 0.006 | 0.000 | 0.000
6 0.155 | 0.462 | 0.007 | 0.001 | 0.076 | 0.056 | 0.001 | 0.001
7 0.377 | 0.187 | 0.000 | 0.027 | 0,020 | 0.073 | 0.002 | 0.001
8 0.001 | 0.002 | 0.824 | 0.003 | 0.005 | 0.003 | 0.000 | 0.000

TABLE G.1 — MODAL ASSURANCE CRITERION BETWEEN COMPLEX EXPERIMENTAL AND
REAL THEQORETICAL MODAL VECTORS

When comparing the results listed in the above table with those in Table 4.10 it appeared

that both follow a similar trend.
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“‘Response of Echinodomes to Asymmetric Loading’, Co-authors R.Royies and
J. M. LiamBias, Proceedings of the International Conference on Non-Conventional

Structures, ed. B. H. V., TopriNg, vol. 1, pp. 167-183, Civil-Comp Press, Edinburgh, (1587).

‘‘Deformation Measurements on an Underwater Structure Relating to Buckling'’, Co-authors

R. Rovies and J. M. Liameias, Proceedings of the International Conference on Stress

Derermination and Strain Measurement in Aeronautics, pp. 11.1-11.16, Royal Aeronautical

Society, London, (1988).
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RESPONSE OF
ECHINODOMES
TO ASYMMETRIC LOADING

R. Royles, BSc(Eng), PhD, CEng, MICE, MIStructE, FBSSM,
Department of Civil Engineering and Building Science, University of Edinburgh
J. M. Llambias, BSc(Eng), PhD,
Dynamics Division, National Nuclear Corporation Limited, Knutsford, England
and K. M. El-Deeb, BSc(Eng),
Department of Civil Engineering and Building Science, University of Edmburgh, Scotland

The Echindome is a flat bottomed shell of revolution based on the shape of the common Sea Urchin.

It has

application in underwater storage or habitaticn for both industrial or leisure purposes.

The structure could operate either founded on the sea bed or tethered to it in a floating submerged

attitude.
to cencentrated effects.

Cne of the most complex loading forms which such structures would have to sustain is that due

The paper considers experimentally the behaviour of a smail scale prototype under the action of a general

regime of point loads.

Computer methods of simulation are presented for the structure under these

conditions and comparisons are made between predicted and experimental measurements of deformaticn and

stresses. Implications for design are discussed.

LIST OF SYMBOLS

D Maximum diameter
E Young's modulus
H Height of shell
N¢’NB Meridional and circumferential stress
resultants
P Point load
ry.r, Meridional and circumferential radii
t Shell wall thickness
z Pressure head on a general shell element
z.a Pressure head at shell apex
Y Density of water
s . Angle in meridiodal plane defining
position of shell element
v Poisson's ratio
Vp Mass density of shell wall materials
cd Design stregsg
6¢,ge Meridional and circumferential stresses
0.0, Principal stresses
8 Azimuth angle

INTRODUCTION
General Requirements:

Historically mwan has sought support for the
development of c¢ivilisation from the seas and
oceans, This trend is intensifying as the twenty
first century approaches and land based resources
become more scarce. The wealth within the sea,
and on and under its bed is being explored
vigourously. This has led to a need for a means
of storing some of the raw materials found, and
their bi~products, for long or short periods near
to the point of discovery..

The giting of storage facilities on land
convenient for distribution is govermed by the
availability of suitable space and the safety
aspects surrounding the material to be stored. An
alternative in some instances could be to locate
such facilities offshore.

Whether the requirement for storage facilities is
in association with offshore exploration and
production operaticns or the logistics of
distribution the question arises as to where they
should be placed - on the surface or underwater?

There is 1little doubt that conditions at the
air/sea interface are more exacting than those
prevailing underwater. Consequently itis in the
latter type of environment that containers could
be placed with greatest benefit. -

Structures faunded directly on the sea bed are more
likely . to suffer from ground transmitted
vibrations than those positionsed in a fleating .
submerged but tethered mode. Furthermore the
recovery and relocation of the latter category of
structure would be more feasible than with the
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xed leg and entirely gravity type structures.

other advantage of a flcating submerged
ructure would be its relatively small
sturbance to the aesthetics of <the surface
main although strict precautions would have to
- taken to divert errant shipping away from it.

Plications for underwater storage vessels are
merous and include oil, liquid gases, sewage,
Xic wastes, and water. Many of these materials
e of a hazardous nature and have to be treated
th care wherever they are kept.

derwater o0il tanks could be utilised close to
oduction platforms and would be valuable in
tuations where the nearest commercially suitable
ndfall was beyond the ecconomic reach of a pipe-
ne. During adverse weather conditions tanker
ips could be prevented from mooring to take on
pplies of oil and some storage capacity would be
cessary to permit the production process to
ntinue through such periods.

milar arguments to those above are applicable to
quid natural gas (L.N.G.) and liquid petroleum
s (L.P.G.). Further, the risks attached to
oring large quantities of L.N.G., in paricular,

land could be dimished by transferring such
cilities to underwater, but inshore, locations
ere the consequential effects of leaks would be
duced.

en storms occur treatment plant for liquid
stes collected through drainage systems often
come overloaded. Excess untreated material has
be passed direct to the nearest water course,
ke or the sea. Some alleviation of such
llution problems could he achieved by means of
mporary storage facilities. In the vicinity of
ke shores and the sea coast underwater
ntainers could be employed for this purpose.
¢ stored material would be passed back to the
eatment plant after the peak flow period.

quite a number of parts of the world surface
orage of potable water is very difficult, either
e to lack of suitable land space or the problem

surface evaporation. For coastal regions
derwater storage vessels could be of great
sistance in this matter and could be very
fective in  the support of  desalination
~ilities.

ructural Shape:

optimum form for a structure to fulfil the kind
functions described above could be defined as
2 in which the design loads were resisted in the
St efficient way. For a fixed geometry
ucture there would be a single configuration
& particular design load condition. It Thas
n  shown that in an underwater situation at a
ticutar water depth a structure with a
scribed constant material thickness and uniform
essing throughout would assume the shape of the
1inodome or globule of liquid on a flat surface
f£.1], This an axisymmetric shell of revolution
+  shape of which is dependent on the pressure
d at the apex and the constant product of shell
1 thickness and stress, sece Fig.1l. These design
nciples, based on membrane theory, have been
d previocusly for land based surface storage
sels containg L.P.G. and water [Refs,2,3].
dies have been wundertaken also for the
erwater storage of L.N.G. and oil [Refs.4-7].

Designs of this nature, especially for an
underwater environment, must be checked under a
wide wvariety of loading conditions. Among  the
more complex load types are concentrated effects.
These could be of a static or dynamic nature, the
former arising from service connections and the
latter from impact and explosien. A prerequisite
to the understanding of concentrated dynamic
effects is a study of structural behaviour under
static point loads. Some preliminary work
has indicated that simple membrane analysis could
provide a reasonable basis for design against
axistmmetric point lcads [Refs. 8,9].

The present paper investigates the effects of
general point loading on the Echindome both
experimentally and numerically, and the
implications for design and construction - are
discussed.

EXPERIMENTAL ARRANGEMENTS
Test Shell:

The test shell was designed for an apex pressure
head, 2z = 1.525m of water, with a uniform design
stress, Oy = 0.46MPa, and a mean shell wall
thickness, t = 3,8mm. The actual wall thickness
was measured over the wheole shell with the aid of
an ultrascnic thickness tester and the wvariation
in t over the average meridian was established
[Ref.10).

The shell material was glass reinforced plastic
having an epoxy matrix and 0.26 glass fraction,
the fibres being in the form of layers of randomly
arranged chopped strand mat. The shell was
constructed in twe halves from the same mould and
ioined along a meridional seam using a slow curing
araldite, The complete shell was bonded with
araldite on to a flat tufnol base. The leading
dimensions of the shell are given in Fig.l and the
material characteristics were determined from
control specimens taken out of the bottom of the
shell, see Table 1. ’

Table 1

Shell Wall Material Properties

Young's modulus, E 8800 MPa
Poisson's ratio, v 0.36

Mass density, o 1100 kg/m
Ultimate tensile strength 55.4 MPa

Instrumentation

Electric resistance strain gauges of the foil tyve
in rectangular rosette form were bonded to the
outer surface of the shell at the intersection of
three meridians with four parallel circles. The
meridians were spaced at 120. in azimuth and the
parallel circles were distributed cover the height,
H, of the shell as shown in Fig.2. Each gauge has
a resistance of 350°+0.1Q, gauge length = 3mm, and
gauge factor = 2.15. At the intersection of the
lowest parallel cirecle with two of the meridians,
rectangular rosettes were bonded to the inner
surface of the shell to monitor bending effects
near the base. The electrical leads from these
internal strain gauges were brought out through
the centre of the base of the shell.



Rectilinear potentiometric displacement
transducers were disposed normal to the shell
surface along five meridians at 45° |, Their
locations down the meridian relative to the axis
of symmetry were at the apex, 45°, 90°, and 135 .
see Fig.3. The full scale resistance of each
transducer was 2ki and the full scale output was
SV d.c. for a mechanical stroke of 100mm with a
linearity of 0.25% and a resolution of + 1 micron
using & microcomputer controlled data logging
system, Fig.4, [Ref.l11]

Static loading was carried out using a lever which
acplied load through a stiff strut normal te the
shell surface. The angular position of the axis
of symmetry of the shell was variable between 0°
{vertical) and 90°. An impression of the general
loading arrangement can be gained from Fig.S.

Test Procedure:

In order not to overstrain the test structure, but
produce measurable deformations increment, of 50N in
applied point load were employed betwen 0 and 300N
and for each step, on the load increasing part of
the cycle, readings from all displacement
transducers and strain gauges were obtained using
the logging system. The process was repeated five
times and between each loading cycle a period of
five minutes was allowed for creep recovery during
which time the strain gauge energisation was
isolated to minimise heating problems. A constant
loading rate was maintained consistent with that
adopted in the material control tests: a typical
load increasing run took 2 minutes to complete,
The mean results for the five runs were determined
for several angular positions of the shell.

SIMULATION CF SINGLE POINT LOADING

There are three types of concentrated loading on
shells namely axisymmetric, symmetric and
asymmetric. In terms of a single point load the
first two types would be normal to the surface and
the last non-normal, as shown in Fig.6.

Since the curvature of the Echinodome changes down
the meridian, as illustrated in Fig.1, the shape
lends itself more readily te numerical analysis
than to an exact mathematical solution of
equilibrium equations.

Half of the shell was simulated for the
axisymmetric and symmetric load cases, Fig.ea,
using semiloof shell elements and a finite element
method (F.E.M.) of analysis was performed using
the LUSAS computer package [Ref.12]. The ‘total
number of elements was 168 in two groups made up
of 162 type QSL8 (an eight noded semiloof
quadilateral shell element) in circumferential
bands covering all but the apex cap of the shell
which comprised 6 type TSL6 (a six noded semiloof
triangular shell element}.

Loads similar to those uged experimentally were
considered and both linear static and geometric
non-linear analyses were carried aut.

DISCUSSION

The general behaviocur of the shell under symmetric
loading is considered firstly as it was typified
by the response to a normal point load at the
maximum diameter of the shell i.e. at¢ = 90° from
the wvertical axis of symmetry. Behaviour in
relation to point loads at other values of ¢ less
than 90¢ were similar and the case of $ = QO
(axisymmetriec apex point lcad) has been reported
in detail elsewhere [Ref. B,9].

The displaced shape of the shell is depicted in
Fig.7 for the plane containing the meridian
through the load point at azimuth angle 8 = 09 ,
and its complement at s = 180°, The zone of
greatest deformation was under the point load
followed by the region arcund +the bhase.
In general over the surface experimental
values were in quite good agreement with
the theoretical results except in the close
vicinity of the point load where there was
evidence of local dimpling and actual deformation
was much greater than predicted. Overall the actual
deflections might be expected to be greater than
predicted since the bonding of the shell to its
base could not provide the perfect rigidity
which was assumed at that boundary.

The localised deformation was not permanent as
illustrated in Fig.8 for the point load position.
Here it can be seen that there was very Llittle
difference between linear and gecometric non-linear
static analyses. However, the theoretical results
were significantly less than the experimental ones
and this could be attributed to the assumption of

uniferm thickness around a parallel circle in the
computer simulation and no account being taken of
the meridional seam joining the two halves of the
shell. Also local thinning near to the seam was
not taken into account. Nene the less the
experimental results were linear elastic over the
range considered with the predicted values
following a similar but stiffer pattern. The
actual normal displacements were nowhere in excess
of 1mm which was small in comparison with the
shell dimensions.

The theoretical predictions of displacement might
be improved by using a finer mesh locally around
the load point together with a more detailed
descripticn of the thickness over that area. The
actual mesh employed in this work consisted of
elements with a meridonal arc length of the order
of 20mm and each element subtending 309in azimuth.

The stresses deduced from the strain measurements
were compared with theoretical predictions and
found to be in good agreement over the shell as a
whole, although strains were not measured at the
load point, This is demonstrated in Figs. 9 and
10 for the meridian at azimuth angle 0 = 30° from

the loaded meridian and its complement 9 = 210°?
(symmetrical with @ = 150°) the normal point oload
Leing at the maximum diameter i.e. at¢ = 90. 1In

these plots distance is measured along the
meridian from the apex with the load side negative
and the base at the extremities.
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g. 9a and b show the variatien of the
rcumferential and meridional stresses,0y andg
spectively for the inner and outer shell
rfaces. It can be seen from them that bending
edominated in the base region covering the
wast 15% of the meridian on each side of the
ex for both orthogonal directions. This was
nsistent with the overturning effect on the body
a whole consequent upon the inward normal load
the maximum diameter. Addftionally the
resses in the vicinity of the lsad point,
vering approximately 30% of the length of the
ridian, were influenced by bending but the
nbrane effect was dominant. Qver the rest of
2 double meridian section the stresses, g anday
e of a membrane nature and approximately zera
this case. The zone affected by the point load
5 approxXimately c¢ircular in area as might be
sected in the elastic state.

2 associated principal stresses, 0y and oz, for
2 meridians & = 309 and® = 2109 relative to
> loaded one are shown in Fig. 10a and b. It
5

clear from the data cn principal angles that o
152 were in close alignment with og and ©
spectively over most of this double wmeridian.

was true even in the bas regicn remcte from
2 loaded area. Thers oy and 02 were almost
1al to ¢ and Ty indicating little shear in
1t region. However, in the base regicn nearest
the iocaded area ¢; > ¢, and 9, < o, indicating
»  aeffect of significan% shear. In the loaded
jien there was a tendency for o > gg and
> U¢ which could be attributed directly to
al shearing effects. The stresses in this
jion  fluctuated markedly which was due most
bably to the influence of localised bending.

' applied loading resulted in stresses being set

which nowhere exceeded a quarter of the
imate strength of the material, the greatest
esses occurring in the base region near the
d. For the loadings applied the overall
ponse was elastic.

> prediction of stresses was not enhanced by the
2 of a geometric non-linear static analysis as
cosed tc a linear static one, as can be seen
om the almost direct coincidence of the plets in
3s 9 and 10. These figures illustrate that away
sm the point leoad and the base region the
rcumferential, meridicnal and principal stresses
re approximately equal and uniform in value.

> stress behaviour described above was relevant
the whole shell surface and was appropriate to
. single point lcad cases - axisymmetric [Refs.8
i 9} and symmetric. The pattern became more
entuated the closer a meridional section
iroached the loaded one.

INFERENCES FOR DESIGN AND CONSTRUCTION

For underwater service an Echinodome is
proportioned initially accerding te the mean
operating head of water at the shell apex using
membrane analysis and uniform wall thickness with
a design stress within the strength capabilities
of the chosen construction material.

Axisymmetric loadings produce bending and shearing
effects in the base region and some thickening of
the shell wall is required in the bottom 10% of
the meridian {Ref.7]). B

The present investigation confirms that the least
disturbing positiens for the applicaticn ofcon-
centrated loads are at the apex and the £flat base.
This indicates that access for services and
maintenance etc should be in those locations.
Point loadings applied in other positions would
necessitate localised strengthening of the shell.

The axisymmetric geometry of a shell of revolution
of this type with a uniform thickness over most of
the profile lends itself to a construction process
invelving repitition. The formwork for
cementitious materials, see Fig.ll, or the jigging
for metal construction [Ref.3], could be rotated
through 360° abcut the vertical axis. If fabric
or rubber materials were employed there would be
economies available in the repetitive nature of
cutting patterns and seaming. Whan using rigid
materials such as concrete or steel the apex
region would be constructed last in the form of a
cap. Reinforcement in concrete would be
orientated mainly in the circumferential and
meridicnal directions.

The base for such a structure has not been
considered in this investigation but clearly in
the censtruction process it would be built first.

CONCLUSIONS

1. Membrane action predominated in the shell
away from the base and applied leoad regions.

2. Simulation procedure gave results in good
agreement with measurements except near load
peint and base.

3. Basic reinforcement pattern in concrete
Echinodomes should follow circumferential and
meridional directions.
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ABSTRACT

A structure is described which is suitable for underwater storage of
liquids or as a one atmosphere accommodation/operations chamber. The
structure is an axisymmetric thin shell of revolution of optimum form in
relation to the design hydrostatic head. The buckling tendencies of this

type of thin membrane structure under external load were examined and
details are given of the reaction of the shell to axisymmetric pressure
and concentrated loadings as well as to symmetric point loads.

The responses were based on electric resistance strain gauge measurements
and displacement monitoring at various points on the inner and outer

surfaces of the shell during incremental loading. Southwell type plots
are employed to interpret the experimental data in terms of critical
buckling loads. These non-destructive type experimental predictions are

compared with theoretical values established using the finite element
method with both axisymmetric shell of revolution elements and semi-loof
thin shell elements. Good comparisons between experimental and numerical
predictions are demonstrated. The shapes of the Southwell plots in
relation to the localities of the measurements is discussed along with the
validity of the approach.

The general nature of the buckling modes under the various loading forms is
assessed. Zones sensitive to buckling are identified and the implications
for the design of such structures are outlined.

Keywords: Echincdome, buckling, design, displacement
and strain measurements,
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INTRODUCTICN

In relation to the amount of space available on land for industrial and
urban development as well as leisure activities the surface and sub-
surface zones at sea are vast. The latter zones offer plenty of scope to
support land bhased societies. A manifestation of this is in the creation
of habitats and storage facilities for the exploration and development of
offshore resources such as gas and oil.

The conditions offshore for surface structures can be quite hostile and a
rmuch calmer state prevails underwater although means of access are
generally more difficult to establish. A lot can be said in favour of
placing a habitat/operations chamber or a storage vessel in the
relatively tranquil submerged environment. In particular, the deployment
of the structure in a tethered floating submerged manner reduces the need
for expensive foundations, and enables it to cope more easily with seabed
disturbances such as seismic activity and settlement.

One type of structure suitable for underwater operations is the
axisymmetric thin shell of revolution and the loadings to be considered
are many and varied ranging from axisymmetric to completely asymmetric and
consisting of an assortment of dynamic and quasi-static/static effects.
A common problem faced by thig sort of structure is buckling and strict
design precautions have tec be taken to guard against it.

The present paper is concerned with the buckling behaviour of the
Echinodome or drop shaped shell which has been proposed for underwater use

(Ref.1-4). The structure is considered under both axisymmetric
pressure and concentrated loadings. The structure is examined
analytically/numerically using finite element simulations and
experimentally using a small prototype. Compariscns are made between

experimental and numerical predictions of critical buckling loads, use
being made of the Southwell (Ref.5) approach with the experimental data.
Buckling mode shapes are determined and experimental and predicted forms

are compared, The implications for the design of such structures are
discussed.

NOTATION

D Maximum diameter of shell

E | Young's modulus of elasticity

H Height of shell

N¢,Ne Meridional and circumferential stress resultants
P Point load

Pcr Critical buckling load

., r, Meridional and circumferential radii of curvature
t Shell wall thickness

W Normal displacement
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zZ Pressure head

Z, Pressure head at apex of shell

25d Design pressure head at apex of shell

Zor Critical buckling pressure at apex of shell
¢, Meridional and azimuth angles

Y Density of water

v Poisson's ratio

p Mass density of shell wall material

%4 Design stress

SHELL STRUCTURE

The Echinodome is an axisymmetric thin shell of revolution which is an
optimum form for one set of design conditions relating to the mean
hydraulic head, 2z, , at the apex and the product of the design stress,
o0d , and the shell wall thickness, t, where Od.t is constant, Con-
sequently under these conditions uniform stressing prevails throughout a
shell wall of constant thickness ie the stress resultants N, N8 in the
meridional and circumferential directions, Fig.1, are gqual at all
points. The design approach is based on membrane theory (Ref.6).

For axisymmetric pressure heads at the apex other than the design value
the stressing in the shell becomes non-uniform, and above the design level
the question arises of buckling, especially near the base.

It has been demonstrated that membrane analysis could be used in the
treatment of axisymmetric point loads on the Echinodome (Ref.7) but for
more general concentrated loading, Fig.2, a numerical assessment of the
shell behaviour has to be made. This is true particularly in relation teo
buckling both for axisymmetric and non-axisymmetric loadings.

ANALYTICAL APPROACH

Exact analytical solutions of the equilibrium equations for the shell
structure are not easy to achieve under most forms of loading and
numerical methods must be adopted.

For axisymmetric pressure loading the shell was simulated by means of
complete circular ring elements, Fig.3a, having two nodes each with four
degrees of freedom (3 translaticnal and 1 rotational). Both linear and
non-linear buckling analyses were carried out by means of the MISTRY
program {(Ref.8).

Concentrated loadings on the shell were invegpigated by discretising the
structure with semi-loof elements into an anical ring of triangular
elements followed by bands of quadrilateral elements, Fig.Zb. Linear
bifurcation and non-linear collapse buckling analyses were performed using
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the LUSAS program (Ref. 9).

Some typical predicted dJeformed shapes are shown in Figs 4 and 5 and
predicted buckling loads are listed in Table 1.

All the computer simulations related to the prototype test structure
described in the next section and took into account variations in shell
wall thickness.

EXPERIMENTAL APPROACH

The test structure was made using glass reinforced plastics {GRP) with a
glass fraction of 0.26 in an epoxy resin matrix and had the following
design parameter values,

Zg = 204 1.525m;cd = 0.46 MN/m?; t = 3.8mm
and material properties,

Young's modulus, E = 8800MN/m2;
Pecisson's ratio, v = 0.36:;

Ultimate tensile strength = 55.4 MN/m%;
Mass density, o0 = 1100 kg/wm?

The shell had a maximum diameter of 450mm and maximum height = 380mm, see
Fig.1l. Variations in shell wall thickness were determined ultrasonically
(Ref.10,11).

Axisymmetric Pressure Tests

Electric resistance strain gauges in the form of rectangular foil type
rosettes were bonded to the external and internal shell surfaces at the
intersections of three symmetrical meridians and four parallel circles, as
indicated in Fig.6 (Il, 12 are internal rosettes near the base with their
"leads passing through the centre of the base). The gauge characteristics
were as follows,

resistance = 350+ 0.1 ohms; gauge length = 3mm; gauge factor = 2.15.

An external half bridge arrangement was used with a dummy shell for
temperature compensation in the same environment. The gauges and leads
were waterproofed with bees' wax. The three gauges at a point were

orientated clockwise with the first pointing along the meridian towards
the apex.

Details of the pressure chamber (water filled), the instrumentation and
test procedure have been given previously (Ref.10,11). The pressure head
at the apex was raised incrementally at a uniform rate {approximately
6.25mm/s, consistent with the material control tests, and strain gauges
scanned at each increment of pressure up to a total head of 3.5m. By this
stage response was non-linear but the structure was not damaged
permanently. Five pressure increasing runs were carried out and due
allowance for creep recovery was made between each run. A typical
pressure-strain curve is shown in Fig.7a for one of the gauges.
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Concentrated Loadings

In a normal atmospheric air environment the shell was mounted on a base
which c¢ould be rotated about a horizontal axis and clamped to permit the
axis of symmetry of the shell to be varied between 0 °and 90° . Point
loading normal to the external shell surface was applied through a
vertical stiff strut using a dead load lever system.

Displacement transducers of the rectilinear potentiometric type having a
tull scale resistance of 2000 ohms and a mechanical stroke of 100mm were
arranged as in Fig.8 and a more general view of the set-up is given in
Fig.9. The resclution of this transducer system was + micron with a
linearity of 0.25%. The scanning of the transducers was controlled by a
microcomputer in the same way as for the axisymmetric pressure tests
described above.

For each angular position of the shell incremental load was applied at a
uniform rate (consistent with the material control tests) and the mean
results from ten test runs were established. The shell was loaded into
the non-linear response range but well below failure, and adequate time
was allowed for creep recovery between loading runs.

A typical load-displacement response is shown in Fig.l0a.

Buckling Assessmenl

The plots of pressure-strain and load-displacement for the shell were very
much of the rectangular hyperbola form typified by Figs.7a and 10a. This
shape of curve makes it possible to employ a Southwell approach to predict
the actual buckling load of the shell with its imperfections
(Ref.5,10,11,14).

Strain per unit pressure versus strain relations were deduced for each
strain gauge in the axisymmetric pressure tests and displacement per unit
load wversus displacement relations were obtained for each measurement
point in the concentrated load tests.. These relations - were- the best
straight 1lines determined using linear regression techniques (Ref.15,16}.
The results of such processes applied to the data points in Figs.7a and
10a are shown in Figs.7b and 10b respectively. In each case the inverse of
the slope of the straight line yielded the buckling lecad.

DISCUSSION

Under axisymmetric pressure loading the predictions of the actual buckling
load using Scuthwell plots of the type shown in Fig.7b wvaried depending
on the position of the strain gauge on the shell. All the gauges near
the base (ie on parallel circle 4, see Fig. &), six on each of the outer
and inner surfaces, gave values for the critical pressure head, z, = 2.,
within a 6% wide scatter band about a mean of 44.3m. On the higher
parallel circles the meridional Strain gauges indicated a very similar
critical buckling pressure and suggested that some global buckling was
taking place with an overall mean value of 7z, = 41.7m.

8ix of the twelve non-meridional gauges on parallel circles 2 and 3 near
the maximum dJdiameter of the shell demonstrated the existence of a lower
mean critical buckling pressure of 2zqy = 27.4m within a 20% scatter band.
The other six gauges in this group, mainly with a circumferential
orientation either produced erratic results from small measured strains or
vielded a negative slope to the Southwell plot indicating local stiffening
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of the structure, These results were ignored in relation tco the buckling
behaviour.

Consequently the general performance under axisymmetric pressure loading
was for a dominant axisymmetric buckling mode to develop with greatest
deformation near the base where an annular bulge tended to form. However,
considering only meridicnal gauges near the apex a slightly lower mean
value of 2., = 36.3m was established suggesting a tendency for some
axisymmetric dimpling to occur in this region. Evidence of a lower
non-axisymmetric buckling mode was found in the region of the shell's
maximum diameter.

Computer predictions of this behaviour can be seen to be in quite good
agreement with these overall results, Table 1.

Under concentrated loading the predictions of actual buckling lcads using
Southwell plots of the type shown in Fig. 10b varied also depending on the
position of the displacement transducer. For symmetric point loading the
greatest measurable signals were produced from transducers at or near the
load point and results from such transducers, it was felt,- were the more
reliable for the purpose of predicting actual buckling load. The
deformation pattern was for dimpling to develop at the load point and a
sway to occur in the direction of the load. The data given in Fig.10a for
loading on the 60° normal to the shell axis are typical of the respcnses
obtained. The compariscns of experimental and numerical predictions of
buckling load show the latter to be about twice the former, Table 1, in
the case of bifurcation buckling which, as might be expected, is the lower
of the numerical predictions.

For axisymmetric point locading at the apex the largest measurable signals
for normal displacements were obtained at the load point. Again it was
felt that such results were the most reliable. Overall behaviour was
axisymmetric and tock the form of dimpling at the apex with significant
displacement near the base but only slight displacement in the region of
the maximum diameter. This is exemplified by the computer predictions
shown in Figs 4 and 5 for bifurcation and non-linear collapse buckling
respectively (Ref.17), The difference in these two shapes lies in the
reversal of curvature near the apex in the case of bifurcation buckling.
The ratio between numerical and experimental predictions of buckling load
is also of the order of 2:1, see Table 1. These discrepancies might be
attributable in some part to the difficulty in simulating the actual shell
containing a meridional seam or discontinuity with semi-loof type
elements. The problem is being investigated.

DESIGN IMPLICATIONS

In order to insure against premature failure due to buckling some gradual
thickening of the shell wall near the base is required in the case of both
axisymmetric pressure and point loadings, and also in the case of
concentrated normal loadings. The actual base itself could be extended
slightly beyond the tangent point so that any development of a bulge would
be restricted before it became too serious. Precautions would have to be
taken in this region to deflect any dragged objects which might strike or
become wedged in any re-entrant angle at the base.

Local buckling at other points on the shell due to the attachement of
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nozzles or towing points could be resisted by a thickening of the shell
wall in these regions.

CONCLUSIONS

1. Using axisymmetric ring elements good predictions of buckling behaviour
under hydrostatic loading were achieved.

2. The Scuthwell plot approach to non-destructive buckling tests produced
consistent results.
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TABLE 1
Buckling Loads

AXTSYMMETRIC AXISYMMETRIC SYMMETRIC
METHOD OF PRESSURE HEAD m Concentrated Concentrated
PREDICTION Load Load at 60°

Axisymmetric Non~axisymmetric kN kN

Mode Mode
Experimental 41.7 27.4 3.7 1.2
Theoretical
bifurcation - 31.5 6.8 2.4
snap through 43.2 - 11.9 9.3
{non-linear
collapse)
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