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ABSTRACT 

The response of an Echinodome to static and dynamic point loads, and explosive type 

loadings was examined both theoretically and experimentally. The finite element method of 

analysis was employed in the theoretical investigation. Semi—loof thin shell elements were used 

to model a GRP prototype on which the experiments were performed. 

The stress distribution of the Echinodome under a static symmetric point load was 

investigated both experimentally and theoretically. Then the Southwell technique was employed in 

estimating the critical buckling load from deflection measurements. Experimental estimates were 

then compared with the numerical predictions in the form of non—linear collapse and non—linear 

bifurcation buckling loads. 

A free vibration analysis was performed to determine the structural natural frequencies and 

typify the mode shapes. The shock response spectra of several pulse shapes were determined using 

the finite element method. The most severe loading function was established to be a step loading 

with infinite duration and zero ramping time and was then employed as the load—time history in 

an axisymmetric and symmetric non—linear dynamic buckling analysis. The dynamic collapse 

buckling loads were found to be smaller in magnitude than their static correspondents. 

A modal testing was then carried out on the Echinodome prototype to determine the 

experimental modal parameters (natural frequencies, damping values and mode shapes). Newly 

developed correlation techniques were adopted in the comparison of the experimentally derived 

parameters with those predicted and poorly modelled regions were identified. Great improvement 

was achieved by correcting the experimental data and updating the finite element model's 

boundary conditions. 

A set of underwater free field experiments was performed to determine the pulse 

characteristics for a specific explosive charge, followed by another set while the prototype was in a 

floating submerged state and acting as the target for the same explosive charge. A theoretical 

simulation was accomplished by employing a finite element—boundary element approximation for 

the modelling of the structure and infinite fluid media respectively. Measured responses were 

compared with the numerical predictions and means of acquiring better theoretical approximations 

are mentioned. 
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ABSTRACT- iv 

The loading conditions to be experienced by an underwater LNG Echinodome vessel are 

reviewed with emphasis on accidental dynamic loads (impact and explosion). A state of the art 

storing configuration is proposed for the Echinodome in order to limit the extent of damage and 

hence minimise risk during upset conditions. Finally, appropriate design, construction and 

prestressing procedures were recommended. 
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CHAPTER 

INTRODUCTION 

1.1 VARIOUS NEEDS FOR STORAGE TANKS 

For many years shell structures have been utilised for industrial as well as domestic 

purposes. 

Today, containers are being used widely in different application fields such as agriculture, 

sewage, oil industry........etc., to name but a few. 	 -- - 	 - - - 

Their structural form, wall strength and composition are primarily dependent on the amount - --

and type of contained material. Storage vessels may retain anything from granular materials to 

cryogenic liquids. Another parameter affecting the shape of such structures and their construction 

material is the media in which they are to operate, e.g. air, sea or underground. 

In the following subsections some applications for storage tanks are presented. 

1.1.1 Agriculture 

Over the years cylindrical storage bins have been used for storage of grains. Recently 

however, research was conducted at the University of Illinois at Urbana—Champaign (UIIUC) I  on 

dome type shell structures to investigate their potential for storage of grains or fertilisers. 

1.1.2 Water Desalination 

In water desalination plants sea water is brought to onshore intake houses with the aid of 

suction pumps. It is then processed to produce desalinated water which is eventually stored in 

large reservoirs for distribution. 

1.1.3 Chemical Industry 

Containment structures are very common in the chemical industry. Storage of hazardous 

substances (e.g.i high explosives) is one of their uses Another -is the retaining of industrial 

chemical wastethateiials foriong periods of time or treating it to prodube leás harmful substances 

having minimumimpáct on.theenvironment. 	 -- - - -- 	 -- - 
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Cylindrical, cubical and spherical containments are typical structural forms used in the 

chemical industry. 

1.1.4 Oil Industry 

Oil is a major source of energy. Over the years considerable research has been carried out 

on storage structures for such a material before, during and after purification. 

With the dramatic fluctuation in oil prices substantial efforts were made towards oil 

exploration offshore. New problems appeared is it more economic, efficient and safe to operate 

on crude oil offshore or onshore? If offshore, where is it best to store the crude oil and its 

extracts? In caissons under the drilling rig or in separate containments? How to export material to 

onshore; expensive piping systems or ferrying tankers? 

All of the above questions were new challenging engineering problems and in the current 

research an attempt is made towards finding answers to some of the above questions. 

1.2 VARIOUS STRUCTURAL FORMS 

Storage tanks may vary in shape, e.g. spherical, cylindrical with flat, toroidal or spherical 

ends, etc........with choice depending on theft economy, efficiency and safety. 

During the last two decades intensive research was undertaken at the UNIVERSITY OF 

EDINBURGH I CIVIL ENGINEERING DEPARTMENT to assess the potential of the drop shaped 

tank 21  which will be described in the following subsection. - - - 

1.2.1 The Drop Shaped Tank 

The drop shaped tank is a shell of revolution having constant wall thickness and strength 

under a specific uniform pressure (see Fig. 1.1). Such a structure would utilise uniform material 

throughout the meridional profile and consequently the design principle can be considered as an 

optimum one. 

For each pressure head there is a new shape. The differential equations governing the shape 

of the meridional profile and methods for solving such equations (graphical and numerical) have 

been described elsewhere 2,3,5-7 - It was observed that as the value of pressure at the apex 

increased the reservoir approached the form of a sphere. 

The drop shaped tank is exactly similar to a drop of liquid resting on a flat horizontal plane. 

The liquid would be under constant tension due to capillarity while the inside hydrostatic varies 

linearly. 
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By 1980, a shape prediction program in Fortran IV was developed by Royles et al. 2  and 

refined by Sofoluwe This was later transformed by the current author to Fortran 77 and 

employed in the current research. The program used an explicit modified Euler method to solve 

the non—linear differential equations governing the profile of the shell. Sofoluwe then investigated 

the response of the drop shaped tank to hydrostatic pressure both experimentally and theoretically 

(using the membrane theory and linear elastic finite element analysis). 

Later, by 1985, Llambias ' investigated the stability of the shell of constant strength under 

hydrostatic pressure load, studied the shell response to axisymmetric and symmetric point loads 

and carried out a free vibration analysis. The above investigation was conducted experimentally 

and theoretically utilising the finite element method. 

From a library of finite elements Llambias recommended a particular element for each 

specific load case and used each accordingly to design a full size shell based on a linear elastic 

static analysis except for structural stability under hydrostatic pressure where geometric non-

linearity was considered. 

Earlier 2 the drop shaped tank or shell of constant strength was observed to be similar to a 

Sea Urchin of the phylum Echinodermata and hence the generic name - The Echinodome. 

Throughout the current research the terms drop shaped tank, shell of constant strength and 

Echinodome are used interchangeably to refer to the same shell structure. 

1.3 APPLICATIONS OF ECHINODOMES 	- 	 - 	- 

Echinodomes have a great potential serving as storage tanks in air or water media. 

Application fields vary from agricultural, sewage, chemical, water or oil industry. Employing 

Echinodomes on board LNG and LPG carriers instead of spherical tanks is just another attractive 

application as buckling is the main mode of failure for large self—supporting cargo tanks 8 , which 

was proven earlier ' not to be the case for the drop shaped shell. 

Underwater, the shell of optimum shape is applicable to storage of hazardous and other 

liquids or for use as a one atmosphere enclosure for human habitation or industrial type activities. 

In 1984 9  a proposal was made for the storage of LNG in an Echinodome (or a series of 

them) tethered underwater in a floating submerged state with the aid of tension legs. It was 

suggested that the tank would be proximate to an oil production platform and that the LNG would 

then be ferried onshore using tankers. The feasibility of storing LNG underwater safely in such a 

container is assessed later in Chapter 6. 
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1.4 SCOPE AND SUMMARY OF THE THESIS 

With recent developments in fixed and compliant offshore structures dynamic loads are 

gaining ever increasing attention by design engineers because of their apparent detrimental effects 

on structures when compared with their static counterparts. 

Therefore the main objective of the thesis is to determine the Echinodome response to 

dynamic loadings (impact and explosion) and to establish a design procedure for such a structure 

when operating underwater to sustain operational and accidental dynamic loads. 

The work carried out during the course of the current research (relating to the Echinodome 

shell structure), described in the following chapters, is summarised as follows 

Examination of the principal stresses distribution under axisymmetric and non-

axisymmetric static point loads, and studying the structural stability under such 

loadings (Chapter 2). 

Determination of the shock response spectra for various transient loadings. 

Establishing the dynamic response to step functions and examining the structural 

stability under the preceding dynamic load (Chapter 3). 

Identifying and updating poorly modelled regions in a finite element mesh by 

performing a modal test on a test structure and hence achieving a better simulation 

(Chapter 4). 

Assessment of the performance of a- numerical technique used -in predicting, structural 

response of underwater structures to shock waves (Chapter 5). 

Examination of the dynamic response of a full size Echinodome underwater storage 

vessel to impact loads induced by accidentally dropped slender or bulky objects 

(Chapter 6). 

Establishing a design and construction procedure for Echinodomes operating 

underwater and subject to accidental dynamic loadings (Chapter 6). 
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FIG. 1.1-THE DROP SHAPED TANK 



CHAPTER 2 

THE ECHIN000ME UNDER A STATIC POINT LOAD 

2.1 SUMMARY 

This chapter reviews the Echinodorne response to a static symmetric concentrated load. An 

experiment was carded out using a glass reinforced plastic(GRP) prototype (see Fig. 2.1). 

Theoretical simulation was achieved by means of the finite element method. Subsequently 

experimental and theoretical results are compared. 

Two non—destructive methods for determining the critical buckling load are presented and 

one was applied to the prototype. Numerical buckling analyses for various types of instability, to a 

symmetric point load, are reported and compared with the experimental value. 

2.2 TNTRODUCTION 

The emphasis in the previous chapter was on the increasing requirement of shell structures 

for storage. One of the most optimum shapes to be used for such a purpose, is the Echinodome. 

Habitation of the Echinodome shell structure can take place in air or underwater, being subjected 

to a wide variety of load cases ranging from static (e.g. hydrostatic pressure) to dynamic 

(e.g. impact, explosion). In order to assess the severity of dynamic loadings comprehension of the 

Echinodome behaviour under static loadings must be achieved. 

2.3 SYMMETRIC POINT LOAD EXAMINATION 

There are three possible point loadings on the Echinodome namely axisyminetxic, symmetric 

and asymmetric (see Fig. 2.2). The first and last load cases have been discussed elsewhere 4,10 

The following sections relate to symmetric point loadings. 

2.3.1 Experimental Approach 

No numerical procedure is declared viable without experimental proof and in order to assess 

the performance of the finite element method applied to thin shells, an experiment on the 

Echinodome prototype was undertaken. A point load of 300 N was applied via a wooden strut. 

The load was normal to the surface and 60 0  away from apex. 

- 	 -6- 
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2.3.1.1 Test structure— The test shell meridional profile (see Fig. 2.3) was determined by 

a shape prediction program. It was designed for an apex pressure head, z0  = 1.525 m of water, 

with a uniform design stress, cr = 0.446 MPa, and a mean shell wall thickness, c. = 3.8 mm 

(average thickness values along the meridian and circumference are given in Ref (11)). The 

material used was GRP having an epoxy matrix and 0.26 glass fraction, the fibres being in the 

form of layers of randomly arranged chopped strand mat fabric. The shell was constructed in two 

halves each from the same mould and then bonded together along a meridional seam using a slow 

curing araldite. The shell was later fixed to a tufnol square base of dimensions 

200 x 200 x 20 mm. Variations in the wall thickness were determined utilising an ultrasonic 

thickness tester 12  The material properties were determined from material control tests and 

were as follows 

Young's modulus (E) = 8800 MPa 	(extrapolated) 

Poisson's ratio (v) = 0.36 

Ultimate tensile strength = 55.4 MPa 

Mass density (p) = 1100 kg/m3  

2.3,1.2 Loading set—up— Fig. 2.4 shows the prototype in the loading rig under a normal 

point load acting at an angle, 4 = 600  away from apex. The shell was fixed to a rotating table 

which in turn allowed it to rotate between 0 0  and 900  in a vertical plane. Static point loading 

normal to the surface was applied to the shell via a vertical stiff wooden strut using a dead load 

lever system. 

2.3.1.3 Disposition of displacement transducers— In the current research 12 meridians 

were marked on the prototype each 30 0  apart. The meridians were named starting from the loaded 

meridian onwards as Ml, M2, M3 ........ Ml2. In symmetric loading the first seven meridians 

were necessary only as the shell is axisymmetric (ignoring imperfections) (see Fig. 2.5). 

For the present load case nine rectilinear potentiometric displacement transducers 

model S30FLP100A were arranged around Ml and M7 normal to the surface as seen in Fig. 2.6. 

Due to the obstruction from the lever arm it was impossible to mount two extra displacement 

transducers between transducers 6 and 7 and between 7 and 8. Each transducer was characterised 

by a full scale resistance of 2 k1 and a full scale output of 5 V d.c. for a maximum mechanical 

stroke of 100 mm with a linearity of 0.25 percent and a resolution of ±1 micron. Energisation of 

5 V d.c. for the displacement transducers was supplied from a power supply TECHNI MEASURE 
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model TPU-30. 

2.3.1.4 Data acquisition system— A multi—channel system 13  was used to scan the output 

of the displacement transducers, a block diagram of which is shown in Fig. 2.7. The system 

consisted of a microcomputer CBM model 8032 to which an 80 column tractor printer CBM 

model 4022 and a 1—MBYTE dual floppy disk drive CBM model 8052 for backup storage were 

attached. The microcomputer controlled a multi—channel scanner via its user port. The scanner 

accepted signals from up to 32 channels either electrical resistance strain gauge half bridges or 

other low frequency voltage sources in the range 0 -4 10 Hz, or any combination of the two. A 

KEITHLY programmable digital multimeter model 192 was used to measure the voltage incoming 

from the scanned channels which was in turn connected to the microcomputer through the general 

purpose interface bus (GPIB). 

The whole operation was managed by a computer program of two parts, the first of which 

controlled the scanning while the second processed the results (transformed voltage values into 

displacement or strain values). The program also instructed the microcomputer to store the datum 

readings and subtract them from the results of subsequent scans as an experiment progressed. 

2.3.13 Test procedure— After securing the test structure in its position, a maximum point 

load of 300 N was applied via a stiff wooden strut normal to the surface at an angle + = 60 0  away 

from the apex. The load was incremented by 50 N from 0 to 300 N. Three initial runs were 

performed in order to put the system into a cyclic state. Following this, 10 runs were carried out 

to scan the 9 displacement transducers from 0 to 300 N and the results were listed to the line 

printer. A 5 mm. duration was allowed between each of the 13 runs to allow for creep recovery, a 

characteristic of GRP 14  The scanning was done using the computer program on the ascending 

part of each run and the loading rate was kept constant for the series of runs. 

2.3.1.6 Test results— The average displacement values are listed in Table 2.1(a) for the 

individual transducers at each load increment. Corresponding coefficients of variation § follow in 

Table 2.1(b). Values not listed were erratic because of the small displacement magnitudes 

associated with the low load levels. 

§ The Coefficient of Variation IS  is the ratio of the standard deviation to the mean. This statistic quantifies the 
spread of data as it provides a normalised measure of the spread. 
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DISPLACEMENT AVERAGE NORMAL DISPLACEMENTS 

TRANSDUCER AT DIFFERENT LOAD INCREMENTS 

NUMBER (mm) 

(EQUIVALENT NODE NUMBER 

IN FINITE ELEMENT SIMULATION) 50N 100   150N 200N 250N 300N 

1 	(501) 0.050 0.107 0.164 0.220 0.284 0.336 

2 	(421) 0.060 0.134 0.207 0.272 0.356 0.433 

3 	(321) 0.078 0.157 0.239 0.319 0.399 0.482 

4 	(221) 0.073 0.169 0.263 0.337 0.412 0.480 

5 	(121)  0.023 0.052 0.093 0.116 

0.025 0.048 6 	( 	
1) 0.062 0.074 0.086 0.101 

7 	(215) 0.076 0.182 0.280 0.391 0.499 0.601 

8 	(415) 0.063 0.138 0.217 0.301 0.383 0.466 

9 	(495) 0.043 0.099 0.156 0.217 0.275 0.338 

TABLE 2.1(a) - AVERAGE NORMAL DISPLACEMENT VALUES FOR A NORMAL POINT LOAD 

ACTING 60 0  AWAY FROM APEX 

DISPLACEMENT 	 COEFFICIENT OF VALUATION FOR DISPLACEMENT VALUES 

TRANSDUCER 	 AT DIFFERENT LOAD INCREMENTS 

NUMBER 	 (96) 

(EQUIVALENT NODE NUMBER 

IN FINITE ELEMENT SIMULATION) 50 N 

1 	(501) 9.2 

2 	(421) 5.0 

3 	(321) 5.1 

4 	(221) 4.1 

5 (121) 

6 ( 1) 
	

18.6 

7 (215) 
	

12.8 

8 (415) 
	

7.3 

9 (495) 
	

6.7 

100   150  1 200N 250N 1 300N 

5.5 4.4 1.9 2.2 2.0 

2.5 2.4 9.2 1.3 1.2 

2.6 2.2 1.2 1.1 1.0 

2.1 2.5 5.0 1.1 5.4 

27.5 17.3 20.3 9.5 

8.2 10.0 8.5 7.6 4.9 

6.1 9.8 2.7 3.3 2.2 

4.2 2.8 2.3 2.5 2.2 

5.3 3.0 2.5 3.0 2.4 

TABLE 2.1(b) - COEFFICIENT OF VARIATION FOR EXPERIMENTAL DISPLACEMENT VALUES 
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2.3.1.7 Discussion— Table 2.1(a) shows that the shell was slightly following a non—linear 

behaviour in the loading range from 0 to 300 N with a maximum deformation under the point load 

and a minimum at the apex. 

It is also noted that the following pairs of transducers had equal displacement values 1, 9 

and 2, 8 while 7 had a higher value than 4 and this may indicate that the general profile of the 

Echinodome prototype was not distorted except under the point load, meaning that the shell 

deformed both locally and globally. 

2.3.2 Theoretical Approach 

Theoretical analysis of shell structures can be approached in two different ways either 

analytically or numerically. Analytical methods are limited to a certain class of problems and 

those include problems which can be approximated with linear models and those that have simple 

geometry. As a result analytical methods are of limited practicality in studying the response of 

Echinodomes to complex loadings (e.g. static and dynamic point loadings, explosions, etc.), and 

recourse must be made to numerical procedures, one of which is the finite element method. 

2.3.2.1 Brief introduction to the finite element method— The finite element approach is a 

growing technique for structural analysis. It is based on a discretisation method 16,17  by which a 

continuum is replaced by a computational mesh. Since a number of authoritative texts are 

available no detailed explanation of the finite element method is attempted. A typical analysis can 

be summarised as follows 16 

Continuum Discretisation : imaginary lines are utilised in dividing a continuum 

structure into a number of finite elements assumed to interact only at a discrete 

number of points known as nodes. 

Element Equilibrium : a system of forces concentrated at the nodes that equilibrate 

external loads is determined. The result is a stiffness relationship involving internal 

loads, external loads, and nodal displacements for each element. 

Element Assemblage individual element data are assembled into overall matrices 

and solutions for nodal displacement are obtained after imposing the prescribed 

boundary conditions. 

Displacements: the nodal displacements are used to describe the state of 

displacement over the individual elements. 
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5. 	Strains and Stresses: the stare of strain within an element is defined in terms of 

nodal displacements. These, together with the constitutive properties of material will 

define the state of stress. 

Two finite element codes LUSAS (London University Stress Analysis System) and PAFEC 

(Program for Automatic Finite Element Calculations) each with its graphics partner MYSTRO and 

PIGS respectively were implemented on a VAX 8550 at the University of Edinburgh Computing 

Centre. 

LUSAS 18,19  incorporates facilities for linear and non—linear static stress analysis, step by 

step linear and non—linear dynamic analysis, eigenvalue extraction, linear buckling, steady and 

transient field analysis and spectral response analysis. 

The PAFEC 20,21  finite element system consists of a general program, carrying the name 

PAFEC, together with a number of optional subsystems, two of which are SNAKES and 

DOLPHIN. SNAKES is the non—linear subsystem used for performing a more accurate non—linear 

analysis. DOLPHIN is an acoustics subsystem used for calculating the natural frequencies, 

sinusoidal response and transient response of systems in which the inertia and flexibility of a 

surrounding or a contained fluid play an important role in determining the behaviour of a structure. 

2.3.2.2 The semi—loot shell element— Each of the above mentioned systems included the 

semi—loof shell element (see Fig. 2.8) as a member of its elements library. The following 

paragraphs state briefly the theoretical development of the semi—loof element which is due to 

Irons 22 

The family consists of two elements : eight noded quadrilateral and six noded triangular 

generally curved thin shell elements with eight and six loof points respectively located at 1/' of 

the distance from a midside node to a corner node. Most of the following discussion applies to 

both the quadrilateral and triangular elements and for this reason the theoretical basis for the 

former only will be presented. 

The semi—loof element is assumed to consist of a stack of membranes with equal surface 

area to that of the midplane. Prior to the application of any constraints there are forty three 

degrees of freedom which are itemised as follows 

	

1. 	Translation : there are three translational degrees of freedom (u, v, w) at each of the 

eight nodes corner—midside family accounting for twenty four of the total. 
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Rotation : at each of the loof points and the central node (at the centre of the 

element) there are two rotational degrees of freedom (rotation to introduce difference 

in displacement between upper and lower surface) loof family adding an extra 

eighteen. 

Bubble function this extra degree of freedom is introduced at the centre of the 

element to warrant its success in the quadrilateral patch test. 

The forty three degrees of freedom are reduced to thirty two by applying the following shear 

constraints 

Loot point rotations the shear strain 	is equal to zero at each of the loof points
Y. 

giving eight constraints. 

Central node rotations: the integral of the components of shear strain in the 

curvilinear directions k and q at the central node is equal to zero giving two 

constraints. 

Bubble function: the integral of the shear strain y around the boundary is equal to 

zero giving one constraint. 

For the programming logic the loof rotations on each side were grouped along with the 

midside variables in five degrees of freedom at midside nodes and three degrees of freedom at 

corner nodes. The semi—.loof shell element can be used to simulate generally curved shell 

geometries with multiple junctions and/or variable thicknesses. As discussed earlier the 

formulation takes account of both membrane (in plane) and flexural (out of plane) deformations 

while transverse shearing deformations are not catered for which is a basic assumption for the thin 

shell theory. 

2.3.2.3 Idealisation of the test structure— The complete structure was idealised using 

336 semi—loof shell elements twelve of which were six noded triangular elements comprising the 

apical cap while the rest were eight noded quadrilateral elements. The theoretical model was 

formed of twelve axisymmetric segments each extending an angle (0) of 300  in the horizontal 

plane as shown in Fig. 2.9. Nodal coordinates were determined using a shape prediction program 

and shell thickness was assumed to vary along the meridional direction only. 

§ x, y, z form a set or local cartesian axes with x always outwards normal to the element boundary, y parallel to the 
clement boundary and z normal to the element surface and t, M  are the natural coordinate system lying in the shell 
midsurface. 
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Table 22 contains a summary of data for different forms of the finite element mesh. 

DATA COMPLETE HALF QUARTER 

TYPE MODEL MODEL MODEL 

Total number 

of elements 336 168 84 

Total number 

of nodes 1009 561 309 

Maximum bandwidth 

of stiffness 

matrix 125 72 48 

Total number of 

degrees of 

freedom 4371 2411 1319 

TABLE 2.2— DATA SUMMARY FOR VARIOUS FORMS OF THE FINITE ELEMENT MESH 

2.3.2.4 Symmetric point load simulation— Linear static stress analysis using the finite 

element method assumes that structural displacements are infinitesimally small, the material is 

linearly elastic and the state of the boundary conditions remains unaltered. For real structures the 

previous assumptions are in doubt and as a result a non—linear analysis is necessary. Non—linearity 

is classified into the following three categories 

Materially non—linear only: the stress—strain relationship is non—linear, at the same 

time displacements and strains are infinitesimally small. 

Large displacements and small strains : displacements are large while strains are 

infinitesimally small, the stress—strain relationship can be linear or non—linear. 

Large displacements and large strains : both displacements and strains are large, the 

stress—strain relationship can be linear or non—linear. 

The term "Geometrical Non—linearity" is often used to cover the last two divisions. The 

response of the experimental structure to a symmetric point load acting at 4 = 600 away from the 

apex was studied using a linear and geometrically non—linear (large displacements and small 

strains) finite element analysis. Due to symmetry, half of the finite element model was considered. 
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The mesh was restrained along the plane of symmetry from translation normal to plane and 

rotation out of plane. 

Initially, perfect rigidity was assumed for the base fixity by specifying a ring of restrained 

nodal supports for the lowest parallel circle, but displacement results under the point load were 

almost 60 percent of their experimental correspondents. As a result a new material test was 

performed on small specimens cut from the shell base which resulted in the following set of 

material properties 

V = 0.36 

- Then the stiffness at the base of the finite element model was varied until the predicted and 

the measured displacements were almost equal and this was performed by declaring a ring of 

spring supports instead of the normal supports. The stiffness of the springs was established to be 

4 x 10 NIm for the translational degrees of freedom and 4 x lO N/m/rad for the rotational 

degrees of freedom. The updated finite element model was used throughout the remaining part of 

the current chapter. 

2.3.2.4.1 Linear analysis— The linear approach is based on the following equation 

[K]{o} = { v} 	........................................................................................ (2.1) 

where 	[K] 	represents the assembled stiffness matrix; 

{6} 	represents the vector of unknown nodal displacements; and, 

{P} 	represents the vector of applied loads. 

Evaluating the stiffness matrix and inverting it the nodal displacements can be calculated. 

Displacements are then used to compute the strains within each element using 

{e}=[B]{ 5 } 	.........................................................................................( 2.2) 

where 	id 	 represents the generalised strain vector; and, 
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$1 	represents the strain—displacement matrix. 

Stresses are obtained employing the following relationship 

{a} = [D]({r} - {ej) + {o} 	........................................................ (2.3) 

where 	{°I} 	represents the generalised stress vector; 

[D] 	represents the stress—strain modulus matrix; 

{c0} 	represents the generalised initial strain vector; and, 

{a} 	represents the generalised initial stress vector. 

The word "generalised" is used only to include curvatures and moments in strains and 

stresses, respectively. 

2.3.2.4.2 Geometrically non—linear analysis— Control tests carried out earlier on the 

prototype material (OR?) indicated that the stress—strain relationship was linear until failure and as 

a result the theoretical model was assumed to be materially linear. Therefore the appearance of 

non—linearity in the experimental results was due to the changes in the geometrical stiffness of the 

deformed prototype. A geometrically non—linear analysis was undertaken using LUSAS to be 

compared with the linear analysis and experimental results. This type of analysis implies a non-

linear load—displacement relationship making a direct solution to the resulting non—linear 

equations unviable. 

Appendix A contains the mathematical formulation of the non—linear equations and an 

optimum solution procedure for such equations. 

For the 300 N point loading the load was incremented in steps of 50 N and convergence was 

achieved when all of the following conditions were satisfied: 

DLNORM c lO-

RLNORM < 10 

WLNORM .c 10 
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where 	ULNORM represents the limit for the sum of the squares of all the iterative 

displacements as a percentage of the sum of squares of the total 

displacements (only translational degrees of freedom are considered); 

RLNORM represents the limit for the sum of the squares of all the residual forces as 

a percentage of the sum of the squares of all the external forces (only 

translational degrees of freedom are considered); and, 

WLNORM represents the limit for the work done by all the residuals acting through 

the iterative displacements as a percentage of the work done by the loads 

on the initial iteration of the increment (both translational and rotational 

degrees of freedom are considered). 

2.3.2.5 Finite element results— Principal stresses, magnitude and direction, are illustrated 

for the various meridians in Figs 2.10(a -, d) and 2.11(a, b) while the equivalent stresses are 

shown in Figs 2.12(a and b). Throughout this work tensile and compressive stresses are considered 

positive and negative respectively. In these figures the stresses are plotted for pairs of meridians (a 

meridian and its complement) and the distance is measured along the meridian from the apex as 

the origin to the base at the extremities with the load on the negative side. The preceding graphs 

contain both linear and geometrically non—linear results for a 300 N symmetric point load acting 

600 away from apex normal to the surface of the updated mesh. 

A typical deformed shape for the preceding load case is depicted in Fig. 2.14 (plots were 

prepared using SWANS a surface modelling graphic software 25,26  )and the corresponding 

displacement results are listed in Tables 2.3 and 2.4. 
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NODE 

NUMBER 

NORMAL DISPLACEMENTS 

AT300N 

(mm) 

501 0.393 

421 0.533 

321 0.523 

221 0.371 

121 0.169 

1 0.054 

215 0.604 

415 0.476 

495 0.300 

TABLE 2.3- DISPLACEMENT RESULTS FROM A STATIC LINEAR 

ANALYSIS FOR A NORMAL POINT LOAD ACTING 60 0  AWAY FROM APEX 

(UPDATED MESH) 

NODE 	NORMAL DISPLACEMENTS AT DIFFERENT LOAD INCREMENTS 

(mm) 
NUMBER 	 I 	 I 

SON I 100  I 150N I 200N I 250N I 300N 

501 0.066 0.131 0.197 0.263 0.330 0.396 

421 0.089 0.178 0.267 0.357 0.447 0.537 

321 0.087 0.174 0.262 0.350 0.438 0.526 

221 0.062 0.124 0.185 0.247 0.310 0.372 

121 0.028 0.056 0.084 0.112 0.140 0.168 

1 0.009 0.018 0.028 0.037 0.047 0.057 

215 0.101 0.202 0.304 0.406 0.509 0.612 

415 0.079 0.159 0.239 0.319 0.399 0.480 

495 0.050 0.100 0.150 0.201 0.251 0.302 

TABLE 2.4- DISPLACEMENT RESULTS FROM A GEOMETRICALLY NON-LINEAR 

ANALYSIS (LARGE DISPLACEMENTS AND SMALL STRAINS) 

FOR A NORMAL POINT WAD ACTING 60 °  AWAY FROM APEX 

(UPDATED MESH) 
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2.3.2.6 Discussion— It was clear from Fig. 2.15 and Table 2.4 that the 300 N symmetric 

point load was too low to invoke any geometrical non—linearity of the Echinodome prototype, a 

conclusion which was confirmed by the coincidence of the linear and geometrically non—linear 

stress results. 

When viewing Figs 2.10(a -, d) discontinuities were observed in the principal stresses 

distribution in two regions, near the base (covering the region 80 -) 100 percent of the meridional 

length) and in the vicinity of the point load (covering the region 20 -9 60 percent of the 

meridional length on Ml in a band about the loaded parallel circle and to a diminishing extent 

with other meridians up to M7). The figures indicated as well that the rest of the structure was 

under negligible stresses. 

Limiting attention to the region around the point load it was noticed that the principal 

stresses were at their maximum positive or maximum negative on the loaded meridian and the 

further along the meridian from the point load the lower the principal stresses became. 

However, when examining the base zone the stresses were found to be decreasing from the 

loaded meridian Ml (0 = 00) up to M4 (0 = 900) and then increasing until Mi (0 = 180 0) was 

reached. Such a behaviour was consistent with the overturning effect on the structure consequent 

upon the application of the symmetric point load. 

On the whole, although the principal stresses were larger in magnitude on both surfaces of 

the structure in the base region they did not even exceed one quarter of the ultimate strength of 

the material. If by increasing the load level the structure was to collapse by buckling, failure 

would initiate in the local regions of destabilising bending and high compressive stresses which 

are evident in the stress distribution diagrams. The principal angle (0) distribution along any pair 

of meridians was measured with reference to the meridional direction, anticlockwise positive, 

e.g. if 0 = 900 it meant that cy and a 2  were in the circumferential and meridional directions 

respectively. 

In Pigs 2.11 (a and b), directly under the point load the principal angles were approximately 

900  and 0°  for the outer and inner surfaces respectively. Indicating that 02  for the outer surface 

and or1  for the inner surface, which were shown in Figs 2.10(b and c) to be the most critical 

principal stresses under the point load for both surfaces, were in the meridional direction. The 

previous remark suggested that the meridional stresses were more critical than the circumferential 

in the vicinity of the point load. 

In general the principal angle tended towards either 00  or 900  in the critical zones with some 

fluctuations, while it varied between 0 0  and 1800  for the remaining parts. Yet it can be concluded 

that reinforcement would generally be in the meridional and circumferential directions because 

regions of the loaded structure with a principal angle other than 0 °  or 900  were suffering from 
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minimal stresses. 

The equivalent stress distribution disclosed in Figs 12(a and b) indicated that the stresses 

were at theft peak near the base for the meridian complementing the loaded one for both surfaces. 

The equivalent stresses in the base zone decreased from M7 to M4 where it increased again up to 

Ml. 

While around the loaded area, the peak equivalent stresses became more accentuated the 

closer the meridional section approached the loaded meridian. 

The stress distributions (a r t 02 and a) described above were suitable for the behaviour of 

the shell prototype under a symmetric point and as a result of the destabilising stresses induced 

under the point load and at the base a buckling investigation was carried out as described in later 

subsections. 

2.3.3 Comparison Between Experimental and Theoretical Results 

When comparing the measured displacements with their theoretical correspondents 

(excluding results for the point load) it was clear that both sets of results had a similar trend 

except for measurements of displacement transducer number 5 which indicated deformation in an 

opposite direction to that predicted by the finite element method (see Fig. 2.16). Earlier readings 

for the same transducer at lower load levels were erratic which cast doubts on its general 

behaviour. 

Some discrepancies existed between the experimental and theoretical results and this was 

attributed to the geometrical imperfections inherent in the test structure in the form of thickness 

variations along the parallel circles as well as the existence of the bonding seam and neither were 

simulated in the finite element model. 

2.4 BUCKLING STUDIES 

Thin walled structures under compressive loads may fail to remain safe due to material 

failure or buckling (the term buckling will refer only to static buckling through this chapter). Thin 

shell structures have to be designed to avoid overstressing the material used in their construction 

under general types of loadings. Equally important, critical buckling loads must be predicted 

accurately to avoid reaching such loads. 
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2.4.1 Introduction to Buckling 

The following subsections explain the buckling phenomenon of thin shells and the reasoning 

for it, as well as its various forms. Numerous examples of shell buckling are given in Ref. (27). 

2.4.1.1 Buckling of thin shells— The buckling phenomenon is said to have taken place 

when structures undergo large deformations leading to a catastrophic failure. Thin shells are 

characterised by having a large membrane stiffness several limes the bending stiffness. When 

subjected to membrane compression loads such structures absorb high membrane strain energy 

while experiencing small deformations and if that energy is transformed into bending strain energy 

the structure suffers large deformations accompanied by a sudden failure. 

2.4.1.2 Various types of buckling— Theoretically there exists two types of instabilities for 

thin shells "Non—linear Collapse" (often termed "Snap Through" or "Limit Load") and 

"Bifurcation Buckling" . The non—linear collapse buckling load is defined as the load at which 

the load—deflection curve from a non—linear analysis has zero slope and when using the finite 

element method this means that the total tangential stiffness matrix LK.] is non—positive definite 

(zero or negative values on the leading diagonal of the matrix). The bifurcation buckling load is 

predicted using an eigenvalue analysis and in the finite element method this involves solving the 

following equation 

([x,] + [A][Iç])[e] = [0] 
	

(2.4) 

where 	[KI represents the small displacements stiffness matrix; 

[A] is a matrix containing the load multipliers ) on its leading diagonal and 

- zero elsewhere; 

[K0] represents the initial stresses or geometric stiffness matrix; 

[0] is a matrix containing the buckling mode shapes (eigenvectors) associated 

with each load multiplier (eigenvalue); and, 

[0] represents a null matrix. 

This is often termed linearised buckling analysis. The estimated bifurcation buckling load 

can be considered accurate only if the elastic solution using [K] gives deformations such that the 

terms contained in the large displacements stiffness matrix, [Kb],  are almost or equal to zero. 

Bifurcation buckling analysis can be combined with a non—linear analysis by performing an 
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eigenvalue analysis after each load increment on the deformed structure. 

Modal displacements due to bifurcation buckling are orthogonal to the prebuckling 

deformations of a perfect structure and as a result their amplitudes are equal to zero until 

bifurcation takes place. The post—buckling behaviour can be typified as follows 

Unstable if the load carrying capability decreases with the increase in the amplitude 

of modal displacement (e.g. cylindrical shells). 

Neutral if the load carrying capability remains constant with the increase in the 

amplitude of modal displacements (e.g. centrally loaded columns). 

Stable : if the load carrying capability increases with the increase in the amplitude of 

modal displacements (e.g. plates). 

Though bifurcation buckling is imaginary and does not take place in real structures which 

contain initial imperfections it often offers a good approximation to the true critical buckling load 

and its corresponding mode. Buckling behaviour of structures with geometric imperfections is 

similar to non—linear collapse buckling analysis in that it follows a non—linear load—deflection 

path with its post—buckling behaviour classified as for bifurcation buckling. 

2.4.2 Experimental Investigation 

An accurate estimate of critical buckling loads experimentally can only be achieved by a 

destructive test on a real structure or a model of it and such a method is expensive. In addition, 

precise buckling loads are not always attainable because structural failure can occur as a result of 

material overstressing not due to buckling. Various non—destructive experimental and theoretical 

buckling determination techniques have been evolving during the last few years some of which are 

explained in the following paragraphs. 

2.4.2.1 The Souza method 28 - The concept of this technique is based on making use of 

the relationship between the natural frequency of a statically loaded elastic structure and the 

magnitude of the applied load to predict the critical static buckling load. Earlier reports 29 

suggested the use of other dynamic characteristics (dynamic mass) as well. The technique was 

nominated the "Souza Method" because a similar procedure will be adopted in the current 

investigations as to that suggested by the former researcher. 

Souza assumed that the graph of w 2  versus P is of hyperbolic shape for structures 

characterised by unstable post—buckling behaviour with zero frequency at the buckling load. 

Therefore when plotting the experimental results in a parametric (normalised) form of (1 --P)' 

versus (1 - T) (where P is the applied load normalised by the load corresponding to zero 
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frequency P0  coinciding with the centre of the above hyberbola and I is the natural frequency of 

the loaded structure normalised by the natural frequency of the unloaded structure 9, a straight 

line should be obtained. 

The Souza method has been applied to cylindrical shells with success 30  and will be adopted 

in this theoretical investigation to check the validity of applying such an approach to 

Echinodomes. 

2.4.2.2 The Southwell method— Southweli proposed a simple method for predicting the 

theoretical buckling load P 0.  of perfect columns from experiments on real columns with small 

initial imperfections. Basing the technique on the small deflection theory the deflection parameter 

was expanded using Fourier series and assumed equal to the first component of the series as the 

load level approached Pt,. . This produced the following formula 

60  

Pcr 
1 

P 

(2.5) 

where 	8 	represents the initial deflection of the neutral axis of a column or initial 

geometrical imperfections; and, 

6 	represents the additional deflection. 

This is an equation of a rectangular hyperbola in a P versus 6 plane with the P—axis and 

the horizontal line passing through P as its asymptotes, indicating that the method is applicable 

to columns characterised by a neutral post—buckling path. Rewriting Eqn (2.5) after arranging 

terms 

a 	& 	a (2 .6) 
cr 	cr 

The above formula represents an equation of a straight line with slope 1/P r,. when plotted in a 

6/P versus 6 plane and is known as the "Southwell Plot". 

Roorda 31  investigated the Southweli plot for post—buckling cases other than neutral and 

found that the relationship between 6/P and 8 becomes non—linear resulting in an underestimation 

or overestimation of P depending on the post—buckling buckling path type. After mathematical 

manipulation Roorda proved that the slope of the tangent to the initial part of the non—linear curve 

( 
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of 6/P versus S lent itself to the value of I/Pcr  for small imperfection cases. 

In 1975 Spencer and Walker 32  argued that non—linearities in the Southwell plot may arise 

at low load levels due to any inherent zero error in the deflection and proposed the use of the 

"Pivot Point" concept from which the following equation was obtained: 

[:c (s - C)] = cr I P*S — Ps I + P.s. ....................................... 	(2.7) 

where 	s 	represents the deflection transducer scale reading; 

s 	represents the true (but unknown) transducer scale reading at 8 = 0 ; and, 

Ps, s 	represents the load—displacement pair known as the Pivot Point 

Detailed derivation of Eqn (2.7), due to Spencer and Walker, is given in Appendix B. 

The above named non—destructive buckling load determination technique can be summarised 

as follows 

Make displacement (or strain) measurements at a number of observation points (on the 

structure for which the buckling load is to be determined) for several load increments. 

Plot 6/P (or zIP) versus 6 (or c) and obtain the equation of the best fitted line, with 

the reciprocal of its slope as 

If non—linearities exist at low load levels make use of a pivot point to plot 

[PP(P - P 1(s - s5] versus [(Ps - Ps)(P - Pf1]. Fit the best straight line 

through the points to obtain P which is the slope of that line.Cr  

2.4,2.3 Linear regression— Least square regression is one of the techniques used to fit a 

curve through data points and when the fitted curve is a straight line the process is known as 

"Linear Regression". The method is based on minimising the discrepancy between the data 

points and the fitted curve. 

Minitab 33  is a general purpose statistical system designed to analyse data. Regression 

analysis is one of the numerous facilities it offers. The program was utilised to analyse and fit 

curves to the experimental displacement results listed in Table 2.1(a). 

§ The Pivot Point constitutes a load—displacement pair (Y, s') which, in the judgement of the experimenter, is 
sufficiently accurate to be used in analysis. 
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For each displacement transducer data was submitted in the form of 5 columns P, w, w/P, 

[PP(P - P'(s - sj and [(Ps - Ps5(P - p)-11, where w represents the normal deflection. 

Then the regression operation was carried out to acquire the linear equations for the following 

relationships 

P—w, wIP—w and [PP(P - P 1(s - s)]—[(Ps - Ps5(P - 

where the pivot point (P, s) was assumed to be the maximum load level data (P = 300 N). 

A linear equation will have the following form 

Y=b0 +b 1X 	.............................................................................................(2.8) 

where 	X 	is known as the predictor; 

Y 	is known as the response; 

b 	represents the intercept of the fitted line with the Y—axis; and, 

• represents the slope of the fitted line measured from the X—axis. 	- - 

Thus when performing linear regression between P and w the coefficient b was specified as 

zero to force the fitted line to pass through the origin. 

Minitab outputs statistical characteristics of the data and the fitted curve which can be used 

in assessing the quality of the regression equation 34  some of which are 

Standard error of estimate (s) often called "the Standard Deviation" of Y about 

the regression line. The value of s can be used as a measure of the difference 

between the observed and the fitted Y values (V 1  and Y 1 ), and it is calculated using 

the following formula 

TI 	

- 	
2 1 0.5 
	

(2.9) 

where 	n 	is the number of data points. 

Coefficient or determination (r 2) which is the square of the correlation coefficient 

(r) between V 1  and V1  values. The quantity r is always in the range of -1 to +1. If 

the correlation coefficient is evaluated between two columns of data Cl and C2, then r 

will have a positive value if (2 data increases with the increase of Cl data and a 
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negative value if C2 data decreases with the increase of Cl data. The correlation 

coefficient is a measure of how closely the points lie on a straight line thus r will be 

equal to +1 or —1 if all the data points He on a straight line with a positive slope or a 

negative slope respectively while it will be equal to zero if there is no linear 

association between Cl and C. 

2.4.2.4 Non—destructive buckling estimates— The Southwell technique was used to 

predict the critical buckling point load when applied normal to the surface and 60 0  away from 

apex. Graphs of P versus w and w/P versus w under the point load are shown in 

Figs 2.17(a and b). While graphs of load versus displacement and the Southwell plot, for 

displacement transducers numbers 6 and 5, can be seen in Figs 2.18(a, b) and 2.19(a, b) 

respectively. Tables 2.5 and 2.6 contain the results of the regression analysis where load is in 

Newtons and displacement in millimetres. 

DISPLACEMENT 

TRANSDUCER 

NUMBER 

LINEAR REGRESSION MODEL 
5, 

(mm) 
r 

1 Y= 829.9 x X 0.0070 0.998 

2 Y= 709.2 x  0.0131 0.996 

3 Y= 625.0 x  0.0046 1.000 

4 Y= 606.1 x X 0.0160 0.994 

5 Y= 3225.8 x X 0.0207 0.957 

6 Y= 2754.8 x X 0.0091 0.975 

7 Y= 510.2 x  0.0202 0.996 

8 Y= 657.9 x X 0.0124 0.999 

9 Y= 909.1 x X 0.0103 0.998 

TABLE 2.5—REGRESSION ANALYSIS RESULTS FOR THE P.w PLANE 

(X m wand Ye F) 
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DISPLACEMENT 

TRANSDUCER 

NUMBER 

LINEAR REGRESSION MODEL 
Y 

(mnvN) 
r 

1'cr 

(N) 

1 Y= 0.001000 + 0.000443 x X 0.0000506 0.661 2257.3 

2 Y= 0.001210 + 0.000598 x X 0.0000617 0.783 1672.2 

3 Y= 0.001550 + 0.000125 x X 0.0000385 0.409 8000.0 

4 Y= 0.001560 + 0.000275 x  0.0001081 0.342 3636.4 

5 Y= 0.000053 + 0.003210 x  0.0000376 0.972 311.5 

6 Y= 0.000564 - 0.002260 x X 0.0000570 0.724 stiffening 

7 Y= 0.001580 + 0.000837 x  0.0001343 0.738 1194.7 

8 Y= 0.001260 + 0.000721 x X 0.0000587 0.866 1387.0 

9 Y= 0.000875 + 0.000848 x  0.0000488 0.871 1179.2 

TABLE 2.6 - REGRESSION ANALYSIS RESULTS FOR THE SOUTHWELL PLOT 

USING UNAVERAGED EXPERIMENTAL DATA 

(X a w and Y wiP) 

2.4.2.5 Analysis of results- In an earlier section it was concluded from the theoretical 

analysis that the 300 N point load was relatively low to invoke any inherent geometrical non-

linearity of the Echinodome prototype. At the same time, the experimental load-displacement 

relationship exhibited some non-linearity as is apparent in Fig. 2.17(a) (correlation 

coefficients * 1.0 - see Table 2.5) for the various displacement transducers. This could be 

attributed to either random errors, (electrical noise........etc.), initial structural imperfections or 

both. Initially, the Southwell technique was applied to the unaveraged displacement measurements 

and results are listed in Table 2.6 together with the buckling load estimates. 

When viewing Figs 2.19 (a and b) it is clearly seen that the experimental data was erratic 

although the correlation coefficient indicated otherwise and therefore it is always very important to 

inspect the plot of the data points along with the regression line even for high correlation 

coefficient values. Attempts were made to improve the quality of the fits using the pivot point 

concept but this resulted in more scattered data points and consequently a worse fit was the 

outcome. 

On examining the Southwell plot for each transducer it was noticed that the experimental 

results corresponding to the first load increment (50 N) were more widely dispersed than those for 

the higher load increments. As a result, the regression analysis was repeated excluding 
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measurements for the first load increment. In addition, the best fitted line was determined for the 

measurements average of each load increment rather than individual unaveraged measurements (in 

order to minimise any random errors) and averages possessing a coefficient of variation greater 

than 6 percent were omitted with the purpose of enhancing the quality of the fit. The new buckling 

load estimates are listed in Table 2.7 with the correlation coefficients of the fitted lines. 

DISPLACEMENT 
5y Cr  

TRANSDUCER LINEAR REGRESSION MODEL r 
(mm/N) (N) 

NUMBER 

Y= 0.001050 + 0.000250 x  0.0000127 0.902 3997.1 

2 Y= 0.001290 + 0.000339 x X 0.0000185 0.928 2947.3 

3 Y= 0.001560 + 0.000095 x X 0.0000068 0.910 10499.8 

4 stiffening  

erratic data  5 

stiffening  6 

0.0001332 4346.9 7 Y= 0.001870 + 0.000230 x X 0.932 

8 Y= 0.001330 + 0.000514 x X 0.0000192 0.971 1946.4 

9 Y= 0.000947 + 0.000557 x X 0.0000136 0.976 1794.1 

TABLE 2.7 - REGRESSION ANALYSIS RESULTS FOR THE SOUTHWELL PLOT 

S.M/ife wJMgrtiaa3njrIal&mIt!qflavv. 

(X a w and Y a w/F) 

In general, the Southwell technique predicted different buckling loads for different points on 

the structure and it was observed from Table 2.7 that some parts of the structure were stiffening 

rather than softening. 

When inspecting the preceding table it was noticed that parallel circles near the base 

predicted lower buckling loads than under the point load, suggesting that the former was more 

critical than the latter. The minimum estimated buckling load (P cr  was found to be equal to 

1794 N and corresponded to a point on the lowest parallel circle under consideration ((0 = 1500). 
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2.4.3 Theoretical Investigation 

The two theoretical buckling load types, collapse and bifurcation, were estimated using the 

finite element package LUSAS. 

2.4.3.1 Collapse buckling estimate— A geometrically non—linear analysis was performed 

on the updated mesh to predict the collapse buckling load. In order to avoid singularity in the 

incremental stiffness matrix, at the extremum points of the load—deflection curve, an incremental 

displacement was prescribed normal to the shell surface and the reaction evaluated at a point 60 0  

away from apex. The solution procedure crossed the snap—through point by enabling the load level 

to vary between iterations and the change was computed to satisfy the following constraint: 

{5J}T.{8J1} = 1 2 
	

(2.10) 

where 	0 1} - 	represents the ith  incremental displacement vector for the +ith  iteration; 

/ 	represents the incremental displacement length; and, 

indicates vector product. 

The derived load—deflection curve is depicted in Fig. 2.20. 

In Refs (35) and (36) a quantity known as the current stiffness parameter (S) was proposed 

to provide a global measure for the stiffness of the structure. It is defined by the following 

formula: 

= .a 
2{A8}T[K]{A3}

(2.11) 
Ap1 {Aaj}T [KT  I}{Aaj} 

{AP} = Esp{P rer} 	....................................................................................(2.12) 

where I'llrepresents the normalised external load vector; 

Ap 	represents the load parameter increment (when the external load is 

incremented the load parameter changes by Ap while tPred remains 

constant); 
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{A61} 	represents the i th  incremental displacement vector corresponding to Ap 1 ; 

{A} 	represents the linear displacement vector corresponding to Ap 1  

[K ] 	represents the small displacement (linear) stiffness matrix corresponding to 

the first load increment; and, 

[KT 1 1 	represents the 1th  tangential stiffness matrix. 

The current stiffness parameter which has an initial value of 1.0, increases and decreases 

with the stiffening and the softening of the structure respectively. For stable post—buckling 

behaviour S is positive, for unstable behaviour S is negative and at limit point (collapse) S, is 

zero. 

Figs 2.21(a and b) show the current stiffness plotted against load and displacement 

respectively. From these graphs an accurate estimate of the non—linear collapse buckling load for 

the updated mesh was established, P = 7.64 kN. A typical deformed shape is illustrated in
nc 

Fig. 2.22. 

In order to assess the validity of using the Souza method to predict buckling loath for the 

Echinodome, a similar concept was applied to the theoretical results. 

Natural frequencies of the updated mesh were determined after each prescribed displacement 

increment (simulating a point load acting normal to the surface, 600  away from apex) using the 

following eigenvalue formulation 

([KT] - 	 = [o] 
	

(2.13) 

where 	[Q2 1 	is a matrix with diagonal elements equal to the natural frequencies squared 

(@2) and zero elements elsewhere; 

[Md' 	represents the mass matrix of the deformed structure; and, 

['F] 	is a matrix containing the mode shapes (eigenvectors) associated with each 

natural frequency (eigenvalue). 

For zero load the tangential stiffness matrix is equal to the small displacement (linear) 

stiffness matrix [K] while [M d] becomes the mass matrix of the original (underformed) structure 

[M]. 

Horton et al. 29  found that the frequency mode to be considered when plotting the frequency 

squared against the applied load was the one similar to the collapse shape. For the Echinodome 

this meant 
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• axisymmetric mode 	- axisymmetric loading 

• symmetric mode 1 	-* symmetric loading 

• torsional mode 	- torsional loading 

One of the symmetric vibrational mode shapes (see Chapter 3) was related to the current 

load case by having motion in the direction of the applied load. The versus P indicated that the 

relationship between both parameters is of hyperbolic form with P corresponding to the vertex ofne 
the hyperbola. Unlike what has been suggested by Souza 28  for cylindrical shells the Echinodome 

under a load equal to P did not have a zero natural frequency but rather a minimum value forer 
the natural frequency was reached. 

Consequently, the direct application of the Souza method to the Echinodome is not suitable 

(because of the dependency of the technique on the premise that the vertex of the hyperbola lies 

on the applied load axis). Instead, if a vibration test was carried out to determine the structural 

natural frequencies under various load increments it is possible to estimate the buckling load P. 

by carrying out a non—linear regression analysis on the assumption that c0
2 versus P is hyperbolic. 

2.4.3.2 Bifurcation buckling estimate— When undertaking an eigenvalue analysis 

(employing the subspace iteration method described in Chapter 3) using Eqn (2.4) to predict the 

linear bifurcation buckling load the LUSAS finite element system indicated that the initial stress 

matrix [K] was non—positive definite. Consequently Eqn (2.4) had to be reformulated as follows 

(([K0] + [K61) - [y][K01)[e1 = [0] 	................................................(2 . 14) 

where 	[y] 	is a matrix with the values (1 - IJX) on its leading diagonal and zero 

elsewhere. 

The resulting eigenvectors are similar to those of Eqn (2.4) and as a result the load 

multipliers were computed using the following formula 

x= 11y1 (2.15) 
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where 	i 	is a subscript denoting the eigenvalue and eigenvector number. 

From the previous equation it can be noticed that when X is large, y will be close to 1.0 

and any small error in the estimation of y, results in a large error in X. Consequently the 

bifurcation buckling load was specified to be multiples of 20000 but this caused failure in the 

solution of Eqn (2.14) because the computed eigenvalues were negative (LUSAS is unable to carry 

a convergence check on negative eigenvalues). To overcome this problem a shift ji was applied to 

form a modified eigensystem, which had the same eigenvectors, as follows 

(([K0] + [K0] + [g][Kj) - [Vj[K0})[ 8] = [0] .............................(2 . 16) 

where 	[iii 	is a diagonal matrix and the actual eigenvalues were calculated as 

follows 

(2.17) 

The minimum bifurcation buckling load P for the updated mesh was 10.75 kN 

(c.f. P = 7.64 kN) which indicated the significance of the structure's geometrical changes and
PC 

hence the large displacements stiffness matrix [KLI  might have a great influence on the buckling 

load estimate. 

Consequently a non—linear bifurcation buckling analysis was undertaken by performing an 

eigenvalue extraction using Eqn (2.16) after each application of the prescribed incremental 

displacement described in the previous subsection. The estimated bifurcation buckling load 

was equal to 9.90 kN and the accompanying mode shape can be seen in Fig. 2.23. It can be 

concluded that the non—linearity of the prebuckling state was important for the bifurcation 

buckling model. 

Although Pnb  was almost 90 percent of P it was still of a less engineering significancelb  
than P 

DC 

2.4.4 Comparison Between Experimental and Theoretical Estimates 

For the current case a direct comparison between experimental and theoretical buckling load 

estimates is inappropriate. The reason is that the values determined using the Southwell technique 

were dependent on local points on the test structure and therefore local geometrical imperfections 
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in the form of local thinning or thickening of the shell wall can greatly affect the buckling load 

estimates. Each position on the test structure had its own imperfection and stiffness hence the 

variation in the determined P 
Cr 

Nevertheless, it was interesting to notice that both the Southwell technique and the collapse 

buckling analysis predicted the region near to the base as the most critical zone for buckling 

failure. The preceding remark was made on the basis that experimentally the minimum P was for 

a position lying on the nearest parallel circle to the base and theoretically at P 11  a few elements 

comprising the last ring of semi—loof elements towards the base collapsed. 

Both approaches (experimental and theoretical) predicted that the Echinodome prototype 

would fail by buckling after exceeding the maximum strength of the material. Thus, indicating that 

buckling of this specific shell under the given loading was not to be considered as a design 

criterion. 

2.5 CONCLUSIONS 

- - 	 Limiting attention to the current Echinodome test structure, the following observations could -- - - 

be made 

For a symmetric point loading the critical zones were identified to be in the vicinity of 

the applied load and near the base of the structure because of the induced bending 

stresses which could initiate a buckling failure. 

Away from the critical regions the structure suffered from minimal stresses and a 

membrane action dominated. 

The principal angle distribution on both outer and inner surfaces indicated that at peak 

principal stresses 0 = o° or 900  . Thus, any reinforcement for the structure should be 

generally in the meridional and circumferential directions. 

When performing a bifurcation buckling analysis the non—linearity of the prebuckling 

state is important because the prebuckled shape of the structure is more likely to lose 

its stability. 

The non—linear collapse buckling load is less than the bifurcation buckling load and 

hence it is more critical. 

The material strength is expected to be exceeded before a static buckling failure takes 

place. 
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The Southwell technique employed in the non—destructive buckling tests produced 

consistent results by predicting the minimum P cr  from a point near to the base which 

was one of the critical regions. 

The Souza method for buckling load determination might be an expensive test to 

perform because of the high costs of hardware and software involved. Unlike the 

former technique which is dependent on the degree of local imperfections inherent in a 

structure the Souza model is based on measuring a global property of the structure 

(natural frequency) under various load increments. A prerequisite step before applying 

the Souza concept is to carry out a modal test (see Chapter 4) in order to typify the 

vibrational mode shapes of the unloaded structure under consideration. Extreme care is 

necessary when applying the static load to ensure that any loading arrangement used 

does not introduce extra modes. 

For full size Echinodome shell structures it is important to take account of the following 

points during the design, launching and operating stages 

The last 10 percent of the meridional profile is to be stiffened by the gradual 

thickening of the shell wall or extra reinforcement bars in that zone to avoid any 

premature failure due to buckling. 

Extra reinforcement is required around openings and towing points to resist any local 

buckling. 

In real structures sensitivity to construction or manufacturing imperfections is much 

less important and therefore the finite element method evolves as the most appropriate 

numerical method to be used in predicting the general behaviour of the Echinodome 

under static concentrated loads. 
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FIG. 2.1 -GLASS REINFORCED PLASTIC ECHINODOME STRUCTURE 
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CHAPTER 

THEORETICAL STUDIES ON THE ECHINODOME RESPONSE 

To DYNAMIC POINT LOADS 

3.1 SUMMARY 

Theoretical dynamic analysis of the Echinodome was carried out employing two finite 

element systems, LUSAS and PAFEC. 

Natural frequencies and mode shapes of the finite element mesh described earlier were 

computed using two different techniques. 

Shock spectra for symmetrical pulse shapes, triangular pulses and response to step functions 

were determined disregarding damping and assuming linear relationships. 

Non—linear dynamic analysis was performed for an axisyminetric and a symmetric point 

loading to determine the dynamic collapse buckling load. 

3.2 INTRODUCTION 

In their operational life, underwater storage vessels can be subjected to transient 

concentrated loads, e.g. as a result of dropped objects or sudden release of pressure. 

Dynamic loads excite a frequency range dependent on the time duration of the loading 

pulse. If one or more of the structure's natural frequencies falls within that range then the 

structural response will be magnified when compared with its static correspondent, depending on 

the pulse duration. In order to study the general behaviour of the magnification factor a dynamic 

analysis must be carried out to determine the shock spectra for a wide variety of pulse shapes. 

3i FREE VIBRATION ANALYSIS 

The linear equation of motion for forced excitation may be written in matrix form as 

follows 

(3.1) 
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where 	[M] represents the mass matrix; 

[C] represents the damping matrix; 

[K] represents the stiffness matrix; 

{ö} represents the acceleration vector (time dependent); 

181 represents the velocity vector (time dependent); 

(8} represents the displacement vector (time dependent); and, 

{P} represents the external load vector (time dependent). 

For free vibration analysis the external load vector is equal to a null vector and the damping 

can be disregarded to give 

[M]{}i- [K]{o}={o} 	....................................................................(3. 2) 

The solution of the previous equation can be assumed to be of the following form: 

{s} = {w}&® 	.........................................................................................( 33) 

where 	(vi 	- 	is a vector of order n, and n represents the number of degrees of 	freedom 

(time dependent); 

et)t 	represents a complex function cos(wt) + i sin(cot) 

is equal to the square root of —1; and, 

represents the vibration frequency of vector {qc}. 

Substituting Eqn (3.3) into Eqn (3.2) it follows that 

[K]{v} = 	 (3.4) 

The eigenproblem in Eqn (3.4) yields n eigenvalues and n eigenvectors which are assembled in 

two matrices 

W 2 i - 
(022 0 

[n2} = 

0 • 
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['1'] = [ {v}i {v}2 {v}3 	{v} I 

Eqn (3.4) can be written for n solutions as 

([K] - [Q2][M])IT] = [0] 
	

(3.5) 

The eigenvectors are characterised by being orthogonal, which may be stated as follows 

0 
[w]T[K][P] = 	k 

	
(3.6) 

0 

0 
[']T[M][w] = 	m. 	 (3.7) 

0 

where 	k, m 	represent the modal stiffness and mass for the r mode respectively 

Since the eigenvector matrix may be scaled by any factor, the values of k   and m are not 

unique. Mass—normalisation is used to obtain a set of unique eigenvectors. This process is carried 

out by normalising each eigenvector with the square root of its corresponding modal mass. 

{4)}r = .......................................................................................................( 3 .8) 

The mass—normalised eigenvectors have the following properties 

[cb]T[K][e] = [u2] 	...............................................................................................(3.9) 
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= [I] 	..................................................................................................(3.10) 

where 	[I] 	represents the identity matrix. 

If damping is taken into consideration then the eigenvalues and eigenvectors would in 

general be complex. 

3.3.1 Natural Frequencies and Mode Shapes Extraction 

There are several techniques to solve the eigenproblem of Eqn (3.5) a variety of which are 

reported in Ref. (17). The following subsections present a brief description of two methods for the 

solution of eigensystems, one is accurate and another is approximate. For a complex structure such 

as the Echinodome shell, the accurate technique requires an enormous amount of computer 

resources (memory and time), while the approximate technique if used effectively can produce 

relatively accurate results for the lowest eigenmodes using much lower computer resources. 

3.3.1.1 The subspace iteration method— The main aim of the subspace iteration method 

is to extract the lowest p eigenvalues and corresponding eigenvectors satisfying the following 

equations 

([K] - [u2][M])[G] = [o] 
	

(3.11) 

Meaning that this technique extracts mass—normalised eigenvectors satisfying Eqns (3.9) and 

(3.10). 

The method was developed by Bathe 17  and can be summarised in the following three 

steps 

Starting procedure a set of q starting iteration vectors are established where q > p 

and p is the number of required eigenvalues and eigenvectors to be computed. 

Iteration : an iteration procedure is followed to extract the best eigenvalue and 

eigenvector approximations. 

Sturm sequence check : when convergence is achieved a stunn sequence check is 

carried out to verify that none of the intermediate eigenvalues have been missed. 
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The mathematical representation of the subspace iteration technique is given in Appendix C. 

LUSAS adopts the subspace iteration method for solving eigenproblerns and was utilised in 

extracting the eigenvalues and eigenvectors, for the initial mesh (perfect fixity at the base), by 

specifying 

q = 16 

Convergence tolerance = 10-12  

Numerical results of the analysis are listed in Table 3.1 for the first eight vibrating modes with 

graphic presentation of the lowest six mode shapes in Figs 3.1(a —* O which are the most 

significant. 

MODE 

NUMBER 

NATURAL 

FREQUENCY 

(Hz) 

ERROR 

NORM 

1 73.40 0.1547 x 10 .10  

2 73.40 0.1412 x 10-10  

3 27320 0.1826 x 10 1  

4 577.97 02091 x 1042  

5 1036.76 0.5671 x 10 2  

6 1036.76 02277 x 1042  

7 1533.42 0.1184x10 05  

8 1545.45 0.3584 x 10M6  

TABLE 3.1 - NATURAL FREQUENCY EXTRACTION RESULTS 

USING THE SUBSPACE  ITERATION METHOD 

(AFTER 41 ITERATIONS) 

A sturm sequence check was performed after convergence was achieved and LUSAS stated 

that it had found the lowest eight eigenvalues. The results of the error norm associated with each 

eigenvalue indicate that the estimates of the natural frequencies were accurate. 
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3.3.1.2 The static condensation method— The whole finite element assemblage 

representing the Echinodome possessed 4371 degrees of freedom and to undertake a direct 

eigenvalue extraction process on such a mesh would be impractical. 

Static condensation can be encountered in the solution of static equilibrium equations or in 

the calculation of natural frequencies and mode shapes. When utilised for an eigenproblem its 

main purpose is to lump the structural mass at specific degrees of freedom while leaving the 

stiffness intact causing small inaccuracies in the natural frequency and mode shape estimates. 

One of the methods used to perform static condensation in a dynamic analysis is the Guyan 

reduction technique 31  . The reduction is carried out by neglecting the inertia effects of certain 

degrees of freedom characterised by the highest frequencies and modes thus retaining the lowest in 

the analysis. The Guyan reduction technique is summarised in Appendix D. 

The standard technique used in PAFEC for the solution of eigenproblems is the static 

condensation method. The structural degrees of freedom are subdivided into masters and slaves. 

Master degrees of freedom are chosen to describe the deformations of the lowest modes of 

vibration. The eigensystem in Eqn (3.5) is rewritten as follows 

([Km] - 	 = [o] 
	

(3.12) 

PAFEC transforms the generalised form of Eqn (3.12) into a standard eigenproblem form 

represented by 

[nfl[i])[} = [o] 	 (3.13) 

Then a most efficient technique known as the Householder tridiagonalisation method, 21  is used in 

the solution of the preceding equation. Once [tb] is computed it is back substituted to obtain [b] 

the required matrix of eigenvectors. 

For the Echinodome the number of master degrees of freedom was 144 specified at four 

parallel circles and three translational at the apex giving a total of 147. Each parallel circle 

possessed 36 translational degrees of freedom located at 12 nodes lying on 12 meridians 30 0  apart. 

The results of the analysis are listed in Table 3.2 and a comparison between the subspace 

iteration method and the static condensation method is presented in Table 3.3. 
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MODE NATURAL 

NUMBER FREQUENCY 

(Hz) 

1 73.47 

2 73A7 

3 274.37 

4 582.41 

5 1098.19 

6 1098.99 

7 1806.00 

8 1806.60 

TABLE 3.2— NATURAL FREQUENCY EXTRACTION RESULTS 

USING THE STATIC CONDENSATION METHOD 

METHOD USED DISK NUMBER OF NUMBER OF CPU TIME NUMBER OF ACCURATE 

OF SPACE EXTRACTED COMPUTED NATURAL FREQUENCY 
(i,th) 

EXTRACTION V1BYTE) EIGENVALUES ELOENVECTORS ESTIMATES 

Subspace 

iteration 54 8 8 73 8 

Static 

condensation 17 147 8 27 32 

TABLE 3.3— COMPARISON BEIWEFJV THE SUBSPACE ITERATION METHOD 

AND THE STATIC CONDENSATION METHOD 

3.4 TRANSIENT RESPONSE ANALYSIS 

Structural response to dynamic loadings can be classified into 38,39 

1. 	Early time response : highly localised deformations take place in structures subjected 

to severe impact or shock loadings. Stress waves are generated and interact with 

structural boundaries sometimes causing structural failure. Typical loading and 

response times are in microseconds. 
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2. 	Transient response: transient loads containing low frequency components excite the 

lowest vibrational modes of the overall structure, in which case loading and response 

times are of the order of milliseconds. Under such transient loading, structures respond 

globally and highly stressed points may not be in the vicinity of the loaded position. 

In the current analysis only transient response will be considered. 

3.4.1 Definitions 

Prior to any discussion in the field of transient response analysis it is necessary to define the 

following list of terms: 

• Shock response spectrum - is a plot of the maximum structural response at a 

specific point for a particular pulse shape against the ratio, td'  of the time duration of 

the pulse (td)  to the longest structural natural period (T 1). From such a plot the effect 

of the pulse duration (relative to T 1) on the structural response can be observed. 

• Initial shock spectrum - is a shock response spectrum of the maximum structural 

response while the shock pulse is acting, i.e. during the forced vibration state of the 

structure. 

• Residual shock spectrum - is a shock response spectrum of the maximum structural 

response after the shock pulse is over, i.e. during the free vibration state of the 

structure. 

• Maximax shock spectrum - is a shock response spectrum representing the overall 

maximum between the initial and residual shock spectra, i.e. during the motion of the 

structure. 

• Rise time (t1) - is the time for a triangular shock pulse to increase from zero to its 

maximum value (see Fig. 3.2(a)). 

• Decay time (t2) - is the time for a triangular shock pulse to decrease from its 

maximum value to zero (see Fig. 3.2(a)). 

• Skewness factor (K) - is a characteristic of triangular pulses and can be defined as 

the ratio of the rise time (t 1) to the total duration time of the triangular shock pulse 

(td  = t1  + t2). 

• Ramp time (t) - is the time taken by a step loading to reach its maximum value 

(see Fig. 3.2(b)). 
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• Dynamic Load Factor (DLF) - is defined as the ratio of the maximum displacement 

resulting from a dynamic load to the displacement which ensued from the same load 

applied statically. 

3.4.2 Various Pulse Shapes 

Structural response to a transient shock pulse depends primarily on the pulse shape and its 

duration. In general standard pulse shapes have been used to represent impact and blast loads. A 

half sine or a symmetrical triangle pulse shape would simulate an impact load while a pulse with a 

vertical rise (ic = 0) and constant or exponential decay would be an example of a blast loading. 

Transient loads when applied to structures excite a frequency range 0 -* f where f is the 

cut off frequency above which there is not enough energy to cause vibration. The frequency - 

spectra of such loads are periodic with a maximum amplitude at 0 Hz and decaying amplitude 

with almost zero load at equal frequency intervals the size of which depends on the pulse shape - - 

(c.f. Fig. 3.3 for a symmetric triangular pulse shape). Table 3.4 contains the zero load frequency 

interval of the frequency spectra for some of the standard pulse shapes. 

PULSE SHAPE ZERO -LOAD FREQUENCY INTERVAL 

Symmetric 

triangular 2Itd 

Half sine 1•5/td 

Rectangular 

 

1/td 

TABLE 3.4— ZERO LOAD FREQUENCY INTERVALS OF THE FREQUENCY 

SPECTRA FOR A SAMPLE OF STANDARD PULSE SHAPES 

From the above table it can be concluded that the cut off frequency depends on both the 

pulse shape and its overall duration time (ta). 

Step functions with a constant front are often used to represent dynamic loads with the 

ramping time as the factor controlling the width of the excited frequency range. A wide variety of 

pulse shapes together with their shock spectra for a SDOF oscillator can be found in Ref. (40). 
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3.4.3 The Discrete Fourier Transform (DFT) 

Fourier transform is used in moving an independent variable of a signal x(t) from the time 

domain to the frequency domain. As a result of the transform no data is lost or added. 

For a discrete periodic time signal with N samples, equally spaced in a period T, its DFT 

can be computed by 

N-If 
Xk = 	frr e 2 °' ) j 	; k = 0, 1, 2......., (N—I) 	...............(3.14) 

r=0 

It is possible to reconstruct the original time signal by an inverse discrete Fourier transform 

(lOFT) as follows 

Xr  = 	[xk e'] 	r = 0, 1, 2......., (N— 1) 
N-I 

(3.15) 

The fast Fourier transform (FFT) is an efficient algorithm used to compute the DFI' of a 

block of sampled data. The technique takes advantage of the periodicity of the weighting function 

eK2JkI thus reducing the number of multiplication operations, required for an FF1' algorithm 

with radix 2, from N 2  to N x Log2  N. Consequently higher accuracy is achieved because of the 

lower round off errors due to fewer computer operations. - 

According to Shanon's sampling theorem 41  for a band limited signal with the highest 

frequency coy , the sampling frequency to should be at least twice the highest signal frequency of 

interest which is represented mathematically as follows 

WS- 2awN 
	 (3.16) 

where a 

represents-the Nyquist frequency (maximum frequency of interest); and, 

(I) S 
	represents the sampling frequency. -  

The resulting frequency spectrum X(w) (DFT of a time signal x(t)) would have a frequency 

range 0 -, 	and a resolution Mo where 
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Mo = 	 (3.17) 

Pitfalls of the DFT (e.g. aliasing, leakage, wrap round error, picket fence effect) together 

with ways of minimising their effect or avoiding such errors, are discussed elsewhere 41 , 42 

A modified version of the DFT subprogram listed in Ref. (43) (in FORTRAN 77 

programming language) was mounted on the main frame. The program took in a block of real data 

representing a time domain signal and yielded the DFT in magnitude and phase format Other 

formats such as root mean square (RMS), power (PWR), power spectral density (PSD) or energy 

spectral density (ESD) were also possible to produce. The second half of the output data was 

discarded because of aliasing defects and only the first half was considered as being valid. 

3.4.4 Stability Examination of Numerical Integration Schemes 

Transient response analysis is carried out by solving the set of second order differential 

Eqns in (3.1) taking damping and inertia forces into consideration. 

In LUSAS the transient response analysis is performed by numerically integrating the time 

domain and with the assumption of some variation of displacements and velocities during small 

time intervals the set of second order differential equations are transformed into a set of 

simultaneous equations. Knowing the initial conditions at a time t the simultaneous equations are 

solved to obtain the displacements after a small time interval at. Two different recurrence 

schemes are implemented in LUSAS 19  as follows 

1. 	The three—point recurrence scheme 

([M] + 

+ (-2[M] + (i - 2y)At[C] + (f - 20 + y)at2[K]){st } 

+ ([M] - (1 - jAt[c] ++ D - 7)At2[K]){6t.,t} 

= M2({pt+At} + (f  —2D + y){Pt} 
~-(+ + D—{Pt—}) ............ . 	 (3.18) 

where 	istl 	represents the displacement vector at time 
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{P} 	represents the external load vector at time t and, 

13, y 	represent the time integration constants. 

2. 	The four—point recurrence scheme 

([M](y - 0 + (413 - i+ -j.)&[c] ~ (3cc  - 	 + 

+ ((- 3y+ 4)[M]  + (- .L + 4,y— f)At[c] + ( - fcc + 	2J3 - 

+ ((3y— 5) [M] + 	- Sy+ 3)At[C] + (fcc- 4c + 3y)At2[K]){8t_M} 

+ ((—y+ 2)[M] + (- f + 	2y— 
-V-)it[c] + (- 3a+  D - --y+ 1 )At2 [K]){ôt_zat} 

= 

 

((-La - 4)- 47){Pt+M} + (- fcc + 213— 	+ (Ft - 413 + 

+ (- 3cc + 	- 	 + 1){P_2})At2 	...............................................................  

where 	a, 13, 7 	represent the time integration constants. 

To start the three—point integration scheme the following equation would be used: 

([M] + DAt2[K]){8At} = ([M] - (4 - 13)At2[K]){80 } 

+ (At[M] - (-} - 

+ ((4 - f3)At2){P0} + (13At2){PM } 	................................................................(3.20) 

where 	is  01 	represents the vector of initial displacements computed from an initial 

linear analysis using [K] and {P 0} ; and, 

{ö0} 	represents the vector of initial velocities supplied by the analyst. 

To initialise the four—point integration scheme the same equation is employed succeeded by 

a three—point integration scheme to calculate the displacements i s2At• 
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An explicit integration method is a numerical integration procedure which solves for 

by using the equilibrium conditions at a time t while an implicit integration method uses the 

equilibrium conditions at time t+At. 

A temporal operator can be described as unconditionally stable if the solution for any initial 

conditions does not grow without bound for any M/T ratio (where T .  represents the natural 

period of the highest natural frequency of interest 1) but if there exists a certain limiting value 

for At/TM  below which the solution does not grow without bound then the numerical integration 

procedure can be characterised by being conditionally stable. 

Unconditionally stable implicit temporal operators suffer from two main errors, 

period elongation causing frequency distortions; and, 

amplitude decay causing an increase in damping. 

Amplitude decay is sometimes favourable to damp out any spurious participation of higher 

modes. 

Earlier studies were carried out to-investigate the •  stability and accuracy of numerical 	- - 

integration procedures for linear and non—linear dynamic response problems 17,4448  Various 

temporal operators are obtained when assuming different time integration constants for Eqns (3.18) 

and (3.19). Table 3.5 summarises the characteristics of such temporal operators. 
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TEMPORAL 

OPERATOR 

INTEGRATION 

SCHEME 

TIME INTEGRATION WNSTANTS 

INTEGRATION 

ME1TIOD 

sTAnlLrry * 
PERIOD 

ELONGATION 

AMPLITUDE 

DECAY c1 

cc 

- 

7 

Central 

difference Thee—point _______ 0 in Explicit 

conditionally 

stable - - 

Newniark Thse—poinI ___________ 114 in Implicit 

uondltionslly 

stable yes  

Houbolt Four—point 27 9 3 Implicit 

uscosalitimsslly 

stable yes yes  

Wilson-O Foul—point 2028/125 457/75 12/S Implicit 

unconditionally 

stable yes yes  

Oslerkia 

biglstc 

order Four—polot 702135 305 1315 Implicit 

conditionally 

stable yts yes 

Hilber- 

Huflcs— 

Taylor Four—point 22777/2 9174100 2 Implicit 

unconditionally 

stabte yea yes  

T A BLE 3.5—. CHARACTERISTICS OF DIFFERENT TEMPORAL OPERATORS 

It is apparent that for the central difference numerical integration procedure to achieve 

stability the time step (At) should be less than a critical value At e. Another observation is that if 

damping is neglected ([C] = 10]) and the [M] is diagonal the central difference procedure becomes 

- - -- 

 

more economical as it requires less maces manipulation but a small time step would still be 

necessary for a solution stabilfty. - -------------------____. -. - 

§ The general stability conditions for three and four—point integration schemes am stated in Appendix E together 
with their application on the tabulated temporal operators. 
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The choice of a temporal operator is guided by accuracy and economy, and because of the 

availability of a large number of conditionally and unconditionally stable numerical integration 

procedures in LUSAS tests were performed on some procedures to check their characteristics. 

Choice was made of unconditionally stable procedures (as described in the user manual 18 ) only 

because of their economy, and time steps used for each solution procedure are listed in Table 3.6. 

TEMPORAL OPERATOR At  
(ms) 

TIM 1  7JM1 
 At2 

(ms) 
TM/A 2 T/At2 

Newmark 0.6250 5.8 2 1.250 2.9 1 

Houbolt 0.3125 11.5 4 0.625 5.8 2 

Wilson-9 0.3125 11.5 4 0.625 5.8 2 

Galerkin higher order 0.3125 11.5 4 0.625 5.8 2 

Hilber—Hughes—Taylor 0.6250 5.8 2 1.250 2.9 1 

TABLE 3.6 - TIME STEPS USED FOR DIFFERFJTTEMPORAL OPERATORS 

Different ratios of MIT and MIT were used in the investigations where T. is the periodic 

time of the highest natural frequency of interest, 1m'  and T  is the periodic time of the cut off 

frequency, I, above which there is not enough energy to cause structural vibration. 

A dynamic force was applied at a point 600  away from apex normal to the surface, having a 

symmetrical triangle pulse shape with a maximum magnitude of 30 N and a duration time (td)  of 

2.5 ms. Graphic representation of the force—time history and the initial part of its energy spectral 

density (ESD) are shown in Fig. 3.3. The ESD was computed using the DFT program mentioned 

earlier, taking in 8192 samples (N) representing a time domain data block of 2.56 s length (T) and 

yielding 4096 frequency elements (N12), approximately 0.4 Hz (Al) apart. 

The four point integration schemes (Houbolt, Wilson-0, Galerkin and Hilber—Hughes-

Taylor) were started up using a Newmark temporal for the first three time steps (t = (I, at, 2At). 

The investigation results are presented in Figs 3.4 -s 3.8. Dynamic displacements were 

normalised by their static correspondents resulting from a static force with a magnitude equal to 	- - 

the maximum value of the force—time pulse, while time was divided by the largest natural period 

of the mesh (T 1  = 1/73.4 s). For the current investigation T .  = 1/278 s and T.  = 1/800 s. 

Fig. 3.4 shows that doubling the size of the time step for the Newmark procedure does not 

seriously affect the shape of the structural response or the peak to peak magnitudes. There is no 

amplitude decay but an increase in the period length when using At  can be noticed towards the 
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end of the signal due to the accumulation of the period elongation error. Therefore it can be 

assumed that decreasing the time step size will not change the general shape of the structural 

response or the peak to peak magnitudes and that the Newmark results are exact. 

Observing Figs 3.5 -, 3.8 for the Houbolt, Wilson—B, Galerkin higher and Hilber—Hughes-

Taylor numerical integration procedures respectively, it is noted that the peak to peak magnitudes 

decrease as the time step size decreased. Nevertheless agreement between both results (At 1  and 

At2) was possible for some procedures (Houbolt) as the time record increased since the solution 

with All suffered from a higher amplitude decay error than that when using Ali. 

The Galerkin solution presented in Fig. 3.7 was unstable because the required stability 

conditions were not satisfied (vide Appendix E) and this meant that in order to achieve solution 

stability At would have had to be decreased enormously, thus making the solution very expensive. 

Only the HiTher—Hughes--Taylor procedure produced results, when using At., which were in 

good agreement with the Newmark procedure. In.•conclusion, the Newmark solution scheme was 

found to be the most accurate and economic of all the five procedures. 

The dynamic response of a MDOF system is a combination of the response of single mode - 

shapes excited by the transient load. In Figs 3.4 -* 3.8 a discontinuity is apparent in the normal 

direction of the response and not in the meridional direction. This is an indication of the 

predominant influence of the axisymmetric mode which is characterised by motion normal to the 

surface of the structure. 

To summarise, if a transient dynamic analysis is to be carried out on a finite element mesh 

adopt the following steps 

Compute the natural frequencies of the structure. 

Determine the highest frequency component (f) of the dynamic load applied to the 

structure. 

Establish the highest excited structural frequency 

Estimate the size of the time step to be used by the most accurate and economic 

numerical integration procedure, e.g. when adopting the Newmark procedure 

At = 11(10fm  ) is recommended. 

3.4.5 The Frequency Response Function (FRF) 

The dynamic characteristics of a linear system can be described by its FRF which is defined 

as follows 
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11(w) 
= ....

(3.21)  

where 	F(w) 	represents the complex frequency spectrum of the excitation; 

R(w) 	represents the complex frequency spectrum of the response; and, 

H(() 	represents the complex FRF. 

In general the FRF is the structural response to a standard excitation which is a unit 

amplitude sinusoidal force. 

3.4.5.1 Various forms of the ERE— The structural response to an applied dynamic force 

may be displacement, velocity or acceleration and for a MDOF linear system the FRF may take 

one of the following forms 

ajk(c)) 
= F()

(3.22)  

= Fk(m)
(3.23)  

AJk((0) 
= Fk(w)

(3.24)  

where 	ajk(c)) represents the receptance FRF; 

represents the mobility FRE; 

AJk(w) represents the accelerance or inertance FRF; and, 

j, k are subscripts denoting the response and excitation locations respectively. 

- - ??s:(3:22). (3.23) and (3.24) are inter—related as follows 	- 

aJk(c)) = 1w tk(w) = —0) 2  AJk(co) 	.............................................................(3.25) 
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A point receptance (mobility or accelerance) ' is an FRF obtained by exciting and 

measuring response at the same location and in the same direction (,j = k). 

A cross point receptance is an FRF obtained by exciting and measuring response at the 

same location but in different directions (j = k). 

A transfer receptance is an FRF obtained by exciting and measuring response at different 

locations U * k). 

3.4.5.2 Graphic representation of the FRF— The FRF is complex and can be presented 

graphically in three different formats 

the magnitude and phase values versus frequency (Bode plot); 

the real and imaginary parts versus frequency (Co—quad plot); or, 

the imaginary part versus the real part (Nyquist plot). 

3.4.5.3 Theoretical estimation of the FliP— A dynamic force with a symmetric triangular 

pulse shape was applied at a point 600  away from apex having three components in the global 

X, Y and Z directions each with a maximum amplitude of 30 N (see Fig. 3.9). In order to obtain a 

convenient value for the frequency spacing the pulse duration was chosen as 

16 x 0.12208 = 1.95328 ms and the time step At used in the analysis was 0.12208 ms. Graphic 

representation of the resultant pulse shape accompanied by its ESD can be seen in Fig. 3.10. The 

resulting transform had 8192 frequency elements (N/2), 0.5 Hz (Al) apart giving a frequency base 

band up to 4096 Hz. 

The three force components constituted an asymmetric resultant thus enabling the excitation 

of all structural frequencies within the considered frequency band 0.0 -9 1024 Hz. 

The structural response was computed using the Newmark numerical integration scheme for 

the first 1896 time steps (consuming over 300 hours of CPU time). Dynamic response in the form 

of translation and rotation under the dynamic point load are plotted in Fig. 3.11. The response of 

only one loof point rotation (see Fig. 2.8) was presented because the results for both loof points 

were almost equal. 

It is observed that there is no decay in the amplitude of the structural response when the 

structure is in a free vibration state since damping was neglected. An exponential weighting 

function with a time constant T
W

of 30 ins was applied to the time history signals in order to 

decrease its amplitude gradually to zero (see Fig. 3.12) to avoid leakage errors when discrete 

Fourier transformed. 
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As the earlier mentioned DFT subprogram was based on a radix two FFT a block of time 

domain data containing 16384 (214)  elements was formed by zero filling the rest of the sequence 

(the first part containing one element for the initial conditions and 1896 elements computed by 

LUSAS). The zero elements had no contribution in the DFF summation and the transform had the 

following characteristics 

T = (16384— 1) x 0.12208 x 10-3  = 2s 

= 0.5 x (16384/2) = 4096 Hz 

M = 1/2 = 0.5 Hz 

Though the DFT permitted the analysis of a frequency band 0 -4 4096 Hz the dynamic 

force applied excited a frequency range 0 -4 1024 Hz and the time step At used for numerical 

integration was sufficient only for such a span. 

A different version of the DFF subprogram was prepared to take in the force and response 

data sequences and generate the FR?. Cross point receptances were computed and are depicted in 

Fig. 3.13. 

Taking a frequency response peak as the criterion for the occurrence of a natural mode, the 

period elongation error was calculated for the excited modes relative to the free vibration results 

determined using the subspace iteration method (see Table 3.1). The results are listed in Table 3.7. 

MODE 	PERIOD 

NUMBER ELONGATION 

ERROR 

(%) 

1 3.3 

2 3.3 

3 1.0 

4 0.9 

TABLE 3.7—PERIOD ELONGATION ERROR FOR THE FIRST FOUR MODES 
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It can be concluded that the size of the time step At employed in the current analysis was 

acceptable as it caused very small period elongation errors. 

3.4.5.4 Applications— Recalling Eqn (3.21) it is obvious that with the knowledge of any 

two parameters the third can be computed, e.g. 

if F(w) and R(w) are known, 11((o) can be derived; 

if F(w) and H(co) are known, R(c)) can be derived; and, 

if H(w) and R(() are known, F(w) can be derived. 

In the previous subsection the first case has been presented by the calculation of the cross 

point receptances and in the following two subsections the second case will be applied to calculate 

the shock spectra for the Echinodome with the knowledge of the FRF and force spectrum. 

3.4.6 Shock Response Spectra 

Different forms of the maximum shock response spectrum have been defined earlier and --

there are two approaches to calculate such a spectrum: 

A direct method is to apply a dynamic pulse with a known shape and duration, 

compute its corresponding transient response and then estimate the maximum initial, 

maximum residual and maximax response values. The process will need to be repeated 

several times until a specific range of pulse durations has been investigated. 

An alternative method is to apply a dynamic pulse of any shape with a very short 

duration in order to excite a wide frequency band. With the knowledge of the dynamic 

force and transient response histories the FRF can be computed from the 

corresponding spectra through Eqn (3.21). The FRF is then used to calculate the 

transient response to any dynamic pulse with any duration on the condition that the 

excited frequency band does not exceed that used in the calculation of the FRF. 

Though the first procedure is simple it is inefficient and uneconomic and as a result the 

second approach was used in the following analysis. A program called SRSTRA was prepared to 

calculate the shock response spectra of a number of dynamic pulses, e.g. full versed sine, half sine, 

rectangular, triangular symmetric and asymmetric shapes. A flow chart of the program is depicted 

in Fig. 3.14. The program takes in force (F(t)) and response (8(t)) histories as well as an indicator 

for the pulse shape. The transient response is weighted by an exponential window (et.)  to 

dampen the signal's amplitude to zero before the end of the time period (T) considered. The FRF 

is computed after the calculation of the DFT of both the force (F(co)) and transient response 
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(8(w)). In the next stage the program enters a loop to perform the following steps for pulses with 

different durations - 

Generate a dynamic pulse F(t) with a certain duration (td)  and discrete Fourier 

transform it (F 
9(m)). 

Calculate the transient dynamic response (S g(CO)) and inverse discrete Fourier 

transform it (ög(t))• 

Estimate the maximum initial (MAXI), maximum residual (MAXR) and maximax 

response (MAXM). 

Normalise each of the above peak dynamic responses by a static response value S. 

resulting from a static force with a magnitude equal to the maximum value of the 

dynamic force—time pulse to obtain MXIN, MXRN and MXMN. 

The number of times the loop is entered depends on the range of pulse durations of interest. 

It is worth noting that by not compensating in the results for the exponential weighting 

function assisted in simulating damping which has been neglected throughout the current analysis 

and would exist for real structures.. 

3.4.6.1 Comnarison of shock resnonse snectra for a samnle of symmetrical nulses— The 

shock response spectra for a set of five symmetrical dynamic pulses were computed using the 

above mentioned program. The pulses were selected on the basis of equal pulse area (or equal 

impulse) resulting in different maximum amplitudes for the various pulse shapes (see Fig. 3.15). 

The previously derived cross point receptances were utilised in the calculation of the maximum 

initial, maximum residual and maximax shock response spectra for each of the transient forces. 

In Figs 3.16 —* 3.20 the maximum dynamic response was normalised by the displacement 

which ensued from the application of a static load with a magnitude equal to the maximum 

amplitude of the corresponding force—time pulse. While response in Figs 3.21(a -4 d) and 

3.22(a -, d) was normalised by the displacement resulting from the application of a static force 

having a magnitude equal to the maximum amplitude of the FVS, RCT2 and TRG pulses. In 

Figs 3.16 —, 3.20, due to the normalisation carried out, the Y—axis represented the DLF and from 

those figures the following deductions were made 

1. 	For all five pulses considered the meridional and normal dynamic load factors were 

the maximum and minimum of a DL.F range respectively whilst circumferential and 

edge rotation dynamic load factors were approximately equal and in between both 

extremes of the range. 
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Any of the five transient forces possessing a time duration ('C 
d)

greater than 0.5 

resulted in a maximum response equal to the maximum initial response. 

As the time duration ('Cd)  for FVS, HSN and TRU pulses approached the value of 4.0 

the DLF tended towards the value of 1.0 leading to the following interpretation as 

the time duration of the three preceding pulses increased the dynamic displacements 

(translation and rotation) inclined towards their static correspondents. 

Each directional dynamic response for rectangular pulses tended towards its own DLF, 

e.g. normal DLF -4 1.25, meridional DLF —* 2.15, circumferential DLF -.* 1.75 and 

edge rotation DLF —> 1.8. 

The next set of observations were made by noticing Figs 3.21(a —) d) 

Dynamic pulses with a time duration less than 0.25 produced similar response—time 

histories leading to the conclusion that for such transient forces the pulse shape does 

not influence the dynamic structural response. 

As the pulse durations increased the maximum response varied in magnitude and time 

of occurrence for different pulse shapes. 

High frequency components of small amplitudes were evident in the dynamic response 

resulting from the application of RCT1 and RCT2 pulses because of the sharp rise and 

decay of such pulses. The preceding effect was a result of the high sampling rate and 

was more pronounced in the normal response—time histories than in circumferential or 

edge rotation responses, while in the meridional direction it was almost non—existent. 

The succeeding remarks were acquired by observing Figs 3.22(a —* d) 

The dynamic pulse RC12 produced the maximum shock response spectra though the 

transient force had a time duration half that of any of the other forces. 

Although the FVS and TRO pulses had equal time duration, maximum amplitude and 

impulse, theft shock response spectra varied, in essence meaning that altering the pulse 

shape influences the dynamic structural response. 

The maximum amplitude of a dynamic transient force is one of the parameters 

affecting any structural response—time history. 

The maximum dynamic response occurs for pulses with a time duration 'Cd ranging 

from 0.5 to 1.0 , except for RCT2 which occurs during T  = 0.25 —* 0.5. 
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3.4.6.2 Comparison of shock response spectra for triangular pulses with various 

skewness factors— The earlier mentioned program was used again to compute the shock response 

spectra for a set of triangular pulses with different skewness factors. The force—time pulses had 

equal maximum amplitude, time duration and pulse area, the only varying parameter was the 

skewness factor (see Fig. 3.23). 

Dynamic response in Figs 3.20, and 3.24 - 3.27 was normalised by displacement caused by 

the static application of F 0  and as a result the Y—axis represented the DLF in the latter set of 

figures. The undernoted remarks were drawn from Figs 3.20, 3.24 and 3.25: 

Circumferential and edge rotation dynamic load factors were almost equal and lay 

within a DLF range defined by a maximum and minimum represented by the 

meridional and normal dynamic load factors respectively. 

For a TSO pulse type as the time duration ('Cd)  of the transient force increased the 

maximum initial response increased suggesting that as Cd  tended towards infinity the 

DLF would approach the value of 2.0 and might overtake it. 

The following conclusions were made from Figs 3.26(a - d) 

Pulse shape of transient forces with time durations less than 0.25 has little influence 

on the dynamic peak response. 

For larger time durations ('Cd > 0.25) variation in the skewness factor resulted in an 

alteration of the magnitude and occurrence time of the maximum dynamic response, 

e.g. when considering the free vibration state for c  = 1.0 the TSO and TS1 transient 

forces generated dynamic responses which are opposite in phase and the TRG pulse 

produced dynamic response with a maximum occurring at the minimum dynamic 

responses of the TSO and TS  pulses. While for c  = 1.5 the TRG pulse resulted in 

dynamic response opposite in phase with that of TSO and TS1. 

High frequency components were apparent in the response—time histories of the TSO 

and TS1 pulses because of their sharp rise and decay respectively. 

More remarks were possible to be drawn by noticing Figs 3.27(a -, d) 

Except for TSO all other triangular pulses with different skewness factors generated a 

DLF tending towards the value of 1.0 as c   approached higher values ('Cd -, 4.0). 

The maximum shock response spectrum for TSP2 was the maximum spectrum when 

compared with the spectra of other triangular pulses of different skewness factors, for 

'Cd 
> 2.0 when considering the normal direction response and 'Cd>  1.0 for other 

directional dynamic responses. 

-C--- 
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3. 	In general for triangular pulses with different skewness factors the maximum dynamic 

response occurs for pulses having a time duration td  ranging from 0.5 to 1.5. 

3.4.7 Step Loads 

A forcing function starting instantaneously with a maximum value and staying constant is 

generally known as a step loading. In such a case the ramping time is considered very small when 

compared with the structure's natural period. In some cases dynamic step loadings take a 

considerable amount of time to reach a maximum constant value and as a result their effect on 

structures become similar to that of a static load. 

The Echinodome response to step loading was studied with LUSAS using two different 

ramping times, r = 0.0 and t = i.s; Three mutually perpendicular components (normal, 

meridional and circumferential) were applied at a point 60 0  away from apex for each of the latter 

cases. Displacement—time histories under the point load are depicted in Fig. 3.28. 

It was noticed that structural response to a step load with t = 0.0 was more critical than 

that for Tr = 1.5 and as the ramping time of the forcing function increased the structural response 

tended towards static response (DLF —* 1.0). 

When comparing the structural response of r r = 0.0 with that of response to TSO pulse with 

duration c = 4.0 it was found that the DLF for the former exceeded that of the latter and 

subsequently, it can be concluded that a step loading which reaches its maximum in a very short 

duration is the most severe dynamic load to be applied to the Echinodome. 

3.5 DYNAMIC BUCKLING ANALYSIS 

If a thin walled structure is to be subjected to a dynamic loading in real life then it is 

extremely important to investigate the dynamic stability of the whole structure under such loads. 

In the previous section it was established that the step load was the most critical dynamic 

loading to be applied to the Echinodome and consequently it will be used in the current 

investigation. 

LUSAS was used to predict the dynamic collapse buckling load of the Echinodome 

prototype. A dynamic buckling state was said to have been reached when LUSAS gave a warning 

stating that one or more of the leading diagonal terms in the stiffness matrix had become zero or 

negative. Although other investigators 50  employed different definitions for the dynamic buckling 

of a thin shell, based on describing changes in the enclosed geometrical volume, the pivot 

elements criterion was considered as the most representative of the structural stiffness. 

-- -- 
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The non—linearities of the problem entered the equilibrium equations through the tangential 

stiffness matrix and the equivalent nodal forces which were re—evaluated for each iteration within 

each time step. The finite element program computed the dynamic displacements for each time 

step by performing several iterations to achieve dynamic equilibrium, details of the solution 

technique can be found elsewhere 19,51  LUSAS incorporates formulations for both geometry and 

material non—linearities. 

For the current study the previously described finite element mesh was used assuming 

perfect base fixity and adopting total Langrangian formulations for geometrical non—linearity while 

the material properties were defined as being linear. 

Two load cases were investigated, the first was for a concentrated step force acting at the 

apex, normal to the surface simulating an axisymmetric dynamic loading. The second was for a 

concentrated step force acting 60 0  away from apex, normal to the surface representing a symmetric 

load case. An analysis was performed using a different time step At for each case, 0.375 ms for 

the former and 1.25 ms for the latter. 

In previous work 52  it -  was found that artificial damping encountered when solving the 

equations of motion resulted in an overestimate of the dynamic buckling load and consequently a - 

choice was made of the Newmark time integration procedure to be adopted in the current 

investigation as it suffers from no amplitude decay even by varying the size of time step. In 

addition, structural damping was ignored ([C]=O) in order to generate a conservative estimate of 

the dynamic collapse buckling load. 

It was necessary to restrain the whole finite element model against any translation or rotation 

at time t = 0 in order to obtain zero response for the initial conditions because of the non—zero 

force at t = 0. 

To establish the dynamic collapse buckling load(P dc  several computer runs were performed 

using the trial and error concept until it was determined to the nearest 250 N according to the 

above mentioned criterion. Typical responses for both load cases are depicted in Fig. 3.29. The 

results indicate that for an axisymmetric case the ratiodinc  was equal to 0.378 and for the 

symmetric case 0.833. The accompanying mode shapes are shown in Figs 3.30 and 3.31 It is 

worth mentioning that at such high load levels the induced stresses exceeded the ultimate strength 

of the material. 

From the above results it was clearly indicated that the dynamic collapse buckling load was 

smaller in value than its static correspondent and hence more critical. Thus, if dynamic loads are 

to be exerted on thin walled structures in their operational life then it is a prerequisite to carry out 

a dynamic stability analysis preceded by a static stability analysis to determine if the designed 

structure can sustain such loads without experiencing serious damage or any form of instability. 
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The dynamic bifurcation phenomenon 53  is another form of dynamic buckling which could 

occur for the Echinodome shell structures and would require investigation. Due to the complexity 

of the Echinodome shape no attempt was made to establish such a parameter analytically and 

currently available software did not possess the facility for solving the involved equations 

numerically. 

3.6 CONCLUSIONS 

After studying the behaviour of the Echinodome under dynamic point loadings of various 

pulse shapes and time durations the following conclusions were drawn: 

Structural response to transient loadings, with a time duration 'Cd  ~t 0.5, reaches its 

maximum during the initial response phase (forced vibration state). 

Pulse shapes, peak magnitudes and duration are all parameters which control the 

maximum structural response to transient loads. 

The pulse shape effect on the peak structural response would be lost if the time 

duration ('Cd)  decreased less than 0.25. 

As the rise time of a dynamic load increases towards large values, when compared 

with the structure's periodic time, structural response tends towards static response 

(DLF - 1.0). 

For triangular pulse shapes characterised by zero skewness factor, as the time duration 

'Cd 
increases the DLF tends towards a value of 2.0 (double the static response). 

If the structure is to be subjected to dynamic point loads during its operation then it 

becomes necessary to carry out a dynamic buckling analysis. 

Step loading with infinite duration and zero ramping time is the most severe dynamic 

load—time history to be applied to a structure and consequently, it is that type of load 

which is to be considered when studying structural dynamic stability. 

The dynamic collapse buckling load is more critical than its static correspondent for 

the Echinodome. It is beneficial to perform a static non—linear analysis to determine if 

the load—deflection relationship was characterised by having a limit point (i.e. point of 

zero stiffness), because if such a point was non—existent, material fracture would be 

the most likely mode of failure. 
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FIG. 3.1(c)—VIBRATING MODE SHAPE 3 
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FIG. 3.1(d)-VIBRATING MODE SHAPE 4 
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FIG, 3.1(f)-VIBRATING MODE SHAPE 6 
--FREQUENCY= 1036.7 Hz-- 
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FIG. 3.15—DETAILS OF SYMMETRIC PULSES OF EQUAL IMPULSE AREA USED IN SHOCK RESPONSE ANALYSIS 
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FIG. 3.30-DEFORMED STRUCTURE UNDER DYNAMIC COLLAPSE BUCKLING 
FOR A NORMAL POINT LOAD ACTING AT APEX 
- -COLLAPSE LOAD = 4.50 kN-- 

(DISPLACEMENTS x2) 
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FIG. 3.31—DEFORMED STRUCTURE UNDER DYNAMIC COLLAPSE BUCKLING 
FOR A NORMAL POINT LOAD ACTING 50 AWAY FROM APEX 

---COLLAPSE LOAD = 7.75 leN-- 
(DISPLACEMENTS xl) 
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CHAPTER 4 

MODAL TESTING OF THE ECHINODOME 

4.1 SUMMARY 

A comprehensive modal testing of the Echinodome was carried out adopting a 

monoreference technique. Coordinates used in the modal test were selected and an oblique degree 

of freedom was added to the prototype, to be used as the driving point, in order to excite all 

vibrational modes. A triaxial accelerometer was utilised in the measurement of response data. Four 

different excitation techniques were investigated and the best used in the modal test. 

Data were collected and stored using the SMS modal analysis software which provided a 

wide range of curve fitting techniques in both frequency and time domains. A comparison between 

the various curve fitting techniques was carried out Non—linearities of stiffness and damping 

were carefully considered. 

A comparison between the test structure and the finite element modal models was carried 

out, in five different forms, to identify poorly modelled areas. Then updating of the finite element 

mesh and correction of experimental data were performed and a better modelling of the test 

structure was achieved. 

4.2 INTRODUCTION 

Modal testing is a vibration test carried out with the purpose of determining the modal 

properties of a structure which are : natural frequencies, damping and mode shapes (modal 

vectors). 

A modal test may be composed of the following three stages, 

data acquisition and signal processing; 

modal properties extraction; and, 

forming a spatial mathematical model. 

-133- 
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RESPONSE 	 MODAL 	 SPATIAL 

CHARACTERISTICS -4 PROPERTIES -> MATHEMATICAL MODEL 

•...k, m, C.... 

Firstly, a known excitation is applied to a structure and the corresponding structural response 

is measured. Acquiring both input (excitation) and output (response) signals a relationship in the 

form of the FRF is obtained. 

Secondly, curve fitting techniques are applied to the measured FRF to extract the modal 

properties of the structure under consideration. 

Thirdly, spatial models are constructed, from the structural modal parameters, in the form of 

stiffness, mass and damping. 

Results obtained from a modal test have three widely used applications. 

Model Verifications : a theoretical analysis, using the finite element method or any 

other theoretical procedure, is carried out to obtain structural dynamic properties hence 

permitting a theory—experimental comparison. In some cases such an application ends 

by carrying out a comparison for the modal properties. Recently, new methods have 

been developed for correlating finite element and modal testing results 556  These 

methods make it possible to identify inaccurately modelled regions thus enabling the 

updating of the finite element model. 

Modification Simulation once a verified theoretical model is obtained it can be used 

in determining the effect on the structural modal properties resulting from physical 

modifications (mass, stiffness, damping and substructures). 

Response/Force Predictions the availability of an experimental set of response 

characteristics (FRPs) enables the prediction of structural response to any combination 

of excitations and in the same manner force can be thrived from response 

measurements. 

In conclusion, to obtain a validated finite element model for the Echinodome to be used in 

the dynamic analysis a modal test must be performed on it. 
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4.3 STRUCTURE PREPARATION 

Before a modal test is started the following three main elements must be considered, 

distribution of measurement points; 

supporting conditions; and, 

driving point location and direction. 

In the current investigation a monoreference modal testing technique was adopted which is 

based on measuring a group of FRFs between a set of degrees of freedom and a common 

reference degree of freedom. 

After initial trials for the test structure supporting conditions response was measured at a 

number of spatially distributed stations on the prototype and excitation was applied to the 

structure's surface obliquely. 

4.3.1 Measurement Points 

A total of forty nine measurement stations were marked, one of which was the apex and the 

rest were located on twelve equally spaced meridians 300  apart Ml -* M12 (see Fig. 2.5). On 

each meridian four points were positioned, separated by an angle oo = 300, starting from the apex 

downwards ( 300, 600,  900,  1200) as shown in Fig. 4.1(a). 

Using a triaxial accelerometer, response was measured at each position in three mutually 

perpendicular directions —radial, meridional and circumferential.—. (see Fig. 4.1(b)), thus giving a 

sum of 147 degrees of freedom (147 measurements). 

4.3.2 Supporting Conditions 

The test structure was tested in two different supporting conditions, free and grounded. For 

the free state the prototype was soft mounted to ground using a mat of rubber foam, as shown in 

Fig. 4.2(a). The structure was excited using a modally tuned impact hammer. Excitation was 

applied normal to the surface at several points while response was measured at a single reference 

point, in three mutually perpendicular directions, using a triaxial accelerometer. 

After the acquisition of a number of FRFs it was noticed that two of the natural modes 

existed in the frequency range 12 -, 21 Hz and for some measurements the FRF was highly 

contaminated with noise in that range, thus casting some doubt on the quality of modal parameters 

"°r' Cr, 
which would be extracted. 
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Consequently, attention was reversed to the grounded state. A cubical steel mass, with a 

linear dimension of 350 mm, was placed on a vibration isolator to seclude any ground vibrations. 

Several FRF measurements were performed on the mass block at a number of stations to 

determine the vibration level in the range 0 -* 1600 Hz. 

A tufnol plate of dimensions 350 x 350 x 25 mm was fixed to the cubical steel mass using 

four bolts, on top of which the Echinodome with its tufnol base (200 x 200 x 19 mm) was secured 

by means of another set of four bolts. A thin layer of grease was applied between the large tufnol 

plate and the steel cube, and between each of the tufnol plates with the advantage of enhancing 

coupling between each of the surfaces (see Fig. 4.2(b)). 

FRF measurements were carried out on the test structure using the impact hammer and the 

triaxial accelerometer, and on comparing the vibration levels with those of the steel block 

measured earlier it was established that the latter levels were too low thus arriving at the 

conclusion that the test structure was attached to a sufficiently rigid base which provided the 

necessary grounding conditions. 

4.3.3 Driving Point 

To excite all vibrational modes within a specific frequency range careful consideration must 

be given to the choice of the common reference degree of freedom because of the axisymmetry of 

the Echinodome. 

From earlier numerical investigation of the mode shapes (vide Chapter 3) it was established 

that the first four modes were two repeated symmetric modes, one axisymmetric and one torsional. 

If excitation was applied normal to the surface only one of the symmetric modes would be excited 

as well as the axisymmetric mode. The driving point degree of freedom would be a vibrational 

node for both the second symmetric mode and the torsional mode and, as a result, they would not 

be excited. In order to excite all four modes the driving force must be applied at an angle to the 

plane containing the meridian on which the driving point lies (an asymmetric direction). 

An oblique degree of freedom was introduced by attaching a steel adaptor to the test 

structure at the driving point. The adaptor weighed less than 4 gm and was glued firmly to the 

surface of the prototype. A hole was drilled and tapped along the adaptor's centreline to allow for 

a push rod (stinger) attachment. A similar idea was developed by Dossing 

The excitation force was applied to the structure using a freely supported electro—magnetic 

shaker. The force was transmitted from the shaker to the structure through a 3 mm diameter 

stinger. FRF measurements were performed with stingers of three different lengths, 275 mm, 

50 mm and 10 mm. The measured FRFs were compared together and it was noticed that in 

changing the length of the stinger from 275 mm to 50 mm the second peak was shifted from 



CHAPTER 4-MODAL TESTING OF THE ECHINODOME 137 

112 Hz to 93 Hz while no significant change was observed when using the 10 mm long stinger. 

Consequently it was decided to apply the excitation to the structure utilising the shortest stinger 

(10 mm). Details of the orientation of the oblique degree of freedom relative to the test structure 

are shown in Fig. 4.3 and photographic presentation of the driving point is in Fig. 4.4. 

When measuring the cross point FRFs the triaxial accelerometer was placed as close as 

possible to the driving point. 

4.4 INSTRUMENTATION 

Fig. 4.5 shows a block diagram of the instrumentation and data acquisition system employed 

in the current modal test. In the following subsections a brief description of the modal testing 

set—up is given while more detailed information for individual instruments can be found in the 

relevant instruction manuals 58 

4.4.1 Excitation 

Usage of two different exciters was possible in the form of non—attached and attached 

exciters represented by an impact hammer and vibration exciter (shaker) respectively. Choice of a 

vibration exciter was preferred for two reasons firstly, it was possible to generate a wide range of 

various signal waveforms and secondly, the excitation signal could be band limited (not possible 

when employing an impact hammer for excitation) thus enabling the concentration of the 

excitation energy in the frequency band of interest, hence achieving a minimum dynamic range for 

the measurement which results in a better signal to noise ratio. 

A B&K type 4809 vibration exciter was utilised to apply an excitation to the test structure 

via a push rod of 10 mm length and 3 nun diameter. The excitation signal was generated using an 

HP model 3562A dual channel dynamic signal analyser and was routed to the exciter after being 

fed to a B&K type 2706 power amplifier. The input force signal to the structure was measured 

with a KISTLER model 9001 force cell which was signal conditioned by means of a B&K 

type 2635 charge amplifier. The force cell weighed less than 4 gm and was fixed between the steel 

adaptor and one end of the stinger. 

4.4.2 Response 

The response signal was acquired for three global axes at each station on the test structure 

with the aid of a miniature triaxial quartz accelerometer PCB model 303A06. The response 

transducers had a total mass of 22 gm and an operating frequency range 10 Hz -* 1000 Hz. A 

combined power supply and signal amplifier unit PCB model 4801306 was used to power the 

electronics of each response transducer and amplify its signal. Petro wax was utilised in mounting 
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the triaxial accelerometer on the surface of the prototype. 

4.4.3 Accelerance Measurement 

Both excitation and response signals were captured and digitised using the HP model 3562A 

dual channel dynamic signal analyser. Once the time records for each channel were filled with 

2048 samples, fast Fourier transformations were performed to compute the FRFs according to the 

following formula: 

H((o) = 6ER() 	
(4.1) 

where 	G((0) 	represents the cross spectrum between the. excitation and the response 

signals; and, 

G(w) 	represents the auto—spectrum of the force signal. 

The information of the FRF was presented in 801 equally spaced spectral lines in the form 

of accelerance. 

Several trials were carried out to select the most optimum frequency range of interest which 

was established to be 29.69 -, 654.69 Hz with a frequency resolution At = 0.78125 Hz. 

For each measured FRF the coherence function (Eqn (4.2)) was computed and displayed on 

the analyser's monitor. 

Coherence(w) 
= 	JGFR(w)12

(4.2) 
GFF((o)G((o) 

where 	GRR((0) 	represents the auto—spectrum of the response signal. 

The coherence magnitude varies between zero and unity and values of 0.9 and over indicate 

a measurement of high quality. Low coherence values do not necessarily point to poor quality 

measurements and can be attributed to any of the following reasons, 

i. 	bias error which is due to a low frequency resolution at rapidly changing resonances 

and antiresonances; 
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presence of noise in input and/or output signals; 

structural non—linearity; and, 

existence of secondary unwanted excitations arising due to incorrect attachment of the 

shaker. 

4.4.4 Data Acquisition and Analysis 

Once an FRF measurement was made the 801 data points were transferred from the analyser 

to an HP 9000 model 236 desk top computer, running the SMS MODAL 3.0 modal analysis 

software, via its HPIB (interface bus). Each individual FRF was then stored by the program in a 

data file for later analysis on a mass storage medium (disk) after recording information concerning 

the location of the excitation degree of freedom and the degree of freedom at which response was 

measured. The computer was connected to a plotter and a printer for documentation purposes. 

4.5 EXCITATION TECHNIQUES 

Employing a vibration exciter necessitated the usage of a signal generator. The HP 3562A 

analyser is capable of generating several waveforms which can be classified as follows 

Steady state or harmonic -+ fixed sine 

Periodic -+ periodic chirp 

Random - pure random 

Transient -* burst random and burst chirp 

In the following subsections the advantages and disadvantages of the above waveforms are 

stated with emphasis on the signals generated by the analyser. Several other excitation techniques 

are discussed elsewhere 49,59-63 

4.5.1 Steady State Excitation 

Excitation is applied to the structure at a single frequency using a fixed sinusoidal wave and 

by either stepping or sweeping a frequency range of interest is encompassed. Such a technique 

produces a high signal to noise ratio because of the concentration of the excitation energy at each 

particular frequency. 

The harmonic excitation technique can be used to identify non—linear systems. By exciting 

such systems with different excitation levels different FRFs are obtained describing the non-

linearity characteristics. 
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The main disadvantage of the current excitation method lies in its slow speed especially for 

lightly damped structures. 

The frequency spectrum of steady state signals must be scaled whether in terms of mean 

square (power - PWR), in units squared or in terms of root mean square (RMS), in units 64  . 

4.5.2 Periodic Excitation 

Periodic chirp, periodic random and pseudo random signals are examples of periodic 

waveforms used in the current excitation technique. Characteristics of the latter two signals are 

discussed in detail in Refs (59) and (60). 

The analyser was capable of generating a periodic chirp signal which is a fast sine sweep 

over a specified frequency span characterised by an almost flat spectrum. The process of weighting 

the time signals needed to alleviate the problem of leakage was unnecessary as the signal was 

repeated exactly every time record (the periodic time of the signal was equal to the length of the 

time record). 

The periodic chirp can be used to characterise non—linearities in a similar manner to that 

described in the previous subsection. 	 - 

The periodic chirp waveform is a deterministic signal and its frequency spectrum should be 

scaled whether in terms of mean squared (PWR) in units, squared or in terms of root mean square 

(RMS), in units. 

Random Excitation 

The dynamic signal analyser had the facility of supplying continuous random noise across a 

selected frequency span. Because of the randomness of the magnitude and the phase of the spectral 

components it is not possible to characterise a non—linear system using the current excitation 

technique as the non—linear distortion reduces to zero on averaging a number of time records. 

The main disadvantage of random excitation is that the time records for both excitation and 

response are not periodic and Harming windows are utilised to reduce the effect of leakage errors. 

Multiplication in the time domain is equivalent to convolution in the frequency domain and as 

both excitation and response spectra are unequal, the Harming weighting distorts the true FRF. 

A smooth spectrum can be produced by using a high number of ensemble averages and to 

reduce the measurement time overlap averaging can be employed. 

Random signals are scaled in terms of power spectral density (PSD) in units squared per Hz 

which can be achieved by normalising the mean square spectrum by the frequency resolution (Al). 
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4.5.4 Transient Excitation 

Burst chirp and burst random are classed as transient signals. A succession of bunts of 

signal are generated for a specific percentage of the time record. 

If the response decays to zero before the end of the time record then no weighting is 

necessary. But for lightly damped structures this might not be the case and as a result an 

exponential window for both excitation and response time records would be used to force 

sufficient decay at the end of the time record. The previous weighting process does not introduce 

any leakage errors and a mathematical proof has been provided in Ref. (65). 

Similar to periodic chirp, burst chirp excitation can describe non—linear systems while a 

burst random excitation would produce a least square estimate of the structure's linear response. 

Transient signals should have spectra scaled in terms of energy spectral density (ESD) in 

units squared times seconds per Hz and is obtained by scaling the mean square spectrum by the 

time record length (T), to obtain the total energy, and by normalising the resulting spectrum by the 

frequency resolution (At). 

4.5.5 Comparison Between Various Excitation Techniques 

The triaxial accelerometer was mounted at the apex of the test structure and four accelerance 

measurements were performed for each of the radial, meridional and circumferential directions. A 

different excitation waveform was employed in each of the four measurements and can be listed as 

follows periodic chirp, true random, burst chirp and burst random. After viewing the measured 

FRFs a decision was made to study the effect of various excitation techniques on the meridional 

accelerance only as it possessed the worst of the three coherences (radial, meridional and 

circumferential). Table 4.1 contains extracts of the individual measurement set—ups while 

Figs 4.6(a -) d) contain the results of the various measurements. 
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SIGNAL 

TYPE 

SOURCE 

LEVEL 

WINDOW 

TYPE 

AVERAGING (BURST LENGTH)/T 

(%) NUMBER OF OVERLAP 
(mV) 

AVERAGES (%) 

Periodic chirp 250 (RMS) uniform 10 0 - 

Random 250 (peak) Harming 20 50 - 

Burst chirp 250 (RMS) uniform 10 0 50 

Burst random 250 (peak) uniform 10 0 50 

TABLE 4.1 -MEASUREMENT SET-UPS FOR VARIOUS EXCITATION TECHNIQUES 

The excitation frequency spectra for all measurements were characterised by a low force 

level adjacent to the first two peaks which can be explained as follows. 

In the vicinity of structural resonance the velocity of the shaker armature (drive coil and 

assembly table) is at a maximum and such a motion within a magnetic field produces a back e.m.f. 

of maximum magnitude at structural resonance which results in a marked reduction in the force 

level. Consequently, to measure the true force applied to the structure a force cell is required 

between the structure and the shaker armature which was the case for all current and future 

measurements. 

In order to detect the existence of any non—linear characteristics the level of the periodic 

chirp excitation was increased from 250 mV RMS to 500 mV RMS. 

Accelerance magnitudes at seven different peaks are listed together with their corresponding 

frequencies and coherence magnitudes in Table 4.2. 
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(i) 

SIGNAL FREQUENCY 

(Hz) 

PEAK NUMBER • 	 TYPE 

1 2 3 4 5 6 7 

Periodic chirp 	(500 mV EMS) 60.94 82.81 245.31 327.34 508.59 511.72 577.34 
Periodic chirp 	(250 mV RMS) 61.72 85.94 246.09 338.28 509.38 512.50 575.78 
Random 	(250 mV peak) 61.72 85.94 246.09 338.28 509.38 513.28 575.78 
Burst chirp 	(250 mV EMS) 61.72 85.94 246.09 338.28 509.38 512.50 575.78 
Burst random 	(250 mV peak) 61.72 85.94 246.09 338.28 509.38 513.28 575.78 

(ii) 

SIGNAL ACCELERANCE MAGNITUDE 

(dB) 

TYPE PEAK NUMBER 

1 2 3 
14 

5 6 7 

Periodic chirp 	(500 mV R.MS) 18.73 -12.38 -15.55 -19.36 -6.03 -3.49 -23.69 
Periodic chirp 	(250 mV EMS) 18.31 -3.23 -15.54 -16.77 -5.08 1.08 -8.15 
Random 	(250 mV peak) 15.23 -4.46 -14.92 -16.15 -6.92 -323 -9.38 
Burst chirp 	(250 mV RMS) 18.92 -3.23 -14.92 -16.15 -5.69 -1.38 -8.15 
Burst random 	(250 mV peak) 1831 -3.23 -15.54 -16.15 -6.92 -2.62 -9.38 

(iii) 

SIGNAL COHERENCE 

PEAK NUMBER 
TYPE 

1 2 3 4 5 6 7 

Periodic chirp 	(500 mV RMS) 1.00 1.00 0.99 0.99 1.00 1.00 0.92 
Periodic chirp 	(250 mV EMS) 1.00 1.00 0.98 0.98 1.00 1.00 0.99 
Random 	(250 mV peak) 0.77 0.97 0.98 0.98 0.59 0.83 0.93 
Burst chin,, 	(250 mV EMS) 1.00 1.00 0.97 0.98 1.00 1.00 0.99 
Burst random 	(250 mV peak) 1.00 0.95 0.98 0.94 0.97 1.00 1.00 

TABLE 4.2- ACCELERANCE MEASUREMENT RESULTS FOR THE MERIDIONAL DOF 

AT APEX USING VARIOUS EXCITATION WAVEFORMS AND LEVELS 
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It was observed from the results of the last four excitation techniques listed in Table 4.2 that 

except for the random technique all coherence values were greater than or equal to 0.95 which 

indicated good quality accelerance measurements. The reason for the low coherence encountered 

when using random excitation was due to leakage though an attempt was made to minimise it by 

Harming weighting of the input and output time domain signals. 

When comparing the peak positions on the frequency axis of the accelerance functions 

obtained by periodic chirp signals of different levels (see Table 4.2(i)) no marked difference was 

noticed for peaks 1, 3, 5 and 6, while peaks 2, 4 and 7 suffered a considerable shift. As will be 

explained later the fourth peak corresponded to a torsional mode which makes the apex a node in 

both meridional and circumferential directions. Consequently, it becomes very difficult to measure 

accurate response levels because the response signal would be highly contaminated with noise 

which leads to incorrect estimates of peak locations. 

A choice was made to carry out the modal testing using a periodic chirp waveform 

excitation with a level of 500 mV RMS as it produced a high signal to noise ratio and at the same 

time the excitation force was considered too low to invoke structural non—linearity. 

In recent years, simple methods have been developed to detect the non—linearity of either 

stiffness or damping of a system in a structural dynamics test, but such techniques were only 

applicable to SDOF systems. By limiting the excitation frequency range to encompass one mode at 

a time it was possible to identify if either types of non—linearity (stiffness and damping) existed. 

Such a process appeared to be unnecessary due to the low force level which induced a nominally 

linear elastic structural response thus making it possible to apply conventional modal analysis 

procedures, based on linear models, to extract the modal parameters. 

4.6 CALIBRATION 

Calibration tests, before and after the modal test, were carried out to ensure that the overall 

sensitivity of each accelerometer and the force transducer was conformable with that computed 

from the manufacturer's certificates. 

A stainless steel, rigid steel mass of cylindrical shape and 4.198 kg mass was used in the 

current calibration test. An attempt was made to excite the mass along its centreline, while freely 

suspending it, with the shaker—stinger—force cell—adaptor combination but it was unsuccessful. 

This was because of the difficulty of joining the adaptor and the rigid mass due to the small area 

of contact. 
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As a result, a different calibration arrangement was used as depicted in Fig. 4.7. Excitation 

was applied with the aid of an impulse hammer on the force cell which was fixed on one end 

along the centreline of the rigid mass while the triaxial accelerometer was mounted on the other 

end along the same line. An accelerance measurement was carried out by acquiring the excitation 

and response signals through the force cell and the relevant accelerometer. The calibration 

constants fed to the analyser for both channels were unit volts and a frequency range 0 -4 800 Hz 

was selected. The average overall sensitivity was deduced for each accelerometer—force cell 

combination from the corresponding accelerance function (see Fig. 4.8) according to the following 

formula: 

F° ( ) 
VF  

where 	 represents the average of the acceleration spectrum; 

F 	represents the average of the force spectrum; 

Vg 	represents the voltage output from the electronics of the accelerometer; 

represents the voltage output from the electronics of the force cell; and, 

S 	represents the overall sensitivity of an accelerometer and force cell 

combination in kj' units. 

Table 4.3 lists measured and computed (from manufacturer's calibration constants) overall 

sensitivities for each of the three accelerometers with the force cell. In the calculation of the 

overall sensitivity from the measured accelerance functions the total rigid mass was considered to 

be composed of the rigid mass (4.198 kg), triaxial accelerometer (22 gm) and force cell (4 gm). 
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ACCELERANCE OVERALL MEAN SENSITIVITY 

NUMBER (m(21N) 

MEASURED 

(DIRECTION) COMPUTED 
BEFORE AFTER 

MODAL MODAL 

TEST TEST 

1'(meridional) 3.075 3.269 3.323 

2(normaj) 2.959 3.069 3.173 

3 (circumferential) 2.994 3.053 3.267 

TABLE 43—COMPARISON BETWEEN MEASURED AND COMPUTED OVERALL SENSITIVITIES - 

FOR TRIAXIAL ACCELEROMETER—FORCE CELL COMBINATION 

4.7 EXPERIMENTAL MODAL ANALYSIS 

Experimental modal analysis is the stage in a modal test where structural modal properties 

are extracted from an FRF data base using curve fitting techniques. In order to achieve good 

results in experimental modal analysis it is necessary to understand the theory behind it. The 

mathematical development of the equations of motion for the general cases of viscous and 

hysteretic damping can be found in Appendix F. 

4.7.1 Curve Fitting Techniques 

From Appendix F, the receptance FRF can be represented for the general case of viscous 

damping by 

N 	R 
ajk(o))=E 	

r jk

sr 

+ 	jk 	...................................................
(4.4)  

=I[

~7
Ia) - ) 	(w - s) 

where 	 s, 
 - cr°r + l(0r']l - Q and represents the rth  pole location of the FRF 

on the frequency axis; 

represents the critical damping constant; 
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rRjk 	represents the jkth  element of the residue matrix for the Ith  mode; and, 

j, k 	are subscripts denoting the response and excitation locations respectively. 

While for the general case of hysteretic damping the receptance FRF can be written as 

N 	 rRJk 
ajk(o)) = 	 (4.5) 

r1(or2 - 	+ ii1 r0)r2) 

where 	Mr 	represents the structural damping loss factor. 

A curve fitting process is required to extract the modal parameters (natural frequency, 

damping and residue) from a measured FRF and such a transformation is often thought of as a 

data reduction process. The data points of the measured FRFs could then be described by either of 

the above analytical functions (Eqn (4.4) or (4.5)) the coefficients of which are 0 r' Cr (or and 

R r Jk .  

At present, several curve fitting techniques are available in both frequency and time 

domains. Ref. (68) lists a. summary of most of the currently used parameter estimation methods 

together with the assumption used by each technique and their capabilities as well as the 

evaluation criteria. 

It is important to emphasise that the success of the curve fitting process is largely dependent 

on the type of model used to represent the dynamic characteristics of the structure under test. 

4.7.1.1 Local curve fitters— MODAL 3.0 69 , the modal analysis software used in the 

current research offered two types of curve fitters for analysing a whole set of measured FRFs. 

The first class is known as a local curve fitting. After measuring a set of FRFs one is chosen in 

which all of the modal peaks appear and is characterised by having the least contamination of 

electrical noise as well as possessing a good coherence function throughout the encompassed 

frequency range or at least around the resonance peaks. Then any of the implemented curve fitting 

techniques (SDOF methods Coincident or Quadratic Fitting, Peak Value Fitting, Circle Fitting, 

Rational Fraction Polynomial Fitting - MDOF methods : Rational Fraction Polynomial Fitting, 

Pole/Zero Fitting, Exact or Least Squares Complex Exponents Fitting) is used to extract the modal 

parameters ((o r ,Cr'  rJk of the chosen function. The natural frequency and damping are global 

dynamic characteristics of a structure and do not change from one station to another. As a result, 

the previously identified en and values are kept constant for all of the rest of the measured 

FRFs and only the residues (RJk)  are determined from each newly fitted function. 
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Local curve fitting was implemented in MODAL 3.0 in such a way that the frequency and 

damping tables may be updated from different FRFs which overcome the problem of the need for 

the appearance of all modes with high coherence values in the same measurement. 

4.7.1.2 Global curve fitters— The second class of curve fitters available in MODAL 3.0 is 

known as a global curve fitting which differs from the local curve fitting in that the natural 

frequency and damping for-each mode are estimated using all of the measured FRFs. Thus the 

pole (s,.) location on the, frequency axis is determined in a least squares sense. The second stepj 

performed using the curve fitter is to extract the residues and hence mode shapes by processing 

each individual FR?. 

The main benefit of such a technique is that the natural frequencies and dampings are 

identified accurately which results in better estimates of residues especially when nodal points are 

encountered. Details of the mathematical background behind the current technique will be 

described briefly in the following subsection. 

4.7.2 Applications of Curve Fitting 

MODAL 3.0 offered two of the often used curve fitting techniques in the experimental 

modal analysis field which were the least squares complex exponential fitting and rational 

fraction polynominal fitting. The former method fits a summation of complex exponential 

functions to an impulse response function which meant that the measured FRF had to be inverse 

Fourier transformed to the time domain and because of the limited frequency range of the FR? on 

which the IDFT was to be performed, the wrap around error (time domain leakage) would have 

occurred which would lead to serious inaccuracies in the estimates of the modal parameters. 

Conversely, the rational fraction polynomial technique undertook a frequency domain MDOF 

modal analysis and consequently it was the one to be used in the current research. 

The rational fraction polynomial form of FRF was first introduced in 1982 by Richardson 

and Formenti 70  In this technique the usual partial fraction expression of Eqn (4.4) is replaced by 

a ratio of two polynomials in the following form 

in 

11(w) = 	I 	........................................................................... (4.6)  
E[bksk ) 

k=O 	 Is=ko 
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where ak b 	represent the kth  coefficients of the numerator and denominator 

polynomials respectively. 

The direct analysis of the previous formula is difficult because of the ill—conditioning which 

sometimes occurs in the solution equations and as a result Eqn (4.6) is reformulated in terms of 

orthogonal polynomials as follows: 

Ick 4h1,k] 

1,2,3 ........ L 	....................... (4.7) IN 

E ldk Oi,kj 
k=1 

L lao ; k ~ j 

& k 	= las ; k = .
(4.8) 

L 	 ; 
z[o 1h11

2 
 o] 

= fo.5
0.0 

 ; k= 

k j
(4.9) 

where 	Ck d 	represent the kth  coefficients of the numerator and denominator orthogonal 

polynomials respectively; and, 

h1 	represents the ith  value of the FRF. 

In addition to the orthogonal properties stated in Eqns (4.8) and (4.9), the preceding 

Eqn (4.7) takes advantage of the Hermitian symmetry of the FRF about the origin of the frequency 

axis and that the real part of the FRF is even while the imaginary part is odd. The transformation 

of the FRE expression from Eqn (4.6) to (4.7) removes the ill—conditioning of the solution 

equations and reduces the number of equations to be solved to approximately half of the initial 

representation. 

The global version of rational fraction polynomial 71  modal analysis method split the modal 

extraction task into two steps. The first step was to identify the natural frequencies and the 

corresponding damping values using the whole set of measured FRF, while the second step was to 

analyse each individual measurement to extract the modal residues. Richardson 71  proved that the 

global rational fraction polynomial algorithm performs favourably for measurements containing 

heavy modal coupling and random noise. 
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4.7.2.1 Determination of the number of modes— When viewing all of the measured 

accelerance functions it was noticed that the Echinodome prototype exhibited some motion in 

seven clear regions on the frequency axis and as a result the frequency ranges of interest were 

chosen to be as listed in Table 4.4. 

RANGE I LOWER AND UPPER I NUMBER OF 

NUMBER 	 CONTAINED 
FREQUENCY BOUNDS 

PEAKS 

2 	75.00 - 125.00 	1 

3 	200.00 - 380.47 	2 

4 	494.53 - 529.69 	2 

5 	I 566.41 - 586.72 I 	1 

TABLE 4.4-FREQUENCY RANGES OF INTEREST FOR THE ECHINODOME PROTOTYPE 

When using the global rational fraction polynomial curve fitting technique two ways were 

possible to compensate for the out of band modes. The first 71  was to specify extra numerator 

polynomial terms while the second 72  was by overspecifying the number of modes. In general the 

first approach is preferred as it eliminates the requirement of sorting computational modes, which 

is a necessity for the latter approach. 

The introduction of an oblique degree of freedom through which excitation was applied 

(details of which are given in an earlier section) ensured that all vibrational modes were excited 

and as a result the existence of double modes with identical natural frequencies and damping 

values was expected due to the axisyimnetry of the test structure. Though such modes were 

expected to uncouple because of the geometrical imperfections present in the prototype in the form 

of non—uniform shell thickness and the seam. 

Maia and Ewins 73 described an approach to overcome the problem of identifying the 

correct number of modes within a frequency range and a similar technique was adopted in the 

current investigation to analyse the measured accelerance functions of the test structure. 

For the first frequency range a single measurement was chosen and a global curve fitting 

was performed to extract the natural frequencies and critical damping values of the specified 

number of modes (N). The previous step was repeated for each of the remaining measurements 

using the same number of modes and the same frequency range. 
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Initially it was assumed that a double mode existed within the frequency range of interest 

and then a computer program called INTEL, which will be described in the following paragraphs, 

was used to identify the correct number of modes. The out of band modes were compensated for 

using two different approaches, the first was by using two additional modes while the second was 

by utilising 16 extra numerator polynomial terms and then the output for each case was examined 

separately using the INTEL program. 

The flow chart of the INTEL program is shown in Fig. 4.9. The program takes in the 

number of identified modes (N) for each measurement (which is kept constant for all of the 

remaining measurements) together with the identified natural frequencies and damping values. The 

bounds of the frequency range of interest are given as well. 

After the input data is submitted the program removes the computational modes from any 

future analysis. The computational modes were selected on the following bases, 

if the natural frequency (w) of the considered mode lay outside the frequency range 

of interest; or, 

if the critical damping value (C r  ) of the considered mode was less than or equal to 

zero, or if it was greater than 5 percent. 

Next the program enters a loop to count the number of times the following conditions are 

satisfied for each of the remaining measurements 

(1—KTjxw :5(O:5(1+F.T.)XO) 

00  
(1— D.T.) x 	(1 + D.T.) x Cr  

where 	 r
0 	 0 

= 1,2,3 ....... .l47xN and r #r 

F.T. and D.T. 	represent a frequency and a damping tolerance respectively, 

specified by the operator. 

The preceding conditions represent a check of the existence of the considered mode in any 

of the remaining measurements and consequently if the number of times the above conditions are 

satisfied for an individual FRF is greater than one then the program counts it only once. 

Once the loop is ended the two maximum number of repetitions (NIMAX1 and NMAX2) are 

determined (they could be equal) for two different modes. A comparison between NMAX1 and 

NMAX2 is carried out to establish the number of existing modes. The comparison was based on 

the following rules 
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IfNMAX1 ~t147x0.3 

and NMAX2 ~ 147 x 0.3 § 

and (NMAX1 - NMAX2) !c 147 x 0.15 § 

There are two modes. 

IINMAX1 ~ 147 x 0.3 

and NMAX2 ~ 147 x 0.3 

and (NMAX1 - NMAX2)> 147 x 0.15 

There is one mode. 

If NMAX1 ~ 147 x 0.3 

and NMAX2 c 147 x 0.3 

= There is one mode. 

If NMAX1 c 147 x 0.3 

and NMAX2 c 147 x 0.3 

There are zero modes. 

Then the number of modes is output together with the mean and coefficient of variation of 

both the natural frequencies and damping values. Several frequency tolerances (F.T.) were 

specified for the modes identified using the global rational fraction polynomial technique of 

MODAL 3.0 (the damping tolerance was kept constant, D.T. = 0.15) and the results are listed in 

Table 4.5 for the first, second and fourth frequency range of interest. 

§ Various limits introduced in the INTEL program were similar to those adopted by Maia and Ewins n although it 
is necessary to emphasise that the frequency and damping tolerances were different because of the difference in the 
degree of modal coupling between the Echinodome prototype and the circular disc used in Ref. (73). 
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FREQUENCY FREQUENCY 
COMPENSATION MR ThE OUT OF SAND MODES 

RANGE TOLERANCE 
TWO ADDrPIONAL MODES 16 EXTRA NUMERATOR POLYNOMIAL TERMS 

NUMBER (%) 

NUMBER 

OF 

ES 
F~:Fm

s 

 
FREQUENCY DAMPING 

NUMBER 

OF 

MODES 

NUMBER  

OF 

REPETITIONS 

FREQUENCY DAMPING 

MEAN 

 (Hz) 

COY. 

(%) 

MEAN 

(%) 

CON. 

(%) 

MEAN 

(Hz) 

CD.V. 

(%) 

MEAN 

(%) 

COY. 

(%) 

0.25 2 
48 

46 

60.56 

61.41 

0.13 

0.04 

1.82 

1.30 

8.21 

7.41 
1 46 60.68 0.13 1.41 7.64 

0.50 2 
65 

61 

60.61 

61.43 

0.23 

0.23 

1.83 

1.31 

8.62 

792 
2 

58 

63 

60.68 

61.65 

0.21 

027 

8.42 

1.45 

8.04 

7.71 

0.75 2 
76 

78 

60.57 

60.71 

036 

036 

8.60 

131 

18.43 

41.W 
2 

64 

70 

60.73 

61.63 

0.30 

0.34 

1.42 

1.50 

8.05 

9.18 

8.06 1 103 60.73 1.42 1.32 40.45 1 110 60.23 1.31 1.44 83.85 

0.25 0 0 

0.50 0 0 

2 

0.75 0 0 

1.06 0 - - - ! 47 91.4! 336 1.91 9.05 

0.25 0 - - 8 74 510.49 0.01 0.06 818 

4 

0.50 0 - - - 1 82 580.60 036 0.06 10.80 

0.75 0 2 
65 

87 

510.45 

583.17 

0.41 

0.50 

0.07 

0.06 

10.72 

13.98 

ID) 0 - - - .... 0 88 580.40 0.56 0.06 10.69 

TABLE 4.5-RESULTS FROM THE INTEL PROGRAM USING VARIOUS FREQUENCY TOLERANCE FACTORS 
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It can be seen from the previous table that in general a 0.25 percent frequency tolerance was 

considered very tight for the INTEL program to identify the existence of more than one mode, if 

any. As a result the frequency tolerance was increased and the effect on the number of identified 

modes was noted. 

For the first frequency range, by increasing the frequency tolerance two clear modes were 

identified for both cases of residual energy compensation (two additional modes and 16 extra 

numerator polynomial terms) until the frequency tolerance contained both modes and then the 

INTEL program output the characteristics of a single mode, yet it was evident that the first peak 

was composed of two almost identical (in frequency and damping) vibrational modes. The 

program suffered some difficulty in identifying the correct number of modes forming the first peak 

because of the heavy modal coupling as well as the considerably large frequency resolution around 

such a peak. 

When observing the results for the second frequency range, in most of the cases the program 

failed to identify any modes because the number of repetitions was less than the limit specified in 

INTEL, although viewing the measured accelerance functions there was a clear mode within the 

considered frequency range. The failure of the mode identification by the program was attributed 

to the reason that the second peak varied its position on the frequency axis between 85 -, 105 Hz 

throughout all of the measurements and thus it was difficult for such a mode to fail inside the 

specified tolerance. 

The application of INTEL on the curve fitting results of the fourth frequency range was not 

as effective as for the first range for several reasons, 

the modal coupling was of a higher degree than the first range; 

the critical damping value was very small; and, 

the low accelerance magnitudes of modes considered. 

In summary, it can be concluded that there were two modes in the first frequency range, a 

remark which can be substantiated by the evidence available in Table 4.5. Therefore, changing 

either the compensation technique or the frequency tolerance values had little influence on the 

number of identified modes. 

In addition, the use of the INTEL program has proven to be effective in detecting whether a 

specified peak changes its position along the frequency axis. 
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4.7.2.2 Natural frequency and damping estimates— The above conclusions assisted in 

specifying the correct number of modes within each frequency range. The global rational fraction 

polynomial curve fitter of MODAL 3.0 was applied to all of the measured accelerance functions 

for each frequency range to determine the least square estimates for both the natural frequency and 

critical damping value of each mode. Compensation for the residual energy of the out of band 

modes was carried out using the maximum number of extra numerator polynomial terms. The 

global curve fitter in MODAL 3.0 could analyse N modes with 2(10 - N) extra numerator 

polynomial terms provided that N is not greater than ten. 

The specifications of the input for MODAL 3.0 are listed in Table 4.6 while the frequency 

and damping estimates can be found in Table 4.7. 

FREQUENCY CURSOR MODE NUMBER OF EXTRA 

RANGE POSITIONS NUMERATOR 
RANGE 

NUMBER (Hz) POLYNOMIAL TERMS 

1 50.00-> 71.88 1-*2 16 

2 75.00 -* 125.00 3 18 

3 200.0O-+380.47 4-*5 16 

4 494.53 -* 529.69 6-> 7 16 

5 566.41 -, 586.72 8 18 

TABLE 4.6 - SPECIFICATIONS OF INPUT DATA FOR MODAL 3.0 
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MODE I FREQUENCY  I CRITICAL 

NUMBER 	 DAMPING 
(Hz) 

(%) 

1 60.67 1.448 

2 61.64 1.467 

3 95.06 1.495 

4 243.69 1.787 

5 333.12 3.196 

6 510.37 0.060 

7 513.06 0.065 

8 576.17 0.064 

TABLE 4.7-FREQUENCY AND DAMPING LEAST SQUARES ESTIMATES 

It is encouraging to note from the above table that the first and second modes were detected 

correctly and the damping estimates were approximately equal (it will be demonstrated later that 

the motion of both modes was very similar) thus confirming the earlier derived conclusion 

concerning the number of modes in the first frequency range. 

4.7.2.3 Modal constants identification— The modal constants (residues) were calculatable 

following the determination of the global estimates of the natural frequencies and damping values. 

Thee different procedures using the global rational fraction polynomial curve fitter were 

adopted in an attempt to determine the most accurate mode shape estimates for later analysis. All 

three procedures used the same frequency and damping estimates listed in Table 4.7. 

The first procedure was based on curve fitting all of the measured accelerance functions for 

one frequency range using the maximum extra polynomial numerator terms to compensate for the 

out of band energy (similar values to those in Table 4.6 were used). The process was repeated for 

each of the frequency ranges and at the end the modal constants for all measurements and for all 

modes were determined. The procedure was named LFIT. 

The second procedure was slightly different in that the curve fitting process was carried out 

on a single measurement for the entire frequency domain without compensating for the out of 

band modes as none should have existed. The previous step was performed for all of the 

measurements and the whole process was called GFIT. 
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The third and last procedure was similar to the above procedure, GFIT, with the exception 

that four extra numerator polynomial terms were used in curve fitting for the modal constants. The 

procedure was termed GFJT4. 

The complex modal constants extracted using the above mentioned procedures are listed in 

Table 4.8. As observed, attention was concentrated on one of the cross point accelerance functions 

as it contained all of the vibrational mode shapes. 

MEASUREMENT 

STATION NAME 

AND 

MODE 

NUMBER 

LFIT GFF OFIT4 

MAGNITUDE PHASE MAGNITUDE PHASE MAGNITUDE PHASE 

DIRECTION (kg'.) (Deg. °) (kg-I S) (Degs 0) (cgs) (Degs 0) 

1 89.2 341.3 92.2 347.4 87.8 345.5 

2 39.9 50.5 36.0 65.5 35.3 56.8 

3 9.9 37.2 13.3 33.9 11.3 17.0 

SB 4 222.7 196.8 213.2 193.3 224.0 195.5 

Meridional 5 44.8 27.7 75.3 39.3 40.6 26.1 

6 4.5 49.7 5.7 41.1 5.0 52.0 

7 4.9 234.7 3.3 239.8 4.7 229.6 

8 11.9 220.1 9.9 227.3 11.0 219.2 

TABLE 4.8- COMPARISON BETWEEN VARIOUS CURVE FITTING PROCEDURES FOR MODAL CONSTANTS 

It can be noted from the previous table that each curve fitting procedure resulted in a 

different set of modal constants and a decision concerning which was the most correlated to the 

measured data was established with the aid of graphic representation. 

4.7.2.4 Regenerating cross point accelerance functions- Using the above estimates of 

modal parameters (w, Cr  and rRJk)  theoretical FRFs were generated and superimposed on 

experimental measurements in order to assess the quality of various curve fitting procedures. 

Fig. 4.10 contains a comparison of LFIT, OFIT and the experimental measurements of the cross 

point accelerance functions. It is obvious that both curve fitting procedures result in theoretically 

regenerated accelerance functions that do not conform with the experimental measurements. 
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A comparison between GFIT, GFIT4 and experimental data is presented in Fig. 4.11 from 

which the effect of introducing an additional set of four extra polynomial numerator terms can be 

seen. In theory, compensation for the out of band modes was unnecessary because the excitation 

spectrum was band limited in the frequency range 26.69 - 654.69 Hz, but the variation of the 

third mode (second peak) along the frequency axis presented a problem. In regions away from the 

third mode it was possible to minimise the mismatch of theoretical and experimental data using 

the four extra polynomial terms yet no possible cure was available for any local disagreement. 

4.7.2.5 Mode shapes extraction— Once the modal constants were extracted a sorting 

process was performed to calculate the mode shapes and the results were transformed to a global 

set of axes. The MODAL 3.0 estimates of mode shapes had to be mass normalised 74  for later 

analysis, a job which required the modal constants of the direct point accelerance function. The 

application of the driving force on the test structure through an oblique degree of freedom made it 

difficult to measure the latter FRF but a derivation was possible through coordinate transformation 

using the cross point accelerance functions measured at that station. When mass normalising the 

mode shapes MODAL 3.0 assumes that the structure under test is lightly damped. 

After the sorting process was carried out the phase angles of the modal displacements were 

plotted for each mode shape as shown in Fig. 4.12 to assess the degree of complexity of the 

modes. The radial lines represented the relative magnitudes of the modal displacements. Although 

the phase difference for some eigenvector elements of modes 1 and 2 were of an angle closer to 

900  than to 00  or 1800  their magnitudes were relatively small and unlikely to affect the overall 

behaviour of the mode shapes. Consequently, they were assumed to be real modes, an assumption 

which was deservedly extended to modes 4 and 5. From Fig. 4.12 it was observed that 

modes 3, 6, 7 and 8 were highly complex and any whitewashing (taking the magnitude of the 

eigenvector elements and attaching a + or - sign to it, depending on the closeness of the phase 

difference to either 0 0  or 1800) would significantly change the experimental mode shapes. 

4.7.2.6 Orthogonality of experimental modal vectors— As it was concluded in the above 

paragraph that some of the experimental mode shapes were highly complex a whitewash exercise 

was performed on the modes in order to check their orthogonality property (characterising real 

modes) which can be stated as follows 

1 

{}f{$}k = 0 	j k
(4.10) 
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where 	m 	represents the modal mass of the rth  mode shape. 

The orthogonality check results of the experimental mode shapes are depicted in Fig. 4.13 

for the various curve fitting procedures (the plots were prepared using UNIMAP 75  , a part of the 

comprehensive graphics software UN[RAS). The diagonal elements of the 3—D grid maps 

represented the product of the same mode shape vectors (j=k) and the large peaks along the 

diagonal indicated that modes 1, 2, 4 and 5 confirmed the assumption of real modes. On the other 

hand it would be wrong to apply the previous assumption on the highly complex modes 3, 6, 7 

and 8. 

When comparing the grid maps of Fig. 4.13 it was deduced that some of the mode shapes 

resulting from (}FIT4 followed the orthogonality property for real modes to a higher extent than 

their correspondents from GFIT. Though LFIT produced a number of real modes similar in 

quantity and quality to those of GFIT4, a decision was taken to consider results of GFIT4 only, as 

they yielded theoretically regenerated FRFs with least variance to experimental measurements. 

4.7.2.7 Identification of real and complex mode shapes— Theoretically, complex mode 

shapes exist for structures characterised by a distribution of damping which is not proportional to 

either the structural stiffness or mass. Complex modal vectors can as well be the result of 

experimental errors 76  as described below. 

In the current study higher modes 6, 7 and 8 had a weak amplitude when compared with the 

initial modes of vibration and the mass loading from the triaxial accelerometer could indeed result 

in inaccurate estimates of natural frequencies and damping values which in turn would produce 

complex mode shapes. In regions where the frequency resolution was too low, as was the case for 

the last three modes, the damping estimates will be incorrect thus the yielding of complex mode 

shapes. 

The main characteristic of complex modes is that they possess non—stationary nodal points, 

as a consequence of that the modal deflection of the various degrees of freedom of the test 

structure do not reach their maximum simultaneously. The experimental mode shapes are plotted 

in Figs 4.14(a -* h) after whitewashing the elements of the modal vectors and their types were 

identified with the aid of animated displays on the computer monitor. 

4.7.2,8 The spurious mode shape— The third mode shape can be described as being 

complex with a symmetric motion similar to that of the first mode (in the driving direction - see 

Figs 4.14(a) and 4.14(c)) with an almost equal damping value. When curve fitting various 

measured accelerance functions it was generally observed that some local discrepancies occurred 
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between the experimental measurements and the theoretically regenerated FRFs indicating 

inaccuracies in the modal parameter estimates, an error which existed because the resonance peak 

varied its position along the frequency axis. 

The previous remarks suggest that the spurious mode was incurred on the test structure from 

the driving point set—up. The variation of the peak position was because the fixation of the adaptor 

to the prototype broke off more than once and each time it was rebonded a different stiffness was 

achieved, causing variation in the boundary conditions and hence resulting in a different natural 

frequency and damping value. 

To overcome such a problem, a curve fitting process was needed to fit for different 

frequency and damping values for each individual measurement and in this way accurate modal 

parameters for the remaining modes would be achieved while results for the non—stationary mode 

would have to be ignored. Another method to remove the effect of such a mode from the modal 

parameters of other modes is by using either extra numerator polynomial terms (a technique which 

was adopted in the current analysis) or additional modes, more than two for the current case 

(which was not possible because it meant the specification of a number of modes greater than that 

allowed by MODAL 3.0) as the use of two modes resulted in large discrepancies between the 

theoretically regenerated accelerance functions and the measurements. 

4.7.2.9 Regenerating cross point and transfer FRFs— In order to assess the quality of the 

GFIT4 curve fitting procedure the three cross point accelerance functions and three transfer 

accelerance functions for a station on the lowest parallel circle were theoretically regenerated, 

using the corresponding modal parameters, and compared with the experimental measurements. 

Results are presented in Figs 4.15(a -) c) and 4.16(a -* c) which comprise a bode graphic 

representation of the considered FRF with a zoom on the heavy coupled mode regions (modes 1, 2 

and modes 6, 7). In addition, a Nyquist plot of the mobility function around each peak is 

disclosed. 

Studying the above figures it was clear that in general the theoretically regenerated FRFs 

agreed well with theft corresponding measurements thus indicating good estimates of modal 

parameters except in regions close to the second peak that suffered from a non—stationary position 

on the frequency axis for which reasoning was given earlier. 

When zooming on heavy coupled modes it can be noted that the global rational fraction 

polynomial curve fitting technique functioned well in identifying the modal characteristics of 

repeated or closely spaced modes although the correct number of modes was determined using a 

separate program (INTEL). - - 
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4.7.2.10 Checks on measured FRFs— The initial part of any of the measured accelerance 

functions, plotted on a Log frequency scale, was asymptotic to a stiffness line (positive slope) as 

well as for the upper end of the frequency range which is a characteristic for grounded 

structures 

Using the viscous damping model, the Nyquist plot of a mobility function of a resonance 

region is expected to follow a circular arc 49 . The above mentioned accelerance functions were 

numerically integrated (divided by iw ; to = 2it x (29.69 —> 654.69)) to yield mobility functions 

and each was split into six regions containing a modal peak. The Nyquist plot for each frequency 

range is depicted in Figs. 4.15(a —, c) and 4.16(a -~ c) where it was noticed that, with the 

exception of nodal points for some of the modes and for heavy coupled modes, the mobility 

functions traced out at least a part of of a circular arc. From the Nyquist plot of the theoretically 

regenerated mobility functions it was observed that as the magnitude of the modal constants 

(represented by the diameter of the circular arc) decreased the phase estimates became inaccurate, 

which could account for the complexity of the small mode shape elements. 

In general, it can be concluded that the global rational fraction polynomial curve fitting 

method has proven to work excellently when nodal points and noisy data were encountered. 

4.7.2.11 Derivation of the direct point accelerance function— Applying linear coordinate 

transformation to the three cross point accelerance functions the direct point accelerance function 

was obtained. Fig. 4.17 shows the driving FRF in both Bode and Co—quad formats. The two 

following checks 49  were indicating a set of good quality measurements (concerning the driving 

stations only), 

an antiresonance existed between each pair of resonances; and, 

all imaginary peaks corresponding to modal peaks occurred in the same directions (all 

peaks were negative) meaning they were in all phase. 

4.7.2.12 Synthesising FRFs— Rewriting Eqn (4.4), 

N 	R Jk
+ 	

Jk 	...................................................
(4.4)  

r=1[

~7
ice — sr)(ico 

- sr) 
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Considering a real normal mode approximation and assuming unit modal mass scaling 

rk rJ 
r1tjic  = 

1 
(4.11) 

It can be deduced that if {4'} r (where r = 1, 2, 3........N) were determined it is possible 

to derive the modal parameters for any of the unmeasured FRFs, e.g. amk  can be synthesised since 

rm' rk 
and s have been estimated where o: ink represents an unmeasured receptance function. 

Accordingly, the accelerance functions of three different stations, lying on the same parallel 

circle, namely 413, 5B and 6B were synthesised. For each set of FRFs (Normal, Meridional and 

Circumferential) its local radial (normal) direction was taken as the reference. The nine measured 

accelerance functions were 

A4BN,4BN A4BM,4flN A4Bc,4BN  A5BN,5BN  ASB5BN  A a5BN 	 AwN and A,6BN. 

Thus if the test structure was perfectly axisymmetric only one of the symmetric modes and its 

higher correspondent would be excited as well as the axisymmethc mode and the last combined 

mode. In addition, the following conditions would have been satisfied: 

A4BN,4BN = AsBN/N  = 

= AsBsBR  = 

4BCI4BN = SBCISBN = 6BCI6BN 

Fig. 4.18 shows that the preceding equalities were in general fulfilled except for the higher 

modes. The presence of the torsional mode and the discrepancies for higher modes was due to the 

geometrical imperfections of the test structure as well as inaccuracies inherent in the modal 

parameter estimates of the higher modes. 

In summary, all previous checks made indicated good measured data and reliable extracted 

modal parameters for only the first four vibrational modes (excluding the spurious mode). Some 

doubt was cast on the remaining fitted data for the rest of the modes due to the heavy coupling 

encountered combined with weak amplitudes and large frequency resolution. 

4.8 COMPARISON BETWEEN EXPERIMENTAL AND THEORETICAL MODAL 

PROPERTIES 

The main objective of the current modal test was to verify dynamically the theoretical model 

(finite element mesh) described in the previous chapter. Earlier modal tests ended with the 

comparison of both experimental and theoretical in the form of tables for natural frequency 

estimates and graphic representations for the mode shapes. However recently, new methods 5456 
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have been evolving with the purpose of identifying the origins of discrepancies between both test 

structure and finite element modal models following which attempts can be made to correct for 

existing errors in either one. 

The techniques are described in the following subsections and were applied to compare 

experimental results with both an initial and updated finite element mesh. All results for both 

theoretical models are presented side by side whether in table or graphic forms in order to 

manifest the effect of updating. 

4.8.1 The Number of Modes to Be Considered 

Because of the orthogonal properties of the vibrational mode shapes of a structure any 

dynamic response can be expressed as a linear combination of the response due to individual 

modes. As a result, the degree of importance of a mode depends on how much it participates in 

the overall structural response. 

The effective mass concept has been used effectively on other structures " and was used 

herein to determine the number of modes to take into account in the current investigation. It is 

defined as follows 

{Nc}[M]{I} 
2 

= mr[T 	I (4.12) 

where 	gX 	represents the effective modal mass for the r mode in the X direction 

(similar expressions can be derived for 'r3'  and gZ) ; and, 

tllx 	is a vector containing unit values for each row of the mass matrix, that is 

associated with the X direction and the remaining elements are zeros. 

Basically, the effective mass can be interpreted as that part of the total mass responding to a 

dynamic load in each mode and if the number of modes is equal to the total number of degrees of 

freedom then the sum of the effective masses of each mode in a specific direction will be identical 

to that of the rigid body mass. The effective masses were calculated for the initial and updated 

theoretical models and the results as percentages of the rigid body mass of the test structure 

(2.334 kg) are listed in Table 4.9. 
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MODE INITIAL MODEL UPDATED MODEL 

EFFECTIVE MASSES EFFECTIVE MASSES 

NUMBER x y z swm x y z sum 

(%) (%) (%) (%) (%) (%) (%) (%) 

1 16.32 33.81 0.00 50.13 1.99 50.90 0.00 52.89 

2 33.81 16.32 0.00 50.13 50.90 1.99 0.00 52.89 

3 0.00 0.00 99.79 99.79 0.00 0.00 98.37 98.37 

4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

5 34.11 0.00 0.00 34.11 35.04 1.01 0.00 36.05 

6 0.00 34.11 0.00 34.11 1.01 35.04 0.00 36.05 

7 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

8 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Summation for 
84.23 84.23 9939 268.27  88.94 88.94 98.37 276.25 

8 modes 

147 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Summation for 
86.25 86.25 99.87 272.37 89.55 89.55 98.37 277.47 

147 modes 

TABLE 4.9 EFFECTIVE MODAL MASSES FOR INITIAL AND UPDATED THEORETICAL MODELS 

No rotational directions were considered in the above table as the 4371 degrees of freedom 

were condensed on to 147 translational master degrees of freedom using the Guyan reduction 

technique (see Appendix D) in order to match their experimental counterparts. 

It can be noted from the preceding table that more than 80 percent of the total mass was 

accounted for in the X and Y directions using the first six modes and beyond 99 percent for the 

Z direction when using the third mode only. The results of the updated model followed a trend 

similar to that of the initial model results but with even larger effective modal mass values for the 

leading mode shapes. 
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It is important to emphasise that if rotational degrees of freedom were introduced among the 

master degrees of freedom the torsional mode would have had a relatively high effective mass in 

the Oz direction (rotation about the axis of symmetry - Z—axis -). 

From the previous conclusions it was found that the first eight modes were more than 

sufficient to consider in any model verification analysis. 

The notion of effective mass was not applied to experimental results for the following 

reasons 

The mass of the shaker, stinger, force cell, adaptor and triaxial accelerometer would 

influence the results. 

The higher experimental modes were complex thus complicating the calculation if not 

invalidating the whole concept. 

It is clear from Eqn (4.12) that estimating the effective modal mass parameter 

necessitated the use of a theoretical mass matrix which might contain undetected large 

approximations thus producing poor estimates. 

If a dynamically verified finite element model is achieved the above calculation would 

be a repetition if it has already been performed for the finite element mesh. 

4.8.2 Identification of Correlated Experimental and Theoretical Mode Shapes 

Before carrying out any experiment—theory comparison on modal parameters it is necessary 

to identify those modal vectors which correlate with each other. One of the available techniques is 

to calculate a statistical parameter known as the modal assurance criterion (MAC) 78  for in 

experimental modes and n theoretical modes. The MAC value for a pair of modes is defined as 

follows: 

MAC({1iy}j, {}J = (4.13) 
{v} {v} 1  {tV}k {tv}k 

where 	 represents the j th  experimental mode shape; 

{ t'1'}k 	represents the k th  theoretical mode shape; 

j, k 
	

are subscripts denoting the mode numbers; 
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X, t 	are subscripts indicating an experimental and theoretical mode; and, 

* 	indicates a complex conjugate. 

The result is a matrix of order mxn with values varying between zero and unity for perfectly 

uncorrelated and perfectly correlated modes respectively. It is clear that although the output of 

Eqn (4.13) is a scalar quantity complex mode shapes can be used. 

A unity MAC value does not necessarily indicate two correct modes as both modes can 

contain similar systemic errors and yet be consistently correlated. High MAC values can be 

encountered as well for two different modes when the number of degrees of freedom is too low to 

define a higher mode, such an effect is known as "Spatial Aliasing". 

Table 4.10 includes the results of the MAC calculation for the test structure and theoretical 

models while Fig. 4.19 is a graphic representation of the MAC matrices in the form of 3-D grid 

maps. 

(i) 

TEST 

STRUCTURE 

MODE 

INITIAL THEORETICAL MODEL 

MODE NUMBER 

NUMBER 1 2 3 4 5 6 7 8 

1 0.332 0.538 0.001 0.001 0.003 0.004 0.003 0.000 

2 0.520 0.445 0.000 0.000 0.008 0.003 0.000 0.000 

3 0.216 0.002 0.003 0.002 0.003 0.024 0.015 0.000 

4 0.000 0.000 0.978 0.002 0.000 0.000 0.000 0.000 

5 0.000 0.000 0.000 0.985 0.004 0.005 0.000 0.000 

6 0.723 0.041 0.001 0.000 0.046 0.067 0.000 0.000 

7 0.015 0.609 0.000 0.021 0.032 0.088 0.007 0.001 

8 0.000 0.000 0.965 0.003 0.000 0.001 0.000 0.000 

TABLE 4.10-MODAL ASSURANCE CRITERION BETWEEN EXPERIMENTAL AND 

THEORETICAL MODAL VECTORS (CONTD) 



CHAPTER 4-MODAL TESTING OF THE ECHINODOME 167 

(ii) 

TEST 
	

UPDATED THEORETICAL MODEL 

STRUCTURE 
	

MODE NUMBER 

MODE 

NUMBER 	1 
	

2131415 	1 	61718 

1 0.954 0.009 0.000 0.001 0.001 0.001 0.001 0.000 

2 0.003 0.970 0.000 0.000 0.004 0.001 0.000 0.000 

3 0.128 0.090 0.003 0.002 0.002 0.008 0.012 0.000 

4 0.001 0.000 0.982 0.002 0.000 0.000 0.000 0.000 

5 0.000 0.000 0.000 0.986 0.003 0.006 0.000 0.000 

6 0.206 0.555 0.001 0.000 0.084 0.057 0.000 0.000 

7 0.406 0.214 0.000 0.020 0.023 0.126 0.006 0.001 

8 0.000 0.000 0.965 0.003 0.000 0.001 0.000 0.000 

TABLE 4.10-MODAL ASSURANCE CRITERION BETWEEN EXPERiMENTAL AND 

THEORETICAL MODAL VECTORS 

Real modes (whitewashed modal vectors) were used to represent the experimental mode 

shapes in the preceding calculation although Eqn (4.13) permitted the inclusion of their complex 

version. The reason was that the experimental real modes were to be used in any future analysis 

and it was necessary to determine their general characteristics. Appendix 0 contains tables of 

MAC values obtained using complex experimental mode shapes. 

The high MAC values in Table 4.10 indicated that the mode pairs f.014,  t3 and {X+}5 

were correlated while the effect of spatial aliasing was the cause of a 96.5 percent 

correlation coefficient between and It was clear as well that some correlation existed 

between I X011, ft012 and 1 X012, {} I 

When considering the pictorial representation (in the form of animated mode shapes) of the 

experimental mode shape estimates modes 6 and 7 appeared to have similar motion to that of 

theoretical eigenvectors S and 6 respectively. 

The following table contains a list of experimental and theoretical natural frequency 

estimates for the first six correlated mode pairs. 
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CORRELATED 

MODE 

PAIR 

EXPERIMENTAL 

FREQUENCIES 

INITIAL MESH UPDATED MESH 

FREQUENCY IDIFFERENCE I FREQUENCY IDIFFERENCE 
(Hz) 

NUMBER (Hz) (%) (HZ) (%) 

1 60.67 73.78 21.61 57.77 4.78 

2 61.64 7318 19.70 57.77 6.28 

3 243.69 275.64 13.11 223.20 8.40 

4 333.12 606.47 82.06 336.37 0.01 

5 510.37 1115.42 118.55 878.52 72.13 

6 513.06 1115.42 117.41 878.52 71.23 

TABLE 4.11 - COMPARISON BETWEEN EXPERIMENTAL AND 

THEORETICAL NATURAL FREQUENCY ESTIMATES 

A comparison between the first four correlated mode pairs magnitudes was performed by 

plotting each experimental modal vector element versus its theoretical correspondent as depicted in 

Fig. 4.20(a). Both sets were mass normalised. The points for the first and second correlated mode 

pairs showed very poor tendencies to be on a straight line. Plots for correlated mode pair number 

(CMPN) 3 and 4 almost lay on straight lines with slopes 1.2 and 0.9 respectively (the slope of the 

best fitted line through the points) indicating that although each mode pairs were highly correlated 

a difference in the scaling existed. 

4.8.3 Identification or Coordinates with Large Discrepancies 

In the following analysis only the first four correlated mode pairs will be used due to the 

inaccuracies encountered in higher modes in addition to their weak influence on any dynamic 

structural response. 

The identification of coordinates which harbour large discrepancies between experimental 

and theoretical mode shapes has been carried out with the aid of newly developed statistical 

parameters 55  and matrix methods 54,56,79 . The adopted techniques have been evolving recently 

aiming to explain low MAC values as well as identifying the poorly modelled regions of a 

structure when using the finite element method. 
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4.8.3.1 Coordinate modal assurance criterion (COMAC)— The coordinate MAC is 

complementary to the modal assurance criterion for mode shapes. It attempts to locate parts of the 

structure which cause low MAC coefficients. 

In the current study the COMAC was calculated for each degree of freedom using the 

following equation 

2 

(E {XvI}c{tui}L) 
COMAC(i) = L 	 (4.14) 

,mx 	2 	 2 

where 	i 	is a subscript indicating the i degree of freedom; 

L 	represents the correlated mode pair number; and, 

{*v 1 }, f tV l represent the 1 th  eigenvector element of the experimental and theoretical 

modal vectors respectively. 

Lieven et al. 55  when suggesting the COMAC value, used a slightly different expression, 

2 

( 	I{XwI}c{twI}Ll) 
COMAC(i) = L L=1 
	 (4.15) 

2 1nax 	2 
(z {xvI}L)(Z {twi}L) 

The modulus sign in the preceding expression was inside the summation thus limiting the 

interest to that of the relative magnitude at a specified coordinate over all the correlated mode 

pairs. By comparison the more comprehensive format of Eqn (4.14) takes magnitude and phase 

into consideration. 

It is important to mention that in order to correctly estimate the COMAC, all correlated 

mode pairs had either to lie in phase or out of phase. 

4.8.3.2 Modulus difference matrix (MDM)— The elements of the MDM are computed for 

two sets of correlated eigenvector pairs using the following formula 

= 1I.V111, - {1w1}J 	;L=  1, 2, 3......., L 	 (4.16) 
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where 	{Avj}L 	represents the difference for the i th  element of the Lth  CMPN. 

Again Lieven et al. 55  used a different expression listed below, 

{Avj}L= II{XwI}LI - 	 L = 1,2,3......., L, 	(4.17) 

In Eqn (4.17) the modulus of the eigenvector elements is taken before the difference is 

calculated while Eqn (4.16) accounted for both magnitude and phase information. 

In a later subsection it will be demonstrated how the MAC, COMAC and MDM can work 

together to locate the position of errors, whether for test structure or finite element modal model. 

4.8,3.3 Error matrix method (EMM)— The EMM is a technique developed with the aim 

of identifying local errors for either the stiffness or mass matrices. It makes no assumption 

concerning the accuracy of either matrices whether theoretical or experimental, instead it uses a 

set of modal parameters as a reference basis. 

Several approximations are involved when calculating the error matrices. In most cases the 

experimental degrees of freedom are much less than those of the finite element mesh (in the 

current case a ratio greater than 1 : 29). In general, it is possible to follow two routes in order to 

match both sets of freedoms, the first of which is to expand the experimental degrees of freedom 

to be compatible with those of the theoretical model giving the benefit of regaining the rotational 

degrees of freedom results without measuring their corresponding FREs. The other route, which 

was adopted for the current study, is to condense both the stiffness and mass matrices on master 

degrees of freedom which are the experimental degrees of freedom with the consequence of not 

considering rotations. 

When viewing the following formulae for error matrices it will be noticed that only a few 

modes are considered in the calculation - another approximation which is encountered due to the 

difficulty in measuring all vibrational mode shapes. 

An additional approximation is inherent in the formulation of the analytical stiffness and 

mass matrices. 

The theory behind the EMM can be stated as follows 

[AK] = [Ky] - [K s] 	................................................................................(4.18) 
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where 	[AK] 	represents the stiffness error matrix; 

[Kr] 	represents the theoretical stiffness matrix; and, 

[K] 	represents the experimental stiffness matrix. 

As it is not possible to measure the stiffness matrix the above equation was approximated 54 

ignoring higher order terms as follows: 

[AK] = [K]([c61] [U2]_1 []T - [][2f' []T)[K] 
	

(4.19) 

where 	[cb] 	represent the theoretical and experimental mass normalised vibrational 

mode shape matrices respectively, having an incomplete set of modal 

vectors and an incomplete set of coordinates; and, 

[U2], [U 2] represent the corresponding theoretical and experimental estimates 

respectively of the square of the natural frequencies in rad 2/s2. 

Eqn (4.19) is based on the assumption that the discrepancies between the theoretical and 

experimental stiffness matrices is small ([AK] cc). A similar expression was derived for the mass 

error matrix 

[AM] = [M]([cj[e]T - [e][e] T)[M] 	.......................................(4.20) 

where 	[AM] 	represents the mass error matrix; and, 

[Mi] 	represents the theoretical mass matrix. 

Because of the limited number of measured modes a new method was developed 56  to 

localise the errors between the experimental and theoretical models using the following equation 

[AK]([c'][] T) = [M]([ø][Q,fl[e]T) - [K 1]([cbj[cb} T) .....(4.21) 

and its symmetric version could be written as follows 

[AK.] = ([e][cD]T)[AK] + [AK]([e1][e] T) ...............................(4.22) 
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where 	[AK] 	represents the modified stiffness error matrix. 

The preceding equation was applied to models with a single measured mode and excellent 

results were obtained 80  

4.8.4 Application of Error Locating Techniques 

A Fortran 77 program (called COMP) was prepared to calculate the COMAC, MDM, [AK], 

[AM] and [AK] for a given number of correlated mode pairs using Eqns (4.14), (4.16), (4.19), 

(4.20) and (4.22) respectively. It required the input of the theoretical condensed mass and stiffness 

matrices IM]  and  [K1  as well as the theoretical and experimental modal parameters including 

mass normalised modal vectors (theoretical information was supplied using PAFEC). 

4.8.4.1 Raw experimental data and initial finite element model— Initially, theoretical 

data provided to the program was that of the finite element mesh described in the previous chapter 

(with perfect fixity at the base) and the raw experimental data. COMAC results are listed in the 

following table. 
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STATION 

NUMBER 

POSITION 

ON ltST 

STRUCTURE 

INrTIAI. THEORETICAL MODEL 

Wrill 

RAW EXPERIMENTAL DATA 

UPDAThD ThEOREUCAL MODEL 

WTTH 

CORRECTED EXPERIMENTAL DATA 

X Y Z X Y Z 

1 apex 0.496 0.324 0.981 1.000 0.968 0.981 

2 0.477 0.705 0.977 0.992 0.957 0.967 
3 0.491 0.555 0.930 0.987 0.998 0.992 
4 0.546 0.443 0.913 0.990 0.993 0.988 

5 0.585 0.399 0.911 0.993 0.983 0.980 
6 0.580 0.489 0.937 0.998 0.992 0.979 
7 seam 0.477 0.490 0.965 0.996 0.974 0.973 
8 0.256 0.541 0.487 0.997 0.994 0.987 
9 0.468 0.517 0.925 0.993 0.997 0.991 

10 0.525 0.369 0.905 0.994 0.975 0.984 
11 0.620 0.371 0.902 0.995 0.974 0.973 
12 0.613 0.427 0.923 0.997 0.975 0.968 
13 seam 0.521 0.565 0.911 0.991 0.999 0.986 
14 driving point 0.395 0.625 0.770 0.978 0.980 0.945 
15 0.443 0.564 0.823 0.967 0.976 0.970 
16 0.597 0.419 0.808 0.975 0.968 0.977 
17 0.639 0.316 0.688 0.975 0.962 0.974 
18 0.513 0.390 0.551 0.940 0.957 0.916 
19 seam 0.334 0.495 0.629 0.926 0.944 0.924 
20 0.109 0.491 0.607 0.806 0.926 0.869 
21 0.252 0.431 0.816 0.834 0.916 0.959 

22 0.677 0.416 0.790 0.992 0.965 0.977 

23 0.753 0.343 0.766 0.995 0.958 0.957 
24 0.736 0.521 0.810 0.998 0.978 0.954 
25 seam 0.610 0.699 0.828 0.998 0.997 0.966 
26 0.461 0.813 0.752 0.998 0.992 0.995 
27 0.606 0.765 0.759 0.981 0.990 0.994 

28 0.779 0.577 0.681 0.992 0.978 0.983 
29 0.837 0.307 0.715 0.979 0.955 0.985 

30 0.803 0.606 0.837 0.981 0.985 0.978 

31 seam 0.588 0.738 0.857 0.940 0.983 0.985 

32 0.429 0.825 0.734 0.976 0.994 0.994 
33 0.638 0.749 0.759 0.995 0.988 0.996 
34 0.589 0.376 0.741 0.870 0.884 0.993 

35 0.860 0.304 0.698 0.996 0.925 0.968 

36 0.827 0.622 0.842 0.988 0.964 0.967 
37 seam 0.645 0.798 0.892 0.979 0.993 0.970 

38 0.497 0.921 0.806 0.984 0.996 0.996 
39 0.857 0.877 0.792 0.867 0.991 0.985 
40 0.887 0.761 0.731 0.986 0.977 0.971 

41 0.921 0.322 0.758 0.991 0.931 0.966 
42 0.877 0.728 0.891 0.989 0.983 0.953 

43 seam 0.719 0.898 0.854 0.955 0.994 0.993 

44 0.405 0.935 0.743 0.957 0.998 0.995 
45 0.793 0.908 0.795 0.995 0.997 0.996 

46 0.922 0.619 0.754 0.991 0.894 0.992 
47 0.937 0.332 0.752 0.999 0.861 0.984 

48 0.982 0.790 0.825 0.977 0.986 0.989 

49 seam 1 	0.805 1 	0.931 1 	0.874 1 	0.988 1 	0.998 1 	0.984 

TABLE 4.12- COMPARISON OF THE COMAC VALUES FOR INITIAL 

AND UPDATED FINITE ELEMENT MODELS 
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Three dimensional grid maps were plotted as in Figs 4.21 -* 4.25 to represent the modulus 

difference and error matrices. 

The MAC values for CMPN 1 and 2 were relatively low (see Table 4.10) and when 

observing the COMAC results in Table 4.12 it was noted that low values were randomly scattered, 

giving no clear indication. Very low values existed at some stations as can be observed from the 

previous table. 

Figs 4.21(a -, c) indicated that in both the X and Z directions for the first correlated mode 

pair at the 8th  measurement station large differences between experimental and theoretical models 

occurred. Relatively high peaks were also observed in the vicinity of the 21" and 35th stations for 

all degrees of freedom in the X, Y and Z directions for CMPN I and 2. 

When plotting a stiffness error matrix as in Figs 4.22(a -* c) it is important to mention that 

while the diagonal elements quantified the amount of error between the two models at a given 

station, in a given direction, the off diagonal elements were influenced by more than one station. 

As a result, the diagonal elements of the stiffness error matrices using individual correlated mode 

pairs for the X. Y and Z directions were plotted as shown in Figs 4.23(a -* c) A similar policy 

was followed for the modified stiffness error matrix and results are depicted in Figs 4.24(a -* c) 

and 4.25(a -4 c). 

The preceding observations relating to the error locations were reiterated in all figures 

concerned with the stiffness error matrices. 

4.8.4.2 The route to error location— Careful inspection of both sets of listings of the 

modal vector estimates indicated that some error existed in the raw experimental data at the 8th 

measurement station for CMPN 1 -) 4 in the X and Z directions. The error was attributed to the 

weakening of the adaptor fixation to the test structure at the driving point. Depending on the type 

of mode, its direction of motion and the relative position of the considered degree of freedom with 

respect to the axis of symmetry, the experimental data was adjusted. 

The previous correction did not improve the difference between the experimental and 

theoretical natural frequency estimates and as a result further corrections or updating was 

necessary and consequently attention was directed to the finite element model. 

In general, the difficulties in obtaining similar or identical modal parameters for the test 

structure and finite element model could be due to any of the following reasons, 

i. 	inaccurate representation of the material properties; 
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inaccurate representation of the geometrical properties; and, 

inaccurate properties of the boundary conditions. 

Accordingly, a material control test was carried out in order to eliminate any doubt with 

regards to the material properties and the average results were 

E = 8800 MPa 

v = 0.36 

p = 1100 kg/M3 
 

Following this, attempts were made to decrease the shell element thickness at selected parts 

of the finite element model but almost no effect was observed on the natural frequency 

predictions. This was because as the thickness decreased the mass and structural stiffness 

decreased with nearly the same rates thus resulting in no change in the natural frequency 

estimates. 

The last available route was to review the boundary conditions. Springs with compatible 

degrees of freedom were attached to the nodes of the last parallel circle. Keeping the spring 

stiffnesses equal, their magnitudes were varied several times and each time a new set of theoretical 

modal parameters was computed. The MAC and COMAC were used as indicators to establish an 

optimum stiffness value for the base fitting which was found to be 3 x io¼im. 

4.8.4.3 Corrected exnerimental data and undated finite element model— Results for 

both finite element models were presented side by side in order to demonstrate the effect of 

updating. The MAC calculation results listed in Table 4.10 assisted in identifying the correlated 

mode pairs. Subsequently, a consistent comparison between experimental and theoretical modal 

parameters was carried out and results are represented in Tables 4.10, 4.11 and Figs 4.20(b), 

4.21 -* 4.25. 

From Table 4.10 and Fig. 4.19 it is clearly shown that the correlation of the first two modes 

has greatly improved and in Fig. 4.20(b) the points are lying on almost straight lines with slopes 

0.98 and 0.91. In addition, the difference between experimental and theoretical natural frequency 

estimates has been greatly narrowed. 

The COMAC values for the correlated mode pairs were found to be superior to their earlier 

estimates and with the exception of a scarce number of freedoms the COMAC was in excess of 

90 percent. It was noted that the degrees of freedom in the X direction in the vicinity of the 20th 

and 34th  stations for CMPN 1 and 2 possessed minimum COMAC, an indication of some 

disagreement between the corrected experimental and the updated finite element modal models. 
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When viewing Figs 4.21(a -* c), the above sequel was repeated for the degrees of freedom 

in the X, Y and Z directions. Peak stiffness errors were observed in regions near to the latter 

stations in Figs 4.22 -. 4.25. 

The mass error matrices for both finite element models (initial and updated) led to no 

conclusive direction and consequently, its results were not considered in the current study. 

In conclusion, although the updating performed on the finite element model and correction 

of experimental modal vector estimates has greatly improved the correlation coefficients (MAC 

and COMAC) still some randomly scattered errors existed. The non—symmetric distribution of the 

errors indicated that either geometrical imperfections or measurement errors could account for 

such discrepancies. It is interesting to note that neither low COMAC nor large error peaks were 

observed at the driving point nor for stations lying on the seam. Thus it is possible to conclude 

that neither the driving point set—up nor the existing seam did grossly change the dynamic 

characteristics of the test structure. 

4.9 CONCLUSIONS 	 - 

The main aim of the modal test was to acquire an accurate finite element model which 

correctly represents the dynamic characteristics of the Echinodome prototype. Such a demand was 

fulfilled up to a certain extent. Greater improvements were possible by observing the following 

points: 

The inclusion of more vibrational modes as well as increasing the number of 

measurement stations and hence the total number of experimental degrees of freedom. 

Due to the heavy coupling of the test structure vibrational modes, experimental modal 

parameters can be accurately extracted by exciting one mode at a time. 

Complex mode shapes, if occurring, could be used without whitewashing in order to 

retain the damping characteristics which could be included in new correlation 

techniques 80 . 

Attempting to expand the experimental mode shapes rather than condensing theoretical 

model is a process which benefits from including rotational degrees of freedom in any 

correlation thus enhancing the theoretical model. 

Introducing updating iteration techniques eventually leads to a correct theoretical 

model. 
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It is important to emphasise that the verified finite element model is suitable for dynamic 

analysis but not necessarily for static, as the theoretical model obtained was correlated consistently 

to the test structure at the natural frequencies only. While a static loading would require a finite 

element mesh which correctly represented the test structure at 0 Hz frequency. 

To summarise, a thorough modal test can be used to validate a theoretical model 

representing a real structure for dynamic analysis, e.g. structural response prediction to a given 

dynamic force. 
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FIG. 4.4-EXCITER ATTACHMENT TO THE TEST STRUCTURE 
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FIG. 4.14(a)-VIBRATING MODE SHAPE 1 
--FREQUENCY= 60.67 Hz-- 
--DAMPING ()=i.na %-- 
FIRST SYMMETRIC MODE 
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FIG. 4.14(b)—VIBRATING MODE SHAPE 2 
---FREQUENCY=61.64 Hz-- 
--DAMPING (ç)=1.4e7 %-- 
SECOND SYMMETRIC MODE 

5F1 



FIG. 4,14(c)—VIBRATING MODE SHAPE 3 
--FREQUENCT'95.06 Hz-- 
--DAMPING (0= 1 .495  %-- 

SPURIOUS SYMMETRIC MODE 
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FIG. 4.14(d) —VIBRATING MODE SHAPE 4 
- —FREQ UENCY= 243.69 Hz- -  
--DAMPING (c)=1.787  %-- 
FIRST AXISYMME TRIG MODE 
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FIG. 4.14(e)—VIBRATING MODE SHAPE 5 
--FREQUENCY=333.12 Hz-- 
--DAMPING ()=3.196 %-- 

FIRST TORSIONAL MODE 
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FIG. 4.14(f)-VIBRATING MODE SHAPE 6 
--FREQUENCY=510.37 Hz--
--DAMPING (c)=o.oeo -- 

THIRD SYMMETRIC MODE 
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FIG. 4.14(g)—VIBRATING MODE SHAPE 7 
--FREQUENCY= 513. 06 Hz-- 
--DAMPING (ç)=o.065 %-- 
FOURTH SYMMETRIC MODE 
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FIG. 4.14(h)—VIBRATING MODE SHAPE 8 
--FREQUENCT=576,17 Hz--- 
--DAMPING (ç)=0.0e4 %-- 

COMBINED AIISrMMETRIC— TORSIONAL MODE 
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CHAPTER 5 

ECHINODOME RESPONSE To AN UNDERWATER EXPLOSIVE LOADING 

SUMMARY 

The explosion phenomenon is described starting from the detonation process and ending 

with the venting of the gas bubble. The effects of nearby free or rigid surfaces are also discussed. 

A free field experiment was carried out to determine the general characteristics of the 

pressure pulse generated by a detonator underwater. Then the Echinodome was subjected to a 

shock wave from the same detonator while it was in a floating submerged state. Structural 

response was measured with the aid of strain gauges. 

A theoretical analysis was undertaken using the finite element method to model the 

prototype and boundary element technique to simulate an infinite region of water surrounding the 

structure. Subsequently, experimental and theoretical principal stresses—time histories were 

compared. 

5.2 INTRODUCTION 

When a spill of a refrigerant liquid becomes superheated to an extent that permits 

homogeneous nucleation to take place, an overpressure is produced and such a phenomenon is 

known as rapid phase transition (RM. 

Liquefied natural gas (LNG) is generally stored under high pressure, or at very low 

temperatures, or a combination of lower levels of both and if leakage took place from an 

underwater container the cold liquid would be superheated after contacting the surrounding 

medium (water) resulting in an RPT which resembles an explosion and consequently, shock waves 

would be transmitted to nearby structures. Therefore it is necessary to consider RVI' loadings on 

underwater reservoirs such as Echinodomes, containing highly volatile liquids at very low 

temperatures. 

The doubly asymptotic approximation (DAA) is a numerical approach implemented in 

PAFEC—DOLPHIN to analyse shock problems. Good agreement was obtained earlier 81  between 

the theoretical DAA and exact solutions for a submerged spherical shell impinged upon by a plane 

step pressure wave. An underwater explosion test was carried out using the Echinodome prototype 
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as the target and measured strains were compared with their predicted correspondents in order to 

assess the performance of DAA. 

5.3 SEQUENCE OF THE UNDERWATER EXPLOSION PHENOMENON n 

An explosion is a rapid release of energy in a considerably short time. Explosive materials 

undergo chemical reactions releasing gaseous materials at very high temperatures. Underwater the 

explosive gases are compressed by the surrounding medium (water) eventually taking the shape of 

a sphere. In the following subsections the behaviour of the gas sphere (often known as the bubble) 

is described and the effect of rigid and free surfaces is mentioned. More details can be found 

elsewhere 82 

5.3.1 Detonation Process 

Detonation is the initial phase of the explosion phenomenon in which the chemical reaction 

takes place rapidly so that it can keep up with the resulting physical change and it is accompanied 

by the evolution of large amounts of heat. A detonation wave develops, behind the shock front of 

the initiated explosive, separating the unstable substance (explosive material in its initial form) 

from the stable product of the reaction. The detonation wave propagating speed is a characteristic 

of each explosive material and is several times that of the shock wave. 

5.3.2 Shock Wave 

At the boundary between the explosion gases and the surrounding water compression waves 

are generated, developing very steep fronts as they progress. Such waves are known as shock 

waves and they travel at an average velocity of 1400 -, 1500 nits when they are considerably 

away from the charge. 

In practice, the rise time of a steep fronted shock wave is usually less than the resolving 

time of the experimental measurements and therefore, the time histories of the pressure pulse is 

generally characterised by having a discontinuous rise followed by an exponential decay. 

For spherical shaped charges the pressure level drops off with a rate higher than the first 

power of the inverse of the stand off distance from the source of the explosion. The decay rate of 

the pressure pulse is slower as the shock wave spreads away from the charge. 

Pulse shapes measured off the side of cylindrical charges are similar to those of spherical 

charges in that the discontinuous rise is followed by an exponential decay. However, the 

pressure—time curves differ in shape and peak level if measurements are made along the axis of 

symmetry, often possessing two pressure peaks. 
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5.3.4 Surface Effects 

In real life, a water media is finite due to the existence of top and bottom surfaces. The 

effect of such surfaces on the propagation of pressure waves varies. 

When a pressure wave strikes an infinitely rigid boundary the net component of particle 

velocity normal to the surface becomes zero. This condition is satisfied by the reflection of the 

incident wave back into the water medium with a positive pressure value (a compression shock 

wave). 

A free surface (boundary between water and air media) possesses very low resistance to 

compressibility and as a result no compression can develop along such a boundary. There is no 

opposition to the motion of the surface and consequently, the necessary condition for equilibrium 

is that there will be no pressure change at the free surface, a requirement fulfilled by the 

generation of a reflected wave with negative pressure (a tension shock wave). 

Due to the reflected negative pressure waves incurred at free surfaces there will exist regions 

in the water medium where the resultant pressure is negative. Water is generally weak in tension 

and therefore, if circumstances occur in which considerable negative pressures are encountered, the 

water mass is pulled apart from itself and holes are formed in order to prevent an increase in 

tension. Such a phenomenon is known as "Cavitation". 

The effects of reflection from boundaries are easily determined for the shock wave pulse and 

if encountered for bubble pulses they complicate its shape, hence errors can set in during the 

analysis stage. 

5.4 ECHINODOME BEHAVIOUR UNDER A BLAST LOADING 

An experimental investigation as well as a numerical analysis were carried out in order to 

determine the Echinodome dynamic response to underwater explosive loading. 

Experimentally, the test structure was submerged in a water tank and tethered to a known 

position with the aid of four tension legs. The Echinodome was said to be in a floating submerged 

state. 

The following subsections contain a description of the experimental work involved and 

details of the theoretical simulation using the finite element—boundary element methods. 
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5.4.1 Experimental Approach 

The experimental investigation was divided into two parts. The first part comprised a set of 

free field experiments which were carried out in order to determine the pressure pulse 

characteristics (peak pressure, decay rate, impulse and energy) for a cylindrical charge of a specific 

mass at a given position. While in the second part the cylindrical charge was detonated at a 

predetermined stand off distance from the Echinodome prototype. 

5.4.1.1 Charge design— The extent of damage caused by an underwater explosion depends 

on the dimensions and characteristic (periodic) times of the structure upon which the generated 

pressure wave acts. The time duration of the pressure pulse relative to the structural periodic times 

is one of the parameters controlling the dynamic response to such transient loadings. The longer 

the duration of the pulse the more likely the response will be similar to that invoked by a static 

pressure. Thus, the initial peak of the shock wave would be the influential factor. From Cole 82 

a 
W I '3  

p111 OC 	-i-- ......................................................................( 5.1) 

= structural response Oc Pm 	..................................................................................
(5.2) 

Ia 
WI'3 I cc .. ..................................................................... (5.3) 

where 	p 	represents the peak pressure of the shock waves; 

W 	represents the mass of the explosive charge; 

R 	represents the stand off distance; and, 

a 	 represents a constant 

In the other limiting case, a pressure wave with a duration much less than the structure's 

natural period, damage would be proportional to the impulse of the wave. 

structuraldamage Oc I 	........................................................................(5.4) 
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=CC W25  

where 	I 	represents the impulse of the shock wave. 

In between the above two extremes structural damage may then depend on a fraction of the 

impulse of the emitted wave. Cole 82  mentioned that if cavitation occurred in water near the 

structure the resultant deformation would roughly be proportional to the square root of the incident 

shock wave energy. 

structural deformation Oc E'2 	............................................................(5.6) 

(5.7) 

where 	Ef represents the energy of the shock wave per unit area (or energy flux 

density). 

The variation of the peak pressure 	impulse (I) and energy (Ef) with the charge mass 

(W) and stand off distance (R) are empirical laws and therefore, the above relationships cannot be 

taken literally. However, their use may be beneficial in determining the charge size that would or 

would not cause structural damage. 

A similar idea 83  was adopted in estimating an explosion charge mass placed S m away 

from the target that would not invoke any geometric non—linearity of the Echinodome prototype 

and at the same time produce measurable strains. 

The estimated charge mass was found to be equal to 1 gm and a standard electric 

detonator 79 was selected for the purpose of the current experimental study. The charge was of 

cylindrical shape. 

5.4.1.2 Free field set—up— For a given charge size and type the pulse characteristics of the 

shock wave, in the form of peak pressure, decay rate or time duration, impulse and energy, vary 

with the increase or decrease of the stand off distance. Consequently, a set of free field 

experiments were carried out in order to estimate such properties as well as to determine the pulse 

shape at the point where the shock wave would impinge the Echinodome prototype in a later 

experimental set—up. 
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The changes in the pressure field surrounding detonator 79 when initiating it were measured 

utilising seven tube like tourmaline pressure gauges. Pressures of up to several hundreds of MPa 

could be measured. Calibration was performed at site. The sensitivity of each gauge was 

determined by applying a standard pressure pulse of 6.88 MPa (1000 psi) and measuring the 

corresponding voltage change using a digital oscilloscope. 

A frame made of steel was erected on which the pressure gauges were fixed as shown in 

Fig. 5.2. The frame was then lowered in a water tank of dimensions 12.190 x 6.100 m in a 

3.470 m of water depth. The tank walls and base were made of reinforced concrete with thick 

steel plates lining it. The position of pressure gauge 7 was identical to that of the nearest point of 

the test structure to the explosive charge. Pressure gauges 2 and 3 were used in order to determine 

the characteristics of the reflected shock waves from the bottom of the tank (rigid boundary) and 

the water surface (free boundary) respectively. 

The transducer signals were conditioned using MELEC model M124 charge amplifiers and 

recorded with a THORN EMI model SE7000 magnetic tape recorder (FM type). 

5.4.1.3 Target set—up— When the test structure was to be subjected to an underwater 

explosion a different experimental set—up was prepared. A set of four cables was used to position 

the prototype at a depth of 1.525 m of water from its apex (the design pressure head of the test 

structure). Each cable was made of six strands and a single core. The four cables acted as tension 

legs supporting an underwater structure because of the buoyant forces acting upwards on the 

empty shell structure. 

Part of the steel frame used in the free field experiment was again employed with some of 

the attached pressure gauges to gain more confidence in the measured pressure pulses as well as to 

position the detonator at the same water depth as the maximum diameter of the Echinodome 

prototype. 

Structural response was measured using electrical resistance foil strain gauge rosettes with 

each gauge having a resistance of 350± 10, 3 mm gauge length and an average gauge factor equal 

to 2.15. The rosettes were bonded on the outer surface of the shell at five different positions in the 

same meridional plane with angles $ = 300 , 600, 90°, 1200  and 1500  away from the apex as 

depicted in Fig. 5.3. For each rosette one gauge was aligned with the meridional profile, another 

along the corresponding parallel circle and the third in between them at an inclination of 45 0  

Voltage excitation of the strain gauges, filtering and conditioning of the strain signals were carried 

out using special signal conditioning amplifier units. 
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The detonator was set at a position approximately 5 m away from the prototype. The strain 

gauge rosettes, the explosive charge and the three pressure gauges were in the same vertical plane 

as shown in Fig. 5.4. 

A newly developed miniature tourmaline pressure gauge PCB model 105M1 14 was attached 

to the test structure at its maximum diameter (0 = 90°), 30 mm from the strain gauge rosette lying 

on the same parallel circle and was nominated P.O. 8. The gauge has a maximum range of 

6.88 MPa. Wax which was employed in the waterproofing process acted as a bonding agent 

between the transducer and the prototype. (The pressure gauge was on loan for an evaluation of its 

performance). Energisation and signal conditioning was performed using PCB model 480D06 

power supply—signal amplifier unit. 

The PCB model 303A06 triaxial accelerometer described earlier was mounted on the 

Echinodome prototype at its apex to measure the dynamic response there but unfortunately the 

recorded signals were erroneous because the excitation frequency was much higher than the 

accelerometer's mounted resonant frequency. 

All time domain signals were recorded in analogue form using RACAL 

model STORE 14DS and THORN EMI model SE7000 FM magnetic recorders for response (strain 

and acceleration) and excitation (pressure) histories respectively. 

5.4.1.4 Data acquisition and analysis instrumentation— Analogue pressure and strain 

signals were digitised by means of a KONTRON model 700 transient recorder which possessed a 

maximum sampling rate of 10 MHz. Digital data was then stored on floppy discs for later analysis. 

Post processing of the digital signals was carried out using the signal processing software 

DADISP 84 , mounted on an IBM PS/2 model 55SX desk top computer. DADISP enabled 

averaging of signals, d.c. shift removal, calibration, filtering, discrete Fourier transformation and 

many more mathematical applications. 

A block diagram showing the instrumentation employed in the current experimental 

investigation for the data acquisition and analysis stages is presented in Fig. 5.5. 

5.4.1.5 Digital signal processing— Digital signals stored on floppy disks were recalled 

using the DADISP program for data correction and processing. The current analysis 	stage 

comprised the following five main steps 

1. 	Common triggering before performing any averaging process on any ensemble of 

time domain signals it was important to adjust the trigger points to have the same time 

of occurrence. 
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Ensemble averaging: time domain signals were averaged in older to reduce inherent 

random errors in the form of noise. 

Offset removal: d.c. offsets were determined by averaging all sample points prior to 

trigger, then such transitions were subtracted from the corresponding ensemble 

averaged signals. 

Digital filtering : low pass filters were designed to be applied to pressure and strain 

signals with the purpose of attenuating the high frequency components. 

Calibration all digital signals were scaled by the corresponding calibration constants 

to transform their amplitudes from voltage units to pressure or strain units. 

The above operations were applied for each data set of a given transducer in an identical 

order. 

5.4.1.6 Digital filtering— Only the initial part of each pressure signal comprising the shock 

wave pulse was considered in the filtering process because of the enormous number of 

computations involved if the secondary pulses were to be included. 

Discrete time pressure signals, each formed of 2048 samples equally spaced by lOOns, were 

transformed to the frequency domain in order to determine the maximum excitation frequency 

above which any data were considered to be highly contaminated with electrical noise. The ESD 

of the pressure pulse for pressure gauge 1, depicted in Fig. 5.6, indicated that the frequency 

components above 100 kHz were buried in the noise floor. Consequently, the cut off frequency, 

to be used in designing a low pass digital filter was equated to 100 kHz, (a low pass filter 

passes all low frequency components and stops high frequency components). 

Before analysing the strain signals, with N = 4096 and At = 40 .ts, it was necessary to 

establish that the structural dynamic response had decayed to at least the noise floor level 61  of the 

pretriggering level or else exponential weighting would be required. This was achieved by using a 

Hilbert transform to display the magnitude of a strain signal in the time domain with a logarithmic 

vertical axis as is show in Fig. 5.7 . The magnitude function resulting from a Hilbert transform 

represents the positive envelope of the signal under consideration. 

A Fortran 77 program was prepared to calculate the envelope function of the strain records 

employing DFT and IDFT techniques. The equations involved in the derivation are listed below 

and more details concerning the mathematical formulation leading to the Hilbert transform can be 

found elsewhere 85, 

Z(t) = x(t) +[i5z(t) ......................................................................................(S.8) 
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Z(t) = 14t)I eI4(t) (59) 

where 	z(t) 	 represents an analytical signal, its magnitude Iz(t)I is known as the 

envelope signal; 

*(t) 	represents the Hilbert transform of x(t); and, 

10(t) 	represents an instantaneous phase signal. 

110

2Xuo) ;
(0<0 (5.10)  

where Z(@) and X(w) represent the Fourier transform of z(t) and x(t) respectively. 

It was observed from Fig. 5.7 that the response level at the end of the time record was 

below that of the noise floor. Therefore, a procedure similar to that adopted for the pressure 

signals has been applied to the strain records to determine the cut off frequency, f, of the digital 

filter which was established to be 6 kHz. 

The design of the low pass linear phase finite impulse response (FIR) digital filter was 

carried out using the window method 87,88 . The window technique starts by assuming the desired 

frequency response of the filter, 

= 	; otherwise fo1 

; I0I50 	
(5.11) 

where 	 0=2a Co 
 

(0 

[COS  

W
s 	represents the sampling frequency in rads/s; and, 

CD
C 	represents the cut off frequency in rads/s. 

The corresponding impulse response can be obtained by evaluating the following series 

hd(k)= .j-sin(k0) 	; k=0, 1,2....... 	 (5.12) 
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In specifying the number of filter coefficients N the length of the filter becomes finite and 

hence its impulse response is approximated as follows 

hd(k) = ha(k) = .j-sin(ko c) 	 k= 0 L  2 ........ N—i ................(5.13) 

Truncation of terms involved in the above series is equivalent to multiplying the infinite 

hd(k) by a rectangular window which results in oscillations or ripples in both the passband and 

stopband of the filter's frequency response. These oscillations are known as the "GIBBS" 

phenomenon. It is known that lengthening the filter, by increasing the number of its coefficients, 

results in faster ripples but no reduction in their amplitudes. To alleviate the ringing effect a 

window with tapered edges (decaying to zero gradually) should be used instead of uniform 

weighting. 

In the current study, the length of the digital filters depended on the number of samples 

forming a digital signal. For pressure and strain records the length was 2049 and 4097 

respectively. Once the cut off frequency and length of the low pass digital filter were determined it 

was possible to construct it using DADISP as follows 

The truncated form of the filter's impulse response is generated at discrete times. 

The above function is multiplied by a given window (rectangular, Hanning, Hamming, 

Kaiser, etc.......) to obtain the approximate impulse response, h(k), of the desired 

FIR low pass linear phase filter. 

Then, digital filtering was performed by multiplying the filter's frequency response by the 

DFT of the signal under consideration. Then an IDFT was carried out to acquire the filtered 

discrete time signal. 

A comparison between different FIR low pass filters can be seen in Fig. 5.8. In the current 

analysis, the Kaiser window was utilised in the filtering process of both the pressure and strain 

signals because of the good characteristics its frequency response possessed, less rippling in the 

passband and stopband as well as lower side lobes. Figs 5.9 and 5.10 show the effect of digital 

filtering on a sample of a pressure and a strain record respectively. 
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5.4.1.7 Analysis of pressure records— When viewing the pressure peaks of individual 

measurements for a given gauge some variation was observed. Such scatter of the data suggested 

dissimilarity in the detonators used resulting from either different densities of materials composing 

the explosive charge, different length to diameter ratios or both. 

The average filtered pressure records can be seen in Fig. 5.11 for the various gauges. It is 

worth mentioning that the pressure pulses of gauges 2 and 3 were measured in the same vertical 

plane below and above the cylindrical charge, the axis of which was in a horizontal plane and 

pointing towards the target position, while the shots were being fired (see Fig. 5.2 and 5.4). 

Observing Fig. 5.11 it was noticed that all pulse shapes possessed more than one peak with 

the first having the maximum value of pressure and the rest on a decreasing level. However, pulses 

of pressure gauges 2 and 3 had their second peak absorbed by the first. 

In general, as the pressure gauge was positioned further from the explosive charge, the 

duration of the shock wave pulse was longer. 

The miniature tourmaline pressure gauge on trial appeared to perform satisfactorily in 

measuring the peak of the pulse impinging the test structure but failed to trace the rest of the 

pulse. This can be explained by splitting the pressure surrounding the structure into the following 

components 

Incident pressure (p1)  is that which would occur in the absence of the target. 

Reflected pressure 	is that which would occur if the target represented a perfectly 

rigid boundary. 

Radiated pressure (p) is the remaining component of the pressure field and is 

dependent on the surface motions of the submerged structure. 

The scattered pressure (p. ) is defined by the following formula 

Ps = PR + Pr 
	 (5.14) 

Initially, when the shock wave struck the Echinodome prototype, the miniature tourmaline pressure 

gauge was measuring the incident pressure p1  , but at later times the scattered pressure from the 

structure decreased the pressure magnitudes. This explanation was confirmed by observing the 

relevant pressure pulse for pressure gauge 8; a correct measuring of the peak pressure, p,  for the 

shock wave followed by an uncharacteristic rapid decay. 
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In many cases of structural damage, the effectiveness of shock wave pulse depends on either 

of the following three parameters 

 

Impulse per unit area given by 

I = 	- p]dt 	.....................................................................................(5.15) 

where 	p(t) 	represents the total pressure as a function of time; and, 

p.. 	represents the hydrostatic pressure. 

Energy flux density given by 

Er = ._5[p(t) - p]dt 	...........................................................................(5.16) PC  

where 	c 	represents the shock wave speed underwater; and, 

P 	represents the mass density of the surrounding water medium. 

Therefore, it becomes important to study the characteristics of a shock pulse for a given 

charge type. 

The filtered pressure pulses depicted in Fig. 5.11 indicate that the pressure values did not 

reach zero (p(t) = p) by the end of each record and for Eqns (5.15) and (5.16) to converge to a 

limiting value a very long time record was necessary which was considered time consuming. In 

most cases, integration is performed over a time span including the initial pressure pulse with its 

main features until the pressure values are very small when compared with the initial peak 

which is considered to be a reasonable approximation. 

Cole in his book 82  suggested that the characteristics of shock wave results for a particular 

explosive can be represented using power laws as follows 

a 

p = k ..........................................................................................(5.17) 
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"3  

I = 1W113 w1/3 

Er rr mW"
3 W113

..................................................................................(5.19) 

The above laws can be regarded as fair approximations depending on the range of (W 1 /R 

Using the experimentally measured pressure records a linear regression analysis was carried out to 

determine the constants k, 1, m and a, 0, 7  for detonator 79 excluding experimental observations 

of pressure gauges 2, 3 and 8. (see Fig. 5.12). The resulting characteristic formulae were found to 

be as follows 

1.36 

p =73.2O ................................................................................ (5.20) 

0.92 

I = 6124.18 x W113 [j-] (5.21) 

I  r 	I 
1 2.41 

E = 189236.45 x 
W" --- j

(5.22) 

where 	p
m

is in units of MPa; 

W 	isin units ofkg; 

R 	isin units ofm; 

I 	is in units of Nm 2s ; and, 

E1 	is in units of Nm 

Shock wave pulse properties 'm'  I and E1) were determined utilising the above equations 

(named theor. 1) as well as empirical formulae 89  (named theor. 2) derived from experimental 

measurements of bigger charges at various stand off distances. Table 5.1 contains a comparison 

between the preceding predictions and the current average experimental observations. 
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PRESSURE 

GAUGE 

PEAK PRESSURE 

v1Pa) 

IMPULSE 

(NA) 

ENERGY FLUX DENSITY 

(Nn1 1 ) 

NUNMER 
TEST THEOR.I THEOR.2 TEST THEOR.1 THEOR.2 TEST THEOR.1 THE0R.2 

1 2.66 2.78 3.07 70.72 67.70 69.41 67.34 61.83 52.71 

4 1.19 1.15 159 34.92 37.78 38.29 14.87 13.03 14.84 

5 0.68 0.67 1.06 25.47 26.02 26.64 1.08 5.04 6.85 

6 0.46 0.46 0.80 20.17 20.15 20.62 3.43 2.58 3.97 

7 0.31 034 0.64 1735 16.56 16.94 1.87 154 2.61 

TABLE 5.1 - COMPARISON BETWEEN AVERAGE EXPERIMENTAL OBSERVATIONS AND PREDICTIONS 

OF SHOCK WAVE PULSE CHARACTERISTICS ALONG THE AXIS OF DETONATOR 79 

The above table indicated that Eqns (5.20) -* (5.22) were suitable for small charges while 

other empirical formulae 89  were best suited for larger charges. 

In conclusion, empirical formulae are useful in predicting peak pressures of shock waves 

which enable experimentalists to optimise the dynamic range of the instrumentation used. 

Additionally, when designing the size of an explosive charge, to be fired in front of a structure, 

predictions of pressure pulse characteristics assist in avoiding structural damage which after all 

may be necessary. 

5.4.1.8 Analysis of strain records- After the averaging and filtering of strain records the 

results for each rosette were processed to produce the principal stresses (a 1, and equivalent 

stresses (a) which can be seen in Figs 5.13(a, b) and 5.14 respectively. 

The experimental principal angle distribution versus time (not shown) was uneven which 

meant that at a specific point on the shell's surface, the principal stresses are likely to vary their 

direction unsystematically between 0 0  - 1800  and not be constant at any time. 

From the above stress figures it was noticed that the maximum stresses were experienced by 

the nearest point on the shell's surface to the explosive charge. The figures indicated that the 

stresses at 4 = 300, 4 = 600  were greater than at 4 = 1200, 4 = 1500 and could be attributed to the 

higher rate of curvature change in the bottom part of the shell's meridional profile, which made 

the structure appear more stiff in that region. Beneath 4 = 900  the stresses were on the increase 

on approaching the base of the shell, thus conforming with an earlier conclusion (vide Chapter 2) 

that the lower region of an Echinodome shell was a critical zone for design. 
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In all cases, the maximum, minimum and equivalent stresses were much less (= 5 percent) 

than the maximum strength of the test structure material (55.4 MPa). It can be concluded that the 

pressure pulse, generated using I gm of explosive charge (detonator 79) and located approximately 

5.0 m away from the test structure, was too low to invoke the structure's geometrical non-

linearity to a degree which could cause serious inaccuracies if ignored in the theoretical analysis. 

In general, in Figs 13(a and b), the principal stresses tended to be on one side of the abscissa 

because they were the most positive and negative stresses respectively. 

For all stress records the magnitudes appeared initially to be decaying but at later times 

another peak with a relatively high level evolved. This was caused by the bubble secondary pulse 

as will be shown in the following subsection. 

On examining the strain records of gauges bonded on the steel links (part of the tension leg) 

the magnitudes were found to be very low and highly contaminated with electrical noise. This was 

because of the considerably large cross sections of the link elements. 

5.4.1.9 Secondary pulses— As was shown earlier in Fig. 5.1 for a 1 gm explosive charge 

(detonator 79) a secondary pulse occurred 27 ms after the initial peak. This corresponded to the 

second peak recorded in the strain—time histories. The time difference between both peaks could 

be determined from either the pressure records as in Fig. 5.1 or using the magnitude functions for 

a strain record as in Fig. 5.7 

Typical bubble periods were established to be approximately equal to 27 ms and 45 ms for 

1 gm and 4 gm explosive charges respectively. Table 5.2 contains a comparison between 

characteristics of both the shock wave and bubble pulses. 
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PRESSURE CHARGE PEAK PRESSURE IMPULSE ENERGY FLUX DENSITY 

GAUGE SIZE QdPa) (N-A) (Nnf t ) 

SHOCK WAVE BUBBLE SHOCK WAVE BUBBLE SHOCK WAVE BUBBLE 
NUMBER (gm) 

PULSE PULSE PULSE PULSE PULSE PULSE 

1 1 2.80 0.73 70.39 189.80 68.27 39.88 

4 5.08 0.99 149.15  265.36 11132 

2 1 1.78 0.54 45.43 164.98 32.00 29.80 

4 3.72 0.70 100.71 242.49 139.68 79.47 

TABLE 5.2 - COMPARISON BETWEEN SHOCK WAVE AND BUBBLE PULSE CHARACTERISTICS 

From the above table it can be observed that although the peak pressure of the secondary 

pulse was much less than that of the shock wave, the area under the pressure—time curve (impulse 

per unit area) was more than double. A clear indication of the importance of considering the 

effects of the bubble pulse in structural damage. 

5.4.1.10 Surface effects— It was concluded earlier that the miniature tourmaline pressure 

- - - -- gauge performed commendably in measuring peak pressures and hence it was used in determining 

the effects of free and rigid boundaries on the shock wave. It was established from tile pressure 

records of P.G.8 and other pressure gauges that at both surfaces, free and rigid, the shock wave 

was reflected fully with negative and positive magnitudes respectively. 

By knowing the dimensions of the tank together with the pressure gauge positions and by 

determining the time delay of reflected signals the average shock wave speed (c) was estimated to 

be equal to 1418 ni/s. 

5.4.2 Theoretical Approach 

The PAFEC—DOLPHIN acoustics subsystem was used to study the fluid—structure 

interaction phenomenon between the floating submerged test structure and the surrounding medium 

(water). The software is capable of modelling finite, infinite, compressible and incompressible fluid 

regions but does not take account of fluid flow viscosity and cavitation effects. 
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5.4.2.1 Problem idealisation— In the current investigation the Echinodome prototype was 

assumed to be surrounded by an infinite fluid region. Because of symmetry only half the structure 

and the infinite medium were necessary to model. Idealisation of the test structure was carried out 

using conventional semi—loof shell elements (as was described in Chapter 2). Each meridional 

segment subtended a circumferential angle of 300  and was discretised into 20 elements (one 

triangular and 19 quadrilateral) along the profile. While the fluid region was simulated employing 

a single boundary element made up of triangular and quadrilateral patches, forming a closed 

surface coinciding with the wet surface of the structure. This meant that the flat base of the 

prototype had to be included in the analysis. 

In practice, the base was composed of two materials, a circular nominally 2.75 mm thick 

GRP base having a diameter of 170 mm and a square 19 mm thick tufnol plate with 200 mm 

linear dimensions. However, due to the enormous memory requirements of the boundary element 

technique a single set of six triangular semi—loof shell elements was used to model half a 19 mm 

thick circular base with a 170 mm diameter. An additional six triangular patch elements were 

coupled with the previous structural elements to form a complete surface together with the plane 

of symmetry. The existing extra material (tufnol) making up the rest of the square base was 

modelled by increasing the density of the base material in the numerical analysis (see Table 5.3). 

MATERIAL BASE MATERIAL 

GRP TUFNOL USED IN 
PROPERTIES 

THEORETICAL ANALYSIS 

B (MPa) 8800 13200 13200 

v 0.36 0.284 0.284 

p (kg/m3) 1100 1360 3350 

TABLE 5.3-COMPARISON BETWEEN ACTUAL MATERIAL PROPERTIES AND THOSE ASSUMED 

IN THE THEORETICAL ANALYSIS FOR THE STRUCTURAL BASE 

It can be observed from the above table that the E and v used in the current theoretical 

analysis were those characterising the tufnol material. The density, on the other hand, was deduced 

from a preliminary eigenvalue analysis described as follows. 

Mother finite element mesh modelling the whole structure was prepared with an accurate 

representation of the structural base, and the natural frequencies for the first eight modes were 

determined assuming the structure was in vacuo. Various densities were considered for the initial 
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approximate mesh and the corresponding eigenvalues for the structure in air were compared with 

those of the latter accurate mesh until both sets of results were virtually identical. The higher 

modes (post the first eight modes) were not considered in the preliminary analysis because their 

contribution to the dynamic response was considered small, based on an equivalent mass analysis 

(vide Chapter 4) and in any case variations between both sets of natural frequencies were bound to 

occur for higher modes due to the inherent approximations. 

It is important to emphasise that the above approximation was necessary in order to avoid 

the use of the 3—D family elements (15 and 20 noded isoparametric wedge and brick elements 

respectively) in the modelling of the structural base which would have made an exceedingly large 

demand on the existing computer resources 

The finite element library of the PAFEC software comprised no cable elements to simulate 

the tension legs and therefore, linear spring elements were employed to model the supporting 

members having only axial stiffness. The disadvantage of using such elements was that their 

tensile properties were equal to theft compressive counterparts which resulted in an inaccurate 

representation of the supporting conditions. 

The size of the detonator and the stand off distance from the target were selected in the 

experimental tests so that minimal structural geometric non—linearity was invoked and this was 

because the only available software did not take into account either geometric or material non-

linearities for dynamic load cases. Thus, any discrepancies occurring between experimental and 

theoretical results would be due to the following causes, 

inaccurate modelling of the structural base; 

inaccurate representation of the true supporting conditions in the theoretical 

model; and, 

too few finite elements and boundary patches idealising the interaction between the 

structural and fluid regions. 

A separate finite element analysis was carried out to determine the effect of the imposed 

hydrostatic pressure head, during the explosive experimental tests, on the Echinodome shape under 

the above supporting conditions but very small deformations were found to be experienced by the 

structure. Consequently, it was concluded that the degree of geometric non—linearity ensued by the 

static load would not affect its dynamic response to the explosive loading. 

§ The requirements of the current job were 40 MB virtual memory, 14 MB physical memory and 45 MB disk space, 
consuming a total of 23 hours of CPU time on a VAX 6410 with a processing power of 7 mips. 
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The selected master degrees of freedom had an identical spatial distribution to those 

described in Chapter 3 and included as well all of the base's unrestrained translational degrees of 

freedom giving a total of 139 masters. 

5.4.2.2 Analysis techniques— In the current analysis a boundary element formed of a total 

of 126 patches, covering the wet surface of the structural mesh, was used to model the surrounding 

infinite fluid medium. The patches were interconnected at 409 fluid nodes which were coincident 

with the structural nodes on the wet surface, each having a single pressure degree of freedom 

normal to the surface with its positive direction pointing from the infinite region to the finite 

region (out of the fluid into the structure). Unlike finite element techniques where assembled 

element matrices are stored in banded form because of their sparseness, the fluid matrices in the 

boundary element method are stored in full and this explains the current demand for considerably 

large computing resources. 

The PAFEC—DOLPHIN software possessed three approximation techniques for the solution 

of the boundary element integrals involved in the analysis of an underwater structure excited by 

incident spherical pressure waves. The suitability of an approximation for a specific analysis was 

dependent on the compressibility of the surrounding medium and the domain in which the shock 

wave presure magnitudes were provided (time or frequency domains). The approximation methods 

were namely 

Virtual mass approximation (VMA) 

DAA1 

DAA2C 

In the VMA the surrounding fluid is assumed to be incompressible and since the only effect 

of the fluid would be to increase the inertia of the submerged structure a fluid mass matrix is 

formulated and then added to the structural mass matrix. When undertaking such an analysis the 

fluid freedoms are eliminated and hence the problem size is greatly reduced and the analysis is 

made more efficient. The VMA is valid for long acoustic wavelengths (A = Of) when compared 

with the structural wavelength (A), i.e. late stages of response or low frequency analysis 

(A  
a 

>>A). S   

The DAA are differential equations for a simplified analysis of transient motions of a 

submerged structure. These approximations approach exactness in the limit of low and high 

motions ()L a  >> X. and A <<A) and effect a smooth transition in the intermediate frequency 

range. Hence, such approximations are applicable to complete response calculations. In addition, 

the general theory of the DAA takes the compressibility of the surrounding infinite medium into 
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account. 

In PAFEC—DOLPHIN two formulations of the DAA existed. The DAA1 was suitable for 

transient shock analyses only, while the higher order approximation DAA2c was valid for both 

transient and sinusoidal response analysis. Although the DAA2c initially appears to be more 

computationally efficient for applying to a steady state vibration analysis, because of the frequency 

independency of the fluid matrices, it is generally accompanied by inherent inaccuracies at 

structural resonances and antiresonances. Moreover, because of the excited high frequencies, the 

long measured strain records and the small time step involved, the previous advantage was 

obliterated. Therefore, based on the above discussion and earlier made conclusions 81,90-92  the 

DAA1 was adopted in the current simulation due to the relatively short shock pulse duration 

(td = 200 its) and a At of 1 Its was selected for the numerical integration of the structural and 

fluid equations. 

5.4.2.3 Explosion sources— It was noted that the dynamic response of the Echinodome 

prototype would be influenced to a certain extent by the existence of both the rigid boundaries 

(side walls and base) of the tank and the free water surface. As described earlier (Section 5.3.4), a 

shock wave is reflected with positive pressure magnitudes if striking an infinitely rigid boundary, 

while a negative pressure wave would be reflected from a free surface. Therefore, the rigid 

boundaries and the free surface were modelled using multiple point sources. Because of the short 

response—time history to be taken into account in the current analysis (5 ins) only reflections from 

the side walls parallel to the plane of symmetry, the bottom of the tank and the water surface were 

considered and due to symmetry a total of four explosion point sources were declared to PAFEC-

DOLPHIN (one original point source, and relative to it two positive and one negative image point 

sources - modelling the shock wave of the original explosion source, its reflection from the rigid 

boundaries of the base and one side wall, and the reflection from the free surface respectively). 

In PAFEC—DOLPHIN the pressure magnitude of an incident wave varied with the inverse of 

the stand off distance from its source (p1 cc (1/R)) but Eqn (5.20) indicated that the peak pressure 

of the shock wave pulse for detonator 79 was proportional to a higher power than unity 

cc (1/R)'36 ). Consequently, it was necessary to compensate for such a difference in the 

pressure tables provided for the software. This was carried out by scaling the pressure magnitudes 

using a constant derived from Eqn (5.20) on the basis of the length of propagated distance. 

Although in performing the above step the pressure field surrounding the structure was 

modelled more accurately, it was not possible to compensate for the variation in the decay rate of 

the shock pulse. As the shock wave spreads out from the source the duration of its pulse increases 

and hence part of the energy (or impulse) utilised in exciting the prototype during the 
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experimental tests was not represented in the theoretical analysis. The difficulty in simulating such 

an effect was due to the low pressure magnitudes involved and with the added complication that 

shock pulses emitted by cylindrical charges possessed multiple decay rates, it was not possible to 

derive an empirical formula. In addition, experimentally no pressure gauges were dedicated to 

measure the reflected shock wave pulses at a point where it would have struck the target or even 

measure the original pressure pulse at a distance equal to that which the reflected wave would 

have travelled. 

5.4.3 Comparison Between Experimental and Theoretical Results 

On viewing the experimental principal stresses in Figs 5.13(a and b), it was noted that an 

initial peak response occurred in the first 10 ms. Then at a much later time t = 28 ms another peak 

response was observed which was attributed to the energy released by the bubble pulse in a 

secondary stage of contraction. In adopting the DAA for the solution of the fluid—structure 

interaction the damping effect of the surrounding medium on the structure would be overestimated. 

Hence any late time response calculations would be overdamped and incorrect response 

magnitudes would be yielded. Because of this and due to local restrictions on the maximum CPU 

time permitted for a single job the time history for the acoustic analysis was limited to Sms, (in 

PAFEC no restarts were possible during a transient response analysis). 

A comparison between the predicted and measured dynamic response of the Echinodome 

prototype to the symmetric explosive load was carried out for the maximum, minimum and 

equivalent stresses and a). Graphic representation of the comparison is shown in 

Figs 5.15(a, b) and 5.16 for five positions (40 = 300, 60 °, 900, 1200  and 1500) on the nearest 

meridian to the explosive charge (meridian Ml). 

It can be noted that for the upper three locations ( = 30 0,  600  and 900) the DAA was 

unsuccessful in predicting the correct magnitudes of the peak responses and theft time of 

occurrence. As the response time progressed the theoretical stresses tended to zero which was an 

indication of the overestimation of the surrounding fluid damping effect by the DAA. 

On the other hand, the peak stresses were greatly exaggerated in the early stages of response 

for the lower two positions on the shell ( = 120 0  and 1500). A higher frequency mode appeared 

to be superimposed to the dynamic stresses. This could be attributed to the fact that several time 

steps were necessary for the pressure wave to cross each element of the flat base which resulted in 

the increase of the total force applied to the structure in a discontinuous manner and hence 

artificially exciting a higher vibrational mode. Due to the high density characterising the material 

at that part of the structure the mode appeared to be more pronounced on approaching the base. 

The consequence was that, unlike experimental measurements, the acoustic analysis failed to 
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In spite of the above observations which could be used to condemn the DAA technique and 

its current implementation it is encouraging to note that for most of the considered locations on 

the theoretical model the stresses were of identical type (compressive) during the early stages of 

the response. In addition, the discrepancies were not extremely large. 

It can be concluded from the above results that the reasons for the disagreement between 

both predicted and measured dynamic responses (maximum and minimum principal stresses) were 

as follows, 

inaccurate modelling of the structural base; 

inexact description of the pressure field surrounding the theoretical model; and, 

inaccurate incident pressure transformation to equivalent nodal forces. 

5.5 CONCLUSIONS 

The main aim of the earlier described explosion tests was to assess qualitatively the ability 

of the available PAFEC—DOLPHIN version to predict the dynamic structural response to blast 

pressure waves. The structure was simulated using conventional semi.—loof shell elements and the 

surrounding infinite medium was modelled with a single boundary element. A DAA formulation 

was employed in the solution of the fluid—structure equations. The boundary element approach 

based on the use of the DAA appeared to be attractive as it allowed a large percentage of 

computational resources to be devoted for structural modelling, unlike fluid finite elements which 

would consume a larger percentage and would require the application of proper boundary 

conditions at an appropriate distance from the structure. Supported by experimental strain 

measurements and predicted responses the following conclusions were reached: 

The theoretical results could be greatly improved by discretising the finite element 

model into a finer mesh and by remeshing the structural base to represent more 

accurately the prototype base. 

Although the DAA can be considered an accurate scheme for the prediction of early 

time response it overestimates the fluid resistance to the structural oscillations and 

would not be useful in the prediction of intermediate and late time oscillatory type 

response (e.g. free vibration analysis) or in the application to dynamic stability 

problems because of its overstabilising effect. 

The current PAFEC—DOLPHIN software should be reformed to do the following, 
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- 	adopt a more accurate approach for the transformation of incident pressure to 

equivalent nodal forces; 

- 	enable the input of blast overpressures as point sources if a VMA was to be 

adopted in an acoustic analysis; 

- 	facilitate the output of incident pressure (p 1), reflected pressure 	radiated 

pressure 	scattered pressure 	and total pressure 	and forces at any 

specified instance for any point on the structure or in the fluid; and, 

provide cable elements for the simulation of tension leg members, i.e. uniaxial 

elements with no compressive strength. 

4. 	If the above improved software was to be employed in the modelling of new 

experimental tests using the same prototype it would be advisable to observe the 

following recommendations during the experimental work, 

use of a spherical shaped explosive charge with well defined characteristics (p, 

decay rate, I and 

- 	site where the experiments are to be carried out should have no proximate 

boundaries (minimum time delay between incident and reflected shock waves 

must be greater than 250 ms); 

- 	explosive source should be located at an appropriate distance from the structure 

to avoid exciting it with strong shock waves or pressure pulses containing large 

amounts of energy which might invoke the structural geometrical non—

linearity; and, 

it would be useful to mount several miniature tourmaline pressure gauges on the 

prototype's surface in addition to response measuring gauges, 

e.g. accelerometers and strain gauges. 

It is clear from the above conclusions than an acoustic analysis would be relevant for linear 

shock analysis problems only. In the design stages of a full size underwater Echinodome vessel, 

with the purpose of storing a hazardous liquid, structural stability against strong shock waves 

would have to be investigated. An acoustic fluid model would be incorrect as it would yield a 

reflected pressure of only twice the incident pressure. 

Therefore, it would be necessary to employ a numerical technique in which the non—linear 

terms of both the structure and fluid models are retained 93  and the coupling boundary conditions 

at the fluid—structure interface are required to accommodate the possibility of the cavitation 

phenomenon occurring. Initially, a static buckling analysis would be performed and if a limit point 

(i.e. a zero stiffness point) existed in the load—deflection curve then the dynamic stability of the 
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underwater structure when subjected to shock waves would have to be investigated thoroughly. 
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CHAPTER 6 

DESIGN AND CONSTRUCTION OF A STATE OF THE ART 

ECHINODOME FOR UNDERWATER STORAGE OF LNG 

6.1 SUMMARY 

A proposal is made for an offshore LNG peak shaving facility using Echinodonies for 

storage. The design loads for an underwater floating submerged tank are reviewed with emphasis 

on dynamic loads (impact and explosion). Then a summary is given for the loading conditions 

against which it is necessary to design the underwater storage vessel, during its various life - 

stages construction, launching, towing out, commissioning, operation and decommissioning. 

The assessment of response of a reinforced concrete Echinodome, with an inner steel tank 

containing LNG, to accidentally dropped slender and bulky objects employing empirical formulae 

is discussed. - 

An outline for construction works is described along with the general principles and practice 

of prestressing the Echinodome structure to overcome any developed tension cracks in the 

reinforced concrete outer shell. 

6.2 INTRODUCTION 

In earlier chapters, the research work was concentrated on assessing the use of the finite 

element method as a numerical procedure to predict the Echinodome response to static and 

dynamic loadings. The current chapter makes use of the previously reached conclusions in the 

design procedure of a full size Echinodome emphasising its function as an underwater storage 

vessel for a hazardous material; liquefied natural gas (LNG). 

LNG is a cryogen used in space programs, energy and chemical industries as a pollution—

free fuel. It is stored under atmospheric pressure at very low temperatures (-162 °C) or under a 

higher pressure and temperature not higher than its critical temperature (-82.5 0C), the temperature 

above which the gas cannot be liquefied by compression alone. Hence, LNG must be stored in a 

perfectly insulated container. 

-274- 
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Underwater LNG storage vessels may experience impact loadings as a result of accidentally 

dropped objects which can cause local structural damage. Mother extreme load case can occur 

when the stored cold liquid leaks into the surrounding media (in the current case water) forming a 

spill which is superheated originating an EPT. As a consequence an overpressure is created which 

is transmitted to nearby structures through a shock wave. 

Therefore, an underwater Echinodome storing a cryogenic liquid (considered to be 

hazardous) is required to be safe against a wide variety of load cases including deterministic and 

probabilistic loads. It is imperative that such vessels are designed to resist structural failure when 

subjected to severe loadings, static or dynamic, during their operational life. 

The main aim of the current chapter is to establish a design and construction procedure for 

the Echinodome structure and assess its performance as an underwater LNG storage tank. 

6.3 AN OFFSHORE LNG PEAK SHAVING FACILITY 

An LNG peak shaving facility is a plant where means exist for processing and liquefaction 

of natural gas. The facility responsibilities include,  

L 	pretreatment and purification of feed gas; 

liquefaction; 

storage; 

distribution pump out and vaporisation; 

V. 	control and instrumentation; and, 

vi. 	fire protection and safety. 

Economy of an LNG processing plant and its operating costs depends greatly on the proper 

integration of the pretreatment, purification and liquefaction facilities with the type of storage of 

the gas. Natural gas can be stored in the liquid state fully pressurised at a temperature not higher 

than its critical temperature (-82.5 0C), non—pressurised at a very low temperature (-162 °C) or a 

combination of both cases. The most economical method of storage is dependent on parameters 

such as the size of the stored LNG and the filling rate. 

In 1984, Royles et al. 9  proposed an offshore system for LNG processing and Underwater 

storage. A similar concept is adopted in the current investigation with some modifications 

introduced to the storage tank configuration and more details concerning plant processing. The 

system is described in the following paragraphs. 
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An LNG peak shaving plant is to operate offshore with feed gas pretreatment, purification 

and liquefaction taking place on board a production platform sited on top of a natural gas field. 

Pretreatment and purification of the inlet gas is an important process for the removal of any 

substances that may solidify during the liquefaction stage, hence avoiding fouling and plugging 

problems. An integrated pretreatment, purification and liquefaction process would be most 

advantageous to implement rather than other single use systems for simplistic and economical 

reasons. 

The purification process would have to be reliable in removing carbon dioxide, water and 

mercaptans from LNG and should be capable of handling wide variations and concentrations of 

contaminants with minimal effect on the liquefaction capacity. The combined system could 

involve the use of a mixture of refrigerants in a single loop to obtain lower temperatures. The 

mixture would be condensed under moderate pressure at ambient temperature. 

LNG would then be stored under 2 .-, 3 bars at —162 0C in a single or a chain of insulated 

Echinodomes, situated proximate to the production platform. The pump out system comprised of a 

pump and motor drive is to be mounted inside the storage tank in order to take advantage of the - - 

cryogenic fluid for motor cooling. Extra pumps would be installed as spare capacity for the 

distribution system. 

The storage vessel would be supported in a floating submerged state with the aid of tension 

cables in order to avoid adverse weather conditions encountered at the air/sea interface and at the 

same time minimise the effect of ground motions on the structure. 

The apex of an underwater Echinodome is a critical part of the structure and would be prone 

to accidentally dropped objects. Therefore, liquid filling and withdrawal lines would be located in 

the circular base. Insulated flexible hoses would be employed in the transfer of LNG from the 

storage vessel to tankers for transportation to onshore satellite plants where LNG would be stored. 

The liquid would then be pumped to sufficient pressure before vaporisation in order to enter the 

distribution system. 

The control and instrumentation of the offshore plant would be located on the production 

platform where controls would be automatically operated. 

6.4 DESIGN PROCEDURE 

The current section is concerned with the design procedure for the underwater storage 

system of the above described LNG peak shaving facility. 
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6.4.1 Site Considerations 

It is important to consider the characteristics of the chosen site when designing an 

underwater Echinodome for mainly four reasons. 

Firstly, the water depth during favourable weather conditions at the selected site is required 

to enable the designer to generate the meridional coordinates of the Echinodome and hence 

determine its dimensions. 

Secondly, a thorough geotechnical investigation is to be carried out to determine the soil 

characteristics at the sea bed. The provided information is paramount in the design of the 

foundations to which the floating submerged Echinodome is to be attached. 

Thirdly, a seismic evaluation of the location is necessary in order to predict the effect of 

ground acceleration on the integrity of the structure and connection outlets to pipework. 

Lastly, severe environmental conditions of the locality must be considered in assessing the 

types of environmental loadings (waves, currents, sea ice and icebergs) that might affect the 

strength and stability of the Echinodome. 

6.4.2 Material Selection 

The Echinodome under consideration is to possess two walls separated by an insulating 

material, all acting as a full containment system. Typical wall and base cross sections can be seen 

in Fig. 6.1. 

6.4.2.1 Exterior shell wall— When considering the safety of the surroundings the aim 

should be the prevention of a catastrophe in case of a structural failure 94 . In today's technology 

concrete is recognised as the best available construction material for protecting structures against 

explosions and striking objects. Therefore, reinforced concrete would be selected as the 

construction material for the outer shell. 

The outer skin is to be covered with a fender layer made of lightweight concrete having a 

very low strength. The idea has been suggested before and tested on small scale dome type 

models 95  . The thickness of the fender must be enough to ensure the absorption of energy 

imparted to the structure through an impacting object by crushing and penetration of the 

lightweight concrete directly beneath it. At the same time the structural concrete must not be 

activated to impact respond in order to minimise the contact force. Lightweight concrete would be 

chosen rather than other fender materials (e.g high density polystyrene) because of its ability to 

hold its shape in deep water under relatively high hydrostatic pressure. 
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6.4.2.2 Interior shell wall— The inner tank would be constructed from 9 percent nickel 

(9% Ni) steel characterised by high toughness at very low temperatures and hence improve the 

safety of the inside tank containing the LNG. Welded joint strength tests and fracture toughness 

tests carried out earlier 96  confirmed that 9% Ni steel plates were adequately applicable for the 

construction of LNG tanks. 

6.4.2.3 Insulation material— Insulating the Echinodome would be achieved using two 

different systems, one between the tank walls and another for the base. 

The basic insulation system for the annular space between the inner and outer shell would 

be composed of loose granular perlite, which is an inorganic, non—flammable, lightweight material 

produced from special volcanic rock. In order to minimise moisture and air voids in the insulation, 

the perlite would be finely ground and expanded within in—situ portable furnaces and then placed 

in the gap between the steel inner and concrete outer shells 

The powdered form of perlite is subject to settlement and consolidation and therefore a 

resilient blanket would be wrapped around the steel tank. The flexible layer would prevent the 	- - -- - 

build—up of pressure on the outside surface of the inner tank, a situation which might arise when 

the vessel walls expanded and contracted due to thermal and/or hydrostatic load variations. 

A wall liner is to be installed on the inner surface of the outer shell which would act as a 

liquid and vapour product boundary, thus preventing any LNG leakage into the surrounding media 

(in the current case water) in the event of a spill into the annular space. Under such conditions 

perlite loses its effectiveness as an insulating material and hence a secondary insulation system 

would be introduced in the form of polyurethane foam (PUP). The material is sprayed on the wall 

liner to prevent it from direct contact with the spilled LNG and in that way the rate of vapour 

evolution would be kept to a minimum. The PUP insulating material would then be sanded and 

coated with a layer of glass reinforced epoxy. 

Foamed glass blocks would be utilised in insulating the Echinodome base. The blocks would 

be stacked normally in layers on a bituminous bedding membrane covering the inner surface of the 

reinforced concrete base. The load bearing insulating system would be organised with filled and 

staggered vertical joints and interleaved with bituminous layers 98  The above insulating material 

is of limited strength and brittle nature and hence, care must be taken not to overload the foamed 

glass slabs from the hydrostatic pressure of the liquid contained in the steel tank. Such a 

requirement could be fulfilled for large tanks by installing a ring beam of perlite concrete (cast in 

place or precast oven dried sealed blocks) under the bottom edge of the inner tank. 
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A secondary 9% Ni steel plate would be installed below the base of the inner steel tank 

separated from it by a reinforced concrete layer. The plate would be introduced to contain any 

spill from the inner reservoir and would normally be at product temperature. In addition, a bottom 

liner would be provided under the foamed glass layer to enclose the load bearing insulating 

system. The bottom insulation would be connected to the annular gaps via a pipeline. If a leakage 

was to occur the connecting pipe could be shut off and the base insulation purged. In the case of 

continuous leakage it would be possible to detect LNG in that space using thermocouples, attached 

to both the liner and the steel plate, which would measure temperature variations. 

6.4.3 Structural Dimensions 

The meridional profile of the outer shell would be generated by the Echinodome shape 

prediction program with the structural dimensions depending on the selected design stress and wall 

thickness. The coordinates of the inner jacket profile would be determined from the outer shell 

meridian, by specifying an adequate gap for the insulation system between the two walls and 

floors. 

Llambias in his thesis 4  determined the centreline of both meridional profiles and stiffened 	 - 

the structure in the critical zones by gradually increasing the thickness of both walls in the bottom 

tenth. The previous step was necessary in order to achieve a higher factor of safety against 

structural instability. 

The same structural dimensions are employed in the current investigation after performing 

some modifications to the Echinodome outer shell and insulation system. 

General characteristics of the storage system are listed below and the Echinodome wall and 

base composition are depicted in Fig. 6.1. 

CONCRETE SHELL 

• Height from inner surface of base 

• Maximum diameter 

• Base diameter 

• Enclosed volume 

• Fender thickness and material 

• Wall thickness and material 

Base thickness and material 

(m) = 	34.80 

(m) = 	52.55 

(m) = 	30.00 

(m3) = 	51968 

(mm) = 	250 

(mm) = 	250 

500 

(mm) = 	2000 

of lightweight concrete 

minimum and 

maximum of grade 80 concrete 

of grade 80 concrete 
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STEEL SHELL 

• Height from inner surface of base (m) = 	31.97 

• Maximum diameter (m) = 	48.34 

• Base diameter (m) = 	30.00 

• Enclosed volume (m3 ) = 	42861 

• Wall thickness and material (mm) = 	50 

80 

• Base thickness and material (mm) = 	88 

minimum and 

maximum of 9% Ni steel 

of 9% Ni steel 

INSULATION SYSTEM 

• Wall insulation thickness (mm) 	= 1500 

• Resilient layer thickness (mm) 	= 100 

• Load bearing insulation thickness (mm) 	= 750 

• High load bearing ring beam depth (mm) 	= 500 

• Polyurethane foam layer thickness (mm) 	= 60 

In the critical zone around the base the insulating material (powdered perlite) thickness 

would be less than at other parts due to the narrower gap between the two walls. 

6.4.4 Design Loads Assessment 

In order to assess the design loads of an underwater Echinodome vessel storing LNG it is 

necessary to establish the degree of safety required. The requirements dictated by the safety 

measures involved in achieving a state of the art design of the Echinodome are mentioned in the 

following subsection. 

6.4.4.1 Safety requirements— The probability of accidental events occurring in an LNG 

bulk storage installation is usually small but such facilities are characterised by an inherent high 

risk level. Risk can be defined as the product of the probability of occurrence and the potential 

amount of damage. Therefore, limiting risk by attempting to decrease the probability of occurrence 

of hazardous incident does not suffice. The main objective should rather be limiting the extent of 

damage during upset conditions, hence preventing a catastrophe from occurring and achieving a 

higher quality of safety. 

Safety systems can be classified as either active or passive. A computer controlled safety 

system and structural safety are examples of such systems respectively. Active safety systems 

require a high standard of quality and high redundancy level and, when employing computers, are 
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subject to computer bugs. On the other hand, measures in the structural field to limit damage are 

more reliable because of their deterministic nature and hence are considered more attractive than 

other safety systems, especially in developing countries where human error (the main source of 

accidents) is more probable. 

Safety at an underwater LNG bulk storage facility could be enhanced by employing 

burstproof Echinodome vessels. Normally, the criteria for designing a tank to contain a cryogenic 

flammable substance are specified by the customer but if a state of the art configuration (as is 

considered for the current case) is necessary to limit potential damage in the event of any upset 

condition (e.g. zipper type tearing of the inner steel tank, an overpressure wave from nearby 

explosions or impact by striking objects) then the following requirements must be satisfied, 

safe, efficient and economic operation under normal conditions; 

safe containment of product spills under upset conditions - the primary tank storing 

the product liquid is to be protected by a secondary tank which should be, 

- 	vapour and liquid tight, 

- 	highly resistant to perforation and punching, and, 

- 	burstproof; and, 

high availability and repairability after being subjected to severe loadings. 

In general, the storage configuration must be safe under all prescribed design loads, 

e.g. loads experienced by the structure during construction, testing, initial floating, towing out, 

installation, operation and severe dynamic loads. High quality of safety is possible but the 

questions remain - how safe is safe and how expensive is safety? 

It is beneficial in the current investigation to gain experience from already existing 

vessels 99,100  to ensure that the above—described underwater Echinodome storage vessel (see 

Fig. 6.1) is within the current state of art concerning design, construction and operation. 

Reinforced concrete is considered as the most attractive choice for the protective outer tank. 

If in a prestress state the concrete would be under compression and thus could take up the space 

enclosing function as well, while the prestressing tendons and the reinforcement bars would be 

carrying the tensile forces. Zipper type tearing and bursting employing this type of design are 

resisted by the discontinuous absorption of tensile forces and consequently the concrete vessel 

relieves any sudden overpressure through material softening, a behaviour known as 

"Structural Blowdown" 100 
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In the event of a single prestressing tendon failure (the probability of this occurring is very 

low) the tensile stresses are redistributed in the adjacent tendons resulting in the increase of the 

steel stress state and it is very unlikely that a catastrophe would result from such an effect. 

When designing the Echinodome vessel it is not advantageous to use prestressing to 

counteract upset conditions as such action would cause the structure to behave according to the 

theory of elasticity. But if material softening of concrete is the acting mechanism (through the 

formation of cracks) then the concrete outer tank could behave as an overload relief system. 

It can be concluded from the above discussion that an adequately reinforced and prestressed 

concrete outer shell can limit the amount of damage in a hazardous situation by acting as an 

effective, efficient and economic passive safety system which would make the use of an expensive 

active safety system redundant. 

6.4.4.2 Upset loading conditions— Transient dynamic loadings may be exerted on an 

underwater Echinodome as a result of any of the following incidents, 

sudden failure of the inner tank; 	 - - 	- 	- 

a nearby explosion initiating a shock wave which impinges the outer shell; and, 

striking and dropped objects impacting the outer concrete shell. 

In the event of zipper type failure of the inner steel vessel the liquid product would suddenly 

be released causing a hydrodynamic load on the outer tank, the duration of which lies in the range 

0.15 -4 0.48 s 99  . Both experimental and analytical work 99  indicated that if the annular space 

was filled with perlite the hydrodynamic pressure would approximately be 2.5 times the LNG 

hydrostatic pressure. Since LNG has a much lighter density 424 kg/m 3  than that of sea water 

(1025 kg/in3) the end effect would be a non—critical situation. The reason is that the total inner 

hydrodynamic pressure would be counteracted by a portion of the outer hydrostatic pressure 

depending on how far the Echinodome was from the sea surface level. 

If an LNG spill was to occur from a pipeline or storage vessel underwater the spilled liquid 

would be superheated by the hotter, less volatile surrounding media (water). The hydrocarbon then 

vapourises transforming into a more stable state. Under such circumstances the course of events 

can change rapidly to produce an explosion like phenomena (RPT) which in turn generates shock 

waves. Depending on the rate and amount of spilled LNG a small scale incident can propagate and 

escalate the RPT phenomena through premixed and fragmented LNG and sea water. Consequently, 

proximate structures may suffer severe transient overpressures. 
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Impact loads may be exerted on underwater Echinodomes as a result of objects dropped 

from above the sea surface, e.g. a pump or a ship anchor. Following a nearby explosion concrete 

fragments and debris may strike the storage vessel at relatively high speeds which may cause local 

structural damage in the form of spalling, scabbing or perforation 101  (see Fig. 6.2). 

6.4.4.3 Summary of design loads— Table 6.1 contains a list of the loading conditions for 

which an underwater Echinodome should be designed. The types of loads described vary with 

respect to structural geometry axisymmetric, symmetric and asymmetric. 
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DESIGN LOADING CONDITIONS 

• CONSTRUCTION LOADS 

Temporary omission of wall panels 
Temporary erected structures 

• DEAD LOADS 

Structural self—weight 
Permanent attachments and ancillaries, 

(e.g. pipes, valves, pumps and stairways) 

PRESTRESSING FORCES 

• IMPOSED LOADS 

Internal hydrostatic pressure of water during testing 
Internal hydrostatic pressure of LNG during operation 
Internal gas pressure and vacuum 
External hydrostatic pressure of water 

• ENVIRONMENTAL LOADS 

Wind loading during construction, launching and tow out 	-= - 
Wave loading during operation 
Current loading 

- Wave height increase 
• Current drag forces 

Sea ice and icebergs 

• THERMAL LOADS 

Temperature gradients during commissioning (initial cooling) 
Temperature gradients during operation (filling and emptying) 
Temperature gradients during accidents (LNG leakage) 
Temperature gradients during decommissioning (warming) 

SUPPORT LOADS 

Base reaction during construction, floating, towing out and operation 
Structural behaviour under unsymmetric supporting conditions 

• ACCIDENTAL LOADS 

Impact forces induced by striking or dropped objects 
Blast overpressures caused by a proximate explosion 
Sudden failure of a single or multiple tension leg members 

TABLE 6.1 -DESIGN LOADING CONDITIONS FOR AN OFFSHORE 

FLOATING SUBMERGED ECIIIN000ME STORING LNG 

Except for impact and explosive loadings most of the above load cases were assessed and 

their effect on a slightly different storage configuration was examined by Llambias 4  . Therefore 

only transient loadings will be considered herein. 

-c 
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Four important parameters determine the effect of impact on the Echinodome vessel which 

are, 

the mass of the striking or dropped object; 

the terminal velocity at which the object impacts the structure; 

the shape and dimensions of the impacting object; and, 

the structural stiffness of both bodies at the point of contact. 

When studying the effect of impact on the Echinodome structure it is necessary to derive 

values for each of the above variables in order to assess the magnitude of the contact force 

between both bodies. If the contact stiffness is low the impact load is classified as soft impact 

characterised by long duration and low contact force. While a hard impact load can be experienced 

by the structure having a much shorter duration and a higher force magnitude, if the contact 

stiffness is high. 

When considering explosive loadings, structural response is dependent on the following 

controlling parameters: 

the stand off distance from where the explosion occurs; 

the duration and decay rate of the pressure pulse; 

the peak pressure pulse; and, 

the structural stiffness. 

Other dynamic loadings which are less critical but require consideration are the sudden 

failure of a tension leg member and sudden release of product jets. The risk of resonance from 

liquid motions or production pumps need to be assessed as well. 

In general, an underwater Echinodome LNG storage tank should be designed to sustain 

prescribed impact and explosive loadings without the spilling or leakage of the contained liquid. 

Examples 

- 	Impact by slender deformable objects (soft impact) 102 

Impact by slender and bulky non—deformable objects (hard impact) 102 

Blast wave having a pressure pulse varying linearly from maximum (at t = 0) to 

zero 103 
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6.4.5 Structural Analysis 

To date, the most powerful numerical procedure available for analysing the Echinodome 

under various loadings is the finite element method. It can predict structural response to almost all 

types of loads under normal and upset conditions. Consequently, it would be employed in the 

design of a storage tank having a configuration similar to that described above (see Fig. 6.1). 

Recommendations for a finite element simulation of the underwater Echinodome vessel are 

mentioned in the following subsections regarding element types, material models and types of 

loads necessary to include in the analysis and check against for structural failure. 

6.4.5.1 Element types— Three dimensional shell elements, allowing for strains in the plane 

normal to the shell surface, would be used to idealise the outer concrete tank. The fender layer and 

the structural concrete would be represented using two different sets of elements each possessing 

its own material properties. Thin shell elements qualified for attaching to the surface of the above 

shell elements would be required to model the liner, the inner steel tank and the secondary steel 

base. Additionally 3—D compatible solid elements would be assigned for the insulation layer in the - - -- -- - 

annular space between both tanks and the load bearing insulation system. 

Depending on the reinforcement and prestressing layout, 3—D bar elements along the side 

nodes or in the body, parallel to the curvilinear axes, of the three dimensional shell elements 

would be employed in modelling reinforcement bars and prestressing tendons. In the case of a 

bond slip analysis 3—D link elements or springs would be attached to the finite element mesh 

between the concrete shell elements and the bar elements. If shear reinforcement in the form of 

stirrups was to be introduced in the outer concrete shell in order to enhance its perforation 

resistance against soft and hard impact, then it would be essential to define such reinforcement 

explicitly in the theoretical model. A finite element mesh discretisation scheme for a 900  segment 

of the apex zone is depicted in Fig. 6.3. Lastly, cable elements would be utilised to simulate the 

tension leg supporting system. 

6.4.5.2 Material models— Concrete behaviour varies according to its stress state. When 

reaching a limiting stress value it fractures either by crushing if in a state of compression or by 

cracking if in a state of tension. A concrete constitutive model would be assigned to the concrete 

3—D shell elements to represent such behaviour. 

If concrete is in a compression state the constitutive model would have to allow for material 

softening following the crushing failure mode. Only after reaching an ultimate strain the strength 

of elements in such a state would cease and the stresses would be redistributed in the neighbouring 

elements. While, if under tension, assumptions for the numerical model would have to be made 
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regarding initiation, closure and reopening of cracks. A crack is formed as a result of exceeding a 

limiting tensile strength or strain, in a plane normal to the maximum principal stress. Thereafter, 

the surrounding concrete material could be represented by an orthogonal model with the local 

material axes coinciding with principal stress directions. Cracked concrete could not carry tensile 

stresses normal to the crack plane, on the other hand stresses parallel to the crack could be 

supported according to the constitutive laws of the material model. For small cracks shear could 

be resisted by the interlock of aggregate along the parallel crack faces. The previous shear stresses 

could be assumed to vary linearly with strains caused by the parallel differential movement of both 

opposite crack faces. The interlock phenomena would cease to exist for large cracks. Cracked 

sections of concrete could support compressive stresses orthogonal to the crack plane. 

The insulation material in the annular space between both shells was considered to be in 

powdered form and could be assumed to possess no resistance to either compressive or tensile 

stresses. The description of such a material in the finite element method would present a problem 

when evaluating the structural stiffness and hence it could be provided with some compressive 

strength if in a confined state with its value depending on the original material properties in such a 

condition. The foamed glass material of the load bearing insulation system would be represented 

with a similar constitutive model. 

Contrary to concrete, steel is considered to be a strain hardening material and consequently 

an elasto—plastic strain hardening numerical model would have to be used to represent the various 

steel components (reinforcing bars, prestressing tendons, liner, inner tank and secondary base) of 

the storage tank. 

The bond between concrete and steel is due to the combination of chemical adhesion, 

bearing action and friction. Initially, the concrete fine particles are adhered to the surface of the 

reinforcement bars and prestressing tendons, but when slippage starts the adhesion drops to zero. 

Slip is initiated as a result of concrete failure at the steel surface and complete bond failure is 

dependent on the friction level at the failure surface. Friction is destroyed for large slippage. The 

bearing action is caused by the deformation of steel members in contact with the concrete 

material. In general, it is vital to consider the bond—slip relationship for bonded structures subject 

to incremental and ultimate loads. Therefore a bond—slip model should be provided for the 3-

D link elements in the finite element analysis by assuming a non—linear relationship between the 

bonding stress and the amount of slip. 

- 
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6.4.5.3 Types of toads and solution methods— The types of loads that would be used in 

the preliminary analysis of the Echinodome under normal operating conditions and severe weather 

conditions are static pressures, initial stresses or strains and concentrated loads. The structural 

stability of both the inner and outer shell would be checked taking both geometrical and material 

non—linearities into consideration. Since hydrostatic pressure is a non—conservative type load then 

an appropriate geometrical non—linear formulation should be used by referring all relevant 

variables to the deformed configuration of the structure. A high factor of safety would be required 

against the lesser of the non—linear collapse and non—linear bifurcation buckling pressure heads. 

A thermal shock analysis would be carried out to simulate incidents of LNG leakage in the 

annular space or in the base area. The structure is required to be vapour and liquid tight under 

such circumstances and therefore no cracks would be permitted in the outer concrete shell. 

If impact loads resulting from dropped objects are to be analysed using the finite element 

method then provisions should be made in the formulations for large deformations, slide lines and 

rezoning. Slide lines would be necessary between the striking object and the target and would be 

required between portions of the target to permit the formation of a plug ahead of the impacting 

body. If large deformations are encountered and the finite element mesh becomes excessively 

distorted, rezoning could be used to permit the division of the structure into changing sets of 

elements during the course of the calculation. It is necessary to establish dynamic stability of the 

structure under such impulsive loads with a considerable factor of safety. 

The response to explosive type loadings, having a prescribed pulse occurring at a specified 

distance from the Echinodome, should be determined. It is important that the numerical procedure 

employed in such an analysis would allow for both geometrical and material non—linearities. The 

structural stability of the Echinodome should be examined for the case of a shock wave 

propagating through a fluid medium then striking the structure and a reasonable factor of safety 

would be required. The DAA could not be employed in the analysis of such problems and 

therefore more experimental work is needed to validate newly developed numerical techniques. 

For the latter two dynamic loadings (impact and explosion) the applied constitutive laws 

should include the strain rate dependency of the material properties and structural damping could 

be ignored as its effect, if considered, would be to attenuate the structural response. 

When analysing an underwater Echinodome vessel the structure would behave according to 

the theory of elasticity if under operating loads. If it were subjected to severe loads under upset 

conditions then permanent deformations could be permitted on the condition that the outer shell 

was capable of safely containing any internal spilled product. 
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6.4.5.4 Empirical damage assessment induced by dropped objects— The types of objects 

that might impact an underwater Echinodome can be classified as follows 102, 

slender deformable objects impacting end–on or broadside, e.g. pipe; 

slender non–deformable objects impacting end–on or broadside, e.g. drain 

caisson; and, 

bulky objects, e.g. pump. 

A falling slender object can either strike the structure end–on or with its broadside. The case 

for end–on impact is considered here to have a more serious effect on the protective concrete shell 

than broadside impact because the impact force would be concentrated on a smaller area and its 

terminal velocity at collision would be higher. 

If after the impact event the slender object suffered large deformations then some of the 

energy to be imparted to the target would be lost. The duration of the transient phenomenon would 

be longer and therefore the maximum peak force would drop. Conversely, a non–deformable 

object would experience very little deformation and hence the pulse shape of the impact force 

would be characterised by a shorter duration and a sharper peak. Consequently, impact by 

deformable and solid non–deformable objects can be described as soft and hard impact 

respectively. 

From the above discussion it can be concluded that the most critical impact load cases are 

those of a slender non–deformable objects falling end–on and collision by a bulky object. For the 

former case a sufficient amount of experimental data exist to enable the understanding of the 

impact phenomenon under such conditions. 

When a non-4eformable object strikes a structure, having no fender, with a very low 

velocity the object rebounds in a non–predictable fashion, away from the target without inducing 

any local damage. With the increase of the impacting velocity of the object damage can be 

inflicted upon the structure in any of the following defined forms (see Fig. 6.2) 

Penetration - is the measure of indentation on the struck face. 

Spalling - is the cratering damage with target material ejection from the struck face. 

Scabbing - is the fracturing and detachment of target material from the remote face. 

Shear plug - is formed as a result of inclined cracks through the target thickness. 

Perforation - is the complete penetration of the projectile through the target. 
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On the other hand, forms of impact damage caused by dropped bulky objects can be any of 

the following, 

punching shear; 

local bending; or, 

dynamic collapse buckling. 

In their report, Brown and Perry 104  recommended the use of certain empirical formulae to 

predict the extent of damage to offshore structures caused by dropped objects (5 -4 25 mIs). In a 

separate study, Dinic 95  proposed with qualifications another set of empirical relationships 

(0 -, 10 m/s) based on his own experimental results. The former and latter relationships could 

predict penetration, scabbing, shear plug formation and perforation but could not be applied to 

structures with fender layers. Such formulae take no account of the hydrostatic pressure imposed 

on the structure, any existing prestressing forces, the membrane action of curved shells which is 

likely to increase the target's punching shear resistance or the effect of any disposed shear links. 

Considering the above described Echinodome and assuming an object of 10.4 t mass falling 

freely, its terminal velocity in water would be 19.3 mIs 102 . If the structure had no fender layer 

the striking object would cause severe damage to a 250 mm thick concrete shell in the form of 

scabbing and shear plug movement Depending on the concrete compressive strength and bending 

reinforcement level the object might even perforate the concrete shell. In either the case of 

scabbing or perforation it is obvious that a 250 mm wall thickness would not be sufficient to 

protect the storage system against such severe loadings and hence the choice of a 250 mm fender 

layer of lightweight concrete. The protective covering is intended to act as an energy dissipating 

system (energy absorber) by accommodating gross deformations, between the striking object and 

the structure, which is required to neutralise the incoming kinetic energy. 

Therefore, to predict structural damage of such configurations induced by impacting bodies it 

is necessary to perform experimental tests on scaled models to enable the derivation of relevant 

empirical formulae. This approach is considered as the most attractive because the experimental 

results would be beneficial in validating numerical procedures such as the finite element and finite 

difference methods. 

6.5 CONSTRUCTION AND PRESTRESSING PROCEDURES 

Design engineers and constructors can influence their portion of the development effectively 

by adopting a sound design, construction planning and construction management. The latter two 

aspects are often encompassed by the single term "Constructibility" which involves the 

employment of work simplifications and standardisation to overcome the inherent difficulties of 
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complex and sophisticated fabrication processes. 

As described earlier the Echinodome goes through a series of very distinct stages starting 

with fabrication, to testing, to towing, to installation, to operation and ending with 

decommissioning. In construction planning, fabrication is a major stage and can be subdivided into 

several actual steps to allow the selection of the most efficient method for each step. Such a 

procedure should be accompanied with sketches, preferably isometric drawings, to portray the key 

element of each individual step. Once the constructor is satisfied that all steps have been set forth, 

then structural analysis should be carried out for each step to ensure that a safe structural design 

has been achieved. This is because some parts of the storage vessel can be subjected to higher 

stresses during the construction stage than under operational conditions. 

In general, the various construction steps of an underwater Echinodome, with the purpose of 

storing LNG, could be itemised as follows 

Preparation of a dry basin where the Echinodome construction and initial floatation 

could take place. The structure would be fabricated on a platform which would allow 

easy access and movement of facilities and equipment to the inside of the structure 

through its base. 

Concrete base construction would start with the arrangement of the reinforcement 

cage, the dispensation of the meridional prestressing tendons and any extra 

prestressing members necessary to strengthen the structural base against the buoyancy 

forces. Spacers would be used to provide a margin for the concrete cover. Reinforcing 

bars would have additional lengths to permit the embedment of enough longitude in 

the concrete structural wall. The prestressing tendons would be of endless form and 

therefore would be placed only partly in the concrete base. Space required for 

penetrations and appurtenances would be accommodated by employing a weak 

material which would occupy the predetermined locations of such openings during 

concrete pouring. Such a weak material would be detached after the concrete 

hardened. 

The steel liner attached to the inner surface of the outer shell would be erected and 

studs welded on its outer surface to tie it permanently to the concrete tank. A 

temporary supporting system would be provided for the liner during its construction 

and the concrete placement of the outer shell wall. The inner reinforcement layer, the 

prestressing members and the outer reinforcement layer would be laid according to the 

design layouts on the outer side of the liner. The prestressing tendons would run all 

over the structure in the form of endless loops, while the reinforcing bars would be 

disconnected at three mutually perpendicular planes passing through the structural wall 
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and base as depicted in Figs 6.4(a -* c). Two vertical orthogonal planes passing 

through the apex would intersect a third horizontal plane at the maximum diameter. If 

required, shear links (stirrups) would be installed at specified structural zones (which 

were prone to impact loads) to increase the punching shear resistance of the structural 

concrete wall. Before the pouring of the high strength concrete layer and the 

lightweight concrete fender, seams would be located along the three predetermined 

planes to allow the fabrication of the outer concrete shell in eight separate parts joined 

only by the prestressing tendons. 

A preshaped PVC fabric form would be attached to the concrete base and inflated, 

using water, to a pressure level sufficient to create a specified gap distance along the 

seams. The structural parts would be linked by placing concrete in the space joints to 

form a monolithic Echinodome shell. After curing of the seam concrete the flexible 

membrane would be deflated and taken away. Following this, the concrete vessel 

would be water tested for any existing leaks especially around the construction joints. 

The concrete base would be covered with a steel liner on top of which thermocouples 

would be fitted. A high bearing ring beam made of lightweight concrete blocks with 

embedded steel bars would be constructed around the base edge of the inner steel 

tank. Pipes connecting the tank base and annular space would be fitted, and the 

necessary space for the tank appurtenances including manholes would be preserved. 

The various layers forming the load bearing insulation system would be placed 

according to the layout shown in Fig. 6.1. Then the steel base of the inner tank would 

be erected on top of a thin concrete layer. 

The steel liner located on the inner side of the outer tank would be sprayed with PUF 

acting as a secondary insulating system after attaching a number of thermocouples. 

The surface would then be sanded and coated with a layer of glass reinforced epoxy. 

Crane units would be moved to the inside of the concrete shell through the structural 

base. Such units would assist in the movement and disposition of the heavy steel 

plates forming the inner tank. As the tank is being constructed in circular rings hot 

powdered perlite would be placed in the annular space. Thermocouples would be 

mounted on the inner shell tank for operational purposes. An automated welding 

procedure would be employed in the fabrication of the inner tank and should take 

place in a dehumidified environment to ensure the quality of the work and increase its 

efficiency. Integrity of the weld would be checked for surface flaws and liquid/gas 

tightness. 
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Pressure relief systems would be provided for both the inner and outer tank for the 

purpose of preventing any overpressure incidents during normal or upset conditions. In 

addition, vacuum vents should be installed in order to avoid excess vacuum 

developing in either of the tanks. 

A carefully selected list of fittings and appurtenances would be provided for the 

Echinodome vessel including pump wells inside the tank. A special railing system 

holding a hoist would be installed for pump manoeuvring. All nozzles and penetrations 

into the tank would take place through the base and access to most of the tank 

equipment, piping and valves would be achieved by an internal stair tower. The 

penetrations through the structural base would perform at least the following functions, 

- 	perlite refill nozzles; 

- 	nitrogen purge connections for the tank pumps; 

- 	instrument connections; 

- 	liquid filling and withdrawal lines; and, 

- 	passage for spares. 

The inner tank would then be cleaned by broom sweeping it thoroughly of all loose 

residue followed by a degreased filtered gas drying. 

6.6 FLOATING, TOWING, INSTALLATION AND OPERATION 

After the completion of the construction, prestressing, testing and cleaning stages of the 

Echinodome the construction basin would be flooded with water by opening the closure system. 

On floating, tugs would tow the vessel from a series of locally stiffened points on the structure to 

the required location. The general procedure and relevant precautions concerning the initial 

floating and towing out stages have been discussed elsewhere ' and should be adopted accordingly. 

On arrival at the installation site the vessel would be lowered to the sea bed by admitting 

water to the inner tank. In the next step the storage tank would be attached to a preplaced concrete 

base or a set of anchoring piles using several mooring lines in the form of catenary or wire rope. 

By emptying the tank it would float again because of the buoyancy forces and the structure would 

be held in its position by the tension leg members. 

The vessel would then be connected to the production platform where degreasing filtered gas 

would be circulated inside the inner tank to dry it. Finally, the Echinodome vessel would be ready 

for operation and after securing the tank in its position LNG would be pumped to the inner steel 

shell. 
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Thermocouples mounted on various parts of the structure would be utilised in monitoring the 

temperature of the cyrogenic liquid and the detection of any LNG spills from the primary tank. 

Several of the submerged pumps would he used for loading purposes and the rest would be 

employed in the circulation of the product to prevent its stratification in the tank and to keep the 

loading lines cold. The inner shell would normally have a maximum allowable filling limit of 

98 percent of its enclosed geometrical volume. This is to ensure that the pressure relief valves 

would always remain in the vapour space and would receive only vapour when blowing off and 

therefore they should be placed on the highest location within the vapour space. 

LNG would be exported to onshore satellite plants via shuttle tankers for later distribution. 

A catenary anchor leg moored (CALM) buoy would be positioned at an adequate distance from 

the production platform and the storage system. Transference of LNG from the storage tank to the 

carrier would be accomplished through the CALM buoy employing a floating flexible hose. 

In the event of repairs being carried out on the buoy bearings, the floating loading hose or 

any other related problems the LNG would be pumped for storage into adjacent Echinodome 

vessels without halting production and hence a higher overall production uptime would be 

achieved. The same would be applied during tanker changes on the single buoy mooring (SBM) or 

in the case of severe weather conditions preventing the LNG carrier from approaching the buoy. 

The overall proposed operating scheme is depicted in Fig. 6.5. 

6.7 CONCLUDING REMARKS 

In attempting to assess the structural response of a state of the art Echinodome operating 

underwater for storage of LNG, to general loadings, the following remarks were drawn regarding a 

double wall vessel 

The secondary tank (outer concrete shell) should limit the extent of damage in the event of 

any upset loading conditions rather than minimise risk and this could be achieved by 

designing it to withstand the following loadings safely, 

- 	impact by bulky and slender non—deformable objects; 

- 	transient overpressure shock waves resulting from nearby explosions; and, 

- 	the sudden failure of the inner tank containing LNG. 

The proposed configuration of the Echinodome vessel would satisfy the state of the art 

qualifications which are, 

safe, efficient and economic operation under normal conditions; 
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safe containment of product spills under upset conditions; and, 

high availability and repairability after being subjected to severe loadings. 

More experimental work is required to assist in the prediction of failure modes by impact 

and explosive loadings. The experimental results would be beneficial in both the derivation 

of empirical formulae and the validation of existing or new numerical procedures. 

The structural wall thickness of the outer shell would first be determined from the previous 

empirical relationships and would be provided for the shape prediction program which then 

would generate the coordinates of the meridional profile. If the resulting enclosed volume 

was less than required the structural thickness could be increased, while if it was larger then 

the material strength input to the program could be decreased and a higher factor of safety 

would be acquired. 

In summary, it can be concluded that the Echinodome storage vessel is possible to design, 

construct, prestress and install employing existing procedures, without the need of any complicated 

unpredictable methods. 
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CHAPTER 7 

CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE WORK 

7.1 CONCLUSIONS 

The research work of this thesis dealt with the effects of dynamic loads (impact and 

explosion) on the shell of uniform strength. Experimental tests were performed on a GRP model 

and theoretical simulation was achieved by employing the finite element method and in some 

cases accompanied with the boundary element technique. The main aim was to assess qualitatively 

the applicability of the previous numerical methods to the static, dynamic and non—linear analysis 

of the Echinodome. Both experimental and theoretical work carried out in the scope of this 

research led to the following conclusions with regard to full size Echinodome shell structures, with 

the purpose of storing LNG 

The last 10 percent of the meridional profile would have to be stiffened either by 

gradually thickening the shell wall, using extra reinforcement bars or a combination of 

both. This would increase the structure's resistance against buckling by preventing the 

development of high bending stresses near the base area. 

Around towing or hose attachment points extra reinforcement is needed to resist any 

local bending stresses which might initiate a local buckling failure mode. 

The maximum structural response to transient loadings is affected by the pulse shape, 

peak magnitude and pulse duration. The effect of pulse shape is lost for very short 

pulse durations and as the rise time of the pulse increases with respect to the 

structure's periodic time, the structural response tends towards static response 

(DLF -, 1.0). 

Step loading with infinite duration and zero ramping time is considered to be the most 

severe dynamic loading function to be applied to the Echinodome and hence it should 

be employed as the load—time history in a dynamic buckling analysis. 

Before performing a dynamic collapse buckling analysis for an impact load case it is 

necessary to determine the load—deflection relationship under a similar form of loading 

applied statically. If a limit point existed then dynamic collapse due to geometrically 
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non—linear effects is likely to occur at a much lower magnitude than that of the static 

value. 

If dynamic tests are to be carried out on an Echinodome prototype then modal testing 

would be useful in validating the finite element model. Newly developed correlation 

techniques would assist in identifying poorly modelled regions thus enabling the 

correction of the theoretical model. It is important to emphasise that modal testing is 

suitable for verifying a finite element model to be used in dynamic analyses only. 

It would be incorrect to employ an acoustic fluid model in the theoretical investigation 

of strong blast pressure wave effects on a floating submerged Echinodome vessel as it 

would yield a reflected pressure from the structure of only twice that of the incident. 

It is important to preserve the non—linear terms of both the structure and fluid models, 

as well as accommodate the possibility of the cavitation phenomenon occurring at the 

fluid—structure interface. Initially, a static non—linear buckling analysis would be 

performed and from the load—deflection curve an appropriate decision would be taken 

concerning the determination of the dynamic collapse buckling pressure load. 

A double wail Echinodome vessel, inner steel and outer reinforced or prestressed 

concrete covered by a fender layer, would satisfy the state of the art qualifications. 

This would be achieved by designing the secondary tank to limit the extent of damage 

in the event of any of the following upset load conditions, 

- 	impact by bulky and slender non—deformable objects; 

- 	transient overpressure shock waves resulting from nearby explosions; and, 

- 	the sudden zip failure of the inner tank containing LNG. 

7.2 RECOMMENDATIONS FOR FUTURE WORK 

The current investigation comprises a relevant part of the Echinodome behaviour under 

dynamic loadings and unveiled the cover for other interesting areas. 

1. 	Without a doubt static and dynamic stability is one such area. The Souza method, 

which is based on observing the structure's natural frequency under different loading 

increments, could be employed in the determination of the critical buckling load. Then 

a comparison could be carried out with the Southwell predictions and numerical 

bifurcation and collapse estimates. The merit in using the Souza technique is that it 

relies on measuring a global characteristic of the structure, unlike the Southwell 

approach which predicts different critical loads at different parts of the structure, 

depending on local imperfections. 
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The ability of shock analysis programs to predict structural response to underwater 

explosions needs a thorough review by applying numerical techniques other than the 

DAA or the VMA. 

The effect of liquid sloshing and earthquakes, acting as lateral loads, on the global and 

local sliding of the inner tank for a double wall configuration requires investigation. 

Impact resistance would have to be a design criteria of Echinodome vessels containing 

hazardous liquids in order to limit the extent of damage during upset conditions. 

Therefore, experimental tests are necessary on large Echinodomes to determine the 

effects of the following parameters on the structure's impact resistance, 

fender layer; 

- 	membrane action of curved surfaces; 

- 	prestressing; 

- 	extra bending reinforcement; 

- 	extra shear reinforcement in the form of stirrups; 

mass, shape and the terminal velocity of the striking object; and, 

prestressing from the hydrostatic pressure. 

The results of the above tests would then be used in deriving empirical formulae 

relevant for the prediction of wail thickness, safe against spalling, scabbing, 

perforation and shear plug formation. A finite element model which simulates the 

material behaviour during crushing, cracking and high strain rates would be employed 

in the theoretical investigation. Hence, the quality of the finite element formulations 

could be assessed by - comparing the numerical predictions with the experimental 

measurements. 

With the advent of parallel processing on computers a great deal of computing time 

could be saved when generating the Echinodome design curves for the selection of a 

particular shape. Experimentally derived relationships, regarding the prediction of an 

adequately safe wall thickness which could resist the various impact failure modes, 

need to be incorporated in the shape prediction program. In addition, it would be 

beneficial to modify the program to generate the coordinates of the meridional profile 

for more than one skin, with a specified gap separating each profile. Depending on the 

available finite element program and the type of finite element (shell or 3—D element) 

to be employed in the theoretical analysis, a subprogram should be included to 

- -.5- 

generate the coordinates of a discretised mesh. Triangular shell elements or 3- 

D wedge elements should be avoided where possible, especially around the apex zone. 
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An intelligent computer aided design system could even be developed adopting 

knowledge based system techniques to combine all of the above functions which 

would in turn generate input data files for an existing finite element analysis program. 

The finite element method of analysis is being enhanced every day by the rapid development 

of computers and the improvement of the solution algorithms which enable the handling of large 

finite element systems. It has dominated the scene of structural analysis due to its versatility in 

modelling complex structures, its ability to predict structural response at any point on the model to 

almost any load case and the possibility of incorporating constitutive models other than linear for 

describing the material properties under various loading conditions. Regardless of the previous 

statements, a theoretical analysis technique cannot be declared viable without the support of 

experimental evidence on scaled models or full size structures. Therefore, whenever possible 

during this type of research theoretical analysis was accompanied by experimental tests for 

comparative purposes. 
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APPENDIX A 

SOLUTION PROCEDURE FORA GEOMETRICALLY 

NON—LINEAR ANALYSIS 

The nonlinear system can be written as a set of algebraic equations as follows 23 

{R(S)} = [K(6)]{ o} - { p} = {o} 
	

(A.1) 

where 	{R(8)} 	represents the vector of residual loads; and, 

{O} 	represents a null vector. 

and when using the Newton_Raphson technique to solve Eqn (A.1) it may be rewritten as 

follows 

{dR} = [KT]{d8} 	..................................................................................(A.2) 

[KT] = [K0] + [KL} + [K 0] 	..................................................................(A.3) 

where 	[KT ] 	represents the total tangential stiffness matrix; 

[K] 	represents the small displacements stiffness matrix; 

[K L I 	represents the large displacements stiffness matrix; and, 

1K] 	represents the initial stresses or geometric stiffness matrix. 

After using a Taylor series expansion and rearranging terms Eqn (A.2) is replaced by the 

following (for more details see Ref. (23) ): 

[Kf IIJAS r} = - { R(} 	...........................................................................(4.4) 
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{aT} = {sr'} + JAS 1r} (A.S) 

where 	r 	is a superscript indicating the r th  iteration; and, 

is a subscript indicating the jth  increment. 

The optimum solution procedure 24  employing a modified Newton—Raphson approach can be 

summarised as follows: 

The total load is divided into several increments with the size of each dependent on 

the amount of deformation the structure undergoes when subjected to the load 

increment. 

For the first iteration of each load step a linear solution is carried to estimate {8 °}. 

The tangential stiffness matrix [K3 ] corresponding to {60}  is determined. 

The residual load vector {R 1 } is computed using Eqn (A.l). 

S. 	The correction to the displacements is calculated using the following equation 

{2S51'} = - [K3f1{R1'} 
	

(A.6) 

6. 	An improved approximation to the displacements {31}  is obtained using Eqn (A.5). 

Steps 3, 4, 5 and 6 are repeated, each time updating the tangential stiffness matrix, until some 

convergence criterion is satisfied indicating that {Rfl is sufficiently small, then the solution 

procedure shifts to start from step 2 for the following load increment. 

In LUSAS another modified Newton—Raphson solution procedure was possible by keeping 

the initial tangential stiffness matrix constant throughout the subsequent equilibrium iterations. 

The former approach was adopted in the current research. 

6 
-1; 



- r 

APPENDIX B 

DERIVATION OF THE MODIFIED SOUTHWELL PLOT EQUATIONS 

From Eqn (2.5) 

8 	8 	So 

'Cr 	'Cr 

Let 	s 	 the transducer's scale reading; and, 

so 	 the true (but unknown) transducer reading at s = 0 

(13.2) 

Substituting in Eqn (B.l) 

(s — se) 	(s — se) 	0 

P = 	+— 
P r

............................................................... (13.3) 
cr 	cr 

Multiplying both sides by 
(s - s0) 

S 
=>—=— 

cr s+ (s— S.)

.....................................................................(8.4) 

The previous equation contains three unknown constants P, 8 and s. Introducing the pivot 

point (P', s) into Eqn (8.4) 

S 	1 	• 	s*8. 
 

* 
—s0) 

.................................................................(13.5) P 	 (s  
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r 	• 	* 
I 	s 	• SSo  

=8O — [Pcrs 	c 	.......................................... ....................... (13.6)  

Using Eqn (B.4) 

[P.,

s — s0
_S 	....................................................................... 	(13.7) 

[ S - S.i'cr  
	

= [-S.T 
- 	

SS
(13.8) 

s 
* 

S 
1)cr 	5Pcr 

So 
+So=Pcr 	

So 
+so 	........................ (13.9) 

P. [(s —se) - (s* 	S.) j = - 
 - s) 	.............................................. (13.10) 

[(P's - PC) + s0(P - 1") 
= "cr[ 	 =  (S 	S') 	......................................(13.11) 

Multiplying both sides by P*P  
(P - P) 

[j~p*p (s - C)] = 	
[ P's_Ps*  I + "Cr ................................. . 



a '0.- 

APPENDIX C 

THE SUBSPACE ITERATION METHOD 

The technique is presented mathematically as follows 

1. Subspace iteration 

[ic][k+l] = [M][xk} = [Yk] 

[Kk+l] = [Xk.I IT[Yk] 

[?k+1] = [M][Kk+I] 

[Mk+l] = [k+I][Vk+I] 

[Kk+I][Qk+l] = 

= 1Vk+I11Qk+1I 

• 	(C.!) 

• 	(Ci) 

(C3) 

• 	(CA) 

(C.5) 

• 	(C.6) 

2. Convergence check 

IQ?  °" - 
('+')tolerance 	• ; i = 1,2, 3......., p 	...................(C.7) 

and as 1 - 

o 
k+1 
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Sturm sequence check 

[R] = [K] - [g][M] 

[K] = [L][o][L]T 

Error estimates 

(1+1) - Q 
	

+1) 
II[K]{4}1 	? °"[M]{s}1

(1 
 112 

Ii[KI{}" 112 

 

 

(C.1O) 

where 	k 	is a subscript denoting the iteration number; 

is a superscript denoting the last iteration number; and, 	-- - 	 - -- 	 - 	 -- - 

II 112 	indicates an Euclidean vector norm. 

From the previous presentation it is observed that a set of q iteration vectors must be 

established to start the solution procedure and this is achieved by assuming the first column in 

M[X1] ([Y] 1) to be the diagonal of [M] and the other columns are unit vectors {e} § with 

entries +1 corresponding to the degrees of freedom that have the smallest k1/m11  ratios, where k 11  

and m 11  are diagonal elements in [K] and [M] respectively. - -- 

The number of q iteration vectors was recommended by Bathe 17  to be a minimum of either 

of (2p, p+8), where p is the required number of eigenvalues and eigenvectors to be computed. 

The matrix [K] is to be factorised into [L][D][LIT,  where [L] is a lower triangular matrix 

and [D] is a diagonal matrix. The number of negative elements in [D] will be equal to the number 

of eigenvalues smaller than the applied shift [It] and as a result a conservative estimate for the 

region in which the exact eigenvalues lie may be given by 

§ {e1 } is a unit vector which contains zero elements throughout except for one element having a value of +1. 
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0.99a '"  <n?  c 1.01n12 
(1+1) 	

(C.11) 

= 0.01 1212 
(1+1) 	

(C.12) 
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THE GUYAN REDUCTION TECHNIQUE 

The displacement vector is partitioned into master and slave degrees of freedom as follows 

{s} = §:::}= 	
= [T]{} .......................................(D.1) 

where 	{8} 	represents the displacement vector for the master degrees of freedom; and, 

is S} 	represents the displacement vector for the slave degrees of freedom. 

Partitioning the structural equations {P} = [K]{8} 

JIP.1 = [KMM] [K.]t8.1 

P} 	 [Ksm] [ ç] 	o} .(
Di) 

-- 

 

Substituting {P} = {O} into EID.2) 

= [Kmm]{öm } + [Kms}{68 } = { Pm } 	.................................................(Di) 

[Ksm}{8m } + [K]{a,} = { o} 	....................................................... (D.4) 

{Ss} = - EKssf 1 [ICsm]{Sm} 	............................................................. (Di) 

Substituting Eqn (Di) into Eqn (D.3) 

{m} = ([Kmm] - [Kms}[Kss] ' [Kgij){öni} ................................(D.6) 
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[Km] = [Kmm] - [Kim] [Kss]—'  [Kim] 	...............................................(0.7) 

From £qns (0.1) and (D.5) 

: {&} = S] 1 [K ]] {6m} 	..........................................................(D. 8) 

[I] 
[i] = 
	[Kl'[Ksm] .

(0.9) 

The structural energies are written as follows 

1 r,TrJI ö} 
-. 

SE. = jjöj IK 	(strain energy) 	............................................(0.10) 

K.E. = 
	

(kinetic energy) 	........................................(0.11)
_If 

Partitioning the mass matrix [M] 

[Mmm] [Mmii 

[Mimi [M5 ] 
	 (D.12) 

Using the principles of coordinate transformation 16 

S.E. = f {6m}T[T]T[K][T]{Sm} 
	

(D.13) 

K.E. = f m}T[T'] T[MliTl{âm} 
	

(0.14) 
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= [1Cm] = ['r]T [K][T] 
	

(D.15) 

= [Mm ] = [T* ]
T [M][T

*] 
	

(D.16) 

Substituting Eqn (D.9) into Eqn (D.16), 

[Mm] = [Mmm] - [1(mg][1Cf1[Mgm] - [Mms][Kss]'[ICgm] 

+ [Kms][K8s1 1 [Mss][Kss1_' [JCsm] 	...............................................(D.17) 



APPENDIX E 

STABILITY CONDITIONS FOR VARIOUS NUMERICAL 

INTEGRATION SCHEMES NEGLECTING DAMPING 

Stability conditions for a three—point integration scheme 16  (zero damping) 

(E.1) 

7  ~: 1/2 	...................................................................................(E.2) 

I/2—y+fI ~oO 	....................................................................................... (E.3) 

Stability conditions for a four—point integration scheme 16,47  (zero damping) 

3I2cy!C/3+ 1/2 	............................................................... (E.4) 	- 

3/4+91312 - 5yca:5-9'?+3f3y+ 13y-6 	........................................(E.5) 

Application of stability conditions to various temporal operators 

Central difference (P = 0, i = 1/2) 

When applying the stability conditions of Eqns (E.1 -+ E.3) the first relationship fails. 

Newmark (13 = 1/4, y = 1/2) 

The three stability conditions of Eqns (El -* E.3) are satisfied. 

Houbolt (a = 27, D =9,y=3) 

The stability conditions of Eqns (E.4 and E.5) are satisfied. 
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iv. Wilson-0 (a = 2028/125, 0 = 457/75, y = 12/5) 

The stability conditions of Eqns (E.4 and ES) are satisfied. 

V. 	Galerkin higher order (a = 702/35, D = 3615, y = 1315) 

When applying the stability conditions of Eqns (E.4 and E.5) the second relationship 

fails. 

vi. Hulber—Hughes.Jraylor (a = 22777/2000, R = 917/200, = 2) 

The stability conditions of Eqns (E.4 and ES) are stisfied. 



APPENDIX F 

MATHEMATICAL BACKGROUND OF EXPERIMENTAL MODAL ANALYSIS 

In the following appendix a mathematical development of the equations of motion for the 

general cases of viscous and hysteretic damping will be presented. Special cases of negligible 

damping and proportional damping as well as other cases will not be described but can be found 

elsewhere 

I. Viscous damping 

Rewriting Eqn (3.1) 

[M]{} + [C]{} + [K]{o} = {p} 
	

(F.I) 

and in the case of no excitation the previous equation does not reduce to a standard eigenproblem 

and as a result it is necessary to define the following 

{y}= 1811 
	

(Fl) 

Eqn (F.2) can be used with Eqn (F.!) to form a standard eigenvalue problem as follows 

[j{g}+ [K 	
]{}= 	

of 	.................................................... 

[A]ft} + [B]{y} = {f} 	.......................................................................(F.4) 

In the case of no excitation, 

[A]{}+[B]{y}={o} 	......................................................................(F.5) 
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The solution of the preceding equation can be assumed to be of the following form 

{y} = .................................................................................................(F.6) 

Substituting Eqn (F.6) in Eqn (ES) yields 

s[A]{v} + [B]{v} = {o} 	...................................................................(F.7) 

which is a standard eigenproblem and leads to a set of 2N eigenvalues and eigenvectors, 

I..! 

53 
 0 

0 

[w] = [{v}i {w}2 {w} 	f W12N I 

Because the damping distribution is not proportional to either the stiffness or mass distributions - - 
- - 
	the resulting eigenvalues [SI and eigenvectors ['F] are complex and for a resonant system both 

occur in conjugate pairs, 

0 
[s] = 	 SN 

0 
SN 
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[T] = [ {v}i {v}2 {v}3 	 {w}N {w} {v} {v} 	TWIN* I 

where 	* 	 indicates a complex conjugate. 

The eigenvectors are characterised by being orthogonal with respect to both [A] and [B] 

0 
T [][][] = 

0 

(P.8) 

=LPJ BJ'PJ = (P.9) 

Premultiplying Eqn (F.7) by {v} T  

sr{w}r[AI{v}r + f ,} ' [B]{v} {o} 

Srar  + br  = 0 

hr 
 

Sr = -- 
ar 

 

 

 

Returning to the forced vibration case and directing interest towards the frequency domain, 

{i} = { F}ehlOt (P.13) 
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Then seeking a solution of Eqn (P.4) in the following form 

{y} = {}= 
ji Q}eI0t = { Y}e" t 	......................................................................(P.14) 

Eqn (P.4) can be rewritten as follows 

iw[A}{Y} + [ii]{y} = {r} 	............................................................................... 

and since the eigenvectors of [T] are linearly independent in a space of dimension 2N 

2N 
= 	{Y} = Z(Tr{v}r) 	............................................................................................ (F.16) 

r=I 

indicating that the solution of Eqn (P.15) can be written as a linear combination of the 2N 

eigenvectors in the eigenproblem of Eqn (P.7). Substituting Eqn (F.16) into Eqn (P.15) and 

premultiplying by T 

	

T 	2N 	 2N 	 T 
= + {v}f[BI&r{v}r) = { v}{F} ................(F.17) 

ml 

= koa; + by = {v}{F} 	...............................................................................(P.18) 

-fp
= {v}{} 

iva,+b, 

Hence substituting Eqn (P.19) into Eqn (P.16) yields 

{y} = [ vñFuwr
](K20) 

	

r=l 	iwar  + b 
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and from Eqn (F.12) 

{y} = 	
{v} '{F}{v}r I ........................................................................(P.21) 

 
a r=t 	r(iw - s,.) 

Multiplying both sides by e0t 

2N 

f25 T=........................................................................... (P.22) 
 J r=I 	ar(ico - s) 

Considering response at point j due to a single harmonic excitation force at point Ic the 

corresponding receptance can be written as follows 

2N1 rWkrVJ 1 
ajk(o)) = ZI 	 I 

rt [arOco - sr) j 

(P.23) 

. 	 S 	 'I N I 	
rVkrNJJ 	 rVk rVj 	 I 

aJk(co)=xI 	+ 	I ... 	(P.24) 
r=I [ar (ico + Crcor - icor'Il 

_2 	a(im +Crr  + ico4i - ) j 	- 

where 	 Sr = - Cr°r + KOr'Jl - Cr2  ; and, 

Cr 	 represents the critical damping constant. 

Eqn (P.24) is frequently written as, 

N 	r'Jk 	 rltjk 
+ 	 (P.25) 

	

* 	I .................................................................. 

r=1 (icosr) 	(icosr) 

where 	S 	 represents the r' pole location of the FRF on the frequency axis; and, 
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FRik 	represents the jkth  element of the residue matrix for the r th  mode. 

It was demonstrated before 67  that each eigenvector exhibited the following property 

	

{VI+N}r = sr{vi} r 	i = 1, 2, 3......., N 
	

(F.26) 

Thus using the orthogonality Eqns (F.8) and (F.9), and considering the first N components of each 

eigenvector 

{V }r {MI{v}r 
m 

	

{w}EK]{v} 	kr 	2 
{V}r EMI{v}r 

where k, mr  and c  represent the modal stiffness, mass and damping respectively. 

For the case of light damping the real part of the eigenvector terms dominate 

=> Real({y}.) Imaginary({}) 

0 
T 

[q'] [M][w]= I 	- Mr 

0 
[]T[][] =

Cr 

0 

(F.29) 

(P.30) 

(P.27) 

(F.28) 
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0 
[W]

T
[K][T] = 	k 	.............................................................(F.31) 

0 

where 	['I'] 	represents the vibrating mode shape matrix containing N vectors and each 

vector is formed of N components 	i = 1, 2........N and r 

denotes the mode shape number). 

{4'}r = {v}r I ijiW 	..........................................................................................(F32) 

where 	{$} 	represents the r' mass normalised mode shape vector. 

2. Structural (hysteretic) damping 

To derive an expression for the FRF in terms of hysteretic damping the equation of motion 

is rewritten as follows 

[M]{} + i[H]16} + [K}{o} = {p} 	...............................................(F33) 

Assuming zero excitation and seeking a solution of the form {6} = {Y}e 10)t 

(- 
&[M] + i[H] + [K}){Y} = {o} ............................................(F34) 
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The preceding equation is a standard eigenproblem and its solution yields N complex eigenvalues 

and N complex eigenvectors of the following form: 

Is? 1 
S22  01 

0 

[w] = I IVII {v}z {w}3 	IWIN I 

where 	 Sr2  = CL) r2(1 + iq) and, 

Ti r 	represents the structural damping loss factor of the fth  mode. 

The eigenvectors possess the following orthogonal property 

0  
Mr 

0 

(F.35) 

[W]T(i[H] + [K])['] = 

0 
kr  

• 0 

(F.36) 

= 1 r I Mr 
	 (F.37) 

{4}r{v}rlmr 	 (F.38) 
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As ['F] forms a set of linear independent vectors the solution of the equation of motion for forced 

vibration can be achieved by adopting a procedure similar to that described in Eqns (F.13 -, F.22) 

and thus 

N 	rVkrVJ 	I 	Nf 	r4kr4J 
=z 

 r=I[(e)r2-o)2+inrwi?)J 

N I  
Q 	

FRik
jk(0)) = 

1[(W_&+iMr(0) 
j 

 

 



APPENDIX G 

MODAL ASSURANCE CRITERION CALCULATION 

USING COMPLEX EXPERIMENTAL MODE SHAPES 

(i) 

TEST 
	

INITIAL THEORETICAL MODEL 

STRUCTURE 
	

MODE NUMBER 

MODE 

NUMBER 	1 	2 
	

31415161718 

1 0.346 0.491 0.002 0.001 0.002 0.005 0.003 0.001 

2 0.440 0.496 0.000 0.000 0.009 0.001 -  0.002 0.000 

3 0.314 0.010 0.001 0.005 0.001 0.022 0.010 0.001 

4 0.000 0.000 0.977 0.002 0.000 0.000 0.000 0.000 

5 0.000 0.000 0.000 0.980 0.004 0.004 0.000 0.000 

6 0.580 0.040 0.007 0.001 0.042 0.071 0.001 0.001 

7 0.023 0.544 0.000 0.027 0.025 0.050 0.002 0.001 

8 0.002 0.000 0.824 0.003 0.004 0.005 0.000 0.000 

TABLE G.1 -  MODAL ASSURANCE CRITERION BETWEEN COMPLEX EXPERIMENTAL AND 

REAL THEORETICAL MODAL VECTORS (CONTD) 

-335- 



APPENDIX G - MODAL ASSURANCE CRITERION CALCULATION USING COMPLEX EXPERIMENTAL MODE SHAPES 336 

(ii) 

TEST 

STRUCTURE 

MODE 

UPDATED THEORETICAL MODEL 

MODE NUMBER 

NUMBER 1 2 3 4 5 6 7 8 

1 0.832 0.006 0.002 0.001 0.001 0.003 0.003 0.000 

2 0.023 0.912 0.000 0.000 0.004 0.000 0.001 0.000 

3 0.215 0.108 0.001 0.005 0.000 0.009 0.008 0.001 

4 0.000 0.000 0.976 0.002 0.000 0.000 0.000 0.000 

5 0.000 0.000 0.000 0.981 0.003 0.006 0.000 0.000 

6 0.155 0.462 0.007 0.001 0.076 0.056 0.001 0.001 

7 0.377 0.187 0.000 0.027 0.020 0.073 0.002 0.001 

8 0.001 0.002 0.824 0.003 0.005 0.003 0.000 0.000 

TABLE G.1 -MODAL ASSURANCE CRITERION BETWEEN COMPLEX EXPERIMENTAL AND 

REAL THEORETICAL MODAL VECTORS 

When comparing the results listed in the above table with those in Table 4.10 it appeared 

that both follow a similar trend. 
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RESPONSE OF 
ECHINODOME S 

TO ASYMMETRIC LOADING 
R. Royles, BSc(Eng), PhD, CEng, MICE, MlStructE, FBSSM, 

Department of Civil Engineering and Building Science, University of Edinburgh 
J. M. Lianibias, BSc(Eng), PhD, 

Dynamics Division, National Nuclear Corporation Limited, Knutsford, England 
and K. M. El-Deeb, BSc(Eng), 

Department of Civil Engineering and Building Science, University of Edinburgh, Scotland 

The Echindome is a flat bottomed shell of revolution based on the shape of the common Sea Urchin. It has 
application in underwater storage or habitation for both industrial or leisure purposes. 

The structure could operate either founded on the sea bed or tethered to it in a floating submerged 
attitude. One of the most complex loading forms which such structures would have to sustain is that due 
to concentrated effects. 

The paper considers experimentally the behaviour of a small scale prototype under the action of a general 
regime of point loads. Computer methods of simulation are presented for the structure under these 
conditions and comparisons are made between predicted and experimental measurements of deformation and 
stresses. Implications for design are discussed. 

LIST OF SYMBOLS 
	 INTRODUCTION 

0 	Maximum diameter 
	 General Requirements: 

E 

H 

a 

p 

r 1  ,r2  

z 
a 

Young's modulus 

Height of shell 

Meridional and circumferential stress 
resultants 

Point load 

Meridional and circumferential radii 

Shell wall thickness 

Pressure head on a general shell element 

Pressure head at shell apex 

Density of water 

Historically man has sought support for the 
development of civilisation from the seas and 
oceans. This trend is intensifying as the twenty 
first century approaches and land based resources 
become more scarce. The wealth within the sea, 
and on and under its bed is being explored 
vigourously. This has led to a need for a means 
of storing some of the raw materials found, and 
their bi-products, for long or short periods near 
to the point of discovery. 

The siting of storage facilities on land 
convenient for distribution is governed by the 
availability of suitable space and the safety 
aspects surrounding the material to be stored. An 
alternative in some instances could be to locate 
such facilities offshore. 

at 

G ,c2  

Whether the requirement for storage facilities is 
Angle in meridiodal plane defining 	in association with offshore exploration and 
Position of shell element 	 production operations or the logistics of 

distribution the question arises as to where they 
Poisson's ratio 	 should be placed - on the surface or underwater? 

Mass density of shell wall materials 	There is little doubt that conditions at the 
air/sea interface are more exacting than those 

Design stress 	 prevailing underwater. 	Consequently itis in the 
latter type of environment that containers could 

Meridional and circumferential stresses 	be placed with greatest benefit. 

Principal stresses 	 Structures fcunded directly on the sea bed are more 
likely to suffer from ground transmitted 

Azimuth angle vibrations than those positionsed in a floating 
submerged but tethered mode. Furthermore the 
recovery and relocation of the latter category of 
structure would be more feasible than with the 
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.xed leg and entirely gravity type structures. 
other advantage of a floating submerged 
ructure would be its relatively small 
.sturbance to the aesthetics of the surface 
main although strict precautions would have to 
taken to divert errant shipping away from it. 

'plications for underwater storage vessels are 
.merous and include oil, liquid gases, sewage, 
xic wastes, and water. Many of these materials 
e of a hazardous nature and have to be treated 
th care wherever they are kept. 

derwater oil tanks could be utilised close to 
oduction platforms and would be valuable in 
tuations where the nearest commercially suitable 
ndfall was beyond the economic reach of a pipe-
ne. During adverse weather conditions tanker 
ips couid be prevented from mooring to take on 
pplies of oil and some storage capacity would be 
cessary to permit the production process to 
ntinue through such periods. 

milar arguments to those above are applicable to 
quid natural gas (L.N.G.) and liquid petroleum 
5 (L.P.G.). Further, the risks attached to 
oring large quantities of L.N.G., in paricular, 

land could be dimished by transferring such 
duties to underwater, but inshore, locations 
ere the consequential effects of leaks would be 
duced. 

an storms occur treatment plant for liquid 
stes collected through drainage systems often 
come overloaded. 	Excess untreated material has 
be passed direct to the nearest water course, 

ke or the sea. Some alleviation of such 
llution problems could be achieved by means of 
mporary storage facilities. In the vicinity of 
ke shores and the sea coast underwater 
ntainers could be employed for this purpose. 
e stored material would be passed back to the 
eatnient plant after the peak flow period. 

quite a number of parts of the world surface 
orage of potable water is very difficult, either 
B to lack of suitable land space or the problem 
surface evaporation. For coastal regions 

erwater storage vessels could be of great 
sistance in this matter and could be very 
Eective in the support of desalination 
:ilities. 

ructural Shape: 

optimum form for a structure to fulfil the kind 
functions described above could be defined as 
in which the design loads were resisted in the 

;t efficient way. For a fixed geometry 
ructure there would be a single configuration 

a particular design load condition. It has 
?fl shown that in an underwater situation at a 
ticular water depth a structure with a 
scribed constant material thickness and uniform 
essing throughout would assume the shape of the 
tinodome or globule of liquid on a flat surface 
f.1]. This an axisymmetric shell of revolution 
shape of which is dependent on the pressure 

Ld at the apex and the constant product of shell 
l thickness and stress, see Pig.l. These design 
.nciples, based on membrane theory, have been 
d previously for land based surface storage 
selscontaing L.P.G. and water (Refs.2,3). 
dies have been undertaken also for the 
lerwater storage of L.N.G. and oil [Refs.4-7]. 

Designs 	of this nature, 	especially for an 
underwater environment, must be checked under a 
wide variety of loading conditions. Among the 
more complex load types are concentrated effects. 
These could be of a static or dynamic nature, the 
former arising from service connections and the 
latter from impact and explosion. A prerequisite 
to the understanding of concentrated dynamic 
effects is a study of structural behaviour under 
static point loads. Some preliminary work 
has indicated that simple membrane analysis could 
provide a reasonable basis for design against 
axistrmsetric point loads [Refs. 8,91. 

The present paper investigates the effects of 
general point loading on the Echindome both 
experimentally and numerically, and the 
implications for design and construction - are 
discussed. 

EXPERIMENTAL ARRANGEMENTS 

Test Shell: 

The test shell was designed for an apex pressure 
head, z0 = 1.525m of water, with a uniform design 
stress, °d = 0.46MPa, and a mean shell wall 
thickness, t = 3.8nim. The actual wall thickness 
was measured over the whole shell with the aid of 
an ultrasonic thickness tester and the variation 
in t over the average meridian was established 
[Ref . 10] 

The shell material was glass reinforced plastic 
having an epoxy matrix and 0.26 glass fraction, 
the fibres being in the form of layers of randomly 
arranged chopped strand mat. The shell was 
constructed in two halves from the same mould and 
joined along a meridional seam using a slow curing 
araldite. 	The complete shell was bonded with 
araldite on to a flat tufnol base. 	The leading 
dimensions of the shell are given in Fig.l and the 
material characteristics were determined from 
control specimens taken out of the bottom of the 
shell, see Table 1. - 

Table 1 

Shell Wall Material Properties 

Young's modulus, 5 8600 MPa 
Poisson's ratio, u 0.36 
Mass density, p 1100 kg/m 
Ultimate tensile strength 55.4 MPa 

Instrumentation 

Electric resistance strain gauges of the foil type 
in rectangular rosette form were bonded to the 
outer surface of the shell at the intersection of 
three meridians with four parallel circles. The 
meridians were spaced at 120 in azimuth and the 
parallel circles were distributed over the height, 
H, of the shell as shown in Fig.2. Each gauge has 
a resistance of 350 ° ±0.12, gauge length = 3m, and 
gauge factor = 2.15. At the intersection of the 
lowest parallel circle with two of the meridians, 
rectangular rosettes were bonded to the inner 
surface of the shell to monitor bending effects 
near the base. The electrical leads from these 
internal strain gauges were brought out through 
the centre of the base of the shell. 



Rectilinear 	potentiometric 	displacement 
transducers were disposed normal to the shell 
surface along five meridians at 450 Their 
locations down the meridian relative to the axis 
Of symmetry were at the apex, 450, 900, and 135 
see Fig.3. The full scale resistance of each 
transducer was 2kc2 and the full scale output was 
5V d.c. for a mechanical stroke of 100mm with a 
linearity of 0.25% and a resolution of t  1 micron 
using a microcomputer controlled data logging 
system, Fig.4, fRef.11I 

Static loading was carried out using a lever which 
applied load through a stiff strut normal to the 
shell surface. The angular position of the axis 
of symmetry of the shell was variable between 0 0  
(vertical) and 900. An impression of the general 
loading arrangement can be gained from Fig.5. 

Test Procedure: 

In order not to overstrain the test structure, but  
produce measurable deformations increment, of SON in 
applied point load were employed betwen 0 and 300N 
and for each step, on the load increasing part of 
the cycle, readings from all displacement 
transducers and strain gauges were obtained using 
the logging system. The process was repeated five 
times and between each loading cycle a period of 
five minutes was allowed for creep recovery during 
which time the strain gauge energisation was 
isolated to minimise heating problems. A constant 
loading rate was maintained consistent with that 
adopted in the material control tests; a typical 
load increasing run took 2 minutes to complete. 
The mean results for the five runs were determined 
for several angular positions of the shell. 

SIMULATION OF SINGLE POINT LOADING 

There are three types of concentrated loading on 
shells namely axisyimnetric, symmetric and 
asymmetric. In terms of a single point load the 
first two types would be normal to the surface and 
the last non-normal, as shown in Fig.6. 

Since the curvature of the Echinodome changes down 
the meridian, as illustrated in Fig.l, the shape 
lends itself more readily to numerical analysis 
than to an exact mathematical solution of 
equilibrium equations. 

Half of 	the shell was simulated for the 
axisyrranetric and symmetric load cases, Fig.6a, 
using semiloof shell elements and a finite element 
method (F.E.M.) of analysis was performed using 
the LUSAS computer package [Ref.12]. The •total 
number of elements was 168 in two groups made up 
of 162 type QSL8 (an eight noded serniloof 
quadilateral shell element) in circumferential 
bands covering all but the apex cap of the shell 
which comprised 6 type TSL6 (a six noded semiloof 
triangular shell element). 

Loads similar to those used experimentally were 
considered and both linear static and geometric 
non-linear analyses were carried out. 

DISCUSSION 

The general behaviour of the shell under symmetric 
loading is considered firstly as it was typified 
by the response to a normal point load at the 
maximum diameter of the shell i.e. at = 90 0  from 
the vertical axis of symmetry. Behaviour in 
relation to point loads at other values of t less 
than 900 were similar and the case of $ = 00 

(axisynimetric apex point load) has been reported 
in detail elsewhere [Ref. 8,9]. 

The displaced shape of the shell is depicted in 
Fig.7 for the plane containing the meridian 
through the load point at azimuth angle 0 = 0 0  
and its complement ate = 1800. The zone of 
greatest deformation was under the point load 
followed by the region around the base. 
In general over the surface experimental 
values were in quite good agreement with 
the theoretical results except in the close 
vicinity of the point load where there was 
evidence of local dimpling and actual deformation 
was much greater than predicted, overall the actual 
deflections might be expected to be greater than 
predicted since the bonding of the shell to its 
base could not provide the perfect rigidity 
which was assumed at that boundary. 

The localised deformation was not permanent as 
illustrated in Fig.8 for the point load position. 
Here it can be seen that there was very little 
difference between linear and geometric non-linear 
static analyses. However, the theoretical results 
were significantly less than the experimental ones 
and this could be attributed to the assumption of 
uniform thickness around a parallel circle in the 
computer simulation and no account being taken of 
the meridional seam joining the two halves of the 
shell. 	Also local thinning near to the seam was 
not taken into account. 	None the less the 
experimental results were linear elastic over the 
range considered with the predicted values 
following a similar but stiffer pattern. The 
actual normal displacements were nowhere in excess 
of 1mm which was small in comparison with the 
shell dimensions. 

The theoretical predictions of displacement might 
be improved by using a finer mesh locally around 
the load point together with a more detailed 
description of the thickness over that area. The 
actual mesh employed in this work consisted of 
elements with a meridonal arc length of the order 
of 20mm and each element subtending 300 in azimuth. 

The stresses deduced from the strain measurements 
were compared with theoretical predictions and 
found to be in good agreement over the shell as a 
whole, 	although strains were not measured at the 
load point, 	This is demonstrated in Figs. 9 and 
10 for the meridian at azimuth angle 0 = 300 from 
the loaded meridian and its complement 0 = 2100 
(symmetrical with 0 = 150 0 ) the normal point 0 load 
being at the maximum diameter i.e. at 	= 90. In 
these plots distance is measured along 	the 
meridian from the apex with the load side negative 
and the base at the extremities. 
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g. 	9a 	and b show the variation of 	the 
rcumferential and meridional stresses,o 9  and 
spectively 	for the inner and outer 	shell 
rfaces. It can be seen from them that bending 
edominated in the base region covering the 
west 15% of the meridian on each side of the 
ex for both orthogonal directions. This was 
nsistent with the overturning effect on the body 

a whole consequent upon the inward normal load 
the maximum diameter. Additionally the 

resses in the vicinity of the load point, 
vering approximately 30% of the length of the 
ridian, were influenced by bending but the 
abrane effect was dominant. Over the rest of 
B double meridian section the stresses, 06  ando 
re of a membrane nature and approximately zero 
this case. The zone affected by the point load 
approximately circular in area as might be 

)acted in the elastic state. 

associated principal stresses, c and 02 for 
meridians 9 = 30 0  and 9 = 210 	relative to 

•loaded one are shown in Fig. lCa and b. 	It 
clear from the data on principal angles that 01 

3 02 were in close alignment with O and 
;pectively over most of this double meridian. 
was true even in the bas region remote from 
loaded area. 	There o, and 02 were almost 

ial to a 	and o indicating little shear in 
it region. 	However, in the base region nearest 
the loaded area 0 > c and 02 C c indicating 

effect of significant shear. 	In the loaded 
lion there was a tendency for Oj > 09 and 
> 	which could be attributed directly to 
;al shearing effects. 	The stresses in this 
[ion fluctuated markedly which was due most 
,baHy to the influence of localised bending. 

applied loading resulted in stresses being set 
which nowhere exceeded a quarter of the 
imate strength of the material, the greatest 
asses occurring in the base region near the 
Ld. For the loadings applied the overall 
:ponse was elastic. 

prediction of stresses was not enhanced by the 
of a geometric non-linear static analysis as 

Dosed to a linear static one, as can be seen 
m the almost direct coincidence of the plots in 
s 9 and 10. These figures illustrate that away 
m the point load and the base region the 
rcumferential, meridional and principal stresses 
e approximately equal and uniform in value. 

stress behaviour described above was relevant 
the whole shell surface and was appropriate to 
single point load cases - axisyr&netric [Refs.6 
91 and symmetric. The pattern became more 

:entuated the closer a meridional section 
,roached the loaded one. 

INFERENCES FOR DESIGN AND CONSTRUCTION 

For underwater service an 	Echinodome 	is 
proportioned initially according to the mean 
operating head of water at the shell apex using 
membrane analysis and uniform wall thickness with 
a design stress within the strength capabilities 
of the chosen construction material. 

Axisynimetric loadings produce bending and shearing 
effects in the base region and some thickening of 
the shell wall is required in the bottom 10% of 
the meridian (Ref.7). 

The present investigation confirms that the least 
disturbing positions for the application of con-
centrated loads are at the apexand the flat base. 
This indicates that access for services and 
maintenance etc should be in those locations. 
Point loadings applied in other positions would 
necessitate localised strengthening of the shell. 

The axisyrmnetric geometry of a shell of revolution 
of this type with a uniform thickness over most of 
the profile lends itself to a construction process 
involving repitition. The formwork for 
cementitious materials, see Fig.11, or the jigging 
for metal construction [Ref.3], could be rotated 
through 3600  about the vertical axis. If fabric 
or rubber materials were employed there would be 
economies available in the repetitive nature of 
cutting patterns and seaming. flhen using rigid 
materials such as concrete or steel the apex 
region would be constructed last in the form of a 
cap. Reinforcement in concrete would be 
orientated mainly in the circumferential and 
meridional directions. 

The base for such a structure has not been 
considered in this investigation but clearly in 
the construction process it would be built first. 

CONCLUSIONS 

Membrane action predominated in the shell 
away from the base and applied load regions. 

Simulation procedure gave results in good 
agreement with measurements except near load 
point and base. 

Basic reinforcement pattern in concrete 
Echinodomes should follow circumferential and 
meridional directions. 
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ABSTRACT 

A structure is described which is suitable for underwater storage of 
liquids or as a one atmosphere accommodation/operations chamber. The 
structure is an axisymmetric thin shell of revolution of optimum form in 
relation to the design hydrostatic head. The buckling tendencies of this 
type of thin membrane structure under external load were examined and 
details are given of the reaction of the shell to axisymmetric pressure 
and concentrated loadings as well as to symmetric point loads. 

The responses were based on electric resistance strain gauge measurements 
and displacement monitoring at various points on the inner and outer 
surfaces of the shell during incremental loading. Southwell type plots 
are employed to interpret the experimental data in terms of critical 
buckling loads. These non-destructive type experimental predictions are 
compared with theoretical values established using the finite element 
method with both axisymmetric shell of revolution elements and semi-loof 
thin shell elements. Good comparisons between experimental and numerical 
predictions are demonstrated. The shapes of the Southwell plots in 
relation to the localities of the measurements is discussed along with the 
validity of the approach. 

The general nature of the buckling modes under the various loading forms is 
assessed. Zones sensitive to buckling are identified and the implications 
for the design of such structures are outlined. 

Keywords: 	Echinodome, 	buckling, 	design, 	displacement 
and strain measurements. 
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INTRODUCTION 

In relation to the amount of space available on land for industrial and 
urban development as well as leisure activities the surface and sub- 
surface zones at sea are vast. 	The latter zones offer plenty of scope to 
support land based societies. 	A manifestation of this is in the creation 
of habitats and storage facilities for the exploration and development of 
offshore resources such as gas and oil. 

The conditions offshore for surface structures can be quite hostile and a 
much calmer state prevails underwater although means of access are 
generally more difficult to establish. A lot can be said in favour of 
placing a habitat/operations chanter or a storage vessel in the 
relatively tranquil submerged environment. In particular, the deployment 
of the structure in a tethered floating submerged manner reduces the need 
for expensive foundations, and enables it to cope more easily with seabed 
disturbances such as seismic activity and settlement. 

One 	type of structure suitable for underwater operations is the 
axisymmetric thin shell of revolution and the loadings to be considered 
are many and varied ranging from axisymmetric to completely asymmetric and 
consisting of an assortment of dynamic and quasi-static/static effects. 
A common problem faced by this  sort of structure is buckling and strict 
design precautions have to be taken to guard against it. 

The present paper is concerned with the buckling behaviour of the 
Echinodome or drop shaped shell which has been proposed for underwater use 
(Ref.1-4). 	The structure is considered under both axisymmetric 
pressure 	and concentrated loadings. 	The structure is examined 
analytically/numerically 	using finite element 	simulations 	and 
experimentally using a small prototype. Comparisons are made between 
experimental and numerical predictions of critical buckling loads, use 
being made of the Southwell (Ref.5) approach with the experimental data. 
Buckling mode shapes are determined and experimental and predicted forms 
are compared. The implications for the design of such structures are 
discussed. 

NOTATION 

0 	Maximum diameter of shell 

E 	Young s  modulus of elasticity 

H 	Height of shell 

Meridional and circumferential stress resultants 

P 	Point load 

cr 	Critical buckling load 

r, r 2 	Meridional and circumferential radii of curvature 

t 	Shell wall thickness 

W 	 Normal displacement 
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z Pressure head 

z o  Pressure head at apex of shell 

2od Design pressure head at apex of shell 

Z cr  Critical buckling pressure at apex of shell 

q,o Meridional and azimuth angles 

Y Density of water 

V Poisson's ratio 

P Mass density of shell wall material 

Design stress 

SHELL STRUCTURE 

The Echinodome is an axisymmetric thin shell of revolution which is an 
optimum form for one set of design conditions relating to the mean 
hydraulic head, z 0  , at the apex and the product of the design stress, 
ad , and the shell wall thickness, t, where Gdt  is constant. 	Con- 
sequently under these conditions uniform stressing prevails throughout a 
shell wall of constant thickness ie the stress resultants N , N 0  in the 
meridional and circumferential directions, Fig.l, 	are qual at all 
points. 	The design approach is based on membrane theory (Ref.6). 

For axisymmetric pressure heads at the apex other than the design value 
the stressing in the shell becomes non-uniform, and above the design level 
the question arises of buckling, especially near the base. 

It has been demonstrated that membrane analysis could be used in the 
treatment of axisymmetric point loads on the Echinodome (Ref.7) but for 
more general concentrated loading, Fig.2, 	a numerical assessment of the 
shell behaviour has to be made. 	This is true particularly in relation to 
buckling both for axisymmetric and non-axisymmetric loadings. 

ANALYTICAL APPROACH 

Exact analytical solutions of the equilibrium equations for the shell 
structure are not easy to achieve under most forms of loading and 
numerical methods must be adopted. 

For axisynimetric pressure loading the shell was simulated by means of 
complete circular ring elements, Fig.3a, having two nodes each with four 
degrees of freedom (3 translational and 1 rotational). Both linear and 
non-linear buckling analyses were carried out by means of the MISTRY 
program (Ref.8). 

Concentrated loadings on the shell were investigated by discretising the 
structure with semi-loof elements into an a-pical ring of triangular 
elements followed by bands of quadrilateral elements, Fig.2b. Linear 
bifurcation and non-linear collapse buckling analyses were performed using 
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the LUSAS program (Ref. 9). 

Some typical predicted deformed shapes are shown in Figs 4 and S and 
predicted buckling loads are listed in Table 1. 

All the computer simulations related to the prototype test structure 
described in the next section and took into account variations in shell 
wall thickness. 

EXPERIMENTAL APPROACH 

The test structure was made using glass reinforced plastics (GRP) with a 
glass fraction of 0.26 in an epoxy resin matrix and had the following 
design parameter values, 

1 . 525m;ca = 0.46 MN/m 2 ; t = 3.8mm 

and material properties, 

Young's modulus, E = 8800MN/m2; 
Poisson's ratio, v = 0.36; 
Ultimate tensile strength = 55.4 MN/m 2 ; 
Mass density, p = 1100 kg/m 3  

The shell had a maximum diameter of 450mm and maximum height = 380mm, see 
Fig.1. Variations in shell wall thickness were determined ultrasonically 
(Ref. 10,11). 

Axisymmetric Pressure Tests 
Electric resistance strain gauges in the form of rectangular foil type 
rosettes were bonded to the external and internal shell surfaces at the 
intersections of three symmetrical meridians and four - parallel circles, as 
indicated in Fig.6 (Il, 12 are internal rosettes near the base with -their 
leads passing through the centre of the base). The gauge characteristics 
were as follows, 

resistance = 350± 0.1 ohms; gauge length = 3mm; gauge factor = 2.15. 

An external half bridge arrangement was used with a dummy shell for 
temperature compensation in the same environment. The gauges and leads 
were waterproofed with bees' wax. The three gauges at a point were 
orientated clockwise with the first pointing along the meridian towards 
the apex. 

Details of the pressure chamber (water filled), the instrumentation and 
test procedure have been given previously (Ref.10,11). The pressure head 
at the apex was raised incrementally at a uniform rate (approximately 
6.25mm/s, consistent with the material control tests, and strain gauges 
scanned at each increment of pressure up to a total head of 3.5m. By this 
stage response was non-linear but the structure was not damaged 
permanently. Five pressure increasing runs were carried out and due 
allowance for creep recovery was made between each run. A typical 
pressure-strain curve is shown in Fig.7a for one of the gauges. 
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Concentrated Loadings 
In a normal atmospheric air environment the shell was mounted on a base 
which could be rotated about a horizontal axis and clamped to permit the 
axis of symmetry of the shell to be varied between 0 0  and 900 . Point 
loading normal to thó external shell surface was applied through a 
vertical stiff strut using a dead load lever system. 

Displacement transducers of the rectilinear potentiometric type having a 
full scale resistance of 2000 ohms and a mechanical stroke-of 100mm were 
arranged as in Fig.8 and a more general view of the set-up is given in 
Fig.9. The resolution of this transducer system was -i-i micron with a 
linearity of 0.25%. The scanning of the transducers was controlled by a 
microcomputer in the same way as for the axisymmetric pressure tests 
described above. 

For each angular position of the shell incremental load was applied at a 
uniform rate (consistent with the material control tests) and the mean 
results from ten test runs were established. The shell was loaded into 
the non-linear response range but well below failure, and adequate time 
was allowed for creep recovery between loading runs. 

A typical load-displacement response is shown in Fig.lOa. 

Buckling Assessment 
The plots of pressure-strain and load-displacement for the shell were very 
much of the rectangular hyperbola form typified by Figs.7a and lOa. This 
shape of curve makes it possible to employ a Southwell approach to predict 
the actual buckling load of the shell with its imperfections 
(Ref.5,10,11,14). 

Strain per unit pressure versus strain relations were deduced for each 
strain gauge in the axisymmetric pressure tests and displacement per unit 
load versus displacement relations were obtained for each measurement 
point in the concentrated load tests. These relations were the best 
straight lines determined using linear regression techniques (Ref.15,16). 
The results of such processes applied to the data points in Figs.7a and 
iDa are shown in Figs.7b and lob respectively. In each case the inverse of 
the slope of the straight line yielded the buckling load. 

DISCUSSION 

Under axisymmetric pressure loading the predictions of the actual buckling 
load using Southwell plots of the type shown in F'ig.7b varied depending 
on the position of the strain gauge on the shell. 	All the gauges near 
the base (ie on parallel circle 4, see Fig. 6), six on each of the outer 
and inner surfaces, gave values for the critical pressure head, z0 = 
within a 6% wide scatter band about a mean of 44.3m. 	On the higher 
parallel circles the meridional strain gauges indicated a very similar 
critical buckling pressure and suggested that some global buckling was 
taking place with an overall mean value of zr = 41.7m. 

Six of the twelve non-meridional gauges on parallel circles 2 and 3 near 
the maximum diameter of the shell demonstrated the existence of a lower 
mean critical buckling pressure of Zcr = 27.4m within a 20% scatter band. 
The other six gauges in this group, mainly with a circumferential 
orientation either produced erratic results from small measured strains or 
yielded a negative slope to the Southwell plot indicating local stiffening 
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of the structure. 	These results were ignored in relation to the buckling 
behaviour. 

Consequently the general performance under axisymmetric pressure loading 
was for a dominant axisymmetric buckling mode to develop with greatest 
deformation near the base where an annular bulge tended to form. However, 
considering only meridional gauges near the apex a slightly lower mean 
value of Zcr = 36.3m was established suggesting a tendency for some 
axisymmetric dimpling to occur in this region. Evidence of a lower 
non-axisymmetric buckling mode was found in the region of the shell's 
maximum diameter. 

Computer predictions of this behaviour can be seen to be in quite good 
agreement with these overall results, Table 1. 

Under concentrated loading the predictions of actual buckling loads using 
Southwell plots of the type shown in Fig. lob varied also depending on the 
position of the displacement transducer. For symmetric point loading the 
greatest measurable signals were produced from transducers at or near the 
load point and results from such transducers, it was felt,- were the more 
reliable for the purpose of predicting actual buckling load. The 
deformation pattern was for dimpling to develop at the load point and a 
sway to occur in the direction of the load. The data given in Fig.lOa for 
loading on the 60 0  normal to the shell axis are typical of the responses 
obtained. The comparisons of experimental and numerical predictions of 
buckling load show the latter to be about twice the former, Table 1, in 
the case of bifurcation buckling which, as might be expected, is the lower 
of the numerical predictions. 

For axisymnetric point loading at the apex the largest measurable signals 
for normal displacements were obtained at the load point. Again it was 
felt that such results were the most reliable. Overall behaviour was 
axisymmetric and took the form of dimpling at the apex with significant 
displacement near the base but only slight displacement in the region of 
the maximum diameter. This is exemplified by the computer predictions 
shown in Figs 4 and 5 for bifurcation and non-linear collapse buckling 
respectively (Ref.17). The difference in these two shapes lies in the 
reversal of curvature near the apex in the case of bifurcation buckling. 
The ratio between numerical and experimental predictions of buckling load 
is also of the order of 2:1, see Table 1. These discrepancies might be 
attributable in some part to the difficulty in simulating the actual shell 
containing a meridional seam or discontinuity with semi-loof type 
elements. The problem is being investigated. 

DESIGN IMPLICATIONS 

In order to insure against premature failure due to buckling some gradual 
thickening of the shell wall near the base is required in the case of both 
axisymmetric pressure and point loadings, and also in the case of 
concentrated normal loadings. The actual base itself could be extended 
slightly beyond the tangent point so that any development of a bulge would 
be restricted before it became too serious. Precautions would have to be 
taken in this region to deflect any dragged objects which might strike or 
become wedged in any re-entrant angle at the base. 

Local buckling at other points on the shell due to the attachement of 
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nozzles or towing points could be resisted by a thickening of the shell 
wall in these regions. 

CONCLUSIONS 

Using axisymmetric ring elements good predictions of buckling behaviour 
under hydrostatic loading were achieved. 

The Southwell plot approach to non-destructive buckling tests produced 
consistent results. 
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TABLE 1 
Buckling Loads 

AXISYMMETRIC AXISYMMETRIC SYMMETRIC 
METHOD OF PRESSURE HEAD 	m Concentrated Concentrated 
PREDICTION Load Load at 600 

Axisymmetric Non-axisymmetric kN kN 
Mode Mode 

Experimental 41.7 27.4 3.7 1.2 

Theoretical 
bifurcation - 31.5 6.8 2.4 

snap through 43.2 - 11.9 9.3 
(non-linear 
collapse) 

REFERENCES 

R.Royles, A.B.Sofoluwe, M.M.Baig, and A.J.Currie, "Behaviour of 
underwater enclosures of optimum design",Strain,16,(1980) ,1220. 
R.Royles and A.B.Sofoluwe, "An optimum form for underwater storage 
vessels", I.A.5.5.S. (Committee of Pipes and Tanks) Symposium on 
'Recent developments in the field of liquefied gas tanks', 	Delft, 
(June 1980). 
R. Royles and A.B. Sofoluwe, "Form for an underwater storage 
vessel", 	Nigerian Journal of Science and Technology, 3, Issue 2, 

- 	(1985). 

iLl 



R. Royles and J. M. Llambias, "Storage aspects of liquid gases 
underwater and the structural implications",Proceedings of Inter-
national Symposium on 'Storage and transportation of LNG and LPG', 
Brugge, 2, (1984), 55-72. 
R.V.Southwell, "On the analysis of experimental observations in 
problems of elastic stability", Proceedings of Royal Society, 135A 
(1932), 601-616. 
S.P. Timoshenko and S. Woinowsky-Krieger, "Theory of plates and 
shells", McGraw Hill, New York, 2nd Edition, (1960), 442-445. 
R. Royles and J. M. Llambias, 	"Point loading effects on the 
Echinodome", 	International Journal of Computers and Structures, 
Pergamon Press, 29, 3, (1988), 527-530. 
J. Mistry, "Application of a finite element method to axisymmetric 
shells", Report, University of Liverpool, Department of Mechanical 
Engineering (1973). 
Anon, "LUSAS - finite element analysis system", User Manual 87 
-08, F.E.A. Ltd., Kingston upon Thames, London, (1987). 
R. Royles and J.M. L.lambias, "Buckling behaviour of an underwater 
storage vessel", Experimental Mechanics, 25, 4, (1985), 421-428. 
R. Royles and J.M. Liambias, "Buckling aspects of the behaviour of 
an underwater pressure vessel", 	Applied Solid Mechanics -1, 
Editors: 	A S. Tooth and J. Spence, 	Elsevier Applied Science 
Publishers, London, (1985), 287-303. 
J. M. Llanbias and R. Royles, "Response of an underwater structure 
of optimum form to concentrated loading", 	Proceedings of 
International Conference on Experimental Mechanics, 	Beijing, 
Editors: Li R. Q. and Shi G. Y., Science Press, Academica Sinica, 
Beijing, (1985), 687-697. 
R. 	Royles, 	J. M. 	Llambias, 	and K. M. El-Deeb, "Response of 
echinodomes to asymmetric loading", Proceedings of International 
Conference on 'The design and construction of non-conventional 
structures', 	8-10 	December 	1987, 	London, 	Civil-Comp Press, 
Edinburgh (1987), 167-183. 
W. H. Horton and F. L. Cundari, 	"On the applicability of the 
Southwell plot to the interpretation of test data from instability 
studies of shell bodies", 	Proceedings AIAA/ASME 8th 'Structures, 
structural dynamics and materials' Conference, California (1967), 

N. 	K. Mooljee, "Curvefit 	on EMAS 	2900", 	Edinburgh Regional 
Computing Centre, User 	Note 11, 	Edinburgh, 	(1983) 
Anon, 	"Minitab reference manual", 	Minitab 	Release 	85, 
Minitab Inc., University Park, PA 16802, 	(1985). 
D. 	Bushnell, "Computerized buckling 	analysis 	of shells", 
Martinus Nijhoff, Dordrecht 	The Netherlands, 	(1985), 7-10. 

11.8 



0 
ii 

I 

P. essure 
distribution 

• datum 

Ni 	 Nt 

NORMAL 
VIEW 

flu 

0/2=225 

I 

.0 
Fig. I Shell under axisyinmetric pressure loading 

syr 

Fig. 2 Shell under concentrated loadings 

11.9 



>'p 

U, 

01 
Lo U, 

flit 

S 

I 	( a ) 
	

( b) 

Fig. 3(a) Mistry ring element 	Fig. 3(b) Semi-loof shell elements 

11.10 



Fig. 4 Bifurcation buckling mode shape 
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Fig. S Displaced shape at collapse load (snap through) 
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Fig. 7(b) Southwell plot of strain data (z 	- 40.0m)cr  
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Fig. 8 Disposition of displacement transducers 
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Fig. 9 Arrangement of shell under point loading 
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Fig. 10(a) Load-displacement data (transducer 9) 
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