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ABSTRACT 

This thesis investigates the structural behaviour of reinforced brickwork pocket-type 

sections using the twin approach of experimental and theoretical studies. The 

behaviour, in shear, of this type of reinforced brickwork is studied experimentally 

through tests conducted on eight longitudinally-reinforced, full-scale beams, under 

four-point loading, and for a range of shear-span/effective depth ratios (aid = 2.0-6.0) 

and % reinforcement (p = 0.61%-1.60%). Aspects of structural behaviour include (a) 

the ductility of the sections via their moment-curvature relationships as well as their 

load-deflection behaviour, (b) the shear behaviour of the sections vis-a-vis cracking 

development and growth through the various stages of loading up to and including the 

ultimate point. Since the reality of shear failure is such that the members were acting 

under both shear and flexural stresses, flexural behaviour of the sections are also 

investigated for the pocket-reinforced beams. 

The theoretical formulations are based on small scale representative brickwork prism 

tests, which are compared with experimental findings. A summary of existing 

methods for predicting shear strength is presented. The method proposed is based on 

an adaptation of the technique based on plastic analysis which was used originally for 

predicting the shear strength of concrete beam sections. The ultimate shear strength 

results obtained experimentally for the eight pocket-reinforced beams are compared 

with theoretical predictions based on the proposed method. This adapted method is 

based on a rigorous analysis of all known brickwork beams which have been reported 

to fail in shear. 

The flanged behaviour of wall sections are also investigated. To this end, six half-

scale simply-supported, reinforced brickwork pocket-type wall specimens, in which 

the % steel is constant and the pocket spacing varied, are tested to determine the 

characteristics of flanged-action behaviour. A method is proposed for the calculation 

of the effective width associated with different pocket stem spacings. This method is 
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based on an analysis of experimental strain measurements across the pocket stems. 

Results obtained are compared with Yield-Line theory and the Direct Method. The 

direct method takes into account the mechanical properties of the brickwork and steel 

as well as tension stiffening effects and uses the stress-strain curves of the materials. 

These results are further compared with the provisions in the British Code of Practice 

(BS 5628: Part 2 :1995) for these members. 
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NOTATION 

a span of the slab 

a shear span 

A cross-sectional area of beam 

Ast area of steel reinforcement 

b breadth of the beam 

d effective depth of steel reinforcement 

d neutral axis depth 

E Modulus of elasticity of brickwork 

ES  Modulus of elasticity of steel 

f compressive stress in brickwork 

ft modulus of rupture of brickwork (N/nmi 2) 

f. compressive strength of brickwork (N/mm 2) 

f(s) stress-strain relationship of brickwork 

f, stress-strain relationship of steel reinforcement 

F yield force of steel reinforcement 

h total depth of the section 

I second moment of area 

'Cr second moment of area of cracked section 

'effective effective second moment of area 

lu  second moment of area of transformed uncracked 

section 

m an index 

n modular ratio 

M bending moment 

Mcr  cracking moment 

Mult ultimate moment 

q total applied load on slab 

q, , qy , q, random proportions of q 

S spacing of the reinforced pockets 

v relative displacement rate of two rigid parts (I) & (II) 
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V shear force at failure 

x major direction of bending 

y direction measured across the pocket stems 

w assumed deflection function in slab 

WE external work done 

internal work done 

X0  -X3  coefficients of stress/strain relationship of brickwork 

Z section modulus 

a angle of displacement to yield line 

18 angle of yield line to axis of beam 

/1 an empirical factor 

5 1, 6 2 strains in top and bottom fibres of beam 

e strain in brickwork 

6bw applied compressive strain in top fiber of slab section 

ultimate compressive strain in brickwork 

compressive strain measured across the pockets 

Est 	 strain in steel reinforcement 

1 2 	 stress block factors 

0 	 curvature of beam 

shear stress, Vbh 

stress in compression strut 

compressive stress across the pocket 

9 	 angle of inclination of compressive strut 

effectiveness factor 

P 	 % steel, 

v 	 Poisson's ratio 

degree of reinforcement 
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CHAPTER 1 

INTRODUCTION 

1.1 REINFORCED BRICKWORK SECTIONS 

Reinforced brickwork sections have been employed for many years in the 

construction industry. One major factor which has worked against their widespread 

adoption is the difficulty of introducing reinforcement into them. Several innovations 

have arisen as a result of this including thickening the bed joints containing the steel 

reinforcement, as in bed- and collar-joint reinforced brickwork sections and the 

development of bonding patterns which incorporate the steel reinforcement in 

concrete grout to enable the steel to be laid continuously throughout the length of a 

wall. Examples of reinforced brickwork falling into this latter category are found in 

three types of reinforced brickwork, namely (a) grouted cavity, (b) quetta bond and (c) 

pocket-type sections. 

In grouted cavity construction the reinforcement is embedded inside grout concrete 

which is enclosed by the two outer leaves of brickwork. The advantage of this method 

of construction is that it effectively eliminates the need for conventional formwork 

(Fig la). With quetta bond reinforced brickwork, the bonding pattern is designed to 

create holes in a continuous and regular manner. Reinforcement is placed inside these 

holes and grouted into position (Fig 1 b). 

flrirkwmrk Jif 
	

Tie reinforcement 
Ut concrete core 

Steel bar 

Fig la: Grouted cavity reinforced brickwork section 



Fig lb: Quetta bond reinforced brickwork section 

Pocket-type construction has similarly emerged as a solution to the problem of 

reinforcement placement. This type of wall construction is the most efficient of the 

three in resisting lateral loading. It helps to reduce the overall costs of construction by 

cutting down on the amount of steel reinforcement (through provision of large 

effective depth for the steel and at widely spaced intervals), the amount of concrete 

grout and the amount of formwork required. In this method of construction, the steel 

reinforcement is placed within holes, called pockets, which are created by the 

omission of bricks in the arrangement of brickwork courses. Rich mix concrete grout 

is finally poured into the pockets (containing the steel bars) after the brickwork has 

cured and attained its strength (Fig 1 c). 

Fig lc : Pocket-type reinforced brickwork section 

Previous cost comparison amongst various designs of retaining wall have shown (l)  

that pocket type walls are cheaper than the other alternatives, such as grouted-cavity 

and reinforced-concrete walls. These theoretical cost studies indicate that designing 

and constructing these walls is economic because it is shown to be only 6% more 

expensive than the crudest of reinforced concrete walls. It is also, on average, some 

15% cheaper than reinforced concrete walls which have an applied aesthetic finish. 
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Although it has been shown to be cheaper than the other existing alternatives, it has 

not been exploited because of paucity of data on properties such as shear strength and 

the limiting pocket spacing. It is for these reasons that the present work has been 

carried out. 

1.2 PRESENT INVESTIGATION 

This thesis is mainly concerned with pocket type reinforced brickwork acting as 

retaining walls. 

These walls fall under the classes of brickwork panels which may be subjected to both 

pre-compressive in-plane and lateral out-of-plane loading. In practice, the 

precompressive loading in the form of surcharges is usually small in magnitude 

compared to the lateral loading exerted by the retained material. These walls are 

predominantly subjected to flexure. This makes plate bending analysis appropriate to 

them. 

In accordance with procedures employed for the limit-state design of reinforced 

concrete, the current British Code of practice 2  used for designing these walls tried to 

harmonize the design of reinforced brickwork with those of reinforced concrete (BS 

8110). Preliminary investigation reveals that the basis for designing the spacings of 

the reinforced concrete pockets in pocket-type walls seems too conservative. 

This conservative approach was adopted by the Code (2)  because of the crucial need to 

ensure that steel yielding within the concrete pockets always preceded the failure of 

the panel of brickwork between these pockets. This need also resulted in placing strict 

limits on the permissible shear strength. This approach arose as a result of paucity of 

field and experimental data on the structural behaviour of these walls. This problem of 

inadequate information for design purposes makes this present investigation essential. 

The outline of this thesis is as follows: 

Chapter 2 presents a literature review which gives a summary of important findings 

related to this study dating back to the last century. 
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Chapter 3 presents a summary of experimental procedure and results obtained from 

small-specimen tests. The mechanical properties as well as stress-strain characteristics 

of the different constituent materials used for constructing the specimens are 

presented. The constructional details and procedures for the tests are also given. 

Chapter 4 presents a summary of all the theoretical and experimental results obtained 

from the investigation of shear strength. This chapter also contains other aspects, such 

as deflection analysis, of the full-scale tests which are incidental to the study of shear 

strength behaviour and its investigation. 

Chapter 5 presents a summary of all the theoretical and experimental results obtained 

from investigating flanged-member behaviour of these walls and the effect of 

associated pocket-stem spacings on structural behaviour. 

The conclusions of all these investigations are given in Chapter 6. For ease of 

reference, tables, drawings and photographs are included in appropriate locations. 



CHAPTER 2 

LITERATURE REVIEW 

2.1 INTRODUCTION 

This part of the thesis gives a summary review of literature of documented research 

work on reinforced and prestressed brickwork sections conducted over the past few 

decades. It is also the aim to give a summary of results of the specific work done in 

the past on pocket-type reinforced and prestressed sections. Finally, it is aimed to 

present the areas where further work is required in light of the review carried out. 

In parallel with this objective, a brief summary report of results of research dating 

back to the last century is given. As the work done during this period of time has been 

carefully summarized by other authors 3 ' 4 , detailed report of the specific work done 

during this interval of time are not included here. 

Since reinforced masonry could be considered as a special form of prestressed 

masonry in which the amount of prestress applied is equal to zero, it is significant to 

note that results of structural tests done on one category has bearing on the other. Such 

implications and relevance are better appreciated if the general trend of research as 

well as what has given rise to the trend is known. 

In what follows, therefore, a brief overview of relevant research is given with 

particular focus on reinforced and prestressed sections. The situation of this particular 

investigation within the broad field of research is brought forward and highlighted. 

Finally, the specific work done to study the shear strength of reinforced brickwork is 

summarized along with the various studies, conducted in the past, to investigate 

flanged-member action in reinforced brickwork. 

2.2 HISTORICAL DEVELOPMENTS IN RESEARCH AND APPLICATIONS 

2.2.1 Work Done Prior to 1970 

Sir Marc Isambard Brunel's work in 1825 on reinforced brickwork construction is 

believed to be the first documented work. The details of the feat achieved both as part 
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of the Thames river tunnel project and the subsequent construction of the "Nine Elms" 

beam (Fig 2.1) have been previously described (3). These led to focused attention in the 

use of reinforced masonry as a structural material. 

During the second decade of this century in India, Brebner 5  executed a very 

substantial programme of testing several reinforced brickwork structural elements. His 

work paved the way to widespread research in this field both in the USA and in the 

UK and on such a scale that was unprecedented prior to that time. All these test results 

confirmed that the theory of reinforced concrete design is applicable to reinforced 

brickwork, as the behaviour of both of them was similar. 

Prior to the 1970s, the vast majority of research papers on reinforced brickwork could 

be found scattered in several specialist journals and proceedings of conferences, 

symposia and workshop seminars. These publications were devoted to engineering 

and applied engineering practice. However, since the commencement of what could 

be regarded as an annual meeting of masonry professionals in various parts of the 

world beginning with the one held in Houston, Texas, USA in 1967, several 

publications devoted specifically to masonry have been documented, co-ordinated and 

brought to the focus. In particular, the 1967 International conference held in Houston 

provoked the birth of several other regional and national bodies. The primary 

objective of these bodies is the dissemination of knowledge on masonry as a structural 

engineering material. Some of the attempts made to reinforce or prestress brickwork 

elements are documented in the following section. Such attempts were made in order 

to enhance structural performance under load as well as to study behaviour and 

develop methods for predicting them. 
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d2l mm 

IIJ 

457 mm 

Fig 2.1 : Brunel's "Nine-Elms" Beam (after Foster (3)) 

2.3 RESEARCH AND DEVELOPMENT WORK DONE ON PRESTRESSED 

BRICKWORK BEAMS 

Mehta and Fincher 6  tested five prestressed grouted masonry beams in their study of 

the structural behaviour of these beams under load. They varied the coursing pattern 

as well as the magnitude of the prestressing force. The feasibility of fabricating 

prestressed grouted cavity brickwork was also explored. The beams were fabricated 

by laying a brickwork shell in a "U" configuration. The strands passing through the 

cavity, were stressed and then grouted. The grout constituted at least 25% of the cross-

sectional area of the beam and due to its location, it contributed in a significant way to 

the structural behaviour of the beam at all stages of loading. Only tensioned steel was 

used and this consisted of three 10 mm diameter seven-wire strands in each beam. The 

prestressing force was either 1 87kN or 94kN. The beams were tested under 

concentrated loading over a span of 1.83 m. 
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All the beams tested failed in shear. A typical crack at failure showed a stepped crack 

in the shear span travelling towards the support. There was also a horizontal 

propagation of this crack towards the loading point once it reached the top bed joint. 

A typical section used by Mehta and Fincher 6  is given in Fig 2.2. 

244 mm 

307 mm 

Fig 2.2 : Mehta and Fincher cross-section (6) . 

Pedreschi 7  tested 51 prestressed brickwork beams containing tensioned 

reinforcement only. The span used varied from 1.75 m to 6.2 m. The beams were 

tested under two point loading so that they effectively combine two different test 

conditions. These conditions are : (a) pure bending between the two loads in the 

central portion of the beams and (b) constant shear force in the end sections termed 

the "shear spans". This particular work aimed at studying the effects of 

brick strength 

grade of mortar 

area of steel and prestress (or prestressing force) and 

aid ratio 
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on the deflection, cracking and ultimate load behaviour. The cross sections examined 

are given in Figs 2.3a and 2.3b. He solved the problem of location and quantity of 

tensioned steel in the section in a different way than was, much earlier on, reported by 

Thomas 8 . He conducted several tests on brickwork prisms in order to determine the 

stress-strain properties of brickwork when compressed parallel to the bed joint. This 

became necessary because the beam sections tested by Pedreschi developed 

compressive stresses parallel to the bed joint. This is not in common with the situation 

in many brickwork structural elements like piers and walls, for which compressive 

stresses develop normal to the bed joint. This research then led to the formulation of a 

non-linear expression for the stress-strain relationship for brickwork parallel to the 

bed joint. Adopting this non-linear stress-strain relationship for brickwork, flexural 

theory was used to predict the ultimate flexural moment for the sections. Deflection 

and crack widths were also predicted using the actual stress-strain relationship of 

brickwork and steel. 

365 

b=215mm  b=2l5mm. 

Fig 2.3(a) : Pedreschi's cross section (7) 	Fig 2.3(b) Pedreschi's cross-section (7) 
 

Fifteen beams were also tested, varying the aid ratio between 2.0 and 11.2 1, in order 

to study the effect of the shear-span to effective depth ratio on the behaviour in shear 
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of prestressed brickwork beams. He observed two distinct types of shear failure which 

were dependent on the value of aid ratio. For those beams with low aid ratios, the 

main feature of the shear failure was the diagonal cracking failure of the brickwork 

along a line joining the support and load point. Those beams with higher aid ratios 

showed as their main feature a step-wise propagation of cracks towards the support. 

On reaching the top bed joint in the direction of the load point, the diagonal crack 

travelled along the bed joint towards the load point. A similar mode of shear failure 

was reported by Mehta and Fincher 6 . 

Pedreschi 7  observed these two basic forms of shear failure. Beams with aid ratios 

between 4 and 11.2 tended to exhibit shear failure by a splitting of the top bedjoint 

running from the constant moment zone along the shear span into the support. Beams 

with aid = 2 failed when a diagonal crack running from support to load point formed. 

In all the cases, considerable flexural cracking in the constant moment zone occurred 

before failure. Very little flexural cracking was observed in the shear spans of those 

beams with low aid ratios (aid ratios between 2 and 4). For beams with high aid 

ratios, the flexural cracking extended well into the shear spans and progressed 

upwards through the section at an angle of approximately 450  towards the load point. 

The diagonal cracks observed in the beams normally moved in a stepwise manner 

through the mortar joints rather than through the brickwork itself. 

In conjunction with experimental results, the shear strength of these beams were 

predicted based on plastic theory (9) as developed originally for prestressed concrete 

beams. Pedreschi used the properties of the single course prisms to determine the 

shear strength in spite of the difference between the neutral axis depth at failure in the 

beams failing in shear and the thickness of those single course prisms. Also, in 

determining these shear strength values, no distinction was made between those 

beams with low and high aid ratios. Regardless of these inherent assumptions, good 

results were obtained as the actual and predicted shear strengths were quite close. As 

far as the author knows, this was the first systematic attempt made to study the shear 

strength of bonded prestressed brickwork beams. 
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In the work done by Robson et al' ° , the prestressing tendons were post-tensioned 

after grouting so that the tendons remained unbonded. The brickwork prisms were 

loaded parallel to the bed joint as in the section tested by Pedreschi 7 . A total of 

eighteen beams were tested, of which six had a high percentage of steel. Of these six, 

five failed in compression by crushing of the brickwork whilst one failed in shear. The 

remaining beams failed in tension. 

Theoretical results were obtained by using (a) brickwork properties obtained from the 

prism tests and (b) properties given in the code of practice. When these two sets of 

results were compared, those obtained using the prism test results gave the better 

prediction. Also, it was observed that results for those sections which failed in 

compression are better predicted than those which failed in tension. The reason given 

was that for those sections which failed in tension, the neutral axis is very small and 

the prism did not properly represent the situation. On the other hand, the neutral axis 

depth is larger for those sections which failed in compression and the prism tests 

adequately represented the situation. 

In the early 1980s, Garwood' tested three fully and partially-prestressed brickwork 

beams and demonstrated that prestressing the beams leads to an increased shear 

strength. This work was later extended by testing eleven beams ' 2  consisting of two 

series, each of which had at least five beams from which four had some prestress 

applied, the fifth represented an ordinary reinforced brickwork beam. Two types of 

bonding arrangements (course patterns) were tested, one similar to the strecher-quetta 

bond type of section tested by Robson et al (10)  and the other a pier-bond type section. 

Unlike the previous work done by Garwood (" ), shear behaviour became a major focus 

point of this study. 

Walker(")  studied the behaviour of partially prestressed brickwork beams containing 

tensioned and non-tensioned reinforcement. In his studies he looked at the effect of 

the percentage of steel; the prestressing force; the partial prestressing ratio; the cover 

to the non-tensioned steel; the brick strength as well as the mortar strength on the 

ultimate moment; the deflection and; cracking characteristics of the beams. 
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The section tested, shown in Fig 2.4, is similar to that of Pedreschim,  with only a 

slight modification to accommodate the non-tensioned steel close to the soffit. This 

arrangement of steel gives better crack control and improves the ultimate moment 

capacity of the section through an increased lever arm of the resultant tensile and 

compressive forces. Although the relative area of grout to the beam cross-section is 

higher than that of Pedrescbi's section, this did not contribute to the ultimate moment 

capacity of the section. 

215 mm 

- 	 1 

247 mm 
	

337 mm 

Fig 2.4 Walker's partially-prestressed brickwork section 13 . 

Walker ' 3  tested forty-one beams. As a follow-up to previous work done by 

Pedreschi 7 , he tested several prisms in compression. The compressive force parallel 

to the bed joint was applied axially and eccentrically to obtain the property of the 

prisms. He also developed an iterative computer programme which uses the direct 

method, described in section 4.3.5.4, to calculate the ultimate flexural moment, 

deflection and cracking based on experimentally determined properties of the 

brickwork. Tension-stiffening effects as well as the presence of the grout are allowed 

for in his computer programme which, unfortunately, is incapable of predicting the 

shear strength of the brickwork beams. 
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Out of the forty-one full-scale beams tested by Walker, sixteen exhibited some form 

of shear failure. Thirty-seven of these forty-one beams failed in tension. Of these 

thirty-seven, twelve exhibited secondary shear failures. Only four of the total number 

of beams tested failed primarily in shear. It was noted as well that out of the twelve 

partially-prestressed beams which exhibited secondary shear failure, two categories 

could be deduced, namely: (i) Category A, made up of eight out of these twelve, in 

which all the steel had yielded and (ii) Category B, made up of four out of these 

twelve, in which only part of the steel had yielded. Although shear investigation was 

not the focus of this research, nonetheless approximately 40% of all the full-scale 

beams tested exhibited some form of shear failure, thereby further revealing the 

relevance of this type of structural behaviour in brickwork. 

Garwood 14 , Mehta and Fincher 6 , Pedreschi 7  and Walker( ")  have all reported the 

same phenomenon of a diagonal shear crack which preceded shear failure (note that 

all these beams were either fully or partially prestressed) or a step-wise propagation 

towards the support and a horizontal propagation along the bed joints towards the 

loading point. 

Roumani and Phipps 15  tested and reported the results on fifteen prestressed I and T-

shaped sections (Fig 2.5). They aimed at formulating design proposals for the shear 

strength of brickwork sections at cracking and ultimate load. They examined the 

influence of the shear-span to effective depth ratio (aid between 0.8 and 4.5), the 

depth (between 665 mm and 440 mm), the amount of prestress (varied between 0.5 

and 3.0 N/mm2), the location of prestress (concentric and eccentric prestress) and the 

shape of the section (I or T) on the behaviour of the beams. The prestress was applied 

through 40mm unbonded Macalloy bars, placed at the sides of the webs, see Fig 2.5. 

All the beams failed in shear, and depending on the aid ratio, distinctions were made 

on the types of shear failure observed. 
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670 mm 

. 	 . 

440 mm 

Fig 2.5 : Typical Section of Roumani and Phipps (15,16) 
 

Uduehi' ' compared the structural behaviour of prestressed brickwork beams with 

that of prestressed concrete beams. Twenty-nine full-scale beams of concrete and 

brickwork were tested. The cross-sectional properties as well as the compressive brick 

strengths were identical and the areas of tensioned reinforcement used were similar. 

The comparisons were conducted in terms of the ultimate flexural strength, deflection, 

cracking and the ultimate shear strength. 

At the time of this study (11) 
, no information existed on the shear strength of partially 

prestressed brickwork beams, so sixteen partially-prestressed brickwork beams were 

tested for shear strength by varying the aid ratio of these beams from 1.5 to 6. In this 

work, concepts developed for predicting shear strength of reinforced concrete 

beams " 7 ' 9  were adapted for reinforced brickwork beams. 

Sinha 3  carried out tests on ten full scale post-tensioned brickwork pocket-type 

retaining walls in order to establish the effect of percentage steel area, prestressing 

force and brickwork strength on aspects of structural performance such as deflection, 

cracking and the ultimate moments of the walls. A method was described for 

predicting the ultimate moment and deflection of beams from prestressing through to 

cracking and up to ultimate failure. The validity of this method of prediction was 

established through verification with the experimental results obtained. 
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Pedreschi and Sinha 2  have also attempted to predict the flexural behaviour of 

prestressed brickwork sections through correlation with test results from small-scale 

representative brickwork prisms. Experimental evidence 2  on full-scale beams were 

correlated with prism test results and it was concluded that, for brickwork sections in 

which the compressive forces act parallel to the bed-joint, a better approximation of 

the compression zone is provided by the single course prism formats compared to the 

corresponding 3-course prism formats. 

At failure, the single-course prism is visualized as the compression zone (of a flexural 

member) which is considered as a series of courses in which the bed-joints between 

those courses had split. Each course is then regarded as being subjected to 

progressively greater stresses as one moves away from the neutral axis position in 

accordance with the classical distribution obtained in flexural elements. 

It was noted in line with similar observations made by other investigators 22  that, 

because of the presence of bed-joints in a direction parallel to the applied loads, a non-

uniform strain distribution may result (particularly at high stress levels) due to 

transverse tensile failure across the bed-joint. This has the potential of generating a 

spurious stress distribution which fails to reproduce the true distribution being sought. 

Using, therefore, the single-course prism precludes this undesirable effect from 

occurring since no physical bed-joint parallel to the applied load then existed. This 

experimental evidence lent support to the adoption of the single-course prism rather 

than the corresponding three-course prism as a better approximation of the 

compression block zone of the brickwork beams. 

2.4 RESEARCH AND DEVELOPMENT WORK DONE ON REINFORCED 

BRICKWORK BEAMS 

There exists three basic ways of introducing reinforcing steel into brickwork 

construction and these have been classified 2326  as follows: 

(a) placing within the mortar joints as in bed-joints or collar (perpend) joints of the 

brickwork; 
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placing in specially formed pockets and; 

placement in a grouted-cavity between skins of brickwork. 

Different types of reinforced brickwork beams falling into one of these three 

categories 	have 	been 	studied 	for 	shear 	strength 	by 	several 
(711272324282930) investigators 	 . A feature of the premise which most of these 

investigators used was to assume that the shear strength of reinforced brickwork 

beams are largely influenced by the same set of variables affecting the shear strength 

of reinforced concrete beams. For instance, it has been previously established 3' ,32)  

that, for reinforced concrete beams, shear strength is influenced by the ratio of the 

shear span to effective depth, the amount of tensile reinforcement and the compressive 

strength of the compression zone. It should be noted that more test results have been 

documented for brickwork sections in which the reinforcement is embedded in 

concrete than for brickwork sections in which the reinforcement is embedded in 

mortar joints(23) . Within the former category, quite a few results are available for 

reinforced brickwork sections in which the reinforcement is placed in specially 

formed pockets. 

Attempts have been made to evaluate and also predict the shear strength of reinforced 

brickwork in which only longitudinal reinforcement is provided in a grouted concrete 

core to resist shear forces' 8,27,33)  Tests were usually conducted on beams and based 

on the observed cracking and other structural behaviour throughout the various stages 

of loading, theoretical models were formulated and used to predict shear strength. 

Concepts employed have varied from the traditional method used to predict shear 

strength of similar reinforced concrete members 27 '34'35 , those involving "tied arch" 

behaviour formulation(33) , through to those involving the "compressive force path" 

method' and methods based on plastic analysis7" ', which were developed 

originally for reinforced and prestressed concrete members respectively. 

Suter and Hendry 36  studied the shear strength of bed-joint reinforced brickwork 

beams and concluded that for this category of reinforced beams, shear strength 

generally increased with decreasing ratio of shear span to effective depth (aid). 

Twelve reinforced brickwork beams were tested with shear span/effective depth 
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varying from 1 to 7 and the beams were built from common frogged bricks. The 

percentage of tensile reinforcement was varied from 0.24 to 1.46. When the results of 

this set of beams were combined with others, they suggested that a characteristic shear 

strength of 0.35 N/mm2  be adopted for aid ratio greater 2 and that this value be 

increased to 0.8 N/mm2  if the aid ratio is less than 2. In other words, they concluded 

that the effect of aid ratio on shear strength is accentuated at aid ratios of less than 2 

and attributed this marked effect to the mode of failure of the sections by noting that 

at higher aid ratios, shear failure often follows the development of a typical diagonal 

crack whereas for those beams with a low aid ratios, cracking is usually followed by 

the development of a tied-arch effect. Thus, they observed that the lower the shear 

span ratio the greater the arching strength and thus the apparent shear strength 

recorded by such beams. Unlike reinforced concrete beams, it was also observed that 

bed-joint reinforced beams show no significant evidence of a relationship between the 

amount of tensile reinforcement and ultimate shear strength. Moreover, these beams 

gave no significant correlation between compressive strength of the brickwork and 

ultimate shear strength. 

Osman and Hendry 27  carried out tests on reinforced grouted-cavity brickwork beams 

in order to assess the contribution of compression zone, aggregate interlock and dowel 

effect on shear strength. 

The beams tested had an overall cross-section of 450 mm deep by 295 mm wide and 

5.34 m span. Two types of brick and hence brickwork were used in constructing them. 

One set of the beams used common clay bricks and the other set used high strength 3-

hole bricks. The % steel was also varied between 0.9 % and 1.42 % while the aid ratio 

was kept constant at 6 throughout. Compressive strength tests on prism specimens 213 

mm by 100 mm by 440 mm gave the following respective results for the low and high 

strength bricks: 12.24 N/mm2  and 22.63 N/nim2. The Young's modulus parallel to the 

bed Joints for the two types of brickwork  ckwork were 11.97 kN/mm and 18.50 kN/mm2  

respectively. 
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Strains in the relevant portions of the beams were measured using the mechanical 

"demec" strain gauges. Longitudinal strain measurements, over a 150 mm gauge 

length, located at different depths from the top of the beam were used for the 

determination of the neutral axis depth and to provide an estimate of the compression 

zone contribution to shear resistance. Gauges were also used as rosettes to determine 

movements across cracks using 50 mm gauge length. Vertical and horizontal 

displacements across cracks were measured in order to obtain an estimate of the 

contribution of aggregate interlock and dowel effect to shear resistance. Some tests 

were carried out on beams of lower strength masonry in which an artificial crack had 

been introduced so as to provide a means of measuring shear transmission due to 

dowel effect. In these tests, the load was applied centrally to the lower part of the 

beam through a steel plate passing through the brickwork. 

In estimating the contribution to shear resistance due to aggregate interlock, it was 

assumed that shear transmission by this mechanism takes place only in the grouted 

section of the beam and none by the interface between brick and mortar provided by 

the brickwork. This assumption was used because the interface of mortar and 

brickwork is considered to be relatively frictionless when compared to the grouted 

section. The shear force contribution by aggregate interlock had been estimated from 

measurements of vertical displacements across shear cracks and from crackwidth-

measurements. 

The authors 27  found that no significant difference in the shear resistance exists 

between beams built with weak and strong brickwork. It was also found that shear 

resistance of these beams could be accounted for by the three mechanisms of 

compression zone transmission, dowel effect and aggregate interlock and that these 

contributions varied with the applied load. The results obtained also gave an 

approximate indication of the relative magnitude of these mechanisms and suggested 

that compression zone transfer provided the largest single contribution to shear 

resistance. 
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The deflection of grouted-cavity beams were also satisfactorily predicted using two 

different methods 27 '37 '38  previously used successfully for reinforced concrete beams. 

The first procedure is based on the calculation of an effective second moment of area. 

This method provides a transition value between well defined limits in the uncracked 

Uuncraked or Id  and fully cracked ('cracked)  states. The second procedure, on the other 

hand, involves the use of a fictitious reduced value for the second moment of area. 

This second method involved estimating this reduced value by multiplying the 

uncracked second moment of area, 'unccked'  by a factor. This factor was found to be 

equal to 0.85 for the beams tested. 

Suter and Keller 28  studied the shear strength of grouted-cavity reinforced brickwork 

beams vis-à-vis reinforced brickwork beams and showed, using the results of 

reinforced concrete beams (31),  that the shear strength of grouted-cavity beams are 

intermediate between those of reinforced concrete and reinforced brickwork beams 

with reinforcement provided in bed or collar joints. They also indicated that it is 

possible to calculate the shear capacity of these beams by adding together the separate 

shear capacities of the grouted core and the brickwork sections in accordance with 

their relative widths. Based on the section tested, good agreement between derived 

and the experimental results were obtained for aid ratios greater than 2. The universal 

applicability of this latter result has, however, been questioned 4  on the basis of the 

structural response of such a composite section to load. In their tests 28 , the shear 

span/effective depth ratio of the beams was varied from 1 to 7. However, the 

percentage area of tensile reinforcement for the reinforced brickwork beam was fixed 

at 1.49% while that of the reinforced grouted-cavity beam was fixed at 1.41%. 

Sinha 39  also tested grouted-cavity brickwork beams and arrived at results which 

agreed with those of Suter and Keller 28  in terms of the dependence of shear strength 

on the aid ratio. Unlike mortar-bed reinforced beams, the shear strength of grouted-

cavity beams increases with the amount of tension steel. Sinha also tested twelve 

grouted-cavity brickwork slabs (40) , fixing the percentage of tensile reinforcement at 

0.88 and varying the shear arm/effective depth ratio from 2 to 5. Results for these 

slabs also show that the ultimate shear stress increased as the shear arm/effective 
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depth ratio decreased. Different shapes of the compression stress blocks, i.e., 

triangular, rectangular and parabolic were assumed in the analysis of the test results. 

In a further comprehensive test on grouted-cavity brickwork beams and slabs 29  in 

which the variables were 

aid ratio (1.5 to 10), 

% area of tensile steel (0.88 to 2.54), 

brick strength (21.55 to 88.33 N/mm 2), 

effect of shear reinforcement and, 

the mortar grade (1: Y4 :3, 1: Y2 :4.5 cement: lime: sand) 

the conclusion was made that shear strength is strongly influenced by the aid ratio, the 

% area of tensile steel as well as the amount of shear reinforcement and the thinness of 

the section. This was indicated by the higher shear strength sustained by the slabs 

compared to the beam sections over a wide range of aid ratios (2 to 7). From these 

results, it was also concluded that the mortar grade has only a slight influence, while 

the brick strength does not exert any influence on shear strength. 

Garwood and Tomlinson 4t  tested eight beams of which four were reinforced with 

both longitudinal tension steel and shear reinforcement and the remaining four were 

reinforced with only longitudinal tension steel. The amount of tension steel used 

varied from 0.34% to 1.33%. The sections were 328 mm wide, 290 mm deep and the 

length of the beams was 3905 mm. All the beams were laid in 4 courses, the first two 

courses in stretcher bond while the last two courses were laid in quetta-bond. By 

omitting the central line of bricks in the second course, a longitudinal cavity, 130 mm 

wide and 75 mm deep was created inside which the reinforcement cage was placed. 

This presented a form of grouted cavity brickwork. Special care was taken to avoid a 

continuous perpend joint particularly in the second and third courses of brickwork, 

where the interface between the two different bonding patterns coincided. 

In spite of some of its other advantages, the special bonding arrangement adopted for 

these beams was unable to incorporate any longitudinal top bars to anchor the shear 

stirrups as is conventionally done in reinforced concrete beams. This is basically 

caused by the inevitable presence of headers in the top course, a special feature 
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associated with quetta bond. In this case, one sees yet another example of some of the 

difficulties often encountered in attempting to reinforce brickwork. Although shear 

strength investigation did not form the focus of this particular study, a sudden shear 

failure was reported for one of the beams; the one with the highest amount of tension 

steel (1.33%). Shear failure occurred in this beam in spite of the fact that it was the 

most heavily reinforced in shear of all the eight beams tested and, compared with one 

beam having a lower amount of tension steel (0.89%) and a lower level of shear 

reinforcement, it even failed at a lower bending moment. This sudden shear failure 

was unexpected, and it was attributed to poor adhesion between the mortar and the 

bricks. However, as practically six out of the eight beams tested were built with the 

same workmanship, a similar problem should affect these other beams, but the fact 

that heavily over-reinforced brickwork beams often fail in shear was not properly 

reckoned with. Apart from this one, two other beams having 0.89% tension steel (one 

with and one without shear links) were also reported to have failed suddenly in shear 

although the shear failures in these cases were combined with yielding of the tension 

steel. 

2.5 RESEARCH AND DEVELOPMENT WORK DONE ON SLABS 

Some experiments (42)  have been conducted to test the performance of reinforced 

brickwork masonry box beam structures, in which masonry forms the webs and 

reinforced concrete floors form the flanges of the box. In these experiments, two types 

of wall were used, one 9 inches thick (but made with special bricks) and having 

vertical and horizontal bars, and the other 11 inches thick and having diagonal bars in 

a grouted cavity. The wall having the diagonal bars performed better in terms of 

serviceability and ultimate limit states. 

Maurenbrecher 43  determined the ultimate design load of a 4 m high reinforced 

brickwork retaining wall. The wall was a cantilever, anchored into a reinforced 

concrete base, with a varying elevation and cross-section ; the thickness of the wall 

was 440 mm at the base, reducing in two steps to 325 mm and 215 mm respectively at 

the top. Noting that prior to the construction of this particular wall, concrete pockets 

have usually been spaced at a maximum of 1.22 m intervals. Maurenbrecher's design 
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allowed a larger spacing by varying the distances between the reinforced pockets from 

1.375 m and 1.575 m in the central (more heavily loaded portion) section of the wall 

to 2 m in the sloping portion. The backfill material retained was mainly hardcore 

which was spread in layers and covered with earth at the top. Two coats of bitumen 

were used to paint the back of the wall next to which a single layer of bricks was 

placed to protect these bitumen coatings. 

The pocket wall was considered to be equivalent to a reinforced concrete T-beam 

where the flange of the beams is replaced by brickwork. For the section tested, the 

space between the concrete webs is filled with brickwork resulting in a uniform wall 

thickness. This type of construction increases the interface shear strength between the 

concrete and brickwork and also the strength of the brickwork panel between the 

pockets. 

This particular wall could be easily divided (in the sectional elevation) into three 

parts, namely two end trapezoids and one central rectangle. In the actual design of the 

wall, spacing between the pockets was considered to depend on: (a) the ability of the 

brickwork to resist lateral loading and transfer it to the reinforced concrete pockets; 

(b) the magnitude of the anchorage stresses in the bars holding down the wall to the 

reinforced concrete base and; (c) the amount of steel that could be reasonably 

accommodated in the pockets. 

Aspects of deflection behaviour of the wall which were studied included : (a) the 

variation of overall deflection measured at three levels, two of which corresponded to 

the points where the cross-section changed and the third level corresponded to the top 

of the wall; (b) the profile of deflection over the height of the wall and within regions 

close to the pocket centerline in order to examine the behaviour around the more 

heavily loaded portion of the wall and; (c) the time variation of deflection, again, at 

three levels in order to assess the angular movement due to wall deformation and 

tilting. 
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Both sliding and tilting movements of this cantilever wall were observed and because 

of the nature of its sectional elevation, the wall exhibited a slight reverse of curvature 

near the centerline, which was attributed to the relative restraint provided by the more 

lightly loaded portion of the wall section. 

Sinha 	subjected reinforced brickwork masonry retaining walls, of the grouted- 

cavity variety, to sustained loading to determine creep in bending, see Fig 2.6. 

Fig 2.6: Sinha's Masonry Retaining Wall for Investigation of Creep in Bending (44) 
 

Tellett 45 '46  tested pocket-type reinforced brickwork retaining walls and beams. The 

walls were cantilever structures whilst the beams were simply supported. He also 

developed a Finite Element Model (FEM) for reinforced brickwork acting under 
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flexural stresses. His objective was to investigate the performance of pocket-walls in 

relation to the requirements of the then British draft code for the design of reinforced 

masonry. Six walls and fifteen beams were tested, for which the parameters examined 

were brick type; % of reinforcement; slenderness and; shear span ratio. It was 

reported that flexural failure occurred in all the walls and in the light-medium 

reinforced beams whilst only the heavily reinforced beams failed in shear. Wall 

thicknesses of 215 mm and 330 mm were tested with pocket spacings equal to 1 m. 

The reinforcement percentages used varied from 0.28%-0.92% through to 1.25%-

1.44% and the effective depth varied from 167 mm through 289 mm. The wall heights 

were 3 m and the length, 2 m. Two types of bricks were used, denoted A and B. For 

the beam tests, the shear span ratios varied from aid = 2 for short beams to aid = 4,5 

for long beams. Three types of bricks of wide ranging compressive strength were used 

for the beams and these were named A,B, and C. 

Since the objective of this work 45 ' 46  was to check the adequacy or otherwise of the 

draft code provisions, the focus was not to investigate the flanged-member behaviour 

of these walls. The results obtained confirmed that the code stipulations were adequate 

in matters of flexural behaviour but it was concluded that conditions imposed on shear 

strength was too restrictive 30 . However, the shear strength results reported were 

incorrect, although it was indicated that shear is often the limiting condition for design 

of these walls except for cases where the degree of reinforcement is very low 30 . 

These authors tried to validate their FEM by using it to predict the deflection at the 

top of two reinforced brickwork retaining walls previously tested at the B.C.R.A. The 

model was used to predict the deflection at the top of some laterally loaded reinforced 

and unreinforced brickwork panels previously tested at the BCRA 47 . In addition, a 

parametric study on the basis of this FEM was conducted to predict the behaviour of 

alternative designs for reinforced brickwork retaining walls. The parameters varied 

include slenderness; pocket spacings; panel thickness and; % of tensile 

reinforcement. Some qualitative guidance were provided to show areas where wall 

designs might be made more efficient and economical. In their parametric study, May 

and Tellett 46  predicted that wall aspect ratio (wall height : pocket spacing) could be 

reduced to 1.25, for stems designed as rectangular sections, by increasing the pocket 
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spacing and that wall slenderness (height : wall thickness) could be increased subject 

to satisfactory serviceability (deflection) performance. In these parametric studies, two 

types of panel were distinguished namely, internal and external as well as two types of 

designs for the stem namely, rectangular and flanged. 

The Finite Element Analysis carried out by May and Te1lett 47  was meant to predict 

flexural failure of the brickwork elements tested. Since their formulation was based on 

thin plate theory, it ignored the effects of out-of-plane shear stresses and consequently 

was incapable of predicting shear failure. The results which they obtained from testing 

these sections for shear strength were incorrect as they are out by a factor of 2 as 

revealed in Table 2.5.1 and Table 2.5.2. These Tables are given as Table 5 and Table 

6 respectively in the corresponding reference. The corrected values are given in the 

ninth column of Table 2.5.2. Nonetheless, he further concluded that (a) the 

requirements of the draft code were adequate for pocket spacings of up to 1 in and, (b) 

that for greater pocket spacings, further experiments were needed to confirm the 

adequacy of code provisions. 

The beauty of parametric studies is that they help to point the way towards 

possibilities but their major drawback is that, when not backed with detailed 

experimental data, they cannot be fully relied upon since they are usually based on, 

what may sometimes be spurious, extrapolation of existing knowledge. They have the 

potential, therefore, of creating one of two major classes of errors often made by 

researchers, namely : (a) insisting that something exists when, in fact, it does not and 

(b) insisting that something does not exist when, in fact, it does. Against this 

background, the conservative approach adopted by the British Code of practice 2  is 

understandable but not justifiable especially as it concerns matters of pocket spacings. 

The code imposed a limit of 1 m on allowable pocket spacings if walls were to act as 

homogeneous sections and that if spacings greater than this value are to be used, the 

ability of the masonry to span horizontally between the ribs should be checked. 
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Table 	Beam Details and Test Results 

Beam No 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
Length (mm) 3960 3970 3950 3372 2196 3995 3980 4010 3985 3995 3980 2152 2140 2190 2580 
Breadth (mm) 1010 1005 1025 1050 1004 1020 1010 1010 1005 1010 1007 1005 1000 1005 1002 
Depth (mm) 332 327 330 330 328 330 330 327 330 327 330 327 327 330 330 
Span (mm) 3400 3400 3400 2800 1700 3400 3400 3400 3400 3400 3400 1680 1680 1680 1680 
Effective 	depth 275 280 295 280 280 275 
(mm)  

265 270 280 270 265 270 270 285 275 

Mean 	concrete 
cube 	strength 29.2 29.2 31.5 21.5 31.5 37.1 40.3 35.5 35.5 37.1 37.1 35.9 35.9 35.9 35.9 
(N/mm 2) 

Reinforcement 3125 3T32 4T16 4T16 4116 3132 3T40 3132 4116 4T16 3140 3T32 3132 3T32 3T40 
Type 
Reinforcement 0.53 0.86 0.27 0.28 0.28 0.87 1.42 0.89 0.28 0.29 1.42 0.89 0.89 0.84 1.37 

Code  
characteristic 425 425 460 460 460 425 425 425 460 460 425 425 425 425 425 
steel 	strength 
(N/mm2) 

Failure moment 170 240 117 129 123 305 326 263 121 121 281 132 208 172 257 
(kNm)  
Shear 	force 	at 253 352 178 240 451 446 476 384 182 182 403 493 720 617 956 
failure(kN)  _______ _______ _______  _______ _______ _______ _______ 

1  
_______ _______ _______ 
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Table 	: Comparison of predicted and ultimate bending moment capacities 
Beam 
No 

aid Predicted' 	b.m. 
 capacity Mflex  (kNm) 

Ultimate 
b.m. 

Predicted' 	Shear 
Capacity 

Shear 	Stress 
 (N/nim2) 

Moment Ratio Failure Mode 

Brickwork Steel Mult 
(kNm) 

Average 
stress 
(N/ 2) 

b.m.2  
Mshe  

Experim 
-ental 

Correct 
values 

(kNm)  

Mult  
/Mflex 

Mult 
shear 

Predicted Actual 

1 5.09 825 163 170 0.45 175 0.46 0.91 1.04 0.97 T T 
2 5.00 308 236 240 0.53 208 0.63 1.25 1.01 1.15 S T+S 
3 4.75 963 - 103 117 0.39 165 0.30 0.59 1.13 0.70 T T 
4 3.93 889 - 98 129 0.39 126 0.43 0.82 1.31 1.02 T T 
5 2.00 850 - 98 123 0.39 60 0.81 1.60 1.25 2.05 S T+S+L 
6 5.09 833 262 305 0.53 208 0.81 1.59 1.16 1.46 S T+S+L 
7 5.28 766 394 326 0.59 221 0.90 1.78 0.82 1.47 5 5+L 
8 5.18 636 254 264 0.53 202 0.71 1.41 1.04 1.30 S T+S+L 
9 5.00 680 98 121 0.39 153 0.32 0.64 1.23 0.79 T T 
10 5.18 288 93 121 0.39 148 0.34 0.67 1.30 0.81 T T 
11 5.28 276 318 281 0.59 220 0.84 1.51 0.88 1.27 S 5+L 
12 	1  2.00 286 226 132 0.53 77 0.91 1.82 0.58 1.71 S S+L 
13 2.00 629 253 208 0.53 77 1.33 2.67 0.82 2.70 5 5+L 
14 1.89 1 	881 273 172 0.55 84 1.08 2.15 0.63 2.04 5 5+L 
15 1.96 1 	818 396 257 0.53 78 1.71 3.47 0.65 3.29 5 5 

Notes: 1 the lesser value governs 
2 equivalent bending moment 
3 T = tension failure of reinforcement, S = shear failure, 

L = Longitudinal cracking along the pocket boundary 



It is prudent to have some experimental validation before such parametric survey 

prediction is exploited. This is particularly relevant for a material of such 

heterogeneity as reinforced brickwork and this matter forms a major focus of study in 

this thesis. For a pocket-type retaining wall of 3 m height, the code recommends a 

pocket spacing of 1 m if walls are to act as a homogeneous unit. Although this value is 

considered as rather conservative and walls of similar heights (43)  have tended to have 

pocket spacings of between 1.2 and 1.5 m, implying aspect ratios of 2.5 to 2.0. 

Reducing the aspect ratio to a value of 1.25, as predicted by this parametric study, 

implies that for such a wall, we could have spacings as wide as 2.4 m apart. This kind 

of result would lend weight to the economic performance of these walls and result in 

increased competitiveness with reinforced concrete walls, for example. 

These parametric survey results suggest that pocket reinforced walls would still be 

governed by stem failure rather than panel failure so long as the aspect ratio is greater 

than 1.25 for interior walls which have been designed as rectangular sections. In other 

words, if reinforcement located within the pockets were to always fail before the panel 

between brickwork pocket failed, then for a 3 m high wall, the maximum spacing 

between the pockets should not exceed 2.4 m. Also, according to the results of this 

survey, the code is conservative in eighteen out of the forty-one cases examined. 

They 47  also established similar limiting conditions for failure to be governed by stem 

failure rather than panel failure in the case of exterior panels. In this latter case, no 

unique aspect ratio value was found but when a somewhat similar variable, namely, 

the ratio of spacing to the thickness of the wall, was substituted for the aspect ratio, a 

unique value was again obtained regarding the limiting condition for stem failure. 

This situation probably arose due to the assumption made in modelling the response 

of the exterior panels which did not account for any in-plane restraint as was done for 

the corresponding interior panels. The modelling was done this way in order to 

achieve a simple but functional formulation. 

Aspects of the influence of spacing on wall behaviour were, therefore, only indirectly 

addressed by May and Tellet 47  through parametric studies. They tried to establish 
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limits for this variable through investigating the respective aspect ratios, for both 

rectangular and flanged sections and for both interior and exterior wall panels, which 

would ensure that stem failure rather than panel failure is critical. Values were 

established for these different cases through results obtained from these parametric 

studies. For instance, it was concluded as part of this parametric survey that for 

interior panels which are designed as flanged sections, aspect ratio should be taken 

greater than 2.5. Therefore, for a flanged interior panel, of height h = 3 m, the 

suggested maximum spacing permissible for a flanged section is 1.2 m. It was 

concluded here, in essence, that for interior panels with spacing greater than 1.2 in, the 

design of a 3 in high wall, should be based on a rectangular section. However, more 

recent experimental evidence (48) 
, obtained from tests conducted on two full-scale 

pocket-type reinforced brickwork retaining walls, suggests that this is not necessarily 

true and that some measure of flanged member behaviour could be considered. The 

limitations of parametric studies have been highlighted earlier on and for these 

reasons, confirmatory tests to establish the validity of these results in order to know 

the true limits of pocket spacings are still required. 

At Redland Bricks Ltd., research was carried out' on pocket-type reinforced walls 

which were built to represent the lower 3 in of a 5 rn-high wall. In this wall, the ratio 

of bending moment to shear force ( A1/V) at the base of the wall was made to 

represent an earth pressure distribution at the base of the 5 rn-high wall. The walls are 

the stepped-type (that is, cross-section changes with height), similar to that tested by 

Maurenbrecher 43 . 

The first two stepped pocket-type walls tested by Redland Brick Ltd., as part of this 

company's research project gave way to the Market-Led Research Initiative 

undertaken by The Brick Development Association, BDA. This resulted in the testing 

of a third wall under lateral loading which is applied by hydraulic jacks in such a 

manner that M/V at the base (that is, lever arm to the centre of applied force) 

represents that from an earth pressure distribution at the base of a 5 m-high wall. In 

the third wall therefore, experience at Redland Bricks formed the background and the 

objective remained largely the same To demonstrate that with a stepped pocket-type 
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construction, large retaining walls could be built that did not require high strength 

bricks to achieve the required engineering performance. This became necessary at that 

time so as to be able to properly address both aesthetic and structural considerations 

pertaining to these types of walls. 

The first wall in this series failed in shear. The wall sheared across a crack stretching 

from the first step to the base. Cracking was also recorded across the pockets on the 

tension face of this wall. This first wall had no shear reinforcement. The base bending 

moment at which the wall sheared was recorded as more than twice the calculated 

working load of the wall. Although this wall had to be loaded twice; first when the 

capacity of the loading rig was reached and second, after making necessary 

adjustments to the loading rams. The two sets of readings were, however, reported to 

correlate well. As mentioned above, this first wall failed in shear through a large shear 

crack observed at the first change in wall thickness. This happened in spite of taking 

necessary precaution to guard against reducing the percentage reinforcement too close 

to the thickness change; the reason adduced for a similar failure observed in an earlier 

test programme. 

As a consequence of this type of failure, another wall was tested in which shear 

reinforcement was provided in every bed joint. The capacity of the test frame was not 

sufficient to apply the load required to fail this wall because of the excessive 

reinforcement and impractical design adopted. Following this experience, a third wall 

was built with a moderate amount of shear reinforcement and an amount of tensile 

steel which ensured that a reasonably practical load could be sustained. All these walls 

were built with moderately strong bricks (for instance, the average compressive 

strength of the bricks used for the third wall in the series was 47.2 N/mm 2) to 

demonstrate that good engineering performance is achievable from building stepped 

pocket-type walls using such moderately strong bricks. 

The walls were designed as cantilevers anchored to reinforced concrete footings. For 

the third wall in this series, this stepped wall is constructed such that the bottom 

portion, 975 mm high, had a thickness of 550 mm, the middle portion, 1050 mm high, 
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had a thickness of 440 mm while the top portion, 975 mm high, had a thickness of 325 

mm, see Fig 2.7(a), 2.7(b). This third wall, which is basically an improvement on the 

earlier two in terms of the moderate shear resistance as well as the tensile steel 

provided, was found to perform well structurally. It is considered as the most 

reasonable in terms of practical design. This wall failed in shear but both the steel and 

the brickwork were effectively utilized as shown by the recorded steel and brickwork 

strains at failure. The shear failure was first detected in the perpend joint at the end of 

the wall which later developed gradually into diagonal cracks emanating from the first 

step in the thickness of the retaining wall. These shear cracks became evident at both 

ends of the wall. It is worthy of note that in spite of the high level of steel strains 

recorded which were almost at the yield point, the steel did not actually show serious 

signs of yielding (usually associated with the acceleration of the steel strains). The 

highest brickwork strains recorded were also much higher than that required to crush 

the brickwork in direct compression, yet the brickwork in the compression zone did 

not collapse. This situation probably arose due to an underestimation of the strength of 

the wall in calculations by failure to accurately account for the contribution made to 

section capacity by the moderate amount of shear reinforcement provided. The wall 

failed as a result of diagonal shear cracks combined with the excessive deflection 

recorded which was considered significant in relation to the height of the wall. 
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Fig 2.7(a) : Cross-Section through Pocket-Wall"'  
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Fig 2.7(b) : Cross Section Through Pocket-Wall Showing Bed-Joint Reinforcement 

Work continued at BDA 48  after the results obtained on the third wall proved quite 

successful. The objective this time was to test a series of slender reinforced pocket 

brickwork retaining walls with wide pocket spacings to generate experimental data 

from which the Finite Element Model (FEM) predictions given by an earlier 

work 45 ' 46  could be validated. It was proposed that if such tests were successful in that 

respect, it would be safe to recommend walls with wide pocket spacings much in 

excess of those currently being used. 
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Two full-scale walls have been tested and reported out of this series, each a 215 mm 

solid rectangular section construction, 3m high. Each of the two walls were loaded 

with three im wide horizontal air bags along the whole length of the wall, which 

ensured a distributed stepped load to simulate triangular loading. The load was 

monitored using a mercury manometer graduated in kN/m 2. The air bags were 

restrained against the pocket side of the wall by reaction boards fixed to an A-frame 

bolted to a strong laboratory floor. 

The first wall was 4.87 in long with a pocket spacing of 2.4 in (aspect ratio=1 .25) 

while the second wall was 5.35 in long with a pocket spacing of 3 in (aspect 

ratio= 1.0). Both were cantilever walls anchored to a reinforced concrete base. Similar 

reinforcement were provided within the two walls but the second wall also contained 

"Brickforce" ladder-type bed joint reinforcement and nominal shear-link stirrups. 

Each wall was fully instrumented with strain guages, demec and portal guages, 

deflection transducers and conductive paint stripes. The first wall attained a maximum 

base moment of 60.8kNmJm which resulted in a maximum deflection at the top of the 

wall of 69.4 mm. Cracking occurred at the joint between the wall and the concrete 

base on the tension face and this spread from the centre of the wall towards each end. 

For the second wall, a maximum base moment of 76kNmJm was attained which 

resulted in a maximum deflection of 80.3 nmi at the top of the wall. The cracking 

pattern was similar to that of the first wall. At all other positions on the two walls, no 

cracking was observed. In the first wall, the demec and portal strain readings on the 

compression face all show that the highest compressive strains occur in line with the 

concrete pockets compared to other points far removed from the pockets. Also, no 

damage was observed on the panel of brickwork between the pockets in spite of the 

absence of shear reinforcement in this wall. This result gave way to the conclusion by 

the authors that flanged-member action had taken place and that wall pockets were 

behaving as flanged members and providing adequate edge support to the masonry 

panel between the pockets. Shear resistance of this wall was provided purely by the 

bond between the brick and the concrete and, in spite of this, no evidence of shear 

failure was observed. Walls behaved as an under-reinforced section with failure 
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occurring by yielding of the reinforcing steel with a considerable reserve of shear and 

flexural strength than predicted by theory being retained at the point of failure. 

In the design calculation pertaining to the second wall, an over-reinforced section is 

indicated. However, this wall also behaved as an under-reinforced section with failure 

governed by yielding of the reinforcing steel. The maximum brickwork strains at the 

end of the tests were of the same order as those associated with the limits of the 

brickwork used for the wall. The fact that the brickwork did not fail was attributed, by 

the authors, to the presence of the bed-joint reinforcement which is thought to 

possibly allow higher brickwork strains, than would normally occur, to develop prior 

to the compressive failure of brickwork. A similar phenomenon was observed 

concerning the shear strength of this wall. The shear strength exceeded the design 

value by as much as 81%, a situation which was explained by (a) the fact that the 

presence of nominal stirrups and bed-joint reinforcement have made contributions to 

the shear strength of the wall section in a manner which the design calculation could 

not adequately reflect (an attempt to incorporate such contribution by the authors only 

reduced this margin by about 33% leaving the remaining 48% unaccountable) and (b) 

if a review of the shear strength calculation for reinforced elements is done so as to 

incorporate the strengthening effect of shear reinforcement, based on the premise that 

the compression block is strengthened by the presence of shear reinforcement, in 

almost the same manner that prestressing (as in post-tensioned structures) to 

strengthen the section in compression improves shear strength, then the reserve shear 

strength exhibited by the wall would be accounted for. 

For the two walls, the strength was governed by ultimate strength rather than 

deflection limits and both of them showed that flanged-member action had taken 

place. This is supported by the experimental brickwork strain distribution from 

cracking to the ultimate point. Much higher compressive brickwork strains were 

observed around the pockets compared to the strains at points far removed from the 

pockets. There was also no evidence of brickwork crushing between the pockets and it 

was concluded that the pocket stems provided adequate edge support for the 

brickwork. The tests also indicated that no significant benefits have resulted from the 
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use of bed-joint reinforcements except perhaps an increased moment of resistance of 

the brickwork and the authors recommended that tests be conducted on over-

reinforced walls where failure occurs in the brickwork rather than in the pocket 

reinforcement so as to investigate if such bed-joint reinforcement (used in the second 

wall) actually leads to an increase in the brickwork moment of resistance. The issue of 

whether such reinforcement leads to an improved shear resistance for the wall was 

also considered worthy of further investigation and the authors recommended that 

work should be furthered to ensure the possibility of reflecting this much more 

realistically in design calculations. 

2.6 METHODS USED FOR PREDICTING SHEAR STRENGTH OF 

LONGITUDINALLY REINFORCED BEAM SECTIONS 

Broadly speaking, three different theoretical methods have been employed by 

previous investigators to predict the shear strength of longitudinally-reinforced and/or 

prestressed brickwork members. These three methods are distinct by virtue of the 

totality of the underlying assumptions associated with them respectively. Each of 

these methods are hereby briefly discussed in turn. 

2.6.1 Method Based on the concept of "Compressive Force Path" or CFP 

This method was also originally developed for reinforced concrete members. It 

assumes that a path exists through which compressive forces "flow" from the support 

to the load point and that the development of a critical stress state along this path 

ultimately determines the shear strength of the section rather than on any stress 

conditions below the neutral axis. In other words, the necessary and sufficient 

condition for shear failure to occur would normally take place along this path of 

compressive forces. The shear failure of the member is attributed to the development 

of tensile stresses, along the path, which creates a region of weakness in the 

surrounding material, then propagates from there to other surrounding areas and 

eventually results in the ultimate collapse of the structure. 

This method gives no account of the stress conditions below the neutral axis for 

members having only longitudinal reinforcements. Its proponents insist that shear 
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failure is neither dependent on aggregate interlock or on stress conditions below the 

neutral axis of the section for that matter but rather, only on the stress situation along 

the "path" of compressive forces. The method further assumes that the uniaxial stress 

conditions traditionally assumed for the compression zone is trivial and that the actual 

stress conditions ensuing within this zone is much more complex. 

It is further argued that its greater understanding is found in a triaxial stress-state 

consideration of an element of material within the compression zone of the beam. 

Much experimental evidence have been used to support this concept and failure of 

most of the sections examined have been attributed to the development of tensile 

stresses in the "region of the compressive force path". Based on this premise, models 

of the path have been formulated with both horizontal and inclined parts, the relative 

dimensions of which are functions of the aid ratio and the observed failure modes of 

the beams tested. This method has been successfully applied to predict shear strength 

of both reinforced concrete 0 
794950  and partially prestressed brickwork ( " )  beams that 

have no shear reinforcement incorporated into them. 

It appears that the method of CFP is best suited for brickwork sections in which the 

bed-joint planes are coplanar with the induced compressive forces and, in order for the 

method to be relevant, one needs to be sure that the crack immediately responsible for 

ultimate failure in shear actually grows towards and terminates in the constant 

bending moment region of the beam. This way, the subsidiary condition needed to 

complete the governing equations can be associated with results obtained from 

relevant prism formats. This method is therefore not well suited for the pocket-type 

sections tested by the author since the compressive forces developed perpendicularly 

to the bed-joint planes. 

2.6.2 Method Based on the "Tied-Arch" Formulation 

Another approximate method which has been used to predict the shear strength of 

reinforced brickwork beams is contained within the confines of Arching Theory. In 

this theory, the reinforced brickwork beam is assumed to behave as a tied-arch and the 

following assumptions are made for the brickwork within the shear span, namely : (1) 
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plane stress conditions exists within this region of the beam, (2) brickwork/grout 

interface within the shear span is subject to precompression and (3) ultimate failure in 

shear is due to one of the following three reasons, namely : (a) compressive stress 

acting in the compression zone exceeds the compressive strength of the brickwork 

used in beam construction or the tension failure of the "arch rib"; (b) the tie stress 

exceeds the tensile strength of the steel used or; (c) tie force is equal to or exceeds the 

ultimate shear strength (force) of the brickwork used so that the bond between the 

steel and grout is destroyed. 

This formulation includes writing the equation of equilibrium which incorporates 

conditions at the boundary between the constant shear and maximum bending moment 

zones of the beam. Such an equation ensures that the physical condition of continuity 

of the beam, prior to ultimate collapse, is not violated. Equations for predicting shear 

strength are then developed based on the compatibility condition at failure as well as 

on the manner with which failure actually occurred. In other words, any of the 

possible conditions given above, which actually result in ultimate failure in shear, are 

then incorporated in the formulation. 

This theoretical prediction of failure stress is then compared with actual failure stress 

of the beam in shear to examine the accuracy of the model. The model itself dictates 

the condition under which it is valid. This type of model has been successfully used to 

predict the shear strength of brickwork of the grouted-cavity variety as well as for 

results previously obtained for ordinary reinforced brickwork sections 33 . 

This method is also best suited to brickwork sections in which the compressive forces 

develop parallel to the bed-joints in view of the assumptions inherent in its 

formulation. In such sections, the bed joint is assumed to be under precompressive 

stress which enhances the shear strength. This method has not been used in the present 

work since the bed joint planes are perpendicular to the compressive forces. 
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2.6.3 Method Based On Plastic Analysis 

The beam is assumed to be made up of compression and tension stringers which 

behave in a rigid-perfectly-plastic manner. The concrete in the web is also assumed to 

be rigid-perfectly-plastic with yielding controlled by a modified Coulomb yield 

criterion which assumes a tensile strength value of zero. This assumption has been 

considered reasonable for brickwork beams on the basis of the experimental evidence 

supplied by Page"" which showed that, under biaxial compression, the failure 

criterion could be approximated by a square surface which is independent of the 

orientation of the principal stresses relative to the bed joints of the brickwork. 

In order to account for the somewhat unrealistic assumption of unlimited, ductility 

made by this method, the compressive strength of the brickwork is multiplied by an 

effectiveness factor, & ,which varies between 0 and 1. 

After formulating a simple model which satisfies the requirements of perfect 

plasticity, this method proceeds to determine the ultimate load which was calculated, 

in accordance with the theory of plasticity, as the lowest upper bound or the highest 

lower bound. As for the upper bound, the solution was found by assuming a failure 

mechanism and equating the rates of external and internal work. The lower bound 

solution, on the other hand, was obtained by assuming a stress distribution and 

calculating the load corresponding to it. 

Although the validity of the assumptions made by this technique of prediction is 

questionable, its adherents (9) nonetheless insist that the correct plastic solution to the 

shear prediction problem has been found. They (9) argued that this is so because both 

the upper and lower bound analysis gave the same value of the ultimate shear load. 

This method is also not exact. First, on the basis of the assumptions made and 

secondly, because of its absolute reliance on the empirically-determined parameter 

called the effectiveness factor. This latter reason would equally qualify the method as 

a semi-empirical one at best. However, to its credit, the method has been successfully 
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employed by previous investigators to predict the shear strength of reinforced concrete 

beams(9) and those of fully 7  and partially ' D prestressed brickwork beams. 

From these three theoretical methods, the method based on plastic analysis seemed 

very promising in view of its successful application in reinforced concrete. Hence the 

method has been adapted to predict the shear strength of the pocket-type reinforced 

brickwork beams tested by the author. The underlying theory as well as the 

predictions resulting thereof are presented in chapter 4. 
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2.7 SCOPE OF THIS RESEARCH 

After critically examining earlier works, it became very clear that very limited work 

has been done to understand the behaviour or establish the shear strength of reinforced 

pocket-type walls. Mostly, the research has been done on reinforced brickwork beams 

with reinforcement parallel to the longitudinal bed-joints and not normal to the bed 

joint as in the case of pocket-type walls. There is also complete dearth of experimental 

data on flanged-member behaviour. Hence, the investigation sets out to achieve the 

following aims 

To investigate the behaviour and ultimate shear strength of reinforced pocket-type 

walls and thus to add to the existing database of information. 

To investigate flange-member action and spacing of the pockets in reinforced 

pocket-type walls. Flanged member action occurs when the panel of brickwork 

between the reinforced concrete pockets act effectively with the pockets to resist the 

applied load from initial cracking to the ultimate point. 

Some associated small scale tests are also done to establish the strength of the 

brickwork and steel as well as their mechanical properties. 

Full-scale tests are performed to obtain the shear strength of the pocket-type wails for 

enhancement of BS 5628 recommendations. Full-scale tests are expensive and time 

consuming, hence half-scale bricks are used to establish the flange-member action. 
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CHAPTER 3 

MATERIAL PROPERTIES 

3.1 INTRODUCTION 

This chapter presents a summary of the results obtained from testing the constituent 

materials used for the construction of the reinforced brickwork beam and slab 

specimens. As reinforced brickwork is made up of different materials, i.e. brick units, 

mortar, grout and steel reinforcement, it is usual to determine the structural properties 

of these basic materials as a prerequisite to understanding the structural properties and 

behaviour of the combined product. Reinforced brickwork beam and slab sections are 

examples of such finished products. In flexural elements such as beams and slabs, the 

compression zone properties of the brickwork are determined by studying the 

behaviour of relevant brickwork prism formats under compressive loads whereas the 

tension zone properties are determined from modulus of rupture tests, again on 

relevant brickwork prism formats. The tensile properties of the steel specimens are 

obtained from uniaxial tests following standard recommended procedures in codes of 

practice. 

As for the mortar and grout constituents, cube tests have been used to characterize the 

strength of these materials. Oftentimes, a good estimate of the strength properties of 

the brickwork is gained by testing and establishing the strength properties of the brick 

unit itself in various loading directions as may be relevant (that is, on bed, on edge 

and on end). This result is then combined with the strength properties of the mortar, 

obtained from cube test results, to determine the overall strength properties of the 

brickwork. This latter approach is adopted in the current British Code of practice 

employed for the design of masonry structures 2 , in which various tables and graphs 

have been drawn to cater for different combinations of strength of these materials. 

The essence of these small-scale tests is to determine the strength properties of the 

final composite material, both in tension and compression and the strains associated 
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with ultimate failure of the elements. These tests also enable the stress-strain 

characteristics in the tension and compression zones of a typical flexural element to be 

obtained. These properties are thereafter used to formulate equations governing the 

strength and serviceability behaviour of the structural elements. As a result of the 

variable nature of these test results, the stress-strain characteristics are often given in 

non-dimensional form. This form gives a generalized picture of the properties of these 

constituent materials pertaining to the final product in question. This procedure is 

followed in this thesis. The construction of these materials as well as the test methods 

subsequently employed are now described. The beam and slab sections, constructional 

details and the reinforcing and grouting procedures are described subsequently in this 

chapter. The instrumentation and test methods used for the beams and slabs are 

described in the next chapter. 

3.2 MATERIALS 

3.2.1 Steel Reinforcement: Standard testing procedures conforming to BS 4449(52) 

were used to test the steel bars. The yield strength and ultimate strength of these bars 

were, thereafter, determined. Hot rolled high yield deformed bars were used for the 

reinforcement. The resulting strain on the specimens was recorded by electrical 

resistance strain gauges mounted on them. 

The summary of results obtained from tensile tests on the steel specimens are given in 

Table 3.1 and Figs 3.1(a),3.l(b) and 3.l(c). 

Table 3.1 : Properties of the Steel Reinforcements 

Diameter 	of 	bar 

() 

a 0.251. 

2) 

a 
(2)  

16 515 607 

20 520 618 

25 483 580 
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Fig 3.1(b) : Stress-Strain curve for T-20 diameter steel bars 
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Fig 3.1(c): Stress-Strain curve for T-25 diameter steel bars 

3.2.2 Bricks : Extruded class A engineering bricks with three holes were used 

throughout for the beams. The average area of perforations was 14.9 %. It has an 

average compressive strength, on bed, of 84 Nmm 2 . 

3.2.3 Mortar: Grade I mortar was used throughout for the test. The mix proportion 

being 1: - :3 (cement: time : sand by volume). Gauging boxes were used to obtain 

these mix proportions and the water content was adjusted by the bricklayer to achieve 

a consistent, workable mix. The same bricklayer was employed throughout the 

duration of construction of the test specimens. 100 mm control cubes were taken 

during construction, cured in water and tested at 28 days. The mortar strength thus 

obtained are given in Table 3.2 for each beam. 
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Table 3.2: Compressive Strength of Mortar Cubes 

Cube B  B2 B3 B4 B5 B6 B7 B8 

strength (kN) (kN) (kN) (kN) (kN) (kN) (kN) (kN) 

1st 242.0 215.0 158.0 170.0 211.0 249.0 223.0 230.0 

2nd 237.5 224.0 154.0 196.0 229.0 258.0 251.0 243.0 

3rd 241.5 214.5 221.0 185.0 255.0 252.0 246.0 248.0 

Average 

compressive 

strength 24.03 21.78 17.77 18.37 23.17 25.30 24.00 24.03 

(N/mm2
) 

3.2.4 Cement and Lime: Ordinary Portland Cement conforming to B.S. 12' and 

lime conforming to B.S. were used throughout for the construction of these 

structural elements. 

3.2.5 Sand : The sand used for the construction conforms to the grading limits of 

B.S. 1200"') for reinforced brickwork. 

3.2.6 Grout : A grout mix of 1:2 y2 :2 (cement : sand : aggregate by volume) was 

used throughout. The same sand and cement as used in the production of the mortar 

was used for the grout. 100 mm cubes were also cast during each grouting session, 

cured in water and tested at 7 days. The result of compressive strength tests are as 

given in Table 3.3. 
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Table 3.3: Compressive Strength of Grout Cubes 

Cube BI B2 B3 B4 B5 B6 B7 B8 

strength (kN) (kN) (kN) (kN) (kN) (kN) (kN) (kN) 

1st 342.2 202.0 240.0 263.0 287.0 243.0 225.0 211.0 

2nd 317.0 212.0 236.0 249.0 281.0 248.0 230.0 189.0 

3rd 287.0 220.0 245.0 263.0 282.0 232.0 222.0 193.0 

Average 

compressive 

strength 31.53 21.13 24.03 25.83 28.33 24.10 22.57 19.77 

(N/mm2) 

3.2.7 Brickwork Properties : The compression zone properties of the reinforced 

elements were determined by testing prism specimens which adequately represent this 

zone. Both concentric and eccentric uniaxial loading were applied to these prisms, 

shown in Figs 3.2(a) and 3.2(b) respectively. The eccentric loading was used to 

represent the strain-gradient which is normally associated within the compression 

zone of flexural elements. For axially-loaded prisms, there is no strain gradient. In 

brickwork elements in which compression forces are coplanar with the bed joints, 

tests done previously on relevant prism formats have shown that this strain gradient 

has no effect on the attainable ultimate strength" ""). This result is not necessarily 

transferable to brickwork elements in which the compressive forces are developed in a 

perpendicular direction to the bed joint planes. Therefore, in order to find out the 

possible influence of the strain gradient on the ultimate strength of the compression 

zone for the brickwork used in this work, both eccentric and concentric loading were 

applied to some prism specimens. 

The dimensions of the prism are given in Fig 3.2(a). The height of the prism was set 

so that 'machine platen' effect was negligible. All the test specimens were built by the 

same person, an experienced bricklayer, and cured under polythene for 28 days prior 

to testing. 
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For the eccentrically-loaded prisms, the set up was arranged (Fig 3.2(b)) such that the 

line of action of the load was at an eccentricity of L. Strain measurements were taken 

at positions across the width of the section using a mechanical "demec" strain gauge, 

of gauge length 200 mm, at regular load intervals. 

demec point 
450 mm 

215 mm 

Fig 3.2(a) : Prism of brickwork ("Demec point" for axially-loaded specimen) 
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4• 

Fig 3.2(b): Test Set-Up for Eccentrically-loaded Prism Specimen 

3.3 EXPERIMENTAL OBSERVATIONS 

3.3.1 Single Course Prisms : The single course prisms are those prisms which 

represent the compression zone in such a way that no physical bed-joint exists in the 

same plane as the applied compressive force. In all the prisms tested, failure was due 

to vertical tensile cracks which developed parallel to the axis of loading. Collapse was 

caused by explosive spalling of the brickwork. 

3.3.2 Modes of failure: Prior to failure, vertical tensile cracks of the bricks occurred 

in both the axially and eccentrically-loaded prisms. For the axially-loaded prisms, 

splitting of the bricks was at the center of the prisms whereas, it was along the line of 

action of the load in the eccentrically-loaded prisms. For the eccentric prisms, the 

strain distribution prior to cracking was linearly varying from a maximum value at the 

loaded end and reducing to approximately zero at the opposite end furthest removed 
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from the loaded end. The properties of the brickwork used for the full-scale tests have 

been deduced from these single course prisms. 

3.3.3 Results: 

3.3.3.1 The compressive strength of axially-loaded brickwork Prisms : The 

summary of results obtained from testing the brickwork prisms is given in Table 3.4. 

Table 3.4: Compressive Strength Test Results (Axially-loaded prisms) 

Prism No Maximum 

Load (kN) 

Maximum 

Stress (Nmm 2) 

Ultimate Strain 

(p8) (106) 

1 676 28.0 2577 

2 620 26.3 2421 

3 474 18.7 2070 

4 665 28.2 2360 

5 480 19.9 2124 

Average compressive stress 24.22 

3.3.3.2 Stress-Strain Relationship 

The stress-strain relationships for the high strength brickwork with grade I mortar 

tested by the author is given in Fig 3.3(a-e). In these, f represents the stress, the strain 

and R2  represents the correlation coefficient. 

The ultimate strain occurring in the specimens could not be measured by the 

technique employed, nonetheless, measurements were taken up to within the range 

85%-97% of the ultimate strain. A curve was, therefore, fitted to the experimental 

observations. The ultimate strain, a,,,,  was then obtained by extrapolation of the 

stress-strain curve up to the failure stress. 
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Fig 3.3(d): Stress-Strain relationship for axially-loaded prism (No 4) 
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Fig 3.3(g) : Non-dimensional Stress-Strain relationship for brickwork 

For the purposes of analysis and also in order to minimize the variation recorded in 

the prism test results, the stress-strain relationship of the brickwork is given in non-

dimensional form. This was done by normalizing the stress and strain by their 

maximum values, f c,,, respectively, for the individual prism test results. The 

non-dimensional, normalised stress-strain relationship is given in Fig 3.3(g). 

This relationship is found to be adequately represented by a third degree polynomial 

of the form given by equation 3.1: 

/im 
= x0  +X1(,) +X2(/) +X3(X m) 	------------------------- (3.1 ) 

Other investigators" 1,13,56,57)  have previously expressed the stress-strain relationship 

for brickwork in a similar manner. Pedreschi obtained coefficients for various 

brickwork and prism types with loading applied parallel to the bed-joints. For 

instance, the coefficients which he obtained for high strength bricks in grade I mortar 

are as given, along with those of other workers, in Table 3.5. Walker ' 3  subsequently 

obtained constants for a large number of tests on single and three course prisms of 

high and medium strength bricks in grade I and II mortar. Again, this result is for 
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brickwork loaded parallel to the bed-joint. Uduehi' ' also obtained coefficients for 

high strength single course brickwork prisms loaded parallel to the bed joints as given 

in Table 3.5. The coefficients obtained from the brickwork used in this investigation 

are given alongside all those obtained by previous investigators. However, the 

brickwork reported here is loaded in a direction perpendicular to the bed-joint. From a 

comparison of these various coefficients, it is seen that the non-dimensional 

relationships for brickwork loaded parallel and perpendicular to the bed-joints have 

close correlation. This is confirmed when the stress-block characteristics, defined 

later, relating to each of these separate results are compared (Table 3.8). 

Table 3.5 : Non-Dimensional Stress-Strain Characteristics 

Coefficients Pedreschi"' Walker'" ) Uduehi Present work 

X0  -0.05 0 0 -0.0166 

X 1  +2.373 +2.12 +1.67 +1.9789 

X 2  -2.095 -1.78 -0.665 -1.6146 

X3  +0.776 +0.66 -0.017 +0.6498 

3.3.3.2(a) Brickwork Prisms loaded eccentrically 

The possible effect of the strain gradient on the stress occurring at the point of failure 

was also investigated by analysing the results obtained from the eccentrically loaded 

prisms. Firstly, the average stress-strain curve obtained from all the concentrically-

loaded prism specimens was derived by fitting a curve through all the experimental 

observation points (Fig 3.3(f)). The equation derived from this curve-fitting procedure 

was used to work out the stress at every point across the breadth of the eccentrically-

loaded prism from the strain measurements obtained at these points see Fig 3.3(h-j). 
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Fig 3.30): Strain distribution in eccentrically-loaded prism (No 3) 

Therefore, at every stage of applied loading, the stress distribution across the breadth 

of the eccentrically-loaded prism specimen was derived. Again, this stress-distribution 

was obtained by a curve-fitting procedure. 

Secondly, equilibrium was checked at every stage of applied loading by integrating 

the stress diagram across the breadth of the prism for the particular level of loading. 

These calculation gave comparable results between the applied external load and the 

derived load for all the prism specimens (Table 3.6). This demonstrates the accuracy 

and validity of the technique to determine the stress distribution in eccentrically-

loaded prisms. 
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Table 3.6 : Comparison of Experimental and Predicted Loading for 

Eccentrically-loaded prism 

Load 

Level 

50% of Ultimate Load 

(kN) 

75% of Ultimate Load 

(kN) 

95% of Ultimate Load 

(kN) 

Prism 

No 

Theor Expt % duff Theor Expt % diff Theor Expt % duff 

1 198 200 1% 315.6 300 5% 419.4 400 5% 

2 153 150 2% 222.2 215 3% 318.5 290 9% 

3 291.4 260 11% T418 360 14% 476 410 14% 

3.3.3.2(b) Maximum stress at failure (Eccentrically-loaded prism) 

The distribution of maximum stress throughout the loading history of the prism was 

used to obtain the maximum stress occurring at failure for the eccentrically-loaded 

prism specimens. This was done because the strain at the point of failure could not be 

recorded by use of a demec gauge. A curve-fitting procedure was used to arrive at 

these values. In other words, a regression analysis was done on the distribution of 

maximum stress. The maximum stress for every individual prism, loaded 

eccentrically, was taken as the stress corresponding to the ultimate load for that 

particular prism (Table 3.7). 

Table 3.7: Maximum stress at failure (Eccentrically-loaded prisms) 

Prism No Maximum stress 	(N/mm) 

1 29.64 

2 26.96 

3 31.76 

Maximum stress (average value) 29.45 

When the maximum stress at failure was calculated from experimental data for the 

three eccentrically-loaded prisms tested, the results revealed that stresses were 

approximately the same order of magnitude for both the eccentrically-loaded 

specimens and axially-loaded prisms (compare Table 3.4 & Table 3.7). The strain 
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gradient therefore has no discernible effect on the attainable ultimate stress for the 

brickwork format reported in this work. In view of these findings and because it is 

very difficult to obtain results from eccentrically-loaded test specimens, it may be 

appropriate to adopt results from the axially-loaded prisms as adequately representing 

the compression zone characteristics in flexure. 

3.3.3.3 Stress block characteristics 

To predict the ultimate strength of beam in flexure, the magnitude and relative 

position of the resultant force in the compression zone are both required; They are 

defined, respectively, as: 

=[x0 + Xi(Xm) + X2 	

.)2 
 + X 3( m)]d(X m) ------------------ (3.2) 

1[(%m) 
(XO  + 

x1 (%m) 
+ X2 	

2 
+ X, (xm) 3) ]d(m) 

2 1 	 ---(3.3) 

where k, relates the average stress to the compressive strength of the brickwork and 

2 relates the depth of the centroid of the stress block to the neutral axis depth. 

These two characteristics, 7. 1 and X 2  are geometric properties of the non-dimensional 

stress-strain curve. Both of them combine together to describe, completely, the 

distribution of compressive stresses in the compression zone. 

These characteristics have been compared for axially-loaded and eccentrically-loaded 

brickwork prisms (Table 3.8). Since the variation of these two characteristics for the 

different brickwork prisms is not significant, it may be reasonable to take them as 

independent of the prism format and type of loading used. In view of these 

observations, it is correct to adopt results from the axially-loaded prism specimens as 

sufficient to estimate the compression zone properties of the brickwork. 

59 



Table 3.8 : Comparison of the Stress Block Characteristics ?. and k2  for 

Different Types of Brickwork 

Axially-loaded Prism Eccentrically-loaded Prism 

Authors 
2 

Pedreschi (Ref 7) 0.652 0.390 - - 

Walker (Ref 13) 0.606 0.372 0.672 0.333 

Uduehi (Ref ll) 0.61 0.387 - - 

Present work 0.60 0.38 0.64 0.41 

3.4 THE MODULUS OF RUPTURE FOR BRICKWORK 

To obtain the moment at which first cracking appears in reinforced brickwork beams, 

the modulus of rupture test is often conducted. The modulus of rupture has been 

obtained for the combination of brick unit and mortar grade reported in this 

investigation. The average modulus of rupture, obtained from three specimens (Table 

3.9), for the brickwork is 1.42 N/mm2  . For the tested sections, three 10-courses high, 

two-and-a-half brick wide wallettes were built and tested as a beam subjected to a 

four-point loading arrangement. 

Table 3.9: Modulus of Rupture for Brickwork 

Sample No Modulus of Rupture (M.O.R) N/mm 2  

1 1.48 

2 1.42 

3 1.36 

Average = 1.42 N/mm2  
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3.5 MODULUS OF ELASTICITY OF BRICKWORK 

The tangent modulus of brickwork varies significantly depending on the type of 

brickwork as well as the direction of loading relative to the bed-joint of the brickwork. 

Walker ' 3  obtained equation (3.4) based on brickwork loaded parallel to the bed-joint. 

E 1  = 1308f? (N/mm2) (3.4) 

Pedreschi 7  obtained equation (3.5) based on a large number of tests on prisms loaded 

normal and parallel to the bed joint. 

E, = 11 80f83  (NI2) 
	

(3.5) 

The Code of practice gives the relationship as (3.6): 

Em  = 091k  (/m1112) 	 (3.6) 

In this investigation, the initial tangent modulus of elasticity obtained for the 

brickwork was 15 kN/mm 2. This result was obtained from prisms loaded 

perpendicular to the bed joints. The modulus of elasticity obtained from equations 

(3.4) and (3.5) is approximately 6% lower and 14% higher than the initial tangent 

modulus respectively. The value of f, used is the overall average taken from Table 

3.10. i.e fm = 25 N/mm2. The results were compared with the code of practice, from 

which the value of fk  was obtained from the test results of Sinha 58  (Table 3.10) and 

this work. The value of 1k  for the brickwork used is 21.5 N/mm2. Thus, the modulus 
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of elasticity obtained from equation (3.6) gives 19350 N/mm 2, which is much higher 

than the test results. This suggests that the code provision is not conservative. 

Table 3.10 : Compressive strength of 6-course brickwork prisms after Sinha 58  

Beam No with Prism Compressive 

strength (N/mm2) 

3-1 25.6 

3-2 25.6 

3-3 24.6 

4-1 23.3 

4-2 25.1 

4-3 30.3 

5-1 25.2 

5-2 27.9 

5-3 26.5 

6-1 24.4 

6-2 26.0 

6-3 26.0 

7-1 23.0 

7-2 24.0 

7-3 23.0 

8-1 24.9 

8-2 25.1 

8-3 24.4 

Prism 1 28.0 

Prism 2 26.3 

Prism 3 18.7 

Prism 4 28.2 

Prism 5 19.9 

Average stress (fm ) 

25.0 
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The average moduli of elasticity for brickwork, loaded perpendicular to the bed joint, 

were obtained from another extensive investigation 59 . These values were used for the 

slab specimens. 

3.6 SUMMARY AND CONCLUSIONS 

The technique of using results from axially-loaded prisms to determine the stress 

distribution in eccentrically-loaded prisms is shown to be valid for the brickwork used 

in the present work. 

The stress block factors X 1  and X 2  are not significantly different for brickwork 

loaded axially or eccentrically. Therefore, axially-loaded brickwork prisms provide a 

reliable description of the compressive properties of brickwork beams. Also, the 

experimental procedure and data processing pertaining to the axially-loaded 

brickwork prisms are comparatively simple. 

The modulus of elasticity for brickwork is dependent on the direction of stressing 

relative to the bed-joint. For the brickwork used in this work, the modulus appears to 

be reasonably predicted by existing equations derived for (a) brickwork loaded 

parallel to the bed-joint and (b) brickwork in which loading is applied normal and 

parallel to the bed joint. It appears that the code provision for estimating this property 

of brickwork is not conservative. 
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CHAPTER 4 

ULTIMATE SHEAR CAPACITY OF BEAMS 

4.1 INTRODUCTION 

In design, shear strength seems to be an important criterion in defining the ultimate 

strength of reinforced brickwork beams and retaining walls. Studies conducted in the 

past indicate that shear strength depends on variables like % ratio, % longitudinal 

steel, brick masonry strength, mortar strength but the first two variables affect shear 

strength more than the others. A lower bound value of 0.35 N/mm2  was derived for 

shear strength of brick masonry beams in which the reinforcement is embedded in 

mortar, either in the bed or collar joint of the brickwork. In BS5628 : Part 2, the 

relevant British Code of Practice pertaining to this subject, this lower bound value is 

allowed to be increased by a factor 2% when the shear span ratio is less than 2 for 

brickwork employing mortar mixes of 1:0.25:3 and 1:0.5:4.5 with a maximum shear 

strength of 0.7 N/mm2. It should also be noted that this lower bound value was 

originally derived for brickwork masonry based on the analysis of tests carried out to 

investigate the shear strength and the associated failure criteria for storey-height shear 

walls, employing mortar mixes 1:0.25:3, subjected to the biaxial stress state of shear 

and precompressive loading. (60)  BS5628 recognises that the shear strength is 

influenced by the aid ratio and also by the % steel for reinforced brickwork masonry 

in which the reinforcement is placed within pockets, cores or cavities filled with 

concrete. This relationship is presented in the code by the following expression 

(0.35+17.5p)[2.5-0.25]j> 1.75N /mm 2  

The quantity inside the first bracket caters for the shear strength for shear span ratios 

greater than 6. Whenever the aid ratio is less than 6, shear strength is enhanced by the 

multiplier quantity within the square bracket up to a maximum of 1.75 N/mm 2 . 

It may be argued that a considerable amount of information exists on the shear 

strength of reinforced brickwork in general, nonetheless gaps still exist in knowledge 

of the shear strength of pocket-type sections since only a limited amount of tests have 
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been conducted on this type of reinforced brickwork (61) . In other words, until now, 

only a limited number of pocket-type beams have been investigated for shear strength. 

These few results do not give a clear indication of the order of shear strength of 

pocket-type beams or how to estimate them. The British Code of Practice (2)  dealing 

with these members recognised the enhancement provided by the % steel and aid ratio 

as shown in the above expression, but placed a limit of 1.75 N/mm 2  on the 

characteristic shear strength of simply supported reinforced beams and cantilever 

retaining wall sections. If the partial safety factor for shear 2 , y = 2, is applied to 

this characteristic value, conservative values of design shear strength results. This 

conservative approach is a direct result of paucity of experimental data on shear 

strength of pocket-type beams, hence the need for this experimental investigation. 

This chapter presents the details of experimental set-up and results obtained from 

testing eight full-scale beams in order to investigate the shear behaviour of pocket-

reinforced sections. These experiments examine the effects which the two salient 

variables, namely, the shear span to the effective-depth ratio a/d and the degree of 

longitudinal reinforcement, p, have on ultimate shear strength. Although, shear 

strength behaviour investigation forms the major focus of this aspect of the research, 

other investigations of behaviour, like deflection and cracking analysis, remained a 

necessary part of these tests. These incidental aspects of the shear investigation were 

also used to classify and categorise the shear behaviour of these beams. The beams 

were designed to fail primarily in shear and the effect of aid ratio on shear strength 

was studied by keeping all variables constant and varying the aid ratio from 2 to 6. 

The effect of % steel was studied by varying the % steel from 0.6% to 1.6% while all 

other variables were kept constant and aid ratio was fixed at a value of 3.2. 

A summary of existing methods of predicting shear strength has been presented in 

chapter 2. The theoretical basis which was adopted for analysing these beams is not 

entirely new but could be considered as an extension of that developed originally for 

prestressed concrete beams. Finally, a comparison of the experimental results obtained 

by the author with recommendation for shear strength in the current British Code of 

practice (2)  is presented. 

65 



4.2. SHEAR FAILURE IN BEAMS WITHOUT SHEAR REINFORCEMENT 

The reality of shear failure is that they occur under combined shear forces and 

bending moment. They are characterised by small deflections and lack of ductility 

since they often occur before the flexural capacity of the member is attained and can 

take place quite unexpectedly. They are undesirable because they often occur with 

little or no prior warning. Shear failures are mostly associated with diagonal tension 

and diagonal cracking. 

Diagonal failure in shear is usually studied by testing reinforced beams under two-

point loading. The major advantage of a set-up like this is that it combines two 

different test conditions, namely pure bending between the two loads in the central 

portion of the beam and constant shear force in the end sections termed the "shear 

spans". 

4.3 THEORETICAL ANALYSIS 

4.3.1 Analysis of Beam Test Results Using Method Based on Plastic Analysis 

As noted in chapter 2, this method has been successfully applied to predict the shear 

strength of both fully and partially prestressed brickwork sections in which the 

compressive forces were applied parallel to the bed-joints. Since reinforced brickwork 

could be considered to be only a special form of prestressed brickwork in which zero 

prestress is applied, it is considered reasonable and useful to assess the shear strength 

of these pocket-type reinforced brickwork beams by this technique. 

The method predicts the shear strength by employing an empirical factor on 

compressive strength. The plastic methods proposed by Nielsen et al .(9,62)  are detailed 

elsewhere but those aspects of the theory pertaining to the shear strength of beams 

without shear reinforcement are considered here. Using the plastic theory, per se, 

assumes implicitly that the material exhibits a reasonable degree of ductility. This 

implicit assumption is not apparent in materials such as brickwork or concrete. The 

limited ductility of these materials are allowed for by the effectiveness factor, &, 

which is empirically determined and applied to the compressive strength of the 
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material. In this section, the equations governing the plastic method of analysis are 

summarised. 

It is assumed that: 

the beam is in a state of plane stress; 

the reinforcement behaves in a rigid-perfectly plastic manner; 

the brickwork is rigid-perfectly plastic and obeys a modified Coulomb's failure 

surface in which the compressive strength is equal to 3f. and the tensile strength is 

zero. 

The modified Coulomb failure criterion, developed for concrete, is shown in Fig 

4.3.1. Experimental work done in the past by Page 51 , in which a large number of 

brickwork panels were tested under biaxial compression at varying ratios of principal 

stresses and orientations to the bedjoint, infers that the failure surface is square, Fig 

4.3.2, and not significantly affected by the angle of the bedjoint. This is why it is 

reasonable to apply the same yield locus, used by Nielsen and Braestrup 9 , to 

brickwork. 

b17, 

(— ?.c )  _94,%) 

Fig 4.3.1: Modified Coulomb Yield Criterion 
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Fig 4.3.2: Failure surface for brickwork in bi-axial compression (after Page (51 )) 

4.3.2 Upper Bound Solution 

The failure mechanism assumed by Nielsen and Braestrup 9  is shown in Fig 4.3.3. 

This consists of a yield line running from support to load point, separating two rigid 

parts of the beam. The relative displacement of the two parts, v, is inclined at an angle, 

a , to the yield line, which in turn is inclined at an angle, 13 , to the beam axis. The 

yield line, or more accurately, the yield surface is the area of deformation between the 

two rigid parts, (I) and (II) as shown in Fig 4.3.3. By consideration of the principal 

strains in this deforming zone and applying the normality condition (63) , which states 

that the principal rates of strain are normal to the yield surface, it was shown that the 

only stress state which satisfies this condition corresponds to the corner of the yield 

surface shown in Fig 4.3.1 
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Fig 4.3.3 : Assumed Failure Mechanism for an Upper-Bound Solution 

From these considerations, the following expressions for the rate of internal work 

dissipated per unit area of the yield line was derived: 

W1 =—Vfm(1-  sin  a) 	 ---------------------------------- (4 .3 - 1) 

where W1  = rate of internal work dissipated per unit area of the yield line. 

:!~ a :5  Y2 	 (4.3-1(b)) 

It is assumed that the steel yields in tension, that is, 

(4.3-1(c)) 

The rate of internal work done by the failure mechanism is: 

- sina)(b 	- F,vcos(a + -) ------------------------------ (4 . 3-2) 2 	sin 
In deriving equation (4.3-2), the contribution of the web material was computed based 

on equation (4.3-1). 

The rate of external work done is 

WE = Vv sin(ot + 0) 	 (4.3-3) 

Furthermore, the average shear stress is defined as 

(4.3-4) 
bh 

and the mechanical degree of reinforcement, CL' as 
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F 
= 

bhf, 	
- (4.3-5) 

where F is the force in steel at yielding. Applying the work equation WE = W1  and 

substituting equations (4.3-4) and (4.3-5) into equation (4.3-2) yields the upper bound 

for the ultimate shear stress: 

( 

 r ' 	(1—sina)-2sincos(a+)
(4.3-6)  

2 sin 3sin(a+13) 

which becomes 

(

-c =& — &cossin(a +)+(& —2) sin cos(a -i-n)
(43) 

I'm 	 2 sin f3sina+3) 

The lowest upper bound is determined by minimising equation (4.3-7) with respect to 

the variable cx , which yields: 

dT  
-=Oat&cos(a+I)=—(&-2(D) sin 3 	 (4.3-8) 

da 

By putting equation (4.3-8) into equation (4.3-7), it was found that the minimum is 

given by equation (4.3-9): 

= 1 (14 2 cot 2 P + 4(D(& - 	- & cot -- -------------------- (4.3-9) 

and with cot 3 = the lowest upper bound is 

( 	& i" 	4(& _ci) - 	
(4.3-10) + & 	h) 

The limit on the degree of steel arises from the condition given by equation (4.3-1(c)) 

by virtue of equation (4.3-8). Whenever ct> , the minimum is obtained with 

(a + <- and, in such a case, equation (4.3-2) is invalidated as this means that the 

steel is no longer in tension. 
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If the reinforcement is sufficiently strong, such that 1)> 	then from equation (4.3- 

8), equation (4.3-10) does not apply. In other words, as Cl) increases, the angle 

(a +13) decreases as seen in equation (4.3-8). When l)> -, (a +13) < _ 
 ; the steel 

does not yield. It was furthermore shown"' that when (a +13) :!~ - the lowest upper 

bound is obtained when (a +13) = 

Putting the condition (a + f3) = into equation (4.3-7), it was found that 

	

Iti 	&Iiai 	(a 
1-1=-

2 
 Il-I +1—i- 

	

 h)"fm) 	h) 
(4.3-11) 

19  
Equation (4.3-11) is also obtained if I = 	is put into equation (4.3-10). 

4.3.3 Lower Bound Solution 

The stress distribution in Fig 4.3.4 is assumed. The compressive force is transmitted 

via a brickwork strut running from the load point to support. This distribution is 

similar to a "tied arch" and it is assumed that the reinforcement is bonded only at the 

support. The regions of the beam immediately above and below the support and load 

points are assumed to be in a state of biaxial compression of depth y. 

V 

- -r0-4 

F 

Fig 4.3.4 : Stress Distribution in the Shear Span Subject to Concentrated Loading 

(Lower Bound Solution) 
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At the support this implies a small moment which is ignored in the analysis. From 

Fig 4.3.4, the strut inclination is determined by the following geometrical relation: 

h—y=(a+ytane)tane 
	

(4.3-12) 

This equation gives a quadratic in tane, the relevant solution of which is given in 

equation (4.3-13) 

tane =_(Va 2 + 4y(h — y) — a) 
2y 

(4.3-13) 

By considering equilibrium of horizontal forces, the depth y may be obtained. F is the 

force in the longitudinal reinforcement: 

bya=F 

Therefore, y = F- 
bc 

(4.3-14) 

Considering equilibrium of vertical forces, the load V, corresponding to the stress 

distribution is found: 

V = cthytanO = - bcY(Ja2 +4y(h_y)_a) 	-------------------------- (4.3-15) 

Putting equation (4.3-14) into (4.3-15) results in equation (4.3-16), which gives the 

lower bound 

V=(Ja2b2cY2 +4F(hbc _F)_abc) 	--------------------------- (4.3-16) 

Differentiating equation (4.3-16) with respect to the static variables a and F, it was 

found that 	is always greater than zero and also that 
da 

for F< - -hbcy and 
dV 

<0 for F> - -hbcy -------------------------- (4.3-17) 
dF 	 2 	dF 	 2 

The maximum lower bound is obtained when (T is a maximum, that is cy = 

When F < hb&fm , the steel is yielding and F is determined from the maximum 

force in the reinforcement : That is, 

F = bhfrn 	 (4.3-18) 
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If F> --bh9f, , the maximum force in the steel is governed by the brickwork and 

the maximum lower bound is found with: F = -1bh3f 1 	------------------ (4.3-19) 

Putting equations (4.3-18) and (4.3-19) into equation (4.3-16), two separate 

expressions are obtained for 	as follows: 
\fin) 

=J /()2 
+ 	

valid for 	 (4.3-20) 
2 	 h) j 	2 

f 	2 j(
+ 
	

valid for CD ~ — ----------------------- (4.3-21) 
hY h j 	2 

These two preceding expressions are identical to those two expressions obtained from 

the upper bound solutions given by equations (4.3-10) and (4.3-11). The method 

therefore asserts that the exact plastic solution to the problem has been found. 

4.3.4 The effectiveness factor  14 

To be able to use this method of prediction, the effectiveness factor has to be 

evaluated first. This parameter is dependent on the outcome of the shear strength test 

results and gives a measure of the ductility of the concrete or brickwork. In concrete, 

an average effectiveness factor of 0.455 has been reported (9)  for beams failing in 

shear. 

The successful application of this method to reinforced brickwork requires the correct 

evaluation of the effectiveness factor. In the experiment it was observed that shear 

cracks were always extensions of flexural cracks, hence the effectiveness factor must 

be influenced by the flexural strength of the brickwork. In addition, in some cases the 

shear and flexural failure happened almost simultaneously, hence the upper limit of 

the shear failure is influenced by the compressive strength. It was, therefore, felt that 

these two properties of masonry will have significant effect on the effectiveness 

factor. In statistical terms, the effectiveness factor can be expressed as a function of 
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qifafb 	 (4.3-22) 

where 'F, a and b are constants to be determined. 

This will make the plastic method much more acceptable and less dependent on 

specific experimental findings. A way of doing this would be to analyse several 

experimental results of similar categories and extract an overall average value, much 

like a global average effectiveness factor for that category, which would later be used 

in analysing different results of shear tests carried out on sections falling strictly 

within that category. This will then drive the method away from its current rigid, 

semi-empirical form. 

All previous shear test 7" 
1,13,23,24,27,33,40,45,58)  results on reinforced and prestressed 

brickwork were analysed by performing a regression analysis. The analysis gave the 

following expressions, with 73 % and 80 % correlation coefficients for reinforced and 

prestressed brickwork respectively: 

	

= 0.411,029 	
(reinforced brickwork) 19 	

0.08 
fm 

19 - 1.411,0.10 	
(prestressed brickwork) 

- 	 0.41 
fm 

(4.3-23) 

(4.3-24) 

On close examination of the two expressions it can be seen that the compressive 

strength of masonry becomes the dominant factor for prestressed brickwork with the 

increasing tensile strength. The effectiveness factor for the present test was obtained 

substituting the known values of flexural tensile and compressive strength. The value 

of the effectiveness factor was used in equation 4.3-20 or 4.3-21 to predict the shear 

strength of the pocket-type reinforced walls tested in the present work. These results 

are given later in Table 4.5.2. 

The variation of effectiveness factor with tensile and compressive strength considered 

in this analysis are given in Appendix (I). In this appendix, Nos 1-82 are reinforced 
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brickwork sections with no prestress applied to them. Nos 83-116 are prestressed 

brickwork sections. 

4.3.5 Load deflection response of pocket-type reinforced beams 

4.3.5.1 Introduction 

Deflection measurements of these beams were carried out to examine the deflections 

accompanying failure in shear. Measurements of deflection are needed so as to know 

if the full cross-section is mobilized to resist the applied load up to the point of failure 

in shear. 

Deflection measurements and prediction is important for serviceability limit state 

calculations. In serviceability terms, limits may be placed on the value of deflection 

permitted such that the structure does not become unserviceable. If, for example, 

cracking is not permitted in these members, the calculation of deflection becomes a 

straightforward process, following standard procedures in which either tangent or 

secant modulus of elasticity of the brickwork material is used. However, when cracks 

are allowed to occur, calculation of deflection becomes much more involving because, 

at a cracked section, the stiffness properties of the section change such that stresses in 

the brickwork increase more rapidly. Noting that the basic behaviour of brickwork 

itself is non-linear, the non-linearity due to cracking makes the calculation of 

deflections slightly complicated. 

For these reasons, various techniques (30,35)  have been proposed for the calculation of 

deflection in brickwork members, and these techniques have tried to incorporate the 

loss of material stiffness in different ways, thus producing different levels of accuracy 

that depend on the method adopted. It is also noted that a basic prerequisite to any 

deflection calculation is the Moment-Curvature relationship. 
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4.3.5.2 Theoretical Methods Used For The Calculation of Deflections 

Only two methods are described here. A crucial step in the theoretical calculation of 

deflection is the determination of the moment-curvature M- 4)  relationship. This 

relationship also provides useful information on the ductility of the member. 

In the case of simple bending of a beam, the following relationship holds between the 

moment M and the curvature 4) 

= M/ (4.3-25) 

where E = Young's Modulus of Elasticity. 

1= Second Moment of Area. 

For the calculation of deflection, one needs to know the distribution of bending 

moment along a member. With this knowledge, the curvature at any section can be 

extracted from the equation given above. The deflection y, is then obtained from the 

differential equation: 

__d2y/ 	 4326 /2 	 - 	 . - 

where 

x = distance along the beam 

Brickwork has low flexural tensile strength and therefore cracks at very low applied 

load in flexure. Whenever cracking occurs, the second moment of area, I, changes. 

The Young's modulus of elasticity also varies with stress level. This situation has led 

to different methods for calculating the curvature in bending and consequently, the 

deflection of their members. The differences inherent in these methods has to do with 

the way the varying nature of the flexural rigidity, El, is accounted for. The two 

methods are: 

The second moment of area method 

The direct method 
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4.3.5.3 The Second Moment of Area Method 

In this method, the section is assumed to behave in an elastic manner. A bi-linear or 

tn-linear relationship is then obtained between the moment and curvature. Up to the 

point of cracking, the second moment of area is based on an uncracked section 

analysis. This quantity is calculated either by using the gross or transformed section. 

The transformed section accounts for the presence of the reinforcement. Beyond the 

point of cracking, the second moment of area is obtained from the area of brickwork 

in compression and the transformed area of steel. For under-reinforced sections, this 

method also calculates the second moment of area at a third stage which corresponds 

to the yielding of the tensile reinforcement. At each of these different stages of 

member structural behaviour, a value of the elastic modulus is chosen to reflect the 

level of stress in the beam. 

The effective moment of inertia is calculated by using methods close to that originally 

proposed by Branson 37  for reinforced concrete beams. 

'effective 
= 

M 
	

(1_M
3

11

) 

]cr 
	 (4.3-27) 

where 

'effective = effective second moment of area. 

it, =  second moment of area of transformed uncracked section. 

1cr = cracked transformed second moment of area. 

M, = cracking moment. 

M= the applied moment. 

m = an index. The value of m =3 has been found to give reasonably good results. 

The Moment-Curvature relationship is often idealized as a bi-linear curve. Each part 

of this relationship is based on cracked and uncracked second moments of area. 35 . 

However, due to the fact that the transition between these stages is smoother than 

would be indicated by the bi-linear idealization, results based on this model tend to 

overestimate the deflections. This is due to the well-known tension stiffening effect. 

This "extra" stiffness due to tension stiffening is incorporated in different ways for 
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calculating deflections, i.e. by multiplying the deflection itself by a reduction factor or 

by using an effective second moment of area which is greater than that based on the 

cracked second moment of area. Methods of this type generally require information 

from experimental work on beams 7" 3 ' 38 . 

Some limitations of this method are as follows: 

-- The non-linear behaviour of brickwork is not taken into account. 

-- The elastic modulus varies continually with stress level. 

4.3.5.4 The Direct Method 

The direct method uses the actual stress-strain relationship of the brickwork as well as 

that of the tensile reinforcement. This, therefore, eliminates most of the limitations 

associated with the moment of inertia method. However, the beams are also 

considered to be elastic up to the point of cracking and the curvature is obtained from 

equation (4.3-25). 

After cracking, the curvature is obtained by applying increments of compressive strain 

to the extreme compression fiber. Assuming a cracked section, the tensile strain 

required for the equilibrium of the internal forces is obtained. Using the strain profile, 

the curvature is determined. For any loading, the distribution of curvature along the 

beam is obtained from the computed moment-curvature relationship. To obtain the 

average curvature using this method, tension stiffening is accounted for. Finally, the 

deflection is obtained from double integration along the span. 

Pedreschi 7  applied the direct method to prestressed brickwork beams by 

incorporating the stress-strain relationship for brickwork from prestressing to failure. 

This procedure was further improved by Walker (13) who accounted for the properties 

of the composite section. It has also been used successfully by Uduehi' to predict 

the load-deflection relationship for prestressed brickwork and concrete beams which 

failed in flexure. 
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As mentioned above, the deflection is evaluated from the M- 4) relationship. The 

relationship between the curvature 4) and the deflection y along the span of the beam 

is given by equation (4.3-26). 

Since the analytical solution of this equation is not possible, the numerical finite 

difference method was used to obtain the deflection. The finite difference method is 

an approximate method for solving differential equations and this method of 

numerical integration is only applicable to problems in which the values of the 

independent variable is known. In this situation, the independent variable is the 

curvature, 4). The aim is to find the values of the dependent variable, y, by first of all 

converting the problem to that of solving a set of linear simultaneous equations. A 

knowledge of the shape and magnitude of the bending moment diagram is required to 

determine the curvature, 4). 
4.3.5.5 Predicting Deflections By the Direct Method 

Since the direct method has been successfully used to predict the deflection of both 

fully- and partially- prestressed brickwork beams, it is assumed that it would equally 

predict the deflection of pocket-reinforced beams tested by the author. 

Results obtained on the basis of the first method as well as all the experimental 

deflection measurements are compared with those based on this method. These are 

given in Fig 4.5-3 9 to Fig 4.5-42. 

4.4 TEST ARRANGEMENT 

The arrangement for testing the beam as well as the various measurements carried out 

during the test are described in this section. 

The beams were tested under two point loading in a specially-designed rig which 

provided pin and roller supports. The typical test beam was placed on the supports 

which were previously positioned at the correct span ( compare Figs, 4.4.1, 4.4.2 and 

4.4.3). The load was applied to the beam by means of two hydraulic jacks attached by 

a single feed to a hydraulic pump. 
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Fig 4.4.1 : Cross-section of the pocket-type reinforced brickwork beam (B1-B4) 
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Fig 4.4.2 : Cross-section of the pocket-type reinforced brickwork beam (B5-B8) 
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Fig 4.4.3 Test set-up for pocket-type reinforced brickwork beam 
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4.4.1 Test Procedure 

The minimum age of the beams at the time of test was 28 days. This age allowed 21 

days before placing the longitudinal reinforcements and a further 7 days curing after 

grouting. Before placing the beam in the testing rig, the self weight was taken by a 

load cell attached to the lifting crane and connected to a digital voltmeter which 

recorded the weight in millivolts. The cross heads and the jacks of the rig were 

removed and the beam was lifted onto its supports. The cross heads and the jacks were 

then replaced. The ends of the beam were jacked off the supports and bearing plates 

placed onto the supports. The beam was then very carefully bedded onto the plates 

using a rich mortar mix. Steel bearing plates were also bedded on top of the beam 

beneath the jacks. Before applying any load to the beam, initial readings were taken 

from the dial gauges, strain gauges and load cells. The load was thereafter applied 

slowly in small increments. For most of these beams, failure occurred after about 10-

12 increments. At every increment, the load was held constant while deflection and 

strain measurements were taken. As the failure point was reached, the loading 

increment was reduced and strain and deflection measurements were taken as close as 

possible to the ultimate load. 

4.4.2 Measurement of Strain in Brickwork and Steel 

Strains were measured on the faces of the brickwork beams using demountable 

"demec" gauges having gauge lengths of 200 and 305 mm. Measurements were taken 

in the constant moment zone of the beams at various depths using 200 mm gauge 

length as shown in Fig 4.4.2-1. The strains were measured on both faces at a particular 

depth thereby obtaining the average strain across the section. More points were 

located at the top parts of the beam surface to enable the migration of the neutral axis 

to be determined and help in the calculation of experimental curvatures of these 

beams. Longitudinal strain measurements were also taken at the top surface of the 

beams in the maximum bending moment regions at points located as shown in Fig 

4.4.2-2. Similarly, points were located centrally within the shear span zones to 

measure the longitudinal strains occurring in these zones. 
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200 mm 

(1--i) 0mm 

(2--2) 10 mm 

(3--3)30mm 
(4-4)60mm 

• 	 ______ (5--5)90mm 

(6--6) 140 mm 

(7--7) 190 mm 

(8--8) 215 mm 

Fig 4.4.2-1 : Showing the position of the demec points along the depth of the beam in 

the constant bending moment zone 
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(4--4)y= 312.5 
(3--3) y=342.5 
(2--2)y=372.5 	) 
(1--i) y=402.5 mm —*• 	• 

y = 552.5 	; side A 

Fig 4.4.2-2 : Showing the position of the demec points along the width of the beam in 

the constant bending moment zone. 
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Attempts to measure the corresponding transverse strains at these locations in order to 

determine the tension developing there were not successful because the strain gauges 

were not sensitive enough to measure the order of strains developing prior to failure of 

these beams. 

Strains were measured on the steel reinforcement using electrical resistance strain 

gauges. The strain gauge was attached to a well prepared and smoothened surface of 

the steel reinforcement. In order to achieve proper bonding, an epoxy resin was used 

to stick the electrical resistance strain gauge to the surface within the gauge length 

appropriate to the diameter of the steel reinforcement. After the gauge is cured in the 

laboratory for about one day, it is carefully protected by a nylon tape from the 

abrasive forces normally induced by the subsequent grouting operation. For every 

beam tested, initial readings were taken of all strain gauges before the external load 

was applied. For a given applied load, therefore, the actual strain is obtained by 

subtracting this initial reading. 

4.4.3 Measurement of Deflection 

The deflections of the beams were measured using mechanical dial gauges. The 

deflections were measured at midspan and at the two supports in all the beams. The 

support measurements were necessary in order to check if any support settlement 

occurred and these were accounted for in the determination of the actual midspan 

deflections of these beams. Dial gauges reading to 0.01 mm were used for these 

midspan deflection measurements whereas gauges reading to 0.002 mm were used to 

record support settlements. 

4.4.4 Load Measurements 

The applied load to the beam was measured at the jacking point using 200 kN load 

cells. The power supply to the load cells was from a 10 volt power supply and the 

measurements taken by each load cell was monitored by a digital voltmeter. The load 

cells used in the test arrangement had been calibrated previously in a compression 

testing machine using the same voltmeter and power supply as in the beam tests. 
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4.5 EXPERIMENTAL RESULTS 

4.5.1 Summary of experimental results: 

The summary of experimental results is given in Table 4.5.1. 

Table 4.5-1 : Experimental Results 

Beam 

No 

Length 

(mm) 

Span 

(mm) 

Shear 

Span, a 

(mm) 

aid 

ratio 

% 

steel 

Self 

Weight 

(kN/m) 

Ultimat 

e Load, 

V (kN) 

Ultimate 

Average 

shear stress 

(N/mm2) 

Bi 2105 1960 293 2.05 1.59 2.76 146.46 1.86 

B2 2090 1960 292 2.04 1.59 2.71 171.57 2.18 

B3 2480 2310 468 3.27 1.59 2.69 88.44 1.14 

B4 2495 2325 475 3.32 1.59 2.65 84.33 1.08 

B5 2435 2325 475 3.32 0.61 2.59 76.33 0.98 

B6 2495 2310 468 3.27 0.61 2.62 63.22 0.82 

B7 3245 3115 870 6.08 1.64 2.67 46.88 0.62 

B8 3245 3115 870 6.08 1.64 2.67 45.67 0.61 

4.5.1.1 Discussions of Experimental Results : The experimental results are 

discussed in this section. 

4.5.1.2 Brickwork strain 

The relationships between the moment and top fibre strain for all the beams are shown 

in Fig. 4.5-1 to Fig 4.5-8. In beams BI & B2 and B3 & B4(Figs.4.5-1 to 4.5-4), the 

curves remained approximately linear prior to ultimate failure. The compressive strain 

at the time of the beam failure was much lower than the ultimate strain as obtained 

from prism tests. 

In beams 135 and 136 (Figs 4.5-5 & 4.5-6), the curves show a continuous increase up to 

the failure point. Except for beam 5, the relationship between moment and strain 

remains linear and the magnitude is much lower than the ultimate strain. These results 

confirm that the failure of beams was due to shear not in flexure. This trend also holds 

true for the strains within the shear spans, that is sides Al and A2 respectively, 

recording much smaller maximum brickwork strains in comparison, as would be 

expected. 
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For beams B7 and B8 (Figs. 4.5-7 & 4.5-8), the growth of top brickwork strains in 

these beams could be approximated by linear curves. Again, the brickwork in the 

compression zone was underutilized. 
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Fig 4.5-1 : Relationship between moment and the average top fibre strain in 

brickwork (Beam 1) 
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Fig 4.5-2 : Relationship between moment and the average top fibre strain in 

brickwork (Beam 2) 
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Fig 4.5-3 Relationship between moment and the average top fibre strain in 

brickwork (Beam 3) 
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Fig 4.5-4 : Relationship between moment and the average top fibre strain in 

brickwork (Beam 4) 
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Fig 4.5-5 : Relationship between moment and the average top fibre strain in 

brickwork (Beam 5) 

Fig 4.5-6 : Relationship between moment and the average top fibre strain in 

brickwork (Beam 6) 
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Fig 4.5-7 : Relationship between moment and the average top fibre strain in 

brickwork (Beam 7) 
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Fig 4.5-8 Relationship between moment and the average top fibre strain in 

brickwork (Beam 8) 
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4.5.1.3 Variation of brickwork strain through the depth 

The variations of strain through the depth of the section for all the beams are given in 

Figs. 4.5-9 to 4.5-19. As is seen from these set of curves, the strain distribution within 

the constant bending moment regions of the beams remained linear just prior to 

ultimate collapse. This confirms the theoretical prediction that a straight line 

relationship exists between the strain and depth of the beam, thus validating the 

classical assumption that "plane cross-sections remain plane before and after bending 

of the beams". Another major feature of these results is that the neutral axis depths for 

beams B5 and B6 (Figs 4.5-13 and 4.5-16) are smaller than those of the other beams 

having a higher degree of longitudinal steel. 

500 

300 

C 

100 

2 

-300 

-500 

-700 

-900 

• 2.9kJ*n 
• 5.8k1'kn 

11.6kMn 
X  21.46kNm 
x 34.22k 
• 40.6kMn 

cortpissV€' Strozt 

is tLke 'cts —Ve 

 

depth (mm) 

 

Fig 4.5-9 Variation of average brickwork strain with depth (Beam 1) 
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Fig 4.5-10 : Variation of average brickwork strain with depth (Beam 2) 
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Fig 4.5-11: Variation of average brickwork strain with depth (Beam 3) 
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Fig 4.5-12: Variation of average brickwork strain with depth (Beam 4) 
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Fig 4.5-13 : Variation of average brickwork strain with depth (Beam 4)-left shear span 
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Fig 4.5-14: Variation of average brickwork strain with depth (Beam 5) 
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4.5.1.4 Variation of steel strains with bending moment 

The variations of steel strain are shown in Figs 4.5-20 to 45-27. The order of steel 

strains for all the beams, except for beams B5 and B6, are much smaller than the yield 

strain associated with the reinforcement used. Figs. 4.5-(20-23), 4.5-(26-27) show 

these results for beams with the higher degree of steel reinforcement. However, just 

prior to ultimate failure in shear, the order of steel strains in beams B5 and B6 (Fig 

4.523 & Fig 4.5-24) were at the yield threshold. It is quite possible that steel yielding 

and shear failure coincided in the case of these beams but what is more likely is that 

shear failure occurred just when the steel was at the onset of yielding. If shear failure 

had not taken place, the beam would have carried some extra load since the steel is 

capable of sustaining higher strains than those recorded in these experiments. 

Furthermore, the steel reinforcement had not shown any serious sign of yielding, 

which is often associated with accelerating strains. 

Thus, the measurements confirm that the failure of most of the beams were in shear 

with no yielding of steel except for two cases. In these two cases, the brickwork 

strains were much lower than the ultimate strain, hence the stress blocks were not 

My developed. 

steel strains (mlcrostrains) 

Fig 4.5-20 Variation of steel strains with bending moment (Beam 1) 
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Fig: 4.5-2 1 : Variation of steel strains with bending moment (Beam 2) 
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Fig 4.5-22 : Variation of steel strains with bending moment (Beam 3) 
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Fig 4.5-23 : Variation of steel strains with bending moment (Beam 4) 

Fig 4.5-24 : Variation of steel strains with bending moment (Beam 5) 
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Fig 4.5-25 : Variation of steel strains with bending moment (Beam 6) 
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Fig 4.5-26 : Variation of steel strains with bending moment (Beam 7) 
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Fig 4.5-27 Variation of steel strains with bending moment (Beam 8) 

4.5.1.5 Variation of top longitudinal strains along the breadth 

These curves are given by Figs. 4.5-28 to 4.5-36. They are plotted to examine the 

situations within both the maximum bending moment regions and the shear spans 

throughout the different regimes of loading and also to compare with measurements 

taken along the depth. For beams B 1 and B2, the longitudinal strains measured along 

the breadth (that is, across the spans) gave a uniform distribution throughout the 

loading regimes (Fig 4.5-28 and Fig 4.5-29). In beam B5, the longitudinal strains are 

compressive both within the shear spans and the constant bending moment regions 

(Fig 4.5-3 1). In beam B6, similar results were obtained (Fig 4.5-32 to Fig 4.5-34). 

In beams B7 and B8, a uniform longitudinal strain distribution along the breadth was 

obtained within the constant bending moment regions of the beams (Fig 4.5-35, Fig 

4.5-36). Within the shear spans of these beams, the longitudinal strains were 

compressive. The shear failure of these beams were also accompanied by a 

longitudinal crack. This longitudinal crack developed subsequent to shear failure and 

travelled from the maximum moment zone to the end section of the beam. A typical 

99 



longitudinal crack accompanying shear failure as well as a typical shear failure within 

the shear span are shown, respectively, in Figs 4.5-37 and 4.5-38. These results 

correspond well with strain measurements taken along the depth of the beams {Figs 

4.5-9 to 4.5-19}. 
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Fig 4.5-29 : Variation of Top Longitudinal Strain along the breadth (Beam 2) 

0 • 	•i 	• 	. 
50 	100 	-I!O 	0200 

-100 A 	- 	A 

x 
X 

S 
-200-- 

-- 
x 	r 

U . 	. 
-300-- +  

1 -400 

500 - - 
I- 

-600 

U 

-700 
0. 
o -- 

-800 - 

-900 

distance from side A towards side B(mm) 

300 	•OktkTi 
• 2.34k1kn 

4.68k1*n 
x 7.02k1'kn 
x 9.36ki 
• 11.7kM'n 
+ 14.O4kNm 
- 23.4kM 
- 35.1kt 
0 37.44kM 

'rtote: omfreffi 
L 

Ve c-h-am 

is tRketL CLr —V' 

Fig 4.5-30 : Variation of Top Longitudinal Strain along the Breadth (Beam 3) 

101 



• left shear span 

• left shear span 

center 

x right shear span 

x right shear span 

0 
0 
	

100 	 200 	 300 	 400 	 500 

top brickwork strain (microstrains) 

Fig 4.5-31 :Variation of Longitudinal Strain with B.M. along the top surface (Beam 5) 

0 

-100 
C 

-200 

E 

-300 

V0  
CL -500 
I- 

-600 

pa 

I.OkPkn 	I 
2.34ktkn 

9.36kNm 

x 16.38kNm 

)otC0 	
S4TttLr' s 

ttLKem CLS —ye 

distance from side A towards side Bof beam 
(mm) 

Fig 4.5-32 : Variation of Top Longitudinal Strain along the breadth (Beam 6)-Top 

center 

25 

20 

E 
z 
. 15 

E 
0 

C 10 

C 
0 

5 

102 



0 
50 	100 	150 	200 	250w 300 • 350 

-20 
	

U 

C 

-40 

2 
U 

! -60  
C 

-80 

-100 

CL 

2 -120 

-140 

F1 

x 
x 

distance from side A towards side Bof beam (mm) 

• Oktkn 

• 2.34kt*n 

9.36kMn 

x 16.38krk 

',tcLe c pre.csui 4Z S*raui., 

itdkQcts —ye 

Fig 4.5-33 : Variation of Top Longitudinal Strain along the Breadth (Beam 6)-Top (1) 

0 	 I 	 I 	 i # 	I 

50 	100 	150 	200 	250 	300 	350 

	

-20 	 U 

	

-40 	 U 

-60 

-80 

100 

-140-  

-160 

	

-1801 	
X 

distance from side A towards side Bof beam (mm) 

• OkMn 

2.34k-W. 

9.36kNm 

x 16.38k1'kn 

tE1t coprciVt sait• 
ts fctkz%t as 

Fig 4.5-34 : Variation of Top Longitudinal Strain along the Breadth (Beam 6)-Top (2) 

103 



0 

-100 

E -200 

-300 

,. -400 

-500 

-600 

g -700 
0. 

-800 

-900 

100 	200 	300 400 	.0kti 
• 4.6lkMn 
A 13.05kPkn 
x 21.92kt'kn 
x 26.27kMi 
• 34.67kf' 

)ol: co npi-s.c s-b-oi 
is  bLKeyt cis —ye 

distance from side A towards side Bof the 
beam (mm) 

Fig 4.5-35 : Variation of Top Longitudinal strain along the breadth (Beam 7) 

40 

35 

30 

E 
z 25 

20 

Cm 
.E 15 
C 

CO 10 

5 

0 
0 
	

200 	400 	600 	800 	1000 	1200 

top brickwork strain (microstrains) 

Fig 4.5-36 : Variation of Top longitudinal Strain with Bending Moment at points 

along the breadth (Beam 8) 

• left shear span 

• left shear span 

center (1-1) 

x center (2-2) 

x right shear span 

104 



Fig 4.5-37 : Longitudinal shear cracks accompanying shear failure 
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Fig 4.5-38 : A typical diagonal shear failure within the shear span 

4.5.1.6 Relationship between Moment and Central Deflection 

The deflection measurements as well as the strain measurements were taken to check 

if the whole of the cross-section in compression was used up before failure in shear. 

Also, the deflection measurements are required to classify the beams in terms of 

relative stiffness. Theoretical methods were used to predict the deflections occurring 

in these beams. These beams were designed to fail in shear so they are not expected to 

reach ultimate moment capacities when loaded to failure. 

These experimental results have been compared with the predictions based on : (a) the 

direct method, which was incorporated into an interactive computer programme 

developed by Walker( 13  and ; (b) on Branson's procedure (37)  as proposed originally 

for calculating deflections in reinforced concrete members. Predictions given by both 

methods are reasonable as shown in Fig 4.5-39 to Fig 4.5-42. 
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4.5.1.7 General Characteristics of the test results 

The strains in both the constant bending moment zone and shear span are directly 

proportional to the distance from the neutral axis. This means it follows the 

assumption made in bending. 

The compression zone is not fully developed prior to and at the instant of failure in 

shear. 

The neutral axis depth had not shifted significantly prior to failure of the 

specimen. The brickwork crushing strain, c,,,, is much higher than the brickwork strain 

at the time of beam failure ; this shows that the compression zone is underutilized. 

The strains in the steel at failure are also much smaller than the yield strain of the 

reinforcement. These characteristic features show that shear failure is associated with 

an under utilization of the materials making up the beam namely, brickwork and steel. 

This type of failure is characterized by small deflections. The beams which are 

close to flexural failure exhibited more ductility. 

Strain measurements in the steel and the maximum compressive strain prior to failure 

of the beams gave an indication of the type of failure which had occurred as well as 

the degree of ductility of the beams relative to one another. The maximum strains in 

the steel are compared with the strains corresponding to the proof stress of the 

reinforcement in order to determine if the latter strain is exceeded and also if yielding 

of the steel had occurred. Attempts to measure the transverse strains at the top of the 

beams, in order to check any tension developing there, were not successful as the 

instrument used was not sensitive enough to measure such strains. 

In all the beams, the compressive strains at the top fibers within the maximum 

bending moment region showed a practically linear increase throughout the various 

loading stages prior to ultimate collapse. The distribution could be appoximated by a 

linear curve in most cases. As shear failure tended to occur rather suddenly with very 

little prior warning, the strains could not be measured up to failure as this was 

considered unsafe. Nonetheless, attempts were made to take measurements as close to 

the ultimate failure point as was practicable. 
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4.5.2-(a) Influence of aid ratio on shear strength 

From Table 4.5-1, it can be seen that the aid ratio has a marked influence on the shear 

strength of the pocket-reinforced beams. The shear strength decreases with increasing 

aid ratio. 

4.5.2-(b) Influence of steel area on shear strength 

The experimental results show that the levels of steel in these pocket-reinforced 

beams fall within the threshold where the degree of longitudinal reinforcement, cb, 

still counts in resisting shear forces. This explains the enhanced shear strength 

recorded by the beams B3 and B4 relative to B5 and B6, though similar, but with a 

higher reinforcement ratio. From these results, it is seen that the influence of steel area 

on shear strength is relatively small compared to that of the a/d ratio. 

4.5.2-(c) Comparison Between Theoretical and Experimental shear strengths 

Table 4.5.2 compares the experimental and theoretical shear strengths of the pocket-

reinforced brickwork beams using the plastic theory 9 ' 62 . There seems to' be very good 

agreement between the experimental and theoretical results. Hence, this method of 

analysis can be used for calculating the shear strength of the reinforced pocket-type 

beams. The shear stress obtained in this table (Table 4.5.2) differs slightly from those 

given in Table 4.5.1 because total depth has been taken into account for theoretical 

calculation. 

These shear strength results have been compared with results obtained in accordance 

with the British standard 2  recommendations. This comparison is given in Table 

4.5.3. A similar analysis was also carried out on the shear test results reported earlier 

on reinforced brickwork pocket-type beams (6 D. This is done so as to ascertain the 

factor of safety associated with these beams when the allowable shear stress 

recommendations given by the British Code (2)  of practice is used for design. These 

results are given in the Appendix (Table A2). If the reported results (Table A2) are 

used, it means that very low factors of safety are provided by the code and, if the 

corrected values are used, this factor of safety is exaggerated in many cases. A 

material partial safety factor of 2.0 for shear strength should be adequate. The factor 
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varies from 1.15 to 2.85 for the pocket-type reinforced brickwork beams tested by 

Tellett & Edge11 30 . It seems that the code provision is to some extent unsafe. 

Table 4.5.2 : Comparison Between Experimental and Theoretical Shear 

Strengths 

BEAM 

No 

cD 	(Degree of 

reinforcement) 

(a/h) T ,, er,meniai 

(N/mm2) 

t exp erimenlal 	
(C) 

(N/2) 

(average) 

T theoretical 

(D) 

(N/mm2) 

(C)/(D) 

BI 0.22 1.36 1.26 1.36 1.34 1.01 

132 0.22 1.36 1.47 

133 0.22 2.18 0.77 0.765 0.88 0.87 

134 0.22 2.21 0.76 

135 0.08 2.21 0.67 0.62 0.66 0.94 

136 0.08 2.18 0.56 

137 0.21 4.04 0.43 0.425 0.48 0.89 

138 0.21 4.04 0.42 

Table 4.5.3: Comparison Between British Standards 2  and Experimental Shear 

Strengths 

BEAM 

No 

Characteristic 

shear strength 

(N/mm2) f 

fv / , 
/ 'flh1 	

Design shear 

stress (N/mm2) 

Average experimental 

shear strength 

(N/mm2) 

Experimental 

Design shear stress 

131 1.23 0.615 2.02 3.28 

132 1.23 0.615 

B3 1.03 0.515 1.11 2.16 

134 1.03 0.515 

B5 0.76 0.38 0.90 2.37 

136 0.76 0.38 

137 0.62 0.31 0.615 1.98 

138 0.62 0.31 
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4.6 ANALYSIS OF BEAM BEHAVIOUR IN THE MAXIMUM BENDING 

MOMENT REGION 

Results of theoretical and experimental measurements are presented in this section. A 

summary of the analysis carried out on the experimental results obtained in the 

constant bending moment regions of these beams are tabulated. These results are also 

used to draw conclusions on the structural behaviour of the beams. 

4.6.1 Strain Measurements in the Maximum Bending Moment Regions 

In this shear strength investigation, brickwork strain measurements were taken in the 

constant bending moment regions so as to establish the exact cause of failure of the 

beams. If, on one hand, compressive flexural failure occurred rather than shear failure, 

then this would be indicated by a fully developed compression block and would be 

easily confirmed by the strain measurements of the brickwork. On the other hand, if 

tensile flexural failure occurred rather than shear failure, then this would be indicated 

by the post-yield behaviour of the tensile steel and this would also be easily confirmed 

by the strain measurements in the steel reinforcements. These experimental 

measurements obtained from brickwork and the steel reinforcements were used to 

work out the internal moment of resistance mobilized just prior to failure of these 

beams. Since for all these beams, the compression block zone was not fully developed 

prior to ultimate failure, the experimental measurements were used to work out the 

stress block characteristics just prior to failure. These results are compared with the 

ultimate moments predicted based on beam properties as well as those predicted by 

the BS5628 (2)  provisions for these members. 

4.6.2 Ultimate strength prediction based on moment capacity 

In this sub-section, the failure of these beams based on flexural strength is analysed 

with the objective of comparing the failure predicted by theory with experimental 

observations within their constant bending moment regions. 

It is known that beams may fail in bending because of weakness in the tension steel or 

weakness in the compression brickwork. Several ultimate strength theories have been 

proposed for reinforced and prestressed brickwork7" 1,13,64)  These theories are 

different from one another basically in the shape assumed for the stress block and 

consequently, the characteristics associated with these blocks. Once these 
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characteristics are expressed in general terms, the equations pertaining to ultimate 

strength predictions are derived using the principles of mechanics. The two relevant 

characteristics of this block are the ratios A. and A. 2 , as defined in section 3.3.3.3. 

4.6.3 Comparative Analysis of Theoretical and Experimental Results 

In this section, the experimental results have been compared with the theoretical 

predictions given by BS 5628 (2),  those given by the stress block factors A. 1 and A. 2  

obtained in this work as well as those given by the direct method 7" 
1,13)  These results 

are given in Table 4.6.1. The experimental results were also analysed on the basis of 

experimentally-derived compression block properties. The measurements, obtained 

just prior to the ultimate failure of the beams in shear, were examined and used to 

calculate the internal moment of resistance, at that level of loading, in the maximum 

bending moment region of these beams. These results are compared with the 

measured applied bending moment (that is, just prior to ultimate failure) and this 

comparative analysis is given in Table 4.6.2. 

Table 4.6.1 : Comparison of Experimental and Failure Moment Based on 

BS5628 (2),  A. 1  and A. 2  obtained in this work and also by the direct method (7,11,13) 
 

Beam 

No 

Experimental 

Moment 

(Average) (kNm) 

Failure Moment 

based on BS5628 2  

(kNm) 

Failure Moment 

based on A. 1  and A. 2  

derived in this work. 

Failure Moment 

based on Direct 

Method 

BI 46.5 80.7 66.5 653 

B2 46.5 80.7 66.5 65.3 

B3 40.7 80.7 66.5 65.3 

B4 40.7 80.7 66.5 65.3 

B5 35 38 36 32 

B6 35 38 36 32 

B7 40.3 77 66.5 65.7 

B8 40.3 77 66.5 65.7 
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Table 4.6.2 : Comparison of Derived and Experimental Moment prior to 

Ultimate Failure 

Beam No 

MOR (kNm) (Based on 

strain measurements in 

brickwork and steel) 

Experimental BM 

(kNm) 

Ratio 

{MOR}/{BM} 

B  36.52 40.6 0.90 

B2 37.26 41.46 0.88 

B3 34.50 37.44 0.91 

B4 32.07 35.63 0.88 

B5 32.90 35.63 0.88 

B6 17.08 16.38 1.05 

B7 38.39 34.67 1.11 

B8 41.42 36.98 1.10 

Results given in Table 4.6.1 indicate that for all the beams, the flexural capacity was 

not reached. The code of practice gives a much higher values for the flexural failure 

than is obtained either by the direct method or by the stress block method. It also 

shows that the flexure capacity of beams was not reached due to premature shear 

failure. Even for beam B5 where flexural failure seems to have coincided with shear 

failure, the experimental results indicate that shear was still the primary reason for 

failure and it only coincided with the onset of yielding of the steel reinforcement. This 

is so because the steel had not shown any serious sign of yielding, often associated 

with accelerating steel strains, when ultimate failure in shear occurred. When these 

experimental results are then compared with predictions based on the properties of 

brickwork and steel used for the beams, flexural failure was not indicated. Results 

given for the other beams with high % steel also show that there is moment 

degradation due to shear failure. The analysis confirms that the failure of these beams 

was due to shear and not due to flexure except for the direct method which predicts 

flexural failure for beams with low % steel. However, experimental evidence had 

shown that shear failure had occurred prior to flexural failure in these beams. 
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Also, when the internal moment of resistance was calculated from the experimental 

measurements of both brickwork compressive strains and the steel strains and the 

results were compared with the applied moment at the instant just prior to failure, the 

observed results were reasonable as given in Table 4.6.2. 

4.7 CONCLUSIONS 

From the work done, the following conclusions can be drawn: 

For pocket-type reinforced brickwork, shear strength is strongly influenced by the 

aid ratio. Shear strength of these beams decreases with increasing shear span/effective 

depth ratio. 

From the limited tests, it appears that the shear strength of pocket-reinforced 

brickwork beams is not significantly affected by the % steel. 

The plastic method originally developed for predicting shear strength of concrete 

beams can be used successfully for predicting the shear strength of pocket-type 

reinforced masonry beams provided the effectiveness factor is obtained from the 

expression developed in this work. 

Both the direct method and the method based on Branson's 37  procedure gave 

good prediction of deflections of pocket-reinforced beams tested in this work. The 

method based on the direct method gave a closer prediction than Branson's method, in 

most cases especially at higher bending moments. 

The test results show that the partial safety factor for material on shear stresses for 

the pocket-type reinforced brickwork beams appears to be lower than 2, hence the 

code provision is not very safe. The code provisions for shear strength may therefore 

be revised to reflect this. 
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CHAPTER 5 

BEHAVIOUR OF REINFORCED BRICKWORK POCKET-TYPE SLABS 

5.1 INTRODUCTION 

The problem of deciding on the maximum spacing at which to place the pocket stems, 

while ensuring that flanged-action takes place from cracking to the ultimate point is 

yet to be resolved. This is further compounded by paucity of experimental data on the 

actual flanged-action behaviour of these walls. This paucity of data has led to 

conservative code on this matter, notably, the restrictions placed on the 

maximum flange width of the section, which the code assumes for the behaviour of 

reinforced brickwork pocket-type walls. This present investigation has therefore been 

carried out to attempt to determine the existence or otherwise of the structural action, 

its possible extent and characteristics. To this end, six slab specimens were tested, 

keeping all variables constant except the pocket stem spacings. 

This chapter reports on the experimental and theoretical investigation into the 

structural behaviour of reinforced brickwork pocket-type slabs subjected to lateral 

loading and in which the spacings of the pockets were varied. 

In the experimental work, the effect of pocket stem spacing as a variable on the 

structural behaviour of these walls was investigated. The deflection and ultimate 

strength behaviour were investigated and used to characterize wall behaviour. The 

effect of varying the pocket spacing on the ultimate load carrying capacity is also 

studied in a theoretical analysis. The experimental results were compared with the 

provisions of the code (2) 

The concept of effective width of the walls is discussed based on the experimental 

results and against the backdrop of some theoretical considerations. Furthermore, a 
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method of calculating the effective widths associated with the different spacings is 

presented. 

A brief description of the design procedure (2) for pocket-reinforced wall sections is 

included. Also, the details of the experimental set-up for this investigation are 

described. Finally, on the basis of the experimental results obtained and the theoretical 

analysis carried out, suggestions for further improvement of the design of these walls 

are given. 

5.1.1 Programme of test 

For all the six slab specimens tested, the span was maintained constant at 1200mm. 

The pocket stem spacing of the specimens was varied between 0.5 m and 1.8 m, that 

is, 1.0 in and 3.6 m respectively in a corresponding wall that uses full-sized brick 

units. The specimens were, therefore, simply increased in length to accommodate the 

respective spacings between the reinforced stems. 

5.2 DESIGN OF REINFORCED BRICKWORK POCKET-TYPE WALLS BY 

THE CODE PROVISIONS 

The British Standard which gives guidance on the design of brickwork pocket-type 

walls is BS5628:Part 2 (1995)(2). Prior to the formulation and adoption of this code of 

practice here in the UK, publications by the BCRA (British Ceramic Research 

Association) and the BDA (Brick Development Association) were used mainly as 

reference sources for the design of these walls. These publications basically 

considered pocket walls as homogeneous cantilevers (since most of these walls are 

cantilever structures, anchored to a solid reinforced concrete base) for pocket spacings 

not exceeding 1 m. For pocket spacings greater than 1 m, these walls were designed as 

a series of "T"-sections with reduced flanges. In these latter cases, it was considered 

necessary to check the capacity of the brickwork to span between the reinforced 

pockets. Previously, design principles incorporating both elastic and load factor 

methods have been employed for the design of these walls. 
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The current code of practice adopts the limit state philosophy of design. The code 

treats pocket-walls as flanged members regardless of pocket spacings. This is a 

similar approach used in the design of hollow concrete blockwork walls having 

regularly spaced protruding ribs. Perhaps in order to achieve consistency with 

methods employed for reinforced concrete members, the design formulae have been 

given in a similar manner for pocket-reinforced walls. The assumption made is that 

the ultimate limit state, rather than the serviceability limit state, would be critical. The 

partial safety factors associated with the ultimate limit state are therefore employed 

for design purposes. To satisfy the serviceability criteria of cracking and deflection for 

instance, some recommendations are offered which ensures that certain boundary 

values, based on the wall geometry, are not exceeded. 

In the actual design of these walls, the first task to be performed is the accurate 

assessment of the load which is most likely to be sustained throughout the wall's 

useful life. As most of these walls are made to retain earth materials, procedures 

employed to calculate load in earth retaining structures are used to consider different 

possible loadings and their combinations. For example, considerations are given to 

both active and passive earth pressures, calculation of surcharges and implications of 

possible land-use changes which may subsequently affect load distribution on these 

walls. Details of these issues are not the subject of this thesis but it is sufficient to 

state that an accurate determination of the most critical case of loading on the wall has 

been made. Following this, a preliminary sizing of the element based on the support 

conditions of the wall is carried out and subsequently, the calculations are based on 

forces acting on a unit (1 m) width of the wall and conducted such that all the 

capacities are calculated on this basis. 

The moment of resistance used in designing the walls is computed on the basis of 

either of the following two equations: 

Md =L'_—bt(d_O.5t1) 	 (5.2.1) 

2' mm 
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fy  
Md  =---A(d—O.5t) 

Ynis  

where 

Md = design moment of resistance 

A = area of reinforcement 

b = effective width of the flange 

d = effective depth of the reinforcement. 

ff  = characteristic compressive strength of reinforced masonry in bending 

= characteristic tensile strength of reinforcement. 

t = flange thickness 

(5.2.2) 

y 	partial safety factor for compressive strength of masonry 

y ,,,, = partial safety factor for strength of steel 

tf  is taken as the lesser of ç and 0.5d, where t, is the thickness of the unit on the 

compressive side of the pocket. 

b is taken as the lesser of the pocket spacing, the breadth of the pocket plus 12t, or 

one-third the wall height. 

The maximum flange width allowable by the code of practice 2  is the lesser of 

width of the pocket plus 12 times the thickness of the flange, 

the spacing of the pockets, or 

one-third the height of the wall. 

While equation 521 computes the moment of resistance based on the brickwork, 

equation 5.2.2. computes the moment of resistance based on the steel. In design 

parlance, a reinforced pocket wall is said to be under-reinforced when the reinforcing 

steel moment of resistance is less than the brickwork moment of resistance. Such 

walls fail by yielding of the steel reinforcement inside the pockets. On the other hand, 

when the reinforcing steel moment of resistance exceeds the brickwork moment of 

resistance, these walls are termed over-reinforced. Over-reinforced walls fail by 

crushing of the brickwork rather than by yielding of the steel reinforcements. 
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5.2.1 Design for Shear 

The overall shear resistance is provided by the whole of the effective depth of the 

section, except in cases where the brickwork thickness between the pockets is lower. 

Then, in such instances, the actual thickness of the brickwork in between the pockets 

is used. At the calculated design load, the member is sized such that the average shear 

stress does not exceed where f, is the characteristic shear strength and y , is 
r  

the partial safety factor for the shear strength of the brickwork. The procedure just 

described could be broken into four steps as follows: 

Obtain the percentage steel ratio associated with the wall, 

Deduce the characteristic shear strength associated with this percentage steel ratio 

from the relevant equation in the code, 

Calculate the characteristic shear load based on the knowledge obtained from step 

(b) above, 

Calculate the design shear load by applying the partial safety factor for shear. 

This load is the design shear resistance of the wall section which must not be 

exceeded in service. 

5.3 EXPERIMENTAL DETAILS 

Table 5.3.1 gives details of these reinforced walls made of 4--scale bricks, each of 

which was 1 brick (115mm) thick and spanned 1.2 m . The overall length is 

determined by the spacing which varied between 0.5 m and 1.8 m for the 4- -scale 

brickwork models. The objective is to investigate structural behaviour when the 

spacings between the reinforced pockets are varied while other wall parameters 

remain constant. 
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Table 5.3.1 : Details of Reinforced Wall Parameters (RW1-RW6) 

Wall Type Width B Span L t (mm) Pocket Steel bar effective % Steel Yield Stress 
(mm) (mm) Spacing S Type per depth d 2 (N/mm) 

(mm) Pocket (mm)  Ref 13) 
 

RW1&RW2 800 1200 115 540 iT-1 90 0.2 500 

RW3&RW4 1280 1200 115 1000 1T-12 90 0.2 470 

RW5&RW6 2030 1200 115 1750 (1T-12) plus 90 0.2 470& 500 
 (IT-10) I 

where 

L = Span of wall (or Height of wall) 

B = Overall width of wall 

t = thickness of wall 

S = Spacing of reinforced concrete pockets 

RW1 - RW6 are the pocket-reinforced walls (Nos 1 to 6) 

All the walls were built on a reuseable steel channel base to prepare the pockets for the subsequent reinforcing and grouting operations. 



- 

Ii 

Fig 5.1 : Grouted reinforced brickwork pocket-type wall built on a reuseable steel 

channel base (RW 1) 

After the construction and curing was completed. shuttering was clamped to the rear 

face of the wall and grout poured into the pockets and carefully compacted using a 

thin steel rod which is easily accommodated by the small hole provided by the pocket 

(Note All these walls were built with rapid-hardening portland cement in order to 

speed up the hardening process and strictly implement the testing programme). The 

same concrete and mortar mix proportions used for the full-scale beam shear tests 

were used for the construction of these walls. After the grouting operation was 

completed, these walls were covered with polythene sheets and curing was allowed 
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for at least 14 days before final testing was done. Details of part of the construction 

processes and subsequent testing of these walls are shown in Figs 5.2-5.7. 

ft 

Fig 5.2 : Long wall ready for grouting 

Fig 5.3 Typical Test assembly for reinforced walls 
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Fig 5.4 Transverse Loading applied to RW1 
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ILL 

3 

Fig 5.5 RWI after test (showing pocket side) 

Fig 5.6 : RW2 undergoing testing 
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Fig 5.7 Side Elevation of RWI showing demec points in the maximum bending 

moment region 

Loading Arrangement 

Each of the walls was loaded laterally by a combination of loading jacks applied at the 

compression face. A system of hydraulic jacks is employed with one of the jacks 

acting as the control jack to record load measurements via a load-cell. This load-cell 

has been previously calibrated and was connected to a digital voltmeter. The load 

itself was applied by a "Losenhausen" machine capable of applying constant and 

sustained loading for long periods of time. The load combination applied to each wall 

was such that a distinct region of the slab was created where the flexural effects 

became critical and where all the measurements required in both the steel and the 

brickwork were taken. The strains in the steel reinforcement were measured using 

electrical strain gauges of 5 mm gauge length. 

The slab sections were tested in a specially-designed testing rig incorporating both 

loading and reaction frames which were independently bolted to a strong floor. These 

two frames were made adjustable so that extensions could be made for testing the 

longer specimens. The testing rig assembly was completed by an independent 

deflection-measurement frame used to monitor the deflection of the specimens 

throughout the loading history until very close to the ultimate point. 

The slabs were supported on a frame fixed to a strong floor. The transverse load was 

applied by hydraulic jacks connected to a reaction frame. The reaction frame is made 

up of a combination of parallel steel channel sections that anchor independently to the 
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strong floor. The deflection measurements in the central regions of these slabs were 

carried out using the third independent frame; made sufficiently rigid, to ensure that 

accurate deflections were obtained to an accuracy of 0.002 mm. In other words, all the 

three frames constituting the rig assembly acted independently of each other 

throughout the testing process. 

Incremental loading was applied to the slabs and after each increment, deflection 

measurements were taken from the dial gauges, while the steel strains were obtained 

with a "Sangamo" strain-gauge measuring meter. The brickwork strains in the two 

orthogonal directions of loading were then measured using the mechanical "demec" 

gauges capable of taking measurements to the order of 10 ,u. After all the 

measurements have been taken for a particular loading increment, the slab specimen 

was observed for any sign of cracking and the location noted. Thereafter, another 

round of measurements were taken just before the next loading increment was applied 

so as to monitor any creep effects. When the loading stage was sufficiently advanced 

and close to the ultimate, recording of the brickwork strain measurements was stopped 

for reasons of safety. In other instances, when either the deflection or steel strain 

measurements were judged to be sufficiently large, the testing was also stopped for 

safety reasons. The deflection measurements were taken by a combination of dial 

gauges capable of taking readings to either 0.01 mm or 0.002 mm accuracy. 

The strain readings in the elevation sections were taken by the 200 mm gauge length 

strain gauges and were dispersed as shown in Fig 5.7 & Fig 5.8. At the top of the 

slabs, the strain gauge readings were taken, as shown in Fig 5.9 & Fig 5.10, such that 

more points were concentrated around the reinforced stems than there were at 

distances far removed from the stems. up to the midsections of the slabs. The strain 

gauge length used was 200 mm in the main direction. In a perpendicular direction to 

this, the strain measurements were taken by a 300 mm-gauge length strain gauge. 

These strain gauges are more sensitive since the order of strains measured in this 

perpendicular direction are small in comparison to the main direction of bending. 

These slabs were all divided up into two halves, respectively named sides A and B. 
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because of the symmetrical arrangement of loading employed. The same points used 

for the measurement of strains on side A were used on side B. 

Fig 5.8 : Showing the 'demec' points for measuring the strain on slab's side 
elevation 
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Fig 5.9 : Demec point locations on top surface of slab 
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Fig 5.10 : Strain gauge measuring pin points on the top surface of slab 

The slabs were all simply supported with a roller and a pinned support provided at 

each end of the span respectively. This was done so as to have a statically-determinate 

structure and simplify the experimental setup. 
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5.4 RESULTS OF THE TEST : The results are shown in Figs 5.11-5.58. 

5.4.1 Discussion of the Experimental Results 

As the loading and hence the bending moment increased, the steel strains also 

increased linearly, until the cracking point was reached. Once the specimen cracked, a 

series of changes occured both in the steel strains and the top brickwork strains 

measured. The linear, uniform variation of these strains was suddenly changed and 

various characteristics emerged regarding the structural behaviour of these walls. This 

was observed to be also closely dependent on the spacing of the reinforced stems. For 

this reason therefore, and because it is considered reasonable to group together similar 

slab specimens, the following presentation of the results is given. 

5.4.1.1 Walls 1 and 2 (RW1 and RW2) 

For RW-1 and RW-2 having the lowest spacings, steel strains grew very slowly at the 

beginning up to the cracking point, at which stage a sudden jump was recorded. 

Thereafter, the strain progressed steadily until the yield point was reached. At this 

stage, a sudden acceleration of the strains was experienced which progressed until the 

ultimate point was finally reached. The test was stopped when the deflection was 

growing rapidly towards collapse. For both of these slabs, the steel had yielded 

extensively as shown in Figs. 5.11 and 5.12. 

In the case of RW1, the steel in each pocket behaved in approximately the same way 

and they both yielded at about the same time, approaching the ultimate failure strain 

in the same manner. With RW2, the two steel bars behaved in approximately the same 

way at the beginning up to the cracking point. Thereafter, one of them lagged behind 

in growth up to the yield point after which it started to drop off. The straining of the 

other steel bar continued, accelerating rapidly up to a very high value of about 

20000 1us after which it started to fall off as well. This very high strain recorded by 

the second steel bar indicated that loss of stiffness in a portion of the plate may be 

accompanied by a stress redistribution. 
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For both of these walls, the compressive strains were approaching the ultimate strain 

associated with failure, in direct compression, of the brickwork. However, the primary 

mode of failure of these two walls was due to yielding of the steel reinforcement in 

the tension zone. Although some evidence of brickwork crushing was seen in the 

pocket regions of these beams, these were only a secondary effect. The distribution of 

the compressive strains in the topmost fibre of the brickwork for both of these slabs is 

nearly uniform, although the strains around the pocket regions of these beams are 

marginally higher than at distances far removed from the pocket regions (Figs. 5.13-

5.18). 
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Fig 5.18: Compressive strain in brickwork across span (RW2) - sides A & B 

This distribution is somewhat analogous to that which exists in a simply supported 

beam of rectangular cross-section of normal breadth as predicted by the simple 

bending formula. For these two walls, the y-direction strains,( ,), are practically non- 

existent as no change was measured by the 300-mm gauge-length strain gauge despite 

its more acute sensitivity. If the distribution of c strains are considered, one could 

observe here that practically the whole flange is active for this level of spacing of the 

reinforced stems. 

The distribution of strains across the depth of these slabs (Figs. 5.19-5.22) show linear 

variations throughout the various stages of loading. 
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Fig 5.20: Variation of brickwork strains through the depth (RW1) - side B 
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These recorded linear distributions give credence to the assumption, made 

subsequently in the analysis of the structural behaviour of these slabs, that "plane 

cross sections remained plane prior to and after bending of the slabs specimens". The 

central deflection behaviour of these walls were also similar (Fig 5.23 and Fig 5.24). 

These deflections increased slowly from the beginning up to the cracking point. After 

this point, the rate of growth increased and as the failure point was approached, the 

rate of increase became much more rapid and was accompanied with excessive 

rotations at the supports. The structural behaviour of these walls could also be inferred 

from these deflection measurements. 
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Fig 5.23 The relationship between bending moment and the central deflection (RW1) 
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Fig 5.24 : The relationship between bending moment and the central deflection (RW2) 

5.4.1.2 Walls 3 and 4 (RW3 and RW4) 

When taking deflection measurements for these two walls as done for RW1 and RW2, 

two additional points located at 250 mm from both supports, were used for recording 

measurements so as to be able to get a more accurate profile of deflection along the 

central parts of the plate. The deflection behaviour of these walls (Fig 5.25 and Fig 

5.26) was similar in character to those of RW1 and RW2 : The deflection was very 

small at the beginning and increased linearly up to the cracking point. After cracking, 

these slabs deflected more rapidly with corresponding bending moments increase. 

This behaviour is more apparent in wall RW4 (Fig 5.26). 
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Fig 5.25 : The relationship between bending moment and the central deflection (RW3) 

These two walls behaved in practically the same manner. The deflection profiles at the 

two points located, respectively at 250 mm, from the roller and pinned supports were 

similar for the same level of applied bending moment (Figs. 5.27 and 5.28). 

Fig 5.26 : The relationship between bending moment and the central deflection (RW4) 
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Fig 5.28 : The relationship between bending moment and the deflection along the span 

(RW4) 
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The test on RW3 was stopped much earlier than that of RW4 when it was felt that the 

continued taking of measurements could prove unsafe because of a strange "snapping" 

sound that was produced, much similar to those often obtained at the verge of collapse 

in brickwork prism specimens loaded in axial compression. It was therefore decided 

that testing should be stopped at that stage particularly because the steel had already 

yielded (Fig 5.29), although not severely as would normally be associated with 

accelerating steel strains. 

The deflection of the slab at that stage was also beginning to increase more rapidly. 

However, the top compressive strains in brickwork at this stage were below those 

associated with compressive failure of the brickwork used. Nonetheless, subsequent 

loading to failure of this specimen was done without taking any manual strain 

measurements. This testing revealed that much of the reserve strength was available 

even after the steel had yielded severely without breaking and, some evidence of 

brickwork crushing was seen at the ultimate point. Failure was due to steel yielding. 

This experience was directly translated to the testing of RW4 which is similar to RW3 

in every respect. For RW3, the top brickwork compressive strain s was found to be 

practically uniform along the breadth before cracking. Soon after cracking, this 

distribution changed such that evidently more of these strains were taken up by the 

pocket regions of the plate relative to the other parts (Figs 5.3 0-32). 
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A similar trend was observed for RW4 (Figs 5.33-35). Another feature of this 

distribution is its tendency to become more acute with increasing applied bending 

moment. 
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The behaviour of RW4 in terms of steel strain distribution is different from that of 

RW3. In slab RW4, at a bending moment of about 10 kNm, the steel strains suddenly 

began to drop off despite not having yet reached the yield point (Fig 5.36). It was 

observed that the growth of steel strains was especially slow after the point of 

cracking, compared to RW3. This is also not explainable by the behaviour of the 

neutral-axis depth which even tended to migrate at a faster rate towards the top of the 

brickwork plate in RW4 compared to RW3, a situation which should have caused 

higher steel strains in RW4 rather than RW3, (Figs. 5.3740). 
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However, the compressive strain in brickwork continued to grow, and at the failure 

point, the order of compressive strains measured was higher than those associated 

with the ultimate strains in the brickwork, (Figs 5.33-35). The distribution of 

brickwork strain across the depth for these two walls show that (Figs. 5.37-5.40), at all 

levels of loading, a linear distribution existed. 

The top brickwork strain distribution in the orthogonal y-direction, e,,, even though 

minor compared to the x-direction and less than 15% at all stages of loading, shows 

that the distribution is relatively unpredictable as well. Part of the reason for this 

apparent unpredictable behaviour of e y  strains is that these strains were so small that 

the sensitivity of the gauge could not cope with them. A typical distribution is shown 

in Fig 5.41. 
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5.4.1.3 Walls 5 and 6 (RW5 and RW6) 

The deflection behaviour of these walls is similar in many respects. A close look at 

the distribution of the central point deflections at different levels of applied bending 

moment shows these similarities (Figs. 5.42, 5.43, 5.44 and 5.45). 
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Fig 5.45 : The relationship between bending moment and the central deflection (RW6) 
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The characteristics of this deflection behaviour before and after cracking remained 

largely the same as in the preceding four walls. Deflections increased very slowly and 

linearly at first before the cracking point was reached. Soon after cracking, the rate of 

increase became faster and then, as the failure point is approached, very rapid. The 

behaviour of the steel strains in these two walls was also similar except that at the 

ultimate point, RW5 had shown serious signs of yielding whereas at failure, RW6 was 

just at the threshold of yielding (Fig 5.46 and 5.47). 
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The distribution of top brickwork compressive strains, s, in these two walls were 

also similar, showing marked uniformity across the breadth prior to cracking. Once 

the cracking point was reached, a non-uniform distribution resulted with higher strains 

taken up by regions around the pockets and this reduced gradually at distances far 

removed from the pockets (Figs 5.48-5.53). Close to the failure point, the maximum 

strains in RW5 were in the same order of magnitude as those associated with the 

ultimate crushing strain for the brickwork and some evidence of crushing of the 

brickwork on top of the pockets could be seen, although the primary failure of this 

slab was due to steel yielding. RW6 failed due to local brickwork crushing in the 

compression zone on top of one of its two pockets. 
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The magnitude of transverse strains &) for the longest walls, were small compared to 

the orthogonal direction and the instrument was not sensitive enough to measure 

them. The typical distribution is shown in Fig 5.54. 
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The slab RW6 failed, rather suddenly, at a pocket location (pocket B). Prior to failure, 

some noise was generated in this region soon after the top compressive e strain 

measurements were taken. The taking of further readings was therefore discontinued 

for safety reasons. The maximum strains measured at this stage were already in the 

neighbourhood of those associated with the compressive failure of the brickwork used 

(Fig 5.53). The primary mode of failure was compression zone failure at this pocket 

location, a local failure which was probably due to a local strength reduction in the 

brickwork around this second pocket compared to other parts of the slab. The steel 

was just at the verge of yielding when this ultimate failure occurred. Flanged-member 

behaviour was also indicated for this wall since the panel of brickwork between the 

pockets acted effectively with the pockets to resist the applied load. The brickwork 

strain distribution across the depth for these two walls showed a linear distribution 

(Figs 5.55-58) throughout the various stages of loading up to the failure point. 
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5.4.2 Estimation of Effective Width of the flange based on Experimental 

Measurements 

The effective width associated with the different cases of pocket spacing was 

calculated from the analysis of all the experimental strain measurements prior to 

failure. It is important in the design of these walls to ensure that steel yielding, within 

the pockets, remains critical and that no failure of the brickwork panels between 

pockets occurs. It is also important to know the effective width of the flange that is 

associated with the ultimate conditions pertaining to steel yielding as this would 

ensure that excessive spacings of the pockets are not chosen in design. From the strain 

measurements obtained across the pockets prior to failure, the stresses corresponding 

to these strains were derived. The average stress-strain curve obtained for the 

brickwork, given in chapter 3, was used to derive these stress-distributions across the 

pockets just prior to failure. A curve-fitting procedure was thereafter used to 

determine the stress distribution in all the cases of pocket spacing. Using the stress 

distribution, the effective width of the flange was calculated from a knowledge of the 

area under the stress distribution curve and the enclosing rectangle. The summary of 

the results obtained are given Table 5.4.1. 

Table 5.4.1 : Effective Width of Flange 

(b 
Effective width ratio, 	, in (%) 

Wall Spacing, 	S 

(mm) 

Side A (%) Side B (%) Average 

(%) 

Overall 

average (%) 

RW 1 540 97.5 97.35 97.4 96.75 

RW 2 540 96 96.1 96.1 96.75 

RW3 1000 71 79 75 83.65 

RW4 1000 90.55 94 92.3 83.65 

RW5 1750 81 75 78 73 

RW 6 1750 69.2 66.65 68 73 
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In Table 5.4. 1, the calculated effective widths for the different cases have been 

normalized against the actual width for every case of pocket stem spacing. The ratio 

(b '1 
obtained is defined as the effective width ratio, t 	I

) 
 . It is noted in the calculations 

b 

that there exists some variation between the effective width for the two sides in the 

different cases of pocket spacings investigated and also, within the cases of pocket 

spacings itself. The variation between the two sides A and B is within a range of 10 % 

and is due to imperfection in the symmetrical arrangements of loading and supports. 

The variation observed between the individual cases, for the various pocket spacings, 

is due to the proximity of measurements to the ultimate; from which the stress 

distribution was derived. Flanged-member action is much more acute as the structural 

member approaches its ultimate; this is demonstrated by lower effective width ratio 

for RW3 compared to RW4 and also for RW6 compared to RW5. This ratio is highest 

for the smallest case of pocket spacing and vice versa, varying respectively from 97.4 

% to 68 %. The overall average of this ratio varies from 96.75 % to 73 % for cases 

with spacings of 540 mm and 1750 mm respectively. These results indicate that 

flanged-member action occurred for all the cases investigated. 

5.4.3 A Method of Solution for Investigating Flanged-Member Behaviour 

5.4.3.1 Theory of Wide Beam Flanges 

In the elementary theory of beam bending, equation 5.4.3-(1), it is assumed that the 

bending stresses are proportional to the distance from the neutral axis. This means that 

stresses are not a function of the width of the flange.

MY  0= - 	 5.4.3-(1) 

where M = applied bending moment 

I = bd3/l 2 (second moment of area of the cross-section of the beam) 

and b = flange width. 

y = distance from the neutral axis to the topmost fibre of the cross-section. 
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However, when this width becomes very large, it is known that parts of the flanges far 

removed from the web do not take up their full share in resisting the applied bending 

moment and this makes the beam much weaker than would be predicted by the 

elementary theory of beam bending. In the governing theory of the "effective width" 

of wide beam flanges, in which the principle of minimum energy (65)  is used, it is 

assumed that the actual width of the beam flanges are replaceable by a certain reduced 

width, called the "effective width". This effective width is such that when the 

elementary theory of beam bending is applied to such a transformed beam cross 

section, one would obtain the correct value of maximum bending stress. 

In providing such a theoretical basis for the determination of this effective width, 

certain simplifying assumptions about the beam were made : (a) That it is infinitely 

long and continuous on equidistant supports and; (b) it assumed that the loading 

arrangement is symmetrical with respect to the middle of the spans. The flange width 

is assumed to be infinitely large and its thickness, h, very small compared to the depth 

of the beam. On the basis of these assumptions, the flange (being assumed so thin 

such that it approximates a slice) is considered to experience negligible bending as a 

thin plate. Furthermore, it is assumed that during the bending of the beam, the forces 

are transmitted to the flange, by reasons of continuity and compatibility, in its middle 

plane so that the stress distribution in the flange presents the two-dimensional problem 

of plane stress. Using the boundary conditions of this problem and adopting a stress 

function in the form of a series, the condition is then established which makes the total 

strain energy of both the flange and the web attain a minimum value. This particular 

condition is associated with the true stress distribution being sought. The full 

derivation of this condition as well as the associated expression for the effective 

width, obtained in closed form, has already been documented 65 . 

Using the premises given above, the following expressions were obtained for the 

effective width: When the bending moment diagram is in the form of a cosine curve, 

equation 5.4.3-(2) is obtained and when the bending moment diagram is in the form of 

combinations of straight lines resulting from concentrated loads being applied to the 

span, equation 5.4.3-(3) is obtained. 
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7r(3+2 v _ v2 ) 
5.4.3-(2). 

2% = 0.85 	
41 	

5.4.3-(3). 
i(3+2v— 02)J 

where 2% = effective width. 

v = Poisson's ratio 

21 = span. 

This theory shows that using a concentrated load, placed at the middle of the span, 

results in a reduced effective width compared with when the resulting moment 

diagram from the applied load is a cosine curve. 

Note that some of the assumptions used to derive these expressions for the effective 

width are strictly not applicable to the slab specimens tested by the author. For 

example, the slabs tested by the author are simply supported and are not continuous. 

In deriving these expressions, a continuous beam with geometric dimensions 

distinctly larger (in thickness terms) than the associated flange is assumed. In this 

work, the beam is simply supported and the thickness is not distinctly different from 

the corresponding flange thickness. This distinction, should naturally have some 

bearing on the applicability of these expressions to brickwork slabs, as a result. 

Nonetheless, it is suggested that the relatively thick beam section compared to the thin 

flange represents a similar stiffness ratio. With the uniform slab section tested in this 

work, in which one part of the plate is stiffer (the reinforced stem) than the remaining 

part (unreinforced portion). 

5.5 ULTIMATE STRENGTH ANALYSIS OF THE BRICKWORK SLABS 

5.5.1 Theoretical Analysis : The yield line theory by Johansen (67)  has been used for 

the ultimate load analysis of brickwork pocket-type slab. 

5.5.2UltimateMoment : As the Yield-Line method gives upper bound solution, 

several failure mechanisms were tried and the one which gives the lowest failure load 

is shown in Fig 5.5 -(1). 
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Fig 5.5-(l) : Failure mechanism assumed in ultimate load analysis of slab (RW1-2) 

Consider the idealised yield line shown in Fig 5.5-(1) and give a virtual deflection of 

unity to the line EF. 

External Work Done = 3Pxl+3Px+[wxt x f +wx 2 x -].(S+2k).t 

	

= 45P+jL.(S+2k).t 	 5.5-(1) 

where w = 24kN/m3  (experimental value). 

Substituting the values of L, S. t, k and w gives 

	

= 45p24x103  1 200 	115 
109 	2 

= 4.5P+ 1324.8 

Internal work done on the yield line EF = m5 . (0 1  + 2)  + mm . B.(0 1  + 2 ) --- 5.5-(2) 

= 2(A.f.z).[ 	
,] 

+mm.B.[+ 2] 

= 2 x 78.5x 500x87.61x 1 400 +]+ o.75x1152x800  x [_-i_+_i_] 
6 	400 800 
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5.5-(3) 

E 
£ 	-- 
0 
0 
ri 
S 

II f x  

= 25790.2 + 4959.38 = 30749.58 Nmm. 

External work done must be equal to internal work done, hence 

4.5P + 1324.8 = 30749.58 	 ---- 

Therefore, 	P = 6.54kN ; Total load = 6P = 39.24kN. 

Slab RW 3-6: 

L/3  

--- ------------- W 

--------------- 

----------- 4 ---------------- 

kB 

MA 

Fig 5.5-(2) : Failure mechanism assumed in ultimate load analysis of slab (RW3-6) 

Similarly, from Fig 5.5-(2), for B = (S+2k) = 1280mm, 

External Work Done: 3P + 2119.7 = 226x470x87.61x3 + 0.75x115 2  x1280x3 
800 	 6x800 

Internal work done has been calculated from equation 5.5-(2) 

P = 13.57kN. ; Total load = 4P = 54.28kN. 

Lastly, for B = (S+2k) = 2030mm, 

P = 23.32kN. ; Total load = 4P = 93.29kN. 
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5.5.3 Calculation of Ultimate Shear: The ultimate shear has been calculated from 

the plastic analysis described in section 4.3.4. of chapter 4 of this thesis. The 

effectiveness factor for the slabs has been calculated from the equation: 

	

O.4 1f° 	
(i.e. eqn. 4.3-23) 

- 	0.08 
fm 

A lot of flexural tests have been done previously 59  using the same brick and mortar, 

henceJ has been obtained from those results. The value Offm  obtained in chapter 3 of 

this thesis was used and, together with J, the effectiveness factor for the slabs was 

evaluated to 

= 0.41x 0750.29 = 0.29 
25 008  

5.5-(4) 

The result of these calculations is given in Table 5.5-1. From the Table 5.5-1, it can be 

seen that there is good correlation between the experimental and theoretical result 

predicted by the plastic theory. 

5.5.4 Deflection of pocket-reinforced slabs : The experimental deflection 

measurements have also been compared with theoretical predictions based on the 

direct method as mentioned briefly in the section 4.3.5.4 of chapter 4 and these results 

are shown in Figs 5.5413' ) to 5.545). it is observed that the deflections are reasonably 

predicted by this method. The theory is used to trace deflection up to the ultimate 

point whereas, in the experiments, the dial gauges had to be removed close to the 

ultimate to prevent damage to them. 

5.5.5 Discussion of experimental and theoretical results: 

The yield line analysis (Table 5.5-1) gave a prediction accuracy to within 10 %. The 

strength of the pocket-reinforced slabs could be reasonably estimated by this 

technique. The Direct Method also gave reasonable prediction of the experimental 

results as given in Table 5.5-1. This method accounts for the stress-strain properties of 
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the brickwork and steel and traces the behaviour of the slab throughout its loading 

history. These results show that the strength of the pocket-reinforced slab could 

reasonably be predicted by both the Yield-Line analysis method and the Direct 

Method. If the equations given in the code of practice 2  are used, conservative 

estimates of both the moment and shear capacities of these slabs would result as given 

in Table 5.5-1. In the calculations based on the code equations, all the partial factors 

of safety have been given a value of unity. The details of these calculations are given 

in appendix (III). All these results are given in Table 5.5-1. Of all the methods used in 

analysis, the code provisions proved to be the most conservative. In view of these 

results, the design of these slabs should employ either the yield-line analysis or the 

direct method. The calculation of shear strength by the plastic theory also gave 

reasonable predictions and shows that the plastic method could be used to calculate 

the shear strength of pocket-reinforced slabs. It is evident from the analysis (Table 

5.5-1) that the failure of the slabs will occur due to yielding of steel and not due to 

shear. 
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Table 5.5-1 : Comparison of experimental and theoretical results 

No of 
Slabs 

Ultimate Load (kN) Ultimate Moment (kNm) Shear Strength (kN) 

Expt. 

Average 

Y.L. 
Theory 

Direct 
Method 

Expt. Y.L. 
Theory 

Direct 
Method 

Code 2  Expt. Plastic 
Theory 

Code (2) 
 

1 36.0 36.78 39.24 38.36 7.36 7.85 

37.56  

7.67 6.71 19.72 19.8 15.34 

2 

3 56.8 56.56 54.28 57.21 11.31 10.86 11.44 8.9 30.4 27.45 16.56 

4 56.32 

5 88.56 85.0 93.29 95.52 17.0 18.66 19.10 14.64 45.86 47.18 19.30 

6 81.4 



5.5.6 Ultimate moment based on effective width: 

The ultimate moment was also calculated on the basis of the effective breadth, b eff, 

worked out from experimental strain measurements (section 5.4.2) and the code 

provisions (2).  These results are compared with the other methods in Table 5.5-2. It is 

noted that the methods based on beff  and the code 2  proved to be conservative. The 

strength of the pocket-reinforced slabs are much better predicted by the yield-line and 

the direct methods. In the absence of the test results, it may have been safe to use this 

method. However, in view of the present work it seems better to use either the Yield-

Line analysis or the Direct Method considering the full width of the slabs in predicting 

the ultimate load conditions. 

Table 5.5-2: Comparison of Ultimate Moment Using Different Methods 

Ultimate Moment (kNm) 

Slabs Expt. Y.L. Theory Direct 

Method 

Code"' Based on 

beff 

(Calculated 

from expt) 

RW 1&2 7.36 7.85 7.67 6.71 6.88 

RW 3&4 11.31 10.86 11.44 8.9 9.30 

RW 5&6 17.0 18.66 19.10 14.64 16.0 

In section 5.6, a qualitative comparison of results obtained from investigating flanged-

action behaviour in pocket-reinforced walls is compared with two pocket-type walls 

tested at the BDA. 
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Fig 5.5-(3) : Comparison of experimental and theoretical deflections (S = 540mm) 
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Fig 5.5-(5) : Comparison of experimental and theoretical deflections (S = 2030mm) 

5.6 EVALUATION OF WORK. DONE AT THE BRICK DEVELOPMENT 

ASSOCIATION (BDA) AGAINST THE RESULTS OBTAINED IN THE 

PRESENT INVESTIGATION 

The results obtained from testing these reinforced slabs were compared with those 

obtained from roughly similar walls tested at BDA 48 . Although, the type of supports 

used for the full-scale tests done at BDA is different from those used here, some 

evaluation studies were carried out by considering the conditions at the critical 

sections of the BDA walls with those reported here. As only cantilever walls were 

tested at BDA, the critical section is at the base near the reinforced concrete footings. 

Examination of the brickwork and reinforcement strain profiles as well as the 

deflection behaviour of these walls shows similarities between results and those of the 

present investigation. 

These walls have pocket spacings of 2.4 m and 3.0 m respectively. They both have a 

height of 3.0 m; are of solid rectangular cross-section of thickness 215 mm and were 

loaded similarly, i.e. the loading arrangement was symmetrical with respect to the two 

reinforced pockets. In spite of this symmetry, there was some variation in the 
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maximum compressive strains recorded at the pocket locations. In wall 1 (Wi) having 

2.4 m spacing, the right hand pocket had the higher compressive brickwork strain 

whereas in wall 2 (W2), it was the left-hand pocket that had the higher corresponding 

brickwork strain. This behaviour had no noticeable effect on the development and 

growth of the steel strains in Wl. In this wall, the steel strain profiles in the two 

pockets were similar. However, in W2 with 3 m pocket spacing, the steel strain in the 

left-hand pocket showed a slightly higher growth rate close to the ultimate point. 

In these two walls, both portal and demec gauges were used for brickwork strain 

measurements. The portal gauges generally recorded higher strains compared to the 

demec gauges for the same applied bending moment but, both types of strain gauges 

gave similar indication of flanged-member behaviour. The behaviour of these two 

walls could be divided up into three phases namely ; the early life, the middle life and 

the end life as done for the six walls discussed in the following paragraphs. The same 

phenomenon described and reported in the present investigation also applies to the 

two walls examined at BDA. Flanged behaviour is accentuated close to the ultimate 

point. 

Overall, the behaviour of these walls exhibited three distinct stages of performance, 

namely : (a) Stage 1 : this marks the early stages of loading and this stage is 

characterized by an approximately linear relationship between the applied "load" and 

the corresponding "displacements". It could be considered as the early life of the wall. 

Stage 2 : this marks the immediate period (as well as some loading time away 

from cracking) after the specimen has cracked and could be considered as the middle 

life of the wall. The relationship between the applied loads and displacements of the 

wall is characterized by some measure of nonlinearity mainly due to cracking, and 

Stage 3 This marks the period just prior to the ultimate failure point of the 

specimen. This could be considered as the end life of the wall and is characterized by 

an acute non-linear relationship between the applied "load" and the resulting 

"displacements". It is a very unstable period in the life of the wall and accurately 

determines the ultimate point. 
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5.7 CONCLUSIONS 

The ultimate strength of the pocket-reinforced slabs tested in this work could be 

reasonably predicted by a method based on yield-line analysis as well as by the direct 

method. 

The shear strength of these slabs could also be reasonably predicted by the method 

based on plastic analysis provided the effectiveness factor is obtained from the 

expression developed in this work. 

The deflection of these slabs are also reasonably predicted by the direct method. 

In all the cases of pocket spacings investigated, the failure through steel yielding 

was critical for the pocket-reinforced slabs. These results suggest that the design of 

pocket-type slabs with wide pocket spacings is permissible and would be consistent 

with satisfying the condition that stem failure, rather than panel failure, remain the 

critical design factor. 

Analysis of the experimental results using different theoretical prediction methods 

indicate that the full width of the slabs may be considered in design. The methods 

based on effective flange width, although reasonable, proved to be conservative. The 

full width of these slabs remained active and should be considered in the calculations 

of strength. 
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CHAPTER 6 

SUMMARY AND CONCLUSIONS 

6.1 GENERAL 

This thesis presents the results of a study into the structural behaviour of pocket-

reinforced brickwork sections. In total, 8 full-scale beams and 6 slab specimens made 

of half-scale bricks were tested. In parallel with this work, a series of small specimen 

tests were also undertaken to evaluate all the material properties of both the brickwork 

and steel which are used in the theoretical analysis. The influence of a number of 

important variables affecting both shear strength and flanged-member behaviour of 

these wall sections were thoroughly examined. 

6.2 CONCLUSIONS 

On the basis of this investigation, the following general conclusions are drawn: 

The technique of using results from axially-loaded prisms to determine the stress 

distribution in eccentrically-loaded prisms is shown to be valid for the brickwork 

format used in this work. 

The stress block factors X 1  and A 2  are not significantly different for brickwork 

loaded axially or eccentrically. The axially-loaded brickwork prisms provide a reliable 

description of the compressive properties of the brickwork beams. 

The modulus of elasticity for brickwork is dependent on the direction of stressing 

relative to the bed-joint. For the brickwork used in the present work, it is reasonably 

predicted by existing equations derived for (a) brickwork loaded parallel to the bed-

joint and (b) brickwork in which loading is applied normal and parallel to the bed 

joint. It appears that the code provision for estimating the modulus of elasticity of 

brickwork is not conservative. 

Studies on shear behaviour of pocket walls show that shear strength is strongly 

influenced by aid ratio but is only marginally affected by the percentage of 

longitudinal steel in the pocket stems. 
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Pocket-reinforced sections examined by the author have ultimate shear strength 

values which could be reasonably predicted by the method based on plastic analysis, 

given that the expression for the effectiveness factor derived in this thesis is used. 

Both the direct method and the method based on Branson's procedure gave good 

prediction of deflections of pocket-reinforced beams tested in this work. The method 

based on the direct method gave a closer prediction than Branson's method, in most 

cases especially at higher bending moments. 

A method of prediction of ultimate strength of the pocket-reinforced slabs, based 

on yield-line analysis, is found to be adequate for all the slabs investigated. The use of 

the direct method also gave reasonable prediction of the strength of these pocket-

reinforced slabs. 

Analysis of the experimental results using various theoretical methods revealed 

that the full width of the slabs should be considered in design. The methods based on 

effective width of the flange, although reasonable, proved to be conservative. It 

appears that the full width of pocket-reinforced slabs remained active and should be 

considered in the calculation of strength. 

6.3 SUGGESTIONS FOR FURTHER RESEARCH WORK 

The investigations carried out in this thesis explain the structural behaviour of pocket-

reinforced brickwork slab specimens with respect to pocket stem spacing. It also 

provides a method of analysis which considers the non-linear material stress-strain 

relationship of brickwork and steel as obtained from small specimen tests. A method 

of calculating the effective width of the flange of the pocket beams, based on 

experimental strain measurements, is also formulated. The plastic method originally 

developed for predicting shear strength in concrete beams was adapted for predicting 

shear strength of reinforced brickwork pocket-type beam sections. Before these 

methods are applied universally, it would be worthwhile to conduct further research 

into the areas listed below: 
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The use of lateral loading in the form of concentrated loads was adopted to 

investigate flanged-member behaviour in pocket-type reinforced walls. It is possible 

that the loading arrangement could have some influence on the behaviour of these 

wall sections. It is worthwhile to try applying a uniform loading and examine the 

effects on the effective width for different cases of pocket stem spacing to confirm the 

findings of the present work. 

A pocket-type slab with different pocket spacing and having other boundary 

conditions could be examined to check their influence on the structural behaviour of 

this type of reinforced brickwork sections. 
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APPENDIX (I): RESULTS FOR BRICKWORK CROSS-SECTIONSTHAT FAILED IN SHEAR 
No Effectiveness factor a/h 	ratio Degree of reinforcement h(mm) f.N/mn) fm(N/mm) 

1 0.38 8 0.138 170 2.12 29.75 

2 0.38 8 0.138 170 2.12 29.75 

3 0.53 8 0.138 170 3.3 29.75 

4 0.5 8 0.138 170 3.11 29.75 

5 0.52 8 0.138 170 3.88 29.75 

6 0.61 5.47 0.321 445 8.07 22.34 

7 0.6 5.47 0.321 445 6.59 22.34 

8 0.64 5.47 0.321 445 6.78 22.34 

9 0.59 5.47 0.321 445 8.02 22.34 

10 0.61 5.47 0.321 445 7.9 22.34 

11 0.7 5.47 0.321 445 10.36 22.34 

12 0.66 5.47 0.321 445 10.46 22.34 

13 0.39 4.8 0.518 170 3.18 29.75 
14 0.44 4.8 0.518 170 3.24 29.75 

15 0.42 4.8 0.518 170 2.56 29.75 

16 0.37 4.8 0.518 170 3.01 29.75 

17 0.43 4.8 0.518 170 2.31 29.75 

18 0.68 3.2 0.518 170 2.65 11.17 

19 0.44 5.47 0.241 445 8.57 29.75 

20 0.36 4.8 . 	 0.389 170 1.51 29.75 
21 0.55 4.8 0.389 170 1.8 29.75 

22 0.39 4.8 0.389 170 3.68 29.75 

23 0.33 4.8 0.389 170 3.18 29.75 

24 0.58 5.47 0.391 445 6.96 22.34 

25 0.67 5.47 0.391 445 7.06 22.34 

26 0.67 5.47 0.391 445 7.16 22.34 
27 0.48 5.47 0.391 445 6.02 22.34 

28 0.57 5.47 0.321 445 5.98 22.34 
29 0.59 5.47 0.321 445 7.21 22.34 

30 0.63 5.47 0.321 445 6.06 22.34 
31 0.47 4.8 0.138 170 2.38 29.75 
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32 0.51 4.8 0.138 170 2.77 29.75 

33 0.45 4.8 0.388 170 3.52 29.75 

34 0.45 4.8 0.388 170 1.98 29.75 

35 0.42 4.8 0.388 170 1.45 29.75 

36 0.43 4.8 0.455 170 2.77 25.4 

37 0.41 4.8 0.455 170 2.09 25.4 

38 0.46 4.8 0.455 170 2.06 25.4 

39 0.5 4.8 0.455 170 2.49 25.4 

40 0.39 4.8 0.455 170 2.81 25.4 

41 0.46 4.8 0.455 170 2.15 25.4 

42 0.65 5.47 0.279 445 6.33 16.4 

43 0.76 5.47 0.279 445 5.09 16.4 

44 0.81 4.8 0.279 170 1.7 11.4 

45 0.73 5.47 0.279 445 5.86 16.4 

46 0.57 5.47 0.341 445 6.59 21 

47 0.57 5.47 0.341 445 7.78 21 

48 0.57 5.47 0.341 445 7.69 21 

49 0.67 5.47 0.341 445 6.78 21 

50 0.26 1.6 0.096 170 1.2 33.9 
51 0.52 1.6 0.096 170 1.7 33.9 

52 0.49 1.6 0.096 170 2.01 33.9 
53 0.41 2.4 0.096 170 2.36 33.9 

54 0.23 2.4 0.096 170 2.14 33.9 
55 0.47 2.4 0.096 170 1.83 33.9 

56 0.34 3.2 0.096 170 2.14 33.9 
57 0.25 3.2 0.096 170  2.3 33.9 

58 0.26 3.2 0.096 170 1.53 33.9 

59 0.17 4 0.096 170 1.65 33.9 

60 0.24 4 0.096 170 1.26 33.9 

61 0.14 4 0.096 170 1.77 33.9 

62 0.46 0.806 0.1224 372 1.28 7.94 

63 0.4 1.21 0.1224 372 1.47 7.94 

64 0.39 1.613 0.1224 372 1.37 7.72 

65 0.43 2.016 0.1224 372 1.73 7.72 
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66 0.38 - 	 2.419 0.1224 372 1.19 7.72 

67 0.46 0.806 0.9332 372 2.34 11.03 

68 0.35 1.21 0.9332 372 2.83 11.03 

69 0.33 1.613 0.9332 372 2.58 11.03 

70 0.31 2.016 0.9332 372 3.24 10.98 

71 0.36 2.419 0.9332 372 2.1 10.98 

72 0.41 3.226 0.9332 372 2.86 10.98 

73 0.45 4.032 0.9332 372 3.66 10.98 

74 0.27 1.67 0.466 330 1.01 10,8 

75 0.28 1.67 0.3 330 0.61 10.8 

76 0.28 1.67 0.172 330 0.92 18.2 

77 0.28 1.58 0.071 330 1.01 43.4 

78 0.28 1.63 0.112 330 1.01 43.4 

79 0.42 5.12 0.191 450 5.48 22.44 

80 0.44 5.12 0.191 450 5.48 22.5 

81 0.43 5.12 0.301 450 5.48 24.3 

82 0.44 5.12 0.301 450 5.48 22.54 

83 0.37 3.481 0.349 215 1.7 25.2 
84 0.37 3.481 0.349 215 1.75 25.2 

85 0.29 1.04 0.137 370 3.26 32.7 
86 0.41 1.04 0.137 370 3.28 32.7 

87 0.22 1.04 0.137 370 3.13 32.7 
88 0.31 2.27 0.137 370 3.28 32.7 

89 0.26 2.27 0.137 370 3.39 32.7 
90 0.28 2.27 0.137 370 3.46 32.7 

91 0.33 3.37 0.137 370 3.59 32.7 
92 0.28 3.46 0.137 370 3.49 32.7 

93 0.29 3.46 0.137 370 3.62 32.7 
94 0.31 4.68 0.137 370 3.49 32.7 

95 0.41 4.68 0.137 370 3.44 32.7 

96 0.29 4.68 0.137 370 3.59 32.7 
97 0.33 7.33 0.186 370 6.95 32.56 
98 0.33 7.33 0.186 370 6.92 32.56 
99 0.35 7.33 0.186 370 6.59 32.56 
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100 0.31 2.66 0.186 370 6.1 32.56 
101 0.3 2.66 0.186 370 6.46 32.56 
102 0.29 1.33 0.186 370 6.1 32.56 
103 0.34 1.33 0.186 370 6 32.56 
104 0.32 4.77 0.186 370 6.36 32.56 
105 0.3 4.77 0.186 370 6.38 32.56 
106 0.34 7.33 0.137 370 7.15 32.56 
107 0.4 7.33 0.137 370 7.15 32.56 
108 0.34 7.33 0.137 370 6.51 32.56 
109 0.38 7.176 0.087 370 3.63 33.1 
110 0.33 7.176 0.087 370 3.61 33.1 
111 0.39 3.481 0.349 215 2.9 24.35 
112 0.38 3.481 0.349 215 2.81 24.35 
113 0.44 1.995 0.349 215 6.24 25.3 
114 0.37 1 	1.995 0.349 215 6.12 26.2 
115 0.58 7.182 0.302 370 3.31 5.56 
116 0.67 7.182 1 	0.302 1 	370 1 	3.01 1 	5.56 
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APPENDIX (II) : Table A2 : Calculated factor of safety for beams tested by Tellet 65  based on allowable shear strength results 48  

Beam No aid Shear strength (N/mm 2) characteristic 
shear 

(48) strength 

Allowable 
shear strength 

Factor of Safety (FOS) 

Reported 
results (N/mm 2) 

corrected 
results (N/mm 2) (N/m 2) (N/mm2) 

Based on 
reported results 

Based on 
corrected 

values 
1 5.09 0.46 0.91 0.54 0.27 1.7 3.37 
2 5.00 0.63 1.25 0.63 0.32 1.97 3.91 
3 4.75 0.30 0.59 0.52 0.26 1.15 2.27 
4 3.93 0.43 0.82 0.61 0.31 1.39 2.65 
5 2.00 0.81 1.60 0.80 0.40 2.03 4.00 
6 5.09 0.81 1.59 0.62 0.31 2.61 5.13 
7 5.28 0.90 1.78 0.71 0.36 2.50 4.94 
8 5.18 0.71 1.41 0.61 0.31 2.29 4.55 
9 5.00 0.32 0.64 0.50 0.25 1.28 2.56 
10 5.18 0.34 0.67 0.48 0.24 1.42 2.79 
11 5.28 0.84 1.51 0.71 0.36 2.33 4.19 
12 2.00 0.91 1.82 1.01 0.51 1.78 3.57 
13 2.00 1.33 2.67 1.01 0.51 2.61 5.24 
14 1.89 1.08 2.15 1.01 0.51 2.12 4.22 
15 1.96 1.71 3.47 1.19 0.6 2.85 5.78 
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(1) BENDING MOMENT CAPACITY: 

Case 1: (S - 540 mm) 

Md = .i!bt(d - 05tj) (section 4.2.4.3.1) ---------------------eqn. (A) 
1mm 

With t,-= 0.5d = 45 mm, 

The width of the flange should be taken as the least of 

the width of the pocket or rib plus 12 times the thickness of the flanges; 

the spacing of the pockets or ribs; 

one-third the height of the wall. 

With option (a), b = 55 + (540) = 595 mm; 

With option (b), b = 540 mm; 

With option (c), b = 400 mm, hence option (c) is critical. 

From eqn (A), Md = 21.5 x 400 x 45 x ((90 —(0.5 x 45)) = 26.1 22500kNm 

Also, this capacity is obtainable from 

Afz 
Md 

= ;m
eqn. (B) 

With z = d[1 - 0.5x157.08x500x11 = 90 x (1 - 0.0507) = 85.43mm 
I 	400x90x21.5xI j 

where 	z = d(1 - 
0.5Asfyymm 	

(section 4.2.4.2) 
bdfkY ms  ) 

hence, 

Md = 157.08 x 500 x 85.43 = 6.7lkNm 

if the partial safety factors, y ms and y mm  are both taken as unity. 
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Case 2 (S =1000 mm) 

With option (a), b = 55 + (540) = 595 mm; 

With option (b), b = 1000 mm; 

With option (c), b = 400 mm, hence option (c) is critical. 

From eqn (A), Md = 215 x 400 x 45 x ((90 —(0.5 x 45)) = 26.1 22500kNm 

Also, this capacity is obtainable from 

Afz 
Md = 

I ms 

eqn. (B) 

- 400x90x21.5X1 
= 90 x (1— 0.0686) 83.83mm With z d[ 	 1 1 

O.5x226x470X1l 

where 	
z = d(1 - 0.5Asfyymm') 	 (section 4.2.4.2) 

bdfk'Y ms  ) 

hence, 

Md = 226 x 470 x 83.83 = 8.9kNm 

if the partial safety factors, y ms and y mm  are both taken as unity. 

Case 3: (S =1750 mm) 

With option (a), b = 55 + (540) = 595 mm; 

With option (b), b = 1750 mm; 

With option (c), b = 400 mm, hence option (c) is critical. 

From eqn (A), Md = 21.5 x 400 x 45 x ((90 —(0.5 x 45)) = 26.1 22500kNm 

Also, this capacity is obtainable from 

A 3fz 
Md = 

'1 ms 

eqn. (B) 

With z = d[1 - 
o.5x(157.08x500+226)i = 90 x (1 —0.119354) = 79.26mm 

400x90x21.5x1 
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O.SA sfy y mm  " 
where 	z = 	

- bdfkY ms  J 	(section 4.2.4.2) 

hence, 

Md = 184760 x 79.26 = 14.64kNm 

if the partial safety factors, y ms and  Ymm  are both taken as unity. 

(2) SHEAR CAPACITY: 

Case 1: (S = 540 mm) 

f =0.35+l7.Sp 

As  With p - 	
- 2x78.54 = 4.36333 x 10 3  

- d - 400x90 

hence, f = 0.35 + 0.07636 = 0.426 N/mm2 . 

Therefore, V = 0.426 x 400 x 90 = 15336N = 15.34kN. 

Case 2: (S = 1000 mm) 

= 0.35+ 17.5p 	(section 3.4.1.3) 

With p - 	
- 2x113.09 = 6.28278 x 10 3  A

s  
- d - 400x90 

hence, f = 0.35 + 0.1099 = 0.460 N/mm 2 . 

Therefore, V = 0.460 x 400 x 90 = 16560N = 16.56/iN. 

Case  :(S=1750mm) 

= 0.35+ 17.5p 	(section 3.4.1.3) 

With p = 	== 0.1 06463 x 10'  383.27  

hence, f = 0.35+ 0.1863 = 0.536N/mm 2 . 

Therefore, V = 0.536 x 400 x 90 = 19296N = 19.3OkN. 

(section 3.4.1.3) 
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