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Abstract 

Original synthetic procedures for preparing catenanes and rotaxanes are appearing in 

the current literature with escalating frequency as a result of the attention these 

mechanically interlocked molecules are receiving because of their potential as 

molecular switches, devices and machines. Coordination complexes in which 

rotaxanes act as ligands for transition metals are amongst the most celebrated 

examples of mechanically interlocked molecular level architectures. This is not only 

because coordination chemistry makes possible a rich diversity of structures, but also 

because the metal can be locked in unusual environments for subsequent 

electrochemical, photochemical and catalysis studies. 

Efficient synthetic methods have been developed for catenates and rotaxanes based 

on tetrahedral and trigonal bipyrimidal metal complexes using the metal-bis-

phenanthroline synthon pioneered in Strasbourg. Given the key role played by 

metal-directed synthesis in the assembly of superstructures it is essential for chemists 

to expand the arrays of metals and ligands available in this endeavour. 

The aim of this project was to address this need and investigate the possibility to 

synthesise mechanically interlocked architecture using metals with higher oxidation 

states, different geometries and higher coordination motifs. 

Chapter Two describes the synthesis of a general ligand system for rotaxane 

complexes of ions that prefer octahedral coordination - the commonest ligand 

geometry amongst transition metals but up to now a rare coordination mode for 

rotaxanes. Simple mixing of the components at room temperature is sufficient to 

assemble a broad range of octahedrally coordinated metal-[2]rotaxanes in excellent 

yields. The reactions have few, if any, byproducts and proceed under thermodynamic 

control in the absence of a catalyst or any other external reagents. 
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Chapter Three reports the template-directed synthesis of a [2]catenate and a 

[2]rotaxane by a clipping approach around trivalent octahedral cobalt ions. 

Appropriately derivatised pyridine carboxamide based ligands, once deprotonated, 

stabilise the trivalent oxidation state facilitating the entry into higher oxidation states 

of these metal ions. Unlike ligands previously designed for metal templation which 

upon demetalation offer no recognition motif, the removal of the metal to these 

ligands results in a system which has the potential for hydrogen-bonding. 

Chapter Four reports the design and investigation of the synthesis of pentacoordinate 

rotaxane around divalent zinc and cadmium metals. A clipping approach as well as a 

threading-and-capping approach were considered, leading to interesting results 

involving the kinetics and thermodynamics of each complex. Zinc was suitable for 

the self-assembling of the macrocycle about the metal-thread complex but failed to 

hold the unstoppered thread in place while undergoing capping reaction; cadmium on 

the contrary yielded rotaxane upon threading approach but lead to the formation of 

more thermodynamically stable hexacoordinate catenate upon ligand self-assembly 

via clipping approach. 
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Introduction 

"If I have ever made any valuable discoveries, it has been owing more to patient 
attention, than to any other talent" 

Isaac Newton (1643 - 1727) 
English physicist & mathematician 

And that would explain the value of my discoveries! 
Ale; Thoughts on my Ph.D. work (2001-2004) 



Chapter One 

Chapter 1. Introduction 

1.1 Background 

"Nature does nothing uselessly.... In all things of nature there is something of the 

marvellous." 

Aristotle (384 BC - 322 BC), Politics 

Mankind's fascination for Nature goes a long way back: through the millennia it has 

been a source of awe and inspiration, often stimulating extraordinary discoveries and 

progress, up to these days, when it is still taken as an example and mimicked in a variety 

of different ways. In the chemistry arena, over the past few decades, the natural world 

has been used as model in a new field known as supramolecular chemistry, SMC, the 

chemistry of the noncovalent, intermolecular bond.' Nobel prize Jean-Marie Lehn 

described it as "chemistry beyond the molecule, concerning the structure and functions 

of the entities formed by the association of two or more chemical species " . "  The 

objective has been to employ well-defined groups of molecules to perform tasks by 

functioning together, which the distinct components cannot do. The better 

understanding of the principles directing the function and mechanisms of biological 

processes and their dependence on noncovalent forces and self-assembly phenomena has 

provided to the synthetic chemists new models and ideas. Supramolecular chemistry is 

in fact the highly interdisciplinary merging of host-guest chemistry, molecular 

recognition, 2  self-assembly 3 ' 4' 5  and template-directed synthesis. 6  

Some concepts are crucial in SMC: molecular recognition, the selective interaction 

between two or more components in a self-process; self-organization, the spontaneous 

capability, under a particular set of conditions, to arrange complementary components 

2 



hapter One 

into definite, functional architectures; self-assembly, the elemental step that leads to self-

organization; (supra) molecular programming, the specific design of the components to 

generate molecular recognition. Many times, one specific component is regarded as 

responsible for the organization and assembly of all the others: such a component is 

known as template .7  DNA, RNA, protein and enzyme-substrate complexes are 

examples of supramolecular arrays in which nature relies on a variety of relatively weak 

forces to promote assembly. Namely, these forces are hydrogen bonding, van der Waals 

forces, Coulombic interactions and dipole-dipole interactions. Molecular systems held 

together by multiple weak forces have the advantage of being more flexible than the 

correspondingly strong forces assembled. Moreover, a large number of weak forces 

induce specificity as the most thermodynamically stable structure is produced in 

response of annealing processes. 

12 Components of Chemical Templates - Anchors, Turns, 

Threadings, and Cross-overs 

As Busch describes it, "a chemical template organizes an assembly of atoms, with 

respect to one or more geometric loci, in order to achieve a particular linking  of atoms"." 

A deep thorough understanding of the mechanisms through which templates work and 

control sequences of organised steps is fundamental to be able to conceive and carry out 

template-directed synthesis. It is therefore important to identify and comprehend the 

elements crucial for the efficacy of a template and their role within the self-assembly. 

The first component (a metal ion, ion pair complement, partial charge complement, or 

hydrogen bonded partner) in any chemical template is called an anchor a function of an 

anchor is to hold one or more appropriate conjugate components. These conjugate 

components, held by the anchor, create a turn into the growing structure and are thus 

3 



•Chapter One 

called a molecular turn. These molecular turns, endowed with two or more terminal 

reactive groups oriented in a key direction, can either be intrinsically bent, (Figure 1, 

a.), or can attain their folded conformation upon reaction with the anchor (Figure 1, b.). 

I) 

b) 

Figure 1: Examples of anchor/turn template complexes: (a) Sauvage's Cul anchor 
and phenanthroline turn, (b) Stoddart's ic-donor and it-acceptor conjugate. 9  

Mechanically interlocked architectures are among the topologically intriguing structures 

constructed thanks to the greater understanding of non-covalent interactions and 

template synthesis. In the case of chemical templates targeted to the synthesis of 

mechanically interlocked architectures two elemental components must be added to 

molecular turns and anchors: molecular threading and molecular cross-overs. 10  

Molecular threading involves the anchoring of a cyclic molecule and a linear molecule, 

or a molecular turn, in a fashion that inserts the linear part, called thread, through the 

center of the large ring. A molecular cross-over is given by the connection of an anchor 

with two non-parallel molecular turns (Figure 2, a.). 

4 
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a)fl 
co 

II 	•--. 

b) 	 . a • 

Figure 2: (a) Molecular threading and (b) a simple cross-over gives (i) a catenane 
upon two ring closures or (ii) a rotaxane upon one ring closure and capping. 9  

1.3 Interlocked Molecular Architectures - Nomenclature and 

Terminology 

After introducing some of the terminology associated with the elemental components of 

chemical templates it is mandatory to familiarise with the vocabulary related to 

interlocked molecular architectures and their synthesis. 

Figure 3: The simplest interlocked structures represented in cartoon format: 1. a 

[2]catenane, 2. a [2]rotaxane and 3. a trefoil knot. 

The assembly of two or more interlocked rings is named catenane, from the Latin 

"catena" meaning chain. The word catenate is used to distinguish a catenane assembled 

under transition metal based template; upon removal of the metal the resulting 

interlocked architecture - by all means and purposes a catenane - is named catenand to 

5 
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reveal its origin and potential coordinating characteristics." Rotaxanes are made of one 

or more macrocycles surrounding a dumbbell-shaped thread-like molecule; dethreading 

of the system is prevented by the presence of bulky groups, called stoppers, at the ends 

of the linear moiety. Again the name is of Latin origin, "rota" meaning wheel, and 

"axis" meaning axle. The number in square brackets positioned before the words 

catenane, catenates or rotaxane indicates the number of interlocked components within 

the compound described. In Figure 3 are illustrated a [2]catenane, 1, and a [2]rotaxane 

2. Even though the components are not covalently connected, catenanes and rotaxanes 

are single molecules - not supramolecular complexes - as covalent bonds must be 

broken in order to separate the constituent parts. Mathematicians describe a knot as a 

cord that is intertwined with itself, with its loose ends joined so that it cannot become 

untangled. The chemical species denominated with this name presents exactly the same 

features. The simplest knot has three crossing points and is thus named a trefoil knot 

(Figure 3, 3.). The nomenclature related with more complex molecular entanglements 

is more complicated and will not be considered any further here. 12 

. - . 	 \II  

(Rpping 

- 	

RoulcA 

.. 
Rni:c A 	 Clipping 	 Cupping 	T] 

RULC C 	l) 	

- 

— 

Rouie H 

.-.-. 

Scheme 1: Possible synthetic strategies towards interlocked molecular 
architectures. 
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There are three general strategies for synthesizing interlocked molecular architectures 

(Scheme 1), namely the clipping, threading-and-capping and slipping approach. The 

clipping approach, (Scheme 1, Route A), involves the ring closing on a molecular cross-

over of one or more macrocycles. Depending on the nature of the molecular cross-over 

both rotaxanes and catenanes can be assembled this way. The clipping around a 

dumbbell shaped thread and another preformed macrocycle generates respectively a 

rotaxane and a catenane. Catenanes can also be produced by two ring closings on a 

molecular cross-over, each ring closing process making use of a single molecular turn-

The threading approach, (Scheme 1, Route B), involves the template elemental step 

called molecular threading whereby a linear component is threaded through a 

macrocycle: capping reaction with bulky stopper groups affords rotaxane, while 

capping with a "u-shape" leads to catenane formation. The unstoppered system afforded 

by the anchoring of a cyclic molecule and a linear molecule is named pseudo-rotaxane, 

(Scheme 1, 4. )13,  or semi-rotaxane (Scheme 1, 5.). Another method for synthesising 

rota.xanes is the so-called slipping approach, (Scheme I, Route C), and requires that a 

macrocycle slips over a preformed dumbbell overcoming the kinetic obstacle presented 

by the bulky groups thanks to elevated temperature (or pressure). 

By combining these synthetic methods scientists involved in research in this field have 

been able to direct intricate successions of steps (threadings, cross-overs, ring closings, 

and other linkages) in order to arrange complicated organized molecular entanglements. 

Moreover, the simultaneous employment of a number of orthogonal 14  recognition 

motifs/algorithms' 5  for the construction of elaborate multicomponent superarchitectures 

has enabled synthetic chemists to diversify the series of self-assembled 16 

superstructures. 17  A more complete sequence of the various structural motifs that have 

been built through chemical templates are displayed in Figure 4. 

7 
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Figure 4: Cartoon representations of a variety of interlocked structures resulted 
from template syntheses: rotaxanes, catenanes, and knots. 9  

1.4 Coordination Chemistry - Metal Ion Templates 

In the past twenty years coordination chemistry has played an increasingly important 

role expanding beyond the interactions of metal ions with organic and inorganic ligands 

and emerging into the field of supramolecular chemistry. Ia,b,g, The coordination 

number of the metal ion, the geometry preference, and, in some instances, the rigid 

structure can orientate ligands in a precise spatial manner: this feature can be exploited 
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during critical bond formations. In addition, the metals can display properties such as 

light absorption and luminescence, catalysis and redox processes at accessible potential 

values, which can be used to carry Out valuable tasks.' 9  

A vast number of fascinating supramolecular species have been synthesised and 

investigated: here a short review which is by no means exhaustive discusses some of the 

principal examples of interlocked compounds and other supramolecular metal 

complexes that can be considered as prototypes of molecular-level devjces.' °2 ' 

The discovery that transition metals act as templates in the synthesis of macrocycles was 

first reported by Curtis in the 1961. 22 This finding initiated a new trend where metals 

were used as templates in the rational synthesis of macrocycles. A few years later, the 

Busch group proved that the planar nickel(II) ion exerts a kinetic template effect by 

arranging a tetradentate ligand into a turn and thus bringing its two reactive terminal 

groups into adjacent positions. This imposed proximity assists cyclization by reaction of 

the terminal groups with a reagent that is a second molecular turn (Figure 5). 23  

Br_fN S 

I 	Ni 

'N 	S 
'—I 

Figure 5: The seminal metal ion template macrocyclization 9  

Another advantage of this template-directed synthesis is that metal ion anchors can often 

be easily removed leaving the structure in one piece after the cyclization reaction. 24  The 

majority of the examples invoking transition metal 'templates' are two-dimensional, 

however there are some cases where the transitional metal positions the ligands in a 

three-dimensional manner.25 
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1.5 Overview of Mechanically Interlocked Architectures Using 

a Transition Metal Template 

Interlocked molecules are characterised by non-planar structures and thus they require 

the template action of appropriate non-planar metal ions as anchors to compose the 

'three-dimensional' arrangement. Sauvage and Dietrich-Buchecker pioneered this field 

offering the seminal example of transition metal/organic ligand complexes deployment 

to obtain interlocked molecular architectures.' 27  They developed a system based on 

copper(I) to exploit the '313' nature of tetrahedral metal complexes. In this synthon, 

complex 11, two bidentate phenanthroline ligands are held in a mutually orthogonal 

manner as shown in Scheme 2. 28  In order to obtain the desired catenate they attempted 

both a threading and a clipping approach. In the first case a preformed macrocycle is 

threaded with a molecular turn followed by ring closing dual capping. Macrocycle 12 

endowed with a bidentate phenanthroline ligand was treated with Cu(MeCN) 4BF4  and a 

diphenolic phenanthroline ligand 13 to give complex 14 (Scheme 2, Route A). Catenate 

15 was obtained in 42 % yield by reaction of complex 14 with pentaethyleneglycol 

diiodide. In the clipping approach complex 11 was reacted directly with 

pentaethyleneglycol dibromibe in a two ring closing reaction to give catenate 15 in a 27 

% yield (Scheme 2, Route B). Even though more risky and frequently lower yielding 

this strategy became the most common for the synthesis of symmetrical systems. 
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DMF, Cs2CD., I+ I  

+ BE 

14 

Scheme 2: The synthesis of Cu'-based catenate 15.28 

These Cu(I) based catenates were shown to be more stable to demetalation than 

analogous non-interlocked ligand systems. This phenomenon, known as the catenand 

effect, is due to the topological confinement of the ligands within the interlocked 

superstructure. 29  Nevertheless, demetalation of catenate 15 was achieved by exposure to 

KCN giving the corresponding catenand 16 (Scheme 3). This new, more flexible 

structure does not experience the effect of the coordination to the copper and 7t-7t 
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stacking between units and rearranges in order to minimise unfavourable interactions 

between the phenanthrolme groups. 

+ BF 

KCN 

15 	 16 
Scheme 3: Demetalation of catenate 15 to afford corresponding catenand 16. 29  

In the late 1990's the same Cu(I)/phenanthroline synthon, appropriately derivatised with 

terminal olefins, was used to afford catenate 18 via ring-closing metathesis, RCM, in an 

excellent yield of 92% (Scheme 4) 30  Alkene metathesis had been used in one of the 

earliest syntheses of catenanes, 31  but the development of the currently so famous 

Grubbs' catalyst, with its high activity and an excellent range of functional group 

tolerance , 32  moved the ring closure reaction to a new level. 

Scheme 4: High-yielding synthesis of Cu' catenates by ring closing metathesis. 30  

12 
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In 1991 Gibson etal. reported the synthesis of the first example of metal based rotaxane. 

Sauvage's Cu(I)/phenanthroline motif was used to deliver the pseudo-rotaxane 14 via a 

threading approach. 33  Treatment with a trityl-terminated alkyl halide, followed by acidic 

resin demetalation yielded rotaxane 22 in a 42 % yield (Scheme 5). 

+ BF 

Ar3C(CH2 )3 1 
K2CO3  

Amberlite re 
42% 

+ BF 

14 

  

Scheme 5: Synthesis of a [2]rotaxane  using a Cu' template. 33  

Through the 90's, building on the usual tetrahedral coordination unit the Sauvage group 

published studies on a variety of transition metal-based rotaxanes where the trityl 

stoppers were replaced by chromophores. The spherical shape of fullerenes acted as an 

ideal endgroup for the dumbbell component 34  Under light irradiation electron transfer 

took place between the Cu(I) central complex and one of the C60 stoppers working as 

electron acceptor (Figure 6, a.). [2]Rotaxane 22b comprised metal-complexes 

fragments as stoppers. By taking advantage of the different coordination requirements 

of copper(1) and ruthenium(H) they assembled this system simply using coordination 

chemistry (Figure 6, b.). 35  The employment of porphyrine as stoppers due to their 

interesting electro and photo-active properties was of particular appeal in the 

development of models to simulate natural cofactors such as hemes and chlorophylls. 36 

13 
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Upon light irradiation the zinc porphyrin transfers an electron to the gold porphyrin 

acceptor. When these two bis-porphynn chelates act as a molecular cross-over 

coordinating about a copper metal, the electron transfer occurs at much higher rate than 

in the free system. By complexing two bis-porphyrin threads around a single metal the 

undesirable interligand photoinduced electron transfer 37  is possible as well as the wanted 

intramolecular transfer. Incorporating the bis-porphyrin unit in rotaxane 22c avoided 

dimerization of bis-porphyrin in a complex, allowing discrimination between the two 

possible electron transfer pathways (Figure 6, c). 38  This work was further investigated 

producing a series of transition metal-based rotaxanes incorporating porphyrins as 

stoppers in attempts to mimic the array of tetrapyrrolic chromophores, found at the heart 

of bacterial photosynthetic reaction centres. 39  

1 

Figure 6: Chromophores stoppered rotaxanes based on Cu(I)/bis-2,9-diphenyl- 
1,10-phenanthroline complex: a. A C 60-stoppered rotaxane; b. Ru(terpyridine) 2- 

stoppered rotaxane and c. Porphyrine-stoppered rotaxane (Substituents of the 
34 porphynns have been omitted for clarity). 33''37  

14 
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In similar fashion Loeb reported the synthesis of a rotaxane which utilizes  square planar 

metal complexes as the stoppers. 40  

The use of transition metals represented a real breakthrough in the synthesis of 

molecular knots, whose appearance in the literature preceded the interlocked molecular 

architectures .

41  The first example of knot was reported in 1989 by Sauvage and 

Dietrich-Buchecker. Two Cu(I)/phenanthroline-based molecular turns linked by alkyl 

chain linkers X (Scheme 6) were used to create a pair of linked turns. Complexation of 

such ligand successfully formed a double helical complex 23a containing two Cu(I) 

centres, along with a mixture of undesired products containing only one copper centre. 

The cyclization of the double helical precursor by reaction with a pair of polyglycol 

chains produced a knotted system 24a in yield between 3 and 8% depending on the alkyl 

spacer. 42  Replacement of such linkers with a 1,3-phenylene moiety in the thread 23c 

increased the yield of the corresponding knot 24c to 29 %•43  A further improvement  to 

the synthesis of a trefoil knot was accomplished in 1997 by combining the use of the 

1,3-phenylene spacer and Grubbs' catalyst mediated ring closing alkene metathesis: this 

procedure granted a remarkable 74 % yield of the requisite trefoil knot. 44  

15 
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01BF4 

zrr$ 
HO1J) 	

23c X=1 ,3-phenylene 

Cs2CO3, DMF, 60°C 
ICH2(CH20CH2)5CH21 

1BF4  

24a X =(CH2)4 3% 
24b X =(CH2)6 8% 
24c X =1 ,3-phenylene 29% 

Scheme 6: The synthesis of trefoil knots assembled with a Cu' template. 42  

Sauvage, in collaboration with Geerts, reported the synthesis of polymeric catenanes 

containing alternating units of [2]catenanes prepared by the usual Sauvage template 

chemistry and covalently linked spacer groups. Each ring of the catenate was 

derivat][sed with a reactive peripheral hydroxyl group which upon polycondensation with 

a diacid spacer yielded the poly-[2]-catenane polymer (Figure 7). Even though the 

polymerization process did not take place through catenane formation this is the first 

example of a polymer held together by catenane linkages. 45  

n 

Figure 7: Polymer held together by catenane linkages.44 
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Collaborating efforts between Lehn, Baxter and Airola produced a variety of rigid-rack 

multimetallic pseudo-rotaxanes, (Figure 8), again using  the Cu(1)/phenanthroline 

systern_ 46  Coordination with copper(I) of the phenanthroline macrocycle developed by 

Sauvage around a series of bipyridinelphenanthroline derivatised rod-type linear ligands 

represented an advance towards the synthesis of more extended polyrotaxanes. 

In 

+2 

Figure 8: Rigid Rack pseudo- rotaxanes. 46  

Expanding on the tetrahedral Cu(I)/phenanthroline geometry, in 2001 Leigh et at 

reported a simple, general and efficient synthesis of catenates with octahedral 

coordination geometry. 47  Inspired by Busch and co-workers, they exploited a benzylic 

2,6-diiminopyridine molecular turn to provided three coordination sites on a N3 Mer 

conformation in an appropriately derivatised "u-shape" ligand. After complexation with 

a variety of divalent transition metals, complexes 19a-d, catenates 20a-d were obtained 

by RCM in good to excellent yields (Scheme 7). The exceptional kinetic stability 
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attributed to mechanically interlocked molecules was confirmed by these octahedral 

complexes, which were inert to demetalation attempted with EDTA. The reduction of 

the imines to amines was necessary in order to achieve demetalation and attain catenand 

21. 

X+ 

198 M = Mn, X 004 
/ 	 19b M = Zn, X = BPh4  

19c M Cd, X = 004  
19d M = Co. X= BPh4 

7c4 Ph  
PCy3 

2+L2  

O—---=_0 	
1 NaBH4, EtOH

- HN—N 

2EDTAdOdwn8ak 	 IHN> 
0 	 IC 

'D 	79% 	 0 

21 

20aM=Mn,X =C104,63% 

20b M = Zn. X = BPh 4, $ 1 % 
20cM=Cd. XC104,70% 

20d M = Co. X = BPh 4, 41 % 

Scheme 7: Synthesis of octahedral catenates by ring closing metathesis. 47 

further discussion here. 

More recently Sauvage described the assembly of a pseudo-rotaxane based on four-

coordinate square planar metal complex 49  but it is only at the beginning of this year that 

Leigh reported the metal template synthesis of a [2]rotaxane based on such geometry. 50  

This proved that three dimensional interlocked architectures can also be assembled from 

two dimensional coordination templates, using steric and electronic restrictions to 

control the synthesis in the third dimensiorL Rotaxane 34 was obtained by clipping 

approach of an appropriately derivatised 2,6-dicarboxyamidepyridine unit which 

provided the palladium ligating moiety. 5 ' The thread bearing a pyridine donor with 

appropriately bulky stoppers aligns orthogonally to the plane defined by the "u-shape" 

tridentate donor in the square planar complex. 12  Ring closing metathesis followed by 
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catalytic hydrogenation gives rotaxane 34 in an overall 69% yield. Demetalation was 

accomplished using  potassium cyanide to generate the free [2]rotaxane 35 in 97% yield. 

31 
	

32 

1T 
0, 

1 

33 
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I c) 
LI  
0 
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- Ph Pd/CH2 THF 
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34 

N - ?dN J N 

KCN,Me0H,O0 

33 	 AN -  
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0 

Scheme 8: The synthesis of [2]rotaxane  around divalent palladium with square 
planar coordination. 51  
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Within the contest of the present discussion, it is worth describing supramolecular 

systems containing different types of coordination modes, so-called "hybrid" systems. 

Fujita et al. synthesised a [2]catenane containing square planar palladium(II)-pyridine 

coordination units. 53  The fundamental difference between the two synthetic strategies is 

that in the Sauvage/Gibson complexes the copper(1) act as template organizing the self-

assembly of the interlocked products and in the Japanese system removal of the metal 

results in collapse of the structure. In the latter case the molecular cross-over is not 

provided by a metal anchor but by hydrophobic interactions. In catenane 27a,b, the 

metal is used in conjunction with ethylenediamine (en) and ligand 25 as component of 

the macrocycle self-assembling via clipping approach. In attempts to assemble the 

coordination macrocycle 26a, it rapidly equilibrates in solution with [2]catenane 27a, 

(Scheme 9), the efficient contact between the aromatic rings of the two macrocycles 

being the driving force for the formation of the interlocked products. For this reason 

interlocking is improved in polar solvent and optimised in aqueous solutions. 

Concentration also plays a key role pushing the equilibrium towards the catenane. The 

interconversion of the two species undergoes via a proposed MObius strip mechanism 

and possible due to the kinetically labile nature of the palladium-pyridine coordination 

bonds. 

20 
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H2N NH2 	4+  4NO3 
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H2N NH2 

26a M = Pd 
bM=Pt 
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NN 
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bM=Pt 

5Orthl 95% 
	

1 rrtvl 99% 
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1:1 MeOD:D20 990/0  

25 

Scheme 9: The synthesis of "magic rings" containing palladium and platinum. 53  

The kinetics of a similar system were studied after replacement of palladium(II) with 

platinum(H). 54  By mixing ligand 25 and Pt(en)(NO3) macrocycle 26b is the sole product 

and is not in equilibrium with other structures. Catenane formation is achieved after 

treatment with NaNO 3  and heating 100 °C: under these conditions the interlocked 

product is greatly favoured. Upon cooling at room temperature and removing NaNO3 

the catenane remains the majority species. This lack of interconversion between 

macrocycle and catenane, described as "locking" of the equilibrium between the two 

species, can be attributed to the properties of the coordination bonds between platinum-

pyridine which are much less labile than those of palladium. The analogy between the 

locking and unlocking of the equilibrium process inspired Fujita to call this platinum-

based system a "molecular lock". 
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MPICESI.Prbs-2.3 

,PCHj.PPb 

Scheme 10: Puddephatt gold(I) based catenanes. 56  

Catenanes have also been assembled with gold(I) centers in the macrocyclic backbone. 

Mingos and co-workers 55  initiated this work which was further extended by Puddephatt 

and co-workers. The coordination number of two of Au(I), characterised by linear 

stereochemistry, 57  is exploited to assemble rings and interlocked architectures by 

introducing molecular bends such as diphosphines and diacetylides or 

phosphinoacetylides. rr-Stacking between ligands aryl groups or, more commonly, 

intermolecular Au--- Au bonding are responsible for the assembly of these systems. 58  

Catenation depends on the size of the rings or, more specifically on the size of the cavity 

available for molecular crossover. The digold(I) complex with Ph 2P(CH2),,PPh2  

illustrated in Scheme 1 is a simple ring when n2, exists in solution as an equilibrium 

between ring and catenane when n=3, and exists as a catenane only when n4 or 5. 

22 



Chapter One 

A 

Figure 9: Structure of the double braid [2]-catenane. 56  

Remarkably, major changes in the gold(I) chemistry are obtained by changing the pivot 

atom X in the compounds X(CI-LOCH 2CCH)2. When X=O or S the products are 

simple rings,59  when X=Me2C catenane is formed. Unexpectedly reaction with the 

X=C6H 10  (cyclohexylidene) substituted compound gave a novel double braid catenane, 

which self-assembles very selectively from eight components in high yield (Figure 9). 
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Scheme 11: The synthesis of [2]rotaxane containing osmium in the macrocyctic 
corn ponent. 6°  

Another example of hybrid interlocked structure was reported by Jeong et al. in 2000.60 

Reaction of acyclic pyridine containing component 30, OSO4 and 2,3-dimethylbutene 

(Scheme 11) yields the formation of coordination macrocycle 29. Upon treatment with 

R = 
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the adipamide thread 31 the hydrogen bonding interactions taking place between ring 

and thread in the interlocked species act as anchor and drive the molecular cross-over. 

[2]rotaxane 28 is obtained quantitatively. Again, the metal is part of the ring and is not 

engaged in template activity. The rotaxane forms due to the macrocycle ring opening/ 

ring-closing at the osmium/ pyridine bonds, i.e. by reversible clipping. However, the 

rotaxane 28 is not kinetically robust, an inherent limitation of all the products discussed 

in this section that contain metals within their macrocyclic framework. Jeong and co-

workers have used the same methodology to produce corresponding [3]rotaxanes. 6 ' 

A highlight of supramolecular chemistry appeared on Science early on 2004: Stoddart, 

Atwood and coworkers reported the synthesis of molecular Borromean rings (BRs). 62  

BRs consist of three rings, not mutually interlocked, but entangled in a way that prevents 

separation from one another (Figure 10). Opening of one ring results in the falling apart 

of the whole assembly. This topologically achiral system was self-assembled by 

reaction of 18 components in an incredible nearly quantitative yield. The success of the 

construction of this intricate compound from individual pieces depended on the accurate 

programming of each individual piece in the molecular self-assembly process. 12 imine 

and 30 dative bonds were formed while three interlocked macrocycles, each 

tetranucleating and decadentate overall, coordinate a total of six zinc(II) ions stabilised 

by a total of 12 7r-7t stacking interactions. Each macrocycle was endowed with two exo-

bidentate bipyridyl and two endo-diiminopyridyl ligands which upon penta-coordination 

with the zinc(H) ions provide precisely controlled molecular cross-overs. Kinetically 

labile zinc(II) was the metal of choice granting flexibility and reversibility in the 

coordination spheres. Reversibility was also provided by the dynamic Schiff base 

condensation between 2,6-diformylpyridine (DFP) and a diamine (DAB) which resulted 

in the formation of the endo-tridentate ligating moiety and ultimately in the formation of 

the macrocycles by [2+2] macrocyclization. This work represents an example of 
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cooperative use of coordination, supramolecular, and dynamic covalent chemistry as 

extraordinary for its elegance as well as for its simplicity. 

F'~ NN, 	~ TV, 

çrm  
+ 

Endo-Tridentate 	Transition Metals 	 Exo-Bldentate 

E 

oo 
DRI 

g0 ° 
 

DAB DABg  

4  
Figure 10: Cartoon representation of the Borromean rings: (A) planar Venn 
representation; (B) orthogonal arrangement and (C) illustration containing 
templating features shown as silver spheres. (D) Relatively straightforward 
retrosynthetic disconnection of the BR5. (E) The retrosynthesis in chemical terms. 63  

1.6 Controlling Motion in Interlocked Systems Containing 

Transition Metal Ions 

As previously described, the synthesis of interlocked molecular architecture using 

transition metals has been very prolific. Intramolecular motions can be considerably 

preferred over intermolecular exchange due to kinetic stability of metal-ligand binding 
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interactions and accurate structural design. TM  Transition metals redox properties should 

permit the use of techniques, such as electrochemistry and photochemistry, to induce this 

motion. 65  For this reason, metal-based interlocked molecular architecture are good 

candidates for molecular-Level machines. In such species the electroactive units are the 

metal ion and the ligands. Changes in the interaction of these units can be imparted by 

electrochemical oxidation or reduction. The structure and properties of the overall 

supramolecular assembly can be controlled through electrochemical stimuli acting on 

the metals whose stereoelectronic requirements depend on its oxidation state. 

Appropriately designed systems programmed to contain suitable metal ions and ligands 

can yield molecular rearrangements. If a large amplitude displacement of some 

components of the supramolecular architecture with respect to the others is consequence 

of the electrochemically induce rearrangement the system can be said to behave as an 

electrochemically driven molecular machine. 66  

The definition of molecular machine and what differentiates them from other molecular 

devices is still moot and under debate. 67  After the initial iconic classification of 

molecules as machines, based on the imaginative resemblance between the structures 

and pieces of machinery, a more useful approach distinguished between 'device' and 

'machine' on etymological basis. While both molecular devices and a machines are 

"assembly of a discrete number of molecular components designed to perform a spec/1c 

function" the word 'machine' necessarily involves mechanical movement. The inferred 

definition can be therefore stated as: "an assembly of molecular components that can 

move relative to each other in response to an external stimulus, provided that movement 

can be used to modify,  apply or transmit energy" 68  In other words 'molecular 

machines' are a "subset of molecular devices in which some stimulus triggers the 

controlled, large amplitude mechanical motion of one component relative to another (or 

of a substrate relative to the machine) which results in a net task being performed.". 69  
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A number of pseudo-rotaxane based devices have been made with functions such as: 

reversible formation and de-threading of the interlocked species using a number of 

stimuli; 70  switching between different preferred guests; 7' and control of intramolecular 

electron transfer reactions. 72  

Controlled mechanical behaviour is attained on condition that the kinetic stability of the 

pseudo-rotaxanes provides sufficient restrictions on the motions of the unbound species: 

in this case the system can be called molecular machine. 73  In these kinetically 

associated species, 74  the mechanical bond conveys a restriction in the degrees of 

freedom for relative movement of the components, while frequently allowing extremely 

large amplitude motion in the permitted vectors. Biological motors exploit equivalent 

type of movement restriction by structural tracks ' 7' and for this reason interlocked 

structures have withdrawn such an interest in the development of synthetic molecular 

machines. 76  

Sauvage and co-workers reported a prototypical example of a redox-switchable 

[2]catenate. 7' Exploiting the unique properties (among the first row transition metals at 

least) of copper - in particular, the strong stereoelectronic requirements for the mono-

and divalent cations78  they designed a system where satisfaction of the coordination 

requirements induced ring pirouetting. Catenate 36, (Scheme 12), was assembled using 

Cu(I) as anchor and two bidentate phenanthrolines and molecular turns. One of the two 

macrocycle was endowed with an extra station, a tridentate 2,2':6',2"-terpyridine (terpy) 

ligand, to provide the means for 5-coordinate arrangement. Copper(I) prefers 

coordination number four while copper(II) favours coordination number five. The Cu(I) 

template coordinates to the two phenanthroline units in the expected tetrahedral 

arrangement Oxidation of the Cu' catenate by chemical, electrochemical or 

photochemical 79  means, affords metastable Cu' four coordinate system 37, which upon 

pirouetting of one ring through the other gives the stable 5-coordinate Cu(II) catenate 

38. Reduction of catenate 38 reverses the order of preference for coordination numbers: 
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accordingly a circumrotation to regenerate the starting Cu(I) complex 36 in a completely 

reversible manner. 

( oe -) 
36 37 

V 

N) 

38 

Scheme 12: An electrochemical ly-switchable copper-based catenate. 78  

The synthesis and properties of a symmetric [2]catenate incorporating two terpy and two 

phenanthroline ligands was described by Sauvage et al. two years later. 8°  

Circumrotation of the macrocycles around the metal anchor leads to the formation of 

three distinct geometries within its central core, tetra-, penta- and hexa-coordinate, 

corresponding  to three translational 'isomers'(Scheme 13, respectively 39, 40, 41). 

Taking into account the different metal oxidation states it can be said that this catenate 

presents six different states. Again, chemical and electrochemical methods can be 

utilized to trigger the switching process. 
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C I3 	c1'7 
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g :::  
Scheme 13: Oxidation state controlled switching of [2]catenate 39 between three 
distinct co-conformations. 80  

Sauvage has also synthesised [2]rotaxanes using similar structural motifs to make 

transition metals based redox-responsive molecular shuttles. 8 ' A macrocycle containing 

a bidentate phenanthro line unit, is locked around a thread incorporating two different 

coordinating units, a phenanthroline and a tridentate terpy ligand. The geometrical 

preferences of Cu(I) and Cu(H)-based complexes drive the co-conformational changes. 

Both of the phenanthroline ligands (thread precursor and macrocycle) are used to 

complex Cu(I) in a tetracoordinate fashion, templating the synthesis of the fully 

stoppered rotaxane (Scheme 14, 42). Upon electrochemical oxidation 82  of Cu(I) to 

Cu(H) the tetrahedral geometry is destabilized and the new preferred co-conformer is 

that where the macrocycle resides over the terpyridine unite, allowing Cu(H) to form a 

five-coordinate species (Scheme 14, 43). The shuttling process can also be achieved via 

photochemical oxidation. The reverse reductive step cannot be carried out 

photochemically but proceed successfully using ascorbic acid as chemical reductant. 
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Scheme 14: Redox-switched shuttling in a metal-templated [2]rotaxane. 81  

Sauvage and co-workers used the macrocycle bearing two ligating moieties designed 

for the synthesis of catenate 36 to assemble a [2]rotaxane. Electrochemical methods 

induced pirouetting of the ring  component around the phenanthroline derivatised thread 

(Scheme 15). 83  

45 	 46 

Scheme 15: An electrochemical ly-switchable copper-based [2] rotaxane 83  

The principles of shuttling in metal-templated rotaxanes can be applied to the synthesis 

of a so-called molecular muscle, 84  i.e. a system in which the submolecular motion 
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results in lengthening and contraction of the molecule in a manner which mimics the 

actin-myosin linear motor found in skeletal muscles. 85  The realization of such an 

assembly was reported in 2000 by Sauvage and co-workers. 116  It is a dimeric system 

comprising two identical units consisting of a bidentate phenanthro line site embedded 

in a macrocyclic ring; this ring is joined to a thread portion endowed with a 

phenanthroline ligand as well as a tridentate terpyridine, (Figure 11), site in a doubly 

threaded topology as shown in Scheme 16. 

e.1er.i 	j,Vr 	 ,ICflP3Ced 	:" 
Scheme 16: Cartoon representation of doubly threaded topology-the precursor to 
a molecular muscle. 84  

Figure 11: Monomer unit for the construction of artificial molecular muscle 
rotaxane dimer. 84  

The molecule 48 was initially synthesized in its extended conformation: Cu(I) ions 

were used to template formation of the dimer coordinating to two phenanthroline units 
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each Electrochemical oxidation to the Cu(fl) was not sufficient to activate the switch 

and promote shuttling of the rings to the terpy station. In this instance the tetrahedral 

geometry proved sufficiently kinetically stable to prevent motion. Demetalation of 48 

using KCN gave the free ligand system 49. Contraction of the dimer was finally 

achieved upon treatment with Zn(H). 50 was produced in response to the new 

coordination requirements of the two Zn(II) cations each coordinating a phenanthroline 

and a terpyridine unit. Treatment with excess Cu(I) regenerated the original stretched 

conformation. While the distance between the metal centres increases, the overall 

length of the molecule decreases due to the gliding of the linear portions of the muscle 

over each other in result to the metal templated shuttling of the rings. A 24% 

contraction is obtained during this process, reducing from approximately 85 A to 65 A. 

48 

KC N 

49 

ZnQl O 

zh 

*A~ 	
Zri 	 50 

i  p(cH3Cu)JPr6 

Scheme 17: Reversible switching between extended ([62•2Cu] 2 ') and contracted 
([62.2Zn] 4+ ) forms in a chemically-switched artificial molecular muscle. 84  
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Figure 12: The concept behind a switchable [2]-catenane based on metal ion (dark 
ball) chelation and -electron donor (clear rectangle) to acceptor (dark rectangle) 
interactions. The molecule is switched by complexation or removal of the chelated 
ion. 87  
In 1996, Sauvage and Stoddart reported the copper(I) templated synthesis of a bimodal 

[2]catenane endowed with both metal complexation and charge-transfer interactions 

motifs. r  The compound comprising two different rings was derivatised with both a 

transition metal coordination site (the usual phenathroline moiety) and a set of i-electron 

rich and IL-electron deficient aromatic units suitable for the formation of acceptor-donor 

complexes (respectively 1,5- dioxynaphthalene and two equivalent bipyridinium units 

known as tetracationic cyclophane component). 88  This species shows one 

monoelectronic process concerning the oxidation of the Cu(I) complex, and two 

bielectronic processes corresponding to the simultaneous first and second reduction of 

the two equivalent bipyridinium units. Switching of the nature of the complex mode 

resulted in the circumrotation of one ring within the other. These two contrasting 

orientation, obtained by complete topographical rearrangement of the molecule, can be 
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triggered by adding or removing the cation center (Cu, Li, or ifl, bonded to the 

phenanthroline-containing complexing site. 

	

9 	2Ru(bpy) 	Re'(CO)3C1 
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Figure 13: Structure formulae of mono and dinuclear Ru(II) and Re(I) complexes 
containing a cyclophane or a catenane ligand. 89  

The peculiar excited—state properties of transition-metal complexes, and specifically 

charge-transfer interactions, have been exploited in pseudorotaxane, rotaxane and 

catenane structures suitably designed to behave as photodriven molecular machines. 90  

The covalently linked metal-based moiety plays the role of photosensitizer. 9' The 

synthesis of number of mono and dinuclear Ru(II) and Re(I) complexes based on a 

cyclophane containing one or two bpy coordination sites was reported. 92  Such 

complexes exhibit several interesting redox properties which will not be matter of 

further discussion here. 
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Scheme 18: a) Schematic representation of the photoinduced and thermal motions 
taking place in the present catenanes, b) and c) chemical structure of catenanes 55 
and 57 and their photoproducts 56, 58a, and 58b. M42 is one of the constitutive 
rings containing the bpy fragment. 93 

In all the systems described so far the movements is triggered by an electrochemical or a 

chemical signal. Sauvage el al. have recently described multicomponent ruthenium(H) 

complexes in which motion is set photochemically: such system can be considered new 

prototypes of light-driven machines.  93  Using an octahedral ruthenium(II) templated 

synthesis they constructed a set of two [21catenates in which the light-driven motions are 

based on the formation of dissociative excited states. The rings, one incorporating two 

phenanthro line units and the other a 2,2'-bipyridine group, are initially connected 

through the coordination  of the ruthenium center. A photochemical reaction leads to 
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quantitative decomplexation of the bpy chelate from the ruthenium(II) center resulting in 

the disconnection of the two rings from each other, while simple heating regenerates the 

starting complex. 

1.7 The Objectives of This Research 

Undeniably, the generation of new interlocked molecular architectures has experienced 

extraordinary progress, both in the diversity and complexity of the molecules that have 

been synthesized and in the interpretation of the interactions, generalizations and 

principles that govern theni Metal template chemistry has played a large role in this 

maturation. The versatility of chemical templates becomes evident when one recognizes 

that the excellent display of structural motifs briefly reviewed here has been realized 

with a very small number of distinct chemical templates. Attention must be drawn to the 

fact that most of the above templates and topologically distinct products are the result of 

the clever use of very few metallligand anchor/turn pair or template. 

The aim of this project was to address this need and investigate the possibility to 

synthesise novel types of metal based templates for interlocked structures. 

This program of research was initiated shortly before my arrival with the synthesis of a 

series of [2]catenates based upon divalent metals with a preferred octahedral geometry. 47  

In extending this work, Chapter Two describes the synthesis of a general ligand system 

for [2]rotaxane complexes with analogous coordination motif. Octahedrally coordinated 

metal [2]rotaxanes were obtained via a five component self-assembly procedure under 

thermodynamic control. This procedure proved successful with a variety of divalent 

transition metals affording the corresponding rotaxane in good to excellent yields. 
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Chapter Three reports the template-directed synthesis of a [2]catenate and a [2]rotaxane 

by a clipping approach around trivalent octahedral cobalt ions. Appropriately 

derivatised pyridine 2,6-dicarboxamide based ligands, once deprotonated, stabilise the 

trivalent oxidation state facilitating the entry into higher oxidation states of these metal 

ions. Unlike ligands previously designed for metal templation which upon demetalation 

offer no recognition motif the removal of the metal to these ligands results in a system 

which has the potential for hydrogen-bonding. 

Chapter Four reports the design and investigation of the synthesis of pentacoordinate 

rotaxane around divalent zinc and cadmium metals. A clipping approach as well as a 

threading-and-capping approach were considered, leading to interesting results involving 

the kinetics and thermodynamics of each complex. Zinc was suitable for the self-

assembling of the macrocycle about the metal-thread complex but failed to hold the 

unstoppered thread in place while undergoing capping reaction; cadmium on the 

contrary yielded rotaxane upon threading approach but lead to the formation of more 

thermodynamically stable hexacoordinate catenate upon ligand self-assembly via 

clipping approach. 
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i VVU 

A Simple General Ligand System for 

Assembling Octahedral Metal-Rotaxane 

Complexes 

"Nature is trying very hard to make us succeed, but nature does not depend on us. 

We are not the only experiment" 

R Buckminster Fuller (April 30, 1978) 
US architect & engineer (1895 - 1983) 

Although we often think we are! 
Ale: Thoughts on my Ph.D. work (2001-2004) 



Chapter Two 

Chapter 2. A Simple General Ligand System for 

Assembling Octahedral Metal-Rotaxane Complexes. 

2.1. Abstract 

Coordination complexes in which rotaxanes act as ligands for transition metals are 

amongst the most celebrated examples of mechanically interlocked molecular level 

architectures.' This is not only because coordination chemistry makes possible a rich 

diversity of structures, but also because the metal can be locked in unusual environments 

for subsequent electrochemical, 2  photochemical 3  and catalysis 4  studies. Efficient 

synthetic methods have been developed for rotaxanes based on tetrahedral and trigonal 

bipyrimidal metal complexes using the metal-bis-phenanthroline synthon pioneered in 

Strasbourg."b 5  Here we describe a general ligand system for rotaxane complexes of 

ions that prefer octahedral coordination - the commonest ligand geometry amongst 

transition metals but up to now a rare 6  coordination mode for rotaxanes. Simple mixing 

of the components at room temperature is sufficient to assemble a broad range of 

octahedrally coordinated metal- [2] rotaxanes, in excellent yields. The reactions have few, 

if any, byproducts and proceed under thermodynamic control in the absence of a catalyst 

or any other external reagents. 

2.2. Introduction 

Within the success of coordination chemistry its application to the synthesis of 

mechanically interlocked molecular architectures plays a key role. The pioneer in the 

development of this field, J. P. Sauvage used copper(I) to exploit the '3D' nature of 
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tetrahedral metal complexes to provide the first template directed synthesis of catenanes 

(Figure 1). Organizing appropriately derivatised phenanthroline ligands about Cu(I), a 

[2]catenate was synthesised in 27 % yield with the two-turn approach , 7  while the ring-

turn approach yielded 42%.8  Subsequent studies using Grubbs' ring-closing  metathesis 

(RCM)9  moved the ring closure reaction to a much greater distance boosting yields to 

near quantitative levels.' 0  

HO 

1:l5 

OH 

HO
2  

Figure 1 Sauvage tetrahedral Cu(I) based template complex. 

Through clever modifications of this template system, the Sauvage group and others 

have accumulated a remarkable display of interlocked molecular architectures, including 

[n]catenates (n=2-8) of varying complexity, cateriands (the demetalated, but still 

interlocked ligands), 12  rotaxanes,' 3  pseudo-rotaxanes,' 4  and knots.' 5  

In these, as well as in many other important developments, the required geometric 

control is granted by the appropriate design and use of a highly effective molecular turn-

While the clever use of a single metal/ligand anchor/turn pair have proved very powerful 

to deliver different templates and topologically distinct products, so far only few distinct 

types of true templates for interlocked structures are available. It seems evident that the 

expansion to new arrays of templates would supply the synthetic chemists with a whole 

new tool box. 
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Some work has been done using octahedral metal ions to template syntheses, but those 

systems have not yet been so fully exploited. Pioneering work in this regard has been 

carried out by SchrOder etal.,16  and others,' 7  and two octahedral catenates"' (and two 

knots20 ' 21 ) have been described. Sauvage synthesised a [2]catenate based on octahedral 

Ru" utilizing a 5,5'-disubstituted terpy ligand 22  reproducing through the geometry of the 

two tridentate chelates about an octahedral metal atom anchor, an orthogonal chelation 

similar to the one obtained with the two bidentate ligands about tetrahedral copper(I). In 

1998 Busch et al." designed and synthesised a new family of tridentate Schiff base 

ligands derived from 2,6-dicarbonyl pyridines and para-substituted aniines for use in 

octahedral molecular templates (Figure 2). 17  These systems offered the advantages that 

syntheses of the ligands and these complexes are straightforward, giving high yields in 

simple, one-pot reactions; besides reactions and structural variations are easily 

accomplished. 

RI.. 	 _RI 
N 	 N 

N 
R2 	

I 

R2 	RI 

nRI _N'  R2 

N 
- 

M :-N 

RI 	 N 	R2 
R2 	RI 

Figure 2: Busch's 2,6-dicarbonyl pyridines and para-substituted anilines for use in 
octahedral molecular templates. 

As Busch shrewdly anticipated '24  his work stimulated further work: Leigh et al. in 2001 

reported the synthesis of a [2]catenate inspired by the very same tridentate Schiff base 

ligands. 25  Being very familiar with interlocked architectures based on hydrogen bonds 

(Figure 3), whereby the dynamic properties are tunable in a continuous range, 26,27 
 

Leigh sought a route to catenates and rotaxanes characterized by a different type of 

dynamics. These systems should have been of a size and shape compatible and 

interchangeable in molecular devices with benzylic amide catenanes assembled by 

54 



Chapter Two 

hydrogen bonds and coordination chemistry offered the most appealing approach In 

fact, with metal templates the strong coordination bonds present in catenates and 

rotaxanes lock the macrocyclic components in fixed positions but, upon removal of the 

metal, the rings rotate with virtually complete and uncontrolled freedom. 

EL 

0 

0  OLH\~-  

Figure 3: H-bond catenanes 

Relating to the basic architecture of benzylic amide macrocycles frequently used , 28  the 

ligand designed for metal ion chelation (Figure 4) presented a rigid framework: the 

benzylic bis(2,6-diiminopyridine) moiety provided three coordination sites on a N 3  Mer 

conformation and represented a convenient spacer to hold the aromatic rings in a parallel 

arrangement at a distance ideal for stacking with an orthogonally bound guest. Unlike 

the diphenylphenanthro line unit that allows a 120° turn, the 1,3-linked benzylic motif 

guaranteed a complete 1800  turn for each fragment holding the endgroups in positions 

that encourage intracomponent rather than intercomponent cyclizations. The importance 

of these structural features for promoting catenate formation was exemplified by a recent 

study which showed that it is not possible to produce octahedral catenates from terpy 

ligands which were not well preorganized for intracomponent cyclization . 29  
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I--0,ll 
3 

Figure 4: Ligand design for Octahedral Coordination. 

Remarkably, the catenates (Figure 5) were obtained both via ring closing metathesis 

through the reaction of the a-olefins as well as via in situ assembling of the bis-amine 

with 2,6-pyridinedicarbaldehyde around the metal. In the latter case, the driving force 

enabling this elegant procedure is the reversible formation of four imine bonds from five 

components to satisfy the desired octahedral coordination geometry. 

I . . 
1x2 

I 
[rLI ](X)2 

 

Figure 5: Catenates by orthogonal ization of coordinated ligands about metal (M) 
templates with octahedral coordination preference. M: Mn 2 , Fe 2+ '  CO2+ , Ni 2 , Cu 2 , 

Zn2 , Cd 2 +, H g 2 +. 
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This route was thought to be extendable to the synthesis of other metal-based interlocked 

architectures such as rotaxanes, shuttles, and knots: when I joined the Leigh group in the 

October 2001 the synthesis of rotaxanes based on this kind of chemistry was my first 

task. 

2.3. Results and Discussion 

As illustrated above, catenanes have previously been synthesized around octahedral 

metal templates by employing macrocycles containing tridentate 2,6-diiminopyridine 

chelating units. 25  This system is not well-suited to forming rotaxanes, however, because 

thread-thread-metal and macrocycle-macrocycle-metal (catenate) complexes can form in 

competition with the desired thread-macrocycle-metal assembly. Replacement of the 

macrocycle imine ligand set by non-labile amine groups removes the possibility of 

forming catenates and introduces a structural asymmetry that can potentially be tailored 

to favour rotaxane formation under dynamic exchange conditions.30 
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Ns 	 Ns 

CN 	
HN 	 NH 

OH 

NH 

~N- 
HN 

iv,v 	

II 	ILl -------- 	 J 

2x 
M(Cl04 .nH 20 

CH2Cl2/CH3CN (2:5), it, 24 h 

(CIO4 ) 

Scheme 1: Five component self-assembly of octahedral metal(II) rotaxanes, 
[M(L1L2)](C104 ) 2 . Reagents and conditions: i. 1,10-dibromodecane, K2CO3, Nal, 
butanone, refiux, 18 h, 83%, ii. L1AIH4, ThF, 0-60 °C, 3 h, 92%, iii. 2-
nitrobenzenesulfonyl chloride (NsCI), NEt 3, CH 202, 18 h, 93%,  iv. 2,6-
dibromomethylpyndine, K 2CO3, butanone, reflux, 18 h, 67%, v. mercaptoacetic 
acid, LiOH, DMF, 24 h, 80%. 

After exploring several unsuccessful designs, we investigated the chemistry of 

macrocycle Li, which is prepared on a multigram scale in five steps from readily 

available materials (Scheme 1). The key step to Li is the macrocyclization of a bis-2-

nitrobenzeriesulfonamide (NsNH) derivative with 2,6-dibromomethylpyridine to give 

the protected macrocycle in 67% yield. Cyclization of the analogous Boc-protected 

diamine proceeded in low yield (<20%) and routes based on ring closing olefin 
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metathesis to form the C, 0  chain also proved uncompetitive. The use of aniline, rather 

than benzylamine, in the thread was designed to destabilize the dithread-metal complex 

with respect to the desired interlocked structure (vide infra). 

Octahedral metal-rotaxane formation (Scheme 1) was achieved by sequential treatment 

of Li with Zn(C104)2.6H20 (0.8 equiv.), 2,6-diformylpyridine (1 equiv.) and (p-

aminophenyl)tris(p-ieri-butylphenyl)methane (2 equiv.). Remarkably, after 24 h at RT 

no metal-containing species other than the zinc(II)[2]rotaxane was evident by either 'H 

NUR or electrospray mass spectrometry and the pure [Zn(L1L2)](C1042 rotaxane was 

isolated in 92% yield by simply washing the crude product with diethyl ether. The 

generality of the reaction was explored using divalent metal ions both across and down 

the periodic table with respect to zinc (i.e. Mn4—Zn and Zn—*Hg). Pleasingly, each of 

[M(L1L2)](C104)2 (M = Mn", Co", Ni", Cu", Cd 11, Hg") could be efficiently prepared 

using the procedure in isolated yields ranging from 73 to 99% (Scheme i). In all cases 

no other metal-containing  species could be detected' after 24 h, suggesting near-

quantitative formation of the interlocked metal-rotaxane complex. Formation of 

[Fe(L1L2)](Cl0 4)2  required a longer reaction time and gentle heating (CF1 2C12/CH3CN, 

N2, 40 °C, 2 weeks) and resulted in a lower yield of rotaxane (57%). The sluggish 

reaction rate is characteristic of the slow ligand exchange rate of low spin d 6  metals, but 

a potentially useful feature of the slower dynamics is that Fe" therefore locks the 

rotaxane architecture in a particularly kinetically stable form. 
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Figure 6: 'H NMR spectra (400 MHz, CD 3CN, 298 K) of (a) macrocycle Li (b) 
zinc(II) rotaxane [Zn(L1L2)](C10 4 ) 2  (C) demetallated, reduced, rotaxane L1H4L2. 

The non-paramagnetic metal-rotaxane complexes all possess similar 1 H NMR spectra; 

those of the zinc(11) rotaxane [Zn(L1L2)](C10 4 )2  and macrocycle Li are shown in 

Figure 6.32  The shielding of the I-Ic and HD protons of the benzyl rings of the macrocycle 

and several protons of the thread indicate that extensive intercomponent 7r-stacking 

occurs in solution. Single crystals of [Cd(L1L2)J(C10 4) 2  suitable for investigation by X-

ray crystallography were obtained by slow vapor diffusion of diethyl ether into a 

solution of the rotaxane in acetonitrile. 33  The crystal structure (Figure 7) confirms the 

interlocked molecular architecture, the (pseudo-) octahedral geometry of the cadmium(u) 

10111 



Chapter Two 

ion, and shows 7t-stacking of both macrocycle benzyl rings with the pyridyl unit and an 

imine group of the thread. 

Figure 7: X-Ray crystal structure of [ Cd(LlL2)] (CI04)2  . [" I Carbon atoms of the 
macrocycle, Li, are shown in light blue and those of the thread, 12, in yellow; 
oxygen atoms are red, nitrogen dark blue, chlorine green and cadmium grey. 
Hydrogen atoms and a molecule of acetonitrile are omitted for clarity. Selected bond 

lengths [A]: Cd-N2 2.40, Cd-N5 2.30, Cd-Nil 2•40L Cd-N44 2.52, Cd-N47 2.26, Cd-
N53 2.38; other selected interatomic distances [A]: N2-N11 4.52, N5-N47 4.52, 
N44-N53 4.59; ligand bite angles [0]: N2-Cd-N11 141.5, N44-Cd-N53 139.2. 

The mechanism of the rotaxane-forming reaction provides insight into the reasons for 

the effectiveness of the ligand assembly. When Li is treated with Zn(C10 4)2.6H20 

(CH2C12/C1-I 3CN, ii) followed by the preformed thread, L2, electrospray mass 

spectrometry shows that within 10 minutes the thread has extracted the zinc(u) ion from 

the macrocycle to form the dithread complex, [Zn(L2)21(Cl042 in >95% yield (Scheme 

2). The [Zn(L2)2](C104)2 species is then quantitatively converted to the rotaxane 

[Zn(LiL2)](C10 4)2  over 24 h. 34  Whilst the reversible nature of imine bond formation 

accounts for the dynamics of the system, the reasons for the rotaxane-metal complex 

being the thermodynamic product rather than the dithread-metal complex are 

61 



Chapter Two 

	

N1 	 N 
NH 	HN 	rc42.120 	Hu_ 2 	r 

icJ 	
MCH 	 8 	S 

C 

I-I 

T (004)2 

NH 

CI04)2 

NO 

.. N2wrA 0y 	 - \ 	1. N.BH ///// 
N.2EDTA 

(N 
H 	I*I 	L 

HN 

Scheme 2: Mechanism of formation and reactivity of [Zn(L1L2)](Cl0 4) 2 . Rapid 
formation of Zn(L2) 2  is followed by quantitative conversion to Zn(L1L2) under 
thermodynamic control. Demetallation of the rotaxane using Na 2EDTA occurs both 
with (b) and without (a) prior reduction of the imine groups. 

rather more subtle. In fact imine donors often form stronger coordination bonds than the 

corresponding amines, 35  which led to dithread-metal complexes being 

LIH4  - 
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thermodynamically favoured in other ligand systems we investigated. However, the use 

of aniline rather than, say, benzylamine groups in the thread does not allow geometries 

where the dithread-metal complex can form favourable intercomponent it-stacking 

interactions, such as those observed in the rotaxane between the benzyl groups of the 

macrocycle and the extended it-system of the thread in both solution (NMR) and the 

solid state (X-ray). We believe these favourable secondary interactions are important for 

the thermodynamic stability of the rotaxane over the other possible products of the 

reaction. 

The 2,6-diminopyridyl motif imparts high kinetic stability in metal-coordinated 

interlocked structures. Tetra-imine metal(n) catenates are not demetallated by Na 2EDTA, 

requiring reduction to the more labile tetra-amine catenates in order for the metal to be 

extracted .7  The [M(L1L2)](C104)2 rotaxanes, which contain a combination of imme and 

amine donors, do react with excess Na 2EDTA under heating (10 equiv., CH3CNIMeOH, 

60 °C, 0.5 h) to remove the metal. However, without the stabilization provided by metal 

coordination the rotaxane decomposes through imine bond exchange and only free 

macrocycle and thread are observed experimentally (Scheme 2, path a). If the rotaxane 

imine bonds are reduced beforehand ([Zn(L1L2)](Cl0 4)2, 10 eq. NaBH4, 

CH3CNIMeOH, A, 1.5 h), however, treatment with Na 2EDTA (10 equiv., 

CH3CNIMeOH, 60 °C, 0.5 h) gives the demetallated, reduced, rotaxane L1H4L2 (88% 

yield) with no evidence of dethreading (Scheme 2, path b). The 1 H NMR of L1H4L2 is 

shown in Figure 6c. The downfield shift in the resonances of the benzyl groups with 

respect to [Zn(L1L2)](C1042 indicates that it-stacking with the thread is less 

pronounced in the demetallated rotaxane where there are no coordination bonds to 

organize the geometry of the components. 
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2.4. Conclusions 

The field of supramolecular chemistry is growing at incredible pace leading rapidly to 

the development of machines at the molecular level. The world of catalysis is already 

being affected and, in the long run, could be revolutionized by the wide array of 

structures that this chemistry can afford. Coordination chemistry is playing a major role 

in the metal-directed synthesis of superstructures and we believe its involvement will be 

even greater in the improvement and implementation of catalytic systems. 

This project was aimed at improve our understanding of metal-directed synthesis of 

supramolecular interlocked architectures. 

During these months of research we have discovered a general ligand system for the 

efficient assembly of [2]rotaxanes around octahedral metal ions. The five component 

self-assembly reaction produces rotaxanes under true thermodynamic control in 

excellent yields without the need for large excesses of reagents, subsequent 

derivatization to stabilize the rotaxane architecture, chromatography or any other 

complicated purification processes. The system is remarkable in terms of its simplicity 

and expands both the range and geometry of metal ions that can be encapsulated within 

a rotaxane architecture. The procedure can be applied to a variety of divalent metals. 

This represents a step ahead in expanding the field of interlocked molecules to higher 

oxidation state transition metals. Besides, this is the first example of rotaxanes 

templated around a metal under thermodynamic control. 

The ligand system utilized suggests application of further significance as it can be used, 

in slightly functionalized fbrrns as catalyst for ethylene polymerization. 
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2.5. Experimental Section 

2.5.1. General 

Unless stated otherwise, all reagents and anhydrous solvents were purchased from 

Aldrich Chemicals and used without further purification. 2,6-Diformylpyridme and 

(p-aminophenyl)tris(p-tert-butylphenyl)methane were prepared according to literature 

procedures. Th 36  Column chromatography was carried out using Kiesegel C60 (Merck, 

Germany) as the stationary phase, and TLC was performed on precoated silica gel plates 

(0.25 mm thick, 60F25 , Merck, Germany) and observed under UV light. 

All 'H and ' 3C NMR spectra were recorded on a Bruker AV 400 instrument at 25 C. 

Chemical shifts are reported in parts per million from low to high field and referenced to 

Th4S. Coupling  constants (J) are reported in Hertz. Standard abbreviations indicating 

multiplicity were used as follows: hr = broad, d = doublet, q = quadruplet, t = triplet, s = 

singlet. All melting points were determined using a Sanyo Gallenkamp apparatus and are 

reported uncorrected. ES! mass spectroscopy was performed with a Micromass Platform 

II Mass Spectrometer controlled using Masslynx v2.3 software while FAB mass 

spectroscopy and elemental analysis were carried out by the services at the University of 

Edinburgh. 

65 



Chapter Two 

I ,1O-decoxybis(4-benzonitrile) 

C24 H28N202  
Mol. Wt.: 376.5 

4-Hydroxybenzonitrile (20.0 g, 168 mmol), potassium carbonate (209 g, 1.51 mol), 

1,10-dibromodecane (25.2 g, 84.0 mmol) and sodium iodide (0.20 g, 1.30 mmol) were 

refluxed in butanone (500 L) under an Ar atmosphere for 18 h. Upon cooling the 

mixture was filtered, and the solvent removed in vacuo. The crude residue was 

dissolved in dichloromethane (50 mL) and filtered before methanol (300 mL) was added 

to induce precipitation. The precipitate was filtered off, washed with methanol and dried 

in air to yield the title compound as a colourless solid (26.2 g, yield = 83%). m.p. 126.2-

127.5 °C; 'H NMR (400 MHz, CDC13, 293K): 61.37 (bs, 811; alkyl-H), 1.49 (in, 4H; 

alkyl-H), 1.84 (m, 4H; OCH2CIj), 4.03 (t, J=6.5 Hz, 4H; OCH2), 6.96 (d, J8.9 Hz, 411, 

ArH), 7.60 (d, J=8.9 Hz, 4H; AM); ' 3C NMR (100 MHz, CDC1 3, 293K): 6=26.3, 29.4, 

29.7, 29.8, 68.8, 104.1, 115.6, 119.7, 134.4; ESI-MS: m/z = 377 [MH]; Anal. calcd. for 

C24F128N202 (376): C, 76.60%; H, 7.45%; N, 7.45%. Found: C, 76.46%; H, 7.43%; N, 

7.22%. 
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1,1 O-decoxybis(4-benzylamine) 

H2N 	I 
NH2  

0 

C24HN2O2  
Mol. Wt: 384.6 

To a I mol dm-' tetrahydrofuran solution of lithium aluminium hydride (200 mL, 200 

mmol) under an atmosphere of argon at 0 °C, was added dropwise 1,1 0-decoxybis(4-

benzonitrile) (12.5 g, 33.3 mmol) in anhydrous tetrahydrofuran (400 mL). Upon 

warming to room temperature, the solution was refluxed for 3 Ii Once cool, the solution 

was cautiously quenched by dropwise addition of water (5.6 mL), 15% aq. NaOH 

solution (5.6 mL) and water (16.8 mL). The aluminium salts were filtered off and the 

solvent removed under reduced pressure to yield the title compound as a colourless solid 

(11.8 g, yield = 92%). m.p. 101.8-104.8 °C; 'H NMR (400 MHz, CDC13, 298K): 5 

=1.37 (bs, 8H; alkyl-H), 1.51 (m, 411; alkyl-H), 1.81 (m, 4H; OCH2CH2),  3.83 (s, 4H; 

ArCjNH2), 3.98 (t, J=65 Hz, 4H; OCH2), 6.90 (d, J8.9 Hz, 4H; ArH), 7.24 (d, J8.9 

Hz, 4H; ArH); ' 3C NMR (100 MHz CDCI3, 298K): 6=26.0,29.3,29.4, 29.5, 45.9,68.0, 

114.5, 128.2, 135.3, 158.0; ESI-MS: m/z = 385 [MH] ; Anal. calcd. for C2 4H36N202 

(384): C, 75.001/o; H, 9.37%; N, 7.29%. Found: C, 75.07%; H, 9.41%; N, 6.96%. 
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N,N'-d i-2-nitrobenzenesulfonyl 11,1 O-decoxybis(4-benzylamine)1 

0 	0 0 

NH 	NH 
I 	I 

0 0--S=O O=S=O 0 

0 	 Iirr 
CH42N40 1 0S2 
Mol. Wt.: 754.9 

To 1,10-decoxybis(4-benzylamine) (11.5g. 29.9 mmol) in chloroform (500 mL) was 

added triethylamine (9.28 mL, 65.9 mmol) and 2-nitrobenznesulfonyl chloride (13.3 g, 

60.0 mmol). The solution was stirred at room temperature under an atmosphere of 

nitrogen for 18 h. The resulting precipitate was filtered off and dried in air to yield the 

title compound as a pale yellow solid (22.6 g, yield = 93%). m.p. 180.0-181.4 °C. 'H 

NMR (400 MHz, CDCI3, 298K): 6 = 1.32 (bs, 4H; alkyl-H), 1.56 (bs, 8H; alkyl-H), 1.74 

(m, 4H; OCH2CFL2), 3.89 (t, J=6.8 Hz, 4H; OCH2), 4.23 (d, J6.3 Hz, 4H; CN}iNs), 

5.61 (t, J=6.3Hz, CH2NIINs), 6.73 (d, J8.6 Hz, 4H; ArH), 7.10 (d, J=8.6 Hz, 4H; 

ArH), 7.67 (m, 4H; Ns-ArH), 7.82 ( m, 2H; Ns-ArH), 8.03 (m, 2H; Ns-ArH). 13C NMR 

(100 MHz CDCI3, 298K): ö = 26.0, 29.1, 29.3, 29.4, 47.4, 68.0, 114.6, 125.2, 127.3, 

129.2, 131.1, 132.6 133.3, 136.1, 138.8, 157.8. ESI-MS: m/z =772[MNH4]; 
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N,N'-2,6-dhnethylpyridyl-N,N'- d i-2-nitrobenzenesulfonyl 1(1,1 O-decoxybis(4- 

benzylamine)I 

OSNP O

A   Y  N 
nol  ' N 

 O 
CH47N5010S2 
Mol. W.: 856.0 

N,N' -di-2-nitrobenzenesu lfonyl [1,1 0-decoxybis(4-benzylamine)] (3.15 g, 4.18 mmol), 

2,6-dimethyibromopyridine (1.11 g, 4.19 mmol) and potassium carbonate (75 g, 0.54 

mol) were heated to reflux in butanone (2 L) under nitrogen for 24 h. The excess 

potassium carbonate was filtered off and the solvent removed under reduced pressure. 

The crude residue was purified by column chromatography (CH2Ch/EtOAc 50:1) to 

yield the title compound as an off-white solid (2.42 g, yield = 68%). nip. 181.9-184.2 

°C. 'H NUR (400 MHz, CDCI3, 298K): ö = 1.30 (bs, 8H; alkyl-H), 1.40 (m, 4H; alkyl-

H), 1.70 (m, 4H; OCH2CF2), 3.88 (t, J6.3 Liz, 4H; OCH2),  4.39 (s, 4H; CthNNs),  4.41 

(s, 4H; CNNs), 6.70 (d, J8.6 Hz, 4H; AM), 6.97 (d, J=8.6 Hz, 4H, AM), 7.07 (d, 

J=7.8 Hz, 211; pyridyl-H), 7.46 (t, J=7.8 Hz, IH; pyridyl-H), 7.6-7.74 (m, 6H; Ns-ArH), 

8.00 (m, 2H; Ns-ArH); NMR (100 MHz CDCI3, 298K): ô = 25.1, 27.7, 28.0, 28.4, 50.9, 

51.5, 67.6, 114.6, 121.0, 124.2, 126.4, 130.2, 131.0, 131.8, 133.6, 133.9, 137.3, 147.9, 

155.5,158.8; ESI-MS: m/z = 858 [M]. 
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N,N'-2,6-dimethylpyndyl[( 1 ,1O -decoxybis(4 -benzyLamine)J Li 

HH9 

,T,,N:~ 
C31 1-1 41  N302 

Mol. ft.: 487.7 

To 	N,N'2,6dimethylpyridy1-N,N'-di-2-nitrobeflzefleSUlfOflYl 	[(1,1 0-decoxybis(4- 

benzylamine)] (2.42 g, 2.82 mmol) in dimethylformamide (20 mL) was added lithium 

hydroxide (2.36 g, 56.1 mmol) and mercaptoacetic acid (1.93 mL, 27.7 mmol). The 

reaction was stirred for 18 h at room temperature. The solvent was removed under 

reduced pressure and the resulting residue partitioned between ethylacetate (50 mL) and 

saturated sodium bicarbonate solution (50 niL). The organic layer was separated and 

washed with further sodium bicarbonate solution (5x50 mL). The organic solution was 

then dried over sodium sulphate, filtered and the solvent removed under reduced 

pressure. The crude residue was purified using column chromatography 

(CHCI3/MeOHTNH40H 90:9.75:0.25) to leave the title compound as a colourless oil. A 

colourless solid was obtained by adding water to a methanolic solution of the title 

compound (1.21 g, yield = 88%). m.p. 67.4-69.7 °C; 'H NMR (400 MHz, CDC13, 

298K): 5=1.33 (bs, 411; alkyl-CH2), 1.46 (in, 4H; alkyl-CH2), 1.76 (m, 4H; alkyl-CH2), 

2.32 (m, 4H; OCH2Cth), 3.76 (s, 4H; ArCH2N! -1), 3.88 (s, 411; Pyridyl-CH2N11), 3.95 (t, 

.16.3 Hz, 4H; OC), 6.81 (ci, J8.5 Hz, 4H; AM), 7.16 (d, J7.5 Hz, 2H; Pyridyl-H), 

7.20 (d, J=8.5 Hz, 4H; AM), 7.59 (t, J7.5 Hz, 1H; Pyridyl-H); ' 3C NMR (100 MHz, 

CDCI3, 298K): 625.9, 28.4, 28.9, 29.0, 53.5, 54.6, 67.9, 114.9, 121.0, 129.9, 132.3, 
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137.2, 158.6, 159.4; ESI-MS: m/z = 488 [M1-Ij. Anal. calcd. for C3 1 H4 N302 (487): C, 

76.35%; H, 8.47%; N, 8.62%; Found: C, 76.43%; H, 8.49%; N, 8.52%. 

2,6-Diformylpyridine 

C7 H 5 NO2  
M0LVVL: 135.1 

This compound was prepared as described in A. L. Vance, N. W. Alcock, J. A. Heppert, 

D. H. Busch, Inorg.. Chem, 1998, 37, 6912 - 6920 and showed identical spectroscopical 

data to those reported therein 

4-[Tns-(4-lert-butyl-phenyl)-methyl]-pheflOI 

C37H440 
MoI.\M.: 504.7 

This compound was prepared as described in H. W. Gibson, S. H. Lee, P. T. Engen, P. 

Lecavalier, J. Sze, Y. X. Shen, MI. Bheda, J. Org . Chem, 1993, 58, 3748 - 3756 and 

showed identical spectroscopical data to those reported therein. 
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FN,N'-2,6-d imethylpyridylbis( 1 ,1O-decoxy-4-benzylamine)I-[2,6- 

d iacetylpyridinebis ftp-iminophenyl)tris(p-tert-butylp henyl)methyllzinc(H) 

perchiorate IZn(L1L2)1(C104)2 

fl (d04)2 

C 1 12 H 132Cl2 N6O 10Zn 
Mol. Wt.: 1858.6 

 

Method 1:5 component self assembly 

To Li (0.200 g, 0.410 mmol) in acetonitrile (10 mL) was added zinc(n) perchiorate 

hexahydrate (0.127 g, 0.342 mmol) in acetonitrile (5 mL). After stirring at room 

temperature for 5 mm., 2,6-diformylpyridine (0.055 g, 0.410 mmol) in acetonitrile (10 

mL) was added. After a further 5 mm., (pammnophenyl)tris(ptertbutylphenyl)methane 

(0.413 g, 0.820 mmol) in dichloromethane (10 mL) was added, and the solution stirred-

at room temperature for 24 Ii The solvent was removed under reduced pressure, the 

crude residue dissolved in acetonitrile (30 mL), filtered and the solvent removed under 

reduced pressure. The crude residue was stirred in diethyl ether (30 mL), for 10 mm., 

filtered off and dried in air to give the title compound as a bright yellow solid (0.582 g, 
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yield--92%). Nip. 266 °C (dec). 'H NNW (400 MHz, CD 3CN, 298K): 6 = 1.32 (s, 54H; 

C(CH3)3), 1.48-1.68 (bm, 121-1; alkyl-11), 1.79 (m, 411; OCH2,C2), 3.84 (br, 4H; OCH2), 

4.06-4.55 (br, 8H; PyrCj2NF1CH2Ar), 6.29 (d, J=8.6 Hz, 4H; macrocycle ArH), 6.49 

(d, J=8.6 Hz, 4H; macrocycle AM), 6.96 (d, J8.6 Hz, 4H; thread AM), 7.16 (d, J8.6 

Hz, 1211; thread AM), 7.27 (d, J=8.6 Hz, 411; thread ArH), 7.37 (m, 141-I; thread ArH + 

macrocycle pyridyl-H), 7.65 (d, J=7.8 Hz, 2H; thread pyridyl-H), 7.96 (t, J=7.8 Hz, IH; 

macrocycle pyridyl-H), 8.11 (t, J=7.8 Hz, 111; thread pyridyl-H), 8.57 (s, 2H; thread 

HC=N); 13C NMR (100 MI-Iz, CDCI3, 298K): 5 = 25.6, 28.4, 28.5, 29.4, 31.5, 34.5, 

52.2, 55.3, 63.9, 67.4, 114.1, 120.8, 123.0, 124.1, 124.3, 124.6, 127.0, 128.5, 130.6, 

141.5, 141.9, 143.3, 143.4, 145.9, 148.9, 149.0, 155.0, 158.2, 158.7; IR (KBr pressed 

pellet): v = 3465, 2960, 2865, 1611, 1582, 1513, 1464, 1395, 1363, 1251, 1180, 1109, 

1089, 1017, 840, 823, 637, 625, 582 cm'; LRESI-MS: m/z = 829 [Zn(LIL2)] 2 , 1758 

[Zn(L1L2)](C104); HRFAB-MS (3-NOBA matrix): m/z = 1657.97065 (calcd. for 

' 2C,, 1 I 3CH 132N6O2MZn  [Zn(L1 L2)], 1657.97363). 

Method 2: From f2,6.diace1ypyridinebisf(p -iminophenyI)tris(p -Iert-

buiylphenyl)methylJ 

To Li (0.034 g, 0.0687 mmol) in acetonitrile (5 mL), was added zinc(ii) perchlorate 

hexahydrate (0.021 g, 0.0572 mmol) in acetonitrile (5 mL). After stirring at room 

temperature for 5 mm., L2 (0.076 g, 0.0687 mmol) in dichloromethane (5 mL) was 

added. The reaction was stirred at room temperature, being followed to completion by 

ESI-MS (ca. 48 h). The solvent was removed under reduced pressure, acetonitrile added 

(10 mL), and the solution filtered. The solvent was then removed and diethyl ether 

added to the crude residue. After stirring for 10 mm. the residue was filtered and dried 

in air to give the title compound as bright yellow solid (0.085 g, yield = 80%). Analysis 

same as for method 1. 
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Method 3: From Bisf2, 6-diaceyIpyridinebis((p-iminophenyI)triS(p-tert-

butylpheny!)melhylJzinc(u) Perchlorate fZn (L2) 2J(C104)2 

To an acetonitrile (5 mL) solution of [Zn(L2) 2](C104)2 (0.100 g, 0.404 mmol), was 

added Li (0.020 g, 0.0404 mmol) in dichloromethane (5 mL). The reaction was stirred 

at room temperature, being followed to completion by ESI-MS (ca. 48 h). The solvent 

was removed under reduced pressure, acetonitrile added (10 mL), and the solution 

filtered. The solvent was then removed and diethyl ether added to the crude residue. 

After stirring for 10 mm. the residue was filtered and dried in air to give the title 

compound as bright yellow solid (0.062 g, yield = 83%). Analysis same as for method 

1. 

[N,N'-2,6-dimethylpyridylbis( 1,1 O-decoxy-4-benzylamine)J-[2,6- 

d lacetylpyridinebis [(piminophenyl)tris(p-tert-butylpheflyl)methYl1CadmiUfl1(ll) 

perchiorate ICd(L1L2)1(C104)2 

Reaction of Li (0.150 g, 0.307 mmol), cadmium(n) perchlorate hydrate (0.076 g, 0.245 

mmol), 2,6-diformylpyridine (0.042 g, 0.307 mmol) and (p-aminophenyl)tris(p-tert-

butylphenyl)methane (0.309 g, 0.614 mmol) as described for the preparation of 

[Zn(L1L2)](Cl04)2, gave the title compound as a bright yellow solid (0.340 g, yield = 

73%). m.p. 254°C (dcc); 'H NMR (400 MHz, [136]acetone, 298K): ô = 1.31 (s, 54H; 

C(CH3)3), 1.45-1.70 (b, 12H; alkyl-H), 1.80 (bm, 4H; OCH2,CH2), 3.71- 4.49 (br, 1211; 

OCH2 + PyrCIN}ICH2As), 6.30 (d, J8.6 Hz, 411; macrocycle AM), 6.78 (d, J=8.6 

Hz, 4H; macrocycle AM), 7.12 (d, J8.6 Hz, 1211; thread AM), 7.28 (bin, 811; thread 

AM), 7.39 (d, 1=8.6 Hz, 12H; thread ArH), 7.44 (d, 17.8 Hz, 2H; macrocycle pyridyl-

H), 8.00 (t, J=7.8 Hz, IH; macrocycle pyridyl-H), 8.18 (bs, 21-1; thread pyridyl-H), 8.42 

(bs, 1H; thread pyridyl-H), 9.02(bs, 2H; thread HC=N); 13C NMR (100 MHz, CDCI3, 

298K): 625.7, 28.1, 28.2, 28.5, 31.3, 34.5, 51.9, 54.7, 63.9, 67.3, 113.7, 121.0, 123.5, 

124.0, 124.6, 127.9, 128.8, 130.6, 133.0, 141.1, 141.7, 142.7, 143.3, 144.4, 146.1, 148.8, 
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155.0, 158.2, 158.7; IR (KBr pressed pellet): v = 3465, 2960, 1611, 1583, 1514, 1463, 

1394, 1363, 1251, 1180, 822, 624, 592 cm'; LRES1-MS: m/z = 853 [Cd(L1L2)] 24 , 1806 

[Cd(L1L2)](C104) - . I-IRFAB-MS (3-NOBA matrix): m/z = 1707.94303 (calcd. for 

12C11 ,' 3CH, 32N6O2114Cd [Cd(L1L2)], 1707.94813). 

N,N'2,6-dimethyIpyridyIbis( 1,1 O-decoxy-4-benzylamine)I-12,6- 

diacetylpyridinebis piminopheflyI)trS(PtertbUtYIPheflYI)meth1YhI mercury(n) 

perchiorate [Hg(L1L2)(C1O 4 )2  

Reaction of Li (0.150 g, 0.307 mmol), mercury(n) perchiorate hydrate (0.098 g, 0.242 

mmol), 2,6-diformylpyridine (0.042 g, 0.307 mmol) and (p-aminophenyl)tris(p-terl-

butylphenyl)methane (0.310 g, 0.614 mmol) as described for the preparation of 

[Zn(L1L2)](C104)2, gave the title compound as a bright yellow solid (0.378 g, yield = 

79%). Mlp. 244 °C (dec). 'H NMR (400 MHz, CD3CN, 298K): 6 = 1.30 (s, 54H; 

C(CH3)3), 1.41 (bs, 811; alkyl-H), 1.55 (4H, m; Alkyl-H), 1.75 (4H, m; alkyl-H), 3.67 (t, 

J6.6 Hz, 4H; OCH2), 3.94 (br, 8H; ArCthNHCH2Py), 6.06 (d, J=8.6 Hz, 414; 

macrocycle ArH), 6.44 (d, J8.6 Hz, 4H; macrocycle ArH), 6.92 (d, J=8.6 Hz, 4H; 

thread AM), 7.19 (d, J=8.6 Hz, 12H; thread AM), 7.25 (d, J=8.6 Hz., 4H; thread Aril), 

7.38 (m, 141-1; thread ArH + macrocycle pyridyl-H), 7.93 (t, J7.8 Hz, 1H; macrocycle 

pyridyl-H), 8.06 (d, J=7.8 Hz, 2H; thread pyridyl-H), 8.43 (t, J=7.8 Hz, IH; thread 

pyridyl-H), 8.66 (s, 2H; N=CH). 'C NrVIIR (100 MHz, CD3CN, 298K): ö = 25.1, 27.9, 

28.1, 28.3, 30.4, 33.9, 50.4, 53.9, 63.5, 67.4, 113.5, 121.1, 124.2, 124.7, 128.1, 128.5, 

130.0, 130.4, 131.7, 132.4, 141.1, 142.9, 143.6, 145.4, 146.2, 148.8, 149.1, 153.5, 158.5. 

IR (KBr pressed pellet): v = 3466, 2961, 2861, 1611, 1583, 1513, 1461, 1394, 1363, 

1252, 1179, 1121, 1108, 1018, 842, 823, 637, 624, 594 cm -1 . LRESI-MS: m/z = 897 

[Hg(LiL2)] 2 , 1894 [Hg(LIL2)](Cl04). HRFAB-MS (3-NOBA matrix): m/z = 

1796.01909 (calcd. for 12C11, ' 3CH,32N6O2202Hg [Hg(L1 L2)], 1796.01517). 
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N,N'2,6-dimethyIpyridy1bis( 1,1 O-decoxy-4-benzylamine)I-[2,6- 

d iacetylpyridmebis [(p-iminophenyl)tris(p-terl-butylpheflyl)methyll copper(n) 

perchiorate ICu(L 1 L2)J(C10 4)2  

Reaction of Li (0.150 g, 0.307 mmol), copper(ii) perchlorate hexahydrate (0.091 g, 

0.245 mmol), 2,6-diformylpyridine (0.042 g, 0.307 mmol) and (p-aminophenyl)tris(p-

tert-butylphenyl)methane (0.309 g, 0.614 mmol) as described for the preparation of 

[Zn(L1L2)](Cl04)2, gave the title compound as a green solid (0.398 g, yield = 87%). 

Mp. 260 °C (dec). IR (KBr pressed pellet): v = 3465, 2960, 1612, 1586, 1515, 1461, 

1394, 1363, 1253, 1181, 1121, 1108, 1017, 842, 822, 623, 583 cm 1 ; LRESI-MS: m/z 

828 [Cu(L1L2)12*, 1757 [Cu(LiL2)](Cl04) 4 . I-IRFAB-MS (3-NOBA matrix): m/z = 

1656.97501 (calcd. for 12C1 1 13CH 132N6O263Cu [Cu(L1L2)], 1656.97433). 

[N,N'-2,6-dimethylpyridylbis( i ,1O-decoxy-4-benzylamine)I-12,6- 

diacetylpyrid inebis RpiminophenyI)fris(p4ertbutyIpheny1)methYIIniCkeI(ll) 

perchiorate INi(Li L2)1(C104)2 

Reaction of Li (0.150 g, 0.308 mmol), nickel(u) perchlorate hexahydrate (0.088g. 0.242 

mmol), 2,6-diformylpyridine (0.042 g, 0.308 mmol) and (p-aminophenyl)tris(p-lert-

butylphenyl)methane (0.310 g, 0.616 mmol) as described for the preparation of 

[Zn(LiL2)](Cl04)2, gave the title compound as a reddish brown solid (0.423 g, yield = 

94%). m.p. 240°C (dec); IR (KBr pressed pellet): v = 3501, 2960, 2865, 1611, 1582, 

1515, 1461, 1394, 1363, 1253, 1181, 1108, 1017, 839, 822, 623, 586 cm 1 ; LRESI-MS: 

m/z = 826 [Ni(L1L2)] 2 , 1752 [Ni(LiL2)](Cl04). HRFAB-MS (3-NOBA matrix): rn'z 

= 1651.97955 (calcd. for 12C111 13CH 1 32N602 58Ni [Ni(L1L2)], 1651.97983). 
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[N,N'-2,6-dimethylpyridylbis( 1,1 O-decoxy-4-benzylamine)]-[2,6- 

d iacetylpyrid inebis[(p-iminophenyI)tris(p-tert-butylphenyl)methytcobalt(ii) 

perchlorate [Co(L1 L2)](C10 4 )2 

Reaction of LI (0.189 g, 0.387 mmol), cobalt(u) perchiorate hexahydrate (0.113 g, 0.310 

mmol), 2,6-diformylpyridine (0.052 g, 0.387 mmol) and (p-aminophenyl)tris(p-tert-

butylphenyl)methane (0.390 g, 0.774 mmol) as described for the preparation of 

[Zn(L1L2)](C10 4)2, gave the title compound as a pale brown solid (0.570 g, yield = 

99%). m.p. 257 °C (dec); IR (KBr pressed pellet): v =3501, 2960, 2865, 1611, 1581, 

1515, 1462, 1394, 1363, 1253, 1181, 1108, 1017, 841, 822, 623, 586 cm'; LRESI-MS: 

m/z = 827 [Co(LiL2)] 2 , 1753 [Co(L1L2)](Cl04) 1 . HIRFAB-MS (3-NOBA matrix): m/z 

= 1652.97916 (calcd. for ' 2C111 13CH132N6O259Co [Co(L1L2)], 1652.97773). 

[N,N'-2,6-dimethylpyridylbis( 1 ,1O-decoxy-4-benzylamine)]-[2,6- 

d lacetylpy rid inebis I(p-im inophenyl)tris(p-Iert-butylphenyl)methyl] iron(ii) 

perchlorate [Fe(L1L2)J(Cl04)2 

To Li (0.075 g, 0.154 mniol) in dichloromethane (10 mL) was added sequentially over 5 

mm. periods iron(n) perchiorate hexahydrate (0.033 g, 0.128 mmol) in acetonitrile (5 

mL), 2,6-diformylpyridine (0.021 g, 0.154 mmol) in acetonitrile (5 mL) and (p-

aminophenyl)tris(p-tert-butylphenyl)methane (0.155 g, 0.307 mmol) in dichloromethane 

(5 mL). The resulting solution was heated to reflux, under an atmosphere of nitrogen, 

for two weeks. Upon cooling, the solvent was removed under reduced pressure, the 

crude residue dissolved in acetonitrile (30 mL), filtered and the solvent removed under 

reduced pressure. The crude residue was stirred in diethyl ether (30 mL), for 10 mm., 

filtered off and dried in air to give the title compound as a dark purple solid (0.136 g, 

yield 57%). nip. 270 °C (dec); JR (KBr pressed pellet): cm'; 3470, 2960, 2864, 1612, 
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1560, 1512, 1458, 1400, 1364, 1253, 1180, 1109,1017,823,623; LR.ESI-MS: m1z=824 

[Fe(L 1 L2)12 . 

[N,N'-2,6-dimethylpyridylbis( 1,1 O-decoxy-4-benzylamine)J-[2,6- 

diacetylpy rid inebis I(p-iminopheny)tris(p4ert-butyIphenyI)methyIi manganese(n) 

perchiorate [Mn(L1L2)](C104)2 

Reaction of Li (0.150 g, 0.307 mmol), manganese(u) perchiorate hexahydrate (0.88 g, 

0.245 mmol), 2,6-diformylpyridine (0.042 g, 0.307 mmol) and (p-aminophenyl)tris(p-

tert-butylphenyl)methane (0.309 g, 0.614 mmol) as described for the preparation of 

[Zn(LIL2)](C10 4)2, gave the title compound as a tan coloured solid (0.376 g, yield 

83%). M.p. 259 °C (dcc); IR (KBr pressed pellet): v = 3465, 2959, 2864, 1611, 1581, 

1514, 1464, 1394, 1363, 1252, 1180, 1109, 1018, 823, 624, 585 cm 1 ; LRESI-MS: m/z 

824 [Mn(L1L2)] 2 , 1749 [Mn( L1L2)](C104)t HRFAB-MS (3-NOBA matrix): m/z = 

1648.98280 (caled. for 12C 111 13CH 1 32N60255Mn [Mn(L1L2)], 1648.98263). 
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Bis 12,6-diacetylpyridinebis I(p-iminophenyl)tris(i-Ieri-butylphenyl)methyllzinc(ii) 

perchiorate IZn(L2) 21(C1042  

] (CIO)2 

H- 

+%D 

C1 62 H 1 82Cl2 N6O8Zn 
Mol. Wt.: 2477.5 

To 2,6-diformylpyridine (0.020 g, 0.149 mmol) in acetonitrile (5 mL) was added zinc(u) 

perchlorate hexahydrate (0.028 g, 0.0745 mmol) in acetonitrile (5mL), and (p-

aminophenyl)tris(p-teii-butylphenyl)methane (0.150 g, 0.298 mmol) in dichioromethane 

(5 mL). The reaction was stirred at room temperature for 24 Ii The solvent was then 

removed under reduced pressure, re-dissolved in acetonitrile (5 mL) and filtered. The 

solvent was removed under reduced pressure and diethyl ether was added to the crude 

residue. After stirring for 10 mm, the residue was filtered off and dried in air to yield 

the title compound as a bright yellow solid (0.163 g, yield = 88%). 1H NMR (400 MHz, 

[136]acetone, 298K): (5= 1.27 (s, 108H; C(CH3)3), 6.77 (d, J=8.8 Hz, 8H; stopper ArH), 

7.02 (d, J=8.8 Hz, 8H; stopper AM), 7.05 (d, J=8.8 Hz, 24H; stopper ArH), 7.32 (d, 

J=8.8 Hz, 24H; stopper ArH), 8.36 (d, J=7.6 Hz, 4H, pyridyl-H), 8.49 (t, J7.6 Hz, 2H; 

pyridyl-H), 9.15 (s, 4H; CHN); ' 3C NMR (100 MHz, CDC13, 298K): 6 = 31.6, 34.9, 

644, 121.7, 122.9, 125.4, 131.2, 132.9, 143.6, 144.5, 146.1, 147.7, 149.4, 149.9, 159.7; 

LRESI-MS: m/z = 1139 [Zn(L2)2] 2 . 
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2,6-diacetylpyridinebis[(p-iminophenyl)tris(p-tert-butylphenyl)methyl L2 

11 

C81 H 91 N 3  
Mol. Wt.: 1106.6 

Method 1: From fZn(L2)21(Cl04)2 

To [Zn(L2)2](C104) 2  (0.150 g, 0.0605 mmol) in acetonitrile (10 ML) and methanol (20 

mL), was added EDTA, disodium salt (2.03 g, 6.05 mmol). The mixture was heated at 

60 °C for 1 hour. Upon cooling, the solvent was removed under reduced pressure and 

dichloromethane (30 mL) added to the residue. After stirring for 20 mm., the solid was 

filtered off, and the filtrate reduced to dryness under reduced pressure. Acetone (20 mL) 

was added to the crude residue, and the resulting precipitate filtered off, and dried in air 

to yield the title compound as a pale yellow solid (0.119 g, yield = 89%). 'H NMR (400 

MHz, CDC13, 298K): 5 = 1.32 (s, 54H; C(CH3 )3), 7.05 (d, J=8.6 Hz, 12H; AM), 7.17 (m, 

20H; AM), 7.84(t, J= 7.8 Hz, 111; pyridylH), 8.19 (d, J=7.8 Hz, 2H; pyridylH), 8.63 

(s, 2H; N=CH); ' 3C NMR (100 MFIz, CDCI3, 298K): ô = 31.4, 34.3, 62.1, 120.1, 122.9, 

123.1, 130.7, 132.1, 137.7, 143.8, 146.5, 148.0, 148.5, 154.7, 159.5; LRESI-MS: m/z = 

1123 [M]N1-L4 '. 

Method 2: From fZn (LJL2)J(C104)2 
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To [Zn(L1L2)](C10 4) 2  (0.100g. 0.0538 mmol) in acetonitrile(10 mL) and methanol (20 

mL), was added EDTA, disodium salt (1.81 g, 5.38 mmol). The mixture was heated at 

60 °C for 1 hour. Upon cooling, the solvent was removed under reduced pressure and 

dichloromethane (30 mL) added to the residue. After stirring for 20 mm., the solid was 

filtered off, and the filtrate reduced to dryness under reduced pressure. Acetone (20 mL) 

was added to the crude residue, and the resulting precipitate filtered off, and dried in air 

to yield the title compound as a pale yellow solid (0.045 g, yield = 76%). 

Characterisation as above. 

2,6-diacetylpyrid inebis I(p-ammo phenyl)tris(p.-lert-butylphenyl)methyl 111L2 

C8 1  H95N3 
M0LWt.: 1110.6 

To [Zn(L2)21(C104) 2 (0.150 g, 0.0605 mmol) in acetonitrile (10 mL) and methanol (20 

mL), was added sodium borohydride (0.046 g, 1.21 mniol). The resulting solution was 

refluxed for 2 hours. Upon cooling,  the solvent was removed under reduced pressure, 

and the residue dissolved in a mixture of dichloromethane (5 mL) and methanol (15 

mL). EDTA, disodium salt (2.03 g, 6.05 mmol) was added, and the mixture heated at 40 

°C for 1 hour. Upon cooling, the solvent was removed under reduced pressure and 
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dichloromethane (30 mL) added to the residue. After stirring for 20 mm., the solid was 

filtered off, and the filtrate reduced to dryness to yield the title compound as an off-

white solid (0. 116 g, yield = 87%). nip. 220 °C (dec). 'H NMR (400 M1-lz, CDC13, 

298K): ö = 1.31 (s, 541-1, C(CH3)3), 4.46 (s, 4H; pyridylCNH), 6.57 (d, J=8.6 Hz, 4H; 

ArH), 7.00 (d, J=8.6 Hz, 4H; ArH), 7.10 (d, J=8.6 Hz, 12H; ArH), 7.23 (ci, J=8.6 Hz, 

12H; AM), 7.26 (d, J=7.6 Hz, 2H, pyridyl-H), 7.63 (t, J=7.6 Hz, IH; pyridyl-H); 13 C 

NMR (100 MHz, CDC1 3, 298K): ô = 30.4, 33.2, 48.3, 61.9, 110.8, 119.0, 122.9, 129.7, 

131.1, 13 5.6, 136.4, 143.3, 1445, 147.1, 157.0; LRESI-MS: m/z= 1110 [M]H. 

[N,N'-2,6-dimethylpyridylbis( 1 ,1O-decoxy-4-benzylamine)]-2,6- 

d iacetylpyrid inebis I(p-aminophenyl)tris(p4ert-butylphenyl)methyll L 1H. 4L2 

C 112 H 136 N602  
Mol. Wt.: 1598.3 

To [Zn(L1L2)](C1042 (0.418g. 0.225 mmol) in dichloromethane (10 mL) and methanol 

(30 mL) was added sodium borohydride (0.085 g, 2.25 mmol). Once the initial 

effervescence had subsided the solution was heated to reflux for 2 h. Na2EDTA (0.837 
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g, 2.25 mmol) was then added and the mixture heated for a further 1.5 h. Upon cooling, 

the solvent was removed under reduced pressure and dichlomethane (20 mL) added to 

the residue. The solution was then filtered and the solvent removed under reduced 

pressure. The crude residue was recrystallised from methanol to yield the title 

compound as an off-white solid (0.317 g, yield = 88%). m.p. 145 °C (dec); 1 H NMR 

(400 M1-Lz, [136]acetone, 298K): 6 = 1.05 (br, 8H alkyl-H), 1.29 (br, 58H; C(CH 3)3  + 

alkyl-H), 1.58 (m, 4H; OCH2CII2),  3.68 (s, 4H; ArQjNHCH2Py), 3.70 (s, 4H; 

ArCH2NHCjPy), 3.73 (t, J=6.6 Hz, 4H; OCH2), 3.95 (s, 4H; PyCNHC6H4), 6.30 (d, 

J= 8.6 Hz, 4H; thread ArH), 6.44 (d, J= 8.6 Hz, 4H; macrocycle MR), 6.78 (ci, J7.8 

Hz, 2H; thread pyridyl-H), 6.89 (d, J= 8.6Hz, 4H; thread ArH), 6.93 (d, J= 8.6 Hz, 4H; 

macrocycle ArH), 7.16 (d, J= 8.6 Hz, 1211; thread ArH), 7.29 (m, 15H; thread ArH + 

thread pyridyl-H + macrocycle pyridyl-H), 7.64 (t, J=7.6 Hz, IH; macrocycle pyridyl-

H); 13C NMR (100 MHz, [D6]acetone, 298K): ô = 26.4, 29.3, 29.8, 29.9, 31.7, 34.8, 

49.7, 53.8, 54.4, 63.8, 67.6, 112.4, 115.0, 119.7, 120.9, 124.9, 130.1, 131.5, 132.2, 

132.9, 135.8, 137.8, 137.9, 145.8, 147.4, 148.8, 148.6, 159.7, 160.9; LRESI-MS: m/z = 

1598[MH]; HRFAB-MS (3-NOBA matrix): m/z = 1599.08047 (calcd. for 
12C ]  I 

3CH I 37NO2, [L1H4L2]144 , 1599.08366). 
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Chapter 3. Getting 
	

Harder: 	Synthesis 	of 	a 

[2]Catenate and a [ 2]Rotaxane with Trivalent 

Metal. 

3.1. Abstract 

Original synthetic procedures for preparing catenanes and rotaxanes are appearing in the 

current literature' with escalating frequency as a result of the attention  these 

mechanically interlocked molecules3  are receiving because of their rapidly growing 

potential as molecular switches for developing devices 4  and molecular machines 5 . 

Coordination chemistry has provided some elegant recognition motifs that produced a 

variety of interlocked molecular level architectures .6  Given the key role played by 

metal-directed synthesis in the assembly of superstructures it is essential for chemists to 

expand the arrays of metals and ligands available in this endeavour. Here, we report the 

template-directed  synthesis of a [2]catenate and a [2]rotaxane by a clipping approach 

around trivalent octahedral cobalt ions. Appropriately derivatised 2,6-dicarboxamide 

pyridine based ligands, once deprotonated, stabilise the trivalent oxidation state 

facilitating the entry into higher oxidation states of these metal ions. Along with the 

palladium four-coordinate square planar metal complex 7  and the divalent metal-directed 8  

synthesis of interlocked architectures recently developed in our group they broaden the 

series of mechanically interlocked ligands for common transition metal geometries 

started by Sauvage in 1983. In addition, unlike interlocked architectures prepared via 

metal temptation which, upon demetalation show no intercomponent recognition, the 

removal of the metal in these carboxamide systems results in a species which has the 

potential for hydrogen-bonding. 
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32. Introduction 

Along with their potential applications in area such as molecular recognition,' 

catalysis 10 " and material design, ' 2  the template directed synthesis of mechanically 

interlocked structures based on metal coordination chemistry has been one of the 

interesting aspects for which cation binding receptors have drawn much attention. The 

carboxamide [—C(0)NI-I-1 group, recurrent ubiquitously throughout nature in the 

primary structure of proteins, represents an important ligand construction unit. A 

number of reports have described the synthesis and study of systems whereby this 

moiety appears next to pyridine units delivering classes of multidentate ligands available 

from straightforward condensation reactions. 13  Pyridine carboxamide ligands have 

proven very versatile, being employed in asymmetric catalysis, 14  molecular receptors ,5 

dendrimer synthesis' 6  and platinum(I1) complexes with antitumour properties.13d 

Mascharak' 7  and others 18  in the past 10 years have developed several synthetic protocols 

to isolate discrete metal complexes of ligands with the tridentate pyridine-2,6-

dicarboxamide group. More specifically, the coordination chemistry of iron(HI) 
20. 21 

and cobaJt(ffl )22 2452( with nonmacrocyclic chelating ligands containing an amide 

functionality has been investigated. Through these studies it has become clear that the 

anionic nature of the deprotonated nitrogens of organic amides allows a significant 

stabilization of the trivalent oxidation state enabling therefore a facile entry into higher 

oxidation states of these metal ions. 22  

92 



Chapter Three 

2:1 complex. 	The crystal structure of pyridine-2,6-dicarboxylic acid 

bisbenzylamide(PDBA) is illustrated in Figure 2. 

Figure 2: X-ray crystal structure of Grossel's paddle-type complex, 

[(PDBA) 2Co(III)J K. 26  

In the previous chapter it was described how we moved from copper based mechanically 

interlocked molecular architectures built on tetrahedral geometry to catenate and 

rotaxanes where divalent metals are coordinated with an octahedral motif. Bearing in 

mind that the goal of this research was the expansion of this simple concept to different 

metal ions/ligand types, in this chapter it will be described how an octahedral trivalent 

metal ion and a 2,6-pyridine dicarboxamide motif were used to assemble interlocked 

architectures. 

3.3. Results and Discussion 

The ligand designed for the purpose of synthesising catenates and rotaxanes about a 

trivalent octahedral metal atom was an elegant combination of the system developed for 
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the imine-based interlocked architectures and the benzylic amide catenanes assembled 

by hydrogen bonds (Figure 3)27 

+2 	 - 

N 
 

NH 
	

I__> 

Figure 3: Ligand designed for catenates and rotaxanes about trivalent octahedral 
metals; combination of the benzyl imine-based interlocked architectures and the 
benzylic amide catenanes assembled by hydrogen bonds. 

The basic architecture of the benzylic amide macrocycles produced in our group was 

quite compatible with assembly processes of different nature. The rigid framework 

placed multiple donor groups so that they come together towards the centre of the cavity. 

The benzylic bis(2,6-dicarboxyamidepyridine) moiety, once deprotonated, provided 

three coordination sites on a N 3  Mer conformation which has been shown to stabilize 

metal higher oxidation states with an orthogonal chelation. It also represented a 

convenient spacer to hold the aromatic rings in a parallel arrangement at a distance ideal 

for stacking with an orthogonally bound guest and it grants a complete 1800  turn that 

promoted intracomponent over intercomponent cyclizations. Finally, the derivatization 

with the a-olefin, as devised for the imine-based catenate, enabled ring closing 

metathesis (RCM). 

As opposed to the rotaxane which required separate designs for the thread and the 

macrocycle, the catenate could be assembled from identical ligands: such symmetrical 

nature simplified the design conception and the synthetic implementation. For these 

reasons it was chosen as the first target. 
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3.3.1. Catenate and "Figure-of-eight" Syntheses 

The strategy devised for the catenate involves a synthesis via a clipping approach: two 

"u-shape" tridentate ligands coordinate orthogonally the metal centre and can then 

undergo a double macrocyclization to produce the catenate. Looking back at the ligand 

developed for the synthesis of the imine-based catenate - described in the previous 

chapter - replacement of the imines with amide groups produces a ligand suitable for the 

synthesis of interlocked architectures about a trivalent metal ion (Figure 4). 

r'~ 

Figure 4: Octahedral geometry and 
trivalent metal. 

coordination motif of ligands around a 

The 2,6-pyridine dicarboxamide ligand, H2L1, was conveniently prepared on a 

multigram scale in three steps from readily available materials (Scheme 1, a. - c.). 4-

Cyanophenol was reacted with 6-bromo-1-hexene under Williamson ether conditions to 

produce 5-hex-5'-enyloxybenzonitrile in 92% yield. Reduction of the nitrile group with 

lithium alluminium hydride generates the corresponding amine which was then reacted 

with 2,6-pyridinedicarbonyl chloride to give the "u-shape" ligand H 2LI in an overall 

yield of 86%. This ligand was then converted into the corresponding sodium salt, 

Na2L1, by treatment with sodium hydride in dimethylformamide in anaerobic conditions 

and directly reacted with a cobalt(H) hexahydrate. A colour change from blue to red 

was indicative of Co(U) coordination. The kinetically labile cobalt(H) sodium complex, 

[C0L1 2]Na2, undergoes air oxidation to the more inert cobalt(HI) complex, [C0L1 2]Na: 

a further colour change from red to green was observed upon reaction Finally, 
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displacement of the sodium ions is achieved by reaction with tetraphenyiphosphonium 

chloride, the precipitation of sodium chlorides out of solution being the driving force. 

The cobalt(ffl) tetraphenyiphosphonium complex, [L1 2C0}PP4 was isolated with an 

overall yield of 91% as a dark green solid (Scheme 1, d.).17r 
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çJb iN d >rb4 

[L1 2CoJ PPt4 

Scheme 1: Synthesis of ligand 1-1211.1 and formation of octahedral acyclic complex 
[L1 2C0]PPh 4 . Reagents and conditions: a) 6-Bromo-1-hexene, K2CO3,  Na!, 
butanone, reflux, 18 h, 92%, b) LiAIH 4 , ThF, 0-60 OC, 3 h, 94%, c) 2,6-
pyridinedicarbonyl chloride, NEt 3 , CH 2Cl 2 , reflux, 18 h, 91%, d) i. NaH, DMF, 20 mm, 
ii. CoCl 2 .61-1 20, DMF, 10 mm, iii. Air, 30 mm, 91%, iv. PPh 4CI, CH 2Cl 2 . 

Both FAB mass spectrometry (m/ 1138, [HL12Co]) and 'H NMIR confirm that the 

ligand is coordinated to the metal in the deprotonated form. 'H NMR spectra of free 

ligand H2L1 and [L1 2CoJ PPh4  are shown in Figure 5. Comparison between the two 

clearly points to metal coordination: the amide protons, H, are absent and the pyridine 

resonances, HA and HB, switch positions. The doublets due to the benzylic protons of 

both ligands, HD, present an upfield shift of almost 1. 5ppm and are changed into 

singlets. Shielding of the benzylic aromatic rings (HE and HF) is indicative of it-stacking 
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due to the entwined architecture, as previously observed in our benzylic imine catenanes 

and rotaxanes. 
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Figure 5: 1 H NMR spectra (400 MHz, Acetone-d 6 , 298 K) of I) free "u-shape" ligand 
[H2 L1], ii) cobalt(III) tetraphenylphosphonium complex [L12C0]PPh 4 . 
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Scheme 2: 	Double macrocyclization of Co(III) PPh 4  complex: unexpected 
formation of both catenate, [L12Co]PPh 4, and "figure-of-eight" [L3'Co] PPh 4 . 

Reagents and conditions: Grubbs' catalyst, CH 202 , RT, 4 days; Yields: a) 38%, b) 
42%. 

The tetraolefm complex [L1 2Co]PPh4  was subjected to ring closing metathesis using 

first generation Grubbs' catalyst ([Ru(CHPh)(PCy 3)2Cl21, CH202, Ar, RT, 4 days) 

(Scheme 2). While crude 'H NMR revealed the consumption of external alkenes thus 

indicating RCM was complete, two species were clearly observable by thin layer 

chromatography (TLC) (Silica gel, 1:39:60 Et 3NI(CH3 )2C0/CH2Cl2), and were thus 

separated via standard column chromatography techniques. Mass spectrometry 

revealed the compounds had identical molecular weights (Negative ES! mass 

spectrometry showed: m/z = 1081, corresponding to the negatively charged complex 

without tetraphenyiphosphonium counterion, [L22Co] -  and [L3'Coj, and FAB mass 

spectrometry: m/z = 1421, corresponding to the neutral complex with an added extra 

proton, [L22COPPhHr and [L3CoPPhH] 4T), proving we had obtained isomeric 

compounds. The 'H NMR of both isomers and the precursor complex are shown in 

Figure 6. 
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Figure 6: Partial 'H NMR spectra (400 MHz, Acetone-d 6, 298 K) of i) cobalt(III) 
tetraphenyiph osphon iu m 	"figure-of-eight" 	[L3C0] PPh4, 	ii) 	cobalt(III) 
tetraphenyiphosphonium acyclic precursor complex [L1 2C0]PPh 4, iii) cobalt(III) 
tetra phenylphosp hon iu m catenate [L22C0] PPh 4 . 

The isolation of crystals suitable for X-ray crystallography was attempted with both 

isomeric compounds. One species generated green crystals from a saturated acetone 

solution, which confirmed the hypothesis that one of the two compounds was the 

"figure-of-eight" complex, (Figure 7, i.), produced by intermolecular reaction between 

distinct "u-shape" ligands complexed to the same metal, (Scheme 2, ii.). The crystal 

structure of [L3'CO](CH 2CI)(C2H5)3N is illustrated in Figure 7. Curiously, the 

tetraphenyiphosphonium counterion had been replaced by a 2-chloromethyl-

triethylammonium cation. Although initially surprising, this must have occurred during 

the process of column chromatography, whereby dichioromethane reacted with 

triethylamine in the presence of silica to give chioromethyltriethylammonium chloride, 

and small amount of this salt exchanged with [L3Co]PPh 4. The X-ray structure clearly 

illustrated the octahedral geometry around the coordinated cobalt centre, with the N 3  bite 
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angles of N2-Co-N11 164.04, N38-Co-N47 162.80, (Figure 7, ii). Metal coordination 

necessarily buried the polar amide groups at the centre of the molecular structure with 

the alkyl chains to the outside; a similar overall co-conformation to that observed in the 

solid state for amphiphilic benzylic amide catenanes. 27°  The 7t-stacking between the 

benzylic groups and the pyridine rings, which in solution gave significant 'H NMR 

shifts, (see NMR data in Figure 6, i) and which was also clearly present in the precursor 

complex [LI 2Co] PP4 was considerably offset in the solid state (Figure 7, Ili.). 

Comparison with the X-ray crystal structure of (irossel's paddle-type complex, 

[(PDBA) 2Co(III)] K, (Figure 2) revealed exactly the same behaviour: it is no surprise 

then that it contributed to intercomponent rather than intracomponent cyclization during 

RCM. Analysis of the crystal structure also explained the splitting of the resonance 

frequences corresponding to the benzylic groups due to the different environments to 

which they were exposed in each orientation. The two protons, Hd, are locked into 

different environments, with one proton pointing towards the metal, the other away 

from it. 28  

cX o  
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Figure 7: Structure of "figure-of-eight" [L3'Co](CH 2CI)(C2H 5 ) 3N as determined by 
X-ray crystallography. 29  Carbon atoms originally part of distinct "u-shape" tigands 
are shown in light and dark blue; oxygen atoms are red, nitrogen lilac, chlorine 
green, and cobalt violet. Hydrogen atoms and a molecule of acetone are omitted for 
clarity. Selected bond lengths [A]: Co-N2 1.965, Co-N5 1.823, Co-Nil 1.959, Co- 
N38 1.952, Co-N41 1.855, Co-N47 1.967; other selected interatomic distances [A]: 
N2-N11 3.885, N5-N41 3.677, N38-N47 3.874; ligand bite angles [0]:  N2-Co-Nl1 
164.04, N38-Co-N47 162.80. 

The ring closing metathesis reaction of [L1 2Co]PPh4  was reinvestigated (Scheme 2). 

Extending  the reaction time from four to fifteen days resulted in the sole production of 

the "figure-of-eight" complex, [L3C0]PPh 4, strongly suggesting that the reaction was 

under thermodynamic control with this complex being the favoured product. This 

situation was verified by subjecting the unsaturated catenate, [L2 2C0]PP4 to the 

Grubbs catalyst in dichioromethane, and after a similar amount of time (15 days), again 

the sole product isolated was "figure-of-eight" complex. 

101 



Chapter Three 

O 	—,'-O 	 - 	C 	 0. C 
_.* 	 V 	 • 

i 0J 
.1tZV.I 

N 	
0 	

N 

N––N.. 	 I 

rcoI (C)N 	 PUIN CC~ 

Scheme 3: Single macrocyclization via precatenate complex [L1L2'Co]Et4N 
generating catenate [L2' 2Co]Et4N. Reagents and conditions: a) I. NaH, DMF, 20 mm, 
ii. CoC1 2 61-1 20, DMF, 10 mm, iii. Air, 30 mm, 91%, iv. (C 2 H 5) 3NCI, CH 2Cl2 ; b) Grubbs' 

catalyst, CH 20 2 , RT, 4 days, 57%; C) I. H2/Pd-C, MeOH, RT, 12 h, ii. Zn, CH 3COOH, 
MeOH, RT, 20 mm, 81%; d) NaH, DMF, 20 mm, ii. CoC1 2 61-1 20, DMF, 10 mm, iii. Air, 

30 mm, 91%. 

An alternative and unambiguous approach to the synthesis of a cobalt(Ill) catenate was 

via the single macrocyclization of a threaded precatenate species, [L1L2' 2Co]Et4N, to 

prevent the formation of the "figure-of-eight" complex. This precatenate species was 

prepared by treating equimolar amounts of preformed saturated macrocycle, H2L2', and 

"u-shape", H2L1, with sodium hydride, cobalt chloride hexahydrate and tetraethyl 

ammonium chloride30, using the methodology as previously described (Scheme 3). 

After column chromatography, [LLL2' 2Co]Et4N was isolated in 44% yield and 

subjected to RCM ([Ru(=CHPh)(PCy3)2Cl21, CH 202, Ar, RT, 18 hours) affording the 

monounsaturated cobalt(IH) tetraethylammonium catenate [L2L2' 2Co]Et1N in a 57% 

yield. Hydrogenation (H2, MeOH, RT, 12 h) of the double bond resulted in partial 

demetalation of the catenand; this compound was therefore treated in situ with zinc 

powder and acetic acid in methanol to complete the conversion to the free saturated 

catenand [L2' 2Co]Et4N (Scheme 3, c). This choice of conditions was adapted from 

similar Co(HI) cryptands demetalation procedures, where the kinetically  inert trivalent 

metal is reduced to the divalent state under acidic conditions thus facilitating the 
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removal 31  Reinsertion of the metal ion was achieved by the standard procedure using 

sodium hydride and cobalt(IL) chloride hexahydrate in dimethylformamide. 

Partial 'H NMR spectra of free macrocycle H 2L2', the cobalt(Ill) precatenate complex 

[L1L2'Co] Et 3N and the saturated cobalt(Ill) catenate [L2' 2Co]Et4N are shown in 

Figure 8. Several features confirmed the formation of the precursor complex: a 1:1 ratio 

of Li and L2' fragments, loss of the amide protons, it-stacking between pyridmes and 

aromatic rings and upfield shift of the benzylic protons. After macrocyclization the it-

stacking seemed to be slightly attenuated and the aromatic protons were shifted 

downfield of about 0.3 ppm with respect to the precursor complex. The benzylic shifts 

presented a similar behaviour. 
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Figure 8: Partial 'H NMR spectra (400 MHz, Acetone-d 6, 298 K) of I) free 
macrocycle [112L29, ii) cobalt(III) tetraethylammonium precursor complex 
[Li L2'Co] Et4N, iii) hydrogenated cobalt(III) tetraethylammoni urn catenate 

[L2'2Co]Et4N. The assignments correspond to the lettering shown in Scheme 2. 
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To compare with the properties of the catenand, which had already been isolated, the 

"figure-of-eight" complex was also demetallated using a similar procedure (reaction 

with zinc powder in methanol in the presence of acetic acid over a 20 minutes period) 

yielding the double sized macrocycle [H4L3'] (Scheme 4). Due to its interlocked nature 

the catenand immediately presented very different physical properties from its 

constitutional isomer, the macrocyclic counterpart; [(H 2L2')2] dissolved readily in 

chloroform and dichioromethane, whereas the big macrocycle, "big-mac", [H 4L3'] was 

characterised by very poor solubility in all solvents except dirnethylformamide and 

dimethylsulphoxide. A rationale for this observation was that the rotation of the 

interlocked macrocycles within the catenand readily allowed an arrangement that 

permitted self-satisfying hydrogen bonding. In contrast, the two 2,6-dicarboxamide 

units within[H4L3'] would require a high energy conformational change to undergo 

internal hydrogen bonding. 
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Scheme 4: Demetalation of (I) catenate yielding catenand , [L2'2 ], and of (ii) 
"figure-of-eight" yielding double sized macrocycle, [L3'I. Reagents and conditions: 
a) Zn, CH 3COOH, MeOH, RT, 20 mm. Yields: I) 92%, ii) 95%. H-bond assembled 
catenanes 1. 

Partial 'H NMR spectra of catenand [(H 2L2')2], free macrocycle [H2L2'1, and double 

sized macrocycle [H4L3'] are shown in Figure 9. The shielding of the aromatic 

phenoxy groups in the catenand compared to the free macrocycle and the "big-mac", 

confirmed the interlocked architecture. The it-stacking influenced also the nearby 

benzyhc protons, HD, as well as the alkyloxy ones, H, which were shifted upfield 

respectively by 0.2 and 0.4 ppm It should be noted that these spectra were recorded in 

deuterated dimethylsuiphoxide due to the solubility properties of [H 4L3']. This solvent 

usually tends to form strong hydrogen bonding with amide groups, reflected by 

considerable downfield shifts compared to the resonances measured in less polar aprotic 

chlorinated solvents. By comparison, the macrocycle amide protons resonated at 7.75 
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ppm in CDC13  corresponding to a shift greater than 2 ppm, (Figure 10). In the catenand 

the lesser extent of the downfield shift induced by the solvent suggested interaction 

between the interlocked rings, preventing complete solvation Not surprisingly the 

spectra of macrocycles H 2L2' and 114L3' were virtually identical except for the "big-

mac" broadening due to its poor solubility. 

B 	 E 	IF 

  

6 

C J.: 	
N 

103 	10 	9.5 	9 	8.5 	8 	7.5 	7 	6.5 	6 	5.5 	5 	4.5 	4 	3. 

Figure 9: Partial 1 H NMR spectra (400 MHz, Dimethylsulfoxide-d 6, 298 K) of i) 

Catenand [H 2L2'] 2, ii) free macrocycle [H 2L21, iii) double sized macrocycle [1-1 413]. 
The assignments correspond to the lettering shown in Scheme 2. 

To assess the effects of mechanical bonding in the catenand in a non-hydrogen bonding 

solvent, the 1H NMR spectrum of [H2L2'] 2  was also taken in deuterated chloroform 

and compared directly with the small macrocycle, H 2L2' (Figure 10). The effects of 

interlocking were significantly accentuated. With the exception of the amide protons, 

H0, which moved downfield by ca. 0.5 ppm thus confirming  their self association, all 

other catenand resonances were shielded with respect to the free macrocycle, a common 

spectral feature of interlocked architectures. More significantly, both aromatic signals, 

106 



Chapter Three 

H. and Hf, were moved upfield by over 0.5 ppm, thus confirming 71-7t stacking, an 

interaction present due to the conformation imposed by hydrogen bonding  between the 

pyridine-2,6-dicarboxamide groups. 
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Figure 10: Partial 'H NMR spectra (400 MHz, Chloroform-d, 298 K) of I) free 
macrocycle [H 2 L2'] and ii) Catenand [H2L2']2. 
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I) 

 

 C 2  

Figure 11: 	Structure of 	catenand [(H 2L2) 2] 	as determined by X-ray 
crystallography. 32  Carbon atoms part of distinct rings ligands are shown in light 
and dark blue; oxygen atoms are red and nitrogen lilac. Hydrogen atoms are 
omitted for clarity. 

The isolation of single crystals suitable for X-ray crystallography were obtained from a 

saturated acetonitrile solution, confirming unequivocally the interlocked nature of the 

catenand, (Figure 11, Surprisingly, the crystal structure of [(H 2L2)2], illustrates that in 

the solid state the two rings are oriented in a manner that places internally the alkyl 
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chains while the pyridine-2,6-dicarboxamide units are externally oriented, with 

hydrogen bonding being satisfied by interactions with two molecules of acetonitrile. 

This behaviour is opposite to the one observed by 'H NMR in chloroform, where the 

pyridine-2,6-dicarboxamide groups gather towards the cavity of the system driven by 

mutual hydrogen-bonding. The discrepancy between solid and solution conformation 

can be attributed to a combination of factors including interactions with different 

solvents and also crystal packing effect. The third view of the crystal structure, (Figure 

11, iii), shows the symmetry of the system, presenting a C 2  axis. 

3.3.2. Rotaxane Synthesis 

Despite the richness of examples of [2]rotaxane prepared utilising H-bonding and lt-7t 

stacking, there are relatively few examples of metal ions being utilised to template 

rotaxane formation. Our discovery of a general ligand system for the efficient assembly 

of [2]rotaxanes around octahedral metal ions represents a step forward to the work on 

tetrahedral Cu(I) bis-phenanthroline synthon reported by Sauvage. 6 ' After the 

realization of a catenate based on a Co(Ill) bis-2,6-pyridinedicarboxamido synthon, it 

was apparent that we could exploit this unit in a rotaxane synthesis. Furthermore, with 

H2L1 to band, a clipping strategy could be used around a suitable thread. By replacing 

the hexenyl groups of H 2L1 by linked stopper groups, we readily arrived to such a 

thread. 
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Scheme 5: Synthesis of ligand H 2 L4. Reagents and conditions: a) i. 1,2- 
dibromoethane, K2CO3, Nal, butanone, reflux, 10 h, 96%; ii. 4-tris(4-tert- 
butylphenyl)phenol, K 2CO3 , Nal, butanone, reflux, 18 h, 56%; iii. LiAIH 4, ThF, 0 OC 
to reflux, 3 h, 98%, b) 2,6-pyridinedicarbonyl chloride, NEt 3 , CH 202 , reflux, 2 h, 
95%. 

The thread H 2L4 was prepared in four steps from readily available starting materials: 

(Scheme 5). 4-Cyanophenol was reacted with an excess of 1,2-dibromoethane to yield 

the monosubstituted 4-(2-bromo-ethoxy)-benzonitrile in 96% yield. A second 

substitution reaction with 4-tris(4-tert-butylphenyl)pheno 133  using analogous conditions, 

followed by lithiumalluminium hydride reduction gave 4-(2- {4-[Tns-(4-tert-

butylphenyl)-methyl]-phenoxy} -ethoxy)-benzylamine. Finally, reaction with 2,6-

pyridinedicarbonyl chloride using  triethylamine generated the thread H 2L4 as white 

solid in a 95% yield. 

Our approach to prepare the acyclic prerotaxane complex was to undertake a non 

selective cross complexation between H 2L1 and H2L4 and subsequently separate the 

three different products via chromatographic techniques (Scheme 6). Thus, equimolar 

amounts of H2L1 and H2L4 in dimethylformamide under anaerobic conditions were 

treated first with sodium hydride and then with cobalt chloride hexahydrate. Subsequent 

exposure to air gave a colour change as previously observed (red to green, Co(H) to 

Co(ffl)). Initial analysis by thin layer chromatography (Silica gel, 1:39:60 

Et3N/(CH3)2C0/CH2Cl2) showed our anticipated three products, [Li 2Co]Na, [L42C0]Na 
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and [L1]L4Co]Na, and the desired unsymmetrical complex was successfully isolated, 

following column chromatography, in 41 % yield. 
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Scheme 6: Formation of prerotaxane cobalt complex [L1L4C0]PPh 4  and products 
of cross- complexation, [L1 2C0]PPh 4  and [L4 2C0]PPh4 . Reagents and conditions: a) i. 
NaH, DMF, 20 mm, ii. CoCl 2•6H 20, DMF, 10 mm, iii. air, 30 mm; ii. PPh 4CI, CH 2Cl2 . 

The 1 H NMR spectrum of the precursor complex [L1]L4C0]Na is shown in Figure 12, 

alongside the spectra of the free protonated ligands [142L1] and [H 2L4] for comparison 

(Figure 12, i. and ill. respectively). The spectrum of [L1]L4C0]Na clearly shows a 1:1 

ratio of Li to IA. Further indications of metal coordination were the absence of the 

amide protons, Hc, , and the shifting of the pyridine resonances, HA,,, Hsb. The doublets 

due to the benzylic protons of both ligands, HD.d, were shifted upfield by approximately 

2ppm and were converted into singlets. Shielding of the benzylic aromatic rings 

(particularly HE and HF)  was indicative of the entwined architecture. 
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Figure 12: Partial 'H NMR spectra (400 MHz, Acetone-d 6 , 298 K) of I) free"u- 

shape" ligand [H 2 L1], ii) cobalt(III) sodium precursor complex [L1L4C0]Na, iii) free 
thread ligand [H 2L4]. The assignments correspond to the lettering shown in 
Scheme 7. 

To aid solubility the sodium ion was displaced with tetraphenyiphosphonium as 

previously described. [L1]L4Co]PPh4 was macrocyclized by ring closing metathesis with 

Grubbs' catalyst, ([Ru(=CHPh)(PCy3)2C121, CH 202, Ar, RT, I day) to give the 

unsaturated rotaxane [L2]L4Co]PPh, (Scheme 7), in 72% yield as a mixture of the E 

and Z diastereoisomers. Hydrogenation of the double bond was achieved by exposure to 

dihydrogen in the presence of palladium on carbon catalyst, in methanol at room 

temperature. The saturated rotaxane [L2'L4Co]PPlt underwent demetalation upon 

reaction with zinc powder in acidic environment generating the free [2]rotaxane 

H2L2H214 in 97% yield, thus confirming the mechanically interlocked nature of this 

system architecture. 
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Scheme 7: Macrocyclization forming [2]rotaxane [L2L4Co]PPh4 followed by 
hydrogenation and demetalation generating [H 2L2H 2L4]. Reagents and conditions: 
a) Grubbs' catalyst, CH 202, RT, 1 day, 72%, b) i. H 2/Pd-C, MeOH, RT, 18h, 89%;ii. 
Zn, CI-I3COOH, MeOH, RT, 20 mm, 97%. 
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Figure 13: Partial 1 H NMR spectra (400 MHz, Acetone-d 6 , 298 K) of I) cobalt(III) 
tetraphenyiphosphonium precursor complex [L1L4C0]PPh4 , ii) cobalt(III) 
tetraphenylphosphon iu m rotaxa ne [L2L4Co] PPh 4, iii) demeta lated rotaxane 
[H2L2H2 L41. The assignments correspond to the lettering shown in Scheme 7. 
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Comparison of the 'H NMR spectrum of the precursor complex, [L114Co]PPb 4, and 

the cobalt(RI) tetraphenyiphosphonium rotaxane, [L214Co]PP4 confirmed the loss of 

terminal alkene protons (Figure 13). Minor but noteworthy differences of all the non-

alkyl chain resonances were a sign of ligand rearrangement during rotaxane formation. 

Upon demetalation and reprotonation of the amide moieties, the corresponding signals 

reappeared on the spectrum of the free rotaxane, [H 2L2H2]L] (Figure 13, iii.). 

I) 	B  
Lu ii 	

G 

I 	 I 	- 

9 	 1~+ 
b 	 f 	 d 

a C 

H 	7.5 	7 	6.5 	6 	5.5 	5 	4.5 	4 	3.5 	3 	2.5 

Figure 14: Partial 1 H NMR spectra (400 MHz, Chloroform-d, 298 K) of i) free 
macrocycle [H 2L2'], ii) demetalated rotaxane [H 2L2'H 2 L4J, iii) free thread [H2L4]. 
The assignments correspond to the lettering shown in Scheme 7. 

Figure 14 shows the 'H NMR spectra of [H 2L2H2L4], (ii) and its uninterlocked 

constituents, (i, iii.). The shielding of the aromatic benzyl groups in the rotaxane 

compared to the free macrocycle, confirmed the interlocked architecture. In addition, 

the unusual proximity of the amide polar groups in chlorinated solvents promoted 
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specific hydrogen bonding interactions between the thread and the macrocycle to which 

corresponded a downfield shift in the amide protons 

3.3.3. Serendipitous Quaternisation of Triethylamine with 
Dichioromethane 

Finally, this work on cobalt(ffl) complexes lead to the serendipitous discovery of 

another interesting reaction. Purification via chromatography (Silica gel, 1:39:60 

Et3N/(CH3 )2C0/CH2Cl2) of the cobalt(III) complexes resulted in the unpredictable 

formation of chioromethyl-triethylammonium chloride, produced on silica by reaction 

between triethylamine and dichioromethane, (Scheme 8). 

si02 	 CI 

+ CI 	 + Cr 

Scheme 8: Quatemisation of tnethylamine with dichioromethane. 

It is worth commenting  on this reaction because it is known that dichioromethane is inert 

towards reaction with most tertiary amines under atmospheric conditions. In order to 

react it with a variety of tertiary amines to produce cr-chloro quaternary ammonium, it 

requires pressures in the order of 106  Torr,34  or irradiation (High-pressure mercury 

lamp, A. <290 rim).  34 b Although further investigation is essential to better understand the 

conditions and mechanism of such substitution, in the case here reported reaction 

seemed to occur at atmospheric pressure and without irradiation. In order to identify the 

factors involved, a study was conducted: a series of "blank" reactions was carried out 

excluding systematically one parameter at the time, e.g. silica gel, cobalt(Ill) complex, 

light. The observations lead to the conclusion that reaction between triethylamine and 
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dichioromethane takes place in the presence of silica and neither cobalt complexes nor 

light are necessary for the substitution to take place. 

3.4. Conclusions 

While the field of supramolecular chemistry is merging rapidly with the development of 

machines at the molecular level, the creative utilization of old pieces of knowledge to 

yield novel building blocks and assemble original structures is particularly prolific. 

Given the key role played by coordination chemistry in the metal-directed  synthesis of 

superstructures it is essential for chemists to expand the arrays of metals available in this 

endeavour. This project was planned to investigate the feasibility of using trivalent 

octahedral cobalt ions metals in the metal-directed synthesis of supramolecular 

interlocked architectures based on a 2,6-pyridine dicarboxamide ligand system. We 

have shown that it is possible to synthesise both [2]catenate and [2]rotaxane via a 

clipping strategy. Stabilised by the anionic nature of the deprotonated nitrogens of the 

amides, the [2]catenate and the [2]rotaxane here reported are the first derived from a 

higher oxidation state coordinated metal. Along with the palladium four-coordinate 

square planar metal complex7  the divalent metal-directed' synthesis of interlocked 

architectures recently developed in our group they broaden the series of mechanically 

interlocked ligands for common transition metal geometries started by Sauvage in 1983. 

Moreover, this work resulted in the serendipitous discovery of a silica catalysed reaction 

whereby tnethylamine substitutes a chloride in dichlorometbane. 
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3.5. Experimental Section 

3.5.1. General 

Unless stated otherwise, all reagents were purchased and techniques were carried out as 

specified in Chapter 2. 

X-ray structure determination was carried out by the services at the University of St. 

Andrews using a a Bruker SMART CCD diffractometer. 

117 



Chapter Three 

3.5.2. Catenate Synthesis 

4-(Hex-5-enyloxy)benzylamine 

RN 

C13H, 0N0 
MCI Wt: 205.3 

This Compound was prepared as described in D. A. Leigh,*  P. J. Lusby, S. J. Teat, A. J. 

Wilson, J. K. Y. Wong, Angew. Chem.Int. Ed., 2001, 40, 1538-1543. and showed 

identical spectroscopical data to those reported therein. 

N, N'- bis4_(hex-5-enyIoxy)benzy1]-2,6-pyridined icarboxamide 

H2L1 

0 	 0 

/) 

A 	N 

B 	' 

.JH 	E  
I",  

' H 

H2LI 	G 

C33 R3 N3O4  
Mal. VA 541.7 

To a solution of 4-(hex-5-enyloxy)benzylamine (2.18 g, 10.6 mmol) and triethylamine 

(1.07 g, 10.6 mmol) in dichloromethane (50 mL) at 0 °C under an atmosphere of 

nitrogen was added slowly 2,6-pyridinedicarbonyl dichloride (1.08 g, 5.30 mmol). The 

reaction was then stirred at room temperature for 18 Ii. The solvent was removed under 
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reduced pressure and the crude residue purified by column chromatography (Silica gel, 

1:9 EtOAc/CH2C12) and then recrystallised from acetonitrile to yield the title compound 

as a colorless crystalline solid (2.61 g, yield = 91%). m.p. 141.2-143.0 °C; 'H NMR (400 

MHz, CDCI3, 293K): 5= 1.46 (in, 411, alkyl-H), 1.68 (m, 4H, OCH2C), 2.02 (in, 4H, 

alkyl-H), 3.81 (t, J.6 Hz, 4H, OCII2CH2), 4.44 (d, .J=6.3 Hz, 411, CON}1C112), 4.90 

(m, 411,, Cf1=C2), 5.73 (in, 2H, CHCH2), 6.68 (d, J=8.8 Hz, 4H, AM), 7.11 (d, J8.8 

Hz, 411, AM), 7.90 (t, J=7.8 Hz, I  pyridyl-H), 8.22 (d, J=7.8 Hz, 2H, pyridyl-H), 8.62 

(t, J=63 Hz, 211, CON}JCH2); 13C NMR (100 MHz, CDCI3, 293K): 8=25.3, 28.7, 33.4, 

42.9, 67.8, 114.6, 114.8, 125.2, 129.0, 129.9, 138.5, 138.9, 148.8, 158.5, 163.5; LRFAB-

MS (3-NOBA matrix): m/z = 541 [M], 564 [MNa]; HRFAB-MS (3-NOBA matrix): 

m/z = 541.29425 (calcd. for C33H39N304, 541.29406). 

bis {(N,N'- bis[4-(hex-5-enyloxy)benzyl]-2,6-pyridinedicarbOxamidO)CObalt(III)I 

tetraphenylphosphonium 

[L1 2Co] PPh4 

PPh4  

f= F 	G 

  

LI 2CoPPh4 

C91H9 CoN608P (Mol. WI.: 1477.6) 
CMI-474C0N608 (Mol. Wt.. 1138.3) 

To H2L1 (1.083 g, 2.000 mmol) in anhydrous dimethylformamide (100 mL) was added 

a suspension of 40% sodium hydride in mineral oil (0.160g, 4.000 mmol). The reaction 

was stirred at room temperature under an atmosphere of nitrogen for 20 minutes and 

then a solution of cobalt (II) chloride hexahydrate (0.238 g, 1.000 mmol) in anhydrous 

dimethylformamide (50 mL) was added to it via double ended needle technique. A 
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colour change from blue to deep red was observed. The reaction was stirred at room 

temperature under an atmosphere of nitrogen for 10 minutes  then the flask was opened 

and the solution bubbled with compressed air for 30 minutes. A further change in colour 

from red to dark green was observed. The solvent was removed under reduced pressure 

and the resulting solid was stirred in ethylacetate (50 mL) with sonnicating for 60 

minutes and then filtered under gravity. The resultant green solid was dissolved in 

dichioromethane (25 mL) and tetraphenyiphoshonium chloride (0.375 g, 1.000 mmol) 

was added to it and stirred for 30 minutes. The solution was filtered and the solvent 

removed under reduced pressure to yield the title compound as a dark green solid (1.345 

g, yield = 91%). m.p. 166 °C (dee); 'H NMR (400 MHz, Acetone-d6, 293K): 8= 1.48-

1.58 (m, 81-I, alkyl-H), 1.67-1.77 (m, 811, OCH2CH2), 2.03-2.07 (m, 4H, alkyl-H), 2.07-

2.15 (m, 811, alkyl-H) 3.23 (s, 8H, CONCoCi±), 3.86 (t, J=6.6 Hz, 814, OCH2CH2), 

4.80-4.96(m, 8H, CHCij), 5.79-5.90 (m, 4H, CWCH2), 6.35 (d, J=8.6 Hz, 811, ArH), 

6.43 (d, J=8.6 Hz, 811,, ArH), 7.67 (d, J=7.8 Hz, 4H, pyridyl-H), 7.81-7.88 (m, 1211, 

PPh4 ArH), 7.97-8.03 (m, 8H, PPh4  ArH), 8.17 (t, J7.8 Hz, 21-1, pyridyl-H); 13C NMR 

(100 MHz, Acetone-d6, 293K): 8 = 26.1, 30.0, 34.2, 46.7, 68.2, 114.2, 118.8, 123.0, 

123.1, 129.1, 131.4, 131.5, 135.6, 135.7, 136.4, 139.7, 157.9, 159.3, 169.1- LRFAB-MS 

(3-NOBA matrix): m/z = 1138 [L12Co], HRFAB-MS (3-NOBA matrix): m/z = 

1138.49776 (calcd. for CH75CoN608, 1138.49784). 
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{[H4L3IcobaIt(1ll)} tetraphenyiphosphonium 

[L3Co]PPh4 

A 

)~ B 

c O DHI /JH 

L3C0PPh4 
C.6l46CON6OeP 
Mol Wi: 1421.5 

Grubbs' metathesis catalyst [Ru(=CHPh)(PCy3)2Cl2] (0.056 g, 0.068 mmol, 20 mol %) 

was placed in a sealed, argon-purged, flame-dried Schienk tube, and subjected to a 

constant stream of argon for ten minutes. A degassed and argon-purged solution of the 

[L1 2C0I PPh4  complex (0.500 g, 0.338 mmol) in anhydrous dichloromethane (500 mL) 

was transferred to the Schienk tube by injection over ten minutes. Reaction was allowed 

to continue until all the starting material was consumed as evidenced by TLC (typically 

4 days). The resulting solution was added with 2 mL of methanol, evaporated to dryness 

and purified by chromatography (Silica gel, 1:39:60 Et 3N/(CH3)2C0/CH2C12) to give the 

figure of eight [L3C0I PPh 1  as a dark green solid.: FRACTION A: (0.201 g, yield = 

42%). m.p. 170-173 °C; 1H NUR (400 MHz, Acetone-c16, 293K): 5= 1.33-1.38 (m, 8H, 

alkyl-H), 1.41-1.52(m, 8H, OCH2Ci), 1.65-1.78 (m, 12H, alkyl-H+ CONCoCH2), 

3.72-3.84 (m, 8H, OCCH2), 4.12 (t, J=12.38 Hz, 4H, CONCoCI), 5.19-5.28 (m, 4H, 

CH=CH),, 6.28 (d, J=1.76 Hz, 811, ArH), 6.27 (d, J=1.76 Hz, 811, ArH), 7.88 (d, J=7.83 

Hz, 411, pyridyl-H), 8.31 (t, J=7.58 Hz, 2H, pyridyl-H); 13C NMR (100 MHz, Acetone-

d6, 293K): 8 = 27.1, 28.6, 32.4, 46.6, 67.5, 114.2, 123.1, 130.3, 130.7, 131.5, 134.1, 

135.6, 135.8, 136.4, 139.8, 157.6, 159.4, 169.3 - LRFAB-MS (3-NOBA matrix): m/z = 

1082 [L3CoI, HRFAB-MS (3-NOBA matrix): m/z = 1421.56234 (calcd. for 

C861187CoN608P, 1421.56550) [L1 3CoPPh1HI. 
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I21-tbis I(N,N'-1,l Odec5enyIoxydibenzyI)-2,6-pyridiflediCarbOIamit101 cobalt(llI)) 

tetraphenyiphosphonium 

[L22C0] PPh4  

H 

PPh4  

F 

L22COPPh4 
C6He1CONsOeP 
Mo4:1421.5 

  

Grubbs' metathesis catalyst [Ru(CHPh)(PCy3)2Cl2] (0.056 g, 0.068 mmol, 20 mol %) 

was placed in a sealed, argon-purged, flame-dried Schienk tube, and subjected to a 

constant stream of argon for ten minutes. A degassed and argon-purged solution of the 

[L1 2CoI PPh4  complex (0.500 g, 0.338 mmol) in anhydrous dichloromethane (500 ML) 

was transferred to the Schienk tube by injection over ten minutes. Reaction was allowed 

to continue until all the starting material was consumed as evidenced by TLC (typically 

4 days). The resulting solution was added with 2 mL of methanol, evaporated to dryness 

and purified by chromatography (Silica gel, 1:39:60 Et 3N/(CH3)2C0/CH2C12) to give the 

catenate [L22Co] PPh4 as a green solid.: FRACTION B: (0.180 g, yield = 38%). m.p. 

161 - 164 °C; 'H NMR (400 MHz, Acetone-d, 293K): J= 1.40-1.50 (m, 811. alkyl-H) 

1.63-1.72 (m, 81L alkyl-H), 2.00-2.04 (m, 8H, alkyl-H), 1.99-3.36 (d, J=9.8 Hz, 811, 

CONCoCIj2), 3.90-3.97 (m, 8H, OCjCH2), 5.52-5.56 (m, 4H, CHzCIfl, 6.22 (d, ./=8.3 

Hz, 8H, AM), 6.34 (d, J8.3 Hz, 8H, ArH), 7.45-7.41 (m, 4H, pyridyl-H), 7.79-7.85 (m, 

1611, PPh4  AM), 7.95-8.03 (m, 611, pyridyl-H+ PPh4  ArH); ' 3C NMR (100 MHz, 

Acetone-d6, 293K): 8 = 26.2, 28.6, 32.5, 46.5, 67.9, 114.9, 122.5, 128.8, 131.1, 131.3, 

134.8, 135.6, 135.8, 136.4, 138.5, 157.0, 157.5, 158.9- LRFAB-MS (3-NOBA matrix): 

m/z = 1083 [L22Co] -, HRFAB-MS (3-NOBA matrix): m/z = 1421. 56011 (calcd. for 

CS6H87CoN609P, 1421.56550) [L1 2CoPPh4H]. 
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f [H4L3'Icobalt(III)} 2- chloromethyl-triethylammOfliUm 

[L3'Co] (C2H5)3(CH2CI)N 

A 	 (C2H(CH2CI)N 
-.. B 

Cco—<::~> 

 
Ui 	

E 	G H 

L3Co(C2H(C2H4CI)N 
C7,DH8GCICON708 (Mol. Wt. 1250.8) 

Ce8H86CON708 (Mol. Wt.: 1188.4) 

To [L3Co]PPh4 (0.142 g, 0.100 mmol) in anhydrous methanol(30 mL) was added 109/6 

w/w Pd-C (0.020 g) and was stirred under an atmosphere of H2 for 18 h. The Pd-C was 

then removed by filtration through a plug of Celite, and the solvent was removed under 

reduced pressure. The crude mixture was purified using column chromatography (Silica 

gel, 1:39:60 Et3N/(CH3)2C0/CH2C12) to give the product as a dark green solid.( 0.106g. 

yield = 85%). nip. 166 - 170 °C; 'H NMR (400 MHz, Acetone-d6, 293K): 5= 1.15 (t, 

9H, J = 7.3, CII3CH2N ), 1.32-1.37 (m, 16H, alkyl-H), 1.58 (t, 2H, J = 6.3, 

CICH2CII2N), 1.65-1.75 (m, 8H, alkyl-H), 2.01-2.10 (m, 12H,, alkyl-H+CONCoCll), 

3.04 (q, 6H, J = 7.3, CH3CH2N), 3.81 (t, 21-1, J = 6.3, C1CCH2N), 3.87-3.97 (m, 8H, 

OQjCH2), 4.29 (d, 4H, CONCoCHz), 5.28 (t, J=3.78 Hz, 211, CH=C1j2), 6.25-6.48 (m, 

1611, AM), 7.88 (d, J=7.71 Hz, 4H, pyridyl-H), 8.31 (t, J=7.71 Hz, 211, pyridyl-H);  13 C 

NMR (100 MHz, Acetone-d6, 293K): 5 = 7.5, 25.8, 27.7, 28.4, 28.6, 46.5, 53.3, 67.9, 

114.6, 124.2, 130.1, 134.5, 138.1, 141.4, 158.1, 159.2- LRFAB-MS (3-NOBA matrix): 

m/z = 1087 [L3CoH2], HRFAB-MS (3-NOBA matrix): m/z= 1087.47427 (calcd. for 

C62H72CoN608, 1087.47436). 

123 



Chapter Three 

[2]- This [(N,N'- 1 ,1Odecanyto1ydibenzyI)2,6-pyridinediCarb01amid01CObt()) 

2-2- chloromethyl-triethylainmOfliUfli 

[L22'CoJ (C2H5)3(CH2CI)N 

(C2HJ,(cHp)N 

F 	(.i 

 

(L22 C0j(C2H5)3(C3H4CI)N 
C70HClCOF470e (Mol. t 1250.8) 
CHCoN600T (Not Wt: 10862) 

To [L22CoJ PPh (0.100 g, 0.070 mmol) in anhydrous methanol (30 mL) was added 

10% w/w Pd-C (0.015 g) and was stirred under an atmosphere of H2 for 18 K The Pd-C 

was then removed by filtration through a plug of Celite, and the solvent was removed 

under reduced pressure. The crude mixture was purified using column chromatography 

(Silica gel, 1:39:60 Et 3N/(CH3)2C0/CH2Cl2) to give the product as a dark green solid.( 

0.071 g, yield = 81%). m. p. 162 -166 °C; 'H NMR (400 M1-[z, Acetone-d6, 293K): 5= 

1.41-1.56 (m, 36H, alkyl-H + CijCH2N), 1.84-1.75 (m, 8H, alkyl-H), 3.50 (s, 4H, 

CONCoCIj2), 3.55 (q, 8H, J = 7.3, C113CiN), 4.03 (t, 811,, OCCH2), 6.37 (d, J=8.3 

Hz, 81-1, ArH), 6.48 (d, J=8.3 Hz, 8H, ArH), 7.58 (d, J7.7 Hz, 411., pyridyl-H), 8.09 (t, 

J=7.70 Hz, 2H, pyridyl-H); ' 3 C NMR (100 MHz, Acetone-d6, 293K): 5 = 16.5, 26. 1, 

28.2, 28.7,46.4, 52.7, 53.1, 67.7, 115.4, 122.5, 129.2, 134.8, 138.5, 157.2, 159.3, 169.1 - 

LRFAB-MS (3-NOBA matrix): rn/z = 1087 [L22'CoH] 4 , 516 [L2H] +, HRFAB-MS (3-

NOBA matrix): m/z = 1086.46523 (calcd. for C62H71CoN608, 1086.46654), ESI -ye: m/z 

= 1086 [L22 'Co] 
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Macrocycle H4L3 

oy(o 

CIO, D /X HN ,PJ = 

H4L3 
CH70N5O8 

MoI.Wi: 10273 

To [L3C0]PPh4 (0.071 g, 0.050 mmol) in anhydrous methanol (10 mL) was added zinc 

powder (0.005 g, 0.077 mmol) and glacial acetic acid (0.5 ML). The reaction was stirred 

at room temperature in aerobic conditions for 20 minutes. A change in colour from green 

to pale pink was observed. The suspension was filtered through a plug of Celite and the 

filtrate was added dropwise to an aqueous sodium carbonate solution stirring on top of a 

chloroform layer: the product precipitated out of solution in the form of white powder 

(0.048 g, yield = 95%). in. p. 290 °C (dee); 'H NMR (400 MHz, N,N-

Dimethylformamide-d7, 293K): 6= 1.59-1.69 (m, 8H, alkyl-H), 1.82-1.93 (m, 8H, alkyl-

H), 2.16-2.30 (m, 8H, alkyl-H), 4.07-4.15 (t, J=5.8 Hz, 8H, OCCH2), 4.65 (d, J=6.2 

Hz, 8H, CONHCH2), 5.53-5.63 (m, 4H, CHCH), 7.01 (d, J=8.4 Hz, 811, ArH), 7.36 (d, 

J=8.4 Hz, 8H AM), 8.41 (t, .J=9.0 Hz, 211, pyridyl-H), 8.48 (d, J9.0 Hz, 4H, pyridyl-

H), 9.85 (t, J=6.2 Hz, 4H, CON}JCH2); 13C NMIR (100 MHz, Acetone-d6, 293K): 6 = 

26.9, 28.7, 32.4, 42.2, 67.7, 114.4, 124.6, 129.1, 130.0, 130.6, 139.7, 158.1, 167.3-

LRFAB-MS (3-NOBA matrix): m/z = 1027 [L311]+ , HRFAB-MS (3-NOBA matrix): m/z 

= 1027.53393 (calcd. for C 62H71N608, 1027.53334). 
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121-bis(N1N'-1 ,1 0decanyIoxydibenzyl)-2,6-pyridined icarboxamide 

(H2L2)2 

(  0 

 

0 0 

G E  
H4L22 

CH70N6O8  
Mol. Wt.: 1027.3 

To [L221 (0.050 g, 0.035 mmol) in anhydrous methanol (10 mL) was added zinc powder 

(0.005 g, 0.077 mmol) and glacial acetic acid (0.5 mL). The reaction was stirred at room 

temperature in aerobic conditions for 20 minutes. A change in colour from green to pale 

pink was observed. The suspension was filtered through a plug of Celite and the filtrate 

was added dropwise to an aqueous sodium carbonate solution stirring  on top of a 

chloroform layer: the product precipitated out of solution in the form of white powder 

(0.033 g, yield = 92%). m.p. 86- 93 °C; 1 H NMR (400 MHz, Chloroform-d, 293K): 5= 

1.20-1.30 (m, 8H, alkyl-H), 1.36-1.48 (m, 81-L alkyl-H), 1.69-1.76 (m, 8H, alkyl-H), 

3.61 (t, J=6.3 Hz, 8H, OCCH2), 4.39 (d, J5.6 Hz, 81-, CONI{CI12), 5.50-5.53 (m, 

4H, CH=Cff), 6.24 (d, J=8.3 Hz, 8H, ArH), 6.68 (d, J83 Hz, 8H, ArH), 8.03 (t, J7.8 

Hz, 2H, pyridyl-H), 8.29 (t, J=5.6 Hz, 4H, CONIJCH2), 8.40 (d, J7.8 Hz, 4H, pyridyl-

H); 13C NMR (100 MHz, Chloroform-d, 293K): 5= 25.9, 27.9, 31.5, 43.2, 66.8, 113.8, 

125.8, 128.3, 128.8, 130.4, 138.6, 149.2, 157.5, 163.3 - LRFAB-MS (3-NOBA matrix): 

m/z = 1027 [L22.Hj, 514 [L2H], HRFAB-MS (3-NOBA matrix): m/z = 1027.53181 

(calcd. for C62H71N608, 1027.53334). 
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Macrocycle H4L3' 

H4L3 
C62 H74N601 

Mo1.Wt 1031.2 

To [L3'Co]PPh4 (0.063 g, 0.050 mmol) in anhydrous methanol (10 mL) was added zinc 

powder (0.005 g, 0.077 mmol) and glacial acetic acid (0.5 mL). The reaction was stirred 

at room temperature in aerobic conditions for 20 minutes. A change in colour from green 

to pale pink was observed. The suspension was filtered through a plug of Celite and the 

filtrate was added dropwise to an aqueous sodium carbonate solution stirring on top of a 

chloroform layer: the product precipitated out of solution in the form of white powder 

(0.047 g, yield = 92%). m.p. 292 °C (dee); 'H NMR (400 MHz, N,N-

Dimethylsulphoxide-d6, 293K): 5 = 1.15-1.33 (m, 16H, alkyl-H), 1.33-1.42 (m, 8H, 

alkyl-H), 1.61-1.75 (m, 8H, alkyl-H), 4.11 (t, J=5.8 Hz, 811, OCICH2), 4.65 (d, J=6.2 

Hz, 811, CONHCH2), 7.00 (d, J8.4 Hz, 8H, ArU), 7.35 (d, J8.4 Hz, 8H, ArH), 8.41 (t, 

J=9.0 Hz, 2H, pyridyl-H), 8.48 (d, J9.0 Hz, 411, pyridyl-H), 9.85 (t, J=6.2 Hz, 4H, 

CONHCH2); ' 3C NMR (100 MHz, Acetone-d6, 293K): 5= 25.9, 27.7, 32.3, 42.3, 67.7, 

114.3, 124.6, 129.0, 130.0, 130.5, 139.7, 158.4, 167.3- LRFAB-MS (3-NOBA matrix): 

m/z = 1031 [L3'H]', HRFAB-MS (3-NOBA matrix): m/z = 1031.56328 (calcd. for 

C62H7N608, 1031.56464). 
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[21- [Pyridine-2,6-dicarboxylic acid 1 ,1O-di(4-phenoxymethylamide)decanel 

(H2L2')2 

- 

NZ 0 	 —C) 

H4L2 2  
C62H74 NeO8  

Mol. Wt. 103129 

To [L22'Co] (C2H5)3(C2H4CI)N (0.062 g, 0.050 mmol) in anhydrous methanol (10 mL) 

was added zinc powder (0.005 g, 0.077 mmol) and glacial acetic acid (0.5 mL). The 

reaction was stirred at room temperature in aerobic conditions for 20 minutes. A change 

in colour from green to pale pink was observed. The suspension was filtered through a 

plug of Celite and the filtrate was added dropwise to an aqueous sodium carbonate 

solution stirring on top of a chloroform layer: the product precipitated out of solution in 

the form of white powder (0.046 g, yield = 89%). m.p. 81-90 °C; 1 H NUR (400 MHz, 

Chloroform-d, 293K): 8 = 1.19-1.32 (m, 16H, alkyl-H), 1.35-1.46 (m, 81-1, alkyl-H), 

1.64-1.74 (m, 8H, alkyl-H), 3.61 (t, J=6.3 Hz, 811, OCFI2CH2), 4.39 (d, .1=5.6 Hz, 8H, 

CONHCH2), 6.23 (d, J8.3 Hz, 8H, ArH), 6.67 (d, J=8.3 Hz, 8H, ArH), 8.02 (t, J7.8 

Hz, 211, pyridyl-H), 8.30 (t, J=5.6 Hz, 4H, CONHCH2), 8.40 (d, .1=7.8 Hz, 4H, pyridyl-

H); ' 3C NIvIR (100 MHz, Chloroform-d, 293K): 8 = 25.4, 28.2, 29.0, 34.2, 43.2, 66.7, 

113.9, 125.5, 125.7, 128.2, 138.7, 149.2, 157.8, 163.4- LRFAB-MS (3-NOBA matrix): 

m/z = 1031 [L3'H], HRFAB-MS (3-NOBA matrix): m/z = 1031.56328 (calcd. for 

C62H75N608, 1031.56464). 
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1 ,10di(4-phenoxymethy1amine)deCafle 

H2N - 

FhN 	 - 

CHNA 
Mol. Wt: 3846 

This Compound was prepared as described in D. A. Leigh,* P. J. Lusby, S. J. Teat, A. J. 

Wilson, J. K. Y. Wong, Angew. Chem.Int. Ed., 2001, 40, 1538-1543. and showed 

identical spectroscopical data to those reported therein. 

Pyridine-2,6-dicarboiyliC acid I ,10-di(4-phenoxymethylamide)deCafle 

H2L2' 

o , 	o 

't NH 
 

0 	 0 1  
- 

H 2LZ 
C31HN3O4  

MoE WE: 515.6 

To chloroform (2.5 L), in a sealed, argon-purged, flame-dried Schienk tube at 0°C, was 

added dropwise simultaneously 1,1 0di(4-phenoxymethylamifle)deCafle (3.00 g, 7.80 

mmol) and tnethylamine (1.74 g, 17.2 mmol) in chloroform (250 mL), and 2,6-pyridine 

dicarbonyl dichloride (1.59 g, 7.80 mmol) in chloroform (250 mL). The solution was 

stirred at room temperature for 18 b, after which the solvent was removed by rotary 

evaporation and the crude residue purified by column chromatography (Silica gel, 1:1 

EtOAc/CHC13), and recrystallised from chloroform and EtOEt to yield the product as a 

white solid (2.29 g, 4.44 mmol, 57%). imp. 258.5-260.0°C; 'H NIVIR (400 MHz, 

Acetone-d6, 293K): 5= 1.22-1.34 (m, 8H, Alkyl-H), 1.37-1.46 (m, 4H, Alkyl-H), 1.64- 
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1. 74 (m, 411, J = 6.7 Hz, Alkyl-H), 3.96 (t, 4H, J = 6.0 Hz, OCH2 C142), 4.50(d, 4H, J 

6.3 Hz, CONHCth), 6.80 (d, 411, J = 8.5 Hz, AM), 7.13 (d, 4H, J = 8.5 Hz, ArH), 8.20 

(t, 111, J = 8.3 Hz, pyridyl-H), 8.35 (d, 211, J = 8.3 Hz, pyridyl-H), 8.96 (t, 211, J = 6.3 

Hz, CONHCH2); (400 MHz, Chloroform-d, 293K): 5 = 1.28-1.32 (m, 8H, Alkyl-H), 

1.45 (t, 411, J = 6.6 Hz, Alkyl-H), 1.72-1.77 (m, 411, J = 6.7 Hz, Alkyl-H), 3.94 (t, 4H, .1 

6.2 Hz, OCH2 CH2), 4.62(d, 4H, J = 5.9 Hz, CONHCH2), 6.80 (d, 41-, J = 8.6 Hz, 

ArH), 7.19 (d, 4H, J= 8.6 Hz, ArH), 7.95 (t, 214, J = 5.9 Hz, CONIICH2), 8.03 (t, 1H, .1 

= 7.6 Hz, pyridyl-H), 8.37 (d, 2H, J = 7.6 Hz, pyridyl-H); ' 3C NMR (100 MHz, 

Acetone-d6, 293K): 5 = 26.2, 28.9, 29.1, 29.5, 42.7, 67.7, 115.3, 125.5, 129.7, 131.9, 

140.1, 150.2, 158.7, 163.9 -(100 MHz, Chloroform-d, 293K): ,5= 25.4, 28.1, 28., 28.7, 

42.9, 67.4), 114.8, 125.4, 129.2, 129.8, 138.9, 148.8, 158.7, 163.3- LRFAB-MS (3-

NOBA matrix): m/z = 516 [H2L2'H], HRFAB-MS (3-NOBA matrix): m/z = 516.28571 

(calcd. for C31 H38N304, 516.28623). 

{ 
IN, N'- bis 

dicarboxylic acid 1,1 O-d  i(4phenoxymethyIamide)deCafle1CObaIt(ffl)} 

tetraethylammonium 

[L1L2'CoJ (C2H5)4N 

Et4N 

L F- 

L1L7CO(C2Hs)N 
C72H92C0N70, (Mol. Wt 1242 5) 
CHCoNO8 (Mol Wt., 1112.2) 

To H2L2' (0.206 g, 0.400 mmol) in anhydrous dimethylformamide (50 mL) was added a 

suspension of 40% sodium hydride in mineral oil (0.035 g, 0.880 mmol). The reaction 
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was stirred at room temperature under an atmosphere of nitrogen for 20 minutes and 

then a solution of cobalt(H) chloride hexahydrate (0.090 g, 0.380 mmol) in anhydrous 

dimethylformamide (25 mL) was added to it via double ended needle technique. A 

colour change from blue to dark brown was observed. The reaction was stirred at room 

temperature under an atmosphere of nitrogen for 60 minutes then it was added with a 

solution of H2L1 (0.108 g, 0.200 mmol) in anhydrous dimethylformamide (25 mL), 

separately reated with a suspension of 40% sodium hydride in mineral oil (0.018 g, 

0.440 mmol), was added to it. The reaction was stirred at room temperature under an 

atmosphere of nitrogen for 120 minutes then the flask was opened and the solution 

bubbled with compressed air for 30 minutes. A further change in colour from dark 

brown to brown green was observed. The suspension was filtered under gravity; the 

solvent was removed to the filtrate under reduced pressure and the resulting solid was 

stirred in ethylacetate (50 mL) with sonnicating for 60 minutes and then filtered under 

gravity. The resultant green solid was dissolved in dichloromethane (25 mL) and 

tetraethylammonium acetate (0.523 g, 0.200 mmol) was added to it and stirred for 30 

minutes. The solution was filtered and the solvent removed under reduced pressure; it 

was then purified using column chromatography (Silica gel, 1:39:60 

Et3N/(CH3)2C0/CH2C12) to give the product as a dark green solid ( 0.109 g, yield = 

44%). m.p. 151-156 °C (dee); 1H NMIR (400 MHz, Acetone-d6, 293K) Ushape: S = 

1.24-1.28 (in, 8H, alkyl-H), 1.36-1.45 (m, 811, alkyl-H), 1.55-1.63 (ni, 8H, OCH2CH2), 

1.94-2.01 (m, 411., CCH —CH2), 3.16 (hr s, 411, CONCoCII.2), 3.24 (br s, 411, 

CONCoCH2), 3.75 (t, J=6.6 Hz, 4H, OCijCH2), 3.82 (t, J6.3 Hz, 411, OCFI2CH2), 

4.78-4.92(m, 4H, CHCIh), 5.65-5.76 (m, 211, CH=CH2), 6.02 (d, .1=8.4 Hz, 411, AM), 

6.25 (ci, .1=8.4 Hz, 4H, ArH), 6.36 (d, J=8.7 Hz, 411, AM), 6.40 (d, .1=8.7 Hz, 4H, AM), 

7.33 (d, .1=7.8 Hz, 41L pyridyl-H), 7.72 (d, J7.6 Hz, 411, pyridyl-H), 7.87 (t, J=7.8 Hz, 

211, pyridyl-H) 8.20 (t, .1=7.6 Hz, 2H, pyridyl-H); ' 3C NMR (100 MHz, Acetone-d6, 

293K): 8 = 9.16, 22.9, 26.2, 26.3, 28.9, 28.9,34.8, 46.7, 53.5, 67.7, 67.8, 68.2, 114.6, 

114.9, 115.0, 122.7, 123.5, 128.3, 129.7, 133.5, 134.7, 134.8, 139.6, 139.8, 157.62, 
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158.1, 158.6, 159.1, 168.9, 169.3 - LRFAB-MS (3-NOBA matrix): m/z = 1113 

[L1L2'CoH]+ , HRFAB-MS (3-NOBA matrix): m/z = 1113.48999 (calcd. for 

CI174CoN0s, 1113.49001), ESI -ye: m/z = 1112 [L1L2'CoHI. 

3.5.3. Rotaxane Synthesis 

4.-(2-bromo-ethoxy)-benzonitrile 

CgHBrNO 
Mol. %M.: 2261 

To a solution of 4-cyanophenol (5.950 g, 0.050 mol) and 1,2-dibromoethane (37.60 g, 

0.200 mol) in ethylmethylketone (750 mL) under an atmosphere of nitrogen was added 

potassium carbonate (69.00 g, 0.500 mol) and sodium iodide (0.112 g, 0.005 mol). The 

reaction was refluxed for 10 hours then it was filtered under gravity. The solvent was 

removed under reduced pressure, the crude residue purified by column chromatography 

(Silica gel, 5:25 EtOAc/CH2C12) and then recrystallised from n-hexane to yield the title 

compound as a colorless crystalline solid (10.85 g, yield = 96%). imp. 48.0-50.1; 'H 

NMR (400 MHz, Chloroform-d, 293K): 5 3.65 (t, J"6.0 Hz, 211, OCH2CFI2Br), 4.33 

(t, J=6.0 Hz, 211, OCH2CH2Br), 6.96 (d, J8.8 Hz, 211, AM), 7.59 (d, J=8.8 Hz, 2H, 

ArI{); 13C NMR (1  ()0 MHz, CDCI3, 293K): 8= 28.4, 67.9, 104.7, 115.3, 119.0, 134. 1, 

161.3 -RFAB-MS (3-NOBA matrix): miz = 226 [MHj; FIRFAB-MS (3-NOBA matrix): 

m/z = 225.98650 (calcd. for C9H9BrNO, 225.98675). 
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4-(2- 

CH51NO2 
Mol. WL 6499 

A solution of 4-tris(4-tert-butylphenyl)phenol (8.310 g, 16.50 mmol) and 4-(2-bromo-

ethoxy)-benzonitrile (3.910 g, 17.30 mmol) in ethylmethylketone (140 mL) containing 

potassium carbonate (22.00 g, 160.0 inmol) was heated at reflux overnight under an 

atmosphere of argon. The solution was filtered and the solvent removed under reduced 

pressure. The residue was dissolved in minimum dichioromethane. Addition of diethyl 

ether and refrigeration of the solution resulted in the precipitation of the pure product as 

a white solid (6.010 g, yield = 56%). m.p. 238.2-240.1 °C; 'H NMR (400 MHz; 

Chloroform-d, Me4i, 293K): 5= 1.30 (s, 271-I, C(CH3)3), 4.32-4.34 (m, 4H, O(CH2)20) 1  

6.80 (d, 2H, J = 8.8 Hz, AM), 6.99 (d, 2H, J = 8.5, AM), 7.08 (d, 6H, J= 8.5 Hz, ArH), 

7.11 (d, 2H,J= 8.8 Hz, ArH), 7.23 (d, 6H,J= 8.5 Hz, ArH), 7.59(d, 2H,J = 8.5 Hz, 

ArH); ' 3 C NMR (100 MHz, Chloroform-d, Me4S1, 293K): 5 = 31.8, 34.7, 63.5, 66.4, 

67.3, 104.8, 113.5, 115.8, 119.5, 124.5, 131.1, 132.8, 134.4, 140.8, 144.4, 148.8, 156.6, 

162.4 - LRFAB-MS (3-NOBA matrix): m/z = 649 [Mr.  HRFAB-MS (3-NOBA matrix): 

m/z = 649.39250 (calcd. for CH51NO2, 649.39198). 
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L) 
*Oj—O°o 

CHNO2 
Mol. Wt: 653.9 

A solution of 4-(2- {4[Tris(4.-tert-butylphenyl)-methyl]-PheflOXY} -ethoxy)-benzonitrile 

(5.880 g, 9.050 mmol) in anhydrous tetrahydrofuran (1100 mL) was added dropwise to a 

cooled at 0°C solution of lithium aluminium hydride in tetrahydrofuran (1.0 M solution, 

37 mL) under an atmosphere of argon. The resultant solution was heated at refiux for 3 

hours, then allowed to cool to room temperature. The solution was cooled in an ice bath 

and water (1 mL), 15% aqueous sodium hydroxide solution (1 niL) then water (3 mL) 

were added cautiously with vigorous stirring. The resultant precipitate was filtered out 

and discarded. The solvent was removed under reduced pressure to yield the title 

compound as a white solid (5.800 g, yield = 98%). imp. 98.0-99.5 °C; 'H NMR (400 

MHz; CDCI3, Me4Si, 293K): 8= 1.34 (s, 27H, C(CH3)3), 3.84 (s, 2H, CNH2), 4.34 (s, 

4H, OCH2), 6.85 (d, 2H, J = 8.8 Hz, ArH), 6.96 (d, 2H, J = 8.8 Hz, ArH), 7.12 (d, 8H, J 

= 8.8 Hz, ArH), 7.27 (d, 8H, J = 8.8 Hz, AM); 13C NrvIR (100 MHz, CDCI3, Me 4Si, 

293K): 8= 31.8, 34.7, 46.3, 63.5, 66.8, 67.0, 113.6, 115.2, 124.5, 128.7, 131.1, 132.71, 

136.4, 140.5, 144.5, 148.7, 156.8, 1158.0 - LRFAB-MS (3-NOBA matrix): m/z = 654 

[MJ, HRFAB-MS (3-NOBA matrix): m/z = 654.43 179 (calcd. for CH56NO2, 

654.43111). 
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Pyridine-2,6-dicarboxyIic acid bLs- 14-(2- {4-[Tris-(4-tert-butylphenyl)-methYtl- 

phenoxy)-ethoxy)-benzylamidel 

[H2L4] 

H2L4 
C99H 111 N308 

Mo1 %.M.: 1439.0 

A solution of 4-(2- {4[Tris-(4-tert-butylphenyl)-methyl]-PheflOXY} -ethoxy)-benzylamine 

(3.970 g, 6.070 mmol), and triethylamine in dry dichioromethane (50 mL) was cooled to 

0 °C under an atmosphere of argon. A solution of pyridine-2,6-dicarbonyl dichloride 

(0.619 g, 3.040 mmol) in anhydrous dichioromethane was added dropwise under argon. 

The reaction was stirred at 0 °C for 2 hours then it was allowed to warm to room 

temperature. The solvent was removed under reduced pressure and the residue dissolved 

in ethyl acetate. The solution was passed through a plug of silica then the solvent was 

removed under reduced pressure. The residue was dried in a vacuum oven overnight to 

yield the title compound as a white solid (4.144 g, yield = 95%). imp. 180.3-182.1 °C; 

1 H NMR (400 MHz; CDC13, Me4Si, 293K): 5 = 1.28 (s, 54H, C(CH3)3), 4.20 (s, 8H, 

O(CH2)20), 4.51 (4,411, J = 6. 0, CONHCFIZ), 6.74 (d, 4H, J = 8.8, AM), 6.80 (d, 4H, J 

= 8.8, ArH), 7.06-7.09 (m, 16H, AM), 7.16 (d, 411, J = 8.8, ArH), 7.23 (d, 12H, J=8.8, 

Aril), 7.96 (t, 111, J = 7.8, pyridyl-H), 8.23 (t, 2H., J = 6.0 CONHCH2), 8.33 (d, 211, J = 

7.8, piridyl-H); ' 3C NMR (100 MHz, CDCI3, Me4i, 293K): 8=31.8,34.7,42.95,63.1, 
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66.2, 66.6, 113.1, 114.7, 123.8, 125.3, 129.1, 130.9, 131.0, 132.3, 139.3, 140.5, 144.5, 

148.7, 149.2, 156.7, 158.5, 163.9 - LRFAB-MS (3-NOBA matrix): rnz = 1438 [MH], 

1461 [MNa1', HRFAB-MS (3-NOBA matrix): m/z = 143 8.85059 (calcd. for 

C99H111N306, 1438.85064), ESI +ve: m/z = 1438 [MH]. 

[Pyridine-2 ,6-dicarboxylic acid bis- 14-(2- {4-jTris-(4-tert-butylphenyl)-methy IJ - 

phenoxy-ethoxy)-benzylamide1- [N, N'- bis [4-(hex-5-enyloxy)benzyll-2,6- 

pyndinedicarboxamidelcobalt( II I)) tefraphenyiphosphonium 

[Co(L1 )(L4)IPPh4 

eo 	
PPh4 

10 

[LI L4C0]PPh4  
C,,H 1 CoN6O 10P (Mol. Wt: 23749) 

C 1 H1 N7010 (MoI Wt. 19906) 

To pyri dine-2,6-dicarboxylic acid 	bis-[4-(2- 14-[Tris-(4-Iert-butylphenyl)-methYl]- 

phenoxy}-ethoxy)-benzylamide], H 2L4, (0.500 g, 0.345 mmol) and 2,6-diacetylpyridine 

bis(5-hex-5'-enyloxybenzylaflIide), H 2LI, (0.187 g, 0.345 mmol) in anhydrous 

dimethylformamide (100 mL) was added a suspension of 40% sodium hydride in 

mineral oil (0.112 g, 2.800 mmol). The reaction was stirred at room temperature under 

an atmosphere of nitrogen for 20 minutes and then a solution of cobalt (II) chloride 
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hexahydrate (0.082 g, 0.345 mmol) in anhydrous dimethylformamide (3 mL) was added 

to it via double ended needle technique. A colour change from blue to red-brown was 

observed. The reaction was stirred at room temperature under an atmosphere of nitrogen 

for 10 minutes then the flask was opened and the solution bubbled with compressed air 

for 30 minutes. A further change in colour from red to green was observed. The solvent 

was removed under reduced pressure and the resulting solid was stirred in ethylacetate 

(50 mL) with sonnicating for 60 minutes and then filtered under gravity. The resultant 

green solid was dissolved in dichloromethane (25 mL) and tetraphenylphoshonium 

chloride (0.129 0.345 mmol) was added to it and stirred for 30 minutes. The solution 

was filtered and the solvent removed under reduced pressure. The crude mixture was 

purified using column chromatography (Silica gel, 1:39:60 Et 3N/(CH3)2C0/CH2Cl2) to 

give the product as a dark green solid (0.333 g, yield = 41%). m.p. 136.5-138.4 °C; 'H 

NMR (400 MHz, Acetone-d6, 293K): 5 = 1.12 (s, 54H, C(CH3)3) 1.37-1.42 (m, 4H, 

Alkyl-H), 1.54-1.60 (m, 411, OCH2Cif), 1.94-2.05 (m, 4H, CjCHCH2), 3.08 (s, 41-I, 

COMTCHZ), 3.12 (s, 4H, CONI{CH), 3.71 (t, 411, J = 6.6, OCH2), 4.06-4.15 (m, 8H, 

OCH2CH20), 4.77-4.91 (m, 4H, CH=C12), 5.64-5.75 (m, 2H, CH=CH2), 6.19-6.34 (m, 

1611, AM), 6.77 (d, 4H, J = 8.8 AM), 6.96 (d, 4H., J = 8.8 ArH), 6.99 (d, 12H, J = 8.6, 

AM), 7.16(d, 12H, J = 8.6, AM), 7.50 (d, 2H, J = 7.8, pyridyl-H), 7.56 (d, 2H, J= 7.6, 

pyridy-H), 7.69-7.72 (m, 16H, PPh4, 7.82-7.88 (m, 4H, PPK,), 7.95 (t, 111, J = 7.8, 

pyridyl-H), 8.06 (t, 111, J = 7.6, pyridyl-H). ); 13C NUR (100 MHz, Acetone-d15, 293K): 

5= 26.2, 29.3, 31.7, 34.2, 34.9, 46.8, 53.5, 63.9, 67.3, 67.5, 68.2, 114.2, 114.3, 114.8, 

115.0, 123.0, 123.1, 123.8, 125.1, 129.1, 129.2, 130.9, 131.0, 131.4, 131.5, 132.8, 134.2, 

134.9, 136.4, 139.6, 139.7, 140.4, 145.3, 148.7, 149.1, 157.6, 157.8, 158.0, 158.6, 

168.9, 170.0 - LRFAB-MS (3-NOBA matrix): m/z = 2040 [L1L4CoH2], HRFAB-MS 

(3-NOBA matrix): m/z = 2037.06353 (calcd. for C132HI48CON60I0, 2037.06225) 

[L1L4Co], ESI -ye: m/z = 2035 [LJL4Co] 
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[Pyrid ine-2,6-dicarboxylic acid bis- (4-(2-{4- ITris(4tert-butyIphenyl)-methYlI 

phenoxy}-ethoxy)-benzy)amidel- Ibis t I(N,N'- 1 ,1O-dec-5-enyloiydibenzyl)2,6- 

pyridined icarboxamidol cobaIt(1H) tetraphenyiphosphonium 

IL21_4C0IPPh4 

0 

	 PPN 

t 

(L2L4C0JPPh4 
C154H 102C0N6010P (Mot Wt; 2346.9) 
C130H 142C0N6O10 (Mol, Wt i 20075) 

Grubbs' metathesis catalyst [Ru('CHPh)(PCy3)2C12} (0.037 g, 0.045 mmol, 20 mol %) 

was placed in a sealed, argon-purged, flame-dried Schienk tube, and subjected to a 

constant stream of argon for ten minutes. A degassed and argon-purged solution of the 

ILI1L4C0IPPh4 complex (0.532 g, 0.224 mmol) in anhydrous dichloromethane (500 

mL) was transferred to the Schlenk tube by injection over ten minutes. Reaction was 

allowed to continue until all the starting material was consumed as evidenced by TLC 

(typically I day). 2 niL of methanol were added to the resulting solution, which was then 

evaporated to dryness and purified by chromatography (Silica gel, 1:39:60 

Et3N/(CH3)2C0/CH2Cl2) to yield the title compound as a green solid (0.379 g, yield 

72%). m_ p. 165 °C (dec); 'H NMR (400 MHz, Acetone-4, 293K): 5= 1.15 (s, 54H, 

C(CH3)3), 1.33-1.39 (m. 411, Alkyl-H), 1.55-1.60 (m, 411, OCH 2C), 1.94-2.11 (m, 4H, 

CCHCH2), 3.10 (d, 411, J = 9.6, CONHCH2), 3.22 (s, 4H, CONHCH2), 3.81 (m, 4H, 

OCH2), 4.08-4.14 (m, 811, OCH 2CH20), 5.26 (t, 1.1H, J = 4.5, CH=CH trans) 5.44 (t, 
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0.911, J= 3.8, CFI=CH cis), 5.97-6.01 (m, 4H, An-I), 6.18-6.21 (m, 4H, AM), 6.32-6.41 

(m, 811, ArH), 6.76 (d, 411, J = 8.8 AM), 6.95 (d, 4H, J = 8.8 ArH), 6.98 (d, 12H, J = 

8.6, ArH), 7.16 (d, 12H, J = 8.6, ArH), 7.32 (d, 211, J = 7.6, pyridyl-H), 7.61-7.66 (m, 

211, pyridyl-H), 7.69-7.72 (m, 16H, PPK4), 7.82-7.88 (m, 41I, PPK4), 8.03 (q, 1H,J= 8.3, 

pyridyl-H); ' 3C NMR (100 MHz, Acetone-c16, 293K): 5 = 26.2, 29.3, 31.2, 34.8, 36.4, 

46.9, 55.0, 63.9, 67.4, 67.5, 68.10, 114.1, 114.6, 115.1, 118.5, 119.4, 122.5, 124.7, 

125.5, 129.3, 130.1, 131.4, 131.5, 131.7, 131.9, 132.8, 134.4, 135.7, 136.4, 138.7, 139.4, 

140.4, 145.3, 149.1, 157.0, 157.5, 158.8, 159.4, 169.1, 169.2 - LRFAB-MS (3-NOBA 

matrix): m/z = 2010 [L1L4CoH2], HRFAB-MS (3-NOBA matrix): m/z = 2008.02607 

(calcd. for C130H 143CoN6010P, 2008.023 13) [L1L4CoH], ESI -ye: m/z = 2008 [LJL4CoT 

[Pyridine-2,6-dicarboxylic acid bL- 

phenoxy -ethoxy)-benzylamide]-[ Pyridine-2,6-dicarboxylic acid 1 ,1O-di(4- 

phenoxymethylamide)decafle]cobaJt(LII)} tetraphenyiphosphonium 

[L2'L4CoI (C1C 2H4)(C2H5)3N 

(CH4)(C2H5) 3N 

(L.2'L4Coj(CIC2H4XC2H6)3N 	 - 
C 1 H 1 CCoN7010 (Mol. Wt 2174.2) 

C 1 HCoN6Oio (Mol. WI.: 2009.5) 
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To [L2'L4C0]PPh4 (0.059 g, 0.025 mmol) in anhydrous methanol(30 mL) was added 

10% w/w Pd-C (0.010 g) and was stirred under an atmosphere of H2 for 18 h. The Pd-C 

was then removed by filtration through a plug of Celite, and the solvent was removed 

under reduced pressure. The crude mixture was purified using column chromatography 

(Silica gel, 1:39:60 Et 3N/(CH3 )2C0/CH2C12) to give the product as a dark green solid.( 

0.022g, yield = 89%). m.p. 160-175 °C (dee); 'H NMR (400 MHz, Acetone-d6, 293K): 

5= 1.15 (s, 5411, C(CH3)3), 1.16 (t, 91-I, J 7.3, CCH2N), 1.34-1.39 (m, 1211, Alkyl-

H), 1.57 (t, 2H, J = 6.3, C1CH2Cj2N), 1.53-1.60 (m, 4H, OCH2C), 1.92 (m, 911, 

CCH2N), 3.04 (q, 611, J = 7.3, CH3CN), 3.17 (d, 4H, J = 9.6, CONHCH2), 3.24 (s, 

4H, CONHCjj), 3.79 (m, 4H, 0CH2), 3.80 (t, 211, J = 6.3, ClCfCH2N), 4.03-4.12 (m, 

8H, OCH2CH20), 6.00 (d, 411, J = 8.6, ArH), 6.23 (d, 411, J = 8.8, ArH), 6.34 (d, 4H, J = 

8.6, AM), 6.42 (d, 411, J = 8.6, ArH), 6.71 (d, 4H, J = 8.8 ArH), 6.93 (d, 411, J = 8.6 

Aril), 6.97 (d, 1211, J = 8.6, AM), 7.14 (d, 12H, J = 8.6, AM), 7.34 (d, 2H, J = 7.6, 

pyridyl-H), 7.71 (d, 2H, i= 7.6, pyridyl-H), 7.85 (t, 111, J= 8.3, pyridyl-H), 7.94 (t, 111, 

J= 8.3, pyridyl-H); ' 3 C NMR (100 MHz, Acetone-d6, 293K): 5 = 9.53, 26.3, 27.7, 28.9, 

29.0, 31.7, 34.9, 42.8, 42.9, 46.8, 50.9, 63.9, 67.4, 67.5, 67.80, 114.1, 115.8, 122.8, 

125.4, 125.7, 1283, 128.4, 129.6, 129.8, 130.1, 131.1, 131.4, 131.5, 132.6, 140.3, 140.4, 

142.2, 145.3, 149.0, 149.1, 157.7, 157.7, 158.9 - LRFAB-MS (3-NOBA matrix): m/z = 

2011 [L1'L4CoH2], HRFAB-MS (3-NOBA matrix): m/z = 2011.04660 (calcd. for 

C130H 1 CoN601o, 2011.04735) [L1'L4CoH2], ESI -ye: m/z =2009 [L1'L4Co]. 
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[Pyridine-2,6-dicarboxylic acid bis- [4-(2-{4-[Tris-(4-terl-bulylphenyl)-methyl] - 

phenoxy}-ethoxy)-benzylamidel- Ibis{ I(N,N'-1 ,1 O-dec-5-enyloxydibenzyl)-2,6- 

pyrid medicarboxamidol 

[H1L2 H2L4J 

- 

Z~-X- 
(1.12 L2H2L4) 

C 1 H 146N60 10  
Mol. 	.: 1952.6 

To EL2L4C0IPPh4 (0.117 g, 0.050 mmol) in anhydrous methanol (20 mL) was added 

zinc powder (0.005 g, 0.077 mmol) and glacial acetic acid (0.5 mL). The reaction was 

stirred at room temperature in aerobic conditions for 20 minutes. A change in colour 

from green to pale pink was observed. The suspension was filtered through a plug of 

Celite and the filtrate was added dropwise to an aqueous sodium carbonate solution 

stirring on top of a chloroform layer: the product precipitated out of solution in the form 

of white powder (0.095 g, yield = 97%). m.p. 140-144 °C; 'H NIvIIR (400 MHz, 

Acetone-c16, 293K): 5= 1.29 (s, 54H, C(CH3)3) 1.36-1.49 (m, 4H, Alkyl-H), 1.58-1.68 

(m, 4H, OCH2CIj2), 1.94-2.05 (m, 411, CjCH=CH2), 3.61 (t, J = 6.6, 2H, OCCH20), 

3.75 (t, 211, J = 6.6, OCJI2CH20), 3.78-3.88 (m, 3H, PhOCH2) 3.90-4.01 (s, 5H, 

PhOC), 4.36 (t, 4H, J = 5.2, CONHCkb), 4.42 (t, 411, J = 4.5, CON}ICI:jz), 4.06-4.15 

(m, 811,), 5.30-5.41 (m, 411, CIICH), 6.20 (d, 411, J = 8.6, ArH), 6.41 (d, 411, J = 8.6, 

ArH), , 6.44 (d, 411, J= 8.6, ArH), 6.58 (d, 4H, J = 8.6, ArH), 6.66 (d, 4H, J= 8.6, ArH), 
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6.83 (d, 4H,J= 8.6, AM), 7.03 (d, 12H,J= 8.4, ArH), 7.16 (d, 121-,J = 8.4, ArH), 7.74 

(t, 1 H, J = 7.8, pyridyl-H), 7.81 (t, I  J = 7.6, pyridyl-H), 8.18 (d, 21-I, J = 7.8, pyridyl-

H), 8.25 (d, 21-I, J = 7.6, pyridy-H), 8.39 (t, 16H, J = 5.6, CONiC142), 8.48 (t, 4H, J = 

5.6, CONHCH2); (NB: Some signals appear to be doubled due to near 1:1 cis- trans-

product ratio.) ' 3C NIvIR (100 MHz, Chloroform-d, 293K): 5 = 25.3, 25.8, 31.4, 34.3, 

42.9, 43.0, 43.3, 63.0, 65.8, 66.0, 67.0, 113.6, 114.2, 124.1, 125.5, 125.6, 128.9, 129.9, 

130.1, 130.4, 130.6, 132.2, 138.8, 140.2, 1440, 148.3, 149.0, 149.1, 155.7, 157.3, 157.6, 

163.5, 163.7 - LRFAB-MS (3-NOBA matrix): rn/i = 514 [L2H3 ] +, 1440 [L3H3], 1953 

[H2L2H2L3Hr, HRFAB-MS (3-NOBA matrix): m/z =1952.11678 (calcd. for 

C130H1N60I0, 1952.11340), ES! -ye: rn/z = 1951 [HIL2H 2L3]. 

[Pyridine-2,6-d icarboxylic acid bis- 14-(2- {4- ETris(4-tert-butyIpheny1)-methyI1 - 

phenoxy} -ethoxy)-benzylamidej-I Pyrid ine-2,6-dicarboxylic acid 1,1 O-d i(4- 

phenoxymethylamide)decanel 

H2L2'H2L4 

(H2L2'H2L41 
C130H14aN8010 

MoiWt.:19546 
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To [H2L2H2L4] (0.109 g, 0.050 mmol) in anhydrous methanol (30 mL) was added 10 1/6 

w/w Pd-C (0.015 g) and was stirred under an atmosphere of H 2  for 18 h. The Pd-C was 

then removed by filtration through a plug of Celite, and the solvent was removed under 

reduced pressure. The crude mixture was purified using column chromatography (Silica 

gel, 1:39:60 Et 3N/(CH3)2C0/CH2Cl2) to give the product as a white solid. (0.093 g, yield 

95%). m. p. 135-140 °C 1 H NMR (400 MHz, Acetone-d6, 293K): 8= 1.22-1.34 (m, 

8H, Alkyl-H), 1.29 (s, 54H, C(CH3)3), 1.37-1.46 (m, 4H, Alkyl-H), 1.58-1.67 (m, 4H, 

OCH2CFI2), 3.60 (t, J = 6.6, 2H, OCH2CH20), 3.75 (t, 211, J = 6.6, OCIj2CH20), 3.78-

3.88 (m, 311, PhOCH2) 3.90-4.01 (s, 5H, PhOCth),  4.36 (t, 4H, J = 5.2, CONICH2), 

4.42 (t, 4H, J = 4.5, CONHCFI2), 4.05-4.13 (m, 8H,), 6.45 (d, 4H, J = 8.6, AM), 6.54 (d, 

4H, J = 8.6, ArH),, 6.75 (d, 4H, J = 8.6, AM), 6.86 (d, 4H, J = 8.6, ArH), 6.92 (d, 411, J 

= 8.6, ArH), 6.99 (d, 411, J = 8.6, ArH), 7.03 (d, 1211, J = 8.4, ArH), 7.16 (d, 12H, I = 

8.4, ArH), 7.74 (t, IH,J = 7.8, pyridyl-H), 7.81 (t, 1H,J = 7.6, pyridyl-H), 8.18 (d, 2H,J 

7.8, pyridyl-H), 8.25 (d, 211, 1 = 7.6, pyridy-H), 8.39 (t, 161-1, 1= 5.6, CONHCH2), 

8.48 (t, 411,1= 5.6, CONHCH2); 13C NMR (100 MHz, Chloroform-d, 293K): 8 = 13.4, 

25.3, 25.7, 26.3, 31.2, 34.2, 42.9, 43.1, 43.4, 63.0, 65.8, 66.1, 67.0, 113.5, 114.2, 124. 1, 

125.6, 125.7, 128.9, 129.9, 130.0, 130.4, 130.5, 138.9, 140.2, 144.1, 148.3, 149.1, 149.1, 

155.7, 157.4, 157.6, 163.7, 163.8 - LRFAB-MS (3-NOBA matrix): m/z = 516 [L2113}, 

1440 [L3H3]+, 1955 [H2L2H2L3H], HRFAB-MS (3-NOBA matrix): m/z = 1954.13411 

(calcd. for C 130H149N6010, 1954.13352), ES! -ye: m/z= 1953 [HL2H2L3] - . 

143 



Chapter Three 

3.6. References 

1  A) G. Schill, Catenanes, Rotamnes and Knots, Academic Press, New York, 1971; B) 

Molecular Catenanes, Rota xanes and Knots (Eds.: J.-P. Sauvage, C. Dietrich-

Buchecker), Wiley-VCH, Weinheim, 1999; C) C. See!, F. VOgtle, Chem. Eur. J. 2000, 6, 

21-24; D) J. E. H. Buston, J. R. Young, H. L. Anderson, Chem. Commun. 2000, 905-

906; E) K. Chichak, M. C. Walsh, N. R. Branda, Chem. Commun. 2000, 847-848; F) S. 

J. Loeb, J. A. Wisner, Chem. Commun. 2000, 1939-1940; G) M.-J. Blanco, J.-C. 

Chambron, V. Heitz, J.-P. Sauvage, Org. Lett. 2000, 2, 3051-3054; A. J. Baer, D. H. 

Macartney, Inorg. Chem. 2000, 39, 1410-1417; H) K.-S. Jeong, J. S. Choi, S.-Y. Chang, 

H.-Y. Chang, Angew. Chem. 2000, 112, 1758-1761; Angew. Chem. In!. Ed. 2000, 39, 

1692-1695; I) J. 0. Jeppesen, J. Perkins, J. Becher, J. F. Stoddart., Org. Lett. 2000, 2, 

3547-3550. 
2  A) J.-C. Chambron, J.-P. Sauvage, Chem. Eur. J. 1998, 4, 1362-1366;B) A. Niemz, V. 

M. Rotello, Acc. Chem. Res. 1999, 32, 42-52; C) A. E. Kaifer, Acc. Chem. Res. 1999, 32, 

62-71; D) L. Fabbrizzi, M. Licchelli, P. Pallavicini, Acc. Chem. Res. 1999, 32, 846-853; 

E) D. A. Leigh, A. Murphy, Chem. Ind. 1999, 178-183; F) P. Piotrowiak, Chem. Soc. 

Rev. 1999, 28,143-150; G) M.-J. Blanco, M C. Jiménez, J.-C. Chambron, V. Heitz, M. 

Linke, J.-P. Sauvage, Chem. Soc. Rev. 1999, 28, 293-305; H) V. Baizani, A. Credi, M. 

Ventur4  Supramolecular Science: Where It Is and Where It Is Going (Eds.: R Ungaro, 

E. Dalcanale), Kluwer, Dordrecht, 1999, pp.  1-22; I) M. D. Ward, Chem. Ind. 2000, 22-

26; J) M. D. Ward, Chem. Ind. 2000, 22-26; H) V. Balzani, A. Credi, M. Venturi, in 

Stimulating Concepts in Chemistry (Eds.: M. Shibasaki, J. F. Stoddart, F. Vogtle), 

Wiley-VCH, Weinheim, 2000, 255-266. 

A) G. A. Breault, C. A. Hunter, P. C. Mayers, Tetrahedron 1999, 55, 5265-5293; B) 

M. B. Nielsen, C. Lombolt, J. Becher, Chem. Soc. Rev. 2000, 29, 153-164; C) T. J. 

Hubin, D. H. Busch, Coord. Chem. Rev. 2000, 200-202, 5-52. 

144 



Chapter Three 

A) C. P. Collier, E. W. Wong, Ni Belohradsky, F. M Raymo, J. F. Stoddart, P. J. 

Kuekes, R S. Williams, J. R Heath, Science 1999, 285, 391-394; B) E. W. Wong, C. P. 

Collier, Ni Belohradsky, F. M. Raymo, J. F. Stoddart, J. R Heath, J. Am. Chem. Soc. 

2000, 122, 5831-5940. 

A) J. A. Preece, J. F. Stoddart, Nanobiology 1994, 3, 149-166; B) M. (36mez-L6pez, J. 

A. Preece, J. F. Stoddart, Nanotechnology 1996, 7, 183-192; C) M Gómez-López, J. F. 

Stoddart, Bull. Soc. Chem. BeIg. 1997, 106, 491-500; D) V. Baizani, M. Gômez-López, 

J. F. Stoddart, Acc. Chem. Res. 1998, 31, 611-619; E) J.-P. Sauvage, Acc. Chem. Res. 

1998, 31, 611-619; F) V. Balzani, A. Credi, F. M. Raymo, J. F. Stoddart, Angew. Chem. 

2000, 112, 3484-3530; 
6  A) J.-P. Sauvage, C. Dietrich-Buchecker, G. Rapenne in Molecular Catenanes, 

Roraxanes and Knots (Eds.: J.-P. Sauvage, C. Dietrich-Buchecker), Wiley-VCH, 1999; 

B) J.-P. Collin,  C. Dietrich-Buchecker, P. Gavina, M C. Jimenez-Molero, J.-P. Sauvage, 

Ace. Chem. Res. 2001, 34, 477-487. For complexes where metal coordination forms part 

of the macrocycle in a rotaxane see: C) K.-S. Jeong, J. S. Choi, S.-Y. Chang, H.-Y. 

Chang, Angew. Chem. 2000, 112, 1758-1761; Angew. Chem. liii. Ed. 2000, 39, 1692-

1695; D) S.-Y. Chang, J. S. Choi, K-S. Jeong, Chem. Eur. J., 2001, 7,2687-2697; E) S.-

Y. Chang, K.-S. Jeong, .1 Org. Chem. 2003, 68,4014-4019; F) S.-Y. Chang, H.-Y. Jang, 

K.-S. Jeong, Chem. Eur. J, 2003, 9, 1535-1541. For complexes where metal 

coordination forms part of the thread in a rotaxane see: G) K.-M. Park, D. Whang, E. 

Lee, J. Heo, K Kim,, Chem. Eur. J, 2002, 8, 498-508. For complexes where metal 

coordination forms the stoppers in a rotaxane see: H) R B. Hannak, G. Farber, R 

Konrat, B. Kräutler, J. Am. Chem. Soc., 1997, 119, 2313-2314; I) J.-C. Chambron, J.-P. 

Collin, J.-O. Dalbavie, C. 0. Dietrich-Buchecker, V. Heitz, F. Odobel, N. Solladié, J.-P. 

Sauvage, Coord. Chem. Rev. 1998,178-180,1299-1312; J) A. J. Baer, D. H. Macartney, 

Inorg. Chem. 2000, 39, 1410-1417; K) S. J. Loeb, J. A. Wisner, Chem. Commun. 2000, 

1939-2000; L) G. J. E. Davidson, S. J. Loeb, N. A. Parekh, J. A. Wisner, J. Chem. Soc., 

145 



Chapter Three 

Dalton Trans. 2001, 3135-3136. For polyrotaxanes based on metal coordination 

polymers see: M) S. R Batten, R Robson, Angew. Chem. 1998, 110, 1558-1595; 

Angew. Chem. mt. Ed. 1998, 37, 1460-1494; N) A. J. Blake, N. R Cbampness, H. 

Hubberstey, W.-S. Li, M A. Withersby, M. SchrOder, Coord. Chem. Rev. 1999, 183, 

117-138; 0) K. Kim, Chem. Soc. Rev. 2002, 31, 96-107. 

A. M. Fuller, D. A. Leigh, P. J. Lusby, I. D. H. Oswald, S. Parsons and D. Barney 

Walker, Angew. Chem. 2004, 116, 4004-4008; Angew. Chem. mt. Ed. 2000, 43, 3914-

3918. 
8  L. Hogg, D. A. Leigh, P. J. Lusby, A. Morelli, S. Parsons, J. K. Y. Wong, Angew. 

Chem. 2004, 116, 123 8-124 1; Angew. Chem. mt. Ed. 2000, 43, 1218-1221; 

9 M. D. Pratt and P. D. Beer, Polyhedron, 2003, 22, 649-653. 

10  S.J. Cantrilly, A.R. Paese and J.F. Stoddart, J. Chem. Soc. Dalton Trans., 2000, 21, 

3715-3734. 

' J. Ni Ready and E. N. Jacobsen, J. Am. Chem. Soc., 2001, 123, 2687-2688,. 

12 j• M. Lehn, Supramolecular Chemistry: Concepts and Perspective; VCH: Weinheim, 

1995. 
13 A) J. Lin, J. Y. Zhang, Y. Xu, X. K. Ke and Z. Guo, Ada Crystallogr., Sect. C, 2001, 

57, 192. B) D. A. Conlon and N. Yasuda, Adv. Synth. Catal., 2001, 1, 343- . C) H. 

Kurosaki, R K. Sharma, S. Aoki, T. Inoue, Y. Okamoto, Y. Sugiura, M. Doi, T. Ishida, 

M. Otsuka and M. Goto, J. Chem. Soc., Dalton Trans., 2001, 441-. D) J. Zhang, Q. Liu, 

C. Duan, Y. Shao, J. Ding, Z. Miao, X. You and Z. Guo, J. Chem. Soc., Dalton Trans., 

2002, 591-. E) W. H. Leung, J. X. Ma, V. V. W. Yam, C. M. Che and C. K. Poon, J. 

Chem. Soc., Dalton Trans., 1991, 1071-. 

14 B. Ml. Trost and I. Hachiya, J. Am. Chem. Soc., 1998, 120, 1104 

15  A) S. R Collinson, T. Geibrick, M. B. Hursthouse and J. H. R Tucker, Chem. 

Commun., 2001, 555. B) I. Huc, M. J. Krische, D. P. Funeriu and J. M. Lehn, Eur. I 

lnorg. Chem., 1999, 1415 

146 



Chapter Three 

16 • D. Epperson, L. J. Ming, G. R Baker and G. R Newkome, J. Am. Chem. Soc., 

2001, 123, 8583 

17  A) F. kChavez, C. V.Nguyen, M. MOlmstead and P. KMascharak, Inorg. Chem., 

1996, 35, 6282-6291. B) J. M. Rowland, M. M.Olmstead, P. K. M ascharak, Inorg. 

Chem., 2002; 41, 1545-1549; C) J. M Rowland, M. M. Olmstead and P. K Mascharak, 

Inorg. Chem., 2002, 41, 2754 -2760; D) D. S. Marlin and P. K.Mascbarak, Chem. Soc. 

Rev. 2000, 29, 69. E) D. S. Marlin, MM. Olmstead and P. KMascharak, Inorg. Chem. 

Acta, 2001, 323, 1-4; F) J. M. Roiwand, M M Olmstead, P. K. Mascharak, Inorg. 

Chem. 2001, 40, 2810. G) J. C. Noveron, M. M. Olmstead, P. K Mascharak, Inorg. 

Chem. 1998, 37, 1138. H) S. J. Brown, M. M Olmstead, P. K Mascharak, Inorg. Chem. 

1990, 29, 3229. I) X. Tao, D. W. Stephan, P. K. Mascharak, Inorg. Chem. 1987, 26, 754. 

J) L. A. Tyler, M. M. P. K. Olmstead, Mascharak, Inorg. Chem. 2001, 40, 5408. K) L. 

A. Tyler, J. C .Noveron, M. M. Olmstead, P. K. Mascharak, lnorg. Chem. 2000, 39, 357. 

J. M. Rowland, M. M. Olmstead, P. K. Mascharak, Ada Crysiallogr. 2001, E57, 368. 

M. Muetterties, P. K. Mascbarak, M B. Cox, S. K. Arora, Inorg. Chim. Acta 1989, 

160, 123. N) F. A Chavez, M. M Olmstead, P. K. Mascharak, Inorg. Chim. Acta 1998, 

269, 269. 0) J. M. Rowland, M. L. Thornton, M M Olmstead, P. K. Mascharak, Inorg. 

Chem. 2001, 40, 1069. P) J. M. Rowland, M. M. Olmstead, P. K. Mascharak, Inorg. 

Chem. 2000, 39, 5326. Q) F. A. Chavez, C. V. Nguyen, M M. Olmstead, P. K 

Mascharak, Ino,. Chem. 1996, 35, 6282. R) F. A. Chavez, M. M. Olmstead, P. K. 

Mascharak, Inorg. Chem. 1997, 36, 6323. S) J. C. Noveron, M. M Olmstead, P. K 

Maseharak, J. Am. Chem. Soc. 2001, 123, 3247. T) D. S. Marlin, M. M. Olmstead, P. K. 

Mascbarak, Inorg. Chim. Ada 2000, 297, 106. U) D. S. Marlin, M Ml Olmstead, P. K. 

Mascharak, Inorg. Chem. 1999, 38, 3258. V) L. A. Tyler, J. C. Noveron, M. M. 

Olmstead, P. K. Mascharak, Inorg. Chem. 1999, 38, 616. X) J. C. Noveron, Ml M 

Olmstead, P. K. Mascharak, Inorg. Chem. 1998, 37, 1138. Y) C. Nguyen, It J. 

147 



Chapter Three 

Giiajardo, P. K Mascharak, Inorg. Chem. 1996, 35, 6273. Z) F. A. Chavez, J. M. 

Rowland, M. M. Olmstead, P. K Mascharak, .J. Am. Chem. Soc. 1998, 120, 9015, 

18  A) Y. Hamuro, S. J. Gelb, A. D. Hamilton, J. Am. Chem. Soc., 118 (32), 7529 -7541, 

1996. B) M Ray, D. Ghosh, Z. Shirin, R Mukherjee, Inorg. Chem., 36 (16), 3568 - 

3572, 1997. 
19  Pyridine amide ligand: A) Yang, Y.; Diederich, F.; Valentine, J. S. J. Am. Chem. Soc. 

1991, 113, 7195. B) Che, C.-M.; Leung, W.-H.; Li, C.-K; Cheng, H.-Y.; Peng, S.-M. 

Inorg. Chim. Acta 1992, 196, 43. C) Ray, M.; Mukherjee, R N.; Richardson, J. F.; 

Buchanan, R M. J. Chem. Soc., Dalton Trans. 1993, 2451. D) Wocadlo, S.; Massa, W.; 

Folgado, J.-V. Inorg. Chim. Acta 1993, 207, 199. 

20  Synthetic models of iron-bleomycins (metallo-bleomycins have among other ligands 

deprotonated amide nitrogen): A) Tao, X.; Stephan, D. W.; Mascharak, P. K. Inorg. 

Chem. 1987, 26, 754. B) Brown, S. J.; Olmstead, M. M.; Mascharak, P. K. Inorg. Chem. 

1990, 29, 3229. C) Guajardo, R. J.; Hudson, S. E.; Brown, S. J.; Mascharak, P. K. J. Am. 

Chem. Soc. 1993, 115, 7971. D) Guajardo, R. J.; Tan, J. D.; Mascharak, P. K. Inorg. 

Chem. 1994, 33, 2838. (e) Guajardo, R J.; Mascharak, P. K. Inorg. Chem. 1995, 34, 

802. 
21  Salicylamide ligand: Koikawa, Ml.; Okawa, H.; Maeda, Y.; Kida, S. Inorg. Chin,. Ada 

1992, 194, 75. 

22  Pyridine amide ligand: A) Saussine, L.; Brazi, E.; Robine, A.; Mimoun, 1-1.; Fischer, 

J.; Weiss, R. J. Am. Chem. Soc. 1985, 107, 3534. B) Mak, S.-T.; Wong, W.-T.; Yam, V. 

W.-W.; Lai, T.-F.; Che, C.-M. J. Chem. Soc., Dalton Trans. 1991, 1915. C) Ray, M.; 

Mukherjee, R N. Polyhedron 1992, 11, 2625. 

23  Synthetic models of cobalt-bleomycins: A) K. Delany, S. K. Arora, P. K. Mascharak, 

Inorg. Chem. 1988, 27, 705. B) M. Muetterties, P. K. Mascharak, M. B. Cox, S. K 

Arora, Inorg. Chim. Acta 1989, 160, 123. C) S. J. Brown, M. M. Olmstead, P. K 

Mascharak, Jnorg. Chem. 1989, 28, 3720. D) J. D. Tan, S. E. Hudson, S. J. Brown, M 

148 



Chapter Three 

M. Olmstead, P. K. Mascharak, J. Am. Chem. Soc. 1992, 114, 3841. F) F. Faunas, N. 

Baidya, P. K. Mascharak, Inorg. Chem. 1994, 33, 5970. 

24  Salicylamide ligand: A) F. C. Anson, T. 3. Collins, R J. Coots, S. L. Gipson, T. G. 

Richmond, J. Am. Chem. Soc. 1984, 106, 5037. B) M. Koikawa, M. Gotoh, H. Okawa, 

S. Kida, T. Kohzuma, J. Chem. Soc., Dalton Trans. 1989, 1613. 

25  Alkoxide amide ligand: A) T. 3. Collins, T. G. Richmond, B. D. Santarsiero, B. G. R. 

T. Treco, I Am. Chem. Soc. 1986, 108, 2088. B) J. C. Brewer, T. J. Collins,  M. R. 

Smith, B. D. Santarsiero, .1. Am. Chem. Soc. 1988, 110, 423. 

26  A. N. Dwyer, M. C. Grossel, P. N. Horton, Supramol. Chem., 2004, 16, 405-410. 

A) D. A. Leigh, K. Moody, J. P. Smart, K. J. Watson, A. M Z. Slawin, Angew. Chem. 

1996, 108, 326-321; Angew. Chem. ml. Ed. Engl. 1996, 35, 306-310. B) T. J. Kidd, D. 

A. Leigh, A. J. Wilson, J. Am. Chem. Soc. 1999, 121, 1599-1600. C) D. A. Leigh, A. 

Murphy, J. P. Smart, M. S. Deleuze, F. Zerbetto, .1. Am. Chem. Soc. 1998, 120, 6458- 

6467. 

28  Another potential interpretation assigns different resonances to couple of protons 

adjacent to the same carbon. At each time, one aromatic ring from each original "u-

shape" ligand is engaged in it-stacking with the pyridine unit while the other is twisted-

nearly perpendicularly to it. fl-stacking  augments the electron density on the aromatics 

and the benzylic groups therefore inducing  an upfield shift; on the other side, the 

aromatic perpendicular to the pyridine unit, experience a negligible effect and it 

resonates similarly to the free ligand. 

29  X-ray crystallographic structure determination, [L3'Co](C2H4Cl)(C2H5)3N: 

C70171 86CICoN708, M = 1247.84, green prism, 0.20 x 0.08 x 0.08 mm, orthorhombic, 

P212121, a = 14.142(4), b = 20.476(7), c = 23.569(11) A, V= 6825(4) A3 , Z = 4, Pd= 

1.214 mg m 3 ; MOKQ radiation (graphite monochromator, 20.71073 A), p = 0.348 mm 

1,  T = 93(2) K. 42876 data (12313 unique, Ri A  = 0.0709, 1.75 < 8 <25.35°), were 

collected on a Bruker SMART CCD diffractometer using narrow frames (0.3° in a'), and 
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were corrected semiempirically for absorption and incident beam decay. The structure 

was solved by direct methods and refined by full-matrix least-squares on F values of all 

data (G. M. Sheidrick, SHELXTL manual, Bruker AXS, Madison WI, USA, 1994, 

version 5) to give wR = {[w(F02-Fc2)2]/[w(Fo2)2]}"2 = 0.3 125, conventional R = 

0.1138 for F values of 12313 reflections with F0 > 4o(F0), S = 1.066 for 812 parameters. 

Residual electron density extremes were 0.821 and -0.610 eA 3 . Crystallographic data 

have been deposited with the Cambridge Crystallographic Data Centre as supplementary 

publication no. CCDC-22941 8. These data can be obtained free of charge via 

http : //www.ccdc.cam.ac.ukIcOfltS/retfleViflg.html  or from the Cambridge 

Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1 EZ, UK; fax: +44 1223 

336033; or depositccdc.cam.ac.uk . 

° The counterion tetraphenyiphosphonium, chosen in the first place to help solubility, 

was replaced with tetraethylammonium to assist crystallization. 
31 j• L. Atwood, J. E. D. Davies, D. D. MacNicol, F. Vogtle, Comprehensive 

Supramolecular Chemistry, Elsevier, NY, 1996 (Volume 1). 

32 X-ray crystallographic structure determination, [2]Catenand [H 2L2']2: C66 H80  N8 08, 

M = 1113.38, colourless prism, 0.20 x 0.20 x 0.20 mm 3 , Triclinic, P212121. a = 

10.2200(14) A, b = 15.396(3) A, c = 19.845(3) A, V= 3005.8(8) A3, Z= 2, p= 1.230 

Mg m 3 ; MOKa radiation (graphite monochromator, 2= 0.71073 A), u= 0.082mm1 , T= 

93(2) K. 10447 data (10447 unique, Rrn 0.0210, 2.03 0  <9 <25.350),  were collected 

on a Bruker SMART CCD diffractometer using narrow frames (0.3 0  in ), and were 

corrected semiempirically for absorption and incident beam decay. The structure was 

solved by direct methods and refined by full-matrix least-squares on F2  values of all data 

(G. M. Sheidrick, SHELXTL manual, Bruker AXS, Madison WI, USA, 1994, version 5) 

to give wR {[ w(Fo2_Fc2)2]/[w(Fo2) 2]} l '2  = 0.3125, conventional R = 0.1138 for F 

values of 12313 reflections with F0 > 4o(F0), S = 1.066 for 812 parameters. Residual 
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electron density extremes were 0.821 and —0.610 eA 3 . Crystallographic data have been 

deposited with the Cambridge Crystallographic Data Centre as supplementary 

publication no. CCDC-229418. These data can be obtained free of charge via 

hLtp://www.ccdc.cam.ac.uk/conts/retrieving.html  or from the Cambridge 

Crystallographic Data Centre, 12 Union Road, Cambridge CB2 I EZ, UK; fax: +44 1223 

336033; or depositccdc.cam.ac.uk . 
33 H. W. Gibson, S-H. Lee, P. T. Engen, P. Lecavalier, J. Sze, Y. X. Shen and Ni Bheda, 

J. Org. Chem., 1993, 58,3748-3756. 

34  A) B. Almarzoqi, A. V. George and N. S. Isaacs, Tetrahedron, 1986, 42, 601-607; B) 

R Erra-Balsells, A. R Frasca, Aust. J. Chem., 1988, 41, 103-110. 
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Synthesis of Penta-coordinate Zinc(II) 

and Cadmium(II) [2]Rotaxanes 

"Creativity is ... seeing something that doesn't exist already. You need to find out how you 
can bring it into being and that way be a playmate with God" 

Michele Shea 

And that's what I enjoyed the most in a Synthetic Lab.! 
Ale: Thoughts on my Ph.D. work (2001-2004) 



Chapter Four 

Chapter 4. Synthesis of Penta-coordinate Zinc(II) 

and Cadmium(II) [2]Rotaxanes. 

4.1. Abstract 

In this work we describe the synthesis of [2]rotaxanes with metal centres (Zn 2  and 

Cd2) that can adopt pentacoordinate geometry as templates. Two strategies were 

investigated. In the threading approach a tridentate macrocycle is reacted with a linear 

synthon incorporating a bipyrirdyl unit and cadmium(II) perchiorate to give the pseudo-

rotaxane. Both ends of the thread are then functionalised with bulky stoppers, via the 

Mitsunobu reaction, to give the desired mechanically interlocked architecture. Attempts 

carried out with zinc(H) perchiorate afforded unintertwined thread due to fast ligand 

exchange, characteristic of this metal. 

In the clipping  approach the macrecycle self-assembles through Schiff base 

condensation reactions around a preformed metal-thread complex. Zinc(H) perchiorate 

reacts promptly with the free ligands to form the kinetic product, the 5-coordinate 

rotaxane; this compound converts over a period of 12 hours into the more stable 

octahedral hexacoordinate [2]catenate. Cadmium(H) perchlorate on the contrary reacts 

in a more slow fashion to generate directly the thermodynamic product. 

4.2. Introduction 

The importance of pentacoordinate metal complexes has been stressed in reaction 

intermediates of a variety of metal enzymes.' The synthesis of new aza-macrocycles 

mimicking biologically occurring macrocyclic ligands and their complexes has attracted 
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much attention not only from a biological standpoint but also because of the potential 

applications in area such as electrocatalysis and electrochemical corrosion. 2  In a recent 

paper, Adams and Najera discuss the pentacoordinate complexes forming interactions of 

Cu(il), Ni(ll), Ag(I), Zn(IT) and Pb(H) with a pyridinyl-derived macrocycle (Figure i). 

AN- 
NH 	HN.- 

Figure 1: Adams' and Najera's macrocycle. 

Comparison between the complexes obtained with the different metals proved that "a 

priori' arguments are unreliable in predicting the geometry of a particular complex".' 

In fact, the number of counter ions and the stereochemical requirements of chelating 

ligands are crucial features in defining the specific geometry of these pentacoordinate 

complexes which can range from distorted square-pyramidal, like in the silver complex, 

to distorted trigonal-bipyramidal, like with zinc, and again to an even more distorted 

structure where the lead metal, being too large to fit the cavity, is placed out of the main 

plane with the macrocycle sitting on one side and the anions sitting on the other (Figure 

2). 
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Figure 2: X-ray crystallography of Adams' and Najera's distorted square-pyramidal 
silver complex, A. and B., zinc distorted trigonal-bipyramidal complex, C. and D., 
and "out-of-the-plane" lead complex, E. and F.. 

The flexibility and relative unpredictability of the pentacoordinate geometry, as well as 

the kmetically unstable nature of the corresponding complexes has accounted for its 

lower usage in the development of mechanically interlocked architectures. The first 

examples of rotaxanes containing a pentacoordinate motif were reported by Sauvage et 

at in 1999. 
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Figure 3: Sauvage's copper based redox- responsive [2]rotaxane presenting a 
thread derivatised with a bidentate and a tridentate station. 

In the J.A.C.S. paper they presented the metal based redox-responsive molecular shuttle 

where the different preferred coordination number, respectively 4 and 5 for copper(I) 

and copper(II), is exploited to induce movement of the macrocycle along the thread. In 

this [2]rotaxane, (Figure 3), a phenanthroline derivatised macrocycle provides a 

bidentate ligand for the coordination sphere surrounding the metal. The thread bears 

two coordinating units, a bidentate phenanthroline and a tridentate terpyridine. 

Reduction and oxidation of the metal generates systems with the mentioned different 

preferred coordination number. Satisfaction of such coordination requirements is 

achieved selectively binding to either one of the two stations built in the thread. While 

adjusting to the appropriate geometry the macrocycle achieves controlled large-

amplitude molecular motion. 4  
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Figure 4: Sauvage's redox- responsive [2]rotaxane presenting a macrocycle 
derivatised with a bidentate and a tridentate station. 

The very same principle was used to develop a system where the macrocycle carries 

two stations, a bidentate phenanthroline and a tridentate terpyridine, while the thread is 

functionalised only with a phenanthroline moiety (Figure 4). Rather than shuttling, 

reduction and oxidation of the metal induces controlled pirouetting of the macrocycle 

around the thread. 6  

While the examples shown in Figure 3 and Figure 4 yield architectures mechanically 

interlocked about a pentacoordinate geometry, this specific motif is not actually used as 

a template to direct the synthesis of such systems. The assembly of the macrocyclic and 
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unstoppered thread units takes place using Sauvage's tetrahedral copper(I) bis-

phenanthroline synthons. 

 

Q3SCF3  OSCF3  

J r 

1 	 2 

Figure 5: First example of template directed synthesis about a pentacoordinate 
metal: zinc(II) [2]catenate consisting of two different cycles, containing with a 
bidentate and a tridentate ligand respectively. Reagents and conditions: a) Grubbs' 

catalyst, CH 202 , RT, b) I-1 2/Pd-C, MeOH, RT. 

The first example of using a 5-coordinate metal as a template for synthesising a 

mechanically interlocked system came once again from the Strasbourg group in 2003. 

They presented the assembly of a [2]catenate consisting of two different macrocycles, 

one bidentate and the other tridentate (Figure 5, 2). While zinc is known to form quite 

stable pentacoordinate complexes with nitrogen containing ligands, the formation of 

hexacoordinate complexes remains favoured. To prevent two tridentate ligands from 

assembling about a single zinc atom, an endotopic tndentate terpyndine unit was 

incorporated into a macrocycle. The formation of the pentacoordinate complex I was 

therefore obtained via threading of a bidentate ligand through the pre-formed zinc 

macrocycle complex; a clipping reaction between the appropriately derivatised ends of 

the "u-shape" ligand then delivered the corresponding catenate. The zinc(H) preferred 
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coordinate geometry prevented the formation of tetracoordinate complexes between two 

bidentate open-ended ligands. Grubbs' catalyst mediated ring closing metathesis on the 

"u-shape" terminal olefms generated the desired catenate. The catenate carrying the 

double bond is reported to be quite unstable and easily demetalated. Hydrogenation of 

the double bond generated catenate 2 with an overall yield of 40%. 

The aim of this project was to synthesise [2]rotaxanes by template directed synthesis 

about a pentacoordinate metal. To the best of our knowledge this had not been done or 

reported. This endeavour represented another step ahead towards the investigation of 

the construction of mechanically interlocked architectures about a range of diverse 

metals, moving from octahedral 6-coordinate to 5-coordinate motifs (Figure 6). 

A 	 B 	 C 

Figure 6: The progression from (a), octahedral 6-coordinate motif, to (b), 5-
coordinate trigonalbipyramidal, and, (c), Square-pyramidal. 

4.3. Results and Discussion 

The system design exploited the tridentate macrocyclic ligands developed and studied 

for the chemistry involving mechanically interlocked architectures about hexacoordinate 

metals with octahedral geometry, as described in Chapter 2 (Figure 7). For the very 
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same argument discussed with the 5-coordinate [2}catenate with regard to the competing 

formation of hexacoordinate complexes, the tridentate station had to be placed within the 

macrocycle. The thread, denvatised with a bidentate station, provided the proper 

number of nitrogens to create a pentacoordmating environment. A 5,5'-disubstituted-

2,2'-bipyridine unit was the bidentate station selected. 

Two different synthetic paths were conceived to potentially deliver the desired rotaxane. 

The first strategy involved a clipping approach whereby an imine-based macrocycle self-

assembled through Schiff base condensation around the preformed metal-thread 

complex (Figure 7, a.). On the other hand, the insertion of an unstoppered thread into a 

preformed macrocycle-metal complex followed by reaction with a bulky stopper to 

prevent slippage (threading and capping approach) offered an alternative method to the 

construction of the interlocked system (Figure 7, b.). 

Clipping Approach 

if

ob  

Threading Approach 

C 

y Ny 

Figure 7: 	Pentacoordinate [2]rotaxane design using ligands developed for 
octahedral geometry: A) Imine-based clipping approach: the macrocycle self- 
assembles about the metal and the thread through Schiff base condensation; B) 
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Amine-based threading approach: an unstoppered thread slip through a preformed 
macrocycle-metal complex. 

4.3.1. Thread LIS2 

The Clipping Approach —1. 

In order to proceed with a clipping approach the thread was synthesised in advance. 14-

[5'-(4-Hydroxymethyl-phenoxymethyl)-[2,2']bipyridinyl-5-ylmethoxy]-phenyl } - 

methanol, L1S2, was the first and simplest bipyridyl thread made. It was prepared in 

three steps from readily available materials (Scheme 1, a. - b.). 5,5'-Dimethyl-

[2,2']dipyridyl was reacted with N-bromosuccinimide in the presence of 2,2'-azo-bis-

isobutyronitrile and irradiated with white light for four hours to give 5,5'-bis-

bromomethyl-[2,2']bipyridyl, Li, according to a literature procedure. 8  Initial attempts to 

substitute the bromine atoms with the stopper, 4-[Tns-(4-tert-butyl-phenyl)-methyl]-

phenol, S, under under Williamson ether conditions - i.e. reacting with potassium 

carbonate in ethyl methylketone catalysed by sodium iodide - were unsuccessful 9  leading 

to procedures using stronger bases and higher temperatures. The thread was finally 

obtained by reaction with sodium hydride in dimethylformamide as a white solid in a 

46% yield. Complexation of L1S2  with zinc(H)perchlorate in the presence of 1,10-

decoxybis(4.-benzylamine) and 2,6-diformylpyridine in a mixture of dichloromethane 

and methanol lead to the formation of complex, [LO"Ll S2Zn}(Cl04)2  as detected from 

ESI-mass spectrometry, (m/z = 1835), where LO is the imine macrocycle. Any attempt 

of isolation and purification of the product failed and no acceptable NMR spectrum of 

this system was recorded. Sodium borohydride reduction of the imine double bond to 

kinetically stabilise the rotaxane was attempted: NMR spectrum of the crude confirmed 

the loss of the imine protons, yet isolation of the clean rotaxane was not achieved despite 
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the different purification strategies attempted. ESI-mass spectrometry revealed no peaks 

corresponding  to the reduced rotaxane. 

LI 	 LIS2  

a 	 b 

( 	

] (CIO)2 	

(I 	
1 

A 	 p1I 
jj 

[LOLl S2Zn](C 104)2 	 [LO"Ll S2Zn](C104)2  

Scheme 1: Synthesis of ligand L1S2  and formation of pentacoordinate complex 

[LO"L1S2Zn](C104)2. Reagents and conditions: a) N-bromosuccinimide, AIBN, 
benzene, hX, 4 h, 52%, b) NaH, 5, DMF, reflux, 10 h, 46%, c) 1,10-decoxybis(4-
benzylamine) and 2,6-diformylpyridine, Zn(C10 4) 2 6H20, CH 2Cl 2/MeOH, RT, 2 h, d) 

NaH 4, MeOH, 120 mm. 

The Threading Approach - 1 

In the threading and capping approach the unstoppered ligand LI and N,N'-2,6-

dimethylpyridyl [(1,1 0-decoxybis(4-benzylamine)], LO, underwent complexation with 

zinc(II)perch lo rate giving what is commonly known as a pseudo-rotaxane, (Scheme 2, 

a.). 

PO4)2

HN.bflNH 

Br x 
( 	

(C104)2 

Ht -. i.# 

? 

Scheme 2: Formation of pentacoordinate pseudo-rotaxane [LOL1Zn](C10 4)2 and 

capping reaction. Reagents and conditions: a) Li, Zn(C10 4 ) 2 6H20, CH2Cl2JMeOH, 2 

h, 99%, b) NaH, S, DMF, reflux, 2 h. 
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Partial 'NMR spectra (400 MHz, CDC1 3 , 298 K) of i) free macrocycle, ii) pseudo-

rotaxane and iii) ligand Li are shown in Figure 8. Comparison between the three 

clearly points to metal coordination and threading, confirming the formation of the 

pseudo-rot.axane: the pyndine protons, H 4  and HB,  are shifted downfield. The 

broadening of the bipyridyl resonances, H0  H,, and I-L, suggests rapid exchange between 

free and complexed form. Shielding of the benzylic aromatic rings (H E  and HF) as well 

as of the bipyridyl protons is indicative of extensive intercomponent ic-stacking due to 

the threaded architecture in solution. The singlets  due to the benzylic protons of the 

macrocycle, I-Ic and HD, present a downfield shift of almost 0.5 ppm because of the 

deshielding environment caused by the nearby positively charged metal. 

I) 	 F 	F 	 CC 

El 	F 	c 	5 
liii 	 MN D 

( 

nj 

it 	b 	c 

III 	1111111 	JIIII 	111 1 11 	1111111 	juTII 	lilt 	 t 

9 	3.5 	* 	75 	7 	£.5 	6 	5.5 	5 	45 	4 	3.5 
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Figure 8: Partial 'NMR spectra (400 MHz, CDCI 3, 298 K) of i) macrocycle, ii) 
pseudo-rotaxane [LOL1Zn](C10 4 ) 2  and iii) Li. 

The capping reaction was attempted on the pseudo-rotaxane following  the procedure 

utilised to deliver the free thread, i.e. reacting the phenol stopper S with sodium hydride 

in refluxing dimethylformamide; unfortunately the reaction conditions necessary to 

perform the substitution proved too harsh and detrimental leading to the decomposition 

of both complex and macrocycle (Scheme 2, b.). 
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4.3.2. Thread L2S2 

The Threading Approach —2. 

A Mitsunobu reaction was thought to be a milder route to the stoppering of the pseudo-

rotaxane. Ligand Li was replaced with 5,5'-Bis-hydroxymethyl-[2,2]bipyridyl, L2, 

obtained from esterification of [2,2']bipyndinyl-5,5'-dicarboxylic acid with ethanol' °  

followed by sodium borohydride reduction in methanol (Scheme 3, a.)." Reaction with 

the macrocycle and the metal gave quantitative conversion to the precursor complex. 

Reacting the pseudo-rotaxane with an excess of phenol stopper S. this time using 

diisopropyl azodicarboxylate, DIAD, and triphenyiphosphine, PPh 3 , in tetrahydrofuran, 

failed to deliver the desired rotaxane. Rather than the rotaxane, thread L2S 2  was 

isolated in 43% yield, leading to the conclusion that the Mitsunobu displacement takes 

place with the free "unthreaded" ligand 5,5'-Bis-hydroxymethyl-[2,2']bipyridyl. 

( 
L2 

a 	 b 
	

1 N 

C/ 

1(C104)2 

= 

Scheme 3: Formation of pentacoordinate pseudo-rotaxane [LOL2Zn](C10 4 ) 2  and 
capping reaction yielding the free thread. Reagents and conditions: a) i. EtOH, 
H2SO4, reflux, 2 h, 76%, b) Li, Zn(C104 ) 2 .6H20, CH 2 Cl 2/MeOH, 2 h, 99%,  c) 5, 
DIAD, PPh 3, THF, 0 °C to RT, 15 h. 

One rationale to this observation is that the alcohols reside in close proximity with the 

doubly positively charged zinc. It is conceivable then that the oxygen is less prone to 
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undergo nucleophilic attack on the phosphonium salt to generate an extra positively 

charged species (Scheme 4, b.). An alternative interpretation accounts for the fact that, 

once inserted in the macrocycle through the metal complex, the alcohols are hidden and 

sterically hindered. Even though the phosphorous derivative of the alcohol is formed the 

presence of the ring might inhibit the final SN2  attack of the nucleophile (Scheme 4, c.). 

o 	 a 	 b 

) 	 • ( 	
(Phh) 
	

- 

OH 

C t 
( 	1') 

(h)s A 
\\ 1 

10  CH 

Scheme 4: Mitsunobu reaction mechanism: a) Phosphine adds to the weak N=N ic 

bond to give anion stabilised by one of the adjacent ester groups; b) I. The anion 
produced is acidic enough to deprotonate the alcohol, ii. The strong affinity between 
0 and P drives the SN2  reaction on the positively charged phosphorous, displacing a 
second nitrogen anion; c) I. The second basic nitrogen removes the proton from the 
phenolyc stopper, ii. The nucleophilic phenoxide attacks the P derivative of the 
alcohol in a SN2  at carbon with the phosphine oxide as leaving group. 

If either of these two speculations was correct, it was anticipated that the lengthening of 

the unstoppered threading ligand might have solved the problem by moving the alcohol 

groups away from the sterically hindered site and thus allowing the Mitsunobu reaction 

to take place. 
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4.3.3. Thread L3S2 

The Threading Approach —3. 

The extended ligand L3 was conveniently prepared in one step from Li (Scheme 5, d.). 

Due to the poor reactivity of the bromide as a leaving group in this specific system, as 

previously reported in the reaction with the phenol derivative stopper, 9  the substitution 

required sodium hydride as base and high temperature and was low yielding. Under 

these conditions the deprotonation of the hydroxy group in 4-hydroxymethyl-phenol 

enables nucleophilic attack from both sides of the molecule and a variety of oligomers 

can be generated by reaction with 5,5'-bis-bromomethyl-[2,2]bipyridine. This type of 

molecule had been made in four steps from 4-hydroxy-benzoic acid: protection of the 

carboxyl group via esterification with ethanol was followed by reaction with 5,5-bis-

bromomethyl-[2,2']bipyridine to yield the diethyl ester derivative. 12  Reduction of the 

esters with sodium borohydride gave the desired diol (Scheme 5). 

HO Jç 0H 

C t 
d 

Scheme 5: Synthesis of ligand L3 via esterification, a., substitution, b., and 
reduction, c., or via dibenzo-18-crown-6 assisted substitution. Reagents and 
conditions: a) H2SO4,  MeOH, b) 5,5'-bis-bromomethyl-[2,2']bipyridine, NaH, DMF, c) 
NaBH4, MeOH, d) 4-hydroxymethyl-phenol, dibenzo-18-crown-6, dicholoromethane, 
36 h, 86%. 

In our method starting with 5,5'-bis-bromomethyl-[2,2']bipyridine the substitution took 

place in one step at 40 °C in dicholoromethane using potassium carbonate as base. One 

equivalent of dibenzo-1 8-crown-6 while complexmg the potassium atoms mediated the 

dissolution and dissociation of the salt rendering the anionic carbonate more available 

(Scheme 5, d.). Ligand L3 was isolated as a white solid. 
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L3 

I  
1' 	(CIO4)2 

IN 

- 	0- - 
	 [LOZn](C104 ) 2  + L3S2  

x 
(dO4)2  

Y • 	-•---' ,= I 

[LOL3Zn](C104)2  

Scheme 6: 	Synthesis of ligand L3 and formation of pentacoordinate pseudo- 
rotaxane complex [LOL3Zn](C104 ) 2 . Formation of the free thread, c', as opposed of 
the desired rotaxane, c. Reagents and conditions: a) Li, Zn(Cl0 4 ) 2 6H20, 
CH2Cl2/MeOH, 12 h, 92%, b) S, DIAD, PPh3, THF, 0 °C to RT, 15 h. 

L3 was characterised by very poor solubility and the complexation could be 

accomplished in tetrahydrofuran over a period of 12 hours. To our disappointment, the 

Mitsunobu reaction between the pseudo-rotaxane and the phenol stoppers once again 

gave solely the formation of the free thread as opposed to the desired rotaxane (Scheme 

6). 

To interpret this lack of success in generating rotaxanes via this threading and capping 

method, the nature of the metal was taken in account. Zinc(II) is characterised by fast 

ligand exchange which means that the bipyridyl is rapidly moving in and out the 

macrocycle. In order to slow down this complexationldecomplexation reaction and 

create a more stable complex, zinc(H) was replaced with cadmium(fl). Cadmium(ll), 
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known to form more inert complexes with slower ligand exchange rate than zinc. 

Analysis of the literature 13  suggested improvements for the Mitsunobu reaction: 1,1'-

(azodicarbonyl)dipiperidine, ADDP, and tributylphosphine, PB11 3, were used to replace 

respectively DIAD and PPh 3. Finally, to simplify the last reaction on the psuedo-

rotaxane and hopefully improve the yield, ligand L3 was replaced with the 

monostoppered thread US (Scheme 7, a.): only one Mitsunobu being now required to 

deliver the pentacoordinate mechanically interlocked system (Scheme 7, c.). These 

modifications proved appropriate and NMR and FAB-mass spectrometry (m/z = 2025) 

confirmed the formation of rotaxane [LOL3S 2Cd](C104)2. 

a 

US 

b 	 1(C04)2 

(LOL3SCd](CI0) 2  

C 

CIO4) 2  

' O- 

om - 

(LOL3S2Cd](C104)2  

Scheme 7: Synthesis of ligand L3S, formation of pentacoordinate pseudo-rotaxane 
complex [LOL3SCd](C104)2 and final capping Mitsunobu reaction. Reagents and 
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conditions: a) S, ADDP, PBu 3 , THF, 0 °C to RT, 15 h, 43%,  b) Li, Cd(C104 ) 2 -nH 20, 
CH2Cl2/MeOH, 24 h, 94%, C) S, ADDP, PBu 3 , THF, 0 °C to RT, 15 h, 23%. 

Partial 'H NMR spectra of macrocycle, rotaxane [LO13SCd](C10 4)2 and thread are 

shown in Figure 9. Comparison between the three compounds reveals many of the 

pattern observed in the pseudo-rotaxane illustrated in Figure 8. A downfield shift of 

about 0.5 ppm corresponding to protons HA and HB is distinctive of the coordination of 

the macrocycle to the metal. The it—stacking between the macrocycle aromatic rings 

(HE and HF)  and the bipyridine, He, Hb and H, corroborates the intertwined structure. 

Not surprisingly,  the aromatic hydrogens corresponding to the phenoxide spacer, Hf and 

He, and the stopper, Hh, H, H 1, and He, are not affected and show virtually identical 

resonances. 

0 	 _JT 
	 F 

	
F 

H) 

F 

b  

•T1 

., 

Figure 9: Partial 1NMR spectra (400 MHz, CDCI 3 , 298 K) of i) free macrocycle, ii) 
rotaxane [LOL3SCd](C104)2 and iii) free thread. 
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The Clipping Approach —4. 

The success with the threading approach renewed the interest in the clipping one. 

Thread L3S2  was reacted with cadmium(B) perchiorate, the diamine and the dialdehyde 

compounds in a mixture of methanol and dichioromethane, monitoring the reaction via 

ESI-mass spectrometry. After a few hours no rotaxane formation was detectable, 

(Scheme 8, a.) while the peak corresponding to the [2]catenate [L0" 2CdJ(C104)2, (m/z = 

1179) (Scheme 8, b.) was clearly present and increasing over time,. The reaction was 

repeated under identical conditions with zinc perchiorate: after thirty minutes ESI-mass 

spectrometry revealed the formation of both [2]rotaxane [L0"L3Zn](C104 2  and 

catenate. Over a period of twelve hours the pentacoordinate rotaxane converted 

quantitatively into hexacoordinate catenate, (Scheme 8, c.). 

(L(L3S2M)(C104)2  

1(004)2 

C 	 - 

MZr1(II) 	
£NH?H2P) 

M(C104)2  

- 	M = Cd(lI) 	b 

CW01 
(004)2 

(LO 2MXC(04)2  

Scheme 8: Self-assembling of macrocycle via Schiff base condensation around 
divalent metals in the presence of a bipyridyl ligand. a) Formation of kinetic product 
5-coordinate [2]rotaxane in the presence of Zn(II); b) Formation of thermodynamic 
product 6-coordinate [2]catenate in the presence of Cd(II); c) Convertion of the 
Zn(II) rotaxane into catenate over a period of 12 hours. Reagents and conditions: 
a) Zn(C104 ) 2 .6H 20, CH2Cl2/MeOH, RI; b), Cd(C10 4 ) 2 •nH 20, CH2Cl2/MeOI-1,  RT; C) 

time, CH2Cl2/MeOH,  RT. 
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The reasons for such different behaviours rely on arguments involving the nature of the 

formed interlocked complex as well as the characteristics of the metal. The [2]rotaxane 

is a pentacoordinate species promptly given by condensation reactions generating two 

imine bonds while the [2]catenate has an octahedral geometry with coordination number 

six for which four Schiff bases need to be formed. While pentacoordinate complexes are 

possible both with zinc and cadmium, hexacoordinate are more stable because they 

saturate the metals coordination sphere. Furthermore, the chelation of two rings in the 

catenate complex provides a stabilising contribution due to a double macrocyclic effect 

Finally, bipyridyl ligands fall earlier than imine ones in the spectrochemical series of 

increasing ligand field strength, therefore two imine nitrogen provide more stabilisation 

than two bipyridyl ones. 14  In conclusion, upon reaction of thst ligand exchanging 

zinc(H) with the bipyridyl thread and the macrecycle precursors, the first compound 

formed was the kinetic product which assembled faster because it required the formation 

of only two imine bonds about a pre-existing bipyridine unit over a period of time the 

equilibrium shifted towards the most stable complex, catenate [LO"2Zn](C104)2, the 

thermodynamic product. The complexation with cadmium(H) took place in a slower 

manner selectively yielding the thermodynamic product. 
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(LO'L3Zn](CI 04)2 	 (d04)2 

NZn- 

X. 
(CO4)2 

0---: 
O-c,--- 

[LOL3Zn](C104)2  

Scheme 9: Attempted reduction of imine bonds in [2]rotaxane [LO"L3Zn](C10 4) 2 . 

Reagents and conditions: a) NaBH 4 , MeOH, 2 h. 

Isolation of zinc(H) rotaxane was not achieved in the imine form, therefore reduction 

was attempted with sodium borohydride in methanol. Similarly to the results obtained 

with rotaxane [LO"L1Zn](Cl04)2  full conversion to amine was achieved but the clean 

desired compound could not be isolated (Scheme 9). 

4.4. Conclusions 

The synthesis of [2]rotaxanes by template directed synthesis about a pentacoordinate 

metal was investigated. A thread derivatised with a bipyridyl group as the coordinative 

unit and hydroxybenzylic spacers to distance the capping reaction site was suitable for 

the formation of the rota.xane via threading approach about a preformed tndentate 

macrocycle. Cadmium(H) perchiorate was used as template to form the pseudo-rotaxane 

which was then stoppered following a Mitsunobu protocol. Zinc(H) proved inadequate 

failing to provide sufficient stability to the pseudo-rotaxane and therefore enabling the 

capping reaction to take place on the unthreaded diol generating free thread. 
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The clipping approach afforded the formation of different types of complexes depending 

on the metal used. Zinc(II) perchiorate first assembled into the kinetic product the 

pentacoordinate [2]rotaxane to convert quantitatively into the thermodynamic one over a 

period of twelve hours. Under identical conditions cadmium(H) perchiorate complexes 

directly into the hexacoordinate [2]catenate. 
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4.5. Experimental Section 

4.5.1. General 

Unless stated otherwise, all reagents were purchased and techniques were carried out as 

specified in the previous chapters. 
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N,N'-2,6-dimethylpyridyl((1 ,1O-decoxybis(4-benzylamine)J 

LO 

HH 

C31 H41 N302  
Mo. V.: 487.7 

This compound was prepared as described in chapter 2 and showed identical 

spectroscopycal data to those reported therein. 

1 ,1O-decoxybis(4-benzylamine) 

ID 
0 	 0 

NH 	H2N 

CHN2O2 
MoL Vjt: 3846 

This compound was prepared as described in chapter 2 and showed identical 

spectroscopycal data to those reported therein. 
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2,6-diformylpyridine 

C7M5NO2  
Mol. Wt 135.1 

This compound was prepared as described in A. L. Vance, N. W. Alcock, J. A. Heppert, 

D. A. Bush, Inorg.. Chem, 1998, 37, 6912 - 6920 and showed identical spectroscopycal 

data to those reported therein. 

4-[Tris-(4-tert-butyl-phenyl)-methylj-phenol 

S 
C37HO 

Mol. Wt: 504.7 

This compound was prepared as described in H. W. Gibson, S. H. Lee, P. T. Engen, P. 

Lecavalier, J. Sze, Y. X. Shen, Ni Bheda, J. Org. Chem, 1993, 58, 3748 - 3756 and 

showed identical spectroscopycal data to those reported therein. 

5,5'-Bis-bromomethyl-12,2']bipyridyl 

LI 
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C12 H 10Br2N2  
MoI.WL: 342.0 

This compound was prepared as described in P. M. Windscheif F. Vögtle, Synthesis, 

1994, 87-92 and showed identical spectroscopycal data to those reported therein. 

5,5'-Bis-4-[tris-(4-tert-butyI-phenyl)-methyIJ-phenoxymethyI-[2,2' I bipyridyl 

Li S2 

CH96N 2O2  
Mol. Wt.: 1189.7 

To a solution 5,5'-Bis-bromomethyl-[2,2']bipyridine (0.34 g, 1.00 mmol) and 4-[Tns-(4-

tert-butyl-phenyl)-methyl]-phenol (1.11 g, 2.20 mmol) in N,N'-dimethylformamide (250 

mL) under an atmosphere of nitrogen was added NaH (0.80 g, 0.020 mol). The reaction 

was refluxed for 10 hours then it was filtered under gravity. The solvent was removed 

under reduced pressure, the crude residue purified by column chromatography (Silica 

gel, 1:5 EtOAc/CH 2Cl 2) and then recrystallised from n-hexane to yield the title 

compound as a colorless solid (0.54 g, yield = 46%). m.p. 171-176 °C; 'H NMR (400 

MHz, CDC13, 293K): 5 = 1.30 (s, 54I-I C(CH 3)3), 5.11 (s, 41-1, ArOCH2Pyr),  6.86 (d, 

J=9.1 Hz, 4H AM), 7.08 (d, J8.6 Hz, 12H, ArH), 7.12 (d,.,'---9.1 Hz, 4H, AM), 7.23 

(d, J=8.6 Hz, 12H, AM), 7.90 (d, f=7.7 Hz, 2H, pyridyl-H), 8.42 (d, .fr7.7 Hz, 2H, 
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pyridyl-H), 8.73 (s, 2H, pyridyl-H); ' 3C NMR (100 MHz, CDCI 3, 293K): 8=31.4, 34.2, 

63.0, 69.7, 113.3, 115.0. 129.4, 130.7, 132.4, 139.8, 144.0, 144.2, 147.9, 148.3, 157.6, 

158.2 ; LRFAB-MS (3-NOBA matrix): m/z = 189 [M], HRFAB-MS (3-NOBA matrix): 

m/z = 1189.75511 (calcd. for C 5H97N202, 1189.75500). 

15,5 1 -Bis-bromomethyl- 12,2'] bipyridyl]- I N,N'-2,6-dimethylpy ndyl 1(1,10- 

decoxybis(4-benzylamine)Jzinc(I1) perchiorate 

ILOL1ZnI (C 104)2 

( 1 1  

H 	NH NZIn  

Br 	

Br 

[LOLl ZnJ(C104)2  
CH49Br2Cl2N50 1 0Zn 

Exact Mass: 1087.1 
Moi.Wt.: 1092.0 

To LO (0.098 g, 0.200 mmol) in anhydrous dichioromethane (20 mL) was added zinc 

perchiorate hexahydrate (0.074 g, 0.200 mmol) in anhydrous methanol (10 mL). The 

reaction was stirred at room temperature under an atmosphere of nitrogen for 60 minutes 

and then Li (0.068 g, 0.200 mmol) was added to it and stirred for 4 hours. The solvent 

was removed under reduced pressure to yield the title compound as a pale yellow solid 

(0.216 g, yield = 99%). m.p. 251 °C (dec); 'H NMR (400 MHz, CDCI 3, 293K): 8 = 

1.23-1.33 (m, 8H, Alkyl-H), 1.38-1.46 (m, 4H, Alkyl-H), 1.98-2.02 (m, 4H,i= 6.7 Hz, 

Alkyl-H), 3.91 (t, 41-I, J = 6.3 Hz, OCHZ CH2), 4.23 (s, 411, PyrCNH), 4.45 (s, 4H, 

ArCijNH), 4.69 (s, 411, BrCPyr), 5.92 (d, J8.8 Hz, 4H, ArH), 6.39 (d, J8.8 Hz, 
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41-I, ArH), 7.50 (d, J=7.8 Hz, 21-I, pyridyl-H), 7.72 (d, J=8.1 Hz, 21-I, pyridyl-H), 7.98 (t, 

J=7.8 Hz, 111, pyridyl-H), 8.15 (d,,/--8.1 Hz, 2H, pyridyl-H), 8.38 (br s, 2H, pyridyl-H); 

' 3C NMIR (100 MHz, Acetone-d, 293K): 5 = 25.9, 28.4, 28.9, 29.0, 53.5, 54.6, 66. 1, 

67.9, 110.2, 114.9,121.0,129.3, 129.9,132.3,135.6,137.2,145.7,158.6,155.1,159.4-

LRESI-MS: m/z = 895 [L0L1Zn] 2 , 994 [LOL1Zn]C1041t 

[2,2 ,1 bipyridinyl-5,5'-dicarboxylic acid diethyl ester 

/ 

C18HtN2O4 
Mol. V: 300.3 

This compound was prepared as described in C. M. Elliott and E. J. Hershenhart, J. 

Amer. Chem. Soc., 1982, 104, 7519 - 7526 and showed identical spectroscopycal data to 

those reported therein. 

5,5'-Bis-hydroxymethyl- 12,2'] bipyridyl 

L2 

L2 
C12H 12N202 

Mol. Wt: 216.2 

This compound was prepared as described in W. Geoffrey and D. Fitzgerald, J. Phys. 

Chem. B., 1999, 103, 8070 - 8075 and G. Shane, G. Bernardinelli, A. F. Williams, Dali. 

Trans. B, 2003, 3, 435 - 440 and showed identical spectroscopycal data to those reported 

therein. 
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{4-15'-(4-Hydroxymethyl-phenoxymethyl)- [2,2'J bipyridinyl-5-ylmethoxyj-phenyl} - 

methanol 

1W] 

HO' 	OH 

L3 
C26H24N204 

Mol. Wt.: 428.5 

To a solution 5,5'-Bis-bromomethyl-[2,2']bipyridine (0.342 g, 1.000 mmol), 4-

hydroxymethyl-phenol (0.272 g, 2.200 mmol) and dibenzo-1 8-crown-6 (0.790 g, 2.200 

mmol) in dichloromethane (250 mL) under an atmosphere of nitrogen was added 

potassium carbonate (2.76 g, 0.020 mmol). The reaction was stirred at 40 °C for 36 

hours then it was filtered under gravity. A layer of water (250 mL) was added on top of 

the dimethylchloride solution and left over night: the title compound was isolated as a 

pale cream solid formed at the interphase between aqueous and organic layer (0.368 g, 

yield = 86%). m.p. 160 (dee); 1H NMR (400 MHz, CD3 SO, 293K): 8= 4.16 (s, 4H, 

ArCOH), 4.96 (s, 4H, AiOCPyr), 6.76 (d, J=8.5 Hz, 41-L ArH), 7.00 (d, J=8.5 Hz, 

4H, ArH), 7.77 (d, J=7.8 Hz, 21, pyridyl-H), 8.16 (d, J=7.8 Hz, 21, pyridyl-H), 8.51 (s, 

2H, pyridyl-H); ' 3C NMR (100 MHz, CD3SO, 293K): 8' 62.4, 66.6, 114.4, 120.2, 

127.9, 133.2, 135.0, 136.7, 148.6, 154.5, 156.8 - LRFAB-MS (3-NOBA matrix): m/z = 

429 [MHj; HRFAB-MS (3-NOBA matrix): m/z = 429.18143 (calcd. for C26H25N204, 

429.18130). 

{4-[5'-(4-(4- [Tris-(4-terf-butyI-phenyl)-methyIJ-phenoxymethyI-phenoxymethyI)- 

[2,2'] bipyridinyl-5-ylmethoxyj-phenyl}-methanol 

L3  
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-N N— 
OH 

US 
CHN2O4  

Mol. Wt.: 915.2 

To L3 (0.086 g, 0.200 mmol), 4-[tris-(4-tert-butyl -phenyl)-methyl] -phenol (0.101 g, 

0.200 mmol), and tributylphosphine (0.045 g, 0.220 mmol) in anhydrous tetrahydrofuran 

(50 mL) at 0°C was added 1,1 '-(azodicarbonyl)dipiperidine (0.055 g, 0.220 mmol). The 

reaction was stirred at 0°C under an atmosphere of nitrogen for 20 minutes and then was 

allowed to warm to room temperature and stirred for 4 hours. A colour change from 

yellow to colourless was observed. The solvent was removed under reduced pressure; 

the residue was stirred in methanol and filtered. The solution obtained was purified by 

column chromatography (Silica gel, 1:25 MeOHJCH2C12) to yield the title compound as 

a colorless solid (0.115 g, yield = 43%). m.p. 169-173 °C; 'H NMR (400 MHz, CDC13, 

293K): 5= 1.29 (s, 27H, C(CH3)3), 4.64 (s, 2H, ArCfOH), 4.96 (s, 211, ArCOS), 

5.16 (s, 4H, ArOCiPyr),  6.84 (d, J8.8 Hz, 2H, ArH), 6.99 (d, J=8.3 Hz, 211, ArH), 

7.01 (d, J=8.6 Hz, 211, ArH), 7.06 -7.11 (m, 811, AM), 7.23 (d, J=8.3 Hz, 61-1, ArH), 

7.32 (d, J=8.3 Hz, 21-1, AM), 7.38 (d, J8.6 Hz, 211, ArH), 7.91 (d, J=8.5 Hz, 211, 

pyridyl-H), 8.44 (d, .J'8.5 Hz, 211, pyridyl-H), 8.74 (s, 211, pyridyl-H); 13C NUR (100 

MHz, CDC13, 293K): 5 = 29.7, 34.3, 63.0, 65.0, 67.5, 69.6, 113.2, 113.7, 114.9, 121.0, 

124.0, 125.5, 128.7, 129.4, 130.0, 130.7, 132.3, 132.6, 133.9, 139.8, 144.1, 148.3, 148.4, 

156.7, 157.6, 157.7, 158.2- LRFAB-MS (3-NOBA matrix): m/z = 915 [MH], 411 [M-

SO], HRFAB-MS (3-NOBA matrix): ,n/z = 915.50943 (calcd. for C 63117N20 4, 

915.51008). 
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5,5'-Bis-(4- 

12,2'Ibipyridinyl 

L3S2  

C 1 H 1 N2O4  
Mol. Wt: 1401.9 

To L3 (0.086 g, 0.200 mmol). 4-[tris-(4-tert-butyl-phenyl)-methyl]-phenol (0.222 g, 

0.440 mmol), and tributylphosphine (0.090 g, 0.440 mmol) in anhydrous tetrahydrofuran 

(50 mL) at 0°C was added 1,1 '-(azodicarbonyl)dipiperidine (0.110 g, 0.440 mmol). The 

reaction was stirred at 0°C under an atmosphere of nitrogen for 20 minutes and then was 

allowed to warm to room temperature and stirred for 4 hours. A colour change from 

yellow to colourless was observed. The solvent was removed under reduced pressure 

and the residue was purified by column chromatography (Silica gel, 1:25 

MeOHJCH202) to yield the title compound as a colorless solid (0.199 g, yield = 71%). 

m.p. 180 °C (dec); 'H NMR (400 MHz, CDCI 3, 293K): t5= 1.29 (s, 54H, C(CH3)3), 4.95 

(s, 411, ArCH20S), 5.15 (s, 411, ArOCfi2Pyr), 6.83 (d, 1=8.8 Hz, 41-, AM), 7.00 (d, 

1=8.6 Hz, 4, ArH), 7.07 (d, 1=8.3 Hz, 16H, ArH), 7.22 (d,.1--8.3 Hz, 12H, ArH), 7.37 

(d, 1=8.6 Hz, 411, AM), 7.91 (d, 1=8.1 Hz, 21L pyridyl-H), 8.43 (d, )=8.1 Hz, 2H, 

pyridyl-H), 8.73 (s, 211, pyridyl-H); ' 3C NMR (100 MHz, CDCI3, 293K): 8=31.4,34.3, 

63.0, 67.4, 69.6, 113.2, 114.9, 115.3, 124.0, 129.4, 130.1, 130.5, 130.7, 132.3, 139.8, 

144.1, 144.6, 147.9, 148.3, 156.6, 157.8, 158.1 - LRFAB-MS (3-NOBA matrix): m/z = 

1402 [MH], HRFAB-MS (3-NOBA matrix): m/,z = 1402.84245 (calcd. for 

CIoHIoN204, 1402.84209). 
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[5,5'Bis(4(4_[tris-(4-1erf-butyI-pheny1)-methylJ-phenoxymethyl)-PheflOXYmethYl} 

12,2'I bipyridinyll- [N,N'-2,6-dimethylpyridyl ((1, 1O-decoxybis(4- 

benzylamine)cadmium(H) perchiorate 

[L1L3Cd](C1042 

N 

H~Id NH  
'S 

(LOL3S2CdJ(C104)2 
C 1 3 1 H 1 49CdN506 Mol. Wt.: 2002.0 

C131H1CdCIN5010 Moo. 	.: 2101.5 
C131H149CdCl2N5014 MOl. Wt.: 2200.9 

To LO (0.098 g, 0.200 mmol) in anhydrous dichloromethane (20 mL) was added 

cadmium perchiorate hydrate (0.062 g, 0.200 mmol) in anhydrous methanol (10 mL). 

The reaction was stirred at room temperature under an atmosphere of nitrogen for 60 

minutes and then US (0.183 g, 0.200 mmol) was added to it and stirred for 4 hours. 

The solvent was removed under reduced pressure and the residue was dissolved in 

anhydrous tetrahydrofuran (20 mL). 4-[tris-(4-tert-butyl-phenyl)-methyl]-phenol, S, 

(0.111 g, 0.220 mmol), and tributylphosphme (0.045 g, 0.220 mmol) in anhydrous 

tetrahydrofuran (50 mL) were added to the residue and the solution was cooled to 0°C. 

1,1'-(azodicarbonyl)dipiperidine (0.055 g, 0.220 mmol) was then added and the reaction 

was stirred at 0°C under an atmosphere of nitrogen for 20 minutes and then was allowed 

to warm to room temperature and stirred for 4 hours. A colour change from bright 

orange-yellow to pale yellow was observed. The solvent was removed under reduced 

pressure and the solid obtained was purified by column chromatography (Silica gel, 

gradient 1:100- 20:100 MeOHJCH2Cl2) to yield the title compound as a pale yellow 
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solid (0.070 g, yield = 16%). m.p. 278°C (dcc); 'H NMR (400 MHz, CDCI3, 293K): 5= 

1.29 (s, 54H, C(CH3)3), 1.23-1.33 (m, 8H, Alkyl-H), 1.38-1.46 (m, 4H, Alkyl-H), 1.98-

2.02 (m, 411, J = 6.7 Hz, Alkyl-H), 3.91 (t, 4H, J = 6.3 Hz, 0C112  CH2), 4.23 (s, 4H, 

PyrCINH), 4.45 (s, 41-1, ArCNH), 4.95 (s, 4H, ArCfOS), 5.31 (s, 4H, ArOCPyr), 

5.90 (d, J=8.8 Hz, 411, ArH), 6.36 (d, J8.8 Hz, 411, ArH),6.74 (d, J=8.8 Hz, 411, ArH), 

6.91 (d, J=8.6 Hz, 4H, AM), 6.96-7.05 (m, 161-I, ArH), 7.22 (d, J8.3 Hz, 12H, ArH), 

7.46 (d,,)--7.8 Hz, 211, pyridyl-H), 7.66 (d, J=8. 1 Hz, 21-I, pyridyl-H), 7.94 (d, J=8.1 Hz, 

2H, pyridyl-H), 8.12 (t, J=7.8 Hz, IH, pyridyl-H), 8.35 (br s, 2H, pyridyl-H), 3C NMR 

(100 MHz, Acetone-d6, 293K): 5 = 25.9, 28.4, 28.9, 29.0, 31.4, 34.3, 50.5, 51.5, 61.0, 

65.4, 67.9, 69.6, 110.1, 113.7, 114.9, 115.3, 121.0, 123.5, 124.0, 124.2, 129.4, 129.7, 

130.1, 130.5, 130.7, 136.7, 139.3, 144.1, 144.6, 145.2, 148.3, 152.7, 156.6, 158.1, 159.6, 

161.3 - LRFAB-MS (3-NOBA matrix): m/z = 2100 [LOL3S2Cd]C104 , HRFAB-MS (3-

NOBA matrix): m/z = 2023. 04797 (calcd. for C131H1CdN5NaO6, 1421.56550) 

[LOL3S2Cd]Na +. 
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In their Communication on the following pages, D. A. Leigh and co-

workers describe a general ligand system for rotaxane complexes of 

transition-metal ions that prefer octahedral coordination—a rare 

coordination mode for rotaxanes. Simple mixing of the components 

at room temperature is sufficient to assemble a broad range of 

octahedrally coordinated [21metallorotaxanes  in high yields. 
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A Simple General Ligand System for Assembling 
Octahedral Metal—Rotaxane C omplexes** 

macrocyclzation of a bis-2-nitrobenzenesulfonamide 
(NsNH) derivative with 2.6-dibromomethylpyridine to give 
the protected macrocycle in 67% yield. Cyclization of the 
analogous Boc-protected diamine proceeded with a low yield 

Louise Hogg, David A. Leigh, *  Paul J. Lusbv, 
Alessandra Morelli, Simon Parsons, and 
Jenny K. Y Wong 

2x 

CH2Cl2/CH 3CN (2:5). FIT 24 h rl(Cl04)2.nH20 

%** 	 (ClO4) 

83 
F 57* 

99 
94 _ 
87 
92  

73 
9 0  

50 C, 2 weeks 	 0 	[M('-' )l(C 104)2 

** Yields of isolated products 	- 

Scheme i. Five-component self-assembly of octahedral metal(ii)[2]rotaxanes, 

[M(L1L2)](C10 4 ) 2 . Reagents and conditions: a) 1.10-dibromodecane, K,CO,, 

Nat, butanone, reflux, 18 h, 83%, b) LiAIH 4 , THF, 0-60°C, 3 h, 92%, c) 2- 
reactions have few, if any, by-products and proceed 	nil 

under thermodynamic control in the absence of a 	mi 

catalyst or any other external reagents. 	 ac 

Catenanes have previously been synthesized around 
octahedral metal templates by employing macrocycles 
containing tridentate 2.6-diiminopyridine chelating units.t 71  
This system is not well-suited to forming rotaxanes, however, 
because thread-thread-metal and macrocycle-macrocycle-
metal (catenate) complexes can form in competition with the 
desired thread-macrocycle-metal assembly. Replacement of 
the macrocycle imine ligand set by nonlabile amine groups 
removes the possibility of forming catenates and introduces a 
structural asymmetry that can potentially be tailored to favor 
rotaxane formation under dynamic exchange conditions, 181  

After exploring several unsuccessful designs, we inves-
tigated the chemistry of macrocycle LI, which is conveniently 
prepared on a multigram scale in five steps from readily 
available materials (Scheme 1). The key step to LI is the 
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Coordination complexes in which rotaxanes act as 
ligands for transition-metal atoms are amongst the 
most celebrated examples of mechanically interlocked 
molecular level architectures. 1  This is not only because 
coordination chemistry makes possible a rich diversity 
of structures, but also because the metal atom can be 
locked in unusual environments for subsequent electro-
chemical,l'l photochemical 131  and catalysis 111  studies. 
Efficient synthetic methods have been developed for 
rotaxanes based on tetrahedral and trigonal-bipyrimidal 
metal complexes by using the metal -bis-phenanthroline 
synthon pioneered in Strasbourg. hSl  Herein we 
describe a general ligarid system for rotaxane complexes 
of ions that prefer octahedral coordination—the com-
monest ligand geometry amongst transition metals, but 
up to now a rare 61  coordination mode for rotaxanes. 
Simple mixing of the components at room temperature 
is sufficient to assemble a broad range of octahedrally 
coordinated t2lmetallorotaxanes in excellent yields. The 

Ns 	 Ns 	 N' 

CN 	RN 	 NH 	 NH RN. 

OH  
8 	 L' 

:robenzenesulfonyl chloride (NsCl), NEt 3 , CH 2 Cl 2 , 18 h, 93%, d) 2,6-dibro-

Dmethylpyridine, K2CO3,  butanone, reflux, 18 h, 67%, e) mercaptoacetic 

id, LIOH, DMF, 24 h, 80%. 

(<20%) and routes based on ring-closing olefin metathesis to 
form the C, chain also proved uncompetitive. The use of 
aniline, rather than henzylamine, in the thread was designed 
to destabilize the dithread-metal complex with respect to the 
desired interlocked structure (see below). 

Octahedral metal-rotaxane formation was achieved by 
sequential treatment of LI with Zn(ClO 4 ) 2 '6H0 (0.8 equiv). 
2.6-diformylpyridine (1 equiv) and (p-aminophenyl)tris(p-
tert-butylphenyl)methane (2 equiv), Scheme 1. Remarkably. 
after 24 h at room temperature no metal-containing species 
other than the zinc(ii)[2]rotaxane was evident by either 
'H NMR or electrospray mass spectrometry and the analyti-
cally pure [Zn(L1L2)](C10 4 ) 2  rotaxane was isolated in 92% 
yield by simply washing the crude product with diethyl ether. 
The generality of the reaction was explored by using divalent 
metal ions both across and down the periodic table with 
respect to zinc (i.e., Mn—Zn and Zn_*Hg). Pleasingly. each 
of [M(L11,2)](ClO 4) (M = Mn". Co". Ni". Cu". Cd". Hg") 
could he efficiently prepared by using the procedure in 
isolated yields ranging from 73 to 99% (Scheme 1). In all 
cases no other metal-containing species could be detected 1  
after 24 h. which suggests near-quantitative formation of the 
interlocked metal-rotaxane complex. Formation of 
[Fe(L1L2)](Cl0 4) 2  required a longer reaction time and 
gentle heating (CHCl2/CH 1CN. N-.. 40°C, 2 weeks) and 
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resulted in a lower yield of rotaxane (57%). The sluggish rate 
of reaction is characteristic of the slow rate of ligand exchange 
of low spin d metal complexes, but a potentially useful 
feature of the slower dynamics is that Fe" therefore locks the 
rotaxane architecture in a particularly kinetically stable form. 

The nonparamagnetic metal—rotaxane complexes all have 
similar H NMR spectra: those of the zinc(ii)[2jrotaxane 
[Zn(L1L2)](C10 4) 2  and macrocycle Li are shown in 
Figure 11101  The shielding of the H (- and HD protons of the 
benzyl rings of the macrocycle and several protons of the 
thread indicate that extensive intercomponent r stacking 
occurs in solution. Single crystals of [Cd(L1L2)](Cl0 4 )2 

suitable for investigation by X-ray crystallography were 
obtained by slow vapor diffusion of diethyl ether into a 
solution of the rotaxane in acetonitrile.l"I The crystal 
structure (Figure 2) confirms the interlocked molecular 
architecture, the pseudooctahedral geometry of the cadmiu-
m(ii) ion, and shows ir stacking of both the macrocycle 
benzylic rings with the pyridyl unit and an imine group of the 
thread. 

The mechanism of the rotaxane -forming reaction provides 
insight into the reasons for the effectiveness of the ligand 
assembly. When Li is treated with Zn(Cl0 4 ) 2 6H20 (CH,Cl,I 
CHCN, room temperature) followed by the preformed 
thread, L2, electrospray mass spectrometry shows that 
within 10 minutes the thread has extracted the zinc(ii) ion 
from the macrocycle to form the dithread complex, 

Figure 2. X-ray crystal structure of [Cd (Li U)] (Cl0 4) 2. Carbon atoms 

of the macrocycle, Li, are shown in light blue and those of the thread, 

L2, in yellow; oxygen atoms are red; nitrogen dark blue; chlorine 

green: cadmium grey. Hydrogen atoms and a molecule of acetonitrile 

are omitted for clarity. Selected bond lengths [A]: Cd-N2 2.40, Cd-N5 

2.30, Cd-Nil 2.40, Cd-N44 2.52, Cd-N47 2.26, Cd-N53 2.38; other 

selected interatomic distances [A]: N2-N11 4.52, N5-N47 4.52, N44-

N53 4.59; ligand bite angles [0]:  N2-Cd-Nl1 141.5, N44-Cd-N53 139.2. 

[Zn(L2) 2](Cl04) 2  in >95% yield (Scheme 2). The 
[Zn(L2) 21(Cl04)2  species is then quantitatively converted to 
the rotaxane [Zn(1I1,2)](Cl0 4 ) 2  over 24 h.1 121 Whilst the 
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Figure i. Partial I H NMR spectra (400 MHz, CD 3 CN, 298 K) of a) macrocycle Li b) zinc(II)[2]rotaxane [Zn(L1L2)](Cl04 2  c) demetallated, reduced, 
rotaxane Li H 4 1-2. 
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both solution (NMR spectroscopy) and the solid state (X-ray 
crystal studies). We believe these favorable secondary inter -
actions are important for the thermodynamic stability of the 
rotaxane over the other possible products of the reaction. 

The 2.6-diminopyndyl motif imparts high kinetic stability 
in metal-coordinated interlocked structures. Tetraimine met-
al(it) catenates are not demetallated by Na,EDTA (EDTA = 
ethylenediaminetetracetate), which required reduction to the 
more labile tetraamine catenates for the metal atom to be 
extracted) 71  The [M(LIL2)](C104)2 rotaxanes, which contain 
a combination of imine and amine N donors, do react with 
excess Na,EDTA when heated (10 equiv. CH 3CN/MeOH, 
60°C, 0.5 h) to remove the metal. However, without the 
stabilization provided by metal coordination the rotaxane 
decomposes through imine bond exchange and only free 
macrocycle and thread are observed experimentally 
(Scheme 2, path a). If the rotaxane imine bonds are reduced 
beforehand ([Zn(L1L2)1(ClO4),  10 equiv NaBH 4, CH 3CN/ 
MeOH, z,., 1.5 h), however, treatment with Na,EDTA 
(10 equiv, CHCN/MeOH, 60°C. 0.5 h) gives the demetal-
lated, reduced, rotaxane L1H4L2 (88% yield) with no 
evidence of dethreading (Scheme 2, path b). The 'H NMR 
of L1H4 L2 is shown in Figure Ic. The downfield shift in the 
resonances of the benzyl groups with respect to 
[Zn(L1L2)}(C10 4 )2 indicates that 3T stacking with the thread 
is less pronounced in the demetallated rotaxane in which 
there are no coordination bonds to organize the geometry of 
the components. 

In conclusion, we have developed a general ligand system 
for the efficient assembly of [2]rotaxanes around octahedral 
metal ions. The five component self-assembly reaction 
produces rotaxanes under true thermodynamic control in 
excellent yields without the need for large excesses of 
reagents, subsequent derivatization to stabilize the rotaxane 
architecture, chromatography or any other complicated 
purification processes. The system is remarkable in terms of 
its simplicity and expands both the range and geometry of 
metal ions that can be readily encapsulated within rotaxane 
structures. 

Scheme 2. Mechanism of formation and reactivity of [Zn (Li L2)](C10 4 ) 2 . 

Rapid formation of Zn(L2) 2  is followed by quantitative conversion to 
Zn (Li L2) under thermodynamic control. Demetallation of the rotaxane 
by using Na,EDTA occurs both with (b) and without (a) prior reduction 
of the imine groups. 

reversible nature of irnine bond formation accounts for the 
dynamics of the system, the reasons for the metal-rotaxane 
complex being the thermodynamic product rather than the 
dithread-metal complex are rather more subtle. In fact, imine 
N donors often form stronger coordination bonds than the 
corresponding amines. 1131  which leads to dithread-metal 
complexes being thermodynamically favored in other ligand 
systems we investigated. However, the use of aniline rather 
than, for example. benzylamine groups in the thread does not 
allow geometries in which the dithread-metal complex can 
form attractive intercomponent 2t-stacking interactions, such 
as those observed in the rotaxane between the benzvl groups 
of the macrocycle and the extended 4T system of the thread in 

Experimental Section 
Typical example of octahedral metalii)[21rotaxane formation. 
[Zn(L1L2))(C10 4 ) 2 : Zinc(it) perchlorate hexahvdrate (0.127& 
0.342 mmol) in acetonitrile (5 mL). 2.6-pyridinedicarboxaldehvde 
(0.055g. 0.410 mmol) in acetonitrile (10 mL), and p-aminophenyl-
tris(p-rert.butvlphenvl)methane (0.413g, 0.820 mmol) in dichioro-
methane (10 mL) were added sequentially over five-minute periods 
to a solution of Li (0.200g. 0.410 mmol) in acetonitrile (10 mL). The 
resulting solution was stirred at room temperature for 24 h, after 
which the solvent was removed under reduced pressure, the crude 
residue dissolved in acetonitrile (30 mL), filtered, and finally the 
solvent removed under reduced pressure. The crude residue was 
washed with diethyl ether (30 mL) for 10 mm, isolated by filtration 
and dried in air to give IZn(L1L2)1(C104)  as a bright yellow solid 
(0.582g. yield= 92%). Mp 266°C (decomp). 'HNMR (400 MHz. 
CDCN, 298 K): = 1.32 (s, 54H. C(CH)). 1.48-1.68 (hm. 12H, 
alkyl). 1.79 (m. 4H. OCH.CH,). 3.84 (hr. 41-I, OCH). 4.06-4.55 (hr. 
8H. pvCHNHCHAr: py=pyridyl). 6.29 (d.J=8.6 1-Lz. 4H, macro-
cycle ArH). 6.49 (d. f=8.6 Hz. 4H, macrocycle ArH). 6.96 (d. J= 
8.6 Hz. 4 H. thread ArH). 7.16 (d. J = 8.6 Hz, 12 H. thread ArH). 7.27 
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(d, 1=8.6 Hz, 4H. thread ArH). 7.37 (in, 14H. thread ArH plus 
macrocycle pyridvi H). 7.65 (d. J = 7.8 Hz. 2 H. thread pyridyl H). 7.96 
(t, J=7.8 Hz, I H. macrocycle pyridyl H). 8.11 (t. J=7.8 Hz. I H. 
thread pyridylH). 8.57 ppm (s. 2H. thread HCN); 13CNMR 
(1IX)MHz. CDC1, 298 K): ó=25.6, 28.4. 28.5, 29.4, 31.5. 34.5, 52.2. 
55.3. 63.9. 67.4. 114.1, 120.8, 123.0. 124.1. 124.3. 124.6, 127.0. 128.5. 
130.6, 141.5, 141.9. 143.3, 143.4, 145.9. 148.9. 149.0. 155.0. 158.2. 
158.7 ppm: IR (KBr pressed pellet): 9=3465,2960.2865, 1611. 1582, 
1513.1464,1395.1363,12-51.1180,1109,1089,1017,840,923.637,625, 
582 cm': LRESI-MS: rn/z = 830 1Zn(L1L2)] 2 . 1759 
[Zn(L1L2)J(C1O 4): HRFAB-MS (3-NOBA matrix): m/z = 
1657.97065 (calcd for ' 2C,, 1 'CH [(LI L2)Zn]. 
1657.97363). 
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absorption and incident beam decay. The structure was solved by 
direct methods and refined by full-matrix least-squares on F2  
values of all data (G. M. Sheldrick, SHELXTL manual. Siemens 
Analytical X-ray Instruments. Madison WI, USA. 1994, version 
5) to give tvR={[w(f-F) 2 ) 2 ]J' 2 =0.I536. conven-
tional R = 0.0627 for F values of 22989 reflections with F> 
2aF). S= 1.048 for 1371 parameters. Residual electron density 
extremes were 1.12 and -0.89 eA'. Hydrogens were added in 
calculated positions and constrained to a Riding model. CCDC-
224059 contains the supplementary crystallographic data for this 
paper. These data can he obtained free of charge via 
www.ccdc.cam.ac.uklcontslretrieving.html (or from the Cam-
bridge Crystallographic Data Centre, 12 Union Road. Cam-
bridge CB2IEZ. UK: fax: (+44)1223-336-033; or deposit@ 
ccdc.cam.ac.uk ). 

1121 Under identical experimental conditions the reduced thread. 
H 4 L2, does not afford [Zn(L1H 4 L2)J(C104 ) 2 , thus precluding the 
possibility of a 'slippage" mechanism. 

[13] C. J. P. Britovesk, V. C. Gibson, S. Mastroianni. D. C. H. Oakes, 
C. Redshaw, G. A. Solan. A. J. P. White, D. J. Williams. Ear J. 
J,zorg. Client. 2001.431-437. The greater stability of octahedral 
metal-imine complexes, compared with metal-amine com-
plexes, is also illustrated by the facile demetallation of 
amine-but not mime-octahedral metal catenates. 171  
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