

This thesis has been submitted in fulfilment of the requirements for a postgraduate degree

(e.g. PhD, MPhil, DClinPsychol) at the University of Edinburgh. Please note the following

terms and conditions of use:

• This work is protected by copyright and other intellectual property rights, which are

retained by the thesis author, unless otherwise stated.

• A copy can be downloaded for personal non-commercial research or study, without

prior permission or charge.

• This thesis cannot be reproduced or quoted extensively from without first obtaining

permission in writing from the author.

• The content must not be changed in any way or sold commercially in any format or

medium without the formal permission of the author.

• When referring to this work, full bibliographic details including the author, title,

awarding institution and date of the thesis must be given.

MICROCOMPUTER BASED SIMULATION

by

Andrew Haining, B.Sc.

Doctor of Philosophy

University of Edinburgh

1981

ABSTRACT

Digital simulation is a useful tool in many scientific areas.

Interactive simulation can provide the user with a better appreciation

of a problem area. With the introduction of large scale integrated

circuits and in particular the advent of the microprocessor, a large

amount of computing power is available at low cost. The aim of

this project therefore was to investigate the feasibility of producing

a minimum cost, easy to use, interactive digital simulation system.

A hardware microcomputer system was constructed to test simulation

program concepts and an interactive program was designed and developed

for this system. By the use of a set of commands and subsequent

interactive dialogue, the program allows the user to enter and perform

simulation tasks. The simulation program is unusual in that it does

not require a sophisticated operating system or other system programs

such as compilers. The program does not require any backup memory

devices such as magnetic disc or tape and indeed could be stored in

ROM or EPROM. The program is designed to be flexible and extendable

and could be easily modified to run with a variety of hardware con-

figurations. The highly interactive nature of the system means that

its operation requires very little programming experience.

The microcomputer hardware system uses two microprocessors

together with specially designed interfaces. One was dedicated to

the implementation of the simulation equations, and the other

provided an input/output capability including a low cost CRT display.

{ ii

iv

ACKNOWLEDGEMENTS

I would like to thank my supervisor Dr. J.R. Jordan and

everybody else from the Department of Electrical Engineering and

the Institute of Terrestrial Ecology without whose help this

project would not have been possible.

(v)

CONTENTS

Page
Abstract

Declaration

Acknowledgements

Contents

(ii)

(iii)

(iv)

(v)

CHAPTER 1 . Introduction 1

1.1 : Motivation 1

1.2 : Microcomputer System 2

1.3 : Natural Resource Applications 4

1.4 : Engineering Applications 6

1.5 : Numerical Integration 7

CHAPTER 2 : Simulation 13

2.1 : Continuous Simulation 13

2.2 : Simulation Problem Implementation 15

2.3 : Microcomputer Considerations 24

2.3.1 Man-Machine Interface 24

2.3.2 Arithmetic 26

2.3.3 Languages 28

2.4 : Microcomputer System Implementation 31

CHAPTER 3 . Microcomputer System 35

3.1 : System Requirements 35

3.1.1 Microprocessor 35

3.1.2 Memory 46

3.1.3 Secondary Storage 49

3.1.4 Input and Output Devices 50

3.2 : System Hardware 52

3.2.1 General Description 52

3.2.2 Microprocessors 56

3.2.3 CMOS Memory 60

(vi)

Page

3.2.4 Arithmetic Processor 63

3.2.5 Nascom-1 Extender 65

3.2.6 Link Circuit 68

3.2.7 Analogue Output 70

3.3 System Software 70

3.3.1 Program Development 70

3.3.2 Program Debugging Aids 77

3.3.3 Floating Point Package 80

CHAPTER 4 . Microcomputer Simulation System Program 82

4.1 Overview 82

4.2 Command Level 91

4.3 : Equation Entry 91

4.4 : System Control 104

4.5 : Running Equations 114

4.6 : Displaying Results 119

CHAPTER 5 Using the Simulation System 126

5.1 : Operational Details 126

5.2 : First Order Step Response 132

5.3 : Linear Oscillator 139

5.4 : Other Test Results 146

CHAPTER 6 . Conclusions 160

6.1 : Present System 160

6.2 : Future Developments 166

REFERENCES 170

1

1.1 Motivation

The advent of large scale integrated circuits and the development

of microprocessors has meant that considerable computing power is now

available at low cost and with small size. Simulation is a powerful

tool used for investigation and prediction in a wide variety of

fields including engineering and natural resources. Digital

simulation of continuous systems has in the past been only available

on large and expensive computer installations.

The aim of this project was therefore to investigate the

possibilities of constructing a microprocessor based simulation

system for the digital simulation of continuous systems. This

proposed system would provide a useful level of simulation

facilities at low cost. A small single-user interactive system

should enable a user with little or no programming experience to

quickly develop and use simulation models. The original area for

simulation problems whose consideration led to this project, was the

natural resource field. A considerable number of problems in this

field have a large number of relatively simple equations. This

means that although the individual equations are quite easy to

simulate, their large number combined with the long time scales

generally found in these problems, require considerable computing

time. With a conventional time sharing computer system these

simulation models can be very expensive to develop and use,

especially if an interactive system is used. An interactive

simulation system greatly speeds the development of the required

models by both providing the user with a feel or insight for the

problem and enabling the user to terminate simulation runs when

2

the model is obviously producing erroneous results. A microprocessor

based system offers the advantage of interactive use with low

initial and running costs. The microprocessor will be much slower

in computations than a mainframe computer, but the overall simulation

system response time might not be significantly slower than a busy

multi-access system, and has the advantage of being always available.

The simulation system developed and described in chapters three

and four, allows a user with little computing experience to develop

and use models in a highly interactive mode. Printed and graphic

output is provided together with data input facilities. The size

of the models usable is dependent on the amount of memory the

system has, and is easily extendable.

.1.2 Microcomputer System

A microcomputer is just a very small computer which uses a

microprocessor as its Central Processing Unit (CPU). The micro-

processor performs arithmetic and logical functions, and controls

the flow of data to and from the other components which make up the

microcomputer. The most basic microcomputer system which could be

used for even the simplest simulation tasks would require not only

the microprocessor, but also sufficient memory to store the simulation

program and its associated data together with a two way interface to

allow the user to communicate with the simulation program.

The type and amount of memory required depends on the type

of simulation system. There are two basic types of main memory,

these are Read Only Memory (ROM) whose contents are permanently

fixed and can therefore be used to hold important programs like

3

monitors and interpreters, and read write memory usually called

Random Access Memory (RAM) which can be used to hold temporary programs

and data. All variables and results produced while a program is

running must be stored in RAM and since microcomputers almost

exclusively use semiconductor memory which is volatile, then they

are lost if the power is switched off unless they are stored in

secondary, or backup, memory. For simulation results this is

generally quite acceptable, but for the programs themselves this

can be very inconvenient as they have to be loaded up before each

session. An alternative is to store the programs in some form

of read only memory like Erasable Programmable Read Only Memory

(EPROM) which can be wiped clean and reused. ROM and EPROM are

fine providing the data need not be changed, so they are more suited

to the systems programs and look-up data tables.

In order to get the microcomputer to do any useful work, the

user must be able to interact with it, to tell it what to do and

to follow its progress. The most common and indeed most flexible

way for this is by using an alphanumeric keyboard and display. The

display could be either a Visual Display Unit (VDU) or a printer.

Alternative input and output devices, like joysticks and oscilloscopes,

can be advantageous for some speciallized applications.

No present microprocessors can perform floating point arithmetic

directly, and most cannot even perform integer multiplication and

division. Therefore subroutines must be provided for the level

of arithmetic required for any given application. Integer

arithmetic can be used in multiples of the microprocessors word

length to provide any accuracy, but for general purpose simulation

4

where a wide dynamic range is needed together with moderate

accuracy, then integer arithmetic becomes very expensive in

memory space and the more compact floating point can be used.

Special purpose hardware can be used to relieve the arithmetic

subroutines of some of their calculations.

To develop simulation programs of reasonable complexity,

several development and debugging aids are necessary in order to

ensure that the time and effort involved in producing the program

is not out of all proportion to the benefits derived from it.

Typical programs that may be required are monitors, editors,

assemblers, interpreters and compilers. To enter the program

into the microcomputer, either for development or use, some form

of secondary storage is required with the appropriate loading

facilities. Secondary storage methods commonly used are paper

tape, and magnetic media such as cassettes and floppy discs.

1.3 Natural Resource Applications

The original motivation behind the microprocessor based

simulation system arose from an examination of a simulation

problem concerning the water flow in a forest. The problem

concerned both the internal water flow pathways inside the forest,

including the transport mechanisms within the tree itself, and

the net effect of the forest on the surrounding area. The

Institute of Terrestrial Ecology has been measuring the development

and functioning of a plantation of sitka spruce, and among these

measurements were some of the factors which affect the water

balance of the forest. The accurate measurement of environmental

5

factors is difficult to achieve because of the extremes of weather

and the long timescales over which the measurements are required.

The measurement of physiological details of the trees themselves is

even more difficult due to the small quantitative changes involved,

and their long timescales. The initial need for simulation would

be to allow the action of various theoretical models to be examined,

so that scarce resources could be allocated to measuring the most

useful parameters. The experimental results could then be used

to generate new models, and the whole process would be repeated.

Another use of simulation would be to produce a model of

the gross action of the forest, at all stages of development, so

that its effect on possible planting sites could be examined. The

changes in the water flows caused by the afforestation of a tract

of land is very important because the sites suitable for the

forest are often reservoir catchment areas.

Due perhaps to the difficulties of collecting accurate data,

the model equations resulting from research are in themselves

quite simple. However the large quantity of equations needed

for an overall water flow simulation and the long timescales over

which the model has to be run, combine to produce a simulation

model which requires a lot of computing time. The cost of

such computing time using a mainframe computer to organisations

like the Institute of Terrestrial Ecology, which have very scare

resources, means that such simulation models cannot be used to their

maximum benefit. A microprocessor based simulation system would

however have a very low running cost, and its interactive facilities

would also help to reduce the effort and cost of developing the models

6

in the first place. The slower calculation speed of the micro-

processor need not be a disadvantage since, after the user has

checked to see that the model is functioning properly, the system

could be left overnight to produce the results.

1.4 Engineering Applications

Simulation is a very useful tool in all fields of engineering

but, because of the effort required to run a simulation, it has

generally been reserved for problems which are difficult either to

analyze or to test practically. Small systems, especially

electrical and electronic analogue circuits, are quite often designed

using a simplified theory and then modified to obtain the correct

operation after being built and tested. Although inelegant,

this method is often the cheapest and most cost effective. However

if a cheap and easy to use simulation system was available, then

simulation could be used effectively to reduce the required testing

and modification stages, as well as allowing the designer to explore

a greater variety of possible solutions. For most problems a

graphic output would be preferable, with only a relatively low

accuracy result being required.

Another area where simulation could be used profitably is

in the teaching of engineering, and in particular analogue

electronics. The conceptual difficulty in relating theory to

experimental work hampers a student when the theory has to be

applied to a real problem. The use of simulation to illustrate

the theory could help to break down the conceptual difficulties

and enable a student to accept the theory more easily. The need

7

here would be for graphic presentation of the simulation results

which could easily be related to the oscilloscope waveforms

encountered in the laboratory.

1.5 Numerical Integration

The present version of the SIMUPROG simulation system program

does not provide a built in integration routine, but instead allows

the user to implement the most suitable method for the problem

under consideration. While this does provide great flexibility,

a built in integration method or methods could usefully be included

in expanded versions of the system.

Considering a first order differential equation, the numerical

integration methods suitable for solving the equation fall into two

main categories. These are the single step methods, such as Euler

and the Runge Kutta families, and the multistep methods like the Adams

Bashforth predictors and Adams Moulton correctors. A full

explanation of these and other methods has been given by Gearl.

Considering a discrete time step h, the value of the variable

y at time t+h can be expressed in terms of the values of its

derivatives at time t by the following Taylor Series expansion.

y(t+h) = y(t) + h*.v(t) + 2 *y(t)
+ h *y(t) +

-7 3

An integration method is said to be of order N if it produces

component terms which match the first N+l terms of the above series.

Higher order differential equations can either be broken

down into a set of first order ones, or in some cases treated directly.

8

Gearl gives examples using the truncated Taylor Series expansion

directly and also using the Nystrom formula for special second order

equations.

The accuracy of any simulation run is dependent on both the

integration method and the accuracy of the arithmetic. The

arithmetic performed on the GIMINI microcomputer used 32 bit

floating point representation, with 23 bits for the mantissa,

8 bits for the binary exponent and one sign bit. Since the

results of a calculation are truncated to get them back to the 23

bits, the worst case error produced is 2-23 times the exponent of

the result. This error is therefore between 2-23 and 2-22 times

the normalised result value. If it is assumed that the error

is randomly distributed with a rectangular distribution, then the

mean error will be 2-24 to 2-23 times the result value for each

operation performed. For example after 10000 operations the

truncation error could be expected to be between .0006 and .0012

times the result value. Another source of error is that the numbers

entered into the system are only held with 23 bit significant

accuracy. Thus more cumulative errors may be introduced if, for

example, a value like the step size is inaccurate. The result

of these errors can be amplified if unsuitable equations are chosen,

i.e. if a small variation in a large value number is critical.
Ideally any integration method can be made more accurate by

decreasing the step size, unfortunately, as the step size is decreased,

the truncation errors become more significant until they are

completely dominant. Each integration method will have its own

error curve, and a typical example is shown in figure I.I.

A

error

A

Figure 1.1 Integration Errors

1/h

10

The choice of integration method will depend on both the

simulation equations and the accuracy of the results required.

Euler integration is the simplest to implement, but being first

order it is also the least accurate, so that a large number of

steps using high accuracy arithmetic will be needed to produce a

very accurate result. Also, because of the large number of steps,

it may be slower to run. In spite of this, if a quick low accuracy

solution is required, Euler may be very convenient. The one

parameter family of second order Runge Kutta methods given by

Benyon2 can be rewritten as the predictor-corrector family given

below.

Yp = Y n
ahy n+a n n

Yn+a - f(Yn+a' to+a

1 1 p
Yn+l = Yn

+ h((1 - -2 -ot
)Yn + Yn+a

Yn+1 f(yn+l'
t
n+l)

When a = 1 the above method is sometimes known as Heun's method or

the Euler-trapezoidal method. The other second order Runge Kutta

method tested in section 5 is obtained when a = 0.5 and is sometimes

known as the Improved Polygon method. These methods are quite

easy to implement. Both require two derivative evaluations per

step, but provide greater accuracy than Euler, since they are second

order. James3 gives the third order Runge Kutta also used in

section 5. The classical fourth order Runge Kutta, which is also

used, is described by Gear l.

11

Multistep integration methods are not as convenient to use as

single step methods, because at the start of a simulation run they

have to be provided with past values of variables. These values

can be estimated before the run and provided as initial conditions,

although this normally means estimating a new set for each step

size used. Alternatively a single step method can be used to provide

the first few values to start the multistep method, but this has

the disadvantage of requiring two separate integration methods.

The predictor correctors such as the Adams Moulton require twice as

many derivative evaluations per step as the predictor only methods

such as the Adams Bashforth methods, but should provide better

stability.

A comparison of relative computation time per step for various

methods is given by Benyon2, and although the arithmetic calculation

times performed by the GIMINI software are not the same, the overall

relationships appear roughly similar.

The use of an integration method with a variable step size could

mean that less steps would be needed to attain a given accuracy,

because the smaller step sizes would only need to be used for fast

changing parts of the solution. Variable step size is difficult

and not very satisfactory when used with predictor correctors, as

pointed out by Martens4. Each time the step size is changed, the

predictor corrector has to be restarted using a single step method.

The Runge Kutta Merson fourth order method can generate an estimate

of the integration error, sometimes called truncation error, for

each step and so control the step size. For other methods, a

possible way of generating an estimate of the error size is the

12

Richardson method explained by James3. In this method two solutions

are generated at each step, one forthe full step size and the other

using two half steps. The two values are then used to produce an

error estimate. One disadvantage of using a variable step method

apart from its complexity is that it is difficult to produce regular

outputs of results.

Smith
5

describes the use of compensation to increase the

accuracy of low order integrators. For a known result the

compensation could be adjusted to reduce the error, but when the

result is not known in advance, Smith does describe a variable phase

integrator which applies the compensation as it proceeds.

13

2. SIMULATION

2.1 Continous Simulation

The simulation of continuous systems can be described as

experimenting with mathematical models of a system instead of the

system itself. Simulation can therefore be used both to predict

the behaviour of a system and to aid the development of better

system models. A continuous simulation problem generally involves

the solution of a set of differential equations from initial conditions,

and both analogue and digital methods can be used to perform these

simulations.

When using an analogue computer an electronic circuit analogue

of the required system is constructed from individual component

circuit blocks. Parameters and initial conditions are set by

potentiometers and the output is either on a Cathode Ray Oscilloscope

(CR0) or x-y plotter. Analogue computers are fast, and the

essential parallelism of their circuits means that their speed is

more or less independent of the problem size, but they have a

limited accuracy due to their components (0.01 to 0.05%6), and such

high accuracy components are very expensive.

Simulation using a digital computer involves dividing the

continuous solution into small discrete steps and using the values

from the preceeding steps to estimate the result of the present

step. Digital simulation can be performed to a very high accuracy

using a general purpose digital computer, however since each

equation of a parallel system has to be evaluated sequentially the

speed of operation suffers. Hybrid computers have been developed

which combine the speed of the analogue computer with the ease

14

of setting up of the digital computer, but they are very expensive

and the close interaction between the user and the analogue computer

is normally lost.

Analogue computer problems have to be scaled because of the

limited analogue voltage range. Digital computers do not require

scaling if floating point arithmetic is used, but do if the faster

fixed point arithmetic is used. Since the user can manually alter

the values of the parameters and initial conditions of an analogue

solution and immediately see their effect, the user can obtain an

insight or 'feel' for the simulation problem. Most hybrid

computers and batch processing digital computers lose this benefit.

Programs run on large mainframe computers are either batch

processed or run interactively. Since most interactive programs

only use the computers Central Processing Unit (CPU) a fraction of

the time, several programs are usually time shared to provide a

multi-access facility. Most medium and large minicomputers can

also run in both interactive and batch modes and are cheaper

but less powerful than mainframes. Small minicomputers and micro-

computers are normally used interactively for just one user.

Simulations can be written in a general purpose high level

computer language like FORTRAN7 or BASIC8, but a low level assembly

language would be considerably more difficult to use and to modify.

Since most simulations have common features like integration and

result output, a lot of programming time can be saved by using a

simulation system which takes care of the repetitive functions.

Such simulation systems fall into two categories, those which

accept an explicit set of differential equations and those where the

15

model is entered by specifying the interconnections between functional

blocks similar to those of an analogue computer. Both the equation

oriented and block diagram systems can be used either interactively

or in batch mode.

For a small digital system an interactive approach should be

able to provide the analogue computer feel for the problem at a

much lower cost than an analogue or hybrid computer. A batch

processing system makes more efficient use of the computers central

processing unit (CPU) than an interactive system since in the

interactive mode the CPU will spend significant time waiting for

the user to enter new commands. In a large computer system the

CPU is an expensive part of the computer so time sharing is often

used to cut this cost, but in a microcomputer system the CPU may

only cost £10-£40 which is considerably less than most of the other

system components. This means that the user's time is far more

important than that of the CPU, therefore a microcomputer system

is very suitable for interactive use with just one user.

2.2 Simulation Problem Implementation

To perform a simulation task interactively on a microcomputer

three main actions were required, firstly the initial model must

be entered into the computer, next the model must be implemented and

results produced, and finally the model can be edited prior to being

run again. To implement a simulation problem either a special

program can be written in a suitable general purpose language, or

a more specialised simulation language or system may be used.

16

Using a general purpose language for each simulation problem

encountered implies that the programmer must have a good knowledge

of the programming language used, and also implies that a good deal

of the programmers effort is wasted in rewriting almost similarly

functioning sections like data input and result output. High

level languages offer the best approach for writing a special

program as assembly languages require considerably more programming

effort and greatly obscure the relationship between the program

and the simulation problem. The high level program must be

translated into the actions of the computer required to implement

the specified task, and this may be performed either by a compiler

or an interpreter. For interactive use on a small computer such

as a microcomputer the interpreter approach is simpler, since it

requires a smaller program than a compiler and does not need to

store a machine code version of the program. On the other hand the

compiler's machine code program is considerably faster in execution

than the interpreter. While the high level compilers implemented

on microcomputers are considerably more limited than those available

on larger computers, they still require relatively sophisticated

operating systems with secondary storage.

Several high level languages are available for microcomputer

use, with BASIC being the most common. Most microcomputers have

interpreted BASIC like the SWTP 68008 although some BASIC compilers

have been produced. Various compilers using versions of IBM's

PL/l language have also been produced like PL/M9 by Intel and the

PLZ10 family of languages produced by Zilog. The newer Pascal

language
11,12,13 is gaining in popularity and by using the

17

intermediate P-code, both compilers and interpreters have been

produced14, and even a new microcomputer has been designed to

operate on the P-code

Korn16 proposed a block diagram language in which a sequence

of prewritten subroutines are called to perform any required task.

The inputs and outputs of each subroutine called would be specified

as parameters with the program stored in an array as threaded code.

Threaded code means that the program is represented by the addresses

of the subroutines and variables and is implemented by indexed

subroutine jumps and indexed data operations respectively. The

language Forth17 uses indirect threaded code with a dictionary

of subroutine blocks to implement the program. Forth is also

unusual in that postfix or reverse Polish notation is used and

that the user has full control of the stack. The threaded code

operations refer to entries in the dictionary which contains the

addresses and other details of the subroutines, this dictionary

structure enables the programmer to define new operations using

a combination of existing ones, and even other user defined operations.

Forth is a very compact language, and with its reverse Polish

notation and explicit processor operations including the use of

assembly language it is obviously designed more for system use

than general purpose programming.

Of the available high level languages BASIC is probably about

the easiest to learn, but the more structured languages like Pascal

allow the programmer to produce a program which is more closely

related to the simulation problem and thus more comprehensible.

The more complicated languages like FORTRAN7 and the PL/l variants

18

are more difficult to learn and are written to use quite a large

microcomputer system with secondary storage. The reverse Polish

notation and explicit stack manipulation could make Forth difficult

to use for an inexperienced programmer. The main problem with

using high level languages is that much of the programming effort

is used in producing repeatedly used sections like result tabulation

and integration. The presence of these sections in the users

program also tends to obscure the simulation model. One solution

to these problems could be to have prewritten sections or subroutines

which perform the often used functions, but most functions like

output and Runge Kutta integration cannot be performed by just one

subroutine call. Therefore if simplified output and integration

instructions are to be used, then the simulation program itself

must be running under the control of another program which keeps

track of the progress of the simulation problem and performs the

actions required by the simplified instructions. Such a control

program would form the basis of a simulation system. Korn6

describes a package of FORTRAN subroutines which can be used on

any computer with a suitable FORTRAN IV compiler. The model

equations are written as a FORTRAN subroutine on punched cards

and combined, with the required subroutines from the package, to

form the simulation program which is then run in batch mode.

Since historically, digital simulation developed after analogue

computer simulation was well established, many block diagram

simulation systems have been written for mainframe computers which

were designed to ape an analogue computer. DAS18 and KALDAS19

are examples of such systems which have attempted to produce a

19

digital version of the analogue computer, but since they are batch

processed the analogue computer interaction or 'feel' is lost.

PACTOLUS20 is a similar block diagram system,but which can be operated

interactively. These block diagram systems require that the

mathematical models to be used are first rewritten as an appropriate

block diagram, using analogue type components, before entering into

the simulation system. The MARSYAS system21 is a block diagram system

designed for aerospace simulation on a large computer installation.

The MARSYAS blocks can however be considerably more complicated than

simple analogue computer blocks and can include high order transfer

functions and complete subsystems which have been previously defined

as block diagrams.

Equation oriented systems allow the simulation model to be

entered algebraically in the form of differential equations.

Most equation oriented systems conform roughly to the conventions

of the Society for Computer Simulation's CSSL Committee22. One

such system is DARE P6 which is an equation oriented system designed

for batch processing and written in FORTRAN IV for portability.

Interactive operation of large computers is very expensive,

so some systems have been written for minicomputers of various sizes.

The DARE/ELEVEN system6, which was developed from earlier DARE

systems at the University of Arizona to run interactively on a

PDP-11/40 minicomputer, is unusual because it provides an equation

oriented language together with a fast block diagram language.

DARE/ELEVEN can accept an equation oriented CSSL type program

which can be entered using an interactive editor. The system

translates the simulation program into a FORTRAN program which

is then compiled by the computers standard FORTRAN compiler to

20

produce an object code module. This module is then linked together

with any required library routines to form the object program which

is then run to produce the required results. The complete process

is run under the control of the standard operating system on a

PDP-11/40 with 28K of memory and a fast magnetic disc. Since the

memory is not big enough to hold all the programs required,overlay

techniques are used. Memory overlay is the process of overwriting

selected parts of the computers memory with new programs. The

previous programs are lost, but copies of all the programs are held

on the magnetic disc. The DARE/ELEVEN block diagram language uses

fixed point arithmetic for speed, and can even be used in different

parts of the same simulation as the equation oriented language.

The block diagram is entered by specifying the required blocks

together with their inputs and outputs. The DARE/ELEVEN system

then orders the blocks in procedural order and uses the computers

own macro assembler to produce the object code.

Micro-DARE BASIC/RT 1123 is a block structured simulation

language similar to that used in DARE/ELEVEN which can be used on

a PDP-11 or LSI-11 with at least 16K of memory and the RT 11 operating

system, but needs no system disc. Micro DARE BASIC/RT 11 uses a

dialect of BASIC for initialisation and control of simulation runs,

and a block diagram language with fixed point arithmetic for the

integration loop. The block diagram language is compiled into a

threaded subroutine structure and the BASIC statements are semicompiled

on entry to compress them, with an expansion routine provided to

facilitate editing.

ISL-824'25

is a block diagram language which runs on a PDP-8

21

minicomputer with as little as 4K words of memory. The fixed point

arithmetic used in ISL-8 requires time and amplitude scaling. Newer

versions of ISL26 can be used with other minicomputers and for hybrid

simulations.

BEDSOCS27 is a CSSL specification equation language which uses

BASIC instead of FORTRAN as its procedural language. By using

interpreted BASIC the system is designed to run on a Hewlett-Packard

2100A minicomputer with 8K of core store.

Hay28 describes three interactive simulation system implementations

on a PDP-8 minicomputer with 28K words of fast memory, a magnetic

disc and a floating point processor. All three implementations

provide equation oriented simulation languages. One scheme makes

extensive use of the PDP-8 system programs like editor, monitor and

FORTRAN compiler. The simulation program is translated into

FORTRAN statements to be compiled by the FORTRAN compiler into

the required object code. The PDP-8 batch processor, under the

control of a command file is used to provide the interactive

facilities, and extensive overlaying is required. The other two

approaches use self contained programs, one converts the simulation

program into an intermediate code which is interpreted at run time,

and the other has a further stage of compilation to produce a

machine code program. More recent versions of the interpreter

implementation called ISIS29,30

are written in FORTRAN and can be

used on a variety of computers. ISIS conforms to the CSSL

specification but does not translate the simulation program into

a procedural language like FORTRAN as most CSSL systems do,

instead it checks and semicompiles each line as soon as it has been

22

entered. The semicompiled form is stored for later translation

into its interpreter instruction code at the start of a run.

SIMEX31 is an equation oriented language which was written

for a PDP-9 minicomputer with 24K words of core memory and high

speed bulk storage. Instead of compiling the complete simulation

program just before it is run as most equation oriented systems do,

SIMEX compiles each line separately as it is entered. The system

provides for interactive editing by storing the source code on

the bulk storage medium. To obtain a fast calculation speed

fixed point arithmetic is used, and by restricting the time steps

to powers of two, and using Euler integration, the system can

perform the integration calculations using just shifts and additions.

An automatic scaling system is implemented to relieve some of the

burden of scaling the simulation problem, and this uses scale

factors of powers of two so that only shifts are needed.

For a user inexperienced in computer programming, writing

simulation programs in a purely high level language has two main

drawbacks. The first is the need to learn the particular high

level language used, and the second is the need to know the

appropriate programming techniques required for result output and

interactive control of the simulation. Using a simulation system

relieves the second and most important drawback. Of the systems

described only DARE/ELEVEN, BEDSOCS, ISIS and SIMEX provide high

level type languages designed for simulation work. DARE/ELEVEN

and ISIS provide FORTRAN features for more advanced simulation

programs and BEDSOCS provides BASIC. Only BEDSOCS and SIMEX are

core resident programs as the others require overlay techniques,

23

but SIMEX does require fast secondary storage for source programs.

Block diagram language systems are easier to implement on a

small computer since the code to be executed is already written as

blocks or subroutines and only the interconnections need be specified.

This also means that no source programs need be stored for the

execution phase. Micro-DARE/RT11 and ISL-8 provide block diagram

languages which do not require fast secondary storage, and

Micro-DARE/RT11 also provides BASIC statements for initialisation

and control of simulation runs.

A problem with block diagram languages is that users unfamiliar

with analogue computing have to learn to convert their problems from

the familiar mathematical expressions to an unfamiliar block

diagram representation of the problem. Therefore a simple

microprocessor based system would preferably be of the equation

oriented type.

The previously mentioned equation oriented systems all require

the simulation problem defined as a program using the systems special

language usually based on a high level programming language. This

means that not only does the particular special language used have

to be learnt, but the system has to store a copy of the source

program for future interactive editing. If instead of this a highly

interactive dialogue could be maintained between the computer and the

user, then the simulation system could at least partly explain

how to enter the required information. Auslander32 describes

two implementations of a structured data simulation system: Both

run on a PDP-7 minicomputer with 8K words of memory and instead of

writing a special program the simulation model information is entered

24

using a series of commands. The two implementations differ in the

data structure used to store the models, but both require that the

model equations are entered in a very stylised format with nonlinear

functions implemented as machine code subroutines. One implementation

uses a linked data block structure with directories used to reference

blocks of information about state variables. As well as the names

and values of each variable, the blocks also contain a set of

pointers to other variables which make up the stored equation. The

other implementation uses a node incidence matrix to describe the

topology of a directed linear graph. Each equation stored in this

system can be represented by a simple directional graph, and the node

incidence matrix contains the binary information about the presence

or absence of each possible individual branch in the graph.

The command structure used by Auslander does not offer much

dialogue so the user has to remember what information has to be

entered. The entry format for the equations is awkward and involves

extra user effort, with the resulting equations being rather restricted.

It was therefore decided to implement a microprocessor based

system which was equation oriented and had the simulation problem

held as recoverable data. The system should also have as much

interactive dialogue as possible to guide the user in using the

system.

2.3 Microcomputer Considerations

2.3.1 Man-Machine Interface

The methods of communication which the user has with the

simulation system are very important since the system has to be

25

easy to use for people with little experience of computers. The

entry of data and control instructions should be straightforward,

and the microcomputer should be able to output helpful guidance as

well as results. An alphanumeric keyboard together with an alpha-

numeric printer or Visual Display Unit (VDU) is the most common and

versatile method used to provide interactive control of a computer.

Other input and output devices can provide very useful extra

facilities, but they are not absolutely necessary. So that the

minimum microcomputer system implementation can be usefully used,

the simulation system program was designed so that the alphanumeric

input and output devices could provide data input, result output

and simulation control. Alternative data input and result output

devices were also catered for, but the simulation system can still

be used if they are not available.

Difficulties occuring in the communication between user and

microcomputer program are caused by the organisation of the interactive

dialogue and not by the hardware involved. The present simulation

system uses a teleprinter as the main user interface. While the slow

speed of 10 characters per second is fine for user input, it greatly

limits the amount of text which can be printed out without the user

becoming impatient. While an inexperienced user will tolerate

lengthy printouts which provide helpful guidance, these printouts

will become annoying and timewasting to a user who already knows

how to operate the system. A way round this would be to switch

between short rather cryptic dialogue and expanded explanatory

dialogue depending on the users preference. Useful as this method

could be, the memory limit in the present system prohibits its use.

26

Therefore a compromise was reached for the present implementation so

that only one set of dialogue was needed. The function of the

simulation system was broken down into a selection of commands, the

present version of the program has 20 and each consists of a name

or a mnemonic up to 4 letters long. When a command has been

activated, the required function is implemented using a controlled

dialogue between the user and the program. The simulation model

and control information is stored in a unified database and each

command has independent access to the appropriate parts of the

database. Several formats for the controlled dialogue were tried

for different commands.

The use of a higher speed VDU for the text output would remove

the speed limit from the size of the program messages, and would

also allow alternative dialogue formats to be used. An example of

this would be the use of a menu of the command names, a brief

explanation of each command could also be included.

2.3.2 Arithmetic

For general purpose use, the simulation system should be able

to accept a wide range of input values so that the user does not

need to spend extra time and effort scaling the simulation problem.

This wide dynamic range must be combined with sufficient accuracy

to ensure that the cumulative errors remain within the required

limits, even after a large number of steps.

Integer arithmetic is the simplest to implement, but very long

integers would be needed to cope with the wide dynamic range needed

and this would require a large amount of storage, most of which would

27

be wasted since the great majority of the values would contain

either leading zero's or else more bits of information than the

initial accuracy of the variables could justify. Scaling techniques

can be used to reduce the size of the integers required, Gakhal33

describes some scaling methods for some discrete fourier transforms.

However for the simulation system, the variety of types of equations

that can enter means that an automatic scaling system would be

very complex and difficult to implement. Errors in solving

differential equations can be reduced by increasing the accuracy of

the numerical integration calculations. This can be done by either

holding the state variables with a higher precision, or else

using residue retention as described by Baker34, however this would

complicate the simulation system since the program would have to

detect and keep track of variables being integrated.

Floating point arithmetic can provide both a wide dynamic

range and sufficient accuracy for the simulation system. Floating

point arithmetic software is slower and more complex than integer

software, but is no more difficult to use once the software has been

written. An alternative number system suggested by
Edgar35,36

called

FOCUS uses a logarithmic representation which is claimed to be

significantly faster than floating point for the same accuracy.

While multiplication and division are easy in FOCUS, addition and

subtaction are slower and more complex. The input and output conversion

is also more complex and FOCUS would probably require more memory

than floating point.' For real time systems where speed is at a

premium and calculation errors cease to become significant after

28

a relatively few number of steps, the FOCUS number system with input

and output conversion hardware could be useful.

Arithmetic hardware can both reduce the amount of software and

speed up the arithmetic operations. Integer multiplication and

division can be used to speed up both integer and floating point

arithmetic, and can use either Read Only Memories or digital

hardware. The recent introduction of single chip floating point

processors means that floating point arithmetic is much easier to

implement. The National Semiconductor 5710937 can provide BCD

floating point arithmetic together with trigometric, logarithmic,

and exponential functions. This device however uses PMOS technology

and is actually significantly slower than the floating point software

used with the CP 1600 microprocessor. The Advanced Micro Devices

AM9511 arithmetic processing unit was only available at the end of

this project, and can provide 16 and 32 bit integer arithmetic

as well as floating point arithmetic including trigonometric,

logarithmic and exponential functions. The Am9511 uses binary

floating point and is faster than the CP 1600 binary floating

point software which was actually used for the simulation system.

The 32 bit floating point was felt to be the optimum for the

simulation system as 16 bit floating point could not provide the

accuracy and dynamic range needed, and both 48 and 64 bit floating

point would have taken more storage and would also have slowed the

simulation system down unnecessarily.

2.3.3 Languages

The choice of language used to write the simulation system

program depended not only on the need to produce an efficient and

29

comprehensible program, but also depended on the physical limitations

of the microcomputer system itself. While small programs can

usefully be written directly in machine code, it is impractical to

write and debug a large complex program without either assembly or

high level language program aids.

Assembly language provides mnemonic representation of the

microprocessors machine code instructions together with labels for

program jumps and variable storage. Programs written in assembly

language are much easier to understand than pure machine code because

the mnemonic labels and instructions, together with the comment text,

allow the program structure to be discerned more clearly. The assembly

language program is translated into a machine code program which is

then stored to be run later. Even though each assembly statement

directly represents one machine code instruction, they cannot be

translated in isolation because of references to labels appearing

later in the program. The assembler overcomes this by making two

or more passes through the program, the first pass builds up a table

of the addresses of the labels used in the program and subsequent

passes are used to generate the required machine code program.

High level languages are easier to understand than assembly

language because each high level statement is the equivalent of

several machine code instructions, and can therefore be designed

to perform a function much closer to the programmers concept of the

basic operations from which the program is constructed. The high

level program can be translated into machine code by a compiler

which, although more complex, operates in a similar manner to the

assembler. An alternative method of implementing a high level

30

language is to use an interpreter. The interpreter does .not produce

machine code, but instead it examines each line of the program as

it is being run and performs the same actions as the user's program

would have if it had been compiled. An interpreted program is

therefore considerably slower than a compiled one, but the interpreter

does have the advantages that it is easier to use and does not need

to store a machine code program. Therefore in programs involving

lengthy loops, such as simulation programs, the calculation time

taken by an interpreter could be at least an order of magnitude

greater than a previously compiled program would take.

Assemblers and high level language compilers can be run either

on the microcomputer itself or on another computer altogether.

To run an assembler or compiler on the microcomputer itself requires

secondary storage for the source and object programs since it would

be prohibitive to hold them in main memory. If a cross-assembler

or cross-compiler is run on another computer, the microcomputer only

needs enough memory for the resulting machine code simulation system

program. Compilers are more complex and require more memory than

assemblers. At the start of this project very few high level

languages were available for microprocessors, and even these required

at least a floppy disc drive for secondary storage. By exploiting

fully the architecture of the microprocessor, a program written

in assembly language should be smaller and faster than the alternative

high level program, but the programming effort needed to produce the

assembly language program would be much greater. A way to combine

the two approaches could be to use a high level language which

allowed critical program segments to be written in assembly language,

31

however there still remains the problem of integrating the actions

of the high and low level sections. The CP 1600 superassembly

language, finally used to write the simulation system program,

overcomes this problem by providing high level programming

enhancements to an otherwise standard assembly language. Although

the superassembly language is not as sophisticated as a true high

level language, it makes it much easier to make full use of the

architecture of the microprocessor with little more requirements

than a standard assembler.

2.4 Microcomputer System Implementation

The limited memory size and relatively slow speed of the

microprocessor based system envisaged means that the simulation

model equations need to be stored in as compact a form as possible,

without sacrificing execution speed. Since the equations which

will be entered into the system do not have a fixed format and can

make use of several layers of parenthesis, an equally flexible

system is required to store the equations so that they form a

suitable instruction stream for run time calculations. Lawson38

describes the main types of instruction streams which can be used.

Polish notation is probably the most compact form of instruction

stream, and since the stack operation times, using the microprocessor

stack pointer, are very much less than floating point calculation

times, there is very little loss in execution speed. The trailing

operator or reverse Polish notation (RPN) form of instruction stream

is the easiest to evaluate, and so was chosen for equation

sL age. To compress the equation further, the RPN instruction

32

stream was coded so that each entry consisted of a single 16 bit

word. Equations entered into the simulation system can be

represented as (variable)=(expression) where the '=' represents an

assignment operation not an equality. An expression is coded

using positive integers to represent variables whose values are

to be pushed onto the stack, and negative integers to represent

arithmetic operators and functions which operate on the stack.

A positive integer refers to the position of the required variable

in a list which, as well as containing the value of the variable,

also contains its name so that stored equations can be printed

out. The negative integer refers to the position of the starting

address of the required arithmetic subroutine in a list which also

contains the operator symbol or function name needed to print out

the stored equation. The RPN expression is terminated by a zero

entry and the variable to which the value of the expression, now

held in the stack, is to be assigned is found in a separate list.

The reason for this is twofold, firstly it simplifies the evaluation

of the expression since it eliminates the need to enter the address

of the unknown variable in the stored instruction stream, and

secondly it allows for prewritten system functions and user entered

functions to be implemented, in future versions, in the same way

as model equations.

Since the entered equations are not of fixed length, the zero

which terminates their equivalent stored instruction stream effectively

terminates a variable length list. ' All the data specifying the

simulation models is effectively held in lists, and this provides

an effective method for storing variable amounts of data without

33

keeping track of separate pointers and counters. The set of model

equations are themselves held in a list, in the order they were

entered. To increase flexibility of operation, the order of the

list of equations does not determine the order of operation, and

instead the order of operation is specified by a separate list.

Not only does the operation list mean that the order of operation can

easily be changed, but equations can be dropped from the list or

even appear several times without disturbing the original set of

equations. The actual list of equations is held in a two

dimensional array or matrix. Alternative storage organisations

could be implemented to make use of the space otherwise wasted by

equations shorter than the maximum length. Storing the equations

as linked lists could make use of the space but since the only

replacement operations required would involve whole equations, the

extra pointers required to implement linked lists would make the

system very inefficient. The individual equations could also be

stored as segments in a single data space with an array of pointers

indicating the start of each equation. This system would make

better use of the memory space than the matrix method, and should

be just as fast. The only main drawback would be that replacement

of individual equations would be more difficult. The main reason

that the matrix method was used was that it was easier to implement

and debug, the segmented method could then be introduced later and

debugging would be much easier when the rest of the program was

validated.

All the information needed to run the simulation is included

in the database including run time controls and output lists.

34

This means that the simulation run information is independent of the

program and can be stored and rerun at a later date. The size of

the database, and hence the maximum size of a simulation model,

is limited only by the memory size of the microcomputer and can easily

be adjusted to suit the available memory.

Each command used to control the simulation system is implemented

as an independent subroutine so that commands can be added to or

deleted from the system as required. Each command subroutine

operates independently on the database although, to keep the program

compact, several command subroutines may themselves make use of common

subroutines. Once a command has been initiated, the user is guided

through the command sequence by questions requiring yes or no

answers and prompts for entering data. As well as a line editor

for user entered input, the commands are designed with options so

that an entry error by the user does not require too much effort to

correct. The equation entry subroutines accept equations in normal

algebraic form, with parenthesis, and convertsthem to the required

reverse Polish notation form. Some checks are also made as to the

validity of the equations, and a limited error diagnosis is produced

before the user is asked to enter the equation again.

It was not felt appropriate to include facilities for automatic

sorting of equations or for dealing with implicit loops.

35

3. MICROCOMPUTER SYSTEM

3.1 System Requirements

3.1.1 Microprocessor

There is now a wide range of microprocessors available,with

differing capabilities and designed to suit a variety of applications.

Since the microprocessor performs the required calculations and

controls the other system components, it is the main limiting factor

determining a microcomputers capabilities. The usefulness of a

particular microcomputer configuration for a given application is

determined by a variety of factors. The principle factors are the

speed of the microprocessor, its address range, its instruction set,

the type and size of memory used, the hardware and software experience

and backup available, and the hardware configuration.

The simulation program will require a considerable amount of

calculation, and the programs themselves may be quite lengthy. The

microprocessor should therefore be able to address sufficient memory

to hold the largest program required, although the use of overlay

techniques, with secondary memory, can reduce the requirement.

While just about any microcomputer can perform floating point

arithmetic if properly programmed, the instruction speed and the word

length of the microprocessor, combined with the design of its

instruction set and architecture, will determine how fast the

calculations are performed.

The most suitable microprocessors are the more recent 'general

purpose' 8 and 16 bit single chip microprocessors. The smaller

4 bit single chip microprocessors and microcomputers are designed

36

for smaller and less memory intensive systems, and their limited

memory space combined with the more complicated programs required

for calculation and data manipulation means that they are not

suitable for the simulation system. Older general purpose

microcomputers using PMOS (P-channel MOS) and the earlier NMOS

(N-channel MOS) devices are slower, and most also have interfacing

disadvantages. Other specialised microprocessors usually have

disadvantages, bit slice microprocessors can generally achieve

a far greater speed than single chip devices, but they introduce

another level of complexity since the actual instruction set to be

used in writing the simulation programs has first to be designed and

developed. This does not rule out their use, but it does mean that

the fast speed has to be balanced against the extra time, effort

and cost that they entail. A possible use of bit slice machines'

would be in a multimicroprocessor system where they could perform

a small repetitive section of program at-high speed. The single

chip microcomputers have memory and input/output lines contained with

the microprocessor in one integrated circuit. Those with ROM or

PROM memory are designed for volume production, and even those with

EPROM or only RAM usually have a limited address space and are not

suitable.

Cost is a major factor in deciding on the hardware to be used,

but the cost of the microprocessor itself is only a small part of

the total hardware cost. Indeed when considering the development

costs, unless for high volume production, the cost of the microprocessor

itself is usually insignificant. The actual microprocessor used has

however a large indirect effect on the costs, since it determines

37

the hardware needed for the system as well as the effort involved

in developing the programs. The development costs can be divided

into two main areas, hardware and software. Taking hardware first,

the existence of compatable families of microcomputer components

means that the construction of the required hardware configuration

can be done without an extensive knowledge of digital hardware

and computer techniques, providing that the constructor uses only

the family components and that the documentation is adequate. Most

microcomputer families are incomplete, so that often components

from other manufacturers and components not specifically designed

for use with a particular microcomputer are needed to attain the

required configuration. An alternative to building a microcomputer

from scratch is to buy a commercially available microcomputer

system. Most of these systems which range from simple single board

computers with hexadecimal keyboards and light emitting diode (LED)

displays, to sophisticated systemswith a visual display unit (VDU)

and magnetic disc storage, are designed for the hobbies or small

business markets. The resulting high volumes of sales, especially

of the single board computers, means that the finished product

is very competitively priced compared to the cost of the hardware

components, without even considering the development costs to

build the hardware. Therefore for the development of a simulation

system, the most cost effective approach would be to use an available

microcomputer and extend its hardware as required. However if

appreciable quantities of systems are to be produced then a

microcomputer system can be designed to suit the application.

Another advantage of using available microcomputer boards, apart

38

from not having to design and debug the hardware, is that many of

them are supplied with monitor programs in ROM or EPROM. Some of

the newer single board microcomputers even have BASIC interpreters

in ROM. Most of these microcomputers also have libraries of software

available either from the manufacturer or independent software

companies.

The main microcomputer used in the simulation system was the

General Instrument Microelectronics CP-1600, which is a 16 bit single

chip microprocessor. The CP-160039 described in more detail in

section 3.2.2, was purchased as a complete GIMINI microcomputer

system. The GIMINI microcomputer was chosen because it offered

very good value for money at the time, when a limited budget was

available. The GIMINI also has the advantages that all the system

software was provided with the microcomputer, as well as local

technical backup being available. The CP-1600 is an NMOS (N-channel

MOS) single chip device and, with its regular architecture modelled

on that of the PDP-11, its features were indicative of the trends

in microprocessor evolution. Therefore the results and experience

gained with the CP-1600 would be useful in considering future

microprocessors. These trends have certainly continued with the

introduction of the Z8000 and M68000 which employ very regular

architectures with general purpose register sets. At the same

time a smaller 8 bit microcomputer system was built to compare with

the capabilities of the 16 bit machine. This microcomputer used

a Motorola M6800 microprocessor and was based on their D1 development

board. Later on in the project another small microcomputer was

built, and this used the 8 bit Z-80. The later system was based

39

on the NASCOM-1 single board microcomputer which was designed for

the hobbies market.

The tasks to be performed by a microprocessor in running a

simulation system can often be reduced by extra hardware, such as

a floating point processor, or additional microprocessors for input

and output or parallel processing. If floating point hardware is

used then a large portion of the arithmetic requirement is removed.

Intelligent input/output devices and peripherals reduce the

need for input and output lines from the main microprocessor as

well as freeing it from most of the input and output control tasks,

this results in a speeding up of the system's operation. Any

interactive simulation system could be divided into the three main

activity areas of,user interfacing, data handling for updating and

using models, and calculations required for a simulation run. For

user interfacing the input/output mechanisms of a microprocessor

can effect both the hardware complexity and the software overheads.

All the currently available 8 and 16 bit microprocessors can handle

the input and output requirements of the simulation system, but the

interfacing hardware needs to be designed specifically for a

microprocessor in order to achieve the best efficiency. Data

handling is an important requirement for the simulation system

because its structure involves lists and pointers in an address space

which can be varied according to the complexity of simulation tasks

to be handled. Therefore address handling with arithmetic

operations on the addresses over the full address range is required

together with the ability to indirectly address data from a previously

calculated address for several levels. The address range required

40

is dependent on the size of data base used, but for the system

envisaged the address size would preferably be 16 bits which is

normally the maximum address space of current general purpose

microprocessors. An efficient subroutine call and return structure

is an advantage because the program can then easily be divided into

modules which make it easier to write, change and debug,if the modules

are suitably written. Floating point arithmetic is used by the

simulation system, and since no present microprocessors can

directly perform floating point arithmetic, then special software

has to be written. Recently hardware, in the form of an auxiliary

arithmetic processor, has become available for use with microprocessors,

but is still relatively expensive. This processor would however

relieve the microprocessor of the actual calaculations, as it would

then only be required to transfer data to and from the auxiliary

processor. The simulation system implements its equations in

reverse Polish form, so therefore requires a separate arithmetic

stack from that used to hold subroutine return addresses. This

stack need not be physically separate from the normal stack as long

as the program can distingui§h which quantity is which. The

extra computing required to disentangle arithmetic data from return

addresses would however add to the size of the program as well as

reducing calculation speed.

Considering first the 8 bit microprocessors suitable for a

simulation system. The Intel 808040 was the first of the NMOS

devices to achieve popularity, and was designed to provide software

compatability with their preceeding 8008. The Intel 808541 is

basically an 8080 with hardware improvements including a single

41

supply rail and more interrupts. The Zilog Z-8042 not only has

software compatibility with the 8080, but also has additional registers,

including two index registers, and extra instructions. The

maintenance of upward compatibility from the 8008 has produced rather

irregular instruction sets for the 8085 and Z-80. This together

with the lack of certain instruction types, such as direct addition

from memory to accumulator, means that they are more difficult to

program than would otherwise be the case. The Zilog Z-80 with its

much expanded instruction set and extra registers is more suitable

for this application than either the 8080 or 8085.

The Motorola M680043 microprocessor has a more regular

instruction set than the Z-80, including direct arithmetic operations,

so is therefore easier to program. The 6800 also has the advantage

of two accumulators, but does not have a set of general purpose

registers like the 8085 and Z-80. The 6800, while lacking some

of the Z-80's sophisticated instructions, has the ability to perform

some operations directly on memory without requiring the use of

the registers and this can often offset or even outweight the Z-80's

extra registers. The Z-80 in common with the 8085 has separate

memory and input/output buses, whereas the 6800 has a combined bus.

This means that the 6800 performs input/ouput operations in an

identical fashion to memory references, thus allowing the use of

it's direct memroy operations. The 8085 does have some input/output

devices designed to operate as memory, and the only disadvantage of

this method is that, especially with partial address decoding, the

maximum memory size is reduced, but with the smallish simulation

systems envisaged this would not matter.

42

The MOS Technology 650244 microprocessor has a very similar

instruction set to the 6800, but has only one accumulator together

with extra addressing modes. Whereas the 6800, Z-80 and 8080

originally became popular through being provided as chip sets and

sophisticated development systems, the 6502 has become well known

because of it's use in built up microcomputers like the PET and the

Superboard.

The Fairchild F845 seems to be designed primarily for control

and other low memory requirement applications, as the lack of an on

chip program counter complicates it's use in memory intensive

situations. Although the 6800, Z-80, 6502, 8080 and 8085 are the

most popular 8 bit microcomputers a variety of others are available.

Some of these are slower like the Signetics 265046 and the General

Instrument Microelectronics LP8000 whereas others have more

limited instruction sets like National's SC/MP. This does not

preclude their use but they may incur speed and programming penalties.

RCA's COSMAC47 microprocessor is unusual in that it's CMOS technology

means a low power requirement, and it also has an unusual architecture

with a set of sixteen 16 bit registers any one of which can be

defined as a program counter and any other as a data pointer.

Some of the newer single chip microcomputers are being designed

to cope with memory intensive applications, and although most are

designed for high volume and use mask programmed ROM, some are also

available as prototype versions with either EPROM or no ROM at all.

If they are based on an existing microprocessor then there is unlikely

to be any advantage.

Microprocessors like the Z-80 have some limited 16 bit data

43

handling capabilities which are designed primarily for address

calculations. The Motorola 6809 is an attempt to bridge the gap

between 8 and 16 bit microcomputers. The 680948 has the same

architecture as the 6800 and shares its support devices, but has

an extra index register and stack pointer together with more

addressing modes and 16 bit arithmetic including multiplication.

Sixteen bit single chip microprocessors, because of their

greater internal complexity, are more difficult to produce and

consequentially have been slower to appear than the 8 bit machines.

The General Instrument CP-1600 previously mentioned is modelled on

the PDP-11 minicomputer but is not software compatable. The

existence of large amounts of software written for minicomputers,

and the increasing competition from the microprocessors produced

by the semiconductor companies, has induced the minicomputer

manufacturers to produce their own microprocessors which are

software compatable with their minicomputers. The Texas Instruments

990049, which has the same instruction set as their 990 minicomputer,

has an unusual memory to memory architecture with a set of working

registers being maintained in RAM memroy instead of in the processor

itself. This means that interrupts can be handled very quickly by

moving to a new section of memory, but has the disadvantage that

computation speed is dependent on the speed of the memory which is

usually slower than internal registers. Digital Equipment Corporations's

LSI-11 is not a single chip microprocessor but a multiple chip set

which can use a lot of the software produced for the PDP-11. The

Intersil IM610050 is a CMOS microprocessor with a 12 bit word length

and the instruction set of the PDP-8 minicomputer. This means that

44

PDP-8 software can be run on the IM6100, but the programmer is

limited to the PDP-8's rather primitive instruction set and

architecture. The instruction set of the Data General Nova

minicomputer is used for their own Micro Nova as well as

Fairchilds 940051 microprocessor. The Nova, although not as well

known in this country as the PDP-11, also has a large software base.

The use of an existing minicomputer instruction set limits the

architecture and features which can be added to a new microprocessor,

and since established minicomputers generally were designed to be

implemented in either discrete components or small scale integrated

circuits they are unlikely to make the most efficient use of current

large scale integration technology. Most semicondcutor manufacturers

who are not also in the minicomputer business, have opted to design

their own architectures and instruction sets. Motorola and Zilog

have made a complete break with their previous 8 bit microcomputers

in attempts to produce architectures which will serve them for a

future series of upward and downward compatable microprocessors.

The Zilog Z800052,53 is a 16 bit microcomputer, in that its

hardware handles sixteen bits in parallel, but it can handle data

types of 8, 16, 32 and for some instructions even 64 bits as well

as single bits. The Z8000 also has sixteen general purpose registers

which can be used with most instructions as accumulators, data

storage, index registers, or memory pointers. The Z8000 is

available in two versions, one has a 40 pin package and can address

64 kilobytes of memory, and the other has a 48 pin package and

provides for the use of 128 segments each of 64 k bytes to give

a total memory space of 8 Me-gabytes. The Z8000 has two modes of

45

operation, each with its own stack pointer. The system mode has

full control of the microprocessor, but the user mode has a restricted

instruction set with input/output, interrupts, traps and mode

changes being prohibited. If any of the prohibited instructions

are used in user mode, a trap into system mode occurs which returns

control to program using system mode. While this facility would

be of no particular use in the presently implemented simulation system,

any future expansion aimed at providing facilities for user written

subroutines or procedures could greatly benefit from the protection

afforded by this facility.

The architecture of Motorola's M6800054 is designed to be 32

bits wide but is currently implemented as 16 bits. The M68000 has

sixteen 32 bit registers, eight of which are designed primarily

as address registers. Data of 1, 8, 16 and 32 bits can be accessed

from a memory space of 16 Megabytes. The M68000also has a privileged

system mode. Some instructions, such as floating point arithmetic,

are specified in the architecture but not implemented, and when these

instructions are used a trap occurs which can be used to provide

software implementations of instructions not implemented in hardware.

Unlike Z8000 the M68000 does not have multiplexed address and data

buses, but does therefore have a larger package.

The Intel
808655,56

is a sixteen bit microprocessor which can

handle quanitities of 1, 8 and 16 bits, and which has eight 16 bit

general purpose registers. Although most of the instructions can

use'all the registers, some of the addresssing modes are restricted

to using certain registers and the multiply and divide instructions

can only use the accumulator. The 8086 can address one megabyte

46

of memory and has a sophisticated memory segmentation system. The

8086, unlike the Z8000 and M68000, has been designed to retain

compatability with the preceeding 8080, although hardware compatabiity

including interrupts is not maintained. This limited compatability

may be useful for upgrading previous 8080 programs, but the constraints

it imposes on the.architecture of the microprocessor, and the

instruction set together with its mnemonic representation, are a

disadvantage for writing new programs and could even add to the cost

of developing new software.

3.1.2 Memory

The microcomputer's main memory holds the simulation programs

together with any required data. Since the simulation program

developed stores all the simulation model equations and structure

as data, the actual program remains fixed when in use. While all

the simulation data has to be held in read-write memory, except for

fixed data or constants used by the program, the finished program

could be stored in either read only memory (ROM) or in read-write

memory which is more commonly called random access memory (RAM).

Execution of the simulation program needs to be performed for two

distinct purposes, firstly to develop and debug the program itself
and secondly to use the program to perform simulation tasks. The

development of a complex program like the simulation system program

usually proceeds in a cyclic fashion by first finding that some

feature of the program does not work, then debugging the'program

to find the cause, followed by rewriting part of the program to

correct the fault, then testing the program to find a new fault

47

which was masked by the previous one, and so on until the program

works properly. For this development the program has to be altered

both to correct the errors and also, all be it temporarily, to help

in the debugging itself. For the development phase the program

will therefore have to be held in RAM.

Semiconductor RAM is almost exclusively used in microcomputers

because of its low cost and high speed. RAM memories can be divided

into two categories, static RAM which retains its information as long

as power is supplied, and dynamic RAM which has to be refreshed

every few milliseconds or else the information is lost. Dynamic

RAM is cheaper than the static type, but normally requires extra

circuits to perform the refresh, although the Z-80 microprocessor

has the circuitry built in. Some manufacturers produce pseudostatic

memories which are dynamic memories complete with refresh circuits

on chip so that they act like static devices. Some memories have

power down facilities whereby a small amount of memory can be kept

active by standby batteries and therefore important information can

be kept during power down. With CMOS memories, the power required

by these devices when not being accessed is so small that sizable

sections of memory can be kept active from small batteries. The

penalty of CMOS memories are their greater cost, but in some

systems they may eliminate the need for expensive secondary storage.

A two kilobyte CMOS memory was implemented for the NASCOM-l based

system and this had optional write disables so that it could be

used as an EPROM simulator for the development of the graphics

program.

Dynamic memories, and to a lesser extent static memories,

tend to suffer from occasional errors produced by alpha particles

48

or cosmic radiation, and most large minicomputers and mainframe

computers employ error correcting codes when using dynamic memories.

For the simulation system, the error rate for the size of memory

used will be very low, indeed it is likely to be less than errors

caused by faulty equations entered by the operator. Some micro-

processor manufacturers produce memory specifically designed for a

particular microprocessor, but these tend to be dearer than memory

devices produced in larger volumes for more general use. These

generalised memory devices, although they need extra decoding circuitry,

are usually quite easy to interface providing that they are fast

enough for the intended microprocessor operating speed.

ROM is available in a variety of forms for different uses.

Mask programmed ROM has its information set at manufacture by a mask

used to deposit an aluminium pattern on the integrated circuit, but

is only suitable for volume production runs. Programmable read only

memory (PROM) is programmed after manufacture and can therefore be

used for one off designs, with the information being set by blowing

or not blowing fuses with a special PROM programmer device. PROM's

once programmed cannot be changed, but erasable programmable read

only memories (EPROMS) can be erased using ultra violet light and

then reprogrammed. The EPROMS use trapped charge in 14OS devices

to hold the information, which can be retained for many hundreds of

years. Some other reprogramrnable memories are available but offer

no advantages for the simulation system and have higher costs.

The current development rate of 'semiconductor memories and

their competitive pricing means that memory costs have fallen

dramatically in the last few years, thus changing the balance of

49

hardware to software costs. This means that a greater program size

can be tolerated if it cuts down the development cost of the software.

3.1.3 Secondary Storage

Secondary storage can provide non-volatile storage for large

amounts of programs and data, at a lower cost per bit than main or

primary memory. The low cost per bit is achieved mainly by the

sequential nature of the secondary storage devices, this means that

the read write electronics are for the most part independent of the

amount of data stored and the data itself is stored on a low cost

medium such as plastic with a magnetic coating.

For the simulation system developed in this project the main

contender on the grounds of cost alone is the audio cassette

recorder. In order to provide a reasonably short load up time for

a RAM only microcomputer a data rate of at least 1200 baud would be

needed. If the simulation system program was in ROM or EPROM then

the lower 300 baud could be used for reloading just the simulation

model data. The digital mini-cassette, with its facility for total

computer control of the cassette drive, would be a contender for a

more professional system. An extended simulation system with result

storage and additional data processing programs could use floppy

discs or bubble memories. The usefulness of the bubble memories is

very dependent on the pricing of these memory systems, but they should

prove cheaper than mini floppy discs for small quantities of storage.

Although the mini floppy is slower than the standard one its lower

cost would make it preferable, even if the required secondary storage

capacity was greater than could be held in one minifloppy, as it

50

would be advantageous and only fractionally more expensive to use

two minifloppys instead of astandard drive. The two drives would

make it much easier to copy discs and thus provide backup copies

for use in the event of disc failure, since floppy discs only have

a limited life span in use.

3.1.4 Input and Output Devices

The full benefit of an interactive simulation system can only

be obtained if the input and output facilities are easy to understand

add use. Therefore control dialogue must be as unambiguous and

informative as possible bearing in mind the constraints of the

microcomputer system itself. Presentation of the results is very

important and a visual presentation in graphic form would be very

desirable.

There are two distinct areas of use for input and output

devices, which are system program development and simulation system

use. During program development editors and assemblers will be

used so full alphanumeric input and output is required, with hard

copy being almost essential. The situation is rather different

when the simulation system is actually being used, since additional

input and output devices could usefully be employed. Considering

first the simulation system output, the user has to be guided through

the sequences required to set up the simulation problem as well having

feedback from the microcomputer on the progress of each piece of

command dialogue.' Other output requirements are to display the

simulation results in numerical and graphic forms.

51

The inputs required when using the simulation consist of commands,

equations and numerical values. The alphanumeric keyboard is

probably the most versatile input device available, and for a minimum

system configuration is the only human input device needed.

Ideally during command dialogue the microcomputer should provide

as much information as possible to enable the user to fully

operate the simulation system without having to remember all the command

names and control sequences. A fairly high data output rate is

therefore preferable to prevent annoying delays. Visual display

units (VDU's) can provide high data rates, often up to 96,000 baud,

and can also simultaneously display several lines of information.

Commercial visual display units (VDU's) including keyboards can be

obtained for about £500, but more restricted VDU's produced for the

hobbies computer market are considerably cheaper.

While a VDU with its high speed is ideal for setting up a

simulation task, final results of a simulation would be more useful

in a permanent hard copy form. A tabulated numerical printout

would provide the most accurate output, but for most applications

a graphic output would be preferable.

Alphanumeric VDU's and printers can be used to provide very

low resolution graphics using standard characters, and this

graphic capability can be extended by using a graphics character

ROM, where the space taken up by an alphanumeric character is

subdivided to enable higher resolutions to be obtained. Using a

3 by 2 subdivision on a low cost display such as the NASCOM-1 gives

a resolution of about 48 vertical points and 96 horizontal points,

and this would be sufficient resolution for a rough check

52

of the model. Much higher resolution can be obtained by storing

individual points of the raster display which can be produced either

on a video monitor in a similar way to alphanumerics, or on an

oscilloscope (CR0) using high speed digital to analogue converters to

produce the raster in the same way as McLennen57. Storing

individual points requires a large amount of storage for high

resolutions, for example a 256 by 256 display would need 64k bits

of memory. An alternative which was finally chosen for the simulation

system is to draw the graphic output directly from the microcomputer

either to an X-Y plotter or to an oscilloscope. The hardware

is very cheap as most of the work is done by a microprocessor which

is used as a peripheral Of the main simulation microprocessor.

The Z80 used in the simulation system can draw four graphs each

of 256 points sequentially on an oscilloscope and still produce

a flicker free picture with a refresh rate of over 30 frames a

second. Since this display is software controlled, different

display formats can be chosen with data being stored only for the

actual points needing displayed. The direct output can also be

used to drive an X-Y plotter simply by slowing the display rate

down and eliminating the refresh. Hard copy can be obtained

from the oscilloscope simply by using a camera such as a simple

polaroid hand held instant camera.

3.2 System Hardware

3.2.1 General Description

The initial simulation system programs were developed using

the GIMINI microcomputer alone,. but later versions used the full

53

system including the NASCOM-l microcomputer and extra hardware.

Figure 3.1 shows the total simulation system as it was used, with

the exception of the LAN display oscilloscope, and figure 3.2 gives

the block diagram of the total system. The GIMINI microcomputer

consists of a card frame with four cards, processor, memory, monitor,

and input/output. The processor card contains the General Instrument

Microelectronics CP 1600 microprocessor together with clock circuits

and buffering. The memory card has 8k by 16 bit words of dynamic

RAM memory together with the refresh circuits. One problem with

this card is that the refresh circuits are driven by the signals from

the microprocessor, therefore if the microprocessor halts, the

refreshing is stopped causing loss of data. The input/output card

provides both a slow speed asynchronous serial interface for a

teletype, and a higher speed parallel interface for a paper tape

punch and reader. A Fortronics optical reader was used, but no

punch was available so the slow speed teletype punch had to be used.

The monitor card contains software for the teletype based operation

of the GIMINI as well as software and hardware to operate the front

control panel, which contrary to appearances is not hardware operated,

but software operated and thus able to cope with the dynamic memory.

The monitor provides hexadecimal debugging facilities, a relocating

loader, and some input and output utility routines.

The NASCOM-1 is a single board microcomputer which uses a

Mostek Z80 microprocessor. The NASCOM-1 has 2k bytes of static RAM

memory, half of which is used for a memory mapped visual display.

The display provides 16 lines of 48 characters which can either

drive a video monitor or, with the on-board UHF modulator, a

a

F
q

G
D

A
P

D
A

A
T

ID
N

15

A
l-

-
IN

S
T

pu
M

E
N

T

M
gt

a

I-

, i

t
II

JI
 11

1,

-i

t.

55

CP 1600

8k words RAM,

D monitor

G IMINI

input/output
z

PIO

link

2k CIIOS RAM, K)Iarithmetic unit

PIO I\- 1 1/1 D/A's

extender

i

Z80 UART

NASC OM-1

monitor K A video RAM,

lk system RAM N -- keyboard

link driver

control panel

tape reader

Teletype

oscilloscope

cassette

N UHF modulator

portable TV

Figure 3.2 Total System Diagram

56

standard 625 line television set. A software polled alphanumeric

keyboard is used and the monitor provides debugging facilities, input

and output utilities, and a memory dump and load facility. The

UART can be used to dump the data serially to an audio cassette

recorder, or an asynchronous terminal such as a teleprinter. The

NASCOM-1 hardware and software manual58 gives further details of the

hardware operation and the monitor program. The Series 1600 system

documatation39 gives details of the hardware and software of the

GIMINI microcomputer.

Extra hardware was designed and constructed to extend the

capabilities of the NASCOM-1 and provide a link between the two

microcomputers. The parallel link utilizes handshaking techniques

and is designed specifically for master-slave operation in the

simulation system. Two 8 bit D/A's are used to provide a refreshed

graphics display on an oscilloscope. The 2k byte CMOS RAM memory

has battery backup and can be write protected to provide an ROM

simulator for program development. A floating point processor was

also interfaced, but insufficient time was available to integrate

its operation into the simulation system. An uncommitted peripheral

input output device (PIO) was also included for future extension such

as direct analogue data input using an analogue to digital converter.

3.2.2 Microprocessors

The General Instrument Microelectronics CP 1600 microprocessor

is a 16 bit single chip device which has a combined memory and

input/output address space of 64k words. Since all the registers

including the program counter (R7) can use all the CP 1600's

57

arithmetic and addressing modes, an unusual and powerful set of branch

and jump instructions can be achieved. The Series 1600 system

documentation 39 gives the instruction set of the CP 1600, and

operations can either be on one register, between registers, or

between memory and a register. The 5 addressing modes used are:

register, direct, register indirect, relative, and immediate.

Any register can be used for single register operations, with the

exception that shifts and rotates can only be performed on registers

0 to 3. The direct address is normally a full 16 bits, but can be

reduced to 10 bits if full width memory is not used. The 10 bit

wide instructions combined with the CP 1600's ability to handle

16 bit data as two bytes means that programs can often be stored

in 10 bit wide memory. Register indirect means that the contents

of a register can be used as a 16 bit address. RO cannot be used

for indirection as these particular codes are used for direct

addressing. Immediate addressing is achieved by using register

indirect with the program counter R7. R6 can be used as a stack pointer

and registers R4 and R5 can be used as autoincrementing data pointers

with the register indirect mode. The subroutine call structure is

unusual for a microprocessor because it does not use a stack.

When .a subroutine is called the return address is stored in one of

three registers R4, R5, or R6 depending on the instruction used, and

when a return from subroutine is required the return address is simply

moved from the storage register to R7. One of the benefits of this

subroutine call system is that passing parameters to subroutines

is very easy since the address storage registers are autoincrementing.

The branch instructions using relative addressing provide a full

58

16 bit displacement together with a sign bit to enable jumps between

any two points in the 64k word address space. As well as conditional

branches on the state of internal flags set by preceeding instructions,

the CP 1600 can al§o perform conditional branches on the state of

16 external flags. Direct memory access and both maskable and non-

maskable vectored interrupts are provided, with provision for daisy

chaining the interrupts to provide a priority structure.

The Mostek Z80 is a second sourced version of Zilog's Z80

single chip 8 bit microprocessor. Unlike the CP 1600, the Z80 has

separate memory and input/output address spaces, with 64k bytes of

memory and 256 input or output ports available. Most Z80 arithmetic

or logical operations require the use of the single 8 bit accumulator,

but the main and alternate register sets can be swapped to provide

a fast interrupt response. The general purpose registers are

mostly used as single 8 bit or double 16 bit registers for temporary

storage or addressing. Sixteen bit registers are provided for a

program counter, a stack pointer, and two index registers. The

interrupt vector register supplies the top 8 bits of the interrupt

vector if used, with the bottom

device itself. Dynamic memory

additional hardware because the

provide the addresses necessary

The interrupt system of the Z80

The non-maskable interrupt line

8 bits being provided by the interrupting

can be supported by the Z80 without

Z80 uses the refresh register to

to periodically refresh the memory.

is more complex than the CP 1600.

provides a jump to a fixed address

at the bottom of memory, but the maskable interrupt line as well as

jumping to another fixed address has two other modes of operation.

In addition to the vectored interrupt previously mentioned, the

59

maskable interrupt can operate by accepting a restart code from

the interrupting device and then implementing that instruction as if
it was in a program step. The relative addressing mode is used for

conditional branches over a short range because only 8 bits are

used to give a displacement of +127 to -128. The register indirect

addressing mode uses pairs of general purpose registers to provide

the address for data transfer. Indexed addressing for the Z80

is an extension of register indirect whereby a 8 bit two's complement

displacement is added to either index register to give the required

data address. In addition to the normal range of operations expected

for a microcomputer, the Z80 also provides for manipulation of

individual bits as well as providing some useful block search and

transfer instructions.

While input and output can be performed by simple 3-state

buffers and latches, full use of the Z80's interrupt structure can

be obtained by using interface devices designed specifically to

operate with the Z80. The PIO, which stands for parallel input/

output, is a programmable input/output device which provides 2

ports each of 8 input/output lines, 2 handshake lines, and interrupt

control circuits. There are four modes of operation for the PIO

ports all of which have been designed to use interrupts. The

ports can be used independently as either latched inputs or outputs

with handshaking signals for the external interfaced device. The

PIO does not contain any microprocessor readable flags indicating

the condition of the handshake lines so'the PIO's vectored interrupts

have to be used. Another available mode is the bit mode in which

the individual bits of a port can be set either to be inputs or

60

outputs. This mode does not use handshaking signals but does provide

an interrupt facility using extra mask registers in the PIO which

generate an interrupt when a specific bit pattern appears at the

port. The final mode is only available on one port with the other

in bit mode, and provides bidirectional data transfer with independent

handshake signals. Both pairs of handshake lines are used in this

mode to allow the bidirectional data transfer with both vectored

interrupts being used, one for data input, and one for data output.

A PIO operating in bidirectional mode is used in the link circuitry

between the two microcomputers, and here the second port operating

in bit mode is used to provide software controlled flags for communication

between the two microcomputers. PIO's can be daisy chained to provide

a priority interrupt structure, up to 4 without any extra circuitry.

An unusual feature of the Z80 is that, unlike the CP 1600, it does

not issue an end of interrupt signal, so the PIO decodes the return

from interrupt instruction itself.

3.2.3 CMOS Memory

The 2k byte CMOS memory board whose circuit diagram is shown

in figure 3.3 was designed to provide non-volatile storage of data

and programs. The memory is organised as two blocks each of 1k

bytes either of which can be write disabled to simulate EPROM or

ROM. Each block consists of 8 Intersil IM6508C (lk by 1 bit) CMOS

RAM memories with battery backup provided by rechargeable nickel-

cadmium batteries. This board was originally designed to work

with a Motorola M6800 microprocessor running at 1 MHz clock rate,

but was used unmodified for the Z80 with a 2 MHz clock. While the

1 m -M

1; MR; 0 1._........_..._.

uIIIIIuI 111111111

IuI::I::Ii.:::::::::

low

assum inurar,iiiial OF

I!!!U,.,.!II hhh

111111111

C.S. MM
11111110

_.......-

I _ . L__ i MIMW

11' `- i

r

-
min MUM: UMMMMU:89.0.

..NSEE

1i

62

IM6508C is fast enough to work with the Z80, it is not fast enough

to work directly with the M6800 at 1 MHz because of the normal

addressing method used by the M6800. Rather than slowing down

the M6800, or using dearer memories, it was decided to add extra

circuitry to alter the addressing method since the cycle time of

the memory was actually less than minimum time between memory accesses

by the microprocessor. The read timing was met by activating

the memory select lines (ASTR or BSTR) in advance of the normal

M6800 memory strobe. The write timing was met by stretching the

memory select signals and latching the data into the two 74LS75 latches

on the memory board. The normal M6800 memory write signals are used

to provide the DINE latch pulse. The 3-state outputs of the memories

do not have suitable timing for direct connection to the microcomputer's

bus, so two 74125 quad 3-state drivers are used to drive the data bus

during read operations. Schottky TTL devices are used to drive the

address and data lines, because their outputs are effectively low when

they are unpowered and therefore reduce any possible interference.

The strobe and write lines are standard TTL with additional 5k pull-up

resistors which hold these lines high in a power down mode, since

they are connected to the battery backup circuits unlike the latches

and 3-state buffers. The switches allow either the complete access

or just the write access to be disabled for each memory block. The

battery backup circuit is the same as described by Intersil50 and

the 500 mAh batteries used can keep the memory data intact for at

least a month. When used with the Z80 microprocessor, no special

timing considerations are required, and the connections to the memory

board are a 10 and a 20 way strip connector which was found to be

more reliable than the single sided VERO edge connectors previously

tried.

63

3.2.4 Arithmetic Processor

The arithmetic board shown in figure 3.4 used the Advanced Micro

Devices Am9511 single chip floating point processor. The Am9511

provides 32 bit floating point arithmetic complete with trigometric

and logarithmic functions. This unit also performs 16 and 32 bit

integer arithmetic. The arithmetic processor is stack based and is

operated by first writing all the required data for a calculation to

the processors internal stack in 8 bit bytes, and then writing the

required arithmetic command to the processor which will then perform

the calculation. The microprocessor can detect the end of a

calculation either by reading a status word in the Am9511 or by a

hardware interrupt if implemented. Since the Z80 was already being

interrupt driven by the CP 1600, software monitoring of the calculations

was chosen. The maximum time required for floating point operations

varies between 84 us for a multiply and 4.6 ms for X to the power Y.

Results are retrieved by reading the internal stack of the processor,

again in bytes. When the AM9511 is not ready to transfer data,

including status information and commands, it issues a wait signal

to halt the Z80's memory access until the arithmetic processor is

ready.

The read and write signals to the AM9511 are straightforward,

with the wait signal operating in the normal fashion for a Z80

system. A reset signal derived' from the master reset is used to

ensure that the processor is idle until a command has been issued.

One peculiarity of the AM9511 not mentioned in the data sheet is

that the chip select must be used since the select pulses are used

to reset internal circuitry. The timing of the chip select is

64

*12v I

*5v 2

GND 4
A PUSEE 5

APUVAL 6

z

WR

RESET

WAIT 10
CLOCK 11

A0 12

D 0 13
D 1 14
D 2 15
D3 16
D 4 17

D5 18
D6 19
D7 20

02

1uF

I C 2

2

I C 3
6

IC 3

4

1 24
2 23
3 22 IC 1

4 21

5 Am 9511 20
6 19

7 18
8 17

6 9 1

10 5 1

11 14

12 13

Figure 3.4 Arithmetic Board

65

unsuitable for using the Z80's normal IOREQ signal. The solution

was to decode the port address whether it was valid or not and use

this for the chip select. The occasional chip selects without any

data transfer have no detrimental effect on the performance of the

arithmetic processor.

3.2.5 NASCOM-1 Extender

The Extender circuit shown in figure 3.5 provides the buffering

and decoding required to operate the additional memory and peripheral

devices. The address lines are buffered by IC's 1 to 4 and the

data lines by the 3-state bus transievers IC 8 and 9. To avoid

contention on the main microprocessor bus, the 3-state buffers always

drive into the extender except when the microprocessor requires to

read data from either.the memory, the arithmetic processor, or a PIO.

Note that not only does the microprocessor read data from the PIO's,

it also reads the interrupt vectors when an interrupt request is made.

The NASCOM-l's internal decoding has to be disabled to allow extension,

so two decoded signals MEXT and IOEXT are returned to the NASCOM-1

to operate its internal memory and input/output. Figure 3.6 gives

the memory map for the expanded Z80 system and figure 3.7 gives the

input/output map. To ease future expansion, full decoding is used

for memory. The extender PIO's are daisy chained to give interrupt

priorities, but since no access is given to the daisy chain signals

of the PIO on the NASCOM-1, it was removed. The arithmetic processor

is considered to be an input/output device since there is no speed

advantage in using it as a memory mapped device. The access time

of the arithmetic processor is at least as long as the Z80's

input/output cycle with its automatic extra wait state.

A
O

2
1

A
l

2
3

A
2

2
4

A
3

2
2

A
4

19

A
5

18

A
6

17

A
7

16

A
8

15

A
9

12

A
1
0

1
4

A
l
l

1
3

A
1
2

9

A
1
3

1
0

A
l
l
.

1
1

A
1
5

2
0

IO
E

X
T

 3
9

M
E

X
T

40

M

R
M

 2
7

3
4

5
6
f

W
R

26

(I

C
 1

2)

1
2

E
dg

e
C

on
ne

ct
or

(4

3w
ay

)
to

 N
A

S
C

O
M

-1

R
E

S
E

T
 3

4
W

A
T

T

32

R
D

25

29

0

38

IN
T

33

W

I
28

3
1

10

3i
>

4
5

6

74
LS

37

(7
4L

S
37

)

2-
1k

1V

29

(I
 C

13
)

8T
28

D

7
8

2
3

D
6

7
44

13

D

5
6

51
2

6

D
4

5
1

10

(I
C

9)

(I
C

 8
)

1
15

D

3
4

2
3

D
2

3
14

4
13

D

1
2

5
12

6

D
O

1

11
7

10

9
8T

28

.5
v

(I
C

12
)1

3

+
21

1
10

.5
v L

2
4

4

12
13

14
15

74
 4

2

9
7

6C
5)

4

PI
O

(I

C
 1

5)

s
t
r
i
p

nn
 3

 O

22

24

W
st

rip

co
nn

4

J
O

4

P
IO

(I

C
16

)
22

T
F

1
Ilh

1/
21

11
 &

7/
12

1/

4
11

3

11
5

11
6

1/
8

11
7

1/
10

11
9

(I
C

14
)

5t
\6

71
5
A

P
E

[

2/
10

 D
O

M

2/
11

W

E

2/
9

D
IM

21

13

K
 -M

2/

12

B
S

T
R

7/

6
A

P
U

V
A

L

71
8

W
R

1L

L
p C

on
ne

ct
or

s
1.

to

 m
em

or
y(

lO
w

ay
)

2.

If
(2

0w
ay

)
7.

to

A
 P

U

(2
0w

ay
)

7/
9

R
E

S
E

T

71
10

W

A
IT

7/
7

R
D

-7
11

1
C

LO
C

K

21
8&

71
20

2r

7&
71

19

11
6&

71
18

F

I-
V

59
71

17

21
4

97
11

6
21

3
&

71

15

2/
2&

 7
11

4

W
 -w

c)

 W

24

W

W
 N

o
In

w

 W

N

 W
 N

a'

 o

L
j w

PI
O

(I

C
17

)
N
V

C
O

 O
 W

I
 l
,

W

l
0

N

l7

i
01

co

W

st
rip

co

5
I1

II1
L

N
10

 7
 J N -

p

'
01

t

O
 O

D
O

r

N
 O

 m

21
1E

 7
/1

3

F
ig

ur
e

3.
5

N
A

S
C

O
M

-1

E

xt
en

de
r

B
oa

rd

67

Memory Address in Hexadecimal flotation

17FF
lk B memory

1400
CMOS memory on extender

13FF1
lk A memory 1000 J

OFFF 1 user RA1
OC50

j

lk RADI
OC4F]

NASBUG RAM
0000
OBFF

lk video RAM NASCOM-1 internal memory
0800
07FF

EPROI.I socket 04001
03FF 1

P:ASBUG monitor EPROM 0000

Figure 3.6 Memory Address Map

Address of Port in Hexadecimal Notation

13]
not used

121
11 dat a
10 command/status
OF B control port
OE A control port
OD B data port
OC A data port
OB B control port
OA A control port
09 B data port
08 A data port
07 B control port
06 A control port
05 B data port
04 A data port

03 not used
02 status

UART 01 data
00 keyboard

arithmetic processor

PIO 3, spare (IC 17)

PIO 2, DA's (IC 16)

PIO 1y link (IC 15)

extender ports

NASCON-1 ports

Figure 3.7 Input/Output Address Map

68

All the control signals used by the extender card are buffered

to avoid loading the Z80. Full input/output decoding is

not provided but the input/output devices used have mutually exclusive

addresses.

3.2.6 Link Circuit

The link circuit which provides the communication between the

two microcomputers was constructed on two small circuit boards which

plug into one of the card positions in the GIMINI card frame.

Figure 3.8 shows the link data board which provides 3-state

buffering between the GIMINI's data bus and PIO 1 of the extended

NASCOM-1. IC 1 and 2 are 3-state buffers for the bidirectional data

transfer to the PIO A port. Data transfers are performed by read

and write operations of the CP 1600 with the data for both directions

being latched in the PIO. The ZTC signal enables data from the

PIO onto the GIMINI's data bus and also causes the A ready line to

be cleared and an output interrupt request to be issued. The IrTZ

signal gates data from the GIMINI data bus to the PIO and latches it,
this signal also clears the B ready flag and issues and interrupt

request. The two ready flags together with a master software

controlled 'Z80 ready' flag are fed to the CP 1600's external flag

intputs so that software conditional branches can be used to perform

the CP 1600's part of the handshaking control. Four other data

lines from the CP 1600 are fed to the PIO B port, which is in the

bit control mode, and these data bits are used to specify the type

of operation the Z80 is required to perform with the supplied data.

The further 4 data lines latched from the CP 1600 and 3 from the PIO

69

Edge COnn rtor(35

DO A3

D1 B3

D2 A4

D3 B4

D8 A7
D9 B7
Q10 AB
D11 B8

LDO B32

LDS B33

D12 A9
D13 89
D14 A10
D15 B10

+35way)

1

S
1

2
3 4

IC 1 5
5 7

11

8T26 9

13

a
10
12

D

15
14

1

3 4
IC 2 5

6 7

8T 26 9
11 10

12

13 14

IC 3(7475)
2 16
3 15
6
7

4 13

2
3

16
15

6 10

7 9

L IC 4(7475)

EBCO A24
EBC1 B24
E BC2 A25
ZT C A32
CT Z

GND

+5v

A 35
B35
Al
B1

+5v

6

IC 5

5

Figure 3.8 Link Data Board

4 13

11
2

I
ii
LI

0 1

Strip Connector(20way)

3 AD 0

4 AD1

5 AD 2

6 AD 3

10 AD 7

7 AD 4

8 AD 5

9 AD 6

13 B D 0
14 BD 1

15 BD 2
16 BD 3

Optional GIMINI
Output Lines

1

11 BRDY
1 ARDY
17 BD4
2 ASTB
2 8 ST
18

E19 GND
20

70

are uncommitted and can be used for other purposes. The link control

board shown in figure 3.9 provides the address decoding and control

signals for data transfer. The D and DWG signals are the GIMINI

microcomputers read and write pulses respectively.

3.2.7 Analogue Output

The digital to analogue board shown in figure 3.10 contains

two 8 bit digital to analogue converters (D/A's) to provide a

graphic output on an oscilloscope or an X-Y plotter. Two Ferranti

ZN425E D/A's buffered with ZN 424 operational amplifiers were used,

and although these are low cost devices they are fast enough to cope

with the maximum output speed of the Z80, which with a 2 MHz clock,

is about 5.5 us per output byte. The D/A's work off +5v supplies,

and were set up to provide an output range of 0 to 3.5v. A 74123

retrigerrable monostable is used to blank the display so that the

oscilloscope tube does not get burned when the display is stationary.

The TTL output level of the monostable is sufficient to operate the

Z-axis modulation of the LAN display oscilloscope normally used with

the simulation system. Other scopes would probably need buffers

to produce suitable Z modulation signals. Although the analogue

output board is driven for convenience by a PIO, straightforward

latches would be sufficient.

3.3 System Software

3.3.1 Program Development

After the initial structure of the simulation system program

was designed, a trial version of the program was written in the

71

A26

B26
A27

B27
B32
A33
B 33

A15

Al 4

A7

A
A-Z
Ki

L 3
0

DIOC
IC4

2

AT
15 14 13 12

I C 1 7442
5 6 7 9

13

00

IC2"
11 8

5
04

DTB A24

I C5

00

5

All Connections to
(35+35way) Edge Connector

i
00

I C 2

1

00 6 B 6 CT Z
addr (1000XXXXXXXXX000)

0 08 A7 L D 0
add r(1000XXXXXXXXXOXI)

9

B23 DWS
11

A3 5
B 35

01

I C 5

04
10

12 10

131
00 1

B7 ZT C

addr (1000XXXXXXXXX000)

A6 LD S
oddr(1000XXXXXXXXXO1X) IC3

+5v

GND

Figure 3.9 Link Control Board

72

II

Strip Connector
(20woy)

A D O 3
A D1 4
A D2 5

AD 3 6
AD 4 7
A D 5 S

A D 6 9
AD7 10

BD O 13
BD 1 14
BD 2 15

BD 3 16-
BD4 17-
BD5 18-
BD6 19-
BD 7 20-

+5v -
GND-

-5v -
Terminal

Block

1k

0.22rF

74123

1 2 3 4 5 6 78

47k
0,01j F

68

J1M Set Zero
5

ZN424 X-AXIS

7 6.8 k
100pFT

7k 4

4

ZN424

7

5k Set
F. S.R.

1 8k

I I17 0.01jF

168

1M Set Zero

1

0
0

4.7k
6.8,uF

16151413121110 9

F-I

.2

1 16
-2 Z 15

-3 N 14

-4 4 13

5 2 12

-6 5 11

7 10

18 9

5 5 12
6 11

7 10

8 9 p

O Y-A X I S

6.8 k

Set
F. S.R,

18k

0 Z-MOD

Figure 3.10 Digital to Analogue Board

73

high level language IMP59 on a large ICL 4-75 mainframe computer

which had the EMAS60 multiaccess operating system. Since the

simulation system program was designed to be highly modular, the

structure of the linkages between the modules forms a most important

part of the program. The high level program validated the program

structure and provided some useful information on the use of control

dialogue with a scrolled VDU. Since the program structure was

retained, the modules of the program which were implemented as

subroutines could be rewritten individually to perform the same

functions. Changes had to be made in individual subroutines to

take account of the different input and output procedures as well

as the need to use an explicit floating point arithmetic package.

This version of the program was written for the GIMINI microcomputer

in a mixture of CP 1600 assembly language39 and CP 1600 superassembly

language61. Because of the more direct access available to the

microcomputers memory, changes were also made to the array storage,

parameter passing, and text strings to enable more efficient use

to be made of the microcomputers more limited memory and execution

speed. In general the higher levels of the program had a high

percentage of super assembly statements, with the ratio decreasing

until the lowest levels of the program were almost pure assembly

language statements.

The program was then subjected to continued development with more

features being added and improvements being made to existing

subroutines. The 8K word size of the microcomputer memory exerted

a severe constraint on the program size, and in order to get even

the program let alone the simulation data into the memory, the program

74

had to be considerably compressed. The program size was reduced in

a variety of ways, mainly by reorganising data storage and rewriting

subroutines. For ease of implementation, the text strings used

for microcomputer dialogue were originally held with one byte per

16 bit word and terminated by a zero word, but this was changed to

storing two characters per word. While replacing high level

statements with assembly language ones makes the program considerably

harder to understand, the greater use of the CP 1600's register set

enables considerable savings to be made in memory requirements and

execution time. The debugging aids used in developing the micro-

computer program were very primitive compared to those of a large

computer system, so initially almost every subroutine had its own

set of variables which greatly aided debugging and extension of the

program. However in the later stages of development, when each new

version of the program was a modification of the previous version,

the variables used were rationalised to free extra space. Changes

were also made to the organisation of some of the subroutines so that

advantageous use could be made of the CP 1600's instruction set.

One feature used to good effect in saving memory space was the

CP 1600's ability to manipulate the contents of the program counter.

The main savings obtained by this facility were in the command

subroutines where the yes or no decisions and dialogue were performed

by a subroutine which could return conditionally to differing points

in the program. The present SIMUPROG V3 with data storage and floating

point software uses the entire 8K word memory.

Since the CP 1600 super assembler used to translate the SIMUPROG

programs can only handle about 180 symbols with the present memory,

75

the program had to be broken down into 5 segments not including the

floating point arithmetic subroutines. The resulting object code

modules, together with the floating point software, was linked

together to form one object program tape by the object module linker39.

The object module linker resolves the global references between

modules, and this enables the individual modules to be written and

assembled separately. The source programs, consisting of assembler

and super asssembler statements, are created using the GIMINI's text

editor39. The size of the GIMINI's memory limits the amount of text

that can be stored in memory by the text editor, so the source code

for the simulation program modules had to be subdivided into segments

which could be handled by the text editor. All the programs used

to produce SIMUPROG ran on the GIMINI microcomputer itself.

The programs for the NASCOM-1 microcomputer were hand coded

into machine code for use, but a listing was produced later on a

Zilog development system. This development system was disc based

and had no other loading facilities so a source code program was

retrospectively written from the debugged machine code program and

typed into the Zilog development system. The machine code program

was entered as hexadecimal digits into the NASCOM-1 microcomputers

memory using the systems NASBUG monitor.

Handling the various text segments on paper tape was very time

consuming, especially since only the slow speed teletype punch was

available. The punch proved to be unreliable and had great difficulty

in producing an error free object program and even produced errors

in the shorter source and object programs of the individual modules.

While these tapes sometimes had to be repunched, it was often possible

76

to correct the tape by splicing parts of two or more versions together.

Printing out a listing of the program modules was done by the super

assembler and was also time consuming, but if major changes were made

to the program the listings are essential to keep track of the program

development and debugging.

The super assembler is a two pass assembler, this means that

the source program is read twice by the assembler to produce the

object code tape. The first pass creates a symbol table which

contains all the labels and variable names including arrays and

external references, and the second pass uses the table to resolve

the jumps and memory accesses and so produce a relocatable object

program tape. The second pass has to be repeated to produce a

listing since the teletype was used for both printing text and punching

object code paper tape.

The facilities provided by the super assembler include sub-

routine calls with parameters, conditional jumps, assignment statements

with 16 bit integer arithmetic, single dimensional arrays, repe%titive

loops and conditional program blocks. The loops are similar to those

used by FORTRAN and can be controlled either by counting a variable

or checking that a condition holds. With the version of the

assembler available, these DO loops could only be nested to a depth

of two so when more nested repetative loops were needed, they either

had to be explicitly written in assembly language or incorporated

into a subroutine which is called within a loop. The conditional

blocks are similar to those of ALGOL and are either of the IF-THEN

or IF-THEN-ELSE forms, but cannot be nested. Any nested conditions

required can be implemented by using IF-GOTO conditional jumps

77

inside a conditional block. Since the super assembler was written

specially for the CP 1600 architecture, the high level statements

are very efficient for memory to memory operation so the savings

achieved by using pure assembly code derive mainly from the greater

and more efficient use of the CP 1600's general purpose register

set.

3.3.2 Program Debugging Aids

The GIMINI microcomputer has only a small operating system,

stored in read only memory, which provides facilities for loading

and dumping programs, utility subroutines, memory access capability

and simple machine code monitor. Paper tapes produced by the CP 1600

assemblers are loaded using the relocating loader in the operating

system firmware, but program modules with external references cannot

be loaded so either they have to be linked into one self contained

object tape by the object module linker or loaded using the relocating

linking loader39 which is supplied on paper tape. Since the relocating

linking loader has to reside in memory, it restricts the size of

program which can be loaded. The program dump is only a copy

of the memory contents and is therefore an absolute object program

since it cannot be relocated or moved to-another position in memory.

The utility subroutines provided input and output facilities for the

high speed tape reader as well as the teletype.

The monitor program, as well as providing facilities for

inspecting and modifying the contents of memory addresses, also

provides up to 8 breakpoints and a single stepping facility. The

breakpoints and single stepping are software controlled, and as

78

such can only be used with RAM memory. The instructions where

breakpoints are set have their own instruction codes replaced by

software interrupt instructions so that when an active breakpoint

is reached in a program, control is returned to the monitor by the

software interrupt instruction. The monitor keeps track of the

breakpoints so that they are transparent to the user which means

that when the memory location is accessed, it is the original

instruction which is read not the software interrupt. Care has

to be taken, when a program has been exited at a breakpoint,

to ensure that the breakpoints are removed so that no software

interrupts are left when the program is re-run from the start.

The single step facility operates by temporarily inserting a

breakpoint just ahead of the instruction to be single stepped.

Both breakpoints and single step operations store the contents of

the microprocessors registers so that they can be read and even

altered before continuing the program.

Debugging was occasionally made more time consuming by the

fact that the contents of the dynamic RAM memory were lost if the

microprocessor stopped., Since the HALT instruction code for the

CP 1600 is all zero's, any fault causing a jump outside the program

code area of memory is likely to encounter a halt instruction. When

the program is lost due to a spurious halt instruction, no indication

is left of the originfof the fault. The procedure used when this

happened was to attempt to deduce approximately which area of the

simulation system program the fault was in, then divide that area up

using the breakpoints. By proceeding from breakpoint to breakpoint,

the position of the fault can be narrowed down. This process can

79

be repeated for smaller segments until either the fault is found

from examining the program listing or a small area of program can

be single stepped to find the fault.

Each superassembly statement used generates several machine

code instructions, and although an expanded listing can be generated

by the assembler it takes considerably longer to printout and is

more difficult to follow. This means that debugging at a machine

code level is difficult without an expanded listing, so it was

found that the best way normally to find a fault, if it does not

crash the program, is to feed into the program a variety of inputs

designed to highlight how a particular fault is operating. By

examining the program in conjunction with test results and by

using strategically placed breakpoints to allow examination of the

variables held in memory, the actual behaviour of the program can be

found and the fault corrected. Most of the faults found in the

simulation system programs were typing or transcription errors and

these were usually found simply by examining the program listing when

the area of the fault had been narrowed down by examining the inter-

active responses of the program. Testing and verifying the programs

was an iterative task since one fault could easily bypass several

otherswhich would only appear when the initial fault was corrected.

The modular structure of the simulation system program was extremely

valuable in fault finding because it makes isolating the component

parts of the program much easier. An example of this is the

equation translation, where separate subroutines are used to store

and retrieve equations from a common data area. Here if the output

did not correspond to the input, the program could be stopped after

80

data input and the data area examined using the monitor. This

procedure checks the input operation independently, and by using the

monitor to set up data in the data area the output operation can

be checked even if the input is not working.

The programs used for the NASCOM-1 microcomputer were much

simpler than the main simulation progran, so it was possible to

hand code them directly into Z80 machine code which was entered

into the NASCOM-1 by the NASBUG monitor. The NASBUG monitor uses

hexadecimal notation unlike the GIMINI's monitor which uses octal.

The NASBUG monitor which is stored in EPROM also has single stepping,

but has only one breakpoint which is again software implemented.

The NASBUG monitor lacks sophisticated loaders but instead has

facilities for loading and dumping memory using a domestic audio

cassette recorder. The Z80 program was intimately linked with the

hardware and made extensive use of interrupts, so the breakpoint

and single step were used for fault finding together with a logic

analyser for checking the hardware responses.

3.3.3 Floating Point Package

A floating point arithmetic package62 was supplied for the

CP 1600 microprocessor. A 32 bit floating point representation is

used with a 23 bit mantissa, an eight bit binary exponent, and an

overall sign bit. The mantissa is usually normalised to preserve

accuracy and is a fraction of one. The exponent is held in excess

128 notation so that subtracting 128 from the value gives the power

of two which the mantissa is multiplied by. The arithmetic

operations provided by the package were addition, subtraction,

81

multiplication, division and square root. Also provided was fixed

point decimal input and output routines as well as conversion routines

between floating point and 16 bit 2's complement integer notation

Unfortunately the floating point package contained several

errors which produced results varying from slightly inaccurate to

absurd. Most of the routines had to be modified to produce

acceptable results. The resulting software has been extensively

tested and proved satisfactory. The accuracy of the addition and

subtraction was doubled, but since these calculations still used

truncation rather than rounding a further increase in accuracy

could be expected if rounding was adopted.

82

4. MICROCOMPUTER SIMULATION SYSTEM

4.1. Overview

The microcomputer simulation system program described in this

section was designed to provide an interactive system for entering and

running simulation equations on a relatively small microcomputer system.

The simulation system was designed to be both easy to use and forgiving,

with facilities to lead the user through certain operations and to

allow recovery from user error with the minimum effort. The program was

also designed to use the microcomputer's limited memory and computing

power efficiently for calculation and display. This was done by

designing the program to make efficient use of the architecture of the

CP 1600 microprocessor as well as the special hardware involved with

the Z 80 microprocessor used for displaying results.

The GIMINI microcomputer used for this implementation contained

8 k words of user RAM memory a well as a simple octal monitor program.

Since this microcomputer has no operating system with fast secondary

storage, the program had to be self contained so that it could be

loaded complete in one go using the GIMINI's paper tape loader. It

was also desirable for the program to be easily extendable. These

aims were achieved by storing the equations set, together with any

other quantities which would need to be changed for a given simulation

task, as data. The entering, displaying and changing of the data

specifying a simulation task is performed by interactive subroutines

operating on the stored data. Even running the simulation problem is

achieved by another subroutine which interacts with the data input

device and display. These subroutines are invoked by interactively

entering commands. Since the system had to be flexible in the types,

size and number of equations stored, and also as fast as possible in

83

execution, a precoded form of reverse Polish notation was used to

store the equations in a matrix. Thus the calculation of the

equations uses a stack and a set of arithmetic subroutines which

operate on that stack. Since the simulation system was designed for

use by people with little or no programming experience, the equation

entry subroutines contain a translator which converts the more

common algebraic equation form into the reverse Polish form. Having

all the commands as individual subroutines has several advantages.

Each subroutine can be written separately, which makes them easier

to develop and debug as well as easing the problems encountered in

translating the program for another microcomputer. Additonal

subroutines can be easily added to expand the simulation system

facilities.

The microcomputer simulation system program consists of four

main parts, the command level, the database, the command subroutines

and the utility subroutines. The command level interacts with the

user to select the required command and command subroutines perform

the actions of the individual commands on the database, which in

turn contains all the information about the simulation model and

running conditions. The utility subroutines provide basic

facilities, such as input/output and floating point arithmetic, for

the command subroutines. The input and output utility subroutines

make use of the GIMINI monitor's own input and output facilities.

The program and data presently runs in RAM memory, but can easily

be changed to operate in ROM or EPROM memory with RAM memory only

for the database and other variables. This would have the advantage

of not needing reloading when the microcomputer is switched on.

84

The SIMUPROG V3 program together with the floating point

package forms a stand alone system for the GIMINI. If the graphics

display is required then the Z80 based input and output facilities

must be added. Listings of both the Z80 display program and SIMUPROG

V3 are available as a departmental research report
63

The command level program first reads in the user entered

command name, the program then searches the list of command namesXS,

for a match and if found jumps to corresponding subroutine start

address held in list SRAD. If a name is not found or a command has

finished then the program reprompts the user and reads in the next

name. This structure means that commands can be added simply by

appending their names and subroutine addresses to the lists.

Alternatively if space is limited, commands can be removed by removing

their names and addresses.

The main elements of the database are shown in figure 4.1. The

operate list OPER specifies the order in which the equations are

evaluated, but note that an equation can appear several times in the

list. The equation matrix EQN holds the set of equations in the coded

form of reverse Polish notation, where a positive integer indicates

a variable and a negative integer an operation or function. The

equation is terminated either when the maximum length has been reached

or a zero entry encountered. The unknown variable for each equation

is held in the VARP pointer list, and the use of this seperate list

simplifies the stack operations associated with equation evaluation.

The names of the variables are stored in list SS with the initial

values held in list TVAR, and the present values held in list VAR.

The copy of the initial values enables a simulation problem to be

rerun from the same initial conditions. The names of the operators

85

OPER list

OS name list

0

EQld matrix

ORAD pointer
list

I

A

c

I

Addition Subroutine

0

0

0

Figure 4.1 Database Main Elements

VARP pointer
list

I 4

12

7

5

Lj

86

and functions are stored in list OS with their subroutine start

addresses in list ORAD. The magnitude of an equation entry gives the

position of the variable or function in its respective list. For the

purposes of this program a list in the database is defined as a one

dimensional array which can be terminated before its maximum length by

a zero entry. Thus the equation matrix and the name lists OS and SS

are actually lists of lists, but because of their functions, they will

be referred to as a matrix and lists respectively. An additional list

of all the parameters used in the equation set is called PARM. A

parameter is a variable which does not apppear on the left hand side

of an equation, and thus can only be changed by the user. The

variables to be tabulated and plotted are held in the lists TAB and

GRAF respectively, with the graph scale factors held in GSCALE. Also

in the database are the run time control variables: STEPS is the

number of steps of simulation performed; TABIN is the interval between

printouts, with TDEST defining the output device; MODE is the data

input mode, with the number of streamsdefined by MAXIN and the interval

by INSTEP; GMODE defines the graphic mode, and GINTR the interval

between plotted points.

To provide for easy expansion of the database, the sizes of the

various lists are specified by only four numbers, so by changing these

numbers and reassembling the program, the database can be expanded to

suit memory availability.

The conversion algorithm for translating algebraic equations to

reverse Polish form is shown in figure 4.2, with the table of

precedences used shown in figure 4.3. The algorithm and precedences

used were similar to those described by Abramson64, but were modified

to allow for the use of the arithmetic and control functions and their

87

end of conversion?
yes

no

get next input symbol

is stack precedence
input precedence?

yes

yes

no

is stacl: precedence
input precedence?

no

push input symbol onto stack

pop stacl and add
to coded equation

Figure 4.2 Reverse Polish Notation Conversion Algorithm

88

symbol input precedence stack precedence

1 2

3 4

5 6

7 8

(9

0

0

0

Figure 4.3 Reverse Polish Notation Precedences

Algebraic Notation Reverse Polish Notation

B * (D + E

1 2 4 5 6 8 9 12 14
3 7 10 13

11

° appended I proyam

---ON- B D E + *

3 7 10 11 13

Stack 1 2 3 4 5 6 7 8 9 10 11 12 13 14

top of stack - (B (* (D (+ E + (*

((* (* (+ (*

(* (* (* (

((*

(

Figure 4.4 Conversion Example

89

parameters. In the conversion, input symbols are pushed onto the

stack providing they have a higher precedence than the top of the

stack. If they have a lower precedence then the stack is popped up

and used to build the equation until the input symbol can eventually

be pushed onto the stack. The left bracket effectively initiates a

new stack until a right bracket appears as the input symbol. Both

brackets are eventually dumped because they have equal precedence

and the stack is restored to its position before the left bracket

appeared. An example of the conversion of the simple operation

B*(D+E) is given in figure 4.4.

Initially a left bracket is pushed onto the stack and a right

bracket followed by a zero is appended onto the entered equation.

The zero is used to terminate the conversion and the pair of brackets

insure that the stack is empty when the zero is reached. The

conversion takes 14 stages and the contents of the stack are shown

at each stage. The input symbols are also numbered, as are the symbols

making up the converted form of the equation. Note that when symbols

are being pulled (popped) off the stack, the input symbol does not

change as in stages 3,7,10,11 and 13. Since functions can have more

than one parameter, these parameters are separated by commas. In

order to allow complete expressions to be used as parameters without

having to bother enclosing them in further brackets, the conversion

algorithm was modified so that a comma is treated as a right bracket

except that the left bracket is retained on the stack. This means

that the left bracket enclosing the function's parameters remains

valid.

A simplified initial version of the program was first written

in a high level language called IMP
59, 65

on a large multi-access

90

computer system called EMAS 60. This proved that the program structure

was sound and allowed investigation into the use of a VDU display for

interactive simulation. The program was then translated, subroutine

by subroutine, into a mixture of GIMINI super assembly and assembly

language statements. Some alterations were required to compensate

for the change from a large computer with a sophisticated operating

system to a microcomputer with no operating system. The rewritten

program was called SIMUPROG version 1 and was assembled using the

superassembler and debugged with the aid of the GIMINI's resident

monitor. The program was then extended and restructured to provide

more efficient code, and this formed version 2 of the program. In the

present version 3, extra features were added for manipulating the

equation set and for running the NASCOM-1 graphic extension. Because

of the 8k word limitation of the RAM memory, the program had to be

extensively revised and the same functions compressed into smaller

spaces. This revision had no real effect on the program structure,

but it did mean that even more assembly language was used to replace

the higher level super assembly statements. The superassembler

produces code which is just as efficient as the equivalent assembly

language statements. The space saving obtained by using assembly

statements comes from the fact that the superassembler statements

operate from memory to memory whereas the ordinary assembler statements

need not and therefore can make good use of the CP 1600's general

purpose registers. The memory size imposed restrictions on the size

of program segments which can be assembled, and the size of text

segments which can be held in memory for editing. For assembly, version

3 was broken into 5 segments which were assembled seperately and

91

then linked together along with the floating point package to form

the SIMPUROG version 3 object program which is held on paper tape and

loaded using the GIMINI's resident tape loader.

4.2 Command Level

Once the SIMUPROG V3 object program is loaded into RAM it is

started using the monitor, and can later be stopped and started

without loss of data which is very valuable for debug purposes. A

flow diagram of the command level of the program is given in

figure 4.5. To save time when loading the simulation system program

the database area is not loaded, only the first entry of the operate

list OPER is loaded. If data has been entered into the database the

initial zero in OPER will be overwritten so the database will only

be cleared when operate list is empty. The stack pointer is set so

that the stack grows upward from the end of the database., An

introduction to the program is then printed by the microcomputer and

the user is prompted by a 'c>' to enter a command. L'f a valid

command is entered, then program control is passed to the appropriate

command subroutine. When the command subroutine is finished control

is returned to the start of the command level loop. The program is

stopped by entering the command STOP which transfers control to the

GIMINI's monitor.

There are three main groups of commands, those involved with

entering the equation set, those controlling the simulation, and

those running the actual model.

4.3. Equation Entry

The commands CHEQ and INEQ shown in figure 4.6 are used to

enter a new equation set into the equation matrix. The CHEQ command

92

SII,NPROG V3 start point

yes
OP7,R list zero?

no

set up stack

I
print introduction

M point
from command
subroutines

print prompt

read in string

search command list XS for
name matching string

no
is name found?

yes

fetch command subroutine
address from list XRA33)

call command subroutine a
given address

clear database
l

Figure 4.5 Command Level Program

93

CIMEQ entry point

CH ,Q entry point

print present equations
in OPER list

ask if new equations
reouired

is reply Yes o rr N

yes

print 'lITT-,R prompt

clear database

have maximum number of
equations been entered ?

no

print ' > ' prompt

I

read equation string

is it a null string
no

convert to RPN and
store in EQN

add eouation number
toOPER list

no
jump to B;FROG

yes

yes

fill PARM list

jump to MPROG

Figure 4.6 CHTEQ and INEQ Subroutines

94

subroutine first prints the set of equations presently held in the

equation matrix. After asking if a new set of equations is required,

the user reply 'N' (indicating no) returns control to the command

loop at MPROG. A reply of 'Y' allows the subroutine to perform

the INEQ command, and any other character causes the program to

reprompt for a 'Y' or 'N' reply.

The INEQ command part of the subroutine first prints a prompt

to enter an equation and then clears the database elements in

preparation for the new equation set. The equations are entered

by the user in response to a prompt, and are subsequently converted

and stored in the equation matrix. The number of the completed

equations is then added to the OPER list and the entry loop is

repeated. The entry of equations is terminated when either the

maximum has been reached, or a null string corresponding to a

carriage return only has been entered to indicate the end of the

equation set. Once the equation matrix has been completed, a list

PARM of all the parameters used is made up by comparing the entries

in the OPER list with the full list of all variable names SS.

Control is then returned to the command entry loop.

The APEQ command shown in figure 4.7 is used to add extra

equations to the matrix. The subroutine first checks to see if any

space is available, and if not prints a message and returns to the

command level. The number of the free equation is appended to the

OPER list and its position in the matrix is cleared. A promptis

issued to user to enter a new equation and once entered, the equation

is converted and stored in the matrix. The previous equation list

is cleared and a new one constructed before the program control is

95

APEQ entry point

check to find first
unused equation space

any space ?

yes

add equation number
to OPER list

clear unused equation

print ' >' prompt

read equation string

convert to required form
and store in empty space

clear PARM list

fill FARM 117s-t---]

jump to MPROG

print
'NO SPACE LEFT'

jump to MPROG

Figure 4.7 APEQ Subroutine

96

returned to the commandlevel.

The REEQcommand shown in figure 4.8 is used to replace an

existing equation with a new one. The program first prompts the

user to enter an equation number. If the number is valid and that

equation exists, the existing equation is printed out,otherwise the

user is reprompted. To allow for an incorrect entry or change of

mind, the user is asked if the replacement process is to proceed

and if not, control is returned directly to the command level. The

equation is then cleared and the user prompted to enter a new

equation. The equation is then converted and stored in the matrix,

and after a new PARM list is generated, control is returned to the

command level. The REEQ command at present does not remove the names

of parameters only appearing in the old equation, as this would

require a larger subroutine to ensure that parameters appearing in

other equations were not removed.

The DAEQ command displays all the equations in the matrix,

and not just those appearing in the OPER list. After the equations,

the present OPER list is also printed and control is returned to the

command level. The equations are printed in reverse Polish notation

except that the unknown variable is printed first, with the equals

sign, for clarity and for ease of checking the actual order of the

equations.

The REOR command shown in figure 4.9 is used to generate a

new OPER operate list. After the existing list is printed, the

program asks if a new list is required, and this allows the command

to be used to inspectthe list. An 'N' reply returns control to

the command level. The program then clears the OPER list and

97

read equation number

is number

valid ?

display equation

ask if a new equation

is required

is reply Yes or Not

clear required

equation space

print ' > ' prompt

read equation string

convert to required form

and store in empty space

clear PARTY? list

fill PAR1 list

jump to I,TP3OG

jump to T4PROG

Figure 4.8 REEQ Subroutine

98

CREOR entry point

print OPER list

ask if new list required

is reply Yes or Noi

yes

clear OPER list

print 'EQU_ATION NO :'

is OPER list full ?

no

prompt and read
equation number

print 'INVALID
TRY AGAIN'

yes

no

es

yes

is equation valid ?

yes

add equation number
to OPR list

no

is number valid ?

no

is number = 0 ?

no

jump to MPROG

clear PARM list

fill PARK list

jump to MPROG

Figure 4.9 REOR Subroutine

99

prompts the user to enter anequation list. After each number is read

a check is made to see if it is a valid equation number and that

the equation exists, if not an error message is printed and the

user reprompted. Valid equation numbers are appended to the OPER

list until either the list is full or else a 'zero entry, caused' by

the user replying with only a carriage return, is received. When

the OPER list is completed a new PARM list is constructed before

control is returned to the command level.

Figure 4.10 shows the subroutine CONV which performs the

equation conversion for the CHEQ, INEQ, APEQ and REEQ commands.

First the program stores a temporary copy TSS of the variables

name list SS so that if the entered equation string is invalid, the

equation can, be reentered without disrupting the database. The name

of the unknown varible is extracted from the input string and list
TSS is searched for a match. If not found, the name which may consist

of an alphabetic character followed by up to three alphanumeric

characters is added to the TSS name list. The variables number is then

entered in the VARP pointer list corresponding to the equation.

This list links the expression held in the equation matrix with its

unknown variable. The pointer to the present symbol in the equation

string is incremented to skip the equals sign. The rest of the

equation is converted by a further subroutine RPOL. If the equation

is valid then names list SS is updated by copying from TSS, and

control is returned to the command level. If the equation is invalid

the RPOL subroutine causes program control to jump back to the

start of the CONV conversior_ subroutine.

100

CONV entry point

make temporary copy of
variable name list TSS

I

pick out unknown variable's
name from entered equation

search TSS for name

name found ?

no

Iadd name to list

enter variable's number in
pointer list VARP

skip '=' si

convert rest of
equation to RPN

I

update variable
name list SS

return

yes

Figure 4.10 Equation Conversion

101

The RPOL subroutine is shown in figure 4.11 and this subroutine

itself uses other subroutines. One such subroutine is used to

establish the precedence of a symbol according to the table given in

figure 4.3, both when it is inputted and when it is pulled off the

stack. The other subroutine, used by the CONV subroutine, extracts

a name from the equation string. After setting up the conditions

for the conversion, the program then enters the main decoding

loop. First the next character, indicated by the pointer into the equation

string, is copied into the input symbol variable SY. If the symbol

is zero or a space then the equation string is finished, and if the

stack is then empty, the equation has been converted correctly and

control is returned to the calling subroutine CONV. If an error

is detected then an error number is printed and the user is prompted

to retype the equation. Since the CP 1600's subroutine mechanism does

not use the stack, the program jumps directly to the start of the

CONV subroutine which means that any actions of RPOL and CONV

preceeding the detection of the error are wiped out and the conversion

is started afresh. Another effect of the call mechanism is that

the main processor stack can be used during the conversion,

which is more efficient than creating a software one. A comma is

used to separate the parameters of a function and this has the

property of allowing any of the function parameters to be an

expression, without the use of extra pairs of brackets.

If the symbol is alphabetic then it is the start of a variable

name, and the full name is then read. List TSS is searched for the

name and if not found, it is added to the list. If the symbol is

a '%' sign then the following name is that of a function. After

R
3
L

en
te

r
po

in
t

`ir
d

en
d

of

eq
ua

tio
n

st
rin

g

eq
ua

tio
n

to
o

bi
g?

y-
-{

se
t

S3
'.0

=
11

N

-p
pe

nd

'
)'

an
d

a
ze

ro

to

ed
ue

tio
n

pu
sh

co

de

fo

r
on

to

st
ac

':

fe
tc

h
ne

xt

sy
m

bo
l

fr
om

in

pu
t

st
rin

g ,r
,

r%
--

-r

--

ps
--

--

is
 s

ym
bo

l
'
,
'
?

T

co
de

sy

m
bo

l
N

is

 s
ym

bo
l

Y

r
e
a
d

va

ria
bl

e'
s

al
ph

ab
et

ic

?
na

m
e

N

is
 s

ym
bo

l
's

'?

Y

 - Sk
ip

se
ar

ch

O
S

o
r

o
p
.

ca
lc

ul
at

e
in

pu
t

lp
re

ce
de

nc
e

L
II

IP

F7
1

N

n
u
l
l

c
o
d
e

f
r
o
m

t
o
n

o
f

s
t
a
c
k

et
 F

R
I7

0=
15

L
S
T

T
:L

 I N
P

?P
?

H
'

a

i
n
p
u
t

a

'
,
'
?

N

r
e
t
u
r
n

s
e
a
r
c
h

T
S
3

f
o
r

n
a
m
e

r
e
n
d

f
u
n
c
t
i
o
n

na
m

e

u.
,h

op

of

st

ac
k
"-

as
h

in
pu

t
co

e
ba

ck
,

on
to

 s
ta

c;
 J

'.t
o

st
,,c

::
l

p
u
s
h

t
o
p

o
f

s
t
a
c
k

oa
ck

 o
nt

o
st

ay
}:

n
a
m
e

f
o
u
n
d

pr
in

t
er

ro
r

1
^,

un
be

r
E

R
 ':

O

cl
ea

r
eq

ua
tio

n
lin

e

L

_
e
p
r
o
n
p
t

I
r
e
-
.
d

i
n

e
q
u
a
t
i
o
n

s
t

i

r

n
g
y

re
_s

e'

ua
c:

;
p
o
i
n
t
 e
r

(
S
P
)

ju
np

 t
o

C
O

'^
.

1

T
3
3

l
i
s
t

f
u
l
l

N

I

a
d
d

na
-.

e
to

lis

t
?-

 fc
o

va
ria

ol

or

p,
T

.a
.-

ie
te

r
ra

-e
 ^

+

. r

fn

%
R

D
S

I
or

 %
P

I
T

r
J

Y

et
 E

R
V

O
=

12

se
t

E
2'

i'.
)=

14

is

r,
uz

io

n
fu

ll?

N
I

t
o
m

o
f

St
ac

k
'o

 e
nd

of

 s
to

re
d

c
-,

u:
-A

;,
on

E
R

N
O

=
17

F
ig

ur
e

4
.
1
1

R
P
N

C

on
ve

rs
io

n
S

ub
ro

ut
in

e

103

skiping the '%', the function name is read and the list of functions

OS is searched for a match. A check is made to see if the function

is followed by brackets enclosing the parameters. The functions %STOP,

%SKPI, %RDSI and %PI do not need parameters, so are exempted

from this check. Any valid symbol left at this point must be an

operation, and list OS is searched for a match. Any symbol not

found is invalid and will generate an error. All the symbols are

converted to an intermediate code for use during the conversion and

finally changed to the actual code prior to storing. The stored coding

represents variables by positiveintegers and functions by negative

numbers, but as this is inconvenient forcalculating the precedence,

the intermediate code represents functions as integers in excess

of 200.

The input precedence is calculated according to the input

symbol. After checking that the stack is not empty, the top symbol

is pulled from the stack and its precedence calculated. If the

precedence of the symbol from the top of the stack is greater than

that of the input symbol, the symbol from the top of the stack is

added to the converted equation. The two precedences are equal

when the top of the stack is a left bracket and the input symbol is a

right bracket, in which case both brackbts are discarded, or a comma,

in which case the left bracket is reinserted onto the stack and only the

comma discarded. If the input precedence is less than that of the

stack then both the top of the stack and the input symbol are

successively pushed onto the stack.

104

4.4. System Control

The SPAR command shown in figure 4.12 allows the user to change

the parameter values of the model equations. First the present

parameter names and values are printed after which the user is

asked if new values are to be entered. If new values

are to be entered then the program proceeds through the parameter list,

printing each name followed by a prompt for the user to enter a

value. This value is converted to the 32 bit floating point format

and stored in'both the VAR and TVAR value lists. If the user does

not enter any digits before pressing the carriage return, the

present value of the parameter is retained. During the floating

point conversion checks are made as to the validity of the conversion.

If an entry proves to be invalid the user is again prompted to enter

an new value.

The SIC command allows the user to set up the initial conditions

for a model run. This subroutine is very similar to that for the

SPAR command, with the only difference being the addressing method

for the required variables. For the SPAR subroutine, the parameter

list PARM points directly to the required variable names and values.

However for the SIC subroutine, the operate list OPER points to the

required equations and the associated VARP pointer array entries.

The VARP entries point to the required variable names and values.

The command SDT shown in figure 4.13 can be used to change

the value of a parameter called 'DT'. The subroutine first

searches the variable name list SS for the name 'DT', and if found

prints its value. The user is then prompted to enter a new value and

this is subsequently converted and stored in the location for DT.

105

SPAR entry point

no
is list finished ?

store result in
variable value lists
LVAR and TVAR

Figure 4.12 SPAR Subroutine

ask if new eoua.tions
required.

is list finished ?

print next name

prompt and read it
number string

is result valid ?

print next name

Print next value

jump to MPROG

jump to MPROG

106

SDT entry point

search list SS for 'DT'

no
found ? print 'NO DT'

yes

print present value

prompt

read in number string

is number of digits
> zero ?

yes

convert to floating point
number

no
is result valid ?

yes

store result in DT

jump to T:PROG

no

Figure 4.13 SDT Subroutine

107

The STPS command shown in figure 4.14 sets the maximum number

of steps for which the model will run. After first printing the

present maximum number of steps, the subroutine asks if a new value is

required. If a new value is required then the user enters a suitable

integer value which is then stored. The 16 bit integer values are

stored in 2's complement form and give a maximum value of 32678.

The STAB command shown in figure 4.15 is used to set up the

tabulation list for printing results. After first printing the present

tabulation list, the user is asked if a new list is required. If a

new list is required, the previous list is cleared and a new list

built up. In response to a prompt, the user enters a name which is

compared with list SS for a match, and if found it is added to the

tabulation list. The tabulation list TAB is terminated either when it

is full or when a null entry consisting of just a carriage return

character is receive-.

The TINT command sets the interval at which tabulation

printouts occur , and the subroutine operates in an identical way to

STPS.

The SIM command shown in figure 4.16 allows the user to change

the data input mode. To save space the interactive 'Y' or 'N' (yes

or no) decisions are made by a separate subroutine which is also used

by other commands. Since all the command subroutines return control

to the same point, straightforward jumps are used instead of

subroutine calls and returns. After printing the present input mode

and asking if a new mode is needed, the program if required allows the

user to enter the new input mode in response tc a series of questions

and prompts. Serial input mode just means that the user is allowed

108

C
STPS entry point

print present number
of steps

ask if new number is
required

is reply Yes or No?

yes

prompt

read new number of steps

jump to I4PROG

no

Figure 4.14 STPS Subroutine

109

STAB entry point

list finished

yes

no
print next name
on tabulation list

ask if new list required

is reply Yes or Ido?

yes

clear tabulation list

is list full ?

no

prompt

read string

is string null?
no

search list SS
for name

no
found

yes

store variable's number in
tabulation list

no

yes

jump t o IdPROG

Figure 4.15 STAB Subroutine

110

SIm entry point

print present input
mode status

ask if new mode required

is reply Yes or No ?

yes

Iset mode for no input data

ask if input is required

no

no
is reply Yes or No ?

yes

set mode for serial input

ask if formatted data input
is required

no
is reply Yes or No ?

yes

set mode for formatted input

prompt

Iread number of input streams

prompt

read number of steps between
data inputs

jump t o ? FROG

Figure 4.16 SIM Subroutine

111

to use the %RDSI function in the model equation to input data. If the

mode is set for formatted data input, the program automatically reads

data from the input device set by the user. The user also sets the

number of streams of data values entered each time, and these are

stored in a temporary array until they are updated. The %READ function

is used to access these values.

A list of variables whose values are to be plotted as graphs can

be set up using the GRAM command shown in figure 4.17. The present

graph list, if any, is printed and the user asked if a new graphic

mode is required. A graph list is entered by typing the name of a

variable in response to the graph number. The variable name list SS

is searched for the name, and if found, the name is added to the

graph list. The graph mode which indicates the number of graphs in

operation is also incremented.

The GINT command works in a similar fashion to the STPS command

and is used to enter the interval between graphic output points.

The scale factors used by the program when plotting the graphs

can be set up using the GRSC command shown in figure 4.18. If a

graphic output mode is set, then the entries on the graph list are

printed together with their present scale factors and the user is

prompted to enter a new value. When a number string is entered, it is

converted to floating point form, and if valid, is stored as the

required scale factor. If the user enters a carriage return without

any preceeding digits, the existing value of the scale factor is kept

so that new values need not be entered.

The TABD command allows the user to select the destination for

the tabulation printout. The subroutine asks if the VDU or

Teletype is required and sets the tabulation destination flag before

returning to the command level.

112

GRAPd entry point

is reply Yes or Ido ?

yes

set graph mode for no graphs

ask if graphs required

is reply Yes or No ?

u yes

is graph list full ?

no

print next graph number

read in name string

no

search list SS for name

no

found ?

yes

increment graph mode GIIODIE

add variable to graph list

is string null]?

no

yes

yes

jump to MPROG

Figure 4.17 GRA!d Subroutine

113

GRSC entry point

no
any graphs? jprint 'NO GRAPHS'

yes

is graph list yes

finished ?

no

print next name
in graph list

print present value of
scale factor

prompt

read in number' string

yes
is string full?

no

convert string to floating
point number

is result valid?

yes

.store scale factor

no

jump to 11PROG

Figure 4.18 GRSC Subroutine

114

4.5 Running Equations

Figures 4.19a and 4.19b show the RUN and RRUN subroutines which

are used to implement the stored equation set. The RUN and RRUN

commands differ only in that the RUN command uses the final values of

the variables from the last run as its initial conditions, and the

RRUN command uses the last entered set of initial conditions held

in TVAR. Since the SIC command changes both the TVAR and VAR value

lists, the use of this command fixes the set of initial conditions

whether or not the values have been changed.

The common part of the subroutine first prints the names and

initial values of any variables in the tabulation list, so that they

form the heading and first line of a table. The required output control

counters are then initialised, and the run control parameters checked

for validity. The step sizes for input, tabulated output and graphic

output all have default values of one. Note that the initialisation

of the graphs also includes plotting the initial values of the

variables.

The main calculation loop shown in figure 4.19b repeats each

calculation step until all the steps have been performed, or the

run has been stopped prematurely by a %STOP command or by the user

entering a 'control C' character. If a formatted data input mode

has been set, then each step is automatically checked to see if it is

a multiple of the data input step size. If it is then the program

attempts to enter and store data from the high speed tape reader.

Invalid data on the tape will produce an error message and terminate

the run. The program then proceeds sequentially through the operate

list OPER and evaluates the corresponding equations held in the

115

RUN entry point RRUN entry point

print initial conditions

no

initialise input and output
counters

graphs required ? >----j initialise graphs

number of steps
valid ?

input step size
valid ?

jump to MPROG

set input step to
default (=1)

tabulation step
size valid ?

,.-'graph step size) set graph step
valid ? - to default (=1)

yes

(continued on next page)

Figure 4.19a RUN and RRUN Subroutines

116

yes
all steps done?

no

formatted input
required ?

no

yes input counter = es
input step size?

no

read and store
required number
of input values

reset input
counter

increment input
Lcounter

no
OPER list done? get next entry

yes

tab counter =
tab step size ?

no

increment tab
counter

yes
print variables
in tab list

yes yes
graphs required? graph counter

no \graph step size?
no

evaluate
corresponding
equation

reset tab
counter

I

plot graph points

reset graph
counter

increment graph
counter

check teletype
for control C

no
fund? ;:::o

e s

print nwnber of
steps completed

reset stack
pointer

jump to MPROG

Figure 4.19b RUN and RRUN Subroutines

117

equation matrix EQN. If the number of steps so far performed happens

to be a multiple of the tabulation step size, the present values of

the tabulation list(TAB) variables are printed. If the steps are a

multiple of the graph step size, then the value of the variables in

the graphic output list GRAF are multiplied by the associated scale

factors and are then converted to 8 bit integers for transfer to

the Z 80 microprocessor based graphic display. At the end of a step

the program checks in case a control C character has been entered on

the teletype to terminate the run. If an arithmetic error is encoun-

tered, such as an overflow or a division by zero, and error message

is printed indicating the arithmetic operation in progress at the

time and the run is terminated. The number of steps of the run

completed is printed only if the full number has been reached or a

control C is encountered.

Figure 4.20 shows more detail of the equation evaluation, which

is performed by a subroutine CALEQ. The subroutine examines each

entry of the equation in turn until the equation is terminated either

by a zero entry, or when the end of a line in the equation matrix

is reached. A negative entry indicates an operation or function, and

after 2'complementing, the entry is added to the base address of table

ORAD. ORAD holds the addresses of the arithmetic subroutines and a

software constructed subroutine call is used to transfer program

control to the address specified in the ORAD table. If an equation

entry is positive, it is doubled and added to the base address of the

variable value list VAR. The 32 bit value is then pushed onto the

stack for use in a later calculation. All entries are checked for

validity. When the equation is terminated, the result is pulled

from the stack and stored in the variable indicated by the VARP

118

arithmetic subr
normal return
point

CALEQ entry point

yes
is equation finished?

no

find unknown
variable from
VARP list

is equation
entry -ve ?

no

pull result from
stack and store
in variable

no

is entry a valid
va<riab1e?

ca 11subroutine

no

is stack
pointer zero?

yes

yes

yes

print 'TOO MANY PARM' a1

u
print error message

reset stack pointer

return

2'complement
entry

fetch arithmetic
subr address
from table ORAD

push variable
onto stack N

arithmetic subr
alternative
return point

Figure 4.20 Equation Calculation

119

variable pointer list. If the stack is not empty when the result has

been pulled, then the equation is invalid and the result is not stored

in the variable. The arithmetic subroutines used for conditional

equation evaluation return control to the beginning of CALEQ only when

their conditions for evaluation are satisfied. When the conditions

are not satisfied, the equation is terminated immediately and control

is returned to the end of the CALEQ subroutine.

4.6. Displaying Results

The headings for the tabulated output are printed by a

subroutine PHEAD shown in figure 4.21. If the VDU has been specified

by the user, using the TABD command, the link available flag is

checked to see if the Z80 system is,ready to operate the link. If

the link is not available, the program changes the tabulation

destination to Teletype thus overriding the TABD command. The Z80

is prepared to receive the heading by sending the required code to the

link control latch. The heading is made up of the names of the

variables in the tabulation list TAB. Output on the Teletype is

performed with the aid of a printing subroutine in the GIMINI's

monitor and some utility subroutines built into the SIMUPROG program.

For output using the Z80's memory mapped VDU, the individual characters

are transferred by handshaking to the Z80 input hardware.

The actual tabulation of the values of the variables is performed

by the PVARS subroutine which operates in a similar way to PHEAD

except that instead of names, the actual values are printed. The

values are printed in fixed point format and a flag (FLAG) is used by

the floating point Teletype printout subroutine (PRINTF) to tell

120

no

PHEAD entry point

destination VDU?

yes

no

I
print 'LINK OFF:'

set teletype as
tab destination

type heading on
teletype

return

yes
send tabulation
heading code to
link

send heading to
link

return

Figure 4.21 Result Tabulation

121

the PVARS subroutine how many characters have been printed so that

column alignment can be maintained by printing extra spaces. For

transfer to the VDU the subroutine itself counts the characters and

adds the required spaces. Note that the VDU is only 48 characters

wide, so that if more than 4 variables are on the TAB list then each

printout will take two lines and the columns will become obscured.

Figure 4.22 shows the GZERO and GPLOT subroutines used for

graphic output. The GPLOT subroutine converts the values of the

variables, indicated by the graphic output list GRAF, into 8 bit

integers and sends them to the Z80 for display. In additon to this,

the GZERO subroutine also clears the previous graphs. Both subroutines

first check the link available flag to see if the Z80 is ready, and

if not a message,is printed and the graph mode changed to no graphs.

For GZERO the graphs are cleared by sending the code for a graphic

command to the link control latch, and then sending a zero to the

data link under the control of the handshaking. The use of an extra

data byte for the graph command is provided both as a protection device,

and to facilitate future expansion where graph formats and possibly

scaling are under control of the simulation model. The handshaking

involved in data transfer is a combination of hardware and software.

The Z80 side of the link is purely hardware whereas the CP 1600 uses

software to read the ready flags from the Z80.

Both subroutines plot the data points in the same way. For each

entry in the graph output list, the code for that graph is first sent

to link control latch and then the converted data point is sent to

the Z80 using handshaking-to control the data transfer. The 8 bit

122

GPLOT entry point GZLRO entry point

OK ?
no

link OK ?

yes I yes

send code for
graph command to
link

send clear code
to link

is graph list
finished ?

no

yes

I
print 'LINK OFF!'

set graph mode to
no graphs

no (return

send code for next graph to
link

fetch value of next variable
in graph list

scale value with scale factor
from GSCALE list

convert the resulting
floating point value into an
8 bit integer

send integer data point to
link for display

Figure 4.22 Graphic Output

123

resolution graphic display is used to represent values of +1 and -1, so

the value of the variable for display has to be divided by the

previously entered scale factor to get it within this range. The

resulting value is then multiplied by 127 and converted to an integer.

The final 8 bit value is then formed by adding 128 to the integer

since the output of the D/A converters do not accept negative

values. If any variable value is outside the display range then it

is limited to either the maximum or the minimum on the display.

The actual refreshed display of the graphs is performed by

the Z80 program shown in figure 4.23. After first setting up the D/A

converters and the hardware for the data link to the CP1600 the

program then repeatedly displays the graphs stored in memory so

that the display appears static. There are at present two different

display modes and these are controlled by the NASCOM-l's keyboard

under control of the display program itself, so that only the graphic

mode control keys will have any effect on the program. The first

mode displays up to four graphs simultaneously against time, and the

second mode displays the first two graphs against each other. For

the plot against time, each graph is in turn plotted by updating the

Y and X axis D/A's with the values from the graph data and an

incrementing counttr respectively. After each complete set of graphs

has been displayed, the program checks the NASCOM-1 keyboard to see

if a 'P' character has been entered indicating that the program is

required to switch to a phase type plot. Since the complete display

of all the graphs takes less than 1/30 of a second, there is no

flicker on the display and no need to latch the keyboard entries.

124

start

select next graph
no

yes

no

yes

plot Y from 1 and
X from 2

fetch next points
from graphs l&2

setup D/A outputs

select 1st graph

end of graph ?

yes

no

all graphs plotted?

check keyboard

C'P' entered?

plot X and Y axis

end of graph ?

no

end of graph ?

yes

check keyboard

' entered?

yes

no

plot next point
as Y coordinate

}
increment X

Figure 4.23 Refresh Graphics

125

Originally the time plots also had the X-Y axes but this was dropped

as it tended to obscure the graphs. For the phase plot, the axes are

plotted and the graph displayed by plotting each point with its Y

value taken from graph 1 and the X value taken from graph 2. After

both graph and axes have been plotted, the keyboard is checked for

a 'T' entry indicating a return to a time plot.

The data for the graphs is updated by an interrupt service

routine which is invoked by the link hardware to handle a data transfer.

On recept of an interrupt indicating the transfer of data to the Z80,

program control is transferred from the display program to an interrupt

handling routine. The handling routine reads the link control latch

and then calls up a subroutine to deal with the operation specified

by the link control code. With the availability of the graphics,

the limited output tabulation on the VDU was not used, so the latter

was omitted from the present version of the display program.

126

5. USING THE SIMULATION SYSTEM

5.1 Operational Details

The SIMUPROG V3 object program is loaded into the GIMINI using

the built in relocating paper tape loader. If a previously generated

model is to be used, then that is also loaded after the simulation

program so that it overwrites the cleared database. The program

is started by using the monitor to enter the start address which was

previously printed out by the loader.

On startup the program announces itself and prompts the user to

enter a command, the present list of commands is given in figure 5.1.

All commands and data, except for simple yes or no answers, are

entered using a line editor which enables the user to delete characters

one at a time by entering a 'rubput' code. Entire lines can also

be deleted provided that a '.-' character is entered instead of the

carriage return which norm'lly indicates the end of an input line.

For questions which require a yes or no answer, a single character

reply of 'Y' or 'N' is entered. Wherever possible, a carriage return

only reply to a prompt for a numerical value means that the present

value is retained.

New equation sets are entered in algebraic form using either the

INEQ or CHEQ commands. The CHEQ command can also be used to print

the present equation set in reverse Polish notation. The DAEQ

command can be used to printout all the equation held in the

equation matrix, and not only those presently involved in the equation

set specified by the operate list. Equations can be changed by

using the REEQ command, and extra ones added with the aid of the

APEQ command. Equations cannot be deleted, but they can be overwritten.

127

name

INEQ -

CHEQ -
DAEQ -

APFQ -

REEQ -
REOR -
SIC -
SPAR -

function of command

input new equation set

change equation set after displaying; old set

display all stored equations

append an extra equation

replace a single equation

reorder equation set

set initial conditions of variables

set parameter values

SDT - set the value of a variable called DT

SID -
STPS -
RUN -
RRUm; -
STAB -
TABD -
TINT -
GRAM -
GRSC -
GINT -

set data input mode

set number of steps to be run

run equation set using present variable values

rerun equation set from initial conditions

set tabulation printout list
set tabulation printout destination

set tabulation printout interval

set graph mode

set graph scale factors

set fraph plot interval

STOP - stop program and return to monitor

Figure 5.1 SIMUPROG V3 Corimands

128

By using the REOR command, which generates a new operate list, they

can however be dropped from the present equation set. When new

values are required when using the SIC, SPAR, SDT, and GRSC commands,

they are entered as fixed point decimal numbers with up to 12 digits

and having a magnitude not exceeding 223. Numbers are entered

using the line editor and are terminated by a carriage return.

The tabulation list is entered using the STAB command and up

to six names can be entered. The TABD command used to set the

tabulation printout need not be used, as the default destination

is the teletype. The values entered for the TINT, STPS, and GINT

commands must be integers in the range 1 to 32768. The GRAM command

is used to set up the graphic output if the NASCOM-1 and graphic

hardware are connected. Up to four variables can be plotted and

the GRSC comniand is used to enter the associated scale factors.

The RUN command starts a simulation run using as its initial
conditions the values of the variables left by the previous run.

If it is desired to rerun the simulation from the last set of initial
conditions, the RRUN command is used.

Since the simulation system equations are entered as assignments

rather than equalities, the differential equations should first be

rearranged so that the highest order derivative only is on the left
hand side. The algebraic equations entered consist of operations,

functions, and variables. Any constants must be entered as parameters,

which are variables whose values do not change during a run. Variables

are specified by a four character name consisting of an alphabetic

character followed by up to three alphanumeric characters. The

available operators are the four basic arithmetic operations together

129

with brackets and the comma which is used to separate function

parameters. Functions consist of a % sign followed by a name

similar to a variable, and the present available functions are given

in figure 5.2. The control functions allow conditional implementation

of equations and can be used to provide such operations as limiters

and nonlinear functions. During the conversion of the equations,

numerous checks are made on the validity of the equations and figure

5.3 gives the errors which are flagged with numbers. Error messages

are given with any other errors discovered, and the numbers are

only used to save memory space. A simple example is given in

figure 5.4 of the squares of the integers from one to ten. Note

that the user entries are underlined.

Two problems were used to investigate the computational accuracy

and speed of a variety of integration methods. The first problem

given in section 5.2 was the step response of a simple first order

system, and this was used with a variety of Runge Kutta single step

integration methods. Multiple step predictor-corrector methods

could not be used on their own for this example because of the

discontinuous nature of the step input. The second problem, given

in section 5.3, of a linear oscillator allowed the comparison of

both single and multiple step methods. The use and capabilities

of the simulation system were further investigated in section 5.4.

The results for the error comparisons of the integration methods

were obtained using tabulated printouts on the teletype. The

other graphs were obtained-by photographing the screen of an

oscilloscope directly with a polaroid camera. A Tektronix 7704

oscilloscope was used for all the pictures except for figures 5.27

130

arithmetic functions

;.SQRT(X) : IfT
N'.G(X) : -X

.INT(X) : integer part of X

PI . 1T

`L-INTG(X1,X2,DT) : (X1+X2)/2*DT

c,"IRDSI : next serial data input value

REA-D(N) : present value of formatted input stream

number N

control functions

%SKPI :skip next serial data input value

STOP :stop run and return to command level

IFT1(L,X,U) L< X <U

jcIFT2(L,X,U) continue equation only if L< X < U

'IFT3(L,X,U) LS X < U

IFT4(L,X,U) L X 6 U

IFFl(L,X,U) L < X < U

c.IFF2(L,X,U) abandon equation only if
L < X 4 U

IFF3(L,X,U) L c X <U

IFF4(L,X,U) L s X <U

Figure 5.2 Arithmetic and Control Functions

error number

11 : equation too long

12 : variable list full

13 : invalid operator or function name

14 : parameter missing from function

15 : invalid character in equation string

16 : stack -ve (too many pop operations)

17 : stored equation space full

18 : stack not empty (too many push operations)

Figure 5.3 Conversion Error Codes

131

C >INEQ
ENTER EON

>,X=X+3N E

>Y=X*X

C > SPAR
PRESENT PAPAM
ONE= 0.0

NEW Y/PJ? : Y
ONE= >1

C >SIC
PPESENT INITIAL COND.
X= 0.0
Y= 0.0

NEW Y/N ? : N

C > STAB
PRESENT OUTPUT IS

NEW Y/N? : Y
TAB: >X
TAB: >Y
TAB : >

C >STPS
STEP= 1275

NEW Y/tJ? : Y
STEP= >10

C >TINT
PRINT INTEPVAL IS I

NEU' Y/N? : tJ

C >RUN
X
0.0
1.0
2.0
3.0
4.0
5-0
6.0
7. 0
8.0
9. 0
10.0

AFTER 10

C >

Y
0.0
1.0
4.0
9. 0
16.0
25-0
36.0
49.0
64.0
81 0
100. 0
STEPS

Figure 5.4 Simple Example

132

and 5.28 where an Advance OS 3000 was used. For general use a

larger LAN display oscilloscope was found to be useful although

its limited bandwidth meant that fast changing graphs were not

necessarily accurately represented.

5.2 First Order Step Response

The first order problem chosen was the step response of the

differential equation Ty + y = x where y and y are the variable

and its derivative respectively. The input is a step in x from

-1 to +1 at time zero and the time constant T was set to 1.5.

The Euler integration method is the simplest to implement and

figure 5.5 shows the entry of the problem using Euler integration.

The underlined text is that entered by the user. The resulting

graphic output is shown in figure 5.6 and there is no discernable

difference between this result and the much more accurate 4th order

Runge Kutta which was also used. As well as the Euler, two second

order Runge Kutta methods (a = 0.5 and a = 1) and a third and fourth

order Runge Kutta were used. In order to compare the accuracies

and speed of the integration methods, the results were printed in

tabulated form every 0.5 second of model time for a total of 10

seconds. The results were printed to an accuracy of 10 digits

and the approximate time to calculate 1000 steps for each method

was found using a stop watch. From this, the calculation time

for each step was worked out and is shown in figure 5.7. All

five integration methods were used with a range of step sizes

between 0.0001 and 0.5 and since the exact solution for this

problem is y(t) = 1 - 2e-t/T, the errors of the various integration

133

C >I!JEQ
ENTEP EQN
>DY=(X-Y)/TAU
>Y=Y+DY*DT
>T=T+DT

C > SPAR
PRESENT PARAM
X= 0.0
TAU= 0.0
DT= 0.0

NEW Y/N? : Y
X= >1
TAU= >1.5
DT= >.04

C >SIC
PRESENT INITIAL COND.
DY= 0. 0
Y= 0. 0
T= 0-0

NEW Y/N? : Y
DY= >

Y= >-1
T=

C > GRAM
NO GRAPHS!

NEW Y/N?: Y
GRAPHIC O LIT PUT Y/ j? : Y
GRAPH I> X
GRAPH 2>Y
GPAPH 3>

C >GRSC
GRAPH SCALES
X= 0.0>1
Y= 0.0>1

C >STPS
STEP= 10

NEU' Y/N?: Y
STEP= >255

C >GINT
GRAPH INTERVAL IS 5

NEW Y/N?: Y
INT=> 1

C > RUN

Figure 5.5 Setup First Order Example

134

1--

0-

0

I

5

Figure 5.6 Step Response

10 Time

integration
method

h for max error
of 0.0001 (s)

calculation time
for 1 step (ms)

calculation time
for 1 sec (s)

Euler 0.0012 14 12
RK-2 (a=1) 0.06 30 0.5
RK-2 (a=.5) 0.06 29.5 0.5
RK-3 0.27 50 0.2
RK-4 0.5(see text) 62.5 0.13

Figure 5.7 Computation Times

135

methods can be calculated. Figure 5.8 shows the absolute errors

of each integration method plotted against the time step size on

a logarithmic scale. From this graph, the maximum step size

producing an error not greater than 0.0001 was estimated and is shown

in figure 5.7. To compare the speed of the integration methods,

the real time taken by the microcomputer to calculate one seconds

worth of model time, with the step size shown, was also calculated

and is shown in the final column of figure 5.7. As can be seen

the higher order integration methods, although containing more

equations, are much faster for the same error. It is worthwhile

to note that the maximum step size used for the 4th order Runge Kutta

method was governed by the need to printout every 0.5 second, and not

by insufficient accuracy. The shapes of the individual error graphs

correspond to those predicted in section 1.5. Initially the accuracy

of a given method increases as the step size decreases until the

cumulative arithmetic truncation error, caused by the larger number

of steps, becomes the dominant factor.

An unusual feature of figure5.8 is that the error curves for

small step sizes, for all the integration methods, are almost

identical. This can be explained by examining the main probable

sources of error. Each of the single step methods evaluates the

value of the next point with the same general form of equation

yn+l = yn
+ hB where B is a function of previous values of y and

their derivatives. Now if the step size h is small then the value

of h*B will be significantly smaller than yn and hence a considerable

part of h*B will be truncated and lost in the addition process.

Therefore any increase in accuracy in the h*B term which is obtained

136

0.0012--

0.001 -

0.0008 -

ERROR

0.0006-

0.0004-

0.0002-i

0.0
1.0 01 001 0001 00001

TIME INTERVAL h (sec)

Figure 5.8 Errors in First Order Step Response

137

by reducing the step size will eventually be lost when the arithmetic

magnitude of the h*B term becomes so small that the bits representing

the increase in accuracy will be truncated off. Another potential

source of error is input conversion of the step size h itself,

especially if it is very small, since the errors caused by in-

accuracies in step size are cumulative and increase as the number of

steps increases. As can be seen from figure 5.8 the 4th order

Runge Kutta method provided the greatest accuracy while the Euler

method only just reached the 0.0001 error point. It is this

greater accuracy which means that the 4th order Runge Kutta is the

fastest of the methods used, indeed it is nearly 100 times faster than

the Euler method. This test is not an absolute direct comparison

of the arithmetic calculation time of each integration method since

the times measured include all the overhead processing required

to direct the evaluation of the equation set as well as the arithmetic

calculations themselves. The calculation times however do not

include printed or graphic output as that is independent of

integration method. The SIMUPROG program is very efficient in the

arithmetic evaluation of individual equations, but the error checks

and run time controls for input, output and run length add an

extra overhead which is independent of the number and complexity of

the equations used. This means that the higher order-methods with

their smaller number of steps have less microprocessor calculation

time wasted by the overhead processing. The test is therefore a

comparison of the suitability of integration methods for use with

the simulation system. For speed and accuracy the 4th order

Runge Kutta was obviously the best choice but it has the disadvantage

138

of being much more complicated than the lower order methods. A good

compromise between speed and efficiency of use would seem to be the

2nd order Runge Kutta methods which produced almost identical

results. The Euler method, although the simplest, was much slower

and would only be useful either when equation space was limited or

when only a low accuracy result was required. For all the methods

except Euler, the calculation times shown in figure 5.7, for one

second of model time, are considerably less the time to print one

set of results.

For comparison a 2nd order Admas-Bashforth predictor and a 4th

order Adams-Moulton predictor corrector were tried but without being

reinitialised by another integration method after the input step.

As expected they did not perform very well, and indeed the 2nd order

predictor gave significantly worse results than Euler, especially

with larger step sizes. The 4th order predictor corrector gave

only marginally better results than Euler.

A variable step 2nd order Runge Kutta integration method was

successfully implemented using Richardson's method for error

estimation. While the variable step method required fewer steps

to obtain the same accuracy as either of the 2nd order fixed step

methods, the computation time for each step was considerably greater.

This meant that the variable step method actually took longer to

perform a run than the fixed step method for a given accuracy.

Another disadvantage of the variable step method is that regular

printouts are difficult to achieve, so for this application the

fixed step methods would be a better choice.

139

5.3 Linear Oscillator

The second order problem chosen was the linear oscillator given

by the equation y + y = 0, since this made it relatively easy to use

predictor-corrector integration methods. The oscillator was

implemented as a pair of first order differential equations using

a variety of methods. In addition it was also implemented directly

using both the Nystrom formula and a Taylor series expansion.

For the implementation as a pair of first order equations, three

Runge Kutta methods were used, the two 2nd order methods (a = 1

and a = 0.5) and a 4th order method. The Euler method was again

used, as well as two Adams-Bashforth predictors (2nd and 4th order)

and a 4th order Adams-Moulton predictor-corrector. The simulation

was first run from the initial conditions, of y=l and y=O, for 10

seconds with printouts every second. All the integration methods

were evaluated for a range of step size between 0.001 and 1 second.

The approximate calculation times for 1000 steps of each method

were again obtained with a stop watch. The exact solution for

this problem for the given initial conditions is y(t) = Cos(t),

so the absolute value of the errors generated by each integration

method can be evaluated.

Figure 5.9 shows the entry and running of the problem using

the 4th order Runge Kutta integration method. The graphic output

from the second run in figure 5.9 is shown in figures 5.10 and 5.11.

The switch between the time plots of y and y, and the phase plot of

y against y is controlled independently by the NASCOM-1 keyboard.

Figure 5.12 shows the errors for the Nystrom and Taylor series

methods together with those for the 4th order Runge Kutta method, and

C

>
IN

E
G

F?

JT
FP

E

C
`1

>

K
I1

=
-Y

*D
T

>
K
I
2
=
D
Y
*
D
T

>
Y

.2
1

=
-

(Y
+

K
 1

?/
 T

 4
U

)
*D

T

'l=
 (DY

+
K

 I

I/T

ti~
0)

*D
T

>

K
31

=
-(

Y
+

K
?2

/T
4U

)*
D

T

>
K

32
=

(D
Y

+
K

?1
/T

V
U

)*
D

T

>
K

41
=

-(
Y

+
K

32
)*

D
T

>

K
42

=
(D

Y
+

K
31

)*
D

T

>
D

Y
=

D
Y

+
(K

1I
+

T
4U

*K
21

+
T

W
O

*K
31

+
K

41
)/

S
IX

>

Y
`Y

+
(K

12
+

T
4U

*K
22

+
T

W
O

*K
32

+
1(

42
)/

S
IX

>

T
=

T
+

D
T

C

>
 S

P
A

R

P
P

E
S

E
N

T

P
A

P
A

,M

D
T

=

0.
0

T
U

C
=

0.

0
SI

X
=

0.

0

N
F

L'

Y

/N
's

Y

_

D
T

=

>
.5

T

W
O

=

72

S

IK
=

>

6

C

'S

IC

P
R

E
S

E
U

1T

IN
IT

IA
L

C
O

N
D

.
1(

11
=

0.

0
K

12
=

0.

0
K

21
=

0.

0
K

22
=

0.

0
K

31
=

0.

0
K

32
=

0.

0
K

41
=

0.

0
K

42
=

0.

0
D

Y
=

V

-0

Y
=

0.

 0

T
=

0.

0

N
E

V

Y
/N

71

Y

K
1)

=

>

K
12

=

>

K
?I

=

>

K
2
?
=

K
31

=

>

1;
32

=

1(
41

=

K
42

=

>

D
Y

=

>

Y
=

>
1

T
=

>

C

'G
R

A
M

G

R
A

P
H

S

0
F

N
E

W

Y

/N
?t

Y

G

R
A

P
H

IC

O
U

T
 P

U
T

Y

/N
'

!
G

R
A

P
H

I>

Y

G
P

A
P

H

2>
 U

Y

G
P

A
P

H

3>

C

>
G

R
S

C

G
R

A
P

H

S
C

A
LE

S

Y
.

0.
0>

1.
5

D
Y

=

0.
0>

1.
5

C

>

S
T

P
S

S

T
E

P
=

 25
5

N
E

W

Y
/N

?t

N

C

>
G

IN
T

G

R
A

P
H

IN

T
E

R
V

A
L

IS

1

N
E

W

Y

/N
'e

N

C

>
R

U
N

A
F

T
E

R

25
5

S
T

E
P

S

C

>
 S

D
T

D

T
=

0.

 5
>

 .
 1

C

>
R

P
IN

A
F

T
E

R

25
5

S
T

E
P

S

C

>

F
ig

ur
e

5.
9

O
sc

ill
at

or
 S

et
up

 E
xa

m
pl

e

A

i

O

I
i

1
e

r+

u

f

I

N

s
1

.

i O

- O

142

step size

Figure 5.12 Errors in Oscillator (Set 1)

143

figure 5.13 shows the corresponding plots for the other methods used.

The Nystrom method performed better than the Taylor series, and this

was as expected since the Taylor series is second order and the

Nystrom method is essentially third order. The 4th order Runge Kutta

method performed better than all the other methods used. Both 2nd

order Runge Kutta methods gave almost identical results to each other,

and also to the Taylor series method for step sizes above 0.01.

Below this step size the 2nd order Runge Kutta methods gave lower

errors than both the Taylor series and Nystrom methods. The Nystrom

method only gave greater accuracy than the 4th order Adams-Moulton

method at step sizes above 0.1. Above a step size of 0.1, the 4th

order Adams-Bashforth quickly became unstable. However below this

step size the 4th order Adams-Bashforth outperformed the 2nd order

Runge Kutta methods which in turn outperformed the 2nd order Adams-

Bashforth and Euler methods. At step sizes of below 0.001, all

the methods, with the exception of the Euler method and two direct

methods, gave similar errors. As with the first order problem, this

can be attributed to the arithmetic truncation errors involved in the

final calculation of the variable's value at each step. The Euler

method does not reach its point of minimum error in the graph. Both

direct methods gave higher errors for step sizes below 0.001, and this

could be due to the fact that the variable and its derivative were

evaluated separately at each step.

Estimates of the largest step size which would produce an error

less than 0.01 were made from the graphs-for each integration method.

The values together with the calculation time per step for each

method is given in figure 5.14. Also shown is microprocessor

144

step size

Figure 5.13 Errors in Oscillator (Set 2)

145

integration
method

step size for
0.01 absolute
error (s)

calculation
time for 1

step (ms)

calculation
time for 1

second (s)

Euler 0.0025 17.3 7.0
AB-2 0.054 36.1 0.7
Taylor Series 0.088 44.1 0.5
RK-2 (0(=1) 0.088 40.2 0.5
RK-2 (oe, =0.5) 0.088 38.0 0.4
AB-4 0.16 69.8 0.4
AM-4 0.29 121.5 0.4

Nystrom 0.47 68.5 0.2
RK-4 0.61 91.5 0.2

Figure 5.14 Computation Times

integration method maximum error 500,<t,< 505 (s)

RK-2 (o(=1) 0.84
AB-4 0.018
Nystrom 0.0074
AM-4 0.001
RK-4 0.0007

Figure 5.15 Long Term Error

146

calculation time for one second of model time, and as before this

does not include printout time.

To check on the long term stability, some of the integration

methods were run for 500 seconds of model time with a step size of 0.1

seconds. The maximum error during the next 5 seconds was obtained

and is shown in figure 5.15.

The 4th order Runge Kutta method again proved the fastest of

the general purpose methods. For this particular problem, the

simpler Nystrom method was just as fast as the 4th order Runge. Kutta

method over the short term, but if long term stability were required,

the Nystrom method is not as good. The Euler again was much slower

than any other method. The 2nd order Adams-Bashforth was the next

slowest and, in common with the 4th order Adams-Bashforth, it had

stability problems for large step sizes. The 4th order Adams-Moulton

predictor corrector had no advantages over the 4th order Runge Kutta

method. Indeed since predictor and predictor-corrector methods

are not self starting, the need to provide past values of the

variable at the start means that they are more awkward to use with this

simulation system than the single step methods.

5.4 Other Test Results

As a test example for both evaluation and illustration of the

use of the simulation system, the second order system given in

figure 5.16 was implemented. Figure 5.17 shows the initial entry

of the second order system, using the initial conditions to

implement the input step. For such a demonstration it is unlikely

that any great accuracy would be required, so the simple Euler

147

x y

WQ

1

S

y

1 d2y dy 1

2
W dt 2 dt WQ

Figure 5.16 Second Order System

* =x-y--*_.

1

S

148

C >INEQ
ENTER EON

> D2Y=W*W* (X-Y)-DY*W/ Q

> Y=Y+DY* DT
>DY=DY+D2Y*DT
>T=T+DT

C > SPAP
PPESE[JT PARAM
W= 0.0
X= 0. 0
Q= 0. 0
DT= 0. 0

NEW Y/N?: Y
W= >10
X= >
Q= >.5
DT= >01

C >SIC
PRESENT INITIAL COND.
D2Y= 0. 0
Y= 0.0
DY= 0.0
T= 0.0

NEW Y/N? : Y
D2Y= >
Y= >-1
DY= >

T= >

C > STPS
STEP= 255

NEW Y/N? : N

C 'GRAM
GFAPHS O F

NEW Y/N? : Y
GRAPHIC OUTPUT Y/N? : Y
GRAPH 1>Y
GFAPH 2>

C >GRSC
GRAPH SCALES
Y= 0.0>1

C >PUN

Figure 5.17 Setup Second Order System

149

integration method was used for simplicity. Figures 18, 19 and 20

show the graphic results obtained with a range of damping factors,

varying from heavily damped to underdamped.

The system was then altered by inserting a limiter to keep

the value of the first derivative between +1 and -1. The system

with limiter is shown in figure 5.21, with the required commands to

modify the stored model shown in figure 5.22. The limiter is

implemented using two conditional equations which are appended to the

equation set using the APEQ command. Note that the present version

of the SIMUPROG program requires both upper and lower limits for a

conditional equation. This restriction means that the upper limit

has to be set to an arbritary value which is greater than the variable

will reach, in this case 100,000. Figure 5.22 also shows the action

of the equation conversion subroutine when an erroneous equation

has been entered. Figure 5.23 shows the result obtained with the

addition of the limiter. This result is for a Q of 2.5 and

is therefore directly comparable with the non limited case shown in

figure 5.20.

Input data can be entered into the model using the high speed

paper tape reader. Figure 5.24 shows the commands used to initiate

the data entry. Formatted data entry is used, so the data input

is controlled by the simulation system and not by the model. The

APEQ and REOR commands are used to add an equation for reading the data

to the start of the equation set. The data input used is a square

wave of +0.5 to -0.5, and was used with the second order system

without the limiter. The result for a Q of 2.5 is shown in

figure 5.25.

150

1-,

0H

1

0H

T

1 2 Time

Figure 5.18 Response for Q=0.5

2 Time

Figure 5.19 Response for Q=1

151

14

I

0 -I

f
0 2 Time

I
1

Figure 5.20 Response for Q=2.5

x
1

y
1

S

1

S

W.Q

Figure 5.21 Second Order System with Limiter

y

152

C SAP EQ
ENTER EQN
> D Y ='» I FT 1 (L, DY,
##ERROR 18 EQN WRONG!* ENTER AGAIN
>DY=%IFTI (ONE,DY,M)ONE

C >APEQ
ENTER EGN
>DY=xI FTI (ONE, %NEG(DY),M)%NEG(ONE)

C > SPAR
PRESENT PAPAM
4- 10.0
X= 0.0
Q= 2. 5
DT= 0.009999999

ONE= 0-0
M= 0* 0

NEW Y/N?: Y
W= >
X= >
Q= >

DT= >

ONE=
M= >100000

C >RRIIN

AFTER 255 STEPS

Figure 5.22 Setup Limiter

153

f

0
I

1

T
2 Time

Figure 5.23 Response with Limiter

C >SIM
NO DATA INPUT

NEW '(/N?: Y
DATA INPUT Y/N?: Y
FORMATTED DATA INPUT Y/N?: Y
STP.EP.?:S = > 1

STEPS EETWE II:=UTS = >E0

C >APEQ
EJTER EGN
>X=' ZREAD(OIJE)

C >REOR
OPERATE LIST IS

1 2 3 4 5 6 7

NEW LIST Y/M?:Y
EON NUMBERS
>7
>T-
>2
>3
>4

C >STPS
STEP= 255

NEW Y/N?: Y
STEP= >1020

C >GINT
GRAPH INTERVAL I S 1

NEW Y/N?: Y
I IJ T => 4

C >RRUJ

AFTER 102E STEPS

C >

Figure 5.24 Setup Data Input

154

0

0 5 10 Time

Figure 5.25 Response to Square Wave

0

I

10
1
20 Time

Figure 5.26 Nonlinear Solution

155

The simulation system is not limited to linear equations, as any

algebraic equation can be entered, including discontinuous functions

implemented using conditional equations. A simple nonlinear example

which does have an analytical solution is the differential equation

y = -y2, which has the solution y(t) = y(0)/(1 + y(0)t). This was

implemented using Euler integration with a step size of 0.01 and the

result is shown in figure 5.26. The error produced was less than

the minimum resolution of the graphic display which has 256 by 256

points.

Figures 5.27 and 5.28 show the phase plots of the response of

the system defined by the differential equation y = -y - Ay, starting

from the initial conditions y=1, y=0 and y=-l, with a step size of

0.005. Variables y and y are outputted as graphs, and the display

is changed to phase plot to give y against y. Figure 5.27 shows

the stable result when A=0.4 and figure 5.28 shows the unstable

result when A=-0.05.

Some compensated integrators of the types suggested by

Smith5 were implemented, including a variable phase integrator for

the linear oscillator problem. Figure 5.29 shows the result of

the linear oscillator using the integrator with the variable phase

facility disabled, and figure 5.30 shows the result when the variable

phase integration is operational. The actual integrator implemented

was a restricted version of Smith's, due to lack of equation space,

so some degradation of the result will have occurred. The variable

phase integrator does work, but the complexity of implementation,

for what is essentially a second order integrator, means that it is

not really suitable for the simulation system.

156

1.5

0 -

1

0

Figure 5.27 Phase Plot of Stable System

1.5 -7
. I.

0 -t

-1.5 0 1.5

Figure 5.28 Phase Plot of Unstable System

e
a

L
°s

O

:
/:. e

a a a a/
e a. v i a lsea

(,/r

a

w
een e a a a e

a
e r e

a e+
t

ea°°a
a.f.e

aaaee/

ais aaaam
a e

e aeem
..eem

\
. e a a a a. a a e e.

e m
! ®

o

. e
a.
tN

i a ae a ee a ee e. i use)
....aeav I. e. leejm

e: e.
o s

.............. atanLa.,
aea° j

0

158

A simulation of a phase locked loop was performed to investigate

the reaction of the circuit to changes in frequency and phase of the

input signal. The simulation was based on the design information

supplied in the data sheets and applications note66 for the Motorola

MC 4344 and MC 4324 phase locked loop components. Figure 5.31

shows the output frequency response of the phase locked loop to an

input frequency step from 120 MHz to 120.01 MHz, and figure 5.32

shows the output frequency response of the phase locked loop to

a 180° step change in the phase of the 120 MHz input signal. Both

simulations used Euler integration with a time step size of 0.001

seconds.

159

r \ -

0 0.5 1 T (ms)

Figure 5.31 Frequency Step Response

1 19.97 MHz-J

0 0.5 1 T (ms)

Figure 5.32 Phase Step Response

160

6. Conclusions

6.1 Present System

The microprocessor based simulation system provides an effective

and easy to use method of digitally implementing small continuous

simulation problems. For a large range of problems which do not

need very high accuracy, the simulation system can produce results very

quickly in graphic form. The graphic output on the oscilloscope

can be used either for the final result, or to monitor the progress

of the simulation run so that the operation of the simulation model

can be checked prior to a higher accuracy tabulated printout. The

mnemonic command names and the interactive dialogue of the individual

commands go a long way to guide the user in operating the simulation

system. The simulation system as it stands does not represent the

minimum configuration which would be required to run the simulation

system since it also had to be used for the more demanding task of

program development. If the link was fully utilized to provide

control of the simulation system from the VDU of the Nascom-1

microcomputer, then the only components left of the GIMINI microcomputer

would be the memory and the microprocessor itself.

The present simulation system program is stored in RAM memory

and has to be reloaded at the start of each session. Using the

high speed reader the loading takes about three minutes, which would

be quite acceptable at the start of each day, but if the Nascom-l's

audio cassette was used, then the loading would take about eight

imes as long which would be unacceptable. It would therefore be

etter if the simulation system program were stored in ROM or EPROM

161

memory which would give instant availability. Because of the struc-

ture of the program, only minor changes are needed for operation in

EPROM and these consist of moving the positions of the temporary

variables from inside the program to an area of RAM memory beside

the database.

The CMOS memory used with the Z80 provided an effective EPROM

simulator for the display program,and could also be used to provide

a non volatile memory for storing the simulation model data. CMOS

memory is still more expensive than NMOS memory but, when the CMOS

on sapphire technology becomes established, there should be less

difference in cost. CMOS could still only provide a temporary storage,

since several simulation task could not be held in the memory

together. The Nascom-l's cassette interface was rather prone to

interference, so a more sophisticated and reliable system would be

needed for data storage.

The teleprinter was used during program development to output

the source and object programs on paper tape as well as print the

listings. It was very slow and noisy and also proved to be

unreliable at punching paper tapes, so unreliable that it often

proved quicker to find and correct the errors manually by splicing

the tape rather than wait for the punch to produce a correct copy.

The simulation system presently runs in 16 k bytes (8 k words) of

memory, including the floating point software which uses 3158 bytes

of memory. The actual space used for storing the model equations

is 2700 bytes, and this can hold 29 individual equations each of 25

elements together with the names and values of up to 35 variables.

Since the simulation system program can cope with any size of memory,

162

which can be used with the CP 1600, the use of the CP 1600's maximum

memory size of 128 k bytes would mean that the system could store

over 1200 equations with over 1400 variables. The limiting factor

on the length of the equation string entered is the line buffer

which was matched to the teletype line length of 72 characters.

Once the parenthesis have been deleted, and the variable and function

names reduced to their coded form, the resulting equation is very

unlikely to exceed a length of 25 elements. Even if the limit is

exceeded the simulation system will detect the problem and ask the

user to shorten the equation.

The cost of RAM memory has dropped dramatically over the last

few years, and this makes it much cheaper to expand the simulation

system just by increasing the size of the memory., The cost

effectiveness of gaining extra storage space by rewriting the program

in a more compact form has therefore been greatly reduced. However

the use of a single segmented list to store the equations and the

compression of the stored variable names into fewer words would

still provide a significant increase in the usable equation storage

space for a relatively small amount of programming effort.

The floating point arithmetic package, in its revised form,

performed adequately but the lack of trigonometric functions is a

handicap. The Am 9511 arithmetic processing unit which was evaluated,

but not integrated into the simulation system, would remedy the

situation as well as providing an increase in calculation speed.

The arithmetic unit could be incorporated by simply changing the

operator and function subroutines so that they access the hardware

arithmetic unit instead of calling the floating point software.

163

Since the arithmetic unit is actually a self-contained processor which

can operate in parallel with the host microprocessor, then a greater

increase in operating speed could be obtained if the microprocessor was

setting up the next arithmetic operation while the arithmetic unit was

still processing the data from the previous operation. Although this

would mean a change in the way the calculations are performed, the

equation structure and the arithmetic subroutine calling mechanism

would remain unaltered. The use of the arithmetic hardware would

also free more memory for equation storage. The arithmetic unit is

presently attached to the Z80, and therefore the simulation system

can only access it via the link with the aid of a Z80 interrupt routine.

This was originally done so that the Z80 could also access the unit for

scaling the graphic output. Since the present simulation system scales

the graphic output before sending it to the Z80, the arithmetic unit

would be more Pfficiently used if it was attached directly to the

CP 1600.

While automatic scaling of the graphic output would be convenient,

full range scaling would require five times as much memory as presently

used for result storage, if the refresh display were to be maintained.

A more limited form of automatic scaling could be obtained by storing

16 bit fixed point values instead of the present 8 bits, and then

extracting 8 bits for display, corresponding to the most significant

bits of the largest value in the graph to be displayed. This scaling,

using integer values, would be used in conjunction with the floating

point scaling and integer conversion presently used by the simulation

system and would not require the use of the arithmetic unit. The present

graphic output represents a vertical scale of +1 to -1 and a single

164

scale factor is chosen to fit the result data into the range. This is

not really satisfactory if the data does not extend equally above

and below zero, since an unnecessary loss of resolution will occur.

A better method of setting the scale factors would be to enter the lower

and upper values of each graph to be displayed, and let the simulation

system calculate the offset and scale factor required.

The refresh rate of the graphs was sufficient to produce a flicker

free display even when four graphs were displayed simulataneously,

High rates of change of the variable being displayed produces noticably

dotted lines due to the limited resolution of the display. The only

way round this would be either to use a higher resolution which would

be more expensive, or to use analogue interpolation which would be

both difficult and expensive. For most purposes an increased resolution

would onlyhave a cosmetic effect since the human eye and brain are

very good at performing complex interpolations.

The teleprinter used for hard copy output was both noisy and slow.

While this could be accepted for result output, an alternative output

device such as a thermal or dot matrix printer would be preferable

since these devices can be both faster and quieter. The Nascom-l's

VDU could be used to display the tabulated results, but the availability

of the graphic output facility means that the VDU would be rarely used.

The main tabulated output requirement is still a high accuracy printout.

The present floating point software produces a fixed point decimal out-

put and while this is useful for most problems, an alternative of

scientific or engineering format would sometimes be preferable. The

alternatives could be achieved by having input and output conversion

routines available for all three formats and adding a command which is

used to select the required format.

165

The equation translator worked very well and the lack of a

reverse translator, from reverse Polish notation to algebraic

notation, did not prove a handicap since the original equations were

recorded when they were typed in. The actual equation stored can be

printed out in reverse Polish notation and its equivalence to the

entered equation can therefore be checked. If the VDU was to be

used for entering the equations then a translator for displaying

the equations would be helpful, but it would use up a sizeable chunk

of memory. An easier alternative, if a printer was available, would

be to print out a copy of the equations as they were entered. The lack

of numerical constants gave no problems but was inconvenient. Numerical

constants could easily be implemented in the same way as variables and

parameters except that no name would need to be stored. The equation

input section of the program would have to be slightly modified to read

in the numerical value instead of the name, but this has been anticipated

by ensuring that all variables and parameters must start with an

alphabetic character.

The conditional functions were inconvenient on two accounts,

firstly the user has to remember which function name corresponds to

which condition, and secondly a dummy second limit is required to

implement a single sided condition. It would therefore be preferable

if the function name only specified whether the equation was to be

implemented when the conditionsgiven as parameters were true or

false. The initial function names would therefore only be dummies and

the program would select the actual subroutine required, according to

the conditions given in the parameters.

The simulation system control dialogue seems to be a reasonable

166

balance between minimising memory space and providing an explanatory

dialogue. If more explanation were given to assist the first time user,

the time taken for the extra printout would be annoying to a user who is

thoroughly familiar with the simulation system. If the VDU was used

for control dialogue, then one useful additon would be a menu of system

commands.

The implementation of a built in integration routine would be very

useful, but would involve extra complexity and add extra restrictions

on the format of a variable, so that the simulation system could

identify the derivatives. Of the integration methods examined, only

the Runge Kutta ones would really be useful for general purpose work.

The Euler method was by far the slowest method, and is

indeed simple enough to implement without being built in. The higher

order Runge Kutta methods are rather complex to implement so one

of the second order Runge Kutta methods would be the best compromise.

There was nothing to choose between the two second order Runge Kutta

methods tried, so the easiest to implement should be chosen.

6.2 Future Developments

The simulation system is by no means limited to using the CP 1600

microprocessor, and the newer- and more powerful 16 bit microprocessors,

such as the Z8000 and the M68000, could be used to produce a faster

system with a bigger memory address range. These processors are

primarily designed for multiuser systems and provide for operating system

protection and memory management. Their present high cost would detract

from the ideal of a cheap single user simulation system. The use

167

of an arithmetic processor such as the Am9511, removes a lot of the

run time processing from the host microprocessor. This would mean that,

when used with an arithmetic processor, an 8 bit microprocessor could run

a simulation model as fast as a 16 bit machine. The Z80 could be used,

but the M6809 would be preferable because of its two stack pointers

and its more comprehensive addressing modes.

A M6809 with an Am9511 arithmetic unit could provide the basis for

a future low cost system, but to keep the final cost low, the program

development time must be kept to a minimum. With memory prices

falling all the time, it would be more cost effective if the bulk of

the simulation system was written in a high level language and assembly

language only used for time critical sections. It would actually be

possible to use an interpreter for most of the system, but a

structured language such as Pascal would be much better than the

unstructured Basic. The Forth language would seem to offer the benefits

of a structured high level interpreter with an operating speed much

nearer to pure in line machine code operation, and therefore must be

a prime candidate.

The usefulness of the simulation system would be increased if the

user could write special functions which could be called in the model

equations. This facility could be implemented by allowing the user to

enter generalised equations, similar to the model equations, which

would then be assigned as a block to the required name which could be

called in the same way as any present system function. A more

powerful alternative to this would be for the user to enter the name of

a new function together with the address of a prewritten subroutine

168

which will perform the required operations. The prewritten function

could be in machine code or else written in a high level language for

use with an interpreter. An interpreter would be slower but Forth,

which itself uses a stack and reverse Polish notation, may be useful

and for future systems should be investigated.

To save space, the present simulation system uses the monitor's

memory dump facility to save the simulation data, so the format is

therefore peculiar to the GIMINI and the memory size. A more general

data output which dumped only the model would therefore be preferable

since the model data could then be transferred between simulation

systems using different memory sizes and even different microprocessors.

The simulation system has at present a data input facility from

paper tape, but his could be replaced by an analogue to digital

converter and a multiplexer to give a real time data input facility,

so that the system could be used as data logger or data analyzer. The

analogue output, used for the graphics display, could also be used and

the system would be able to perform real time control of slow systems.

The simulation system would not really be practicable as a control

system, but the control facility could be very useful in a teaching

role where the students could see a demonstration of the actual

operation of the set of equations entered into the simulation system.

The input and output data handlers could either be built into the

system or implemented using the user written functions previously

mentioned.

To perform real time control effectively, the simulation system

would have to be much faster. One way of increasing the speed would

be to use scaled integer arithmetic. The simulation would first be

169

performed using floating point arithmetic to determine the magnitude

of the variables in response to the range of input values. These

results would then be used to scale the problem so that integer arithmetic

could be used for the actual running. Even with integer arithmetic,

the relatively slow speed of the microprocessor would still limit the

systems use.

Bit slice microprocessor elements could be used to emulate a

general purpose microprocessor, but this would be complex and

expensive since a program would first have to be written to simulate

the general purpose microprocessors instruction set. The memory used

would also be a limiting factor, and high speed memory is very expensive.

For a real improvement in speed, parallel processing would have to be

used. A system could be envisaged where each equation of the

simulation system, or at least each integrator, was implemented by a

separate microprocessor. Each of these parallel processors could be

a general purpose microprocessor or, for extra speed, a bit slice

machine. Raamot67 describes the use of two bit slice machines to

simulate a galvanometer. For the Galvanometer application the

the control program is fixed in a PROM, but for the simulation system

the program would have to be updated. The programs for the parallel

microprocessors could be stored completely or partly in RAM and

updated when required by a general purpose microprocessor which controls

the whole system and interfaces with the user. Apart from the hardware

complexity of the parallel processors, a lot of work will have to be

done to produce an efficient distribution of the simulation problem

between the various microprocessors. The resulting system should

however be capable of operating speeds approaching those of an analogue

computer for a fraction of the cost.

170

REFERENCES

1. Gear, C.W., 'Numerical Initial Value Problems in Ordinary
Differential Equations', Prentice Hall, 1971.

2. Benyon, P.R., 'A Review of Numerical Methods for Digital
Simulation', Simulation, November 1968, pp.219-238.

3. James, M.L., Smith, G.M. and Wolford, J.C., 'Applied Numerical
Methods for Digital Computation', Harper & Row, 1967.

4. Martens, H.R., 'A Comparative Study of Digital Integration Methods',
Simulation, February 1969, pp.87-94.

5. Smith, J.M., 'Mathematical Modelling and Digital Simulation for
Engineers and Scientists', Wiley.

6. Korn, G.A. and Wait, J.V., 'Digital Continuous Simulation',
Prentice-Hall, New Jersey, 1978.

7. 'Edinburgh FORTRAN Language Manual', Edinburgh Regional
Computing Centre, Edinburgh 1974.

8. Uiterwyk, R.H.,'8K Basic Version 2.0', Southwest Technical
Products Corp., 1977.

9. Brown, W., 'Modular Programming in PL/M', Computer, IEEE,
March 1978, pp.40-46.

10. Bass, C., 'PLZ : A Family of System Programming Languages for
Microprocessors', Computer, IEEE, March 1978, pp.34-39.

11. Ravenel, B.W., 'Toward a Pascal Standard', Computer, IEEE,
April, 1979, pp.68-82.

12. Wickham, K., 'Pascal is a "Natural"', IEEE Spectrum, March 1979,
pp. 35-41.

13. Schneider, G.M., 'Pascal : An Overview', Computer, IEEE,
April 1979, pp.61-66.

14. Bate, R.R. and Johnson, D.S., 'Language Extensions, Utilities
Boost Pascal's Performance', Electronics, McGraw Hill, June 7 1979
pp.111-121.

15. Posa, J.G., 'Microcomputer Made for Pascal', Electronics,
McGraw Hill, October 12 1978, pp.155.

16. Korn, G.A., 'A Proposed Method for Simplified Microcomputer
Programming', Computer, IEEE, October 1975, pp.43-52.

17. Hicks, S.M., 'Forth's Forte is Tighter Programming', Electronics,
McGraw Hill, March 15 1979, pp.114-118.

171

18. Baum, M.M., Blake, R.G. and Smale, R.J., 'Use of Digital Analogue
Simulator (DAS)', The Computer Journal, The British Computer
Society, August 1966, pp.175-180.

19. Dinely, J.L. and Preece, C., 'KALDAS, and Algorithmically Based
Digital Simulation of Analogue Computation', The Computer Journal,
The British Computer Society, August 1966, pp.181-187.

20. Brennan, R.D. and Sano, H., "'PACTOLUS" - A Digital Analog
Simulator Program for the IBM 1620', Proceedings-Fall Joint
Computer Conference, 1964, pp.299-312.

21. Trauboth, H. and Prasad, N., 'MARSYAS - A Software System for the
Digital Simulation of Physical Systems', Proceedings- Spring
Joint Computer Conference, 1970, pp.223-235.

22. Strauss, J.C. (ed), 'The SCi Continuous System Simulation
Language (CSSL)', Simulation, December 1968, pp.281-303.

23. Conley, S.W., 'Micro-Dare BASIC/RT11', Microcomputer '77

Conference Record, IEEE, 1977, pp.67-70.

24. Benham, R.D., 'Interactive Simulation Language-8 (ISL-8)',
Simulation, March 1971, pp.116-129.

25. Benham, R.D., 'An ISL-8 and ISL-15 Study of the Physiological
Simulation Benchmark Experiment', Simulation, April 1972,
pp.152-156.

26. Benham, R.D. and Taylor, G.R., 'Interactive Simulation Language
for Hybrid Computers', Simulation, February 1977, pp.49-55.

27. Brown, G., 'Multi-User Simulation via a Small Digital Computer',
Proc.7th AICA Conference, Prague, 1973, pp.113-116.

28. Hay, J.L., Pearce, J.G. and Narotam, M.D., 'Simulation Language
Implementation on Minicomputers', Annales de l'Association
internationale pour le Calcul analogique, No.4, October 1975,
pp.260-269.

29. Hay, J.L., 'Interactive Simulation on Minicomputers : Part 1-

ISIS, a CSSL Language', Simulation, July 1978, pp.1-7.

30. Pearce, J.G., 'Interactive Simulation on Minicomputers : Part 2-
Implementation of the ISIS Language', Simulation, August 1978,
pp.43-53.

31. Worth, G.A., 'SIMEX-Simulation Executive and Compilers', Proc.

SCSC, 1974, pp.61-67.

32. Auslander, D.M., 'A Structured-Data, Interactive Dynamic System
Simulation Language Suitable for Mini-Computer Implementation',
Journal of Dynamic Systems, Measurement and Control, September
1974, pp.261-268.

172

33. Gakhal, S.S., 'Scaling Methods for a Digital Processor',
Electronic Engineering, Morgan Grampian, London, May 1979,
pp.101-105.

34. Baker, P.W., 'The Solution of Differential Equations on Short
Word Length Computing Devices', IEEE Transactions on Computers
Vol. c-28, No.3, March 1979, pp.205-214.

35. Edgar, A.D. and Lee, S.C., 'FOCUS : A New Number System for
Microcomputers', Microcomputer '77 Conference Record, IEEE,

1977, pp.181-185.

36. Edgar, A.D. and Lee, S.C., 'FOCUS Microcomputer Number System',
Comm of the ACM Vol.22, No.3, March 1979, pp.166-177.

37. Weissberger, A.J. and Toal, T., 'Tough Mathematical Tasks are
Child's Play for Number Cruncher', Electronics, McGraw Hill,
February 17 1977, pp.102-107.

38. Lawson, H.W., 'Programming Language Oriented Instruction Streams',
IEEE Transactions on Computers Vol. c-17, No.5, May 1968,
pp.476-485.

39. 'Series 1600 Microprocessor System Documentation', General
Instrument Microelectronics, 1975.

40. 'Intel 8080 Microcomputer System Manual', Intel Corporation,
1975.

41. 'MCS-85 User's Manual', Intel Corporation, 1978.

42. 'Z80-CPU Technical Manual', Zilog.

43. 'M6800 Systems Reference and Data Sheets', Motorola Semiconductor
Products Inc., 1975.

44. 'MCS6500 Microcomputer Family Programming Manual', MOS Technology
Inc.

45. Losel, M. and Fompe, G., 'Fairchild F8 Microprocessor',
Fairchild Semiconductor.

46. 'Signetics 2650 Microprocessor Manual', Signetics Corporation,
1975.

47. 'COSMAC Microprocessor Product Guide', RCA Corporation, 1977.

48. Powers, I., 'MC6809 Microprocessor', Microprocessors, IPC

Business Press, Vol.2, No.3, June 1978, pp.162-165.

49. 'TMS 9900 Microprocessor Data Manual', Texas Instruments, 1975.

50. 'Intersil IM6100 CMOS 12 Bit Microprocessor', Intersil.

173

51. Wilnai, D. and Verhofstabt, W.J., 'One-Chip CPU Packs Power of
General Purpose Minicomputers', Electronics, McGraw Hill,
June 23 1977, pp.113-117.

52. Shima, M., 'Two Versions of 16 Bit Chip Span Microprocessor,
Minicomputer Needs', Electronics, McGraw Hill, December 21 1978,

pp.81-88.

53. Peuto, B.L., 'Architecture of a New Microprocessor', Computer,
IEEE, February 1979, pp.10-21.

54. Stritter, E. and Gunter, T., 'A Microprocessor Architecture for
a Changing World; The Motorola 68000', Computer, IEEE, February
1979, pp.43-52.

55. Morse, S.P., Pohlman, W.B. and Ravenel, B.W., 'The Intel 8086
Microprocessor; A 16 Bit Evolution of the 8080', Computer,
IEEE, June 1978, pp.18-27.

56. Kornstein, H., '8086- Its Development and Capability', Microprocessors,
IPC Business Press, Vol.2, No.3, June 1978, pp.166-169.

57. MacLennan, I.G., 'A Low Cost Video Display Unit', Students
Project Report, Edinburgh University, May 1976.

58. 'NASCOM-1 Handbook', NASCO Sales Ltd., 1978.

59. McLeod, R. (ed), 'Edinburgh IMP Language Manual', Edinburgh
Regional Computing Centre, Edinburgh, 1974.

60. McLeod, R., 'EMAS User's Guide', Edirburgh Regional Computing
Centre, Edinburgh, 1976.

61. 'Super Assembly Language S16SAL', General Instrument Corporation.

62. 'Floating Point Arithmetic Package Version 2', General Instrument
Corporation.

63. Haining, A., 'Microcomputer Simulation Software', Department of
Electrical Engineering, University of Edinburgh, September 1979.

64. Abramson, H., 'Theory and Application of a Bottom-Up Syntax
Directed Translator', Academic Press, London 1973.

65. Stephens, P.D., 'A Syntactic and Semantic Definition of the IMP

Language', Edinburgh Regional Computing Centre, Edinburgh 1974.

66. Nash, G., 'Phase Locked Loop Design Fundamentals', Motorola
Semiconductor Products Inc., Application Note AN-535, 1970.

67. Raamot, J., 'Integer Arithmetic Calculation of Phase Plane
Trajectories with the Am2901 Bit Slice Microprocessor',
Modelling and Simulation, Vol.9, No.4, Proc. of the 9th
Annual Pittsburg Conference, April 1978, pp.1451-1457.

	PhD coversheet April 2012
	EDI-INF-PHD-81-002.pdf

