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ABSTRACT 

Digital simulation is a useful tool in many scientific areas. 

Interactive simulation can provide the user with a better appreciation 

of a problem area. With the introduction of large scale integrated 

circuits and in particular the advent of the microprocessor, a large 

amount of computing power is available at low cost. The aim of 

this project therefore was to investigate the feasibility of producing 

a minimum cost, easy to use, interactive digital simulation system. 

A hardware microcomputer system was constructed to test simulation 

program concepts and an interactive program was designed and developed 

for this system. By the use of a set of commands and subsequent 

interactive dialogue, the program allows the user to enter and perform 

simulation tasks. The simulation program is unusual in that it does 

not require a sophisticated operating system or other system programs 

such as compilers. The program does not require any backup memory 

devices such as magnetic disc or tape and indeed could be stored in 

ROM or EPROM. The program is designed to be flexible and extendable 

and could be easily modified to run with a variety of hardware con- 

figurations. The highly interactive nature of the system means that 

its operation requires very little programming experience. 

The microcomputer hardware system uses two microprocessors 

together with specially designed interfaces. One was dedicated to 

the implementation of the simulation equations, and the other 

provided an input/output capability including a low cost CRT display. 

{ ii 
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1.1 Motivation 

The advent of large scale integrated circuits and the development 

of microprocessors has meant that considerable computing power is now 

available at low cost and with small size. Simulation is a powerful 

tool used for investigation and prediction in a wide variety of 

fields including engineering and natural resources. Digital 

simulation of continuous systems has in the past been only available 

on large and expensive computer installations. 

The aim of this project was therefore to investigate the 

possibilities of constructing a microprocessor based simulation 

system for the digital simulation of continuous systems. This 

proposed system would provide a useful level of simulation 

facilities at low cost. A small single-user interactive system 

should enable a user with little or no programming experience to 

quickly develop and use simulation models. The original area for 

simulation problems whose consideration led to this project, was the 

natural resource field. A considerable number of problems in this 

field have a large number of relatively simple equations. This 

means that although the individual equations are quite easy to 

simulate, their large number combined with the long time scales 

generally found in these problems, require considerable computing 

time. With a conventional time sharing computer system these 

simulation models can be very expensive to develop and use, 

especially if an interactive system is used. An interactive 

simulation system greatly speeds the development of the required 

models by both providing the user with a feel or insight for the 

problem and enabling the user to terminate simulation runs when 
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the model is obviously producing erroneous results. A microprocessor 

based system offers the advantage of interactive use with low 

initial and running costs. The microprocessor will be much slower 

in computations than a mainframe computer, but the overall simulation 

system response time might not be significantly slower than a busy 

multi-access system, and has the advantage of being always available. 

The simulation system developed and described in chapters three 

and four, allows a user with little computing experience to develop 

and use models in a highly interactive mode. Printed and graphic 

output is provided together with data input facilities. The size 

of the models usable is dependent on the amount of memory the 

system has, and is easily extendable. 

.1.2 Microcomputer System 

A microcomputer is just a very small computer which uses a 

microprocessor as its Central Processing Unit (CPU). The micro- 

processor performs arithmetic and logical functions, and controls 

the flow of data to and from the other components which make up the 

microcomputer. The most basic microcomputer system which could be 

used for even the simplest simulation tasks would require not only 

the microprocessor, but also sufficient memory to store the simulation 

program and its associated data together with a two way interface to 

allow the user to communicate with the simulation program. 

The type and amount of memory required depends on the type 

of simulation system. There are two basic types of main memory, 

these are Read Only Memory (ROM) whose contents are permanently 

fixed and can therefore be used to hold important programs like 
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monitors and interpreters, and read write memory usually called 

Random Access Memory (RAM) which can be used to hold temporary programs 

and data. All variables and results produced while a program is 

running must be stored in RAM and since microcomputers almost 

exclusively use semiconductor memory which is volatile, then they 

are lost if the power is switched off unless they are stored in 

secondary, or backup, memory. For simulation results this is 

generally quite acceptable, but for the programs themselves this 

can be very inconvenient as they have to be loaded up before each 

session. An alternative is to store the programs in some form 

of read only memory like Erasable Programmable Read Only Memory 

(EPROM) which can be wiped clean and reused. ROM and EPROM are 

fine providing the data need not be changed, so they are more suited 

to the systems programs and look-up data tables. 

In order to get the microcomputer to do any useful work, the 

user must be able to interact with it, to tell it what to do and 

to follow its progress. The most common and indeed most flexible 

way for this is by using an alphanumeric keyboard and display. The 

display could be either a Visual Display Unit (VDU) or a printer. 

Alternative input and output devices, like joysticks and oscilloscopes, 

can be advantageous for some speciallized applications. 

No present microprocessors can perform floating point arithmetic 

directly, and most cannot even perform integer multiplication and 

division. Therefore subroutines must be provided for the level 

of arithmetic required for any given application. Integer 

arithmetic can be used in multiples of the microprocessors word 

length to provide any accuracy, but for general purpose simulation 
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where a wide dynamic range is needed together with moderate 

accuracy, then integer arithmetic becomes very expensive in 

memory space and the more compact floating point can be used. 

Special purpose hardware can be used to relieve the arithmetic 

subroutines of some of their calculations. 

To develop simulation programs of reasonable complexity, 

several development and debugging aids are necessary in order to 

ensure that the time and effort involved in producing the program 

is not out of all proportion to the benefits derived from it. 

Typical programs that may be required are monitors, editors, 

assemblers, interpreters and compilers. To enter the program 

into the microcomputer, either for development or use, some form 

of secondary storage is required with the appropriate loading 

facilities. Secondary storage methods commonly used are paper 

tape, and magnetic media such as cassettes and floppy discs. 

1.3 Natural Resource Applications 

The original motivation behind the microprocessor based 

simulation system arose from an examination of a simulation 

problem concerning the water flow in a forest. The problem 

concerned both the internal water flow pathways inside the forest, 

including the transport mechanisms within the tree itself, and 

the net effect of the forest on the surrounding area. The 

Institute of Terrestrial Ecology has been measuring the development 

and functioning of a plantation of sitka spruce, and among these 

measurements were some of the factors which affect the water 

balance of the forest. The accurate measurement of environmental 
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factors is difficult to achieve because of the extremes of weather 

and the long timescales over which the measurements are required. 

The measurement of physiological details of the trees themselves is 

even more difficult due to the small quantitative changes involved, 

and their long timescales. The initial need for simulation would 

be to allow the action of various theoretical models to be examined, 

so that scarce resources could be allocated to measuring the most 

useful parameters. The experimental results could then be used 

to generate new models, and the whole process would be repeated. 

Another use of simulation would be to produce a model of 

the gross action of the forest, at all stages of development, so 

that its effect on possible planting sites could be examined. The 

changes in the water flows caused by the afforestation of a tract 

of land is very important because the sites suitable for the 

forest are often reservoir catchment areas. 

Due perhaps to the difficulties of collecting accurate data, 

the model equations resulting from research are in themselves 

quite simple. However the large quantity of equations needed 

for an overall water flow simulation and the long timescales over 

which the model has to be run, combine to produce a simulation 

model which requires a lot of computing time. The cost of 

such computing time using a mainframe computer to organisations 

like the Institute of Terrestrial Ecology, which have very scare 

resources, means that such simulation models cannot be used to their 

maximum benefit. A microprocessor based simulation system would 

however have a very low running cost, and its interactive facilities 

would also help to reduce the effort and cost of developing the models 
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in the first place. The slower calculation speed of the micro- 

processor need not be a disadvantage since, after the user has 

checked to see that the model is functioning properly, the system 

could be left overnight to produce the results. 

1.4 Engineering Applications 

Simulation is a very useful tool in all fields of engineering 

but, because of the effort required to run a simulation, it has 

generally been reserved for problems which are difficult either to 

analyze or to test practically. Small systems, especially 

electrical and electronic analogue circuits, are quite often designed 

using a simplified theory and then modified to obtain the correct 

operation after being built and tested. Although inelegant, 

this method is often the cheapest and most cost effective. However 

if a cheap and easy to use simulation system was available, then 

simulation could be used effectively to reduce the required testing 

and modification stages, as well as allowing the designer to explore 

a greater variety of possible solutions. For most problems a 

graphic output would be preferable, with only a relatively low 

accuracy result being required. 

Another area where simulation could be used profitably is 

in the teaching of engineering, and in particular analogue 

electronics. The conceptual difficulty in relating theory to 

experimental work hampers a student when the theory has to be 

applied to a real problem. The use of simulation to illustrate 

the theory could help to break down the conceptual difficulties 

and enable a student to accept the theory more easily. The need 
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here would be for graphic presentation of the simulation results 

which could easily be related to the oscilloscope waveforms 

encountered in the laboratory. 

1.5 Numerical Integration 

The present version of the SIMUPROG simulation system program 

does not provide a built in integration routine, but instead allows 

the user to implement the most suitable method for the problem 

under consideration. While this does provide great flexibility, 

a built in integration method or methods could usefully be included 

in expanded versions of the system. 

Considering a first order differential equation, the numerical 

integration methods suitable for solving the equation fall into two 

main categories. These are the single step methods, such as Euler 

and the Runge Kutta families, and the multistep methods like the Adams 

Bashforth predictors and Adams Moulton correctors. A full 

explanation of these and other methods has been given by Gearl. 

Considering a discrete time step h, the value of the variable 

y at time t+h can be expressed in terms of the values of its 

derivatives at time t by the following Taylor Series expansion. 

y(t+h) = y(t) + h*.v(t) + 2 *y(t) 
+ h *y(t) + ..... 

-7 3 

An integration method is said to be of order N if it produces 

component terms which match the first N+l terms of the above series. 

Higher order differential equations can either be broken 

down into a set of first order ones, or in some cases treated directly. 
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Gearl gives examples using the truncated Taylor Series expansion 

directly and also using the Nystrom formula for special second order 

equations. 

The accuracy of any simulation run is dependent on both the 

integration method and the accuracy of the arithmetic. The 

arithmetic performed on the GIMINI microcomputer used 32 bit 

floating point representation, with 23 bits for the mantissa, 

8 bits for the binary exponent and one sign bit. Since the 

results of a calculation are truncated to get them back to the 23 

bits, the worst case error produced is 2-23 times the exponent of 

the result. This error is therefore between 2-23 and 2-22 times 

the normalised result value. If it is assumed that the error 

is randomly distributed with a rectangular distribution, then the 

mean error will be 2-24 to 2-23 times the result value for each 

operation performed. For example after 10000 operations the 

truncation error could be expected to be between .0006 and .0012 

times the result value. Another source of error is that the numbers 

entered into the system are only held with 23 bit significant 

accuracy. Thus more cumulative errors may be introduced if, for 

example, a value like the step size is inaccurate. The result 

of these errors can be amplified if unsuitable equations are chosen, 

i.e. if a small variation in a large value number is critical. 
Ideally any integration method can be made more accurate by 

decreasing the step size, unfortunately, as the step size is decreased, 

the truncation errors become more significant until they are 

completely dominant. Each integration method will have its own 

error curve, and a typical example is shown in figure I.I. 



A 
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The choice of integration method will depend on both the 

simulation equations and the accuracy of the results required. 

Euler integration is the simplest to implement, but being first 

order it is also the least accurate, so that a large number of 

steps using high accuracy arithmetic will be needed to produce a 

very accurate result. Also, because of the large number of steps, 

it may be slower to run. In spite of this, if a quick low accuracy 

solution is required, Euler may be very convenient. The one 

parameter family of second order Runge Kutta methods given by 

Benyon2 can be rewritten as the predictor-corrector family given 

below. 

Yp = Y n 
ahy n+a n n 

Yn+a - f(Yn+a' to+a 

1 1 p 
Yn+l = Yn 

+ h((1 - -2 -ot 
)Yn + Yn+a 

Yn+1 f(yn+l' 
t 
n+l) 

When a = 1 the above method is sometimes known as Heun's method or 

the Euler-trapezoidal method. The other second order Runge Kutta 

method tested in section 5 is obtained when a = 0.5 and is sometimes 

known as the Improved Polygon method. These methods are quite 

easy to implement. Both require two derivative evaluations per 

step, but provide greater accuracy than Euler, since they are second 

order. James3 gives the third order Runge Kutta also used in 

section 5. The classical fourth order Runge Kutta, which is also 

used, is described by Gear l. 
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Multistep integration methods are not as convenient to use as 

single step methods, because at the start of a simulation run they 

have to be provided with past values of variables. These values 

can be estimated before the run and provided as initial conditions, 

although this normally means estimating a new set for each step 

size used. Alternatively a single step method can be used to provide 

the first few values to start the multistep method, but this has 

the disadvantage of requiring two separate integration methods. 

The predictor correctors such as the Adams Moulton require twice as 

many derivative evaluations per step as the predictor only methods 

such as the Adams Bashforth methods, but should provide better 

stability. 

A comparison of relative computation time per step for various 

methods is given by Benyon2, and although the arithmetic calculation 

times performed by the GIMINI software are not the same, the overall 

relationships appear roughly similar. 

The use of an integration method with a variable step size could 

mean that less steps would be needed to attain a given accuracy, 

because the smaller step sizes would only need to be used for fast 

changing parts of the solution. Variable step size is difficult 

and not very satisfactory when used with predictor correctors, as 

pointed out by Martens4. Each time the step size is changed, the 

predictor corrector has to be restarted using a single step method. 

The Runge Kutta Merson fourth order method can generate an estimate 

of the integration error, sometimes called truncation error, for 

each step and so control the step size. For other methods, a 

possible way of generating an estimate of the error size is the 
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Richardson method explained by James3. In this method two solutions 

are generated at each step, one forthe full step size and the other 

using two half steps. The two values are then used to produce an 

error estimate. One disadvantage of using a variable step method 

apart from its complexity is that it is difficult to produce regular 

outputs of results. 

Smith 
5 

describes the use of compensation to increase the 

accuracy of low order integrators. For a known result the 

compensation could be adjusted to reduce the error, but when the 

result is not known in advance, Smith does describe a variable phase 

integrator which applies the compensation as it proceeds. 
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2. SIMULATION 

2.1 Continous Simulation 

The simulation of continuous systems can be described as 

experimenting with mathematical models of a system instead of the 

system itself. Simulation can therefore be used both to predict 

the behaviour of a system and to aid the development of better 

system models. A continuous simulation problem generally involves 

the solution of a set of differential equations from initial conditions, 

and both analogue and digital methods can be used to perform these 

simulations. 

When using an analogue computer an electronic circuit analogue 

of the required system is constructed from individual component 

circuit blocks. Parameters and initial conditions are set by 

potentiometers and the output is either on a Cathode Ray Oscilloscope 

(CR0) or x-y plotter. Analogue computers are fast, and the 

essential parallelism of their circuits means that their speed is 

more or less independent of the problem size, but they have a 

limited accuracy due to their components (0.01 to 0.05%6), and such 

high accuracy components are very expensive. 

Simulation using a digital computer involves dividing the 

continuous solution into small discrete steps and using the values 

from the preceeding steps to estimate the result of the present 

step. Digital simulation can be performed to a very high accuracy 

using a general purpose digital computer, however since each 

equation of a parallel system has to be evaluated sequentially the 

speed of operation suffers. Hybrid computers have been developed 

which combine the speed of the analogue computer with the ease 
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of setting up of the digital computer, but they are very expensive 

and the close interaction between the user and the analogue computer 

is normally lost. 

Analogue computer problems have to be scaled because of the 

limited analogue voltage range. Digital computers do not require 

scaling if floating point arithmetic is used, but do if the faster 

fixed point arithmetic is used. Since the user can manually alter 

the values of the parameters and initial conditions of an analogue 

solution and immediately see their effect, the user can obtain an 

insight or 'feel' for the simulation problem. Most hybrid 

computers and batch processing digital computers lose this benefit. 

Programs run on large mainframe computers are either batch 

processed or run interactively. Since most interactive programs 

only use the computers Central Processing Unit (CPU) a fraction of 

the time, several programs are usually time shared to provide a 

multi-access facility. Most medium and large minicomputers can 

also run in both interactive and batch modes and are cheaper 

but less powerful than mainframes. Small minicomputers and micro- 

computers are normally used interactively for just one user. 

Simulations can be written in a general purpose high level 

computer language like FORTRAN7 or BASIC8, but a low level assembly 

language would be considerably more difficult to use and to modify. 

Since most simulations have common features like integration and 

result output, a lot of programming time can be saved by using a 

simulation system which takes care of the repetitive functions. 

Such simulation systems fall into two categories, those which 

accept an explicit set of differential equations and those where the 
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model is entered by specifying the interconnections between functional 

blocks similar to those of an analogue computer. Both the equation 

oriented and block diagram systems can be used either interactively 

or in batch mode. 

For a small digital system an interactive approach should be 

able to provide the analogue computer feel for the problem at a 

much lower cost than an analogue or hybrid computer. A batch 

processing system makes more efficient use of the computers central 

processing unit (CPU) than an interactive system since in the 

interactive mode the CPU will spend significant time waiting for 

the user to enter new commands. In a large computer system the 

CPU is an expensive part of the computer so time sharing is often 

used to cut this cost, but in a microcomputer system the CPU may 

only cost £10-£40 which is considerably less than most of the other 

system components. This means that the user's time is far more 

important than that of the CPU, therefore a microcomputer system 

is very suitable for interactive use with just one user. 

2.2 Simulation Problem Implementation 

To perform a simulation task interactively on a microcomputer 

three main actions were required, firstly the initial model must 

be entered into the computer, next the model must be implemented and 

results produced, and finally the model can be edited prior to being 

run again. To implement a simulation problem either a special 

program can be written in a suitable general purpose language, or 

a more specialised simulation language or system may be used. 
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Using a general purpose language for each simulation problem 

encountered implies that the programmer must have a good knowledge 

of the programming language used, and also implies that a good deal 

of the programmers effort is wasted in rewriting almost similarly 

functioning sections like data input and result output. High 

level languages offer the best approach for writing a special 

program as assembly languages require considerably more programming 

effort and greatly obscure the relationship between the program 

and the simulation problem. The high level program must be 

translated into the actions of the computer required to implement 

the specified task, and this may be performed either by a compiler 

or an interpreter. For interactive use on a small computer such 

as a microcomputer the interpreter approach is simpler, since it 

requires a smaller program than a compiler and does not need to 

store a machine code version of the program. On the other hand the 

compiler's machine code program is considerably faster in execution 

than the interpreter. While the high level compilers implemented 

on microcomputers are considerably more limited than those available 

on larger computers, they still require relatively sophisticated 

operating systems with secondary storage. 

Several high level languages are available for microcomputer 

use, with BASIC being the most common. Most microcomputers have 

interpreted BASIC like the SWTP 68008 although some BASIC compilers 

have been produced. Various compilers using versions of IBM's 

PL/l language have also been produced like PL/M9 by Intel and the 

PLZ10 family of languages produced by Zilog. The newer Pascal 

language 
11,12,13 is gaining in popularity and by using the 



17 

intermediate P-code, both compilers and interpreters have been 

produced14, and even a new microcomputer has been designed to 

operate on the P-code 

Korn16 proposed a block diagram language in which a sequence 

of prewritten subroutines are called to perform any required task. 

The inputs and outputs of each subroutine called would be specified 

as parameters with the program stored in an array as threaded code. 

Threaded code means that the program is represented by the addresses 

of the subroutines and variables and is implemented by indexed 

subroutine jumps and indexed data operations respectively. The 

language Forth17 uses indirect threaded code with a dictionary 

of subroutine blocks to implement the program. Forth is also 

unusual in that postfix or reverse Polish notation is used and 

that the user has full control of the stack. The threaded code 

operations refer to entries in the dictionary which contains the 

addresses and other details of the subroutines, this dictionary 

structure enables the programmer to define new operations using 

a combination of existing ones, and even other user defined operations. 

Forth is a very compact language, and with its reverse Polish 

notation and explicit processor operations including the use of 

assembly language it is obviously designed more for system use 

than general purpose programming. 

Of the available high level languages BASIC is probably about 

the easiest to learn, but the more structured languages like Pascal 

allow the programmer to produce a program which is more closely 

related to the simulation problem and thus more comprehensible. 

The more complicated languages like FORTRAN7 and the PL/l variants 
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are more difficult to learn and are written to use quite a large 

microcomputer system with secondary storage. The reverse Polish 

notation and explicit stack manipulation could make Forth difficult 

to use for an inexperienced programmer. The main problem with 

using high level languages is that much of the programming effort 

is used in producing repeatedly used sections like result tabulation 

and integration. The presence of these sections in the users 

program also tends to obscure the simulation model. One solution 

to these problems could be to have prewritten sections or subroutines 

which perform the often used functions, but most functions like 

output and Runge Kutta integration cannot be performed by just one 

subroutine call. Therefore if simplified output and integration 

instructions are to be used, then the simulation program itself 

must be running under the control of another program which keeps 

track of the progress of the simulation problem and performs the 

actions required by the simplified instructions. Such a control 

program would form the basis of a simulation system. Korn6 

describes a package of FORTRAN subroutines which can be used on 

any computer with a suitable FORTRAN IV compiler. The model 

equations are written as a FORTRAN subroutine on punched cards 

and combined, with the required subroutines from the package, to 

form the simulation program which is then run in batch mode. 

Since historically, digital simulation developed after analogue 

computer simulation was well established, many block diagram 

simulation systems have been written for mainframe computers which 

were designed to ape an analogue computer. DAS18 and KALDAS19 

are examples of such systems which have attempted to produce a 
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digital version of the analogue computer, but since they are batch 

processed the analogue computer interaction or 'feel' is lost. 

PACTOLUS20 is a similar block diagram system,but which can be operated 

interactively. These block diagram systems require that the 

mathematical models to be used are first rewritten as an appropriate 

block diagram, using analogue type components, before entering into 

the simulation system. The MARSYAS system21 is a block diagram system 

designed for aerospace simulation on a large computer installation. 

The MARSYAS blocks can however be considerably more complicated than 

simple analogue computer blocks and can include high order transfer 

functions and complete subsystems which have been previously defined 

as block diagrams. 

Equation oriented systems allow the simulation model to be 

entered algebraically in the form of differential equations. 

Most equation oriented systems conform roughly to the conventions 

of the Society for Computer Simulation's CSSL Committee22. One 

such system is DARE P6 which is an equation oriented system designed 

for batch processing and written in FORTRAN IV for portability. 

Interactive operation of large computers is very expensive, 

so some systems have been written for minicomputers of various sizes. 

The DARE/ELEVEN system6, which was developed from earlier DARE 

systems at the University of Arizona to run interactively on a 

PDP-11/40 minicomputer, is unusual because it provides an equation 

oriented language together with a fast block diagram language. 

DARE/ELEVEN can accept an equation oriented CSSL type program 

which can be entered using an interactive editor. The system 

translates the simulation program into a FORTRAN program which 

is then compiled by the computers standard FORTRAN compiler to 
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produce an object code module. This module is then linked together 

with any required library routines to form the object program which 

is then run to produce the required results. The complete process 

is run under the control of the standard operating system on a 

PDP-11/40 with 28K of memory and a fast magnetic disc. Since the 

memory is not big enough to hold all the programs required,overlay 

techniques are used. Memory overlay is the process of overwriting 

selected parts of the computers memory with new programs. The 

previous programs are lost, but copies of all the programs are held 

on the magnetic disc. The DARE/ELEVEN block diagram language uses 

fixed point arithmetic for speed, and can even be used in different 

parts of the same simulation as the equation oriented language. 

The block diagram is entered by specifying the required blocks 

together with their inputs and outputs. The DARE/ELEVEN system 

then orders the blocks in procedural order and uses the computers 

own macro assembler to produce the object code. 

Micro-DARE BASIC/RT 1123 is a block structured simulation 

language similar to that used in DARE/ELEVEN which can be used on 

a PDP-11 or LSI-11 with at least 16K of memory and the RT 11 operating 

system, but needs no system disc. Micro DARE BASIC/RT 11 uses a 

dialect of BASIC for initialisation and control of simulation runs, 

and a block diagram language with fixed point arithmetic for the 

integration loop. The block diagram language is compiled into a 

threaded subroutine structure and the BASIC statements are semicompiled 

on entry to compress them, with an expansion routine provided to 

facilitate editing. 

ISL-824'25 

is a block diagram language which runs on a PDP-8 
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minicomputer with as little as 4K words of memory. The fixed point 

arithmetic used in ISL-8 requires time and amplitude scaling. Newer 

versions of ISL26 can be used with other minicomputers and for hybrid 

simulations. 

BEDSOCS27 is a CSSL specification equation language which uses 

BASIC instead of FORTRAN as its procedural language. By using 

interpreted BASIC the system is designed to run on a Hewlett-Packard 

2100A minicomputer with 8K of core store. 

Hay28 describes three interactive simulation system implementations 

on a PDP-8 minicomputer with 28K words of fast memory, a magnetic 

disc and a floating point processor. All three implementations 

provide equation oriented simulation languages. One scheme makes 

extensive use of the PDP-8 system programs like editor, monitor and 

FORTRAN compiler. The simulation program is translated into 

FORTRAN statements to be compiled by the FORTRAN compiler into 

the required object code. The PDP-8 batch processor, under the 

control of a command file is used to provide the interactive 

facilities, and extensive overlaying is required. The other two 

approaches use self contained programs, one converts the simulation 

program into an intermediate code which is interpreted at run time, 

and the other has a further stage of compilation to produce a 

machine code program. More recent versions of the interpreter 

implementation called ISIS29,30 

are written in FORTRAN and can be 

used on a variety of computers. ISIS conforms to the CSSL 

specification but does not translate the simulation program into 

a procedural language like FORTRAN as most CSSL systems do, 

instead it checks and semicompiles each line as soon as it has been 
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entered. The semicompiled form is stored for later translation 

into its interpreter instruction code at the start of a run. 

SIMEX31 is an equation oriented language which was written 

for a PDP-9 minicomputer with 24K words of core memory and high 

speed bulk storage. Instead of compiling the complete simulation 

program just before it is run as most equation oriented systems do, 

SIMEX compiles each line separately as it is entered. The system 

provides for interactive editing by storing the source code on 

the bulk storage medium. To obtain a fast calculation speed 

fixed point arithmetic is used, and by restricting the time steps 

to powers of two, and using Euler integration, the system can 

perform the integration calculations using just shifts and additions. 

An automatic scaling system is implemented to relieve some of the 

burden of scaling the simulation problem, and this uses scale 

factors of powers of two so that only shifts are needed. 

For a user inexperienced in computer programming, writing 

simulation programs in a purely high level language has two main 

drawbacks. The first is the need to learn the particular high 

level language used, and the second is the need to know the 

appropriate programming techniques required for result output and 

interactive control of the simulation. Using a simulation system 

relieves the second and most important drawback. Of the systems 

described only DARE/ELEVEN, BEDSOCS, ISIS and SIMEX provide high 

level type languages designed for simulation work. DARE/ELEVEN 

and ISIS provide FORTRAN features for more advanced simulation 

programs and BEDSOCS provides BASIC. Only BEDSOCS and SIMEX are 

core resident programs as the others require overlay techniques, 
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but SIMEX does require fast secondary storage for source programs. 

Block diagram language systems are easier to implement on a 

small computer since the code to be executed is already written as 

blocks or subroutines and only the interconnections need be specified. 

This also means that no source programs need be stored for the 

execution phase. Micro-DARE/RT11 and ISL-8 provide block diagram 

languages which do not require fast secondary storage, and 

Micro-DARE/RT11 also provides BASIC statements for initialisation 

and control of simulation runs. 

A problem with block diagram languages is that users unfamiliar 

with analogue computing have to learn to convert their problems from 

the familiar mathematical expressions to an unfamiliar block 

diagram representation of the problem. Therefore a simple 

microprocessor based system would preferably be of the equation 

oriented type. 

The previously mentioned equation oriented systems all require 

the simulation problem defined as a program using the systems special 

language usually based on a high level programming language. This 

means that not only does the particular special language used have 

to be learnt, but the system has to store a copy of the source 

program for future interactive editing. If instead of this a highly 

interactive dialogue could be maintained between the computer and the 

user, then the simulation system could at least partly explain 

how to enter the required information. Auslander32 describes 

two implementations of a structured data simulation system: Both 

run on a PDP-7 minicomputer with 8K words of memory and instead of 

writing a special program the simulation model information is entered 
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using a series of commands. The two implementations differ in the 

data structure used to store the models, but both require that the 

model equations are entered in a very stylised format with nonlinear 

functions implemented as machine code subroutines. One implementation 

uses a linked data block structure with directories used to reference 

blocks of information about state variables. As well as the names 

and values of each variable, the blocks also contain a set of 

pointers to other variables which make up the stored equation. The 

other implementation uses a node incidence matrix to describe the 

topology of a directed linear graph. Each equation stored in this 

system can be represented by a simple directional graph, and the node 

incidence matrix contains the binary information about the presence 

or absence of each possible individual branch in the graph. 

The command structure used by Auslander does not offer much 

dialogue so the user has to remember what information has to be 

entered. The entry format for the equations is awkward and involves 

extra user effort, with the resulting equations being rather restricted. 

It was therefore decided to implement a microprocessor based 

system which was equation oriented and had the simulation problem 

held as recoverable data. The system should also have as much 

interactive dialogue as possible to guide the user in using the 

system. 

2.3 Microcomputer Considerations 

2.3.1 Man-Machine Interface 

The methods of communication which the user has with the 

simulation system are very important since the system has to be 
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easy to use for people with little experience of computers. The 

entry of data and control instructions should be straightforward, 

and the microcomputer should be able to output helpful guidance as 

well as results. An alphanumeric keyboard together with an alpha- 

numeric printer or Visual Display Unit (VDU) is the most common and 

versatile method used to provide interactive control of a computer. 

Other input and output devices can provide very useful extra 

facilities, but they are not absolutely necessary. So that the 

minimum microcomputer system implementation can be usefully used, 

the simulation system program was designed so that the alphanumeric 

input and output devices could provide data input, result output 

and simulation control. Alternative data input and result output 

devices were also catered for, but the simulation system can still 

be used if they are not available. 

Difficulties occuring in the communication between user and 

microcomputer program are caused by the organisation of the interactive 

dialogue and not by the hardware involved. The present simulation 

system uses a teleprinter as the main user interface. While the slow 

speed of 10 characters per second is fine for user input, it greatly 

limits the amount of text which can be printed out without the user 

becoming impatient. While an inexperienced user will tolerate 

lengthy printouts which provide helpful guidance, these printouts 

will become annoying and timewasting to a user who already knows 

how to operate the system. A way round this would be to switch 

between short rather cryptic dialogue and expanded explanatory 

dialogue depending on the users preference. Useful as this method 

could be, the memory limit in the present system prohibits its use. 
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Therefore a compromise was reached for the present implementation so 

that only one set of dialogue was needed. The function of the 

simulation system was broken down into a selection of commands, the 

present version of the program has 20 and each consists of a name 

or a mnemonic up to 4 letters long. When a command has been 

activated, the required function is implemented using a controlled 

dialogue between the user and the program. The simulation model 

and control information is stored in a unified database and each 

command has independent access to the appropriate parts of the 

database. Several formats for the controlled dialogue were tried 

for different commands. 

The use of a higher speed VDU for the text output would remove 

the speed limit from the size of the program messages, and would 

also allow alternative dialogue formats to be used. An example of 

this would be the use of a menu of the command names, a brief 

explanation of each command could also be included. 

2.3.2 Arithmetic 

For general purpose use, the simulation system should be able 

to accept a wide range of input values so that the user does not 

need to spend extra time and effort scaling the simulation problem. 

This wide dynamic range must be combined with sufficient accuracy 

to ensure that the cumulative errors remain within the required 

limits, even after a large number of steps. 

Integer arithmetic is the simplest to implement, but very long 

integers would be needed to cope with the wide dynamic range needed 

and this would require a large amount of storage, most of which would 
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be wasted since the great majority of the values would contain 

either leading zero's or else more bits of information than the 

initial accuracy of the variables could justify. Scaling techniques 

can be used to reduce the size of the integers required, Gakhal33 

describes some scaling methods for some discrete fourier transforms. 

However for the simulation system, the variety of types of equations 

that can enter means that an automatic scaling system would be 

very complex and difficult to implement. Errors in solving 

differential equations can be reduced by increasing the accuracy of 

the numerical integration calculations. This can be done by either 

holding the state variables with a higher precision, or else 

using residue retention as described by Baker34, however this would 

complicate the simulation system since the program would have to 

detect and keep track of variables being integrated. 

Floating point arithmetic can provide both a wide dynamic 

range and sufficient accuracy for the simulation system. Floating 

point arithmetic software is slower and more complex than integer 

software, but is no more difficult to use once the software has been 

written. An alternative number system suggested by 
Edgar35,36 

called 

FOCUS uses a logarithmic representation which is claimed to be 

significantly faster than floating point for the same accuracy. 

While multiplication and division are easy in FOCUS, addition and 

subtaction are slower and more complex. The input and output conversion 

is also more complex and FOCUS would probably require more memory 

than floating point.' For real time systems where speed is at a 

premium and calculation errors cease to become significant after 
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a relatively few number of steps, the FOCUS number system with input 

and output conversion hardware could be useful. 

Arithmetic hardware can both reduce the amount of software and 

speed up the arithmetic operations. Integer multiplication and 

division can be used to speed up both integer and floating point 

arithmetic, and can use either Read Only Memories or digital 

hardware. The recent introduction of single chip floating point 

processors means that floating point arithmetic is much easier to 

implement. The National Semiconductor 5710937 can provide BCD 

floating point arithmetic together with trigometric, logarithmic, 

and exponential functions. This device however uses PMOS technology 

and is actually significantly slower than the floating point software 

used with the CP 1600 microprocessor. The Advanced Micro Devices 

AM9511 arithmetic processing unit was only available at the end of 

this project, and can provide 16 and 32 bit integer arithmetic 

as well as floating point arithmetic including trigonometric, 

logarithmic and exponential functions. The Am9511 uses binary 

floating point and is faster than the CP 1600 binary floating 

point software which was actually used for the simulation system. 

The 32 bit floating point was felt to be the optimum for the 

simulation system as 16 bit floating point could not provide the 

accuracy and dynamic range needed, and both 48 and 64 bit floating 

point would have taken more storage and would also have slowed the 

simulation system down unnecessarily. 

2.3.3 Languages 

The choice of language used to write the simulation system 

program depended not only on the need to produce an efficient and 
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comprehensible program, but also depended on the physical limitations 

of the microcomputer system itself. While small programs can 

usefully be written directly in machine code, it is impractical to 

write and debug a large complex program without either assembly or 

high level language program aids. 

Assembly language provides mnemonic representation of the 

microprocessors machine code instructions together with labels for 

program jumps and variable storage. Programs written in assembly 

language are much easier to understand than pure machine code because 

the mnemonic labels and instructions, together with the comment text, 

allow the program structure to be discerned more clearly. The assembly 

language program is translated into a machine code program which is 

then stored to be run later. Even though each assembly statement 

directly represents one machine code instruction, they cannot be 

translated in isolation because of references to labels appearing 

later in the program. The assembler overcomes this by making two 

or more passes through the program, the first pass builds up a table 

of the addresses of the labels used in the program and subsequent 

passes are used to generate the required machine code program. 

High level languages are easier to understand than assembly 

language because each high level statement is the equivalent of 

several machine code instructions, and can therefore be designed 

to perform a function much closer to the programmers concept of the 

basic operations from which the program is constructed. The high 

level program can be translated into machine code by a compiler 

which, although more complex, operates in a similar manner to the 

assembler. An alternative method of implementing a high level 
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language is to use an interpreter. The interpreter does .not produce 

machine code, but instead it examines each line of the program as 

it is being run and performs the same actions as the user's program 

would have if it had been compiled. An interpreted program is 

therefore considerably slower than a compiled one, but the interpreter 

does have the advantages that it is easier to use and does not need 

to store a machine code program. Therefore in programs involving 

lengthy loops, such as simulation programs, the calculation time 

taken by an interpreter could be at least an order of magnitude 

greater than a previously compiled program would take. 

Assemblers and high level language compilers can be run either 

on the microcomputer itself or on another computer altogether. 

To run an assembler or compiler on the microcomputer itself requires 

secondary storage for the source and object programs since it would 

be prohibitive to hold them in main memory. If a cross-assembler 

or cross-compiler is run on another computer, the microcomputer only 

needs enough memory for the resulting machine code simulation system 

program. Compilers are more complex and require more memory than 

assemblers. At the start of this project very few high level 

languages were available for microprocessors, and even these required 

at least a floppy disc drive for secondary storage. By exploiting 

fully the architecture of the microprocessor, a program written 

in assembly language should be smaller and faster than the alternative 

high level program, but the programming effort needed to produce the 

assembly language program would be much greater. A way to combine 

the two approaches could be to use a high level language which 

allowed critical program segments to be written in assembly language, 
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however there still remains the problem of integrating the actions 

of the high and low level sections. The CP 1600 superassembly 

language, finally used to write the simulation system program, 

overcomes this problem by providing high level programming 

enhancements to an otherwise standard assembly language. Although 

the superassembly language is not as sophisticated as a true high 

level language, it makes it much easier to make full use of the 

architecture of the microprocessor with little more requirements 

than a standard assembler. 

2.4 Microcomputer System Implementation 

The limited memory size and relatively slow speed of the 

microprocessor based system envisaged means that the simulation 

model equations need to be stored in as compact a form as possible, 

without sacrificing execution speed. Since the equations which 

will be entered into the system do not have a fixed format and can 

make use of several layers of parenthesis, an equally flexible 

system is required to store the equations so that they form a 

suitable instruction stream for run time calculations. Lawson38 

describes the main types of instruction streams which can be used. 

Polish notation is probably the most compact form of instruction 

stream, and since the stack operation times, using the microprocessor 

stack pointer, are very much less than floating point calculation 

times, there is very little loss in execution speed. The trailing 

operator or reverse Polish notation (RPN) form of instruction stream 

is the easiest to evaluate, and so was chosen for equation 

sL age. To compress the equation further, the RPN instruction 
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stream was coded so that each entry consisted of a single 16 bit 

word. Equations entered into the simulation system can be 

represented as (variable)=(expression) where the '=' represents an 

assignment operation not an equality. An expression is coded 

using positive integers to represent variables whose values are 

to be pushed onto the stack, and negative integers to represent 

arithmetic operators and functions which operate on the stack. 

A positive integer refers to the position of the required variable 

in a list which, as well as containing the value of the variable, 

also contains its name so that stored equations can be printed 

out. The negative integer refers to the position of the starting 

address of the required arithmetic subroutine in a list which also 

contains the operator symbol or function name needed to print out 

the stored equation. The RPN expression is terminated by a zero 

entry and the variable to which the value of the expression, now 

held in the stack, is to be assigned is found in a separate list. 

The reason for this is twofold, firstly it simplifies the evaluation 

of the expression since it eliminates the need to enter the address 

of the unknown variable in the stored instruction stream, and 

secondly it allows for prewritten system functions and user entered 

functions to be implemented, in future versions, in the same way 

as model equations. 

Since the entered equations are not of fixed length, the zero 

which terminates their equivalent stored instruction stream effectively 

terminates a variable length list. ' All the data specifying the 

simulation models is effectively held in lists, and this provides 

an effective method for storing variable amounts of data without 
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keeping track of separate pointers and counters. The set of model 

equations are themselves held in a list, in the order they were 

entered. To increase flexibility of operation, the order of the 

list of equations does not determine the order of operation, and 

instead the order of operation is specified by a separate list. 

Not only does the operation list mean that the order of operation can 

easily be changed, but equations can be dropped from the list or 

even appear several times without disturbing the original set of 

equations. The actual list of equations is held in a two 

dimensional array or matrix. Alternative storage organisations 

could be implemented to make use of the space otherwise wasted by 

equations shorter than the maximum length. Storing the equations 

as linked lists could make use of the space but since the only 

replacement operations required would involve whole equations, the 

extra pointers required to implement linked lists would make the 

system very inefficient. The individual equations could also be 

stored as segments in a single data space with an array of pointers 

indicating the start of each equation. This system would make 

better use of the memory space than the matrix method, and should 

be just as fast. The only main drawback would be that replacement 

of individual equations would be more difficult. The main reason 

that the matrix method was used was that it was easier to implement 

and debug, the segmented method could then be introduced later and 

debugging would be much easier when the rest of the program was 

validated. 

All the information needed to run the simulation is included 

in the database including run time controls and output lists. 
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This means that the simulation run information is independent of the 

program and can be stored and rerun at a later date. The size of 

the database, and hence the maximum size of a simulation model, 

is limited only by the memory size of the microcomputer and can easily 

be adjusted to suit the available memory. 

Each command used to control the simulation system is implemented 

as an independent subroutine so that commands can be added to or 

deleted from the system as required. Each command subroutine 

operates independently on the database although, to keep the program 

compact, several command subroutines may themselves make use of common 

subroutines. Once a command has been initiated, the user is guided 

through the command sequence by questions requiring yes or no 

answers and prompts for entering data. As well as a line editor 

for user entered input, the commands are designed with options so 

that an entry error by the user does not require too much effort to 

correct. The equation entry subroutines accept equations in normal 

algebraic form, with parenthesis, and convertsthem to the required 

reverse Polish notation form. Some checks are also made as to the 

validity of the equations, and a limited error diagnosis is produced 

before the user is asked to enter the equation again. 

It was not felt appropriate to include facilities for automatic 

sorting of equations or for dealing with implicit loops. 
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3. MICROCOMPUTER SYSTEM 

3.1 System Requirements 

3.1.1 Microprocessor 

There is now a wide range of microprocessors available,with 

differing capabilities and designed to suit a variety of applications. 

Since the microprocessor performs the required calculations and 

controls the other system components, it is the main limiting factor 

determining a microcomputers capabilities. The usefulness of a 

particular microcomputer configuration for a given application is 

determined by a variety of factors. The principle factors are the 

speed of the microprocessor, its address range, its instruction set, 

the type and size of memory used, the hardware and software experience 

and backup available, and the hardware configuration. 

The simulation program will require a considerable amount of 

calculation, and the programs themselves may be quite lengthy. The 

microprocessor should therefore be able to address sufficient memory 

to hold the largest program required, although the use of overlay 

techniques, with secondary memory, can reduce the requirement. 

While just about any microcomputer can perform floating point 

arithmetic if properly programmed, the instruction speed and the word 

length of the microprocessor, combined with the design of its 

instruction set and architecture, will determine how fast the 

calculations are performed. 

The most suitable microprocessors are the more recent 'general 

purpose' 8 and 16 bit single chip microprocessors. The smaller 

4 bit single chip microprocessors and microcomputers are designed 
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for smaller and less memory intensive systems, and their limited 

memory space combined with the more complicated programs required 

for calculation and data manipulation means that they are not 

suitable for the simulation system. Older general purpose 

microcomputers using PMOS (P-channel MOS) and the earlier NMOS 

(N-channel MOS) devices are slower, and most also have interfacing 

disadvantages. Other specialised microprocessors usually have 

disadvantages, bit slice microprocessors can generally achieve 

a far greater speed than single chip devices, but they introduce 

another level of complexity since the actual instruction set to be 

used in writing the simulation programs has first to be designed and 

developed. This does not rule out their use, but it does mean that 

the fast speed has to be balanced against the extra time, effort 

and cost that they entail. A possible use of bit slice machines' 

would be in a multimicroprocessor system where they could perform 

a small repetitive section of program at-high speed. The single 

chip microcomputers have memory and input/output lines contained with 

the microprocessor in one integrated circuit. Those with ROM or 

PROM memory are designed for volume production, and even those with 

EPROM or only RAM usually have a limited address space and are not 

suitable. 

Cost is a major factor in deciding on the hardware to be used, 

but the cost of the microprocessor itself is only a small part of 

the total hardware cost. Indeed when considering the development 

costs, unless for high volume production, the cost of the microprocessor 

itself is usually insignificant. The actual microprocessor used has 

however a large indirect effect on the costs, since it determines 



37 

the hardware needed for the system as well as the effort involved 

in developing the programs. The development costs can be divided 

into two main areas, hardware and software. Taking hardware first, 

the existence of compatable families of microcomputer components 

means that the construction of the required hardware configuration 

can be done without an extensive knowledge of digital hardware 

and computer techniques, providing that the constructor uses only 

the family components and that the documentation is adequate. Most 

microcomputer families are incomplete, so that often components 

from other manufacturers and components not specifically designed 

for use with a particular microcomputer are needed to attain the 

required configuration. An alternative to building a microcomputer 

from scratch is to buy a commercially available microcomputer 

system. Most of these systems which range from simple single board 

computers with hexadecimal keyboards and light emitting diode (LED) 

displays, to sophisticated systemswith a visual display unit (VDU) 

and magnetic disc storage, are designed for the hobbies or small 

business markets. The resulting high volumes of sales, especially 

of the single board computers, means that the finished product 

is very competitively priced compared to the cost of the hardware 

components, without even considering the development costs to 

build the hardware. Therefore for the development of a simulation 

system, the most cost effective approach would be to use an available 

microcomputer and extend its hardware as required. However if 

appreciable quantities of systems are to be produced then a 

microcomputer system can be designed to suit the application. 

Another advantage of using available microcomputer boards, apart 
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from not having to design and debug the hardware, is that many of 

them are supplied with monitor programs in ROM or EPROM. Some of 

the newer single board microcomputers even have BASIC interpreters 

in ROM. Most of these microcomputers also have libraries of software 

available either from the manufacturer or independent software 

companies. 

The main microcomputer used in the simulation system was the 

General Instrument Microelectronics CP-1600, which is a 16 bit single 

chip microprocessor. The CP-160039 described in more detail in 

section 3.2.2, was purchased as a complete GIMINI microcomputer 

system. The GIMINI microcomputer was chosen because it offered 

very good value for money at the time, when a limited budget was 

available. The GIMINI also has the advantages that all the system 

software was provided with the microcomputer, as well as local 

technical backup being available. The CP-1600 is an NMOS (N-channel 

MOS) single chip device and, with its regular architecture modelled 

on that of the PDP-11, its features were indicative of the trends 

in microprocessor evolution. Therefore the results and experience 

gained with the CP-1600 would be useful in considering future 

microprocessors. These trends have certainly continued with the 

introduction of the Z8000 and M68000 which employ very regular 

architectures with general purpose register sets. At the same 

time a smaller 8 bit microcomputer system was built to compare with 

the capabilities of the 16 bit machine. This microcomputer used 

a Motorola M6800 microprocessor and was based on their D1 development 

board. Later on in the project another small microcomputer was 

built, and this used the 8 bit Z-80. The later system was based 
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on the NASCOM-1 single board microcomputer which was designed for 

the hobbies market. 

The tasks to be performed by a microprocessor in running a 

simulation system can often be reduced by extra hardware, such as 

a floating point processor, or additional microprocessors for input 

and output or parallel processing. If floating point hardware is 

used then a large portion of the arithmetic requirement is removed. 

Intelligent input/output devices and peripherals reduce the 

need for input and output lines from the main microprocessor as 

well as freeing it from most of the input and output control tasks, 

this results in a speeding up of the system's operation. Any 

interactive simulation system could be divided into the three main 

activity areas of,user interfacing, data handling for updating and 

using models, and calculations required for a simulation run. For 

user interfacing the input/output mechanisms of a microprocessor 

can effect both the hardware complexity and the software overheads. 

All the currently available 8 and 16 bit microprocessors can handle 

the input and output requirements of the simulation system, but the 

interfacing hardware needs to be designed specifically for a 

microprocessor in order to achieve the best efficiency. Data 

handling is an important requirement for the simulation system 

because its structure involves lists and pointers in an address space 

which can be varied according to the complexity of simulation tasks 

to be handled. Therefore address handling with arithmetic 

operations on the addresses over the full address range is required 

together with the ability to indirectly address data from a previously 

calculated address for several levels. The address range required 
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is dependent on the size of data base used, but for the system 

envisaged the address size would preferably be 16 bits which is 

normally the maximum address space of current general purpose 

microprocessors. An efficient subroutine call and return structure 

is an advantage because the program can then easily be divided into 

modules which make it easier to write, change and debug,if the modules 

are suitably written. Floating point arithmetic is used by the 

simulation system, and since no present microprocessors can 

directly perform floating point arithmetic, then special software 

has to be written. Recently hardware, in the form of an auxiliary 

arithmetic processor, has become available for use with microprocessors, 

but is still relatively expensive. This processor would however 

relieve the microprocessor of the actual calaculations, as it would 

then only be required to transfer data to and from the auxiliary 

processor. The simulation system implements its equations in 

reverse Polish form, so therefore requires a separate arithmetic 

stack from that used to hold subroutine return addresses. This 

stack need not be physically separate from the normal stack as long 

as the program can distingui§h which quantity is which. The 

extra computing required to disentangle arithmetic data from return 

addresses would however add to the size of the program as well as 

reducing calculation speed. 

Considering first the 8 bit microprocessors suitable for a 

simulation system. The Intel 808040 was the first of the NMOS 

devices to achieve popularity, and was designed to provide software 

compatability with their preceeding 8008. The Intel 808541 is 

basically an 8080 with hardware improvements including a single 
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supply rail and more interrupts. The Zilog Z-8042 not only has 

software compatibility with the 8080, but also has additional registers, 

including two index registers, and extra instructions. The 

maintenance of upward compatibility from the 8008 has produced rather 

irregular instruction sets for the 8085 and Z-80. This together 

with the lack of certain instruction types, such as direct addition 

from memory to accumulator, means that they are more difficult to 

program than would otherwise be the case. The Zilog Z-80 with its 

much expanded instruction set and extra registers is more suitable 

for this application than either the 8080 or 8085. 

The Motorola M680043 microprocessor has a more regular 

instruction set than the Z-80, including direct arithmetic operations, 

so is therefore easier to program. The 6800 also has the advantage 

of two accumulators, but does not have a set of general purpose 

registers like the 8085 and Z-80. The 6800, while lacking some 

of the Z-80's sophisticated instructions, has the ability to perform 

some operations directly on memory without requiring the use of 

the registers and this can often offset or even outweight the Z-80's 

extra registers. The Z-80 in common with the 8085 has separate 

memory and input/output buses, whereas the 6800 has a combined bus. 

This means that the 6800 performs input/ouput operations in an 

identical fashion to memory references, thus allowing the use of 

it's direct memroy operations. The 8085 does have some input/output 

devices designed to operate as memory, and the only disadvantage of 

this method is that, especially with partial address decoding, the 

maximum memory size is reduced, but with the smallish simulation 

systems envisaged this would not matter. 



42 

The MOS Technology 650244 microprocessor has a very similar 

instruction set to the 6800, but has only one accumulator together 

with extra addressing modes. Whereas the 6800, Z-80 and 8080 

originally became popular through being provided as chip sets and 

sophisticated development systems, the 6502 has become well known 

because of it's use in built up microcomputers like the PET and the 

Superboard. 

The Fairchild F845 seems to be designed primarily for control 

and other low memory requirement applications, as the lack of an on 

chip program counter complicates it's use in memory intensive 

situations. Although the 6800, Z-80, 6502, 8080 and 8085 are the 

most popular 8 bit microcomputers a variety of others are available. 

Some of these are slower like the Signetics 265046 and the General 

Instrument Microelectronics LP8000 whereas others have more 

limited instruction sets like National's SC/MP. This does not 

preclude their use but they may incur speed and programming penalties. 

RCA's COSMAC47 microprocessor is unusual in that it's CMOS technology 

means a low power requirement, and it also has an unusual architecture 

with a set of sixteen 16 bit registers any one of which can be 

defined as a program counter and any other as a data pointer. 

Some of the newer single chip microcomputers are being designed 

to cope with memory intensive applications, and although most are 

designed for high volume and use mask programmed ROM, some are also 

available as prototype versions with either EPROM or no ROM at all. 

If they are based on an existing microprocessor then there is unlikely 

to be any advantage. 

Microprocessors like the Z-80 have some limited 16 bit data 
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handling capabilities which are designed primarily for address 

calculations. The Motorola 6809 is an attempt to bridge the gap 

between 8 and 16 bit microcomputers. The 680948 has the same 

architecture as the 6800 and shares its support devices, but has 

an extra index register and stack pointer together with more 

addressing modes and 16 bit arithmetic including multiplication. 

Sixteen bit single chip microprocessors, because of their 

greater internal complexity, are more difficult to produce and 

consequentially have been slower to appear than the 8 bit machines. 

The General Instrument CP-1600 previously mentioned is modelled on 

the PDP-11 minicomputer but is not software compatable. The 

existence of large amounts of software written for minicomputers, 

and the increasing competition from the microprocessors produced 

by the semiconductor companies, has induced the minicomputer 

manufacturers to produce their own microprocessors which are 

software compatable with their minicomputers. The Texas Instruments 

990049, which has the same instruction set as their 990 minicomputer, 

has an unusual memory to memory architecture with a set of working 

registers being maintained in RAM memroy instead of in the processor 

itself. This means that interrupts can be handled very quickly by 

moving to a new section of memory, but has the disadvantage that 

computation speed is dependent on the speed of the memory which is 

usually slower than internal registers. Digital Equipment Corporations's 

LSI-11 is not a single chip microprocessor but a multiple chip set 

which can use a lot of the software produced for the PDP-11. The 

Intersil IM610050 is a CMOS microprocessor with a 12 bit word length 

and the instruction set of the PDP-8 minicomputer. This means that 
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PDP-8 software can be run on the IM6100, but the programmer is 

limited to the PDP-8's rather primitive instruction set and 

architecture. The instruction set of the Data General Nova 

minicomputer is used for their own Micro Nova as well as 

Fairchilds 940051 microprocessor. The Nova, although not as well 

known in this country as the PDP-11, also has a large software base. 

The use of an existing minicomputer instruction set limits the 

architecture and features which can be added to a new microprocessor, 

and since established minicomputers generally were designed to be 

implemented in either discrete components or small scale integrated 

circuits they are unlikely to make the most efficient use of current 

large scale integration technology. Most semicondcutor manufacturers 

who are not also in the minicomputer business, have opted to design 

their own architectures and instruction sets. Motorola and Zilog 

have made a complete break with their previous 8 bit microcomputers 

in attempts to produce architectures which will serve them for a 

future series of upward and downward compatable microprocessors. 

The Zilog Z800052,53 is a 16 bit microcomputer, in that its 

hardware handles sixteen bits in parallel, but it can handle data 

types of 8, 16, 32 and for some instructions even 64 bits as well 

as single bits. The Z8000 also has sixteen general purpose registers 

which can be used with most instructions as accumulators, data 

storage, index registers, or memory pointers. The Z8000 is 

available in two versions, one has a 40 pin package and can address 

64 kilobytes of memory, and the other has a 48 pin package and 

provides for the use of 128 segments each of 64 k bytes to give 

a total memory space of 8 Me-gabytes. The Z8000 has two modes of 
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operation, each with its own stack pointer. The system mode has 

full control of the microprocessor, but the user mode has a restricted 

instruction set with input/output, interrupts, traps and mode 

changes being prohibited. If any of the prohibited instructions 

are used in user mode, a trap into system mode occurs which returns 

control to program using system mode. While this facility would 

be of no particular use in the presently implemented simulation system, 

any future expansion aimed at providing facilities for user written 

subroutines or procedures could greatly benefit from the protection 

afforded by this facility. 

The architecture of Motorola's M6800054 is designed to be 32 

bits wide but is currently implemented as 16 bits. The M68000 has 

sixteen 32 bit registers, eight of which are designed primarily 

as address registers. Data of 1, 8, 16 and 32 bits can be accessed 

from a memory space of 16 Megabytes. The M68000also has a privileged 

system mode. Some instructions, such as floating point arithmetic, 

are specified in the architecture but not implemented, and when these 

instructions are used a trap occurs which can be used to provide 

software implementations of instructions not implemented in hardware. 

Unlike Z8000 the M68000 does not have multiplexed address and data 

buses, but does therefore have a larger package. 

The Intel 
808655,56 

is a sixteen bit microprocessor which can 

handle quanitities of 1, 8 and 16 bits, and which has eight 16 bit 

general purpose registers. Although most of the instructions can 

use'all the registers, some of the addresssing modes are restricted 

to using certain registers and the multiply and divide instructions 

can only use the accumulator. The 8086 can address one megabyte 
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of memory and has a sophisticated memory segmentation system. The 

8086, unlike the Z8000 and M68000, has been designed to retain 

compatability with the preceeding 8080, although hardware compatabiity 

including interrupts is not maintained. This limited compatability 

may be useful for upgrading previous 8080 programs, but the constraints 

it imposes on the.architecture of the microprocessor, and the 

instruction set together with its mnemonic representation, are a 

disadvantage for writing new programs and could even add to the cost 

of developing new software. 

3.1.2 Memory 

The microcomputer's main memory holds the simulation programs 

together with any required data. Since the simulation program 

developed stores all the simulation model equations and structure 

as data, the actual program remains fixed when in use. While all 

the simulation data has to be held in read-write memory, except for 

fixed data or constants used by the program, the finished program 

could be stored in either read only memory (ROM) or in read-write 

memory which is more commonly called random access memory (RAM). 

Execution of the simulation program needs to be performed for two 

distinct purposes, firstly to develop and debug the program itself 
and secondly to use the program to perform simulation tasks. The 

development of a complex program like the simulation system program 

usually proceeds in a cyclic fashion by first finding that some 

feature of the program does not work, then debugging the'program 

to find the cause, followed by rewriting part of the program to 

correct the fault, then testing the program to find a new fault 
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which was masked by the previous one, and so on until the program 

works properly. For this development the program has to be altered 

both to correct the errors and also, all be it temporarily, to help 

in the debugging itself. For the development phase the program 

will therefore have to be held in RAM. 

Semiconductor RAM is almost exclusively used in microcomputers 

because of its low cost and high speed. RAM memories can be divided 

into two categories, static RAM which retains its information as long 

as power is supplied, and dynamic RAM which has to be refreshed 

every few milliseconds or else the information is lost. Dynamic 

RAM is cheaper than the static type, but normally requires extra 

circuits to perform the refresh, although the Z-80 microprocessor 

has the circuitry built in. Some manufacturers produce pseudostatic 

memories which are dynamic memories complete with refresh circuits 

on chip so that they act like static devices. Some memories have 

power down facilities whereby a small amount of memory can be kept 

active by standby batteries and therefore important information can 

be kept during power down. With CMOS memories, the power required 

by these devices when not being accessed is so small that sizable 

sections of memory can be kept active from small batteries. The 

penalty of CMOS memories are their greater cost, but in some 

systems they may eliminate the need for expensive secondary storage. 

A two kilobyte CMOS memory was implemented for the NASCOM-l based 

system and this had optional write disables so that it could be 

used as an EPROM simulator for the development of the graphics 

program. 

Dynamic memories, and to a lesser extent static memories, 

tend to suffer from occasional errors produced by alpha particles 
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or cosmic radiation, and most large minicomputers and mainframe 

computers employ error correcting codes when using dynamic memories. 

For the simulation system, the error rate for the size of memory 

used will be very low, indeed it is likely to be less than errors 

caused by faulty equations entered by the operator. Some micro- 

processor manufacturers produce memory specifically designed for a 

particular microprocessor, but these tend to be dearer than memory 

devices produced in larger volumes for more general use. These 

generalised memory devices, although they need extra decoding circuitry, 

are usually quite easy to interface providing that they are fast 

enough for the intended microprocessor operating speed. 

ROM is available in a variety of forms for different uses. 

Mask programmed ROM has its information set at manufacture by a mask 

used to deposit an aluminium pattern on the integrated circuit, but 

is only suitable for volume production runs. Programmable read only 

memory (PROM) is programmed after manufacture and can therefore be 

used for one off designs, with the information being set by blowing 

or not blowing fuses with a special PROM programmer device. PROM's 

once programmed cannot be changed, but erasable programmable read 

only memories (EPROMS) can be erased using ultra violet light and 

then reprogrammed. The EPROMS use trapped charge in 14OS devices 

to hold the information, which can be retained for many hundreds of 

years. Some other reprogramrnable memories are available but offer 

no advantages for the simulation system and have higher costs. 

The current development rate of 'semiconductor memories and 

their competitive pricing means that memory costs have fallen 

dramatically in the last few years, thus changing the balance of 
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hardware to software costs. This means that a greater program size 

can be tolerated if it cuts down the development cost of the software. 

3.1.3 Secondary Storage 

Secondary storage can provide non-volatile storage for large 

amounts of programs and data, at a lower cost per bit than main or 

primary memory. The low cost per bit is achieved mainly by the 

sequential nature of the secondary storage devices, this means that 

the read write electronics are for the most part independent of the 

amount of data stored and the data itself is stored on a low cost 

medium such as plastic with a magnetic coating. 

For the simulation system developed in this project the main 

contender on the grounds of cost alone is the audio cassette 

recorder. In order to provide a reasonably short load up time for 

a RAM only microcomputer a data rate of at least 1200 baud would be 

needed. If the simulation system program was in ROM or EPROM then 

the lower 300 baud could be used for reloading just the simulation 

model data. The digital mini-cassette, with its facility for total 

computer control of the cassette drive, would be a contender for a 

more professional system. An extended simulation system with result 

storage and additional data processing programs could use floppy 

discs or bubble memories. The usefulness of the bubble memories is 

very dependent on the pricing of these memory systems, but they should 

prove cheaper than mini floppy discs for small quantities of storage. 

Although the mini floppy is slower than the standard one its lower 

cost would make it preferable, even if the required secondary storage 

capacity was greater than could be held in one minifloppy, as it 
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would be advantageous and only fractionally more expensive to use 

two minifloppys instead of astandard drive. The two drives would 

make it much easier to copy discs and thus provide backup copies 

for use in the event of disc failure, since floppy discs only have 

a limited life span in use. 

3.1.4 Input and Output Devices 

The full benefit of an interactive simulation system can only 

be obtained if the input and output facilities are easy to understand 

add use. Therefore control dialogue must be as unambiguous and 

informative as possible bearing in mind the constraints of the 

microcomputer system itself. Presentation of the results is very 

important and a visual presentation in graphic form would be very 

desirable. 

There are two distinct areas of use for input and output 

devices, which are system program development and simulation system 

use. During program development editors and assemblers will be 

used so full alphanumeric input and output is required, with hard 

copy being almost essential. The situation is rather different 

when the simulation system is actually being used, since additional 

input and output devices could usefully be employed. Considering 

first the simulation system output, the user has to be guided through 

the sequences required to set up the simulation problem as well having 

feedback from the microcomputer on the progress of each piece of 

command dialogue.' Other output requirements are to display the 

simulation results in numerical and graphic forms. 
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The inputs required when using the simulation consist of commands, 

equations and numerical values. The alphanumeric keyboard is 

probably the most versatile input device available, and for a minimum 

system configuration is the only human input device needed. 

Ideally during command dialogue the microcomputer should provide 

as much information as possible to enable the user to fully 

operate the simulation system without having to remember all the command 

names and control sequences. A fairly high data output rate is 

therefore preferable to prevent annoying delays. Visual display 

units (VDU's) can provide high data rates, often up to 96,000 baud, 

and can also simultaneously display several lines of information. 

Commercial visual display units (VDU's) including keyboards can be 

obtained for about £500, but more restricted VDU's produced for the 

hobbies computer market are considerably cheaper. 

While a VDU with its high speed is ideal for setting up a 

simulation task, final results of a simulation would be more useful 

in a permanent hard copy form. A tabulated numerical printout 

would provide the most accurate output, but for most applications 

a graphic output would be preferable. 

Alphanumeric VDU's and printers can be used to provide very 

low resolution graphics using standard characters, and this 

graphic capability can be extended by using a graphics character 

ROM, where the space taken up by an alphanumeric character is 

subdivided to enable higher resolutions to be obtained. Using a 

3 by 2 subdivision on a low cost display such as the NASCOM-1 gives 

a resolution of about 48 vertical points and 96 horizontal points, 

and this would be sufficient resolution for a rough check 
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of the model. Much higher resolution can be obtained by storing 

individual points of the raster display which can be produced either 

on a video monitor in a similar way to alphanumerics, or on an 

oscilloscope (CR0) using high speed digital to analogue converters to 

produce the raster in the same way as McLennen57. Storing 

individual points requires a large amount of storage for high 

resolutions, for example a 256 by 256 display would need 64k bits 

of memory. An alternative which was finally chosen for the simulation 

system is to draw the graphic output directly from the microcomputer 

either to an X-Y plotter or to an oscilloscope. The hardware 

is very cheap as most of the work is done by a microprocessor which 

is used as a peripheral Of the main simulation microprocessor. 

The Z80 used in the simulation system can draw four graphs each 

of 256 points sequentially on an oscilloscope and still produce 

a flicker free picture with a refresh rate of over 30 frames a 

second. Since this display is software controlled, different 

display formats can be chosen with data being stored only for the 

actual points needing displayed. The direct output can also be 

used to drive an X-Y plotter simply by slowing the display rate 

down and eliminating the refresh. Hard copy can be obtained 

from the oscilloscope simply by using a camera such as a simple 

polaroid hand held instant camera. 

3.2 System Hardware 

3.2.1 General Description 

The initial simulation system programs were developed using 

the GIMINI microcomputer alone,. but later versions used the full 
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system including the NASCOM-l microcomputer and extra hardware. 

Figure 3.1 shows the total simulation system as it was used, with 

the exception of the LAN display oscilloscope, and figure 3.2 gives 

the block diagram of the total system. The GIMINI microcomputer 

consists of a card frame with four cards, processor, memory, monitor, 

and input/output. The processor card contains the General Instrument 

Microelectronics CP 1600 microprocessor together with clock circuits 

and buffering. The memory card has 8k by 16 bit words of dynamic 

RAM memory together with the refresh circuits. One problem with 

this card is that the refresh circuits are driven by the signals from 

the microprocessor, therefore if the microprocessor halts, the 

refreshing is stopped causing loss of data. The input/output card 

provides both a slow speed asynchronous serial interface for a 

teletype, and a higher speed parallel interface for a paper tape 

punch and reader. A Fortronics optical reader was used, but no 

punch was available so the slow speed teletype punch had to be used. 

The monitor card contains software for the teletype based operation 

of the GIMINI as well as software and hardware to operate the front 

control panel, which contrary to appearances is not hardware operated, 

but software operated and thus able to cope with the dynamic memory. 

The monitor provides hexadecimal debugging facilities, a relocating 

loader, and some input and output utility routines. 

The NASCOM-1 is a single board microcomputer which uses a 

Mostek Z80 microprocessor. The NASCOM-1 has 2k bytes of static RAM 

memory, half of which is used for a memory mapped visual display. 

The display provides 16 lines of 48 characters which can either 

drive a video monitor or, with the on-board UHF modulator, a 
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standard 625 line television set. A software polled alphanumeric 

keyboard is used and the monitor provides debugging facilities, input 

and output utilities, and a memory dump and load facility. The 

UART can be used to dump the data serially to an audio cassette 

recorder, or an asynchronous terminal such as a teleprinter. The 

NASCOM-1 hardware and software manual58 gives further details of the 

hardware operation and the monitor program. The Series 1600 system 

documatation39 gives details of the hardware and software of the 

GIMINI microcomputer. 

Extra hardware was designed and constructed to extend the 

capabilities of the NASCOM-1 and provide a link between the two 

microcomputers. The parallel link utilizes handshaking techniques 

and is designed specifically for master-slave operation in the 

simulation system. Two 8 bit D/A's are used to provide a refreshed 

graphics display on an oscilloscope. The 2k byte CMOS RAM memory 

has battery backup and can be write protected to provide an ROM 

simulator for program development. A floating point processor was 

also interfaced, but insufficient time was available to integrate 

its operation into the simulation system. An uncommitted peripheral 

input output device (PIO) was also included for future extension such 

as direct analogue data input using an analogue to digital converter. 

3.2.2 Microprocessors 

The General Instrument Microelectronics CP 1600 microprocessor 

is a 16 bit single chip device which has a combined memory and 

input/output address space of 64k words. Since all the registers 

including the program counter (R7) can use all the CP 1600's 
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arithmetic and addressing modes, an unusual and powerful set of branch 

and jump instructions can be achieved. The Series 1600 system 

documentation 39 gives the instruction set of the CP 1600, and 

operations can either be on one register, between registers, or 

between memory and a register. The 5 addressing modes used are: 

register, direct, register indirect, relative, and immediate. 

Any register can be used for single register operations, with the 

exception that shifts and rotates can only be performed on registers 

0 to 3. The direct address is normally a full 16 bits, but can be 

reduced to 10 bits if full width memory is not used. The 10 bit 

wide instructions combined with the CP 1600's ability to handle 

16 bit data as two bytes means that programs can often be stored 

in 10 bit wide memory. Register indirect means that the contents 

of a register can be used as a 16 bit address. RO cannot be used 

for indirection as these particular codes are used for direct 

addressing. Immediate addressing is achieved by using register 

indirect with the program counter R7. R6 can be used as a stack pointer 

and registers R4 and R5 can be used as autoincrementing data pointers 

with the register indirect mode. The subroutine call structure is 

unusual for a microprocessor because it does not use a stack. 

When .a subroutine is called the return address is stored in one of 

three registers R4, R5, or R6 depending on the instruction used, and 

when a return from subroutine is required the return address is simply 

moved from the storage register to R7. One of the benefits of this 

subroutine call system is that passing parameters to subroutines 

is very easy since the address storage registers are autoincrementing. 

The branch instructions using relative addressing provide a full 
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16 bit displacement together with a sign bit to enable jumps between 

any two points in the 64k word address space. As well as conditional 

branches on the state of internal flags set by preceeding instructions, 

the CP 1600 can al§o perform conditional branches on the state of 

16 external flags. Direct memory access and both maskable and non- 

maskable vectored interrupts are provided, with provision for daisy 

chaining the interrupts to provide a priority structure. 

The Mostek Z80 is a second sourced version of Zilog's Z80 

single chip 8 bit microprocessor. Unlike the CP 1600, the Z80 has 

separate memory and input/output address spaces, with 64k bytes of 

memory and 256 input or output ports available. Most Z80 arithmetic 

or logical operations require the use of the single 8 bit accumulator, 

but the main and alternate register sets can be swapped to provide 

a fast interrupt response. The general purpose registers are 

mostly used as single 8 bit or double 16 bit registers for temporary 

storage or addressing. Sixteen bit registers are provided for a 

program counter, a stack pointer, and two index registers. The 

interrupt vector register supplies the top 8 bits of the interrupt 

vector if used, with the bottom 

device itself. Dynamic memory 

additional hardware because the 

provide the addresses necessary 

The interrupt system of the Z80 

The non-maskable interrupt line 

8 bits being provided by the interrupting 

can be supported by the Z80 without 

Z80 uses the refresh register to 

to periodically refresh the memory. 

is more complex than the CP 1600. 

provides a jump to a fixed address 

at the bottom of memory, but the maskable interrupt line as well as 

jumping to another fixed address has two other modes of operation. 

In addition to the vectored interrupt previously mentioned, the 
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maskable interrupt can operate by accepting a restart code from 

the interrupting device and then implementing that instruction as if 
it was in a program step. The relative addressing mode is used for 

conditional branches over a short range because only 8 bits are 

used to give a displacement of +127 to -128. The register indirect 

addressing mode uses pairs of general purpose registers to provide 

the address for data transfer. Indexed addressing for the Z80 

is an extension of register indirect whereby a 8 bit two's complement 

displacement is added to either index register to give the required 

data address. In addition to the normal range of operations expected 

for a microcomputer, the Z80 also provides for manipulation of 

individual bits as well as providing some useful block search and 

transfer instructions. 

While input and output can be performed by simple 3-state 

buffers and latches, full use of the Z80's interrupt structure can 

be obtained by using interface devices designed specifically to 

operate with the Z80. The PIO, which stands for parallel input/ 

output, is a programmable input/output device which provides 2 

ports each of 8 input/output lines, 2 handshake lines, and interrupt 

control circuits. There are four modes of operation for the PIO 

ports all of which have been designed to use interrupts. The 

ports can be used independently as either latched inputs or outputs 

with handshaking signals for the external interfaced device. The 

PIO does not contain any microprocessor readable flags indicating 

the condition of the handshake lines so'the PIO's vectored interrupts 

have to be used. Another available mode is the bit mode in which 

the individual bits of a port can be set either to be inputs or 
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outputs. This mode does not use handshaking signals but does provide 

an interrupt facility using extra mask registers in the PIO which 

generate an interrupt when a specific bit pattern appears at the 

port. The final mode is only available on one port with the other 

in bit mode, and provides bidirectional data transfer with independent 

handshake signals. Both pairs of handshake lines are used in this 

mode to allow the bidirectional data transfer with both vectored 

interrupts being used, one for data input, and one for data output. 

A PIO operating in bidirectional mode is used in the link circuitry 

between the two microcomputers, and here the second port operating 

in bit mode is used to provide software controlled flags for communication 

between the two microcomputers. PIO's can be daisy chained to provide 

a priority interrupt structure, up to 4 without any extra circuitry. 

An unusual feature of the Z80 is that, unlike the CP 1600, it does 

not issue an end of interrupt signal, so the PIO decodes the return 

from interrupt instruction itself. 

3.2.3 CMOS Memory 

The 2k byte CMOS memory board whose circuit diagram is shown 

in figure 3.3 was designed to provide non-volatile storage of data 

and programs. The memory is organised as two blocks each of 1k 

bytes either of which can be write disabled to simulate EPROM or 

ROM. Each block consists of 8 Intersil IM6508C (lk by 1 bit) CMOS 

RAM memories with battery backup provided by rechargeable nickel- 

cadmium batteries. This board was originally designed to work 

with a Motorola M6800 microprocessor running at 1 MHz clock rate, 

but was used unmodified for the Z80 with a 2 MHz clock. While the 
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IM6508C is fast enough to work with the Z80, it is not fast enough 

to work directly with the M6800 at 1 MHz because of the normal 

addressing method used by the M6800. Rather than slowing down 

the M6800, or using dearer memories, it was decided to add extra 

circuitry to alter the addressing method since the cycle time of 

the memory was actually less than minimum time between memory accesses 

by the microprocessor. The read timing was met by activating 

the memory select lines (ASTR or BSTR) in advance of the normal 

M6800 memory strobe. The write timing was met by stretching the 

memory select signals and latching the data into the two 74LS75 latches 

on the memory board. The normal M6800 memory write signals are used 

to provide the DINE latch pulse. The 3-state outputs of the memories 

do not have suitable timing for direct connection to the microcomputer's 

bus, so two 74125 quad 3-state drivers are used to drive the data bus 

during read operations. Schottky TTL devices are used to drive the 

address and data lines, because their outputs are effectively low when 

they are unpowered and therefore reduce any possible interference. 

The strobe and write lines are standard TTL with additional 5k pull-up 

resistors which hold these lines high in a power down mode, since 

they are connected to the battery backup circuits unlike the latches 

and 3-state buffers. The switches allow either the complete access 

or just the write access to be disabled for each memory block. The 

battery backup circuit is the same as described by Intersil50 and 

the 500 mAh batteries used can keep the memory data intact for at 

least a month. When used with the Z80 microprocessor, no special 

timing considerations are required, and the connections to the memory 

board are a 10 and a 20 way strip connector which was found to be 

more reliable than the single sided VERO edge connectors previously 

tried. 
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3.2.4 Arithmetic Processor 

The arithmetic board shown in figure 3.4 used the Advanced Micro 

Devices Am9511 single chip floating point processor. The Am9511 

provides 32 bit floating point arithmetic complete with trigometric 

and logarithmic functions. This unit also performs 16 and 32 bit 

integer arithmetic. The arithmetic processor is stack based and is 

operated by first writing all the required data for a calculation to 

the processors internal stack in 8 bit bytes, and then writing the 

required arithmetic command to the processor which will then perform 

the calculation. The microprocessor can detect the end of a 

calculation either by reading a status word in the Am9511 or by a 

hardware interrupt if implemented. Since the Z80 was already being 

interrupt driven by the CP 1600, software monitoring of the calculations 

was chosen. The maximum time required for floating point operations 

varies between 84 us for a multiply and 4.6 ms for X to the power Y. 

Results are retrieved by reading the internal stack of the processor, 

again in bytes. When the AM9511 is not ready to transfer data, 

including status information and commands, it issues a wait signal 

to halt the Z80's memory access until the arithmetic processor is 

ready. 

The read and write signals to the AM9511 are straightforward, 

with the wait signal operating in the normal fashion for a Z80 

system. A reset signal derived' from the master reset is used to 

ensure that the processor is idle until a command has been issued. 

One peculiarity of the AM9511 not mentioned in the data sheet is 

that the chip select must be used since the select pulses are used 

to reset internal circuitry. The timing of the chip select is 
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Figure 3.4 Arithmetic Board 
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unsuitable for using the Z80's normal IOREQ signal. The solution 

was to decode the port address whether it was valid or not and use 

this for the chip select. The occasional chip selects without any 

data transfer have no detrimental effect on the performance of the 

arithmetic processor. 

3.2.5 NASCOM-1 Extender 

The Extender circuit shown in figure 3.5 provides the buffering 

and decoding required to operate the additional memory and peripheral 

devices. The address lines are buffered by IC's 1 to 4 and the 

data lines by the 3-state bus transievers IC 8 and 9. To avoid 

contention on the main microprocessor bus, the 3-state buffers always 

drive into the extender except when the microprocessor requires to 

read data from either.the memory, the arithmetic processor, or a PIO. 

Note that not only does the microprocessor read data from the PIO's, 

it also reads the interrupt vectors when an interrupt request is made. 

The NASCOM-l's internal decoding has to be disabled to allow extension, 

so two decoded signals MEXT and IOEXT are returned to the NASCOM-1 

to operate its internal memory and input/output. Figure 3.6 gives 

the memory map for the expanded Z80 system and figure 3.7 gives the 

input/output map. To ease future expansion, full decoding is used 

for memory. The extender PIO's are daisy chained to give interrupt 

priorities, but since no access is given to the daisy chain signals 

of the PIO on the NASCOM-1, it was removed. The arithmetic processor 

is considered to be an input/output device since there is no speed 

advantage in using it as a memory mapped device. The access time 

of the arithmetic processor is at least as long as the Z80's 

input/output cycle with its automatic extra wait state. 
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Memory Address in Hexadecimal flotation 

17FF 
lk B memory 

1400 
CMOS memory on extender 

13FF1 
lk A memory 1000 J 

OFFF 1 user RA1 
OC50 

j 

lk RADI 
OC4F] 

NASBUG RAM 
0000 
OBFF 

lk video RAM NASCOM-1 internal memory 
0800 
07FF 

EPROI.I socket 04001 
03FF 1 

P:ASBUG monitor EPROM 0000 

Figure 3.6 Memory Address Map 

Address of Port in Hexadecimal Notation 

13] 
not used 

121 
11 dat a 
10 command/status 
OF B control port 
OE A control port 
OD B data port 
OC A data port 
OB B control port 
OA A control port 
09 B data port 
08 A data port 
07 B control port 
06 A control port 
05 B data port 
04 A data port 

03 not used 
02 status 

UART 01 data 
00 keyboard 

arithmetic processor 

PIO 3, spare (IC 17) 

PIO 2, DA's (IC 16) 

PIO 1y link (IC 15) 

extender ports 

NASCON-1 ports 

Figure 3.7 Input/Output Address Map 
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All the control signals used by the extender card are buffered 

to avoid loading the Z80. Full input/output decoding is 

not provided but the input/output devices used have mutually exclusive 

addresses. 

3.2.6 Link Circuit 

The link circuit which provides the communication between the 

two microcomputers was constructed on two small circuit boards which 

plug into one of the card positions in the GIMINI card frame. 

Figure 3.8 shows the link data board which provides 3-state 

buffering between the GIMINI's data bus and PIO 1 of the extended 

NASCOM-1. IC 1 and 2 are 3-state buffers for the bidirectional data 

transfer to the PIO A port. Data transfers are performed by read 

and write operations of the CP 1600 with the data for both directions 

being latched in the PIO. The ZTC signal enables data from the 

PIO onto the GIMINI's data bus and also causes the A ready line to 

be cleared and an output interrupt request to be issued. The IrTZ 

signal gates data from the GIMINI data bus to the PIO and latches it, 
this signal also clears the B ready flag and issues and interrupt 

request. The two ready flags together with a master software 

controlled 'Z80 ready' flag are fed to the CP 1600's external flag 

intputs so that software conditional branches can be used to perform 

the CP 1600's part of the handshaking control. Four other data 

lines from the CP 1600 are fed to the PIO B port, which is in the 

bit control mode, and these data bits are used to specify the type 

of operation the Z80 is required to perform with the supplied data. 

The further 4 data lines latched from the CP 1600 and 3 from the PIO 



69 
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are uncommitted and can be used for other purposes. The link control 

board shown in figure 3.9 provides the address decoding and control 

signals for data transfer. The D and DWG signals are the GIMINI 

microcomputers read and write pulses respectively. 

3.2.7 Analogue Output 

The digital to analogue board shown in figure 3.10 contains 

two 8 bit digital to analogue converters (D/A's) to provide a 

graphic output on an oscilloscope or an X-Y plotter. Two Ferranti 

ZN425E D/A's buffered with ZN 424 operational amplifiers were used, 

and although these are low cost devices they are fast enough to cope 

with the maximum output speed of the Z80, which with a 2 MHz clock, 

is about 5.5 us per output byte. The D/A's work off +5v supplies, 

and were set up to provide an output range of 0 to 3.5v. A 74123 

retrigerrable monostable is used to blank the display so that the 

oscilloscope tube does not get burned when the display is stationary. 

The TTL output level of the monostable is sufficient to operate the 

Z-axis modulation of the LAN display oscilloscope normally used with 

the simulation system. Other scopes would probably need buffers 

to produce suitable Z modulation signals. Although the analogue 

output board is driven for convenience by a PIO, straightforward 

latches would be sufficient. 

3.3 System Software 

3.3.1 Program Development 

After the initial structure of the simulation system program 

was designed, a trial version of the program was written in the 
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Figure 3.10 Digital to Analogue Board 
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high level language IMP59 on a large ICL 4-75 mainframe computer 

which had the EMAS60 multiaccess operating system. Since the 

simulation system program was designed to be highly modular, the 

structure of the linkages between the modules forms a most important 

part of the program. The high level program validated the program 

structure and provided some useful information on the use of control 

dialogue with a scrolled VDU. Since the program structure was 

retained, the modules of the program which were implemented as 

subroutines could be rewritten individually to perform the same 

functions. Changes had to be made in individual subroutines to 

take account of the different input and output procedures as well 

as the need to use an explicit floating point arithmetic package. 

This version of the program was written for the GIMINI microcomputer 

in a mixture of CP 1600 assembly language39 and CP 1600 superassembly 

language61. Because of the more direct access available to the 

microcomputers memory, changes were also made to the array storage, 

parameter passing, and text strings to enable more efficient use 

to be made of the microcomputers more limited memory and execution 

speed. In general the higher levels of the program had a high 

percentage of super assembly statements, with the ratio decreasing 

until the lowest levels of the program were almost pure assembly 

language statements. 

The program was then subjected to continued development with more 

features being added and improvements being made to existing 

subroutines. The 8K word size of the microcomputer memory exerted 

a severe constraint on the program size, and in order to get even 

the program let alone the simulation data into the memory, the program 
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had to be considerably compressed. The program size was reduced in 

a variety of ways, mainly by reorganising data storage and rewriting 

subroutines. For ease of implementation, the text strings used 

for microcomputer dialogue were originally held with one byte per 

16 bit word and terminated by a zero word, but this was changed to 

storing two characters per word. While replacing high level 

statements with assembly language ones makes the program considerably 

harder to understand, the greater use of the CP 1600's register set 

enables considerable savings to be made in memory requirements and 

execution time. The debugging aids used in developing the micro- 

computer program were very primitive compared to those of a large 

computer system, so initially almost every subroutine had its own 

set of variables which greatly aided debugging and extension of the 

program. However in the later stages of development, when each new 

version of the program was a modification of the previous version, 

the variables used were rationalised to free extra space. Changes 

were also made to the organisation of some of the subroutines so that 

advantageous use could be made of the CP 1600's instruction set. 

One feature used to good effect in saving memory space was the 

CP 1600's ability to manipulate the contents of the program counter. 

The main savings obtained by this facility were in the command 

subroutines where the yes or no decisions and dialogue were performed 

by a subroutine which could return conditionally to differing points 

in the program. The present SIMUPROG V3 with data storage and floating 

point software uses the entire 8K word memory. 

Since the CP 1600 super assembler used to translate the SIMUPROG 

programs can only handle about 180 symbols with the present memory, 
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the program had to be broken down into 5 segments not including the 

floating point arithmetic subroutines. The resulting object code 

modules, together with the floating point software, was linked 

together to form one object program tape by the object module linker39. 

The object module linker resolves the global references between 

modules, and this enables the individual modules to be written and 

assembled separately. The source programs, consisting of assembler 

and super asssembler statements, are created using the GIMINI's text 

editor39. The size of the GIMINI's memory limits the amount of text 

that can be stored in memory by the text editor, so the source code 

for the simulation program modules had to be subdivided into segments 

which could be handled by the text editor. All the programs used 

to produce SIMUPROG ran on the GIMINI microcomputer itself. 

The programs for the NASCOM-1 microcomputer were hand coded 

into machine code for use, but a listing was produced later on a 

Zilog development system. This development system was disc based 

and had no other loading facilities so a source code program was 

retrospectively written from the debugged machine code program and 

typed into the Zilog development system. The machine code program 

was entered as hexadecimal digits into the NASCOM-1 microcomputers 

memory using the systems NASBUG monitor. 

Handling the various text segments on paper tape was very time 

consuming, especially since only the slow speed teletype punch was 

available. The punch proved to be unreliable and had great difficulty 

in producing an error free object program and even produced errors 

in the shorter source and object programs of the individual modules. 

While these tapes sometimes had to be repunched, it was often possible 
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to correct the tape by splicing parts of two or more versions together. 

Printing out a listing of the program modules was done by the super 

assembler and was also time consuming, but if major changes were made 

to the program the listings are essential to keep track of the program 

development and debugging. 

The super assembler is a two pass assembler, this means that 

the source program is read twice by the assembler to produce the 

object code tape. The first pass creates a symbol table which 

contains all the labels and variable names including arrays and 

external references, and the second pass uses the table to resolve 

the jumps and memory accesses and so produce a relocatable object 

program tape. The second pass has to be repeated to produce a 

listing since the teletype was used for both printing text and punching 

object code paper tape. 

The facilities provided by the super assembler include sub- 

routine calls with parameters, conditional jumps, assignment statements 

with 16 bit integer arithmetic, single dimensional arrays, repe%titive 

loops and conditional program blocks. The loops are similar to those 

used by FORTRAN and can be controlled either by counting a variable 

or checking that a condition holds. With the version of the 

assembler available, these DO loops could only be nested to a depth 

of two so when more nested repetative loops were needed, they either 

had to be explicitly written in assembly language or incorporated 

into a subroutine which is called within a loop. The conditional 

blocks are similar to those of ALGOL and are either of the IF-THEN 

or IF-THEN-ELSE forms, but cannot be nested. Any nested conditions 

required can be implemented by using IF-GOTO conditional jumps 
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inside a conditional block. Since the super assembler was written 

specially for the CP 1600 architecture, the high level statements 

are very efficient for memory to memory operation so the savings 

achieved by using pure assembly code derive mainly from the greater 

and more efficient use of the CP 1600's general purpose register 

set. 

3.3.2 Program Debugging Aids 

The GIMINI microcomputer has only a small operating system, 

stored in read only memory, which provides facilities for loading 

and dumping programs, utility subroutines, memory access capability 

and simple machine code monitor. Paper tapes produced by the CP 1600 

assemblers are loaded using the relocating loader in the operating 

system firmware, but program modules with external references cannot 

be loaded so either they have to be linked into one self contained 

object tape by the object module linker or loaded using the relocating 

linking loader39 which is supplied on paper tape. Since the relocating 

linking loader has to reside in memory, it restricts the size of 

program which can be loaded. The program dump is only a copy 

of the memory contents and is therefore an absolute object program 

since it cannot be relocated or moved to-another position in memory. 

The utility subroutines provided input and output facilities for the 

high speed tape reader as well as the teletype. 

The monitor program, as well as providing facilities for 

inspecting and modifying the contents of memory addresses, also 

provides up to 8 breakpoints and a single stepping facility. The 

breakpoints and single stepping are software controlled, and as 
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such can only be used with RAM memory. The instructions where 

breakpoints are set have their own instruction codes replaced by 

software interrupt instructions so that when an active breakpoint 

is reached in a program, control is returned to the monitor by the 

software interrupt instruction. The monitor keeps track of the 

breakpoints so that they are transparent to the user which means 

that when the memory location is accessed, it is the original 

instruction which is read not the software interrupt. Care has 

to be taken, when a program has been exited at a breakpoint, 

to ensure that the breakpoints are removed so that no software 

interrupts are left when the program is re-run from the start. 

The single step facility operates by temporarily inserting a 

breakpoint just ahead of the instruction to be single stepped. 

Both breakpoints and single step operations store the contents of 

the microprocessors registers so that they can be read and even 

altered before continuing the program. 

Debugging was occasionally made more time consuming by the 

fact that the contents of the dynamic RAM memory were lost if the 

microprocessor stopped., Since the HALT instruction code for the 

CP 1600 is all zero's, any fault causing a jump outside the program 

code area of memory is likely to encounter a halt instruction. When 

the program is lost due to a spurious halt instruction, no indication 

is left of the originfof the fault. The procedure used when this 

happened was to attempt to deduce approximately which area of the 

simulation system program the fault was in, then divide that area up 

using the breakpoints. By proceeding from breakpoint to breakpoint, 

the position of the fault can be narrowed down. This process can 
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be repeated for smaller segments until either the fault is found 

from examining the program listing or a small area of program can 

be single stepped to find the fault. 

Each superassembly statement used generates several machine 

code instructions, and although an expanded listing can be generated 

by the assembler it takes considerably longer to printout and is 

more difficult to follow. This means that debugging at a machine 

code level is difficult without an expanded listing, so it was 

found that the best way normally to find a fault, if it does not 

crash the program, is to feed into the program a variety of inputs 

designed to highlight how a particular fault is operating. By 

examining the program in conjunction with test results and by 

using strategically placed breakpoints to allow examination of the 

variables held in memory, the actual behaviour of the program can be 

found and the fault corrected. Most of the faults found in the 

simulation system programs were typing or transcription errors and 

these were usually found simply by examining the program listing when 

the area of the fault had been narrowed down by examining the inter- 

active responses of the program. Testing and verifying the programs 

was an iterative task since one fault could easily bypass several 

otherswhich would only appear when the initial fault was corrected. 

The modular structure of the simulation system program was extremely 

valuable in fault finding because it makes isolating the component 

parts of the program much easier. An example of this is the 

equation translation, where separate subroutines are used to store 

and retrieve equations from a common data area. Here if the output 

did not correspond to the input, the program could be stopped after 
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data input and the data area examined using the monitor. This 

procedure checks the input operation independently, and by using the 

monitor to set up data in the data area the output operation can 

be checked even if the input is not working. 

The programs used for the NASCOM-1 microcomputer were much 

simpler than the main simulation progran, so it was possible to 

hand code them directly into Z80 machine code which was entered 

into the NASCOM-1 by the NASBUG monitor. The NASBUG monitor uses 

hexadecimal notation unlike the GIMINI's monitor which uses octal. 

The NASBUG monitor which is stored in EPROM also has single stepping, 

but has only one breakpoint which is again software implemented. 

The NASBUG monitor lacks sophisticated loaders but instead has 

facilities for loading and dumping memory using a domestic audio 

cassette recorder. The Z80 program was intimately linked with the 

hardware and made extensive use of interrupts, so the breakpoint 

and single step were used for fault finding together with a logic 

analyser for checking the hardware responses. 

3.3.3 Floating Point Package 

A floating point arithmetic package62 was supplied for the 

CP 1600 microprocessor. A 32 bit floating point representation is 

used with a 23 bit mantissa, an eight bit binary exponent, and an 

overall sign bit. The mantissa is usually normalised to preserve 

accuracy and is a fraction of one. The exponent is held in excess 

128 notation so that subtracting 128 from the value gives the power 

of two which the mantissa is multiplied by. The arithmetic 

operations provided by the package were addition, subtraction, 
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multiplication, division and square root. Also provided was fixed 

point decimal input and output routines as well as conversion routines 

between floating point and 16 bit 2's complement integer notation 

Unfortunately the floating point package contained several 

errors which produced results varying from slightly inaccurate to 

absurd. Most of the routines had to be modified to produce 

acceptable results. The resulting software has been extensively 

tested and proved satisfactory. The accuracy of the addition and 

subtraction was doubled, but since these calculations still used 

truncation rather than rounding a further increase in accuracy 

could be expected if rounding was adopted. 
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4. MICROCOMPUTER SIMULATION SYSTEM 

4.1. Overview 

The microcomputer simulation system program described in this 

section was designed to provide an interactive system for entering and 

running simulation equations on a relatively small microcomputer system. 

The simulation system was designed to be both easy to use and forgiving, 

with facilities to lead the user through certain operations and to 

allow recovery from user error with the minimum effort. The program was 

also designed to use the microcomputer's limited memory and computing 

power efficiently for calculation and display. This was done by 

designing the program to make efficient use of the architecture of the 

CP 1600 microprocessor as well as the special hardware involved with 

the Z 80 microprocessor used for displaying results. 

The GIMINI microcomputer used for this implementation contained 

8 k words of user RAM memory a well as a simple octal monitor program. 

Since this microcomputer has no operating system with fast secondary 

storage, the program had to be self contained so that it could be 

loaded complete in one go using the GIMINI's paper tape loader. It 

was also desirable for the program to be easily extendable. These 

aims were achieved by storing the equations set, together with any 

other quantities which would need to be changed for a given simulation 

task, as data. The entering, displaying and changing of the data 

specifying a simulation task is performed by interactive subroutines 

operating on the stored data. Even running the simulation problem is 

achieved by another subroutine which interacts with the data input 

device and display. These subroutines are invoked by interactively 

entering commands. Since the system had to be flexible in the types, 

size and number of equations stored, and also as fast as possible in 
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execution, a precoded form of reverse Polish notation was used to 

store the equations in a matrix. Thus the calculation of the 

equations uses a stack and a set of arithmetic subroutines which 

operate on that stack. Since the simulation system was designed for 

use by people with little or no programming experience, the equation 

entry subroutines contain a translator which converts the more 

common algebraic equation form into the reverse Polish form. Having 

all the commands as individual subroutines has several advantages. 

Each subroutine can be written separately, which makes them easier 

to develop and debug as well as easing the problems encountered in 

translating the program for another microcomputer. Additonal 

subroutines can be easily added to expand the simulation system 

facilities. 

The microcomputer simulation system program consists of four 

main parts, the command level, the database, the command subroutines 

and the utility subroutines. The command level interacts with the 

user to select the required command and command subroutines perform 

the actions of the individual commands on the database, which in 

turn contains all the information about the simulation model and 

running conditions. The utility subroutines provide basic 

facilities, such as input/output and floating point arithmetic, for 

the command subroutines. The input and output utility subroutines 

make use of the GIMINI monitor's own input and output facilities. 

The program and data presently runs in RAM memory, but can easily 

be changed to operate in ROM or EPROM memory with RAM memory only 

for the database and other variables. This would have the advantage 

of not needing reloading when the microcomputer is switched on. 
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The SIMUPROG V3 program together with the floating point 

package forms a stand alone system for the GIMINI. If the graphics 

display is required then the Z80 based input and output facilities 

must be added. Listings of both the Z80 display program and SIMUPROG 

V3 are available as a departmental research report 
63 

The command level program first reads in the user entered 

command name, the program then searches the list of command namesXS, 

for a match and if found jumps to corresponding subroutine start 

address held in list SRAD. If a name is not found or a command has 

finished then the program reprompts the user and reads in the next 

name. This structure means that commands can be added simply by 

appending their names and subroutine addresses to the lists. 

Alternatively if space is limited, commands can be removed by removing 

their names and addresses. 

The main elements of the database are shown in figure 4.1. The 

operate list OPER specifies the order in which the equations are 

evaluated, but note that an equation can appear several times in the 

list. The equation matrix EQN holds the set of equations in the coded 

form of reverse Polish notation, where a positive integer indicates 

a variable and a negative integer an operation or function. The 

equation is terminated either when the maximum length has been reached 

or a zero entry encountered. The unknown variable for each equation 

is held in the VARP pointer list, and the use of this seperate list 

simplifies the stack operations associated with equation evaluation. 

The names of the variables are stored in list SS with the initial 

values held in list TVAR, and the present values held in list VAR. 

The copy of the initial values enables a simulation problem to be 

rerun from the same initial conditions. The names of the operators 
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and functions are stored in list OS with their subroutine start 

addresses in list ORAD. The magnitude of an equation entry gives the 

position of the variable or function in its respective list. For the 

purposes of this program a list in the database is defined as a one 

dimensional array which can be terminated before its maximum length by 

a zero entry. Thus the equation matrix and the name lists OS and SS 

are actually lists of lists, but because of their functions, they will 

be referred to as a matrix and lists respectively. An additional list 

of all the parameters used in the equation set is called PARM. A 

parameter is a variable which does not apppear on the left hand side 

of an equation, and thus can only be changed by the user. The 

variables to be tabulated and plotted are held in the lists TAB and 

GRAF respectively, with the graph scale factors held in GSCALE. Also 

in the database are the run time control variables: STEPS is the 

number of steps of simulation performed; TABIN is the interval between 

printouts, with TDEST defining the output device; MODE is the data 

input mode, with the number of streamsdefined by MAXIN and the interval 

by INSTEP; GMODE defines the graphic mode, and GINTR the interval 

between plotted points. 

To provide for easy expansion of the database, the sizes of the 

various lists are specified by only four numbers, so by changing these 

numbers and reassembling the program, the database can be expanded to 

suit memory availability. 

The conversion algorithm for translating algebraic equations to 

reverse Polish form is shown in figure 4.2, with the table of 

precedences used shown in figure 4.3. The algorithm and precedences 

used were similar to those described by Abramson64, but were modified 

to allow for the use of the arithmetic and control functions and their 
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end of conversion? 
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no 
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is stack precedence 
input precedence? 
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Figure 4.2 Reverse Polish Notation Conversion Algorithm 
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parameters. In the conversion, input symbols are pushed onto the 

stack providing they have a higher precedence than the top of the 

stack. If they have a lower precedence then the stack is popped up 

and used to build the equation until the input symbol can eventually 

be pushed onto the stack. The left bracket effectively initiates a 

new stack until a right bracket appears as the input symbol. Both 

brackets are eventually dumped because they have equal precedence 

and the stack is restored to its position before the left bracket 

appeared. An example of the conversion of the simple operation 

B*(D+E) is given in figure 4.4. 

Initially a left bracket is pushed onto the stack and a right 

bracket followed by a zero is appended onto the entered equation. 

The zero is used to terminate the conversion and the pair of brackets 

insure that the stack is empty when the zero is reached. The 

conversion takes 14 stages and the contents of the stack are shown 

at each stage. The input symbols are also numbered, as are the symbols 

making up the converted form of the equation. Note that when symbols 

are being pulled (popped) off the stack, the input symbol does not 

change as in stages 3,7,10,11 and 13. Since functions can have more 

than one parameter, these parameters are separated by commas. In 

order to allow complete expressions to be used as parameters without 

having to bother enclosing them in further brackets, the conversion 

algorithm was modified so that a comma is treated as a right bracket 

except that the left bracket is retained on the stack. This means 

that the left bracket enclosing the function's parameters remains 

valid. 

A simplified initial version of the program was first written 

in a high level language called IMP 
59, 65 

on a large multi-access 
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computer system called EMAS 60. This proved that the program structure 

was sound and allowed investigation into the use of a VDU display for 

interactive simulation. The program was then translated, subroutine 

by subroutine, into a mixture of GIMINI super assembly and assembly 

language statements. Some alterations were required to compensate 

for the change from a large computer with a sophisticated operating 

system to a microcomputer with no operating system. The rewritten 

program was called SIMUPROG version 1 and was assembled using the 

superassembler and debugged with the aid of the GIMINI's resident 

monitor. The program was then extended and restructured to provide 

more efficient code, and this formed version 2 of the program. In the 

present version 3, extra features were added for manipulating the 

equation set and for running the NASCOM-1 graphic extension. Because 

of the 8k word limitation of the RAM memory, the program had to be 

extensively revised and the same functions compressed into smaller 

spaces. This revision had no real effect on the program structure, 

but it did mean that even more assembly language was used to replace 

the higher level super assembly statements. The superassembler 

produces code which is just as efficient as the equivalent assembly 

language statements. The space saving obtained by using assembly 

statements comes from the fact that the superassembler statements 

operate from memory to memory whereas the ordinary assembler statements 

need not and therefore can make good use of the CP 1600's general 

purpose registers. The memory size imposed restrictions on the size 

of program segments which can be assembled, and the size of text 

segments which can be held in memory for editing. For assembly, version 

3 was broken into 5 segments which were assembled seperately and 
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then linked together along with the floating point package to form 

the SIMPUROG version 3 object program which is held on paper tape and 

loaded using the GIMINI's resident tape loader. 

4.2 Command Level 

Once the SIMUPROG V3 object program is loaded into RAM it is 

started using the monitor, and can later be stopped and started 

without loss of data which is very valuable for debug purposes. A 

flow diagram of the command level of the program is given in 

figure 4.5. To save time when loading the simulation system program 

the database area is not loaded, only the first entry of the operate 

list OPER is loaded. If data has been entered into the database the 

initial zero in OPER will be overwritten so the database will only 

be cleared when operate list is empty. The stack pointer is set so 

that the stack grows upward from the end of the database., An 

introduction to the program is then printed by the microcomputer and 

the user is prompted by a 'c>' to enter a command. L'f a valid 

command is entered, then program control is passed to the appropriate 

command subroutine. When the command subroutine is finished control 

is returned to the start of the command level loop. The program is 

stopped by entering the command STOP which transfers control to the 

GIMINI's monitor. 

There are three main groups of commands, those involved with 

entering the equation set, those controlling the simulation, and 

those running the actual model. 

4.3. Equation Entry 

The commands CHEQ and INEQ shown in figure 4.6 are used to 

enter a new equation set into the equation matrix. The CHEQ command 



92 

SII,NPROG V3 start point 

yes 
OP7,R list zero? 

no 
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Figure 4.5 Command Level Program 
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CIMEQ entry point 
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yes 

print 'lITT-,R prompt 
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equations been entered ? 

no 
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convert to RPN and 
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add eouation number 
toOPER list 

no 
jump to B;FROG 

yes 

yes 

fill PARM list 

jump to MPROG 

Figure 4.6 CHTEQ and INEQ Subroutines 
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subroutine first prints the set of equations presently held in the 

equation matrix. After asking if a new set of equations is required, 

the user reply 'N' (indicating no) returns control to the command 

loop at MPROG. A reply of 'Y' allows the subroutine to perform 

the INEQ command, and any other character causes the program to 

reprompt for a 'Y' or 'N' reply. 

The INEQ command part of the subroutine first prints a prompt 

to enter an equation and then clears the database elements in 

preparation for the new equation set. The equations are entered 

by the user in response to a prompt, and are subsequently converted 

and stored in the equation matrix. The number of the completed 

equations is then added to the OPER list and the entry loop is 

repeated. The entry of equations is terminated when either the 

maximum has been reached, or a null string corresponding to a 

carriage return only has been entered to indicate the end of the 

equation set. Once the equation matrix has been completed, a list 

PARM of all the parameters used is made up by comparing the entries 

in the OPER list with the full list of all variable names SS. 

Control is then returned to the command entry loop. 

The APEQ command shown in figure 4.7 is used to add extra 

equations to the matrix. The subroutine first checks to see if any 

space is available, and if not prints a message and returns to the 

command level. The number of the free equation is appended to the 

OPER list and its position in the matrix is cleared. A promptis 

issued to user to enter a new equation and once entered, the equation 

is converted and stored in the matrix. The previous equation list 

is cleared and a new one constructed before the program control is 
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APEQ entry point 

check to find first 
unused equation space 

any space ? 

yes 

add equation number 
to OPER list 

clear unused equation 

print ' >' prompt 

read equation string 

convert to required form 
and store in empty space 

clear PARM list 

fill FARM 117s-t---] 

jump to MPROG 

print 
'NO SPACE LEFT' 

jump to MPROG 

Figure 4.7 APEQ Subroutine 
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returned to the commandlevel. 

The REEQcommand shown in figure 4.8 is used to replace an 

existing equation with a new one. The program first prompts the 

user to enter an equation number. If the number is valid and that 

equation exists, the existing equation is printed out,otherwise the 

user is reprompted. To allow for an incorrect entry or change of 

mind, the user is asked if the replacement process is to proceed 

and if not, control is returned directly to the command level. The 

equation is then cleared and the user prompted to enter a new 

equation. The equation is then converted and stored in the matrix, 

and after a new PARM list is generated, control is returned to the 

command level. The REEQ command at present does not remove the names 

of parameters only appearing in the old equation, as this would 

require a larger subroutine to ensure that parameters appearing in 

other equations were not removed. 

The DAEQ command displays all the equations in the matrix, 

and not just those appearing in the OPER list. After the equations, 

the present OPER list is also printed and control is returned to the 

command level. The equations are printed in reverse Polish notation 

except that the unknown variable is printed first, with the equals 

sign, for clarity and for ease of checking the actual order of the 

equations. 

The REOR command shown in figure 4.9 is used to generate a 

new OPER operate list. After the existing list is printed, the 

program asks if a new list is required, and this allows the command 

to be used to inspectthe list. An 'N' reply returns control to 

the command level. The program then clears the OPER list and 
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Figure 4.8 REEQ Subroutine 
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CREOR entry point 
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jump to MPROG 

Figure 4.9 REOR Subroutine 
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prompts the user to enter anequation list. After each number is read 

a check is made to see if it is a valid equation number and that 

the equation exists, if not an error message is printed and the 

user reprompted. Valid equation numbers are appended to the OPER 

list until either the list is full or else a 'zero entry, caused' by 

the user replying with only a carriage return, is received. When 

the OPER list is completed a new PARM list is constructed before 

control is returned to the command level. 

Figure 4.10 shows the subroutine CONV which performs the 

equation conversion for the CHEQ, INEQ, APEQ and REEQ commands. 

First the program stores a temporary copy TSS of the variables 

name list SS so that if the entered equation string is invalid, the 

equation can, be reentered without disrupting the database. The name 

of the unknown varible is extracted from the input string and list 
TSS is searched for a match. If not found, the name which may consist 

of an alphabetic character followed by up to three alphanumeric 

characters is added to the TSS name list. The variables number is then 

entered in the VARP pointer list corresponding to the equation. 

This list links the expression held in the equation matrix with its 

unknown variable. The pointer to the present symbol in the equation 

string is incremented to skip the equals sign. The rest of the 

equation is converted by a further subroutine RPOL. If the equation 

is valid then names list SS is updated by copying from TSS, and 

control is returned to the command level. If the equation is invalid 

the RPOL subroutine causes program control to jump back to the 

start of the CONV conversior_ subroutine. 
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make temporary copy of 
variable name list TSS 
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Figure 4.10 Equation Conversion 
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The RPOL subroutine is shown in figure 4.11 and this subroutine 

itself uses other subroutines. One such subroutine is used to 

establish the precedence of a symbol according to the table given in 

figure 4.3, both when it is inputted and when it is pulled off the 

stack. The other subroutine, used by the CONV subroutine, extracts 

a name from the equation string. After setting up the conditions 

for the conversion, the program then enters the main decoding 

loop. First the next character, indicated by the pointer into the equation 

string, is copied into the input symbol variable SY. If the symbol 

is zero or a space then the equation string is finished, and if the 

stack is then empty, the equation has been converted correctly and 

control is returned to the calling subroutine CONV. If an error 

is detected then an error number is printed and the user is prompted 

to retype the equation. Since the CP 1600's subroutine mechanism does 

not use the stack, the program jumps directly to the start of the 

CONV subroutine which means that any actions of RPOL and CONV 

preceeding the detection of the error are wiped out and the conversion 

is started afresh. Another effect of the call mechanism is that 

the main processor stack can be used during the conversion, 

which is more efficient than creating a software one. A comma is 

used to separate the parameters of a function and this has the 

property of allowing any of the function parameters to be an 

expression, without the use of extra pairs of brackets. 

If the symbol is alphabetic then it is the start of a variable 

name, and the full name is then read. List TSS is searched for the 

name and if not found, it is added to the list. If the symbol is 

a '%' sign then the following name is that of a function. After 
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skiping the '%', the function name is read and the list of functions 

OS is searched for a match. A check is made to see if the function 

is followed by brackets enclosing the parameters. The functions %STOP, 

%SKPI, %RDSI and %PI do not need parameters, so are exempted 

from this check. Any valid symbol left at this point must be an 

operation, and list OS is searched for a match. Any symbol not 

found is invalid and will generate an error. All the symbols are 

converted to an intermediate code for use during the conversion and 

finally changed to the actual code prior to storing. The stored coding 

represents variables by positiveintegers and functions by negative 

numbers, but as this is inconvenient forcalculating the precedence, 

the intermediate code represents functions as integers in excess 

of 200. 

The input precedence is calculated according to the input 

symbol. After checking that the stack is not empty, the top symbol 

is pulled from the stack and its precedence calculated. If the 

precedence of the symbol from the top of the stack is greater than 

that of the input symbol, the symbol from the top of the stack is 

added to the converted equation. The two precedences are equal 

when the top of the stack is a left bracket and the input symbol is a 

right bracket, in which case both brackbts are discarded, or a comma, 

in which case the left bracket is reinserted onto the stack and only the 

comma discarded. If the input precedence is less than that of the 

stack then both the top of the stack and the input symbol are 

successively pushed onto the stack. 
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4.4. System Control 

The SPAR command shown in figure 4.12 allows the user to change 

the parameter values of the model equations. First the present 

parameter names and values are printed after which the user is 

asked if new values are to be entered. If new values 

are to be entered then the program proceeds through the parameter list, 

printing each name followed by a prompt for the user to enter a 

value. This value is converted to the 32 bit floating point format 

and stored in'both the VAR and TVAR value lists. If the user does 

not enter any digits before pressing the carriage return, the 

present value of the parameter is retained. During the floating 

point conversion checks are made as to the validity of the conversion. 

If an entry proves to be invalid the user is again prompted to enter 

an new value. 

The SIC command allows the user to set up the initial conditions 

for a model run. This subroutine is very similar to that for the 

SPAR command, with the only difference being the addressing method 

for the required variables. For the SPAR subroutine, the parameter 

list PARM points directly to the required variable names and values. 

However for the SIC subroutine, the operate list OPER points to the 

required equations and the associated VARP pointer array entries. 

The VARP entries point to the required variable names and values. 

The command SDT shown in figure 4.13 can be used to change 

the value of a parameter called 'DT'. The subroutine first 

searches the variable name list SS for the name 'DT', and if found 

prints its value. The user is then prompted to enter a new value and 

this is subsequently converted and stored in the location for DT. 
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SPAR entry point 

no 
is list finished ? 

store result in 
variable value lists 
LVAR and TVAR 

Figure 4.12 SPAR Subroutine 
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jump to MPROG 

jump to MPROG 
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SDT entry point 

search list SS for 'DT' 

no 
found ? print 'NO DT' 

yes 

print present value 

prompt 

read in number string 

is number of digits 
> zero ? 

yes 

convert to floating point 
number 

no 
is result valid ? 

yes 

store result in DT 

jump to T:PROG 

no 

Figure 4.13 SDT Subroutine 
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The STPS command shown in figure 4.14 sets the maximum number 

of steps for which the model will run. After first printing the 

present maximum number of steps, the subroutine asks if a new value is 

required. If a new value is required then the user enters a suitable 

integer value which is then stored. The 16 bit integer values are 

stored in 2's complement form and give a maximum value of 32678. 

The STAB command shown in figure 4.15 is used to set up the 

tabulation list for printing results. After first printing the present 

tabulation list, the user is asked if a new list is required. If a 

new list is required, the previous list is cleared and a new list 

built up. In response to a prompt, the user enters a name which is 

compared with list SS for a match, and if found it is added to the 

tabulation list. The tabulation list TAB is terminated either when it 

is full or when a null entry consisting of just a carriage return 

character is receive-. 

The TINT command sets the interval at which tabulation 

printouts occur , and the subroutine operates in an identical way to 

STPS. 

The SIM command shown in figure 4.16 allows the user to change 

the data input mode. To save space the interactive 'Y' or 'N' (yes 

or no) decisions are made by a separate subroutine which is also used 

by other commands. Since all the command subroutines return control 

to the same point, straightforward jumps are used instead of 

subroutine calls and returns. After printing the present input mode 

and asking if a new mode is needed, the program if required allows the 

user to enter the new input mode in response tc a series of questions 

and prompts. Serial input mode just means that the user is allowed 
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C 
STPS entry point 

print present number 
of steps 

ask if new number is 
required 

is reply Yes or No? 

yes 

prompt 

read new number of steps 

jump to I4PROG 

no 

Figure 4.14 STPS Subroutine 
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STAB entry point 

list finished 

yes 

no 
print next name 
on tabulation list 

ask if new list required 

is reply Yes or Ido? 

yes 

clear tabulation list 

is list full ? 

no 

prompt 

read string 

is string null? 
no 

search list SS 
for name 

no 
found 

yes 

store variable's number in 
tabulation list 

no 

yes 

jump t o IdPROG 

Figure 4.15 STAB Subroutine 
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SIm entry point 

print present input 
mode status 

ask if new mode required 

is reply Yes or No ? 

yes 

Iset mode for no input data 

ask if input is required 

no 

no 
is reply Yes or No ? 

yes 

set mode for serial input 

ask if formatted data input 
is required 

no 
is reply Yes or No ? 

yes 

set mode for formatted input 

prompt 

Iread number of input streams 

prompt 

read number of steps between 
data inputs 

jump t o ? FROG 

Figure 4.16 SIM Subroutine 
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to use the %RDSI function in the model equation to input data. If the 

mode is set for formatted data input, the program automatically reads 

data from the input device set by the user. The user also sets the 

number of streams of data values entered each time, and these are 

stored in a temporary array until they are updated. The %READ function 

is used to access these values. 

A list of variables whose values are to be plotted as graphs can 

be set up using the GRAM command shown in figure 4.17. The present 

graph list, if any, is printed and the user asked if a new graphic 

mode is required. A graph list is entered by typing the name of a 

variable in response to the graph number. The variable name list SS 

is searched for the name, and if found, the name is added to the 

graph list. The graph mode which indicates the number of graphs in 

operation is also incremented. 

The GINT command works in a similar fashion to the STPS command 

and is used to enter the interval between graphic output points. 

The scale factors used by the program when plotting the graphs 

can be set up using the GRSC command shown in figure 4.18. If a 

graphic output mode is set, then the entries on the graph list are 

printed together with their present scale factors and the user is 

prompted to enter a new value. When a number string is entered, it is 

converted to floating point form, and if valid, is stored as the 

required scale factor. If the user enters a carriage return without 

any preceeding digits, the existing value of the scale factor is kept 

so that new values need not be entered. 

The TABD command allows the user to select the destination for 

the tabulation printout. The subroutine asks if the VDU or 

Teletype is required and sets the tabulation destination flag before 

returning to the command level. 
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GRAPd entry point 

is reply Yes or Ido ? 

yes 

set graph mode for no graphs 

ask if graphs required 

is reply Yes or No ? 

u yes 

is graph list full ? 

no 

print next graph number 

read in name string 

no 

search list SS for name 

no 

found ? 

yes 

increment graph mode GIIODIE 

add variable to graph list 

is string null]? 

no 

yes 

yes 

jump to MPROG 

Figure 4.17 GRA!d Subroutine 
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GRSC entry point 

no 
any graphs? jprint 'NO GRAPHS' 

yes 

is graph list yes 

finished ? 

no 

print next name 
in graph list 

print present value of 
scale factor 

prompt 

read in number' string 

yes 
is string full? 

no 

convert string to floating 
point number 

is result valid? 

yes 

.store scale factor 

no 

jump to 11PROG 

Figure 4.18 GRSC Subroutine 
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4.5 Running Equations 

Figures 4.19a and 4.19b show the RUN and RRUN subroutines which 

are used to implement the stored equation set. The RUN and RRUN 

commands differ only in that the RUN command uses the final values of 

the variables from the last run as its initial conditions, and the 

RRUN command uses the last entered set of initial conditions held 

in TVAR. Since the SIC command changes both the TVAR and VAR value 

lists, the use of this command fixes the set of initial conditions 

whether or not the values have been changed. 

The common part of the subroutine first prints the names and 

initial values of any variables in the tabulation list, so that they 

form the heading and first line of a table. The required output control 

counters are then initialised, and the run control parameters checked 

for validity. The step sizes for input, tabulated output and graphic 

output all have default values of one. Note that the initialisation 

of the graphs also includes plotting the initial values of the 

variables. 

The main calculation loop shown in figure 4.19b repeats each 

calculation step until all the steps have been performed, or the 

run has been stopped prematurely by a %STOP command or by the user 

entering a 'control C' character. If a formatted data input mode 

has been set, then each step is automatically checked to see if it is 

a multiple of the data input step size. If it is then the program 

attempts to enter and store data from the high speed tape reader. 

Invalid data on the tape will produce an error message and terminate 

the run. The program then proceeds sequentially through the operate 

list OPER and evaluates the corresponding equations held in the 
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RUN entry point RRUN entry point 

print initial conditions 

no 

initialise input and output 
counters 

graphs required ? >----j initialise graphs 

number of steps 
valid ? 

input step size 
valid ? 

jump to MPROG 

set input step to 
default (=1) 

tabulation step 
size valid ? 

,.-'graph step size) set graph step 
valid ? - to default (=1) 

yes 

(continued on next page) 

Figure 4.19a RUN and RRUN Subroutines 
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yes 
all steps done? 

no 

formatted input 
required ? 

no 

yes input counter = es 
input step size? 

no 

read and store 
required number 
of input values 

reset input 
counter 

increment input 
Lcounter 

no 
OPER list done? get next entry 

yes 

tab counter = 
tab step size ? 

no 

increment tab 
counter 

yes 
print variables 
in tab list 

yes yes 
graphs required? graph counter 

no \graph step size? 
no 

evaluate 
corresponding 
equation 

reset tab 
counter 

I 

plot graph points 

reset graph 
counter 

increment graph 
counter 

check teletype 
for control C 

no 
fund? ;:::o 

e s 

print nwnber of 
steps completed 

reset stack 
pointer 

jump to MPROG 

Figure 4.19b RUN and RRUN Subroutines 
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equation matrix EQN. If the number of steps so far performed happens 

to be a multiple of the tabulation step size, the present values of 

the tabulation list(TAB) variables are printed. If the steps are a 

multiple of the graph step size, then the value of the variables in 

the graphic output list GRAF are multiplied by the associated scale 

factors and are then converted to 8 bit integers for transfer to 

the Z 80 microprocessor based graphic display. At the end of a step 

the program checks in case a control C character has been entered on 

the teletype to terminate the run. If an arithmetic error is encoun- 

tered, such as an overflow or a division by zero, and error message 

is printed indicating the arithmetic operation in progress at the 

time and the run is terminated. The number of steps of the run 

completed is printed only if the full number has been reached or a 

control C is encountered. 

Figure 4.20 shows more detail of the equation evaluation, which 

is performed by a subroutine CALEQ. The subroutine examines each 

entry of the equation in turn until the equation is terminated either 

by a zero entry, or when the end of a line in the equation matrix 

is reached. A negative entry indicates an operation or function, and 

after 2'complementing, the entry is added to the base address of table 

ORAD. ORAD holds the addresses of the arithmetic subroutines and a 

software constructed subroutine call is used to transfer program 

control to the address specified in the ORAD table. If an equation 

entry is positive, it is doubled and added to the base address of the 

variable value list VAR. The 32 bit value is then pushed onto the 

stack for use in a later calculation. All entries are checked for 

validity. When the equation is terminated, the result is pulled 

from the stack and stored in the variable indicated by the VARP 
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arithmetic subr 
normal return 
point 

CALEQ entry point 

yes 
is equation finished? 

no 

find unknown 
variable from 
VARP list 

is equation 
entry -ve ? 

no 

pull result from 
stack and store 
in variable 

no 

is entry a valid 
va<riab1e? 

ca 11subroutine 

no 

is stack 
pointer zero? 

yes 

yes 

yes 

print 'TOO MANY PARM' a1 

u 
print error message 

reset stack pointer 

return 

2'complement 
entry 

fetch arithmetic 
subr address 
from table ORAD 

push variable 
onto stack N 

arithmetic subr 
alternative 
return point 

Figure 4.20 Equation Calculation 
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variable pointer list. If the stack is not empty when the result has 

been pulled, then the equation is invalid and the result is not stored 

in the variable. The arithmetic subroutines used for conditional 

equation evaluation return control to the beginning of CALEQ only when 

their conditions for evaluation are satisfied. When the conditions 

are not satisfied, the equation is terminated immediately and control 

is returned to the end of the CALEQ subroutine. 

4.6. Displaying Results 

The headings for the tabulated output are printed by a 

subroutine PHEAD shown in figure 4.21. If the VDU has been specified 

by the user, using the TABD command, the link available flag is 

checked to see if the Z80 system is,ready to operate the link. If 

the link is not available, the program changes the tabulation 

destination to Teletype thus overriding the TABD command. The Z80 

is prepared to receive the heading by sending the required code to the 

link control latch. The heading is made up of the names of the 

variables in the tabulation list TAB. Output on the Teletype is 

performed with the aid of a printing subroutine in the GIMINI's 

monitor and some utility subroutines built into the SIMUPROG program. 

For output using the Z80's memory mapped VDU, the individual characters 

are transferred by handshaking to the Z80 input hardware. 

The actual tabulation of the values of the variables is performed 

by the PVARS subroutine which operates in a similar way to PHEAD 

except that instead of names, the actual values are printed. The 

values are printed in fixed point format and a flag (FLAG) is used by 

the floating point Teletype printout subroutine (PRINTF) to tell 
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no 

PHEAD entry point 

destination VDU? 

yes 

no 

I 
print 'LINK OFF:' 

set teletype as 
tab destination 

type heading on 
teletype 

return 

yes 
send tabulation 
heading code to 
link 

send heading to 
link 

return 

Figure 4.21 Result Tabulation 
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the PVARS subroutine how many characters have been printed so that 

column alignment can be maintained by printing extra spaces. For 

transfer to the VDU the subroutine itself counts the characters and 

adds the required spaces. Note that the VDU is only 48 characters 

wide, so that if more than 4 variables are on the TAB list then each 

printout will take two lines and the columns will become obscured. 

Figure 4.22 shows the GZERO and GPLOT subroutines used for 

graphic output. The GPLOT subroutine converts the values of the 

variables, indicated by the graphic output list GRAF, into 8 bit 

integers and sends them to the Z80 for display. In additon to this, 

the GZERO subroutine also clears the previous graphs. Both subroutines 

first check the link available flag to see if the Z80 is ready, and 

if not a message,is printed and the graph mode changed to no graphs. 

For GZERO the graphs are cleared by sending the code for a graphic 

command to the link control latch, and then sending a zero to the 

data link under the control of the handshaking. The use of an extra 

data byte for the graph command is provided both as a protection device, 

and to facilitate future expansion where graph formats and possibly 

scaling are under control of the simulation model. The handshaking 

involved in data transfer is a combination of hardware and software. 

The Z80 side of the link is purely hardware whereas the CP 1600 uses 

software to read the ready flags from the Z80. 

Both subroutines plot the data points in the same way. For each 

entry in the graph output list, the code for that graph is first sent 

to link control latch and then the converted data point is sent to 

the Z80 using handshaking-to control the data transfer. The 8 bit 
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GPLOT entry point GZLRO entry point 

OK ? 
no 

link OK ? 

yes I yes 

send code for 
graph command to 
link 

send clear code 
to link 

is graph list 
finished ? 

no 

yes 

I 
print 'LINK OFF!' 

set graph mode to 
no graphs 

no ( return 

send code for next graph to 
link 

fetch value of next variable 
in graph list 

scale value with scale factor 
from GSCALE list 

convert the resulting 
floating point value into an 
8 bit integer 

send integer data point to 
link for display 

Figure 4.22 Graphic Output 
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resolution graphic display is used to represent values of +1 and -1, so 

the value of the variable for display has to be divided by the 

previously entered scale factor to get it within this range. The 

resulting value is then multiplied by 127 and converted to an integer. 

The final 8 bit value is then formed by adding 128 to the integer 

since the output of the D/A converters do not accept negative 

values. If any variable value is outside the display range then it 

is limited to either the maximum or the minimum on the display. 

The actual refreshed display of the graphs is performed by 

the Z80 program shown in figure 4.23. After first setting up the D/A 

converters and the hardware for the data link to the CP1600 the 

program then repeatedly displays the graphs stored in memory so 

that the display appears static. There are at present two different 

display modes and these are controlled by the NASCOM-l's keyboard 

under control of the display program itself, so that only the graphic 

mode control keys will have any effect on the program. The first 

mode displays up to four graphs simultaneously against time, and the 

second mode displays the first two graphs against each other. For 

the plot against time, each graph is in turn plotted by updating the 

Y and X axis D/A's with the values from the graph data and an 

incrementing counttr respectively. After each complete set of graphs 

has been displayed, the program checks the NASCOM-1 keyboard to see 

if a 'P' character has been entered indicating that the program is 

required to switch to a phase type plot. Since the complete display 

of all the graphs takes less than 1/30 of a second, there is no 

flicker on the display and no need to latch the keyboard entries. 
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start 

select next graph 
no 

yes 

no 

yes 

plot Y from 1 and 
X from 2 

fetch next points 
from graphs l&2 

setup D/A outputs 

select 1st graph 

end of graph ? 

yes 

no 

all graphs plotted? 

check keyboard 

C'P' entered? 

plot X and Y axis 

end of graph ? 

no 

end of graph ? 

yes 

check keyboard 

' entered? 

yes 

no 

plot next point 
as Y coordinate 

} 
increment X 

Figure 4.23 Refresh Graphics 
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Originally the time plots also had the X-Y axes but this was dropped 

as it tended to obscure the graphs. For the phase plot, the axes are 

plotted and the graph displayed by plotting each point with its Y 

value taken from graph 1 and the X value taken from graph 2. After 

both graph and axes have been plotted, the keyboard is checked for 

a 'T' entry indicating a return to a time plot. 

The data for the graphs is updated by an interrupt service 

routine which is invoked by the link hardware to handle a data transfer. 

On recept of an interrupt indicating the transfer of data to the Z80, 

program control is transferred from the display program to an interrupt 

handling routine. The handling routine reads the link control latch 

and then calls up a subroutine to deal with the operation specified 

by the link control code. With the availability of the graphics, 

the limited output tabulation on the VDU was not used, so the latter 

was omitted from the present version of the display program. 
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5. USING THE SIMULATION SYSTEM 

5.1 Operational Details 

The SIMUPROG V3 object program is loaded into the GIMINI using 

the built in relocating paper tape loader. If a previously generated 

model is to be used, then that is also loaded after the simulation 

program so that it overwrites the cleared database. The program 

is started by using the monitor to enter the start address which was 

previously printed out by the loader. 

On startup the program announces itself and prompts the user to 

enter a command, the present list of commands is given in figure 5.1. 

All commands and data, except for simple yes or no answers, are 

entered using a line editor which enables the user to delete characters 

one at a time by entering a 'rubput' code. Entire lines can also 

be deleted provided that a '.-' character is entered instead of the 

carriage return which norm'lly indicates the end of an input line. 

For questions which require a yes or no answer, a single character 

reply of 'Y' or 'N' is entered. Wherever possible, a carriage return 

only reply to a prompt for a numerical value means that the present 

value is retained. 

New equation sets are entered in algebraic form using either the 

INEQ or CHEQ commands. The CHEQ command can also be used to print 

the present equation set in reverse Polish notation. The DAEQ 

command can be used to printout all the equation held in the 

equation matrix, and not only those presently involved in the equation 

set specified by the operate list. Equations can be changed by 

using the REEQ command, and extra ones added with the aid of the 

APEQ command. Equations cannot be deleted, but they can be overwritten. 
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name 

INEQ - 

CHEQ - 
DAEQ - 

APFQ - 

REEQ - 
REOR - 
SIC - 
SPAR - 

function of command 

input new equation set 

change equation set after displaying; old set 

display all stored equations 

append an extra equation 

replace a single equation 

reorder equation set 

set initial conditions of variables 

set parameter values 

SDT - set the value of a variable called DT 

SID - 
STPS - 
RUN - 
RRUm; - 
STAB - 
TABD - 
TINT - 
GRAM - 
GRSC - 
GINT - 

set data input mode 

set number of steps to be run 

run equation set using present variable values 

rerun equation set from initial conditions 

set tabulation printout list 
set tabulation printout destination 

set tabulation printout interval 

set graph mode 

set graph scale factors 

set fraph plot interval 

STOP - stop program and return to monitor 

Figure 5.1 SIMUPROG V3 Corimands 
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By using the REOR command, which generates a new operate list, they 

can however be dropped from the present equation set. When new 

values are required when using the SIC, SPAR, SDT, and GRSC commands, 

they are entered as fixed point decimal numbers with up to 12 digits 

and having a magnitude not exceeding 223. Numbers are entered 

using the line editor and are terminated by a carriage return. 

The tabulation list is entered using the STAB command and up 

to six names can be entered. The TABD command used to set the 

tabulation printout need not be used, as the default destination 

is the teletype. The values entered for the TINT, STPS, and GINT 

commands must be integers in the range 1 to 32768. The GRAM command 

is used to set up the graphic output if the NASCOM-1 and graphic 

hardware are connected. Up to four variables can be plotted and 

the GRSC comniand is used to enter the associated scale factors. 

The RUN command starts a simulation run using as its initial 
conditions the values of the variables left by the previous run. 

If it is desired to rerun the simulation from the last set of initial 
conditions, the RRUN command is used. 

Since the simulation system equations are entered as assignments 

rather than equalities, the differential equations should first be 

rearranged so that the highest order derivative only is on the left 
hand side. The algebraic equations entered consist of operations, 

functions, and variables. Any constants must be entered as parameters, 

which are variables whose values do not change during a run. Variables 

are specified by a four character name consisting of an alphabetic 

character followed by up to three alphanumeric characters. The 

available operators are the four basic arithmetic operations together 
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with brackets and the comma which is used to separate function 

parameters. Functions consist of a % sign followed by a name 

similar to a variable, and the present available functions are given 

in figure 5.2. The control functions allow conditional implementation 

of equations and can be used to provide such operations as limiters 

and nonlinear functions. During the conversion of the equations, 

numerous checks are made on the validity of the equations and figure 

5.3 gives the errors which are flagged with numbers. Error messages 

are given with any other errors discovered, and the numbers are 

only used to save memory space. A simple example is given in 

figure 5.4 of the squares of the integers from one to ten. Note 

that the user entries are underlined. 

Two problems were used to investigate the computational accuracy 

and speed of a variety of integration methods. The first problem 

given in section 5.2 was the step response of a simple first order 

system, and this was used with a variety of Runge Kutta single step 

integration methods. Multiple step predictor-corrector methods 

could not be used on their own for this example because of the 

discontinuous nature of the step input. The second problem, given 

in section 5.3, of a linear oscillator allowed the comparison of 

both single and multiple step methods. The use and capabilities 

of the simulation system were further investigated in section 5.4. 

The results for the error comparisons of the integration methods 

were obtained using tabulated printouts on the teletype. The 

other graphs were obtained-by photographing the screen of an 

oscilloscope directly with a polaroid camera. A Tektronix 7704 

oscilloscope was used for all the pictures except for figures 5.27 
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arithmetic functions 

;.SQRT(X) : IfT 
N'.G(X) : -X 

.INT(X) : integer part of X 

PI . 1T 

`L-INTG(X1,X2,DT) : (X1+X2)/2*DT 

c,"IRDSI : next serial data input value 

REA-D(N) : present value of formatted input stream 

number N 

control functions 

%SKPI :skip next serial data input value 

STOP :stop run and return to command level 

IFT1(L,X,U) L< X <U 

jcIFT2(L,X,U) continue equation only if L< X < U 

'IFT3(L,X,U) LS X < U 

IFT4(L,X,U) L X 6 U 

IFFl(L,X,U) L < X < U 

c.IFF2(L,X,U) abandon equation only if 
L < X 4 U 

IFF3(L,X,U) L c X <U 

IFF4(L,X,U) L s X <U 

Figure 5.2 Arithmetic and Control Functions 

error number 

11 : equation too long 

12 : variable list full 

13 : invalid operator or function name 

14 : parameter missing from function 

15 : invalid character in equation string 

16 : stack -ve (too many pop operations) 

17 : stored equation space full 

18 : stack not empty (too many push operations) 

Figure 5.3 Conversion Error Codes 
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C >INEQ 
ENTER EON 

>,X=X+3N E 

>Y=X*X 

C > SPAR 
PRESENT PAPAM 
ONE= 0.0 

NEW Y/PJ? : Y 
ONE= >1 

C >SIC 
PPESENT INITIAL COND. 
X= 0.0 
Y= 0.0 

NEW Y/N ? : N 

C > STAB 
PRESENT OUTPUT IS 

NEW Y/N? : Y 
TAB: >X 
TAB: >Y 
TAB : > 

C >STPS 
STEP= 1275 

NEW Y/tJ? : Y 
STEP= >10 

C >TINT 
PRINT INTEPVAL IS I 

NEU' Y/N? : tJ 

C >RUN 
X 
0.0 
1.0 
2.0 
3.0 
4.0 
5-0 
6.0 
7. 0 
8.0 
9. 0 
10.0 

AFTER 10 

C > 

Y 
0.0 
1.0 
4.0 
9. 0 
16.0 
25-0 
36.0 
49.0 
64.0 
81 0 
100. 0 
STEPS 

Figure 5.4 Simple Example 
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and 5.28 where an Advance OS 3000 was used. For general use a 

larger LAN display oscilloscope was found to be useful although 

its limited bandwidth meant that fast changing graphs were not 

necessarily accurately represented. 

5.2 First Order Step Response 

The first order problem chosen was the step response of the 

differential equation Ty + y = x where y and y are the variable 

and its derivative respectively. The input is a step in x from 

-1 to +1 at time zero and the time constant T was set to 1.5. 

The Euler integration method is the simplest to implement and 

figure 5.5 shows the entry of the problem using Euler integration. 

The underlined text is that entered by the user. The resulting 

graphic output is shown in figure 5.6 and there is no discernable 

difference between this result and the much more accurate 4th order 

Runge Kutta which was also used. As well as the Euler, two second 

order Runge Kutta methods (a = 0.5 and a = 1) and a third and fourth 

order Runge Kutta were used. In order to compare the accuracies 

and speed of the integration methods, the results were printed in 

tabulated form every 0.5 second of model time for a total of 10 

seconds. The results were printed to an accuracy of 10 digits 

and the approximate time to calculate 1000 steps for each method 

was found using a stop watch. From this, the calculation time 

for each step was worked out and is shown in figure 5.7. All 

five integration methods were used with a range of step sizes 

between 0.0001 and 0.5 and since the exact solution for this 

problem is y(t) = 1 - 2e-t/T, the errors of the various integration 
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C >I!JEQ 
ENTEP EQN 
>DY=(X-Y)/TAU 
>Y=Y+DY*DT 
>T=T+DT 

C > SPAR 
PRESENT PARAM 
X= 0.0 
TAU= 0.0 
DT= 0.0 

NEW Y/N? : Y 
X= >1 
TAU= >1.5 
DT= >.04 

C >SIC 
PRESENT INITIAL COND. 
DY= 0. 0 
Y= 0. 0 
T= 0-0 

NEW Y/N? : Y 
DY= > 

Y= >-1 
T= 

C > GRAM 
NO GRAPHS! 

NEW Y/N?: Y 
GRAPHIC O LIT PUT Y/ j? : Y 
GRAPH I> X 
GRAPH 2>Y 
GPAPH 3> 

C >GRSC 
GRAPH SCALES 
X= 0.0>1 
Y= 0.0>1 

C >STPS 
STEP= 10 

NEU' Y/N?: Y 
STEP= >255 

C >GINT 
GRAPH INTERVAL IS 5 

NEW Y/N?: Y 
INT=> 1 

C > RUN 

Figure 5.5 Setup First Order Example 
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1-- 

0- 

0 

I 

5 

Figure 5.6 Step Response 

10 Time 

integration 
method 

h for max error 
of 0.0001 (s) 

calculation time 
for 1 step (ms) 

calculation time 
for 1 sec (s) 

Euler 0.0012 14 12 
RK-2 (a=1) 0.06 30 0.5 
RK-2 (a=.5) 0.06 29.5 0.5 
RK-3 0.27 50 0.2 
RK-4 0.5(see text) 62.5 0.13 

Figure 5.7 Computation Times 
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methods can be calculated. Figure 5.8 shows the absolute errors 

of each integration method plotted against the time step size on 

a logarithmic scale. From this graph, the maximum step size 

producing an error not greater than 0.0001 was estimated and is shown 

in figure 5.7. To compare the speed of the integration methods, 

the real time taken by the microcomputer to calculate one seconds 

worth of model time, with the step size shown, was also calculated 

and is shown in the final column of figure 5.7. As can be seen 

the higher order integration methods, although containing more 

equations, are much faster for the same error. It is worthwhile 

to note that the maximum step size used for the 4th order Runge Kutta 

method was governed by the need to printout every 0.5 second, and not 

by insufficient accuracy. The shapes of the individual error graphs 

correspond to those predicted in section 1.5. Initially the accuracy 

of a given method increases as the step size decreases until the 

cumulative arithmetic truncation error, caused by the larger number 

of steps, becomes the dominant factor. 

An unusual feature of figure5.8 is that the error curves for 

small step sizes, for all the integration methods, are almost 

identical. This can be explained by examining the main probable 

sources of error. Each of the single step methods evaluates the 

value of the next point with the same general form of equation 

yn+l = yn 
+ hB where B is a function of previous values of y and 

their derivatives. Now if the step size h is small then the value 

of h*B will be significantly smaller than yn and hence a considerable 

part of h*B will be truncated and lost in the addition process. 

Therefore any increase in accuracy in the h*B term which is obtained 



136 

0.0012-- 

0.001 - 

0.0008 - 

ERROR 

0.0006- 

0.0004- 

0.0002-i 

0.0 
1.0 01 001 0001 00001 

TIME INTERVAL h (sec) 

Figure 5.8 Errors in First Order Step Response 
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by reducing the step size will eventually be lost when the arithmetic 

magnitude of the h*B term becomes so small that the bits representing 

the increase in accuracy will be truncated off. Another potential 

source of error is input conversion of the step size h itself, 

especially if it is very small, since the errors caused by in- 

accuracies in step size are cumulative and increase as the number of 

steps increases. As can be seen from figure 5.8 the 4th order 

Runge Kutta method provided the greatest accuracy while the Euler 

method only just reached the 0.0001 error point. It is this 

greater accuracy which means that the 4th order Runge Kutta is the 

fastest of the methods used, indeed it is nearly 100 times faster than 

the Euler method. This test is not an absolute direct comparison 

of the arithmetic calculation time of each integration method since 

the times measured include all the overhead processing required 

to direct the evaluation of the equation set as well as the arithmetic 

calculations themselves. The calculation times however do not 

include printed or graphic output as that is independent of 

integration method. The SIMUPROG program is very efficient in the 

arithmetic evaluation of individual equations, but the error checks 

and run time controls for input, output and run length add an 

extra overhead which is independent of the number and complexity of 

the equations used. This means that the higher order-methods with 

their smaller number of steps have less microprocessor calculation 

time wasted by the overhead processing. The test is therefore a 

comparison of the suitability of integration methods for use with 

the simulation system. For speed and accuracy the 4th order 

Runge Kutta was obviously the best choice but it has the disadvantage 
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of being much more complicated than the lower order methods. A good 

compromise between speed and efficiency of use would seem to be the 

2nd order Runge Kutta methods which produced almost identical 

results. The Euler method, although the simplest, was much slower 

and would only be useful either when equation space was limited or 

when only a low accuracy result was required. For all the methods 

except Euler, the calculation times shown in figure 5.7, for one 

second of model time, are considerably less the time to print one 

set of results. 

For comparison a 2nd order Admas-Bashforth predictor and a 4th 

order Adams-Moulton predictor corrector were tried but without being 

reinitialised by another integration method after the input step. 

As expected they did not perform very well, and indeed the 2nd order 

predictor gave significantly worse results than Euler, especially 

with larger step sizes. The 4th order predictor corrector gave 

only marginally better results than Euler. 

A variable step 2nd order Runge Kutta integration method was 

successfully implemented using Richardson's method for error 

estimation. While the variable step method required fewer steps 

to obtain the same accuracy as either of the 2nd order fixed step 

methods, the computation time for each step was considerably greater. 

This meant that the variable step method actually took longer to 

perform a run than the fixed step method for a given accuracy. 

Another disadvantage of the variable step method is that regular 

printouts are difficult to achieve, so for this application the 

fixed step methods would be a better choice. 
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5.3 Linear Oscillator 

The second order problem chosen was the linear oscillator given 

by the equation y + y = 0, since this made it relatively easy to use 

predictor-corrector integration methods. The oscillator was 

implemented as a pair of first order differential equations using 

a variety of methods. In addition it was also implemented directly 

using both the Nystrom formula and a Taylor series expansion. 

For the implementation as a pair of first order equations, three 

Runge Kutta methods were used, the two 2nd order methods (a = 1 

and a = 0.5) and a 4th order method. The Euler method was again 

used, as well as two Adams-Bashforth predictors (2nd and 4th order) 

and a 4th order Adams-Moulton predictor-corrector. The simulation 

was first run from the initial conditions, of y=l and y=O, for 10 

seconds with printouts every second. All the integration methods 

were evaluated for a range of step size between 0.001 and 1 second. 

The approximate calculation times for 1000 steps of each method 

were again obtained with a stop watch. The exact solution for 

this problem for the given initial conditions is y(t) = Cos(t), 

so the absolute value of the errors generated by each integration 

method can be evaluated. 

Figure 5.9 shows the entry and running of the problem using 

the 4th order Runge Kutta integration method. The graphic output 

from the second run in figure 5.9 is shown in figures 5.10 and 5.11. 

The switch between the time plots of y and y, and the phase plot of 

y against y is controlled independently by the NASCOM-1 keyboard. 

Figure 5.12 shows the errors for the Nystrom and Taylor series 

methods together with those for the 4th order Runge Kutta method, and 
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step size 

Figure 5.12 Errors in Oscillator (Set 1) 
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figure 5.13 shows the corresponding plots for the other methods used. 

The Nystrom method performed better than the Taylor series, and this 

was as expected since the Taylor series is second order and the 

Nystrom method is essentially third order. The 4th order Runge Kutta 

method performed better than all the other methods used. Both 2nd 

order Runge Kutta methods gave almost identical results to each other, 

and also to the Taylor series method for step sizes above 0.01. 

Below this step size the 2nd order Runge Kutta methods gave lower 

errors than both the Taylor series and Nystrom methods. The Nystrom 

method only gave greater accuracy than the 4th order Adams-Moulton 

method at step sizes above 0.1. Above a step size of 0.1, the 4th 

order Adams-Bashforth quickly became unstable. However below this 

step size the 4th order Adams-Bashforth outperformed the 2nd order 

Runge Kutta methods which in turn outperformed the 2nd order Adams- 

Bashforth and Euler methods. At step sizes of below 0.001, all 

the methods, with the exception of the Euler method and two direct 

methods, gave similar errors. As with the first order problem, this 

can be attributed to the arithmetic truncation errors involved in the 

final calculation of the variable's value at each step. The Euler 

method does not reach its point of minimum error in the graph. Both 

direct methods gave higher errors for step sizes below 0.001, and this 

could be due to the fact that the variable and its derivative were 

evaluated separately at each step. 

Estimates of the largest step size which would produce an error 

less than 0.01 were made from the graphs-for each integration method. 

The values together with the calculation time per step for each 

method is given in figure 5.14. Also shown is microprocessor 
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step size 

Figure 5.13 Errors in Oscillator (Set 2) 
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integration 
method 

step size for 
0.01 absolute 
error (s) 

calculation 
time for 1 

step (ms) 

calculation 
time for 1 

second (s) 

Euler 0.0025 17.3 7.0 
AB-2 0.054 36.1 0.7 
Taylor Series 0.088 44.1 0.5 
RK-2 (0(=1) 0.088 40.2 0.5 
RK-2 (oe, =0.5) 0.088 38.0 0.4 
AB-4 0.16 69.8 0.4 
AM-4 0.29 121.5 0.4 

Nystrom 0.47 68.5 0.2 
RK-4 0.61 91.5 0.2 

Figure 5.14 Computation Times 

integration method maximum error 500,<t,< 505 (s) 

RK-2 (o(=1) 0.84 
AB-4 0.018 
Nystrom 0.0074 
AM-4 0.001 
RK-4 0.0007 

Figure 5.15 Long Term Error 
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calculation time for one second of model time, and as before this 

does not include printout time. 

To check on the long term stability, some of the integration 

methods were run for 500 seconds of model time with a step size of 0.1 

seconds. The maximum error during the next 5 seconds was obtained 

and is shown in figure 5.15. 

The 4th order Runge Kutta method again proved the fastest of 

the general purpose methods. For this particular problem, the 

simpler Nystrom method was just as fast as the 4th order Runge. Kutta 

method over the short term, but if long term stability were required, 

the Nystrom method is not as good. The Euler again was much slower 

than any other method. The 2nd order Adams-Bashforth was the next 

slowest and, in common with the 4th order Adams-Bashforth, it had 

stability problems for large step sizes. The 4th order Adams-Moulton 

predictor corrector had no advantages over the 4th order Runge Kutta 

method. Indeed since predictor and predictor-corrector methods 

are not self starting, the need to provide past values of the 

variable at the start means that they are more awkward to use with this 

simulation system than the single step methods. 

5.4 Other Test Results 

As a test example for both evaluation and illustration of the 

use of the simulation system, the second order system given in 

figure 5.16 was implemented. Figure 5.17 shows the initial entry 

of the second order system, using the initial conditions to 

implement the input step. For such a demonstration it is unlikely 

that any great accuracy would be required, so the simple Euler 
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C >INEQ 
ENTER EON 

> D2Y=W*W* (X-Y)-DY*W/ Q 

> Y=Y+DY* DT 
>DY=DY+D2Y*DT 
>T=T+DT 

C > SPAP 
PPESE[JT PARAM 
W= 0.0 
X= 0. 0 
Q= 0. 0 
DT= 0. 0 

NEW Y/N?: Y 
W= >10 
X= > 
Q= >.5 
DT= >01 

C >SIC 
PRESENT INITIAL COND. 
D2Y= 0. 0 
Y= 0.0 
DY= 0.0 
T= 0.0 

NEW Y/N? : Y 
D2Y= > 
Y= >-1 
DY= > 

T= > 

C > STPS 
STEP= 255 

NEW Y/N? : N 

C 'GRAM 
GFAPHS O F 

NEW Y/N? : Y 
GRAPHIC OUTPUT Y/N? : Y 
GRAPH 1>Y 
GFAPH 2> 

C >GRSC 
GRAPH SCALES 
Y= 0.0>1 

C >PUN 

Figure 5.17 Setup Second Order System 
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integration method was used for simplicity. Figures 18, 19 and 20 

show the graphic results obtained with a range of damping factors, 

varying from heavily damped to underdamped. 

The system was then altered by inserting a limiter to keep 

the value of the first derivative between +1 and -1. The system 

with limiter is shown in figure 5.21, with the required commands to 

modify the stored model shown in figure 5.22. The limiter is 

implemented using two conditional equations which are appended to the 

equation set using the APEQ command. Note that the present version 

of the SIMUPROG program requires both upper and lower limits for a 

conditional equation. This restriction means that the upper limit 

has to be set to an arbritary value which is greater than the variable 

will reach, in this case 100,000. Figure 5.22 also shows the action 

of the equation conversion subroutine when an erroneous equation 

has been entered. Figure 5.23 shows the result obtained with the 

addition of the limiter. This result is for a Q of 2.5 and 

is therefore directly comparable with the non limited case shown in 

figure 5.20. 

Input data can be entered into the model using the high speed 

paper tape reader. Figure 5.24 shows the commands used to initiate 

the data entry. Formatted data entry is used, so the data input 

is controlled by the simulation system and not by the model. The 

APEQ and REOR commands are used to add an equation for reading the data 

to the start of the equation set. The data input used is a square 

wave of +0.5 to -0.5, and was used with the second order system 

without the limiter. The result for a Q of 2.5 is shown in 

figure 5.25. 
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Figure 5.18 Response for Q=0.5 
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Figure 5.19 Response for Q=1 
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C SAP EQ 
ENTER EQN 
> D Y ='» I FT 1 (L, DY, 
##ERROR 18 EQN WRONG!* ENTER AGAIN 
>DY=%IFTI (ONE,DY,M)ONE 

C >APEQ 
ENTER EGN 
>DY=xI FTI (ONE, %NEG(DY),M)%NEG(ONE) 

C > SPAR 
PRESENT PAPAM 
4- 10.0 
X= 0.0 
Q= 2. 5 
DT= 0.009999999 

ONE= 0-0 
M= 0* 0 

NEW Y/N?: Y 
W= > 
X= > 
Q= > 

DT= > 

ONE= 
M= >100000 

C >RRIIN 

AFTER 255 STEPS 

Figure 5.22 Setup Limiter 
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Figure 5.23 Response with Limiter 

C >SIM 
NO DATA INPUT 

NEW '(/N?: Y 
DATA INPUT Y/N?: Y 
FORMATTED DATA INPUT Y/N?: Y 
STP.EP.?:S = > 1 

STEPS EETWE II:=UTS = >E0 

C >APEQ 
EJTER EGN 
>X=' ZREAD(OIJE) 

C >REOR 
OPERATE LIST IS 

1 2 3 4 5 6 7 

NEW LIST Y/M?:Y 
EON NUMBERS 
>7 
>T- 
>2 
>3 
>4 

C >STPS 
STEP= 255 

NEW Y/N?: Y 
STEP= >1020 

C >GINT 
GRAPH INTERVAL I S 1 

NEW Y/N?: Y 
I IJ T => 4 

C >RRUJ 

AFTER 102E STEPS 

C > 

Figure 5.24 Setup Data Input 
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Figure 5.25 Response to Square Wave 
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Figure 5.26 Nonlinear Solution 
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The simulation system is not limited to linear equations, as any 

algebraic equation can be entered, including discontinuous functions 

implemented using conditional equations. A simple nonlinear example 

which does have an analytical solution is the differential equation 

y = -y2, which has the solution y(t) = y(0)/(1 + y(0)t). This was 

implemented using Euler integration with a step size of 0.01 and the 

result is shown in figure 5.26. The error produced was less than 

the minimum resolution of the graphic display which has 256 by 256 

points. 

Figures 5.27 and 5.28 show the phase plots of the response of 

the system defined by the differential equation y = -y - Ay, starting 

from the initial conditions y=1, y=0 and y=-l, with a step size of 

0.005. Variables y and y are outputted as graphs, and the display 

is changed to phase plot to give y against y. Figure 5.27 shows 

the stable result when A=0.4 and figure 5.28 shows the unstable 

result when A=-0.05. 

Some compensated integrators of the types suggested by 

Smith5 were implemented, including a variable phase integrator for 

the linear oscillator problem. Figure 5.29 shows the result of 

the linear oscillator using the integrator with the variable phase 

facility disabled, and figure 5.30 shows the result when the variable 

phase integration is operational. The actual integrator implemented 

was a restricted version of Smith's, due to lack of equation space, 

so some degradation of the result will have occurred. The variable 

phase integrator does work, but the complexity of implementation, 

for what is essentially a second order integrator, means that it is 

not really suitable for the simulation system. 
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Figure 5.27 Phase Plot of Stable System 
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Figure 5.28 Phase Plot of Unstable System 
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A simulation of a phase locked loop was performed to investigate 

the reaction of the circuit to changes in frequency and phase of the 

input signal. The simulation was based on the design information 

supplied in the data sheets and applications note66 for the Motorola 

MC 4344 and MC 4324 phase locked loop components. Figure 5.31 

shows the output frequency response of the phase locked loop to an 

input frequency step from 120 MHz to 120.01 MHz, and figure 5.32 

shows the output frequency response of the phase locked loop to 

a 180° step change in the phase of the 120 MHz input signal. Both 

simulations used Euler integration with a time step size of 0.001 

seconds. 



159 

r \ - 
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Figure 5.31 Frequency Step Response 

1 19.97 MHz-J 

0 0.5 1 T (ms) 

Figure 5.32 Phase Step Response 
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6. Conclusions 

6.1 Present System 

The microprocessor based simulation system provides an effective 

and easy to use method of digitally implementing small continuous 

simulation problems. For a large range of problems which do not 

need very high accuracy, the simulation system can produce results very 

quickly in graphic form. The graphic output on the oscilloscope 

can be used either for the final result, or to monitor the progress 

of the simulation run so that the operation of the simulation model 

can be checked prior to a higher accuracy tabulated printout. The 

mnemonic command names and the interactive dialogue of the individual 

commands go a long way to guide the user in operating the simulation 

system. The simulation system as it stands does not represent the 

minimum configuration which would be required to run the simulation 

system since it also had to be used for the more demanding task of 

program development. If the link was fully utilized to provide 

control of the simulation system from the VDU of the Nascom-1 

microcomputer, then the only components left of the GIMINI microcomputer 

would be the memory and the microprocessor itself. 

The present simulation system program is stored in RAM memory 

and has to be reloaded at the start of each session. Using the 

high speed reader the loading takes about three minutes, which would 

be quite acceptable at the start of each day, but if the Nascom-l's 

audio cassette was used, then the loading would take about eight 

imes as long which would be unacceptable. It would therefore be 

etter if the simulation system program were stored in ROM or EPROM 
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memory which would give instant availability. Because of the struc- 

ture of the program, only minor changes are needed for operation in 

EPROM and these consist of moving the positions of the temporary 

variables from inside the program to an area of RAM memory beside 

the database. 

The CMOS memory used with the Z80 provided an effective EPROM 

simulator for the display program,and could also be used to provide 

a non volatile memory for storing the simulation model data. CMOS 

memory is still more expensive than NMOS memory but, when the CMOS 

on sapphire technology becomes established, there should be less 

difference in cost. CMOS could still only provide a temporary storage, 

since several simulation task could not be held in the memory 

together. The Nascom-l's cassette interface was rather prone to 

interference, so a more sophisticated and reliable system would be 

needed for data storage. 

The teleprinter was used during program development to output 

the source and object programs on paper tape as well as print the 

listings. It was very slow and noisy and also proved to be 

unreliable at punching paper tapes, so unreliable that it often 

proved quicker to find and correct the errors manually by splicing 

the tape rather than wait for the punch to produce a correct copy. 

The simulation system presently runs in 16 k bytes (8 k words) of 

memory, including the floating point software which uses 3158 bytes 

of memory. The actual space used for storing the model equations 

is 2700 bytes, and this can hold 29 individual equations each of 25 

elements together with the names and values of up to 35 variables. 

Since the simulation system program can cope with any size of memory, 



162 

which can be used with the CP 1600, the use of the CP 1600's maximum 

memory size of 128 k bytes would mean that the system could store 

over 1200 equations with over 1400 variables. The limiting factor 

on the length of the equation string entered is the line buffer 

which was matched to the teletype line length of 72 characters. 

Once the parenthesis have been deleted, and the variable and function 

names reduced to their coded form, the resulting equation is very 

unlikely to exceed a length of 25 elements. Even if the limit is 

exceeded the simulation system will detect the problem and ask the 

user to shorten the equation. 

The cost of RAM memory has dropped dramatically over the last 

few years, and this makes it much cheaper to expand the simulation 

system just by increasing the size of the memory., The cost 

effectiveness of gaining extra storage space by rewriting the program 

in a more compact form has therefore been greatly reduced. However 

the use of a single segmented list to store the equations and the 

compression of the stored variable names into fewer words would 

still provide a significant increase in the usable equation storage 

space for a relatively small amount of programming effort. 

The floating point arithmetic package, in its revised form, 

performed adequately but the lack of trigonometric functions is a 

handicap. The Am 9511 arithmetic processing unit which was evaluated, 

but not integrated into the simulation system, would remedy the 

situation as well as providing an increase in calculation speed. 

The arithmetic unit could be incorporated by simply changing the 

operator and function subroutines so that they access the hardware 

arithmetic unit instead of calling the floating point software. 
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Since the arithmetic unit is actually a self-contained processor which 

can operate in parallel with the host microprocessor, then a greater 

increase in operating speed could be obtained if the microprocessor was 

setting up the next arithmetic operation while the arithmetic unit was 

still processing the data from the previous operation. Although this 

would mean a change in the way the calculations are performed, the 

equation structure and the arithmetic subroutine calling mechanism 

would remain unaltered. The use of the arithmetic hardware would 

also free more memory for equation storage. The arithmetic unit is 

presently attached to the Z80, and therefore the simulation system 

can only access it via the link with the aid of a Z80 interrupt routine. 

This was originally done so that the Z80 could also access the unit for 

scaling the graphic output. Since the present simulation system scales 

the graphic output before sending it to the Z80, the arithmetic unit 

would be more Pfficiently used if it was attached directly to the 

CP 1600. 

While automatic scaling of the graphic output would be convenient, 

full range scaling would require five times as much memory as presently 

used for result storage, if the refresh display were to be maintained. 

A more limited form of automatic scaling could be obtained by storing 

16 bit fixed point values instead of the present 8 bits, and then 

extracting 8 bits for display, corresponding to the most significant 

bits of the largest value in the graph to be displayed. This scaling, 

using integer values, would be used in conjunction with the floating 

point scaling and integer conversion presently used by the simulation 

system and would not require the use of the arithmetic unit. The present 

graphic output represents a vertical scale of +1 to -1 and a single 
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scale factor is chosen to fit the result data into the range. This is 

not really satisfactory if the data does not extend equally above 

and below zero, since an unnecessary loss of resolution will occur. 

A better method of setting the scale factors would be to enter the lower 

and upper values of each graph to be displayed, and let the simulation 

system calculate the offset and scale factor required. 

The refresh rate of the graphs was sufficient to produce a flicker 

free display even when four graphs were displayed simulataneously, 

High rates of change of the variable being displayed produces noticably 

dotted lines due to the limited resolution of the display. The only 

way round this would be either to use a higher resolution which would 

be more expensive, or to use analogue interpolation which would be 

both difficult and expensive. For most purposes an increased resolution 

would onlyhave a cosmetic effect since the human eye and brain are 

very good at performing complex interpolations. 

The teleprinter used for hard copy output was both noisy and slow. 

While this could be accepted for result output, an alternative output 

device such as a thermal or dot matrix printer would be preferable 

since these devices can be both faster and quieter. The Nascom-l's 

VDU could be used to display the tabulated results, but the availability 

of the graphic output facility means that the VDU would be rarely used. 

The main tabulated output requirement is still a high accuracy printout. 

The present floating point software produces a fixed point decimal out- 

put and while this is useful for most problems, an alternative of 

scientific or engineering format would sometimes be preferable. The 

alternatives could be achieved by having input and output conversion 

routines available for all three formats and adding a command which is 

used to select the required format. 
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The equation translator worked very well and the lack of a 

reverse translator, from reverse Polish notation to algebraic 

notation, did not prove a handicap since the original equations were 

recorded when they were typed in. The actual equation stored can be 

printed out in reverse Polish notation and its equivalence to the 

entered equation can therefore be checked. If the VDU was to be 

used for entering the equations then a translator for displaying 

the equations would be helpful, but it would use up a sizeable chunk 

of memory. An easier alternative, if a printer was available, would 

be to print out a copy of the equations as they were entered. The lack 

of numerical constants gave no problems but was inconvenient. Numerical 

constants could easily be implemented in the same way as variables and 

parameters except that no name would need to be stored. The equation 

input section of the program would have to be slightly modified to read 

in the numerical value instead of the name, but this has been anticipated 

by ensuring that all variables and parameters must start with an 

alphabetic character. 

The conditional functions were inconvenient on two accounts, 

firstly the user has to remember which function name corresponds to 

which condition, and secondly a dummy second limit is required to 

implement a single sided condition. It would therefore be preferable 

if the function name only specified whether the equation was to be 

implemented when the conditionsgiven as parameters were true or 

false. The initial function names would therefore only be dummies and 

the program would select the actual subroutine required, according to 

the conditions given in the parameters. 

The simulation system control dialogue seems to be a reasonable 
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balance between minimising memory space and providing an explanatory 

dialogue. If more explanation were given to assist the first time user, 

the time taken for the extra printout would be annoying to a user who is 

thoroughly familiar with the simulation system. If the VDU was used 

for control dialogue, then one useful additon would be a menu of system 

commands. 

The implementation of a built in integration routine would be very 

useful, but would involve extra complexity and add extra restrictions 

on the format of a variable, so that the simulation system could 

identify the derivatives. Of the integration methods examined, only 

the Runge Kutta ones would really be useful for general purpose work. 

The Euler method was by far the slowest method, and is 

indeed simple enough to implement without being built in. The higher 

order Runge Kutta methods are rather complex to implement so one 

of the second order Runge Kutta methods would be the best compromise. 

There was nothing to choose between the two second order Runge Kutta 

methods tried, so the easiest to implement should be chosen. 

6.2 Future Developments 

The simulation system is by no means limited to using the CP 1600 

microprocessor, and the newer- and more powerful 16 bit microprocessors, 

such as the Z8000 and the M68000, could be used to produce a faster 

system with a bigger memory address range. These processors are 

primarily designed for multiuser systems and provide for operating system 

protection and memory management. Their present high cost would detract 

from the ideal of a cheap single user simulation system. The use 
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of an arithmetic processor such as the Am9511, removes a lot of the 

run time processing from the host microprocessor. This would mean that, 

when used with an arithmetic processor, an 8 bit microprocessor could run 

a simulation model as fast as a 16 bit machine. The Z80 could be used, 

but the M6809 would be preferable because of its two stack pointers 

and its more comprehensive addressing modes. 

A M6809 with an Am9511 arithmetic unit could provide the basis for 

a future low cost system, but to keep the final cost low, the program 

development time must be kept to a minimum. With memory prices 

falling all the time, it would be more cost effective if the bulk of 

the simulation system was written in a high level language and assembly 

language only used for time critical sections. It would actually be 

possible to use an interpreter for most of the system, but a 

structured language such as Pascal would be much better than the 

unstructured Basic. The Forth language would seem to offer the benefits 

of a structured high level interpreter with an operating speed much 

nearer to pure in line machine code operation, and therefore must be 

a prime candidate. 

The usefulness of the simulation system would be increased if the 

user could write special functions which could be called in the model 

equations. This facility could be implemented by allowing the user to 

enter generalised equations, similar to the model equations, which 

would then be assigned as a block to the required name which could be 

called in the same way as any present system function. A more 

powerful alternative to this would be for the user to enter the name of 

a new function together with the address of a prewritten subroutine 
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which will perform the required operations. The prewritten function 

could be in machine code or else written in a high level language for 

use with an interpreter. An interpreter would be slower but Forth, 

which itself uses a stack and reverse Polish notation, may be useful 

and for future systems should be investigated. 

To save space, the present simulation system uses the monitor's 

memory dump facility to save the simulation data, so the format is 

therefore peculiar to the GIMINI and the memory size. A more general 

data output which dumped only the model would therefore be preferable 

since the model data could then be transferred between simulation 

systems using different memory sizes and even different microprocessors. 

The simulation system has at present a data input facility from 

paper tape, but his could be replaced by an analogue to digital 

converter and a multiplexer to give a real time data input facility, 

so that the system could be used as data logger or data analyzer. The 

analogue output, used for the graphics display, could also be used and 

the system would be able to perform real time control of slow systems. 

The simulation system would not really be practicable as a control 

system, but the control facility could be very useful in a teaching 

role where the students could see a demonstration of the actual 

operation of the set of equations entered into the simulation system. 

The input and output data handlers could either be built into the 

system or implemented using the user written functions previously 

mentioned. 

To perform real time control effectively, the simulation system 

would have to be much faster. One way of increasing the speed would 

be to use scaled integer arithmetic. The simulation would first be 
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performed using floating point arithmetic to determine the magnitude 

of the variables in response to the range of input values. These 

results would then be used to scale the problem so that integer arithmetic 

could be used for the actual running. Even with integer arithmetic, 

the relatively slow speed of the microprocessor would still limit the 

systems use. 

Bit slice microprocessor elements could be used to emulate a 

general purpose microprocessor, but this would be complex and 

expensive since a program would first have to be written to simulate 

the general purpose microprocessors instruction set. The memory used 

would also be a limiting factor, and high speed memory is very expensive. 

For a real improvement in speed, parallel processing would have to be 

used. A system could be envisaged where each equation of the 

simulation system, or at least each integrator, was implemented by a 

separate microprocessor. Each of these parallel processors could be 

a general purpose microprocessor or, for extra speed, a bit slice 

machine. Raamot67 describes the use of two bit slice machines to 

simulate a galvanometer. For the Galvanometer application the 

the control program is fixed in a PROM, but for the simulation system 

the program would have to be updated. The programs for the parallel 

microprocessors could be stored completely or partly in RAM and 

updated when required by a general purpose microprocessor which controls 

the whole system and interfaces with the user. Apart from the hardware 

complexity of the parallel processors, a lot of work will have to be 

done to produce an efficient distribution of the simulation problem 

between the various microprocessors. The resulting system should 

however be capable of operating speeds approaching those of an analogue 

computer for a fraction of the cost. 
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