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Abstract

Efforts towards a low carbon economy are challenging the electricity industry. On the
supply-side, centralised carbon-intensive power plants are set to gradually decrease
their contribution to the generation mix, whilst distributed renewable generation is to
successively increase its share. On the demand-side, electricity use is expected to in-
crease in the future due to the electrification of heating and transport. Moreover, the
demand-side is to become more active allowing end-users to invest in generation and
storage technologies, such as solar photovoltaics (PV) and home batteries. As a result,
some network reinforcements might be needed and instrumentation at the users’ end
is to be required, such as controllers and home energy management systems (HEMS).
The electricity grid must balance supply and demand at all times in order to maintain
technical constraints of frequency, voltage, and current; and this will becomemore chal-
lenging as a result of this transition. Failure to meet these constraints compromises the
service and could damage the power grid assets and end-users’ appliances. Balancing
generation, although responsive, is carbon-intensive and associated with inefficient as-
set utilisation, as these generators are mostly used during peak hours and sit idle the
rest of the time. Furthermore, energy storage is a potential solution to assist the balan-
cing problem in the presence of non-dispatchable low-carbon generators; however, it is
substantially expensive to store energy in large amounts. Therefore, demand response
(DR) has been envisioned as a complementary solution to increase the system’s resili-
ence to weather-dependent, stochastic, and intermittent generation along with variable
and temperature-correlated electric load. In the domestic setting, operational flexibil-
ity of some appliances, such as heaters and electric cars, can be coordinated amongst
several households so as to help balance supply and demand, and reduce the need of
balancing generators.

Against this background, the electricity supply system requires new organisational
paradigms that integrate DR effectively. Although some dynamic pricing schemes have
been proposed to guide DR, such as time of use (ToU) and real-time pricing (RTP), it
is still unclear how to control oscillatory massive responses (e.g., large fleet of electric
cars simultaneously responding to a favourable price). Hence, this thesis proposes an
alternative approach in which households proactively submit DR offers that express
their preferences to their respective retailer in exchange for a discount. This research
develops a computational model of domestic electricity use, and simulates appliances
with operational flexibility in order to evaluate the effects and benefits of DR for both
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retailers and households. It provides a representation for this flexibility so that it can
be integrated into specific DR offers. Retailers and households are modelled as compu-
tational agents. Furthermore, two market-based mechanisms are proposed to determ-
ine the allocation of DR offers. More specifically, a one-sided Vickrey-Clarke-Groves
(VCG)-based mechanism and penalty schemes were designed for electricity retailers to
coordinate their customers’ DR efforts so as to ameliorate the imbalance of their trading
schedules. Similarly, a two-sided McAfee-based mechanism was designed to integrate
DR offers into a multi-retailer setting in order to reduce zonal imbalances. A suitable
method was developed to construct DR block offers that could be traded amongst retail-
ers. Bothmechanisms are dominant-strategy incentive-compatible and trade off a small
amount of economic efficiency in order to maintain individual rationality, truthful re-
porting, weak budget balance and tractable computation. Moreover, privacy preserving
is achieved by including computational agents from the independent system operator
(ISO) as intermediaries between each retailer and its domestic customers, and amongst
retailers. The theoretical properties of these mechanisms were proved using worst-case
analysis, and their economic effects were evaluated in simulations based on data from a
survey of UK household electricity use. In addition, forecasting methods were assessed
on the end-users’ side in order to make better DR offers and avoid penalties. The res-
ults show that, under reasonable assumptions, the proposed coordination mechanisms
achieve significant savings for both end-users and retailers, as they reduce the required
amount of expensive balancing generation.
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Chapter 1

Introduction

This thesis examines two direct market-based coordination mechanisms for domestic
demand response (DR). The first mechanism is set up between electricity retailers1 and
households as a means to reduce each retailer’s trading imbalances. The second mech-
anism induces a higher level coordination amongst multiple retailers within a zone. The
first mechanism assumes that each retailer uses DR for itself, whereas the second one
focuses on the zonal imbalance and allows DR exchange amongst competing retailers.
Electricity retailers and households are computationally modelled as self-interested ra-
tional agents residing in controllers (e.g., smart meters, home energy managements
systems) and following the end-user’s designated policies. Individual and holistic per-
spectives are considered in a multiagent setting to evaluate which mechanisms are most
effective in achieving efficiencies.

The following sections describe the motivation for research into low-carbon elec-
tricity systems, the definition of the problem under consideration, the scientific contri-
butions, and the thesis outline.

1.1 Research Motivation

Energy use is essential to support quality of life. In fact, they are both directly correlated
(Pasten and Santamarina, 2012). Since the industrial revolution, substantial progress
has been made to improve the standard of living, which has come at the expense of
increasing energy needs. This thirst for energy has led a quest for fossil fuels, such as
coal and gas, that are commonly scarce, hard to find and expensive to extract. Not only

1Electricity retailers are also referred to as load-serving entities (LSE), facilities, electric companies,
or electricity suppliers.
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2 Chapter 1. Introduction

fossil fuels extraction has brought political and economic instability in some countries,
but also their use produces high greenhouse gases (GHG) emissions that are likely to
be one of the main causes of climate change (MacKay, 2009). Public concern is in-
creasingly pressing for alternative sources of energy, specially those which can help to
meet carbon targets. In addition, the global demand for energy is projected to increase
due to reasons such as population growth, modernisation and industrialisation of de-
veloping countries, and a wider range of technology uptake (U.S. Energy Information
Administration, 2012).

A predominant alternative to improve energy security, yet meet carbon targets, is
the inclusion of a considerably increasing share of renewable sources (e.g., wind, sun-
light) into the electricity generation mix (UK HM Government, 2009; Appelrath et al.,
2012). Electricity is directly related to economic growth (U.S. Department of Energy,
2003) and its decarbonisation can pave the way for reducing GHG emissions without
sacrificing too much comfort. Moreover, shifting from internal combustion engine
vehicles (ICEV) to electric vehicles (EV) that are recharged with decarbonised electri-
city is seen as a pathway to considerably reducing GHG emissions as well as oil reli-
ance (European Commission, 2009). MacKay (2009) concludes that switching to EVs
is a good decision, even when using electricity that is not generated from low-carbon
sources, since they are at least as good as the most efficient ICEV. Also, EVs offer
potential to accommodate renewable energy, as their batteries could provide flexibility
to be recharged during off-peak periods or when there is an excess of renewable en-
ergy. They could even provide electricity to the grid under specific circumstances, i.e.,
vehicle-to-grid (V2G) (European Commission, 2009). In addition, using efficient heat
pumps instead of conventional heaters could add up to reducing emissions. Although
EVs and heat pumps are convenient for carbon targets, they put significant strain on the
power sector infrastructure, as they considerably increase electricity demand (Depart-
ment of Energy & Climate Change, 2009). This exacerbates the problem of suppling
electricity generated from low-carbon sources.

The decarbonisation of the power sector raises several challenges. First, decar-
bonisation of electricity could be achieved by using carbon capture and storage (CCS)
technologies and/or replacing carbon-intensive supply with renewable generation (De-
partment of Energy & Climate Change, 2009). On the one hand, CCS and respective
logistics could become costly, and thus increase the electricity price. Although they
allow for controllable supply (i.e., dispatchable power plants), they depend on not so
abundant fossil fuels. On the other hand, renewable generation has a small operational
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cost, as they mostly require no fuels (or if they do, these are not so expensive biofuels).
Despite of the fact that renewable sources are abundant, they are stochastic and inter-
mittent, as the main sources are weather dependent, such as wind and sunlight.

Second, electricity storage is limited and it carries significant investments to ac-
commodate large capacities, such as pumped hydroelectric energy storage (PHES),
(Kirschen and Strbac, 2004). Due to the fact that the future of the electricity supply
system is unclear, no single stakeholder wants to invest in expensive storage projects
that might not return on their costs (Claessen and La Poutré, 2014; U.S. Department
of Energy, 2003).

Third, the nature of renewables calls for a paradigm shift from few central-
ised massive power plants to decentralised and distributed energy resources (DER)
(Ramchurn et al., 2012). This implies replacing a stable dispatchable supply-side by
many micro- and small-scale generators that mostly depend on weather conditions, res-
ulting in a less controllable supply (e.g., solar photovoltaics, wind turbines). Due to the
nature of this shift, some gains are obtained by bringing generation closer to demand,
as less energy is lost as dissipated heat in transmission cables, and some distributed
generators (DG) take advantage of the waste heat (Lasseter and Paigi, 2004), e.g., com-
bined heat and power plants (CHP). Notwithstanding, this paradigm shift requires big
efforts on decentralised coordination with many autonomous entities (i.e., agents) with
different technologies and own interests.

Fourth, the electrification of transport, heating and cooling can cause severe load
peaks if their demand is not managed properly, thus, causing infrastructure overload
and potential damage (Department of Energy & Climate Change, 2009).

Regardless of the generation sources, a key constraint of the electricity supply sys-
tem is that supply and demand must be in continuous balance, otherwise blackouts and
infrastructure damages are likely to happen (Department of Energy & Climate Change,
2009; Ramchurn et al., 2012). The expected new dynamics for future electricity sup-
ply systems make this key constraint hard to be satisfied, and thus to reconsider the
traditional approach of ‘supply follows demand’ so that demand also becomes adapt-
ive to supply conditions, i.e., demand-side management (DSM), (Schweppe, Tabors,
et al., 1980; Schweppe, Daryanian, et al., 1989; Ramchurn et al., 2012). This change
along with consumers that can also generate electricity (i.e., prosumers2) require new
organisational paradigms to account for these new dynamics and roles (Claessen and

2Portmanteau term from the words producer and consumer, that is commonly used in low-carbon
electricity systems to refer to end-users with generation capacity.
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La Poutré, 2014).

Since the modernisation of the electricity supply system cannot be done by industry
or government alone, significant efforts have been made to develop a common vision
amongst all stakeholders to foster long-term investments (U.S. Department of Energy,
2003; European Commission, 2006). This vision has been included under the concept
of a ‘Smart Grid’, which comprises a reengineering of the current electricity grid to sup-
port bidirectional flows of electricity and information, sensing and automation in order
to improve the efficiency, reliability, sustainability and affordability of electric power
delivery (U.S. Department of Energy, 2003; European Commission, 2006). Within
this vision, information and communication technology (ICT) plays a major role in-
tegrating the value chain, connecting all the participants and automating the decision
making (Claessen and La Poutré, 2014).

DSM has been advocated for accommodating to the stochasticity and intermittency
from low-carbon sources of electricity generation. Within this context, domestic DR is
the ability of end-users to adapt a fraction of their electricity use, i.e., by anticipating
or deferring the use of some appliances, so as to better match the variable supply. For
instance, if there is an unplanned surplus of renewable electricity, it would be expected
to become less expensive, so those with the ability to respond and use it would benefit,
provided that there are incentives to do so. Similarly, if electricity is scarce, it would be
expected to be more expensive, so its use could be deferred. Analogously, the supply-
side can also be incentivised or disincentivised in agreement with the laws of supply
and demand.

The problem of coordinating DR can be cast as a task allocation problem amongst
self-interested profit-maximising agents through carefully designed auctions. An auc-
tion is any protocol that allows agents to indicate their preferences over one or more
resources, it determines the resulting allocation of these resources according to the
agents’ preferences, and it settles the payments (Shoham and Leyton-Brown, 2008,
Ch11). This framework for resource allocation has been studied in several fields, such
as, microeconomics, electronic market design, operational research (OR), power sys-
tems economics, and artificial intelligence (AI) through algorithmic mechanism design
and multiagent systems (MAS). It is a reasonable assumption to expect the DR alloc-
ation process to be automated by autonomous software agents acting on behalf the
end-users, residing in their home energy management systems (HEMS), and operating
through controllers (Ramchurn et al., 2012; Claessen and La Poutré, 2014). Therefore,
the research problem has been computationally modelled and studied as a MAS, using
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tools from mechanism design and agent-based modelling and simulation (ABM/S).

Multiagent systems (MAS) have increasingly been used to model complex systems
such as smart grids, simulate their emergent behaviour, and solve coordination prob-
lems amongst their actors (e.g., Vytelingum et al. (2011), Ramchurn et al. (2011a), Kok
(2013), Pipattanasomporn et al. (2009), Oyarzabal et al. (2005), and Dimeas and Hat-
ziargyriou (2010)). ABM/S can be used to computationally model and simulate new
business roles, market mechanisms, communication and coordination protocols, find
out the overall impact of policies and regulations as a result of assessing their effect in
a realistic simulation.

1.2 Problem Statement

Traditionally, in countries with liberalised electricity markets, electricity is financially
traded in the wholesale market several time periods before the actual physical delivery.
At the retail level, end-users sign a contract with a retailer that trades in the wholesale
market and offers electricity serving at usually one or two fixed rates, whose billing is
done at the end of a specified period, i.e., monthly, quarterly. In order to make profit,
retailers need to estimate their customers’ demand as accurately as possible so as to
trade proper amounts in the wholesale market. Failure to do so will generally involve
either an opportunity cost or expensive procurement due to balancing generation, thus
reducing their margin. Moreover, wholesale electricity prices are variable and they are
computed through an optimisation procedure that matches generation offering curves
and load bidding curves along with network-related technical constraints. This pro-
cedure results in usually different zonal prices per time period within a day, usually
24 hours or 48 half-hours. This means that the price of electricity is variable and it is
basically governed by the microeconomic laws of supply and demand, plus technical
constraints to guarantee a reliable cost-effective service.

1.2.1 Supply and Demand Balance

A hard constraint in the electricity supply system is that supply and demand must be
in continuous balance all the time. This means that frequency and voltage must be
kept within range. Failure to maintain this balance could lead to infrastructure damage,
blackouts, brownouts or general lost of load that could be translated into lack of comfort
and economic losses, amongst other things. The conventional approach has generation
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assets ready to cover for load variability, i.e., ‘supply follows demand’. With stable
supply (i.e., dispatchable generators) and somehow predictable consumption (e.g., tem-
perature correlated electricity use, day of the week), the supply and demand problem
boils down to managing load peaks. The highest aggregated domestic peak load, under
conventional circumstances, commonly takes place in the evening. Expensive load-
following generators are reserved to be used during the few hours of the peak, and they
are often under-utilised.

In monopoly-based electricity systems the balance of supply and demand is per-
formed in accordance to an internal schedule. On the other hand, in unbundled elec-
tricity systems with liberalised electricity markets, this task is carried out by clearing
several sequential markets, where participants compete to get their bids (or asks) ac-
cepted. Dynamics for future low-carbon electricity systems are expected to challenge
the conventional approach of ‘supply follows demand’ and make it impractical to sat-
isfy the supply and demand balance. Besides, storage is a limitation. Therefore, new
approaches in which demand becomes adaptive (or at least manageable) are required.
Thus, consumers and prosumers need to be guided to keep peak problems within a
controllable extent.

1.2.2 Domestic End-Users Desiderata

For end-users it is a top priority to have access to an inexpensive and very reliable
electricity service, regardless whether it comes from a retailer or their own generating
technologies. This includes having the freedom to use electricity at their will. In ad-
dition, if they had invested in generating technologies, renewable or not, they would
like to be paid if they exported electricity to the grid. Although this idea is appealing,
it is not easy to organise thousands or potentially millions of small contributors to the
electricity supply, specially if they might not provide a reliable power output, as in the
case of renewable technologies.

The electricity wholesale market provides access to usually better prices that, for
instance, could result in a cheaper service if retailing intermediaries are to be avoided.
For an industrial customer it could be beneficial to directly buy their electricity from the
wholesale, provided that it invests some effort in determining a beneficial procurement
strategy. However, this might not be as convenient for domestic customers, as they
would be exposed to the high volatility of market prices. Moreover, not meeting the
traded positions in the wholesale market could result in expensive penalties due to the
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balancing constraint. Furthermore, a considerable upfront investment would be needed
to determine a profitable procurement strategy under uncertainty and to acquire techno-
logies (e.g., batteries, domestic dispatchable generators) so as to hedge balancing prices
or penalties. As a result, domestic customers could end up paying a more expensive
service than if they are served by a specialised party. Therefore, electricity retailers are
convenient for end-users, so that the value they add in the organised trade of electricity
is fixing one or two hopefully competitive prices, so end-users are not exposed to the
wholesale market risks.

Several pricing schemes have been studied in the literature for the purpose of ad-
apting to supply conditions. Starting from cheaper night tariffs that end-user might
take advantage of, to more dynamic settings in which renewables are part of the gen-
eration mix. Particularly, theses prices are aimed to incentivise or deter electricity use
according to the state of the sources of supply and, sometimes, paired with network
constraints. On the one hand, fixed prices do not incentivise end-users to modify their
use patterns, and thus redistribute peaks resulting from common human behaviour and
weather conditions, mainly temperature. On the other hand, dynamic prices such as
real-time pricing (RTP) could cause undesired aggregate effects, such as having an
avalanche of end-users reacting to a rise (or fall) of price, thus inducing a large de-
mand fluctuation. For instance, there could be a large number of electric vehicles (EV)
waiting for the right price to be charged at, then as soon as they sense a price that is
considered inexpensive, most of them will start recharging, driving the supply scarce
and thus an increase in price to discourage consumption. Basically, the latter scenario
converts a behavioural peak problem to an economically induced peak problem that is
only shifted to a different time of the day, unless some randomisation is induced too
(Ramchurn et al., 2011a). One of the fundamental problems of this Walrasian-style
pricing scheme is that the economic feedback loop is not instantaneous and such delay
can cause the undesired peak effects (Vickrey, 1971; Tesfatsion, 2006).

One benefit of liberalised electricity markets, that include their retail echelon, is that
end-users can select the retailer that gives them the most competitive tariffs, specially
if these are kept fixed for some months or years. Furthermore, if some supply-demand
loop needs to be in place between the retailer and end-users, the latter would not like
to be expected to monitor the loop themselves in order to respond to a certain signal.
That is, end-users would like to maximise their comfort from electricity use, thus they
require a controller device that could be delegated the job of monitoring the loop, such
as an HEMS that has access to the (smart) meter and is able to schedule some devices
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that can respond to the loop signals. Some examples of these scheduling tasks are
EV recharging, home battery (HB) recharging and discharging, heating and cooling,
washing and drying, etc. It is also desirable for end-users to preserve some of their
privacy while anonymising their profile under the aggregate use of devices. End-users
can also be concerned for their privacy, since they (or their HEMS) could respond to
signals or direct incentives from their retailer, they would not like other entities (e.g.,
retailer, broker, aggregator, market operator) to know that the end-user has an EV, HB,
or how often they are recharged or needed. In this case, it would be impractical for the
retailer to schedule and price according to specific technical requirements of multiple
devices and preferences from many end-users. Also, end-users would not like to give
much information to the retailer that could be used against them in order to extract more
revenue.

1.2.3 Retailers Desiderata

In general, electricity retailers are interested in making profit. This comes from the
difference of serving end-users and trading in the wholesale market, through bilateral
contracts and trading in the pool market if there is one. In a liberalised retail electricity
market, if a retailer is unable to offer competitive prices, its customers might decide
to switch to a different supplier. Moreover, if a retailer misses its aggregate demand
forecast, it could face serious imbalance charges, or contract for differences (CFD)
from bilateral trading, narrowing its profit or even making it to incur in losses. Future
dynamics, due to a wide adoption of DER, will compromise the ability of retailers to
forecast their demand accurately, thus becoming exposed to higher market risks.

Against this background, retailers need to find alternatives to manage these risks,
and yet keep their tariffs competitive so as to have a large group of subscribed cus-
tomers, that translate into higher returns. It is an advantage to retailers to be flexible
and responsive enough to accommodate for electricity surplus or deficit. First, if a
proper mechanism were in place, retailers could use DR from their customers to ac-
count for differences in their already traded position, i.e., their schedule. Second, this
mechanism could help to accommodate differences at a zonal level. For instance, the
distribution system operator (DSO) could be aware of unexpected surplus and offer
it to retailers within a zone, e.g., from a near wind farm or solar PV farms that were
not forecast accurately by other wholesale participants. The opposite can happen too;
there could be an unexpected deficit and reducing the load could be compensated, i.e.,
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economically rewarded. Therefore, retailers that are able to exploit these opportunities
by incentivising some change by their customers use-patterns will become more apt to
maximising profit and keep competitive prices. Moreover, the retailer would like to
exploit the benefits of DR and be economically rewarded, perhaps by the independent
system operator (ISO) or the corresponding DSO, as it helps to reduce the balancing
gap.

A societal benefit if such mechanism were in place would be to reduce the amount
for expensive balancing generation, thus reducing the overall cost of the supply system,
as fewer peaking power plants would have to be reserved to respond to balancing supply
and demand. The power output from balancing generators is generally very expensive,
because these assets are only used a few hours a day and remain idle the rest of the time,
thus the high price in order to be profitable investments. In this sense, DR could lower
the overall cost per kWh, and reduce the carbon footprint while helping accommodate
renewable energy.

1.3 Research Contributions

The contributions of this thesis are relevant to smart energy systems and electronic
market design that, in a wider context, fit into the fields of operational research, com-
putational science, multiagent systems, microeconomics, and power system economics.
The scientific contributions are the following:

1. Design of a computationally tractable VCG-based DSICmechanism with verific-
ation for domestic DR coordination. This mechanism extends the state-of-the-art
in the following aspects.

(a) It provides a computational model of operational flexibility that is general
and simple enough to capture domestic appliance use. This model allows
end-users to schedule flexible tasks (i.e., use of appliances) and express their
associated comfort costs for time-shifting with one of three different linear
functions: increasing, decreasing, and constant per time step.

(b) The ask (bid) format is minimally designed to express the operational flex-
ibility integrated with the electric meter readings so that the actual achieve-
ments can be verified for allocated DR offers. The ask structure comprises
several parameters, however, they are abstracted to a single-dimensional
domain. Due to this reduction, an additional allocation rule needs to be
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imposed so that end-users do not exploit the mechanism through deceitful
offers.

(c) The state-of-the-art toolset of algorithmic mechanism design is used in or-
der to make this auction-based protocol implementable in the dominant
strategy incentive compatible (DSIC) solution concept, with allocations and
payments computation solved in polynomial time.

(d) Three penalty schemes and one inspection procedure are proposed in or-
der to incentivise end-users to report their preferences truthfully. That is,
the VCG-based mechanism is strategy-proof about the costs, but not about
the end-users’ offered capacities. Therefore, these penalties are used to
restore the DSIC implementation, and their properties are evaluated and
benchmarked against another suitable penalty scheme adapted from the lit-
erature.

(e) This mechanism along with four penalty schemes (three proposed and one
from the literature) are evaluated through simulations based on data from
a survey of UK domestic electricity use, and market imbalance settlement
prices. Under reasonable assumptions, it shows to be beneficial for both re-
tailers and end-users, although not so for balancing generators, when com-
pared to the business-as-usual case. At first, savings seem to be low, how-
ever, as balancing generation becomes more expensive, the savings become
considerable. Similarly, theses savings are expected to be more significant
with an increasing electricity use due to foreseen EV deployment (and other
appliances such as heat pumps). However, these savings will plateau as
both the number and capacity of demand responders increases.

2. Design of a multi-unit McAfee-based DSIC mechanism with verification for
zonal domestic DR coordination in a multi-retailer setting. This mechanism con-
tributes to the state-of-the-art in the following.

(a) It adapts the well-known single-unit McAfee’s double auction (DA) to a
multi-unit setting compatible to the model in this thesis, and it preserves
the DSIC property as in the original McAfee’s mechanism.

(b) It extends the single-sided VCG-based mechanism from the point 1 above
to a double-sided mechanism that allows multi-retailer DR coordination,
within a geographical zone.
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(c) A methodology is developed to create stepwise offers from both retailers’
expected deviations and DR offers. These integrated offers allow for a more
efficient use of DR before the imbalance settlement (or any other conven-
tional balancing market). That is, instead of each retailer procuring DR
to cover its own deviation with its pool of customers, the mechanism al-
lows them to trade (or balance) both their expected energy imbalances and
blocks of DR offers. The result of this mechanism produces greater effi-
ciencies since, in general, fewer DR offers are triggered; whilst retailers
grant fewer discounts, end-users’ comfort is impacted less.

(d) Similar to the single-sided mechanism above, allocations and payments
from this double-sided mechanism can be computed in polynomial time.
This is not surprising for double auctions, however, the proposed mechan-
ism is DSIC, which is generally difficult to achieve in multi-unit double
auctions.

(e) The proposed mechanism is simulated and compared against the above
mechanism under the same circumstances so as to evaluate the same di-
mensions.

3. Empirical study and benchmark of several automated forecast methods to predict
a household’s inflexible net-load. The aim of this study is to support the argu-
ment that it is reasonable for end-user agents to make DR offers based on their
prediction, at least for one time period ahead. The used household profiles are
based on data from a survey of UK domestic electricity use, in which loads from
potentially flexible domestic tasks (e.g., heating, washing, drying, etc.) were re-
moved so as to obtain inflexible electricity use (or net-load when generation is
considered). The forecast methods include: naive methods, time-series based
approaches, artificial neural networks (ANN), naive combinations of predictions
based on central tendency measures, and one exponentially weighted average
forecaster (EWAF) that combines the first three types of predictors. Results show
that it is possible to forecast the household’s inflexible net-load with a relatively
low root-mean-square error (i.e., below 200 Wh), which consecutively helps to
improve the accuracy of DR offers.
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1.4 Thesis Outline

This thesis is organised into seven chapters. Chapter 2 provides background informa-
tion on liberalised wholesale electricity markets. It describes the organisation of elec-
tricity markets and time framework for decision making on electricity trading. It also
provides the relevant background on multiagent systems and mechanism design, and it
surveys the relevant literature.

Chapter 3 develops a computational model to study the coordination problem
between electricity retailers and end-users with operational flexibility. It presents the
design of a polynomial time VCG-based truthful mechanism with verification to ameli-
orate the balancing problem. Moreover, three penalty schemes are designed and dis-
cussed, with a fourth one adapted from the literature, in order to restore the DSIC prop-
erty under the problem settings. Furthermore, an inspection procedure is introduced to
review end-user agents skill to predict their intended net-load.

Chapter 4 proposes a double-sided market-based mechanism for multi-retailer set-
tings, where the focus is on balancing supply and demand within a geographical zone.
It develops a methodology for stepwise offers that integrate energy-based trade differ-
ences and DR offers, and provides a suitable extension of the well-known McAfee’s
mechanism to facilitate the exchange of joint retailer and end-user offers, in a multi-
offer, multi-unit setting so as to reduce zonal imbalances.

Chapter 5 examines and evaluates by simulation the proposed mechanisms from
Chapters 3 and 4, under reasonable assumptions, based on data from a survey of UK
domestic electricity use.

Chapter 6 presents several automated forecasting methods used to estimate the in-
flexible net-load on the end-users’ side, in order to improve DR offers and thus reduce
penalties.

Chapter 7 summarises the results from this thesis and draws conclusions. It also
discusses broader implications of the followed approach. In addition, some ideas for
future work are outlined.



Chapter 2

Background

This chapter provides the necessary background information and discusses the relevant
work that justifies the reasoning in the following chapters. First, a basic organisation
of the electrical power supply in the UK is presented, and the main challenges of the
electricity sector for a low-carbon economy are outlined. Second, the organisation of
liberalised wholesale electricity markets is described along with its time frames and
participating agents. Third, a brief background on Multiagent Systems (MAS) and
its intersection with Mechanism Design (MD) are provided, which includes the main
auction protocols used in this thesis for coordinating demand response (DR) efforts.
Finally, the related work is discussed and the scientific gap that this work contributes
to is formally introduced.

2.1 Electric Power Supply

2.1.1 Current Electricity Grid

The current electric power supply, often known as the grid, comprises the infrastructure
used to generate and deliver electric power for its end-use. The electricity grid has been
one of the greatest engineering achievements of the 20th century (U.S. Department of
Energy, 2003). It is a just-in-time (JIT) production system and supply chain where elec-
tricity is generated, delivered, and consumed instantaneously (The Institution of Engin-
eering and Technology (IET), 2013). Historically, in the UK, the US and other industri-
alised nations, the electric power supply started as localised independent systems that
covered limited zones of urban areas, and were managed by a local authority (The Insti-
tution of Engineering and Technology (IET), 2013). These independent systems across
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one country had generating assets close to the point of delivery. In the UK, for instance,
these systems were connected together in the late 1930s by a larger and wider network
at national level, known as the transmission system or national grid (The Institution
of Engineering and Technology (IET), 2013). Other countries followed different pro-
cesses towards developing their electricity supply. Regarding the UK, massive power
stations were built far away from demand centres and electricity was efficiently trans-
ported large distances through the transmission system. This basically allowed for fur-
ther grid developments, better economies of scale, increased efficiency, and improved
security of supply. As a result, the independent systems gradually lost their generation
capacity and became the current distribution systems (The Institution of Engineering
and Technology (IET), 2013). Later, the grid was nationalised, it became vertically
integrated, and so a national monopoly (Electricity Acts 1947 and 1957) (Simmonds,
2002). Further on, with the argument of increasing efficiency, the electric power sys-
tem evolved into a competition-based grid that became open to private companies so
they could take part in electricity generation and retail supply (Electricity Act 1989)
(Simmonds, 2002). This process resulted in the unbundling of the grid, the emergence
of (liberalised) electricity markets, and the creation of regulatory agencies to ensure
proper operation (Utilities Act 2000) (Simmonds, 2002)3.

An electrical grid is broadly divided into generating stations, transmission system,
and distribution systems. Its design and energy mix vary from country to country. Fig-
ure 2.1 shows the basic components of the electric power supply in the UK (excluding
renewables) (U.S.-Canada Power System Outage Task Force, 2004; Lincoln, 2011).
Most generating stations in the UK are based on fossil fuels, such as coal and natural
gas, which accounts for 60% of the total capacity, the rest is from nuclear, renewables
and other fuels (MacLeay et al., 2015). Generation and transmission usually take place
in a three-phase alternating current (AC) power system. Each coil or winding of a
generator is connected to a phase. Phases are conductors that carry high voltage si-
nusoidal electrical waveforms, offset to provide three complementary currents separ-
ated from each other by 120º and oscillating at 50Hz approximately (Lincoln, 2011)
(or 60Hz in other countries). The output from a generator, commonly from 11kV to
25kV, is stepped-up to 275kV or 400kV (or 132kV in Scotland) so it can be transmit-
ted over long distances through the transmission network (Lincoln, 2011). Certainly,
all these values vary by country. Transmission networks, also known as high-voltage

3Electricity reforms and regulations in the UK have been more convoluted than described in this
thesis. More information can be found in (Simmonds, 2002; UK Government, 2016).
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(HV) networks, usually have a meshed topology, because it is more resilient to failures
and maintenance, since a line can be taken down and the power flow will be redirected
over the available lines (Lincoln, 2011). The distribution system starts at the substation
where transformers steps the voltage down to 33kV, 11kV or 6.6kV for industrial con-
sumers, and to pole-mounted transformers that step the voltage further down to 400V
and 230V for commercial and domestic loads (Lincoln, 2011). Distribution networks,
also known as low-voltage (LV) networks, generally have topologies that are less resi-
lient than that of the transmission network; their topology may be a ring circuit (as in
some urban areas) or a radial circuit (as in rural areas or less engaged zones) (Lincoln,
2011). Distribution networks end at the customers’ meters, where the electric system
at the end-users’ premises starts and appliances can directly use electricity.

Figure 2.1: Basic structure of an electricity grid.

Although the current grid has served well up to now, the recent efforts towards a
low-carbon economy have been pressing for non-trivial changes. This is because the
electric power industry has the most potential for reducing greenhouse gas (GHG) emis-
sions, such as carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) (MacKay,
2009). These gases result from the combustion of fossil fuels, such as coal, oil, and nat-
ural gas, to produce electricity. That is, if electricity can be produced from zero- or
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low-carbon sources, it will significantly reduce its contribution to climate change due
to GHG. Furthermore, transportation, heating and cooling will soon be powered by
electricity, thus reducing the shares of GHG emissions from other sectors, provided
that the electricity comes from low-carbon sources. In addition, electricity can be pro-
duced from more abundant sources than fossil fuels, thus improving the security of
supply; fossil fuels are generally scarce, hard to find, expensive to extract, pollutant,
and often inside politically difficult regions (Ramchurn et al., 2012).

2.1.2 Near-Future Electricity Grid: the Smart Grid Vision

The current grid is aging and unable to cope with the requirements of a low-carbon
agenda. The Smart Grid vision rises from the need to guide a collective capital in-
vestment amongst the many stakeholders to renew the grid (at least at a national level)
and achieve energy security. Stakeholders of the electric power sector include users,
generators, electric network companies, electricity retailers, ICT and technology pro-
viders, power exchanges, governmental agencies, environmental agencies, research-
ers, amongst others (U.S. Department of Energy, 2003; European Commission, 2006).
Along with this vision, a regulatory framework is notably very important, as it determ-
ines the roles and responsibilities of the many stakeholders over the available resources,
such as land use, water impact, data collection and privacy policies, etc. Overall, it is
a challenging activity to balance the interests of many different parties, but at least this
vision sets a common ground for further research, innovation, and development.

Figure 2.2 shows a basic structure of a smart grid that builds on the current
electric power grid. Although there is no single agreement on how the future elec-
trical grid should be, common features include (U.S. Department of Energy, 2003;
European Commission, 2006; The Institution of Engineering and Technology (IET),
2013; Ramchurn et al., 2012):

• Infrastructure that supports bidirectional flows of electricity, information, and
money.

• Emphasis onminimising environmental impact, minimising cost and losses, max-
imising infrastructure utilisation, and maintaining a service level that is compar-
able to that of the current grid.

• Integration of DG, including those from intermittent renewable sources.

• Adaptive demand-side to supply conditions.
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• Integration of storage technologies at different scales.

• Some attributes include: market-oriented, sustainable, economic, efficient, reli-
able, resilient, scalable (plug-and-play capabilities), compatible with newer ap-
pliances, with open architecture and common standards, safe and privacy com-
pliant.

• Smart or with some degree of distributed intelligence to manage a massive
amount of heterogeneous DER from many different parties with different (usu-
ally selfish) interests.

Figure 2.2: Basic structure of a future electricity grid (usually referred as a smart grid).
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2.1.2.1 Technical Challenges

For the grid to ensure stable operation, it needs to maintain frequency, voltage and cur-
rent within their limits (The Institution of Engineering and Technology (IET), 2013).
Frequency is controlled globally on a second by second basis at which generation and
load (i.e., supply and demand) are required to be matched. The frequency will drop if
the load surpasses the overall generation, and it will rise if the opposite happens (The
Institution of Engineering and Technology (IET), 2013). Failure to keep frequency
at their nominal value (approximately 50Hz or 60Hz, varying by country) can cause
damage to synchronous machines and other appliances, as well as loss of service, i.e.,
a potential brown-out, or even a blackout (Ramchurn et al., 2012). Voltage is con-
trolled locally at different parts of the grid. Over- or under- voltage cannot only dam-
age end-use appliances, but also compromise some of the grid components, such as
transmission wires and transformers, that are essential to maintain the quality of sup-
ply (The Institution of Engineering and Technology (IET), 2013). Current is also con-
trolled locally, usually by means of spare capacity (The Institution of Engineering and
Technology (IET), 2013). Every device in the grid has an upper limit for current that,
if exceeded, it would result in failures and potential outages (also, safe mechanisms
might get triggered to prevent damages) (The Institution of Engineering and Techno-
logy (IET), 2013). Frequency, voltage, and current are regularly monitored in all or
several areas of the transmission system; however, monitoring in the distribution sys-
tem is less common, since the network is designed to meet voltage limits, and current
problems are prevented with protective devices (The Institution of Engineering and
Technology (IET), 2013).

The future electricity grid will need far more instrumentation, more resilient net-
work configurations, and a larger set of ancillary services in order to keep the grid
within stable operation and accommodate the required changes in an economical way.
Some challenges and potential effects include (U.S. Department of Energy, 2003;
European Commission, 2006; The Institution of Engineering and Technology (IET),
2013; Ramchurn et al., 2012):

• Replacing of fossil-fired generation with zero or low-carbon generation techno-
logies that are non-dispatchable. Renewable generation usually suffers from in-
termittency and stochasticity, therefore, prediction errors can become quite prob-
lematic. Also, electricity from renewable sources must be prioritised; that means
renewable technologies must become cheaper than conventional generation, so
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that they are selected first in the merit order (their operational cost is regarded as
close to zero as they require no fuels). Nonetheless, the amount of load-following
capacity might become larger and presumably more expensive. In addition, nuc-
lear generation has potential to provide the base load, but these plants cannot vary
their output as fast as coal- or gas-fired units.

• The power flows in the transmission network can become less predictable due to
non-dispatchable generation, and there could cause indirect congestion. In addi-
tion, connecting to the distribution network and controlling a massive number of
small distributed generators, of several capacities, degrees of controllability/dis-
patchability, different costs and technical requirements (such as ramp- up/down,
pickup/drop rates) can make the distribution system unstable. Potentially mil-
lions of users that can produce their own electricity and include loads from heat
pumps and EVs can aggravate the peak problems (e.g. EV charging at 7kW for
several hours compared to a kettle using 3kW for a couple of minutes (The In-
stitution of Engineering and Technology (IET), 2013), or rapid EV charging at
a higher power rate). The low-voltage network would need reinforcement, and
perhaps a more resilient design that might support dynamic reconfigurations, due
to a wide variety of plug-and-play devices that would be expected to operate.

• The demand-side is expected to be more dynamic. Different dynamics from DR,
energy storage, and electricity export to the grid over different schemes, including
home-to-grid (H2G), vehicle-to-grid (V2G), and vehicle-to-home (V2H). These
dynamics can easily result in less predictable load patterns, and more variable
(potentially larger and more frequent) spikes and drops. Also, aggregate net-
load patterns could be characterised by prolonged weather-driven mismatches,
e.g., during winter, when heat loads increase and solar panels generate less than
during summer (The Institution of Engineering and Technology (IET), 2013).

• End-users will require more automation, so that they are able participate more act-
ively responding to supply and demand conditions in the grid (or at least within
the distribution system they are connected to). This requires technological invest-
ments that need to be economically justified. Amongst these technologies are
smart meters, controllers, solar PV, inverters, ICT to enable communications,
etc. It is not clear how the end-users’ resources will be managed to achieve a
common benefit.
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2.1.2.2 Opportunities for Artificial Intelligence (AI)

Some of the challenges of future electricity grids that AI can help solve (Ramchurn
et al., 2012):

• Design of algorithms that can predict energy consumption patterns based on his-
torical data, and learn to adapt their profile against a specific pricing scheme (e.g.,
RTP, TOU, etc.).

• Development of simulation and predictive tools to assess the consequences of
policies or mechanisms with intelligent agents (i.e., end-users represented by a
software agent residing in the smart meter).

• Design of decentralised control mechanisms that coordinate DER, including mo-
bile loads such as EVs.

• Design of agent-based models for virtual power plant (VPP) actors so as to cap-
ture the complexity of forming and managing them.

• Design of search algorithms and negotiation mechanisms for individual agents
to decide which VPP, or cluster of end-users, to form and for how long, as well
as how to assess their performance and how to divide the payoff.

• Development of autonomous trading agents that would learn to predict net-load
profiles from prosumers (i.e., end-users that also generate electricity) and trade
in electricity market(s) so as to maximise the expected profit.

• Development of interaction mechanisms between humans and the software agent
in the smart meter, so that the former can instruct the latter on preferences and
constraints.

• Design of computationally efficient algorithms for network state estimation and
automation of strategies for active network management.

2.1.2.3 Benefits and Criticisms

One of the benefits of the future electricity grid is that it will improve the energy security
while reducing environmental concerns. This implies a more diversified mix of energy
sources that are in general more available, as well as the efficient use of technological
means to provide at least the same service level and quality of supply as the current
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grid. However, the collective investment to renew the grid is massive; although more
abundant sources suggest that operational electricity costs will be reduced, the initial
investment makes it expensive.

In addition, concerns about smart meters include not only privacy, but also the vul-
nerability of some end-users that could easily be disconnected from the electric utility
if they fail to pay on time. Some privacy and freedom is given away in exchange of
a more sustainable electricity supply. Furthermore, cybersecurity is essential, as cy-
ber attacks could jeopardise the stability of the grid and its components, as well as the
end-users’ appliances.

According to European Commission (2006), in the grid of tomorrow, the users will
specify the quality of service. However, end-users would basically be given no option
but to trade off the cost of supply vs. their needs and preferences. Also, smart grids are
usually advertised as enabling the customer to actively take part in the electric power
supply, however, some protection for end-users will be needed. First, why would an
end-user actively participate in the smart grid? Either the cost of electricity would have
to be expensive under some conditions and cheaper in others so the rational end-users
have incentives to guide their consumption, or selling electricity is justifiably profitable
(at least under some conditions). Taking a stance on liberalised electricity markets, at
least theoretically, consumers benefit from competition in the supply-side; however, it
is not clear what would it mean to have competition from the demand-side at retail level,
where end-users would compete to be served, as this might not result in abundantly
cheap electricity. In my personal opinion, it is clearly not desirable for consumers to
compete for this service, although one could argue that end-users would find innovative
ways of using electricity more economically. In this vein, the consuming end might
require protection through policy so they get a fair service, for instance by using cap
prices that are not too tight for retailers to compete over (Littlechild, 2000), without
leaving (domestic) end-users vulnerable to market forces.

2.2 Electricity Markets

The privatisation of the previous national monopoly-based electricity supply system in
some countries has restructured the electric power sector and brought about the emer-
gence of electricity markets. Chile pioneered the liberalisation of their electricity sector
in 1982 (Conejo et al., 2010, Ch1). The UK followed as the first industrialised country
and created the pool market in England and Wales in the early 1990s (Conejo et al.,
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2010, Ch1). In the late 1990s, electricity markets started to operate in other countries,
such as, New Zealand (1996), Australia (1998), and the East Coast of the USA (e.g.,
PJM in 1997, ISO New England in 1999 and New York ISO in 1999) (Conejo et al.,
2010, Ch1). Similarly, other regions followed the liberalisation of their electricity sec-
tor, while in others it still remains as a national monopoly.

In a traditional regulated electricity sector, a company has amonopoly for supplying
electricity to end-users within a geographical area (Kirschen and Strbac, 2004, Ch1).
Following a liberalisation, the electricity supply system passed from being vertically
integrated to become unbundled, open to private companies to participate in the the
electricity delivery chain (Kirschen and Strbac, 2004; Simmonds, 2002). As a result,
generation-related activities and network-related activities have been separated, so that
competition could be introduced at some of the echelons of the electricity delivery
chain (Kirschen and Strbac, 2004, Ch1). The electricity delivery chain is generally
divided into generation, transmission, distribution, supply, and demand (customers),
and private companies may take part in one or more of these echelons.

In this thesis, electricity markets provide the time framework and rationale for the
agents modelled in further chapters. The following sections provide a brief description
ofmarket participants, a general organisation of themarketplace, and a brief description
of the UK’s electricity market including some of its most common DR services that are
currently available.

2.2.1 Market Participants

Electricitymarket agents participate buying and/or selling electricity depending on their
interests. Their objectives, constraints and dynamics differ from each other. Also, they
can be subject to different regulatory frameworks or benefit from various tax incentives
(such as the case of renewables in some countries). Amongst these participants, the
most common ones are4:

• Generating companies (gencos): they produce and sell electricity. These com-
panies own a power plant or a portfolio of different technologies for electric
power generation, such as conventional steam stations, nuclear stations, com-
bined cycle gas turbines (CCGT), etc. (Simmonds, 2002). Theymay also sell ser-
vices like regulation, voltage control, and reserve capacity (Kirschen and Strbac,

4Brokers, marketers, and aggregators could also be present in electricity markets, however they usu-
ally represent one or some of the described participants, optimising their own portfolio and being paid a
fee.
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2004, Ch1). Moreover, they may be non-dispatchable (e.g., wind or solar farms),
and their selling strategy and services they provide will depend on their ability
to deliver them (Conejo et al., 2010, Ch1).

• Transmission companies (transcos): they transfer electricity from generators
to distribution systems. They own transmission assets such as overhead lines,
underground cables, transformers, and reactive compensation devices (Kirschen
and Strbac, 2004; Simmonds, 2002). They are regulated and operate according
to instructions of the independent system operator (ISO) (Kirschen and Strbac,
2004, Ch1). These companies may be subsidiaries of gencos (Kirschen and
Strbac, 2004, Ch1); however, in a liberalised setting, they are heavily regulated to
guarantee equal access to gencos, because transcos constitute natural monopolies
(Simmonds, 2002).

• Distribution companies (discos): they own and operate low-voltage distribution
networks (Kirschen and Strbac, 2004, Ch1). Similar to transcos in conventional
settings, discos also constitute natural monopolies for selling electricity to all end-
users connected to their network (Kirschen and Strbac, 2004; Simmonds, 2002).
However, under a liberalised setting, the operation, maintenance and develop-
ment of the network is decoupled from the sale of electricity, so that competition
can be introduced in the retail market (Kirschen and Strbac, 2004, Ch1); there-
fore, regulation must guarantee equal access to all electricity retailers under this
scheme (Simmonds, 2002).

• Retailers: these entities provide electricity to consumers that not participate in
electricity markets, such as commercial and domestic users (Conejo et al., 2010,
Ch1). Retailers rarely own production assets and their main interest is to max-
imise profit through trading (Conejo et al., 2010, Ch1). They do so by signing
contracts and procuring electricity at the least cost possible and selling it to con-
sumers at some, usually capped, retail price (Conejo et al., 2010, Ch1). If the
retail price is not competitive enough, consumers might decide to switch to a
more competent retailer, subject to contract constraints, thus impacting the po-
tential profit making from the former retailer. In addition, to keep competitive
prices, retailers try to minimise risk/penalties due to schedule deviations.

• Small consumers: they are connected to a local distribution network (i.e., they
lease a connection from their local distribution company), and they are served by
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their chosen retailer (Kirschen and Strbac, 2004, Ch1). These consumers do not
participate in the wholesale market; their participation is limited to choosing a
retailer, according to their preferences (e.g., customer service, contracts), if they
have this option (Kirschen and Strbac, 2004, Ch1).

• Large consumers: these are usually industrial end-users that may procure elec-
tricity from the wholesale market. These participants want to minimise the pro-
curement cost while maximising their electricity use benefit (e.g., maintaining a
reasonable comfort level, or avoiding inconvenient changes to their production
plan) (Conejo et al., 2010, Ch1). Apart from participating in pool markets, these
consumers can sign bilateral contracts (with producers and retailers), forward
contracts and options (Conejo et al., 2010, Ch1). If available, they can also par-
ticipate in reserve markets providing DR services (Kirschen and Strbac, 2004;
Conejo et al., 2010), such as load-shedding services during the peak load.

• Independent system operator (ISO): this is usually a non-for-profit entity that
is in charge of the technical management of transmission and distribution sys-
tems so as to maintain the security of the power system (Conejo et al., 2010,
Ch1). It owns assets for monitoring and controlling the electricity grid (Kirschen
and Strbac, 2004, Ch1). In liberalised electricity markets, it oversees the opera-
tion so that market participants are not favoured or penalised unfairly (Kirschen
and Strbac, 2004, Ch1). Furthermore, the ISO usually operates a market of last
resort to procure services for meeting technical constraints, such as maintaining
frequency and voltage (Conejo et al., 2010, Ch1).

• Market operator (MO): it is responsible for the economic management of the
wholesale market place (Conejo et al., 2010, Ch1). It typically matches bids and
offers from electricity buyers and sellers, ahead of the time of delivery, and takes
care of the settlement amongst the parties (Kirschen and Strbac, 2004, Ch1). Typ-
ically, MOs are independent for-profit companies (e.g., APX, North Pool Spot)
(Kirschen and Strbac, 2004, Ch1).

• Regulator: it is usually a government-based institution that oversees and en-
sures a competitive and adequate functioning of these markets (Conejo et al.,
2010, Ch1). It determines the policies of market operation, sets the prices of reg-
ulated monopolies, and investigates suspected cases of market abuse (Kirschen
and Strbac, 2004, Ch1).
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Electricity markets provide the rules and means of coordination, so these parti-
cipants can come together to trade electricity. Apart from electric power, other com-
modities such reserve, regulation or load following capability, and balancing energy
can also be traded, but electric energy is the main product (Conejo et al., 2010). The
market’s competitive framework has been intended to increase operational efficiency,
while guaranteeing acceptable quality at reasonable cost to end-users (Conejo et al.,
2010). Moreover, this framework provides better incentives for capital formation, re-
search and innovation (Conejo et al., 2010). However, in practice, markets are exposed
to design flaws and exploiting practices, such as tacit collusion5 and cartel-like6 agree-
ments. Therefore, regulating authorities must consider a careful market organisation
so that these cases are limited and detectable.

2.2.2 Market Organisation

Electricity trading in most European countries and the USA are organised into bilateral
contracts, futures market and pool markets. Brief general descriptions are presented
below; these descriptions depend on the market rules defined by the regulatory frame-
work in each specific country (Conejo et al., 2010, Ch1). Most of these markets work
as double-sided markets/auctions or exchanges where sellers (e.g., conventional gen-
cos, non-dispatchable gencos) submit selling offers (also known as asks) and buyers
(e.g., consumers, retailers) submit purchasing bids. The MO, or in some cases the ISO,
clears the market with an optimisation procedure, and the result is the accepted energy
quantities (generation and load schedules) and their respective trading prices in that
particular market.

Offers and bids are matched in a merit order basis, i.e., the cheapest first for offers
and the most expensive first for bids. Figure 2.3 shows the basic structure of offer and
bid curves that are submitted to the MO. An offering curve, for a specific time period,
is formed by pairs of energy blocks and minimum prices at which the trader will sell,
usually reflecting the seller’s cost structure, arranged in non-decreasing order. On the
other hand, a bidding curve, for a determined time period, consists of pairs of energy
blocks and maximum prices at which the trader is willing to buy, usually reflecting the
bidder preferences, arranged in non-increasing order. The offer curves and bid curves
are submitted for each time period of the market horizon.

5In tacit collusion, companies agree or just follow the premise of not cutting price(s) and not using
excessive advertising (as it is costly too).

6In a cartel, competing firms agree to control prices and/or block new competitors in the market.
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Figure 2.3: Offering and bidding curves.

Electricity markets can have different pricing rules. If discriminatory pricing is
used, accepted offers and bids are sold and purchased at different prices, these could be
their listed prices, or prices that account for congestion and losses in the transmission
lines, i.e., locational marginal prices (LMP). If non-discriminatory pricing is used, then
theMO clears themarket at a single price, that is, a uniform clearing price is collected or
paid for the matched offers and bids. Sequentially arranged markets in time contribute
to approximating and fixing schedules, in order to reduce anxiety to big fluctuations or
scarcity of supply, as well as to be able to anticipate certain conditions (from the market
outcomes) so that the ISO can take actions promptly.

Electricity trading in a liberalised setting commonly falls in one of the following
categories (Conejo et al., 2010):

• Bilateral contracts: these are free arrangements between two parties, usually
between supplier and consumer, and take place outside the marketplace (e.g., a
contract between a generator and a supplier/retailer, a contract between a retailer
and a household customer). These can also be over-the-counter (OTC) contracts,
that are usually mediated by a broker.

• Futures market: the products traded in this market comprise medium- and long-
term horizons, such as months, quarters and years (weeks are also possible). The
products (also known as derivatives) are standardised and the prices are known
beforehand. For instance, contracts or options to buy or sell electricity during
time periods that share specific patterns, such as off-peak or peak (or, valley,
shoulder, peak; at weekdays or weekends, etc.). Generally, this market is cleared
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by the MO that in some countries it could be a for-profit organisation, e.g., APX.
This market is used as a tool to hedge against uncertainty in pool prices, which
usually exhibit high volatility.

– Forward contracts: these are signed agreements that state a determined
amount of electricity delivery (or use) at a future time period, at a fixed
price per kWh (or MWh). Contractual agreements are added to the trading
schedule of market participants.

– Options: these are financial products that corresponds to an agreement of
having the choice of delivering or consuming a specified amount of energy
in a future time period. Signing involves a payment known as premium,
regardless whether the option is used or not.

• Pool market: it is usually referred as the pool. The pool is a market for short-
term trade, and it is comprised of sequentially arranged markets, whose horizons
vary from one day to a half an hour, or even closer to the point of delivery (to near
real-time delivery). Generally, these markets are cleared by the MO as opposed
to reserve and regulation markets, where the ISO needs to intervene. Depending
on the specific market rules, the clearing of the pool may take into account the
transmission network constraints and compute LMP.

– Day-ahead market: it covers the bulk of energy within a day. This mar-
ket is cleared once a day, several hours before the actual day/time of de-
livery, for all time periods during the trading day. Market agents submit
non-decreasing offer curves and non-increasing bid curves for each of the
time periods during the day. These curves represent their trading prefer-
ences under competition, and reflect the minimum or maximum prices at
which they will trade. The result of this market is the accepted quantities
and prices per time period.

– Adjustment market(s): it is sometimes referred as intra-day market(s). De-
pending on the market design, there could be more than one adjustment
market. They are similar to the day-ahead market, but they are cleared
closer to the time of delivery and can cover shorter horizons than a day.
Basically, it is used to tailor positions previously traded in the day-ahead.
Non-dispatchable producers tend to rely more on these markets because the
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forecasts are more accurate as they get closer to the time of delivery/produc-
tion (as compared to conventional producers).

– Balancing market(s): it is sometimes referred as spot market. This market
is used for last minute adjustments to cover for deviations from previously
traded positions in the day-ahead and adjustment markets, generally caused
by forecast errors, and sometimes transmission constraints. This market is
cleared once per time period, i.e., hourly or half-hourly (in some cases it
could even be cleared several times per time period). The result of this
market is usually a settlement of two ex-post imbalance prices (depending
on the market design, it could be one or two prices; the latter is regarded as a
better approach to avoid arbitrage, and these prices also depend on whether
the system is in deficit or excess).

• Other markets: these are to ensure secure system operation and energy delivery,
i.e., avoid lost of load (LL) due to current supply scarcity or transmission con-
gestion (sometimes the reserve is used to relieve congestion). Generally, these
markets are cleared by the ISO (which is usually a non-for-profit organisation).

– Reserve market: it clears once a day and consists of stand-by power (spin-
ning and not) to cover for failures (e.g., a damaged generator, transmission
lines that are being taken down for maintenance), large load fluctuations,
and intermittent renewable generation from non-dispatchable sources. Usu-
ally, energy and reserve are co-optimised within the same clearing optim-
isation problem (jointly or immediately after the day-ahead market clearing
process). This market is seen as a capacity market (capacity commitment)
that guarantees enough back-up generation. As a general practice in most
power markets, the reserve is at least of the size of the capacity of the largest
generation unit plus some fraction of the peak load, although other factors
are considered like transmission lines, general availability, anticipated pre-
diction errors, how fast they can respond, etc. Generally, this capacity is
offered by dispatchable producers, however, there could be available DR
instruments that large (industrial) consumers can offer such as agreeing to
reduce consumption by a pre-specified band/amount at command of the
ISO.

– Regulation market: it clears once a day on an hourly or half-hourly basis
and it assigns productions units that can provide up and down real-time load-
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following capability to power bands. This market enforces a continuous
balance between generation and load. Similar to the reserve, this market is a
capacitymarket and clears several hours prior to power delivery. It allocates
load following bands (or ranges) amongst production units with capability
and rational interest in load following services. The ISO determines the
amount for regulation and runs an auction with an increasing price rule
to procure the determined level (of course this procedure may vary). The
bands specify the amount of power up and down (for load-following) for a
specified time period at the command of the ISO.

– Other services: these might cover reactive power management and voltage
control, system restoration after a blackout, and other technical aspects.

2.2.3 UK Electricity Market and its DR Programmes

Liberalised electricity markets in the UK started with the creation of the England and
Wales Electricity Pool in March 1990. This was a centralised one-sided pool market
whose main characteristic would be to decrease prices to consumers by introducing
competition in the supply-side. However, there were concerns about the market power
that generators had, their ability to manipulate prices, the lack of involvement from the
demand-side (retailers, suppliers that would buy from generators, and large consumers),
and the pricing mechanism was considered not very transparent (Tovey, 2005; Onaiwu,
2009). Because of these concerns, the New Electricity Trading Arrangements (NETA)
reform was introduced in March 2001. This reform replaced the pool with bilateral
trade that gave freedom to generators and suppliers/retailers to negotiate between them-
selves, in a decentralised fashion, relying on self-dispatching (Tovey, 2005). In April
2005, under The Energy Act 2004, Scotland was included in a new reform, the British
Electricity Transmission and Trading Arrangements (BETTA). Within BETTA, traders
can negotiate and trade contracts at will, to be fulfilled in a future period of time, and are
negotiated from any time up to the Gate Closure (one hour and a half before delivery),
when no more trading is allowed for the specific time period (Onaiwu, 2009). After the
gate closures, traders reveal their contracted position to the ISO, so that it can procure
for balancing and ancillary services, in order to balance supply and demand (Elexon,
2014; Onaiwu, 2009). Deviations from contracted positions result in the obligation to
cover the differences at the imbalance prices for the specific time period, determined
by the ISO. If a party under-generates or over-consumes compared to its contracted
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volume, it is required to buy the deficit at the System Buy Price (SBP). Similarly, if
a party over-generates or under-consumes compared to its contracted volume, it is re-
quired to sell the excess at the System Sell Price (SSP) (Elexon, 2014). These prices
reflect the cost of balancing actions undertaken by the ISO, which essentially consist of
hierarchically triggering previously procured balancing services that are provided by
certified companies.

2.2.3.1 UK Balancing Services

The UK National Grid, as the ISO, offers several DR programmes so that companies
can participate as providers of ancillary services and generate some profit while helping
the ISO to meet technical constraints (UK National Grid, 2017). There are two main
categories of response services: primary, and secondary. Primary response must be
fully available within 10 seconds of an event, and continuously deliver for 20 seconds
more (Kirschen and Strbac, 2004). Secondary response must be fully available within
30 seconds and be sustained for further 30 minutes (Kirschen and Strbac, 2004). The
UK National Grid determines the response time, volumes, and other conditions of ser-
vice. Some of the available programmes in the UK are the following (UK National
Grid, 2017; Proffitt, 2016):

• Frequency response: system frequency is a measure of the balance between
generation and load. Frequency rises when there is more generation than load
in the system, and it falls when load is higher than generation. The UK Na-
tional Grid is bound to maintain frequency within plus and minus one percent
of 50 Hz. Therefore, it must ensure that there are enough resources, such as
generation and demand responsive services, to satisfy the load under frequency
constraints. Usually, frequency response is either static or dynamic. Static fre-
quency response is triggered at specified frequency values (or bands) with the
aim of keeping it within set limits in case of a fault or unexpected events. Dy-
namic frequency response deals with frequency under normal operation and it is
continuously provided as an automated service. Some of the available frequency
response services include:

– Firm Frequency Response (FFR): providers of FFR must deliver a min-
imum of 10 MW to the grid within 30 seconds of a frequency event. These
providers go through a certification process and tender in to supply this ser-
vice for one or multiple months. Companies that cannot deliver 10 MW of
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volume can provide frequency response through FFR Bridging, a similar
programme to build up the required volume over a set time frame (e.g., one
or two years).

– Frequency Control by Demand Management (FCDM): providers of FCDM
reduce their net-load by a minimum of 3 MW, so that frequency increases.
They must be able to respond within two seconds and sustain the load reduc-
tion for a minimum of 30 minutes. This programme is generally suitable
for customers who use large amounts of electricity. To participate in this
programme, they must have a suitable operational meter and frequency re-
lay device to automatically interrupt some of their electricity load when
frequency falls from a pre-set value.

– Enhanced Frequency Response: providers of this service must respond in
less than a second and sustain the full amount of agreed power for at least
nine seconds. Moreover, this programme is a dynamic service, in which
providers must be ready to continually vary their response (generation or
load). This programme is in development, and the National Grid might
adjust the service requirements as it sees fit.

• Reserve Services: this are sources of additional generation or load reduction
that the Nation Grid can use in case of unforeseen events, such as a power plan
tripping out, or a unexpected sudden load increase.

– Short Term Operating Reserve (STOR): this service requires providers to
deliver a minimum of 3 MW generation or steady net-load reduction. In
general, depending on the service contract requirements, providers must re-
spond in less than 20minutes and continuously deliver the contracted power
for a minimum of two hours. Also, the National Grid requires these pro-
viders to be able to deliver a minimum number of times per week, currently
three times.

– Fast Reserve: providers of this service must respond very rapidly to deliver
a large amount ofMWwithin a small time frame, that is usually to copewith
huge surges in demand, such as during TV pick-ups when a large number
of people turn on their kettles during a TV advert break. The active power
delivery must start within two minutes of dispatch instruction, provide a
rate higher than 25 MW/minute so that it can reach 50 MW within four
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minutes, and it must be sustained for a minimum of 15 minutes. Examples
of technologies that can provide this rapid response are pump storage and
combined cycle gas turbines.

– Demand Turn Up: this balancing service is used to increase the load when
there is more generation, for instance overnight or when there is an unex-
pected excess of renewables. Providers are expected to respond within ten
minutes of a signal, and sometimes the service can be requested for the day-
ahead. It is therefore a way to incentivise businesses to use more electricity
when demand is low. These providers are currently paid an availability fee,
and something between £60-£75 per MWh, which reduces their running
costs.

– Demand Side Balancing Reserve (DSBR): this programme is only available
during the winter period, and consists on reducing electricity use (or using
on-site generation) between 4pm and 8pm during weekdays in exchange for
a payment. Any business that is subject to half-hourly metering and has a
stable, high demand can participate. The response time needs to be at least
two hours, and payments can be quite substantial (currently up to £16,000
per MW of demand reduction from 2016/17).

• Capacity Market: this market allows the National Grid to ensure that there will
be sufficient capacity of electricity supply to meet future demand. The National
Grid runs two auctions to procure long-term capacity: (1) T-4 auction, that is the
main auction and runs every year for contractual obligations to deliver capacity
in four year’s time; and (2) T-1 auction, that is a top-up of the T-4 auction and
allows businesses that would not take longer contractual obligations than one
year to participate, and it also runs annually.

• Others: DR to reduce transmission network use of system (TNUoS) and distri-
bution use of system (DUoS) costs.

– Triad management: the UK National Grid charges transmission costs to
half-hourly metered consumers using three half-hours, or triads, with the
highest system demand. Each of theses consumers pay transmission costs
that are directly proportional to the electricity they used during this triads.
These half-hours (triads) must be separated by at least ten days; they usually
happen between November and February, and typically between 4pm and
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7pm. Therefore, if consumers are able to identify the triads (generally by
assistance from their electricity retailer) and take action to reduce their load
through DR, then they can reduce their annual transmission costs. Non
half-hourly metered consumers are charged on the same triads, but using a
consumption estimate.

– Distribution time bands management: DUoS are in essence similar to
TNUoS, that is, they contribute to the operation, maintenance and devel-
opment of the network. However, DUoS are computed differently. Discos
post distribution charges for three time bands, which are significantly dif-
ferent from each other. The time band corresponding to the peak load is
much more expensive than the off-peak band. Therefore, using DR actions
to shift the load to off-peak times helps the electricity retailer, and poten-
tially the consumer if its contract reflects direct savings over distribution
costs.

2.3 Multiagent Systems and Mechanism Design

Multiagent systems methods and algorithms have recently received substantial atten-
tion as suitable approaches to deal with the challenges of the Smart Grid vision.

2.3.1 Intelligent Agents

According to the Oxford English Dictionary, the word agent comes from the Latin
agere, whichmeans doing, and refers to ‘someone or something that produces an effect’.
In a general sense, an agent is regarded as someone or something that acts on behalf of
another someone or somethingwithin a specific environment. In Computer Science and
Artificial Intelligence (AI), agents are expected to not only do something, but also do it
with some degree of intelligence in order to achieve a desired outcome. AI mostly deals
with agents that are rational7, that is, they do the right thing within the environment
they act upon (Russell and Norvig, 2010). Russell and Norvig (2010, p.37) provide the
following definition for rational agent: “For each possible percept sequence a rational
agent should select an action that is expected to maximise its performance measure,
given the evidence provided by the percept sequence and whatever built-in knowledge

7There have been studies in AI that model non-rational agents using human-like mentalistic notions,
such as knowledge, belief, intention and obligation (Shoham, 1993), and emotions (J. Bates, 1994).
There are good reasons for such studies, however they are not relevant to this thesis.
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the agent has”. In an AI sense, rational agents can become intelligent by incorporating
learning8 capabilities to update their built-in knowledge or model, and reasoning over
it, so as to better meet its design objectives. Figure 2.4 shows a basic representation of
an intelligent agent interacting with its environment.

Figure 2.4: A basic notion of an agent.

Wooldridge and Jennings (1995) describe weak and stronger notions of agency, as
well as they provide some attributes of intelligent agents, the most relevant for this
thesis are:

• autonomy: agents operate without explicit guidance (from humans or other
agents), and have control over their actions an internal state;

• social ability: agents interact with other agents or humans (using a common
language, passing messages);

• reactivity: agents perceive their environment and respond promptly to its
changes;

• pro-activeness: agents take the initiative and pursue their design goals;

• rationality: agents act to maximise their expected performance measure toward
their design goals.

AMultiagent System (MAS) is one that consist of interacting intelligent agents. The
agents usually interact through a telecommunications network exchanging messages.

8Sometimes learning is either not central to the system design or undesirable as it can lead to agents
changing their behaviour during runtime (see, for instance (Wooldridge, 2009)). Although in this thesis
learning is not central, it is highly desirable to derive more profitable outcomes.
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Agent interactions usually include some sort of cooperation, coordination, competition
and negotiation in order to achieve individual objectives (Wooldridge, 2009). There are
two fundamental problems when designing multiagent systems: (1) the agent design
and, (2) the society design. The first one concerns with individual objectives, the mod-
elling of an agent’s internal state, learning and adaptation to changes in the environment.
The second one deals with defining protocols or rules of interaction, as well as achiev-
ing desired outcomes in the agent society (in some cases they are not explicit, in others
they are studied as a result of agent interactions).

Furthermore, other researchers classify agents into different types or at least they
distinguish some properties concerning their internal state, such as reflex agents, model-
based agents, utility-based agents, learning agents (Russell and Norvig, 2010). In this
particular case, the agents are model-based utility-based9 agents, and learning is not
essential, but highly desirable. MAS incorporates theory from other fields, such as eco-
nomics, game theory, operational research, control theory, complex adaptive systems,
computer science, distributed AI, machine learning, and others.

2.3.2 Task Environment

Russell and Norvig (2010) describe the task environment as the ‘problem’ to which
rational agents are the ‘solution’, and describe the following properties that are useful
for the environment specification:

• Fully observable vs. partially observable10: if an agent can perceive the com-
plete state of the environment at each period of time, then is fully observable, and
partially observable otherwise (or unobservable in some cases).

• Single agent vs. multiagent: the environment is single-agent when there is one
agent interacting only with its environment. Depending on the modelling abstrac-
tion, the environment can encompass other agents not being modelled independ-
ently and aggregated into the environment dynamics. When an agent needs to
interact with other agents to achieve its goals, then is a multiagent environment.
This interaction can be directly or indirectly through commonly understood pro-
tocols and communications. Furthermore, the environment can be cooperative
or competitive.

9In this case, utility is an economic term that is used as a mesure of performance and describes how
‘happy’ the rational agent is after an outcome is realised.

10Previously referred as accessible vs. inaccessible in (Russell and Norvig, 1995).
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• Deterministic vs. stochastic: the environment is deterministic if its next stage
is completely determined, and stochastic otherwise. The stochastic nature is as-
sociated with uncertainty and implies that the possible outcomes are quantified
by their respective probabilities.

• Episodic vs. sequential: if an agent’s decisions are independent, then the envir-
onment is episodic. On the other hand, if an agent’s current decisions could affect
future decisions, then the environment is classified as sequential. In sequential
environments, the agents need to think ahead. There could also be episodes or
rounds of sequential decision making, in such case what is relevant is the focus
of the problem.

• Static vs. dynamic: the environment is static if it does not change while an agent
is reasoning, and dynamic otherwise.

• Discrete vs. continuous: this distinction applies to how the environment states
are being modelled, how the time is treated and how the agent’s percepts and
actions are characterised. Discrete refers to finite sets of states, time periods, per-
cepts, and actions; continuous refers to an infinite number of any values, perhaps
within a range, that the states, time periods, percepts and actions can take.

• Known vs. unknown: if the environment is known, the outcomes or their re-
spective probabilities are given for all actions. On the contrary, it the environ-
ment is unknown, the agent has to figure out how the environment works to make
good decisions.

From these properties, the environment for the computational model and market-based
mechanisms that this thesis deals with are the following. The environment is: partially
observable, as agents (retailers and end-users) cannot perceive what other agents are
doing; multiagent, since there are several agents interacting simultaneously through
auction-based protocols; stochastic, becauseDRoffers are based on forecasts andmight
not be fully delivered by the end-users; episodic, due to simplicity reasons and better
forecast accuracy for a single step ahead, future work will consider a sequential setting,
for the purpose of this thesis the agents are myopic; static, because each retailer serves
a fixed population of end-users and the proposed mechanisms do not change with time,
only the parameters can be tuned, but this is not done online; discrete, since time is
modelled discretely, so that the auctions are run periodically at every time period; and
known, as the interaction rules are common knowledge amongst the agents.
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2.3.3 Mechanism Design

Mechanism design is a subfield of economics that is interested in implementing a soci-
etal outcome amongst multiple strategic self-interested agents that have private prefer-
ences on this outcome. It relies on the rationality assumption and mathematical models
from game theory so that a mechanism that implements a desired outcome can be engin-
eered in strategic settings. Classic examples of these mechanisms are political elections
and auction markets. Mechanism design plays a major role in several disciplines and it
is widely used in economics (e.g., electronic market design), operational research and
computer science. For instance, several market-based coordination mechanisms have
been proposed in the literature to solve resource and/or task allocation problems. Some
examples include: airport takeoff and landing allocations (Rassenti et al., 1982), Fed-
eral Communications Commission (FCC) for spectrum allocation (McMillan, 1994),
supply chain formation (Babaioff and Walsh, 2005), multi-robot coordination (Dias et
al., 2006), wholesale power exchanges (O’Neill et al., 2007), grid computing services
(Moßmann et al., 2010), electric vehicle charging (Gerding, Robu, et al., 2011; Robu,
Stein, et al., 2011; Stein et al., 2012; Gerding, Stein, et al., 2013), coordination for a
smart electricity grid (Kok, 2013), emission trading schemes (European Commission,
2016), and others.

The following subsections go through most of the concepts that are relevant to
this thesis, from a computer science perspective. A more thorough introduction to
the subject, including computational aspects, can be found in (Nisan, Roughgarden,
et al., 2007, Ch9), (Shoham and Leyton-Brown, 2008, Ch10&11), and (Parkes, 2001,
Ch2&3).

2.3.3.1 Basic Concepts

The following concepts assume that money is used to express a degree of willingness
or preference over outcomes, and it can be transferred amongst the participating agents
in a mechanism.

• Type: the type of an agent corresponds to its preferences over the different out-
comes of the mechanism. The type of agent i is given by a valuation function
vi : O !→ R, where O is the space of outcomes and vi (o) determines how prefer-
able is outcome o to agent i.

• Strategy: a strategy is a policy that maps every state of the world to an action.
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For instance, in ascending auctions, an agent’s strategy refers to how much the
agent bids with regard its private valuation of the good(s) being auctioned, by
how much it will increase its bid at every round, etc.

• Utility: it is the benefit that an agent gets from the outcome of the mechanism,
given its preferences and strategies. Let p be a payment that agent i receives from
the mechanism, its utility then is ui := vi (o)+ p. Payment p could be negative
to denote a cost, or the payment the agent makes to the mechanism.

• Quasilinear preferences: this concept refers to utility functions that allow the
separation between valuation (type) and payment, and are both linearly depend-
ent.

• Revelation principle: this fundamental principle in mechanism design states
that if an arbitrary mechanism implements a social choice function, then there
exists a truthful mechanism (i.e., one in which agents are directly asked to reveal
their private preferences truthfully) that implements the same social choice func-
tion. Furthermore, the expected payments, from and to the agents, are identical
in the truthful mechanism to those of the arbitrary mechanism in equilibrium.
This principle applies to dominant-strategy incentive-compatible (DSIC) and
Bayesian-Nash incentive-compatible (BNIC) implementations.

2.3.3.2 Main Properties of Mechanisms

• Incentive compatibility (IC): this means that every agent is better off reporting
their type honestly to the mechanism.

– DSIC: in this IC implementation, every agent is weakly better off (i.e.,
never worse) by reporting truthfully, regardless of the strategies of the other
agents. Mechanisms with this property are also called truthful or strategy-
proof.

– BNIC: in this solution concept, every agent is weakly better off by reporting
their preferences honestly, provided that there is a Bayesian Nash equilib-
rium in which all agents reveal their true preferences. This is a weaker
notion of IC than DSIC.

• Individual rationality (IR): this property is also known as voluntary participa-
tion and it holds when every agent is not worse off by participating in the mechan-
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ism. That is, agents weakly prefer to participate in the mechanism. IR is further
described by the following three degrees:

– Ex-post IR: this is the strongest notion of IR and it requires that agents’
utility is never worse by participating in the mechanism.

– Ex-interim IR: given prior beliefs of the preferences of the others, the ex-
pected utility of an agent is weakly better when it participates in the mech-
anism.

– Ex-ante IR: in this case, the agents do not know their preferences and have
no prior knowledge about the preferences of the others. Then, the expected
utility of the agents, averaged over all possible preferences, is at least their
expected utility when they decided not to participate.

• Budget balance (BB): this property requires that the amount of payments collec-
ted from the agents by the mechanism equals the amount of payments made to
the agents by the mechanism. There are two notions of BB:

– Strong BB: it requires that the mechanism never makes neither profit nor
loss.

– Weak BB: this notion of BB requires that the mechanism never runs a defi-
cit, but it is allowed to make profit.

• Allocative efficiency (AE): the chosen societal outcome maximises the sum of
reported valuations from the participating agents in the mechanism. It is tradi-
tionally seen as an outcome that puts the goods into the hands of those who value
them the most.

2.3.3.3 Vickrey’s Auction and VCG Mechanism

The well-known Vickrey’s seal-bid second-price auction is a very simple and remark-
able idea that is strategy-proof and economically efficient (Vickrey, 1961). It puts a
single item into the hands of the agent who values it the most, but the winning agent
pays the reported valuation by the runner-up. That is, winning agent i pays price
p := max j ̸=i v j. Moreover, rational manipulation cannot yield a higher utility for the
agents.

The Vickrey (1961)-Clarke (1971)-Groves (1973) mechanism is a generalisation
of Vickrey’s second-price auction, in which there are multiple items and multiple units
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that are to be allocated amongst several participants.
Under quasilinear preferences, the outcome of a mechanism is determined by an

allocation rule and a payment rule. The allocation function f : V1× · · ·×Vn !→O, where
Vi is all valuations available to agent i and O is the space of outcomes. The payment
function pi : V1× · · ·×Vn !→ R, for each agent i. The VCG allocation function, given
a vector of valuation functions v, is computed such that:

f (v) := argmax
o∈O ∑

i∈N
vi (o) (2.1)

The VCG payment function is given by:

pi (v) := hi
(
vN\i

)
−∑

j ̸=i
v j ( f (v)) (2.2)

If hi : VN\i !→R is set to an arbitrary function of the reported valuations of the other
agents apart from i, then the mechanism is of the family of Groves mechanisms, which
are DSIC and AE under quasilinear preferences. Furthermore, the mechanism is a
standard VCG mechanism if hi is set to Clarke’s pivot rule, which is the maximum
social welfare of the others had agent i been absent, and it is computed as follows.

hi
(
vN\i

)
:=max

o ∑
j ̸=i

v j
(

f
(
vN\i

))
(2.3)

The standard VCG mechanism, under quasilinear preferences, can achieve DSIC,
AE, ex-post IR, and weak BB. In order to achieve ex-post IR, two additional proper-
ties are required: choice-set monotonicity and no negative externalities. The first one
requires that removing any agent results in never more available choices or outcomes
O. The second one means that every agent i has a non-negative utility for any outcome
where i was not selected. Finally, to achieve weak BB, the environment must exhibit
no single-agent effect, where if agent i’s valuation is selected by the allocation function,
preventing agent i from participating yields an outcome o that makes the other agents
better off. Shoham and Leyton-Brown (2008, Ch10) provide a thorough treatment of
these VCG properties.
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2.3.3.4 McAfee’s Mechanism

In his seminal paper, McAfee (1992) designed a single-unit double auction (DA) that
yields DSIC for both buyers and sellers. The DA works as follows.

• Buyers are ranked by non-increasing reported values b1 ≥ b2 ≥ · · · , while sellers
are ranked by non-decreasing reported costs s1 ≤ s2 ≤ · · · .

• The last efficient trade k is determined by bk ≥ sk and bk+1 < sk+1.

• The potential clearing price p0 is set to 1
2 (bk+1+ sk+1).

• Case 1: if p0 ∈ [sk, bk], buyers and sellers from 1, . . . , k trade at price p0.

• Case 2: otherwise, i.e., p0 /∈ [sk, bk], buyers and sellers from 1, . . . , k− 1 trade,
buyers pay bk and sellers receive sk, and the auctioneer makes (k−1)(bk − sk)

profit.

This mechanism is weakly DSIC, IR, weakly BB (as in the second case the auction-
eer makes profit), and not AE (as in the second case it gives up the last feasible trade).
The lost in efficiency is small since it happens some of the time and it only gives up the
least significant trade in order to achieve a DSIC implementation. The lost in efficiency
is bounded by 1/n, where n := min{|M| , |N|}, M is the set of sellers, and N is the set
of buyers. McAfee’s mechanism has been adapted to the multi-retailer DR setting in
Chapter 4, and further details can be found in (McAfee, 1992).

2.4 Related Work

2.4.1 Early Work

Price-based DR for the electricity supply system has been proposed in the literature
for almost half a century. Vickrey (1971) advocated for free market principles and
argued that responsive pricing for perishable commodities is the closest approach to a
free market in a context of fixed prices and economies of scale. He gave examples of
perishable commodities, such as electricity, water, air and road travel, where a price
feedback helps to balance supply and demand. He claimed that, although it would be
a radical departure from fixed prices, a price responding to fluctuations in supply and
demand would improve efficiency on asset utilisation and would lower costs. However,
he also warned about the timing of the information feedback regarding the price signal,
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which it may take longer time than ideal (e.g., electricity bills in the 1970s), so that
each side could adapt to each other.

Moreover, Schweppe (1978) envisioned the notion of a smarter electrical grid, in
which customers (residential, commercial, industrial) have means for electric power
generation, storage, and are more actively responding to fluctuations in the electri-
city supply system. He anticipated the use of sensors and actuators at homes (today’s
concept of smart homes (U.S. Department of Energy, 2003)) to be able to respond to
supply signals, thus evolving the conventional approach of ‘supply follows demand’ to
one where ‘demand follows supply’. Like Vickrey (1971), he suggested that the use of
spot prices would help to signal the supply and demand states. Moreover, he foresaw
the use of amicrocomputer at home to process the information regarding energy use pat-
terns, and update mathematical models so that it could be determined when is the best
time to use (electrical) energy; this is one of the expected features of smart meters (U.S.
Department of Energy, 2003; U.S. Department of Energy, 2009; U.S. Department
of Energy, 2012). Decisions would be made on the family’s own energy use model,
the spot price of electricity, and the predicted weather, resulting in this microcomputer
showing how much electricity is costing (Schweppe, 1978). Under certain conditions,
the utility would command the microcomputer to drop the load, depending on the fam-
ily’s contract that would state how much of the load can be interrupted (Schweppe,
1978). In line with this idea, he distinguished between (economical) soft load control
under a normal state, and (physical) hard load control under emergency conditions, for
both of which more sophisticated control systems and stochastic mathematical models
would be needed (Schweppe, 1978).

Furthermore, Schweppe, Tabors, et al. (1980) developed a control model for sup-
ply and demand based on the biological concept of homeostasis and microeconomic
principles for the distributed automation and control of dispersed storage, generation
and load. Their model included a microcomputer-based scheduler of interruptible loads
(i.e., those not considered for immediate need), the use of spot prices of electricity at
discrete intervals (5 to 15 mins.), and a market interface to customer (MIC) that not
only would record power usage, but also would register its cost so that it could provide
the total cost of electricity use (early concept of a ‘smart meter’).

Afterwards, some research focused on optimal methods for the spot pricing of elec-
tricity including dimensions of space and time, and control-based algorithms for re-
sponding to spot prices in the domestic setting (e.g., (Bohn et al., 1984), (Schweppe,
Daryanian, et al., 1989)). In addition, the initial prototypes and tests of ‘smart homes’
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with ‘smart meters’ and ‘smart appliances’ that responded to dynamic prices by Rosen-
feld et al. (1986) offered insights on the potential of these ideas. Moreover, there
were also substantial research on pricing schemes so that they could help to redis-
tribute the demand more evenly throughout the day (e.g., experiments about imple-
mentations of time-of-use pricing (TOU) and consumers’ economic elasticities (Caves
and Christensen, 1980; Caves, Christensen, and Herriges, 1984; Sexton et al., 1987),
demand-layered prices according to the end-user’s load duration curve and its service
level for load increments (H.-p. Chao et al., 1986)).

Alternatively, some forms of direct market-based mechanisms were proposed in
this area, like the bartering approach by Williams and Schweppe (1986) to limit the
power demand peak amongst loosely related but independent buildings, such as those
of a college campus. Their mechanism involves no money and allows the exchange of
time-based rights to consume in a way that eliminates the gaming (i.e., misreporting
preferences) in some of the cases. The buildings are assumed to have rights to consume
power that not necessarily fit their profile, so that they have incentives to exchange
them. They are also assumed to have diverse use profiles (e.g., classrooms, dormitories,
dining halls, etc.) and perfect knowledge of their future energy demand so that some
loads can be planned, such as those of heating and cooling. The objective to avoid
peak demand coincidence is imposed, and this mechanism coordinates the available
resources (i.e., rights to consume) according to time availability.

This thesis builds on auction-based protocols for decentralised scheduling of DR
efforts, similar to the bartering approach proposed by Williams and Schweppe (1986)
but allowing use of money to express preferences, in which households (i.e., end-user
agents) proactively submit DR offers to a centre in exchange for a discount. Auction-
based protocols have been extensively studied for the liberalisation of the wholesale
market and its organisation (e.g., (Rozek, 1989; Stoft and Kahn, 1990; McCabe et al.,
1991; Post et al., 1995)), including more recent approaches of agent-based methods
to simulate several market organisations under transmission network constraints (e.g.,
AMES (Li and Tesfatsion, 2009), EMCAS (Veselka et al., 2002), MASCEM (Praça
et al., 2003)).

2.4.2 More Recent Work

Currently, there is a considerably large gap regarding effective auction-based protocols
for integrating DR efforts into retail electricity markets, in the context of a low-carbon
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economy. There is no general agreement on retailer electricity markets and the integ-
ration of more active end-users into the supply and demand balance. Researchers who
believe in free market principles have suggested that electricity retailers add no par-
ticular value regarding price competition, and that end customers should have access
to the wholesale market without the need of this type of intermediaries (a notable ex-
ample is (Joskow, 2000)). This is precisely what Vickrey (1971) implied by proposing
a Walrasian equilibrium approach to the balancing problem, where regional aggregat-
ors (not exactly retailers) could submit the aggregate demand to aWalrasian auctioneer,
who computes the clearing price and broadcast it back, and customers respond accord-
ingly to this signal. However, other researchers have acknowledged that the electricity
supply system has physical constraints (i.e., maintaining the frequency, voltage, and
current) that are required for stability, thus it cannot be left dependent on pure market
forces (although it would make the work of tariff makers easier) (McCabe et al., 1991).
H.-P. Chao and Wilson (1987) point out that the spot pricing of electricity has not been
successful in retail markets, despite being the predominant approach in wholesale mar-
kets and the technological advances in metering, communication, and control. They
identify the following reasons: customers want to know what the monthly electricity
bill will look like; monitoring spot prices and responding to those impose costs for cus-
tomers; and failures of generation equipment can make spot prices vary quickly and
greatly. Moreover, Littlechild (2000) argues that retail competition is important for
price formation and that the approach on spot prices neglects the role of contract mar-
kets. Furthermore, Tesfatsion (2006) emphasises that the Walrasian equilibrium shows
that efficient allocations can be supported through decentralised market prices, but it is
not meant to address how real-world procurement processes take place. In this regard,
this thesis offers a view on domestic DR flexibility that have not been explored, which
includes its characterisation and the design of two DSIC mechanisms for its allocation,
that are alternative to the Walrasian tâtonnement approach.

Over the last decade, there have been considerable efforts to define a low-carbon
electricity grid that takes into account the interests of several stakeholders (U.S. De-
partment of Energy, 2003; U.S. Department of Energy, 2009; U.S. Department of En-
ergy, 2012; European Commission, 2006; European Commission, 2009). These have
reinvigorated the research on smart homes and their active participation in the balan-
cing problem through DR, under this low-carbon setting. For instance, the Olympic
Peninsula Project that performed a field demonstration of automated price-responding
appliances, such as space and water heaters, at different comfort levels in 112 respond-
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ing homes (Hammerstrom et al., 2007). Moreover, research tools have been proposed
to facilitate the modelling and simulation of smart homes along with different network
considerations and market organisations (e.g., GridLAB-D (Chassin et al., 2014), Mar-
ket Garden (Liefers et al., 2014), Mosaik (Schütte et al., 2012), Power TAC (Ketter
et al., 2013)). For instance, the Power Trading Agent Competition (Power TAC) (Ket-
ter et al., 2013) provides a platform where researchers can design and test competing
broker agents that balance a portfolio of customers with different profiles and distrib-
uted energy resources (DER), trade in the wholesale market, and determine retail tariffs.

Methods for balancing supply and demand in low-carbon electricity grids are varied
for the retail marketplace, and generally they include some degree of DR given some
preferences. These methods are usually device-specific, such as thermostats, home bat-
teries, and EV, and use some degree of mathematical optimisation. Other approaches
are dependent on different levels of abstraction, organisation, and interaction, for in-
stance microgrids, VPP, clusters of consumers, etc. The following survey is modest
considering the recent amount of research in this area, although there are some over-
laps regardingmethods, this thesis develops an alternative characterisation of flexibility
that is useful for generic domestic DR under reasonable realistic assumptions.

Kok (2013) proposes a market-based coordination mechanism under smart grid set-
tings, coined PowerMatcher, where DER devices trade electricity in tree-shaped dis-
tribution markets. This model assumes price-taking agents with negligible ability to
manipulate the mechanism, thus it does not consider game-theoretic implications. Sup-
ply and demand are aggregated up in the tree-like structure, until it reaches a Walrasian
auctioneer that determines the resulting price by a tâtonnement procedure. The result-
ing price is reported back to the DER devices. The exploitation of DR flexibility is
indirect and determined by the willingness to buy or sell electric energy with a single
bid (ask) per DER device stating the truth marginal benefit (cost), and amount of energy.
It includes demand and supply functions for an extension on locational marginal prices
(LMP). As previously discussed, the work in this thesis is different from the Walrasian
equilibrium approach, that the PowerMatcher is based on, and it does include game
theoretic considerations. Nonetheless, this thesis is focused on the domestic setting,
whereas the PowerMatcher’s scope is more general regarding DER devices with mul-
tiple levels of abstraction.

Dimeas and Hatziargyriou (2004) focus on the application of MAS technologies
for controlling the operations within a microgrid so as to locally balance supply and
demand. Dimeas and Hatziargyriou (2005) provide the characterisation of their model
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and an auction-based negotiation protocol for power exchanges. They adapt the prob-
lem so that it can be expressed as a symmetrical assignment problem, using equally
sized blocks for generation and load. This negotiation protocol is rather akin to bilat-
eral trade than to market institutions, since each negotiation cycle exchanges up to eight
messages between each pair of seller and buyer. Moreover, Dimeas and Hatziargyriou
(2007b) extend the abstraction model to group microgrids with other generation and
load units in to VPP. Furthermore, Dimeas and Hatziargyriou (2007a) and Dimeas and
Hatziargyriou (2010) extend the setting by adapting a reinforcement learning algorithm
(Q-learning), which is used by each of the agents to model the environment transitions
and find optimal policies. On a similar line of research, Oyarzabal et al. (2005) provide
a microgrid architecture with a Contract Net Protocol (CNP) (Smith, 1980) for distrib-
uted management operations. Their work, however, is focused on the communication
feasibility and architecture scalability rather than on game theoretic considerations.

Ramchurn et al. (2011a) propose an agent-based control mechanism for decentral-
ised DSM that is based on the emergent behaviour resulting from end-user agents re-
sponding to RTP tariffs. They providemathematical models for deferrable and shiftable
appliances, as well as a model for heating. They note that RTP should not be used alone,
as it might cause undesirable peaks. Therefore, they adopt the Widrow-Hoff learning
mechanism, with randomised learning rates, to gradually adapt the agents response, so
that responding peaks can be avoided. This approach of adapting the agents’ response
is very important and can also be achieved by a hysteresis procedure so that appliances
gradually switch on or off, similar to the one used by Rosenfeld et al. (1986). Similarly,
Ramchurn et al. (2011b) design a homeostatic mechanism that uses a price signal based
on a measure of carbon intensity in a retailer’s portfolio (i.e., generation mix). End-user
agents use this signal to optimise their storage by using mathematical programmes. In
a similar vein, Voice et al. (2011) design a decentralised control mechanism in which
an electricity retailer adaptively uses a price signal that end-users receive in order to
optimise their micro-storage. Vytelingum et al. (2010) and Vytelingum et al. (2011)
use the same principle of designing a price signal to which end-user agents respond in
order to optimise the charging and discharging cycle of their home batteries. They com-
pute and analyse the competitive equilibria of a population of agents and predict their
best response. These methods use price-based control signals to guide DR, whereas
the work in this thesis designs DR offers (asks) that end-user agents can submit, with
the aim to receive a discount, to a procurement auction to ameliorate their retailer’s
expected imbalance.
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Auction protocols that are based on mechanism design, similar to the methods used
in this thesis, have been used for the scheduling of EV recharging. For instance, Gerd-
ing, Robu, et al. (2011) have framed this scheduling as a multi-dimensional online
mechanism design coordination problem, in which agents report their valuation of elec-
tricity, arrival and departure times. They use a greedy allocation that in some cases
leave power unallocated in order to achieve monotonicity, and thus truthfulness, in a
model-free setting. Moreover, Robu, Stein, et al. (2011) extend the previous mech-
anism to allow multi-unit demands per time period in order to accommodate hetero-
geneous EV loads and flexible charging speeds. They also provide worst-case bounds
on allocative efficiency, and empirically evaluate the proposed mechanism using data
from a UK real-world trial of EVs. Furthermore, Stein et al. (2012) extend previous
mechanisms by adding a notion of pre-commitment, in which the online mechanism
reserves resources, but it retains some degree of flexibility over when and how the ac-
tual recharging is allocated. They modify the Consensus online optimisation algorithm
in order to achieve monotone allocations and further adjustments to prevent unalloc-
ated agents from influencing future pre-commitment allocations. They achieve a DSIC
mechanism and achieve a bound of 93% with respect an offline optimal. Improving on
a similar line of research, Gerding, Stein, et al. (2013) propose a two-sided market, in
which EV charging stations report their availability and EV agents report their reserva-
tions for charging (i.e., preferences). They design a payment scheme that results in a
DSIC mechanisms for the buyer side (EV agents). Moreover, they prove an impossibil-
ity result for the sellers’ payments, in which no payment can incentivise honest reports
for sellers when a greedy allocation rule is used. The work in this thesis differs from
the previous mechanisms mainly in the following aspects. First, the characterisation
of bids and asks has been designed so that it does not reveal much information about
end-users, resulting in a single-dimensional characterisation. Second, the number of
interacting agents is static, and the setting does not consider online allocation (schedul-
ing), although that could be considered for future work. Third, allocations and payment
rules are different due to the specifics of the model, but the monotonic greedy allocation
is common to achieve DSIC. Fourth, their mechanisms do not consider uncertainty on
the ability of agents to fully supply their offers, whereas here this is dealt by designing
suitable penalty schemes. Finally, DR flexibility is not explicitly considered in their
model, but it is indirectly present in the reported preferences.

Another work that shares some degree of similarity with this thesis include (Dash
et al., 2007) where a suitable penalty scheme is proposed so that suppliers are incentiv-
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ised to report their capacity as certain as possible. Their penalty scheme is adapted
in Subsection 3.3.5.4 for the purpose of comparison. However, the cost structure and
used mechanisms are different. Dash et al. (2007) use a cost structure that include
fixed and variable costs, the setting assumes a small number of suppliers and the ad-
apted VCG mechanism results are computationally feasible due to the limited number
of offers. The mechanisms in this thesis cannot use the VCG mechanism due to the
large number of participating agents, therefore it resorts to VCG-based mechanisms, in
which the allocation function is solved approximately (as the exact solution is NP-hard).
Nonetheless, in both cases, the mechanisms include verification and penalties that are
designed to restore the DSIC property.

Furthermore, Ströhle et al. (2014) design an online mechanism for allocating uncer-
tain non-interruptible demand that could be scheduled in the presence of uncertain sup-
ply. They extend the expectation and consensus algorithms from the online scheduling
domain in order to apply them to online mechanism design. They deal with uncertainty
in the supply and demand sides through scenarios that are weighted online according to
their likelihood and available data, and a predictive model is later solved offline. This
predictive approach could be considered for future work in this thesis. Their character-
isation of jobs is multi-dimensional and similarly expressed as the EV charging problem
(i.e., valuation, consumption rate, number of time periods, arrival/start, departure/dead-
line). Different from their approach, this thesis abstracts bids and asks regarding DR
flexibility into a single dimension so that it can be tractably computed. Also, several
jobs can be included into a single offer and interruption is possible but modelled into
separate DR offers. Finally, their mechanism and the one in this thesis uses critical
value payments.

Other recent similar approaches include (Jain et al., 2014) that uses multi-armed
bandits to crowdsource DR. The objective is similar, however, the model, methods,
and focus are different. In their work, end-users are modelled as being part of a cluster.
The retailer asks the clusters to report their unit cost for reducing the load, and the
former proposes offers to the cluster exploring their response and calibrating the ac-
ceptance rate. Although interesting, it does not deal with the responsive capacity of
end-users, but it takes into account the likelihood to which end-users accept these kind
of offers from the retailer. Moreover, there are no penalties for non-responsive end-
users. Zhou et al. (2015) adopt a similar line of reasoning as the mechanism described
in Chapter 3. They also use a knapsack auction in a single-dimensional domain with
Myerson’s critical value payments, where micro-storage agents offer a set of pairs com-
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prised by energy quantity and its marginal cost. Their knapsack auction uses the XOR-
bidding language so that only one offer is allocated per agent. However, the micro-
storage agents are modelled as micro-suppliers of energy selling it to the grid, rather
then demand responders offering flexibility. They assume deterministic outcomes, and
neither verification nor penalties are considered as opposed to the mechanism described
in Chapter 3. Furthermore, (Ma et al., 2016) also cast the DR setting as procurement
auction, but they focus on reliability, where they aim to select the minimal set of agents
that collectively meet a given probability threshold for responding. They provide two
DSICmechanisms, one of which is direct and the other indirect. Also, they offer a fixed
reward for responding and a variable penalty for those who does not respond. Agents
are expected to respond decreasing electricity use if they are selected; if they fail to
respond, they receive a discriminatory penalty resulting from their mechanism. How-
ever, in their model, it is not clear how much load needs to be reduced to account as a
response, and the outcome of receiving a penalty is discrete (i.e., either agents receive
a penalty or not), as opposed to this thesis where penalties are inversely proportional to
the achievement on the net-load target (i.e., increase o decrease load) set by the agents.
Moreover, Chapter 4 provides a chained mechanism for a multi-retailer DR exchange,
that has not been proposed in the literature for this problem.

Other work that deals with DR from a different perspective than auction-based pro-
tocols include stochastic mathematical programmes and joint optimisation of profiles
(e.g., (Morales et al., 2014; Anderson et al., 2011; Halvgaard et al., 2012; Livengood,
2011; Vasirani and Ossowski, 2012)); and coalition-based approaches in cooperatives
or VPP, in which game-theoretic considerations are taken into account, particularly to
divide the payoff (e.g., (Chalkiadakis et al., 2011; Robu, Kota, et al., 2012; Kota et al.,
2012; Akasiadis and Chalkiadakis, 2013; Mihailescu, Vasirani, et al., 2011; Mihailescu,
Klusch, et al., 2013)). These interesting approaches are not discussed further because
they are not directly related with the mechanisms presented in this thesis, as well as for
brevity reasons.

2.5 Summary

This chapter has provided the necessary background information on the organisation
of the electricity supply system and its potential for a low-carbon economy. The main
challenges for this industry under low-carbon constraints were discussed along with
the potential of AI to help to solve some of those challenges. The structure of whole-
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sale electricity markets was described, including its main participants, time frame, and
currently available balancing services/DR in the UK. Moreover, a brief background
on MAS and MD was introduced because they comprise a suitable toolset for imple-
menting desirable systemic goals, such as coordinating DR so as to balance supply
and demand, amongst strategic self-interested agents. The related work briefs from
historical aspects to the application of economic principles and development of diverse
methods for integrating a more adaptive demand-side in order to improve the efficiency
of the electricity supply system. The scientific gap was introduced and established on
direct-revelation DSIC mechanisms between responsive end-users and their retailer,
and amongst retailers, for the purpose of coordinating DR efforts. As opposed to the
current trend in the literature, the focusing gap considers explicit DR offers that char-
acterise a notion of operational flexibility that, rather than expressing the willingness
to buy or sell energy, it expresses the willingness to shift some net-load.



Chapter 3

A Single-Sided VCG-Based

Coordination Mechanism for

Domestic Demand Response

In this chapter, a novel market-based coordination mechanism is proposed to enable
electricity retailers to leverage demand response (DR) efforts from their domestic cus-
tomers. The research question that is addressed in this chapter is how electricity re-
tailers should incentivise their domestic customers to adjust their end-use patterns for
better supply and demand matching. An Algorithmic Mechanism Design (AMD) ap-
proach is taken in order to deal with multiple autonomous agents that are self-interested,
and economic incentives are used to guide their efforts. The proposed mechanism aims
to balance the interests of both parties, retailers and end-users, so as to avoid either of
the parties being exploited. Participation of end-users is voluntary; the higher the parti-
cipation, the larger the collective capacity to accommodate imbalances from electricity
supply and demand, and thus reduce the need for expensive balancing generation.

The organisation of this chapter is as follows. First, an introductory reasoning about
the proposedmechanism is provided. Second, the setting of themechanism is described
along with the general assumptions that are being made. In addition, the computational
models of the agents who represent end-users and retailers are specified, as well as their
common understanding of flexibility is defined. Third, the specification of the single-
sided VCG-based mechanism is provided, including the offer format, allocation pro-
cedure, payment agreement, four penalty schemes, and inspection procedure. Fourth,
the theoretical properties of this mechanism are proved. Finally, a summary and a list
of symbols are provided. The empirical evaluation is reserved for Chapter 5 because
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the experimental set-up for simulations is reused to comparatively show all the mech-
anisms proposed in this thesis, along with some variations.

3.1 Introduction

The proposed market-based coordination mechanism in this chapter is a single-sided
VCG-based mechanism. Vickrey (1961), Clarke (1971), and Groves (1973) (VCG)
mechanisms are one of the positive results in game theory and economics which imple-
ment a social choice function that maximises welfare (or minimise the social cost) in
a non-dictatorial setting, in which agents have quasi-linear preferences (Arrow, 1951;
Gibbard, 1973; Satterthwaite, 1975; Nisan, Roughgarden, et al., 2007). VCG mech-
anisms use a social choice function whose exact computation is intractable, but it is
typically feasible if the number of agents is small. Therefore, Nisan and Ronen (1999)
proposed VCG mechanisms in which the social choice function is replaced with one
that is computable in polynomial time, and payments are computed as in the VCGmech-
anism. They termed this family of mechanisms as VCG-based mechanisms. Further-
more, Nisan and Ronen (1999) showed that, althoughVCG-basedmechanisms are com-
putable in polynomial time, they lose the dominant-strategy incentive-compatibility
(DSIC) property, because the VCG payments are computed over a suboptimal alloca-
tion and agents could manipulate the outcome by misreporting their preferences. How-
ever, the computational model for this setting, that is defined in Section 3.2, abstracts
the problem into a single-dimensional domain for which is known that computationally
efficient DSIC mechanisms exist (Roughgarden, 2016, Ch4).

More specifically, the proposed VCG-based mechanism corresponds to a (direct
revelation) multi-unit single-item reverse Vickrey auction with sealed offers, transfer-
able utility, reservation prices, and post-production verification. That is, each retailer
procures operational flexibility as a homogeneous commodity from their customers
and pays them in a common currency. Furthermore, as it will be showed in the fol-
lowing sections, retailers can only accept complete offers from their customers. This
integrality constraint makes this mechanism a knapsack auction (e.g., Engelbrecht-
Wiggans (1977), Aggarwal and Hartline (2006)), because the allocation of complete
offers resembles the canonical 0/1-Knapsack Problem (KP) (Dantzig, 1957). This
well known problem is NP-hard, but it accepts a fully polynomial-time approximation
scheme (FPTAS), assuming P ̸=NP, (Vazirani, 2001, Ch8). However, standard approx-
imation techniques generally not result in monotone allocations (Roughgarden, 2016,
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Ch4), which are required to maintain the mechanism DSIC (Myerson, 1981, Lemma 3).
Under these considerations, Briest et al. (2005) provide a general method to transform
a pseudo polynomial-time algorithm to a monotone FPTAS, that is applicable to knap-
sack auctions. Moreover, VCG payments cannot generally be used even with mono-
tone approximately efficient truthful mechanisms (Nisan and Ronen, 2007, Lemma
2.1), instead Myerson’s payment formula, which is commonly known as critical value
payments, is used in order to maintain the DSIC property (Roughgarden, 2016, Ch4).
This critical value corresponds to the minimum bid (maximum ask) that the bidder
could have reported and still have won the same allocation. In single-dimensional
auctions, the critical value replicates the payments of Vickrey’s second-price auction
(Roughgarden, 2016, Ch3). Since the Vickrey auction is itself a VCG mechanism
(Nisan and Ronen, 2007), therefore, the proposed auction becomes a VCG-based mech-
anism for DR coordination that is approximately Pareto efficient, DSIC, its allocation is
computable in time polynomial in n and 1

ε , and the computation of payments (discounts
and penalties) is also tractable.

3.2 Computational Model

This section defines the general setting of the mechanism, which includes the main
assumptions and computational models for end-users and retailers’ agents.

3.2.1 General Assumptions

It has been assumed that the information and communication technology (ICT), neces-
sary to exploit the benefits of smart meters and controllers for DSM, is already in place.
Also, it has been taken for granted that there is an effective regulatory framework that
supports a business model in which retailers are engaged in more active interactions
with their customers in aid of a smarter grid challenges. At the time of writing this
thesis, there is an ongoing debate on the scope of smart meters, as of what it is meant
by smart, concerns of whether is possible of willingly disconnect vulnerable end-users
from the service (for instance, due to having an outstanding balance), who will see and
store the collected data, amongst other worries (e.g., (House of Commons, 2016; Hoen-
kamp et al., 2011)). This thesis does not particularly focus on any of those issues, even
though the assumed intervention of the ISO/DSO auctioneer may allow for privacy of
end-users’ data (provided that details are not shared with retailers). Furthermore, the
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model assumes that end-users are subscribed to only one retailer and that communica-
tion between the retailer and the meters is possible (perhaps through direct connection
or via the ISO/DSO that interfaces between them). Moreover, in this model, end-users
cannot trade neither in the wholesale market nor amongst themselves. If an end-user
is displeased with its retailer’s tariffs or overall service, it might decide to switch to
another more convenient retailer available within its geographical area. Switching re-
tailers might include fees for finishing contracts early, however neither the switching
nor these fees are modelled in this study due to clarity of exposition, but the models
could be easily extended to include this situation. Finally, it has been assumed that
meters are reliable, that they provide the meter reading whenever the retailer asks for
it (or as allowed by regulation), and that they have not been hacked by malicious end-
users that in such a case the law would be enforced by a proper regulatory institution.
Figure 3.1 provides an idea of the interactions amongst a retailer and its subscribed
end-users, as well as examples of the technologies involved.

Figure 3.1: Setting of the VCG-based mechanism.

3.2.2 DR Operations

DR has been abstracted into two main operations for the domestic setting: net-load
peak-shaving and net-load valley-filling. Before defining these operations, it is con-
venient to define the net-load in order to address DR within this context.
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Definition 3.1. Net-load is the difference between electricity use and electricity gener-
ation within one time period at one specific abstraction level (e.g., household, distribu-
tion system, traded schedule, group of domestic customers that are subscribed to one
retailer within a geographic zone). Net-load daily profile, measured in kWh (or higher
orders), is a set of net-load values corresponding to each of the time periods within a
single day (larger time frames could be considered too, i.e., weekly, monthly, seasonal,
yearly profiles).

Definition 3.2. Net-load peak-shaving is a DR effect intended to reduce the net load
and it is accomplished by turning off some load appliances or turning on generation
devices, including discharging batteries, if possible. The appliances that are turned
off are expected to be turned on later at non-peak time periods. Similarly, generation
devices can be turned off, and batteries can be recharged, at non-peak times.

Definition 3.3. Net-load valley-filling is a DR effect opposite to net-load peak-shaving
that is intended to increase the net load. This is performed by turning on some load
appliances, including recharging batteries, or turning off generation devices, if possible.
The appliances basically fulfil a task in advance, which means that such tasks will not
be needed during peak time, resulting in a more even daily profile.

These two DR operations are important to the problem of balancing supply and
demand, because they can be coordinately grouped to ameliorate imbalances, so as to
reduce expensive balancing generation and help accommodate low-carbon renewable
generation, especially from non-dispatchable sources that although free, their output is
usually stochastic and intermittent.

3.2.3 End-User Agent

The end-user and the computational agent that works on its behalf are used almost
identically in this thesis, although the main focus is on the latter. End-user agent i ∈ N

has access to read the electricity meter at its end-user’s premises. Let mit denote the
meter reading that agent i gathers at time period t ∈ T , where T is a set of consec-
utive discrete time periods (e.g., hourly or half-hourly), whose horizon can easily be
considered infinite. Let qit ∈ R denote the electric energy used by end-user i at time
period t, which corresponds to the change in meter readings between t and t − 1, i.e.,
qit := mit − mi(t−1). Specifically, qit represents the net-load at end-users’ premises,
where qit < 0 means export of electricity to the grid, qit > 0 indicates import of electri-
city, and qit = 0 corresponds to zero net-energy exchange.



56 Chapter 3. A Single-Sided VCG-Based Mechanism for DDR

End-users are given two fixed tariffs by their retailer, which are the retail sell and
buy prices. These tariffs are assumed to be the same for all end-users subscribed to the
same retailer11. More formally, these tariffs are denoted by λRS ∈R>0 and λRB ∈R>0,
which are the retail sell price and retail buy price per kWh, respectively, ∀i ∈ N, ∀t ∈ T .
Particularly, when qit < 0, agent i is paid λRBqit at time period t; similarly, when qit > 0,
agent i is charged λRSqit at time period t. Also, as expected by retailing dynamics, it
is assumed that λRS > λRB. These fixed prices provide no incentives for end-users
to modify their use patterns, except for the case of prioritising the use of their own
generated electricity, since the retail buy price is strictly lower than the retail sell price.

Provided that end-users are willing to adapt their use patterns and offer this flex-
ibility in order to accommodate for supply fluctuations, they need to quantify their
responsive capacity and its offering price at time period t. This quantification relies on
an in-house scheduler in which end-users set certain domestic tasks to run and finish
within a time frame as a hard constraint. The model for the scheduler is formalised
after the definition of flexibility, that is as follows.

Definition 3.4. (Flexibility) Domestic demand-side operational flexibility, or just flex-
ibility in this thesis, is the ability of an end-user (agent) to either implement peak-
shaving or valley-filling operations at a single time period t, so as to drive its net-load
up or down at will. Either operation, or DR direction, is assumed to have a negli-
gible cost for the end-users (i.e., people, not their agent), as the scheduled tasks will
finish within the specified time frame. That is, this flexibility corresponds to a non-
meaningful degradation in quality of service for the end-user, due to anticipating or
deferring electricity use. Henceforth, the linear cost functions presented in this chapter
(i.e., Figure 3.3) should be seen as valuation schemes for DR offers according to end-
users’ preferences, as opposed to bearing hard costs. By means of this definition of
flexibility, end-users have a utility of zero (i.e., no economic cost) for DR offers that
are not selected by the mechanism.

Figure 3.2 shows examples of appliances that could be expected to be scheduled
according to end-users’ preferences, in order to exchange some flexibility for a discount.
It also provides examples of appliances that would not be expected to be scheduled,
such as those for cooking and entertainment.

In order to quantify the end-user’s DR capacity and its offering price, a scheduler
is used to manage a set of domestic tasks that involve turning on or off electrical appli-

11This model could easily be extended to include different pricing groups per retailer, but it would not
affect the properties of this market-based mechanism.
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Figure 3.2: Examples of end-users’ schedulable appliances for DR.

ances during a time window. It has been assumed that this scheduler is part of a home
energy management system (HEMS), and that appliances have controllers which allow
for domestic tasks planning, such as clothes washing and drying, and EV recharging.
Table 3.1 shows an example of a basic schedule and the data it uses to keep track of
domestic tasks.

Task k qk (kWh) rk dk sk ck zk Flags

Recharge EV 3.5 6 12 0.15 0.05 +1 Interruptible
Heat bedrooms 2.5 2 6 0.10 0.02 -1 Interruptible
Wash clothes 1.5 3 14 0.01 0.01 0 Non-interruptible
Wash dishes 1.0 2 2 0.00 0.00 0 Must-run
Discharge HB -2.5 4 9 0.10 0.02 0 Interruptible

Table 3.1: Example of a basic schedule for domestic tasks.

For each task k ∈ K, where K is a set of single-appliance12 tasks in the schedule,
qk ∈ R is the amount of kWh that task k requires per time period t. This amount could
be estimated using the technical specifications or simply from its past use (e.g., washing
machine programmes, which consume different amount of electricity depending on the
water temperature, water volume, centripetal force to centrifugate the water from the
clothes, etc.). Moreover, the number of time periods that task k requires is denoted by

12In general, some domestic tasks may involve more than a single appliance, and this can be dealt
with by a more sophisticated scheduler. However, such complexity is unnecessary for the exposition of
the mechanism, which only needs the summed up amounts of flexibility up and down.
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rk ∈ N (e.g., 3 hours, 6 half-hours), and its deadline is expressed by dk ∈ N, which is
the maximum number of time periods (e.g., 6 hours, 12 half-hours) that task k may take
to finish. This deadline is interpreted as a limit that cannot be exceeded, but certainly
tasks can finish before their deadline.

Moreover, a very simple strategy13 to map end-users’ preferences to DR offering
prices is used as follows. The cumulative offering cost of deferring or anticipating
task k is defined by sk ∈ R>0 from the schedule. The cost per time step is denoted by
ck ∈ R>0, and cost type zk ∈ {−1,0,1} determines if the cumulative cost sk increases
with time (zk = 1), decreases (zk = −1), or remains the same (zk = 0). For simplicity,
cost types (zk) are modelled as linear functions, although more complex functions are
possible. Figure 3.3 illustrates examples of cost functions associated to some tasks and
their interpretation. When zk = 1, the end-user prefers that task k is performed at the
beginning of the scheduling horizon (e.g., EV charging), and thus its carrying offering
cost will be higher as it gets near the end. Similarly, when zk =−1, the end-user prefers
task k to be finished by the deadline (e.g., space and water heating) rather than at the
beginning, thus its carrying offering cost will be lower as it gets closer to the end. When
zk = 0, the end-user is indifferent as long as task k is performed within the time frame
(e.g., washing clothes). Both sk and ck are restricted to be strictly greater than zero, for
instance a small constant ε, as otherwise the mechanism clearing price could yield zero
discounts under the presence of heavy competition.

At every time step t, the vectors rk, dk, and sk are updated as follows.

rk :=

⎧
⎨

⎩
rk −1: i f k ran at t −1

rk : otherwise
∀k ∈ K (3.1)

dk := dk −1 ∀k ∈ K (3.2)

sk := sk + ckzk ∀k ∈ K (3.3)

For the purpose of DR, the schedule is queried to extract both flexible and inflexible
operational amounts and their offering costs. For instance, in Table 3.1 the maximum
net-load that could be achieved is 8.5 kWh at a comfort cost of 26 pence and the min-
imum would be −1.5 kWh at a compensation of 10 pence during time period t. Since

13More sophisticated strategies can be used to map end-users’ preferences to DR offering prices; how-
ever, this is out of the scope of this thesis.
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Figure 3.3: Cost types to model end-users’ preferences in order to price flexibility

offers.

the task wash dishes has no flexibility, it must run either way. This offering cost is ba-
sically what the agent is asking for as a minimum compensation (or discount), provided
that its offer is allocated and it fulfils the agreed net-load target.

More formally, flexibility and costs are determined as follows. Let Dt be a subset of
K, which contains tasks that have peak-shaving flexibility, or downward capacity, i.e.,
Dt ⊆ {K | qk < 0, dk > rk}. Similarly, let Ut be a subset of K, that contains tasks with
valley-filling flexibility, or upward capacity, i.e., Ut ⊆ {K | qk > 0, dk > rk}. Subsets
Dt and Ut are disjoint14, i.e., Dt ∩Ut = /0. Let qd

t ∈ R≤0 denote the amount for peak-
shaving in kWh, i.e., qd

t := ∑k∈Dt qk. Correspondingly, let qu
t ∈ R≥0 be the amount

for valley-filling in kWh, i.e., qu
t := ∑k∈Ut qk. Let the offering prices be expressed

by λd
t ∈ R>0 and λu

t ∈ R>0, where λd
t := ∑k∈Dt sk and λu

t := ∑k∈Ut sk. The inflexible
amounts from the schedule can be computed analogously, however, since this model
only takes into account the net-load, the inflexible amounts for generation and load are
summarised into a single figure. That is, all tasks from the schedule that no longer have
flexibility are set to run, including tasks that generate power and tasks that use it. Hence,
let Ct be a subset of K which has the tasks with no flexibility, i.e., Ct ⊆ {K | dk ≤ rk}.
Let qc

t ∈R be the net-load amount of kWh from tasks that must run according to sched-
ule, i.e., qc

t := ∑k∈Ct qk. At this point, due to Definition 3.4 (Flexibility), the added up
cost of these inflexible tasks is disregarded, since their flexibility is no longer offered

14Charging and discharging of batteries (e.g., home, EV) are regarded as different tasks.
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to the retailer. That is, end-users no longer ask for a discount regarding the effect of
these tasks in their net-load. Furthermore, let a forecast function h : N|RH !→R, where
h(t|H) estimates the end-user’s (inflexible) net-load at period t excluding scheduled
tasks, given a finite rolling history H. Finally, the end-user agent can determine the
minimum and maximum meter readings that it could achieve, as in Equations 3.4 - 3.6,
in which m(t−1) is the actual meter reading at t − 1. Intermediate values at different
costs, as opposed to minimum and maximum meter readings, could also be possible;
however, since the capacity of a single domestic end-user is in general very low, com-
pared to its retailer’s trading schedule, the extra complexity in this case would not add
any substantial value in the face of thousands or millions of end-user agents submitting
offers.

my
t := m(t−1)+h(t|H)+qc

t (3.4)

md
t := my

t +qd
t (3.5)

mu
t := my

t +qu
t (3.6)

Furthermore, flags can be added to this schedule to specify a variety of constraints;
for instance if a task is non-interruptible, whenever it runs, it will no longer have flexib-
ility within its scheduling time frame, so it will have to run, i.e., dk ≤ rk. It can be safely
assumed, without loss of generality, that appliances run for the whole time period they
are selected to run, and that they use or generate their respective per-time-period amount
specified in the schedule, i.e., qk; it would be trivial to extend this schedule to cover,
perhaps by means of an additional flag, the fraction in kWh for the last time period
so as to estimate the flexibility more accurately. Similarly, more complex schedules
can be designed, with more constraints and task validations (e.g., cannot discharge an
empty battery, etc.), but the one presented in this chapter results convenient to capture
most of the attributes for domestic tasks that are relevant to DR.

Finally, the electricity bill of end-user agent i is computed using Equation 3.7, where
subset τ ⊆ T contains all time periods being billed. Parameters λRS ∈ R>0 and λRB ∈
R>0 are the previously defined retail tariffs from the retailer’s perspective, i.e., end-
users buy electricity at retail sell price λRS, and end-users sell their excess at retail
buy price λRB. Let bit ∈ {0,1} denote whether end-user agent i imported (bought) or
exported (sold) electricity at time period t. The value of bit is assigned according to
qit , which is the change in meter readings between t and t −1, i.e., qit := mit −mi(t−1).
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Therefore, bit := 1 if qit > 0, and bit := 0 otherwise. The last term γit ∈R is the discount
computed by the mechanism, whose procedure is described in Section 3.3.

ciτ := ∑
t∈τ

λRSqitbit +λRBqit (1−bit)− γit (3.7)

3.2.4 Retailer’s ISO-Controlled Zonal Auctioneer Agent

In a similar fashion that a reliable electricity meter is used to bill end-users, there needs
to be a reliable centre (i.e., an auctioneer) that implements the rules of an agreed mech-
anism. Therefore, an independent auctioneer is proposed in order to prevent retailers
from exploiting end-users by extracting more profit from DR rather than using it to
balance their trading schedules (e.g., by untruthfully reporting clearing prices). The
auctioneer agent is assumed to be controlled by a non-profit independent system oper-
ator (ISO). Depending on the structure of the electricity supply system, the controlling
entity could also be the distribution system operator (DSO); essentially, the auctioneer
must not be owned by any retailer and its procedures must be certified and regulated.

The computational model for retailer agents is much simpler than that of end-user
agents. The retailer agent and the auctioneer agent, which are separate entities, are
used almost identically under the assumption that, although the auctioneer represents
the retailer, the auctioneer agent is controlled by the ISO/DNO. Hence, at every t ∈ T ,
the retailer provides the auctioneer agent with its forecasts of imbalance prices, the
expected amount to procure fromDR, and theDR direction (i.e., peak-shaving or valley-
filling). More formally, let λ̃S

t ∈R>0 be a forecast of the system sell price (or balancing
sell price), and λ̃B

t ∈R>0 be a forecast of the system buy price (or balancing buy price)
at time period t. Let Q̃t ∈R≥0 denote a forecast of the quantity to procure for DR, and
yt ∈ {0,1} be the DR direction, where yt = 0means that peak-shaving will be procured,
and valley-filling otherwise.

Furthermore, the auctioneer agent collects offers from end-user agents, implements
the mechanism described in the next section, which involves an allocation procedure,
a payment agreement and a chosen penalty scheme, that are assumed to be all agreed
beforehand, i.e., the protocol is common knowledge amongst the agents representing
retailers and end-users.

Let M be the set of electricity retailers. Utility u jt ∈ R for retailer j ∈ M at time
period t ∈ T is modelled as a linear combination of retail trading, balancing market
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position, and DR discounts. Formally, let λRS
j ∈ R>0 and λRB

j ∈ R>0 be the previously
defined retail tariffs offered by retailer j. Similarly, qRS

jt ∈ R≥0 and qRB
jt ∈ R≥0 are the

amount of kWh sold to and bought from end-users; these quantities are easily computed
by Equations 3.8 and 3.9, as well as the respective retail trading in Equation 3.10.

qRS
jt := ∑

i∈{Nj|qit>0}
qit (3.8)

qRB
jt := ∑

i∈{Nj|qit<0}
qit (3.9)

ρ jt := λRS
j qRS

jt +λRB
j qRB

jt (3.10)

The balancing market position is determined ex-post. If retailer j is in deficit, it
pays the shortfall Q jt ∈ R at the per-unit system buy price (SBP) λB

t ∈ R≥0 to the
balancing market. Likewise, if retailer j is in surplus, it receives a payment equivalent
to the excess Q jt at the per-unit system sell price (SSP) λS

t ∈ R≥0 from the balancing
market. Let η jt ∈R be the exchange with the balancing market computed by the cases
in Equation 3.11.

η jt :=

⎧
⎨

⎩
λB

t Q jt Q jt < 0

λS
t Q jt Q jt ≥ 0

(3.11)

DR discounts are determined by the mechanism defined in Section 3.3. Let γit ∈R
be the actual DR discount paid by the mechanism to end-user agent i with regard time
period t. Then, let St ⊆ N denote the end-user agents that were selected by the mechan-
ism to perform DR operations, and thus, will be rewarded with a proportional discount
subject to verification. For convenience, let γ jt := ∑i∈St γit . Finally, Equation 3.12
computes retailer j’s utility u j, where subset τ ⊆ T contains all time periods being con-
sidered for this computation (e.g., time periods within a week, month, quarter, etc.).

u jτ := ∑
t∈τ

ρ jt +η jt − γ jt (3.12)
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3.3 Mechanism Specification

In general, a single household does not have sufficient capacity to correct a non-trivial
difference between its retailer’s traded schedule and the actual net-load from the col-
lective served by this retailer. It is, however, a large number of end-users that can signi-
ficantly drive up or down the collective net-load, provided that they have the incentives
to do so. End-users’ offers are subject to the market-based forces of the proposed mech-
anism. That is, end-users’ asks might not be allocated if their price is not competitive
enough or if the DR quantity to be procured has already been covered. This mechanism
boils down to a repeated auction, where at every time period a fraction of the popula-
tion is competing to allocate their flexibility in exchange for compensation. There is no
penalty for end-users who decide not to participate or whose ask has not been allocated,
since they end up paying fixed tariffs. Each auction instance is treated as independent
from each other, there are a massive number of bidders, and each auction is worth very
little (i.e., a few pence). In general, end-users should win several auctions to accrue
noticeable savings with regard to their electricity bill.

The scope of this protocol is restricted to take placewithin one contiguous geograph-
ical zone, and its relational cardinality corresponds to one retailer to many flexibility
providers. The retailer might communicate with demand responders more frequently
than with non-responsive customers; although the protocol is quite flexible to query
each customer at every time period, this is discouraged as the communication burden
would be heavier. For simplicity, it has been assumed that the reading frequency is
aligned to the retailer’s participation in the wholesale market, specially at the balan-
cing stage, for which DR is more useful. Moreover, for clarity of exposition, only one
zone has been modelled, even though retailers are expected to serve the electric load
in several zones within a region or country. If the retailer needed to balance its overall
traded position, it would have to decide the amount of DR to be procured per zone, so
as to cover the whole imbalance with these DR amounts.

3.3.1 Modelling Approach and Additional Assumptions

The mechanism is modelled using the tools of Algorithmic Mechanism Design (AMD)
from within Computer Science (CS), as opposed to Classical Game Theory from Eco-
nomics. While the former does not make assumptions on probabilistic distributions
about the agents’ valuations (Nisan, Roughgarden, et al., 2007, Ch9), the latter relies
on these distributional assumptions and usually considers them to be public knowledge
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amongst the participating agents. The predominantmodelling framework in Economics
is Bayesian Games, due to the work of Harsanyi (1967), and it usually models Bayes-
Nash Incentive Compatible (BNIC) implementations. However, the perspective from
CS mainly focusses on DSIC implementations, which are generally simpler and more
robust, and the followed approach involves a worst-case analysis over unknown inform-
ation (Nisan, Roughgarden, et al., 2007, Ch9). Since the CS approach has been taken in
this thesis, two additional assumptions are needed to model this auction: independent
private values (IPV) and strict incomplete information (SII) (Nisan, Roughgarden, et
al., 2007, Ch9). IPV means that the utility of end-user agents only depends on its own
private information (i.e., schedule and forecasts about inflexible net-load), and ignores
the other agents’ information (Nisan, Roughgarden, et al., 2007, Ch9). According to
Nisan, Roughgarden, et al. (2007, Ch9), SII is not completely standard and refers to
not having probabilistic information in the model, which translates to using worst case
analysis over unknown information to evaluate DSIC implementations.

Another important assumption is that this mechanism is normalised. That is, agents
have a utility of zero when their asks are not allocated by the mechanism (Nisan,
Roughgarden, et al., 2007, Ch9). This assumption is aligned to the definition of flexib-
ility above (i.e., Definition 3.4). Even though the characterisation of flexibility in this
thesis uses multiple parameters, the balancing problem is cast into a single-dimensional
auction between a retailer and its customers (by means of their respective agents). That
is, flexibility offers comprise two dimensions, one for net-load peak-shaving, and the
other one for net-load valley-filling; nonetheless, the retailer chooses a single dimen-
sion for DR procurement.

3.3.2 Ask Format

The retailer collects meter readings and asks from flexibility providers at the be-
ginning of every time period t ∈ T . Let a meter reading be formalised as a
tuple

〈
mt−1

[
,my

t ,
(
md

t ,λd
t
)
,(mu

t ,λu
t )
]
?
〉
!→ ⟨Z [,Z,(Z,R>0) ,(Z,R>0)]?⟩. The first

element mt−1 is the actual meter reading at the end of t − 1 or, what is the same,
it is what the meter displays at the beginning of time t. The second element
[
,my

t ,
(
md

t ,λd
t
)
,(mu

t ,λu
t )
]
? is optional, that is, the whole expression within square brack-

ets can be present either zero or once as denoted by the wildcard character ‘?’ from
regular expressions. This second term is comprised of three elements: (1) my

t is the
meter reading that results from how much net-load the end-user agent estimates the
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household will use if no DR operations are performed; (2) the pair
(
md

t ,λd
t
)
is an offer

to drive the meter down to or beyond the threshold md
t at the price of λd

t , at a single
time period t; and (3) the pair (mu

t ,λu
t ) is an offer to drive the meter up to or beyond the

threshold mu
t at the price of λu

t , at time period t. If the second term [·] is present, it must
include all its arguments and satisfy md

t ≤ my
t ≤ mu

t in order to be valid. Henceforth,
the term [·] is referred as an ask. Figure 3.4 shows a graphic interpretation of the ask
components. Zonal indices are omitted because this exposition is limited to one zone,
however it could be extended to cover more than one.

Figure 3.4: Ask components.

If the auctioneer selects an ask, it will choose either of the two threshold pairs, but
it cannot choose both. Therefore, the interpretation is similar to the XOR operator⊕ in
bidding languages (Nisan, 2006), however the level of abstraction used in this mechan-
ism considers the ask

[
my

t ,
(
md

t ,λd
t
)
,(mu

t ,λu
t )
]
to be atomic. That is, if an XOR askwere

to be used, it would be
[
my

t ,
〈[(

md
t ,λd

t
)
,(mu

t ,λu
t )
]
1⊕ · · · ⊕

[(
md

t ,λd
t
)
,(mu

t ,λu
t )
]

n

〉]
and

such level of complexity is unnecessary. That would require the flexibility provider to
cluster flexible tasks into different combinations of upward and downward offering
pairs that, in the orders of kWh and pence-based compensations, might result in un-
needed communication complexity. This could be used by industrial customers, where
they could specify several levels of response at different costs. However, according to
this model, the whole set of actions for a domestic flexibility provider, such as whether
to recharge EV and turn on heating, or not to do so, must be summarised into a single
atomic ask. For example, a reading like ⟨10000, [10007,(10005,20) ,(10011,3)]⟩ can
be interpreted as the current meter displays 10000, the flexibility provider agent estim-
ates that, after considering unshiftable net-load (i.e., the estimated meter without DR at
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10007), the minimum meter it could achieve is 10005 at the cost of 20 pence, perhaps
as comfort cost of not turning some devices on; likewise, the agent estimates that if
it turned on some scheduled appliances, adding them up, the meter would be at least
10011 and it would cost 3 pence, perhaps for some small comfort impact for running
them in advance, or just for the sake of giving away some information, for which the
agent would like to be compensated.

One of the main reasons to join the meter reading with the ask is the ability to
verify the actual change with respect the actual electricity use. This is assuming that
the meters are secure devices that have not been hacked. Without the actual metering
reading it would be easier for an agent to cheat, claiming some sort of DR that cannot
be verified. It is in the interest of both parties, retailer and customer, to be able to verify
their services, being the meter the primary tool to do so. Otherwise, a domestic cus-
tomer could promise to decrease its load the next time period overstating its predicted
load and simulating a non-truthful decrease, for which it would be compensated with a
discount. Similarly, a retailer could assert that it trusted a customer to reduce its load
(or adjust its electricity use to an arbitrary measure) and falsely claim that it did not de-
tect any favourable change, so as to exploit the customer by penalising its supposedly
false DR. Therefore, the meter is used to make the mechanism more transparent and
avoid unfavourable disagreements.

Furthermore, including both downward and upward meter thresholds in an ask,
without knowing which one is going to be chosen, limits the ability of end-users to
manipulate the mechanism by making over- or understatements about their net-load,
so as to gain discounts for false DR. For instance, suppose the customer knows that
its electricity use for the next time period is going to be 6 kWh and that the retailer
is following a valley-filling strategy, so it would be advantageous for the customer to
understate its use, e.g., 1 kWh, and offer that it could increase its use in exchange for
compensation, and yet being freely rewarded without performing any DR. The ana-
logous case would also be possible. The customer could promise to decrease its load
from an actually inflated amount, and yet be rewarded for no DR action at all. In this
vein, end-user agents must also report their intended electricity use without DR, so that
offers can be measured more accurately if they are selected.

The ask format in this section uses the meter readings for backward compatib-
ility reasons. Nonetheless, the meter reading format, including the ask term, can
be expressed more concisely using kWh quantities rather than the meter readings.
That is, the reading format could be expressed as

〈
qt−1

[
,qy

t ,
(
qd

t ,λdk
t
)
,
(
qu

t ,λuk
t
)]〉

!→
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⟨R [,R,(R≥0,R>0) ,(R≥0,R>0)]⟩, where each q corresponds to the respective change
in meters readings and λs are costs per kWh, i.e.,

〈
mt−1−mt−2

[
,my

t −mt−1,(
my

t −md
t ,

λd
t

my
t −md

t

)
,
(

mu
t −my

t ,
λu

t
mu

t −my
t

)]〉
. For instance, the meter reading and ask

from Fig. 3.4, assuming mt−2 = 9999, could be expressed as ⟨1 [,7,(2,10) ,(4,0.75)]⟩
(cf. ⟨10000, [10007,(10005,20) ,(10011,3)]⟩). Both formats are equivalent for the pur-
pose of this thesis, although the latter is more efficient for communication and compu-
tation, as the mechanism performs fewer mathematical operations.

Lastly, the ask format is expressive enough to separate the costs of peak-shaving
responses from those of valley-filling. Domestic comfort costs might be different from
deferring appliance use than from using them in advance. Conversely, comfort and fuel
cost of other appliances might be the same during a specified time window. Therefore,
the ask format allows for aggregating the costs of the actions aligned for peak-shaving
in one field, and those aligned for valley-filling in another one, as opposed of using a
combined measure of both DR directions (e.g., mean, overall sum).

3.3.3 Allocation Procedure

The auctioneer agent is given the amount of DR to be procured, presumably by the
retailer’s sales and operations planning system that might use a predictive model to de-
termine this quantity. Similarly, the auctioneer is also given the reservation prices for
procuring DR; these prices might be a function of the forecast of the imbalance settle-
ment. Let Q̃t ∈R be the DR quantity to be procured, and let λ̃S∗

t ∈R≥0 and λ̃B∗
t ∈R≥0

be the respective reservation prices for selling and buying kWh from DR at time period
t ∈ T . Similarly, let yt ∈ {0,1} be a boolean parameter that denotes the procurement
direction depending on Q̃t , where yt := 0 indicates net-load peak-shaving and yt := 1

corresponds to net-load valley-filling. That is, the auctioneer agent interprets that if
it is given a Q̃t ∈ R>0, the retailer’s schedule is in surplus, and thus the DR procure-
ment direction is set for net-load valley-filling (i.e., yt := 1); if Q̃t ∈R<0, the retailer’s
schedule is in shortage and net-load peak-shaving will be procured (i.e., yt := 0). When
Q̃t = 0, the auctioneer interprets that no DR is to be procured. Furthermore, the size of
DR offers is constrained within an range [w ∈ R>0,w ∈ R>0] which is defined by the
retailer, and it is common knowledge amongst the auctioneer and DR providers. These
parameters enable the retailer to specify the minimum and maximum DR amounts to
be considered by the mechanism.

Subsequently, the auctioneer agent, on behalf of the retailer, queries the end-users
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to collect meter readings and asks. Let At ⊆ N be the set of agents that submitted an ask
at time period t. For convenience, the ask format is expressed in kWh quantities rather
than in meter readings, as it is described in the previous section. Therefore, let θ̂it be
the reported type of end-user i∈ At , where θ̂it :=

〈
qi(t−1)

[
, q̂y

it ,
(

q̂d
it , λ̂dk

it

)
,
(

q̂u
it , λ̂uk

it

)]〉
.

The hat-notation is used to denote agent’s reported types, however, for simplicity of
notation and because this mechanism is DSIC, it is standard to assume that agents re-
port their values truthfully, i.e., θ̂it ≡ θit , ∀i ∈ At , since it is their best response. Let
A⋆

t ⊆ At be the set of valid DR offers at time period t, which are the offers whose of-
fering prices do not exceed reservation prices and meet the offer size constraint, i.e.,
A⋆

t :=
{

i ∈ At | λdk
it ≤ λ̃B∗

t ,λuk
it ≤ λ̃S∗

t ,qu
ityt +qd

it (1− yt) ∈ [w,w]
}
. The constraints on

reservation prices are simultaneously enforced and independent from the chosen DR
direction yt . This is done in order to limit gains from misreporting and its reason-
ing is provided later in this section. Then, the auctioneer computes the minimum DR
amount that can be feasibly procured, so that this quantity becomes a valid constraint
for a minimisation objective. Let Q̃⋆

t ∈ R≥0 be computed as the minimum between
the DR amount to be procured and the sum of all valid offers received at time period
t, i.e., Q̃⋆

t := min
{∣∣Q̃t

∣∣ ,∑i∈A⋆
t

qu
ityt +qd

it (1− yt)
}
. Henceforth, the allocation rule over

the valid offers, A⋆
t , solves a cost minimisation problem for procuring at least Q̃⋆

t in DR
offers, and its formulation is as follows.

x∗t := argmin xit ∑
i∈A⋆

t

[
λuk

it yt +λdk
it (1− yt)

]
xit (3.13)

subject to:

∑
i∈A⋆

t

[
qu

ityt +qd
it (1− yt)

]
xit ≥ Q̃⋆

t (3.14)

0≤ xit ≤ 1 (3.15)

This minimisation problem is equivalent to a continuous knapsack problem
(CKP)15 (Dantzig, 1957). Although, knapsack problems are traditionally framed as
maximisation problems, translating them into minimisation problems is trivial. It is
convenient to provide some definitions to explain the allocation reasoning.

15The continuous knapsack problem is also known as the fractional knapsack problem (FKP).
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Definition 3.5. (Dantzig’s 0/1-KP Greedy Approximation) Dantzig (1957) proposed a
simple greedy approximation (GA) based on sorting the items in decreasing order by
value per unit of weight, i.e., vi/wi, and greedily selecting items from the beginning
of the sorted list and placing them into the knapsack until there is no space. The cost
minimisation version of this GA is achieved by changing the sort to increasing order
by cost per unit of weight, i.e., ci/wi, and greedily select the items under the knapsack
constraint(s). For instance, 8 kWh procured at 20 pence has a cost of 2.5 pence per
kWh, i.e., 0.20/8 = 0.025. Similarly, 10 kWh procured at 20 pence is cheaper than the
previous 8 kWh at 20 pence, i.e., 0.20/10 = 0.020, that is 2 pence per kWh.

Dantzig’s 0/1-KPGA yields an optimal solution for the CKP, however, for the integ-
ral case it can give solutions that are far from optimal. Depending on the problem, this
GA could give optimal or reasonable solutions; as Dantzig (1957) suggested, rounding
the solution for the CKP might be practically accepted in cases where the model is im-
perfect about the knapsack capacity or where the size of the items is small relative to
the size of the knapsack. This is precisely the case for this knapsack auction. First, the
DR quantity to procure comes from a forecast, thus it is imperfect. Second, the flex-
ibility size of domestic end-users is small (e.g., single-digit kWh flexibility offers per
time period) compared to a much larger imbalance quantity at a retailer’s trading sched-
ule (e.g., three-digit kWh per time period), due to how electricity is traded in advance
of its use. Should this solution rounding becomes too inefficient for accepting whole
DR offers (integral knapsack problem), it is possible to tailor the GA to produce less
inefficient solutions, such as 2-PTAS16 solutions that are monotone (e.g., (Mu’alem
and Nisan, 2008), (Roth, 2015)). Monotone allocations, along with Myerson’s critical
payments, are required to achieve DSIC (Myerson, 1981). Alternatively, the state-of-
the-art for knapsack auctions can be used, which is an FPTAS algorithm that yields
monotone allocations proposed by Briest et al. (2005). However, given the described
setting in this chapter, Dantzig’s 0/1-KP GA is sufficient.

The solution to the allocation problem consists of all DR offers where the resulting
decision vector x∗t from mathematical programme 3.13-3.15 assigned a value greater
than zero, i.e., {i ∈ A⋆

t | xit > 0}. Using Dantzig’s 0/1-KP GA, it can only be up to
one fractional item (DR offer) (Dantzig, 1957), which in this case it is rounded. The
end-user agents that submitted an ask that did not result allocated are notified by the
auctioneer.

16The factor of 2, which is an upper bound, even becomes much more smaller if the item sizes are
small relative to the knapsack capacity.
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Constraint 3.14 limits the amount of flexibility that is being procured. Parameter Q̃t

is determined by the retailer and it could be set to the expected deviation with regard
the amount that has been traded in the wholesale market (i.e., pool markets and/or
bilateral contracts). Since retailers trade (or generally buy) electricity in the wholesale
market several time periods in advance, and their forecasts tend to be more accurate
as they get closer to the time of delivery, the value of Q̃t can be determined at t − 1

by the retailer. Moreover, it could be the case that, at t − 1, the DSO knows about an
unexpected surplus (or deficit) for time period t and offers it to retailers at a better price.
Then, some retailers could take these last time-period offers, update their schedules and
DR procurement Q̃t .

Constraint 3.15 is a linear relaxation to reduce the allocation problem from an in-
tractable mixed integer linear programme (MILP) to a tractable linear programme (LP),
which can be solved efficiently. However, the retailer is committed to allocate the last
fraction as an integral offer. The main reasons for this, as discussed above, are the im-
perfect nature of the model, and relative small sizes and values of offers with respect
the amount being procured. Therefore, accepting a whole offer instead of a fraction
from a domestic end-user is negligible for the retailer. In addition, tractability is a
practical requirement so that the auction can be cleared and end-users advised of this
result in a few seconds, so they have enough time to run the respective tasks from
their schedules within time period t. Furthermore, Dantzig’s 0/1-KP GA can be imple-
mented without the need of a mathematical programming solver, and it is practical for
processing a large number of asks (as required for this mechanism); it has polynomial
time complexity of O(n log n) due to the sort, where n is the number of valid asks. The
allocative efficiency is not affected by the linear relaxation when the collective amount
of DR is smaller than the amount that is being procured. However, when valid DR
offers amount for a larger quantity than the one being procured, the last allocated offer
will very likely be rounded up and it is bounded by w. In average, it could be expected
that the mechanism allocates w

2 more than needed per time period due to rounding up.
This additional amount could be subtracted from Q̃t so that the rounding up approaches
the procured quantity in expectation.

Reservation prices λ̃S∗
t and λ̃B∗

t could be a function of the forecast of imbalance
settlement prices (i.e., system sell price (SSP) and system buy price (SBP), respect-
ively), but the retailer is free to choose a different policy to determine them17. For

17For the purpose of this thesis, it has been assumed that the auction’s objective is to minimise the
social cost of balancing supply and demand, and not to maximise revenue. These prices are interpreted
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instance, in Chapter 5, these prices are set to the minimum marginal gain of procur-
ing DR with regard to the forecast balancing price, including the impact on retail sales
(i.e., λ̃S∗

t := λRS − λ̃S
t and λ̃B∗

t := λ̃B
t − λRS, expressed in terms of the retail sell price,

as it has been assumed that λRS > λRB and a setting in which λ̃B
t > λRS most of the

time). Moreover, it is important to simultaneously impose both constraints on reserva-
tion prices in the allocation problem, as otherwise end-user agents could get a benefit
from lying. Consider the case in which an end-user agent always submit an ask with
a misreported part, such as an ask of the form

〈
qt−1

[
,qy′

t ,
(
qd′

t ,λdk′
t

)
,(qu′

t ,ε)
]〉
, where

qy′
t is fake and deliberately low; qd′

t is a fake small amount that is offered at a very ex-
pensive cost of λdk′

t , so as to avoid being chosen when the auctioneer is procuring for
peak-shaving; qu′

t is the net-load forecast amount qy
t , which is offered at the very small

cost ε. Therefore, when valley-filling is selected, the ask is very likely to be allocated
since its cost ε is very low, and the retailer would give a discount to the end-user for the
fake merit of providing flexibility of qu′

t kWh, when it is just regular electricity use. In
addition, the end-user faces no risks of being penalised for cheating when the retailer
chooses peak-shaving, as λdk′

t is deliberately expensive, and thus unlikely to be alloc-
ated. An analogous case can be constructed to avoid valley-filling and be rewarded for
fake peak-shaving. Thus, asks that do not satisfy these constraints are simply rejected.
It cannot be assumed that either DR strategy is equally likely, and end-users could lie
and win a discount in expectation, therefore Section 3.3.5 proposes suitable penalty
schemes to counteract these dynamics and make the mechanism strategy-proof.

Lastly, it rests to show that Dantzig’s 0/1-KP GA yields monotone allocations.

Definition 3.6. (Monotone Allocation Rule) An allocation function X for a single-
dimensional environment is monotone if ∀i ∈ At , the ask of agent i, i.e., ai, and the
asks by the others except i, i.e., a\i, the allocation Xi

(
ai,a\i

)
to i is nondecreasing in its

ask (Roughgarden, 2016, Ch3). That is, for an allocated ask ai, while having all other
asks a\i fixed, if agent i makes its cost smaller (i.e., a better offer), it can only continue
to win.

Proposition 3.7. Dantzig’s 0/1-Knapsack ProblemGreedy Approximation yields mono-
tone allocations.

Proof. The cost minimisation version of the integral knapsack problem using Dantzig’s
greedy approximation requires that the items are sorted by cost-per-weight ratio in as-
cending order, and then proceeds to put as many items as possible inside the knapsack,

as if they were asks from the balancing market, and the retailer cannot carry any inventory, thus it has to
allocate its whole imbalance per time period.
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one by one until it gets full. Formally, let K be the set of items that could be placed
inside the knapsack. Let the size of the knapsack be denoted by W ∈ R≥0. Each item
k has cost ck and weight wk. Let S := /0 be the initial solution to the knapsack problem.
First, the procedure sorts all items, ∀k ∈ K, by ck/wk in ascending order and places
them into a sorted list A ⊆ K. Second, while there is enough space in the knapsack, i.e.,

∑k′∈S wk′ ≤ W , the top item, which has the lowest cost-per-weight ratio, is removed
from the sorted list A and placed into the knapsack, i.e., S := S∪{x ∈ A | x = A0} and
A := A\A0. For each k ∈ S, lowering cost ck while having the same weight wk and fix-
ing the cost and weight of items other than k, i.e., ∀k′ ∈ K \ k, will make each k part of
the solution if the procedure had to be performed again. The proof follows from sorting
by cost-per-weight ratio, ck/wk, in ascending order, since having a weakly lower cost
for k, i.e., c′k ≤ ck, can only make item k to weakly move its position up in the sorted
list A ⊆ K, due to c′k

wk
≤ ck

wk
, and thus item k continues to be part of the solution set S.

This proof is analogous for the utility maximisation problem.

Corollary 3.8. The mathematical programme 3.13-3.15 solved by Dantzig’s 0/1-KP
GA yields monotone allocations.

Proof. First, the auctioneer is given the DR direction, either yt = 0 for peak-shaving or
yt = 1 for valley-filling; this boolean parameter yt cancels the term that corresponds to
the opposite DR direction in the mathematical formulation 3.13-3.15. This reduces the
multidimensional type (i.e.,

〈
qt−1

[
,qy

t ,
(
qd

t ,λdk
t
)
,
(
qu

t ,λuk
t
)]〉

) into a single dimension,
from where Definition 3.6 is used for this proof. Second, the mathematical formulation
uses the conveniently simplified ask format (cf. Subsection 3.3.2), where reported costs
λdk

it and λuk
it are the cost to DR quantity ratios, i.e., λdk

it =
λd

it
qd

it
and λuk

it =
λu

it
qu

it
, for end-user

agent i ∈ A⋆
t at time period t ∈ T . Third, substituting λdk

it and λuk
it into the mathematical

programme, along with parameter yt , yields a knapsack problem of the same category
as the one used in Proposition 3.7. For instance, for yt = 0, the mathematical formula-
tion 3.13-3.15 becomes x∗t := argmin xit ∑i∈A⋆

t

λd
it

qd
it

xit | ∑i∈A⋆
t

qd
itxit ≥ Q̃⋆

t , 0≤ xit ≤ 1, that
is essentially the cost minimisation version of the KP with the difference that the pro-
posedmechanism rounds up the fractional offer, whereas the IKP discards the fractional
item as it does not fit in the knapsack. The formulation is analogous for yt = 1. Finally,
through Proposition 3.7, the mathematical programme 3.13-3.15 solved by Dantzig’s
0/1-KP GA yields monotone allocations.
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3.3.4 Payment Agreement Procedure

Due to the physics of how electricity is generated and used, as well as the nature of
this repeated reverse auction for domestic flexibility procurement as an ancillary ser-
vice, the payments from time period t need to be computed at t +1, when the actual
achievements can be measured by checking the meters. Therefore, when t := t +1, the
auctioneer queries the meters and verifies the achievements according to agreed prices
and quantities for those end-users who had an ask allocated at t − 1. Depending on
the privacy policy, the auctioneer may allow the retailer to read and store the meter
states for future forecasts. When asks are allocated, the corresponding discounts are
computed such that if an end-user fulfil its offer, it is credited the full agreed discount.
Discounts are computed using Myerson’s critical payments (Myerson, 1981), that in-
cidentally replicates the pricing rule from the multi-unit single-item Vickrey auction
(Roughgarden, 2016, Ch3).

The payment agreement procedure adapts the allocation problem described above,
Equations 3.13-3.15, to determine the discounts. The procedure is as follows.

1. Asks that do not satisfy reservation prices and offer size constraints are rejec-
ted. Let At be the set of submitted DR offers at time period t. Let A⋆

t ⊆ At

be a subset that contains the valid DR offers at time period t, where A⋆
t :={

i ∈ At | λdk
it ≤ λ̃B∗

t ,λuk
it ≤ λ̃S∗

t ,qu
ityt +qd

it (1− yt) ∈ [w,w]
}
, as described in Sub-

section 3.3.3. Therefore, DR offers in At \A⋆
t are rejected.

2. Dantzig’s 0/1-KP GA is used to determine the selected asks St ⊆ A⋆
t , while keep-

ing track of the biggest ask quantity qmax
t that is selected. The subset St is essen-

tially the allocation vector x∗t resulting from 3.13 subject to constraints 3.14-3.15.

3. Dantzig’s 0/1-KP GA is used to determine the set of runner-up asks Lt ⊆ A⋆
t \St

that amount up to qmax
t . If there are not enough runner-up asks, the corres-

ponding reservation price is used to cover the remaining amount up to qmax
t ,

as if this were an ask by an extra participant. That is, let qL
t ∈ R≥0 be the

runner-up DR capacity, i.e., qL
t := ∑ℓ∈Lt qu

ℓtyt + qd
ℓt (1− yt); if qL

t < qmax
t then

Lt := Lt ∪
〈
0
[
,0,

(
qmax

t −qL
t , λ̃B∗

t

)
,
(

qmax
t −qL

t , λ̃S∗
t

)]〉
.

4. Discounts are computed by finding the critical values ∀θi | i ∈ St with regard to
runner-up asks Lt . Mathematical formulation 3.16 below shows this computa-
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tion.

z∗it := argmin zℓt ∑
ℓ∈Lt

[
λuk
ℓt yt +λdk

ℓt (1− yt)
]

zℓt ∀i ∈ St (3.16)

subject to:

∑
ℓ∈Lt

[
qu
ℓtyt +qd

ℓt (1− yt)
]

zℓt ≥ qu
ityt +qd

it (1− yt) (3.17)

0≤ zℓt ≤ 1 (3.18)

Let pit ∈R>0 be the discount given to end-user agent i∈ St at time period t, which
corresponds to the cost of procuring agent i’s DR offer from the set of runner-up
offers, i.e., pit := ∑ℓ∈{z∗it |zℓt>0}

[
λuk
ℓt qu

ℓtyt +λdk
ℓt qd

ℓt (1− yt)
]

∀i ∈ St .

5. The results of the allocation with the respective agreed discounts are communic-
ated to end-users, ∀i ∈ At . End-users i ∈ St are informed of discount pit resulting
from formulation 3.16-3.18, and DR direction yt . End-users i /∈ St obtain a dis-
count pit := 0.

Linear programme 3.16, subject to constraints 3.17 and 3.18, solves the critical
value payment, which is the maximum ask (minimum bid) that agent i could have re-
ported and still have won the allocation. In other words, agent i receives a discount pit

that is weakly greater than its reported (truthful) cost. ThroughMyerson’s Lemma (and
incidentally, Vickrey’s auction), the described payments incentivise honest reporting,
that is, agents are weakly better off reporting their type truthfully than they would be
otherwise. This claim is proved in Proposition 3.9. Moreover, the computation of these
discounts is tractable, more precisely is O(n), where n is ∥St∥, provided that the list has
already been sorted in the allocation procedure.

The following toy example in Table 3.2 illustrates this pricing scheme. The elec-
tricity retailer estimates that the collective net-load will exceed its trading position by
seven kWh. Therefore, peak-shaving will be procured for time period t, i.e., yt := 0 and
Q̃t := 7 kWh. The retailer submit the parameters yt , Q̃, and reservation prices λ̃B∗

t and
λ̃S∗

t whose values are not relevant in this example. Then, the auctioneer agent queries
the subscribed end-user agents for DR offers, and it discards the offers that not satisfy
reservation prices and offer size constraints. That is, after Step 1, A⋆

t contains only
valid offers. Step 2 sorts asks by λdk

it in ascending order; from Table 3.2, the solution
set is St := {1,2,3} and qmax

t := 4 (i.e., qmax
t := qd

{2}t). Step 3 procures qmax
t from the
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next offers in the sorted list that are not in the solution, i.e., A⋆
t \ St , put them into set

Lt := {4,5} (where ∑ℓ∈Lt qd
ℓt = 5 and greater than qmax

t = 4), and discard the following
offers. Step 4 computes the discounts for all agents whose offer is part of the solu-
tion, i.e., pit , ∀i ∈ St . Discount of agent i = 1 is equals to the value of offers from
Lt = {4,5} needed to procure agent i’s DR quantity qd

{1}t (i.e., 1 kWh), where offers
cannot be taken fractionally; thus, p{1}t := λdk

{4}tq
d
{4}t , which is the same as λd

{4}t , i.e., 16
pence; similarly, p{2}t := λdk

{4}tq
d
{4}t +λdk

{5}tq
d
{5}t , i.e., 43 pence; and p{3}t := λdk

{4}tq
d
{4}t ,

i.e., 16 pence. Step 5 communicates the discounts agreed to all agents in At ; agents
whose offer is in the solution set St receive a potential discount of pit subject to deliver-
ing the offered DR quantity in the chosen direction; all other agents i /∈ St receive zero
discount.

i qd
it λd

it λdk
it pit

1 1 2 2 16
2 4 20 5 43
3 2 12 6 16
4 2 16 8 0
5 3 27 9 0

Table 3.2: Toy example of critical payments computation.

The computation of the payment agreement or potential discount is done assuming
that end-user agents have the capacity to comply with their offers. In general, domestic
prosumers might make mistakes when estimating their values. Also, it could be the
case they intentionally decide to lie about their quantities, provided that they believe
it would increase their utility. Therefore, several penalty schemes are proposed in the
next section in order to counteract misreporting and incentivise accurate predictions,
specially because there is uncertainty about the agents’ ability to fulfil their DR offers.

3.3.5 Penalty Schemes

When t := t + 1, meters are read and the achievements from those who had an ask
allocated are verified. The following penalty schemes are designed with the aim of:
(1) counteracting misreports, (2) encouraging end-user agents to make reasonable es-
timations about their offers, and (3) incentivising end-user agents to not forsake their
allocated offers when they are not able to meet the target. The onus is on end-user
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agents to learn their values and cope with the inherent changes in the household envir-
onment. On the one hand, allocated asks with under-reported meter thresholds are not
compensated for their extra quantity provided, and thus they face an opportunity cost
if they not estimate the offer accurately. On the other hand, asks with over-reported
meter thresholds must be penalised for not fully supplying their agreed quantity, buy
they should be incentivised to try to reduce this gap. The penalty schemes presented
below are mainly designed to deal with over-reporting; the first three are designed for
this situation, the fourth one is adapted from Dash et al. (2007) for the purpose of com-
parison. In addition, an inspection procedure is proposed so that end-users’ forecasts
of electricity use without DR are reviewed.

3.3.5.1 Middle Point Agreement Penalty Scheme

This penalty scheme is proposed as a naive baseline that meets the three design object-
ives previously mentioned. This middle point penalty consists on accrediting a linear
discount directly proportional to the quantity supplied, and charging a linear amount
directly proportional to the missing quantity. For instance, if the auctioneer agrees
to pay 60 pence to agent i for reducing 6 kWh, but the agent is only able to reduce
4 kWh, then the agent receives 40 pence for the achieved reduction of 4 kWh, but it
has to pay 20 pence for the missing 2 kWh, resulting in a net discount of 20 pence
(i.e., 2

360−
1
360 = 20). The net discount neutralises right in the middle of the agreed

DR amount, where discount and penalty are the same (e.g., 1
260−

1
260 = 0). In addi-

tion, this penalty scheme is bounded by design in the rage of [−pit , pit ]. That is, the
maximum amount an end-user agent can be charged for not delivering the DR offer
is pit (i.e., the previously agreed payment); similarly, the maximum discount an end-
user agent can receive is the agreed payment of pit . The lower bound is set in order
to protect end-users against very bad estimates, and the upper bound is put in place to
incentivise accurate DR offers. Figure 3.5 shows a graphical intuition of the regions of
this penalty scheme according to different scenarios.

The computation of the middle point penalty is as follows. Let St−1 ⊆ A⋆
t−1be the

end-user agents who had their ask allocated at t−1. Let βi(t−1) ∈R be the achievement
ratio of agent i’s offer after verification. This ratio depends on the DR direction that was
procured in the previous time period, thus Equation 3.19 include the boolean parameter
yt−1, where yt−1 = 0 denotes peak-shaving and yt−1 = 1 denotes valley-filling.



3.3. Mechanism Specification 77

Figure 3.5: Graphical intuition of the middle point penalty scheme.

βi(t−1) :=
qit −qy

i(t−1)

qu
i(t−1)

yt−1+
qy

i(t−1)−qit

qd
i(t−1)

(1− yt−1) ∀i ∈ St−1 (3.19)

For this penalty scheme, the achievement ratio βi(t−1) is partitioned into three sec-
tions in order to determine the discount or penalty. When ratio βi(t−1) ∈R≥1, it means
that agent i supplied or exceeded the offered quantity, thus it receives the agreed dis-
count; when ratio βi(t−1) ∈ {x ∈ R | 0< x < 1}, it means that agent i partially fulfilled
its offer and it receives partial discount and partial penalty; and when βi(t−1) ∈ R≤0,
it means that the agent failed to deliver its offer, thus it pays the full penalty. For in-
stance, in the previous example where the auctioneer agreed to pay 60 pence to agent i

for reducing 6 kWh, but the agent is only able to reduce 4 kWh, the value of βi(t−1) is
2
3 . That is, as peak-shaving was procured (i.e., yt−1 = 0) the first term is cancelled; hy-
pothetically, assume that agent i’s net-load prediction for time period t, that was made
at t − 1, was 7 kWh (i.e., qy

i(t−1) = 7), and that the actual net-load for time period t is
3 kWh (i.e., qit = 3). Then, βi(t−1) :=

7−3
6 (1−0), which is previous βi(t−1) :=

2
3 . The

case for valley-filling is analogous.
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Finally, the resulting discount, or penalty, is computed according to the three de-
scribed achievement sections.

γi(t−1) :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

pi(t−1) : βi(t−1) ≥ 1

pi(t−1)βi(t−1)− pi(t−1)

(
1−βi(t−1)

)
: 0> βi(t−1) > 1

−pi(t−1) : βi(t−1) ≤ 0

(3.20)

This middle point penalty scheme might seem a bit arbitrary, but there are real-
world DR programmes that offer similar regions of reward. For instance, one that is
of particular interest is the demand bidding programme (DBP) by Southern California
Edison (SCE), in which participant customers bid load reduction over the Internet for
hours between noon and 8 p.m., Monday to Fridays (excluding holidays) (Patterson et
al., 2014). SCE offers credits of 50 cents per reduced kWh to large customers provided
that the actual reduction is between 50% and 200% of their bid amount (Patterson et
al., 2014). Although there are no penalties in SCE’s DBP, their programme share some
similarities with the middle point penalty scheme. Table 3.3 shows a comparison over
several attributes. Given the setting described in this thesis, the middle point penalty
scheme provides a reasonable baseline, and is comparable to a DR programme that has
been implemented by a company.
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Attribute SCE’s DBP Middle Point PS

Customer
types

Industrial, business. Domestic (residential).

DR
direction

Peak-shaving. Peak-shaving and
valley-filling.

DR time
periods

12:00h - 20:00h (8 time
periods of one hour each),
from Monday to Friday
(excluding holidays).

All days, 48 half-hourly time
periods each day.

Intended
load

10-day average of the same
hour in similar days (excluding
holidays and days with DR

events).

Reported by end-user agent.

Verification Interval meter readings. Interval meter readings.
Clearing
price

Posted price, 50 cents per
reduced kWh, uniform price

for participants.

Critical payments,
discriminatory pricing.

Linear discount granted w.r.t.
achieved DR; linear penalty
charged w.r.t. non-achieved

DR. Bounded price agreement.
Discount
awarding
range

Inside 50% and 200% of bid
amount.

Greater than 50% delivery of
DR offer.

Penalty
range

None. Lower than 50% delivery of
DR offer.

Table 3.3: Southern California Edison’s demand bidding programme.
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3.3.5.2 Minimum Proportion Agreement with Slope-Based Penalty

This penalty scheme is similar to the middle point, however the penalty threshold is
not in the middle. The penalty threshold is given as a parameter δ ∈ [0.5,1) that is a
percentage of the quantity offered ∀i ∈ St−1. For instance, a penalty threshold of 0.8
means that the discount for the proportional achievement regarding the offer will be
neutralised at 80%of the quantity offered. That is, the size of the discount will decrease
in the range

[
pi(t−1),0

]
in a slope-based fashion according to linear proportions within

(1,δ] (e.g., (1,0.8]) of the offered quantity. If the achieved quantity falls below δ, then
the potential discount becomes a penalty, which (negatively) increases in the range
(
0,−pi(t−1)

]
according to the slope of the linear proportion within (δ,0] (e.g., (0.8,0])

of the offered quantity. Figure 3.6 shows a graphical intuition of the regions of this
penalty scheme.

Figure 3.6: Graphical intuition of the slope-based penalty scheme.

The computation of this penalty scheme is as follows. Let St−1 ⊆ A⋆
t−1 be the end-

user agents who had an ask allocated at t − 1. Let βi(t−1) ∈ R be the achievement
ratio of agent i’s offer after verification, which is computed by Equation 3.19. For this
penalty scheme, the achievement ratio βi(t−1) is partitioned into four sections in order
to determine the amount of discount or penalty ∀i ∈ St−1. Using the achievement ratio
βi(t−1) computed by Equation 3.19, the resulting discount (or penalty) from these four
sections are computed as follows.
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γi(t−1) :=

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

pi(t−1) : βi(t−1) ≥ 1
pi(t−1)βi(t−1)

1−δ : δ ≤ βi(t−1) < 1

− pi(t−1)βi(t−1)

δ : 0≤ βi(t−1) < δ

−pi(t−1) : βi(t−1) < 0

(3.21)

In the first case, when ratio βi(t−1) ∈R≥1, agent i supplied or exceeded the offered
quantity, thus it receives the agreed discount pi(t−1).

In the second case, where βi(t−1) ∈ {x ∈ R | δ ≤ x < 1}, the agent receives a pro-
portional discount that decreases linearly as it approaches to δ, where it becomes
zero. The computation of this case, i.e., pi(t−1)βi(t−1)

1−δ , comes from the resulting slope
multiplied by the achieved quantity. That is, the discount slope is pi(t−1)−0

qi(t−1)−δqi(t−1)
,

i.e., pi(t−1)

qi(t−1)−δqi(t−1)
, where qi(t−1) ∈ R>0 is the quantity that agent i must supply to

get full discount, i.e., qi(t−1) := qu
i(t−1)yt−1 + qd

i(t−1) (1− yt−1). Let the actual DR
quantity supplied be represented by qa

i(t−1) ∈ R>0, which is computed as qa
i(t−1)

:=(
qit −qy

i(t−1)

)
yt−1+

(
qy

i(t−1)−qit

)
(1− yt−1). Therefore, in this case, the discount is

determined by qa
i(t−1)

pi(t−1)

qi(t−1)−δqi(t−1)
. By algebraic manipulation, the discount can be

expressed as
qa

i(t−1)pi(t−1)

qi(t−1)(1−δ) , and since βi(t−1) :=
qa

i(t−1)

qi(t−1)
, thus the expression in the second

section becomes pi(t−1)βi(t−1)

1−δ .

The third case is the penalty computation for the case where the achievement ratio
falls below the minimum threshold δ, i.e., βi(t−1) ∈ {x ∈ R | 0≤ x < δ}. Following the
same reasoning, the penalty is computed as actual quantity supplied multiplied by the
penalty slope. That is, qa

i(t−1)

0−(−pi(t−1))
δqi(t−1)−0 , that can be rewritten as

qa
i(t−1)pi(t−1)

δqi(t−1)
, and since

βi(t−1) :=
qa

i(t−1)

qi(t−1)
, the computation can be simplified to charging a penalty of pi(t−1)βi(t−1)

δ
(thus the minus sign in the Equation 3.21).

The fourth case charges full penalty (i.e., the previously agreed discount) because
the agent fails to deliver any amount in the chosen DR direction.

Finally, this penalty scheme becomes equivalent to the middle-point from the pre-
vious section when δ = 0.5.
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3.3.5.3 Minimum Proportion Agreement with EWMA-Based Penalty

Similar to the previous penalty schemes, if the achieved ratio βi(t−1) ∈ R≥1, a full
discount is awarded. Likewise, if the achieved ratio βi(t−1) ∈ R<0, a full penalty is
charged. However, the case in which βi(t−1) ∈ {x ∈ R | 0≤ x < 1} is dealt differently.
This scheme consists on having a fitness attribute for end-user agents, that is a paramet-
ric measure of how well each agent has complied with its offers in the past. This fitness
indicator is computed using an exponentially weighted moving average (EWMA).

Let φi ∈ (0,1] denote the fitness ∀i ∈ N, and φi := 1, ∀i ∈ N |t = 0 . That is, all end-
users have their fitness initialised to 1 before the beginning of the simulation horizon.
Let α be a parameter, which the retailer is allowed to tweak, that determines whether
more importance is placed on more recent achievements by end-user agents or on their
overall historical performance, so as to update their fitness. Figure 3.7 offers a graphical
intuition about the influence of parameter α over the fitness attribute. For instance,
when α < 0.5, more importance is placed on earlier performance, when α = 0.5 the
trade-off is indifferent, and when α > 0.5more weight is placed on recent performance.

Figure 3.7: Effect of parameter α on the EWMA-based fitness attribute w.r.t. offer

achievement.

A bounded fraction fi(t−1) ∈ [0,1] corresponds to end-user agent i’s DR achieve-
ment ratio at t −1, which is easily determined as follows.
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fi(t−1) :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1: βi(t−1) ≥ 1

βi(t−1) : 0> βi(t−1) > 1

0: βi(t−1) ≤ 0

(3.22)

At every t ∈ T , the EWMA-based fitness φi is updated for all the agents that had an
allocated offer at t −1, which are in the solution set St−1.

φi := α fi(t−1)+(1−α)φi ∀i ∈ St−1 (3.23)

The retailer can set a fitness threshold δ∈ (0,1), that the auctioneer can use to reject
valid offers A⋆

t from agents whose φi < δ.
Furthermore, fitness φi is gradually regenerated by sending valid offers, even if they

are not allocated by themechanism, i.e., ∀i∈A⋆
t , for which the agent’s fitness is updated

using the EWMA formula from Equation 3.23 with a fi(t−1) := 1 over set A⋆
t . This

emulates a tit-for-n-tats scheme, forgiving underachieving agents and allowing them
back to participate after some rounds, hopefully after they have improved the accuracy
of their offers. Finally, this penalty scheme is indirect; it does not charge money, but
it translates into opportunity losses for household agents if they do not commit to their
offers.

3.3.5.4 Penalty Scheme from Dash et al. (2007)

Dash et al. (2007) propose a penalty scheme for a VCG mechanism with verification
where suppliers have limited capacities that they are uncertain about. Their penalty
scheme involves computing the VCG payment twice, one with the offered quantity
and another one with the actual quantity while having all other offers fixed. Although
the problem is different in structure, their penalty scheme can easily be adapted to the
mechanism proposed here. Basically, the allocation problem is determined by the re-
ported quantities, but the VCG payments are computed with the actual quantity from
each agent keeping the other reported quantities fixed, plus a penalty δ to those who
over-reported. If an agent has overstated its capacity, its VCG payment after verifica-
tion along with penalty δ will become strictly smaller than if it had not over-reported.
This must be computed using the original allocation set S(t−1) with the verified offer



84 Chapter 3. A Single-Sided VCG-Based Mechanism for DDR

from agent i. In their case, Dash et al. (2007), the agents would not exceed their reports
and the VCG mechanism was feasible because a small number of agents was assumed,
thus the allocation and payments were solved optimally. For the mechanism presented
in this chapter, VCG payments coincide with critical payments and this penalty scheme
can be applied directly.

γi(t−1) := p
(

qa
i(t−1) | St−1, Lt−1

)
−δ(t−1)νi(t−1) (3.24)

Equation 3.24 integrates both the critical payment and penalty. The term
p
(

qa
i(t−1) | St−1, Lt−1

)
computes the critical payment with the verified achieved quant-

ity qa
i(t−1) over the original allocation set St−1and the runner-up asks that help determine

the critical value payment. Parameter δ(t−1) is a penalty that is set according to how
critical is to meet the supply and demand balance at t − 1, as well as to punish agents
for deviating from their reports. In the setting described in this thesis, δt can be set to
the corresponding balancing system price (or a factor of it). Lastly, boolean variable
νi(t−1) indicates if agent i misreported at t −1, i.e., νi(t−1) := 1 if qi(t−1) > qa

i(t−1), and
νi(t−1) := 0 otherwise.

3.3.5.5 Random Inspection Penalty Scheme

There is a possibility that end-user agents could learn the distribution of their retailer’s
balancing shortage and surplus, only from interacting with the mechanism. For in-
stance, if an end-user agent knows that it is very likely that the retailer will choose
peak-shaving on weekdays from 17:00h to 21:00h, given past interactions with the auc-
tioneer, then it could make their intended net-load qy

it appear higher, so that it could
pretend to reduce it and claim a larger offer if it gets allocated. Therefore, a random
inspection scheme is proposed to counteract this form of cheating.

The scheme works as follows. After collecting asks but before the allocation,
the auctioneer samples asks uniformly from the valid offers set A⋆

t with probability
ξ without replacement, and moves each sampled ask to set It , in order to check their
intended net-load prediction qy

it . The offers in set It are prevented from allocation (i.e.,
A⋆

t := A⋆
t \ It), but agents are notified so they can follow their intended net-load. Let

g : ⟨R,R⟩ !→ R be a forecast error function, where g
(

qy
i(t−1),qit

)
estimates the predic-

tion error between the reported intended net-load and its realisation. Let λI ∈R≥0 be a
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fixed penalty for end-user agents providing bad predictions. Furthermore, let δ ∈ R≥0

be the error tolerance for predictions. Then, this penalty is computed as follows.

γi(t−1) :=

⎧
⎨

⎩
−λI

ξ : g
(

qy
i(t−1),qit

)
> δ

0: otherwise
(3.25)

When threshold δ is exceeded, the auctioneer charges the agent a fixed penalty
times the inverse of the inspection probability ξ. For example, suppose δ := 1 kWh,
ξ := 20%, agent i’s prediction error is g

(
qy

i(t−1),qit

)
:= 1.2 kWh, and fixed penalty

λI := 6 pence. Then, the resulting penalty γi(t−1) :=− 6
0.20 , i.e., the agent is charged 30

pence due to its bad prediction error. Nonetheless, when the EWMA-based penalty is
used with the idea of not explicitly charging monetary penalties to end-users, if agent
i is inspected and surpasses the threshold error, then its fitness attribute will be set to
zero, i.e., φi := 0. Hence, end-user agents are better off not lying, as well as they have
incentives to improve their forecast methods.

3.3.6 Theoretical Properties

Proposition 3.9. The proposed single-sided VCG-based mechanism, with any one of
the penalty schemes proposed as verification combined with the inspection scheme, is
DSIC.

A mechanism is DSIC, also known as truthful or strategy-proof, if it is a (weakly)
dominant strategy for agents to reveal their types (i.e., preferences) honestly, regardless
of what other agents report. In the DR setting, this means that end-user agents reveal
their flexibility offers truthfully.

Proof. Part 1: take the end-users’ offer format
〈
qt−1

[
,qy

t ,
(
qd

t ,λdk
t
)
,
(
qu

t ,λuk
t
)]〉

,
which is a multi-dimensional type. However, as the mechanism relies on the auctioneer
procuring only one DR direction depending on the retailer’s expected imbalance, this
type is reduced to a single-dimensional domain. Suppose the retailer’s trading posi-
tion is in shortage, thus the auctioneer will procure net-load peak-shaving to cover this
deficit. For this case, end-users’ type becomes

〈
qt−1

[
,qy

t ,
(
qd

t ,λdk
t
)]〉

(i.e.,
(
qu

t ,λuk
t
)

are ignored for net-load peak-shaving). The meter reading qt−1 is only included for
verification purposes and cannot influence the allocation. Argument qy

t is dealt with in
Part 2 of this proof; in this part it can be assumed that this argument cannot influence
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the allocation. Therefore, the auctioneer will only consider the pair
(
qd

t ,λdk
t
)
, that is

itself a single-dimensional type.

Solving the allocation optimally for the presented setting involves solving an integ-
ral knapsack problem, which is NP-complete (assuming P ̸= NP) and intractable for a
moderate number of DR offers. The integrality constraint in DR offers comes from the
chosen computational model, justified in Section 3.2, that considers the allocation of
domestic DR offers as discrete (since most of the current domestic appliances cannot
be controlled to draw different levels of power than they are intended to for the task
they will perform). Therefore, an approximate solution for the allocation problem is
necessary for this model, so that the result of the allocation is determined in a small
amount of time. However, payments that incentivise truth-telling as those of VCG can-
not generally be used in auctions with approximate allocation functions, with the aim
of achieving a DSIC implementation (Nisan and Ronen, 2007, Lemma 2.1). The only
proven solution for this case is the use of Myerson’s critical payments, that guarantee
DSIC in this setting (Roughgarden, 2016, Theorem 3.7).

Myerson (1981, Lemma 3) states that, for single-parameter domains (i.e., agents
with single-dimensional types), an allocation function is implementable (i.e., there is a
payment rule that makes direct-revelation mechanisms DSIC) if and only if:

a) the allocation rule is monotone (cf. Definition 3.6);

b) the payment rule is the critical value (i.e., the minimum bid or maximum offer
they could have reported and still have won the allocation) for the agents in the alloca-
tion solution set, and zero for all the others.

Dantzig’s 0/1-KP GA procedure that is used to solve the allocation problem yields
monotone allocations, as it has been proved in Proposition 3.7. Furthermore, the pay-
ment procedure in Subsection 3.3.4 uses Myerson’s critical payments. Incidentally, the
critical payment rule for single-parameter domains replicates Vickrey’s second-price
auction payment rule (Roughgarden, 2016, Ch3), which is itself a VCG mechanism,
and thus renders a DSIC mechanism.

Part 2: assume, continuing with Part 1, that an agent over-reports qd
t and is alloc-

ated; then, when its meter is verified the agent will receive a penalty for not delivering
completely, as it was overstated. Similarly, assume that the agent under-reports qd

t ;
since the cost-to-unit ratio λdk

t is computed as λd
t

qd
t
(where the numerator is the total

offering cost of the net-load peak-shaving tasks from the house scheduler), reducing
qd

t will make this cost ratio higher, and the offer could result in not being allocated.
Although an allocated under-reported quantity will not face a penalty of the ones de-
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scribed Subsection 3.3.5, extra DR achievements are not rewarded, so the agent faces
an opportunity cost. Therefore, under-reporting qd

t is not profitable.

However, if the agent over-reports its prediction qy
t , it will make qd

t looks larger.
Similarly, if the agent under-reports its prediction qy

t , it will make qd
t looks smaller. Sup-

pose the agent learns the distribution of the DR direction of its retailer’s expected imbal-
ance, which is very likely, as there are only two DR directions; then, it can exploit the
mechanism by reporting qy

t untruthfully, i.e., overstating when it predicts net-load peak-
shaving and understating otherwise so as to pretend that the offered DR is larger. There-
fore, to avoid this kind of manipulation, the simple inspection scheme described in Sub-
section 3.3.5.5 is used, where a fixed fine multiplied by the inverse of the inspection
probability is charged, so that the agent cannot consistently win in expectation through
misreporting. Therefore, agents are weakly better off reporting their type truthfully,
θ̂it = θit , i.e.,

〈
qt−1

[
, q̂y

t ,
(

q̂d
t , λ̂dk

t

)
,
(

q̂u
t , λ̂uk

t

)]〉
=
〈
qt−1

[
,qy

t ,
(
qd

t ,λdk
t
)
,
(
qu

t ,λuk
t
)]〉

.

Both parts of the proof are analogous for the case of net-load valley-filling.

Proposition 3.10. The proposed mechanism combined with the EWMA-based penalty
and EWMA-based inspection scheme is ex-post individually-rational (IR).

A mechanism is IR, or exhibits voluntary participation, if agents do not lose from
participating. Moreover, if the agents never derive a negative utility, it is said to be
ex-post IR.

Proof. First, the mechanism is normalised (cf. Section 3.3.1), and it implies that agents
receive zero utility from not participating or from non-allocated offers. This follows
from the definition of end-users’ operational flexibility (cf. Definition 3.4). That is,
flexibility is extracted from scheduled domestic tasks (load and generation) that are
set to run within a time frame; human end-users are assumed indifferent as long as
these tasks finish by their deadlines, and this is enforced as a hard constraint in the
proposed model. The agent that represents human end-users uses linear (cost) func-
tions as strategies for valuating offers in line with end-users preferences. Therefore,
human end-users and their agent carry no real costs for anticipation or postponement
of scheduled tasks.

Second, by definition of a (reverse) VCG-based mechanism, end-user agents are
never paid less than their reported offer. However, there is uncertainty as DR offers
rely on predictions, and the onus is on end-user agents to deal with it. The uncertainty
in the proposed model mainly comes from the intended net-load to be used, qy

t , whose
computation includes a forecast of the inflexible net-load excluding the schedule, and
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the tasks from the schedule that no longer have flexibility with regard to their deadline.
Reported DR quantities, qd

t or qu
t , depend on the intended net-load qy

t , and are verified
with the actual meter reading qt−1.

Third, suppose the auctioneer procures net-load peak-shaving, and end-user agent
i under-reports qd

it and its offer gets allocated. In the following time period, qd
it is com-

pared against qit−1, but since the agent under-reported, it actually delivered more than
its reported DR, and it gets paid the agreed discount. For this case, had agent i over-
reported qd

it , it would have failed to fully deliver it and would have been penalised
with the EWMA-based scheme. The actual delivered fraction fit is computed using
Equation 3.22 and yields a value such that fit ∈ [0,1]. Then the historical parameter
φi is weighted using Equation 3.23 in order to trade off past and current performance
and use it as an indicator of how well agent i sticks to its offers. If φi is less than a
minimum proportion threshold δ, then agent i is prevented from the allocation until it
reaches φi ≥ δ, which is gradually regenerated when agent i submits valid offers (cf.
Subsection 3.3.5.3). Therefore, agent i cannot derive a negative utility, although it
faces opportunity costs when is prevented from participating due to bad performance,
that serves as an incentive to report more accurately. The case for procuring net-load
valley-filling is analogous.

Fourth, independently from which DR direction is being procured, the EWMA-
based inspection scheme reviews, with some probability ξ, how accurate is agent i’s
prediction for the intended use, qy

it , when it is not selected for DR. If prediction error
g
(

qy
i(t−1),qit

)
is higher than δ, then agent i is penalised with φi := 0, which prevents

it from having offers allocated until it reaches φi ≥ δ. This translates to an opportunity
cost that, alongwith the normalisation property, makes it impossible for end-user agents
to derive a negative utility from participating in this configuration of mechanism.

Finally, since this is a VCG-based mechanism, the strongest notion of IR, i.e., ex-
post, requires the environment to exhibit choice-set monotonicity and no negative ex-
ternalities (Shoham and Leyton-Brown, 2008, Ch10). Choice-set monotonicity means
that when an agent is removed, the set of possible choices, that the mechanism can se-
lect from, weakly decreases (Shoham and Leyton-Brown, 2008, Ch10). This follows
from the fact that preventing an agent from participating never increases the list of
valid asks that the auctioneer can choose from, i.e., {A⋆

t \ i}⊆ A⋆
t ∀i. The environment

exhibits no negative externalities, if every agent i has a non-negative utility for any al-
location in which it does not participate (Shoham and Leyton-Brown, 2008, Ch10), i.e.,
∀i∀x ∈ X (A⋆

t \ i) , ui (x)≥ 0. This follows from the IPV and normalisation assumptions
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discussed in Subsection 3.3.1. IPV implies that agent i’s utility only depends on its own
information and ignores everything about the others. The normalisation assumption im-
plies that agent i’s utility is zero from not participating or not having an allocated offer.
That is, agent i cannot derive a negative utility from offers that are allocated to the oth-
ers or that are not allocated to itself. Therefore, as the environment exhibits choice-set
monotonicity and no negative externalities, and the mechanism does not make agents
derive negative utilities, this single-sided VCG-based mechanism with EWMA-based
penalty and EWMA-based inspection schemes is ex-post IR.

Remark 3.11. It is important to note that using any of the other proposed penalty
schemes (i.e., middle point, slope-based, and the one based on Dash et al. (2007)) and
the non-EWMAversion of the inspection schememay result in end-user agents deriving
negative utilities. Nonetheless, end-user agents should be able to derive a non-negative
utility in expectation (i.e., ex-ante IR), for instance by forecasting reasonably well (cf.
Chapter 6) and managing risks accordingly (e.g., under-reporting involves no monet-
ary losses for end-users). The proof for ex-ante IR of these mechanism configurations,
and a detailed study of the calibration of parameters such as thresholds (e.g., delivered
offer, prediction error), probability of inspection, and amount of penalties have been
left for future research.

Proposition 3.12. The mechanism is (strongly) budget-balanced.
A mechanism is (strongly) budget-balanced if the auctioneer never makes either a

profit or a loss. That is, the amount from the payments collected by the centre is equal
to the amount from payments made by it, at every time period.

Proof. Since the mechanism is single-sided, it is trivial to see that it is budget-balanced;
the auctioneer distributes the same amount of money it collects after verification, at
every time period. For VCG mechanisms, or in this case the VCG-based mechanism,
an additional property is required to satisfy budget-balancedness, the environment must
exhibit no single-agent effect (Shoham and Leyton-Brown, 2008, Ch10). The mechan-
ism environment exhibits this property when the welfare of agents other than i is weakly
increased by removing i (Shoham and Leyton-Brown, 2008, Ch10). That is, assuming
truthful reports, there exists a feasible allocation without i that results in other agents
apart from i increasing their utility. As a single-sided auction, removing an agent only
reduces the amount of competition for the other agents, and they are weakly better off
(Shoham and Leyton-Brown, 2008, Ch10). Since the environment of the mechanism
exhibits no single-agent effect and the auctioneer exactly distributes the same amount
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from the payments it collects, at every time period, the proposed one-sided VCG-based
mechanism, with any of the penalty schemes, is (strongly) budget-balanced.

Proposition 3.13. The mechanism is robust to uncertainties about the DR capacity of
agents.

As defined by Dash et al. (2007), a mechanism is robust to uncertainties regarding
the ability of participants to fulfil their offers, if it provides incentives for participants
to reduce the gap between their offer and their actual achievement.

Proof. All proposed penalty schemes in this chapter offer a proportional element re-
garding the achievement; the bigger the difference from the committed offer, the bigger
the penalty (i.e., lesser utility). That is, if an end-user agent knows that it will fail to
completely supply its allocated DR offer, it is in the best of its interests (at least in a
myopic sense) to try the make the gap as small as possible, as otherwise the penalty
will be higher and thus its utility lower. Therefore, the proposed mechanism, with any
of the penalty schemes designed for this setting, is robust to uncertainties regarding
end-users’ DR capacity.

Proposition 3.14. The mechanism is computationally efficient.
A mechanism is computationally efficient if both its allocation and payment proced-

ures, including penalties, are tractable, i.e., computable in polynomial time.

Proof. As described in Subsection 3.3.3, Dantzig 0/1-KP GA is O(n log n) due to the
sorting, where n = ∥A⋆

t ∥ (i.e., all collected valid asks). Moreover, the payment agree-
ment procedure, described in Subsection 3.3.4, uses the already sorted list from the
allocation procedure and takes O(n) to determine the discounts, where n = ∥St∥ (i.e.,
the size of the solution set). Similarly, the integration of any of the penalty schemes
from this chapter also takes O(n), where n = ∥St∥. Therefore, the mechanism is com-
putable in time polynomial O(n log n), where n = ∥A⋆

t ∥ and A⋆
t is the set of valid asks

collected at time period t.

Proposition 3.15. The mechanism allows for privacy-preserving.
In the described setting, a mechanism is privacy-preserving if the data regarding

asks cannot be disaggregated up to the tasks that are being scheduled at the agents’
premises.

Proof. The ask format, as described in Subsection 3.3.2, provides summarised amounts
of intended net-load qy

t , offered quantity for peak-shaving qd
t , and offered quantity for
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valley-filling qu
t . These quantities enclose a variety of operations that can be done in

the domestic setting. Domestic tasks and constraints from the schedule are private to
end-users and their agent. DR offers tell nothing about single operations at home; re-
sponse capacity is summed over all scheduled tasks that satisfy their technical and time
constraints. Moreover, sending offers to the auctioneer does not imply any information
of whether the household is empty or not, since automation by a HEMS is assumed at
the end-users’ end. Disaggregating what is enclosed in the offering quantities is not
trivial, and even harder if those individual quantities (at the household level) are pro-
tected by the ISO controlled auctioneer through regulation. The only information at
the household level that the auctioneer is expected to provide the retailer with is the ac-
tual net-load meter readings, which are needed for billing purposes. Under this model,
retailers are allowed to see aggregate quantities of DR offers, and price indicators (e.g.,
average DR prices, clearing price, etc) per time period, without exposing individual
agents, so that retailers can use these to make better predictions, tailor their wholesale
trading strategy accordingly (i.e., using DR recourse), and evaluate retail service con-
tracts. Therefore, using an independent auctioneer, whose protocol and information
exchange is certified by the ISO/DSO, limits the ability of retailers to exploit private
information, and thus manipulate the mechanism and clearing prices (i.e., discounts).
Considering the ask format and the independent auctioneer under the described com-
putational model, the proposed mechanism preserves privacy.

3.3.6.1 Additional Remarks

This mechanism is not economically efficient, i.e., Pareto efficient. Due to Myerson-
Satterthwaite impossibility theorem, it is known that no mechanism can simultaneously
be Pareto efficient, (weakly) budget-balanced, and (ex-interim) individually rational,
not even restricting the space of preferences to quasi-linear utility functions with
Bayes-Nash incentive-compatible (BNIC) implementation (which is a weaker solution
concept than DSIC) (Myerson and Satterthwaite, 1983). Economic efficiency has been
foregone in order to allow a computationally tractable DSIC implementation that is IR
and BB. Moreover, mechanisms that use reservation prices are generally not econom-
ically efficient, as the goods do not necessarily end in the hands of those who value
them the most (or the least cost in minimisation problems). In addition, some econom-
ical efficiency is also sacrificed due to the allocation constraint of only selecting asks
that are selectable from both sides of the DR offer, in order to limit dishonest reports.
Further economic efficiency is sacrificed due to the inspection procedure, as perfectly
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valid offers are set aside to test their prediction of intended net-load; nonetheless, this
is necessary to achieve a DSIC implementation in the described setting, as otherwise
agents could exploit the mechanism. Providing a bound for the efficiency loss in this
mechanism is still an open research question and has been left for future work.

The communication complexity is linear in the number of demand responders per
time period, i.e., O(n), where n = ∥N∥. Also, data types in meter readings and asks can
efficiently be represented using integers, which reduces the message size as compared
to float-point numbers.

The household’s net-load pick-up and drop-down power rate constraints are disreg-
arded for simplicity; however, the model could be extended so that the HEMS adapts
the domestic task scheduling in order to comply with these power rate constraints.

3.4 Summary

This chapter provided a computationally tractable single-sided VCG-based mechanism
with verification for domestic DR coordination, that is DSIC. The chapter also intro-
duced the design of a simple computational model for operational flexibility, which is
general enough to capture most of the domestic task scheduling regarding electrical ap-
pliances. Themodel enables end-user agents with heterogeneous technologies to reason
about their own operational flexibility so as to encode it into specific and verifiable of-
fers that the electricity retailer, by means of the mechanism, could take in exchange
for a discount. Several parameters regarding this domestic flexibility are carefully ab-
stracted into a compact representation in order to reduce the communication burden yet
maintain reasonable expressiveness. The mechanism induces coordination over a pool
of autonomous demand responders so that DR operations, such as peak-shaving and
valley-filling, can be implemented more effectively. The state-of-the-art toolset from
Algorithmic Mechanism Design (AMD) is used to conceive a market-based mechan-
ism with highly desired properties, such as DSIC, IR, BB, computational tractability,
robustness to uncertainty about end-users’ skill to fully deliver offers, and privacy-
preserving of end-users’ data in order to avoid further revenue extraction by their profit-
maximising retailer. In addition, three penalty schemes were designed for this domain,
and another one adapted from the literature, not only to counteract misreporting, but
also to provide incentives to autonomous end-users so they strive to fulfil their offers.
Moreover, an inspection procedure was designed and included in the mechanism, in or-
der to review end-user agents’ predictions of their intended net-load excluding DR. The
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proposed penalty schemes capture some desirable properties for the domestic DR set-
ting described in this thesis; however, this is not an exhaustive study of penalty schemes
for this setting, and further composition of procedures are left for future research. Fi-
nally, the proposed mechanism benefits retailers and end-users, because retailers get to
reduce their imbalance costs and end-users get discounts; however, (expensive, carbon-
intensive) balancing generators reduce their market share.

3.5 List of Symbols

Symbol Description
A Sorted list of items by cost-to-weight ratio for a knapsack problem.
ai Ask or offer submitted by agent i, in Definition 3.6 (Monotone Allocation

Rule).
At Subset of agents (i.e., At ⊆ N) that submitted an offer at time period t.
A⋆

t Subset of valid DR offers, after satisfying reservation prices and bounded
range for offers, at time period t.

α Weighting parameter of the EWMA-based penalty to trade off past and
present performance.

βi(t−1) Achievement ratio of agent i’s offer after verification.
ci Cost-per-unit of weight used in Definition 3.5 (Dantzig’s 0/1-KP GA).
ciτ Electricity bill for the period τ ⊆ T .
ck Cost or offering price of task k per time period.
Ct Subset with the tasks that no longer have flexibility in the household sched-

ule.
γit Discount or penalty computed by the mechanism for agent i at time period

t.
γ jt Ex-post amount of economic exchange of retailer j with allocated demand

responders.
dk Maximum time periods (or deadline) for task k.
Dt Subset with the tasks that have peak-shaving flexibility in the household

schedule.
δ Depending on the context, this parameter might refer to a minimum

achievement ratio of DR offers (or net-load prediction) after verification,
so that agents avoid penalties (cf. middle point penalty scheme, slope-
based penalty scheme, inspection scheme). It may also refer to the fixed
penalty used in the penalty scheme based in Dash et al. (2007).
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fit Achievement ratio of agent i’s DR offer after verification, truncated
between zero and one.

g(·) Forecast error function used to review agents’ skill to predict their intended
net-load use.

h(t|H) Forecast function for end-user’s inflexible net-load at period t, excluding
scheduled tasks, given a finite rolling history H.

H Time periods for rolling history.
η jt Ex-post economic exchange of retailer j with the balancing market at time

period t.
θit True private type of agent i at time period t.
θ̂it Reported type of agent i at time period t.
i Index variable for end-user agents (demand responders).
It Inspection set of sampled DR offers to be reviewed with regard to intended

net-load without DR.
j Index variable for retailers.
k Index variable for scheduled tasks. It is also used to index items in a knap-

sack problem (cf. Proof 3.7).
K Set of single-appliance tasks in the schedule. It is also used as the set of

items in a knapsack problem (cf. Proof 3.7).
Lt Runner-up or losing offers at time period t.
λB

t Ex-post system buy price at time period t.
λ̃B

t Forecast of the system buy price at time period t.
λ̃B∗

t Retailer’s reservation price for buying its deficit from DR at time period t.
λd

t Offering price for peak-shaving in pence/kWh at time period t (by agent
i).

λdk
t Price-to-quantity ratio of the amount of kWh offered for net-load peak-

shaving at at time period t (by agent i).
λI

t Fixed penalty for bad predictions in the intended net-load in DR offers.
λRB

j Fixed retail buy price (tariff) offered by retailer j (also denoted as λRB in
this chapter, as it deals with a single retailer).

λRS
j Fixed retail sell price (tariff) offered by retailer j (also denoted as λRS in

this chapter, as it deals with a single retailer).
λS

t Ex-post system sell price at time period t.
λ̃S

t Forecast of the system sell price at time period t.
λ̃S∗

t Retailer’s reservation price for selling its contracted surplus to end-users
through DR, as opposed to selling it back to the balancing market (imbal-
ance settlement).

λu
t Offering price for valley-filling in pence/kWh.
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λuk
t Price-to-quantity ratio of the amount of kWh offered for net-load valley-

filling at at time period t (agent i).
M Set of electricity retailers (assumed singleton in this chapter).
mit Meter reading of agent i at time period t.
md

t Estimated meter reading if peak-shaving would be implemented at time
period t (of agent i).

mu
t Estimated meter reading if valley-filling would be implemented at time

period t (of agent i).
my

t Meter reading prediction for time period t (of agent i).
N Set of all end-user agents (demand responders).
νi(t−1) Boolean variable that indicates if agent i misreported at t −1.
ξ Probability of inspection of intended net-load use.
pit Resulting payment to agent i at time period t, subject to full delivery.
qit Electric energy (kWh) used by end-user i at time period t.
Q jt Actual (ex-post) imbalance quantity of retailer j at time period t.
qk kWh that task k uses per time period.
qt−1 kWh used at time period t −1 (by agent i).
Q̃t DR quantity to be procured at time period t, which comes from retailer’s

prediction.
Q̃⋆

t Feasible DR quantity to be procured at time period t.
qa

i(t−1) Actual amount of DR kWh provided by agent i at time period t −1.
qc

t Net-load amount of kWh from tasks that must run according to schedule
(in the household of agent i).

qd
t Offered amount of kWh for net-load peak-shaving at time period t (agent

i).
qL

t Runner-up DR capacity at time period t , that is used for computing critical
payments.

qmax
t Largest amount from selected DR offers, that is used for computing critical

payments.
qRB

jt Amount of kWh that retailer j bought from end-users at time period t.
qRS

jt Amount of kWh that retailer j sold to end-users at time period t.
qu

t Offered amount of kWh for net-load valley-filling at time period t (agent
i).

qy
it Intended net-load use of agent i at time period t (which is a forecast).

rk Remaining time periods to complete task k in the household schedule.
ρ jt Amount of money from retail trading of retailer j at time period t.
S Solution set (items selected to place inside the knapsack).
sk Summed cost or offering price of task k at the current time period (from

the household schedule).
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St Subset of end-user agents that were selected by the mechanism at time
period t to perform DR operations.

t Index variable for time periods.
T Set of consecutive discrete time periods (e.g., hourly or half-hourly).
τ Subset of T that contains all time periods being billed.
u jt Utility of retailer j at time period t.
Ut Subset ofK, that contains tasks with valley-filling flexibility at time period

t (from the household schedule).
φi Fitness attribute of agent i, which is a measure of its past performance on

delivering DR offers.
vi Value, in value-per-unit of weight in Definition 3.5 (Dantzig’s 0/1-KP

GA).
W Size of the knapsack, in Proof 3.7.
w Minimum amount of kWh for DR offers to be considered by the mechan-

ism.
w Maximum amount of kWh for DR offers to be considered by the mechan-

ism.
wi Weight, in value-per-unit of weight in Definition 3.5 (Dantzig’s 0/1-KP

GA).
wk Weight of item k in a knapsack problem.
X Allocation function in Definition 3.6 (Monotone Allocation Rule).
x∗t Resulting vector from solving the allocation problem, which contains all

the agents who had their offer allocated.
yt Boolean parameter used to denote the DR direction to procure at time

period t; where yt = 0 indicates net-load peak-shaving and yt = 1 corres-
ponds to net-load valley-filling.

z∗it Resulting allocation of runner-up asks to compute payment of agent i at
time period t.

zk Linear cost function used to compute offering price of task k from the
household schedule.



Chapter 4

A Double-Sided McAfee-Based

Coordination Mechanism for

Multi-Retailer Domestic DR

This chapter extends the single-sidedmechanism proposed in the previous chapter in or-
der to include multi-retailer dynamics. This extension encompasses scenarios in which
retailers cover their imbalances not only with DR from their own customers, but also
with that from customers of other retailers. The main question addressed in this chapter
is how the ISO/DSO should integrate domestic DR into the zonal-based supply and de-
mand balancing (SDB) problem regardless of which retailer serves the demand respon-
ders. Integration of DR to SDB has broad implications for retailers, as end-users from
one retailer may respond to the imbalance of another retailer while causing a negative
externality to the former. Negative externalities in this context account for unintended
deviations by retailers as a result of DR for the zonal SDB. A double-sided market-
based mechanism has been designed to guide domestic DR efforts within a zone, where
multiple retailers operate, so as to avoid these negative externalities. Moreover, this
mechanism chains the single-sided auction proposed in Chapter 3, between a single re-
tailer and multiple end-users, with a double-sided auction for coordination at the multi-
retailer echelon. This integrated mechanism is dominant-strategy incentive-compatible
(DSIC) for both retailers and DR end-users.

The chapter is organised as follows. First, the balancing problem and its con-
text are introduced. Second, the computational model and the setting of the mech-
anism are defined. Third, the specification of the proposed double-sided mechanism
is provided, which includes a methodology for stepwise offering with DR integration,

97
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feasible trade determination, clearing prices computation, and redistribution of com-
pensations. Fourth, the theoretical properties of this mechanism are proved. Finally, a
summary and a list of symbols are provided. The empirical evaluation is reserved for
Chapter 5 because the experimental set-up for simulations is reused to comparatively
show all the mechanisms proposed in this thesis, along with some variations.

4.1 Introduction

Chapter 3 presented a mechanism that helps a single retailer to manage DR efforts
from its customers in order to minimise the imbalance with regard to the already traded
schedule in the wholesale market. However, the problem of SDB goes beyond the
interaction between one retailer and its subscribed demand responders. That is, the
ISO18 has to balance supply and demand regardless of the ability of retailers to keep
to their schedules, with or without DR. Moreover, retailers could offer DR to other
retailers. Nonetheless, it is clearly undesirable to penalise retailers that deviate from
their traded schedules because their end-users responded to help the zonal balancing,
and even unfairer when the imbalance has been caused by competitors. Furthermore,
there may be imbalances across retailers that can be cancelled out without the need for
DR procurement, in which case the trade of imbalances could be more economical for
retailers, i.e., they provide less discounts to responders. Therefore, under this setting,
some sort of cooperation is highly desirable.

In Operational Research (OR), or more precisely in Supply Chain Management
(SCM), this type of problems are ameliorated by introducing horizontal integration or
a scheme of coopetition (i.e., cooperation amongst competitors). That is, competitors
from the same echelon (e.g., car dealers) form explicit cooperation alliances in which
they agree the terms on transferring inventory when one falls in stock-out. These terms,
where one party owns the sale and another party owns the stock, determine who pays
for logistic costs and how the profit is shared between the parties. These strategic
interactions are not trivial and are usually modelled through cooperative newsvendor
games (Montrucchio et al., 2012), that include solution concepts from Cooperative
Game Theory (CGT), particularly the core to split the payoff.

However, within the electric power systems (and economics) community this type

18Depending on how the electricity supply system is organised, this entity could be the Independent
System Operator (ISO), the Distribution System Operator, or an independent party from retailers that is
reponsible for balancing generation and load.
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of problem is usually modelled through non-cooperative games (i.e., competition) by
use of sophisticated auctions, such as adjustment and balancing markets (Stoft, 2002;
Morales et al., 2014). The work in this chapter proposes a mechanism amongst com-
peting retailers, which indirectly induces cooperation about DR through market-based
coordination. That is, although retailers compete, it is in their interest to not only trade
their imbalances, but also offer DR to the other retailers within the zone. In general,
it would be more expensive for retailers to isolatedly trigger their DR pool to cover
their own imbalance, than to financially trade their differences (i.e., buy deficit and sell
surplus) amongst themselves and only trigger DR to correct the zonal imbalance. Of
course, these procedures would have to be performed prior to the physical balancing
market (i.e., imbalance settlement). For example, suppose that there are two retailers
A and B. Retailer A expects a surplus of 1 MWh, while retailer B expects a deficit of
0.5 MWh, during the same time period. If they separately procured DR, the discounts
would correspond to 1.5 MWh of DR flexibility, whereas if they traded first between
themselves, the discounts would correspond to 0.5 MWh of DR flexibility, although
excluding other effects on retail sales due to DR.

The work in this chapter provides a methodology and a mechanism for integrating
DR offers into stepwise energy blocks that retailers can trade amongst themselves. The
stepwise offers are formed by the ISO-controlled auctioneers, and the mechanism is run
by an ISO-controlled market operator (MO) with the objective to minimise the supply
and demand imbalance within its zone.

4.2 Computational Model

The computational models for end-user agents and retailer’s auctioneer agents are the
same as those of Chapter 3, and so are the general assumptions, such as the use of
smart meters, a suitable regulatory framework that enables DR, and more dynamic
interactions between end-users and retailers. However, the setting for this mechanism
includes two levels of interaction instead of one. The first echelon is between end-users
and their retailer’s auctioneer. The second one is between retailers’ auctioneers and the
zonal market operator (MO). Figure 4.1 shows this two-level interaction protocol in this
mechanism. The shaded area is controlled by the ISO to prevent retailers and end-users
from dishonest exploitation.
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Figure 4.1: Setting of the proposed double-sided mechanism.

As previously defined in Section 3.2, end-user agents i ∈ Nj submit at most
one ask θit per time period t ∈ T to their retailer’s ISO-controlled auctioneer agent,
henceforth (retailer’s) auctioneer j ∈ M. The ask format is the same as the one
described in Subsection 3.3.2, which is embedded in the meter reading and form-
alised as a tuple

〈
mt−1

[
,my

t ,
(
md

t ,λd
t
)
,(mu

t ,λu
t )
]
?
〉
!→ ⟨Z [,Z,(Z,R>0) ,(Z,R>0)]?⟩.

For convenience of computation, the simplified ask format is preferred and will
be used in this chapter. That is, the reading format is expressed as

〈
qt−1

[
,qy

t ,(
qd

t ,λdk
t
)
,
(
qu

t ,λuk
t
)]〉

!→ ⟨R [,R,(R≥0,R>0) ,(R≥0,R>0)]⟩, where each q corresponds
to the respective change in meter readings and λs are the costs per kWh, i.e.,〈

mt−1−mt−2

[
,my

t −mt−1,
(

my
t −md

t ,
λd

t
my

t −md
t

)
,
(

mu
t −my

t ,
λu

t
mu

t −my
t

)]〉
, as previously

described in Subsection 3.3.2. In addition, every time period t, auctioneer j receives
from its retailer’s information system a tuple

〈
λ̃S∗

t , λ̃B∗
t , Q̃t

〉
!→ ⟨R>0,R>0,R⟩, where

λ̃S∗
t and λ̃B∗

t are the reservation prices per unit of energy, i.e., minimum price to sell and
maximum price to buy, (e.g., £/kWh, £/MWh), and Q̃t is the expected deviation from
the retailer’s trading schedule in energy units (e.g., kWh, MWh). Reservation prices
are assumed to be a function of the forecast of the system’s sell and buy prices, but the
retailer is free to choose a different policy19. When Q̃t < 0 the retailer expects a deficit

19For instance, in Chapter 5, these prices are set to the marginal gain of procuring DR w.r.t. the
forecast of balancing prices, including the impact on retail sales. That is, λ̃S∗

t := λRS − λ̃S
t and λ̃B∗

t :=

λ̃B
t −λRS, expressed in terms of the retail sell price λRS, because it has been assumed that λRS > λRB and

a setting in which λ̃B
t > λRS most of the time (i.e., buying electricity from the physical balancing market

is more expensive than retail selling prices, otherwise retailers would not lose by procuring last minute
electricity).
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with regard to its schedule, when Q̃t > 0 it expects a surplus, and Q̃t = 0 means that it
expects no imbalance. Furthermore, the auctioneer uses the collected DR asks At and
tuple

〈
λ̃S∗

t , λ̃B∗
t , Q̃t

〉
to construct the stepwise offers that are sent to the zonal market

operator (MO) for SDB.

Electrical energy and DR are seamlessly treated as one single homogenous com-
modity, i.e., electricity. Retailers are modelled as virtual generators with respect their
traded schedules. In other words, when retailer j procures peak-shaving DR from its
customers, it is actually increasing its collective net output; similarly, when it procures
valley-filling DR, it decreases its net output. Without loss of generality, it has been as-
sumed that retailers own neither DG nor shiftable loads, thus the increase or decrease
in their energy output with respect to their schedules is performed only by the effects
of domestic DR from their own customers20.

4.3 Multi-Retailer DA Mechanism for Domestic DR

A double auction (DA) is a process of matching buyers and sellers that come to trade
amongst themselves in a two-sided marketplace. An auctioneer collects purchasing
bids and selling asks, determines feasible trade, and the price(s) that clear the market.
This auctioneer will be referred as a (zonal) market operator (MO) to avoid confusion
with retailers’ auctioneers fromChapter 3. In this particular problem of SDBwithmulti-
retailer DR, retailers simultaneously submit bids and asks, although later they become
either a buyer or a seller for a particular time period t. That is, electricity retailers can
offer to either increase or decrease their expected (virtual) output with respect to their
trading schedule by allocating DR services amongst their customers.

In this section, a methodology is proposed for integrating domestic DR into
stepwise-offering energy blocks. Moreover, the allocation problem is first formalised
as a linear programme (LP) and its uniform clearing price is determined by the dual vari-
able of the balancing constraint. Furthermore, a multi-unit McAfee-based DSIC DA is
specified for the same problem, including an allocation procedure, clearing price(s)
computation, and discount distribution to end-users according to their DR achieve-
ments. Also, this mechanism is modelled using the tools of Algorithmic Mechanism
Design (AMD) from Computer Science (CS), as in Chapter 3.

20For the case in which retailers do own strategic DG or shiftable loads, it is possible to model them
as if they were owned by an abstract (dummy) customer.
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4.3.1 Stepwise Offering Methodology

There could be hundreds of thousands of domestic DR offers, whose size is generally
small (i.e., a few kWh), within a geographical zone during a single time period. It seems
more convenient to aggregate these DR offers into blocks of more meaningful numbers,
so that retailers can offer them to the zonal MO. This aggregation into blocks reduces
the communication burden towards a single point (i.e., at theMO’s), and it allows faster
computation for a DA at the centre. Therefore, each retailer’s auctioneer performs the
following steps in order to aggregate DR offers into arbitrary-sized21 blocks, ∀t ∈ T .

1. Auctioneer j ∈ M collects its retailer’s values
〈

λ̃S∗
jt , λ̃B∗

jt , Q̃ jt

〉
, and DR offers A jt

from the retailer’s customers i ∈ Nj.

2. Let S jt := /0 and B jt := /0 be two empty sets for sell and buy offering DR blocks,
respectively. Also, let block x ∈

{
S jt ∪B jt | S jt ∩B jt = /0

}
be denoted by a pair

⟨wx,λx⟩, where wx is the sum of flexibility provided by the end-users’ asks that
fit into block x, and λx is the unit price at which block x cleared. Moreover, let
w∗ be a fixed parameter to denote the minimum cut size in kWh of DR blocks.
This parameter must be set by the MO, because the block size has a direct impact
in the clearing price of each block (as prices are set by Vickrey-based second
prices). Then, S jt and B jt are populated by auctioneer j as follows.

(a) Set S jt corresponds to net-load peak-shaving blocks formed by the follow-
ing procedure:

i. DR offers whose peak-shaving quantity qd
it does not satisfy a pre-

agreed range [w,w] are rejected, as discussed in Chapter 3. That is,
the subset of valid asks A⋆

jt :=
{

θit ∈ A jt | qd
it ∈ [w,w]

}
; retailer j’s re-

servation prices are not considered in this step, because the blocks will
be offered to other retailers too.

ii. Asks in A⋆
jt are sorted by increasing cost-per-unit of kWh for peak-

shaving, i.e., λdk
it .

iii. The sorted list is cut into segments with peak-shaving capacity of at
least w∗, and each of these list segments will be used to define a block
k ∈ S jt . That is, asks are greedily selected from the sorted list and
appended to a new list LS

k , of current block k, which is used to keep
21The minimum size of these offers are determined by the MO, and only the last DR block of each

retailer is allowed to be fractional.
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track of which DR offers correspond to each block. This procedure is
repeated until it achieves the end of the sorted list of asks.

iv. Each block k is defined as k :=
〈

∑x∈LS
k
qd

x , λ̃S∗
jt +λdk

(k+1)[0]

〉
, where

λdk
(k+1)[0] is the cost-to-quantity ratio of the first ask that did not fit into

LS
k , which belongs to block LS

k+1. Price λdk
(k+1)[0] is therefore a (single-

bid k+1) Vickrey-based price.

v. Each block k is added to the set of sell DR offers, i.e., S jt := S jt ∪ k.
The last block may be allowed to be fractional, for which the last ask
of the sorted list would set its price, and thus this last ask would be
excluded from the mechanism. In other words, this procedure cuts the
sorted list of asks into net-load peak-shaving blocks of ideally w∗ kWh
(MWh), whose cost-to-quantity ratio is that of the first losing ask from
each block.

(b) Set B jt corresponds to net-load valley-filling blocks formed by a procedure
analogous to that of S jt :

i. DR offers whose valley-filling quantity qu
it does not satisfy a pre-agreed

range [w,w] are rejected, as discussed in Chapter 3. That is, the subset
of valid asks A⋆

jt :=
{

θit ∈ A jt | qu
it ∈ [w,w]

}
; retailer j’s reservation

prices are not considered in this step, because the blocks will be offered
to other retailers too.

ii. Asks in A⋆
jt are sorted by increasing cost-per-unit of kWh for valley-

filling, i.e., λuk
it .

iii. The sorted list is cut into segments with valley-filling capacity of at
least w∗, and each of these list segments will be used to define a block
ℓ ∈ B jt . That is, asks are greedily selected from the sorted list and
appended to a new list LB

ℓ , of current block ℓ, which is used to keep
track of which DR offers correspond to each block. This procedure is
repeated until it achieves the end of the sorted list of asks.

iv. Each block ℓ is defined as ℓ :=
〈

∑x∈LB
ℓ

qu
x , λ̃B∗

jt −λuk
(ℓ+1)[0]

〉
, where

λuk
(ℓ+1)[0] is the (single-bid k+1) Vickrey-based price.

v. Each block ℓ is added to the set of buy DR offers only if λ̃B∗
jt −

λuk
(ℓ+1)[0] > 0, i.e., B jt := B jt ∪ ℓ. Negative prices are not allowed. The

last block may be allowed to be fractional, for which the last ask of the
sorted list would set its price, and thus this last ask would be excluded
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from the mechanism. In other words, this procedure cuts the sorted list
of asks into net-load valley-filling blocks of ideally w∗ kWh (MWh),
whose cost-to-quantity ratio is that of the first losing ask from each
block.

This procedure assumes that end-user agents can only submit a single ask per time
period, and that the chained mechanism only deals with a single time period at a time.
Since there are no temporal interdependencies amongst these asks within the mechan-
ism, this stepwise offering procedure does not have the problem of demand reduction
that is common to multi-unit auctions. The problem of demand reduction allows differ-
ent valuations per unit, where bidders have an incentive to differentially shade their bids
so as to influence the (k+1) clearing price (Ausubel et al., 2014). Therefore, this proced-
ure for pricing DR block offers incentivise end-users to report truthfully. Moreover, the
mechanism includes verification on quantities (by reading end-users’ meters). Hence,
the mechanism for constructing block offers is DSIC. Figure 4.2 shows an exemplary
representation of these stepwise offers that integrate DR costs and retailer j’s valuation
for buying and selling electricity at time period t, i.e., λ̃B∗

jt and λ̃S∗
jt , including the expec-

ted imbalance Q̃ jt .

Figure 4.2: Stepwise energy offers with DR integration.

The lists LS
k ∀k ∈ S jt and LB

ℓ ∀ℓ ∈ B jt are used to trigger and keep track of indi-
vidual DR asks according to the allocated blocks by the DA. Trading of fractional
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blocks is allowed, but the domestic DR asks must be integral, because of the mod-
elling assumptions discussed in Chapter 3. Then, the retailer’s auctioneer j, notifies
end-users i ∈ Nj whether they had their ask allocated, according to the blocks allocated
by the DA mechanism and using lists LS

k and LB
ℓ to identify the allocated DR offers.

Furthermore, end-users’ achievements can be verified and a penalty scheme imposed
to punish misreporting, as described in Subsection 3.3.5.

Finally, the parameter w∗, regarding the minimum cut to construct blocks from a
sorted list of valid asks A⋆

jt , must be set by theMO as otherwise the retailer could reduce
these blocks up to single asks that will result in a Generalised Second Price (GSP)-style
pricing, in which the discounts could be much smaller for end-users, and the communic-
ation and computation burden could be heavier for the MO. Conversely, if w∗ is very
big, it could be the case that it is only possible to construct a single fractional block
with an expensive unit price (as it is determined by the last ask in the merit order) that
might not be possible to allocate it in the zonal DA.

4.3.2 DR Allocation Problem

An average discrete-time periodic double auction (DA), such as a call market or clearing
house, receives selling asks and purchasing bids, then sorts the asks by per-unit cost in
ascending order and sorts the bids by per-unit value in descending order, after that, it
determines the feasible trade (i.e., matches bids to asks without exceeding reservation
prices), settles the trading prices, and clears the market. Without loss of generality, it
has been assumed that only electricity retailers (through their ISO proxy auctioneers)
participate in this DA. They may trade their differences from their schedule and DR
in order to reduce the zonal imbalance. As a result of this allocation, retailers’ trading
schedules are updated.

At the beginning of time period t, theMO receives
〈

λ̃S∗
jt , λ̃B∗

jt , Q̃ jt ,S jt ,B jt

〉
, ∀ j ∈M,

and computes the zonal imbalance as ∑ j∈M Q̃ jt . If ∑ j∈M Q̃ jt = 0, which is rarely the
case, the DA ends without allocation. If ∑ j∈M Q̃ jt > 0, there is surplus in the zone, and
the MO will look for purchasing blocks. Conversely, if ∑ j∈M Q̃ jt < 0, the zone is in
deficit and the MO will focus on selling blocks so as to correct the imbalance. The
expected imbalance Q̃ jt is also treated as an offer with its respective reservation price.
However, the imbalance offer Q̃ jt is treated separately from the blocks in S jt and B jt in
order to facilitate its distinction.

Reservation prices λ̃S∗
jt and λ̃B∗

jt provide retailers with the ability to express how
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willingly they are to balance their schedule with other retailers and with DR offers, as
compared to paying for the imbalance settlement in the actual physical market. This
balancing auction is a zonal-based financial market that mainly helps to guide the local
DR efforts. The physical market is not optional and the imbalance settlements are the
result of the required ex-post correction; these settlements are assumed to be expensive
(which include penalties and opportunity costs to retailers due to balancing generation).

For the sake of computational tractability, it is assumed that the MO computes the
(zonal) imbalance and only searches in the direction to correct it, as shown in Figure 4.3.
It is unlikely that a better solution can be found by searching on the direction that
makes the imbalance worse. For instance, if the zone is in deficit, it is unlikely that
a better minimum would be found by making retailers that are already in deficit to
keep going into more deficit by increasing the load of their customers, since this would
also generate more cost due to DR. Besides, searching in both directions makes this
problem NP-hard22, and the benefit is potentially null due to the structure of this DR
problem. Another important reason is the format used to express DR flexibility (i.e.,
end-user asks), in which at most one direction is to be allocated, either increase or
decrease electricity use. As a result of this format, end-users’ asks might be present
in (collective) offers in both sides, i.e., in S jt and B jt , and thus, it would violate the
allocation rule for end-users’ asks if it happened to be allocated in both DR directions
(i.e., peak-shaving and valley-filling).

In the following subsection, an LP formulation is provided because it makes it math-
ematically convenient to think about the allocation problem and price clearing compu-
tation. However, this LP formulation does not yield a DSIC mechanism, and thus a
McAfee-based mechanism that is DSIC is proposed afterwards.

4.3.2.1 LP-Based Mechanism

Morales et al. (2014, Ch4) provide several examples of simple mathematical formu-
lations for balancing auctions with dispatchable and non-dispatchable generators and
(non-domestic) proactive demand, including stepwise offers and network constraints.
Building on these mathematical formulations by Morales et al. (2014, Ch4), the alloca-
tion problem, which is similar to an economic dispatch, for SDB with multiple retailers
and domestic DR, including reservation prices, is formalised as follows.

22Contribution of blocks to the minimisation objective would need to be evaluated combinatorially
as in a Mixed-Integer Linear Programme (MILP). Furthermore, if marginal pricing is used, it would not
be as easy as computing the dual variable from the balancing constraint, which is possible for Linear
Programmes (LP), but for MILPs duals it is still an open question.
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Figure 4.3: Allocation cases for stepwise DR offers w.r.t. zonal imbalance. The

shaded area shows the direction to correct the imbalance.

When the zonal system is in deficit, i.e., ∑ j∈M Q̃ jt < 0, the MO searches for
sell offers, that may include DR costs, in order to correct the deficit. Let Bt be the
DA’s buy-side, where Bt :=

{〈∣∣Q̃ jt
∣∣ , λ̃B∗

jt , j
〉
| Q̃ jt < 0, ∀ j ∈ M

}
, which is the pur-

chasing bids of retailers in deficit with their respective maximum buying per-unit
prices. Let St be the DA’s sell-side, where St :=

{〈
Q̃ jt , λ̃S∗

jt , j
〉
| Q̃ jt > 0, ∀ j ∈ M

}
∪

{〈
QS

k ,λ
S
k , j

〉
| k ∈ S jt , ∀ j ∈ M

}
, which not only includes the imbalance sell offers, but

also contains the integrated DR energy offers for sale, both with their respective min-
imum per-unit prices.

Moreover, let λ̃B∗
t be the minimum per-unit price from the set Bt so as to denote

the reservation price of the buy-side. Then, the MO needs to compute the maximum
amount of feasible trade possible between the DA’s sides, St and Bt . The maximum
feasible trade QF

t is formulated as an LP below. In addition, in order to make the LP
formulation more readable, let

〈
QS

k ,λ
S
k , jS

k
〉
, ∀k ∈ St be the quantity, unit price, retailer

of sell offer, and let
〈
QB
ℓ ,λB

ℓ , jB
ℓ

〉
, ∀ℓ ∈ Bt denote the quantity, unit price, and retailer

of buy bid.
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QF
t :=Maximise

QF
k ,

∑
k∈St

QF
k (4.1)

subject to:

∑
k∈St

QF
k ≤ ∑

ℓ∈Bt

QB
ℓ (4.2)

0≤ QF
k ≤ QS

k , ∀k ∈ St (4.3)

0≤ λS
k ≤ λ̃B∗

t , ∀k ∈ St (4.4)

The mathematical programme 4.1-4.4 maximises the amount that can be gathered
from the sell-side, ∑k∈St QF

k , so as to fulfil the total amount on the (imbalance) buy-side,

∑ℓ∈Bt QB
ℓ , within block amount and reservation price constraints.

After the feasible trade QF
t has been computed, the allocation QA

k , ∀k ∈ St and
uniform clearing price λP can be computed as follows.

Minimise
QA

k ,
∑

k∈St

λS
kQA

k (4.5)

subject to:

∑
k∈St

QA
k = QF

t : λP (4.6)

0≤ QA
k ≤ QS

k , ∀k ∈ St (4.7)

0≤ λS
k ≤ λ̃B∗

t , ∀k ∈ St (4.8)

The LP 4.5-4.8 finds the least expensive allocation of sell offers that is equal to the
feasible trade amount. The clearing price λP is the dual variable from the balancing
constraint 4.6 and is equal to the price of the last allocated offer. Moreover, for con-
venience, these two LPs 4.1-4.4 and 4.5-4.8 can be joined into a single one by using an
auxiliary variable (in this case QF

k ) as shown next.
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Minimise
QA

k ,Q
F
k

∑
k∈St

λS
k

(
QA

k −QF
k

)
(4.9)

subject to:

∑
k∈St

QA
k −QF

k = 0: λP (4.10)

∑
k∈St

QF
k ≤ ∑

ℓ∈Bt

QB
ℓ (4.11)

0≤ QA
k ≤ QS

k , ∀k ∈ St (4.12)

0≤ QF
k ≤ QS

k , ∀k ∈ St (4.13)

0< λS
k ≤ λ̃B∗

t , ∀k ∈ St (4.14)

The allocation vectorQA
k is the amount allocated per offer from the sell-side, ∀k ∈ St .

The auxiliary vector QF
k corresponds to the feasible amounts that can be allocated from

St up to demand constraint 4.11, and bounded by the block sizes as in constraint 4.13.
Constraint 4.10 limits the allocation to be equal to themaximum feasible trade (as by the
minimisation of the auxiliary vector −QF

k ), and the dual variable λP of this constraint
is the cost of the marginal block from St , i.e., the last sell-block that is part of the
feasible trade while aiming to fulfil demand ∑ℓ∈Bt QB

ℓ . Constraints 4.12-4.13 bound
the allocated and auxiliary block sizes. Finally, constraint 4.14 limits the unit price
from sell blocks to be at most the maximum buying unit price (which is actually the
minimum unit price from set Bt).

The LP above solves the allocation to the sell-side and uniform clearing price. The
allocation to the buy-side is trivially determined by taking the amount ∑k∈St QA

k and
greedily allocate it to a sorted list of set Bt by non-increasing order until this amount is
depleted. Then, the MO communicates the individual allocation results to each retailer,
∀ j ∈

{
jS
k , ∀k ∈ St

}
∪
{

jB
ℓ , ∀ℓ ∈ Bt

}
.

Analogously, when the zonal system is in surplus, i.e,. ∑ j∈M Q̃ jt > 0, the MO
searches only for buy offers, that may include DR costs. In such a case, the buy-side
and sell-side are defined as follows. Set St :=

{〈
Q̃ jt , λ̃S∗

jt , j
〉
| Q̃ jt > 0, ∀ j ∈ M

}
, and

set Bt :=
{〈∣∣Q̃ jt

∣∣ , λ̃B∗
jt , j

〉
| Q̃ jt < 0, ∀ j ∈ M

}
∪
{〈

QB
ℓ ,λB

ℓ , j
〉
| ℓ ∈ B jt , ∀ j ∈ M

}
. Let

λ̃S∗
t be the maximum per-unit price from the set St so as to denote the reservation price
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of the sell-side. The analogous LP formulation is as follows.

Minimise
QA
ℓ ,Q

F
ℓ

∑
ℓ∈Bt

λB
ℓ

(
QA
ℓ −QF

ℓ

)
(4.15)

subject to:

∑
ℓ∈Bt

QA
ℓ −QF

ℓ = 0: λP (4.16)

∑
ℓ∈Bt

QF
ℓ ≤ ∑

k∈St
QS

k (4.17)

0≤ QA
ℓ ≤ QB

ℓ , ∀ℓ ∈ Bt (4.18)

0≤ QF
ℓ ≤ QB

ℓ , ∀ℓ ∈ Bt (4.19)

λB
ℓ ≥ λ̃S∗

t > 0, ∀ℓ ∈ Bt (4.20)

The explanation of LP 4.15-4.20 is analogous to previous LP 4.9-4.14.

LP-based allocations can be solved efficiently by using algorithms such the simplex
method (Dantzig, 1963, Ch5), the ellipsoid method (Khachiyan, 1980), and interior-
point methods, such as Karmarkar’s algorithm (Karmarkar, 1984). Provided that the
search is on one side of the market, this problem can also be efficiently solved by a
greedy algorithm that sorts the offers (DR blocks) by per-unit value (or cost) and alloc-
ate them sequentially until the imbalance is corrected as much as possible (similar to
the single-sided mechanism proposed in Chapter 3). The allocation implies downward
communication to advise retailers, and these propagate the message to their responding
end-users. It is also important to note that these mathematical programmes are formu-
lated under the retailers’ point of view, and it is opposite to the view of end-users. For
instance, when an end-user offer is allocated to increase the net-load, it means that the
retailer will be exporting less energy w.r.t its trading schedule.

This LP-based mechanism, although convenient, is not DSIC. Since the clearing
price is set by the marginal offer, retailers have an incentive to lie about their real prices
if they consider it might help them to influence the marginal offer and get more profit.
This also applies to mechanisms that trade the Walrasian quantity (which is the one
determined by the feasible trade above), in the competitive equilibrium, at the uniform
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price determined by the interval λP :=
[
max

{
λS

k ,λ
B
ℓ+1

}
, min

{
λS

k+1,λ
B
ℓ

}]
(Loertscher

and Mezzetti, 2014; Zimmerman, 2010). This level of manipulation could reduce the
mechanism’s economic efficiency and its predicted stable equilibria. In order to re-
store the DSIC property, the winning offers must not set the clearing price, such as in
Vickrey’s second price auction. An alternative approach that uses the pricing rule of
McAfee’s mechanism is described next.

4.3.2.2 McAfee-Based Mechanism

Designing a DSIC DA is a challenging task (Dütting et al., 2014). Preston McAfee
designed an influential single-unit DA that is DSIC for both buyers and sellers, and
sometimes has to give up the least profitable trade in order tomaintain truthful reporting
as a weakly dominant strategy (McAfee, 1992). Due to the Myerson-Satterthwaite’s
impossibility theorem (Myerson and Satterthwaite, 1983), it is known that a mechanism
cannot simultaneously be strategy-proof, individually rational (IR), budget balanced
(BB), and Pareto efficient, so the designer has to trade off these properties in line with
the mechanism’s objectives. Therefore, McAfee’s approach gives away a small amount
of economic efficiency 1/n, where n := min{|M| , |N|}, M is the set of sellers, and N

is the set of buyers) in order to have a mechanism that is DSIC, IR, and requires no
subsidies (i.e., BB).

There is no currently agreed extension of McAfee’s single-unit DA to a multi-unit
setting that allows multiple offers per participant. The main problem expressed by
McAfee (1992) in the multi-unit (multi-offer) setting is that agents have an incentive to
shade their bids so as to try to influence the clearing price, which causes the problem of
demand reduction (Ausubel et al., 2014). That is, a bidder has the incentive to include
an extra offer with a small quantity (e.g., one unit) and a small price with the possibility
of lowering the price for the regular quantity demanded. The case for the seller is ana-
logous. Nonetheless, Loertscher and Mezzetti (2014)23 have been working on a DSIC
multi-unit auction which is an extension of McAfee’s DA, but their procedure reduces
to a regular McAfee’s DA in this particular problem for DR. More precisely, they use
McAfee’s pricing rules to determine reservation prices for each side of the market, and
then run VCG mechanisms (forward and reverse, with reservation prices) on each side.
Their procedure finds the last feasible trading price first with McAfee’s approach, then
the trading quantity is determined, and finally VCG mechanisms are performed over

23This reference corresponds to a working paper retrieved from:
http://www.simonloertscher.net/data/downloads/12120/LM-DoubAuc270616.pdf.



112 Chapter 4. A Double-Sided McAfee-Based Mechanism for DDR

that trading quantity, which is the minimum of both sides. While the VCG mechanism
on the short side of the market is equivalent to charging the reservation price of that
side (as in the original McAfee’s mechanism), the VCG mechanism on the long side
reduces to a multi-unit Vickrey auction, since there is one homogeneous commodity.
In the DA presented here, this multi-unit Vickrey auction on the long side is equivalent
to locating the Walrasian quantity first, and then performing McAfee’s pricing rules.
This happens because the procedure for constructing stepwise offers, described in Sub-
section 4.3.1, does not allow for bid shading, and thus, the approach of Loertscher and
Mezzetti (2014) is equivalent to a regular McAfee’s mechanism in this setting.

Huang et al. (2002) propose a multi-unit DSIC DA based on the trading reduction
rule, where the last trade is foregone because it is used to set the price for each side of
themarket. They considered as winners all the asks strictly lesser than the clearing price
on the sell-side and all the bids strictly greater than the clearing price on the buy-side.
Then, to determine the allocation, they redistribute the quantity in the long side (either a
surplus or a deficit) equally amongst all of its winners. This is incompatible with the DR
allocation setting described here, because this trade surplus (or deficit) redistribution
will violate the allocation of DR asks in the echelon between a retailer and its end-users,
unless the retailer’s auctioneer monotonically reallocate the DR quantities again. That
is, this redistribution of the excess (deficit) could allocate a share to more than one
fractional integrated DR offer blocks by the same retailer, resulting in end-users asks
not being chosen monotonically.

This mechanism amongst retailers is inherently linked to the mechanism between
each retailer and its end-users. Babaioff and Nisan (2004) have designed protocols for
sequences of market-based mechanisms along a single supply chain. Their approach
works in settings with vertical integration, as opposed to the horizontal integration set-
ting amongst retailers, that is being considered in this chapter. Nonetheless, their ap-
proach is relevant because they linearly chain several DAs that are DSIC, although in
this case a version of the single-sided mechanism from Chapter 3 is chained to a DA.
Furthermore, McAfee’s mechanism resulted incompatible for their problem, but they
proposed a variant of it that implements a trade reduction mechanism with some prob-
ability p ∈ [0,1] and the VCG mechanism with probability 1− p. Moreover, Babaioff
and Walsh (2005) extended this model into more general classes of supply chain topo-
logies, not only linear, where bundles are considered. Another line of research is that
of spatially distributed markets (SDM), where there is a cost associated with moving
goods between locations (Babaioff, Nisan, and Pavlov, 2009), including virtual analogs
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for financial markets. This idea is more applicable to horizontal integration, however,
their work extends on computational solutions over the probabilistic approach from
(Babaioff and Nisan, 2004; Babaioff and Walsh, 2005), which is not considered here
because of the BB property is ex ante, i.e., in expectation, and a stronger notion of BB
is desirable for an independent MO.

Furthermore, the proposed DRmechanism relies on the revelation principle (Nisan,
Roughgarden, et al., 2007, Ch9) for its direct implementation, and it is divided into three
stages that follow the same searching assumptions as the LP-based mechanism. First,
the MO estimates the zonal imbalance and prepares the blocks into their respective
side of the market. Second, the allocation of trade is performed so as to ameliorate the
balance. And third, clearing prices are computed and retailers advised of the results.
It has been assumed that retailers’ trading schedules are updated as a result of this
mechanism, and that retailers’ auctioneers will communicate end-users agents, so that
they implement their allocated DR offers.

1. Zonal imbalance estimation. This step is the same as in the LP-based mech-
anism in Subsection 4.3.2.1, with the exception that blocks of the side of the
imbalance are not discarded. These blocks are kept only to set the price on
that side of the market. In brief, when the zonal system is in deficit, i.e.,

∑ j∈M Q̃ jt < 0, the MO searches for sell offers. The buy-side is populated with
Bt :=

{〈∣∣Q̃ jt
∣∣ , λ̃B∗

jt , j
〉
| Q̃ jt < 0, ∀ j ∈ M

}
. The integrated DR energy blocks on

the buy-side are kept in an auxiliary set Dt :=
{〈

QB
ℓ ,λB

ℓ , j
〉
| ℓ ∈ B jt , ∀ j ∈ M

}
,

for price-setting purposes. And, the sell-side is formed by both imbal-
ances and DR energy blocks as St :=

{〈
Q̃ jt , λ̃S∗

jt , j
〉
| Q̃ jt > 0, ∀ j ∈ M

}
∪

{〈
QS

k ,λ
S
k , j

〉
| k ∈ S jt , ∀ j ∈ M

}
. This process is analogous when the zonal sys-

tem is in surplus, i.e., ∑ j∈M Q̃ jt > 0, in which the MO separates the sell-side im-
balances and DR blocks into sets St and Dt , and tries to match the former with the
joint set Bt of imbalances and DR blocks. The auxiliary set in this case is used to
set the price of the sell-side. Finally, if there is no imbalance, i.e., ∑ j∈M Q̃ jt = 0,
which is unlikely, the DA ends without any trade.

2. Allocation procedure.

(a) The MO sorts St by per-unit cost in non-decreasing order, and sorts Bt by
per-unit value in non-increasing order. Ties are broken randomly.

(b) The MO searches for the last feasible trade not only by prices, but also by
quantities. In other words, it locates the block k from the sell-side and the
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block ℓ from the buy-side that are marginal with regard to the allocation.
The MO solves ⟨k,ℓ⟩ :=

{
argmink,ℓ∑k∈St QS

k −∑ℓ∈Bt QB
ℓ ≥ 0, λS

k ≤ λB
ℓ

}
.

3. Clearing price computation. McAfee’s pricing rule (McAfee, 1992), adjusted
to this setting, is used to determine the clearing price(s) and corresponding alloc-
ation.

(a) Let λS
k and λB

ℓ be the prices of sell offer k and buy offer ℓ, respectively.
Moreover, let λS

k+1 and λB
ℓ+1 be the prices of the first offers that are not

allocated. These offers may be non-existent, in which case they are determ-
ined with the following rules.

i. If the zonal system is in deficit and offer k + 1 does not exist, then
k := k−1. Thus, the older k becomes the k+1.

ii. If the zonal system is in deficit and offer ℓ+1 does not exist, then first
offer that would be selected from the auxiliary set Dt , whose price is
less than λB

ℓ , is inspected, i.e., ℓ
′ :=

{
argmaxℓ′ λB

ℓ′∀ℓ
′ ∈ Dt , λB

ℓ′ ≤ λB
ℓ

}
.

Then, if ℓ′ exists, the offer ℓ+1 := ℓ′, otherwise ℓ := ℓ− 1 and ℓ+1

becomes the older ℓ.

iii. If the zonal system is in surplus and offer k +1 not exists, it is then
taken from the auxiliary set Dt . Thus, k′ :=

{
argmink′ λS

k′∀k′ ∈ Dt ,

λS
k′ ≥ λS

k
}
, analogous to the previous step, although looking for the

offer with the smallest price greater than λS
k . Then, if k′ exists, k+1 :=

k′, otherwise k := k−1 and k+1 becomes the older k.

iv. If the zonal system is in surplus and offer ℓ+1 does not exist, then
ℓ := ℓ−1. Thus, ℓ+1 becomes the older ℓ.

(b) As in (McAfee, 1992), let λP :=
λS

k+1+λB
ℓ+1

2 , and compute the clearing price
as in the following two cases.

i. If λP ∈
[
λS

k ,λ
B
ℓ

]
, then the min

{
∑k

s:=1QS
s , ∑ℓ

b:=1QB
b
}
is allocated greed-

ily at the uniform unit price of λP (cf. Figure 4.4).

ii. If λP /∈
[
λS

k ,λ
B
ℓ

]
, then the min

{
∑k−1

s:=1QS
s , ∑ℓ−1

b:=1QB
b

}
is allocated greed-

ily; allocated offers from the sell-side are paid λS
k and allocated offers

from the buy-side pay λB
ℓ per traded unit. In this case, the last feasible

trade is reduced or forbidden from trade as it set the prices for selling
and buying offers (cf. Figure 4.5).
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Figure 4.4: Case I of McAfee’s pricing rule.

Figure 4.5: Case II of McAfee’s pricing rule.



116 Chapter 4. A Double-Sided McAfee-Based Mechanism for DDR

4.3.3 Theoretical Properties

The proposedmechanism inherits the properties fromChapter 3, regarding retailers and
their end-users. Moreover, the methodology developed for constructing integrated DR
energy stepwise offers incentivises end-users to report their preferences truthfully, as
discussed in Subsection 4.3.1. Therefore, the following properties are only proved for
the multi-retailer McAfee-based DA.

Proposition 4.1. This mechanism is dominant strategy incentive compatible (DSIC).
Amechanism is incentive compatible or strategy-proof in a dominant strategy imple-

mentation if agents are (weakly) better off by revealing their truth types (preferences).

Proof. In order to prove that retailers cannot gain any profit by misreporting their types
in a one-shot seal-bid auction, it is sufficient to show that they cannot manipulate the
clearing price (Vickrey, 1961). Following McAfee’s pricing rule, if an offer sets the
price, it is prevented from trading (McAfee, 1992). For instance, if clearing price
λP :=

λS
k+1+λB

ℓ+1
2 is feasible for agents’ offers k and ℓ, i.e. λP ∈

[
λS

k ,λ
B
ℓ

]
, then agents

from offers k and ℓ did not set the price. The only way agents from offers k and ℓ can
manipulate the price is when λP /∈

[
λS

k ,λ
B
ℓ

]
, in which case they are removed from the

trade. Therefore, if an agent, that does not have an offer allocated for trade, reported
λ̂B

t > λB
t so as to have its offer allocated for trade, it would lose because it ends up

paying more than it values the good. The case of the selling offer is analogous, i.e.,
λ̂S

t < λS
t . Moreover, if an agent reports a price λ̂B

t | λP
t := λ̂B

t , that sets the clearing price
(for the others) at least from its side of the market, then it does not trade; such deviation
cannot be profitable for that agent. Furthermore, if an agent has its offer allocated and
reports λ̂B

t > λB
t , it does change the clearing price, so it does not have an incentive to

report more than it values the good. The reasoning is analogous for buyers and sellers.
Therefore, agents have no incentives to misreport their unit costs and unit valuations.
However, McAfee (1992) points out that his mechanism works only for the single-unit
case, because in multi-unit cases participants could try to game the mechanism by mis-
reporting one of their offers, i.e., price-quantity pairs so as to hit the clearing price. For
instance a buyer may include an additional bid of only one item at a lower price, with
the aim of trying to hit the clearing price down and reduce its whole procurement cost.
Similarly, a seller could add an ask of one item at a higher price and drive the clearing
price up. The proposed mechanism does not suffer from this problem because retailers
cannot manipulate their stepwise offering blocks. These blocks are created by the ISO-
controlled auctioneer, who follows the methodology described in Subsection 4.3.1, in



4.3. Multi-Retailer DA Mechanism for Domestic DR 117

which retailers are not allowed to set the price of DR blocks. These prices are com-
puted separately through a k+1 Vickrey-based price from end-users’ DR offers, where
the price-setting offer is excluded from the block; and later the stepwise offers are off-
set by the retailer’s reservation prices, so that DR offers are placed below real energy
imbalance offers in the DA. Moreover, the quantities expressed by retailers, as well as
the integrated DR offers, are verifiable and liable for trade if they result allocated, in
which case the trading schedules are updated, before the physical balancing market op-
erates. Hence, it is a weakly dominant strategy to report the quantities, their valuations
and costs truthfully.

Proposition 4.2. This mechanism is ex-post individually rational for retailers.
A mechanism is ex-post individually rational if agents never lose by participating

in the mechanism with regard to the values they report.

Proof. This follows immediately from the fact that in this DA retailers never pay more
than their buying offers and are never paid less than their selling offers. FromMcAfee’s
pricing rule there are two cases. In the first case, the clearing price is in between the
prices from the marginal trade, i.e., λP ∈

[
λS

k ,λ
B
ℓ

]
, thus λP ̸< λS

k and λP ̸> λB
ℓ . In the

second case, where the last feasible trade sets the prices but it is not allowed to trade, the
unit prices in the sell-side are ranked in non-increasing order, i.e., λS

1 ≤ . . . ≤ λS
k−1 ≤

λS
k , with ties randomly broken, thus the clearing price for the sell-side set by λS

k is
weakly greater than λS

k−1 and than all other allocated sell offers, i.e., λS
k ̸< λS

k′−1, ∀k′ ∈
[1, . . .k−1]. Similarly, the offers in the buy-side are ranked in non-increasing order,
i.e., λB

1 ≥ . . .≥ λB
ℓ−1 ≥ λB

ℓ , thus the clearing price λB
ℓ is weakly smaller than λB

ℓ−1, i.e.,
λB
ℓ ̸> λB

ℓ′−1, ∀ℓ
′ ∈ [1, . . .ℓ−1].

Proposition 4.3. This mechanism is weakly budget-balanced.
A mechanism is said to be strongly budget-balanced if the amount of payments

collected from buy offers (or buyers) is equals to the payments made to sell offers (or
sellers). A mechanism is weakly budget-balanced if this amount of payments collected
and made is never negative.

Proof. It follows immediately from McAfee’s pricing rule. The first case yields a
strongly balanced budget since the clearing unit price λP is uniform. Hence, the amount
traded is Qτ :=min

{
∑k

s:=1QS
s , ∑ℓ

b:=1QB
b
}
, and the MO charges λPQτ to buyers and dis-

tributes the same λPQτ to sellers. The second case, yields a weakly balanced budget
since, by definition, the last feasible trade between marginal offers k and ℓ, have prices
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λB
ℓ > λS

k (they are not equal, as otherwise it would be the first case). The amount traded
in both sides is Qτ :=min

{
∑k−1

s:=1QS
s , ∑ℓ−1

b:=1QB
b

}
, thus, the MO charges λB

ℓ Qτ to buyers
and pays λS

kQτ to sellers, and ends up with a non-negative profit.

Proposition 4.4. The allocation and payments settlement are computationally efficient.
A mechanism is computationally efficient if both its allocation and payment determ-

ination can be solved in polynomial time, i.e., computationally tractable.

Proof. It is easy to see that this mechanism can be cleared, both the allocation and
payment computation, using greedy algorithms. Determining the system imbalance
takes linear time in the number of retailers, since they send at most one offer for their
expected imbalance. Populating the sell-side and buy-side with their respective offers
take linear time in the number of offers; however, they are subsequently sorted, which
takes O(n log n) on each side, where n is the number of offers in its respective side.
Determining the marginal blocks k and ℓ can also be done in linear time, traversing
both sides while cumulatively computing quantities, and comparing quantity and price
feasibilities. Moreover, determining blocks k +1 and ℓ+1 may involve finding the
minimum or maximum unit price from the auxiliary set Dt , whose unit price is also
lower or higher than blocks k’s or ℓ’s unit price, respectively. This can also be done
in linear time. Finally, finding the clearing price takes few mathematical operations.
Hence, the time complexity is O(n log n), where n is the number of offers submitted to
the DA.

4.3.4 Additional Remarks

Economical efficiency has been sacrificed in order to maintain this mechanism DSIC,
IR and BB. This trade-off is necessary to maintain the other properties, as it is com-
monly known due to the Myerson-Satterthwaite impossibility theorem, previously dis-
cussed in Chapter 3 and in Subsection 4.3.2.2. However, the efficiency is still high,
since only the least profitable trade is foregone some of the time (only in the second
case of McAfee’s pricing rule).

Moreover, the communication complexity is O(m log n), where m is the number of
retailers and n is the number of end-users providing DR offers. Also, messages can be
encoded efficiently using data types with low cost of representation, such as integers,
to represent energy units and pence/cents.

Regarding the management of offers, the ontology between agents to understand
types (i.e., preferences) correctly is taken for granted. Also, it has been assumed that



4.4. Summary 119

the retailers’ auctioneer has proper data structures that map end-users to DR stepwise
offering blocks so that the allocation determined by the MO can be propagated down to
the level of end-users. The retailer (by means of its auctioneer) assesses its end-users’
DR achievements at the end of the time period (or beginning of the next one), according
to a previously agreed penalty scheme for all its end-users to determine their discount,
as discussed in Chapter 3.

This mechanism couples DR with a financial balancing market, which in overall
involves a chain of two market-based mechanisms: (1) a single-sided auction between
a retailer and its customers, and (2) a double-sided auction amongst retailers.

4.4 Summary

This chapter provides a multi-unit McAfee-based DA for zonal supply and demand
balancing with multi-retailer dynamics. This mechanism, amongst retailers, chains
the one-sided mechanism proposed in Chapter 3 with the aim of aligning domestic
DR efforts to the zonal balancing needs. Moreover, a methodology is developed for
expressing domestic DR offers into stepwise offering blocks that retailers can exchange
amongst themselves, through the proposed mechanism. Although not DSIC, an LP
formalisation of the allocation problem is provided for the case of a uniform-price DA
with the designed stepwise offers. Furthermore, the DSIC McAfee-based mechanism
is specified and its theoretical properties proved. Finally, the overall approach aligns
end-users and retailers’ interest with those of the ISO for balancing supply and demand,
and yields a chained mechanism that is DSIC, IR, BB and computationally tractable.

4.5 List of Symbols

Symbol Description
A jt Subset DR offers submitted to retailer’s auctioneer j at time period t.
A⋆

jt Subset of valid DR offers that auctioneer j will use to construct DR blocks
at time period t.

B jt Buy blocks; they integrate retailer j’s deficit joined with net-load valley-
filing DR blocks at time period t.

Bt Double auction’s buy-side at time period t.
Dt Auxiliary set that is used to keep the block in the side of the imbalance that,

although it is not allocated, it is used to set the clearing prices (McAfee’s
pricing rule).
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θit DR offer of agent i at time period t.
i Index variable for end-user agents.
j Index variable for retailers (or the auctioneer that represents them).
jB
ℓ Retailer index of buying block ℓ (net-load valley-filling).

jS
k Retailer index of selling block k (net-load peak-shaving).

k Index variable for selling blocks.
ℓ Index variable for buying blocks.
LB

k List that links DR offers θit to block ℓ ∈ B jt .
LS

k List that links DR offers θit to block k ∈ S jt .
λx Unit clearing price (price-to-quantity ratio) of block x.
λB
ℓ Price of buying block ℓ (net-load valley-filling).

λd
it Offering price for peak-shaving in pence/kWh at time period t (by agent

i).
λdk

t Price-to-quantity ratio of the amount of kWh offered for net-load peak-
shaving at at time period t (by agent i).

λdk
(k+1)[0] Price-to-quantity ratio of the first ask that did not fit into LS

k ; (single-bid
k+1) Vickrey-based price.

λS
k Price of selling block k (net-load peak-shaving).

λu
it Offering price for valley-filling in pence/kWh at time period t (by agent i).

λuk
t Price-to-quantity ratio of the amount of kWh offered for net-load valley-

filling at at time period t (agent i).
λuk
(ℓ+1)[0] Price-to-quantity ratio of the first ask that did not fit into LB

ℓ ; (single-bid
k+1) Vickrey-based price.

λP Uniform clearing price (at time period t).
λ̃B∗

t Retailer’s reservation price for buying its contracted deficit from DR, as
opposed to buying it from the balancing market (imbalance settlement).

λ̃S∗
t Retailer’s reservation price for selling its contracted surplus to end-users

through DR, as opposed to selling it back to the balancing market (imbal-
ance settlement).

M Set of retailers.
mt−1 Meter reading at time period t −1 (of agent i ).
md

t Estimated meter reading if peak-shaving would be implemented at time
period t (of agent i).

mu
t Estimated meter reading if valley-filling would be implemented at time

period t (of agent i).
my

t Meter reading prediction for time period t (of agent i).
Nj Set of all end-users subscribed to retailer j.
qt−1 kWh used at time period t −1 (by agent i).
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qd
t Offered amount of kWh for net-load peak-shaving at time period t (agent

i).
qu

t Offered amount of kWh for net-load valley-filling at time period t (agent
i).

qy
t Intended net-load use of agent i at time period t (which is a forecast).

QA
k Least expensive allocation of the feasible trade.

QB
ℓ Amount of buying block ℓ (net-load valley-filling).

QF
t Amount of feasible trade at time period t.

QS
k Amount of selling block k (net-load peak-shaving).

Qτ Traded amount (at time period t).
Q̃t DR quantity to be procured, which comes from retailer j’s prediction
S jt Sell blocks; they integrate retailer’s surplus joined with net-load peak-

shaving DR blocks.
St Double auction’s sell-side.
t Index variable for time periods.
T Set of consecutive discrete time periods (e.g., hourly or half-hourly).
w Minimum amount of kWh for DR offers to be considered by the mechan-

ism.
w Maximum amount of kWh for DR offers to be considered by the mechan-

ism.
wx Amount of kWh (or MW) of block x.
w∗ Fixed parameter to denote the minimum cut size in kWh of DR blocks.
x Temporary index variable for lists LS

k and LB
ℓ .





Chapter 5

Empirical Evaluation of Proposed

Mechanisms

This chapter evaluates the mechanisms described in Chapters 3 and 4 through simula-
tions that use realistic data from the UK. The theoretical properties of these mechan-
isms, from an AlgorithmicMechanismDesign (AMD) perspective, were proved within
their respective chapter. Nonetheless, the economic effects of these mechanisms for
end-users, retailers, and the zonal-based Independent SystemOperator (ISO) have been
reserved for the present chapter. The assessed effects are: the amount in the electricity
bill for end-users, the revenue and imbalance settlement for retailers, and the absolute
net imbalance volume (NIV) for the ISO. Moreover, these effects are in line with the
end-users and retailers’ desiderata introduced in Chapter 1, and ultimately with the ob-
jective of balancing supply and demand, or at least reducing the imbalance by means
of domestic demand response (DR), which is of interest to the ISO.

5.1 Experiment Design

The mechanisms proposed in Chapters 3 and 4 are implemented in a rather controlled
setting in order to test how well they perform regarding the economic outcomes for
end-users, retailers, and the ISO. The experiments consider only one geographical zone,
which is controlled by the ISO. The ISO not only is responsible for balancing electricity
demand with physical supply, but also runs the zonal market-based mechanism through
its market operator (MO) agent. Three retailers have been modelled within this zone,
and it has been assumed that they only operate in this zone. Each retailer serves a
fixed population of households, and they are all assumed to be demand responders. All
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retailers offer the same retail prices to all their subscribed households.
Each household has an electricity-use profile, which is separable into inflexible

net-load and operational flexibility. That is, the inflexible net-load is the amount of
electricity that end-users will not change, and the operational flexibility corresponds to
schedulable loads. The capacity of operational flexibility is simulated for each house-
hold, but it is controlled amongst mechanisms, so that the economic effects can be
compared against the same amount of electricity use for the whole simulation horizon.
Therefore, the resulting distributions of electricity bills from different mechanisms, for
the same retailer, correspond to each household using its same amount of kWh for each
mechanism. Different degrees of flexibility were simulated by controlling the quantity
of schedulable appliances per household, the electricity they consume, and frequency
of use. These degrees are fixed, but retailers have a different proportion of them within
the population they serve. This notion is akin to having households with different re-
sponding capacities due to their technological equipment.

For convenience, the modelled retailers procure DR greedily. That is, the amount
of DR procurement is myopically decided for the current time period without assessing
the impact on future time periods24. It has been assumed that retailer can perfectly
forecast their NIV and the imbalance prices for the current time period. Although
these assumptions are unrealistic, they facilitate the analysis regarding the effects of
the mechanisms, thus isolating these effects from other factors, such as retailers’ fore-
cast ability. However, end-user agents are simulated with two forecast methods, naive
and perfect, so that the effect of penalty schemes can be included in the assessment.
Similar to the controlled household profiles, each retailer’s NIV profile is fixed across
mechanisms and varies per simulation, while time-varying imbalance prices are fixed
for all simulations.

Time was modelled as a series of half-hourly time periods. The simulation ho-
rizon was arbitrarily selected, consisting of the months of January and July. In the
UK, January and July are often the coldest and warmest months of the year, and elec-
tricity use widely varies in between these months due to (electrical) heating demand.
Moreover, when solar PVs are considered, the net-load differs more evidently between
these months. Each mechanism was simulated ten times for each retailer, for all time
periods within each month, and for each end-user agents’ forecast ability, i.e., naive
and perfect. This results in each mechanism being simulated 31 days × 48 time peri-

24Further experimentation could be done to add look-ahead capabilities and different forecastingmeth-
ods for retailers in order to see how the effects change. However, for simplicity, the experiments in this
chapter do not consider this posibility.
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ods × 10 runs = 14,880 times, and its cumulative effects are assessed per month, per
retailer, and per distribution of end-users, so that these mechanisms can be compared
against each other, and especially contrasted to business-as-usual (BAU).

Before describing the independent and dependent variables regarding the experi-
ments, the next subsection describes how the end-users’ inflexible net-load profiles
were generated based on a dataset from a survey of domestic electricity use in the UK.
The characterisation of the three retailers, however, is made implicit in Subsection 5.1.2
within the collective of controlled variables.

5.1.1 End-Users’ Inflexible Net-Load Profiles

End-users’ net-load profiles in this study are formed by an inflexible net-load profile
and operational flexibility; the latter modelled by schedulable domestic tasks that use a
single appliance. The inflexible profiles are based on the Household Electricity Sur-
vey (HES) in England, UK. This project was funded by the Department of Envir-
onment, Food and Rural Affairs (DEFRA), the Department of Energy and Climate
Change (DECC), and the Energy Saving Trust. Detailed information about this survey
is found in (Zimmermann et al., 2012). The survey monitored the electricity use in
251 owner-occupier households in England, over the period May 2010 to July 2011.
Zimmermann et al. (2012) emphasise that the demographic profile is as representative
as possible of the owner-occupier population in England, and not the population of
England as a whole. The HES project involved recruiting households, surveying the
appliances, installing monitoring devices, collecting and processing these data. From
the sample of 251 households, 26 were monitored for a whole year, and the rest for
a single month over a span of one year. The readings, which include electric energy,
inside and outside temperatures, were taken every two or ten minutes depending on the
configuration of the monitoring equipment. The dataset is disaggregated per appliance,
provides a time stamp, measurement interval and, in most of the cases, there are val-
ues for inside and outside temperatures. Processing of these dataset regarding insights
on household electricity use and potential for demand-side management (DSM) can be
found in (Zimmermann et al., 2012; Terry and Palmer, 2013; Palmer et al., 2013).

For the current experiments, only the readings from the 26 households that were
monitored for a whole year were considered. This is because the experiment considers
two separate months, January and July, and the data cannot be easily extrapolated,
as the generated profiles in each month would be sourced from different households.
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Moreover, one of these profiles was discarded due to a wide range of missing data.
Nonetheless, several inconsistencies in the data were found and further research led to
a report by Cambridge Architectural Research (CAR) where these inconsistencies are
described and dealt with (Terry and Palmer, 2013). The remaining 25 profiles were
corrected based on this report, especially the off the scale readings. Some profiles had
small gaps with corrupted or missing data; the gaps of electric energy readings were
generated using time series based interpolation, and the missing outside temperature
readings were replaced by the outside temperature mean of the other households con-
taining these data.

Moreover, appliances that could provide operational flexibility (e.g., space and wa-
ter heaters, washing and drying machines) where removed from within these profiles,
so that schedulable appliances could be modelled separately. These resulting profiles
correspond to the 25 inflexible net-load profiles without electricity generation, from
which the experiments generate the household profiles. Operational flexibility of ap-
pliances is modelled using Poisson processes over a finite set of schedulable tasks, that
is described in Subsection 5.1.2.

Since the sample of households from the HES project excluded those with domestic
renewable energy sources, the resulting 25 inflexible net-load profiles were paired with
a fixed configuration of solar PV, so as to generate additional 25 profiles. The solar PV
output was modelled with PVLIB-Python (Holmgren et al., 2015). The PV installation
consisted of an arbitrary 4kW p configuration, which uses an approximate area of 26m2

covered with panels, whose efficiency was set to 13%. The PVLIB-Python package es-
timated the clear-sky solar irradiance to the longitude, latitude and elevation of London.
In addition, the effects of cloud shadows were modelled by a random factor ζ ∈ [0,1],
sampled from a Beta distribution ζ ∼ B (6.5,3.5), to compute the final PV output un-
der cloud cover dynamics. As a result of this procedure, there were 50 main inflexible
net-load profiles, which were comprised of 25 households without generation facilities,
and 25 with the described PV installation.

Figure 5.1 provides two exemplary inflexible profiles over an arbitrary timewindow
for each month in this study. For instance, Figure 5.1a shows a profile with no solar PV
over a cold month, whereas Figure 5.1b shows the same inflexible profile but paired
with the previous solar PV installation over a warm month.
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(a) Second half January.

(b) First half July.

Figure 5.1: Two exemplary inflexible net-load profiles.

Finally, the experiments uniformly sample households from these profiles, but they
are arbitrarily perturbed in order to add variation, i.e., similar profiles as the original,
but not exactly the same one. The perturbation used is a draw from a normal distribution
centred in each value with an arbitrary standard deviation of 40% of the original value,
i.e., y′t ∼ N (yt ,0.4yt).

For reproducibility purposes, a set of seeds has been used to generate pseudo-
random numbers in order to produce the same inflexible profile for each simulated
household across all mechanisms for each simulation.

5.1.2 Independent Variables

• Number of geographical zones: 1

• Number of retailers: 3 (indexed by 1:3).

• Number of households that each retailer serves: 1000, 1350, and 850, respect-
ively.
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• Retail prices: all retailers provide the same prices, 15 pence per kWh for selling
and 8 pence per kWh for buying.

• Inflexible net-load profiles for households: 50 different main profiles, which
are uniformly sampled and include random variation as described in Subsec-
tion 5.1.1.

• Degrees of operational flexibility, which include a finite number of load-using
devices and a frequency parameter for tasks arriving to the schedule, that use
one of these devices. Table 5.1 shows the parameters used for these degrees. The
operational flexibility is modelled as a Poisson process to simulate the arrival of
tasks to the household schedule (considering half-hourly time steps). Operational
flexibility of electrical generation devices was excluded from these experiments.
This is because the retailer sells at a higher price than it buys, therefore, rational
end-users are better off using their dispatchable generators if their operation is
cheaper than their retailer’s selling price. Moreover, solar PVs are modelled in
the inflexible profile, assuming no storage.

Degree # Flex. Load Devices λ (Poisson process) # Tasks
1 5 0.05 ∼ 2.4 per day
2 5 0.10 ∼ 4.6 per day
3 10 0.10 ∼ 4.6 per day
4 10 0.15 ∼ 7.5 per day

Table 5.1: Different degrees of DR flexibility.

• Each load-using device with operational flexibility is characterised by itsWh us-
age, number of required time periods, number of flexibility time periods, cost and
cost type, as described in Subsection 3.2.3. Wh usage per time period is drawn
from a uniform distribution,∼ U (500,1500). The number of required time peri-
ods is sampled from a discrete uniform distribution, ∼ U {1,8}. Similarly, the
flexible time periods is ∼ U {1,8}. Thus, the minimum required time periods
is the number of required time periods, and the maximum is the required time
periods plus the flexible time periods. The cost is a small random number 0.1x,
where x ∼ U (0,1). Finally, the cost type, or pricing strategy for DR asks, is
∼ U {1,3}, i.e., increasing, decreasing, or constant.
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• The following restriction on flexible task arrivals from the Poisson process is en-
forced. When a task arrives to the schedule, it links to a single schedulable device,
and this device cannot be scheduled by another task until the former exhausts its
maximum schedulable time steps (both required time periods and flexibility time
periods). This was imposed to ensure that the flexibility simulation always picks
the same appliances for each mechanism, otherwise BAU may sample different
devices as the other mechanisms, because it does not hold devices for a schedul-
ing time span. This was controlled in order to compare the dependent variables
more fairly.

• Proportion of degrees of flexibility for each retailer’s serving population are
sampled according to the probabilities in Table 5.2.

Retailer Pr(deg1) Pr(deg2) Pr(deg3) Pr(deg4)
1 0.3 0.2 0.3 0.2
2 0.1 0.3 0.4 0.2
3 0.1 0.2 0.3 0.4

Table 5.2: Proportion of degrees of DR flexibility per retailer’s

serving population.

• Simulation horizon, which is independently comprised of the months January
and July.

• Forecasting ability of end-user agents, which are naive and perfect predictions
for the inflexible net-load. The naive forecast uses the amount of t − 1 from
the inflexible profile to estimate that of time period t when constructing the DR
ask. The perfect forecast uses the exact amount from the inflexible profile of
time period t. The perfect forecast is used to compare the effect of forecasting
regarding DR asks, achievements and penalty schemes.

• The initial NIV of retailers was set to ∼ N (0,1)×
∣∣Nj

∣∣ , ∀ j ∈ M, ∀t ∈ T , where
M is the set of three retailers,

∣∣Nj
∣∣ is the size of the population that retailer j ∈ M

serves, and T is the set of time periods in the simulation horizon.

• The imbalance settlement prices per time period were based on ELEXON sys-
tem prices from year 2014 (Elexon, 2015; Elexon, 2014). Although these prices
are not from the same year as the electricity use profiles, for the current study, it
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can be safely assumed that electricity use profiles are similar to those of other
years due to their strong seasonality (and similar daily and weekly patterns).
Moreover, the ELEXON system prices were arbitrarily adjusted to reflect a scen-
ario in which balancing generation is less desirable than DR.

– The system sell price (SSP) was set to 1
2SSP. This assumes a low salvage

price for retailers’ excess, such that it is more preferable to allocate this
excess amongst demand responders, than to sell it back to the balancing
market.

– The system buy price (SBP) was set to 3SBP. This assumes a high price for
last-second electricity, such that it is more desirable to accommodate the
deficit amongst demand responders, than to buy balancing generation.

• The retailers’ valuation for a kWh of flexibility was set to the retailer’s marginal
value for an actual kWh of electricity, given retail and balancing prices.

• Mechanisms:

– BAU: Business-as-usual, when a task arrives to the schedule, it is always
set to run without delay.

– VCG_P1: the VCG-based mechanism specified in Section 3.3 paired with
the middle point penalty scheme from Subsection 3.3.5.1. The penalty
threshold is δ := 0.5, for all retailers.

– VCG_P2: the VCG-based mechanism specified in Section 3.3 coupled
with the slope-based penalty scheme described in Subsection 3.3.5.2. The
penalty threshold is δ := 0.8, for all retailers.

– VCG_P3: the VCG-based mechanism specified in Section 3.3 in tandem
with exponentially weighted moving average (EWMA) penalty scheme
from Subsection 3.3.5.3. The parameters are set to α := 0.25 and δ := 0.9,
for all retailers.

– VCG_PD: the VCG-based mechanism specified in Section 3.3 with the
penalty scheme from (Dash et al., 2007), which is adapted to the studied
setting in Subsection 3.3.5.4. The parameter δ := 0.2λR for all retailers,
where λR is the retailer’s reservation price.

– McAf_P3: the McAfee-based mechanism from Chapter 4, using a the
EWMA-based penalty from Subsection 3.3.5.3. The parameters are set to
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α := 0.25 and δ := 0.9, for all retailers.

5.1.3 Dependent Variables

• End-users’ monthly electricity bill (January and July), which includes the impor-
ted and exported amount of kWh, and DR discounts and penalties.

• Retailers’ revenue, which is only expressed by retail trade, DR trade, and im-
balance settlements. The retail trade includes the inbound and outbound cash
flow resulting from selling and buying electricity to households. The DR trade
includes discounts and penalties with relation to allocated DR asks. The imbal-
ance settlements regards to the amount that the retailer pays, or is paid by the
market, for correcting its NIV. Transactions from previous wholesale markets,
such as futures markets, pool markets, and balancing trade are excluded from
this revenue variable. The reason for this is because the study is only focused
on the effect of DR in retail trade and imbalance settlements for retailers, thus
wholesale trade can be treated as an independent variable, which is excluded in
this case.

• Retailers’ imbalance settlement, which accounts for opportunity costs and balan-
cing generation procurement. If a retailer’s NIV is positive, the retailer faces an
opportunity cost since it has to forego the electricity excess at a low price to the
balancing procedure. Similarly, if the NIV is negative, the retailer is charged an
expensive price for last moment procurement to cover the deficit.

• Retailers’ absolute NIV, which is similar to an error measure to denote the whole
amount of required intervention by balancing generators. The ISO, depending
on the electricity supply organisation, has to estimate and procure the balancing
generation capacity in advance, and reducing the zonal NIV would lead to less
need for balancing generation.

5.2 Simulation Results

The experiments were implemented in Python 2.7.11 andwere run on EddieMark 3, the
university’s cluster (University of Edinburgh, 2016), which has about 4,000 cores with
up to 2 TB of memory, and uses the Open Grid Scheduler batch system on Scientific
Linux 7.
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The resulting distribution of each dependent variable is hierarchically plotted by
month, retailer, mechanism, and end-users’ forecast skill. The box plots show the quart-
iles from each resulting distribution. The error plots, organised in the same order as
the box plots, show the mean and standard error of mean (SEM) with 95% confidence
intervals (CI). Finally, the hypotheses regarding the effect of these dependent variables
are formulated and tested for statistical significance, at 5% level, using paired samples
t-tests over the joint effect of the two simulated months, January and July.

5.2.1 End-Users’ Electricity Bill

5.2.1.1 Comparison of Mechanisms

Figure 5.2 shows the resulting distributions of the monthly electricity bill. The upper
half corresponds to January, while the lower half refers to July. The left half corres-
ponds to results that end-users achieve by using a naive forecast for the inflexible net-
load, whereas the right half shows these results under a perfect forecast. As previously
described in Subsection 5.1.2, retailer 1, 2, and 3 serve populations of 1000, 1350, and
850 households. In each quadrant, the results are grouped by retailer and each mech-
anism is indicated by a colour. The first distribution for each retailer, showed in blue,
corresponds to BAU. It can be seen from these plots that in all the experiments each
of the proposed mechanisms on average performed better than BAU, regarding the
monthly electricity bill. McAf_P3 yields a lower bill in most of the cases, except for
retailer 2 in January with end-users’ perfect forecasts. A potential explanation for the
good results of McAf_P3 is that end-users get to offer DR to more than one retailer,
so they have more opportunities to allocate their flexibility and get more discounts, as
opposed to the VCG-based mechanisms. In addition, McAf_P3 uses the EWMA-based
penalty scheme, which charges no money, but may prevent end-user agents from the
allocation if they repeatedly unfulfill DR offers. Therefore, using this penalty can only
yield a weakly lower electricity bill than BAU.

Moreover, the electricity bill is lower for end-users when they use a perfect forecast,
because they are never penalised. That is, better forecast methods yield fewer penalties
than a naive forecast, because end-users estimate DR offers that they are able to deliver
completely and implement allocations accordingly. This can be noticed by comparing
the alignment of their interquartile range (IQR), especially the medians on the left and
right sides of Figure 5.2. For instance VCG_P2, in red, is not exactly aligned to the
other VCG-based mechanisms, and results in a slightly higher electricity bill due to
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charging DR penalties. The penalty threshold for VCG_P2 is δ := 0.8, therefore offers
that are not supplied in at least 80% receive a penalty, and given the setting, naive
forecast methods are more likely to produce this outcome.

(a) January’s electricity bill with naive forecasts. (b) January’s electricity bill with perfect forecasts.

(c) July’s electricity bill with naive forecasts. (d) July’s electricity bill with perfect forecasts.

Figure 5.2: Comparative results for each mechanism regarding its effect on the elec-

tricity bill.

The effect of forecast skill over the electricity bill is small in these plots for several
reasons. First, the penalty parameters were not aggressive; if they were, the differences
between the left and right sides of the figure would become obvious. Second, the naive
forecast is not outrageously bad. Third, the frequency and size of allocated DR offers
under uncertainty per end-user, apart from the forecast accuracy, correlates with the
likelihood of getting penalties. Last, the length of the simulation horizon is relatively
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short, in which a couple of pounds of monthly penalties are hard to visualise, unless
they are presented in an additional plot. For instance, the effect of end-users’ forecast is
more evident in Figure 5.3, and it could be clearer if the two months were summarised
into a single plot, so as to show the cumulative effect.

The electricity bills resulting from these simulations are higher than today’s aver-
age domestic electricity bills in the UK, which according to Department of Energy &
Climate Change (2016) is about £50 a month. This discrepancy comes from the mod-
elling and simulation of operational flexibility, described in 5.1.2, that assumes the use
of some heavy loads, such as EV recharging, electricity space and water heating (as
opposed to gas-based heating). Moreover, the same parameters for operational flexib-
ility were used for January and July; this decision was made for convenience reasons.
Although this might not reflect what happens in the UK in July, it might be more rep-
resentative of countries like the USA, where cooling loads are in high demand during
the summer.

5.2.1.2 Confidence Intervals

Figure 5.3 is organised in the same manner as the box plots in Figure 5.2, and it shows
the distribution means and SEM at 95% CI. In these plots, the effects of end-users’
forecast skill on the electricity bill is more evident.
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(a) January’s electricity bill with naive forecasts. (b) January’s electricity bill with perfect forecasts.

(c) July’s electricity bill with naive forecasts. (d) July’s electricity bill with perfect forecasts.

Figure 5.3: End-users’ electricity bill, standard error of the mean at 95% confidence

interval.

5.2.1.3 Paired Samples T-Test

This test was computed for the cumulative electricity bill of January and July, and for
the whole population of households subscribed to the three retailers, over ten simula-
tions.

Hypothesis: Does any of the proposed mechanisms result in a lower electricity bill
for end-users than BAU?
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Let M be the set of mechanisms including forecast type, i.e., M := {BAU, . . . ,

McA f_P3_Per f ect_Fct}. Let M be the set of three retailers, and Nj the set of house-
holds served by retailer j ∈ M. Then, the difference in electricity bills for each house-
hold under a pair of mechanisms, m and m′, is denoted by dm,m′

i := ξm
i − ξm′

i ∀i ∈
Nj, ∀ j ∈ M, ∀m,m′ ∈ M, where ξm

i is the amount paid for electricity by household
i. Moreover, the size of the overall population of households is n := 32,000, i.e.,
10∑ j∈M

∣∣Nj
∣∣ = 10(1000+1350+850), where ten is the number of simulations. The

mean difference in electricity bills for all end-users between the mechanisms m and m′

is expressed by µm,m′

d := 1
n ∑dm,m′

i .

Null hypothesis: BAU yields a lower electricity bill than any of the proposed mech-
anisms, i.e., H0 : µm,m′

d ≤ 0 for m := BAU and m′ := {∀x | x ∈M, x ̸= m}. By how the
difference is expressed, dm,m′

i := ξm
i −ξm′

i , the first term ξm
i is the amount in the electri-

city bill under BAU, and the second term ξm′
i is that amount under another mechanism

inM, that is being compared to BAU. Therefore, a µm,m′

d ≤ 0means that in average the
electricity bill ξm′

i is higher than that of BAU.

Alternative hypothesis: Any of the proposedmechanisms yields a lower electricity
bill than BAU, i.e., HA : µm,m′

d > 0 for m := BAU and m′ := {∀x | x ∈M, x ̸= m}. A
positive µm,m′

d means savings on the electricity bill bymechanismm′, compared to BAU.
The paired samples t-test was applied to each pair of mechanisms, not only to com-

pare each proposed mechanism against BAU, but also to compare each of them against
the others. Therefore, similar hypotheses can be tested for different baselines than BAU.
The level of significance was set to 5%, i.e., α := 0.05. Table 5.3 shows the resulting
pairs of t-statistics and p-values. The first row of the table compares BAU against
the other mechanisms. By the t-statistic formula, t∗ := x̄d−µ0

sd/
√

n , where the sample mean
difference x̄d is tested to be significantly different from zero, i.e., µ0 := 0, a positive t-
statistic in this formulation means that the sample mean difference x̄d was positive, and
thus, there were savings in the electricity bill. Also, the p-value is very small (second
value of the pairs in parentheses), thus, there is enough evidence to reject the null hy-
pothesis. Since all the t-statistics in the first row are positive, it can be concluded that
each of the proposed mechanisms is better than BAU regarding end-users’ electricity
bills. Finally, the second to the last rows, in Table 5.3, show the t-test results for the
other pairs of mechanisms, so that further hypotheses can be tested.
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5.2.2 Retailers’ Revenue

The retailers’ revenue, as described in Subsection 5.1.3, was defined as the sum of in-
bound and outbound cash flows from retail trade, DR allocation, and imbalance settle-
ments. The presentation of results regarding this dependent variable follows the same
organisation as the previous subsection, thus some explanation is omitted to avoid re-
dundancy. Also, it is important to note that the forecast types correspond to the end-
users’ ability, not the retailer’s, since for the latter only perfect forecast has been as-
sumed. Although this is an unrealistic assumption, this decision was fixed in order to
simplify the assessment regarding the end-users’ participation as demand responders.

5.2.2.1 Comparison of Mechanisms

The y-axis for the set of plots in Figure 5.4 show negative values because of the amount
of NIV that was randomly generated, as explained in Subsection 5.1.2, as opposed to
real procurement planning. However, since the NIV is being controlled, the mechan-
isms can be relatively compared against each other.

The revenue is less negative for each of the mechanisms other than BAU. That is,
both the VCG-based mechanisms and the McAfee-based DA contribute to reducing
retailers’ balancing costs, through the allocation of DR offers. This cumulative effect
seems relatively small in these plots, mainly due to the short length of the simulation
horizon and the small size of the simulated populations. Longer horizons and larger
populations would only increase revenue on average w.r.t. BAU under the described
dynamics. Nonetheless, the retailers’ DR procurement is assumed to be myopic, as de-
scribed in Subsection 5.1.2, which may lead to suboptimal outcomes in some scenarios.

The McAfee-based mechanism, McAf_P3, performs consistently better than any
other of the studied mechanisms. This happens for two main reasons. First, retailers
save on DR discounts because they financially trade their differences first, through the
double auction (DA) guided by the ISO’s market operator (MO), and only trigger the
resulting DR needed in the zone. Second, the stepwise offeringmethodology, described
in Subsection 4.3.1, results in smaller discounts for end-users. This is because each
block offer is valued in a (k+1) second-price fashion w.r.t. the arbitrary size of the
block and the first DR offer that no longer fits in, which sets the price, as opposed to
pricing a single large block with the most expensive DR offer. This results in more
competitive prices for retailers, yet yields lower electricity bills for end-users, as the
latter get to participate in more allocations (i.e., DR prices that are lower than retailers’
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reservation prices, so they get allocated more often not only to their retailer, but also to
the other ones).

(a) January’s revenue and end-users’ naive fore-
casts.

(b) January’s revenue and end-users’ perfect fore-
casts.

(c) July’s revenue and end-users’ naive forecasts. (d) July’s revenue and end-users’ perfect forecasts.

Figure 5.4: Retailers’ revenue as a result of the proposed mechanisms.

Finally, the effect of end-users’ forecast accuracy is rather small to retailers’ rev-
enue in these experiments. One potential reason for this, excluding the size of the
experiments and a naive forecast that is not too bad, is that some of the forecast errors
might be cancelling out across the population of DR end-users.
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5.2.2.2 Confidence Intervals

Figure 5.5 is organised in the same manner as the box plots in Figure 5.4, and it shows
the distribution means and SEM at 95% CI. In these plots, the effects of end-users’
forecast skill is barely noticeable with regard to retailers’ revenue.

(a) January’ revenue and end-users’ naive fore-
casts.

(b) January’ revenue and end-users’ perfect fore-
casts.

(c) July’s revenue and end-users’ naive forecasts. (d) July’s revenue and end-users’ perfect forecasts.

Figure 5.5: Retailers’ revenue SEM at 95% CI.
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Figure 5.6 shows the difference of the VCG-based mechanisms, which are close
together, with respect to BAU so that their contribution can actually be appreciated.
These plots shows the distribution means and SEM at 95% CI. The McAfee-based
mechanism has been taken out of this plot because its difference is more noticeable
from BAU than the VCGs, as shown in Figure 5.5, and it would make the differences
amongst the VCGs less clear due to the scale.

(a) January’ revenue and end-users’ naive fore-
casts.

(b) January’ revenue and end-users’ perfect fore-
casts.

(c) July’s revenue and end-users’ naive fore-
casts.

(d) July’s revenue and end-users’ perfect fore-
casts.

Figure 5.6: Contribution of VCG-based mechanisms w.r.t. BAU on retailer’s revenue,

SEM at 95% CI.
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5.2.2.3 Paired Samples T-Test

This test was computed for the cumulative revenue of January and July, for the popu-
lation of three retailers under the proposed mechanisms, over ten simulations.

Hypothesis: Does any of the proposed mechanisms result in a higher revenue for
retailers than BAU?

Let M be the set of mechanisms including forecast type, i.e., M := {BAU, . . . ,

McA f_P3_Per f ect_Fct}. Let M be the set of three retailers. Then, the difference in
revenue for each retailer under a pair of mechanisms, m and m′, is denoted by dm,m′

j :=

ρm
j −ρm′

j ∀ j ∈ M, ∀m,m′ ∈M, where ρm
j is the revenue of retailer j. The size of the

population is n := 30, i.e., three retailers over ten simulations, and the mean difference
in revenue for all retailers between the mechanisms m and m′ is expressed by µm,m′

d :=
1
n ∑dm,m′

j .

Null hypothesis: BAU yields a higher revenue than any of the proposed mechan-
isms, i.e., H0 : µm,m′

d ≥ 0 for m := BAU and m′ := {∀x | x ∈M, x ̸= m}. By how the
difference is expressed, dm,m′

j := ρm
j −ρm′

j , the first term ρm
j is the amount of revenue

under BAU, and the second term ρm′
j is that amount under another mechanism inM, that

is being compared to BAU. Therefore, a µm,m′

d ≥ 0 means that in average the revenue
ρm′

j is lower than that of BAU.

Alternative hypothesis: Any of the proposed mechanisms yields a higher revenue
than BAU, i.e., HA : µm,m′

d < 0 form :=BAU andm′ := {∀x | x ∈M, x ̸= m}. A negative
µm,m′

d means a higher revenue achieved by mechanism m′, as compared to BAU.
The level of significance was set to 5%, i.e., α := 0.05. Table 5.4 shows the res-

ulting pairs of t-statistics and p-values. By inspecting the first row (BAU), it can be
seen that each of the proposed mechanisms performs better than BAU, for both naive
and perfect forecasts (with negative t-statistics and near-zero p-values). The resulting
p-values for this claim are small, thus there is enough evidence to reject the null hy-
pothesis. Therefore, it can be concluded that each of the proposed mechanisms yield
higher revenue to the retailer than BAU.
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5.2.3 Retailers’ Imbalance Settlement

The imbalance settlement is computed as the net result from trading in the physical
balancing market for the whole simulation horizon. At every time period, if a retailer’s
NIV is positive, this excess has to be sold to the market at the system sell price (SSP).
Similarly, if the NIV is negative, this deficit has to be bought from the balancing market
at the resulting system buy price (SBP). In these experiments, SSP is assumed to be low,
and SBP high, as described in Subsection 5.1.2.

The presentation of results regarding this dependent variable follows the same or-
ganisation as the previous subsection, thus some explanation is omitted to avoid re-
dundancy.

5.2.3.1 Comparison of Mechanisms

Figure 5.7 shows that the resulting distributions for retailers’ total net imbalance settle-
ment turned out to be negative, i.e., costs. The reason for this was that the initial NIV
for each retailer was set with a relative high value compared to the population size of
households per retailer and their small responsive capacity, as previously specified in
Subsection 5.1.2. However, the mechanisms can be relatively compared against each
other. Moreover, SSP and SBP were set intentionally low and high, respectively, so as
to incentivise retailers to correct their imbalance with DR as opposed to through the im-
balance settlement. It can be seen from the resulting distributions that each mechanism
on average performs better than BAU at reducing the balancing cost, with an almost
negligible effect from end-users’ forecast accuracy (under the studied circumstances).
McAf_P3 yields the lowest balancing cost. The magnitude of the effect of forecasts,
as discussed in previous sections, is highly correlated to the population size of demand
responders and the simulation horizon.
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(a) January and end-users’ naive forecasts. (b) January and end-users’ perfect forecasts.

(c) July and end-users’ naive forecasts. (d) July and end-users’ perfect forecasts.

Figure 5.7: Comparative results for each mechanism regarding their effect on the

imbalance settlement.
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5.2.3.2 Confidence Intervals

Figure 5.8 is organised in the same manner as the box plots in Figure 5.7, and it shows
the distribution means and SEM at 95% CI. In these plots, the effects of end-users’
forecast skill is barely noticeable regarding retailers’ imbalance settlement.

(a) January and end-users’ naive forecasts. (b) January and end-users’ perfect forecasts.

(c) July and end-users’ naive forecasts. (d) July and end-users’ perfect forecasts.

Figure 5.8: Retailers’ imbalance settlement SEM at 95% CI.
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Figure 5.9 shows the difference of the VCG-based mechanisms with respect BAU
so that the change can actually be appreciated. It shows the distributionmeans and SEM
at 95% CI. The McAfee-based mechanism has been taken out of this plot because its
difference is quite large fromBAU, as shown in Figure 5.8, and it makes the differences
amongst VCGs unclear due to its scale.

(a) January and end-users’ naive forecasts. (b) January and end-users’ perfect forecasts.

(c) July and end-users’ naive forecasts. (d) July and end-users’ perfect forecasts.

Figure 5.9: Contribution of VCG-basedmechanisms w.r.t. BAU on retailer’s imbalance

settlement, SEM at 95% CI.
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5.2.3.3 Paired Samples T-Test

This test was computed for the cumulative imbalance settlement (balancing cost) of
January and July, for the population of three retailers under the proposed mechanisms,
over ten simulations.

Hypothesis: Does any of the proposed mechanisms result in a lower balancing cost
for retailers than BAU?

Let M be the set of mechanisms including forecast type, i.e., M := {BAU, . . . ,

McA f_P3_Per f ect_Fct}. Let M be the set of three retailers. Then, the difference in
balancing cost for each retailer under a pair of mechanisms, m and m′, is denoted by
dm,m′

j := cm
j − cm′

j ∀ j ∈ M, ∀m,m′ ∈ M, where cm
j is the balancing cost for retailer j.

The size of the population is n := 30, i.e., three retailers over ten simulations, and the
mean difference in cost for all retailers between the mechanisms m and m′ is expressed
by µm,m′

d := 1
n ∑dm,m′

j .

Null hypothesis: BAUyields a lower balancing cost than any of the proposedmech-
anisms, i.e., H0 : µm,m′

d ≥ 0 for m := BAU and m′ := {∀x | x ∈M, x ̸= m}. By how the
difference is expressed, dm,m′

j := cm
j − cm′

j , the first term cm
j is the amount of balancing

cost under BAU, and the second term cm′
j is that amount under another mechanism inM,

that is being compared to BAU. Both, cm
j and cm′

j are negative. Therefore, a µm,m′

d ≥ 0

means that in average the cost cm′
j is higher than that of BAU.

Alternative hypothesis: Any of the proposedmechanisms yields a lower balancing
cost than BAU, i.e., HA : µm,m′

d < 0 for m := BAU and m′ := {∀x | x ∈M, x ̸= m}. A
negative µm,m′

d means a lower balancing cost achieved by mechanism m′, as compared
to BAU.

The level of significance was set to 5%, i.e., α := 0.05. Table 5.5 shows the resulting
pairs of t-statistics and p-values. By inspecting the first row (BAU), it can be seen that
all the proposed mechanisms are better than BAU regarding the balancing cost, and
they are statistically significant. Therefore, there is enough evidence to reject the null
hypothesis, and it can be concluded that each of the proposed mechanisms yields a
lower balancing cost than BAU.



5.2. Simulation Results 149

Ta
bl
e
5.
5:

Pa
ire

d
T-
Te
st
re
su
lts

fo
rr
et
ai
le
rs
’i
m
ba

la
nc
e
se
ttl
em

en
t.

B
A
U

V
C
G
_P

1_
N
ai
ve
_F

ct
V
C
G
_P

1_
Pe
rf
ec
t_
Fc
t

V
C
G
_P

2_
N
ai
ve
_F

ct
V
C
G
_P

2_
Pe
rf
ec
t_
Fc
t

V
C
G
_P

3_
N
ai
ve
_F

ct

B
A
U

(n
an
,n
an
)

(-
7.
24
,0
.0
2)

(-
7.
24
,0
.0
2)

(-
7.
24
,0
.0
2)

(-
7.
24
,0
.0
2)

(-
7.
20
,0
.0
2)

M
cA

f_
P3

_N
ai
ve
_F

ct
(5
.3
7,
0.
03
)

(4
.6
1,
0.
04
)

(4
.6
1,
0.
04
)

(4
.6
1,
0.
04
)

(4
.6
1,
0.
04
)

(4
.7
8,
0.
04
)

M
cA

f_
P3

_P
er
fe
ct
_F

ct
(5
.3
7,
0.
03
)

(4
.6
1,
0.
04
)

(4
.6
1,
0.
04
)

(4
.6
1,
0.
04
)

(4
.6
1,
0.
04
)

(4
.7
8,
0.
04
)

V
C
G
_P

1_
N
ai
ve
_F

ct
(7
.2
4,
0.
02
)

(n
an
,n
an
)

(n
an
,n
an
)

(n
an
,n
an
)

(n
an
,n
an
)

(7
.4
5,
0.
02
)

V
C
G
_P

1_
Pe
rf
ec
t_
Fc
t

(7
.2
4,
0.
02
)

(n
an
,n
an
)

(n
an
,n
an
)

(n
an
,n
an
)

(n
an
,n
an
)

(7
.4
5,
0.
02
)

V
C
G
_P

2_
N
ai
ve
_F

ct
(7
.2
4,
0.
02
)

(n
an
,n
an
)

(n
an
,n
an
)

(n
an
,n
an
)

(n
an
,n
an
)

(7
.4
5,
0.
02
)

V
C
G
_P

2_
Pe
rf
ec
t_
Fc
t

(7
.2
4,
0.
02
)

(n
an
,n
an
)

(n
an
,n
an
)

(n
an
,n
an
)

(n
an
,n
an
)

(7
.4
5,
0.
02
)

V
C
G
_P

3_
N
ai
ve
_F

ct
(7
.2
0,
0.
02
)

(-
7.
45
,0
.0
2)

(-
7.
45
,0
.0
2)

(-
7.
45
,0
.0
2)

(-
7.
45
,0
.0
2)

(n
an
,n
an
)

V
C
G
_P

3_
Pe
rf
ec
t_
Fc
t

(7
.2
4,
0.
02
)

(n
an
,n
an
)

(n
an
,n
an
)

(n
an
,n
an
)

(n
an
,n
an
)

(7
.4
5,
0.
02
)

V
C
G
_P

D
_N

ai
ve
_F

ct
(7
.2
4,
0.
02
)

(n
an
,n
an
)

(n
an
,n
an
)

(n
an
,n
an
)

(n
an
,n
an
)

(7
.4
5,
0.
02
)

V
C
G
_P

D
_P

er
fe
ct
_F

ct
(7
.2
4,
0.
02
)

(n
an
,n
an
)

(n
an
,n
an
)

(n
an
,n
an
)

(n
an
,n
an
)

(7
.4
5,
0.
02
)

Pa
ire

d
T-
Te
st
re
su
lts

fo
rr
et
ai
le
rs
’i
m
ba

la
nc
e
se
ttl
em

en
t(
co
nt
in
ue

d)
.

V
C
G
_P

3_
Pe
rf
ec
t_
Fc
t

V
C
G
_P

D
_N

ai
ve
_F

ct
V
C
G
_P

D
_P

er
fe
ct
_F

ct
M
cA

f_
P3

_N
ai
ve
_F

ct
M
cA

f_
P3

_P
er
fe
ct
_F

ct

B
A
U

(-
7.
24
,0
.0
2)

(-
7.
24
,0
.0
2)

(-
7.
24
,0
.0
2)

(-
5.
37
,0
.0
3)

(-
5.
37
,0
.0
3)

M
cA

f_
P3

_N
ai
ve
_F

ct
(4
.6
1,
0.
04
)

(4
.6
1,
0.
04
)

(4
.6
1,
0.
04
)

(n
an
,n
an
)

(n
an
,n
an
)

M
cA

f_
P3

_P
er
fe
ct
_F

ct
(4
.6
1,
0.
04
)

(4
.6
1,
0.
04
)

(4
.6
1,
0.
04
)

(n
an
,n
an
)

(n
an
,n
an
)

V
C
G
_P

1_
N
ai
ve
_F

ct
(n
an
,n
an
)

(n
an
,n
an
)

(n
an
,n
an
)

(-
4.
61
,0
.0
4)

(-
4.
61
,0
.0
4)

V
C
G
_P

1_
Pe
rf
ec
t_
Fc
t

(n
an
,n
an
)

(n
an
,n
an
)

(n
an
,n
an
)

(-
4.
61
,0
.0
4)

(-
4.
61
,0
.0
4)

V
C
G
_P

2_
N
ai
ve
_F

ct
(n
an
,n
an
)

(n
an
,n
an
)

(n
an
,n
an
)

(-
4.
61
,0
.0
4)

(-
4.
61
,0
.0
4)

V
C
G
_P

2_
Pe
rf
ec
t_
Fc
t

(n
an
,n
an
)

(n
an
,n
an
)

(n
an
,n
an
)

(-
4.
61
,0
.0
4)

(-
4.
61
,0
.0
4)

V
C
G
_P

3_
N
ai
ve
_F

ct
(-
7.
45
,0
.0
2)

(-
7.
45
,0
.0
2)

(-
7.
45
,0
.0
2)

(-
4.
78
,0
.0
4)

(-
4.
78
,0
.0
4)

V
C
G
_P

3_
Pe
rf
ec
t_
Fc
t

(n
an
,n
an
)

(n
an
,n
an
)

(n
an
,n
an
)

(-
4.
61
,0
.0
4)

(-
4.
61
,0
.0
4)

V
C
G
_P

D
_N

ai
ve
_F

ct
(n
an
,n
an
)

(n
an
,n
an
)

(n
an
,n
an
)

(-
4.
61
,0
.0
4)

(-
4.
61
,0
.0
4)

V
C
G
_P

D
_P

er
fe
ct
_F

ct
(n
an
,n
an
)

(n
an
,n
an
)

(n
an
,n
an
)

(-
4.
61
,0
.0
4)

(-
4.
61
,0
.0
4)



150 Chapter 5. Empirical Evaluation of MBC Mechanisms

5.2.4 Retailers’ Absolute NIV

The presentation of results regarding this dependent variable follows the same organisa-
tion as the previous subsection, thus some explanation is omitted to avoid redundancy.

5.2.4.1 Comparison of Mechanisms

Figure 5.10 shows that domestic DR reduces the absolute NIV in all cases. TheMcAfee-
based mechanism reduces this variable more substantially than the other proposed
mechanisms, because it also trades differences amongst retailers as opposed to the
VCG-based mechanisms, which only procure domestic DR to cover the retailers’ in-
dividual NIV. Moreover, the forecast comparison side by side does not yield large
differences, because of the scale and simulation parameters.

(a) January and end-users’ naive forecasts. (b) January and end-users’ perfect forecasts.

(c) July and end-users’ naive forecasts. (d) July and end-users’ perfect forecasts.

Figure 5.10: Retailers’ absolute NIV as a result of the proposed mechanisms.
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5.2.4.2 Confidence Intervals

Figure 5.11 is organised in the same manner as the box plots in Figure 5.10, and it
shows the distribution means and SEM at 95% CI. In these plots, the effects of end-
users’ forecast skill is barely noticeable regarding retailers’ absolute NIV.

(a) January and end-users’ naive forecasts. (b) January and end-users’ perfect forecasts.

(c) July and end-users’ naive forecasts. (d) July and end-users’ perfect forecasts.

Figure 5.11: Retailers’ absolute NIV SEM at 95% CI.
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Figure 5.12 shows the difference of the VCG-based mechanisms with respect BAU
so that the change can actually be appreciated. It shows the distribution means and
SEM at 95% CI. The McAfee-based mechanism has been taken out of this plot be-
cause its difference is quite large from BAU, as shown in Figure 5.11, and it makes the
differences amongst VCGs unclear due to its scale.

(a) January and end-users’ naive forecasts. (b) January and end-users’ perfect forecasts.

(c) July and end-users’ naive forecasts. (d) July and end-users’ perfect forecasts.

Figure 5.12: Contribution of VCG-based mechanisms w.r.t. BAU on retailer’s absolute

NIV, SEM at 95% CI.
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5.2.4.3 Paired Samples T-Test

This test was computed for the cumulative absolute NIV of January and July, for the
population of three retailers under the proposed mechanisms, over ten simulations.

Hypothesis: Does any of the proposed mechanisms result in a lower absolute NIV
for retailers than BAU?

Let M be the set of mechanisms including forecast type, i.e., M := {BAU, . . . ,

McA f_P3_Per f ect_Fct}. Let M be the set of three retailers. Then, the difference in
absolute NIV for each retailer under a pair of mechanisms, m and m′, is denoted by
dm,m′

j := ηm
j −ηm′

j ∀ j ∈ M, ∀m,m′ ∈ M, where ηm
j is the absolute NIV of retailer j.

The size of the population is n := 30, i.e., three retailers over ten simulations, and the
mean difference in absolute NIV for all retailers between the mechanisms m and m′ is
expressed by µm,m′

d := 1
n ∑dm,m′

j .

Null hypothesis: BAU yields a lower absolute NIV than any of the proposed mech-
anisms, i.e., H0 : µm,m′

d ≤ 0 for m := BAU and m′ := {∀x | x ∈M, x ̸= m}. By how the
difference is expressed, dm,m′

j := ηm
j −ηm′

j , the first term ηm
j is the amount of NIV under

BAU, and the second term ηm′
j is that amount under another mechanism in M, that is

being compared to BAU. Therefore, a µm,m′

d ≤ 0 means that in average the absolute
NIV ηm′

j is lower than that of BAU.

Alternative hypothesis: Any of the proposed mechanisms yields a lower absolute
NIV than BAU, i.e., HA : µm,m′

d > 0 for m := BAU and m′ := {∀x | x ∈M, x ̸= m}. A
positive µm,m′

d means a lower revenue achieved by mechanism m′, as compared to BAU.
The level of significance was set to 5%, i.e., α := 0.05. Table 5.6 shows the resulting

pairs of t-statistics and p-values. By inspecting the first row (BAU), it can be seen that
all the proposed mechanisms are better than BAU regarding the absolute NIV, and
they are statistically significant. Therefore, there is enough evidence to reject the null
hypothesis, and it can be concluded that each of the proposed mechanisms yields a
lower absolute NIV than BAU. In addition, these results are in line with those of the
paired t-tests for the imbalance settlement, where the NIV plays an important part along
with the balancing prices.
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5.3 Discussion

The results in this chapter were mostly limited by the length of the simulation hori-
zon and the number of participants in the experiments. All the proposed mechanisms
performed better than BAU in all the studied economic effects. However, the greedy
policy followed by retailers to allocate DR is suboptimal. Amore realistic settingwould
include a non-myopic procurement policy for DR allocation, that determines the pur-
sued amounts of DR per time period. Furthermore, an interesting research question,
that is not pursued in this thesis, would be to find the retailers’ trading strategy for the
wholesale market given that one of these DR mechanisms is available.

5.4 Summary

This chapter evaluated the effects of the VCG-based and McAfee-based mechanisms,
proposed in Chapters 3 and 4, for end-users, retailers and, to some extent, the ISO.
The simulations were based on domestic electricity-use profiles from the UK and the
imbalance settlement prices prescribed by the UK National Grid that are managed by
Elexon. Some variation was introduced in order to fit the purpose of this study, such
as the variation imposed in the profile generation procedure based in the original pro-
files, and the proportional increase and decrease of imbalance prices so as to foster
DR. Moreover, the used retail prices are comparable to those of the UK; however,
these were overly simplified into two controlled prices as opposed to the complex pri-
cing structures available in the UK (Office of Gas and Electricity Markets (OFGEM),
2016b), where suppliers offer several types of contracts and the FIT tariffs depend on
the type of generator (Office of Gas and Electricity Markets (OFGEM), 2016a), and
both change often.

The effects of these mechanisms were compared in order to assess the DR impact on
the end-users’ electricity bill, and retailers’ revenue, balancing cost, and absolute NIV.
For end-users, the electricity bill was lower than BAU, in all proposedmechanisms. For
retailers, revenue was higher, and the balancing cost and absolute NIV were lower than
BAU, in all proposed mechanisms. Finally, the results show that theMcAfee-based DA
achieves on average the best balance of interests amongst end-users, retailers, and the
ISO; although it reduces the market share of balancing generators, which is an implicit
effect.





Chapter 6

Forecasting of the Household’s

Inflexible Net-Load

In this chapter, some forecast methods are explored and empirically benchmarked so
that end-user agents are able to predict their one-step-ahead household’s inflexible net-
load. The mechanisms developed in Chapters 3 and 4 expect, to a certain degree, that
end-user agents are able to submit accurate DR offers that they will provide, or incur in
penalties otherwise. The computational model used to estimate the operational flexib-
ility assumes that schedulable tasks can be easily and accurately measured. However,
DR offers integrate both the inflexible net-load and the operational flexibility. There-
fore, end-users that are able to reasonably forecast the inflexible net-load have a lower
risk of penalties and face less opportunity costs, resulting in a lower electricity bill as
showed in Chapter 5.

6.1 Introduction

Accurately forecasting the inflexible domestic net-load can be challenging. Electricity
use is correlated with variables such as human behaviour, number of simultaneous end-
users at the household, weather temperature, a wide variety of available technologies
and trends. Therefore, adaptive data-driven methods are essential for this problem.
Also, it is well-known that a combination of forecasts is usually more robust and often
leads to higher accuracy than any of its single forecasters, as described by J. M. Bates
and Granger (1969). Therefore, some approaches for the combination of univariate
time series regression methods are empirically tested.

157
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6.2 Experiment Design

The 50 inflexible net-load profiles from Chapter 5 have been used to assess a set of uni-
variate forecast methods. Of these profiles, 25 have no generation technologies, while
the remaining 25 correspond to those same profiles including a synthetically generated
PV output, as previously described in Subsection 5.1.1. The forecast methods that have
been used and their training time frames are described next.

6.2.1 Forecast Methods

Multiple types of univariate forecast methods were selected for this problem. These
include four naive methods, four specialised time-series prediction methods, and two
artificial neural networks. In addition, four measures of central tendency were explored
as methods to combine the previous forecasts into a more accurate and resilient fore-
caster. Finally, an exponentially weighted average forecaster is examined so that the
forecasting methods, excluding the measures of central tendency, are weighted accord-
ing to their past performance.

6.2.1.1 Naive Methods

These simple methods are described in (Hyndman and Athanasopoulos, 2014) as ini-
tial benchmarks, since they might be surprisingly effective in some cases, and their
computation is inexpensive.

• NAIVE: This method returns the value of the previous time period. That is, the
inflexible net-load ŷt|t−1 := yt−1.

• MEAN_L3T: This forecast returns the arithmetic mean value of the last three
time periods. That is, ŷt|t−h :=

1
h ∑t−1

i:=t−h yi, where h := 3. The time window was
set to three by trial and error over exploring some profiles.

• SNAIVE: This forecast is a seasonal naive method that gives the value from the
last season at the requested time period. In this case, the season was set to one
week. For instance, the value on Monday at 5pm is predicted using exactly that
amount from the previous Monday. Since time is discretely modelled as half-
hourly time periods, the seasonal period is 336 (i.e., 48 time periods per day,
times 7 days a week) and ŷt|t−s := yt−s.
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• DRIFT: This method returns the value from the previous time period plus the
average change, which is given by ŷt|t−1 := yt−1+

yt−y1
t−2 .

6.2.1.2 Specialised Time-Series Methods

These sophisticated methods have been estimated using the standard Holt-Winters im-
plementation from the R stats package (R Core Team, 2016), and the other three
from the R forecast package (Hyndman and Khandakar, 2008). These methods
have been trained on a weekly basis, starting with one month of history and cumulat-
ively adding new data. The standard Holt-Winters estimates the parameters by minim-
ising the squared predicted error, whereas in the other methods the best model is given
by minimising the Akaike information criterion (AIC), that yields a measure of relative
quality.

• HW: This method corresponds to the well-known standard Holt-Winters (HW)
triple exponential smoothing (Holt, 1957; Winters, 1960; Holt, 2004). The addit-
ive seasonal model was arbitrarily selected.

• DSHW: This is a double seasonal Holt-Winters (DSHW) exponential smoothing
method proposed by (Taylor, 2003), with additive trend and multiplicative sea-
sonality. According to Taylor (2003), the widely used standard HW method can
only accommodate one seasonal pattern. Therefore, he proposes DSHW to allow
for two seasonalities, for instance, daily and weekly seasonalities in electricity
use. Later, Taylor (2010) extends his method to allow three seasonal components,
but this one has not been considered for the study in this chapter.

• STL+ARIMAX: This combination of methods has been proposed by Hyndman
and Athanasopoulos (2014) as an alternative approach that is less computation-
ally expensive than seasonal ARIMA(X), specially in high resolution time series.
It uses the seasonal and trend decomposition by Loess (STL) proposed by Clev-
eland et al. (1990), and the autoregressive integrated moving average with exo-
genous regressors (ARIMAX)25 (Box and Jenkins, 1970; Box and Tiao, 1975;
Pankratz, 1991). This approach first decomposes the time series into seasonal,
trend, and error components. Then, it fits the ARIMAX to the errors, with the out-
side temperature as a covariate. In order to predict, the ARIMAXmodel takes the
weather forecast (that was assumed as perfect), predicts the inflexible net-load,

25ARIMAX is also known in the literature as dynamic regression (Pankratz, 1991).
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and finally the seasonal component of the last cycle is added to it (similar to a
seasonal naive). The seasonal component does not account for prediction errors,
but it is generally a reasonable approximation.

• TBATS: This method, proposed by De Livera et al. (2011), is an exponential
smoothing state space model with Box-Cox transformation (Box and Cox, 1964),
ARMA errors, trend and seasonal components, where complex seasonality is de-
composed by a trigonometric formulation. This method is complex and compu-
tationally demanding, but it works well in practice; further details can be found
in (De Livera et al., 2011).

6.2.1.3 Artificial Neural Networks

Two well-known artificial neural network (ANN) architectures were trained using
Keras (Chollet, 2015) with a Theano (The Theano Development Team, 2016) backend.
Both ANN were trained on a sequence of three time periods, minimising the mean
square error with the Adammethod for stochastic optimisation (Kingma and Ba, 2014).
They were retrained each week during 20 epochs, starting with a history of four weeks
and cumulatively adding new data.

• MLP: A multilayer perceptron architecture (Rosenblatt, 1961; Rumelhart et al.,
1985) of a single fully connected hidden layer of eight neurons with rectified
linear units (ReLU).

• LSTM: A long short-term memory architecture (Hochreiter and Schmidhuber,
1997) of four neurons.

6.2.1.4 Measures of Central Tendency

These measures provide simple averaging approaches to creating robust predictions
from the previous forecast methods.

• E_MEDIAN: Ordinary median of the predictions made by the previous fore-
casters.

• E_MEAN: Arithmetic mean of forecasters’ predictions.

• E_T-MEAN: Trimmed mean of forecasters’ predictions. It discards the two low-
est and two highest predictions before computing the mean, so as to remove out-
liers.
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• E_W-MEAN: Winsorised mean of forecasters’ predictions. It replaces the two
lowest and two highest predictions with the prediction by their closest non-
replaced prediction, in order to replace outliers with values closer to the centre,
and finally it computes the mean prediction.

6.2.1.5 Exponentially Weighted Average Forecaster (EWAF)

EWAF is computational inexpensive, only depends on the forecasters’ weights for the
last prediction, and can be computed online (Cesa-Bianchi and Lugosi, 2006). Let F

be the set of forecasters excluding the above measures of central tendency so as to
avoid correlation amongst methods, which is a common practice to get a more resilient
forecast. Let the weights be expressed by wi(t−1), ∀i ∈ F , which are democratically
initialised at 1

|F | . Then, the prediction is computed as p̂t := ∑i∈F wi(t−1)ŷit , where ŷit is
the prediction given by forecaster i ∈ F at time period t ∈ T , where T is the ordered set
of discrete time periods in the simulation horizon. Finally, the forecasters’ weights are
updated online at every time period as the following.

wit :=
wi(t−1)e−ηℓ(ŷit ,yt)

∑ j∈F w j(t−1)e
−ηℓ(ŷ j(t−1),yt)

, ∀i ∈ F (6.1)

In Equation 6.1, e is the Euler’s constant, η is a weighting parameter that was set
to η := 0.8 in order to give more importance to recent errors, ℓ(·) is a nonnegative loss
function, which in this case was set to the root-mean-square-error (RMSE), ŷit is the
forecaster i’s prediction, and yt is the actual realisation of inflexible net-load. More
information about EWAF, as well as other methods for combining multiple forecasts,
can be found in (Cesa-Bianchi and Lugosi, 2006).
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6.3 Forecast Results

Each forecast method was tested on the 50 profiles using the out-of-sample RMSE.
Figure 6.1 shows the quartiles for each resulting distribution of RMSE. Moreover,
Figure 6.2 shows the mean and standard error of mean (SEM) with 95% confidence
intervals (CI) for each method. Overall, as it can be seen from these figures, EWAF is
a resilient method that end-users can use into their DR offering strategy so as to take
the forecast error into account and hedge against penalties.

Figure 6.1: Comparative results of inflexible net-load forecasters.

Figure 6.2: Forecasters’ RMSE, standard error of the mean at 95% confidence inter-

val.
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The results from two individual profiles that were arbitrarily selected for the pur-
pose of exposition are shown in Figure 6.3.

(a) Forecasters’ RMSE for an exemplary profile without DG.

(b) Forecasters’ RMSE for an exemplary profile with solar PV.

Figure 6.3: Forecasters’ RMSE for two exemplary profiles.

Similarly, the ranking of forecast methods for the same two profiles are shown in
Figures 6.4 and 6.5, separated by groups of three and only for the last 240 time periods
for clarity reasons.
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(a) Top 3 forecasters for this profile.

(b) Ranks 4–6 forecasters for this profile.

(c) Ranks 7–9 forecasters for this profile.

(d) Ranks 10–12 forecasters for this profile.

(e) Bottom 3 forecasters for this profile.

Figure 6.4: Ranking of forecast methods for an exemplary profile without DG.
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(a) Top 3 forecasters for this profile.

(b) Ranks 4–6 forecasters for this profile.

(c) Ranks 7–9 forecasters for this profile.

(d) Ranks 10–12 forecasters for this profile.

(e) Bottom 3 forecasters for this profile.

Figure 6.5: Ranking of forecast methods for an exemplary profile with solar PV.
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Moreover, the exponential weights from these two profiles are shown in Fig-
ures 6.6 and 6.7.

Figure 6.6: EWAF weights for an exemplary profile without DG.

Figure 6.7: EWAF weights for an exemplary profile with solar PV.

6.4 Discussion

It is important to note that, while there are several methods to predict sequences and
multiple approaches to combine them, only a small set of both were empirically tested.
Future work might consider higher resolution time series, as well as other methods for
forecast aggregation, such as online gradient descent (OGD), ridge regression, poly-
nomially weighted average forecaster (PWAF), Bernstein online aggregation (BOA),
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ANN, clustering variations, and others. Furthermore, other independent forecast meth-
ods for time series, such as support vector machines for regression (SVR), and more
optimised ANN architectures for this type of problem could also be considered. Al-
ternatively, other covariates apart from temperature might help improve the accuracy
of single predictors.

Given the mechanisms from Chapters 3 and 4, a more accurate forecast of the in-
flexible net-load, such as the one predicted by EWAF, can only improve the ability of
rational end-user agents to maximise their benefit from DR offers. This also reduces
the uncertainty on the retailers’ side as DR offers are more reliable.

6.5 Summary

This chapter has empirically evaluated the effectiveness of independent forecast meth-
ods on the 50 inflexible net-load profiles that are based on the Household Electricity
Survey (HES) from the UK. Moreover, it is not surprising that a forecast combina-
tion based on several independent methods yielded, in general, a higher accuracy than
each of the single forecasts. Even simple measures of central tendency amongst the
individual forecasts resulted in higher accuracy. Moreover, a simple and elegant com-
bination method that can be updated online, such as EWAF, is reasonably effective for
the presented task.





Chapter 7

Conclusion

The research in this thesis has dealt with the problem of electronic market design for
domestic DR in low-carbon electricity systems. It introduced a computational model
of operational flexibility for schedulable household appliances along with a compact
representation of DR offers. Two auction protocols were designed to coordinate DR
in single- and multi-retailer settings: a VCG-based mechanism, and a McAfee-based
double auction (DA). Several considerations were taken into account in order to achieve
computational efficiency and DSIC implementations for these mechanisms. In addi-
tion, three penalty schemes were designed, and another one was adapted from the lit-
erature, in order to incentivise honest reporting. Moreover, a method was developed
to form stepwise offering blocks that integrate DR and can be traded amongst multiple
retailers. The theoretical properties of these mechanisms were proved and their eco-
nomic effects were empirically evaluated. The evaluation chapter shows that, under
reasonable conditions, the electricity bill is lowered for end-users, revenue is increased
and imbalance settlement decreased for retailers, and the absolute NIV is reduced in
a zone. Finally, a set of diverse forecast methods was explored to predict a house-
hold’s electrical net-load, excluding scheduled appliances, and simple ensembles of
predictors performed consistently better than each of the single methods. This allows
for better estimation of DR offers and it reduces their uncertainty. The work in this
thesis extends the state-of-the-art in DR characterisation and coordination through an
algorithmic mechanism design perspective, so as to improve the supply and demand
balance in low-carbon electricity grids.

169
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7.1 Contributions Revisited

• Characterisation of operational flexibility: The concept of DR flexibility in
the domestic setting has been formally modelled as the capacity of households
to drive the meter up or down at a single time period in line with scheduling
constraints of appliance use. This characterisation has considered realistic auto-
mation at the end-users’ side that can be delegated to a HEMS, such as the
schedulling of heating and EV recharging. Furthermore, flexibility from these
schedules is extracted and quantified so that a specific DR offer can be made
to retailers. These offers are tied to the meter readings so they can be verified.
One of the considerations taken into account was to be able to express DR offers
in a compact format that would not reveal much regarding end-users’ behaviour
(appliance use). This was achieved by an ask format that only reveal the offered
meters for DR operations of peak-shaving and valley-filling, w.r.t the intended
electricity use, with the restriction that only one would be allocated. The format
is yet expressive so that end-user agents can indicate different costs.

• Single-sided VCG-based DSIC mechanism for DR coordination between a
retailer and its customers: This mechanism has been designed to be integrated
within the meter reading process, which can be facilitated by the use of smart
meters. Apart from the meter readings, the DR offers are collected and the VCG-
based mechanism determines the allocation and discounts. The allocation pro-
cedure was tailored to deal with the structure of DR offers, so as to prevent in-
sincere exploitation by end-user agents. Moreover, the allocation is solved by a
greedy algorithm that results in a monotonic allocation, and payments are determ-
ined by Myerson critical payments, which replicates Vickrey’s auction payment
rule. These properties yield a DSIC mechanism on reported costs, but not in
DR amounts. Therefore, the mechanism required verification in order to meas-
ure actual DR achievements and settle differences. For this reason, three penalty
schemes have been designed to deter dishonest reporting on DR amounts, yet to
keep rational end-user agents committed to their offers. These penalty schemes,
i.e., middle-point, slope-based, and EWMA-based penalties, provide a means to
encourage end-users to report their preferences truthfully and forecast their offers
accurately. Moreover, by design, DR extra achievements are not rewarded so that
end-user agents have an incentive to estimate offers accurately. This designed
under the previous considerations yielded properties such as DSIC, individual ra-
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tionality (in the case of EWMA-based penalty), balanced budged, computational
efficiency, robustness to uncertainty regarding end-users’ DR skill, and privacy
protection. Furthermore, simulations show that this mechanism yields a lower
electricity bill for end-users, increases revenue for retailers while decreases their
NIV, resulting in a lower balancing cost, as compared to BAU.

• Double-sided McAfee-based DSIC mechanism for multi-retailer DR co-
ordination in a zone: This mechanism has been designed with the focus on bal-
ancing a geographical zone rather than a retailer’s trading schedule. It provides a
means of DR cooperation amongst competing retailers within a single zone. That
is, the DR from one retailer could ameliorate the schedule of another retailer,
however, the deviation from the former should not impose a negative externality
on it. For this reason, retailers are modelled as virtual generators with respect
their schedules, and offer their expected imbalances along with DR blocks. The
mechanism is chained in two levels, in the first echelon the interaction between
end-users and retailers is managed, while in the second echelon retailers trade
both their expected imbalances and DR offer blocks. This mechanism provides
an advantage for retailers as opposed to the single-sided VCG-based mechan-
ism, because in some cases retailers trigger fewer DR offers. For instance, two
retailers may independently procure DR in opposite directions, while their expec-
ted deviations cancel out most of the zonal imbalance, where less DR is really
needed. A method to form stepwise block offers has been developed so that DR
offers from the first echelon can be grouped into blocks of more meaningful mag-
nitudes amongst retailers. This method collects DR offers and allocates them into
sell blocks and buy blocks of a size determined by the market operator (MO). By
how flexibility is characterised, these DR offers are present in both type of blocks,
however, only one type of block is allocated in the second echelon. The discounts
for those offers are determined in a second-price style. The first echelon includes
the same verification process as the VCG-based mechanism, and it is paired with
the EWMA-based penalty (although one of the other penalty scheme can also
be used). In the second echelon, the (ISO-controlled) retailer agents submit the
imbalance offers along with DR sell blocks and buy blocks to the DA. The MO
estimates the zonal imbalance first and then allocate DR offers to correct that
imbalance. Feasible trade allocated by the DA, and the clearing prices are de-
termined by McAfee’s DA pricing rule. DR offers are triggered according to
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the resulting allocation from the second echelon and verified in the first echelon
as in the VCG-based mechanism. The first echelon inherits the properties from
the VCG-based mechanism, while the second echelon achieves DSIC, individual
rationality, a weak balanced budget, and polynomial-time computation. Further-
more, simulations show that this mechanism yields a lower electricity bill for
end-users and generate more revenue for retailers, also the NIV and balancing
cost are considerably decreased. Finally, this chained mechanism yields more
competitive DR prices that contribute to solve the balancing problem more ef-
fectively.

• Forecasting of the household’s inflexible net-load: In line with the proposed
characterisation of operational flexibility, the largest portion of uncertainty in DR
offers comes from the inflexible net-load. Higher forecast accuracy allows for
better estimation of DR offers, and thus less penalisation due to incorrect alloc-
ated offers. The simulations from Chapter 5 has showed that end-users achieve
lower electricity bills in the presence of perfect forecasts as compared to naive
ones. It seems unlikely that a single method can predict the inflexible net-load
with high accuracy. Therefore, a set of diverse forecast methods have been ex-
amined to benchmark their ability to predict the inflexible net-load in the 50
household profiles used in Chapter 5. As expected, higher accuracy comes from
a combination of these methods rather than from any single one of them. Also,
the simple central tendency measures that were used (i.e., mean, trimmed mean,
winsorised mean, andmedian) performed relatively well compared to each single
method. Nonetheless, these measures does not account for the out-of-sample er-
ror by these forecasts. A weighted average that adjust the weights online accord-
ing to the out-of-sample error is more resilient in this regard. Therefore, an expo-
nentially weighted average forecaster (EWAF) was used to combine the forecast
methods, excluding the central tendency measures, so that the methods could
be weighted according to their performance (i.e., out-of-sample error). EWAF
showed the highest accuracy in most of the 50 profiles, it is computationally in-
expensive, and it can be computed online. In fact, this method is related to the
EWMA-based penalty used for the end-user agents to measure their performance
on their DR offers. There are several other methods for this problem of match-
ing several forecast outputs to a combined output. Those include, a polynomially
weighted average forecaster, online gradient descent, online ridge regression, and
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ensemble learning approaches, such as stacking. Online adaptivemethods should
be preferred, given the nature of this problem, and the amount of data required
to train them should be considered as well.

7.2 Future Work

Several directions have been identified for the further understanding of DR coordina-
tion amongst self-interested agents, so as to make this coordination practical for end-
users and retailers, and advance the automation of this process with intelligent autonom-
ous agents that continuously improve their results. The list is far from complete, but
hopefully will provide some avenues for future research on market-based DR coordin-
ation for low-carbon electricity systems.

• Non-myopic DR procurement: This is a non-trivial problem. It requires not
only a reasonable estimation of the retailer’s market position, but also a plausible
measurement of the collective DR at different reservation prices, over the time
horizon of interest. Some forecast methods can provide reasonable approxima-
tions. However, finding the value of flexibility over time requires online price-
finding dynamics, for instance by multi-armed bandit approaches. A similar ap-
proach could be used to establish dependencies over time regarding the impact
of scheduling of non-interruptible tasks. That is, the starting time of these tasks
could be scheduled within a time window, however, once they start, they will
run for several time periods. Furthermore, multi-stage stochastic programming
could be used to model the sequential decision making, given a set of scenarios
previously simulated and estimated regarding the collective DR.

• Wholesale electricity trading under DR: This is not a trivial problem either.
Once a non-myopic DR procurement is achieved some scenarios could be sim-
ulated and varied under a range of parameters. These scenarios, along with the
modelling of market prices and demand quantities, can be used to derive an op-
timal wholesale trading strategy in the stochastic programming sense. Similar
to DR procurement, this problem could be modelled with multi-stage stochastic
programming, however, accurately quantifying the probability of a representat-
ive set of scenarios might result challenging.

• Continuous-time DR coordination: An natural extension to the mechanisms
proposed in this thesis is to allow DR offers to be submitted at any time, not only
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at periodic intervals. This may result in a smoother effect of DR on electricity use.
Nonetheless, these types of offers should be restricted to, an otherwise calibrated,
time window that is in line with market dynamics and imbalance settlements. In
addition, the optimal reservation prices would have to be tuned more often than
in the periodic case. Moreover, the offers would need to include some expira-
tion time, and the modelling of this type of mechanism is interesting and more
challenging at the zonal level.

• Non-myopic strategies for end-user agents: This research direction would try
to answer when is the best time to submit DR offers for end-users. This could
be modelled by using online learning, such as multi-armed bandit algorithms.
Furthermore, it would be interesting to assess the systemic effects when all re-
sponsive end-user agents follow other strategies as opposed to the greedy strategy
followed in this thesis.

• Large-scale dynamics: This would include the modelling of inter-zonal market
forces in the electricity grid. It may also model the effect of larger participants,
such as industrial and commercial customers, universities, hospitals and other
municipalities.

• Simulation of government policies: This area of research would use agent-
based modelling and simulation (ABM/S) to derive organisational and public
policies regarding DR. Also, these simulations could provide some insights on
different organisational models for the electricity grid organisation, including in-
strumentation and reinforcement in the presence of a large number of more active
end-users.

• Online mechanism design: This would require multi-dimensional offers so that
other considerations, such as a time window availability or technical constraints,
are included in the offers. For instance, the DR offers could be expressed as a
tree spanning a horizon of more than one time period. That is, the minimum and
maximum meter thresholds can be subsequently offered in time, including de-
pendencies when either is selected, (e.g., mu

i(t+2) and md
i(t+2) from agent i at time

t+2, given that md
i(t+1) and mu

it are selected, etc.), from the private information in
each household’s schedule. Some pre-commitment notions could be implemen-
ted on the retailer’s side, similar to the notion implemented in the EV recharging
problem in (Stein et al., 2012; Ströhle et al., 2014), but with a different type
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structure (i.e., preferences).

• Selective targeting of households: Given certain constraints on communica-
tion and computing power, a subset of responsive customers could be queried
according to some measure, e.g., willingness to offer DR (Holyhead et al., 2015),
reliability (Ma et al., 2016), etc.

7.3 Concluding Remarks

Overall, this thesis has provided a framework to study DR through direct market-based
mechanisms with autonomous software agents. The proposed mechanisms were de-
signed taking into account a liberalised organisation of the electricity supply, and some
of their complex dynamics. The characterisation of operational flexibility allowed for
expressing specific DR offers, which were used to financially balance the supply and
demand from retailers’ trading positions. Moreover, the empirical evaluation showed
that, under reasonable assumptions, these mechanisms yielded a lower electricity bill
for end-users, reduced the absolute NIV and its balancing cost, and yielded higher rev-
enue to retailers. Finally, this work can serve as a basis for studying more approaches
for integrating active end-users into smarter grids.
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