
7hN7I  
4 

z  n, 

NitrOgen flows in an intercropped 

arable farming rotation 

Agathi-Valentinj Pappa 1,2  

Doctor of Philosophy 

The University of Edinburgh 

August 2009 

Al 

A 

School of Geosciences, The University of Edinburgh, The King's Buildings, Edinburgh 
2  Scottish Agricultural College, West Mains Road, Edinburgh 



Declaration 

I declare that this thesis and the papers within it have been composed by myself 

and that no part of this thesis has been submitted for any other degree or 

qualification. The work described is my own unless otherwise stated. 

Valentini A. Pappa 

August 2009 

2 



Abstract 

Intercropping systems, with legumes as a component, have high potential to provide 

symbiotically fixed nitrogen (N), increase use of resources, improve crop and soil 

quality and reduce N losses from agricultural ecosystems. This study aimed to a) 

understand the agronomic and environmental effects of intercrops in the accompanying 

and subsequent crop, and b) understand how the choice of species and variety influences 

N losses in an intercropped low input rotation. 

• An experiment was established near Edinburgh, SE Scotland, UK, consisting of 12 

hydrologically-isolated plots. Treatments were a spring barley (Hordeum vulgare cv. 

Westminster) monoculture and intercrops of barley / white clover (Trfolium repens cv. 

Alice) and barley! pea (Pisum sativum cv. Zero 4 or cv. Nitouche) in 2006. Spring oats 

(Avena sativa cv. Firth) was planted on all plots in 2007. In the third season, all plots 

were sown with perennial ryegrass. No fertilisers, herbicides or pesticides were used at 

any stage of the experiment. 

At harvest, the total above ground biomass of barley intercropped with clover (4.56 t ha-

1 ) and barley intercropped with pea cv. Zero 4 (4.49 t ha') were significantly different 

from the barley monocrop (3.05 t ha'). The grain yield of the barley (2006) intercropped 

with clover (3.36 t ha') was significantly greater than that in the other treatments (P< 

0.01). The accumulation of N in barley was low in 2006, but significantly higher in the 

oats grown the following year on the same plots. The intercrops affected the yield and N 

uptake of the spring oats in the following year. 

Nitrate leaching was reduced where legumes were used (Pea cv. Zero 4) in comparison 

with the barley monocrop (cumulative values of 670 g NO 3 - N ha' and 3804 g NO 3--N 

ha', respectively) and gaseous losses were also reduced (cumulative values of 2.14 kg 

N20-N ha' and 3.20 kg N 20-N ha'). Additionally, the leguminous intercrops increased 

the availability of N during the first growing season and for the following crop. In 

general, N20 fluxes were correlated with N}L1n soil, DON in soil, water filled pore 

space (WFPS) and grain yields (cumulative values). 

This experiment has highlighted the varied plant growth of barley intercropped with 

different legumes including different cultivars and species and the additional effects in 

the following growing year. The two barley/ pea intercrops had similar above ground 

biomass and grain yield for both component species (barley and peas). However, the 

accumulation of N in the above ground biomass of barley differed between these two 
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treatments with significantly more N accumulated in barley/ pea cv. Nitouche than the 

barley/ pea cv. Zero 4. The two barley/ pea intercrops had significantly different N 

losses of N20 and NO3 . Barley/ pea cv. Nitouche had the highest losses in comparison 

with barley/ pea cv. Zero 4 mainly in the year of production, but provided available N 

deeper in the soil. Barley/ pea cv. Zero 4 had lower losses than the barley monocrop 

largely as a consequence of the accumulation of N in the above parts of barley. 

However, the highest N losses were observed in the barley/ clover treatment but this 

treatment also provided the most available soil N to the following crop. This study has 

uniquely shown that different legume species or varieties in an intercropped system 

result in significant differences in N losses. The need has been demonstrated for long 

term experiments to help develop sustainable farming systems. The results indicate that 

legume choice is central to optimising plant productivity and nutrient use efficiency in 

intercropping designs. The choice of the crop mixture and the initial levels of N in the 

soil seem to be the most important drivers for N losses. 

Keywords: cereals, clover, grain yields, intercropping, N losses, pea 
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1. Introduction 

Nitrogen (N) plays a major role in supporting the growth of plants and is essential for 

high grain yields in arable agricultural systems. The use of synthetic fertilisers has 

increased in the last decades contributing to the environmental pollution of Earth's 

atmosphere (Erisman et al., 2008). Synthetic fertilisers contribute both to air pollution 

by greenhouse gas emissions mainly nitrous oxide (N20), and water pollution by 

leaching into drainage waters. These two pollutants can easily overlap, when attempting 

to estimate the losses of one or the other (Mosier etal., 1998). 

Nitrate leaching is driven by the application of N and related to the surplus of N applied. 

However, changes in practices, such as timing of application to match crop demand, 

have reduced the nitrogen excess from a maximum 70 kg ha' in the early 1980s to about 

25 kg ha' nowadays in conventional farms (Goulding, 2000). Soil texture and structure 

can influence the amount of leachate, as lighter soils have poor water holding capacity. 

Agriculture has an important role in greenhouse gas emissions, given that agricultural 

soils are the most important source of N 20, and account for 24% of global N 20 

emissions (Smith and O'Mara, 2007) and 83% of total N 20 emissions in Scotland (The 

Scottish Goverment, 2008). N 20 concentrations grew from 270 ppb in 1850 to 410 ppb 

in 2000 (Fowler et al., 2008). N20 has 298 times greater global warming potential than 

carbon dioxide (CO 2) and can enhance depletion of the ozone layer in the upper 

atmosphere. Investigating possible fluxes of these gases from soil and their mitigation 

are high priorities under the current trends of climate change. Soil and crop management 

can contribute to the reduction of N 20 emissions, but there is a lack of information on 

how such approaches can help to develop sustainable practices. Nitrate leaching levels 

are very important for assessing the quality of water resources (Vinten etal., 1992). Poor 

fertiliser practises can cause nitrate pollution of ground-water. Developing fertiliser 

practices that maintain the farmers' profitability while minimising the environmental 

impact on ground-water can help the sustainability of many cropping systems (Arregui 

and Quemada, 2006). 

The use of legumes is well recognised as an alternative practice that can contribute to the 

reduction of nitrogen fertiliser use. Legumes can provide fixed nitrogen to the soil 

without the need for the fossil fuel inputs that are necessary to produce and apply 

fertilisers, either synthetic or organic. However, there is not much evidence regarding 

the extent to which legumes contribute to N losses and specifically N 20 emissions 

including the important factors of grain yields and soil N availability (Thorsted et al., 
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2006; Chen et al., 2008). The use of legumes in mixtures is mainly centred on grasslands 

(e.g. mixtures of clover and grass) across Europe (Djurhuus and Olsen, 1997; I-Iøgh-

Jensen, 2001) and is less common in mixtures of cereal and legumes (Fujita etal., 1992; 

Thorsted et al., 2002; Hauggaard-Nielsen et al., 2009). The contribution of legumes to 

N20 emissions and what the losses are from the intercropped systems within the year of 

use and the following year are uncertain. 

This thesis has used different legume varieties and species in combination (intercropped) 

with barley in a low input system to both understand and measure the effects of legumes 

on the current and subsequent crop. Specific aims were: 

- To estimate the effect of intercropping different legumes (species and varieties) with 

barley on grain yield, dry matter production, N uptake in barley and in the subsequent 

crops in the following two years (Paper 1) 

- To assess N use efficiency of intercrops and monocrops (Paper 1 and 3) 

- To determine the accumulation of N in shoots and roots of intercrops in the year of 

growth and following years (Paper 1 and 3) 

- To investigate and quantify N losses from intercrops in a three-year low input rotation 

(Paper 2) 

- To investigate factors controlling N 20 fluxes (direct and indirect) from an intercropped 

low input rotation and the drivers responsible for NO 3-leaching (Paper 2 and 4). 



2. Literature Review 

2.1 Organic agriculture and Climate Change 

The current change in global climate is occurring largely as a consequence of the 

burning of fossil fuel (coal, oil, natural gas) and the mineralisation of organic matters as 

a result of land use change (Gruber and Galloway, 2008). These processes have been 

accelerated by human use of fossil sources, clearing of natural vegetation and use of 

these soils for cropping. According to the IPCC, the annual amount of greenhouse gases 

emitted by the agricultural sector was estimated at between 5.1 and 6.0 Gt CO 2  

equivalents' in 2005 (Barker et al., 2007). This represents approximately 10-12% of 

total greenhouse gas (GHG) emissions CH 4  accounts for 3.3 Gt equivalents and N 20 for 

2.8 Gt CO2  equivalents annually, while net emissions of CO 2  are small at 0.04 Gt 

equivalents per year. 

Predictions regarding the future global trends for greenhouse gas emissions from 

agriculture largely depend how human activities develop in the coming decades, given 

that there are highly divergent choices ranging from fossil fuel intensive development to 

options based upon a high degree of environmental protection (Solomon et al., 2007). 

These pathways or scenarios will determine future emission trajectories and will force 

societies to make choices that include future consumption of C based energy resources, 

land use deforestation, and consumer attitudes and diet (Smith et al., 2007). According 

to current projections, total greenhouse gas emissions from agriculture are expected to 

reach 8.3 Gt CO2  equivalents per year in 2030, compared to the current level of 

approximately 6.0 Gt CO 2  equivalents annually (Smith and O'Mara, 2007). Agriculture 

can also help to mitigate climate change by reducing emissions of greenhouse gases and 

sequestering CO2  from atmosphere in the soil. In 2004, IFOAM published a scoping 

study on "The Role of Organic Agriculture in Mitigating Climate Change". The study 

looked at how organic agriculture could contribute to reducing greenhouse gas emissions 

and mitigate the impacts of climate change (Kotschi and MUller-Sämann, 2004). Organic 

agriculture minimizes CO 2  emissions from agricultural ecosystems, and can also 

- A measure used to compare the emissions from various greenhouse gases based upon their 
global warming potential (GWP). Carbon dioxide equivalents are commonly expressed as 
'million metric tonnes of carbon dioxide equivalents (MMTCDE)'. The carbon dioxide equivalent 
for a gas is derived by multiplying the tonnes of the gas by the associated GWP. MIMTCDE = 
(million metric tonnes of a gas) * (GWP of the gas). For example, the GWP for methane is 21 
and for nitrous oxide 310. This means that emissions of 1 million metric tonnes of methane and 
nitrous oxide respectively is equivalent to emissions of 21 and 310 million metric tonnes of 
carbon dioxide. 
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contribute to carbon sequestration because of the systematic application of manure and 

compost from animal and crop residues, crop-legume rotations, green manuring with 

legumes, and agroforestry with multipurpose leguminous trees. Soil is the most 

important sink for methane where high bacterial activity oxidizes it. Controlled 

anaerobic digestion of animal manure can contribute significantly to reducing methane 

emissions. Nitrous oxide emissions are minimized in an organic system. 

2.1.1. Organic farming 

"Organic agriculture is a production system that sustains the health of soils, ecosystems 

and people. It relies on ecological processes, biodiversily and cycles adapted to local 

conditions, rather than the use of inputs with adverse effects. Organic agriculture 

combines tradition, innovation and science to benefit the shared environment and 

promote fair relationships and a good quality of itfefor  all involved. "(IFOAM, 2008). 

The main concept that farmers try to follow is 'organic farming is production without 

chemicals', but this sentence is incomplete without including some fundamental 

characteristics. According to IFOAM, the principal characteristics and aims of organic 

farming are summarised as: 

Producing high quality food in sufficient quantities. 

• Encouraging and enhancing the biological cycles within the farming system, 

involving micro-organisms, soil flora and fauna, plants and animals. 

• Maintaining and increasing long term fertility of soils. 

• Maintaining the genetic diversity of the production system and its surroundings. 

• Using, as far as possible, renewable resources in a locally organized production 

system. 

Creating a harmonious balance between crop production and animal husbandry. 

• Minimising all the forms of pollution. 

Considering the wider social and ecological impact of the farming system. 

2.1.2. Organic farming in Europe and in UK 

Since the beginning of the 1990s, organic farming has spread rapidly in almost all 

European countries; however, the rate of increase has slowed in recent years. In Europe 

almost 6.3 million hectares were managed organically by almost 170,000 farms in 2003. 

This constitutes 3.4% of the agricultural area and 2% of the farms in the EU. In the 
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Figure 1: Organic farming in Europe (The World of Organic Agriculture 2008, 

Statistics and Emerging Trends) 
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great increase in the number of organic farms reaching 25% of the total (Wilier and 

Yussefi, 2005). 

The total area of organic and in-conversion land in the UK as of January 2007 was 

604,571 ha. This is little changed from 2006 and represents 3.5% of the total agricultural 

area (excluding common grazing). Of this figure, 20% was in conversion and 80% was 

fully organic (Table 1). Since January 2006 the fully organic area has decreased by 7%, 

although the area of land in conversion has risen by 41%. The area of fully organic or in-

conversion land in England and Wales has increased in 2007 although the area in 

Scotland and Northern Ireland has decreased by around 5% since January 2006. Most of 

the reduction in area in Scotland is due to a decrease in organically certified permanent 

pasture (DEFRA, 2005). In the EU, crop and livestock products sold as organic must be 

certified as such under EC Regulation 2092/91. The Soil Association is the UK's largest 

certification body, and was founded in 1946 by a group of farmers, scientists and 

nutritionists, who observed a direct connection between farming practice and plant, 

Table 1: Organic and In-conversion Land in the UK (Jan 2007) Defra 

	

Total 	% of total 
agricultural agricultural 

In conversion 	Organic 	Total (ha) area (ha) 	area 

North East 6,923 22,618 29,540 589,077 5.0% 
North West 1,781 19,438 21,219 935,870 2.3% 
Yorkshire & Humberside 3,387 9,032 12,419 1,097,390 1.1% 
East Midlands 2,061 12,465 14,526 '1,229,436 1.2% 
West Midlands 3,974 26,310 30,284 959,623 12% 
Eastern 31630 10,785 14,415 1,432,429 1.0% 
South West 31,588 93,415 125,003 1,877,866 6.7% 
South East (Inc London) 13,181 35,798 48,979 1,206,867 4.1% 

England 66,525 229,861 296,386 9,328,564 3.2% 
Wales. 15,427 63,546 78,973 1,448,683 5.5% 
Scotland 35,194 200,103 235,298 5,607,010 4.2% 
Northern Ireland 3,991 5,136 9,127 1,028,495 0.9% 

UK 121,137 498,646 619,783 17,412,752 3.6% 
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animal, human and environmental health. The catalyst was the publication of The Living 

Soil by Lady Eve Balfour in 1943. The book presented the case for an alternative, 

sustainable approach to agriculture that has since become known as organic farming. In 

the ensuing years the organisation has developed organic standards and now works with 

consumers, farmers, growers, processors, retailers and policy makers and certifies 80% 

of all organic products sold in UK (Soil Association, 2008). 

Organic farming is a steadily increasing production in European agriculture. However, a 

further expansion of organic farming is needed to meet increasing  consumer worldwide 

demand for products, which are healthy, safe, and of high quality and produced with 

consideration for animal welfare and the environment (Marsden et al., 2002). European 

organic farming and the research within this area are at the forefront internationally and 

offer alternative food production systems, which could strengthen the competitiveness of 

EU agriculture. 

2.1.3. The potential of Organic Farming to reduce Greenhouse Gas Emissions 

Organic farming has considerable potential for reducing emissions of greenhouse gases, 

as the global warming potential (GWP) of organic farming is smaller than that of 

conventional or integrated systems when calculated per unit area, but not as low as when 

calculated per product unit, as conventional yields are generally higher (Badgley, 2007). 

Organic farming can be self-sufficient in nitrogen being dependant on the fixed nitrogen 

and other management practices (Pietsch et al., 2007). Mixed organic farms aim to 

target practice highly efficient recycling of manures from livestock and crop residues. 

Leguminous crops can deliver additional nitrogen in sufficient quantities for the 

rotations. Badgiey et al. (2007) calculated the potential fixed nitrogen by leguminous 

plants via intercropping and off-season cropping to be 154 million tonnes per year 

worldwide, a potential which exceeds by far the nitrogen production from fossil fuel and 

which is not fully understood within conventional farming techniques. 

In organic farming, the prohibition on applied mineral nitrogen and the reduction of 

livestock units per hectare considerably decreases the concentration of easily available 

mineral nitrogen in soils and thus N20 emissions (IPCC, 2007). A balance between the 

inputs and outputs and the nitrogen use efficiency is essential, as the availability of N is 

restricted. 
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2.1.4. Organic farming and the potential to adapt to climate change 

Agricultural production in most parts of the world will have to deal with more 

unpredictable weather conditions. Developing countries such as South Asia and 

Southern Africa could suffer reductions in yield of several crops if no investment is 

made into improving the adaptiveness of the production systems. Besides specific, 

technical measures (irrigation, breeding for drought or heat tolerant crops), the resilience 

of whole production systems should remain a very important focus (Niggli et al., 2008). 

Soil fertility-building and soil conserving techniques potentially place organic farming 

in a position to maintain productivity in the event of drought, irregular rainfall, flooding, 

and rising temperatures. Such techniques include i) the on-farm flux of manure from 

livestock production to cropland, ii) the use of composts, iii) the' use of leguminous 

crops and green manure in rotations, iv) diversified crop sequences with permanent soil 

cover and different rooting depths as well as v) minimum or shallow tillage. 

Although organic agriculture is not designed to use water efficiently, different 

agricultural techniques used in organic agriculture affect water use efficiency of organic 

arable crops in a positive way (Dalgaard et al., 2001). In addition, organic management 

practices also decrease pollution in water effluent as the main pollutants, such as mineral 

nitrogen and pesticides, are prohibited. 

An additional strength of organic farming systems is their diversity - including the 

diversity of crops, fields, rotations, landscapes and farm activities. The high level of 

diversity of organic farms provides many ecological services that significantly enhance 

farm resilience. Positive effects of enhanced biodiversity on pests and diseases as well as 

on better utilization of soil nutrients and water prevention are well documented (Jensen 

and Hauggaard-Nielsen, 2003; Altieri, 2005). 

Genetic diversity of crop plants is generally considered a fundamental resource for 

adaptation and therefore crucial for maintaining the stability of food supply. As 

resilience and robustness to environmental stress are multigenic characteristics, in situ 

conservation and on-farm breeding are likely to be more successful than genetic 

engineering (Altieri, 2005; Bengtsson, 2005; Niggli etal., 2008). 
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2.2. Nitrogen fixation by legumes 

2.2.1. Nitrogen 

Nitrogen is one of the 17 chemical elements required for plant growth and reproduction 

and is an abundant element on and around Earth - about 78 percent of the Earth's 

atmosphere is nitrogen gas (N 2). As with all plant nutrients nitrogen must be in specific 

forms to be utilised by plants. Despite nitrogen being one of the most abundant elements 

on earth, nitrogen deficiency is probably the most common nutritional problem affecting 

plants worldwide. Healthy plants often contain 3 - 4% nitrogen in their above- ground 

tissues. Nitrogen is essential for many biological processes; for example, it is included in 

all amino acids (the stem amin derives from ammonia), is incorporated into all proteins 

and is present in the four bases that make up nucleic acids, such as DNA, and RNA. 

2.2.2. The nitrogen cycle in soil 

The nitrogen cycle is one of the most important processes in nature for living organisms. 

According to Henderson's dictionary of biological terms (1999): "nitrogen cycle is the 

sum total of processes by which nitrogen circulates between the atmosphere and the 

biosphere or any subsidiary cycles within this overall process' (Fig. 2). 

Soil nitrogen exists in many chemical forms although soils tend to be dominated by 

organic nitrogen compounds, ammonium (NH) ions, and nitrate (NO 3 ) ions. At any 

given time, 95-99% of the potentially available nitrogen in the soil is in organic forms, 

either in plant and animal residues, in the relatively stable soil organic matter or in living 

soil organisms, mainly microbes such as bacteria and fungi. This nitrogen is not directly 

available to plants, but some can be converted to available forms by micro-organisms. 

The majority of plant-available nitrogen is in the inorganic (known as mineral nitrogen) 

+ and NO3  - forms. 
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Figure 	2: 	The 	nitrogen 	cycle 	in 	soils 	(http://ohioline.osu.edulaex- 

factlimages/463_1 .jpg). 

The conversion of organic N to NI11 4  and NO3  is known as mineralization, a process 

which occurs in soil as micro-organisms convert organic N to plant-available inorganic 

N. The first step of mineralization is called aminization, in which micro-organisms 

(primarily heterotrophs) break down complex proteins to simpler amino acids, amides, 

and amines. Heterotrophic micro-organisms require preformed organic compounds as 

sources of carbon and energy. Autotrophic micro-organisms can derive energy from the 

oxidation of inorganic elements or compounds. 

Aminization: Proteins —> R-NH + CO 2  ( Equation 1) 

Ammonflcation is the second step of mineralization in which amino (NH 2) groups are 

converted to ammonium. Again, micro-organisms (primarily heterotrophic) accomplish 

this action. 

Ammonification: R-NH2  + H20 —NH3  + R-OH( Equation 2) 

Nitrification is the next process in which the previous compound is oxidized to NO 3 . 

Microbial activity is responsible for the two steps of nitrification. Nitrosomonas 

(obligate autotrophic bacteria) convert ammonium to nitrite. Nitrification inhibitors, 

such as nitrapyrin (N-Servea) or dicyandiamide (DCD) interfere with the function of 
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these bacteria, blocking ammonium conversion to leachable nitrate. The second step of 

nitrification occurs through Nitrobacter species, which cnvert nitrite to nitrate. This 

step rapidly follows ammonium conversion to nitrite, and consequently nitrite 

concentrations are normally low in soils (Focht and Verstraete, 1977). 

Immobilization, or the temporary tying up of inorganic nitrogen by soil micro-organisms 

decomposing plant residues, is a recycling process and the reverse of mineralization. 

Immobilized nitrogen will be unavailable to plants for a time, but will finally become 

available again as residue decomposition proceeds and populations of micro-organisms 

decline (Prasd and Power, 1997; Ferguson, 2004). Immobilization of mineral N can 

occur (often quickly) by integration of fresh organic material into soil, depending on the 

humification coefficient or effectual organic matter content and the ratio of carbon (C) to 

nitrogen (C:N ratio) in the incorporated organic material. When utilizing organic 

material with a low N content, the micro-organisms need supplementary N, reducing the 

soil mineral N pool with a resulting decrease in plant .N availability (Hofman, 2004). 

There is often no net immobilization when a legume crop, such as alfalfa or white 

clover, is ploughed under, because the low C:N ratio results in net mineralization 

(Anderson, 1998). 

Ammonium-N is produced in the soil by nitrogen ' fixing organisms which produce the 

multicomponent key enzyme complex, referred to as nitrogenase. It consists of two 

oxygen-sensitive, water-soluble proteins. The larger molecule known as dinitrogenase or 

P1 is a molybdenum- and iron- containing protein, while the smaller molecule is an iron 

protein known as dinitrogenase reductase or P2. Both enzymes are required for nitrogen 

fixation in a ratio of one or two P2 for each P1; neither component alone will fix 

nitrogen. For the nitrogenase reaction, energy is provided by the hydrolysis of ATP. 

Estimates of the energy costs of nitrogen fixation in vivo have been based on the 

stoichiometry of ATP hydrolysis in reaction mixtures which contain a reductant and 

purified nitrogenase. The stoichiometry between the number of moles of ATP 

hydrolysed per mole of nitrogen reduced depends on the reaction conditions (pH, 

temperature, ratio of components protein of the nitrogenase complex), but it is 

independent of the substrate. Under optimal conditions, at least two molecules of ATP 

are hydrOlysed per electron transferred to substrate and the overall reaction for nitrogen 

reduction can be written as: 

N2  + 81{' + 8& + 1 6MgATP —. 2NH3  + H2  + 1 6MgADP + 1 6Pi (inorganic phosphorus) 

(Equation 3) 
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2.2.3. Nitrogen-Fixing Systems 

The capability of biological fixation of atmospheric nitrogen (N 2) is restricted to 

organisms with a prokaryotic cell structure, namely bacteria and blue-green-algae. Three 

major strategies of N 2  fixation can be differentiated in terrestrial ecosystems, symbiotic, 

associative, and free living nitrogen fixing organisms, differing in both energy source 

and fixation capability. On average, symbiotic systems have the highest fixation 

capability since not only the energy in the form of carbohydrates is provided by the 

plant, but also other conditions (e.g. export of reduced N) are optimised for efficient N 2  

fixation (Cocking, 2003). The plants benefit directly since more than 90% of the fixed 

nitrogen is rapidly translocated from the bacteria to the plant. Nodulated legumes, such 

as clover and peas, in symbiosis with Rhizobium and Bradyrhizobium are among the 

most prominent N 2-fixing systems in agriculture (Zahran, 1999). Our understanding of 

the Rhizobium-legume symbiosis, from the nature of the infection specificity to the 

biochemistry of the nitrogen-fixing process and the energy economics in the plant, has 

advanced considerably since the 1970's (Brockwell etal., 1995). 

The first phase of the interaction occurs soon after the germination of the legume seed in 

soil containing Rhizobium species through the nodulation of roots. The bacteria must 

penetrate the root for the infection to occur, and it is possible in this phase to establish 

the specificity between recognition and the host-Rhizobium ( Vincent et al., 1979). Once 

the bacterial cells are transferred to the root cortex, they are released into the cortex 

cells. Then, the nodule meristem is formed and the nodule expands. After that, the 

infected cortex cells are enlarged inside the nodules (Gardener etal., 1985). 

One of the most remarkable events during the development of nitrogen fixing legume 

nodules is the production of haemoglobin, which becomes a major nodule protein. It is 

now certain that the haem is synthesized by the rhizobia (Beringer et al., 1979) and the 

globin is produced by the plant (Sedloi-Lumbroso etal., 1978). The chief role of haem is 

to promote a flux of oxygen in the nodules sufficient to maintain oxidative 

phosphorylation by the bacteroids in micro-aerobic conditions (Rhodes and Robert, 

1982). 

2.2.4. 	Key factors affecting nitrogen fixation 

Interactions between the micro-symbiont and the plant are influenced by edaphic, 

climatic and management factors. A legume-Rhizobium symbiosis might perform well in 
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a loamy soil but not in a sandy soil, because of the effect that factors listed below have 

either on the micro-symbiont and/ or the host-plant. 

Edaphic Factors 

The six main edaphic factors that relate to the soil and that can limit biological nitrogen 

fixation are: excessive soil moisture, drought, pH, P deficiency, excess mineral N, and 

deficiency of Ca, Mo, Co and B. 

Excessive moisture and water-logging prevent the development of root hair and sites of 

nodulation, and therefore interfere with the normal diffusion of 02 in the plants root 

system (Yin et al., 2009). 

Drought reduces the number of rhizobia in soils, and can inhibit nodulation and N 2  

fixation. Prolonged drought will also promote nodule decay. However, deep-rooted 

legumes exploiting moisture in lower soil layers can continue fixing N 2  when the soil is 

drying (Athar and Johnson, 1997). Mycorrhizal fungal infection has also been found to 

improve tolerance of plants to drought. 

Soil acidity and related problems of Ca deficiency and aluminium and manganese 

toxicity adversely affect nodulation, N 2  fixation and plant growth. Most legumes plants 

require a neutral or slightly acidic soil for growth, especially when they depend on 

symbiotic N2  fixation (Bordeleau, 1994). The failure of legumes to nodulate under acid-

soil conditions is common, especially in soils of pH less than 5.0. The inability of some 

rhizobia to persist under such conditions is one cause of nodulation failure, but poor 

nodulation can occur even where a viable Rhizobium population can be demonstrated. It 

has been observed destructive effects of acidic soils on Rhizobium-legume symbiosis 

and N2  fixation. Low pH reduced the number of R. leguminosarum by. trifolii cells in 

soils, which resulted in no or ineffective nodulation by clover plants. The number of 

nodules, the nitrogenase activity, the nodule ultrastructure, and the fresh and dry weights 

of nodules were affected to a greater extent at a low medium pH (<4.5) in comparison 

with a medium high pH (Zahran, 1999). 

Phosphorus deficiency reduces nodulation, N 2  fixation and plant growth. Identification 

of plant species adapted to low-P soils is a good strategy to overcome this soil 

constraint. The role of mycorrhizal fungi has increased plant P uptake with beneficial 

effects on N2  fixation. Dual inoculation with effective rhizobia and mycorrhizal fungi 

shows synergistic effects on nodulation and N2  fixation in low P soils. Trees are usually 
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colonised by mycorrhizal fungi in natural ecosystems in the tropics. The significance of 

this symbiosis in nature should be better recognised (Hogh-Jensen, 1996). 

Mineral N inhibits the Rhizobium infection process and also N2  fixation. The former 

problem probably results from impairment of the recognition mechanisms by nitrates, 

while the latter is probably due to diversion of photosynthates toward assimilation of 

nitrates. Application of large quantities of fertilizer N inhibits N 2  fixation, but low doses 

(<30 kg N ha') of fertilizer N can stimulate early growth of legumes and increase their 

overall N2  fixation. The amount of this starter N must be defined in relation to available 

soil N (Zaliran, 1999). 

Various micro-elements (Cu, Mo, Co, B) are necessary for N 2  fixation. Some of these 

are principlal components of nitrogenase, for example Mo. 

Climatic Factors 

The two important climatic determinants affecting biological nitrogen fixation are 

temperature and light. 

Extreme temperatures affect N 2  fixation adversely. This is easy to understand because 

N2  fixation is an enzymatic process. However, there are differences between symbiotic 

systems in their ability to tolerate high (>35°C) and low (<25°C) temperatures. 

The availability of ijgt regulates photosynthesis, upon which biological nitrogen 

fixation depends. An example that has been demonstrated by diurnal variations in 

nitrogenase activity, where only a very few plants can grow and fix N 2  under shade. 

Biotic Factors 

Among biotic factors, the absence of the required rhizobia species constitutes the major 

constraint in the nitrogen fixation process. The other limiting biotic factors could be 

excessive defoliation of host plant, crop competition and insects and nematodes (Zahran, 

1999). 

2.2.5. Nitrogen fixation and the global nitrogen cycle 

Until relatively recently, the contribution of nitrogen fixation to the global nitrogen cycle 

probably had not changed for centuries, having been in approximate balance with the 

denitrification process that converts combined nitrogen back to atmospheric nitrogen. 
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Fixation did not occur to excess because biological nitrogen fixation is inhibited by the 

presence of mineral nitrogen. During the past 40 years, the global nitrogen cycle has 

been affected by the increase in industrial fixation of nitrogen, but the environmental 

impacts are yet to be measured and assessed. It would be prudent to minimise the further 

perturbation of the global nitrogen cycle, a major natural cycle (Galloway and Cowling, 

2002). 

2.2.6 Legumes as a nitrogen source for agriculture 

The use of legumes in agriculture may require or encourage completely different 

methods of farming from those associated with conventional farming. A wide variety of 

methods can be adopted to use the N fixed by legumes and can be divided into three 

main functions: 

Providing protein for human or animal consumption 

and/or 

Providing fixed nitrogen for the benefit of other crops 

and! or 

Reducing environmental pollution, such as from greenhouse gases 

Legumes can also be grown as green manure crops and then ploughed into the soil in 

order to improve the nitrogen status prior to sowing of a non-fixing crop (Schmidt et al. 

1999) Forage legumes such as clover can also be undersown together with a taller crop, 

such as cereals. This provides analogous benefits to mixed cropping and intercropping, 

and can also be an advantage to follow on crops, control weeds and provide a habitat for 

beneficial invertebrates (Armstrong and McKinlay, 1997; Brandsaeter, 1998). Cereals 

can be direct drilled into a permanent clover sward (Schmidt, 2001) or into legume 

which, in the following year, suppressed weed (White and Scott, 1991). 

In a ley-arable crop rotation, grass and a forage legume, usually clover, are grown for 

several years, grazed by animals and/or cut for silage or hay (Philipps et al., 1996; 

Elgersma et al., 2000), before being ploughed up so that arable crops can be sown. The 

last arable crop to be grown before the ley phase is usually undersown with clover. In 

the icy phase, the grass obtains greater N from the presence of the clover grown to 

establish the ley and in addition, the grazing animals obtain a high protein diet. Manure 
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from the grazing animals transfers fixed N to grass and can be spread on arable crops, 

which can also benefit from the accumulated fixed N release when the ley is ploughed 

(Hogh-Jensen, 1996; Philipps et al., 1996). Before the invention of the Haber-Bosch 

process, ley-arable crop rotations were the main systems for agriculture in Europe, an 

example is that of the Norfolk four course rotations (Lampkin, 1990). 

2.2.7. Benefits of legume use in agriculture 

The ability of legumes to fix atmospheric N 2  and thus add external N to the crop-soil 

ecosystem is a distinct benefit of legume culture. The amount of N biologically fixed 

each year by legumes varies greatly from zero to several hundred kg N per ha (Power, 

1987; Provorov and Tikhonovich, 2003). Many grain legumes are efficient at N fixation. 

Variables affecting quantity of N fixed include not only legume species and cultivar, but 

also factors such as soil type and texture, pH, soil nitrate-N levels, temperature and 

water regimes, availability of other nutrients, and crop (especially harvest) management, 

with the latter extremely important. For instance, alfalfa (Medicago saliva) may add up 

to several hundred (300-400) kg N/ha to the soil if a final cutting of hay is not removed, 

compared to less than 150 kg N if only the roots and stubble remain (Heichel, 1987). 

The primary use of a grain legume is to provide protein (obtained as far as possible from 

biological N fixation) for human or animal consumption, but residues of the crop may 

provide fixed N for the successive crop. If the grain legumes are fed to animals (or 

humans) and the animal (or human) faeces are returned to the soil, then much of the 

fixed N in the grain becomes available to other crops. Grain legumes can be grown in 

alternate rows with a non-N-fixing non-grain species (intercropping), or sown in a 

mixture with a non-N fixing grain (mixed cropping). 

The economic value of the N fixed by legumes varies widely. One must consider the 

cost of production of the legumes, the amount of fixed N returned to the soil, and the 

availability of this N for future crops. Often, these costs are compared directly against 

the cost of purchasing and applying an equal quantity of N fertiliser plus the net' income 

lost by producing a legume instead of a grain crop (if the legume is grown in rotation). 

In the past few decades, the cost of production and price of N fertilisers have been such 

that this type of calculation would generally favour the use of inorganic N fertiliser. This 

fact is largely responsible for the decreased use of legumes in our crop production 

systems during the past 40 years (Power, 1987). However, current economics are 

starting to favour the increased use of legumes, due to the high cost of management of 

the N fertilisers due to multiple application and increase rates. 
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There are other benefits from using legumes in a cropping system which also should be 

included into any comparison with fertiliser-N, but unfortunately, they are often omitted 

due to the difficulty in quantifying them. Usually, yields of a grain crop grown in 

rotation are at least 10 to 20% greater than those of continuous grain, regardless of the 

amount of fertiliser applied. This yield benefit is often referred to as the rotation effect, 

due to the additional N supply, which will not completely reduce this yield difference of 

the grain. Cook (1984) and others have shown that rotation of crops can reduce the 

populations and activity of some pathogenic soil organisms. Similarly, rotations can also 

break the weed and insect cycles that often prevail with year on year cropping. 

Legumes may have additional long-term benefits in some soils but again these benefits 

are difficult to convert into active monetary values. Usually legume rotations, compared 

with continuous cropping, result in enhanced soil organic matter content and 

mineralisable N. As previously described, legumes are high in protein, and therefore, 

nitrogen rich. The nitrogen supplied by legumes facilitates the decomposition of crop 

residues in the soil and conversion to soil building organic matter. This provides not 

only better control of N availability, but also enhanced soil structure and requires less 

energy for cultivation, as well as less erosion (Hoyt and Hargrove, 1986). 

Forage legumes are particularly good for improving soil structure, because they have a 

high rate of root turnover, providing substrates for bacteria that produce polysaccharides, 

which are important structural components of soil. Decomposing legume roots and 

mycorrhizal hyphae bind soil aggregates together, increasing their stability (Miller and 

Jastrow, 1996). 

Decreasing erosion, over a period of decades, can have a major influence on the 

properties and productivity of some soils (Mielke and Schepers, 1986). The enhanced 

mineralisable N levels in soils with legume rotations compared to those for continuously 

cropped soils may greatly aid water quality. With the use of legumes, not only is less 

fertiliser-N required, but the level of nitrate N in the soil at any one time is usually less, 

so there is less nitrate to leach below the root zone (Power, 1987). 

In addition to the above, there are many more benefits to the use of legumes in the 

development of soil quality. Soil porosity is increased as several legumes have active 

taproots reaching 1.5 in to 2.5 in in length that open pathways deep into the soil. 

Additionally, nitrogen-rich legume residues encourage earthworms and the burrows they 

create, promoting air movement and water percolation deep into the soil (Schmidt et al., 

2001; Eisenhauer and Scheu, 2008). Moreover, earthworms have the ability to recycle 
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crop nutrients that are deep in the soil profile. According to research in both the United 

States and Canada, the protein, glomalin, produced symbiotically along the roots of the 

legumes and other plants, serves as 'glue' that helps keep the soil together into stable 

aggregates by increasing the pore space and tilth and reducing soil erosion and surface 

cracking (Nyatsanga and Pierre, 1973). 

Legumes can also lower the pH and promote increased plant-soil-microbial activity in 

soils with a pH above the range for optimum crop growth and development. In a 

greenhouse experiment, alfalfa and soybeans lowered the pH in a Nocollet clay loam 

soil by one whole pH unit (Nyatsanga and Pierre, 1973). Moreover, legumes contribute 

to an increased diversity of soil microbiology leading to a greater stability to the total 

life of the soil. Legumes also provide an excellent break in a crop rotation that reduces 

the build-up of grassy weed problems, insects and diseases (Wright and Upadhyaya, 

1997). 

In New Zealand, the use of grass-white clover pastures has demonstrated their great 

economic continuation. The production from these pastures is among the most 

economical in the world (Frame et al., 1998) and the favorable weather conditions allow 

the white clover to grow almost all year round. It has been estimated that UK livestock 

producers having legume-based systems could provide an economic benefit of 

approximately £300m a year (Doyle and Bevan, 1996). The environmental benefits of 

legume systems are of great importance. Losses of N as N 20 (a greenhouse gas) can be 

greater in fertiliser based systems than in legume based systems (Jensen and 

Hauggaard-Nielsen, 2003). 

Organic farming is widely believed to cause less N pollution of ground-water than 

conventional agriculture producing similar yields (Drinkwater et al., 1998). Goulding 

(2000) reviewed data on leaching from conventional and organic leys and found that 

conventional grass-only first year leys leached around 1.5 times as much N as first year 

organic grass-clover leys, and second year conventional leys leached around 3 times as 

much N as second year organic leys. However, leaching from first year organic arable 

crops was around twice as high as leaching from first year conventional crops, owing to 

the greater N losses resulting from ploughing of grass-legume leys. N losses from 

second year conventional arable crops were around 1.5 times higher than N losses from 

second year organic arable crops. In the third year of arable crops leaching losses were 

around 1.5 times higher in the conventional system. Over the whole rotation, leaching 

losses of N were only slightly lower from the organic system. 
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Mixed farming systems can also use nitrogen more efficiently than purely arable farms 

or pastoral farms (Granstedt, 1991). There is however, a risk of nitrate leaching, 

following the ploughing of pastures (Scholefield and Smith, 1996). Phillips and Stopes 

(1995) note that while leaching from this stage of the rotation is high, the lower losses 

during the rest of a typical organic rotation compensate for this, so the average nitrogen 

loss is 10.3-20.8 kg N ha yf 1 . 

Milk yields from grass-clover pasture with no applied N in New Zealand were found to 

be 83% of those from pastures receiving 400 kg N hi 1 , but the efficiency of N use was 

much greater when no N fertiliser was applied. At the high rate of N application, only 

26% of the fertiliser N and biologically fixed N was recovered in milk and other 

produce. When the pasture was reliant on biologically fixed N, 52% of the N input was 

recovered in the farm produce (Ledgard, 1999). 

It is difficult to make comparisons between conventional and organic farms because so 

many conventional farms are not self-contained or self-sufficient units, as organic farms 

ideally should be, but rather they are often part of a broader national and international 

food chain. In particular, the separation of arable production and animal production that 

has resulted from the use of N fertiliser has directly affected the efficiency of N use. 

2.2.8. The amount off  fixation 

The amount of N fixed by different legumes is determined by the intrinsic ability of the 

crop/ rhizobium symbiosis to fix N, modified by the crop's growing conditions (e.g. soil, 

climate, disease), crop management and length of time for which the crop is grown. 

Thus, the influence of all of these factors means that a variety of values has been 

reported by different researchers. Nevertheless, there is usually a strong relationship 

between yield and the quantity of N fixed for a particular legume species (Peoples et al., 

1995). 

Part of the fixed nitrogen remains in the soil as root residues and nodules or returns to 

the soil with litter fall. In annual species some of the fixed nitrogen after harvest 

becomes available for the next crop. In mixed stands of legumes and non legumes (e.g. 

grasses, cereals), direct transfer of fixed nitrogen from legumes to non-legumes during 

the growing season is possible, although the extent to which it occurs is small, around 

10% or less of the total nitrogen fixed. 
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The following figure (Fig. 3) shows the ranges of N fixed quantities and remaining after 

harvest in the UK conditions. There have been many studies of the amount of N fixed by 

white clover and red clover, which are very important for the pastures in UK. 

I 	 I Lucerne (slag.) 

JH 	 I Red clover (slag.) 

'White clover/grass (shag.) 

p 	 i T1ite clover'grass (graed) 

____________________'Feld bean (grain crop) 

I Forage peas 

'Lupin (grain crop) 

I T'etch (cut & mulched) 

Soya (Frain crop) 

0 	100 	200 	300 	400 

kg Nihafycar 

El N fixed 

El N after harvest 
(including roots) 

500 	600 

Figure 3: Provisional ranges of N fixed quantities and remaining after harvest in the UK 

conditions (Defra, 2005) 
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2.3. The fate of fixed N 

To sustain and maximise agricultural production in order to supply the nutritional needs 

of a continually growing world population, agricultural systems need nitrogen (N) 

inputs. In its inert form as basic dinitrogen (N 2) gas in the atmosphere (78%), nitrogen 

does not impact environmental quality. But the widespread use of N in agricultural 

systems and the associated transformations of that N into various ions or gaseous forms 

contribute to leaks from the beneficial parts (e.g. farming systems) to the non beneficial 

(e.g. atmosphere). These N losses may contribute to the degradation of water, air, and 

soil in many regions of the world. Nitrate (NO 3 ) is one of the most mobile ions in 

agricultural systems, and NO 3  leaching is a primary source of the excess nitrate 

concentrations in drinking water. Soil erosion that transports soil particles and also N 

contributes to surface water pollution. The gaseous transport of ammonia (NH 3) from 

manures and the denitrification of NO 3  and nitrite (NO2) ions and their conversion into 

gaseous forms of N such as nitrous oxide (N 20) and nitric oxide (NO) can contribute to 

air quality and global warming impacts. 

2.3.1. Nitrate leaching losses 

Leaching is often the most important route of N loss from field soils other than that 

accounted for in plant uptake. Nitrate (NO 3 ) is the primary form of N that leaches into 

ground-water. It is totally soluble at the concentrations found in soil and its movement is 

therefore closely related to subsurface water movement. As described by Jury and 

Nielson (1989), the movement of an NO 3  ion through soil is governed by convection, 

mass-flow, and diffusion within the soil solution. The widespread appearance of NO 3  in 

ground- water is a consequence of its high solubility, mobility, and easy displacement by 

water. Nitrate leached below the root zone in most agronomic crops will eventually 

leach downward until it reaches a saturated zone, either at an aquifer or aquitard. Nitrate 

leaching below the saturated level is generally unrecoverable by most crops except the 

deep-rooted species such as alfalfa. In autumn, cultivations are likely to cause the largest 

losses of NO3 especially if following a fertility-building ley, because of the bare ground 

and heavier precipitation and less plant growth for N uptake over the winter (ADAS, 

2003). 

Most soil types and environmental parameters, which influence the transport of 

dissolved NO3  through field soils, vary substantially, even over short distances. Nitrate 
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is not always easily leached in well structured barns and clays. It is mostly formed and 

held in crumbs (percolating water primarily moves down through cracks and coarse 

pores between the crumbs, so nitrate only gets into the escaping water by diffusion, 

which is a slow process). 

In organic systems, leaching losses will occur mainly from sudden, rapid mineralisation 

and nitrification of organic nitrogen, especially following cultivation when 

mineralisation will be enhanced. It has been postulated that organic farming reduces 

nitrate leaching, a major environmental concern in Europe (Drinkwater, 1998). The 

average leaching of nitrate over a crop rotation was low per unit area from organic 

systems when compared with conventional (Korsaeth, 2008). However, an accurate 

comparison of leaching between systems requires soil type, climatic conditions, pH and 

yields to be considered and this is not accomplished due to differences in the sequence 

and type of crops grown, differences in the input intensity of N and a general lack of 

yield data. Incorrect generation of leaching data are common, as pointed out by Andrén 

et al. (1999). 

Berntsen etal. (2006) studied two different types of soil (sand and loamy sand). On each 

of the farm a three year old grass-clover field was selected. Half of the field was 

ploughed the first year and the other half was ploughed the next year. Spring barley 

(Hordeum vulgare L.) was sown after the spring ploughing. Measurements showed a 

low N leaching during the pasture period (9-64 kg N ha d) but a high leaching the first 

(63-216 kg N ha-) and second (6 1-235 kg N had ) year after ploughing. In addition, a 

high residual positive N effect of the pasture was observed on the barley yields in both 

years. There was a low response to manure application on the sandy soil both during the 

first and second year after ploughing in comparison with the greater response of the 

loamy sand soil. 

Davis and Barraclough (1988) monitored different time points in the rotation on an 

organic farm in the UK. They found that the amount of N lost by leaching was closely 

dependent on the position in the rotation. Moreover, nitrate leaching was reduced the 

longer the field had been in the organic rotation. In Denmark, the impact of organic 

compared with conventional farming practices on N leaching loss has been studied for 

mixed dairy and arable farms. The results show a lower N leaching loss from organic 

than conventional mixed dairy farms, primarily due to lower N inputs and the increasing 

soil N pool on organic arable farms over time (Knudsen, 2005). 
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2.3.2. Nitrous oxidefiuxesfrom soils 

Nitrous oxide (N20) is a powerful greenhouse gas and one of its largest global sources in 

agriculture (Nevison, 2000). It contributes to the depletion of the stratospheric ozone 

layer and the global greenhouse gas budget (IPCC, 2007). Although quantities in the 

atmosphere are small compared to CO 2  and water vapour, the contribution to global 

warming is considerable, accounting for almost 5% of the total greenhouse effect 

(Bouwman, 1996). This is caused by the long atmospheric lifetime ( - 150 years) and the 

strong radiative warming effect of 310 times that of CO 2 . 

Soils have been identified to be the most important source of N 20, accounting for 65% 

of the total global emissions (Kroeze et al., 1999). N20 production occurs primarily via 

microbial nitrification and denitrification. Davidson et al. (2000) have used the ' hole in 

pipe' concept (Fig. 5) to describe the N losses via the two procedures. Ammonium 

enters the first pipe and leaves it as nitrate, whereas holes in this pipe represent the 

escape of nitric and nitrous oxide. Nitrates enter the second pipe leaves as nitrogen gas 

(N2) with the holes representing the escape of nitric and nitrous oxides as well as the 

entrance of them produced elsewhere. The N 2  flows into the pipe and/ or total N output 

via crop residues. Blocking one or more holes of this pipe system (without decreasing 

the total input and/ or output) usually leads to increased fluxes from the rest of the holes. 

Nitrification and denitrification have contrasting requirements for oxygen and are 

describe on details below (Bremner, 1997): 

Atmosphere 

NO N20 
i 	

Gaseous Phase of Soft 
N2 

------ Ii 
Biological Assimilation

` 
r.jn 

AbI61ogcaI ROCtIOflS 	 ' 	I20 	 Aqueous Phase 

NH _ 

Nitrification / 	Denitrification 
I'Iant.c and 

Soil Microorganisms 

Figure 5: 'Hole in pipe' conceptual model of the two microbial processes (nitrification 

and denitrification) (Davidson et al., 2000) 
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2.3.2. 1. Nitrification 

Nitrification is an aerobic process, performed by both heterotrophic and autotrophic 

organisms (Fig. 6). Nitrification is primarily accomplished by two groups of autotrophic 

nitrifying bacteria that can build organic molecules using energy obtained from 

inorganic sources, in this case ammonia or nitrite. In the first step of nitrification, 

bacteria oxidize ammonia to nitrite according to equation (4). 

NH3  +02 - NO2 .+ 31{F + 2e (4) 

Nitrosomonas is the most frequently identified genus associated with this step, including 

Nitrosococcus and Nitrosospira. Some subgenera, Nitrosolobus and Nitrosovibrio, can 

also autotrophically oxidize ammonia. In the second step of the process, bacteria oxidize 

nitrite to nitrate according to equation (5). 

NO2  - + H20 -* NO3 , 21- 4  +2& (5) 

Nitrobacter is the most frequently identified genus associated with this second step, 

although other genera, including Nitrospina, Ni/rococcus, and Nitrospira, can also 

autotrophically oxidize nitrite. 

Figure 6: Autotrophic nitrification pathway 
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The factors that influence nitrification in soils are physical, environmental and chemical 

and the interactions between them have an important role. Soil matrix, moisture status, 

aeration, p1-1 and temperature play dominant roles in the nitrification of soil or added 

ammonium to nitrate (Groffman, 1991). 
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2.3.2.2. 	Denitr/Ication 

Denitrification occurs in anaerobic sites in the soil and is carried out by a wide range of 

mainly heterotrophic but also autotrophic organisms. Denitrification refers to the process 

in which nitrate is converted to gaseous compounds (nitric oxide, nitrous oxide and N 2) 

by micro-organisms (Fig. 7). The sequence usually involves the production of nitrite 

(NO2). Several types of bacteria perform this conversion when growing on organic 

matter in anaerobic conditions. Because of the lack of oxygen for normal aerobic 

respiration, they use nitrate in place of oxygen as the terminal electron acceptor. This is 

termed anaerobic respiration and can be illustrated as follows (equation 6): 

C6H1206  + 6 02 = 6.0O2 + 6 1120 + energy (6) 

Figure 7: Denitrification pathway 
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The conditions in which we find denitrif'iñg organisms are characterised by (1) a supply 

of oxidisable organic matter, and (2) absence of oxygen but availability of reducible 

nitrogen sources. A mixture of gaseous nitrogen products is often produced because of 

the stepwise use of nitrate, nitrite, nitric oxide and nitrous oxide as electron acceptors in 

anaerobic respiration. The ratio of N 20 to N2  production depends on the species of 

denitrifer involved (Robertson and Kuenen, 1991), on the degree of anaerobicity in soil, 

soil carbon and NO 3  content and soil pH. The common denitrifying bacteria include 

several species of Pseudomonas, Alkaligenes and Bacillus. Their activities result in 

substantial losses of nitrogen into the atmosphere, roughly balancing the amount of 

nitrogen fixation that occurs each year. The largest rates of N 20 emission tend to be 

associated with denitrification. 

The factors that affect denitrification are oxygen concentration, nitrate concentration and 

carbon content. They are in turn affected by various biological and physiological factors, 

such as temperature and soil water content, which make the regulation of denitrification 

rather complex. 

Soil conditions favourable for nitrification are much more common, so that the 

contribution of nitrification to the total global N 20 emission may not be trivial; however 

rates of N20 production by nitrification tend to be lower than denitrification depending 

on edaphic and climatic conditions (Williams et al., 1998). The balance between the two 
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processes, nitrification and denitrification, contributing to the N 20 emission will vary 

with climate, soil conditions and soil management. Generally, high rainfall, poor 

drainage, fine soil texture and high organic carbon content promote denitrification and 

associated N20 production, whereas low rainfall, good drainage, aeration and coarse 

texture promote nitrification and associated N 20. However, in most soils the prevalence 

of nitrification or denitrification as the main source of N 20 is not static and can switch 

very rapidly, as the soil aeration state within the biologically active sites changes due to 

e.g. rainfall or increased 02 demand caused by the presence of easily mineralisable 

organic matter (Scholes et al., 1997b). 

2.3.2.3 ChemodenitrUlcation 

Chemodenitrification is a non-biological process, which involves various chemical 

reactions of NO2  ions and yields 'a number of nitrogenous gases like N 2, N20 and NO 

(Bremer and Nelson, 1968). However, chemodenitrification produces mostly NO. NO is 

found from biological denitrification only in very small amounts as it is not only a 

product but also a substrate of this process. Thus the presence of large amounts of NO 

can be an indicator of chemodenitrification (equation 7 and 8). 

Under acidic conditions (pH < 4.9) and a redox of 0 to 200 mV, HNO 2  dismutases 

chemically to form the nitrogenous gases NO 2  and NO which are further reduced to N 20 

IN2  by organic substances. 

31-IN02 2NO + HNO3  + 1120 (7) 

or 

FIN02 —*NO+NO2 +H20(8) 

However, with increasing pH, the HNO 2  levels decline, resulting in a decrease in N 20 

production through IIN02  dismutation. The chemical reaction between NT-1 20H, an 

intermediate of nitrification with NO2, may also be responsible for N 20 production in 

well aerated as well as anaerobic soils. Further, decomposition of organic matter oxides 

with nitrous acid also results in the formation of N 20. 

Agricultural soils represent a very large and growing global source of N 20. Current 

estimates for annual emissions from this source range from 2 to about 4 million tonnes 
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of N20 - N globally (IPCC, 2007). With a rapid increase in population growth and a 

consequent need for more food production, both the area of agricultural soils and 

intensity of their use is likely to continue to rise rapidly in the coming decades. In 

addition, the conversion of forest to agricultural land and increased use of nitrogen 

fertilisers in agriculture have contribute to high emissions from soils (Matson and 

Vitousek, 1990). 
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2.4. Direct sources of Nitrous Oxide 

The use of fertilisers (mineral or organic form) is a major source of N 20 from 

agricultural soils. Mineral nitrogen (ammonium or nitrate) is transformed quicker in 

comparison with organic N that is decomposed slower into the mineral form. The 

mineral form of N is integrated into the soil organic matter which is decomposed. 

Ammonium and nitrate are absorbed by the plants, but nitrate is usually susceptible to 

leaching. 

The demand for greater crop yields and more intensive farming practices have driven 

farmers to extend the use of mineral N based fertilisers. Large amounts of N 20 

production are connected with favourable denitrification soil conditions. Some 

additional N20 is thought to arise in agricultural soils through the process of N fixation 

(Bowman etal., 2002). 

2.4.1. Method of calculating direct N20 emissions from agricultural soils 

Until 2004, the emissions from agricultural soils were calculated for most sources as 

described in the IPCC (2006 and 2007). Total emissions from a country (kg N 20-N yf 1 ) 

are calculated as N20 = N20-direct+N20-animal+N20-indirect. For direct N20 

emissions from agricultural soils due to N inputs the following sources can be 

distinguished: synthetic fertilisers (FsN), animal manure (F), cultivation of N-fixing 

crop (FBN), crop residues (F CR), N mineralisation associated with loss of soil organic 

matter resulting from change of land use or management of mineral soils (F SOM); and 

drainage/ management of high organic content soils (e.g. histosols) (F os). 

in the most basic approach (Tier 1) described in the latest IPCC Guidelines (CC, 

2007), direct N 20 emissions from agricultural soils are estimated as follows: 

N20Direct — N= N20—NNIflz5  + N20—Nos + N20NpRp(9) 

Where: 

N20—NNICPU1S= FSN+FON+FCR+FSOJA) * EFI) + ((FSN+FON+FCR+FSOJV)FR * EFJFP) (10) 

N20No ((F08c0  Temp * EF2CG, Temp) + (F0s, CS, Trop * EF2cc Trop) + (F0s, F TempNR * EF2F, 

TempNP) + (FOS,F TempNP * EF2F, TempNP) + (1 s, F, Trop * EF2F Trop)  (11) 
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N20N = ((Fpp,cpp EF3Pp'cpp) + (Fppp. o  EF3ppy,so)) (12) 

Where: 

N20Direct —N = annual direct N20—N emissions produced from managed soils 

N20—NN inputs = annual direct N 20—N emissions from N inputs to managed soils 

N20—NOS = annual direct N 20—N emissions from managed organic soils 

N20—NPRP = annual direct N 20—N emissions from urine and dung inputs to grazed soils 

FSN = annual amount of synthetic fertiliser N applied to soils 

FON = annual amount of animal manure, compost, sewage sludge and other organic N 
additions applied to soils 

FCR = annual amount of N in crop residues (above-ground and below-ground), including 
N-fixing crops, and from forage/pasture renewal, returned to soils 

FSOM = annual amount of N in mineral soils that is mineralised, in association with loss 
of soil C from soil organic matter as a result of changes to land use or management 

Fos  = annual area of managed/drained organic soils, ha 

Fppp = annual amount of urine and dung N deposited by grazing animals on pasture, 
range and paddock 

EF 1  = emission factor for N20 emissions from N inputs 

EF IFR  is the emission factor for N20 emissions from N inputs to flooded rice, 

EF2  = emission factor for N20 emissions from drained/managed organic soils, 

EF3PRP = emission factor for N 20 emissions from urine and dung N deposited on pasture, 
range and paddock by grazing animals, 

Emission factor Default value 

EF 1 for N additions from mineral fertilisers, organic amendments and crop residues, and 

N mineralised from 

mineral soil as a result of loss of soil carbon. [kg N 20 —N (kg N) ] 0.01 

EF1FR for flooded rice fields [kg N 20 —N (kg N) 1 ]= 0.003 

EF2 CG, Temp for temperate organic crop and grassland soils (kg N 20 —N ha-) =8 

EF2 CG, Trop for tropical organic crop and grassland soils (kg N 20 —N ha-) =16 

EF2F, Temp, Org, R for temperate and boreal organic nutrient rich forest soils (kg N 20 

—N ha-) 0.6 
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EF2F, Temp, Org, P for temperate and boreal organic nutrient poor forest soils (kg N 20 

—N ha) = 0.1 

EF2F, Trop for tropical organic forest soils (kg N 20 —N ha-1 ) = 8 

EF3PRP, CPP for cattle (dairy, non-dairy and buffalo), poultry and pigs [kg N 20 —N (kg 

N)']=0.02. 

EF3PRP, SO for sheep and 'other animals' [kg N 20 —N (kg N)] = 0.01 

In the light of new evidence, the default value  for EF 1  has been set at 1% of the N 

applied to soils or released through activities that result in mineralisation of organic 

matter in mineral soils. In many cases, this factor will be adequate, however, there are 

recent data to suggest that this emission factor could be disaggregated based on 

environmental (climate, soil organic C content, soil texture, drainage and soil pH) and 

management-related factors (N application rate per fertiliser type, type of crop, with 

differences between legumes, non-leguminous arable crops, and grass) (Bowman et al., 

2002; Stehfest and Bouwman, 2006). Countries that are able to disaggregate their 

activity data from all or some of these factors may choose to use disaggregated emission 

factors known as Tier 2 (IPCC, 2007). 
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2.5. Indirect sources of Nitrous Oxide 

The first of indirect sources pathway is the volatilisation of N as NH 3  and oxides of N 

(NOx), and the deposition of these gases and their products NH 4  + and NO3  - onto soils 

and the surface of lakes and other waters. The sources of N as NH 3  and NOx are not 

confined to agricultural fertilisers and manures, but also include fossil fuel combustion, 

biomass burning, and processes in the chemical industry. Thus, these processes cause 

N20 emissions in an exactly analogous way to those resulting from decomposition of 

agriculturally derived N1I 3  and NOx, following the application of synthetic and organic 

N fertilisers and for urine and dung deposition from grazing animals (IPCC, 2007). 

Most indirect agricultural N 20 emissions occur from aquatic environments, since much 

of the nitrogen lost from agricultural land through leaching, runoff, crop harvest and 

human consumption ultimately ends up in ground-water, rivers, lakes and estuaries. 

Measurements of fractional N 20 yields are sparse in aquatic environments, although the 

yields appear to be governed by many of the same variables described for soils. In rivers 

and estuaries, N20 may be produced by nitrifiers and denitrifiers both in bottom 

sediments and in the water column. Commonly, a uniform yield of 0.5% for both 

nitrification and denitrification has been assumed for such environments (Mosier et al., 

1998). 

In the latest IPCC Guidelines (IPCC, 2006), indirect N 20 emissions from runoff/ 

leaching of agricultural soils are estimated as follows: 

N20(L)—N = FSN + FON  + Fppy  + FCR  + FSOM' FraCLEAcH  -(H) - EF5  (13) 

Where: 

N20 (L)—N = annual amount of N20—N produced from leaching and runoff of N 

additions to managed soils in regions where leaching/runoff occurs, kg N 20—N yr 

FSN = annual amount of synthetic fertiliser N applied to soils in regions where 

leaching/runoff occurs, kg N yf' 

FON = annual amount of managed animal manure, compost, sewage sludge and other 

organic N additions applied to soils in regions where leaching/runoff occurs, kg N yr' 

FPRP = annual amount of urine and dung N deposited by grazing animals in regions 

where leaching/runoff occurs, kg N yf 1  
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FCR = amount of N in crop residues (above- and below-ground), including N-fixing 

crops, and from forage/ pasture renewal, returned to soils annually in regions where 

leaching/runoff occurs, kg N yr 4  

FSOM = annual amount of N mineralised in mineral soils associated with loss of soil C 

from soil organic matter as a result of changes to land use or management in regions 

where leaching/runoff occurs, kg N yf' 

FracLEACH-(H) = fraction of all N added to/mineralised in managed soils in regions 

where leaching/runoff occurs that is lost through leaching and runoff, kg N (kg of N 

additions) " 

EF5 = emission factor for N 20 emissions from N leaching and runoff, kg N 20—N (kg N 

leached and Runoff). 

Uncertainties in estimates of indirect N 20 emissions from managed soils are caused by 

uncertainties related to natural variability and to the emission, volatilization and leaching 

factors, agricultural activity data, and lack of measurements. Additional uncertainty will 

be introduced in an inventory when values for these factors that are not representative of 

all conditions in a country are used. In general, the reliability of activity data will be 

higher than that of the emission, volatilisation and leaching factors. As with direct 

emissions, further uncertainties may be caused by missing information on observance of 

laws and regulations related to handling and application of fertiliser and manure, and 

changing management practices in farming. Generally, it is difficult to obtain 

information on the actual observance of laws and possible emission reductions achieved 

as well as information on farming practices (IPCC, 2007). 

Indirect agricultural sources of N 20 remain poorly defmed in most cases. There are 

many ways that the indirect emissions occur arising from NO 3  leaching and run-off from 

agricultural soils. The combination of heavy rain and fertiliser application lead to 

leaching of large amounts of N from the soil to drainage ditches, streams, rivers and 

finally ground-water and estuaries. N 20 is emitted to the atmosphere as soon as the 

drainage water is exposed to air. Further indirect N 20 emissions are produced from 

drainage waters when the leached N fertiliser undergoes the processes of nitrification or 

denitrification in aquatic and estuarine-  sediments. In addition, the volatilisation and 

deposition of NH3  from fertiliser application and the consumption of crops followed by 

sewage treatment are important indirect N 20 sources from agricultural soils (Reay et al., 

2004b) (Fig. 8). 
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Figure 8: Schematic showing N 20 production and loss from generalised agricultural 

system. Solid black arrows denote movement of N 20 through system. Note that N 20 

consumption via denitrification may at times be important. Arrow sizes do not reflect 

relative magnitude of fluxes after Reay et al., 2004b. 

Future agriculture is likely to embrace a spectrum of production systems. These will 

range from those that produce commodities based on strict yield and quality criteria (e.g. 

spring barley for malting) to those that are based on more ecological approaches to the 

supply of nutrients, and the management of weeds, pests and diseases (e.g. organic 

farming). Research should aim to develop management practices flexible enough to be 

used across a wide portion of this spectrum, ideally through understanding the biological 

and ecological processes that operate within the systems. Sustainable cropping systems 

of the future will need to be resilient in order to produce acceptable yields under 

changing environmental conditions. Additionally, they should have minimal adverse 

environmental impacts and, preferably, positive environmental benefits in terms of, for 

example, biodiversity and soil quality. 
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2.6. Factors controlling N20 emissions 

The soil environmental conditions (soil moisture, temperature, pH and oxygen), the 

organic carbon concentration and the amount of nitrogen cycling in soils control 

microbial processes and thus N 20 production and consumption. 

Soil 02 concentration and water content 

As it has been mentioned earlier nitrification and denitrification processes are controlled 

by the oxygen level in soils, which is mainly influenced by water content, temperature 

and microbial activity. Denitrification requires anaerobic conditions which are promoted 

by soils with high soil moisture content or aerobic soils with anaerobic microsites. 

Waterlogging promotes complete denitrification with N 2  as a final product, whereas at 

lower moisture contents N20 is the main gas produced. In nitrification, the N 20/ NO3  

ratio increases with decreasing 02 levels as nitrifiers use NO 2  as an alternative electron 

acceptor, producing N 20. Optimal moisture contents for nitrification range between 30% 

and 70%, whereas N 20 production occurs mainly at WFPS (Water Filled Pore Space) 

between 50% and 70% (Fig. 9). At low moisture contents, microbial activity is 

depressed and mineralisation of organic N will be slow, so limiting NH 4  availability for 

nitrification. As a result in both processes, N 20 is the favoured product at intermediate 

moisture contents. Wetting of a dry soil through rain or irrigation has been observed to 

result in rapid, large, but fairly short duration N 20 and NO emissions, which are often 

referred to as ' pulses' • of N oxides (Scholes et al., 1997a). It has been suggested that 

these fluxes result from an accumulation of NO 3  and NH4  in the soil over the dry 

months. 
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Figure 9: Effect of water-filled pore space on nitrification and denitrification and 

contributions to emissions of NO and N 20 (Davidson et al., 2000). 
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Soil pH 

There is an optimum pH for both denitrification and nitrification, which ranges between 

7.0 and 8.0 (Xie, 1999). However, Hadas et al.(1989) observed an optimum pH range 

between 7 and 9 for nitrification. Since the N 20 reductase is highly sensitive to low pH, 

the N20:N2  is enhanced with a pH decrease. Notably, N 20 is the major product of 

denitrification at low pH 4.0. At higher pH values, N 20 is further reduced to N 2  as the 

end product of denitrification. However, Davidson (1993) did not observe any clear cut 

effect of pH on N20 fluxes in field conditions. 

Temperature 

Nitrification and denitrification are affected by temperature; rates are very low below 

5°C but increase rapidly with increasing temperature. Oterr (1999) found that there is an 

exponential increase of NO and N 20 with increased temperature. The temperature for 

denitrification and nitrification ranges from 25°C to 37°C and from 25°C to 35°C, 

respectively. The temperature dependency of denitrification and nitrification results in 

seasonal and daily variations on N 20 emissions from soils in temperate climates. In 

order to produce accurate annual estimates of soil N 20 emissions, frequent seasonal flux 

measurements have to be taken to account for temporal variability. The daily variation 

can be exaggerated with fertiliser applications (Flechard et al., 2007). A large proportion 

of the annual N 20 emissions can be produced within only a few days. These typically 

occur either in winter during freeze-thaw cycles or in summer through rewetting of dry 

soil, driven by climate and weather parameters. Additionally, emissions occur in 

situations with elevated mineral nitrogen concentrations in moist soils after fertilisation 

or during the decomposition of crop residues, controlled by management and the 

interactions with climate, soil and site parameters and (Freibauer and Kaltschmitt, 2003). 

Organic Matter 

The availability of organic C is an important factor regulating the denitrification process 

in the soil. Rates of denitrification are usually correlated positively to the water-soluble 

C content of soils. Hence, large N 20 fluxes are reported from organic peat-soils (Luo et 

al., 1999) Addition of organic materials in the form of crop residues, organic manures, 

waste effluents and sewage sludge, enhances N losses in the form of N 20 from soils. 

High availability of organic C induces complete reduction of NO 3-N, leading to N2  

emission as the end product instead of N 20. An increased C supply reduces the N 20/ N2 

ratio evolved during denitrification. As organic C is a substrate for respiration, high 
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organic C contents can lead to the increase of anaerobic microsites, favouring 

denitrification. These 'hot spots' describe the high spatial variability of soil 

denitrification observed experimentally (Schmidt et al., 1988). 

Nitrogen sources 

While denitrification is limited by availability of NO 3 , the nitrification process is 

influenced by NH4'which may be derived from either decomposition of organic matter, 

the mineralisation of organic compounds, as fertiliser and atmospheric N inputs and 

plant species residues. Low NO3--N  concentrations can lead to N 20 consumption as 

denitrifiers use N20 instead of NO3 . High NO3  concentrations in the soil increase N 20 

emissions from denitrification and also enhance the N 20/ N2  ratio as NO3  usually 

inhibits N20 reduction to N2  (Mosier et al., 1998). High N}1 concentrations enhance 

the production of N20 by nitrification and/or denitrification after an application of NH 4  

forming fertiliser. 

2.7. Intercropping 

Intercropping is the growing of two or more crops simultaneously in the same field, 

which intensifies cropping in both time and space dimensions. There is intercrop 

competition during all or part of crop growth. Crop spatial arrangement, crop density, 

maturity dates of the crops and plant architecture will all affect crop and weed growth in 

intercropping systems and must be always considered. There are at least four basic 

arrangements used in intercropping: 

• Mixed intercropping. "Growing two or more crops simultaneously with no 

distinct row arrangement." This is frequently the form taken in indigenous slash-

and-burn or fallow agriculture. 

• Row intercropping. "Growing two or more crops simultaneously where one or 

more crops are planted in rows." This is the pattern usually encountered in 

intensive agriculture, where the plough has replaced the machete and fire as the 

main tool of land preparation. 

• Strip intercropping. "Growing two or more crops simultaneously in different 

strips wide enough to permit independent cultivation but narrow enough for the 

crops to interact agronomically." This form of intercropping is more common in 

highly modernized systems, especially where the intensive use of machinery is 

desired. 
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• Relay intercropping. "Planting a second crop into a standing crop at a time when 

the standing crop is at its reproductive stage but before harvesting." This form of 

intercropping may actually include the other three as subsets, since its primary 

categorization variable is time (Vandermeer, 1989). 

To optimise total plant density, the seeding rate of each crop in the mixture is lowered 

rate. If full rates of each crop were planted, neither would yield well because of the 

interspecific competition. By reducing the seeding rates of each, the crops have a chance 

to yield well within the mixture. Planting intercrops that feature staggered maturity dates 

or development periods takes advantage of variations in peak resource demands for 

nutrients, water and light. Having one crop mature before its companion crop lessens the 

competition between the two crops. Plant architecture is a commonly used strategy to 

allow one member of the mix to capture light that would not otherwise be available to 

the others. 

The use of two or more crops may improve utilisation of local resources, reduce or 

eliminate use of pesticides, herbicides and fertilisers, which can encourage local flora 

and fauna, increase the size and diversity of the soil microbial community; remove the 

dependence on one crop, and increase the diversification of cultivated land. All of these 

factors tend to make intercropping systems more resilient to environmental perturbations 

than monocrop systems. Intercropping is widely used in the less intensive agricultural 

systems typical of Africa and Asia. In Europe, intercrops largely disappeared through 

the 20th  century with an increase in mechanisation and artificial chemical support, except 

for grass-clover swards. Intercropping ideally allows for improved resource utilisation 

and beneficial biological interactions between the crops. In other words, light, water and 

nutrients are used by the crops instead of the weeds, and some plants may enhance the 

growing environment for their companion crop plant. 

Although there is interest in the reintroduction of intercropping, this is hampered by a 

lack of credible scientific evidence. The main potential advantages are greater and more 

stable yields, as there is less competition and better contribution of common resources; 

protection against risk and environmental extremes, and ecological approaches to 

manage pests, diseases and weeds through natural competitive principles. The approach 

can contribute to the prevention of nitrogen leaching that is sometimes observed from 

monocrops such as grain legumes due to changes in incorporated residues involved in 

nutrient turnover and an improvement in protein content of cereal. Moreover, the 

inclusion of N2  fixing crops in an intercrop leads to the utilisation of the renewable 
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resource of atmospheric nitrogen which can increase the sustainability of the 

agroecosystem (Phool, 1986) 

Intercrops are used globally for all the above benefits but lately they are also used to 

provide biofuel as the intercrop composition can be designed to produce a medium (for 

microbial fermentation) containing all essential nutrients. Thereby addition of e.g. urea 

and other fermentation nutrients from fossil fuels can be avoided especially N when 

including leguminous species, whereby addition of e.g. urea and other fossil based 

fermentation nutrients can be reduced. (Thomsen and Haugaard-Nielsen, 2008). 

2.7.1. Intercropping in Europe and Worldwide 

Modern European intercropping systems have been used for either organic agriculture 

and/ or conventional systems, where the tactical use of fertilisers and pesticides provide 

powerful additional management options. Recent work on intercropping at SAC has 

successfully quantified the transfer of N from clover to cereal in the establishment year 

(i.e. clover undersown into a spring cereal) (Rees et al., 2006). Results show that during 

this first phase there is little nutritional benefit to the crop, although there is a net benefit 

to the system in terms of developing ground cover for the winter period. Clover root 

death and leaf litter decomposition taking place over winter may be an important source 

of N for a cereal crop in the following year, but as yet such contribution has not been 

quantified, and, in any case, is expected to vary from situation to situation depending on 

the degree of leaching and denitrification. Management practices such as cutting and the 

use of herbicide to kill part of the developed understorey have the potential to create a 

supply of N in synchrony with crop demand (Drinkwater et al., 1998). The amount of 

control of mineralisation/ immobilisation processes that can be achieved, and the 

proportion of this N transferred to the crop compared with that lost through 

denitrification and leaching all require quantification. Results obtained to date also 

suggest that the timing of many of these management options will be critical in 

determining their outcome, making thorough, mechanistic knowledge of the system 

vital. A model has been developed recently that describes root competition and nutrient 

flows in intercropping systems (Wu et al., 2007). The model known as SPACSYS is a 

mixed dimensional, multi-layer, field scale, weather-driven and daily time-step dynamic 

simulation model. The current version includes a plant growth and development 

component, a nitrogen cycling component, a carbon cycling component, plus a soil 

water component that includes representation of water flow to field drains as well as 

downwards through the soil layers, together with a heat transfer component. 
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The use of intercrop systems requires both environmental and economic evaluation of 

their potential contribution to sustainability but also investigation of their use in a spatial 

dimension for managing the farm landscape. The latter concept applies not only to 

buffer strips and field margins, but potentially within the cropped areas of the farm for 

production of fodder crops so as to provide a better use of the resources. 

In more detail, intercrops of pea and barley have been shown to use available growth 

resources more efficiently than their corresponding monocrops (Hauggaard-Nielsen and 

Jensen, 2001). The increased resource use efficiency may be explained by the fact that 

the two intercropped species do not compete for exactly the same resource and thereby 

give rise to some degree of resource complementarity (Hauggaard-Nielsen et aL, 2001). 

Barley has been shown to be much more competitive for soil inorganic N than pea 

(Jensen, 1996), most likely as a result of faster and deeper root growth of barley 

compared to pea (Hauggaard-Nielsen et al., 2001), forcing the grain legume to increase 

reliance on symbiotic N2-fixation (Jensen, 1996; Karpenstein-Machan and Stuelpnagel, 

2000). A better utilization of resources through resource complementarity may also 

result in reduced weed growth in intercrops compared to sole. crops (Liebman and Dyck, 

1993), an aspect that is of great importance to low-input farming systems, such as 

organic farming (Hauggaard-Nielsen et al., 2001). In an intercrop, the degree of resource 

complementarity attained, the total yield measured and the relative contribution of the 

individual components is determined by both inter- and intra-specific competition, 

which again is influenced by the availability of environmental resources and the relative 

frequency and density at which the component crops are sown (Vandermeer, 1989). 

Recommended monocrop plant population densities are well established for most crops 

(Bulson et al., 1997). However, intercrop components may utilize growth resources 

more efficiently than monocrops. Consequently, the optimum plant density in intercrops 

could be greater than the optimum density of each of the sole crops. With increased crop 

density competitive dynamics will inherently be affected and, as noted by Willey (1979), 

the impact of the dominant will often increase as intercrop density is raised. The 

proportions at which intercrop components are sown may be of great significance in 

determining yields and production efficiency of cereal—legume intercrop systems (Ofori 

et al., 1987) and changes in the relative frequency of intercrop components have been 

shown to alter the competitive dynamics between component species (Willey, 1979). 

Intercrop competition studies usually base their conclusion on data from one single, final 

harvest of crops grown at one density, thereby implying that competitive strength or 

other measures of performance are constant. However, species interactions are complex, 

varying with cropping density, the nutrient environment and time (Connolly et al., 
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1990). Another factor is the rate of development of the crops. Planting intercrops that 

feature staggered maturity dates or development periods takes advantage of variations in 

peak resource demand for nutrients, water, and sunlight. Selecting crops or varieties with 

different maturity dates can also assist staggered harvesting and separation of grain 

commodities. 

Intercropping is of special relevance and importance in future organic farming systems, 

because it offers a number of significant enhancements of the net productivity of organic 

farming and the ecosystems in farming regions as a result of the increased diversity of 

the cropping system. 

47 



3. Overview of the thesis 

The main study aims were to a) study the potential benefits of the use of intercrops in a 

low input rotation in Eastern Scotland and b) estimate the nitrogen (N) losses of an 

intercropped low input rotation and c) understand what controls and drives the fluxes 

from the different intercropped systems. The main study was based at an experiment on 

the Bush Estate, near Edinburgh, Scotland, on 12 hydrologically isolated plots 

previously used for leaching studies. 

The thesis is composed of four individual papers. Paper 1 describes the effects of 

different legumes' (species and/ or varieties) on grain yield and total N uptake of the 

barley and subsequent crops. Monthly, measurements of gas fluxes, soil parameters and 

water were made across the three growing seasons including a comparison of, the data 

with the final harvests. Land Equivalent Ratios (LER) were calculated to evaluate the 

intercrop systems. 

To compliment the above agronomic work, environmental issues were considered. N 

losses from the drainage plots were investigated by weekly measurements of nitrous 

oxide (N20) fluxes and nitrate (NO 3 ) leachate in a 30 month period (Paper 2). N 20 

fluxes were measured using static chambers across the plots. NO 3  leachate was 

calculated by 'spot' sampling and 'integral' sampling. In addition to the above two 

measurements, N 20 fluxes from the drainage were measured in the second growing 

season to estimate the indirect losses. To finalise this study, soil cores with intervals of 

20 cm were collected monthly during the experimental period and analysed for available 

NO3 , NIEL and dissolved organic nitrogen (DON). 

Paper 3 focuses on below ground biomass (roots). Specifically, it examines the effects of 

the accompanying legume on barley root growth/ development and the influence of the 

legume' roots on the next cereal crop. This is important since legume roots supply N to 

the cereal crop, fix N that affects N 20 fluxes and may affect the competition for 

nutrients in the following year's crop. Root samples were collected at key growth stages, 

when demand for N from the cereals had reached the highest level. Soil cores were 

collected from the treatments in two depths (0-20 cm and 20-40 cm). 

Finally, Paper 4 examines the factors that may control the N 20 fluxes and the losses 

from the experiment including data for soil water release properties and water filled pore 

space. We also compared the possible factors controlling N 20 fluxes under the same 

soil type, topography and climate without any input. Grain yields were used to test the 
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correlations with cumulative N 20 fluxes, as higher yields related with higher amount of 

N in the soil related with increase N 20 fluxes. Seasonal variability was considered for 

the correlations. 

Weather data were recorded throughout the experimental period. Average monthly 

temperature and monthly rainfall are presented in the papers from data provided by the 

SAC weather station at Bush Estate. Tables and Figures are labelled sequentially 

throughout the thesis with the exception of the individual papers (Chapters 5, 6, 7 and 8) 

where Tables and Figures are labelled as they will appear in the final published articles. 

The thesis concludes with a discussion of the most important points arrive from the 

work, suggestions for further work and new ideas coming from the presented results. 

I! 

49 



4. Materials and Methods 

4.1.Study site 

The experiment was conducted in a 0.4 ha field under laying by a sandy loam soil (Macmerry 

series) developed from partially sorted glacial till at Bush Estate, 8 km south of Edinburgh, 

Scotland (lat. 550  51 'N, long. 30  12'W) (Fig. 1). The soil profile is described on Table 1. The 

soil is light with some stones in the subsoil horizons and this contributes to a high bulk 

density. 

Twelve hydrologically isolated plots were installed in 1992. The plots were aligned 

downslope with 1.5 in deep trenches backfilled with gravel and lined with polythene on the 

downslope edge. The plots were installed as shown in Fig. lc. A trenchless drainage machine 

first laid 10 runs of approximately 100 in of 100 mm pipe in approximately 1.5m depth with 

gravel backfill to the soil surface.. Plastic lined porous drainage matting was laid over each of 

these pipes at the base of each of the four plots. The trench between adjacent plots was filled 

with bentonite to prevent lateral movement of water. The closed pipes connected to one of 

three instrument pits (Fig. 1, 2, 3). More information can be found at Vinten et al., 1994. 

The field was fallow for the period 2003-2005. Temperature and precipitation for the field site 

over the course of the study are shown in Figure 4, which was measured in two weather 

stations, less than 5 miles distance each. Total annual precipitation and mean annual 

temperature were 927 mm and 8.5 °C for 2006 and 1288 mm and 8.2 °C for 2007. 
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Figure 3: (a) Location of sample site located in Mid Lothian, Scotland, U.K. The field is 

highlighted with a red circle in (b) (scale 1:25.000). (c) Detailed plan of the Section 3 field at 

the bottom right photo. Plots 1, 6, 11: Barley! Clover; Plots 2, 3, 5: Barley! Pea cv. Zero 4; 

Plots 8, 10, 12: Barley! Pea cv. Nitouche and Plots 4, 7, 11: Barley (mon). 
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Table 1: Typical soil profile description of No. 3 field, Bush Estate (Vinten et al., 1992). 

Title:SCAE No.3 Field 
Nat Grid: NT243640 

Association: Winton! Rowanhill 	
Land Capability: 3.1
Altitude: 199m 

Series: Macmeny 

Drainage: Imperfect 

Parent material: till, with partially watersorted upper horizons, derived mainly from 

sedimentary rocks of carboniferous age 

Horizon 	Depth (cm) 	 Description 	 I 

Ap 	 32 	Dark brown (7.5YR4/2); sandy loam, moderate medium subangular 
blocky to moderate fine subangular block; moist; friable; common 
very fine fibrous roots; few small subangular stones; clear wavy 
change to: 

Greyish brown (IOYR5/2) with common fine prominemt and sharp 
Bg 65 strong brown (7.5YR5/8) mottles; loamy sand; moist and very friable; 

common very fine fibrous roots; common medium subrounded stones; 
clear smooth change to: 

Brown (7.5YR5/4) with common fine prominent and sharp strong 
brown (7.5YR5/8) mottles and common medium light brownish grey 

Bg 95 (1OYR6/2) gley patches; loamy sand locally sandy loam; weak 
medium subangular; moist; friable to firm; few very fine fibrous roots; 
common medium and few large subrounded stones; clear smooth 
change to: 

Brown (7.5YR4/4)with few fine prominent and sharp strong brown 
Cg 160+ (7.5YR5/8) mottles and common medium pinkish grey (5YR6/2) gley 

patches; sandy clay loam to clay loam; massive; slight moist; firm; no 
roots; common medium subangular and few large subangular stones 
mainly sandstones and intermediate igneous 
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4.2. Methods 

4.2. 1. N20 fluxes 

Fluxes were measured at the experimental site using the static chamber method 

described by (Clayton, 1994). Chambers consisted of a 20 cm length polypropylene vent 

pipe (diameter 40 cm) fitted with a 4.5 cm-wide outward-facing polyvinylchloride 

(PVC) flange at one end to seat a square aluminium lid during flux measurements (Fig. 

5). The soil-atmosphere flux is calculated by measuring the change in concentration over 

time in a known volume of air inside an enclosure. To calculate a valid flux rate the 

enclosure must be designed and employed in a way that limits interference. There are 

many variations in chamber design including chamber volume, material, air circulation 

and pressure equilibration. The time that the chamber will be closed for and the number 

of samples collected from each enclosure chamber are important issues affecting 

the results. Moreover, the closure time must be long enough to allow sufficient 

concentration change for analytical detection and short enough to prevent significant 

changes in the temperature of the enclosed chamber. Further considerations include the 

number of chambers per plot, the layout across the experimental area, the frequency of 

measurements and the time during the day. 

One chamber (volume 25120 cm 3 ; cover area 1256 cm) was located in each of the 12 

plots. The chambers were sealed for 60 minutes with an aluminium lid having a small 

open sampling point sealed with grommet to insert the syringe. Gas samples were 

collected weekly in portable evacuated aluminium vials (Scott et al., 1999). Samples 

were analysed for N 20 by electron-capture gas chromatography. For consistency, gas 

sampling was carried out between 10:00 and 12:00 firs (Clayton et al., 1994). 

Additionally, three more samples of background air were collected for use as ambient 

during the calculations. 

.,t- 

Figure 5: Static chamber in the field. 
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4.2.4. Dissolved N 20- headspace method 

Concentrations of both dissolved N 20 and inorganic N were measured in water samples 

collected from the field drainage. All samples were analysed within 48 hr of collection. 

Nitrous oxide concentrations were assessed in the laboratory by analysis of duplicate 5 

mL subsamples of each sample. Each subsample was injected with a syringe into a 22 

mL vial sealed with a septum and shaken vigorously for 2 mm, followed by a 30 mm 

standing period. 

Nitrous oxide concentrations in the headspaces were determined by gas chromatography 

using an Agilent 6890 GC fitted with a 1.8 in Porapak-N column and electron capture 

detector. In situ dissolved N20 concentrations were then calculated, based on N 20 

solubility at laboratory temperature and pressure versus in situ temperature and pressure, 

and allowing for the atmospheric N 20 concentration. 

4.2.3. NO3- leachate 

Two sampling methods were used to sample the drain flow from the pipes. The first was 

an integrated sampler, which consisted of a closed plastic bucket with a plastic pipe to 

connect the two sides that carried water from one side of the tipping bucket. At one side 

it was connected a collection bottle and at the other side it was open for the excess water 

to run out. A small hole in the pipe allowed some of the water which tipped into the pipe 

via the bottle (about 10 ml) to flow into the bucket (Fig. 6, 7). 
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Figure 6: Schematic presentation of the integrated water sampler. 
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Water samples from the tipping buckets accumulated in the collecting bucket, and a 

single sample of the water in the bucket was collected at the end of each sampling 

period. The volume of each individual sample to the bottle varied but this is unimportant 

because the number of samples collected is so large (n = 300 for 10 mm drain flow). 

This system has a significant benefit over the second sampling method, because only 

one sample was needed for analysis to obtain the average concentration of the flow 

between samplings. The second method was a spot sampling comparing collection of the 

water flowing from the pipe at a specific time/ date which was used for checking the 

integrated sampler results. The concentrations of the NO 3- from the integrated sampler 

were compared from a sample collected on the day of sampling collection from the 

drainage pipe, so as to test if there was any change on the concentrations. All the 

samples were collected weekly and transferred in the laboratory and analysed for nitrate 

and ammonium concentrations. If they were not analysed the same day of collection, 

they were stored in the freezer for analysis at a later stage. The determination was done 

by continuous flow analysis using the methods of Hendrickson & Selmer Olsen (1970) 

and Crooke & Simpson (1971), respectively. The samples were transferred to the 

laboratory and placed according to date and number of plot. 3 ml of the each sample was 

transferred to a clear plastic disposable capsule and placed on the auto-sampler. 

Determination of NO 3- and N1-14  concentrations were taken place. Water based 

standards were used. NH 4  were insignificant, so they have not presented. For the 

analyses of the data, only the two blocks of the three were used, as all the plots had not 

equal runoff. That was a limitation of the experiment, as some of the plots were not 

properply drained since the establishment of them. 

'.. 

Spot 
sampling lntergratcd 
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Figure 6: Drainage pits for collection of drainage water (taken on March, 2006) 
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4.2.4. Dissolved Organic Nitrogen (DON) in soil and Inorganic Nitrogen 

Dissolved organic nitrogen (DON) is an important component of the soil, and in many 

cases, it is the main vector for N loss from the soil via leaching. Several methods exist 

for the analysis of DON and total N, including Kjeldahl digestion. The method that has 

been used here is the persulfate digestion technique, because it is simpler and nontoxic. 

Persulfate N includes DON, nitrate and ammonium. 

Soil samples were collected at two depths (0-20 cm and 20-40 cm) at monthly intervals 

from each plot. Fresh soil was extracted prior to drying. If that was not possible, 

samples were frozen at -16 °C until analysis. Prior to extraction, soil was sieved with a 2 

mm sieve to obtain representative subsamples and to exclude large particles, and finally 

mixed. All sample weights were converted to an oven-dry (105 °C) basis, determined by 

oven drying subsamples (>24 hours) taken at the time of sample analysis. When a sieved 

fraction was used for analysis, the material larger than mesh diameter was oven-dried 

(105 °C) in a Qualitemp 300 from Laboratory Process Equipment (LTE) oven and 

weighed to provide a correction factor between sieved oven-dry weight and unsievéd 

oven-dry weight. 

A duplicate sample of 10 gr of sieved soil each was weighed into a 150 ml polyethylene 

shaker bottle and 50 ml of 0.5 M K2 5O4  added. The shaker bottle was tightly taped and 

placed on a Gallenkamp Orbital shaker at 100 rev min - ' for 2 hours. After standing for 5 

mm, the clear excess was filtered through a 150 cm Whatman No 42 fluted filter paper 

and the extract was collected into a freezer proof airtight polythene bottle. A sub-sample 

of K2SO4  was also filtered for use as a baseline blank determination. The extract was 

stored in the fridge for up to 24 h before analysis. If the extracts could not be analysed 

within 24h, they were frozen. The K 2 SO4  extract was analysed for NH4  and NO3  on 

the auto-analyser using a range of standards made up in 0.5 M K 2SO4  (0.5, 1, 1.5 and 2 

ppm). 

For the oxidation process, a 5 ml aliquot of the K2SO4  extract was accurately pipetted 

into an autoclaved universal bottle and 1 ml of persulphate oxidiser was added. The 

persulphate oxidiser used was 1.34 g K 2 S208  + 0.3 g NaOH dissolved in 100 ml 

deionised water. The bottle was then tightly capped and placed in the autoclave for 30 

mins at 110 °C. This processed extract was only analysed for NO 3  and NH4  again on 

the auto-analyser at a dilution of 1.5 ml of extract to 0.09 ml of 0.1 M NaOH. The 

suggested range of standards used was started at 0.5 ppm up to 5 ppm. 
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The calculations of the N content in the soil as NW and NO 3  were made by using the 

following equations: 

N-content(jtg g1 ) = (extract concentration * extractant volume) I eqdw (14) 

and 

eqdw (g)= (dw / fw) * fsw (15) 

where extract concentration is the nitrate or ammonium value of the analyser in J.tg* mli ;  

extractant volume is 50 ml K2 SO4 ; eqdw is the equivalent dry weight; dw is the dry 

weight of the soil sample in g;fiv is the fresh weight of the soil in g andfsw is the fresh 

weight of the sample used for nitrogen analysis in g (i.e. 10 g). 

The calculation of DON was calculated by using the following equation: 

DON (p.g N/L) = Persuiphate N-Inorganic N 

4.2.5. Root measurements 

Root samples were collected from the plots by using 7 cm diameter tubes up to 0.9 m 

depth once in each growing season. The cores were analysed in 1-2 days or stored below 

0 °C for later analyses. The cores were placed in water and washed the next day using 

different sieves (from 1 cm to 1mm). This can be the most difficult and laborious step in 

the measurement if plants are grown in a solid medium. Soil Qr growth media with a 

high sand content can greatly simplify this step, while high clay or organic matter 

content can make it extremely tedious. Harvesting of younger plants can also simplify 

this step. Since it was impractical to scan the whole root system of the plant, a 

representative sample was scanned after removal of any organic debris and dead roots 

and analyzed before determining dry mass. The roots were scanned by an A3 Epson, 

Expression 836 XL dual scanner and the Win RHIZO software program was used to 

measure the root length, root area and root volume. The following settings were chosen 

before the start of scanning each root: professional mode, film, 8bit greyscale depth, 600 

dpi optical resolution, original size and normal preview. The root samples were then 

scanned in a transparent, water proof tray filled with water. The colours used for 

drawing the roots were coded according to their diameter. Root length and diameter 

were measured with Regent's unique method and with an indirect statistical method 

(Tennant, 1975). With Regent's method, measurements were made continuously at each 

point along the root. Root overlap was taken into account to provide accurate 
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measurements of length and area. Image edition was also available to override decisions 

made by the system (Fig. 7, 8). Analysis results can be sensitive to the threshold 

parameters used which are automatically set by WinRhizo. Images were also saved in 

files for later validations, analyses or for visualization in other programs (like word 

processors). Finally, the fresh weight was measured, after the excess water had been 

removed and the roots were transferred to dry at 100 °C overnight. The material was 

stored for analyses of the mineral N. 

/ 
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Figure 7: Scanning stage using the Win Rhizo program. Each root is highlighted with a 

different colour depending on each diameter. Each colour represents the root diameter in 

increments of 0.1mm at the top of figure a histogram of the total area. 

Figure 8: Scanned roots using the Win Rhizo program of barley cv. Westminster (left) 

and pea cv. Nitouche (right) at the first growing season (2006) at the full maturity stage. 



4.2.6 Bulk density and Soil Water Content 

Bulk density (p)  is a measure of the weight of the soil per unit volume, usually given 

on an oven-dry (I 10 °C) basis. Variation in bulk density is attributable to the relative 

proportion and specific gravity of solid organic and inorganic particles and to the 

porosity of the soil. Most soils have bulk densities between 1.0 and 2.0. Samples for 

bulk density determination were collected in a 9 cm diameter ring. The samples were 

each placed in a bag and transferred to the lab, where each bag was weighed. The soil 

from each bag was placed on a metal tray to dry over-night in an oven at 110°C. The soil 

bulk density was calculated as the dry mass of the soil divided by the volume. It is 

expressed as g CM-3. 

4.2.7. Volumetric/ Gravimetric water content 

Soil water content was expressed on a gravimetric or volumetric basis. Gravimetric 

water content (eg) is the mass of water per mass of dry soil. It was measured by 

weighing a fresh soil sample (mwet), oven drying the sample to remove the water, then 

weighing the dried soil on 105°C (mdry). It is expressed as g g' 

& rn water - mwet - mclry 

70 _5 - mdry 

Volumetric water content (Ov) is the volume of liquid water per volume of soil. It is 

expressed as g CM-3. Volume is the ratio of mass to density (p), which gives: 

mwater 
volume water pwa±er 

= 
Og s psol = 

volume soti 	m.zozl 	pwater 
psoil 

Two soil ring cores from each plot were collected, plastic caps were placed at each end 

and then they were transferred on the laboratory. Excess soil was trimmed from the core 

and a piece of gauze of known weight was placed at the end of the core and secure with 

a rubber band to keep the soil in place. Each core was weighed with the band and gauze 

and the cores were placed on a large aluminium tray, where they were sprayed with a 

few ml of 4% formaldehyde solution to kill any living organisms. The tray was filled 

with water to a depth of 10 mm, left for 4 h, filled to 25 mm, left for 4 h and filled so 

that the cores were completely immersed and left for 24 h. After that, the cores were 

weighed and immediately after placed on the tension table. When placing the core in 

position, firm pressure was applied to ensure a good contact with the silica sand (Ball 
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and Hunter, 1988). When all the cores were set, the water head was lowered to the first 

standard height, -30 cm. The excess water flowed out the over the tension table at a 

steady rate. When the flow had decreased to the occasional drip then the apparatus was 

left for a period until the container needed to be emptied again. The cores were left for 

Mays until no more water came out of the tension table. They were then removed 

carefully for weighing after brushing off any silica sand (mfre). After weighing, the 

cores carefully replaced on the tension table after the sand surface had been 

sprayed with dc-aired water giving them a small twist when in position in order to get 

the best possible hydraulic contact. The drainage beakers were lowered to the next 

matrix potential of -60 cm. That was repeated for -90 cm and -120 cm. One more 

measurement was taken at -300 cm. For this purpose, a low pressure plate was used. At 

the end, the samples were dried at 105 °C overnight and the weight was recorded and at 

the same time the empty weight of the metal rings was recorded (mdry). 

4.2.8. Plant Biomass 

All plants were harvested above ground every growing season and initially separated 

into cereal, legumes and weeds. Plant biomass was measured monthly using quadrats 

(50 cm x 50 cm) by harvesting all the plant material within it. The fresh weights were 

recorded and then the samples were separated further into straw, and grain (for cereals 

and peas). The fresh weight of these fractions was recorded and then dried at 60 °C 

overnight. The dry weight was recorded and the material was ground for storage for 

further analyses (mineral N). 

4.2.9. Total N in plants 

Total N and C are major nutrient pools and essential for determining nutrient balances. 

Total N and C in the plants were determined using dry Micro-Dumas combustion, 

which is based on a transformation to gas phase by extremely rapid and complete flash 

combustion of the sample material. Between 10 mg and 15 mg of finally dried in powder 

form ground sample material was weighed into a tin capsule. The sample was introduced 

into the combustion tube (which was maintained at about 1000 °C) via an auto-sampler. 

The sample and tin container melted in a violent reaction, (flash combustion) in the 

enriched atmosphere of oxygen. All the substances in the sample were completely 

oxidised. 
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The combustion products were carried in the carrier gas, helium, through an oxidation 

catalyst (chromium oxide), at 1000 T. To ensure complete oxidation a layer of silver 

coated cobalt oxide was placed at the bottom of the combustion tube. The mixture of 

combustion products (carbon dioxide, nitrogen, oxides of nitrogen and water) passed 

through the reduction tube which contained copper, kept at 650 °C. The excess oxygen 

was removed and the oxides of nitrogen are reduced to nitrogen which with the carbon 

dioxide and water pass through an absorbent filter (magnesium perchiorate), to remove 

water. 

The nitrogen and carbon dioxide are taken by the carrier gas to the chromatographic 

column and then to a thermal conductivity detector which generates electrical signals 

proportional to the concentrations of nitrogen and carbon dioxide present. 

Determination of the percentage composition of the samples is made by comparison of 

the gas areas of standards with known elemental compositions to gas peak areas of the 

sample. 

4.2.10. Statistics 

Descriptive statistics (mean and standard error) were performed as a measure of the 

variability in N20 fluxes measurements by crop type and seasons. Scatter plots were 

used to identify relationships between grain yields, water filled pore space, soil moisture, 

soil temperature, air temperature and N 20 fluxes. Multiple regression analyses were 

used to examine the functional relationship(s) between the dependent variables (total N, 

N031'T in soil and water, NH-N, N20 fluxes) and the potential predictor variables 

(crop, seasons, soil moisture and soil temperature). Site means for each treatment 

grouping were used for developing the models. Simple regression analyses were also 

carried out to describe specific relationships between response variables and explanatory 

variables. Simple and multiple regression analyses were performed using Genstat® 

Statistical software, 8 0' edition. One-way analysis of variance (ANOVA) was used to test 

for differences in mean soil properties and gas flux among treatments and seasons. 

These were performed using Minitab 15. All charts presented were performed using 

Microsoft Excel 2007. The raw data for N 20 flux were not normally distributed and 

were log I 0 transformed for regression and ANOVA analyses. 
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Paper 1 

Intercropping of legumes and cereals: effect on yield and N balances in a three 

year low input crop rotation 

Valentini A. Pappa, Robert M. Rees, Robin L. Walker, John A. Baddeley and Christine A. 

Watson 

Abstract 

Intercropping systems, that include legumes, can provide symbiotically fixed nitrogen (N) 

and potentially increase yield through improved resource use efficiency. The aims of this 

study were to: a) establish whether the yield benefit of an intercropping phase in a rotation 

extended beyond its growth season; b) determine whether the effects depended on choice of 

legume and c) explore the relative contribution of legume derived N to companion crops in 

two growing seasons. An experiment was established near Edinburgh, in the UK, consisting 

of 12 hydrologically-isolated plots. Treatments were a spring barley (Hordeum vulgare cv. 

Westminster) monoculture and intercrops of barley / white clover (Trjfolium repens cv. Alice) 

and barley / pea (Pisum sativum cv. Zero 4 or cv. Nitouche) in 2006. Spring oats (Avena 

sativa cv. Firth) were planted on all plots in 2007. In the third season, all plots were sown 

with perennial ryegrass. No fertilisers, herbicides or pesticides were used at any stage of the 

experiment. Above ground biomass (barley, clover, peas, oats), grain yields (barley, peas and 

oats) and land equivalent ratio (LER) were measured at key stages during the growing 

seasons of 2006 and 2007. At harvest, the total above ground biomass of barley intercropped 

with clover (4.56 t ha) and barley intercropped with pea cv. Zero 4 (4.49 tha) were 

significantly different from the barley monocrop (3.05 t ha d ; P< 0.05). The grain yield of the 

barley (2006) intercropped with clover (3.36 t ha d) was significantly greater than that in the 

other treatments (P< 0.01). The accumulation of N in barley was low in 2006, but 

significantly higher in the oats grown the following year on the same plots. The intercrops 

affected the yield and N uptake of the spring oats in the following year, the effect was related 

to the different legume species and cultivars present in the previous years intercrop. Legume 

choice is central to optimising plant productivity in intercropping designs. Cultivars for 

intercropping purposes must be chosen with care, taking into account the effects upon the 

growth of the partner crop/s as well as to the following crop, including environmental factors. 

Keywords: Intercropping, Grain yield, Rotation, Drainage plots 
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1. Introduction 

Tntercropping can be defined as the simultaneous cultivation of two or more crops on the 

same area of land. The crops can be sown together or at different times, but they are usually 

grown simultaneously for a considerable proportion of their growing periods. Intercropping 

has been shown to increase yield compared with monocrops in low input systems (Ofori et 

al., 1987), has greater yield stability (Willey, 1979) and also reduces the chance of crop 

failure (Anil et al., 1998). It also has the potential to improve yield stability (Hauggaard-

Nielsen et al., 2006) and plant resource utilisation of water, light and nutrients (Willey, 1990; 

Jensen, 1996a; Whitmore and Schroder, 2007; Xu et al., 2008; Zhang et al., 2008). Where 

legumes are included as an intercrop, nitrogen transfer from biological nitrogen fixation 

(BNF) has been reported (Jensen, 1996b; Hauggaard-Nielsen and Jensen, 2001; Corre-Hellou 

et al., 2007). Intercropping of barley (Hordeum vu!gare L.) with pea (Pisum sativum L.) 

improves the use of plant growth resources in comparison with the associated monocrop due 

to different resource use, as they are different species (Willey, 1979; Hauggaard-Nielsen and 

Jensen, 2001). 

There is a particular interest in intercropping in low input and organic systems (Jones, 1993; 

Pridham and Martin, 2005). Recent rises in fertiliser costs, coupled with concern about the 

environmental impacts of excess N use and associated legislation are driving farmers to 

consider alternative nitrogen (N) sources and approaches to N management such as 

intercropping (Tilman et al. 2002; Erisman et al. 2008). Minimising external inputs (e.g. 

fertilisers and pesticides) and more efficient use N (e.g. from biological nitrogen fixation) 

(BNF) can increase the economic, environmental, ecological and social sustainability of 

agricultural systems. 

In developing more sustainable cropping systems it is important to examine stability of crop 

yield and N dynamics over time (whole rotations or periods of several years as well as within 

growing seasons). To date, most studies of intercrops have based their conclusions only on 

measurements of final yield (Connolly et al., 2001) and data from only one growing season 

(Hauggaarcl-Nielsen and Jensen, 2001; Andersen et al., 2005). More recently, Hauggaard-

Nielsen et al. (2009) found that there was 30-40% more efficient use of N resources by pea-

barley intercropped compared with the respective monocrop across Europe by using the same 

variety. Some studies (Hauggaard-Nielsen et al., 2003; Pappa et al., 2008) have considered 

the dynamics of intercrops over a longer period and the implications of this in terms of a 

range of mitigation options of N. 



The main objectives of the experiment reported here were to: a) evaluate the effect of 

different legumes (species and varieties) and barley on grain yield, dry matter production, N 

uptake of the intercrop treatments compared with the associated cereal monocrop and their. 

effect to the next grain yields; b) to assess the utilisation of N use efficiency of intercrops and 

monocrops and c) to determine the accumulation of N in shoots of the crops used in a low 

input rotation. 

2. Materials and Methods 

2.1. Site description and experimental design 

The experiment was sited at the Bush Estate (lat. 550 51'N, long. 30 12'W), near Edinburgh, 

Scotland, UK. This drained-plot experimental facility was established in 1990, and consists of 

12 hydrologically-isolated plots (25m x 9m) that have been used previously for nitrate 

leaching studies (Vinten et al., 1994). Prior to the current experiment, the plots had been 

fallow for the past three years (2003-2005). The soil is a sandy loam (Eutric Cambisol, 

Macmerry Series) developed from partially sorted glacial till, and the upper 0.5 to 1.5 in of 

the soil profile is freely drained. Further details of the experimental facilities are given in 

Vinten et al. (1992) The rainfall and air temperature for the three years of the current study are 

shown in Table 1. The 25 year annual average precipitation at Bush Estate is 676.2 mm. 

Table 1: Monthly total rainfall (mm) and monthly average air temperature ( °C) for 

Bush Estate, Edinburgh, UK. 

2006 2007 2008 

Rainfalt 
Air 

temperature 
Rainfall 

Air 	. 

temperature 
. 

Ra infall Ra infall 
Air  

temperature 

January 55 3.6 143 4.9 181 3.8 

February 46 3.4 39 4.2 57 3.9 

March 84 2.6 249 5.0 	. 126 3.8 

April 37 . 	 6.1 22 8.6 63 5.3 

May 111 8.8 107 8.5 35 9.7 

June 25 13.2 125 11.3 90 11.6 

July 53 16.2 106 12.6 109 13.9 

August 80 13.7 236 12.8 136 13.8 

September 122 13.4 54 11.4 60 11.8 

October 74 9.9 44 9.1 79 7.5 

November 108 6.2 88 6.5 76 4.9 

December 132 4.6 	. 76 2.9 121 3.6 

Total 927 1288 1132.4 

Average 77 8.5 107 8.2 91.9 7.8 

67 



In 2006 when the current study commenced, the treatments were: barley (Hordeum vulgare 

cv. Westminster) as a monocrop; Pea (Pisum sativum cv. Zero 4)1 barley intercrop; Pea 

(Pisum sativum cv. Nitouche)l barley intercrop; White clover (Trfolium repens cv. Alice) 

/barley intercrop. Westminster is a medium-tall variety of barley that is widely grown for 

malting and livestock feed due to its combination of longer than average straw and good 

disease resistance characteristics (}IGCA, 2008). Nitouche is a popular large blue pea variety 

and has a consistent performance, good agronomic characters and suitability for premium 

markets. Nitouche produces a large, smooth, round pea and retains its colour well. Nitouche 

also has a high level of resistance to downy mildew and long straw with good standing ability 

making it relatively easy to harvest. Zero 4 is a small blue combining pea with a unique 

combination of agronomic characteristics: short straw, excellent standing ability and very 

early maturity. When sown at its optimum seed rate of 110 seeds! m 2, Zero 4 has a similar 

yield potential to Nitouche (optimum seed rate of 70 seeds I m) (Nickerson, 2008). Alice is a 

tall, large leaved white clover developed for exceptional yields of palatable, high quality, high 

protein forage in pasture mixtures. Its vigorous spring and summer growth makes it a good 

choice for cutting or grazing management, as well as for N fixation throughout the seasons 

and good winter- hardiness and cover (Barenbrug, 2006). 

Each treatment was replicated three times in a blocked design. In the intercrop treatments, the 

seed rates for the pea and barley followed a 50:50 replacement design. This means that the 

target intercrop density was 50% of the monoculture density of each crop. Based on 

monocropping seed rates of 200 kg ha' for the barley and 250 kg ha' for the peas which 

equated to approximately 350, 75 and 110 germinable seeds per m 2  for Westminster, 

Nitouche and Zero 4 respectively, the intercrop components were half these values. The 

sowing date for these treatments was the 24th April 2006.. In the second growing season 

(2007), all the plots were sown with spring oats Avena sativa cv. Firth) on the 3rd  April at a 

seed rate of 250 kg ha-1  (approximately 450-500 germinable seeds per m 2). Firth is a very 

popular spring oat variety and exhibits a high kernel content and good resistance to mildew 

(HGCA, 2008). In the third growing season, perennial ryegrass (PRG) was sown in all plots 

in a 5 0:5 0 mixture of Aberavon and Aberdart at a total seed rate of 35 kg ha - 1 . The plots were 

tilled using a mouldboard plough followed by cultivating (rotary hoe), seeding and roiling. 

No fertilisers, herbicides or pesticides were used. The cropping pattern is shown in Table 2. 



Table 2: Cropping 2003-2008 on the drained plots 

2003 2004 2005 2006 2007 2008 

Intercropping spring barley/ Spring Perennial 
Fallow Fallow Fallow 

legumes Oats Ryegrass 

Treatments 
Barley! Clover 
Barley! Pea cv. Zero 4 
Barley! Pea cv. Nitouche 
Barley 

2.2 Harvest and analysis 

Above ground plant material was collected just prior to crop harvest (1 1th September 2006, 

11th September 2007 and 26th  June 2008) by cutting the plants 5 cm above the soil surface 

from a 1 m2  area (four 0.25 m 2  quadrats randomly placed in each plot). After the harvest, the 

residues were removed from the plots. During the winter, the clover plants continued to grow 

due to mild winter temperatures and incorporated in the soil by ploughing in the spring (3 rd  

April 2007). Biomass samples were separated into barley, pea, clover and weeds, dried at 70 

°C for 24 h and weighed. For grain yield, crop plants were hand swathed at the time of crop 

maturity from the above biomass sample and grain yield was calculated at 85% dry matter. 

Each part (stems, ears, pods) of each crop was weighed and subsamples taken for 

determination of the total N concentration (%) of the aboveground material. The oven-dried 

samples were ground using a Glen Creston hammer mill with a 1 mm mesh. A sub sample of 

this was then ball milled to a flour-like consistency using a Retch ball mill. These samples 

were analysed for total N by combustion using a PDZ Europa Mass Spectrometer. Nitrogen 

accumulation and grain N yield were calculated by multiplying dry matter and grain yield, 

respectively, by their corresponding N concentration. The same procedure was used for the 

spring oat crop (2007 season) which was separated into straw, grain and ryegrass (2008). 

2.3. Calculations 

2.3.1. Land Equivalent Ratio 

The nature of the Interactions between the yield components and productivity of the 

intercropping system depends on the morphology, physiology, density and spatial 

arrangement of the components in relation to the climatic, edaphic and biotic environment in 



which they are grown, together with the ensuing management regime (Anil et al., 1998). Such 

complex interactions generally mean that intercrops have both complementary and 

antagonistic interactions. However, the measurement of yield is usually taken as a primary 

consideration in the assessment of the potential of intercropping practices and has led to 

several measurement criteria being put forward (Szumigalski and Van Acker, 2006). An 

important tool for the study and evaluation of intercropping systems is the Land Equivalent 

Ratio (LER) (Dhima et al., 2007). LER provides a measure of the yield advantage obtained 

by growing two or more crops or varieties as an intercrop compared to growing the same 

crops or varieties as a collection of separate monocrops. The LER for the barley/ pea 

intercrop is calculated using the following formula: 

LB = yBi.t / YBmon 

LL = YLint / YLmon 

LER = LB + LL, 

where LB and LL are the land for barley and legumes, respectively, YBint and  YBmon  are the 

yield of barley in intercrops and monocrop, respectively, and YL1nt and YLmon  are the yields of 

the legume in the intercrop and monocrop, respectively. An LER value of 1.0 indicates no 

difference in yield between the intercrop and monocrop. Any value greater than 1.0 shows a 

yield advantage for intercropping. An LER of 1.3 for example, indicates that the area planted 

to monocultures would need to be 30% greater than the area planted to intercrop to produce 

the same combined yield. The calculation of LER is the most common method adopted in 

intercropping studies, in particular in tropical regions where intercropping is commonly 

practised. 

For barley plants (2006), the cereal growth stages GS 23 (main shoot and 3 tillers), GS 65 

(flowering half-way), GS 77 (late milk), GS 92 (grain hard (not dented by nail) for the 

growing season 2006 (barley) were 30, 70, 100 and 140 days from sowing, respectively. For 

oat plants (2007), the growth stages GS 16 (six leaves unfolded), OS 23, 05 65, OS 77 and 

OS 92 were 40, 65, 100, 135, 161 days from sowing respectively (HGCA, 2005/06). 

2.4. Statistics 

All measured variables were normally distributed tested by Anderson-Darling test 

(significance .05) and statistical analyses by ANOVA were performed using either Minitab 15 

or OenStat 8 software. In all cases, significant differences were calculated at or below the 5% 

level. 
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3. Results 

3. 1. Growth stages and height 

3.1.1. Barley plants 

During the 2006 season, barley height was influenced by companion variety choice and 

agronomic practice. The treatments were significantly different with barley in the barley/ pea 

cv. Nitouche treatment being the tallest followed by barley in the barley/ clover treatment. 

The height of the barley intercropped with the two pea varieties was also significantly 

different with the barley grown with pea cv, Nitouche resulting in taller plants by 0.29 in 

(P<0.05) in harvest stage (GS 92) in comparison with the rest of the treatments (Fig. lA). 

3.1.2. Oat plants 

The intercropped treatments were followed by spring oats the next year (2007). The oats 

grown on the previous year's barley/ clover treatment proved to be the strongest and tallest 

plants in comparison with the rest of the treatments. The two treatments that had the pea 

intercrops were significantly different in height with barley/ pea cv. Nitouche by 0.14 in 

(P<0.05), but they had almost the same biomass (see above ground biomass results) (Fig. 113). 

180 

140- 	
e

** 
---- Oat (Barley! Clover) 

- Oat (Barley! Pea cv Zero 4) 

120 	—0-- Oat (Barley! Pea cv Nitouche) 

Oat (Barley) 	 * 

100 

60 -  

40 

201 	

B 

Sowing 	 GS 16 	GS 23 	 GS 65 	 GS 77 

April 	 May 	June 	 July 	 August 

Figure 1: Height of barley in 2006 (A) and oats in 2007 (B) plotted against growth stages. All values are 

means (n=3). Asterisks indicate whether treatments are significantly different at * P<0.05; **P<0.01 
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3.2. Above ground biomass 

3.2.1. Spring barley and oats 

The barley grew rapidly in 2006 between GS 23 and 65 after the canopy had closed 

generating almost 70% of its total final dry matter. At the end of grain filling (GS 85), when 

the maximum crop dry weight occurred, the stems and leaves started losing weight due to 

falling leaf tissue and senescence varying by 7 days between monocrop and intercropped 

treatments with the monocrop to senescence first. The barley had the maximum biomass in 

the barley/ clover treatment. Due to observations, the senescence started earlier in the barley 

monocrop and its dry biomass reduced very quickly (Fig. 2A). 

The growth of the 2007 oat plants were significantly affected by the previous crop treatment. 

Oats grown following barley/ clover grew more rapidly than the other treatments and had the 

greatest biomass (17.31 t ha') at GS 92 (Fig. 2B). 

25 
—4--- Oat (Barley/ Clover) 

L Oat (Barleyl Pea cv Zero 4) 

20 	
Oat (Barley/ Pea cv Nitouche) 

—0— Oat (Barley) 

15 

10 

S 

0 

Sowing 	 OS 10 	OS 23 
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P.] 

GS 65 
	

0S77 	0S92 

July 
	

August 	Sept 

Figure 2: Above ground biomass of barley in 2006 (A) and oats in 2007 (B) plotted against growth 

stages. All values are means (n=3) ± SE (bars) within the treatment. Asterisks indicate whether 

treatments are significantly different at * P<0.05; P<O.Ol 
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3.2.2. Legume p/wits 

In 2006, the above ground legume biomass was significantly different at the 

beginning of the growing season (June 2006; Barley growth stage 23) with pea cv. Nitouche 

greater by 0.7 t ha -1  (P<0.05); and clover having the lowest biomass (Fig. 3). The biomass of 

the two pea varieties was not significantly different during the growing season even though 

the pea cv. Nitouche was double the height of pea cv. Zero 4 (Fig. IA). 

Figure 3: Above ground biomass of legume plants plotted against cereal (barley) growth stages during 

the growing season (2006). All values are means (n=3) ± SE (bars) within the treatment. Asterisks 

indicate whether treatments are significantly different at * P<0.05. 
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3.2.3. Perennial lyegrass 

In 2008, the above ground biomass was not significantly different within the treatments. All 

the treatments had close to 1.3 t ha -1  dry matter after the summer harvest (Fig.4). 

2.0 

1.8 

1.6 

1.4 

1.2 

1.0 

0.8 

0.6 

0.4 

0.2 

0.0 
Grass (Barley! 	Grass (Barley! Pea Grass (Barley/ Pea 	(lass (Barley) 

Clover) 	cv. Zero 4) 	cv. Nitouche) 

Figure 4: Above ground biomass of perennial ryegrass in 2008. All values are means (n=3) ± 

SE (bars) within the plots. The initial treatments (2006) are presented in parenthesis. 



3.3. Grain yields 

3.3.1. Spring barley and peas during the first year of the cropping sequence (2006) 

The pea cultivars differed in time of flowering/ maturity and stem length with Zero 4 being 

the earliest to mature and shortest (close to 0.40 m tall). The composition of established 

intercrops was close to the target of 50:50 with 162 barley (intercropped); 47 Pea cv. 

Nitouche (intercropped); 56 Pea cv. Zero 4 (intercropped) and 261 barley (monocrop) plants 

m 2 . The grain yield of the barley intercropped with clover was significantly different 

(P<0.01) possessing 182% of the average barley monocrop yield. No yield differences were 

observed between the pea cultivars and the intercropped barley grain yields (Fig. 5). 
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Figure 5: Grain yields of barley and pea in 2006. All values are means (n=3) ± SE (bars) within the 

treatment. Asterisks indicate whether treatments are significantly different at (** P<0.01) from the 

other treatments. 
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3.3.2. Spring oats in the second year of the cropping sequence (2007) 

Spring oat grain yield was influenced by the previous year's treatments with a significant 

difference (P<0.05) between the oats grown after the clover! barley (6.68 t ha - ) treatment and 

the other treatments (Fig. 6). During the winter prior to sowing the oats, the clover continued 

to grow well after harvest due to mild winter temperatures and was incorporated in the soil by 

ploughing in the spring (3 April, 2007). 
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7 

6 

5 
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0 

Figure 6: Spring oat grain yields in 2007. The initial treatments (2006) are presented in 

parenthesis. All values are means (n3) ± SE (bars) within the treatment. Asterisks indicate 

whether treatments are significantly different at * P<0.05 from the other treatments. 
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3.4. Production efficiency of intercrops 

Land Equivalent Ratio (LER) was estimated in order to determine the efficiency of the 

intercrops in relation to the component monocrops and the potential advantages and 

disadvantages of them. The average LER for the clover/ barley treatment was 1.27 compared 

to 1.48 for barley/ pea cv. Zero 4 and barley/ pea cv. Nitouche. The overall advantages were 

27% for barley/ clover and 48% for barley! pea (Fig. 7). 
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Barley! Clover 	Barley! Pea cv. Zero 4 	Barley! Pea cv. 
Nitouche 

Figure 7: Land Equivalent Ratio (LER) for the intercrops (2006). All values are means 

(n=3) ± SE (bars). 

3.5. N accumulation in crops 

3.5.1. Spring barley 

Total above ground N accumulation in barley was not significantly different between 

treatments in 2006 until harvest (P<0.05), when barley/ pea cv. Zero 4 reached 52 kg N ha' in 

the above ground biomass (Fig. 8A). For the last harvest analyses of total N were carried out 

on separate samples of straw and grain. Total N in barley straw did not differ between 

treatments. There were significant differences (P<0.05) in total N in the barley grain yield 

with barley/ pea cv. Zero 4 having the highest value (45.6 kg N ha') (Fig. 9). 

3.5.2. Legumes (Clover and Peas) 

The intercropped pea cv. Nitouche plants had the highest levels of total N (P<0.01) of 97 kg 

N h& 1  at harvest with 78.5 and 18.5 kg N ha- ' in grain and straw respectively (Fig. 9). Pea cv. 

Zero 4 plants were not significantly different in total N in comparison with the pea cv. 
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Nitouche plants having 63 kg N ha' in grain and 20 kg N ha' in straw followed by the clover 

plants with 79 kg N ha' (Fig. 10). 

3.5.3. Spring oats 

Total above ground N accumulation was not significantly different between treatments at the 

beginning of the second growing season (2007). However, eight weeks after sowing, the oat 

plants growing on the previous barley/ clover plots had significantly more total N in the 

above ground parts on average about 143 kg N ha' than the other treatments (P<0.001). This 

difference continued until the end of the growing season (Fig. 813). The total N in the oats 

growing in the previous two barley/ pea plots was significantly different at GS 23 (P<0.05) 

having 71 kg N ha' and 53 kg N ha4  on previous barley/ pea cv. Nitouche and barley/ pea cv. 

Zero 4, respectively. At the end of the growing season, the total N in straw for the spring oats 

grown in the previous clover/ barley treatment was significantly different from the rest of the 

treatments reaching almost 38 kg N ha'. The total N contained in the grain did not differ 

between the plots where pea crops and monoculture barley were grown in the previous year 

(Table 3). 
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.Barley/Clover ——Oat (barley/ clover) 

A -Barley/ Pea cv. Zero 4 B * 	A 	Oat (barley/ pea cv Zero 4) 

—0.-- Barley/ Pea cv. Nitouche —0-- Oat (barley/ pea cv. Nitouche) 

200 Barley 200 —g --Oat (barley) 
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Figure 8: Accumulation of N in above ground biomass at different growth stages for spring 

barley (2006) (A) and spring oats (2007) (B). All values are means (n=3) ± SE (bars). Asterisks 

indicate whether treatments are significantly different at * P<0.05 and * * P<0.01 from the 

other treatments. 
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Figure 9: Accumulation of N in above ground parts (straw and grain) of barley and legumes 

(clover and peas) expressed as kg N ha -1  at the final harvest in 2006. All values are means (n=3) ± 

SE (bars). Treatments represented by CB: Clover! Barley; PO4B: Pea cv. Zero 4/ Barley; PNitB: 

Pea cv. Nitouche! Barley and B: Barley. Asterisks indicate whether treatments are significantly 

different at * P<0.05; **< from the other treatments. 
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Figure 10: Accumulation of N in above ground biomass of the legumes according to cereal 

(barley) growth stages in 2006. All values are means (n=3) ± SE (bars). 

Table 3: Accumulation of N in above ground parts (straw and grain) of spring oats (2007) 

expressed as kg N ha'. All the values are the mean (n3) ± SE. The values with different 

letters (a, b) are significant different (P<0.05) 

Treatments 

Oat (barley! clover) 

Oat (barley/ pea cv. Zero 4) 

Oat (barley/ pea cv. Nitouche) 

Oat (barley) 

Straw (kci N ha- 1 ) 

37.9 ±4.2 	b  

13.1 ±0.7 	a 

113 ±2.9 	a 

10.6 ±0.8 	a 

Grain (kci N ha - 1 ) 

105 ± 17.1 	b 

64.6 ± 7.12 	a 

62.0 ± 15.0 	a 

50.5 ± 13.2 	b 

Total (kci N ha') 

132 ±22.4 	b 

70.2 ± 7.30 	a 

59.2 ±21.9 	a 

57.0 ±8.5 	a 
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4. Discussion 

The interactions between intercropped cereals and legumes are affected both by differences in 

the morphology and physiology of the species and through environmental controls. Barley 

and legume plants respond differently to light and cereal plants can cause shading which 

leads to growth restrictions in legume plants (Fujita et al., 1992). Barley absorbs nutrients, 

especially N, rapidly between growth stages 31 (first node detectable) and 39 (flat leaf blade 

all visible), as the canopy size increases through leaf emergence and tiller survival. It then 

slows until growth stage 59 (ear completely emerged); after that the N taken up is 

redistributed within the plant, (HGCA, 2005/06). Barley plants intercropped with clover had 

the highest biomass and yields of barley (Fig. 2A and 5), and the barley grown in the two 

barley/ pea treatments was equal in biomass yet both had lower yields than the barley grown 

in the barley/ clover treatment at GS 92 (Fig 2A.). This was probably a result of the taller 

peas increasing the interspecific competition for light during vegetative growth compared 

with the lower growing clover. In addition competition for soil water during grain filling of 

the barley and peas (Thorsted et al., 2006), as well as possible higher levels of available N in 

the soil and/ or the effect of shading of the weed understorey during the growing period from 

the clover (Grashoff and d'Antuono, 1997) may have influenced this outcome. 

The nutrient dynamics of both cereals and legumes would be expected to be influenced when 

grown as intercrops. The legume has the potential to provide nitrogen (N) to the non-legume 

directly through mycorrhizal links, root exudates, or decay of roots and nodules (Vandermeer, 

1999). Another possible mechanism is that legumes can 'bank' large quantities of soil N, 

which might otherwise have leached out of the system and release it through soil organic 

matter turnover to the non-legume companion crop later during the growing season, or to the 

following crops (Vinten etal., 1992). In peas, there is evidence to indicate that the process of 

BNF begins approximately a month after sowing and lasts for up to two months (Balandreau 

and Dommergues, 1973). If this were the case in our study then it would suggest that for an 

early variety such as pea cv. Zero 4, BNF would have continued during seed development 

whereas for a later variety (e.g. Nitouche), it would have stopped after flowering (Cousin, 

1997). Anil et al. (1998) found that the amount of N 2  fixed by legumes generally declines 

with increasing soil N availability, and if the legumes are continuously shaded their ability to 

fix N2  is further impaired (Willey, 1979). The two pea cultivars had different growth rates and 

biomass even though at the harvest stage they had similar grain yields (Fig. 2A and 5). The 

competition between the barley and peas reduced the amount of above ground biomass in the 

barley intercropped with pea cv. Nitouche, with the barley being more shaded than when 

grown with the shorter pea cv. Zero 4. The impedance of photosythetically active radiation 
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(PAR) to the legumes, as a result of competition for this resource by the barley, reduced the 

photosynthesis rate very probably resulting in decreased BNF. Pea cv. Zero 4 was the shorter 

of the two pea cultivars and it is possible that its growth and physiological activity was 

affected by shading, more so than the pea cv. Nitouche. Less shading of the legume 

component in an intercropped system may increase both the photosynthesis rate of the legume 

as well as the rate of BNF (Fujita et al., 1992). 

The LER values indicate good resource use efficiency. Intercroppiñg can also provide 

improvements in soil quality and more stable yields (Yildirim and Guvenc, 2005). The LER 

values were always greater than one for the intercrop treatments in this study which can be 

considered to represent a high level of biological efficiency (Vandermeer, 1999; Hauggaard-

Nielsen and Jensen, 2001). The LER values were also used to compare cultivar performance 

in the intercrops, relative to the barley/ peas and barley monocrop, with gains of up to 22% 

(Hauggaard-Nielsen and Jensen, 2001). Results presented in our study indicate comparable 

values up to 27% and 42% for the barley/ pea and barley! clover intercrop, respectively, 

compared to the barley alone, representing a significant yield benefit for these treatments 

(Fig. 6). Some previous studies have also shown LERs of greater than one from intercropping 

experiments. For instance, Mazaheri (2006) recorded LERs of 1.19 when working with 

maize and kale. Research on wheat and beans by Bulson (1997) estimated LERs of 

significantly greater than 1 in situations where crop densities were sufficiently high, whereas 

Newman (1986) studying vegetables and fruit found LERs more than 2 under some 

circumstances. The increased LERs that are observed in intercropping experiments are likely 

to be a consequence of a number of interacting factors. However, given that the companion 

species predictably occupy different ecological niches, it I s likely that there will be some 

increased exploitation of resources (light, water and nutrients). 

There were significant differences in the accumulation of N in the barley plants between 

treatments during the first growing season (2006) indicating a possible effect of available N 

in the soil and N inputs by fixation (Bandyopadhyay and De, 1986). Many studies have been 

conducted using barley to elucidate the factors controlling N uptake. It has been shown that 

different yield response in barley is linked to the crop's varying N uptake and its N use 

efficiency (Perby and and Jensen, 1983; Tillman et al., 1991; Delogu et al., 1998). During 

plant growth, from germination up, to harvest stage, N has a key role in dry matter formation 

and accumulation. Barley plants grown in intercrops have an opportunity to increase N use 

efficiency and therefore yield through improved exploitation of soil N resources and N 

transfer from companion legume species (Delogu etal., 1998). 
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In most cases, the crop mixture contained more N than the component monocrops, indicating 

improved N use by the intercrops. Other studies confirm the N uptake and efficiency benefits 

of growing a legume with a non-legume (Martin and Snaydon, 1982; Szumigalski and Van 

Acker, 2008). A number of mechanisms exist that enable utilisation of these growth resources 

more efficiently than the associated monocrop. For example, different spatial arrangements 

can influence nutrient transfer directly, but also have an effect on weed and disease pressure 

as well as competition for light and water (Anil etal., 1998; Thorsted etal., 2006). 

The most important result emanating from this study is' arguably the quantification of the 

substantial effect the previous legume treatments had on the following oat crop. Oats grown 

in the barley/ clover plots had the highest biomass, grain yield and accumulation of N in straw 

and grain in comparison with the other treatments (Fig. 2B, 6, 8B and Table 3). It has been 

reported in other studies that where clover continues to grow after the harvest there is the 

potential for reduced N loss from the soil and possible N transfer through legume residue 

decomposition and turnover (Baggs et al., 2002; Miller et al., 2008). It has also been 

suggested that there are additional benefits on soil structure during the growing season and 

into subsequent seasons (Mytton et aL, 1993; Papadopoulos et al., 2006). 

The management practices employed here may be appropriate for the manipulation of nitrate 

leaching and N20 losses from agricultural ecosystems (Thomsen, 2005), as the plant N uptake 

was different for each treatment. The rate and morphology of barley root development in 

combination with the available N in the soil might be responsible for the different N uptakes 

(Eghball and Maranville, 1993; Mengel et al., 2006; Herrera et al., 2007; Paper 4). Root 

biomass can control the amount of N uptake by plants, as increased root biomass will enable 

plants to exploit a larger volume of soil (Rees et al., 2005). 

Agricultural fanning systems have a higher potential to benefit from the use of legumes as 

part of a rotation in order to improve soil fertility and structure. Subsequent crops can then 

benefit by using the N stored in the soil, which is released by mineralisation (Watson et al., 

2002). This experiment has highlighted the higher potential grain yields from the use of 

intercrops with additional benefits of ,improved yields in subsequent crops. This work 

demonstrates the need for long-term experiments to evaluate the advantages, or disadvantages 

of intercropping systems. It is likely that in addition to the environmental and agronomic 

benefits of intercropping systems reported in this paper that there will be positive economic 

effects (Rao and Willey, 1980; Hauggaard-Nielsen and Jensen, 2001). 
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5. Conclusions 

Agricultural farming can benefit from the use of legume-cereal intercropping. The choice of 

legume cultivar or species is a key factor influencing the amount of N available to the system 

in the year of use and/ or the following year, with this impacting significantly on the final 

grain yield in these years. The two barley/ pea intercrops had similar above ground biomass 

and grain yield for both component species (barley and peas). However, the accumulation of 

N in the above ground biomass of barley differed between these two treatments with 

significantly more N accumulated in barley/ pea cv. Nitouche than the barley/ pea cv. Zero 4. 

Undersowing cereals, even at low seed rates, with clover can contribute significantly to 

accumulation of N in the cereal plants. If the residues remaining after the harvest of a barley/ 

clover crop are incorporated into the soil by ploughing in the spring, it can provide available 

N for the following crop. 

The magnitude of these effects is highly sensitive to management. For example, the choice of 

legume is impoitant in optimising plant productivity in intercropping designs. However, more 

extensive study on the effects that different species/ varietal combinations and ratios have on 

the productivity of the system as well as their environmental impact is required in order to 

optimise such systems. Important issues for further investigations will include the effect of 

intercrops on greenhouse gas balances, the influence root development and compatibility of 

component species/ varieties, and the impact of soil and climate for agriculture. Gaining a 

greater understanding of the interactions taking place within a cereal/ legume intercrop its 

role within a rotation has the potential to be a very useful management tool in the 

development of more sustainable cropping and agricultural systems. 
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rotation 

Valentini A. Pappa, Robert M. Rees, Robin L. Walker, John A. Baddeley, 

Christine A. Watson 

Abstract 

Intercropping, the cultivation of two or more crops in the same space at the same time, 

has disappeared from many European farming systems over the last 50 years as these 

systems have become increasingly dependant on the use of herbicides and mineral 

fertilisers to maintain productivity. Cereal—legume intercropping offers potential benefits 

in low-input cropping systems, where nutrient inputs, in particular nitrogen (N), are 

limited. It can increase the input of leguminous symbiotically-fixed N to the cropping 

system and reduce negative impacts on the environment. The research aims were to 

explore the effects of intercropping on post-harvest and the following years' N dynamics, 

the risks of gaseous and leaching N losses and to estimate the available soil N. The main 

hypotheses were that: a) the intercrops can reduce system N 20 emissions compared to 

monocrops; b) the choice of legume species and cultivars can minimise N losses from a 

system and influence soil available N. A drainage-plot experiment was established on the 

South-East Scotland, UK, consisting of 12 hydrologically-isolated plots. The treatments 

were a spring barley (Hordeum vulgare cv. Westminster) monoculture and intercrops of 

barley/ white clover (Trfolium repens cv. Alice) and barley! pea (Pisum sativum cv. Zero 

4 or cv. Nitouche). Spring oats (Avena sativa cv. Firth) were planted on all plots in 2007. 

In the third season, all plots were sown with perennial ryegrass. No fertilisers, herbicides 

or pesticides were used at any stage of the experiment. No fertilisers, herbicides or 

pesticides were used throughout the experiment. Soil mineral N, Dissolved Organic 

Nitrogen (DON) in soil, gaseous N fluxes (direct and indirect) and N leaching were 

measured over two year of the experimental period. 

Nitrate leaching was reduced where legumes were used (Pea cv. Zero 4) in comparison 

with the barley Inonocrop (cumulative values of 670 g NO 3 - N ha 1  and 3804 g NO3 -N 

ha 1 , respectively) and gaseous losses were also reduced (cumulative values of 2.14 kg 

N20-N ha" and 3.20 kg N20-N ha'). Additionally, the leguminous intercrops increased 

the soil available N during the first growing season and for the following crop. These 



results show that intercropping may reduce N losses from low input agricultural systems. 

However, they also demonstrate that there is a need to choose suitable cultivars for 

intercropping purposes with care, taking into account the effects upon the growth of the 

main crop and the influence on the wider enviroment. 

Keywords: Barley, drainage plots, intercropping, legumes, nitrogen losses, nitrous 

oxide, organic farming 
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1. Introduction 

In 2005, agriculture accounted for an estimated emission of 5.1 to 6.1 gigatonnes (Gt) 

carbon dioxide (CO2) eq/yr (10-12 % of total global anthropogenic emissions of 

greenhouse gases) (IPCC, 2006). Despite large annual exchanges of CO 2  between the 

atmosphere and agricultural lands, the net flux is estimated to be approximately 

balanced, with CO 2  emissions around 0:04 Gt CO 2/yr. Agriculture is thus an important 

source of greenhouse gas (GHG) emissions and accounts for approximately one fifth of 

the annual increase in radiative forcing* and this increases to one third when land use 

changes, like conversion of forest to cropland, are included (Robertson et al., 2000). 

Nitrous oxide is released from fixed nitrogen in soils by microbial processes and has a 

100-yr average global warming potential (GWP) 296 times larger than an equal mass of 

CO2 (Prather et al., 2001; Smith and O'Mara, 2007). It is generated by the microbial 

processes of nitrification and denitrification in soils and manures and is often enhanced 

where available nitrogen (N) exceeds plants requirements, especially under wet 

conditions (Smith and Conen, 2004). Of global anthropogenic emissions in 2005, 

agriculture accounted for about 60% of N 20. Nitrous oxide can be produced during 

biological N fixation, and also when legume residues are returned to the soil (Crews and 

Peoples, 2004; Lupwayi and Kennedy, 2007). The last route is well-established - when 

residues rich in N (low C:N ratio) decompose in soil, they can release large amounts of 

mineral N which is then liable to N 20 loss during nitrification and denitrification 

(Larsson et al., 1998; Baggs et al., 2000); (Huang et al., 2004); (Rochette and Janzen, 

2005). Nitrate leaching can also contribute to significant N loss from the rooting zone 

(Hansen and Djurhuus, 1997) resulting in water pollution and additional indirect N 20 

losses. The amount and intensity of rainfall, evaporation rate, temperature, soil texture 

and structure, type of land use and cropping practices are all parameters that influence 

the amount of nitrate in the soil. 

It is widely recognised that new agricultural management practices need to be developed' 

to reduce global emissions of N 20 whilst maintaining food production (Raddatz, 2007). 

* 'Radiative forcing is a concept used for quantitative comparisons of the strength of different 
human and natural agents in causing climate change.' Forster, P., V. Ramaswamy, P. Artaxo, T. 
Berntsen, R. Betts, D.W. Fahey, J. Haywood, J. Lean, D.C. Lowe, G. Myhre, J. Nganga, R. Prinn, 
G. Raga, M. Schulz and R. Van Dorland, , 2007. Changes in Atmospheric Constituents and in 
Radiative Forcing. In: Climate Change 2007: The Physical Science Basis. Contribution of 
Working Group Ito the Fourth Assessment Report of the Intergovernmental Panel on Climate 
Change [Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M.Tignor and 
H.L. Miller (eds.)]. Cambridge University 
Press, Cambridge, United Kingdom and New York, NY, USA. 

) 
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Emissions are most likely to be reduced by increasing N use efficiency (Flessa et al., 

2002), and by targeting management practices associated with significant N 20 

losses(Ball, Rees, and Sinclair). Emissions of N 20 increase markedly following 

incorporation of leguminous crops, probably as a result of mineralisation of biologically 

fixed residue N with enhanced microbial respiration during residue decay (Flessa et al., 

2002). The underlying mechanisms behind N 20 emissions are well understood, but we 

know less about the relative contributions and interactions of environmental and 

management drivers, including N supply (Bouwman, 1996; Maggiotto, 2000), 

temperature (Castaldi, 2000; Freibauer and Kaltschmitt, 2003; Flechard et al., 2007), pH 

(Mogge et al., 1999) and soil moisture (Dobbie, 1999; Zheng et al., 2000; Dobbie and 

Smith, 2003). More recent research suggests management of the system, e.g. ploughing 

(Djurhuus and Olsen, 1997; Ball et al., 2002), as well as the crops (Chen et al., 2002) 

themselves and the cropping systems (Halvorson et al., 2008; Jantalia et al., 2008) can 

have an impact on N 20 release. 

Nitrogen losses in drainage water occur both as a consequence of leaching and through 

transport of dissolved N 20. According to Carpenter et al. (1998), total export of N from 

agricultural ecosystems to water, as a percent of fertiliser inputs, ranges from 10-40% 

from loam and clay soils to 25-80% for sandy soils. There is however much uncertainty 

regarding the proportion of this which is present as N 20 (Jarvis et al., 2001). Crutzen et 

al. (Crutzen et al. 389-95) suggested that indirect N 20 losses from fixed N application 

are higher (3-5 times) than previously assessed and have a high impact for climate. 

Indirect agricultural sources of N 20 remain poorly defined in most cases as they are 

difficult to quantify and measure because N 20 is emitted to the atmosphere as soon as 

the drainage water is exposed to the air (Reay etal., 2004a). 

Manipulation of agricultural management practices is a possible mechanism to control 

both loss of nitrogen in drainage water (leaching) and GHG emissions (Smith and Conen 

255-63). More efficient land management systems should aim to decrease mineral N 

accumulation in soil and synchronise N inputs with crop growth and crop N uptake, 

avoiding the build up of excess N in soils (Mosier et al, 2002). Haugaard-Nielsen et al. 

(2003) found a small reduction in nitrate leaching from lysimeters cropped with pea-

barley mixtures compared with monocrops. Currently, this system is attracting increased 

interest in low-input crop production systems and is being extensively investigated using 

N inhibitors for reducing the N losses (Hauggaard-Nielsen and Jensen, 2001; Zhang and 

Li, 2003) and improving soil conditions (Smith etal., 2003). 

93 



Intercropping, or the growing of two or more species together at one time, is a 

widespread practice in tropical agriculture but less widely used in temperate regions. It 

relies on the two crops having complementary rather than competing traits and thus 

using resources more efficiently. The inclusion of a leguminous crop has two possible 

benefits (a) reduced competition for soil nitrogen because the legume fixes its own N, 

and (b) increased residual nitrogen available to a following crop (Hauggaard-Nielsen 

and Jensen, 2001; Sangakkara et al., 2003; Thorsted etal., 2006). 

In systems that include intercrops, legumes can provide N for the cereals through direct 

N transfer (Patra et al., 1986; Xiao etal., 2004), while long-term transfer through effects 

on soil organic N is most important for yield improvements at the crop rotation level 

(Olesen et al., 2002; Thorsted et al., 2006). Intercropping of legumes and cereals offers 

an opportunity to increase the input of fixed N into an agro-ecosystem without 

compromising the use of N from the cereals, yield levels and stability (Hauggaard-

Nielsen et al., 2001). Some experiments have shown a clear yield advantage in 

intercrops, for example beans and maize (Willey, 1979) and pea and barley (Hauggaard-

Nielsen et al., 2001), whereas other studies have not, for example intercropping found 

no benefit from intercropping wheat with clover (Thorsted et al., 2006). 

The main objectives of the present experiment were to: a) investigate the N losses from 

the use of intercrops in a three-year low input rotation; b) quantify the N losses from 

legumes in comparison with the monocrop and c) to estimate the availability of N in the 

soil throughout the two year experimental period. 

2. Materials and Methods 

2.1. Site description and experimental design 

A drained-plot experiment at the Bush Estate (tat. 550  51'N, tong. 3 0  12'W), near 

Edinburgh, Scotland, (Fig.2) was used for measuring N 20 emissions from soil, nitrate 

(NO3 ) leaching, N20 from drainage water and mineral N in soil. This facility was 

established in 1990, and consists of 12 hydrologically-isolated plots (each 25 in x 9 m) 

that have been used previously for NO 3  leaching studies (Vinten et al., 1994). The soil 

was a sandy loam (Eutric Cambisol, Macmerry Series) developed from partially sorted 

glacial till. The upper 0.5 to 1.5 in of the profile is freely drained. The annual average 

precipitation in the last 25 years at Bush Estate is 676.2 mm. During the experimental 

period, the annual precipitation was 927 mm, 1288 mm and 1132 mm for 2006, 2007 

and 2008, respectively (Fig 1). The day before sowing in 2006, the soil was sampled and 
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the water content at field capacity was 19 ± 0.5 % (v/v) and the soil bulk density was 

1.19 ± 0.01 Mg n13  (mean ± SE, n=5) in 0-20 cm. The top soil was a sandy loam (65% 

sand, 20% silt and 15% clay) 

Figure 1: Monthly total rainfall (mm) and monthly average air temperature (°C) at Bush 

Estate, Scotland during the experimental period. 

In the first growing season, the crops were barley (Hordeu;n vulgare cv. Westminster), 

as a monocrop (mon); a pea (Pisuni sativum cv. Zero 4)1 barley intercrop; a pea (Pisum 

sativun cv. Nitouche)/ barley intercrop; and a white clover (Trfolium repens cv. Alice) 

/barley intercrop. The barley cv. Westminster is a medium-tall variety that is widely 

grown for malting and feeding due to its combination of longer than average straw and 

good disease characteristics (HGCA, 2008). The pea cv. Nitouche is a large blue variety 

with a consistent performance, good agronomic characters and suitability for premium 

markets. Nitouche produces a large, smooth, round pea and retains its colour well. It has 

long straw with good standing ability making it easy to harvest and high level of 

resistance to downy mildew. Pea cv. Zero 4 is a small blue combining pea with a unique 

combination of agronomic characters: short straw, excellent standing ability and very 

early maturity. 
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Figure 2: Sample site located in Midlothian, Scotland, U.K (A). The field is highlighted 

with a red circle on the top right map (B). Detailed plan of the Section 3 field at the 

bottom right photo (C). Plots 1, 6, 11: Barley! Clover; Plots 2, 3, 5: Barley! Pea cv. Zero 

4; Plots 8, 10, 12: Barley! Pea cv. Nitouche and plots 4, 7, 9: Barley (mon) in 2006 

followed by spring oats (2007) and ryegrass (2008). 
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When sown at its optimum seed rate of 110 seeds! m 2, Zero 4 has a similar yield 

potential to Nitouche (optimum seed rate of 70 seeds ! m) (Nickerson, 2008). White 

clover cv. Alice is a tall, large leaved clover developed for exception yields of palatable, 

high quality, high protein forage when included in pastures mixtures. Its vigorous spring 

and summer growth makes it a good choice for cutting or grazing management and it has 

good winter hardiness (Barenbrug, 2006). 

Each treatment was replicated three times in a blocked design (Fig.2C). In the intercrops 

the seed rates for the pea and barley followed a 50:50 replacement design. Based on 

monocrop seed rates of 200 kg ha' for the barley and 250 kg ha' for the peas which 

equated to approximately 375, 75 and 110 germinable seeds m 2  for Westminster, 

Nitouche and Zero-4 respectively, the intercrop components were half these values, and 

the sowing date was on the 24th  April 2006. In the second growing season (2007), all the 

plots were sown with spring oats (Avena sativa cv. Firth) rd April at a seed rate of 25 

kg ha' (approximately 450-500 germinable seeds m 2). This is a cultivar that remains a 

very popular with a high kernel content and good resistance to mildew (HGCA, 2008). 

In the third growing season, perennial ryegrass (PRG) was sown in all plots in a 50:50 

mixture of cv. Aberavon and cv. Aberdart at a total seed rate of 35 kg ha - '(Table 2). In 

all years, the plots were tilled using a mouldboard plough followed by a rotary hoe, seed 

drilling and rolling. No fertilisers, herbicides or pesticides were used. 

All the data are presented with reference to the cereal growth stages GS 23 (Main shoot 

and 3 tillers), GS 65 (Flowering half-way), GS 77 (Late milk), GS 92 (Grain hard (not 

dented by nail). For the 2006 growing season (barley) these stages were at 30, 70, 100 

and 140 days, respectively. For oat plants (2007), the growth stages GS 16 (six leaves 

unfolded), GS 23, GS 65, GS 77 and GS 92 were 40, 65, 100, 135, 161 days from 

sowing respectively (HGCA, 2005/06). Some of the data presented here have been 

separated into different periods as follow: Summer '06: 24th April - 11th September; 

Winter '06: 12th September O 2nd April 07; Summer '07: P April - 11th September; 

Winter '07: 12th September 07- 21 "  April 08; Summer '08: 22 id April - 30th August. 
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Table 1: The three-year rotation at the Edinburgh site. 

OO4 2006 2007 2008 

Intercropping 	spring Spring 
Fallo' Fallow-. ' F2zl)owC\ . 

Grass 
barley! legumes Oats 

Treatments 
Barley! Clover 
Barley! Pea cv. Zero 4 
Barley! Pea cv.Nitouche 
Barley 

2.2. Sampling and analysis methods 

2.2.1. Nitrous oxide fluxes 

Fluxes of N20 were measured using the static chamber technique (Clayton H, 1994). 

One chamber (volume 25120 cm 3 ; cover area 1256 cm) was located in each of the 12 

plots. The chambers were sealed for 60 minutes with an aluminium lid having a small 

open sampling point sealed with a grommet in which the syringe was inserted.Air and 

soil temperature were recorded the same time. Gas samples were collected in portable 

evacuated aluminium vials (Scott et al., 1999) and analysed for N 20 by electron-capture 

gas chromatography. For consistency, gas sampling was carried out between 10:00 and 

12:00 hrs (Clayton etal., 1994). 

2.2.2. Nitrate leaching 

The drainage flux from each plot was measured using tipping-bucket flow meters 

mounted in instrument pits. Tips were counted by a hand-counter connected at the side 

of the tipping bucket. Rainfall was measured at the weather station at Boghall Farm (0.5 

km away) and the Centre of Ecology and Hydrology (0.5 km away). The composition of 

the drainage water was estimated using samples collected with a simple integrated 

sampler which collected a small volume (ca. 10 ml) of water into a large black plastic 

bucket, every second tip of the buckets (Vinten et al., 1991). The concentrations of the 

NO3- from the integrated sampler were compared from a sample collected on the day of 

sampling collection from the drainage pipe, so as to test if there was any change on the 

concentrations. NO3 and ammonium (N}1) concentrations in the water samples were 

determined by continuous flow analysis. Water based standards were used (0, 2, 4, 6, 8 
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and 10 ppm). NH4'was insignificant, so it is not presented. For the analyses of the data, 

only the two blocks of the three were used, as all the plots had not equal runoff. That 

was a limitation of the experiment, as some of the plots were not properly drained since 

the establishment of them. In Fig. 5, the flow volume is presented for eight out of the 

twelve plots representing the plots used for the calculation of the leaching. 

The leaching loss of nitrogen was calculated, making the following assumptions. 

Differences in drain flow on different plots were not the result of differences in 

evapotranspiration or change in storage. It was due to construction, so eight plots with 

constant drainage were used. 

The nitrate concentration in deep percolation was the same as that occurring in 

drainage water. 

2.2.3. Dissolved N 20 concentrations 

Additional samples of drainage water from each plot were collected weekly for almost 

all the second growing season for measuring the N 20 in drainage water. Containers were 

filled completely and sealed with a gas tight inner seal, held in place by a screw- top lid. 

Water samples were stored in a cool box, immediately transferred to the laboratory and 

stored at 4 °C for up to 48 h until further analysis. N 20 concentration in drainage was 

assessed in the laboratory by analysis of duplicate 5 ml subsamples from each initial 

sample. These were injected with a syringe into a 22 ml sealed vial which was shaken 

vigorously for 1 min. N20 was then measured using a gas chomatograph (Agilent 6890 

GC) fitted with a 1.8m Porapak-N column and electron capture detector (Reay et al., 

2004b). 

2.2.4. Mineral N 

Soil samples from each plot were collected at two depths (0-20 cm and 20-40 cm) at 

monthly intervals during the growing season and every two months during the winter 

period. Extractions were made from fresh soil prior to drying. Prior to extraction, the soil 

was sieved by using a 2 mm sieve to obtain representative subsamples and to exclude 

large particles and finally mixed. All sample weights were converted to an oven-dry 

(105 °C) weight. A 10 g sample of sieved soil was weighted into a 150 ml shaker bottle 

with 50 ml of 0.5M K2SO4  and shaken in a Gallenkamp Orbital shaker for 2 hours. After 

standing for 5 mm, the clear excess was filtered through a Whatman No 42 fluted filter 



paper and the extract collected into a freezer proof airtight polythene bottle. A sub-

sample of K2SO4  was also filtered for use as a baseline blank determination. The extract 

was either stored in the fridge for up to 24 h prior to analysis or frozen. The K 2SO4  

extract was analysed for NH and NO 3  on the auto-analyser using a range of standards 

made up in 0.5M K2SO4). 

2.2.5. Dissolved Organic Nitrogen (DON) in soil and Inorganic Nitrogen 

Dissolved organic nitrogen (DON) is an important component of the soil, and in many 

cases, it is the main vector for N loss from the soil via leaching. Several methods exist 

for the analysis of DON and total N, including Kjeldahl digestion. The method that has 

been used here is the persulfate digestion technique, because it is simpler and non toxic. 

Persulfate N includes DON, nitrate and ammonium. 

The soil extraction for NO 3  and NH were used for this analysis. For the oxidation 

process, a 5 ml aliquot of the K2SO4  extract was accurately pipetted into an autoclaved 

universal bottle and lml of persuiphate oxidiser was added. The persuiphate oxidiser 

used was 1.34 g K2 S208  + 0.3 g NaOH dissolved in 100 ml deionised water. The bottle 

was then tightly capped and placed in the autoclave for 30 mins at 110 T. This 

processed extract was only analysed for NO 3  and N}-L again on the auto-analyser at a 

dilution of 1.5 ml of extract to 0.09 ml of 0.1 M NaOH. The suggested range of 

standards used was started at 0.5 ppm up to 5 ppm. DON was measured only two years 

of the experiment. 

2.3. Statistics 

All measured variables were normally distributed by Anderson-Darling test (significance 

.05) and statistical analyses using analysis of variance (ANOVA) were performed with 

Minitab 15 and GenStat 8. 
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3. Results 

3. 1. Leachate 

NO3  leaching was measured over the whole experimental period. Peaks of NO 3  mass 

appeared a few weeks after ploughing and during the autumn months (Fig.3, 4). That can 

be observed with the flow volume per plot during the winter months presented in Fig. 5. 

The concentrations had the same pattern having high levels during the whole 

experimental except the summer '06, which was a very dry period. Barley/ clover had 

the highest amount of N leachate (1276 g NO 3  - N ha- ) during the first growing season 

(2006) which was significantly greater than other treatments (P<0.001, Table 2). The 

barley! pea treatments showed no differences during the growing season (2006), but 

after harvest over the 2006 autumn/ winter period, barley/ pea cv. Nitouche leached 

almost 10 times more NO 3  than the barley/ pea cv. Zero 4 (cumulative values for this 

period: barley/ pea cv Nitouche: 5373 g NO3  - N and barley/ pea cv. Zero 4: 573 g NO3  

- N) (P<0.005). During the 2007 growing season, oats growing in the barley/ clover 

plots (15 65 g NO3 - N ha-) had the highest NO3  leaching and this continued during the 

winter (2007-2008). The N leaching from oats growing after the barley/ pea treatments 

were significantly different from the other treatments during the growing season 

(P<0.05), but not during the winter (2007). The monocrop barley and following oat had 

a considerable amount of NO3  leached usually during at the winter periods, after the 

harvest and removing of the plant material. The NH concentrations in drainage water 

were negligible (<0.01 mg U) in all samples. 
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Figure 3: Weekly total rainfall and average temperature and NO 3  : N (g NO 3 : N ha week- ) leaching during the experimental period 2006-2008 for the four 

treatments referring to the initial treatment for the whole experimental period. All the values are the mean (n=2) ± SE (bars). 
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Figure 4: Weekly total rainfall and concentrations of NO 3  : N (mg NO 3 : N If 1 ) leaching during the experimental period 2006-2008 for the four treatments 

referring to the initial treatment for the whole experimental period. All the values are the mean (n2) ± SE (bars). 
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Clover! 
Barley -  

Pea Zero 4/ 
Barley 

Pea Nit! 
Barley Barley 

Interc 2L?.... 95 	
b  b 

160 
34C 

W-----r(2006-200 7240 a 

-. 
b 374C 

- 
1996d 

Oat (2007) 1566 	a 

- 

0 	
b 

- 

261 458 

Winter (2007-2008) 1698 	a 

- 

0 	
b 167 	b 1016 	C 

Grass (2008) 0 	a - 2 	
b - 0 	

a - 0 

Total 11781 • 671 • 5963 - 3804 

Table 2: Cumulative NO 3 : N leaching (g NO : N ha- 1)  from plots planted with barley/ 
legume intercrop during 2006, oats on 2007 and grass on 2008. The same letter within the 
same row indicates treatments not significantly different from each other (P>5%). Results are 
presented as nitrate (NO 3  - N); ammonium (NFL, - N) concentrations were negligible (<0.01 
mg L-1) in all samples. Periods: Summer '06: 24th April - 10 '  September; Winter '06: 12th 
September - 2' April; Summer '07: 3"' April - 11th September; Winter '07: 12th September- 
21st April; Summer '08: 22"' April - 30 th August. 
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Figure 5: Weekly flow volume of leaching during the experimental period 2006-2008 for the 

four treatments referring to the initial treatment for the whole experimental period. Only 

presented the plots considered for the leaching calculations. 
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3.2. Nitrous oxide 

At the end of the first growing season the cumulative N 20 fluxes differed significantly 

between treatments (P<0.05), with the largest emissions (3.35 kg N hi') observed from the 

Pea cv. Nitouche. This was significantly greater than emissions the barley/ pea cv. Zero 4 

(0.74 kg N hi') (P<0.05). Clover/ barley treatment had the second highest fluxes reaching 

2.78 kg N ha- '(Table 3). The treatment effect continued during the winter period when the 

clover/ barley had highest fluxes as the clover kept growing after the harvest. During the 

second growing season, a early-over from the previous year's treatments was observed (Fig. 

6). In this year cumulative emissions from the clover/ barley were 8.57 kg N hi', 1.31 kg N 

hi' barley monocrop, 2.30 kg N hi' from barley/ pea cv. Nitouche and 0.98 kg N hi' from 

barley! cv. Zero 4 (P<0.005) (Table 3). 
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Figure 6: Weekly Rainfall and N 20 fluxes (g N20-N ha' day) for the drainage plots, Bush, Edinburgh from April 2006 to September 2008. Initial 

treatments (2006) are used for describing the treatments for the whole duration of the experiment. All the values are the mean (ii6) ± SE (bars). 
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A 2778 	a 508 	a 8566 	a 141 	a 101 	a 13083 	a 

B 744 	b 188 	b 976 	b 67 	a 163 	b 2137 	c 

C 3345 	a 321 	a 2294 	b -278 	a 397 	a 6081 	b 

D 876 	b 301 	b 1308 	b 138 	a 659 	a 3193 	c 

Table 3: Cumulative N 20 fluxes (g N 20-N ha') for different season. Treatments: (2006) A: 

Barley! clover; B: barley/ pea cv. Zero 4; C: barley/ pea cv. Nitouche; D: barley (monocrop); 

(2007) A, B, C, D: Oat; (2008) A, B, C, D: Grass. The values with different letters (a, b) are 

significant different (P<0.05) 

Periods: Summer '06: 24th  April - I 1th  September; Winter '06: 12th  September - 2nd April; 

Summer '07: 3 rd  April - l September; Winter '07: 12th  September- 21' April; Summer '08: 

22 April - 300' August. All the values are the mean (n=3) ± SE (bars). 

3.3. Dissolved N20 concentrations 

The N20 fluxes and concentrations on the drainage were measured only in the second 

growing season. N20 fluxes in drainage were greatest for the oats growing in the previous 

barley/ pea cv. Nitouche (Fig. 7). However, the concentrations were higher for the previous 

barley/ clover treatment (Fig. 8). The oats growing after the barley/ pea cv. Zero 4 treatment 

had minimal leaching during the growing season and the dissolved N 20 was difficult to be 

measured, as there was no flow of drainage. 
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Figure 7: N20 emissions (g N 20 - N per ha") from drainage water (indirect losses) for the 

oat crop distinguished by the previous (initial) treatment. All the values are the mean (n3) ± 

SE (bars). 
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Figure 8: N20 emissions (.ig N20 - N ii)  from drainage water (indirect losses) for the oat 

crop distinguished by the previous (initial) treatment. All the values are the mean (n=3) ± SE 

(bars). 
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3.4. Soil mineral N 

3.4.1. Ammonium 

Soil NH concentrations in the 0-20 cm soil layer from all the treatments were measured 

monthly during the growing seasons and every two months during winter periods. During the 

2006 growing season, the levels of NH 4 - N for the two pea varieties were significantly 

different (P<0.05) with barley/ pea cv. Zero 4 having the highest value of 29.44 mg NT{- N 

kg* Barley monocrop had the second highest value followed by barley/ clover and barley! cv. 

Nitouche. After the harvest (12 th  September 2006), the amount of NH-N in the soil was 

significantly (P<0.05) higher for the barley/ clover treatment until the spring, 2007, 

ploughing. After that management, the values of ammonium were low and not significantly 

different between treatments (Fig. 9A). 

Ammonium concentrations in the 20-40 cm layer, showed patterns that mirrored those of the 

surface (0-20 cm) in the first growing season. Barley/ pea cv. Zero 4 had the highest 

concentration of 18.82 mg NH4 - N kg'. The levels of ammonium remained low (below 5 mg 

NH- N kg-1 ) for the remainder of the experiment after the ploughing in the second year (Fig. 

9B). 

3.4.2. Nitrate 

Surface NO3  concentrations (0-20 cm) increased up until growth stage 65 in June, 2006. 

Barley/ pea cv. Nitouche had the highest concentration (11.50 mg NO 3  -N kg ') followed by 

barley/ pea cv. Zero 4 (9.85 mg NO 3  N kg 1) Both treatments were significantly different 

(P<0.05) from barley/ clover and barley monocrop at this stage (Fig 9C). The concentrations 

of NO3  fell during the ear filling (GS 23-65) and the maturity stages of the peas, but they 

increased again after the harvest of the crops. In the barley/clover treatments nitrate 

concentrations remained high during the winter months. After ploughing in 2007, there was 

an increase in nitrate concentrations with highest values in the barley/clover (10.3 mg NO 3 N 

kg ') followed by barley/ pea cv. Zero 4 (6.42 mg NO3TN4 kg-1 ), which were significantly 

different (P<0.00 1) from the barley/pea cv. Nitouche. After ploughing at the beginning of the 

third year, there were high concentrations of nitrates (above 13 mg NO 3 --N kg-1 ) in all the 

treatments, which then declined as soon as the new crop was established (Fig. 9C). 

In the 20-40 cm soil layer, there were significant differences between the treatments (P<0.05) 

during the establishment period in the first growing season. Barley/ pea cv. Nitouche had the 

highest concentrations of NO3 --N (6.87 mg NO 3-N kg') which was significantly higher than 
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that from barley/pea cv. Zero 4 (3.02 mg NO3--N kg soil- '; P<0.05). After harvest, 

concentrations remained between 3 mg NO3  - N kg soil-l and 5 mg NO3 -N kg' until the 

spring ploughing. The NO 3  concentration under barley/ pea cv. Zero 4 was higher than that of 

the barley/ pea cv. Nitouche, (11.64 and 7.09 mg NO3  -N kg', respectively) during the first 

and second growing season. After the establishment of the oat crop, the concentration of 

nitrate in the soil was higher where barley/ pea cv. Nitouche had been grown previously and 

significantly higher (P<0.05) than the previous barley/ pea cv. Zero 4. This difference 

remained until the following year's ploughing (Fig. 9D). 

3.4.3. Dissolved Organic Nitrogen (DON) 

In the 0-20 cm soil layer, there was a reduction in DON during the first year of the experiment 

particularly in the barley/pea cv. Nirouche treatment, where concentrations decreased 

significantly (P<0.001) by 11 mg kg. During the winter period, the concentrations of DON 

were constant for all the treatments around 12 mg kg -1 . After ploughing in spring 2007, there 

was an increase in the concentration of DON in plots previously cropped with barley/legume 

intercrops, when concentrations in plots previously cropped with barley/clover reached 31 

mg kg-1 (P<0.05). However, during the establishment of the oat crop those values reduced by 

11 mg kg-1  (on average). During the experimental period, the DON values for the barley 

monocrop remained relatively stable around 15 mg kg' (Fig. bA). 

In the 20- 40 cm soil layer, the DON concentration remained constant (at around 15 mg kg- 1) 

except in the barley/pea cv. In the Nitouche and barley monocrops, concentrations reduced by 

4 mg and 6 mg DON kg , respectively. During the winter period there was no significant 

change until the spring ploughing (2007), when the concentrations increased under all the 

treatments, but especially where barley/ legumes treatments had occured. Similarly, in the top 

layer (0-20 cm), the earlier barley/ clover crop had a significantly higher concentration of 

DON (35 mg DON kg l; P<0.001) followed by barley/ pea cv. Nitouche (25 mg DON kg 

During the establishment period of the oat crop, an average reduction of 11 mg DON kg ' 

was measured in all treatments (Fig. lOB). 
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Figure 9: 
Ammonium and nitrate concentrations in soil during the experiment in two soil layers (0-20 and 20-40 cm). All the values are means (n=6) ± SE 

(bars). A) Ammonium: 0-20 cm; B) Ammonium 20-40 cm; C) Nitrate: 0-20 cm; D) Nitrate: 20-40 cm. Arrows symbolise the ploughing time. 
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Figure 10: Dissolved Organic Nitrogen (DON) concentrations in soil during the experiment 

in two soil layers (0-20 cm (A) and 20-40 cm (B)). All the values are means (n=6) ± SE 

(bars). 
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4. Discussion 

This study has shown that large differences in N 20 emissions can result from intercropping 

treatments that use different legume species and cultivars. The highest of N 20 fluxes were 

observed during spring, summer and autumn 2006, probably due to nitrification being 

enhanced by the higher temperatures, drier conditions and fixed N from the legume plants 

(Skiba et al., 1993; Skiba et al., 2006; Jones et al., 2007). The annual rainfall at this site is 

usually around 700 mm. In 2006, the total rainfall was 927 mm, whilst in 2007 it was almost 

double the average, reaching 1288 mm. Also the distribution of rainfall between the two 

years differed considerably. For example, total rainfall in the period between 1 June and 30 

September was 280 mm in 2006 and 521 mm in 2007. In 2006, the average temperature 

during this period was 14.2 °C whilst 2007 was cooler with an average temperature of 12 °C. 

These meteorological differences might influence the differences in N 20 fluxes between the 

two years. Emissions were generally lower in 2006 than in 2007. An important observation 

from the first year was the different flux rates from the two barley/ pea treatments. Barley/ 

pea cv. Nitouche had cumulative fluxes of 3.35 kg N ha -1  in contrast with barley pea cv. Zero 

4 of 0.74 kg N ha". Such a difference in N 20 fluxes between cultivars of the same species has 

not been reported in any previous experimental study. 

Additionally, similar results regarding the carry-over of N 20 fluxes from the treatments for 

the second growing season have not been previously observed in another study. The fluxes 

continued to be high especially from the plots that followed the barley/ clover treatment, with 

the barley/ pea cv. Nitouche treatment only slightly lower. These results might be due in part 

to different water filled pore spaces attributed to the treatments' different root systems and/ or 

mineral N (Dobbie and Smith, 2003). Another factor that might have contributed to the high 

fluxes might have been the disruption of soil by ploughing (Ball et al., 2007) during spring 

2007, as re-growth of clover plants occurred and pea plants germinated from the seedbed left 

after harvest continuing the mineralisation of N from organic N stored over the winter months 

(Vinten etal., 2002). 

The barley/ clover treatment had the highest overall N losses in the first year (2006) the 

highest N20 fluxes and NO 3  leaching rates. Studies have shown that nitrogen fixation in 

clover can vary widely with values between 11 and 373 kg N ha' year under different 

conditions reported worldwide (Lampkin, 1990; Wood, 1996; Vinther and Jensen, 2000; 

Ledgard, 2001). These different rates of N fixation can indirectly affect the amount of N loss 

via leaching (Pastor and Binkley, 1998). In addition to this, the amount of mineral N in the 

soil and organic N can contribute to higher N 20 losses by nitrification and denitrification 

(Jones et al., 2005), possibly related with the results of the barley/ pea cv. Nitouche 
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treatments. Nitrous oxide emissions in this study showed seasonal patterns with low 

emissions during the winter months, which then increase with rising temperature and 

cultivation, as has been observed in other studies (Jones et al., 2007; McTaggart et al., 1994). 

Soil mineral N concentrations increased during the first growing season especially in the 

barlye/ pea cv. Nitouche and barley/ clover treatments. Soil N114 4  concentrations in the 0-20 

cm soil layer increased after the establishment of the legumes, but declined rapidly at the ear 

filling stage, when the cereal demands N, indicating uptake by the cereal plants or microbial 

consumption. The concentrations of NO 3  increased after disturbance of the soil (e.g. 

ploughing). Different soil management options such as reduced or min-tillage might provide 

an opportunity to reduce the losses of available N (Fischer et al., 2002; Hansen, 2002). 

Although this approaches can be generally used under specific climatic and soil conditions, 

factors closely related with the cumulative values of leaching and/ or gaseous losses. 

In general, nitrate leaching tended to be higher from crop rotations with legumes than from 

those without legumes. It has been confirmed by experiments Beaudoin (2005) observed the 

highest rates of nitrate leaching in crop rotations including pea for Northern France. This was 

because legumes fix N, which results in higher N contents in the biomass and a lower N 

uptake from the soil. To some extent this is also related to other properties of the crop or its 

management, such as the peas' relatively shallow root system, which support only the higher 

soil layers or the sowing and harvest dates of the crop in relation to the period until the 

subsequent crop (Carrouée et al., 2006). However, legume-based systems may have lower N 

losses than conventional and farmyard manure based systems (Drinkwater et al., 1998). 

Hauggaard-Nielsen et al. (2003) found a decrease in nitrate-leaching from lysimeter plots 

intercropped with pea-barley in comparison with monocrops, due to N-content and rate of 

decomposition of roots and residues. The current study has shown that the highest rate of 

NO3  leaching was from the barley/ clover treatments, which continued during the whole of 

the experiment. This was enhanced by the continued growth of clover during the winter 

(2006) due to higher than average temperatures (Murray, 2000; Goulas, 2003), which allowed 

the growth of nodules during winter months (Bergensen et al., 1963; Marriott, 1988). The two 

barley/ pea intercrops were significantly different in NO 3  leaching throughout the experiment 

with barley/ pea cv. Zero 4 having the lowest NO 3  leaching losses; less than the barley 

monocrop. This strong varietal effect on nitrate leaching, like that on N 20 fluxes, has not been 

previously reported for such a long experimental period. 

In 1979, it was the first time when the N 20 transport from soil to water drainage was 

measured (Dowdell et al., 1979), which considered to be an indirect measurement on N loss. 
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Nitrous oxide is fairly soluble in water (1.0 ml gas per ml water at 5°C), so it can be lost from 

the soil by leaching in amounts comparable with those lost in the gas phase from the soil 

surface. The N 20 appearing in outfall water is likely to derive at least in part from both 

nitrification and denitrification at the soil surface, in deeper soil and even in the field drain 

(Reay et al., 2004a). We found that the N 20 emissions from the drainage from the previous 

barley/ clover were much higher by comparison with the oats grown in barley/ pea cv. 

Nitouche. However, the actual drainage output (g N h& 1) showed the reverse effect, as the 

oats growing in the previous barley/ pea cv. Nitouche had greater runoff reaching a peak of 

11 I  N20-N ha'. This result might be due to differences in the soil water filled pore space 

(WFPS), bulk density, root density and amount of mineral N (Jensen, 2003; Nemecek and 

Erzinger, 2005). At the field scale, relatively low emissions from the soil surface (direct flux) 

have been attributed to the low rainfall experienced for the study period. However, indirect 

losses of N20 have appeared less sensitive to low rainfall conditions, perhaps due to the 

greater soil depth at which such leached N 20 was generated. However, the diverse grain 

yields during the two growing seasons (Paper 1) in relation with environmental effects is a 

important step for the choice of the appropriate treatment. Pappa et al. (Paper 1) has shown 

that the grain yields between the treatments were similar with the barley/ clover to have the 

highest yield in both growing seasons and showing the highest cumulative N 20 fluxes for the 

experimental period. However, the two barley/ pea treatments had similar yields (both barley 

and peas), but the cumulative N 20 fluxes were three times higher and the NO 3  ten times 

higher with barley/ pea cv. Nitouche to have the lowest values showing the great 

environmental effect that a treatment can have. 

This experiment has highlighted the diverse N losses from the use of intercrops including 

different cultivars and species and the additional effects in the following growing years. It has 

also demonstrated the need for longer term experiments to develop these systems and quantify 

their benefits or not in the subsequent crop and in a rotation. However, it is important not only 

to concentrate in the environmental effects of such systems, but also on the economic effects 

considering global inventories for mitigating N losses. 
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5. Conclusions 

Low input and organic systems can benefit from the use of legume-cereal intercropping. The 

study showed that the use of legume intercropped with cereals can be an alternative way to 

provide nitrogen and minimise the losses from agricultural systems. Mixtures of cereals with 

legumes can have fewer losses than those from monocrops. However, the choice of legume 

cultivar and species is a key factor influencing the amount of N losses in the year of use and/ 

or the following year, with this impacting significantly on the cumulative N losses. 

The magnitude of these effects is highly sensitive to soil management. For example, the 

choice of legume is important in optimising N fixation in intercropping designs. However, a 

more extensive study of the environmental impacts that different species/ varietal 

combinations and ratios is needed in order to optimise such systems. Important factors to 

investigate further will include the influence of root development and compatibility of 

component species / varieties. Having a better understanding of the interactions taking place 

within a cereal/ legume intercrop and how this can fit in to a rotation has the potential to be a 

very useful management tool in the development of more sustainable cropping and 

agricultural systems. 
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Paper 3 

Root development effects during and after the use of intercropping. 

Valentini A. Pappa, Robert M. Rees, John A. Baddeley, Robin L. Walker, 

Christine A. Watson 

Abstract 

Intercropping, the growth of two or more crops on the same area and the same time has 

been used to maximise use of resources, improve crop and soil quality and reduce the N 

losses of agricultural ecosystems. The hypotheses of this study were that the cereal 

(barley) roots are affected by the accompanying legume variety/ species and that there is 

an effect of the following crop in an organically-managed rotation. An experiment was 

established near Edinburgh, SE Scotland, UK, on 12 hydrologically-isolated plots. 

Treatments were a spring barley (Hordeum vulgare cv. Westminster) monoculture and 

intercrops of barley / white clover (Trfolium repens cv. Alice) and barley! pea (Pisum 

sativum cv. Zero4 or cv. Nitouche) in 2006. Spring oats (Avena sativa cv. Firth) were 

planted on all plots in 2007. No fertilisers, herbicides or pesticides were used at any stage 

of the experiment. Root length density, average diameter, volume, total N content and 

root:shoot area were measured at key stages in 2006 and 2007 for barley and oats, 

respectively. The two barley/ pea intercrops had different below-ground characteristics. 

These had different effects on the following crop, with barley/ pea cv. Zero 4 benefiting 

in the year of growth and the barley/ pea cv. Nitouche benefiting in the following year. 

Barley/ pea cv. Zero 4 had the highest above-ground plant density and widest root 

diameter (in 30-60 cm depth) in comparison with the barley plants growing with pea cv. 

Nitouche. Barley roots intercropped with clover had the highest root length density and 

widest root diameter (in 0-30 cm depth) of all the treatments. Barley monocrop roots had 

the highest root: shoot ratio. The following year, the oat plants where growing barley/ pea 

cv. Nitouche had been grown previously, the highest root length density and volume 

including the highest root:shoot ratio (0.33). Oats grown where there had previously been 

a barley monocrop had the smallest root diameter (0.59 mm). 

Keywords: barley, intercropping, nitrogen, oat, roots 
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1. Introduction 

There is an urgent need to develop agricultural systems that have a high level of 

productivity, but are at the same time, sustainable and have a reduced impact on the 

environment (Crews and Peoples, 2004). Intercropping, the growing of two or more 

crops on the same piece of land in the same year, may help achieve this goal. 

Jntercropping has been practised in many parts of the world (Fujita et al., 1992), but 

almost 80% of published data are from warmer climates such as Southern Asia and 

Africa (Connolly etal., 2001). 

The main objective of intercropping has been to maximise the use of resources such as 

space, light and nutrients (Willey, 1990; Li et al., 2001), as well as to improve crop 

quality and quantity (Ofori et al., 1987; Baumann et al., 2002) and reduce accumulation 

of NO3—N in the soil profile (Li et al., 2005). Other benefits include improvements in the 

quality of drainage water where intercropping reduces the need for synthetic fertilisers 

(Horwith, 1985; Jensen and Hauggaard-Nielsen, 2003). 

When cereals are growing with legumes, physiological and morphological differences 

affect their mutual relationship. While this has been studied extensively above-ground, 

there is very little data on belowground processes in species mixtures. Many processes 

that occur in the rhizosphere of mixtures need further research, as they are not clearly 

understood and several factors affect the microbial activity and root structure (Connolly 

et al., 2001; Zhang and Li, 2003). The rhizosphere is the zone around the roots where 

soil, micro-organisms and roots mutually contribute to the ecosystem. Compared with 

the bulk soil or non-rhizosphere soil, the rhizosphere has different biological, physical 

and chemical soil properties. The rhizosphere is rich in root exudates, and can, play a 

major role in nutrient mobilisation and microbial activities (Dakora and Phillips, 2002; 

Dakora, 2003). 

Most annual crop mixtures such as cereals and legumes are grown at the same time and 

in the same space, and develop root systems that explore the same soil zone for 

resources (Horwith, 1985; Jensen, 2003; Ndakidemi, 2006). Under such conditions, 

below-ground competition for resources such as nutrients and water is likely to occur. 

For example, research has shown that activities in mixed cropping systems involving 

maize and cowpea occur between the top 30 - 45 cm of soil, and their root density 

decreased with depth (Kumar and Goh, 2000). Because of these interactions, cowpea 

yields can be reduced significantly relative to that of maize (Watiki et al., 1993). Root 

systems in mixtures can provide some advantages in soil such as carbon enrichment 
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through carbon turnover (Vanlauwe et al., 1997), and release of phenolics, 

phytosiderophores and carboxylic acids as root exudates by component plants (Dakora 

and Phillips, 2002; Dakora, 2003). 

The most important benefit, though, is the potential for improved nitrogen supply by 

biological nitrogen fixation from the legume crops (Giller and Cadisch, 1995). However, 

studies on N2  fixation in complex cereal/legume mixtures are few (Stern, 1993a; 

Hauggaard-Nielsen et al., 2001). In intercropping, the legume usually fixes N 2  that 

benefits the cereal component, since it depends on nitrogen for maximum yield (Ofori et 

al., 1987). Controlled environment studies have shown a significant direct transfer of 

fixed-N to the associated non-legume (Stern, 1993a; McNeill et al., 1997; Høgh-Jensen, 

2000; Dahlin and Mârtensson, 2008). In mixed stands, where row arrangements and the 

distance between legume and cereal are large, nitrogen transfer could decrease (Thorsted 

et al., 2006). However, Jensen (1996) found that barley plants are more competitive than 

pea due to faster growth and deeper root systems (Hauggaard-Nielsen et al., 2001; 

Hauggaard-Nielsen et al., 2009). 

The hypotheses of this study were that the cereal (barley) root growth is affected by the 

accompanying legume variety/ species and there is an effect on the following crop in an 

organically-managed rotation. 

2. Materials and Methods 

2.1. Site description and soil 

The experiment was carried out 8 km south of Edinburgh, Scotland (lat. 
550  51 'N, long. 

30  12'W). The overall field size is 0.4ha and is divided in 12 plots (each 9 in x 25 m). 

Further details of the full experimental facilities are given in (Vinten et al., 1992).The 

plots are hydrologicaly isolated in 1992. The 25 year mean annual rainfall is 676 mm. 

Monthly average air temperature and rainfall during the experimental period are shown 

in Figure 1. The plots were fallow for the period 2003-2005. The day before sowing 

(231d April 2006), the soil was sampled at 0-20. In the top soil (0-20 cm), the water 

content at field capacity was 19 ± 0.5 % (v/v) and the soil bulk density was 1.19 ± 0.01 

Mg m 3  (mean ± SE, n=5). The top soil was a sandy loam (Eutric Cambisol, Macmerry 

Series) with 65% sand, 20% silt and 15% clay developed from partially sorted glacial 

till, the upper 0.5 to 1.5 m of the soil profile is freely drained. 
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Figure 1: Monthly total rainfall (mm) and monthly average air temperature ( °C). 

h 2006 when the current study commenced, the treatments were: barley (Hordeum 

vulgare cv. Westminster) as a monocrop; Pea (Pisum sativurn cv. Zero 4)1 barley 

intercrop; Pea (Pisuin sativum cv. Nitouche)l barley intercrop; White clover (Trfolium 

repens cv. Alice) /barley intercrop. Westminster is a medium-tall variety of barley that is 

widely grown for malting and livestock feed due to its combination of longer than 

average straw and good disease resistance characteristics (Nickerson, 2008). Nitouche is 

a popular large blue pea variety and has a consistent performance, good agronomic 

characters and suitability for premium markets. Nitouche produces a large, smooth, 

round pea and retains its colour well. Nitouche also has a high level of resistance to 

downy mildew and long straw with good standing ability making it relatively easy to 

harvest. Zero 4 is a small blue combining pea with a unique combination of agronomic 

characteristics: short straw, excellent standing ability and very early maturity. When 

sown at its optimum seed rate of 110 seeds! m 2, Zero 4 has a similar yield potential to 

Nitouche (optimum seed rate of 70 seeds! m 2) (Barenbrug, 2006). Alice is a tall, large 

leaved white clover developed for exceptional yields of palatable, high quality, high 

protein forage included in pastures mixtures. Its vigorous spring and summer growth 

makes it a good choice for cutting or grazing management, as well as for N fixation 

through out season and good winter- hardiness and cover (HGCA, 2008). 
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2.2. Experimental design 

Each treatment was replicated three times in a blocked design. In the intercrop 

treatments, the seed rates for the pea and barley followed a 50:50 replacement design. 

This means that the target intercrop density was 50% of the monoculture density of each 

crop. Based on mon-cropping seed rates of 200 kg ha -1  for the barley and 250 kg ha -1  for 

the peas which equated to approximately 350, 75 and 110 germinable seeds m 2  for 

Westminster, Nitouche and Zero-4 respectively, the intercrop components were half 

these values. The sowing date for these treatments was the 
24th  April 2006. In the second 

growing season (2007), all the plots were sown with spring oats (Avena sativa cv. Firth) 

on the 3' April at a seed rate of 250 kg ha' (approximately 450-500 germinable seeds 

m 2). Firth is a very popular spring oat variety and exhibits a high kernel content and 

good resistance to mildew (Szumigalski and Van Acker, 2006). In the third growing 

season, perennial ryegrass (PRO) was sown in all plots in a 50:50 mixture of Aberavon 

and Aberdart at a total seed rate of 35 kg ha'. The plots were tilled using a mouldboard 

plough followed by cultivating (rotary hoe), seeding and rolling. No fertilisers, 

herbicides or pesticides were used. The cropping pattern is shown in Table 1. 

Table 1: Cropping 2003-2008 on the drainage plots. 

Year Crops Treatments Varieties 

2003 Fallow 
2004 Fallow 
2005 Fallow 

Spring Barley! White clover Westminster/Alice 

Spring Barley! Spring Pea I Westminster/ Zero 4 
2006 Intercropping cereal! legumes Spring Barley! Spring Pea 2 We.stminster/Nitouche 

Spring Barley Westminster 

2007 Cereal Spring Oat Firth 

2008 Grass Perennial iyegrass AberAvon & Abe rstar 

2.3. Harvest and analyses 

2.3.1. Root biomass 

Below-ground samples were collected prior to crop harvest (11th September 2006 and 

11th September 2007) by collecting soil cores to 100 cm depth (10 cm in diameter) in 

2006 and 40 cm depth in 2007 (7 cm in diameter). The cores were analysed within 1-2 

days or stored below -5 °C for later analysis. The cores from 2006 were split into 

intervals of 30 cm to allow comparison between different soil depths. In 2007, the cores 
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were analysed as one sample (0-40 cm) for each of the treatments. At the time of 

analysis the cores were placed in water and washed the next day using three different 

sieves (0.5 mm to 0.2 mm to 0.05 mm). The separation of the two root systems (barley 

and legume) was difficult, but was achieved by including one plant of each intercropped 

species in the soil core and recognising the difference in root architecture/ structure 

between the cereals and legumes. Before measurement, any organic debris or dead root 

material was removed. The root samples were then arranged in a transparent, water-

proof tray filled with water. The roots were scanned with an A3 Epson, Expression 

836XL scanner operating at 600 dpi and fitted with a transparency adaptor to produce a 

uniform, shadow-free white background. Images were 8-bit greyscale and saved in 

uncompressed TIFF format. Scans were analysed with Win RHIZO software (2003b) 

(Regent Instruments, Québec, Canada), which measured the root length, root volume 

and root diameter for the barley and oat crops. Images were saved in files for later 

validations, analyses or for visualization in other programs. Then, the root fresh weight 

was recorded, after the excess water had been removed and the roots were dried at 60 °C 

for 24 h. The oven-dried samples were ground using a Glen Creston hammer mill with a 

1 mm mesh. A sub sample of this was then ball milled to a flour-like consistency using a 

Retch ball mill. These samples were analyzed for total N by combustion using a PDZ 

Europa Mass Spectrometer. 

Length density of the roots is the root scanned length per unit scanning area and was 

calculated by divide the root length with the column of soil-root that were collected. 

Root: shoot surface area was calculated by divide the roof surface area and the shoot 

area (including shoots and leaves) after scanning the samples with the A3 scanner. 

2.3.2. Plant biomass 

All plants were harvested above-ground every growing season and initially separated 

into cereal, legumes and weeds. Plant biomass was measured monthly using quadrats 

(50 cm x 50 cm) by harvesting all the plant material within it and then dried at 60°C for 

24 h and weighed. Each part (stems, ears, pods) of each crop was weighed separately 

and subsamples were taken for determination of the total N concentration (%) of the 

above-ground crop. The same procedure was followed the next year (2007) for the 

spring oat crop which was separated into straw and grain. 

For barley plants (2006), the cereal growth stage GS 69 (flowering completed) was at 80 

days from sowing. For oat plants (2007), the growth stage GS 77, was at 100 days from 

sowing respectively (HGCA, 2005106). 
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2.4. Statistical analyse. 

All measured variables were normally distributed tested by Anderson-Darling test 

(significance .05) and statistical analyses by ANOVA were performed using either 

Minitab 15 or Gen Stat 8 software. In all cases, significant differences were calculated at 

the 5% level. 
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3. Results 

3. 1. Root lengths and diameters 

3.1.1. Intercropping, 2006 

Root length density is one of the most functionally important and frequently-measured 

traits in agricultural studies. The intercrop treatments resulted in changes in total root 

length in the surface soil horizons (0-30 cm). Barley growing in the barley/ clover 

intercrop had a root length density of 1.54 cm cm 3, which was significantly greater 

(P<0.001) than the barley monocrop, at 1.19 cm cm 3 . The two pea varieties intercropped 

with barley were significantly different; barley/ pea cv. Zero 4 had a significant higher 

value (P<0.05) of 1 cm cm-3  in comparison with barley/ pea cv. Nitouche at 0.79 cm cm -

3.  In the lower soil layers (30-60 cm and 60-90 cm), there were no significant 

differences in root length (Fig 2). 

The average diameter of barley roots growing at 0-30 cm depth in the barley/ clover 

treatment was 0.37 mm which was also significantly greater (P< 0.05) than that in the 

two pea treatments (0.32 mm and 0.34 mm for barley/ pea cv. Zero 4 and barley/ pea cv. 

Nitouche, respectively). The average root diameter of barley monocrop was 0.37 mm. At 

a depth of 30-60, barley intercropped with pea cv. Zero 4 and clover had the widest 

diameter (0.37 mm and 0.35 mm, respectively) and this was significantly different from 

the other barley/ pea cv. Nitouche (0.32 mm) and barley monocrop (0.30mm) (P<0.05). 

At a depth of 60-90 cm, the barley intercropped with clover had the highest value of 

0.40 mm and this was significantly different from the other treatments (P<0005). There 

was no significant difference between he two pea treatments (Fig.3). 
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Figure 2: Mean barley roots length density for three depths (0-30 cm; 30-60 cm; 60-

90 cm) in July, 2006 at growth stage 69 (flowering completed) (n=3) ± SE (bars). 

The values with different letters (a, b) are significant different (P<0.05) between each 

depth. 
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Figure 3: Average diameter of barley roots for three depths (0-30 cm; 30-60 cm; 60-90 

cm) in July, 2006 at growth stage 69 (flowering completed) (n=3) ± SE (bars). The 

values with different letters (a, b) are significant different (P<0.05) between each depth. 
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3.1.2. Oats, 2007 

Oats were grown across the experiment in 2007 on plots that had in the previous year 

been used for the intercrops. In these plots the root length density of the oat crop 

sampled previously under barley/ pea cv. Nitouche had the highest values (5.98 cm cm-' 

at 0-40 cm depth) being significantly different from the other treatments (P<0.001). The 

other treatments were not significantly different (Fig. 4). 

The average diameter for the roots of oats grown in the previous treatments with 

legumes was significantly different from those grown in the barley monocrop treatment 

(0.59 mm) (P<0.05). The root diameters of oats from the other three legume treatments 

were not significantly different; however oat roots from the barley/ pea cv. Nitouche had 

the largest diameter of 1.24 mm (Fig. 5). 

The volume of oat roots where barley/ pea cv. Nitouche had previously been grown was 

8.50 cm3  and was significantly greater than that in other treatments (P<0.001) (Fig. 6). 

The roots of oats in which barley/ pea had previously been grown were significantly 

different with the oats grown in the barley/ pea cv. Zero 4 having the largest root volume 

of 8.5 cm' (P<0.005). b 
8 

7 

6 

5 

c.e4 

3 

2 

0 

a 

Oats arley, clover) Oats Barley! Pea cv • Oats (Barley! Pea cv. 	Oats (Barley) 

Zero 4) 
	

Nitouche) 

Figure 4: Root length density of oat roots for 0-40 cm soil depth in July, 2007 at the 

growth stage of 77 (late milking). The label on the x axis refers to the previous season's 

crop treatments. Values are means ± SE (bars). The values with different letters (a, b) 

are significant different (P<0.05). 
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Figure 5: Average diameter of oat roots for 0-40 cm soil depth in July, 2007 at the 

growth stage of 77 (late milking). The label on the x axis refers to the previous season's 

crop treatments ± SE (bars). The values with different letters (a, b) are significant 

different (P<0.05). 
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Figure 6: The root volume of oat roots for 0-40 cm soil depth in July, 2007 at the 

growth stage of 77 (late milking). The label on the x axis refers to the previous season's 

crop treatments ± SE (bars). The values with different letters (a, b) are significant 

different (P<0.05). 

135 



3.2. Root: shoot surface area ratio 

3.2.1. Barley 

The root: shoot surface area ratio of barley plants during the intercropping season was 

significantly different (P<0.01) with the barley monocrop having the highest ratio 

(26.16) for 0-90 cm soil depth. The barley/ clover treatment had the second highest ratio 

(24.47), but this was not significantly different from the barley monocrop. The barley/ 

pea cv. Nitouche (14.95) and barley! cv. Zero 4 (13.93) treatments were significantly 

lower from each of the other two treatments (P<0.05) (Fig. 7). The same pattern for the 

root: shoot area was found using the data for the root area in the 0-30 cm soil layer (data 

not presented). 

3.2.2. Oats 

The root: shoot ratio of oats in the second growing season was calculated by using the 

root area for the 0-40 cm soil layer. The ratio in the oat plants growing in plots previous 

cropped with barley/ pea cv. Nitouche (0.33) was significantly higher (P<0.01) than the 

other treatments having double the ratio of the barley/ pea cv. Zero 4(0.16) (Fig. 8). 
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Figure 7: Root: shoot area ratios of barley plants at growth stage 69 (flowering 

completed) (July, 2006) in the four different treatments. The root area used here is in 0-

90 cm soil depth ± SE (bars). The values with different letters (a, b) are significant 

different (P<0.05). 
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Figure 8: Root: shoot area ratios of oat plants at growth stage 77 (late milking) (July, 

2007) in the four different treatments. The root area used here is in 0-40 cm soil depth. 

The labels on the x axis refer to the previous season's crop treatments ± SE (bars). The 

values with different letters (a, b) are significant different (P<0.05). 
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3.3. Total N in roots 

3.3.1. Barley plants 

The total N content of barley roots in soil depth of 0-30 cm in the four different 

treatments was significantly higher for barley/ pea cv. Nitouche (61 kg N ha') when 

compared with the barley/ pea cv. Zero 4 (48 kg N ha-) and barley monocrop (40 kg N 

ha'). 

Figure 9: Total N in barley roots at the growth stage 69 (July, 2006) at the four different 

treatmes, The roots used for these analyses were at 0-30 cm soil depth E SE (bars). 

The value with 
70 

60 

50 

40 

30 

20 

10 

0 

letters (a, b) are significant different (P<0.05). 

 

['U 
Barley! Clover 	Barley! Pea cv.Zero4 

	
Barley! Pea cv. 	Barley 

Nitouche 

138 



3.3.2. Oat plants 

In the second year of the experiment, the N content of the oat roots was significantly 

greater (P<0.05) where the previous crop had been barley/ clover, with an N content of 

86 kg h&'. There were no differences in the N contents of oat roots growing in the areas 

that had previously been used for the two barley/ pea treatments (Fig. 10). 

120 

100 

80 

7 60 

40 

20 

0 

a 	 a 

Oats (Barley/ Clover) 	Oats (Barley! Pea cv. 	Oats (Barley! Pea cv. 	Oats (Barley) 

Zero4) 	 Nitouche) 

Figure 10: Total N in oat plants at the GS 77 (2006) at the four different treatments. The 

roots used were in 0-30 cm soil depth + SE (bars). 
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4. Discussion 

Cereal-legume intercrops exhibit large changes in above and below-ground biomass 

dynamics as a consequence of intra-species competition leading to a complex pttem of 

resource partitioning.  Barley intercropped with clover during the first year of the 

experiment had higher root length density than other treatments. Root length density is 

the attribute most related to the rate of nutrient uptake as it has a clear functional 

significance and is closely correlated with the volume of soil explored (Hoad et al., 

2001). Additionally, we found that the barley plants intercropped with clover had the 

largest diameter in most of the depths, which can be attributed to thicker roots caused by 

higher water filled pore space (WFPS) (Rosolem et al., 2002). The accumulation of root 

mass at 0-30 cm was highly correlated with the availability of nutrients as presented by 

Hauggaard et al. (2001) that has shown intercropped barley had a deeper growing root 

system and a faster side root development than mono-crops. Ryser (1998) found that 

root length increased with decreasing nutrient availability, as the roots search for 

available nutrient in the soil. 

We found that the two barley/ pea intercrops had similar above-ground biomass and 

grain yield (Pappa et al., Paper 1). However, when barley was intercropped with peas 

there were significantly longer roots in the barley/ pea cv. Zero 4 compared to barley/ 

pea cv. Nitouche. Thus, there is a clear varietal difference affecting the development of 

the root system of barley. The two pea varieties used ,for the study have different root 

systems with pea cv. Zero having thinner roots. It has also been reported that different 

legume species have different microbial populations and activity attributed to the 

production of root exudates (Grayston etal., 1998; Ryan etal., 2001). 

The observation that oat roots grown in plots previously cropped with barley/ pea cv 

Nitouche were longer and had a larger volume indicated a response to soil nutrient 

availability with higher NO3  concentration in both soil depths (0-20 cm and 20-40 cm). 

In general, nutrients seems to become available when the roots die either because 

through tissue death and turnover (Bingham and Rees, 2008) or as a consequence of 

accelerated damage from below-ground herbivores/ pathogens or because of frost and 

drought, or management practices such as ploughing (Hoad et al., 2001). At the 

experimental it, during the winter of 2006-2007, there were few days of frost (Fig. 1), 

resulting in minimum damage of roots and plant material. Clover plants were re-grew 

and pea plants germinated from the seed after the harvest resulting in a turn-over during 

spring cultivation. The longer root system of the intercropped pea might have also 
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increased the aeration and.the infiltration of water, as well as loosening the soil 

structure, which might have increased both the accessibility of organic matter to 

microorganisms and the mineralization rate (Stirzaker et al., 1996). 

The ratio of root: shoot area had shown that the barley monocrop had the highest value 

possibly due to low supply of nutrients that affect the root development more than that 

of the shoots. However, the barley intercropped with the different legume species and 

varieties had significantly higher shoot: root area ratios with barley/ clover having the 

highest value out of the legume intercrops, indicating a nutrient response. The 

availability of N in the plants can maintain the leaf area of the crop. As a result, a crop 

with an adequate N supply has lower root: shoot ratio than an N-deficient crop. If the 

soil N availability is lower, the rate of shoot growth usually decreases while the root 

growth can remain constant (Basra, 1994). The nitrogen accumulation in barley roots 

was greater in barley/clover, and significantly different between the two barley/ pea 

treatments; this was the opposite pattern observed in root length. This pattern also 

continued into the second year where the highest N accumulation in oat roots was 

observed where the previous crop had been barley/ clover perhaps due to the growth of 

clover plants during the mild winter months. 

The use of legumes in combination with cereals can be advantageous as part of a 

rotation in low input and organic farming systems. There are benefits for both the 

current and the following crop by using the fixed N and the stored N, respectively 

(Watson et al., 2002). Additionally, crop mixtures and rotations mimic the diversity of 

natural agro-ecosystems more closely than intensive mono-cropping systems. Alvey et 

al. (2003) found that a crop rotation can cause significant shifts in rhizosphere bacterial 

communities partially influenced by different species. Varying the type of crops grown 

can increase the level of soil organic matter, enhance the carbon capture and benefit 

agriculture and climate (Paul etal., 1996; Paustian etal., 1997; Adiku et al., 2008). 

Intercropping has been proven to enhance nutrient acquisition by the crops. The transfer 

of N can take place by movement of exudates, turnover and breakdown of legume roots 

and direct root to root transfer (Swinnen, 1994; Rogers et al., 2001; Paynel and Cliquet, 

2003; Yao et al., 2003). It has been reported that a non-legume (e.g. cereal) intercropped 

with a legume has greater N acquisition than a non-legume monocrop (Francis and 

Brady, 1989; Stern, 1993b; Vandermeer, 1999; Li et al., 2001) including different 

species. Hogh-Jensen and Schjoerring (2000) have found that N transfer was 

significantly higher from white clover to ryegrass than from red clover. 
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However, the root differences between the two pea varieties and legume species 

intercropped with spring barley in this study may have been caused by other factors, 

such as water availability may affect root distribution (Morris and Garrity, 1993) and 

solar radiation affects the growth of the two crops differently (Keating and Carberry, 

1993), because in our study pea cv. Nitouche was a bigger variety than pea cv. Zero 4. In 

the future, the use of models might help to clarify some of these interacting effects by 

separating out component mechanisms responsible for observed differences in intercrop 

performance (Corre-Hellou et al., 2007; Launay et al., in press). 

This experiment has highlighted the diverse root growth of barley intercropped with 

different legumes including different cultivars and species and additional effects in the 

following growing year. It has also demonstrated the need for longer term experiments 

to develop these systems and quantify their benefits in subsequent crops and in a 

rotation. 
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5. Conclusions 

Low input and organic farming systems can benefit from legume-cereal intercropping. 

The study shows that the choice of legume cultivar or species is a key factor for the 

establishment of the cereal crop in the year of use and/ or the following year. Under-

sowing clover even at low seed rates with cereals can contribute to a supply of N in 

cereal plants both years and more efficient retention of N by the system. The two barley/ 

pea intercrops had different below-ground characteristics. These had different effects on 

the following crop, with barley/ pea cv. Zero 4 benefiting in the year of growth and the 

barley/ pea cv. Nitouche benefiting the following year. 

The magnitude of these effects is highly sensitive to soil available N. For example, the 

choice of legume is important in optimising N fixation in intercropping designs. 

However, a more extensive study of the environmental impacts that different species/ 

varietal combinations and ratios have in order to optimise such systems is required. 

Having a better understanding of the interactions taking place within a cereal/ legume 

intercrop and how this can fit into a rotation has the potential to be a very useful 

management tool in the development of more sustainable cropping and agricultural 

systems. Using mathematical models to describe plant interactions in terms of functional 

attributes including root structuies and development is useful for projecting scenarios for 

different climatic, environmental and management conditions. 
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Paper 4 

Factors controlling N losses from an intercropped low input rotation. 

Valentini A. Pappa, Robert M. Rees, Robin L. Walker, John A. Baddeley, 

Christine A. Watson 

Abstract 

Nitrous oxide and nitrate are environmentally significant nutrient losses from agricultural 

systems. Low input farming systems have limited sources of inputs and depend on biologically 

fixed N. Tntercropping offers an alternative supply of crop N, and can influence N retention and 

loss within a crop rotation. The process of nutrient loss is controlled by an interaction between 

environmental conditions, such as climate and soil type, and management. We report here on an 

experiment studying N loss and turnover from intercrops and monocrops for 12 hydrologically-

isolated plots near Edinburgh in the UK. Treatments were a spring barley (Hordeum vulgare cv. 

Westminster) monoculture and intercrops of barley / white clover (Trfolium repens cv. Alice) 

and barley! pea (Pisum sativum cv. Zero 4 or cv. Nitouche) in 2006. Spring oats (Avena sativa 

cv. Firth) were planted on all plots in 2007. In the third growing season, all plots were sown 

with perennial lyegrass. No fertilisers, herbicides or pesticides were used at any stage of the 

experiment. During the experimental period, N 20 (direct and indirect) fluxes, NO 3 -N leachate, 

available N, crop yields, water filled pore space (WFPS) and climatic conditions were recorded. 

In general, N20 fluxes were controlled by available N11 4 -N, DON in soil, WFPS and grain 

yields (cumulative values). Specifically, N 20 fluxes from barley/ clover were related into soil 

available NH4 -N (P<0.05; R=0.83), barley/ pea cv. Zero 4 yields to WFPS (P<0.05; R=-0.62); 

barley/ pea cv. Nitouche yields to DON (P<0.05; R=0.97) and WFPS (P<0.05; R=460) and 

barley yields to DON (P<0.05; R=0.38). Grain yields were related to cumulative N 20 fluxes for 

the whole growing season (P<0.05; R'0.78) and initial levels of soil available NIFi-N (P<0.05; 

R=0.3 1). 
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Introduction 

Nitrogen (N) losses from agricultural systems are mainly through gaseous losses, as nitrous 

oxide (N20), and leachate, as nitrate (NO 3 -N). N20 is a "greenhouse gas" with a 100-yr 

average global warming potential (GWP) 296 times larger than an equal mass of CO 2  (Prather 

et al., 2001; Smith and O'Mara, 2007). Direct emissions of N 20 from soils result mainly from 

microbially driven nitrification and denitrification processes, as well as chemodenitrification 

(Brenmer, 1997) and there are also small contributions by dissimilatory reduction of NO3--N  to 

N}-N (DNRA) (Casella et al., 1984; Stevens and Laughlin, 1998). Farming systems include a 

complex mix of tillage, timings and frequencies in combination with fertilisation rates, residues 

and crop, all interacting with local climate, topography and soil type. The processes are 

controlled by several factors which affect the amount of N losses from the systems, such as soil 

water content regulates oxygen supply (Scholes et al., 1997); temperature affects most 

organisms (Freibauer and Kaltschmitt, 2003; Flechard et al., 2007); available N (NO 3--N and 

NH4 -N), as it regulates the reaction rates; available organic carbon, as the denitrifiers require 

carbon for respiration and it also regulates oxygen levels and pH, that controls both nitrification 

and denitrification (Davidson, 1993; Singh et al., 2007). 

Leaching is often quantitatively the most important channel of N loss from field soils other than 

that accounted for in plant uptake (Vinten 988-96). NO 3--N is the primary form of N leached 

into groundwater, is totally soluble at the concentrations found in soil, and its movement is 

closely related to water movement. Most soil and environmental parameters, which influence 

the transport of dissolved NO 3 -N through natural field soils, vary substantially at different 

locations, even at short separation distances. In organic systems, leaching losses will occur 

mainly from sudden, rapid mineralisation and nitrification of organic nitrogen, especially 

following cultivation when mineralisation will be enhanced. It has been postulated that organic 

farming reduces nitrate leaching, a major environmental concern in Europe (Drinkwater et al., 

1998). However, Trewavas (2001) states ploughing in of legume crops on organic farms to 

improve soil fertility and continued manure breakdown leads to nitrate leaching into aquifers 

and waterways at identical rates to conventional farms. Nevertheless, the average leaching of 

nitrate over a crop rotation was reported to be rather lower per unit area from organic systems 

than conventional (Korsaeth, 2008). On the other hand, an accurate comparison of leaching 

between systems requires yields to be considered. This is difficult to achieve as there are 

differences in the sequence and type of crops grown and in the input intensity of N. Inaccurate 

interpretations of leaching data are common, as pointed out by Andrdn et a! (1999). When 

looking at cumulative nitrate leaching, there was a 50% higher rate from the fertilizer-based 

system, although not statistically significant (P = 0.06). But the whole difference for the 15- 
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year period is based on the observation that only one year out of the five measured had a higher 

leaching rate. This was interesting, but there was no attempt to discuss this difference. 

Low-input farming systems, such as arable organic farming, often have limited sources of 

nitrogen (N), which can minimise the productivity of these systems by limiting the amount of 

available N during crop growth (Berry et al., 2002). This may be linked to the observation that 

organic yields are, on average, 50-95% of the conventional yield, depending on species and 

position in the organic rotation (Watson et al., 2002). Most organic, systems depend on 

biological N fixation (BNF) to supply N for intercropped cereals and/or for the following crops 

(Elgersma et al., 2000; Thorsted et al., 2006). BNF in legumes is a fundamental process for 

maintaining soil fertility and the continued productivity of organic cropping systems. The 

amount of N2 fixed  and the N contribution from leguminous crops are influenced by a number 

of environmental factors, including soil type, soil nutritional status, species and varieties, water 

availability and temperature, as well as soil and crop management (Vinther and Jensen, 2000). 

Stem (1993) found that the direct transfer of N from a N 2-fixing legume to an intercropped 

cereal is usually insufficient for cereal production. However, the transfer of N from legumes to 

non-legumes is promoted by defoliation or maturing of the legume resulting in the death of the 

roots and nodules; Mechanical control of legumes and in particular white clover can decrease 

the interspecific competition and increase N transfer from the legume (clover) to cereals 

(Thorsted et al., 2006). Pappa et al (Paper 1) have found that intercrops of legumes with barley 

have a positive effect on the partner and the following grain yields and biomass of cereal. 

The concentration of mineral N in the soil is affected by soil moisture. In field conditions, soil 

moisture affects N mineralisation in both direct and indirect ways. The direct effect is related to 

the water availability for microbial activity, and in this case it is suitable to express soil 

moisture in terms of water potential (Orchard and and Cook, 1983). Water also affects N 

mineralisation by controlling oxygen (02) diffusion within the soil and the volume of soil 

supporting aerobic microbial activity. To study this, soil water content is normally expressed as 

water-filled pore space (WFPS) (Skopp etal., 1990). 

Because of all these factors controlling the N losses and more specifically N 20 losses from 

agricultural systems we compared the most common factors controlling them under the same 

soil type (sandy loam), topography and climate without any addition of fertiliser and residues. 

The N20 emissions from a low input rotation were used to investigate the seasonal variation 

and the treatment effects; and to determine the soil, plant production and climatic factors 

controlling N20 release from soil to atmosphere. The main aims were to investigate whether the 
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N20 fluxes are principally controlled by the intercropped type and influenced by the soil 

structure Additionally, seasonal cumulative values of N 20 will be related to the final yield. 

2. Materials and methods 

2.1. Site description and soil 

The experiment was carried out 8 km south of Edinburgh, Scotland (lat. 550  51'N, long. 3° 

12'W). The overall field size was 0.4 ha and 12 hydrologicaly isolated plots were installed in 

1990. Further details of the full experimental facilities are given in (Vinten et al., 1992).The 

plots were fallow for the period 2003-2005. The day before sowing (23 w  April 2006), the soil 

was sampled in 0-20cm (n=8 per plot); The water content at field capacity was 19 ± 0.5 % (v/v) 

and the soil bulk density was 1.19 ± 0.01 Mg m 3  (mean ± SE, n=5). The top soil was a sandy 

loam (Eutric Cambisol, Macmerry Series) with 65% sand, 20% silt and 15% clay developed 

from partially sorted glacial till, the upper 0.5 to 1.5 m of the soil profile is freely drained. 

In 2006 when the current study started, the treatments were: barley (Hordeum vulgare cv. 

Westminster) as a monocrop; pea (Pisum sativuni cv. Zero 4)1 barley intercrop; pea (Pisum 

sativum cv. Nitouche)l barley intercrop; White clover (Trfolium repens cv. Alice) /barley 

intercrop established on the 24th  April 2006. Westminster is a very high yielding spring 

malting variety with long, stiff straw. It has excellent all-round disease resistance. Westminster 

has all of the necessary qualities for brewing and export markets including feed barley growers 

(HGCA, 2008). Nitouche is a popular large blue pea variety and has a consistent performance, 

good agronomic characters and suitability for premium markets. Nitouche produces a large, 

smooth, round pea and retains its colour well. Nitouche also has a high level of resistance to 

downy mildew and long straw with good standing ability making it relatively easy to harvest. 

Zero 4 is a small blue combining pea with a unique combination of agronomic characteristics: 

short straw, excellent standing ability and very early maturity (Nickerson, 2008). When sown at 

its optimum seed rate of 110 seeds! m 2, Zero 4 has a similar yield potential to Nitouche 

(optimum seed rate of 70 seeds! m 2). Alice is a tall, large leaved white clover developed for 

exceptional yields of palatable, high quality, high protein forage included in pastures mixtures 

(Barenbrug, 2006). Its vigorous spring and summer growth make it a suitable choice for 

cutting or grazing management, as well as for N fixation throughout the season and good 

winter- hardiness and cover (HGCA, 2008). Each treatment was replicated three times in a 

blocked design. In the intercrop treatments, the seed rates for the pea and barley followed a 

50:50 replacement design. This means that the target intercrop density was 50% of the 

monoculture density of each crop. Based on monocropping seed rates of 200 kg ha 1  for the 
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barley and 250 kg ha' for the peas which equated to approximately 350, 75 and 110 germinable 

seeds m 2  for Westminster, Nitouche and Zero-4 respectively, the intercrop components were 

half these values: 

In the second growing season (2007), all the plots were sown with spring oats (Avena sativa cv. 

Fifth) on 3 rd  April at a seed rate 250 kg ha-1 . Fifth is a very popular spring oat variety and 

exhibits a high kernel content and good resistance to mildew (Szumigalski and Van Acker, 

2006). In the third growing season, perennial ryegrass (PRG) was sown in all plots in a 50:50 

mixture of Aberavon and Aberdart at a seed rate of 35 kg ha'(Table 1). The plots were tilled 

using a mouldboard plough followed by cultivating (rotary hoe), seeding and rolling. No 

fertilisers, herbicides or pesticides were used. 

Table 1: Cropping 2003-2008 on the drainage plots. 

Year Crops Treatments Varieties 
2003 Fallow 
2004 Fallow 
2005 Fallow 

Spring Barley! White clover Westminster/Alice 
Spring Barley! Spring Pea 1 Westminster/ Zero 4 

2006 Intercropping cereal! legumes 
Spring Barley! Spring Pea 2 Westminster/Nitouche 

Spring Barley Westminster 

2007 Cereal Spring Oat Firth 
2008 Grass Perennial iyegrass AberAvon & Aberstar 

All the data are presented with reference to the cereal growth stages GS 23 (main shoot and 3 

tillers), GS 65 (flowering half-way), GS 77 (late milk), GS 92 (grain hard (not dented by nail). 

For the 2006 growing season (barley) these stages were at 30, 70, 100 and 140 days, 

respectively. For oat plants (2007), the growth stages GS 16 (six leaves unfolded), GS 23, GS 

65, GS 77 and GS 92 were 40, 65, 100, 135, 161 days from sowing respectively. Some of the 

data presented here have been separated in to different periods as follow: Summer '06: 24th 

April - 11th September; Winter '06: 12 th  September '06 - 2nd April '07; Summer '07: 3rd  April 

'07 - 1 1 th  September '07; Winter '07: 12 th  September '07- 21st  April '08; Summer '08: 22   

April 08_ 30th August '08. 
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2.2. Sampling and analyses 

Nitrous oxide fluxes from soil were measured using static chambers located randomly within 

each of the plots using the method described by Ball et al. (1997). One chamber (volume 25120 

cm3 ; cover area 1256 cm) was located in each of the 12 plots. The chambers were sealed for 60 

minutes with an aluminium lid having a small open sampling point sealed with a grommet in 

which the syringe was inserted. Air and soil temperature were recorded the same time. Gas 

samples were collected in portable evacuated aluminium vials (Scott et al., 1999) and analysed 

for N20 by electron-capture gas chromatography. For consistency, gas sampling was carried 

out between 10:00 and 12:00 hrs 

Soil samples were collected monthly and randomly from within the plots to a depth of 40 cm 

and separated into 0-20 cm and 20-40 cm layers. Soil mineral N (N}-J4 -N and NO3 -N) and 

dissolved organic N concentrations were determined following extraction in 0.5 M K 2SO4  

(Pappa et al., paper 2). N 20 fluxes and mineral N data are presented in Pappa et al. (Chapter 6: 

paper 2). 

The drainage flux was measured using tipping bucket flow meters mounted in the instrument 

pits. Tips were measured with a hand-counter connected at the side of the tipping bucket. 

Rainfall was obtained from the weather station at Boghall Farm (0.5 km away) and the Center 

of Ecology and Hydrology (0.5 km away). The composition of the drainage water was 

estimated using samples collected with a simple integral sampler which collected a small 

volume (Ca. 10 ml) of water into a large black plastic bucket, every second tip of the buckets 

(Vinten et al., 199 1) (Pappa etal., Chapter 6: paper 2). 

Additional drainage water samples were collected weekly by hand for almost all of the second 

growing season for N20 measurements in drainage water. Containers were filled completely 

and sealed with a gas tight inner seal, held in place by a screw-top lid. Water samples were 

stored in a cool box and immediately transferred to the laboratory and stored at 4 °C until 

analysis. All samples were analysed within 48 h of collection. Nitrous oxide concentrations in 

drainage were assessed in the laboratory by analysis using a gas chomatograpgy (Agilent 6890 

GC) fitted with a 1.8 in Porapak-N column and electron capture detector of duplicate 5 ml 

subsamples from each sample injected with a syringe in a 22 ml sealed vial which was shaken 

vigorously for 1 mm. (Reay et al., 2004b). 

Water release properties were assessed on undisturbed soil samples taken monthly with the 

same type of rings as used for bulk density. The samples were saturated with water at 

atmospheric pressure and equilibrated on tension tables and pressure plates as described by Ball 
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and Hunter (1988). Total porosity was taken as an estimate of water content at saturation. Field 

capacity was defined as the moisture content at -6 kPa (Duncan, 1979). The dry bulk density of 

the sample, was calculated from its dry weight and volume, and gravimetric water content was 

measured by using a separate sample of oven-dry soil (Ball and Hunter, 1988). 

2.3. Statistics 

The measured variables were tested with Anderson-Darling test (significance .05) for normality 

distributed and statistical analyses by ANOVA were performed using Minitab 15 (2006) and 

GenStat 8 (2005). The N20 data were transformed by using log e  transformation. Relationships 

between fluxes and environmental parameters were investigated using correlation analysis. 
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3. Results 

3. 1. Weather data 

The last 25 year mean annual rainfall is 676 mm, mean annual air temperature is with 

maximum and minimum daily air temperature of 19 °C (July) and 0.7 °C (January). During the 

experiment the rainfall was higher that the average, in 2006 the total annual rainfall was 927 

mm, in 2007 it was 1288 mm and in 2008 it was 1132 mm. Monthly average air temperature 

and total rainfall during the experimental period are shown on the Figure 1. 

Rainfall 300T 	 T 1 

Figure 1: Monthly total rainfall (mm) and monthly average air temperature ( °C). 

Total rainfall in the period between I May and 30 September (when soil temperatures and 

therefore microbial activity are highest) was 390 mm in 2006 and 627 mm in 2007. 

2006 2007 2008 
January 3.5 4.8 4.1 
February 3.4 4.2 4.2 
March 2.9 5.1 4.4 
April 5.8 8.1 5.9 
May 9.2 10.0 10.2 
June 12.3 12.9 12.9 
July 14.6 14.4 14.9 
August 14.2 14.6 14.9 
September 13.2 13.2 13.1 
October 10.7 10.6 7.5 
November 7.3 8.2 8.4 
December 5.6 4.8 2.7 
Average 8.6 9 8.6 

Table 1: Average soil temperature ( °C) for 2006-2008 in 0-10cm depth. 
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Soil temperature remained relatively constant between years (Table 1). At the sowing periods, a 

higher soil temperature by 2 °C was observed during April, compared to previous winter 

months during 2006-2007 

3.2. Water release properties 

At GS 23, in 2006, the barley/ clover had the highest gravimetric water at all the different 

tensions following the intercrops of barley with the two pea cultivars (Fig. 2A). At GS 92, the 

gravimetric water content of the barley/ pea intercrops were significantly different each other. 

Barley/ pea cv. Nitouche had a higher value under all the different tensions with a difference of 

almost 0.05 from barley/ pea cv. Zero 4 (P<0.05) (Fig. 2B). 

In the second growing season (2007), the water contents of different treatments were not 

significantly different. The previous barley monocrop had the highest gravimetric water content 

until the -9 kPa tension. However, the previous barley/ pea cv. Nitouche had higher values than 

other intercrops (Fig. 2C). At OS 92, oats grown in the presenting barley/ clover treatment had 

a significantly higher gravimetric water from the rest of the treatments (P<0.05) (Fig. 21)). 
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Figure 2: Soil gravimetric water content at four different times during the experimental period under different tensions. All values are means (n=3) ± SE 

(bars) within the treatment. A) 26th  June 2006- GS 23; B) 11 "' September 2006- GS 92; C) 24 " ' June 2007- GS 23; D) 30Ih  August 2007- GS 92. 

0.7 0.7 -S- Barley! Clover 

Barley! Pea cv Zero 4 

0.6  0.6 Barley! Pea cv Nitouche 

13 	Barley 

0.5 
0 

0.5 

I- 

. 	0.4 .4  0 
cc 

U 	., 0.., 
U 

0. 
00 

0.2 > 0.2 

0.1 0.1 
A B 

0 r I 0 p 	 I 	 I 	 I 

0.1kPa 	3kPa 6kPa 	9kPa 	I20a 	300a 0.1kPa 	3kPa 6kPa 	9kPa 	12kPa 	300a 

Soil Matric potential (-kPa) Soil Matric potential (-kPa) 

0.71 

0.6 

0.51 

0.3' 
a 

41 	0.21 

0.!' 
C 

 

0.1kI'a 	AN 	6kPa 	9kPa 	I2kPa 	30kPa 

Soil Matric potential (-kPa)  

0.7 -U-- Oat (Barley! Clover) 

Oat (Barley! Pea cv Zero 4) 

0.6 C.- Oat (Barley! Pea cv Ni 

13 Oat (Barley) 

0.5 
C 
1.  

0.4 -I 

U  0.3 

0.2 

0.1 - 
D 

- 	0 	 I 	 I 	 I 

0.1kPa 	3kPa 	6kPa 	9kPa 	l2kPa 	30kPa 

Soil Matric potential (-kPa) 

159 



80% 

A 70% 

60% 

50% 

rI) 

.30% 

20% 

-a— Bai'ty/ Cbve, 
BarPeacvZeea4 

10% 
Ba 	Pea cv, NrI 

-W Ba±y 

80% 

70% 

60% 

50% 

96 
40% 

30%-

20% - 

10% - 

R-3 

—.—Bax'ry/ Cbvea 
BvIe/ Pea cv. 7am 4 

--Bay1 Pea cv P4ImsIr 
-0— Baeley 

3.3. Water Filled Pore Space (WFPS) 

In 2006, the WFPS was decreased as soon as the plants were established. During summer 

2006, rainfall was very low and the WFPS decreased rapidly during July to 30%. At the 

same time, the average daily soil temperature ranged from 10 °C to 18 °C in June and 

July. The intercrops of barley and pea had similar WFPS patterns at 0-20 cm depth 

without any significant differences during the first year of the experiment (Fig. 3). 

In 2007, the WFPS remained around 50% during the growing season of oats. The 

previous barley/ pea intercrops were different with barley/ pea cv. Nitouche having a 

higher WFPS in comparison with barley/ pea cv. Zero 4. However, the previous barley 

monocrop had the highest WFPS reaching 60%at the end of the growing season. During 

the winter, the WFPS remained high for all the treatments until the spring 2008. The 

previous barley monocrop had the highest WFPS (P<0.01), but when the grass was 

established and it decreased to 30% for all treatments. The same pattern as 0-20 cm is 

seen for depth 20-40 cm during 2006. However, the barley/ pea cv. Nitouche had the 

lowest WFPS during the total experimental period (P<0.05). Throughout winter 2006 and 

second growing season (2007), the previous barley/ pea cv. Zero 4 had the highest WFPS 

and was significantly different from barley/ pea cv. Nitouche (13<0.05). 

0%! 

01102106 01/06106 01110106 002,07 01/06107 01/10107 01/02108 01106/08 	01/02/06 0106106 01/10/06 01/02107 01106/07 0140107 01/02/08 011008 

Figure 3: Water filled pore space (WFPS) during the experiment period in the soil layers 

at 0-20 cm (A) and 20-40 cm (B). All values are means (n=3) ± SE (bars) within the 

treatment. 
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3.3. Water Filled Pore Space (WFPS) 

In 2006, the WFPS was decreased as soon as the plants were established. During summer 

2006, rainfall was very low and the WFPS decreased rapidly during July to 30%. At the 

same time, the average daily soil temperature ranged from 10 °C to 18 °C in June and 

July. The intercrops of barley and pea had similar WFPS patterns at 0-20 cm depth 

without any significant differences during the first year of the experiment (Fig. 3). 

In 2007, the WFPS remained around 50% during the growing season of oats. The 

previous barley/ pea intercrops were different with barley/ pea cv. Nitouche having a 

higher WFPS in comparison with barley/ pea cv. Zero 4. However, the previous barley 

monocrop had the highest WFPS reaching 60%at the end of the growing season. During 

the winter, the WFPS remained high for all the treatments until the spring 2008. The 

previous barley monocrop had the highest WFPS (P<0.01), but when the grass was 

established and it decreased to 30% for all treatments. The same pattern as 0-20 cm is 

seen for depth 20-40 cm during 2006. However, the barley/ pea cv. Nitouche had the 

lowest WFPS during the total experimental period (P<0.05). Throughout winter 2006 and 

second growing season (2007), the previous barley/ pea cv. Zero 4 had the highest WFPS 

and was significantly different from barley/ pea cv. Nitouche (P<0.05). 

O%I 
01/02106 01/06/06 01110/06 01/02/07 01/06107 01110/07 01/02/08 01/06/08 	 01/02/06 01106106 01110/06 01/02107 01/06107 01/10/07 01/02/08 01/060 

Figure 3: Water filled pore space (WFPS) during the experiment period in the soil layers 

at 0 -20 cm (A) and 20 -40 cm (B). All values are means (n'3) ± SE (bars) within the 

treatment. 
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3.4. Correlations ofN20 losses 

3.4.1. Ammonium (NI 4 -N) in soil 

Ammonium has an important role in the production of terrestrial N 20, as N20 is 

generated during the nitrification process. There was a low correlation between terrestrial 

N20 losses and N}T-N in the soil at the same date of sampling for the total duration of 

the experiment (P<0.05; R'03 1). However, when the N 20 fluxes data were separated for 

each of the treatments, there was no correlation between treatment and NH-N. When the 

experimental period was divided into seasons, in the barley/ clover treatment during the 

first growing season (2006) (P<0.05; R0.91) log o  N20 fluxes were highly correlated 

with NH4tN. Additionally, there was a high correlation of log N 20 losses and NH4tN in 

the soil for the previous barley/ pea cv. Nitouche (P<0.05; R=0.92) and barley monocrop 

(P<0.05; R=0.98) during the second growing season (2007), when oat plants were 

growing. Data for N11 1 -N and N20 are not presented here (see Chapter 6 - paper 2). 

3.4.2. Nitrate (NO 3--N) in soil 

N20 losses from soil occur during the denitrification process, when soil nitrate is 

converted to soil N 20 and N2  gas by several micro-organisms. There was not significant 

correlation between N 20 on the day of sampling and NO 3 --N in the soil (P>0.05; R0.5) 

during the whole experimental period and also within individual periods (spring-summer 

2006; winter 2006-2007; spring summer 2007; winter 2007-2008). Data for NO 3 --N are 

not presented (see paper 2). 

3.4.3. Dissolved Organic Nitrogen (DON) in soil 

Terrestrial N20 losses were positively correlated with DON for the whole duration of the 

experiment (p<0.05; R0.44) (Fig.4). Separating the N 20 fluxes by treatment, they were 

only correlated for the barley monocrop for the whole experimental period (P<0.05; 

R=0.38). Separating th& treatment into seasons, there was only one significant correlation 

for barley/ pea cv. Nitouche for the first growing season (P<0.05; R0.97) between N 20 

and DON. Data for DON are not presented here (see paper 2). 
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Figure 4: Scatter plot of the N 20 and DON for the two years of the duration of the 

experiment. Each point represents the mean of three (n=3) replicates for measurements 

every two months. Treatments refer to the initial experimental layout (2006). 

3.4.4. Temperature and Rainfall 

Soil and air temperature and rainfall had no significant effect on the terrestrial N 20 losses 

during the whole experimental period either when analysed as the whole data set or for 

individual treatments and seasons. 

3.4.5. Water Filled Pore Space (WFPS) 

Water filled pore space had a negative correlation with the log N 20 losses (P<0.05; R - 

0.28). Separating the fluxes by treatments, we found that only the two barley/ pea 

treatments had a significant correlation of N 20 with WFPS for the whole duration of the 

experiment (barley/ pea cv. Nitouche: P<0.05; R-0.60 and barley/ pea cv Zero 4: 

P<0.05; R=-0.62). However, there was no seasonal correlation between each of the 

treatments. 
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Figure 5: Scatter plot of the log N 20 and WFPS for the whole duration of the 

experiment. Each point represents the mean of three (n=3) replicates for monthly 

measurements. Treatments refer to the initial experimental layout (2006). 

3.4.6. N20 from the drainage and NO3 -Nfrom the soil 

There was no correlation between the NO3-N in the soil and the indirect N 20 losses from 

the drainage for the second growing season (2007). 

3.4.7. NOfrom the soil and N20froni the drainage 

There was no correlation between the soil N 20 and the indirect N 20 losses from the 

drainage for the second growing season (2007) for all of the treatments. 

3.5 Correlations of grain yield and N losses 

3.5.1. Barley grain yield and initial levels of NH4 -N in soil 

There was a significant correlation between the initial available NH 4 -N in 2006 in the 

soil and the final grain yield of barley (P<0.05; R=0.68). However, when the different 

treatments were tested a significant correlation was only found for barley/ pea cv. Zero 4 

(P=0.05; R=0.99). No other correlation was found with NO 3 -N in soil and DON. 
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3.5.2. Barley grain yield and cumulative N 20 fluxes from the soil 

There was a significant correlation between the cumulative N 20 fluxes and the final grain 

yield for all the treatments (P<0.01; R=0.78). Separating the fluxes into treatments there 

was a found high correlation in the first growing season (April-September, 2006) and the 

final grain yield of barley for the barley! clover (P<0.05; R=0.99). However, the barley 

monocrop and barley/ pea cv. Zero 4 cumulative N20 fluxes were less correlated with 

barley yield. 

3.5.3. Oat grain yield and cumulative N20 fluxes 

There was a high correlation between the cumulative N 20 fluxes in the second growing 

season (April-September, 2007) and the final grain yield of oat crop grain in the previous 

barley/ clover treatment (P--0.00 1; R= 1), but not for oats grain in the previous barley/ pea 

cv. Nitouche and barley/ pea cv. Zero 4 treatments (P>0.05). 
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Figure 6: Scatter plot of the cumulative N 20 and final oat grain yield. Each point 

represents the mean of three (n=3). Treatments refer to the initial experimental layout 

(2006). 
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4. Discussion 

4. 1. Local Conditions 

4.1.1. Temperature 

As for any biological process, the rates of nitrification and denitrification are affected by 

changes in temperature. Nitrous oxide emissions from the rotation had no correlation with 

the temperature (soil and air) during the experimental period. Dobbie et al. (1999) found 

that if soil WFPS or available N content are limiting, there may not be a clear relationship 

with temperature. However, when only those data points where the other factors are non-

limiting are considered, there is evidence of very steep responses of temperature in 

agricultural soils in Scotland (Dobbie and Smith, 2001). 

4.1.2. Rainfall 

Positive correlations have been observed in several studies between rainfall and N 20 

fluxes. The production of N 20 via either nitrification or denitrification may be altered by 

changes in wetness (Davidson, 1992; Zheng et al., 2000). In Scotland, high fluxes of N 20 

have been reported from a temperate grassland thought to be largely as a consequence of 

denitrification, which was particularly prevalent in the wetter of two different years 

(Jones et al., 2007). However, in our study, there was no correlation between the N 20 

fluxes and rainfall maybe because the time of sampling wasn not that frequent to detect 

response to rainfall. Skiba et al. (2000) reported that higher N 20 emissions occured 

during summer months when the rainfall was high. However ;  a heavy rain event after a 

dry period can produce peaks of N 20 fluxes, as the inorganic N is accumulated and the 

reactivation of the microbial activity contribute to metabolism of inorganic N (Davidson, 

1993). 

4.1.3. WFPS 

Soil water content (through its effect on aeration), together with N supply, has been 

shown to be the dominant variable controlling the N 20 emission rate. In our study there 

were high correlations with WFPS for the N 20 fluxes produced during the experimental 

period. Dobbie et al. (1999) suggest that maximum N 20 fluxes occur at a WFPS of 80-

85%, values that were rarely observed through out the experiment. Below 60% WFPS 

nitrification, an aerobic process, is often the dominant process producing N 20 (Linn and 

and Doran, 1984). 
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4.2. Management 

4.2.1. Land management 

Agricultural practices, such as irrigation, can alter the oxygen status of the soil and at the 

same time increase N 20 emissions (Halvorson et al., 2008). Under conventional tillage 

cultivation of agricultural soils can cause the loss of SOC or maintain relatively constant 

levels of SOC which results in higher fluxes of N20. In contrast, reduced tillage can 

increase SOC in soils (Lal, 2004) resulting in reduced erosion and improved water quality 

and drainage (D'Haene et al., 2008). 

Parkin and Kaspar (2006) compared N20 fluxes from soybean and corn crops in a 

soybean-corn rotation, recording higher N 20 emissions from the corn when compare 

with the soybeans. They found that the controlling factor was the available N from the 

applied fertiliser. The material remaining after harvest decomposed promoting 

mineralization and NH-N-N, production which then led to nitrification and 

denitrification with consequent N 20 emissions. Agricultural practices can also increase 

ammonia volatilisation and NO 3 --N leaching. N20 in drainage is another indirect loss 

(Reay et al., 2004a), but there were very low correlations in our study for all treatments 

in 2007. A portion of the NO 3 -N that is leached or discharged in drainage can also be 

denitrified and result in N 20 emissions (Del Grosso et al., 2001). In our study there was 

no strong relationship between the N 20 and NO3--N released from the drainage water 

(data not presented) which may have been a consequence of the long residence time of 

water in the soil profile (Vinten et al., 1992). 

Davis and Barraclough (1988) monitored different points in time in a rotation on an 

organic farm in the UK. They found that the magnitude of leaching was closely 

dependent on the position of a field in the rotation. Nitrate leaching was reduced the 

longer the field had been in the organic rotation. In Denmark, the impact of organic 

compared with conventional farming practices on N leaching loss has been studied for 

mixed dairy and arable farms. The results show a lower N leaching loss from organic than 

conventional mixed dairy farms, primarily due to lower N inputs and increase the soil in 

N pool was increasing on organic arable farms over time, but the N leaching loss was 

comparable to conventional arable farms (Knudsen, 2005). 
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4.2.2. Crop type 

Crop type is a very important factor in determining the N 20 fluxes. Several studies have 

shown differences in fluxes between crops, for example potatoes and broccoli have higher 

emissions than barley or wheat (Smith et al., 1998; Dobbie, 1999; Petersen et al., 2006). 

Nitrous oxide emissions from grasslands can be higher than for many arable crops (Skiba 

et al., 1993). Pappa et al. (paper 2) found that the N 20 fluxes differ between species and 

the cultivars. N 20 fluxes and the final grain yield had a high correlation (P<0.05) for most 

of the treatments, except the treatment that had the highest fluxes that growing season. 

Cultivation of nitrogen fixing plants contributes to N 20 emission in a number of ways. 

Atmospheric N fixed by legumes can be nitrified and denitrified in the same way as 

fertilizer nitrogen. thus providing a source of N 20. Symbiotically Rhizobia in root 

nodules are able to denitrify and produce N 20 (Freney, 1997). 

Rochette et al. (2005) found that legume crops have higher fluxes than the non-legume 

crops grown with no added fertiliser, an observation that may be linked to the N inputs 

provided by legume based systems. Comparing soil collected from N-fixing trees and non 

N-fixing trees, Dick et aL(2006) found that more N 20 was emitted from soil associated 

with the N-fixing trees and correlated with a larger pool of available N (NH 4 -N and 

NO3 ) in the soil. A correlation between N 20 and NHtN in soil for the barley! clover 

(2006) and previous barley/ pea cv. Nitouche (2007) treatment was reported in this study. 

DON had a high correlation with N 20 for the barley/ pea cv. Nitouche (2006). 

Additionally, Cui et al. (2006) have found that all the treatments with the N 20 fluxes for 

the whole duration of the experiment between the initial N14 1 -N in the soil and the final 

grain yield of barley (2006) were highly correlated. 

Additionally, root architecture of different species can affect the amount of NO 3--N 

leachate and subsequent conversion to N 20. Root depth and density affects the water 

content in the soil and the availability of N. The undesirable leaching of nitrogen to 

groundwater occurs in soil profiles with a coarse sand texture and a shallower rootable 

depth (Bowman et al., 1998) and also the effect of leaching on bulk density (Smit and 

Groenwold, 2005). 

Winter cover crops (e.g. wheat (Triticum aestivum L. and rye (Secale cereal L.)) can 

effectively prevent NO 3 --N leaching in the winter months on permeable soils, and reduce 

drainage losses of NO 3 -NN (Feyereisen et al., 2006). Reductions in NO3 -NN 

leaching/drainage losses are likely to reduce overall N 20 emissions from water (Snyder et 

al., in press) and reduce the N 20 indirect losses from low input rotations (Paper 2). 
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Finally, the use of models to estimate the N 20 emissions from arable soils is essential to 

devise strategies to mitigate the impact of agriculture on global warming, but we have to 

consider the complexities of the processes involved, which include influences of soil 

texture, water input, fertilisers, crops and local conditions (Del Grosso et al., 2006; David 

et al., 2009). 

5. Conclusions 

N20 fluxes (direct and indirect) and NO 3--N (leachate and in the soil) were the main 

losses examined in this study trying to discover the factors controlling these losses in that 

intercropped low input rotation. N20 fluxes seemed not to be directly affected by the 

local conditions (temperature, rainfall and WFPS). However, the management factors, 

such as different crops, had a significant influence on N 20 and NO3 -N loss. Available 

soil NHtN, DON and NO 3--N were significantly related to N 20 fluxes (direct, indirect) 

depending on the treatment. Final grain yields were highly positively correlated with the 

cumulative N20 fluxes for the season that the crops were growing, as well as with the 

initial NIi-N levels in the soil. The choice of the crop mixture and the initial levels of N 

in the soil seem to be the most important drivers for N losses. The use of several models 

for prediction and mitigation options of N 20 is essential for future estimation of N losses. 
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9. General discussion 

Nitrogen (N) production has more than doubled globally in the last century because of 

human activities and population growth. The increased demand for global food 

production including high amounts of dairy and meat consumption in human diets has 

had to be supported by increased use of N fertiliser. Nitrogen is one of the most 

important nutrients for the development and growth of plants in agricultural systems. 

However, the consequences of excessive use of N results in several effects on air, water 

and soil quality, and the wider ecology of agricultural systems. Global greenhouse gas 

budgets have been modified in addition to the formation of N oxides and tropospheric 

ozone resulting in the loss of stratospheric ozone and changes in radiative balance. 

Water quality has also been affected, resulting in the pollution of drinking water, 

groundwater and oceans, and soil quality has been negatively modified through soil 

acidification and nutrient excesses resulting in higher levels of carbon in soil. 

Nitrogen losses from agro-ecosystems have steadily increased, due to low efficiency of N 

use, leading to greater environmental pollution. Nitrous oxide (N20) from agriculture 

contributes a high proportion of the total greenhouse gas emissions and consequently it 

is considered one of the main environmental problems. However, EU targets for reduced 

fluxes by 2020 and 2050 drive the search to find alternative ways of supplying N to 

crops and to mitigate the N losses. Nitrate (NO 3 ) leaching from agricultural systems is - 

the primary form of N leached into groundwater; this is totally soluble and its movement 

is related to water movement. 

An increased use of legume crops has also enhanced biological N-fixation, due to 

symbiosis with nitrogen-fixing bacteria in nodules. They also do not require N 

fertilisers, so the use of fossil energy use and gaseous losses are consequently less. 

However, the grain legumes are not produced in high amounts in Europe, as the 

production of them has decreased the last 10 years and the import of legumes from 

South America is essential for feeding. 

In this thesis the effects of intercrops on cereal production were studied in order to 

examine whether such an approach as growing cereals with legumes could lead in a 

more efficient N utilisation and reduce N losses. Possible carry-over effects to the 

following year's crops were also measured focusing on N losses. In order to understand 

the processes regulating N losses, the influence of the variety/ genotype as well as the 
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influence of the different species were investigated without any input of inorganic or 

organic fertiliser. 

9.1. N20 losses 

Influence of varieties and species on gaseous N losses 

Different varieties have different yields and N uptake (Willey, 1979; Szumigalski and 

Van Acker, 2006; Kihara et al., 2007), but what was not known was the influence of 

varieties on the environment, specifically N 20 emissions. N20 fluxes varied between 

treatments, but also showed seasonal patterns and varied between years in the same 

treatments. This indicates as has been shown in previous studies that the principal 

variable controlling the rate of N 20 fluxes were not only the soil N but also the 

treatments and the climatic conditions, such as soil moisture (Flechard et al. 13 S-52). 

The field experiment on the drainage plots in 2006/2007 investigated the different 

patterns of N 20 emissions from different varieties and species of legumes intercropped 

with spring barley. The highest fluxes were observed from barley/ clover for the whole 

duration of the experiment increasing throughout the growing seasons. Barley/ pea cv. 

Nitouche had the second highest cumulative emissions of N 20, but in the growing year 

2006, it was larger in magnitude. On the other hand, comparing the same species but 

different variety, it was found that barley/ pea cv. Zero 4 had the lowest fluxes of all 

treatments, even in comparison to barley monocrop. High N 20 fluxes from low input 

systems can partly be explained by the N input from N 2  fixation, providing additional N. 

Indeed, available N soil content increased during the growing stages of legumes 

especially for the barley/ clover and barley/ pea cv. Nitouche. Such differences in N20 

fluxes between similar species have not been reported in a previous study. The main soil 

N storage from fixed N was confined to the upper soil profile, where it most vulnerable 

to loss and most of the N20 production processes occur. It is important to focus then at 

the upper soil profile and to manage it appropriately. N 20 emissions during the winter 

months followed typical seasonal patterns with low emissions during winter months, 

which then increased with rising temperature and cultivation. Additionally the carry-

over effect, has not been observed in any other study. In the following years, the 

cumulative N20 fluxes from barley/ clover was almost three times higher than the first 

growing season with the highest peaks occurring after ploughing. 

Calculation of the global warming potential (GWP) for each of treatment, which is a 

measure of how much a given mass of greenhouse gas is estimated to contribute to 

174 



global warming, indicated that barley/ clover had the highest GWP of 2.5 tCO2e in 

comparison with the control barley monocrop (0.6 tCO 2e). However, the barley/ pea cv. 

Nitouche had a GWP value of 1.2 tCO 2e, but the lowest GAT was from the intercrop 

treatment of barley/ pea cv. Zero 4 (0.4 tCO 2e) showing the high potential and benefit of 

some cereal/ legume intercrops. 

Intercrops therefore can contribute to lower significant mitigation of N 20 emissions 

from agriculture by careful choice of appropriate species and/ or varieties. It is an 

alternative management option that, in combination with other mitigation options, such 

as improved nutrient use, tillage and residue management can reduce the fluxes (Mosier 

et al., 1998; Ball et al., 1999; Miller et al., 2008). However, although legume systems 

can sometimes reduce the external inputs, at the same time fixed N 2  can be a source of 

N20 (Rochette and Janzen, 2005) and therefore providing winter cover after the harvest 

may influence/ mitigate winter losses (Ritter et al., 1998; Dobbie, 1999; Vinten et al., 

2002). Although catch crops are commonly used, such an approach may reduce the 

amount of N left in the soil from the previous crop that can be lost either as NO 3  

leaching or N20, and alter the timing of availability to the subsequent crop (Thorup-

Kristensen, 1993; 1994). N mineralization of the catch crop residues depends on the time 

of cut and incorporation, as well as the C:N ratio of the residues (Herrera and Liedgens, 

2009). 

In conventional farming systems, surplus soil N is highly positively correlated with N 20 

emissions. Precise application of fertiliser, using slow release fertilisers or nitrification 

inhibitors, adjusting the timing of application with the plant N uptake and avoiding 

unnecessary N applications can reduce the N 20 losses (Robertson et al., 2000; Smith 

and O'Mara, 2007). Using newer technologies, such as precision farming, which 

involves spatially explicit information on soils and allows a farmer to target inputs of 

nutrients to optimise nutrient supplies, can minimise potential losses. Combining that 

kind of technology with intercropping may be an efficient mitigation option for the 

future. The different varieties might contribute in addition to the management practices, 

because of the different use of the available resources. 

There is no one solution leading to reduced N 20 emissions from agricultural soils, what 

is required is a combination of approaches that increase nitrogen use efficiency within 

the agricultural systems and at the same time improved understanding the different 

levels of N20 emissions from varied soil types and climatic conditions. Using different 

varieties or actually breeding varieties of legumes for intercropping purposes to reduce 
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N20 losses, may offer the opportunity to reduce the emissions in parallel with increasing 

nitrogen use efficiency in the agricultural systems. 

Influence of varieties and species on N20 losses from the drainage 

N20 losses from drainage water are generated in the deeper soil layers and comprise a 

relatively small component of the total agriculturally derived N 20 emissions (Höll et al., 

2005), Conversion of NO3  leaching or run off from soil via aquatic denitrification and 

redeposition of volatilised non-N20 N-oxides and ammonia on soils to N 20, can be of 

the order of 200 g N20 ha 1  per year compared with around 8500 g N 20 h&' total, for the 

same period of measurements. The highest fluxes were from barley/ pea cv. Nitouche 

which were significantly different from barley! clover. Barley/ pea cv. Zero 4 had 

minimal drainage, so the fluxes' were difficult to measure. At present, these indirect 

losses are denoted by the IPCC and' represent an area of continuing uncertainty in global 

N20 budgets. Further research into fluxes from these environments may serve to bridge 

the gap between the combination of the IPCC default direct emission factor for N 20 ( 

1% of reactive N input) and the indirect emission from leaching (designated by IPCC as 

"EF5g"), and the global average figure of 3-5% for total N 20 emissions from inputs of 

reactive N recently suggested by Crutzen et al. (2008). The use of models to estimate the 

indirect losses from agricultural soils is very important for future estimations of N losses 

and mitigation strategies. Such process-based models should clarify potential to reduce 

uncertainties for both direct and indirect N 20 emissions, as such models could account 

for how climate, soil type, and N inputs affect both total N losses and the proportion of 

losses that are in the form of N 20, NON, NH3, and N2  gases, and NO3  leaching. 

9.2. NOi leaching 

Influence of varieties and species on NO3  leachate 

Leaching is a complex function of land use, cropping system, soil type, climate, 

topography, hydrology and nutrient management with only the biological components 

being easily controlled. The environmental impact of agricultural practices has received 

much focus over recent decades. Nitrogen leaching has been one of the issues of 

concern, due to the negative influence on ground water quality and the eutrophication of 

coastal waters. In low input systems, such as organic systems, the input of N is provided 

by legumes or manure application and may be a viable alternative agricultural practice to 

conventional systems as it may. enhance the environmental quality. However, in some 

studies, the use of manure has been shown to result in equal amounts of N leached as the 
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application of inorganic fertilisers (Thomsen, 1993; Jones et al., 2005). Unfortunately, 

heavy rainfall, less plant cover and less mivrobial activity for N uptake d%lring the 

autumn and winter months normally leach appreciable amounts of N, as happened in 

autumn 2006 and 2007, when the highest NO 3  leaching losses in this study occurred. 

However, several studies (Beaudoin et al., 2005; Geijersstam and Mayrtensson, 2006) 

have confirmed that. the NO 3  leaching is higher in crop rotations that include legume 

plants due to the fact that legumes fix nitrogen. Undersowning barley with clover during 

the first growing season provided the benefit of covering the cultivated area during the 

winter months (Vinteñ et al., 2002) and therefore resulting possibly in less runoff and 

leaching. However, ploughing of clover/ grass leys in autumn can contribute highly to 

NO3  leaching as the nitrogen in organic materials can be processed when N uptake from 

plants is not taking place. There is a lack of knowledge about the interactions between 

mineralisation and immobilisation; processes that are essential for incorporating plant 

material and residues into soil. Using intercrops to supply N in the cereal crop, can 

reduce the addition of synthetic fertilisers. Using alternatives, such as a cover crop 

during winter or catch crop can reduce the N losses significantly. Intercropping legumes 

with cereals can reduce the environmental risks of NO 3  leaching due to higher uptake of 

soil available N and the higher N utilisation effects if the above ground residues remain 

on the field. Low input farming systems, including organic systems, have high 

possibilities to reduce nitrate leaching, as the use of fertilisers is not allowed and the 

inputs are in general lower than in the conventional systems. However, if leaching is 

calculated per unit of yield rather than per ha, then it may be as high as in conventional 

crops (Kirchmann and and Bergstrom, 2001). 

Groundwater pollution by nitrate is a serious problem in the European .Union and in 

many other developed countries. The European Union has implemented the Water 

Framework Directive, which aims for all water bodies to reach good ecological status by 

2015 (Directive and 2000!60/EC, 2000; Letcher and Giupponi, 2005). .Use of 

nitrification inhibitors may be a possible solution as they control the formation of nitrate 

and in general 'regulate biological processes (Kirchmann et at!., 2002). However, there is 

still a lack of evidence on the 'controls' of the breakdown of mineralization and further 

research is needed. 

In general, the practices that reduce N 20 emissions often reduce NO 3  leaching and 

thereby contribute to a reduction in the pollution of ground-water (Olesen et al., 2006). 

Reducing the fertiliser application below the expected economic rate, using nitrification 

inhibitors and sensible use of manures in low input systems can contribute to minimising 
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NO3  leaching (Kirchmann et al., 2002). Nutrient management can result in efficient use 

of feitilisers avoiding harmful effects on water and air quality of N losses (Olesen et al., 

2006) 

9.3. Role of N in Grain Yield Production 

Crop mixtures contain more N than comparable monocrops confirming the benefits of 

growing a legume with a non-legume (Szumigalski and Van Acker, 2008). Grain yield 

from the barley crop was significantly higher between barley/ clover and the other 

treatments. Clover plants possibly supplied N in the mid boot stage or earlier, as N 

application at such stages can influence yield whereas later applications usually do not 

affect yield, but can raise grain N concentrations (Thorsted et at., 2002). The two barley/ 

pea treatments had no significant effects on grain yield for both crops in comparison 

with the other treatments and within the barley/ pea treatments, although they did cause 

significant differences in the above ground biomass of almost 2 t ha - ' with barley/ pea 

cv. Nitouche to have the highest. 

The most important result was the quantification of the substantial effect of the previous 

legume on the oat crop. Oats following the barley/ clover treatment had the highest grain 

yield, possibly due to the continuous growth during the winter months (2006-2007) of 

the clover plants regrown after the harvest, providing a cover crop. 

Low input and organic farming systems can benefit from the use of legumes in their 

rotations resulting in a higher potential cereal grain yield derived from the use of 

intercrops and also benefits for the following crop. The choice of species and/ or 

varieties must be considered carefully and will be influenced by factors such as maturity 

dates, potential yields, physiological characteristics and use of the harvested crop (e.g. 

animal food, human consumption). Undersowning cereals with clover even at low rates 

can contribute to potentially high supplies of N to the accompanying crop, reduce 

leaching during the winter months, and benefit soil structure and the subsequent crop 

(Løes et al., 2006). The use of other legumes, such as peas, intercropped with cereals 

can have higher combining yields and have a residual effect on the following crop 

(Paper 1). 

9.4. Economic implications of low input intercropped systems 

The present research did not address social and economic aspects, but focussed only on 

agronomic and environmental aspects of the intercrops. That does not imply that such 
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factors are less important. The economic value of the N fixed by legumes varies widely. 

On the one hand, the cost of production of the legumes must be considered, the amount 

of fixed N returned to the soil, and the availability of this N for future crops. Often, these 

costs are compared directly against the cost of purchasing and applying an equal 

quantity of N fertiliser plus the net income lost by producing a legume instead of a grain 

crop (if the legume is grown in rotation). In the past several decades, the cost of 

production and price of N fertilisers have been such that this type of calculation would 

generally favour the use of N fertiliser. This fact is largely responsible for the decreased 

use of legumes in our crop production systems over the past 40 years (Power, 1987). 

Although, current economics are uncertain the increased use of legumes maybe favoured 

once again. 

Intercropping in low input systems has similar effects to use in organic systems. In 

several studies, intercrops have been shown to be productive than the monocrops (Ofori 

et al., 1987; Fujita et al., 1992; Hauggaard-Nielsen and Jensen, 2001). The intercrops 

used in the present study make different use of the resources. The intercrops with LER 

values higher than one, showed an economic benefit in comparison with their associate 

cereal monocrop. However, in low input systems, the main problem is weeds and the 

difficulty of control them. However, the growth of two or more species has better 

competitive ability towards weeds than monocrops. The differential use of resources by 

intercrop components may minimise the availability of light, water and nutrients for 

weeds and thereby reduce weed growth (Brandsaeter et al., 1998; Hauggaard-Nielsen et 

al., 2006; Szumigalski and Van Acker, 2006; Thorsted et al., 2006). 

The choice of an intercropping system is important, as it may influence the amount of N 

leached and can be an important management tool. However, the choice of cultivar has 

also been shown to be critical to the economic evaluation which may be added to the 

environmental benefits, such as the reduction in air (N20) and water (leaching) losses. 

The importance of variety needs to be investigated further to ascertain the full 

significance of genotypes in relation to minimising losses whilst ensuring economic 

viability. 
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9. 5 Models of intercropped systems 

Intercropping is a rather complex agricultural system in comparison with monocrops and 

involves an 'unpredictable' balance between factors influencing environmental and 

agro-ecological effects of the two species, which make future predictions complicated. 

Modelling intercropping systems for the development of more sustainable production 

systems and involving limited inputs or low soil fertility, such as organic farming 

systems (Watson et al., 2002) can be very valuable in understanding interspecific 

interactions and to help manage intercropping. In reality, it is very difficult to control all 

the different factors related with intercropping, such as available resources (water, light, 

nutrients). The intercrops optimise differently nitrogen use, as barley compete for soil 

mineral N and legume depends on BFF (Jensen, 1996; Corre-Hellou et al., 2007; 

Hauggaard-Nielsen etal., 2009). 

Nevertheless, several models have previously simulated different intercrop systems, 

mainly grass/ clover leys or cereal legume mixtures and include factors such as 

competition for light, water and nutrients. Corre-Hellou et al. (2009) tried to simulate 

the dry weight production, N accumulation, N 2  fixation and soil inorganic N by adapting 

a sole crop model for an intercropped situation for predicting the composition of the 

final mixture according to soil N supply. Modelling two different species, such as barley 

and peas, which have different sensitivities, growth rate and plant height is complicated 

(Berntsen et al., 2004). Height should be disconnected from leaf area and should be 

mainly driven by thermal time (Corre-Hellou et al., 2009). However, the number of 

plants (plant density) and nitrogen fixation rates of the legumes also need to be 

considered. -, 

Models can help us to understand intercropping systems in rotations. Creating different 

scenarios, such as comparing monocrops with different legumes (species), can help to 

estimate grain yields and how much they depend on nitrogen inputs. Additionally, 

including edaphic and climatic factors, such as soil moisture, temperature and organic 

matter, related with N20 and NO3  leaching, can lead to estimation of these N losses. 

Long term simulations might improve our understanding of how to increase crop yields 

and reduce NO 3  leaching and N20 emissions by exploring options such as incorporation 

of crop residues, minimum tillage and use of winter cover crops or catch crops. 

Furthermore, testing different scenarios of N applications including rate, type and timing 

can provide information of environmental and agronomic advantage. 

180 



Considering the complex and dynamic interactions between the species for nitrogen is 

essential and should include a wide range of data from different situations and limiting 

factors occurring in low input systems, such as weed, yields, and water. Additionally, 

there is a need to include other essential factors influencing grain yields in future 

models, such as diseases, pests and stress conditions (water, temperature). 

Research of this kind may be translated directly into management guidelines which 

could be incorporated into policy at a later date. Experts from different research 

backgrounds and policy makers are needed to consolidate this in order to have a holistic 

approach for the future. Farmers will have to be adaptable in the future in order to 

respond to environmental change and reduce the Impacts of agriculture on the 

environment. The general public must also be kept informed of future and current 

policies within a simple understandable format. The transfer of knowledge between 

researchers and farmers should be constructive to enable the exchange of new practical 

and scientific ideas in order to provide economically and environmentally sustainable 

agricultural systems. 
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10. Conclusions 

This research project has shown that intercrops may have agronomic and environmental 

advantages over mono-crops related to the selected variety or species. The reduction in 

gaseous emissions and water pollution from agriculture has increased the need to develop 

more sustainable agricultural systems, and has provided renewed opportunities for evaluating 

the use of intercrops in. low input rotations aimed at maintaining productivity and providing 

environmental protection. 

This research project demonstrates that low input systems can benefit from legume-cereal 

intercropping and contribute to achieving the UK government's target of reducing greenhouse 

gas emissions by 80% by the year 2050. The barley/ pea cv. Zero 4 had the lowest GWP. 

Simirarly, the N20 losses in terms of grain yield were similar to GWP with barley/ pea cv. 

Zero 4 to have 0.18 kg of N20-N per ton of grain yield. However, there are some 

uncertainties; the carbon sequestration rate that can additionally contribute to the GWP has 

not been measured, and the approach to express these values can vary, either as CO2 e  per area 

of land or CO2e  per product. 

The choice of legume species and/ or cultivar and crop rotation, influence gaseous losses and 

nitrate leaching as well as yields and are therefore critically important to farmers! growers. 

The choice of legume variety for intercropping purposes has been shown through this 

research to have the potential to contribute to reducing the environmental impacts of 

agriculture. Legume choice is central to optimising plant productivity in intercropping 

designs. Cultivars for intercropping purposes must be chosen with care, taking into account 

the effects upon the growth of the partner crop!s as well as to the following crop and include 

environmental factors. Including intercropping in a rotation may maintain higher yields, 

reduce N losses and enhance the soil fertility for the subsequent crop. Additionally, longer 

term experiments can help us to understand the utilisation of the resources and the 

interactions between intercropping systems in the development of sustainable agricultural 

systems. 
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11. Recommended Future Work 

After the completion of the experiment, we realised that in hindsight other data could 

have been collected on a more frequent basis. This data would have helped us gain a 

better understand of some of the many interactions that are occurring in complex 

systems such as intercropping. During the beginning of the growing season, daily 

collection of data might be important, as the range of soil management and plant growth 

activities become more intensive. Further analyses of biological processes, such as 

measuring N2  fixation of the legumes and measuring other nutrients, such as carbon and 

phosphorus, are closely related with the nitrogen cycle and could help in the 

understanding and explanation of some of these results. Finally, establishment of the 

experiment under varied climatic and soil conditions could provide stronger evidence for 

the effects of legumes. 

The differences found in the two pea varieties intercropped with barley requires further 

study. A more detailed understanding of the root systems focused on microbial activity 

in the rhizosphere, number of nodules and root formation, would be important. The use 

of DNA-based techniques could allow the fate of particular genes or organisms to be 

monitored directly in environmental samples. Such DNA would be extracted directly 

from the soil. Ammonia-oxidising proteobacteria, nitrite-oxidising microbes and free-

living N2-fixation microbes can be identified using the Polymerase Chain Reaction 

(PCR) technique (Compton et al., 2004; Wakelin et al., 2006). 

In addition, field experiment involving a range of cultivars should be undertaken in 

order to investigate mitigation of GHG emissions and leaching losses in the year of 

growth and the subsequent year. Using cultivars of peas and beans, as mono-crops and 

intercrops with cereals (barley, wheat and oat) should be considered. Cereal crops would 

be appropriate following a legume in a rotation especially in organic farming. Repetition 

of the same experiment under different climatic conditions would provide a clearer 

conclusion about the inter-relationships between N 20 emissions, soil properties and 

climate. Such an experiment would examine below ground aspects of system 

performance, such as nodulation, root formation, WFPS, denitrification and soil N 

fractions as well as above ground characteristics, such as yields, N accumulation and 

biomass. Farmers would have more information on the benefit of intercropping in 

comparison with the associated monocrop regarding yield and N supply and additional 

evidence could be provided of the environmental benefits. 
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Existing models such as DNDC (DeNitrificationDeComposition) and SPACSYS would 

be used to test scenarios under different climates and provide up to date information on 

the contribution of different cropping systems to environmental change. Such models 

can be further developed to make predictions for GHG emissions under specific climatic 

and soil conditions. There is a need to provide continuous data for validating models, so 

as to have reliable predictions. The DNDC model is a process based agro-ecosystem 

model that runs on a daily time-step and is driven by meteorological data, soil and 

environmental data and information on crop management. The outputs include estimates 

of C and N exchange with the environment including CO 2, N20 and CH4  emission, and 

nitrate leaching. The model has been applied extensively to agro ecosystems around the 

world and is widely acknowledged as a state-of-the-art model for use in assessing 

nutrient fluxes in arable farming systems (Li et al., 1992; Saggar et al., 2004; Li et a!,. 

2006). The SPACSYS model is an alternative option, which is a multi-dimensional, field 

scale, weather-driven dynamic simulation model of C and N cycling between plants, 

soils and microbes. It operates with a daily time-step and also integrates interactions 

between below- and above- ground plant growth, N and C cycling and water in the 

plant-atmosphere-soil continuum. Finally, it incorporates a highly detailed module 

describing root system nutrient cycling processes and is applicable to both monocrop 

and intercrop systems. 

A GHG mitigation route map for agriculture has been set out following recent research 

by SAC for the Committee on Climate Change and Defra, using marginal abatement 

cost curves (MACCs). MACCs show how different crop, soil and livestock measures 

can be used to mitigate (i.e. prevent the release of) greenhouse gases. A MACC ranks 

measures according to the cost per tonne of CO2 e  abated. In other words, some 

appropriate farm measures can be identified as preventing the release of a tonne/ CO2 e  

more cheaply than others. To determine an efficient mitigation budget in agriculture or 

on a specific farm, it is important for all technologies available to be assessed and to be 

identified in terms of this approach. Such an approach could be used to understand the 

potential economic consequences of intercropped low input farming as a mitigation tool. 

The MACC approach would also allow the benefits of such systems to be compared 

with other mitigation technologies. 

Alternative approaches to soil management are important both to reduce N losses and at 

the same time to allow enough food to be produced. The advice provided to the farmers 

must be rapid and the sharing of new knowledge must be constant, so as to be able to 

develop more sustainable farming practices. 
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The research challenges of the future will be determined by national and international 

strategies and will need to balance the needs of sustainable productions against climate 

change and food security. Reappraisal of production systems, such as the value of 

intercropping and the role of legumes will be part of meeting these future targets. 
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Appendix: Images of the field experiment and study site 



Photographs from the experimental area 
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Photo 1: Drainage plots from air. Photo was downloaded by live maps (taken 2004). 

Photo 2: The experimental area after ploughing and sowing in 2006 (taken 21st  April 

2006). 
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Photo 0 . \ slJ.11C chaliib c l on dic held alter the harvest of the crop mth the bornbs 

at the top (taken 15th  Septemebr 2006). 


