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Abstract 1

ABSTRACT

The aim of this thesis is to investigate the possibility of using artificial neural 

networks to develop automatic processing techniques for picking and identifying 

seismic arrivals. These two key procedures of an earthquake analysis system are 

extremely labour intensive, and any automation would allow further processing of 

lager datasets. Two approaches based on the back-propagation neural network (BPNN) 

are developed to pick and identify seismic arrivals for the dataset which includes 762 

three component (3-C) recordings from stations DP and AY of a local earthquake 

network in Turkey.

A BPNN approach was developed to pick arrivals automatically from 3-C 

recordings and single component (1-C) recordings. In Chapter 4, this approach is 

applied to the vector modulus (amplitude) of 3-C recordings. A BPNN trained by P- 

arrivals with high signal-to-noise-ratio (SNR) and background noise from station DP 

can extend its ability to picking ^-arrivals and picking arrivals from other stations and 

from seismograms with low SNRs. It successfully detectes 94.3% of the /'-arrivals and 

86.4% of the S-arrivals, compared with manual picks. The onset times of 74.5% of the 

P-arrivals and 63.2% of the S-arrivals are successfully picked with an error of 10 ms 

(one sample increment).

In Chapter 5, this method is adapted to pick seismic arrivals from the absolute 

value (amplitude) of 1-C recordings. A BPNN trained by P-arrivals and background 

noise from the vertical component of station DP can extend its ability to the other two 

horizontal components and other stations. The picking rates are 93.1%, 89.4%, and 

83.1% for P-arrivals, and 75.0%, 90.9%, and 87.2% for S-arrivals from the Vertical, 

E-W, and N-S components respectively. With an error of 10 ms, 66.2%, 59.2% and 

63.3% of the /'-arrivals, and 52.7%, 61.2% and 57.7% of the S-arrivals are picked 

from Vertical, E-W and N-S components respectively.
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In Chapter 6, another BPNN approach is developed to identify P- and ^-arrival 

types from local earthquake data, using the modified degree of polarization (DOP) of 

3-C recordings. Only the arrival segments are input in this BPNN approach for 

processing. Compared with manual analysis, a BPNN trained with nine groups of 

training P-arrival, S-arrival, and noise burst segments of DOP from station DP can 

correctly identify 82.3% of the /'-arrivals and 62.6% of the ^-arrivals from station DP. 

Another BPNN trained with five groups of training datasets from station AY can 

correctly identify 76.6% of the P-arrivals and 60.5% of ^-arrivals from station AY.

In order to understand how the BPNN works, a weight map is designed in this 

thesis to show the weight patterns of a trained BPNN. This new finding would be 

applied to any BPNN application, enabling illumination of the "block-box" approach 

of BPNN analysis. Applying this map to three trained BPNNs shows that it is a useful 

tool to investigate the interior and performance of BPNNs. For example, the weight 

map of a BPNN applying to pick arrivals from 3-C recordings shows that its weight 

pattern is divided into two portions which have different functions in picking.

Some factors which may affect the BPNN performance are examined. The 

results show that the training parameters strongly affect the training convergence but 

the BPNN performance is not affected too much. A relationship between the training 

parameters and the training convergence is obtained. The results also show that a 

three-layer BPNN is sufficient for the applications of picking and identifying seismic 

arrivals. Each approach has its own optimum number of input nodes. The performance 

of a trained BPNN is highly dependent on the training dataset.

This work shows that the BPNN has great potential to analyse earthquakes 

automatically. A significant feature of using BPNNs is their adaptiveness. The same 

programs are used to pick arrivals from 3-C and 1-C recordings, and to identify the 

arrival types with only minor changes of the BPNN structure and the input/output. 

Once the generic routines of BPNN are developed, it is easy to apply them to 

resolving a particular problem without requiring additional programs to construct 

special variables and parameters with complicated mathematics. The only necessary 

step is then to select suitable training examples for the new application. The
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performance of a trained BPNN is objective and consistent and can be easy improved 

by adding or adjusting the training dataset. For the foreseeable future, this choice of 

dataset remains a subjective element in the procedure. Nevertheless, this thesis 

demonstrates that a relatively simple BPNN can correctly pick and identify the 

majority P- and ^-arrivals for local earthquake data. This method could in principle 

easily be adapted to regional or teleseismic data, or a range of other applications in 

seismology.
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CHAPTER 1: 

REVIEW OF AUTOMATIC SEISMIC ANALYSIS

1.1 INTRODUCTION

One important aim of seismic analysis is to extract information on earthquake events 

from seismograms as quickly as possible after they occur. Such information includes 

the event position, origin time and magnitude which can be accessed for further 

scientific analysis or public inquiries. The traditional method is that a trained analyst 

visually checks the seismograms on which the earthquake signal is recorded and picks 

out events from a background of noisy signals according to his individual experience. 

This task is time-consuming and subjective. For decades, the need to improve our 

capabilities to detect, locate, and identify earthquake events has been a major 

motivation for the development of new technology and theory in seismology. In recent 

years, as many modern technology have been applied to seismology, large numbers 

of digital seismic data have been recorded. Manually analysing them is expensive and 

time-consuming. It becomes necessary to develop an alternative method that can 

automatically analyse a large volume of digital seismic recordings. Since Alien (1978) 

popularized his short-term and long-term average ratio (STA/LTA) to pick P-arrival 

automatically, many automatic or semiautomatic methods have been developed. 

However, they do tend to be data specific and are not generally applicable. The 

ultimate goal of global automation is still far from being achieved, and seismogram 

interpretation still forms a bottleneck in the routine work of many observatories.

Recently, the artificial neural network, one of a category of the artificial 

intelligence methods, has been introduced to a diversity of geophysical and geological 

problems. It provides a natural computational alternative to manual seismic analysis 

as it has proven useful at handling complicated pattern recognition problems in other 

applications. In this thesis, I shall investigate the application of artificial neural



Chapter 1: Review of seismic analysis 2 

networks to automatic analysis of digital seismic data. 

1.2 FUNDAMENTAL CONCEPTS OF SEISMIC ANALYSIS

1.2.1 Seismic recordings

A seismic observation system consists of two basic components: the 

seismometer and the recorder. The seismometer outputs mechanical or electrical 

signals which represent graphically the ground motion (displacement, velocity or 

accelerattion) at a point caused by the passing of seismic waves. According to the 

orientation of a seismometer, it outputs signals which coincide with the vertical or 

horizontal motions. A complete record of ground motion can be obtained by 

combining three orthogonal seismometers (one vertical and two horizontal 

components, usually along the Vertical, North-South and East-West directions). The 

recorder then records the output signals from seismometers. The earliest recording 

method was a moving stylus which scratched smoked paper around a revolving and 

translating drum to record the mechanical signals (helical recorder). Later, other 

analogue devices, such as pen and ink recorders and a heated stylus marking special 

recording paper, were developed to record electrical signals. Alternatively, many 

installations used a moving light spot on photographically sensitized paper or film to 

record either mechanical or electrical signals. Recently, many earthquake data are 

recorded on magnetic tape in analogue form and then can be displayed on suitable 

analogue playback facilities using which the seismograms are plotted either onto paper 

by pen and ink recorders or onto other analogue visual devices. The latest 

development in seismological recording is to record the digital signal on mass storage 

media: tape or disk, and to playback the recordings on computer screens.

1.2.2 Concepts of seismic analysis

The recorded seismic signals, which are called seismograms, are contaminated 

by various kinds of noise, such as artificial vibrations, traffic noise, background noise. 

Figure 1.1 shows a typical seismogram of a local earthquake. These observed datasets
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Station: DP 
Date: 1984-05-06 
Start-time: 12hl6m08s 
Scale: 564

Vertical

l.O

0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00 10.00

time(s)

Figure 1.1. A typical seismogram of a local earthquake recorded on station DP, TDP3 
local seismic network.
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have been traditionally handled by empirical methods based on the expertise of the 

human operator to identify real seismic signals from the various source of noise.

In the early days of seismic analysis, seismic signals were recorded directly on 

paper. Once an event has occurred, analysts must visually check the seismograms 

which contains the event, first, to seek the possible seismic arrivals, for example, the 

primary (P) and secondary (5) wave arrivals, and then to pick their onset times. The 

results are used in subsequent analysis procedures, such as event location, event 

identification, source mechanism analysis, and spectral analysis. At this picking stage, 

the experience of the analyst is essential on the final interpretation.

As recording technology developed, seismic events were recorded directly on 

computers in digital format. The analysts can interactively view the seismograms on 

computer screens to recognize the seismic arrivals from the background signals and 

to pick their onset times. This is similar to picking arrivals on paper, but with higher 

precision, convenience, and a shorter time involved. However, this procedure still 

mainly depends on the analyst's experience. The picking results can be fed into the 

subsequent analysis procedures as the basic parameters from which other parameters 

are determined. An experienced analyst will usually be able to decide quickly the 

epicentral distance and size of a particular earthquake and its focal-depth.

1.2.3 Basic definitions

In order to present the current objective, it is necessary to distinguish between 

the following definitions:

(a) an arrival - a seismic motion defined by a wavelet whose characteristics 

resemble the seismic waves, such as P or S in our case;

(b) arrival detection - specification of an arrival time close to which an arrival 

may be bracketed within a predefined time window;

(c) arrival picking - reliable and accurate estimation of the onset time of a definite 

seismic arrival;

(d) arrival identification - classification of individual arrivals into categories
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relating to their amplitude, their polarization and the nature of their 

propagation. For example, P-waves have near-linear polarization which 

direction is parallel its propagation direction, but S-waves have more complex 

polarization which direction is perpendicular to its propagation direction;

(e) a false alarm - a spurious signal of non-seismic character or a disturbance with 

sufficient difference in statistical character from an event so that it cannot be 

readily utilized in defining the earth's structure, for examples, electrical spikes, 

and continuous traffic noise;

(f) an event - a transient seismic signal generated by a phenomenon such as an 

earthquake, quarry blast, sonic boom, or underground explosion, which is 

recorded as a time sequence. An event possesses a fine structure given by a 

hierarchy of arrivals, which are important in defining the event type and the 

earth's structure;

(g) an event window - a time sequence whose endpoints bracket a seismic event 

of interest. This window is usually obtained through use of a triggered seismic 

network, and may contain many possible false alarms in addition to the main 

event;

(h) event location - estimation of source parameters, including source position 

(latitude, longitude, depth) and origin time by using the prior results of arrival 

analysis. This can be achieved by using three-component recordings for a 

single station and using vertical component recording for a seismic network;

(i) event identification - classification of an event into categories according to its 

nature such as earthquake, volcanoes, underground nuclear explosions, traffic 

events, industrial explosions;

(j) signal to noise ratio (SNR) - the ratio between maximum vector amplitude of 

signal and a quiescent period immediately before the arrival onset.
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1.3 AUTOMATIC SEISMIC ANALYSIS SYSTEM

1.3.1 Procedures of seismic analysis system

Once an earthquake occurs, the aim of earthquake analysis is to give a report 

about where and when the earthquake occurred and how large it was. Figure 1.2 

illustrates a flow chart of the routine procedures involved in analysing an earthquake. 

As the earthquake waves pass a seismometer, the seismometer outputs electrical 

signals which correspond to the ground motion, usually, in the form of ground 

velocity. This signal triggers a recorder to store them into memory or magnetic media 

in analogue or digital format. The recorded data are then processed either manually 

by analysts or automatically by using computers. In Figure 1.2, five necessary 

procedures of seismic analysis are listed. The arrival picking and identification in grey 

boxes are the key procedures which I will apply artificial neural networks to them in 

this thesis. Note these five procedures are necessary for both a single station and a 

seismic network including many stations, but some procedures themselves have 

inherent differences.

Among the five procedures, the most important one is the arrival picking which 

aims to estimate the onset time of a definite seismic arrival reliably and accurately. 

There is no shortage of techniques which profess to tackle this problem (Alien, 1982; 

Anderson, 1978; Bache et al, 1990; Baer and Kradolfer, 1987; Chiaruttini, Roberto 

and Saitta, 1989; Chiaruttini and Salemi, 1993; Houliston, Waugh and Laughlin, 1984; 

Joswig, 1990, 1995; Joswig and Schulte-Theis, 1993; Kracke, 1993; Klumpen and 

Joswig, 1993, Pisarenko, Kushnir and Savin, 1987; Takanami and Kitagawa, 1988, 

1993). However they do tend to be data specific and are not generally applicable. 

Analysts still need to pick arrivals visually by interactive means. There is no 

difference between picking methods for a single station and for a seismic network.

Following the arrival picking, the second important procedure is the arrival 

identification which aims to classify individual arrivals into categories relating to their 

amplitude, frequency, polarization and propagation. This is more difficult than arrival 

picking due to the complexity of signals. For seismic networks, there are some
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Three component seismometer output

Event trigger

Arrival picking

Arrival identification

Event location 
& Parameters

Event classification

Earthquake report (catalog)

Fig 1.2. Standard procedures for seismic analysis. The whole flow includes two parts: 
above the dashed line, the functions are performed by hardware (seismometer); 
below the dashed line, the functions are performed by software or analysts. Among 
of them, the key procedures for automation are arrival picking and arrival 
identification (grey boxes) which are difficultly to automate by using conventional 
methods.
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methods available for multi-station data (Mykkeltveit and Bungum, 1984; Bache et al, 

1990; Kvaerna and Ringdal, 1992; Der, Baumgardt and Shumway, 1993). However, 

for a single station data, only a few methods can be used to pick special arrival types 

(Roberts, Christoffersson and Cassidy,1989; Cichowicz,1993; long, 1995; long and 

Kennett, 1995). It is an unsolved problem.

The third procedure, event location and description, is to estimate the source 

position of an event, its origin time, its magnitude, its focal mechanism, its spectrum, 

and so on. Some standard methods can be used to calculate them automatically by 

using computers if the arrival onset time and other recognition results are available.

The fourth procedure, event classification, is the most difficult one. Various 

methods have been suggested (Dowla, Taylor and Anderson, 1990; Leach, Dowla and 

Vergino, 1993; Riviere-Barbier and Grant, 1993; Hsu and Alexander, 1994), but no 

"agreed" methods can be used at present.

In the final procedure, results from the previous procedures are used in the 

production of an earthquake catalogue automatically using computers. A catalogue 

should include arrival onset time, source position, original time, magnitude, as well 

as focal mechanism, source spectrum if they are available.

1.3.2 Automated seismic analysis system

An automated seismic analysis system (AS AS) should be capable of processing 

the seismic data automatically, quickly and reliably. Once an event triggers a seismic 

recording system, an ASAS should automatically recognize the event and calculate its 

parameters which include arrival onset times, arrival types, source location, magnitude, 

event types, etc. There are some systems and packages already available to this 

purpose (Roberts, Christoffersson and Cassidy, 1989; Ruud and Husebye, 1992; Nava, 

1992; Musil, 1993; Oncescu and Rizescu, 1994; Chiarirtini and Salemi, 1993; Joswig, 

1993,1995), but, most of them are interactive or semiautomatic and can only process 

seismic network data. The aim of this thesis is to improve on this by producing fully 

automated methods and then examine their performances.
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1.3.3 Key problem in building AS AS

The key procedure in an ASAS is the automatic estimation of arrival onset 

time. At present, all seismic analysis systems need manual arrival-picking and arrival- 

identification procedures. Even if there is an automatic arrival picker, analysts are still 

required to interactively check the quality of the result. The procedures of arrival 

picking and identification involve extensive amounts of pattern recognition with which 

conventional methods are incapable of dealing. There is a pressing need to find an 

alternative tool to tackle this kind of complex pattern recognition problem. The 

application of artificial intelligence methods to earthquake analysis is a relatively new 

development which attempts to tackle these problems. Various methods have been 

applied to the interpretation of seismic signals from a local seismic network such as 

a knowledge-based system according to the blackboard method (Chiaruttini, Roberto 

and Saitta, 1989; Chiaruttini and Salerni, 1993), an intelligent monitoring system 

based on the knowledge-based system, database management systems and signal 

processing (Bache et at., 1990), pattern recognition approaches for P-waves using a 

sonogram (Joswig, 1990), and identifying generic polarization patterns to estimate P- 

and S-wave onset times (Klumpen and Joswig, 1993).

The artificial neural network (ANN), one method of artificial intelligence, 

provides a natural alternative for automation of seismic analysis as it has proven 

useful at handling complicated pattern recognition problems due to its learning or 

training ability. For example, Dystart and Pulli (1990) use an ANN for the problem 

of automatic event classification. McCormack (1991) uses an ANN to combine 

synthetic spontaneous potential and resistivity logs to estimate lithology logs. Poulton, 

Sternberg and Glass (1992) use an ANN to estimate the offset, depth, and 

conductivity-area product of a conductive target given an electromagnetic image of the 

target. Wang and Mendel (1992) use a Hopfield network to implement an adaptive 

minimum prediction-error deconvolution. ANNs also have been used in the first-break 

picking of surface seismic data (Murat and Rudman 1992; McCormack, Zaucha and 

Dushek 1993) and earthquake detection (Wang and Teng, 1995). The wide range of
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applications emphasizes the particular strength of ANNs over conventional methods 

incorporating a fixed algorithm to solve a particular problem. So the ANN will be 

used in this study.

1.4 OUTLINE OF THIS THESIS

In this thesis, I concentrate mainly on the development of the automated arrival 

picking and identification which form the basis of an automated seismic analysis 

system. The main objectives of these procedures are to pick P- and S-arrivals as 

reliably and accurately as possible, but also to reject noise bursts as reliably as 

possible. In this study, I will develop the approaches which can automatically pick 

and identify seismic arrivals. In principle, there will be essentially no difficulties in 

developing a complete ASAS based on these approaches if the time is available.

The analysis methods are different between single-component and three- 

component seismometers, between single station data and seismic network data, and 

between analogue data and digital data. In this thesis, I only focus on the seismic 

analysis of the digital three-component data from a single station. However, the 

developed methods can also be used to processing the seismic network data.

In Chapter 2, I first introduce the theory of ANNs and then develop my own 

back-propagation neural network (BPNN) system. There are some commercial ANN 

packages available, but these packages are difficult to combine with seismic 

procedures. Here, I intend to develop my own system which is simple and can easily 

be combined with seismic procedures.

In Chapter 3, I analyse the general characteristics of seismograms. In manual 

analysis, an analyst can directly look at the seismogram to pick the arrival and identify 

it, however a computer program cannot easily do this task. Some characteristics must 

first be extracted from the seismograms. In this chapter, I determine which 

characteristics can be obtained and which characteristics can be efficiently used in this 

study.
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In Chapter 4, a BPNN approach is developed to pick seismic arrivals using 

three-component data. First, a BPNN is trained with a small number of real data, P- 

arrival segments which independently known its onset times and characteristics and 

background segments of vector modulus of three-component seismic recordings, and 

then this trained BPNN is used as a filter to pass through the entire seismic trace. 

Some simple criteria are applied to the output of BPNN to detect arrivals and pick 

their onset time. This approach can simultaneously pick both P- and S-arrivals. In this 

chapter, some post-processing are used to discard the noise and spikes.

In Chapter 5. the same BPNN approach is adapted to pick seismic arrival using 

single component data because at some stations only one-component data are 

available. In this approach, the absolute values of single component data are used as 

input both in the training and testing procedures. Due to the differences between single 

and three component data, this approach must be modified to suit the single- 

component data.

In Chapter 6, another BPNN approach is developed to identify seismic arrivals 

which are picked in Chapter 4. After the picking routines described in Chapter 4 and 

5, the remaining problem is to identify the types of these picked arrivals. In this 

chapter, the identification is achieved by utilizing the polarization state of particle 

motion of P- and S-waves of three-component seismic recordings as a function of 

time, which directly input into a BPNN. It only deals with segments of the seismic 

arrivals which are previously picked. The BPNN output indicates the types of the 

picked arrivals.

Finally, Chapter 7 presents some discussions and conclusions of the whole 

thesis and speculation about possible future work. The work described in this thesis 

demonstrated that the ANN has an important role in the future automation of seismic 

analysis. In particular, the ANN can do the operations which conventional methods 

fail or find difficult to do and offers the ability to build up an automatic seismic 

analysis system which cannot be easily achieved by conventional methods.
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CHAPTER 2: 

INTRODUCTION TO ARTIFICIAL NEURAL NETWORKS

2.1 INTRODUCTION

Artificial neural networks (ANNs) are simple computer models that attempt to 

simulate the operation of neurons in the brain. This technology has been attracting 

attention in the artificial intelligence community for many years. The origins of ANNs 

can be traced back to the 1940s when psychologists began developing models of 

human learning. With the advent of the computer in the 1950s, researchers began to 

program ANN models to simulate the complex interconnections and interactions 

among neuronal cells in the brain. One of the most exciting developments in ANNs 

was the advent of the Perceptron, an idea that a network of elemental processors 

arrayed in a manner reminiscent of biological neural networks might be able to learn 

how to recognize and classify patterns in an autonomous manner. This model 

successfully exhibited various types of human learning behaviour. It was felt that with 

a large and fast enough computer, the entire human brain could be reproduced by a 

massive neural network. However, in 1969, Marvin Minsky, one of the founding 

fathers of artificial neural intelligence, proved mathematically that the perceptron - the 

simple ANN being studied at that time - was incapable of solving many simple 

problems. In the 1980s, after over a decade of being in the scientific wilderness, 

ANNs have once again become popular tools for many applications requiring 

algorithms with pattern recognition capability as those mathematical difficulties have 

been overcome by the introduction of more complex ANN architectures. These new 

ANN designs offer increased flexibility and robustness. They are particularly attractive 

as, unlike conventional methods that incorporate a fixed algorithm to solve a particular 

problem, ANNs utilize a learning scheme to develop an appropriate general solution, 

making them flexible and adaptive to different datasets. People began to realize the
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potential value of ANNs as general purpose problem solvers, beyond their use as 

biological models.

Today, there are several dozen different ANNs paradigms available and widely 

used in many fields including a diversity of geological and geophysical problems. The 

details of theory and application of ANNs can be found in many research papers and 

comprehensive books which contribute ANN developments in theory and application 

(Fausett, 1994; Haykin, 1994). In this chapter, I shell only briefly introduce the basic 

concepts of ANNs and a special type of ANN - the back-propagation neural network - 

which is the most popular type of ANN in use today and used in this thesis.

2.2 THEORY OF ARTIFICIAL NEURAL NETWORKS

2.2.1 What are artificial neural networks?

Kohonen (1988) defined ANNs as follows: "artificial neural networks are 

massively parallel interconnected networks of simple (usually adaptive) elements and 

their hierarchical organizations which are intended to interact with the objects of the 

real world in the same way as biological neural systems do". This kind of ANN can 

be emulated by using a parallel computer or series computer which imitates the 

parallel process by software. In the terms of implementation of ANNs on a computer, 

"an ANN is a network of many very simple processors (units), each possibly having 

a (small amount of) local memory. The units are connected by unidirectional 

communication channels (connections), which carry numeric (as opposite to symbolic) 

data. The units operate only on their local data and on the input that they receive via 

the connection" (Prechelt, 1995). Most ANNs have some sort of learning or training 

rule by which the weights of connections are adjusted on the basis of presented 

patterns. As the concepts of an ANN originate from the human brain, the biological 

neural network, the knowledge of the human brain is essential for understanding 

ANNs. In this section, I first describe the basic operation of the biological neural 

network and then introduce the concepts of ANNs.
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2.2.2 Biological neural networks

The biological neural network consists of neural cells (neurons), the 

fundamental elements of the brain, which are connected one to another in a complex 

spatial arrangement. A neuron is built up of three parts (Figure 2.1): the cell body 

which contains the nucleus, the hairlike dendrites around it and the axon which is the 

outgoing connection for a signal emitted by the neuron. The axon and dendrites are 

connected via a synapse which may modify the signal emitted by neurons.

In a brain, a neuron receives inputs from many other neurons via axons. If the 

energy level of the combined inputs exceeds a threshold level, then the neuron 

transmits to other neurons an electrical or chemical signal whose strength is modified 

by the synapses before entering other neurons. It is believed that certain forms of 

learning occur when the synapses are trained to assume certain strengths or weights 

by repeated exposure to the same stimulus. A single neuron is very simple and has 

very limited capability for solving problems, however, when several millions of those 

are connected to form a complex network, the brain can perform a range of extremely 

complex tasks including memory, pattern recognition and decision-making.

2.2.3 Artificial neural networks

An ANN consists of elemental processors called nodes (corresponding to the 

neurons) linked to others by interconnections (analogous to the dendrites and axons). 

Each interconnection has an associated scalar weight (corresponding to a synapse) 

whose value can be modified during the learning procedure of the ANN (Figure 2.1). 

Like a biological neuron, an artificial node consists of three parts: the activation 

function (corresponding to the nucleus), the output (corresponding to the axon) and 

the summed inputs (corresponding to the dendrites), associated with a scaling function 

called "weight" (corresponding to the synapse). The basic function of the node is to 

transmit the sum of weighted inputs to an output according to its preset activation 

function. It is used to assume that the weight is a real number which is applied as a 

simple multiplicative scalar to effectively amplify or attenuate the signal. Equation 2.1
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(A) A biological neuron

Nucleus (processor)

Synapse (connection)

From other 
neurons

Toother 
Neurons

(B) An artificial neuron
Neurode / Node

INPUTS OUTPUT

(Q Mathematical model

WEIGHTS

INPUTS
1 fe.

SUM Activation 
Function

0(x) ^ OUTPUT

Fig 2.1. Schematic diagram showing various constituents of a biological neuron (A), 
an artificial node (B) and what they present (C). For the mathematical model of the 
artificial node, the factor x represents summed input to the node, and O(x) is the 
node output.
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represents this procedure mathematically:

N

Output = /(£ weighty Input:) [i=l,2,...,Ar]. (2-1) 
1=1

where, / is the activation function. There are many kinds of activation functions 

available, such as Threshold logic, Hard-limit, and Sigmoidal activation function 

(Figure 2.2). A node is typically characterized by its activation function, which 

operates on the input signal, summed individual weighted inputs from other nodes, and 

produces a signal output. Other nodes may each receive a different value via weighted 

connections to this node. The value may be either positive or negative, depending on 

the sign of the connection weight.

Such nodes connected together form an ANN in which all nodes operate 

simultaneously. Signals to an ANN from the outside world arrive via connections that 

originate in the outside world. Signals from the network to the outside world turnout 

via connections that leave the network.

2.2.4 How do ANNs work?

ANNs represent a fundamentally different approach to problem solving on 

conventional computers that are founded on underlying principles of logic and 

mathematics. The architecture used by most computers comprises a single central 

processing unit connected to an area of memory. This memory contains a stored 

program which is executed in a sequential manner by the central processor. 

Conventional computers concentrate on emulating human thought processes, rather 

than how they are actually achieved by the human brain. The disadvantage of this 

approach is that conventional computers cannot "learn" new knowledge. They have to 

be programmed precisely. ANNs, however, take an alternative approach in which they 

directly model the structure of the biological neural network and the way it processes 

information (but at a somewhat simpler level). The ability of an ANN to solve 

problems comes from emulating the natural "learning (or training)" procedure.

This is like teaching a child to study, the ANN is trained by repeated exposure
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0 X 0 X

(a) Threshold logic activation function

0 X 0 X

(b) Hard-limit activation function

.+1/2

0 X
-1/2

0 X

(c) Sigmoid activation function

Fig 2.2. The most commonly used activation functions. Here X is the summed input 
to a node, Y is the node output.
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to patterns of training samples and saves these patterns in its memory somehow. After 

training, if new patterns are presented, this can be used to create recall. Figure 2.3 

shows an example in which a supervised training scheme is applied to an ANN. In the 

training procedure, the input pattern of examples is fed into a new ANN to produce 

an output. A training rule then compares this output with the desired output and 

change the weights in the ANN so that the features of example patterns are stored in 

the ANN. After training, in the testing procedure, new data can be fed in the trained 

ANN to produce its output. In principle, the same ANN can be used to solve problems 

in many different fields according to the training samples. As a consequence, the 

learning procedure is important to the ANN as to a child.

2.2.5 Classifications of ANNs

Although the concept of an ANN appears initially to be quite straightforward, 

there is a bewildering array of different kinds of ANNs which now exist to solve 

different problems. Various ANNs have different topological structures of the neurons 

and their connections, and use different learning algorithms based on different 

philosophies. Figure 2.4 shows a classification of major types of ANN.

According to the node arrangement (usually in layers), ANNs can be divided 

into three major categories: single-layer, bi-layers and multi-layers.

According to the type of signal propagation direction in the different 

arrangement of nodes, ANNs can be feed-forward or feed-back. In a feed-forward 

network, all signals propagate only in a "forward" direction through the network 

layers. There is no self-connection, lateral connection, or back-connection. In a 

feedback network, signals may propagate "backward" as well as "forward" during 

processing, or propagate laterally between nodes in the same layer. Here, the input 

information defines the initial activity state of a system, and then the first output of 

the system is taken as the new input, which produces a new output.

According to the learning law, ANNs can be supervised or unsupervised in 

learning. In supervised learning, there is a "teacher" who teaches the network how 

well it performs or what the correct behaviour would have been. In unsupervised
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Training Procedure

Desired output

Training data input

Testing data input

Training Rule

ANEW ANN

ANN output

Copy ANN structure

THE TRAINED ANN
ANN output

Fig 2.3. Schematic diagram showing the various component parts of an ANN 
training and generating algorithm. T&s is a form of supervised learning.
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Artificial Neural Networks

Single-layer Bi-layers Multi-layers

BSB LVQ

: Self-organizing ANN

Fig 2.4 General classification of ANNs. The BP neural network is used in this thesis. 
Only small part of ANNs are shown. Their full names are listed as follows:

ART: Adaptive Resonance Theory
BAM: Bidirectional Associative Memory
BP: Back-Propagation
BSB: Brain-State-in-a-Box
HSS: Hierachical scene structure
SDM: Sparse Distributed Memory Network.
SOPM: Self-Organizing Topology-Preserving Map

Adaline: ADAptive LINear Element 
BCS: Boundary Contour System 
Boltzman: Boltzman Machine 
Hopfield: Hopfield network 
LVQ: Learning Vector Quantization.
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learning, the network is autonomous: it just looks at the data presented, finds out some 

properties of the dataset, and learns to reflect these properties in its output.

Some ANNs have the feature of self-organizing. In such a network, 

neighbouring nodes compete in their activation by means of mutual lateral interactions, 

and develop adaptively into specific detectors of different signal patterns.

There are many ANNs in use and many varieties and new ANNs are being 

developed. Figure 2.4 lists only a few of them. More ANNs can be found in the 

enclosed reference list (Maren, Harston and Pap, 1990; Fausett, 1994; Haykin, 1994). 

The most common one is the back-propagation neural network and is the one used 

in this thesis.

2.3 BACK-PROPAGATION NEURAL NETWORK

The back-propagation neural network (BPNN) (Rumelhart, Hinton and Williams, 1986, 

1988) has the features of non-linear node activation function, multi-layer, feed-forward 

and back-propagation of error. The term back-propagation only refers to the training 

method by which the connection weights (as well as the node activation thresholds) 

of the BPNN are adjusted. The BPNN is probably the best-known and widely used 

option among the currently available ANN systems and is used here because it is 

suitable for the problems which involve a large amount of pattern recognition such as 

the arrival picking and identification. Figure 2.5 shows an example of the BPNN.

2.3.1 Theory of back-propagation neural network

2.3.1.1 Basic concepts of BPNN and its operation

A BPNN is made up of several sets of nodes arranged in layers, consisting of 

an input layer, one or more intermediate hidden layers and an output layer. Each node, 

the basic processing unit, has a sigmoidal activation function (Figure 2.6). The 

sigmoidal activation function plays an important role in the BPNN because without 

such a continuous and nonlinear activation function, the BPNN is difficult to solve
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OUTPUT

Output Layer

Hidden Layer

Input Layer

Fig 2.5. An example of BPNN. This BPNN has one input layer, one output layer and 
one hidden layer. This is the most commonly used structure for this land of network.
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0(x) =
1 +e-(x-t)

Fig 2.6. The sigmoidal activation function of nodes for the BPNN. Here x presents 
summed input to the node, t the threshold and O(x) the output. Usually the ouput 
value given by the function closes to one of the asymptotic values, 1 for the 
higher-value asymptote, and 0 (or -1) for the lower one. When the summed input x 
equal to threshold, the output value is 0.5.
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even simple problems (Rumelhart, Hinton, Williams, 1988; Pao, 1989; Maren, 1990a). 

The outputs of nodes in one layer are transmitted to nodes in another layer through 

weighted connections. Except the nodes in the input layer, the network input to each 

node is the sum of the weighted output of nodes in the previous layer. Each node is 

then active according to the summed input using a preset sigmoidal activation function 

and a threshold parameter for the function. In the input layer, the network inputs to 

each node are the components of the input pattern.

The BPNN architecture is schematically illustrated in Figure 2.7. Here, ntj is 

defined as the y'th node in the rth layer, wijk the weighted connection between n{j and 

ni+i k> Qij me threshold of nip o^ the output of nijf and nettj the input of ntj . For the 

training procedure, it is also necessary to define 6rt which reflects the change in error 

as a function of the change in the network input to the ni+I k. The components of an 

input pattern are defined as jc, [/ = 0, 1, ..., N-l], and the desired output is defined as 

/,[/ = <), 1, ..., M-l].

In the feed-forward operation, the information is presented to the input layer 

and then processed by one or more intermediate ("hidden") layers before appearing at 

the output layer. The network input to ni+1 k in hidden layers and the output layer is:

j-i 
neti+ik = E wij*?ij + *i+u   (2<2)

7=0

For convenience, the threshold qi+1 k can be treated as a weight connected to a node 

(nu) which always has a unity output (ou=1.0) in the previous layer. That is:

From this, Equation 2.2 becomes: 

j
"tt+ik = E wijk°ij - (2A}

j=0

The output of nl+l k is:

(2 ' 5)
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Layer i+1 o K-l

Layer!

Layer i-1

Fig 2.7. A schematic depiction of a part of a BPNN structure. The shaded ckcles are 
nodes n^ and the straight lines are connections with weight wijk
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where / is the activation function of nodes. For a sigmoidal activation function,

°t+ik =   -     (2.6) 
l +e ~net"k

However, in the input layer, the output of the nodes is directly equal to a component 

of the input patterns,

°V =xJ9 [7=0,1,...,AM] , (2.7)

where layer 0 is the input layer.

2.3.1.2 Learning algorithm - Generalized Delta Rule
The BPNN is commonly trained by a supervised learning procedure which 

involves the presentation of a set of pairs of input and output patterns to it. Its ability 

to recognize new patterns depends on the training patterns used as references. The 

learning occurs when the weights and thresholds are trained to assume certain values 

by repeated exposure to the same patterns. The most popular way to adjust the weights 

and threshold values of the sigmoidal functions is to use the Generalized Delta Rule 

(Rumelhart, Hinton and Williams, 1986). It supports a wide range of applications, 

particularly for classification and prediction, and it is also particularly easy to develop 

neural networks by using it. Most ANN development tools support it or its variations 

(Tubb,1993).

In this learning algorithm, the BPNN first uses the input pattern to generate its 

own output pattern and then compares this with the desired output pattern. If there is 

no difference, no learning takes place. Otherwise, the weights and thresholds are 

changed to reduce the difference. The Delta Rule attempts to find the most suitable 

solution (in the form of numerical values of weights and thresholds) for global 

minimization of the mismatch between the desired output pattern and its actual value 

for all of the training examples. The degree of mismatch for each input-output pair is 

quantified for solving the unknown parameters (weights and thresholds) between the 

hidden and output layer and then the mismatch propagates backwards through the 

BPNN to adjust the parameters between the input layer and hidden layer.
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Mathematically, in the Generalized Delta Rule, the change of weights can be 

written (see Appendix A) as:

^ijk = 1 **0y , (2.8) 

where for the output layer:

and for hidden layers:

7=0

r| is a proportional constant called the learning rate. A large value corresponds to 

rapid learning but might result in unstable oscillations. A momentum term was 

introduced by Rumelhart, Hinton and Williams (1986) to overcome this problem. In 

this case, Equation (2.8) is written as:

Awy*(w+1) = ilVty+aAw^n) , (2 - n ) 

where the quantity (n+1) indicates the (n+l)th step and a is a proportional constant 

called the momentum rate. That means the change of weights at the (n+l)th step 

should be somewhat similar to the change of weights undertaken at the «th step.

2.3.2 Training procedure of BPNN

To train a BPNN, the first input pattern is presented to an initially randomized 

BPNN, and the weights and thresholds adjusted in all the connections. Other patterns 

are then presented in succession, and the weights and thresholds adjusted from the 

previously determined values. This process continues until all patterns in the training 

set are exhausted (an iteration). The final solution is generally independent of the 

order in which the example patterns are presented. However, a final check can be 

performed by looking at the pattern error (Ep) and system error (Es) to determine 

whether the final BPNN solution satisfies all of the patterns presented to it within a 

certain error. Here Ep is defined as the square of the difference between desired output 

and BPNN output for each pattern:



Chapter 2: Artificial neural networks 1 9 

M-l

£p = £(°,-',)2 . <2 - 12>
i=0

where, QJ is the node output in the output layer. Es is defined as the average of all 

pattern errors,

The settings of weights and thresholds in the BPNN are now specifically tailored to 

"remember" each input and output pattern, and can consequently be used to recognize 

or generate new patterns from an unknown input. The BPNN is now "trained" and can 

be used in subsequent analyses. Figure 2.8 summarizes the various stages of training 

and implementation.

Step 1: Create a BPNN structure (node numbers in each layer) according to 

a problem. The input and output nodes can be determined by the 

problem, but the hidden numbers are ambiguously determined. 

Step 2: Initialize all weights and thresholds to be small, random numbers, (e.g.

between ±0.5 or ±1.0) 

Step 3: Select or create several examples consisting of input patterns and

desired output patterns for training.

Step 4: Sequentially feed input patterns into the BPNN and propagate them 

through all connections and nodes to produce actual output patterns in 

feed-forward manner.

Step 5: For each input pattern, compute the error between the actual output 

and desired output and use this error to adjust weights and thresholds 

by using the Delta Rule. 

Step 6: If the errors is greater than the allowed error, then go back to Step 4

or else finish training and go to Step 7. 

Step 7: Save the weights and thresholds.
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Create BPNN

Initialize weights & thresholds

Select training data

v r ii

Feedforward

Delta Rule

Check error

Save BPNN Structure

Fig 2.8. The various stages of training a BPNN using the Generalized Delta Rule.
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2.3.3 Computer programming

Although there are some commercial ANN packages available, they cannot 

directly be applied to seismic analysis. It is considered better to write customized 

ANN software which can meet the needs of seismic analysis and can then be fed 

directly into conventional seismic processing software. The ANN will then be a 

component of a general seismic analysis system. The choice of a programming 

language is more critical than in other situations due to the computation demands of 

ANNs. Whatever language is used, it is advisable to seek a version that has been 

optimized for numeric data. The C language has become something of a de facto 

standard for neural network programming. My own BPNN was written using C 

programs on a VAX4000 computer under the VAX/VMS  operation system.

2.3.4 Selecting BPNN structure and training parameters.

The need of applying the BPNN to a problem is, first, to select its structure 

which includes the numbers of input nodes, output nodes, hidden layers and hidden 

nodes, and then to initialize the weights and thresholds, and to determine the learning 

rate r\, the momentum rate a, and the thresholds of system error and pattern error 

which affect the convergence in the learning procedure. The input and output nodes 

are manually determined by the problem itself, input data and output required. The 

selection of hidden layers and hidden nodes is somewhat more indeterminate. 

Although a single hidden layer is sufficient to solve any function approximation 

problem, some problems may be easier to solve using a BPNN with two hidden layers 

(Fausett, 1994). The number of hidden nodes depends on various factors such as input 

nodes, output nodes, system error, pattern error and training samples. There is no fixed 

generic relationship between the number and these factors. We do know that in the 

BPNN learning, generalization is increased and memory is reduced by limiting the 

number of hidden nodes (Dowla, Taylor and Anderson, 1990). Too few hidden nodes 

will lead to a long learning process or no convergence. So an optimum number exists 

for any given problem (Gorman and Sejnowski, 1988).

The choice of initial values of weights and thresholds can be of tremendous
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help in a successful network design. This choice will influence whether the BPNN 

reaches a global (or only a local) minimum of the error and, if so, how quickly it 

converges in training (Fausett, 1994). The BPNN must not be allowed to start off with 

a set of equal weights and thresholds. It has been shown that it is not possible to 

proceed from such a configuration to one of unequal weights (Rumelhart, Hinton, and 

Williams, 1986). A common procedure is to initialize the weights to random values. 

Note that the values for the initial weights must not be too large or too small. The 

range of the initial weights is normally between -0.5 and 0.5 (or between -1 and 1, or 

some other suitable interval) (Fausett, 1994).

The determination of the learning rate rj, momentum rate a, and the thresholds 

of system error and pattern error is also arbitrary. They may have different values 

depending on the problem and the researcher's favourite choice. Naturally, the higher 

the learning rate is, the larger the change in the weights. For practical purposes, it 

should be chosen as large as possible. However, if the learning rate is too high, it will 

lead to unstable oscillation. This oscillation can be filtered out by the momentum term. 
Rumelhart, Hinton and Williams (1988) suggested 0.9 for the momentum rate a. In 

most of my simulations, r| is 0.7 and a is 0.9. The thresholds of pattern error and 

system error determine the termination of the training procedure. Here I select the 

thresholds 0.0001 for the pattern error and 0.00001 for the system error.

2.4 DISCUSSIONS AND SUMMARY

In principle, ANNs can compute the value of any real function, i.e. they can do 

everything a normal digital computer can do. However, ANNs are not panaceas. They 

can resolve a wide range of problems, but sometimes they cannot give expected 

results. The most common reason that ANNs do not work is that they are being used 

in a wrong place, trying to do a wrong sort of job. ANNs must be considered as one 

part of an intelligence system and their application must be clearly understood 

(Macleod, 1992). Before applying ANNs (especially the BPNNs) to problems, we must 

bear in mind what features they have and what they can do. There follows a general
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discussion of these two features.

2.4.1 Advantages and disadvantages of BPNN

The significant feature of ANNs is their learning ability. Although each ANN 

has its own special features, it seems that all ANNs offer the universal processing 

advantages which include:

Adaptive learning', an ability to learn how to do tasks based on the data given 

for training or initial experience.

Self-organization: an ANN can create its own organization or representation 

of the information it receives during learning and operation.

Fault-tolerance via redundant information coding: partial destruction of an 

ANN leads to the corresponding degradation of performance; however, 

some capabilities of the ANN may be retained even with major damage 

of the ANN.

Real-time operation: ANN's computations may be carried out in parallel, and 

special hardware devices are being designed and manufactured which 

take advantages of this capability (Maren, 1990b).

However, the disadvantages are dependent on the types of ANNs. Here I only list the 

disadvantages of the BPNN, which include:

Slow learning rate: for problems requiring a large and complex BPNN 

architecture or having a large number of training examples, the time 

needed to train the BPNN can become excessively long.

Trapping in local minima: under some circumstances, the system error can 

remain large regardless of how many iterations are carried out. The 

training procedure then cannot converge however long the routine is 

run.

Forgetfulness: an BPNN tends to forget old training examples as it is 

presented with new ones. A previously trained BPNN which must be 

updated with new information has to be retrained using both the old
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and new examples. 

Imprecision: BPNNs do not provide precise numerical answers, but rather

relate input patterns to the most probable output space. 

Black-box: BPNNs provide no insights into the physics of processing.

(McCormack, 1991)

2.4.2 Applications of BPNN

A distinct characteristic of the BPNN is that it forms a mapping from a set of 

input patterns to a set of output nodes using features extracted from the input patterns. 

A BPNN can be designed and trained to accomplish a variety of mapping operations, 

some of which are very complex, and to develop the ability to generalize. This is 

because the nodes in the hidden layers of the BPNN learn to respond to general 

features found in the input patterns. Compared to conventional computing approaches, 

a BPNN is efficient to solve problems which involve a large amount of pattern 

recognition and is ideal when the relationship between two sets of data is unknown 

but one is expected to exist. It may offer a way of building a "black box" system 

without understanding how it works, but, in reality, a great deal of knowledge and 

insight is usually required to use the technology successfully.

BPNNs, as well as other ANNs, offer improved performance over conventional 

techniques in robust pattern detections, signal filtering, data segmentation, data 

compression, database mining and associative search, adaptive optimization, 

scheduling and routing, complex mapping and modelling complex phenomena, and 

adaptive interfaces for man/machine systems. BPNNs have been used to solve a 

diversity of geological and geophysical problems (Cai, et al., 1993; Gary and Upham, 

1992; Dai and MacBeth, 1993, 1994a, 1994b, 1994c, 1995a, 1995b; Dowla, Taylor 

and Anderson, 1990; Dystart and Pulli, 1990; Higgins and Hsu, 1994; Langer, Nunnari 

and Occhipinti, 1993; Leach, Dowla and Vergino, 1993; Leggett, Sandham and 

Durrani, 1993; McCormack, 1991: McCormack, Zaucha and Dushek, 1993; Murat and 

Rudman, 1992; Palaz and Weger; 1990; Perm, Gordon and Wendlandt, 1993, Poulton, 

Srernberg and Glass, 1992; Raiche, 1991; Roth and Tarantola, 1994; Tao and Du,
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1992; Wang and Mendel, 1992; Wang and Teng, 1995; Zhang, Song and Nie, 1991).

2.4.3 Principles of utilizing BPNN

BPNNs have a great potential to resolve the problems which conventional 

methods find difficult to apply. However, they should not be viewed as direct 

competitors to conventional methods, but rather as complementary techniques. The 

most successful BPNN applications to data analysis have been those which operate in 

conjunction with other computing techniques, for example, using an BPNN to perform 

a first pass over a set of incoming data, then passing the results over to a conventional 

system for subsequent processing (Tubb 1993).

There are two groups of problems. For the first group, the nature of the 

problems and the steps which lead to their solutions are well-known and can be 

explicitly and logically described. Conventional computing approaches are effective 

for them. For the second group, it is not possible to describe an exact solution to the 

problem. Even though human beings can generally learn to perform such tasks well 

but computers are traditionally impossible to achieve. BPNNs are effective for 

problems involving learning from examples, rather than needing to be explicitly 

programmed. It is suggested that where there are conventional methods which are 

effective and work well, BPNNs should not be used, otherwise use them with care and 

appreciation of their limitation as well as their potential.

2.4.4 Applications of BPNN in this thesis

In this thesis, the BPNN will be used for arrival picking and identification, 

which are the traditional pattern recognition problems in seismology already described 

in Chapter 1. In arrival picking, a BPNN operates as a fundamental filter in processing 

the entire seismic trace and produces a time series which better reflects the seismic 

arrival. Conventional methods are then used to process the time series to determine 

the arrivals, measure their onset time and discard noise. In arrival identification, a 

BPNN is used to classify the types of the picked arrivals.
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CHAPTER 3:

EARTHQUAKE DATA AND CHARACTERISTICS OF

SEISMIC RECORDINGS

3.1 INTRODUCTION

Generally speaking, a method for interpreting seismograms can be regarded as using 

a filter to operate on a characteristic function which is either extracted from the 

seismogram or consist of the seismogram itself. The filter will produce output features 

which indicate the signal properties such as the arrival onset of a wave, its 

polarization, its propagation direction, and its type. It may be any mathematical 

method such as a statistical method, a filtering process, a transformation, or an 

artificial intelligence method. The characteristic function is a time series which is 

obtained by performing a transformation on a seismogram. It might enhance desired 

signals from the seismogram or separate different signals according to their 

characteristics, so that the subsequent "filtering" procedure can be made easily or 

efficiently.

In this thesis, I have decided to utilize the BPNN as a filter for the purpose of 

arrival picking and identification. However, what characteristics of seismograms 

should be processed by the BPNN filter? It is important to select suitable 

characteristics of seismograms, otherwise they will give rise to a misleading 

interpretation. In this chapter, I will examine the general characteristics of 

seismograms and determine which particular ones can usefully be used in this study. 

Because a seismic recording is a complicated time series, it is difficult to generate 

synthetic data to emulate it, so I use real earthquake data from the TDP3 seismic 

network in this study. In this chapter, I shell briefly introduce the TDP3 seismic 

network and illustrate the data acquired from it, then I shall describes the 

characteristics of a seismic recording. Three characteristic functions: the absolute value
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function of the single component recording, the modulus of the three component 

recordings and the degree of polarization of the three component recordings, used for 

the arrival picking and identification, are discussed.

3.2 LOCAL EARTHQUAKE DATA

3.2.1 TDP3 seismic network

The TDP3 seismic network was a part of the third Turkish Dilatancy Project 

(TDP3), a multidisciplinary geophysical project (Crampin, Evans and U9er, 1985; 

Lovell, Crampin and Evans, 1987; Lovell, 1989). Lovell (1989) described the project 

in detail.

The TDP3 local earthquake network included nine stations equipped with three- 

component seismometers and two stations equipped with single-component 

seismometers, and was located near the North Anatolian Fault in Turkey. Figure 3.1 

shows the geographic map of its stations. This network had an aperture of about 

15km. Each station was equipped with either one or three Willmore Mk III 

seismometers, set to a free period of 1 second prior to installation, and with known 

sensitivities. This seismometer has an output proportional to ground velocity in the 

frequency range of around 5 to 20 Hz. The velocity response of the seismometer and 

recording system is flat between 2 and 26 Hz. The signals from the seismometer were 

fed into a Racal FM amplifier/modulator, fitted with a feedback circuit to produce a 

damping factor of 0.6. Data from stations were radiolinked to the base station at 

Hereke using UHF FM system. In the base station, signals were recorded by Geostore 

analogue tape recorders. Three Geostores were used on the base station. Each had a 

capacity of ten seismic and two flutter compensation channels, together with an 

internal clock and a channel for an external absolute time-standard. Signals from the 

three-component seismometer sets were recorded on adjacent tracks on the same 

Geostore head to minimise the timing error (0.002 second) resulting from head
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Figure 3.1. Map of the locations of stations used during TDP3. Filled and unfilled 
triangles represent three-component and single-component stations respectively. The 
base station is arrowed (re-drawn after Lovell, 1989).
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misalignment. Systematic errors of up to 0.05 second can be introduced of a similar 

order as the reading and residual errors of the arrival time data.

3.2.2 Data acquired from TDP3

Between March and November 1984, over 150 data tapes (50 sets of three 

tapes, as three Geostores were used to record the incoming data signals) were 

accumulated during the TDP3 project. These tapes were transported back to British 

Geological Survey (BGS), Edinburgh, for bulk data processing. An audio replay unit 

was set up to identify the events and the data were digitized at 100 samples per 

second on a PDP-11 computer using software developed by Evans (1980) and an 

interface unit by Evans and Miller (1986) in BGS. Event locations were calculated 

using HYPO71 (Lee and Lahr 1975) adapted to run on the PDP-11. The digitized data 

were archived for subsequent analysis. All these data were analyzed by Lovell (1989).

Many hundreds of local earthquakes are recorded. Figure 3.2 shows their 

epicentres. In this thesis, only the recordings from stations DP and AY are used. 

Station DP is at the centre of the TDP3 seismic network and station AY is at the edge 

of the network. In total, 1754 three-component event recordings (877 from station DP, 

and 877 from station AY) were obtained. However, not all of these recordings can be 

used in this study. In some cases the seismometers did not function properly, and 

either one or two components were inactive or possessed high amplitude noise so that 

some three component sets were incomplete. There are also some recordings with 

excessive noise preceding the event or ringing throughout the record. By selecting the 

recordings manually, I find that 506 recordings from station DP and 486 recordings 

from station AY are unusable, leaving 371 and 391 recordings respectively for further 

processing. All events in these recordings were local with depths between 2km and 

14km and epicentral distances less than 30k, and had magnitudes (ML) between -0.3 

and 2.0. Most are closer to station DP than to station AY. They possess a wide 

distribution of SNRs lying between 1 and 200, with station DP being of higher fidelity 

than station AY (Figure 3.3). For these local events, the predominant P and S waves 

were manually identified from seismograms.
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3.3 CHARACTERISTICS OF SEISMIC RECORDINGS

The direct output of most seismometers represents the ground motions in Cartesian 

rectangular coordinates since they measure the linear motions along these orthogonal 

axes, usually along the Vertical (V), East-West (E-W), and North-South (N-S) 

directions. The original output represents the time-history of the seismic waves 

arriving at the seismometer. Although changes in amplitude, frequency, and direction 

of this motion indicate the arrival times of seismic waves, the type and polarization 

of wave motion, the direction of propagation, and other parameters (Aki and Richards, 

1980; Lomax and Michelini, 1988), it is difficult to identify these characteristics 

directly from the original recordings because various characteristics are mixed together 

in the original recordings. However, such characteristics can be obtained by 

performing various transformations on the original recordings. These transformations 

can present the data in a form that can give greater weights to the most desired 

characteristics. Transformations of the ground motion which emphasize amplitude and 

direction information would greatly benefit seismogram analysis. Typically, this is 

done with a change of coordinate system or reference frame. Examples of such 

transformations include time series analysis, Fourier transform, axis rotation, or 

coordinate transform. Some of them can operate on single-component recordings and 

some on three-component recordings. In this section, I discuss the characteristics 

which are transformed from single component recordings or three component 

recordings for seismic arrival picking and identification.

3.3.1 Characteristics from single component recordings.

There is a long history of using single component (1-C) recordings (usually 

vertical recordings) in seismic analysis because these have been available since the 

early day of seismic analysis and now are still in use. However, 1-C recordings only 

represent the ground motion in one direction, so polarization and propagation 

information cannot be obtained. However, various characteristics such as amplitude 

and frequency information can be obtained from the 1-C recordings by taking different
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transformations. Here I only discuss the characteristics which are used in seismic 
arrival picking and identification. The characteristic may be as simple as the absolute 
value of an input series, or it may be quite a complicated function, depending on the 
type of signal expected and the required performance of seismic analysis. Five basic 
transformations are listed here: absolute value function, square function, Alien's 
function, envelope function, and modifieddifferentialfunction. Usually, the input signal 
is the vertical component recording, v(i).

(a) Absolute value function (AVF)

This function is the simplest function to compute and is currently the 
most widely used for arrival picking. It is defined as: AVF(i)=\v(i)\. Although 
this function is not so responsive to changes in the input, it has been used by 
many successful picker algorithms, including those of Anderson (1978), 
Matsumura et al. (1981), and McEvilly and Majer (1982).

(b) Square function (SF)

This function is designed to enhance amplitude changes but not 
frequency changes. It is defined as: SF(i)=v(i)2 . Swindell and Snell (1977) 
reported its use in their investigation of picking algorithms, but it has not been 
widely used.

(c) Alien's characteristics function (ACF)

Alien (1978) designed this function to enhance changes in both 
amplitude and frequency. It is defined as: ACF(i)=v(i)2+k[v(i)-v(i-l)]2, where 
A: is a weighting constant which varies with the sample rate and station noise 
characteristics. This function requires significantly more computing time than 
both the absolute value function and square function, so in some applications 
this might render it impractical. Alien (1978) developed his famous arrival 
picker based on this function.



Chapter 3: Data and characteristics of seismic recordings 30

(d) Envelope function (EF)

This function can be thought of as a positive outline of the seismogram

and is defined as: EF(i) = \Jv(if +v(z')2 , where v(i) is the Hilbert transform

of the v(t) (Kanasewich, 1981). Baer and Kradolfer (1987) and Earle and 

Shearer (1994) utilized this function or its square in their automatic picking 
algorithm.

(e) Modified differential function (MDF)

This function, introduced by Stewart (1977), enhanced the high 

frequencies of the input signal. There are two steps in defining it. The first step 

is to compute the difference of the input signal: DF(i) = v(i) - v(i-l). The 

second step is to compare the sign ofDF(i) and the prior DF(i-l). If the DF(i) 
and DF(i-l) have the same sign and if the sign ofDF(i) has persisted for less 

than some samples, the MDF is defined as: MDF(i) = MDF(i-l) + DF(i), 

otherwise the MDF is defined as: MDF(i) = DF(i). It has been used in arrival 

detection (Stewart, 1977, Veith, 1978; Houliston, Waugh and Laughlin, 1984).

Various picking algorithms were developed based on these functions. The most 

popular picking algorithm was the short-term-average/long-term-average ratio method 

(STA/LTA) which was developed by Alien (1978). This method is now widely used 

for seismic arrival picking (Alien, 1978; Mykkeltveit and Bungum, 1984; Baer and 

Kradolfer, 1987; Earle and Shearer, 1994). There are also some complex picking 

methods based on 1-C recordings, such as the sonogram (Joswig, 1990, 1993a, 1993b, 

1995, Klumpen and Joswig, 1993) and the autoregressive model (Pisarenko, Kushnir 

and Savin, 1987; Takanami and Kitagawa, 1988, 1993). Both are computing-intensive 

because of their complex mathematics.

Of these functions, the absolute value function has the highest fidelity and 

processing speed and is also objective. Although the other four functions may enhance 

the changes of amplitude or frequency, they may also introduce some noise or alter
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the patterns of the waves and hence they requite more time for computing. In addition, 

ACF, EF, and MDF are not objective due to the parameters of them selected by 
analysts.

In the real-time operation of seismic arrival picking, the computing time should 

be reduced to minimum. At present this can only be done for large dataset by giving 

up the complex mathematics. In this thesis, the BPNN has been used to perform the 

task of feature extraction and pattern recognition of waves, so the input signal to 

BPNN has been keep as simple as possible by choosing the absolute value function.

3.3.2 Characteristics from three-component recordings

1-C recordings only provide partial information on the ground motion. 

Complete information of the ground motion can only be obtained from the three- 

component (3-C) recordings. Let us consider a ground motion vector M(t) which 

represents the position of a point at which the seismometers are located. In the 

Cartesian coordinate system, M(t) is projected on three orthogonal axes as V(t), E(t), 

N(t) (Figure 3.4). As the point moves, its projections on all three axes vary, splitting 

the information of the motion into three parts (three 1 -C recordings) with each part 

consisting of incomplete energy and geometrical information. Using them to resolve 

ground motion requires the synthesis of three components of motion.

This problem can be overcome by using the spherical coordinate system in 

which M(t) is represented by mft), Qft) and §ft) which are three axes of the spherical 

coordinate system. Here, m(t) is the modulus, the length of this vector, Qft) is the 

inclination of this vector above or below the horizontal plane and §(t) is the azimuth 

of the vector, clockwise from north of the projection of the radius vector on the 

horizontal (Figure 3.4).
The transformation between the Cartesian coordinate system and spherical 

coordinate system is reversible. The transformation from Vft), Eft), Nft) to mft), Qft), 

can be written as:
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Figure 3.4. A vector M(t) represented in Cartesian rectangular system and spherical 
coordinate system. V(t), N(t) and E(t) are projection of M(t) on Cartesian rectangular 
system. m(t), Q(t), and ty(t) are three axes of spherical coordinate system.
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[-90° < 8(f) <; +90°] /3
^ '

= arctan(^) [0° < cj>(0 ^ 360°]

and the transformation from mft), Qft), §(t) to Vft), Eft), Nft) can be written as:

V(f) =
N(f) = m(r)cos(0(0)cos(4>(f)) 

= m(r)cos(0(r))sin(cj)(r))

The information in the spherical system shows the ground motion more clearly than 
in the Cartesian system (Lomax and Michelini, 1988; Kracke, 1993). However, it is 
necessary to remove any constant or long-period, non-zero baselines from the 3-C 
recordings before applying the spherical coordinate transformation. If this offset is not 
removed, shift in the values of the spherical coordinates will occur (Lomax and 
Michelini, 1988).

In the spherical coordinates system, the energy and geometrical information of 
the ground motion are separated into mft) for energy information, and Qft) and §(t) for 
geometrical information. The mft) has advantages over the 1-C recording for the 
purpose of arrival picking because it is independent of the source orientation and 
raypath. Figure 3.5 shows an example in which the modulus shows clearer onsets of 
P- and S-arrivals than their original 1-C recordings. Lomax and Michelini (1988) 
pointed out that the modulus may be particularly useful for automatic P and S 
selection. Kracke (1993) developed an automatic arrival picker using the modulus. 
Based on this, I will use the modulus in the automatic arrival picking in Chapter 4.

Theoretically, Qft) and fyft) in the spherical coordinate system represent the 
geometrical information which includes the source orientation or polarization direction. 
For a wave with a linear or elliptical polarization, its orientation can be read directly 
from the inclination and azimuth (Lomax and Michelini, 1988). However, in practice, 
it is difficult to use them in seismic interpretation because they are easily blurred by
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Figure 3.5. A local earthquake recorded on station DP. Its three 1-C recordings and 
the modulus are displayed. The vertical lines are drawn on the P- and S arrival 
onsets. The onsets of P- and S-arrivals in the modulus are clearer than in the three 
1-C ©recordings.
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background noise and are unstable. Instead, the covariance matrix analysis is widely 

used in seismic analysis.

3.3.3 Covariance matrix analysis.

The covariance matrix of 3-C recordings is a useful measurement of the 

polarizations of the seismic signals (Samson, 1977; Cichowicz, Green and Brink, 1988; 

Cichowicz, 1993). The covariance matrix is defined as:

cov(x9 r>
c = COV(Y,X) COV(Y,Y) COV(Y£) 

COV(Z,X) COV(Z,Y) COV(Z£)

(3.3)

where the covariance is measured for N samples:

1 N 
COV(X,Y) = ~ £ (xt -x)(yt -y)

where x and y are the average values of x and y, and N is the length of a window in 

which the covariances are calculated and can be determined from the predominant 

frequency of signals (Cichowicz, 1993). However, in the case of a seismic network, 

it is difficult to calculate N because the recorded events often have a large variation 

in frequency. Usually N has to be chosen after gaining some experience from real 

data.
The covariance matrix contains all the information needed to characterize the 

polarization state of a wave. It is a real symmetrical matrix which has three real 

eigenvalues and can be diagonalized to give the eigenvalues and eigenvectors of its 

principal axes. Some parameters can then be defined from the eigenvalues and 

eigenvectors to display the polarization state of the wave (Cichowicz, 1993). For 

example, the direction of polarization is measured by considering the eigenvector of 

the largest principal axis. This direction is parallel to the propagation direction for P- 

waves and is perpendicular to the propagation direction for S-waves in an isotropic 

medium. However, for the purpose of arrival picking and identification, it is difficult
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to use the direction as a decision parameter because it is related to the source position 

which is unknown before the seismic analysis. Ideally, parameters which are 

independent of the source orientation should be defined to extract the polarization 

properties for arrival picking and identification.

A useful parameter which is independent of the source orientation is the degree 

of polarization defined from the eigenvalues (Samson, 1977, Cichowicz, 1993):

2 (3 5)

where the X l5 X2 and X3 are eigenvalues of the co variance matrix of a moving window 

of width TV samples. This equation can be written as:

(3 6)
2(trS)2

where trS, defined as Xj+A^+A^ is the trace of C, and trS2 is defined as A,, 2+A,22+A,3 2 . 

This equation shows that the function can be calculated without having to diagonalize 

the covariance matrix. Mathematically, the trace of a matrix is independent of the 

rotation of coordinate system, and hence is also independent of the source orientation.

According to this definition, if only one eigenvalue is non-zero, then F=\, and 

the wave is linearly polarized; if all of the eigenvalues are equal, then F=0, and the 

wave can be considered as completely unpolarized or circularly polarized (Cichowicz, 

Green and Brink, 1988). Each wave has its own characteristic pattern with time, not 

just one particular value. The variation of this quantity along the seismogram may 

indicate the type of a wave. Thus F(t) enables us to study the evolution of the degree 

of polarization of a wave.

In order to calculate F(t), the window length TV must be determined according 

to the data features. Computing TV is numerically difficult for real data but it might be 

visually determined by checking the plotting of Fft). Figure 3.6 shows an example of 

the variation of Fft) with different window length N. The basic pattern of Fft) does 

not change as the window length varies from 5 to 15. However, the longer the window
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Figure 3 6 The 3-C recordings of a local earthquake and three traces of the degree of 
polarization F(t) of 3-C recordings with different window length N.
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length, the smoother the F(t) is. An optimum number (N=10) is obtained for the data 

used in this study. Note that all 3-C recordings must have the same frequency 

bandwidth, the same scale and the same noise level. If one of the 3-C recordings has 

a significantly different property from others, then F(t) is highly biased, and may give 

rise to a misleading interpretation.

I have investigated the F(t) patterns for data from the TDP3 network. Usually, 

most P-arrivals have high values of F(t), most S-arrivals have medium values of F(t) 

and most noise bursts have low values ofFft) (Figure. 3.7). That means the P-arrivals 

have well-defined linear polarization patterns, while S-arrivals and noise bursts do not. 

The polarization patterns of seismic arrivals are complex. Most of the F(t) patterns of 

P-arrivals usually differ from those of S-arrivals and noise bursts. However, there are 

also some noise bursts whose F(t) patterns are similar to those of the seismic arrivals. 

Spikes manifest themselves as special patterns in which F(t) is very high, near unity, 

for a window length of ten samples (Figure 3.8). However, they can be easily 

discarded by using a conventional program. Comparing the data from stations DP and 

AY, the F(t) patterns are different even for the same arrivals from the same 

earthquake (Figure 3.9). It is difficult to find a simple method such as a threshold 

value to distinguish their type. Identifying them requires the intensive use of the 

pattern recognition technique.

3.4 SUMMARY

The data from the TDP3 local earthquake network in Turkey were examined and 

selected for the purpose of developing the methods of arrival picking and 

identification. Only a relatively "small" dataset from two stations, DP and AY, are 

presented as examples. Various characteristic functions have been inspected for the 

purpose of arrival picking and identification. Here, three characteristic functions, 

which are independent of the source orientation, were selected in this study:
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Figure 3.7. The 3-C recording of a local earthquake, its modulus and its degree of 
polarization F(t). Three vertical lines show the arrival onsets which are identified as 
a noise burst with low value of F(t), a P-arrival with high value of F(t) and a 
S-arrival with middle value of F(t).
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(F(t)). Four vertical lines shows arrival onset of two spikes and a P-arrival and a 
S-arrival. Spikes have unique F(t) patterns whose values are near unity.
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Figure 3.9. 3-C recordings and the degree of polarization F(t) of a local earthquake recorded on stations DP (above) and AY (below) respectively. The patterns of the degree of polarization are different for the same P- and S-arrivals from the two 
stations.
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(a) The modulus of 3-C recordings will be used to picking arrivals from 3-C 

recording in Chapter 4.

(b) The absolute value function of 1-C recording will be used for picking arrivals 

from 1-C recordings in Chapter 5.1 should point out that all functions of 1-C 

recordings are influenced by the source orientation. In this case, it is not 

possible to obtain a function which is independent of the station position with 

respect to source radiation pattern.

(c) The degree of polarization of seismic waves from the co variance matrix of 3-C 

recordings will be used in the approach of arrival identification in Chapter 6.
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CHAPTER 4:

ARRIVAL PICKING FROM THREE-COMPONENT 

RECORDINGS USING BPNN

4.1 INTRODUCTION

As I mentioned in Chapter 1, the task of estimating arrival times for P and S waves 

found in recordings of earthquake events forms an important foundation for schemes 

employing automatic processing for event location, event identification, source 

mechanism analysis, and spectral analysis. The traditional picking method is that a 

trained analyst visually checks the seismograms and picks out P- and ^-arrivals 

according to his individual experience. This task is time-consuming and subjective. 

With the increase in the number of digital seismic networks being established 

worldwide, there is a pressing need to provide a more reliable and robust alternative, 

which is less time-consuming and more objective. A great deal of effort, stretching 

back several decades, has therefore been devoted to the automation of arrival picking, 

and many different varieties of algorithm exist. However they do tend to be data- 

specific and are not generally available. The goal of global automation is far from 

achieved and as a consequence such elementary seismogram interpretation still forms 

a bottleneck in the routine work of many observatories.

In this chapter, I attempt to use a BPNN to tackle this problem and to test its 

ability of automatic detecting and picking seismic arrivals. Specifically the BPNN 

approach is developed to deal with the data from the TDP3 local earthquake network. 

This is achieved by utilizing the vector modulus of 3-C recordings as the input of the 

BPNN. A BPNN trained by a small but representative training dataset can quickly 

process a large amount of data. The arrival onset times can be defined by a 

discriminant function, determined from the output of the trained BPNN. In conjunction 

with this BPNN, some post-processing procedures are used to improve the performance.
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4.2 BRIEF HISTORY OF AUTOMATIC ARRIVAL PICKING

According to Blandford's review (1982), the first careful discussion of seismic 

detection is found in a report by Vanderkulk, Rosen and Lorenz (1965) and the next 

advances in detection theory were made by Lacoss (1972) and Wirth, Blandford and 

Shumway (1976). Following them, some methods for automatic arrival picking of 

seismic data were developed by Ambuter and Solomon (1974), Crampin and Fyfe 

(1974), Stevenson (1976) and Stewart (1977). Later, Alien (1978) developed his 

famous STA/LTA (short-term average/long-term average) ratio method to pick 

P-arrivals. This is the most popular method for arrival picking and many analysis 

systems are based on it (Mykkeltveit and Bungum, 1984; Bibbo, Etter and Breding, 

1991; Tarvainen, 1992; Earle and Shearer, 1994). Some of its variants have been 

implemented. For example, Baer and Kradolfer (1987) used an envelope function of 

each 1-C recording in this algorithm and then passed it through a nonlinear amplifier. 

The resulting signal is then subjected to a statistical analysis to yield P-arrival times 

and a measure of reliability for the picking. Kvaerna and Ringdal (1992) applied the 

STA/LTA to coherent and incoherent beams of an A-ring microarray data to detect 

arrivals. Ruud and Husebye (1992) developed a 3-C detector based on the STA/LTA 

method.
Other methods were also developed. For example, Houliston, Waugh and 

Laughlin (1984) implemented the Stewart method (1977) in their detection system. 

Pisarenko, Kushnir and Savin (1987) developed an optimal P-arrival picker using an 

asymptotic approximation of the likelihood function. Magotra, Ahmed and Chael 

(1987) developed an arrival detector based on the polarization analysis of the 

horizontal (N-S and E-W) recordings. Roberts, Christoffersson and Cassidy (1989) 

made an assessment of whether data are consistent with the arrival of a P-arrival or 

a linearly polarized ^-arrival using the auto- and cross-correlations of 3-C recordings. 

Takanami and Kitagawa (1988, 1993) developed a method of picking P- and 5-arrivals 

by fitting a locally stationary autoregressive model. Kracke (1993) developed a simple
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method based on the displacement vector of a seismic trace in a spherical coordinate 

system for P-arrivals. Cichowicz (1993) developed an S-arrival picker based on a filter 

which combines polarization and energy ratios. Joswig and Schulte-Theis (1993) used 

a master-event-correlation method to detect P-arrivals in weak local earthquake 

records. All these are conventional methods which incorporate fixed algorithms to 

solve particular problems. They quantify some attributes of the seismic trace and use 

them as the basis of the decision. However, they are not adaptive. They work well 

under certain conditions, but quite often do not produce good results.

The application of artificial intelligence (AI) methods to arrival picking is a 

relatively recent development. Various methods have been applied to the interpretation 

of seismic signals such as knowledge-based systems based on the blackboard method 

used by Chiaruttini, Roberto and Saitta (1989), and later developed by Chiaruttini and 

Salemi (1993). Bache et al. (1990) developed an intelligent monitoring system based 

on this knowledge-based system, database management systems and signal processing. 

As an alternative strategy, Joswig (1990, 1993a, 1993b, 1995) developed a pattern 

recognition approach for P-arrivals using a sonogram. Klumpen and Joswig (1993) 

used this pattern recognition technique to estimate P- and S-arrival onset times by 

identifying generic polarization patterns from a time-frequency image of the principal 

value decomposition of the correlation matrix of 3-C recordings. The AI methods are 

quite different from the conventional methods. In these methods, some samples of the 

seismic arrivals are used as the references to compare with the real data. Rules based 

on the knowledge of the seismic arrival and noise control the analysis procedure 

which analyses the mental images, a two dimensional grey-scale picture of spectral 

energy, of the seismic arrivals extracted from seismograms by some numerical 

methods. Although these AI methods have advantages over conventional ones by 

putting the analyst's experience in the analysis procedure, they still need complex 

mathematics to extract features from seismograms.

BPNNs and other ANNs, another group of techniques from the area of AI, 

provide a natural alternative to this type of earthquake analysis. They had already been
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proven useful in handling complicated pattern recognition problems in other 

applications (see Chapter 2). There are also a few approaches in the literature which 

used the BPNN method to pick the first-break of surface seismic data (Murat and 

Rudman 1992; McCormack, Zaucha and Dushek 1993) and detect the arrivals of 

earthquakes (Wang and Teng, 1995). As the BPNNs utilize a learning scheme to 

develop an appropriate solution, they are flexible and adaptive to different dataset.

4.3 APPROACH FOR ARRIVAL DETECTION AND PICKING

The tasks performed by the trained analyst in manually picking arrival onset times 

involve an intensive amount of pattern recognition. Experience provides a judicious 

balancing of wave characteristics such as amplitude, frequency and polarization from 

previous records to determine the most likely onset time. If questioned about a 

particular decision, however, the analyst may offer a few rules for guidance but can 

often give no obvious systematic reasoning because the decision is partly subjective 

and based upon his past experience. Consequently, different trained analysts may give 

different answers, and the same analyst may even choose a different interpretation 

after some time has elapsed. In this chapter, I attempt to use an BPNN approach to 

emulate this manual analysis procedure but overcome its weaknesses. The BPNN is 

designed to be similar in operation to an analyst, and is trained by presenting many 

different seismic arrivals. After training is accomplished, the BPNN can remember 

these arrivals and then should be able to recognize new arrivals from a variety of new 

seismograms. Its great advantages are higher objectivity and higher speed.

As mentioned in Chapter 3, a method to pick arrivals from a seismogram can 

be regarded as using a filter to act on a characteristic function of the seismogram. 

Here the BPNN is used as a filter to act on the modulus of 3-C recordings. This 

approach includes two phases: the training (learning) phase and the testing 

(generating) phase. In the training phase, some training dataset should, first, be 

selected by an analyst using his experience and then be used to train the BPNN. After 

training, the BPNN is applied to the entire seismogram by using a window which
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slides along the entire modulus trace (Figure 4.1). The output of the BPNN then yields 

a time series which is interrogated for a decision regarding the seismic arrivals.

4.3.1 Input characteristics of data

The characteristic function of seismograms for the detection and picking of 
arrivals in this approach is the vector modulus of the 3-C recordings already discussed 
in Chapter 3. This is useful as the signals in 1-C recordings are strongly dependent on 
the source position and ray direction, which may otherwise give rise to a misleading 

interpretation. The instantaneous vector modulus Mft), calculated at each individual 

3-C sample along the traces, separates the geometric dependency from the seismic 
vector motion whilst retaining its energy characteristics for picking. Mft) is then 

directly fed into a BPNN. It is believed that this attribute facilitates an easier 
identification, regardless of the polarization of the wave (Lomax and Michelini, 1988). 
I do not use the polarization properties of individual arrivals for picking as I believe 
they may not provide a satisfactory indicator due to such factors as: phase changes 
during propagation, fine-structure of the waveforms such as that due to shear-wave 
splitting, and directional dependency. The overriding concern is the uncertain 
applicability of such a parametric model of the wavefield in a heterogeneous crust 
(Der, Baumgardt and Shumway 1993). The polarization properties will be used for 

arrival identification in Chapter 6.
Mft) is presented to the BPNN in segments which are selected from a sliding 

window passing across the entire 3-C seismogram. The modulus is strongly dependent 

on the magnitude and epicentral distance of an earthquake. For the data from TDP3, 
the maximum modulus of an event is more than 3600 counts in scale and the 

minimum modulus of an event is just above the background noise, about 20-30 counts. 
If such a big range of moduli are directly fed into the BPNN for training, a large 
training dataset is required to cover this range, with a consequent increase in the 
training time and a larger BPNN structure. Otherwise large changes in modulus may 
bias the estimates. This problem is overcome by using the relative modulus in which
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Figure 4.1. Schematic diagram showing the method of using a BPNN to pick seismic arrivals. Here, the input of the BPNN is the modulus of 3-C recordings (the lower diagram). A trained BPNN is treated as a filter in a sliding window across though the entire modulus trace. The output of the BPNN (the upper diagram) yields a time series which enhances the changes in the modulus to indicate the arrival onsets.
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each segment is individually normalized so that it is not dependent upon the 

magnitude and distance of an earthquake. This reduces the number of training 
examples needed.

Use of the relative modulus means that the BPNN is forced to sense the 

relative amplitude and frequency content of the signals, and use them to detect the 

onset. For high SNR, the onset is characterized by a distinct change in the amplitude 

of the seismogram. However, if the SNR is low, the major discriminating factor is a 

frequency change due to the different spectra of the background signal and earthquake 

signal. The BPNN is similar to a sophisticated wavelet transform which enhances 

these changes informing its output.

The data used in this study are local earthquake events recorded at stations DP 

and AY in the TDP3 seismic network which was introduced in Chapter 3. For the first 

test of the performance of this approach, I will apply it to a small subset of these data. 

This dataset consists of 210 high quality events recorded at stations DP (120 events) 

and AY (90 events). In the second test, I will use this trained BPNN to process the 

complete dataset of 762 recordings at stations DP and AY in the TDP3 seismic 

network, with a mixture of good and bad data.

4.3.2 BPNN structure

The BPNN used in this chapter has three layers, including an input layer with 

30 nodes, a hidden layer with 10 nodes and an output layer with two nodes (Figure 

4.2). The 30 input nodes correspond to the input segment of modulus which is chosen 

to include several complete cycles of a wave in a sliding window with length fixed 

at 290ms (30 samples).
The two output nodes flag the result, (0,1) for an arrival and (1,0) for pure 

background noise. It seems that one output node can also flag the two states, 1 for 

arrivals and 0 for pure background noise. However, if the output states are more than 

two, one output node cannot properly flag these output states. For this kind of pattern 

recognition, the output node should equal to the desired output states (McCormack, 

1991; Haykin, 1994). In order to be consistent with this, most authors prefer two
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Figure 4.2. The structure of a BPNN for seismic arrival picking. It has three layers 
including an input layer with 30 nodes, a hidden layer with 10 nodes and an output 
layer with two nodes. The BPNN input is a segment of the modulus of the 3-C 
seismogram. The two output nodes indicate the input segment with (0,1) as a 
P-arrivaland (1,0) as noise.
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output nodes for the problem with two desired output states (Dowla et al, 1990; 

German, 1988; McCormack, 1993; Perm, 1993). I also use two output nodes in the 

BPNN used in this chapter.

The ten hidden nodes were finally chosen after a process of trial and error with 

different training runs. Although this solution is considered optimum for the current 

application, further architecture optimization could undoubtedly be achieved by a more 

exhaustive search procedure on a more powerful computer.

4.3.3 Training procedure

4.3.3.1 Selecting training dataset

The function of this primary BPNN picker is to pick as many changes of M(t) 

as possible and discard those which are neither P- nor S-arrivals. The most important 

task in training a BPNN is the selection of suitable training dataset according to the 

purpose for which the BPNN is used because its performance depends on the training 

dataset. If incorrect or inconsistent data are used to train it, it cannot be expected to 

give a correct answer for new data. The same BPNN can be applied to a different 

problem with different training dataset. In this approach, this BPNN is employed to 

pick seismic arrivals from the background noise, so the training data should include 

the seismic arrival signal and background noise signal. Although the relative modulus 

Mft) is independent of the source position, the modulus patterns of seismic arrivals are 

still varied. Different patterns are required to train the BPNN. For training, the Mft) 

segments include either the pure background noise or the P-arrival with some early 

background noise. The F-arrival training segments are chosen to include wavelets with 

different characteristics. S-arrivals are not included in the training dataset because their 

Mft) appears to exhibit similar characteristic to P-arrivals. Background noise segments 

are extracted prior to the P-arrivals in the same seismograms. These segments are 

arranged so that the predicted onset time of every P-arrival lies at the eleventh sample. 

The BPNN then outputs (0,1) on its output nodes to flag a P-arrival. This behaviour
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is imprinted on every training example. Figure 4.3 shows nine pairs of P-arrival and 

background noise segments for training in the study.

The number of training patterns required is determined by the nature of the 

problem and the anticipated performance of a trained BPNN. Although some rules 

give guidance on this (Baum and Haussler, 1989, Faussett, 1994), experience still 

plays an important role in selecting the suitable number. Too small a number may 

result in a poorly trained BPNN, and too large a number may result in the learning 

procedure becoming too long. It seems better to train a BPNN with a small training 

dataset first, and then to improve its performance by subsequently adding more 

training dataset. In order to balance the performance of a trained BPNN for P-arrivals 

and background noise, the same number of P-arrivals and background noise segments 

are required to train the BPNN. In the first experiment, I use seven pairs of P-arrivals 

and background noise segments (Figure 4.3) for training.

4.3.3.2 Selecting training parameter and initial weights

In the training procedure, the second task is to select the training parameters 

of the generalized delta rule, which include: learning rate i\, momentum rate a, 

system error threshold and pattern error threshold and initialization of the weights 

and thresholds of the BPNN. In Section 2.3.4,1 have mentioned that these parameters 

and the initial weights and thresholds are somewhat undetermined and their values 

depend on the nature of the problem. Here I attempt to determine them for the arrival 

picking problem by training the special BPNN whose structure is defined in Section 

4.3.2 with the training dataset (seven pairs of P-arrival and background noise 

segments) defined in Section 4.3.3.1

(a) Determining training rate and momentum rate

In order to achieve this, two questions should be answered: (1) How do they 

affect the training procedure? and (2) How do they affect the BPNN structure? The 

training procedure can be measured using the iteration number for convergence. The
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Figure 4.3. Nine P-arrival segments and nine background noise segments used for 
training a BPNN. Noise segments are extracted prior to the P-arrivals in the same 
seismograms. Arrows on P-arrival segments indicate arrival onset times used to train 
the BPNN, all are at the eleventh sample. These segments are individually normalized 
before being input into the BPNN.
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trained BPNN structure can be measured by its weight pattern which displays the 

distribution of weight values (Dai and MacBeth, 1994c).

Table 4.1.A shows the iteration number required in training as a function of 

r| and a, but with the same system error threshold (0.00001) and pattern error 

threshold (0.0001) which are used to stop the training procedure. A relationship 

between the iteration number and t| and a can be obtained from this table:

Iteration Number = INn *^ ' (4.1)
0 10*rj

where IN0 is the iteration number at r| =0.1 and a = 0.0. In order to verify this 

equation, I calculate the iteration number by using this equation with the same IN0 . 

Table 4.1.B is the calculated result which fits well with the data in Table 4.1.A. For 

example, the maximum relative error is 10% at a = 0.9 and rj = 0.9 with an absolute 

error of 8 iterations and the maximum absolute error is 31 iterations at a = 0.0 and 

rj =0.9 and 1.0 with a relative error of 4%.

This equation shows that: (1) The iteration number is inversely proportional 

to a, but a must be less than 1.0, otherwise the learning procedure does not converge. 

(2) The iteration number is the reciprocal of the r|, and naturally, t| cannot be zero. 

Due to the nature of the reciprocal function, large rj cannot reduce the iteration 

number too much. For example, when rj is increased from 0.1 to 0.2, the iteration 

number is reduced by 50%, but when t| is increased from 0.7 to 0.8, the iteration 

number is reduced by 12.5%. The relative decreasing rate is independent of a. 

Because the learning procedure might be unstable and the weights of BPNN might trip 

in a local minimum by using a too large r), (Rumelhart, Hinton and Williams, 1988), 

I will be following other authors' suggestion that rj = 0.7 and a = 0.9 (McClelland and 

Rumelhart, 1988; Pao, 1988; Demuth and Beale, 1993).

Equation 4.1 might be used as a guide to check the convergence or 

performance of training a BPNN. In the case of using large t| and a to train a BPNN, 

the iteration number should not be too large. If the iteration number larger than the 

predicted value for convergence, it seems that either the BPNN is not well designed
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Table 4.1.A The iteration number in training with different learning rate r| and 
momentum rate a. (NC means non-convergence)

Iteration 
number

T!

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1

a
0.0

7248
3634
2435
1834
1474
1234
1063
935
836
756
691

0.1
6523
3274
2191
1651
1327
1111
957
842
753
681
622

0.2
5799
2910
1948
1468
1180
989
852
750
670
606
554

0.3
5074
2547
1705
1285
1033
866
746
657
588
532
486

0.4
4350
2183
1462
1102
886
743
641
564
505
457
418

0.5
3625
1819
1218
918
739
620
535
471
422
382
350

0.6
2900
1455
974
734
591
496
428
378
338
307
281

0.7
2175
1091
729
550
443
372
321
284
254
231
212

0.8
1451
728
486
366
295
248
215
190
171
156
143

0.9
730
368
247
188
151
124
102
85
73
67
65

1.0
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC

Table 4.1.B The iteration number calculated using equation 4.1

Iteration 
number

V

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1

a
0.0

7248
3624
2416
1812
1450
1208
1035
906
805
725
659

0.1
6523
3262
2174
1631
1304
1087
931
815
725
652
593

0.2
5798
2899
1932
1449
1159
966
828
725
644
580
527

0.3
5074
2537
1691
1269
1015
846
724
634
564
507
461

0.4
4349
2175
1450
1087
870
725
621
543
483
435
395

0.5
3624
1812
1208
906
725
604
518
453
403
362
329

0.6
2899
1449
966
725
580
483
414
362
322
290
264

0.7
2174
1087
725
544
435
362
310
272
242
217
197

0.8
1450
725
483
363
290
242
207
181
161
145
131

0.9
725
363
242
181
145
121
104
91
81
73
66

1.0
—
—
—
—
—
—
—
—
—
—
—
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or the training dataset is not well selected.

The above analysis shows that these parameters greatly affect the convergence 

speed of the learning procedure. However, do they affect the trained BPNN structure? 

Here a weight map of the BPNN structure is produced to show the BPNN weight 

patterns. Figure 4.4 shows the weight maps of three BPNNs trained with different r| 

and a values. These maps show the magnitudes of each weight connecting to the 

different layers in the BPNN. In each map, solid circles are shaded on a grey scale 

corresponding to a magnitude range indicated by the key (I will explain the details of 

this weight map in Section 4.6.1). These maps show that the BPNNs trained with 

different r| and a have similar weight patterns. For example, the weight map between 

the input nodes and hidden nodes can be divided into two portions at the tenth input 

nodes. Weights connected to nodes between the first to tenth nodes show a "high 

contrast" pattern, in which most of the weights have large absolute values. Weights 

connected to nodes between the eleventh and thirtieth nodes show a 'Vow contrast" 

pattern in which most of the weights have small absolute values. Although a few 

weights show some changes as rj and a change, the whole pattern is similar. 

Therefore, these trained BPNNs with similar weight patterns should have similar 

performances.

(b) Determining system error threshold and pattern error threshold

In order to determine the system error threshold and pattern error threshold, I 

train the same BPNN with the same training dataset and the same values of a (=0.9) 

and r| (= 0.7), but with different system error and pattern error. The smaller the errors 

are, the larger the iteration number required. Figure 4.5 shows two examples of weight 

patterns of a trained BPNN. These figures show that changing the system error 

threshold and pattern error threshold does not affect the weight pattern too much. 

However, the lower error threshold (or longer training) might result in an overtraining 

phenomenon (Haykin, 1994; Prechelt, 1995) in which if a BPNN is overtrained, its 

generalization gets worse instead of better after a certain point during training. This 

is because such long training may make the BPNN "memorize" the training patterns,
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Figure 4.4 (a). Weight map for a trained BPNN (see Section 4.6.1 for a full 
explanation of the technique). (1) The mapping of weights between the input layer 
and the hidden layer. (2) The mapping between the hidden layer and the output layer. 
Shaded circles represent the weights and the contrast in each circle indicates the value 
of a weight. The top row of circles in (1) and the right row of circles in (2) represent 
the node thresholds. This BPNN is trained with seven pairs of P-arrival and noise 
segments. The training parameters are: learning rate = 0.1, momentum rate = 0.0, 
system error threshold =0.00001 and pattern error threshold = 0.0001.
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Figure 4.4 (b). Weight map for a trained BPNN. Notation as in Figure 4.4 (a) This 
BPNN is trained with seven pairs of P-arrival and noise segments. The training 
parameters are: learning rate = 0.7, momentum rate = 0.9, system error threshold = 
0.00001 and pattern error threshold = 0.0001
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Figure 4.4 (c). Weight map for a trained BPNN. Notations as in Figure 4.4 (a). This 
BPNN is trained with seven pairs of P-arrival and noise segments. The training 
parameters are: learning rate = 0.9, momentum rate = 0.7, system error threshold = 
0.00001 and pattern error threshold = 0.0001.
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Figure 4.5 (a). Weight map for a trained BPNN. Notations as in Figure 4.4 (a). This 
BPNN is trained with seven pairs of P-arrival and noise segments. The training 
parameters are: learning rate = 0.7, momentum rate = 0.9, system error threshold = 
0.0001 and pattern error threshold = 0.001.
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Figure 4.5 (b). Weight map for a trained BPNN. Notations as in Figure 4.4 (a). This 
BPNN is trained with seven pairs of P-airival and noise segments. The training 
parameters are: learning rate = 0.7, momentum rate = 0.9, system error threshold = 
0.000001 and pattern error threshold = 0.00001.
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including all of their peculiarities.

(c) Determining the initial weights

Normally, the weights (and thresholds ) of a BPNN are initialized with random 

values between an interval. However, this interval is also somewhat undetermined. In 

order to select a suitable value, I initialize the weights of a BPNN with different range 

of values. The BPNN then is trained with the same training dataset and training 

parameter. The result shows that the training procedure is longer when the weights of 

the BPNN are initialized with too small or too large a range of values. However, the 

weight patterns of the BPNNs are similar. Figure 4.6 shows two examples in which 

the BPNNs have different initial weights and threshold. Their patterns are similar with 

those in Figures 4.4 and 4.5.

(d) Values of training parameters and training results

The above analysis shows that the structure of a trained BPNN depends mainly 

on the training dataset. The training parameters and the initial weights mainly affect 

the convergence of learning procedure. So I do not need to put too much effort into 

selecting their optimum values in each case. As a consequence, I use the following 

general values in the rest of this thesis:

learning rate = 0.7
momentum rate = 0.9

system error threshold = 0.00001

pattern error threshold = 0.0001

the range of initial weights is between -0.5 and +0.5.

With the above selected training dataset and the training parameters, the training 

procedure takes 102 iterations (less than a half minute CPU time on a VAX4000). The 

system error reached is 0.000032 with all pattern errors less than 0.0001. After this 

training procedure, the BPNN is ready to pick the seismic arrivals in the whole 

dataset.
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Figure 4.6 (a). Weight map for a trained BPNN. Notation as in Figure 4.4 (a) This 
BPNN is trained with seven pairs of P-arrival and noise segments. The training 
parameters are: learning rate = 0.7, momentum rate = 0.9, system error threshold = 
0.00001 and pattern error threshold = 0.0001. The values of random initial weights 
are between -0.3 and +0.3. The iteration number is 101.
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Figure 4.6 (b). Weight map for a trained BPNN. Notation as in Figure 4.4 (a) This 
BPNN is trained with seven pairs of P-arrival and noise segments. The training 
parameters are: learning rate = 0.7, momentum rate = 0.9, system error threshold = 
0.00001 and pattern error threshold = 0.0001. The values of random initial weights 
are between -1.0 and +1.0. The iteration number is 152.



Chapter 4: Arrival picking from 3-C using BPNN 48

4.3.4 Output function of trained BPNN

In order to detect and pick an arrival, I first calculate the vector Mft), then 

take a windowed segment of Mft), normalize the segment, and finally feed it into the 

trained BPNN. The BPNN will give its output which is stored for subsequent analysis. 

The window is then shifted by one sample at a time. This procedure is repeated until 

the end of the seismogram is reached. If a segment is the same as the training P- 

arrival segment or background noise segment, the output should be (0,1) or (1,0). In 

general, the output (Oj(t), o2ft)) lies between the ideal for a signal or for background 

noise (for example: (0.2, 0.8) or (0.6, 0.4)). To provide a single indication of the 

onset, I define a function Nft) which highlights the difference between the actual 

output and ideal noise:

N(t) = [(l-ojfi? + o2(tf] (4.2)

Nft) = 1.0 if an input segment is the same as the training .P-arrival segments or Nft) 

= 0.0 if it is the same as the training background noise segment. Actually, Nft) is a 

measurement of the similarity between the input segment and the training segments. 

A time series of Nft) is obtained as the input window slides across the entire 

seismogram. Figure 4.7 shows an example of Nft) for one seismogram.

The significant feature of Nft) curve is that some peaks emerge from the 

smooth background. These peaks correspond to changes in Mft), with values implying 

the level of change. These in turn are dependent on changes of the amplitude and 

frequency through the weighting in the BPNN. A high value peak indicates an abrupt 

change and a low value peak indicates a smooth change. For example the Nft) curve 

in Figure 4.7, has two large peaks corresponding to P- and ^-arrivals. Note that this 

BPNN was only trained with P-arrival and background noise segments, so the 

prediction of «S-arrivals is an added bonus. In this case, the positions of their maxima 

occur exactly at the manually chosen onset times of the P- and ^-arrivals. There are 

also some small peaks in Nft) which show small changes in Mft), regarded as noise
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Date: 1984-07-04 
Time: 00hl6ml9s 
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Figure 4.7. The 3-C seismogram (Vertical, N-S and E-W components) of a local 
earthquake, its vector modulus M(t) and N(t) function from the output of the trained 
BPNN. Two vertical lines are automatically drawn by the BPNN and exactly indicate 
P- and S-arrival onset times without error. The dashed Une on N(t) shows the picking 
threshold (0.6) applied to N(t).



Chapter 4: Arrival picking from 3-C using BPNN 49

bursts. From the transformation point of view, the trained BPNN transforms the rate 

of change of the M(t) into the value of N(t) from which the changes are enhanced and 

can then be more easily detected.

4.3.5 Arrival detection

Usually, most arrivals correspond to high value peaks in Nft), so it is quite 

easy to detect and pick the arrivals, and to measure their onset times. Here, a threshold 

rule is sufficient to detect the arrival. In this rule, if the value of N(t) exceeds a 

threshold, such as 0.6, it flags an arrival. For example, in Figure 4.7, only two peaks, 

corresponding to the P- and ^-arrivals, exceed the threshold (0.6). It is interesting to 

note other peaks in this function, which indicate other wave arrivals, spikes or noise 

bursts, all of which are usually treated as false alarms. Figure 4.8 shows such an 

example including some spikes in the seismogram. Here, five peaks in Nft) exceed the 

threshold (0.6), indicating two spikes, a P-arrival, an S-arrival, and a noise burst. 

Other techniques are necessary to discriminate between these signals (see Section 

4.3.7).

4.3.6 Picking of arrival onset times

As the segments of M(t) are fed into the trained BPNN, Nft) reaches a 

maximum when the arrival time is at the eleventh point of the input window. Either 

side of this maximum, Mft) is shifted and the BPNN output Nft) decreases as shown 

on Figures 4.7 and 4.8. This implies that the onset time may be estimated by searching 

for a local maximum after Nft) exceeds the threshold. The positions of Nft) maxima 

exactly indicate the P- and ^-arrival onset times in Figures 4.7 and 4.8. Note that a 

maximum might have a precursor which connects with the main peak, together with 

a base length equal to the input segment. According to the training procedure, small 

values of input samples before the tenth point increase the value of Nft). As the arrival 

onset comes into the input window, the relative values of input samples before the 

onset decrease and the Nft) should increase. For a well-trained BPNN, Nft) should
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Figure 4 8 The 3-C seismogram (Vertical, N-S and E-W components) of a local 
earthquake its vector modulus M(t), N(t) function from the output of the trained 
BPNN and its degree of polarization. Two electrical spikes interfere with the data on the N-S component. Two vertical lines show the P- and S-arrivals picked by the 
BPNN automatically. The dashed line shows the picking threshold (0.6) applied to
N(t).
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gradually increase until the onset reaches the eleventh point and then N(t) gradually 
decrease until the onset moves out the input window. However, sometimes, for a less 
well-trained BPNN, as the onset moves forward in the window, N(t) may decrease at 
some points forming a precursor.

4.3.7 Post-processing for discarding noise bursts and spikes

In the Nft) curve, some peaks correspond to noise bursts of low amplitude and 
low SNR (small noise burst), and some to spikes which are typically one or two 
sample points of anomalously large amplitude compared with the background signal. 
They may be discarded by using conventional algorithms described below.

4.3.7.1 Discarding small noise burst

The features of a small noise burst are low amplitude and low SNR. Two 
criteria may therefore be used to discard this noise burst.

(a) mean-amplitude criterion

In the application of this criterion, the mean amplitude of a segment is 
calculated from the onset time to the end of the sliding window with 30 
samples.

mean -amplitude = — mi

where m, is the modulus value, and N is the window length. A threshold 
obtained from the background signals is then applied to the mean-amplitude. 
If the mean-amplitude is below the threshold, it is a small noise burst. For the 
data used, the mean-amplitude threshold is 16.

(b) mean-SNR criterion

The mean-SNR is different from the SNR defined in Chapter 1 . It is
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defined as the ratio between the mean-amplitudes after and before the onset.

mean-amplitude n ~ mwtmean-SNR = —————-——after~onset (4.4) 
mean-amplitudebefore _onset

If the mean-SNR is below a threshold, it is a small noise burst. For the data 
used, the threshold is 1.7.

4.3.7.2 Discarding spikes

A spike has the following features: (1) only one or two samples have much 

large values than other samples; (2) Its degree of polarization possesses a unique 

pattern (Section 3.3.3 and Figure 4.7) which is similar to a square wave with the 

amplitude of 1.0 and window length often. Two criteria can be used to discard the 

spike.

(a) spike-amplitude-ratio criterion

Three steps are used to define this criterion. First, in the sliding 

window in which an arrival is picked, the peaks of M(t) are chosen as p( (i < 

window-length). Second, the mean amplitude of peaks is calculated, excepting 

the largest two peaks. Thirdly, the ratio defined as:

., ,. , . mean-peak-amplitude ,* ^ spike-amplitude-ratio = ———-————-——— (4.5)
maximum -of-peaks

If this ratio is below a given threshold, it is a spike. For the data used, the 

threshold value was 0.1

(b) the degree of polarization criterion

This criterion is determined by counting the sample number of the 

degree of polarization whose value is greater than a threshold value. For the 

data used, the threshold value of the degree of polarization is 0.97 and the 

sample number is 8. If the counted number is greater than 8, it is a spike.
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These criteria can be used to filter out most small noise bursts and spikes, 

however, other kinds of noise burst which are more similar to seismic arrivals are still 

left for further identification. I confine the discussion of such discrimination to a 

secondary stage of the analysis scheme, i.e. the arrival identification, developed in 

Chapter 6.

4.4 PERFORMANCE OF THE TRAINED BPNN

4.4.1 Performance of the trained BPNN

Using the above approach, with an Nft) threshold of 0.6, it is possible to detect 

200 P-arrivals (95.2%) and 184 S-arrivals (87.6%) from 210 3-C recordings of the 

total dataset used in this experiment. If the Nft) threshold is decreased to 0.5, 205 

P-arrivals (97.6%) and 200 ^-arrivals (95.2%) are detected. Given that only seven 

pairs of P-arrival and background noise segments from station DP were used to train 

this BPNN, this result is extremely encouraging. The picked onset times are also 

compared with the results from an independent, conventional manual analysis. Figure 

4.9 shows the statistical comparison. Here, this BPNN can estimate at least 75.2% of 

the P-arrivals and 50.0% of the S-arrivals having onset times < 10ms (one sample 

increment) using a threshold of 0.6, or 77.1% of the P-arrivals and 53.8% of the 

^-arrivals with a reduced Nft) threshold of 0.5. The onset time is relatively insensitive 

to the threshold, confirming that the automatic picking is determined predominantly 

by the local maximum of Nft) rather than the Nft) threshold.

4.4.2 Improving performance by adding a new training dataset

Let us now consider the possibility of improving the arrival picks missed by 

the trained BPNN. These missed arrivals do not have clear first motions, and the 

changes of their Mft) are not visually obvious, with a small corresponding maximum 

in Nft). A more suitable strategy is to retrain the BPNN by including this type of data. 

This approach may be negated if too much training data needs to be used, as this
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Figure 4.9. Statistical comparison of P- and S-arrivals picked on a dataset of 210 
local earthquake records. A negative value of time error indicates a later pick by the 
trained BPNN approach than that given by visual analysis and the positive value 
indicates an earlier pick. MIS refers to all those unpicked arrivals, defined as picks 
with errors larger than 10 samples increments (100ms). N in the legend is the N(t) 
threshold. Results are shown both for the original (7) and retrained BPNN (9). Note 
the improved performance of the retrained BPNN.
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increases the training time, and there is the possibility of having to accommodate more 

subtle variations using a larger BPNN structure. In order to tackle this, I include two 

extra P-arrival segments which have different shapes from the other training P-arrival 

segments and two corresponding background noise segments (groups 8 and 9 in Figure 

4.3). This training procedure takes 112 iterations, with a system error of 0.000012 and 

all pattern errors less than 0.0001. Figure 4.10 shows an example of its performance 

for picking. Compared with Figure 4.7, this retrained BPNN has a smoother output. 

The two peaks in Nft) correspond of the P- and S-arrivals have the higher values, and 

other small peaks in Nft) have lower values than those in Figure 4.6. Its statistical 

result is also shown on Figure 4.9 compared with the previously trained BPNN. The 

retrained BPNN has an improved performance over the previous one. It detects 202 

(96.1%) of the P-arrivals and 204 (97.1) of the S-arrivals using a threshold for N(t) 

of 0.6. The estimated onset times are also more accurate, with at least 172 (81.9%) 

of the P-arrivals and 162 (77.1%) of the ^-arrivals (for N(t) > 0.6) or 173 (82.3%) of 

the P-arrivals and 163 (77.6%) of the ^-arrivals (for N(t) > 0.5) having onset times 

< 10ms (one sample increment). Only one P-arrival and three ^-arrivals have onset 

times with errors > 50ms (five sample increments), and eight P-arrivals and six 

S-arrivals are missed completely. Note that only two extra P-arrivals are detected but 

20 more ^-arrivals, with a commensurate increase in the picking ability. The ability 

to pick S-arrivals is improved as the additional P-arrival segments actually resemble 

many of the ^-arrivals. Again, decreasing the Nft) threshold to 0.5 does not 

significantly improve the picking, with only one more P-arrival and one more S-arrival 

picked. This comparison substantiates the well-known adaptive behaviour of BPNNs, 

that improvement can always be achieved by judicious choice of the training dataset.

4.4.3 Sensitivity to segment length

The time taken during analysis depends on the BPNN structure. The structure 

can be decreased by decreasing the nodes in the input layer and in the hidden layer. 

A reduction in the input nodes was tested by reducing from 30 to 20 input nodes,
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Figure 4.10. P- and S-arrivals picked by using a retrained BPNN with 9 pairs of P- 
and noise segements. The notations is as in Figure 4.6.
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keeping the hidden nodes and output nodes the same. The predicted onset time of 

every P-arrival of training segments also lies at the eleventh sample. I still use the 

nine pairs of P-arrival and background noise segments to train this BPNN. In this 

case, the training procedure is slower, and it took 613 iterations to reach a satisfactory 

convergence point with a system error of 0.000016 and all pattern errors less than 

0.0001. The results are now worse than before, although the number of unpicked 

P-arrivals remains the same (8 sets of records), with the number of unpicked S-arrivals 

increasing from 6 to 14 events. The onset estimation is worse, with only 57.6% of the 

P-arrivals and 55.2% of the S-arrivals having estimated times with error < 10ms. 

There are also a larger number of spurious picks. Figure 4.11 summarises the 

comparison for this case and the original one. The input nodes are also increased to 

40 for comparison, with the BPNN now taking 113 iterations to converge with a 

system error of 0.00003 and all pattern errors less than 0.0001. Now, only 67.8% of 

the P-arrivals and 63.8% of the S-arrivals are picked with error < 10ms. There is a 

larger number of unpicked arrivals in this case. For the BPNN with 40 or 30 input 
nodes, its performance also decreases when the predicted onset time of the P-arrivals 

is at other positions.

I should point out that the input segment length depends on the characteristics 

of the signals. It is suggested that the segment should include several complete cycles 

of a wavelet. It appears that reducing or increasing the number of input nodes 

dramatically affects the performance and there appears to be an optimum number of 

input nodes for our particular configuration. This reflects the general observation that 

the BPNN architecture must be specifically tailored to individual applications. This 

represents the 'Achilles heel' of ANN applications, and further optimization is required 

to adapt to particular event types.

4.4.4 Sensitivity to signal-to-noise ratio

One additional benefit of this approach is its ability to pick arrivals in low 

SNR condition, by using a BPNN trained with only high SNR P-arrival segments in
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Figure 4.11. Statistical comparison of for P- and S-arrivals picked on a dataset of 
210 local earthquake recordings by three BPNNs with different number of input 
nodes (see key). Notations as in Figure 4.8.
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this study. All training P-arrival segments have the SNRs greater than 6.3. Figure 4.12 

shows an example in which Nft) has two peaks, indicating two arrivals with high 

SNRs, 12.3 for the P-arrival and 7.3 for the ^-arrival. The peaks are nearly rectangular 

in shape, with a width of roughly 30 sample points. Figure 4.13 shows an example in 

which two Nft) peaks indicate two arrivals with low SNRs, 4.3 for the P-arrival and 

3.8 for the S-arrivals. Both peaks appear sharper. Although the 3-C particle motion 

does not display a significant difference between the seismic signal and the 

background noise for this case, Mft) does indicate the change in the nature of the 

seismic signal, and this change is translated to the narrow peak in Nft) which now 

indicates the onset. This reveals the possibility of interpreting the shape of these peaks 

to extend the ability of the trained BPNN beyond the boundaries of the training set. 

Figure 4.14 shows another low SNR example in which the P-arrival (SNR=2.0) and 

^-arrival (SNR=2.4) can be automatically picked by the BPNN although their onsets 

are not clear. Between the P- and ^-arrivals, another peak in Nft) slightly exceeds the 

threshold 0.6, indicating a small change in Mft). It is discarded by post-processing due 

to its low SNR (1.4) and low amplitude (12).

4.5 APPLICATION TO COMPLETE DATASET

4.5.1 Data characteristics

Here, I test the trained BPNN further by incorporating additional recordings 

from stations DP and AY, which now form the complete dataset of 1754 3-C 

recordings (877 from station DP, and 877 from station AY), described in Section 
3.2.2, from which only the high quality data were selected in the previous section. By 

checking the quality of these recording, I can only select 762 (371 from station DP 

and 391 from station AY) recordings which are usable for further processing. 

However, not all of them include usable seismic signals, for example, some of them 

only record the background signals, some of them consist of non-seismic signals, some 

of them do not have the clear first breaks of seismic arrivals, and some of them
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Station: DP 
Date: 1984-10-06 
Time: 20h01m42s 
Scale: 490
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Figure 4.12. An example of picking P- and S-arrivals in a high SNR condition 
Notations as in Figure 4.6. N(t) is computed from the output of a BPNN trained with 
nine pairs of P-arrival and background noise segments.
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Station: DP 
Date: 1984-05-04 
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Scale: 111
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Figure 4 13. An example of picking P- and S-arrivals in a low SNR condition. 
Notations as in Figure 4.6. N(t) is computed from the output of a BPNN trained with 
nine pairs of P-arrival and background noise segments.
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Station: AY 
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Scale: 52
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Figure 4.14. An example of picking P- and S-arrivals in a low SNR condition. 
Notations as in Figure 4.6. N(t) is computed from the output of a BPNN trained with 
nine pairs of P-arrival and background noise segments.



Chapter 4: Arrival picking from 3-C using BPNN 56

include two or more earthquake events in one recording. So these data are reduced 

further as manual picks for comparison with the BPNN results are only possible for 

356 P-arrivals and 342 ^-arrivals from 371 recordings at station DP and 300 P-arrivals 

and 285 ^-arrivals from 391 recordings at station AY. In total, 656 P-arrivals and 627 

^-arrivals are manually picked from 762 recordings. One should be aware that these 

statistics will appear more successful than if this procedure had been applied to all the 

data irrespective of quality.

4.5.2 Performance

The BPNN used in this more extensive test is the same as the previous one, 

trained by nine pairs of P-arrival and background noise segments, with 30 input nodes. 

With an Nft) threshold of 0.6, the BPNN can detect 345 (96.9%) of the P-arrivals and 

302 (88.3%) of the ^-arrivals from station DP, and 274 (91.3%) of the ^-arrivals and 

240 (84.2%) of the S-arrivals from station AY. Figure 4.15 shows the picking result 

related to event positions. It seems the BPNN's picking ability does not relate to the 

event positions. The overall success rates are 619 (94.3%) for the P-arrivals and 542 

(86.4%) for the S-arrivals. Most of the failures arise at the low SNRs of between 1 

and 3. The method appears to pick all phases with an SNR > 3. Once picked, the SNR 

does not affect the accuracy of the onset estimation. Figure 4.16 shows a comparison 

of the trained BPNN results with the manual picks, in which for station DP, 285 

(80.0%) of the P-arrivals and 233 (68.1%) of the S-arrivals have onset times within 

10ms of the expected manual values, and for station AY, 204 (68.0%) of the 

P-arrivals and 163 (57.2%) of the S-arrivals have an onset times within the same 

tolerance. The overall rates are 74% (489) for P-arrivals and 63.2% (396) for S- 

arrivals. In addition, only 7.0% of the /'-arrivals and 14.7% of the 5-arrivals have 

onset times with errors > 50ms (five sample increments) or are missed completely.

There are in total 37 /'-arrivals and 85 S-arrivals missed by the trained BPNN. 

They usually have indistinct first break motions so that their N(t) value is lower than 

0.6. However, most of them have clear peaks in Nft) corresponding to their onsets
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Figure 4.15(a). The location map of events which recorded in station DP. Each 
symbol represents an event whose P-arrival was manually picked. Grey circles 
represent P-arrivals which are picked by the BPNN, and grey squares represent 
P-arrivals which are missed by the BPNN. Black circles represent the training 
P-arrivals.
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Figure 4.15(b). The location map of events which recorded in station DP. Each 
symbol represents an event whose S-arrival was manually picked. Grey circles 
represent S-arrivals which are picked by the BPNN, and grey squares represent 
S-arrivals which are missed by the BPNN. Black circles represent the training 
P-arrivals (Note that this BPNN is trained by P-arrivals)
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Figure 4.15(c). The location map of events which recorded in station AY. Each 
symbol represents an event whose P-arrival was manually picked. Grey circles 
represent P-arrivals which are picked by the BPNN, and grey squares represent 
P-arrivals which are missed by the BPNN. Black circles represent the training 
P-arrivals which are from station DP.
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Figure 4.15(d). The location map of events which recorded in station AY. Each symbol represents an event whose S-arrival was manually picked. Grey circles represent S-arrivals which are picked by the BPNN and grey squares represent S-arrivals which are missed by the BPNN. Black circles represent the training 
P-arrivals from station DP.
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Figure 4 16. Statistical comparison of P- and S-arrivals picked by the BPNNon foe complete dataset compared with manual picks, with notations as in Figure 4.8. The success rate of the trained BPNN relative to manual reference picks is quoted as a 
percentage.
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from a smooth background. Reducing the picking threshold of N(t) might enable the 

picking of more arrivals. For example, as the threshold is reduced to 0.5, the BPNN 
can pick 10 more P-arrivals (7 from station DP and 3 from station AY) and 32 more 
^-arrivals (14 from station DP and 18 from station AY). The overall success rates at 

the 0.5 threshold level are 95.8% (629) for P-arrivals in which 98.8% (352) are from 
station DP and 92.3% (277) from station AY, and 91.7% (575) for S-arrivals in which 
92.4% (316) are from station DP and 90.9% (259) from station AY. Among these 
there are 15 (2 from station DP and 12 from station AY) P-arrivals and one ^-arrival 
from station AY with maximum of Nft) greater than 0.6, but these are discarded by 
post-processing due to their low amplitude or low mean-SNR. In the cases where 
manually picking of all ^-arrivals is not possible, a valid comparison with the BPNN 
results cannot be made, and they are excluded from our statistics.

Although small noise burst and spikes can be discarded by using the post­ 
processing (Section 4.3.7), some noise bursts which are similar to seismic arrivals are 
still picked by this approach. They might be other arrivals (neither P nor S), traffic 
noise, artificial events such as exploration shots or sonic booms, so it is difficult for 
me to give an accurate false alarm rate. But the test result shows its ability to suppress 
the noise output. For example, with Nft) threshold 0.6, noise bursts (false alarm) are 
picked from only 98 (74 from station DP and 24 from station AY) recordings in the 
762 recordings. Among the 98 recordings, most of them have only one noise burst 
detected by the BPNN from an entire recording.

4.6 DISCUSSIONS AND SUMMARY

4.6.1 Weight pattern analysis

In addition to demonstrating the ability of the trained BPNN to pick seismic 
arrivals, further insight is required to view the mechanism by which the trained BPNN 
performs its classification. This is achieved by investigating the weight map which 
shows the weight pattern of the trained BPNN. Figure 4.17 displays the weight maps



Chapter 4: Arrival picking from 3-C using BPNN 57a

(i)

CO
LU

30n 

28

26- 

24- 

22- 

20 

18- 

16- 

14 

12H 

10 

8-

4-

2-

0

CZD

~1————I————I————T

2468
HIDDENNODES

10

(2)

CO

0- 0'

ABOVE 
1.0 
0.8 
0.7 
0.6 
0.5 
0.4 
0.2 
0.1 
0.0

-0.1
-0.2
-0.4
-0.5
-0.6 -
-0.7
-0.8 •
-1.0 -
-1.1 - 

BELOW

n ——— i ——— i ——— i
2 4 6 8

HIDDENNODES

ABOVE 
1.7 
1.5 
1.3 
1.1 
0.8 
0.6 
04 
0.2 
0.0

-0.2
-0.4
-0.6
-0.8
-1.0
-1.3
-1.5
-1.7
-1.9 • 

BELOW

1.1 
1.1

• 1.0
• 0.8 

0.7 
0.6 
0.5 
0.4 
0.2 
0.1 
0.0

-0.1
-0.2
-0.4
-0.5
-0.6
-0.7
-0.8
-1.0
-1.1

1.9
• 1.9
• 1.7 

1.5
• 1.3 

1.1 
0.8 
0.6 
0.4 
0.2 
0.0

-0.2
-0.4
-0.6
-0.8
-1.0
-1.3
-1.5
-1.7
-1.9

10

Figure 4.17. Weight map for a trained BPNN. Notations as in Figure 4.4 (a). This 
BPNN is trained with nine pairs of P-arrival and background noise segments. The 
training parameters are: learning rate = 0.7, momentum rate = 0.9, system error 
threshold = 0.00001 and pattern error threshold = 0.0001.
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of the BPNN trained with nine pairs of P-arrival and background noise segments used 

in this study. These maps show the magnitudes of each weight connecting the different 

layers in the BPNN in Figure 4.2. In each weight map, solid circles are shaded on a 

grey scale corresponding to a magnitude range indicated by the key, with the top row 

of circles in map (1) and far right row of circles in map (2) representing the nodal 

thresholds.

Before training, the weights and thresholds are randomly initialized between 

-0.5 and +0.5, and after training their values range from -2.12 to +2.02. It appears that 

the pattern of weights connecting the input layer to the hidden layer is divided into 

two portions at the tenth sample, corresponding to the P-arrival onsets in the input 

signal in which before the onset the signal energy is low and after the onset the signal 

energy is high. The first portion between the first and tenth nodes shows a "high 

contrast" weight pattern in which the absolute values of most weights are large: for 

example, most weights connected to the first and seventh hidden nodes are large 

negative, and most weights connected to the fourth hidden node are large positive. The 

second portion between the eleventh and thirtieth nodes shows a "low contrast" weight 

pattern in which the absolute values of most weights are small. The weight pattern 

between the hidden nodes and the output nodes is related to the pattern between the 

input node and hidden node. For example, the weights connected to first, and seventh 

hidden nodes have large negative values when they connect to the noise output node 

and large positive values when they connect to the P output node, and the weights 

connected to the fourth hidden node have a large positive value when they connect to 

the noise node and large negative values when they connect to the P node. It seems 

the first, fourth, and seventh hidden nodes are active in the performance because the 

weights assigned to them have larger values than others.

According to the sigmoidal function and the input signal which contains all 

positive values normalized between 1 and 0, a negative weight decreases the node 

output and a positive weight increases the node output. In the case of a background 

noise segment being fed into the BPNN, because all values are high and the weights
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are large in the first portion, the weights in the second portion will be neglected, but 

the weights in the first portion will play the principal role in the BPNN output. The 

first and seventh hidden nodes give low output and the fourth hidden node gives the 

high output. So the final output in the output nodes will be (high, low) values for the 

noise signal. However, in the case of a P-arrival segment being fed into the BPNN, 

because of the low values before the .P-onset, the weights in the first portion can be 

neglected. The weights in the second portion play the principal role in the BPNN 

output which will be (low, high) values according to the training. As the sliding 

window moves along the seismogram, once the onset of an arrival goes into the input 

window, the values of input samples before the onset decrease, and the first portion 

will lose its effect on the output which attempts to reach the (low, high) state 

indicating a P-arrival. At the stage of the onset at the eleventh nodes, the output 

should reach the climax of the (low, high) state. However, as the onset moves into the 

position before the tenth nodes, the input values before the ten nodes increase, so that 

the first portion will strengthen its effect on the output which attempts to reach the 

(high, low) state indicating background noise. Although it is too complex to show the 

numerical result, this simple analysis shows a clear image of the details of BPNN 

performance under different conditions.

It is interesting to note that hidden nodes have different activities according to 

the values of weights connected to them. It seems that some hidden nodes (e.g. the 

first, fourth, and seventh nodes) can recognize the main features of an input segment 

and other hidden nodes may improve the BPNN performance by recognizing the subtle 

features of the input signal. In a comparison between Figure 4.17 and 4.4 (b), these 

two BPNNs have similar weight patterns, numeric examination shows that they have 

subtle changes. The changes are so small that the difference between two weight 

patterns is not obvious, Here, I list their values in Table 4.2 (A and B) for reference. 

One important feature is that the absolute value of most of weights in the BPNN 

trained with nine pairs of dataset are larger than those in the BPNN trained with seven 

pairs of dataset. Another feature is that the threshold of a node is inversely 

proportional to the weight values connected to it. The more the negative weights, and
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TABLE 4.2. A: Weight values of a trained BPNN with nine pairs of training datasets.

weight 
value

input 
node

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

threshold

output 
node

1
2

weight 
value

hidden node
1

-1.00
-0.55
-1.14
-1.20
-1.01
-1.26
-0.87
-1.17
-0.88
-1.07
0.07

-0.07
0.27
0.36
0.39
0.30
0.21
0.17
0.28
0.09

-0.17
-0.08
-0.71
-0.34
-0.45
-0.12
0.62
0.25

-0.12
-0.32
0.72

-2.22
2.02

1

2
0.26
0.04
0.25

-0.48
-0.01
0.35

-0.46
-0.03
0.21

-0.31
0.18

-0.30
0.00
0.34
0.11

-0.30
0.22
0.01
0.05

-0.37
0.26
0.01

-0.15
-0.19
0.08
0.44

-0.35
0.37
0.09

-0.45
0.33

0.38
0.12

2

3
-0.17
-0.12
-0.46
-0.63
-0.86
-0.11
-0.40
-0.10
-0.08
-0.74
0.22
0.16
0.36

-0.01
0.07
0.39

-0.36
0.30

-0.05
-0.38
0.04
0.06

-0.04
0.27

-0.14
-0.27
-0.28
0.19

-0.31
-0.14
-0.54

-0.47
1.03

3

4
0.52
0.67
0.67
0.26
1.02
0.18
0.96
0.56
0.63
0.82

-0.12
-0.26
0.00
0.37

-0.04
0.53
0.52
0.50

-0.01
-0.13
0.25
0.20
0.40
0.25
0.02

-0.11
-0.26
-0.02
-0.16
-0.33
-0.31

-1.12
-1.54

4

5
-0.23
-0.27
0.29

-0.10
0.52
0.41
0.12
0.63
0.32

-0.16
-0.20
0.23
0.21
0.03
0.24

-0.11
-0.09
0.38
0.22

-0.13
-0.35
0.37

-0.01
0.31
0.00
0.10
0.39
0.47
0.03

-0.12
-0.46

0.26
0.03

5

6
0.86
0.45
0.02
0.26
0.11
0.29
0.76
0.70
0.53
0.01
0.47
0.16
0.52
0.59
0.21
0.33
0.31

-0.36
-0.22
0.22
0.35
0.12
0.03
0.26
0.38

-0.12
-0.30
-0.08
0.46
0.56

-0.36

1.19
-0.46

6

7
-1.05
-1.16
-0.73
-0.41
-1.22
-0.15
-0.85
-0.49
-0.95
-0.91
0.16

-0.21
0.08
0.50
0.93
0.15
0.16
0.76
0.76
0.14
0.41

-0.13
-0.65
-0.47
-0.38
0.18
0.74

-0.29
0.25
0.22
0.72

-2.07
2.22

7

8
0.39

-0.04
0.19
0.15
0.24

-0.43
0.41

-0.22
0.55
0.15
0.23

-0.33
-0.19
-0.47
0.27

-0.22
0.15
0.03

-0.14
-0.22
0.30

-0.19
-0.25
-0.04
0.39

-0.42
-0.04
0.16
0.55
0.32
0.18

0.37
-0.63

8

9
-0.28
-0.53
-0.32
0.15

-0.58
0.02

-0.25
0.23

-0.32
-0.40
-0.44
-0.51
0.22
0.04

-0.25
-0.31
0.24
0.20
0.22
0.19

-0.09
-0.18
0.23
0.35
0.33

-0.24
0.29
0.13
0.23
0.26
0.27

-0.35
0.55

9

10
0.30

-0.32
-0.31
-0.34
-0.32
0.43
0.04
0.05
0.07

-0.36
0.23

-0.50
-0.01
-0.29
-0.29
0.28

-0.09
0.08

-0.39
0.34
0.07
0.09

-0.34
0.23
0.04
0.35
0.21
0.26
0.47
0.20
0.28

-0.23
-0.27

10
hidden node

0.18
-0.61
thre­

shold
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TABLE 4.2. B: Weight values of a trained BPNN with seven pairs of training datasets

weight 
value

input 
node

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

threshold

output 
node

1
2

weight 
value

hidden node
1

-0.96
-0.43
-0.83
-1.10
-0.83
-1.06
-0.71
-1.13
-0.73
-0.96
0.12

-0.04
0.34
0.65
0.54
0.22
0.29
0.29
0.30

-0.04
-0.33
-0.09
-0.55
-0.23
0.24

-0.09
0.56
0.56
0.21

-0.35
0.62

•O^H^———— ̂ M«

-1.88
1.73

1

2
0.21
0.00
0.27

-0.47
-0.05
0.38

-0.48
-0.03
0.21

-0.31
0.16

-0.30
0.02
0.39
0.13

-0.27
0.16
0.03
0.10

-0.40
0.24

-0.04
-0.18
-0.17
0.09
0.39

-0.31
0.38
0.10

-0.46
0.34

0.12
0.32

2

3
-0.19
-0.08
-0.32
-0.61
-0.80
-0.03
-0.32
-0.13
0.01

-0.72
0.22
0.17
0.41
0.12
0.16
0.39

-0.33
0.36

-0.05
-0.41
-0.01
0.02
0.00
0.41

-0.17
-0.31
-0.35
0.36

-0.19
-0.13
-0.56

-0.53
1.06

3

4
0.57
0.68
0.55
0.33
1.02
0.18
0.88
0.67
0.56
0.85

-0.10
-0.31
-0.09
0.20

-0.18
0.46
0.42
0.27
0.03

-0.06
0.29
0.31
0.33
0.14
0.13

-0.10
-0.05
-0.21
-0.32
-0.29
-0.17

-1.13
-1.49

4

5
-0.32
-0.33
0.27

-0.12
0.44
0.40
0.04
0.62
0.28

-0.21
-0.24
0.19
0.21
0.03
0.22

-0.10
-0.19
0.38
0.25

-0.15
-0.38
0.34

-0.09
0.31
0.01
0.03
0.44
0.43

-0.01
-0.14
-0.47

-0.03
0.28

5

6
0.91
0.45

-0.10
0.32
0.14
0.26
0.75
0.82
0.48
0.06
0.50
0.14

-0.62
-0.77
-0.28
-0.31
0.28

-0.50
-0.23
0.26
0.43
0.21
0.03
0.12
0.46

-0.09
-0.16
-0.25
0.30
0.60

-0.29

1.49
-0.74

6

7
-1.06
-1.00
-0.43
-0.43
-1.01
-0.03
-0.67
-0.64
-0.78
-0.92
0.17

-0.27
0.05
0.73
0.88
0.08
0.20
0.76
0.67
0.06
0.19

-0.14
-0.61
-0.20
-0.54
0.07
0.44
0.07
0.25
0.21
0.56

-1.86
2.02

7

8
0.45

-0.02
0.14
0.22
0.25

-0.43
0.40

-0.12
0.52
0.18
0.25

-0.32
-0.22
-0.59
0.20

-0.20
0.13
0.00

-0.14
-0.21
0.34

-0.18
-0.26
-0.13
0.42

-0.38
0.01
0.04
0.46
0.31
0.23

0.49
-0.68

8

9
-0.33
-0.55
-0.30
0.08

-0.59
-0.02
-0.24
0.14

-0.31
-0.44
-0.45
-0.52
0.23
0.14

-0.20
-0.33
-0.21
-0.18
0.22
0.21

-0.11
-0.14
0.24
0.43
0.33

-0.24
0.28
0.23
0.32
0.30
0.25

-0.37
0.54

9

10
0.31

-0.32
-0.31
-0.33
-0.32
0.43
0.02
0.06
0.06

-0.37
0.24

-0.51
-0.01
-0.31
-0.31
0.28

-0.11
0.08

-0.40
0.35
0.06
0.09

-0.35
0.22
0.03
0.36
0.21
0.25
0.47
0.18

-0.27

-0.26
-0.30

10
hidden node

0.27
-0.72
thre­
shold
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the larger their absolute values, the larger the threshold is.

Although it is not possible to fully understand the logic underlying the BPNN 

solution by visually inspecting these weight patterns, and the weight combinations in 

this map are not as easily distinguished as the parameter estimates, the weight map 

may still lend some perspective as to which aspects of the seismic waveform are more 

relevant to the solution than others, and thus be of benefit to further processing 

schemes or studies.

4.6.2 Effect of post-processing

The purpose of the post-processing described in Section 4.3.7 is to discard non- 

seismic arrivals, especially non-P- or non-iS-arrivals, so that the false alarm rate can 

be decreased to a minimum. In the post-processing, only small noise bursts and spikes 

are considered, but other kinds of noise can be discarded by using similar procedures 

if their particular characteristics can be described. Using the present post-processing 

techniques, spikes can be firmly discarded. A failure of this process is that a small 

spike and an arrival may interfere so that discarding this signal means losing the 

arrival. Another failure could occur if two spikes are too close. However, it should not 

be a problem in this dataset because there are only two cases in the 762 recordings. 

To discard the small noise bursts is somewhat problematical because some small P- 

and ^-arrivals are also discarded by this post-processing. The result shows that the 

mean-SNR criterion is more effective than mean-amp criterion. Particular values 

should be settled for them according to the recording quantity and the background 

noise level. Although the post-processing does not directly improve the ability to pick 

up the P- and ^-arrivals, the Nft) threshold can be decreased so that more seismic 

arrivals can be picked with most false alarms being discarded by post-processing.

4.6.3 Comparison with other picking algorithms

As discussed in Section 4.2, there are many picking algorithms already in use 

on many seismic networks worldwide. Table 4.3 gives a comparison of the 

performance of my technique for local earthquake data and the performance of a few
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Table 4.3: A summary comparison of selected picking methods

Author

Alien 
(1978)
Baer & 
Kradolfer 
(1987)
Joswig & 
Shulte-
Theis
(1993)
Klumpen 
& Joswig 
(1993)
Kracke
(1993)

Dai&
MacBeth 
(1995, this 
thesis)

Input data

single trace

single trace

single trace

3 -component 
recordings

modulus of 3-
component 
recordings
modulus of 3-
component 
recording

Method

STA/LTA

modified 
STA/LTA

Master-event 
correlation

generic 
polarization

LTA/
threshold

Artificial
neural 
network

Wave
type
P

P

P

P& S

P

P& S

Picking result

60-80%

local: 65.9% 
Region:79.5% 
Tele: 90%
80% for weak 
events

67% for P & S

96.5%

94% for P
86% for S 
74% for P 
63% for S

Time error

< 0.05 sec

< 1 sample 

< 3 sample
< 1 sample

< 50ms

not
mentioned

< 100 ms
< 100 ms 
< 10 ms 
< 10ms
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selected techniques in common use. Because articles tend to describe principles and 

show a few examples, these cannot be directly or wholly compared with my result 
which is applied to a specific dataset of local events, so that this table may not be 
truly representative of the optimal forms of each technique. As false alarms were not 
fully treated in my algorithm, I do not suggest that, without further tests and 
development, this method is better. However, it does appear that the small estimated 
error for both P-arrival and S-arrival analysis is potentially encouraging for future 
work. I believe that an additional strength of the BPNN is that it can deal with raw 
data. This contrasts with many other techniques, which rely upon complex 
mathematical methods to generate control parameters from raw data. The BPNN 
presented here is relatively quick to train and has been shown to be adaptive to 
various types of arrival.

4.6.4 Summary

A BPNN is used as a tool to pick P- and ^-arrivals from local earthquake data. 
This is achieved by utilizing the vector modulus of their 3-C recordings as the BPNN 
input. A discriminant function, N(t) 9 determined from the output of the trained BPNN, 
is then employed to define the arrival onset. 762 recordings from two stations in a 
local earthquake network are analyzed by a BPNN trained with only nine pairs of 
P-arrivals and background noise segments. Compared with manual picks, the results 
are encouraging, and demonstrate that a BPNN trained with a small subset of the data 
can detect 94.3% of the P-arrivals and 86.4% of the ^-arrivals. Using this to further 
pick the onset times, the success rates are 74.5% for the P-arrivals and 63.2% for the 
S-arrivals with an error of 10ms (N(t) threshold > 0.6). The ability of this BPNN, 
trained with only P-arrivals and background noise from station DP, is extended to 
picking ^-arrivals and to picking arrivals from station AY. Even though all the training 
dataset have high SNRs, the BPNN still works for seismograms with low SNRs. This 
illustrates the adaptiveness of the BPNN to various types of arrival. To fully 
demonstrate this feature, and avoid data-specific results, further tests are required on
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the BPNN, to extend its application to other 3-C dataset and 1-C dataset. It may be 

also possible to process regional or teleseismic recordings using this approach. In these 

cases, however, the BPNN architecture may need to be adjusted to suit the behaviour 

of these data.

These results, combined with the advantage of not requiring programs to 

construct special variables and parameters with complicated mathematics, suggest that 

the BPNN is a natural choice for such applications. All that is necessary is to select 

suitable example arrivals in a training set. The method is adaptive, and training sets 

can be altered to enhance particular features of different dataset. Retraining the BPNN 

by adding new training dataset is easy and quick, and can improve its performance. 

Although the training time can be long, especially if the BPNN architecture becomes 

large, once trained, the BPNN is sufficiently quick to operate in most real-time 

applications and its performance is objective and consistent. However, its performance 

depends upon the training set and its ability to predict cannot lie too far outside its 

experience. The exact boundaries of this behaviour have not yet been completely 

explored.
However, a pre-processing stage is required to discard excessively noisy and 

unusable recordings. They are not included in the statistics which I quote. For the 

dataset used in this thesis, although small noise bursts and spikes can be discarded by 

using post-processing, 12.9% of the detections include false alarms. Inspection of the 

seismograms reveals that most of the false alarms are similar to P- or S-arrivals, and 

in fact it would not be possible to distinguish them visually if only one segment is 

available. Additional information is required for this task. These needs to be 

discriminated at a later stage.
The experiment on selecting training parameters shows that the performance 

of a trained BPNN is mainly determined by the training dataset. Changing the training 

parameters does affect the convergence of the learning procedure which might be 

important in the case of a large BPNN and a large training dataset is involved. 

However it does not affect the weight pattern of the trained BPNN and so its 

performance should be similar. This will allow us to devote our attention only to the
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performance of the trained BPNN. It can make a complex problem simple. Although 

an optimum architecture exists for a particular application, finding such an optimum 

architecture is dependent on operator's experience and knowledge of the problem, and 

sometimes it is difficult. This limitation may be due to the performance of the BPNN 

being not yet fully understood. However, certain other ANN designs might be a 

solution (Fahlman and Lebiere 1990; Kusuma and Brown, 1992).

4.6.5 Future work

This approach shows that the BPNN has potential as a tool to pick seismic 

arrivals automatically from the vector modulus for 3-C recordings. However, 3-C 

recordings are not always available. There is a need to pick seismic arrivals from 1 -C 

recordings. This current approach, limited to 3-C component recordings, should 

therefore be adapted for 1-C recordings. In Chapter 5, an BPNN approach is 

developed to tackle this. I should point out that this approach and that developed in 

Chapter 5 do not attempt to identify the types of picked arrival. However, in seismic 

analysis, once arrivals are picked, they need to be classified according to their 

properties. This is the second stage in an automatic analysis system. In Chapter 6, I 

will develop another BPNN approach to tackle this.



Chapter 5: Arrival picking from 1-C using BPNN 64

CHAPTER 5:

ARRIVAL PICKING FROM SINGLE-COMPONENT 

RECORDINGS USING BPNN

5.1 INTRODUCTION

In Chapter 4, I developed an approach which used a BPNN to pick seismic arrivals 

from the vector modulus of 3-C recordings of local earthquake data. This BPNN, 

similar in operation to the procedure adapted by an analyst, is trained by presenting 

some different P-arrival and background noise. After training is accomplished, it can 

recognize new arrivals from a variety of new seismograms. A BPNN trained with nine 

pairs of P-arrival and background noise segments can pick 94% of P-arrivals and 86% 

of S-arrivals. Unfortunately, not all seismic stations have 3-C seismometers or can 

provide consistently high quality 3-C recordings due to the failure of one or more 

components. There is therefore a practical need to pick seismic arrivals from 1-C 

recordings in these situations.

There is no shortage of techniques in the literature which claims to pick 

seismic arrivals from the vertical component recordings. However, as I mentioned in 

Section 4.2, most of them are conventional methods which are not adaptive, working 

well only under certain conditions, but quite often not producing good results. As the 

BPNN has shown a good performance in picking seismic arrivals from 3-C recordings, 

I shall apply this BPNN approach to pick seismic arrivals from 1-C recordings, i.e. 

from Vertical component (V-C), East-West component (E-W) or North-South 

component (N-S). In this chapter, a modified version of the BPNN approach is 

developed to tackle this problem. This is achieved by utilizing the absolute values of 

1-C recordings as the BPNN input. As the 1-C recordings have different overall 

characteristics from the 3-C recordings, the original approach might not give rise to 

an equally good performance in picking arrivals from 1-C recordings. In fact since the
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information content is reduced, it is quite likely to be inferior. I must, therefore, 

choose a different BPNN structure, different training dataset and different post­ 

processing procedures in this approach.

5.2 APPROACH OF PICKING ARRIVALS FROM 1-C RECORDINGS

The approach used in this chapter is similar but not equivalent to that used in Chapter 

4. A BPNN is trained with a small number of training samples and is then used as a 

filter acting on the entire seismogram by sliding a window along the seismogram. The 

output of the BPNN yields a time series which is to be interrogated for a decision 

regarding the seismic arrivals. This approach is now adapted to the problem of picking 

arrivals from 1-C recording. As the performance of this method depends on the input 

characteristics, the training dataset, and the BPNN's structure, especially the input node 

number, it is necessary to modify them so that a better performance is obtained.

5.2.1 Characteristics of 1-C recordings

In contrast with 3-C recordings, 1-C recordings only represent behaviour of the 

particle motion of a seismic signal in orthogonal directions. Although 1-C recordings 

are strongly dependent on the source position and ray direction, the arrival of a 

seismic signal may still be observed on each separate 1-C recording by changes in the 

relative amplitude, frequency, and polarization characteristics. Despite the fact that 

complete polarization and propagation information cannot be obtained from 1-C 

recordings, various characteristics such as amplitude and frequency information might 

be obtained from them by taking different transformations. In Section 3.3.1, I have 

discussed five basic characteristic functions. Here I choose the absolute value function 

as the input signal of the BPNN because it has the highest fidelity and processing 

speed and is most objective amongst the five functions. I do not use the 1-C recording 

itself because the first motion of an arrival has two directions (up and down) and is 

source dependent. Figure 5.1 schematically shows the method with this modification. 

The amplitude of 1-C recordings is also strongly dependent on the magnitude and
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Figure 5.1. Schematic diagram showing the method of using a BPNN to pick seismic 
arrivals. Here, the input of the BPNN is the absolute value of the 1-C recordings 
(lower diagram). A trained BPNN is treated as a filter moving across the entire 1-C 
recording by a sliding window. The output of the BPNN (upper diagram) yields a 
time series which enhances the changes in the modulus to indicate the arrival onsets.



Chapter 5: Arrival picking from 1-C using BPNN 66

epicentral distance of an earthquake. In order to utilize a small training dataset to 

cover all the recordings with different amplitudes, each segment of absolute values is 

individually normalized before it is fed into the BPNN. Usually, the V-C recordings 

are used for picking arrivals in many other methods, so my first attempt is to use this 

approach to deal with the V-C recordings. The training dataset must be reselected 

from the V-C recordings of local seismic data because the onset times of P-arrivals 

in V-C recordings, sometimes, are different from those in the vector modulus.

5.2.2 BPNN structure

As the input signal is changed, the BPNN structure need to be changed to suit 

this problem too. As I discussed in Section 4.6.4, for each problem there exists an 

optimum BPNN, but finding it might be difficult. There is no fixed rule to select the 

structure and it must be determined by a process of trial and error. At the beginning, 

I still employed a BPNN with the same structure as that in Chapter 4 which has three 

layers with 30 nodes in the input layer, 10 nodes in the hidden layer and two nodes 

in the output layer. The input of this BPNN is a segment of normalized absolute 

values of the V-C recordings of local earthquake data with length 290ms (30 sample 

nodes). Two output nodes of the BPNN flag the input segment with (0,1) for 

P-arrivals and (1,0) for background noise. If this trained BPNN does not have a good 

performance, I shell optimize its structure to improve its performance in subsequent 

experiments.

5.2.3 Rules of picking arrivals

In this approach, during the learning procedure, several pairs of P-arrival and 

pre-event background noise segments are used together to train the BPNN by using 

the Delta Rule. After training, the BPNN acts on the entire 1-C recording by sliding 

a window along the absolute values trace. The resulting output is a time series N(t)\
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which is to be interrogated for a decision regarding arrivals. This function exaggerates 

the difference between the desired output and the ideal background noise. A peak in 

Nft) corresponds to a characteristic change in M(t). If the change is similar to a 

training P-arrival, the peak value should be close to 1. Usually, the peak value 

indicates the similarity between a change and a training P-arrival. The same rules are 

used to detect and pick arrivals as in Chapter 4:

1) detect an arrival using a simple threshold rule on Nft).

2) pick the arrival onset time using the local maximum of Nft).

5.2.4 Post -processing procedures

Some post-processing procedures are also employed in this approach to discard 

noise bursts and spikes as in Chapter 4. In order to discard small noise bursts, the 

same two criteria are used but the threshold of the mean-amplitude criterion is reduced

to 10.0 because the mean amplitude of the modulus of 3-C recordings is J3 times the

mean amplitude of 1-C recordings. In order to discard the spikes, only the spike- 

amplitude-ratio criterion is used. The degree of polarization criterion is not used 

because it cannot obtained from 1-C recordings.

5.3 OPTIMIZING BPNN STRUCTURE AND TRAINING DATASET

In this approach, the training parameters are the same as those used in Chapter 4. 

Their values are:
learning rate = 0.7

momentum rate = 0.9

system error threshold = 0.00001

pattern error threshold = 0.0001
However, the BPNN structure and training dataset may need to be varied to suit this 

specific problem. In this section I optimize them by a process of trial and error.
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5.3.1 Optimizing BPNN structure

At the beginning, the absolute values of V-C recordings of the same P-arrival 

and background noise segments are used to train a BPNN which is the same as that 

used in Chapter 4, with 30 input nodes, 10 hidden nodes and two output nodes. The 

training P-arrivals are positioned so that their arrival onset times are fixed at the 

eleventh sample as in Chapter 4. The training procedure takes 217 iterations (about 

half minute of interactive CPU time on a VAX 4000). After training, this trained 

BPNN is used to process some complete V-C recordings. Unfortunately, its 

performance is not good. In contrast with the output Nft) from the modulus of 3-C 

picking (Figure 4.7), Nft) from this BPNN has many peaks corresponding to false 

alarms (Figure 5.2 (a)) which, nevertheless, might be discarded by post-processing. In 

order to improve its performance, one method is to change the BPNN structure. The 

results from Chapter 4 show that the number of input nodes strongly affects the 

performance, and the number of hidden nodes does not. I need only to optimize its 

structure by changing the number of input nodes corresponding to the window length 

of the input segment. Several experiments have shown that as the number of input 

nodes is increased from 30 to 40, the BPNN trained by the same dataset with the 

P-onset time now at the twenty-first sample point has a much better performance than 

the previous one. Figure 5.2 (b) shows an example for the same recordings in which 

the Nft) has a clearly smooth background with only two large peaks corresponding to 

the P- and S-arrivals. Here, I am satisfied with the present output Nft) of the BPNN. 

So the BPNN used in this approach has a three-layer structure with 40 input nodes, 

10 hidden nodes and 2 output nodes (Figure 5.3).

5.3.2 Optimizing the training dataset

Although the above BPNN shows a good output Nft), its ability of detecting 

and picking arrivals is not good enough when it is used to process some other 

seismograms. As the performance of a trained BPNN depends on the training dataset 

too, I reselected suitable training dataset by a process of trial and error. Finally, ten
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Station: DP 
Date: 1984-07-04 
Time: 00hl6ml9s 
Scale: 377
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Figure 5.2. Two examples of the BPNN output N(t), vertical component recording 
and its absolute values. Vertical lines are drawn automatically by this approach. 
Dashed lines are picking threshold (0.6) applied to N(t). (a): BPNN has 30 input 
nodes, (b): BPNN has 40 input nodes. Both are trained with nine pairs of P-arrival 
and background noise segments.
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Output Layer

10

Hidden Layer

Input Layer
40

Figure 5.3. The structure of a BPNN for seismic arrival picking from 1-C recordings. 
It has three layers including an input layer with 40 nodes, a hidden layer with 10 
nodes and an output layer with two nodes. The BPNN input is a segment of absolute 
values of 1-C recordings. The two output nodes indicate the input segment with (0,1) 
as a P-arrival and (1,0) as background noise.
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pairs of P-arrival and background noise segments from station DP shown in Figure 

5.4 are used to train the above BPNN. The training procedure took 173 iterations with 

a system error of 0.000017 and all pattern errors less than 0.0001. Figure 5.5 show the 

result of using this BPNN to process the same recording as in Figures 5.2. The shape 

of peaks of N(t) shows that this BPNN is better trained than that in Figure 5.2 (b).

5.3.3 Effect of learning parameters

In Section 4.3.3.2, I obtained Equation 4.1 which represents the relationship 

between the convergence of the learning procedure and the learning rate rj and 

momentum rate a. Can this equation be applicable to the BPNN used in this chapter 

whose structure and training dataset are changed? Several experiments have been 

performed to verify Equation 4.1 for the BPNN used in this Chapter. Table 5.1.A 

shows the iteration number required in training as a function of the different r\ and a, 

but with the same thresholds of system error (0.00001) and pattern error (0.0001). It 

shows that Equation 4.1 can be applied to this BPNN. Table 5.2.B also shows the 

calculated result which is fit with the data in Table 5.1.A. It should be noted that the 

fit is better when r\ and a are smaller. The error between the real iteration and the 

calculated one is mainly proportional to rj. Compared with the result from Chapter 4 

(Table 4.1), in both cases, the real iteration numbers are greater than the calculated 

ones.

5.4 TESTING ON COMPLETE DATASET

After optimizing the BPNN's structure and training dataset, the trained BPNN is 

applied to the same dataset including 762 recordings (371 from station DP and 391 

from station AY) which was used in Chapter 4. Due to the raypath, some P-arrivals 

and some S-arrivals are absent from 1-C recordings, especially from small events, and 

some arrivals have different onset times on different 1-C recordings. This means that 

I must manually pick the P- and ^-arrival onset times from three 1-C recordings again 

and use them as references to compare with the BPNN's picking results. The trained
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Figure 5.4. Ten pairs of P-arrival and background noise segments of absolute values 
of V-C recordings used for training a BPNN. Noise segments are extracted prior to 
the P-arrivals in the same seismograms. Arrows on P-arrival segments indicate 
arrival onset times used to train the BPNN, all are at the twenty first sample. These 
segements are individually normalized before being fed into the BPNN.
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Station: DP 
Date: 1984-07-04 
Time: 00hl6ml9s 
Scale: 377

Absolute Values
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Figure 5.5. The BPNN output N(t), V-C recording and its absolute values of a local earthquake. Vertical lines are drawn automatically by this approach. Dashed line is the picking threshold (0.6) applied to N(t). The BPNN has 40 input nodes and is trained with ten pairs of P-arrival and background noise segments as in Figure 5.4.
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Table 5.1.A The iteration number in training with different learning rate r| and 
momentum rate a. (NC means non-convergence)

Iteration 
number

T!

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1

a
0.0

10134
5093
3416
2580
2081
1751
1518
1346
1214
1111
1029

0.1
9124
4588
3079
2326
1876
1579
1368
1212
1092
998
923

0.2
8116
4084
2741
2072
1672
1407
1219
1080
973
889
821

0.3
7108
3579
2404
1819
1469
1237
1072
950
856
782
722

0.4
6098
3074
2067
1565
1265
1067
925
820
739
675
624

0.5
5089
2569
1730
1312
1062
897
779
691
624
570
527

0.6
4086
2063
1393
1058
859
726
632
563
509
466
430

0.7
3069
1557
1054
804
655
556
486
434
393
359
331

0.8
2058
1050
714
548
450
385
338
300
272
253
243

0.9
1045
541
371
292
240
203
173
153
144
136
126

1.0
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC

Table 5.1.B The calculated iteration number by using Equation 4.1

Iteration 
number

T!

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1

a
0.0

10134
5067
3378
2534
2027
1689
1448
1267
1126
1013
921

0.1
9120
4560
3040
2280
1824
1520
1302
1140
1013
912
829

0.2
8107
4053
2702
2026
1621
1351
1158
1013
901
811
737

0.3
7093
3547
2364
1773
1418
1182
1013
886
788
711
644

0.4
6080
3040
2026
1520
1216
1013
868
760
676
608
552

0.5
5067
2533
1689
1267
1013
844
723
633
563
507
460

0.6
4053
2026
1351
1013
810
675
579
506
450
409
360

0.7
3040
1520
1013
760
608
506
434
380
337
304
276

0.8
2026
1013
675
506
405
338
289
253
225
203
184

0.9
1013
506
338
253
202
169
145
126
112
101
92

1.0
—
—
—
—
—
—
—
—
—
—
—
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BPNN will be used to deal with three 1-C recordings respectively.

5.4.1 Testing on vertical component recordings

In total, 648 P-arrivals (350 from station DP and 298 from station AY) and 

509 S-arrivals (334 from station DP and 175 from station AY) are visually picked 

from these V-C recordings. Using a N(t) threshold value of 0.6, the BPNN detected 

603 (93.1%) of the P-arrivals, 328 (93.7%) and 275 (92.2%) from stations DP and 

AY, and 382 (75.0%) of the S-arrivals, 289 (86.5%) and 93 (53.1%) from stations DP 

and AY, respectively. Figure 5.6 shows the picking results related to event positions. 

A total of 45 (18 from station DP and 27 from station AY) P-arrivals and 124 (42 

from station DP and 82 from station AY) are missed by this approach. Among these 

missed arrivals, 36 (11 from station DP and 25 from station AY) P-arrivals and 6 (one 

from station DP and 5 from station AY) S-arrivals are picked by the BPNN when their 

outputs are greater than 0.6, but discarded by post-processing due to their low 

amplitude, low SNR or low spike-amplitude-ratio. However, these arrivals have clear 

first motions and can be picked visually. 7 P-arrivals (4 from station DP and 3 from 

station AY) and 16 S-arrivals (3 from station DP and 13 from station AY) are picked 

but with error larger than 100ms (ten samples increments). Other missed arrivals with 

low BPNN outputs do not have clear first motions so that visual picking is also 

difficult. If the Nft) threshold is reduced to 0.5, this method can pick two more P- 

arrivals from station DP and 39 (17 from station DP and 22 from station AY) more 

^-arrivals. The picking rates for this are 93.4% for P-arrivals (94.3% from station DP 

and 90.2% for station AY), and 82.7% for ^-arrivals (91.6% from station DP and 

65.2% from station AY).
Figures 5.7 shows the comparison of the trained BPNN picking results with 

manual picks. With the Nft) threshold 0.6, 66.2% of the P-arrivals (67.1% for station 

DP and 65.1% for station AY) and 52.7% of the S-arrivals (58.9% for station DP and 

40.6% for station AY) have onset times with error < 10ms (one sample increment). 

3.4% of the P-arrivals (2.8% for station DP and 4.0% for station AY) and 4.5% of the
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Figure 5.6(a). The location map of events which recorded in station DP. Each symbol represents an event whose P-arrival was manually picked in vertical component. Grey circles represent P-arrivals which are picked by the BPNN, and grey squares represent P-arrivals which are missed by the BPNN. Black circles represent the 
training P-arrivals.
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Figure 5.6(b). The location map of events which recorded in station DP. Each symbol represents an event whose S-arrival was manually picked in vertical component, Grey circles represent S-arrivals which are picked by the BPNN, and grey squares represent S-arrivals which are missed by the BPNN. Black circles represent the training P-arrivals.
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Figure 5.6(c). The location map of events which recorded in station AY. Each symbol represents an event whose P-arrival was manually picked hi vertical component. Grey circles represent P-arrivals which are picked by the BPNN, and grey squares represent P-arrivals which are missed by the BPNN. Black circles represent the 
training P-arrivals from station DP.
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Figure 5 6(d) The location map of events which recorded in station AY. Each symbol represents an event whose S-arrival was manually picked in vertical component. Grey circles represent S-arrivals which are picked by the BPNN, and grey squares represent S-arrivals which are missed by the BPNN. Black circles represent the 
training P-arrivals from station DP.
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Figure 5 7. Statistical comparison of P- and S-arrivals picked by the BPNN on the complete dataset compared with manual picks with notations as in Figure 4.8 The success rate of the trained BPNN relative to manual reference picks is quoted as a 
percentage.
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S-arrivals (5.7% for station DP and 2.2% for station AY) have an estimated error 

between 50ms (five sample increments) and 100ms (ten sample increments) whereas 

6.9% of the P-arrivals (5.1% for station DP and 9.1% for station AY) and 24.4% of 

the ^-arrivals (14.1% for station DP and 46.9% for station AY) have estimated greater 

than 100ms (ten sample increment) or are absent. The noise bursts are picked from 94 

(12.3%) recordings in the total 762 recordings, in which 73 are from station DP and 

21 are from station AY. Among the 94 recordings, most of them have only one noise 

burst in one recording.

5.4.2 Testing on E-W component recordings

From the E-W component, 651 (356 from station DP and 295 from station AY) 

P-arrivals and 623 (342 from station DP and 281 from station AY) S-arrivals are 

manually picked. This BPNN can detect 582 (89.4%) of the P-arrivals, 327 (91.9%) 

and 255 (86.4%) from stations DP and AY, and 566 (90.9%) of the S-arrivals, 308 

(90.1%) and 258 (91.8%) from stations DP and AY respectively, by using the N(t) 
threshold of 0.6. Figure 5.8 shows the picking results related to event positions. If the 

N(t) threshold is reduced to 0.5, it can detect 587 (89.2%) of the P-arrivals, 330 

(92.7%) and 257 (85.1%) from stations DP and AY, and 580 (93.1%) of the ^-arrivals, 

315 (92.1%) and 265 (94.3%) from stations DP and AY respectively.

Figure 5.9 also shows the comparison of the picking results with manual picks. 

With the N(t) threshold 0.6, 59.2% of the P-arrivals (58.9% and 60.0% for stations DP 

and AY respectively) and 61.2% of the ^-arrivals (54.6% and 69.0% for stations DP 

and AY respectively) have onset times with error < 10ms (one sample increment). 

3.4% of the P-arrivals (3.9% and 2.7% for stations DP and AY respectively) and 3.7% 

of the ^-arrivals (3.8% and 3.6% for stations DP and AY respectively) have an 

estimated error between 50ms (five sample increments) and 100ms (ten sample 

increments) whereas 11.6% of the P-arrivals (8.1% and 15.9% for stations DP and AY 

respectively) and 10.1% of the ^-arrivals (9.9% and 10.3% for stations DP and AY 

respectively) have an estimated error greater than 100ms (ten sample increment) or are
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Fieure 5 8(a) The location map of events which recorded in station DP. Each symbol n even whose P-a?rival was manually picked in E-W component. Grey slTl>-Livds which are picked by the BPNN, and grey squares P^vals which are missed by the BPNN. Black circles represent the training P-arrivals of vertical component from station DP.
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Figure 5.8(b). The location map of events which recorded in station DP. Each symbol represents an event whose S-arrival was manually picked in E-W component. Grey circles represent S-arrivals which are picked by the BPNN, and grey squares represent S-arrivals which are missed by the BPNN. Black ckcles represent the training P-arrivals of vertical component from station DP.
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Figure 5.8(c). The location map of events which recorded in station AY. Each symbol represents an event whose P-arrival was manually picked in E-W component. Grey circles represent P-arrivals which are picked by the BPNN, and grey squares represent P-arrivals which are missed by the BPNN. Black circles represent the 
training P-arrivals of vertical component from station DP.
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Figure 5.8(d). The location map of events which recorded in station AY. Each symbol represents an event whose S-arrival was manually picked in E-W component. Grey circles represent S-arrivals which are picked by the BPNN, and grey squares represent S-arrivals which are missed by the BPNN. Black circles represent the 
training P-arrivals of vertical component from station DP.
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Figure 5.9. Statistical comparison of P- and S-arrivals picked by the BPNN on the 
complete dataset compared with manual picks with notations as in Figure 4.8. The 
success rate of the trained BPNN relative to manual reference picks is quoted as a 
percentage.
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absent.

Among the missed 76 P-arrivals (26 from station DP and 47 from station AY) 

and 63 S-arrivals (34 from station DP and 29 from station AY), 36 P-arrivals (9 from 

station DP and 27 from station AY) and 5 S-arrivals (1 from station DP and 4 from 

station AY) are detected by the BPNN but are discarded by post-processing. 6 P- 

arrivals (3 from station DP and 3 from station AY) and 13 ^-arrivals (7 from station 

DP and 6 from station AY) are picked but with error larger than 100ms (ten sample 

increments). The noise bursts are picked from 158 (20.7%) recordings in the total of 

762 recordings, in which 104 and 54 are from stations DP and AY respectively. 

Among the 158 recordings, most of them have only one noise burst in one recording.

5.4.3 Testing on N-S component recordings

From the N-S component, 621 (356 from station DP and 265 from station AY) 

P-arrivals and 623 (341 from station DP and 282 from station AY) S-arrivals are 

manually picked. This BPNN can detect 516 (83.1%) of the P-arrivals, 321 (90.2%) 

and 195 (76.4%) from stations DP and AY, and 543 (90.9%) of the 5-arrivals, 302 

(88.6%) and 241 (85.4%) from stations DP and AY respectively, by using the Nft) 

threshold of 0.6. Figure 5.10 shows the picking results related to event positions. If 

the Nft) threshold reduced is to 0.5, it can detect 528 (85.0%) of the P-arrivals, 327 

(91.8%) and 201 (75.8%) from stations DP and AY, and 561 (90.0%) of the ^-arrivals, 

307 (90.0%) and 254 (90.1%) from stations DP and AY respectively.

Figure 5.11 also shows the comparison of its picking results with manual picks. 

With the Nft) threshold 0.6, 60.3% of the P-arrivals (63.8% and 55.8% for stations DP 

and AY respectively) and 57.7% of the S-arrivals (59.5% and 55.7% for stations DP 

and AY respectively) have onset times with error < 10ms (one sample increment). 

3.2% of the P-arrivals (2.8% and 3.8% for stations DP and AY respectively) and 5.8% 

of the S-arrivals (3.2% and 8.9% for stations DP and AY respectively) have estimated 

with error between 50ms (five sample increments) and 100ms (ten sample increments) 

whereas 16.6% of the P-arrivals (9.6% and 26.0% for stations DP and AY
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Figure 5.10(a). The location map of events which recorded in station DP. Each symbol represents an event whose P-arrival was manually picked in N-S component. Grey circles represent P-arrivals which are picked by the BPNN, and grey squares represent P-arrivals which are missed by the BPNN. Black circles represent the training P-arrivals of vertical component from station DP.
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Figure 5.10(b). The location map of events which recorded in station DP. Each symbol represents an event whose P-arrival was manually picked hi N-S component. Grey circles represent S-arrivals which are picked by the BPNN, and grey squares represent S-arrivals which are missed by the BPNN. Black circles represent the 
training P-arrivals of vertical component from station DP.
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Figure 5.10(c). The location map of events which recorded m station AY. Each symbol represents an event whose P-arrival was manually picked in N-S component. Grey circles represent P-arrivals which are picked by the BPNN, and grey squares represent P-arrivals which are missed by the BPNN. Black circles represent the training P-arrivals of vertical component from station DP.



Chapter 5: Arrival picking from 1-C using BPNN 72d

40.8

40.7

40.6 _

40.5

•OBM<2.0 
M<1.0 
M<0.0

40.8

^ 40.7

40.6

40.5
29.9 30.0 30.1

Figure 5.10(d). The location map of events which recorded in station AY. Each 
symbol represents an event whose P-arrival was manually picked in N-S component 
Grey circles represent S-amvals which are picked by the BPNN, and grey squares 
represent S-amvals which are missed by the BPNN. Black circles represent the 
training P-amvals of vertical component from station DP.
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Figure 5 11 Statistical comparison of P- and S-arrivals picked by the BPNN on the complete dataset compared with manual picks with notations as in Figure 4.8. The success rate of the trained BPNN relative to manual reference picks is quoted as a 
percentage.
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respectively) and 12.7% of the ^-arrivals (11.1% and 14.5% for stations DP and AY 

respectively) have an estimated error greater than 100ms (ten sample increment) or are 

absent.

Among the missed 103 P-arrivals (34 from station DP and 69 from station AY) 

and 79 ^-arrivals (38 from station DP and 41 from station AY), 49 P-arrivals (11 from 

station DP and 38 from station AY) but no ^-arrivals are detected by the BPNN, 

however, they are discarded by the post-processing. One P-arrival from station DP and 

19 S-arrivals (one from station DP and 18 from station AY) are picked but with error 

larger than 100ms (ten samples). The noise bursts are picked from 139 (18.2%) 

recordings in the total 762 recordings, in which 95 are from station DP and 44 are 

from station AY. Among the 139 recordings, most of them have only one noise burst 

in one recording.

5.4.4 Overall performance from three 1-C recordings

In order to obtain a clear image about the BPNN performance for 1-C 

recordings, Table 5.2 summarizes the results from both the 1-C method and the 3-C 

method. This table shows that stations DP and AY have different performance on the 

1-C recordings. As the data quality at station DP is higher than that at station AY, the 

source orientation has less effect on station DP than on station AY. For example, with 

the Nft) threshold 0.6, the picking rates from three 1-C recordings, for the data from 

station DP, are from 90.2% to 93.7% for the P-arrivals and from 86.1% to 90.1% for 

the ^-arrivals, but for the data from station AY, they are from 76.2% to 92.2 for P- 

arrivals and from 53.1% to 91.8% for ^-arrivals.

Detecting and picking results from station AY are poorer than those from 

station DP. This is largely a consequence of the data quality. The recordings on station 

DP usually have large amplitude, stronger energy and higher SNR than those on 

station AY. The arrivals on station DP are much clearer than on station AY, so the 

arrival times picked by the BPNN from station DP are more accurate than those from 

station AY. The source orientation has a larger effect on the picking of 5-arrivals than
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TABLE 5.2 A. Summary of picking performances for P-arrivals from different 
component recordings.

N(t) threshold
3-C

V-C

E-W

N-S

manual
BPNN

manual
BPNN

manual
BPNN

manual
BPNN

DP
0.6 0.5

356
345

96.9%
352

98.8%
350

328
93.7%

330
94.3%

356
327

91.9%
330

92.7%
356

321
90.2%

327
91.8%

AY
0.6 0.5

300
274

91.3%
277

92.3%
298

275
92.2%

275
90.2%

295
255

86.4%
257

87.1%
265

195
76.2%

201
75.8%

Overall
0.6 0.5

656
619

94.3%
629

95.8%
648

603
93.1%

605
93.4%

651
582

89.4%
587

90.2%
621

516
83.1%

528
85.0%

TABLE 5.2 B. Summary of picking performances for S-arrivals from different 
component recordings.

N(t) threshold
3-C

V-C

E-W

N-S

manual
BPNN

manual
BPNN

manual
BPNN

manual
BPNN

DP
0.6 0.5

342
302

88.3%
316

92.4%
334

289
86.5%

306
91.6%

342
308

90.1%
315

92.1%
341

302
88.6%

307
90.0%

AY
0.6 0.5

285
240

84.2%
259

90.9%
175

93
53.1%

115
65.2%

281
258

91.8%
265

94.3%
282

241
85.4%

254
90.1%

Overall
0.6 0.5

627
542

86.4%
575

91.7%
509

382
75.0%

421
82.7%

623
566

90.9%
580

93.1%
623

543
87.2%

561
90.0%
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that on the picking of P-arrivals. For example, S-arrivals of the V-C recordings in 

station AY are drowned out by the P-wave coda for some small events, so it is 

difficult to detect and pick these ^-arrivals, even by visual analysis. Figure 5.12 shows 

such an example in which the S-arrival in V-C recordings has a smooth first motion 

and is consequently not picked by the BPNN, but on the horizontal components, it is 

clearer. This S-arrival is picked from both N-S and E-W components (Figure 5.13). 

In contrast with the S-arrival, the P-arrival is missed from the two horizontal 

components. However, both P- and S-arrivals are picked from the modulus (Figure 

5.14). It is difficult to say from which component the method has the best 

performance. For example, for P-arrivals, the best performance on station DP is from 

the V-C recordings, but on station AY, the best one is from the E-W component; for 

S-arrivals, on station DP, the best performance is still from the V-C recordings, but 

on station AY, the best one is from the N-S component.

It seems that the arrivals are more easily picked by the BPNN when an event 

is closed to the training event. However, there are some big events, closing to the 

training ones, whose arrivals are missed by the BPNN. In contrast with this, there are 

some small event, far from the training ones, whose arrivals are picked by the BPNN. 

There is not any obvious relationship between the picking ability of this trained BPNN 

and event positions.
Three onset times obtained from three 1-C recordings of the same arrival might 

be different due to the signal quality and SNR which are dependent on the source 

position and many other factors. For the event shown on Figures 5.12 and 5.13, the 

P-onset time picked from V-C recordings is 40ms (four samples) later than that from 

modulus, and both the S-onset times from the E-W and the N-S component are 10ms 

(one sample) later than the modulus results. In comparison with the manual picks, the 

onset times picked from the modulus are more accurate.

It should also be noted that this BPNN is trained only with P-arrivals and 

background noise from station DP. However, it can be applied to different stations for 

picking other kinds of arrivals, although the picking ability varies as the data quality
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Figure 5.12. The BPNN output N(t), V-C recording and its absolute values of a local 
earthquake. Vertical lines are drawn automatically by this approach. Dashed line is the 
picking threshold (0.6) applied to N(t). The BPNN has 40 input nodes and is trained 
with ten pairs of P-arrival and background noise segments as in Figure 5.4.
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Figure 5 13 The BPNN output N(t), E-W in (a) or N-S in (b) recording and their absolute vaiues. The BPNN is the same as in Figure 5.9. Vertical lines are drawn automatically by this approach. Dashed lines are picking threshold (0.6) applied to 
N(t).
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Figure 5.14. 3-C seismogram (Vertical, N-S and E-W components), its vector modulus M(t) and N(t) function from the output of a trained BPNN used in Chapter 4. Two vertical lines are automatically drawn by the BPNN and exactly indicate P- and S-arrival onset times without error. The dashed line on F(t) shows the picking 
threshold (0.6) applied to N(t).
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is changed. This shows that seismic arrivals have some general characteristics. This 

BPNN trained with P-arrivals has learned these general characteristics, and can use 

them to pick other kind of arrivals, even from other stations. However, if an arrival 

has specific characteristics which are quite different from this general character, the 

BPNN will not be able to pick it.

In comparing the noise bursts picked from three 1-C recordings, the result from 

V-C recordings is better than those from N-S and E-W component recordings which 

have similar results. Most of the noise bursts are similar to the seismic arrivals. Even 

in manual analysis, it is also difficult to discard them by only using the noise burst 

segments itself. An analyst must compare the noise burst with other picks, even with 

the data from other stations to discard them.

The above results suggest that a trained BPNN can be applied to all three 

components individually. It is then possible to combine and compare results from each 

component, in which some arrivals may be absent, to obtain both P- and S-arrival 

onset times, such as the case shown on Figures 5.12, 5.13 and 5.14. Even if one of 

the three components fails, the other two can give useful results. The arrival times 

picked by the BPNN on three 1-C recordings are, sometimes, different, which is 

thought to be due to the effect of raypath or variations in the inhomogeneous upper 

crust.

5.5 DISCUSSION AND SUMMARY

5.5.1 Comparison with 3-C method.
Table 5.2 also shows the picking results from 3-C method. Compared with the 

results from the 1-C method, the 3-C method has quite obviously a better 

performance, being more accurate. For example, in the 3-C method, 74.5% of the P- 

arrivals and 63.2% of the S-arrivals are picked with error < 10ms, but in the 1-C 

application the best result is only 66.2% for the P-arrivals from the V-C recordings 

and 61.2% for the S-arrivals from the E-W recordings picked with the same error.
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Visually checking the seismograms shows that the arrivals onset times picked from 

the 3-C modulus are closer to the manual picks than those from 1-C recordings. The 

seismic arrivals on 1-C recordings are sometimes not clear or missing, especially for 

the S-arrivals, for example, only 175 ^-arrivals are manually picked from the V-C 

recordings of station AY, half of those (305) picked from the modulus. But even of 

the 175 S-arrivals, some have no clear first motion, or very low SNR and amplitude. 

In this case, the BPNN loses its ability to detect them. It seems that if an analyst can 

manually pick more arrivals, so can the BPNN; but if the analyst has difficulty, the 

BPNN has also. This is due to the fact that the BPNN is trained by manual picking 

results and uses this experience to deal with new data, so that it cannot go beyond the 

manual picking results.

Comparing the noise bursts picked from 1-C recordings and 3-C recordings, 

the 3-C method is found to be superior to the 1-C method and can efficiently suppress 

the noise output. This is because that the seismic arrivals in three 1-C recordings are 

synchronous and the noise are not synchronous. The modulus of 3-C can sum up the 

changes of an arrival which are projected on the three 1-C recordings, but the noise 

in the three 1-C recordings may counteract each other. Using 3-C recordings also 

requires a small BPNN so that its speed in training and processing is quicker than that 

of 1-C recordings.

5.5.2 Weight pattern analysis

In order to better understand the mechanism by which this BPNN performs its 

classification, a weight map for this BPNN is shown on Figure 5.15. This map is 

similar to those shown in Chapter 4, but the BPNN with 40 input nodes was trained 

by ten pairs of P-arrival and background noise segments. Before training, the weights 

and thresholds were randomly initialized between -0.5 and +0.5.

This map shows that, after training, the values of weights and thresholds range 

from -2.41 to 2.26. Like the weight pattern in Figure 4.17, this pattern also shows that 

the weights connecting the input layer to the hidden layer are divided into two 

portions at the twentieth sample, corresponding to the /'-arrival onset in the input
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Figure 5.15. Weight map for a trained BPNN with 40 input nodes. Notation as in 
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Vertical component of P-arrival and noise signals. The training parameters are: 
learning rate = 0.7, momentum rate = 0.9, system error threshold = 0.00001 and 
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signal where before the onset the signal energy is low and after the onset the signal 

energy is high. The first portion between the first and twentieth nodes also shows a 

"high contrast" weight pattern in which the absolute values of most weights are large, 

for example, most weights connected to the first and sixth hidden nodes are larger 

negative, and most weights connected to the fifth hidden node are larger positive, but 

the second portion between the twenty-first and fortieth nodes also shows a "low 

contrast" weight pattern in which the absolute values of most weights are small. The 

weight pattern between the hidden nodes and the output nodes is relative to the pattern 

between the input nodes and hidden nodes. For example, the weights connected to 

first, and sixth hidden nodes have large negative values when they connect to the noise 

output node and large positive values when they connect to the P-output node, and the 

weights connected to the fifth hidden node have large positive values when they 

connect to the noise output node and large negative values when they connect to the 

P-output node. It seems that the first, fifth, and sixth hidden nodes are active in the 

performance because the weights connected to them have larger values than others. 

Comparison with the weight map in chapter 4 shows that the two BPNNs have 

similar weight patterns, although their structure and the training datasets are quite 

different. Their similar weight patterns means they operate in the same way and can 

do the same work. The significant feature in the two weight patterns is that each of 

them is divided into two portions at the onset of the training P-arrival segments. These 

two portions have different functions in doing the picking work. For example, the 

"high contrast" portion has a strong effect on picking P-arrival and the "low contrast" 

portion has a strong effect on picking background noise. Another feature is that some 

hidden nodes are more active than others.

5.5.3 Summary

A BPNN is used as a tool to pick P- and S-arrivals from three 1-C recordings. 

The input of this BPNN is the absolute value of the 1-C seismic recordings. This 

BPNN is trained by a small subset of the data (ten P-arrival and background noise
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segments) from the V-C recording of station DP, and can successfully detect and pick 

seismic arrivals not only from V-C recordings but also from the other two horizontal 

components and other stations. The performance is different for each of the three 1-C 

recordings due to strong effects of raypath and source position. The effect on P- 

arrivals is smaller than on S-arrivals. For example, the picking rates for P-arrivals are 

93.1% from the V-C recordings, 89.4% from the E-W recordings, and 83.1% from the 

N-S recordings; but the picking rates for S-arrivals are 75.0% from the V-C 

recordings, 90.9% from the E-W recordings, and 87.2% from the N-S recordings. The 

accuracy of the onset times picked from each individual 1 -C recordings is similar. For 

example, with the error < 10ms (one sample), 66.2% , 59.2% and 63.3% of the P~ 

arrivals and 52.7%, 61.2%, and 57.7% of the ^-arrivals are picked from the V-C, E-W 

and N-S recordings respectively.

In comparison to the 3-C picking, the performance of 1-C picking is lower, 

with the associated disadvantage of a larger BPNN structure. It depends on the raypath 

effects, and the accuracy of arrival onset times is reduced. But it has an obvious 

advantage of flexibility over 3-C picking as it can be used on 1-C recordings when 

3-C recordings are not available.
The work in this and the preceding chapters demonstrate the adaptive nature 

of the BPNN. Both the 1-C approach and the 3-C approach employ the same computer 

programs. Only the BPNN structure and the training dataset are changed. Further, 

without changing the programs, this BPNN approach might also be used to deal with 

regional and teleseismic earthquake data.
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CHAPTER 6: 

ARRIVAL TYPE IDENTIFICATION USING BPNN

6.1 INTRODUCTION

As I mentioned in Chapter 1, the estimation of arrival onset times includes two steps: 

1) arrival picking, which is a reliable and accurate estimation of the onset times of 

seismic arrivals; and 2) arrival identification, which classifies individual arrivals into 

categories relating to their polarization, amplitude and propagation characteristics. In 

Chapters 4 and 5, I developed a BPNN approach for arrival picking. In this chapter, 

I will develop another BPNN approach to tackle the problem of arrival identification. 

For the purpose of automation of seismic analysis, identifying arrival types is 

more difficult than picking their onset times. Perhaps, the most efficient method of 

identifying arrival types is still manual analysis. In some cases, though, for a seismic 

network, arrival identification based on horizontal velocity from af-k filter can provide 

a major simplification of the interpretation task (Mykkeltveit and Bungum, 1984; 

Bache et al, 1990; Kvaerna and Ringdal, 1992). Der, Baumgardt and Shumway (1993) 

have also investigated the feasibility of adaptive and automatic recognition of regional 

arrivals by a wavefield extrapolation scheme for data from a mini-array. However, for 

single station data, only a few methods can be used to pick some special types of 

arrivals. Roberts, Christoffersson and Cassidy (1989), based on the auto- and 

cross-correlations of the three orthogonal components within a short time window, 

detect the arrival of a P-wave or a linearly polarized S-wave. Cichowicz (1993) 

developed an S-phase picker which depends on a well-defined pulse of the first-arrival 

P-wave. Tong (1995) developed a phase separator based on phase features extracted 

from intelligent segmentation of seismograms. Tong and Kennett (1995) also 

developed an approach to identify later seismic phase by analysing the energy content 

of seismic traces. There is no general method to identify the P- and S-arrival
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simultaneously and the automation of identifying arrivals is still an unresolved 
problem. In this chapter, a BPNN approach is designed to identify both P- and S- 
arrivals by using the polarization information of the seismic arrivals. Although not 
perfect, this method is shown to be more successful overall than those mentioned 
above.

6.2 DEGREE OF POLARIZATION

One of the features distinguishing P- and ^-arrivals is their polarization directions, i.e. 
the polarization direction of a P-arrival is parallel to its propagation direction, and the 
polarization direction of an ^-arrival is perpendicular to its propagation direction in 
an isotropic medium. It seems simple to identify P- and S-arrivals by comparing their 
polarization directions with their propagation directions because calculating the 
direction is easy with the 3-C recordings now available. However, it is not practicable 
because the polarization direction is related to the propagation direction which is not 
available before an event is analyzed.

Another feature distinguishing the P- and S-arrivals is their polarization state. 
In general, it is observed that the direct P-arrival is predominately linearly polarized 
while the arrivals following this direct P-arrival, such as S-arrivals, have considerably 
more complex polarization patterns involving phase shift (Basham and Ellis, 1969; 
Roberts and Christoffersson, 1990). The polarization state of a seismic arrival can be 
measured by using the degree of polarization (DOP) discussed in Section 3.3.3. 
According to this definition, the DOP is independent of the source orientation. For a 
linearly polarized wave, the DOP equals 1.0, and for a completely unpolarized or 
circularly polarized wave, it equals 0.0 (Cichowicz, Green and Brink, 1988). 
Cichowicz (1993) pointed out that both P- and S-wave arrivals exhibit a high degree 
of linear polarization, but the P-wave coda manifests a generally elliptical polarization 
with a significantly lower value of DOP. For real data, although the first S-arrival is 
usually associated with a far larger value of the DOP than that of the P-wave coda,
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it does not reach a value of 1.0 due to the effect of the P-wave coda. The variation 

of this quantity along the seismogram forms a pattern which may indicate the type of 

a wave. Figure 6.1 shows a typical example in which the DOP has a high value 

pattern for a P-arrival, a middle value pattern for an S-arrival and a low value pattern 

for a noise burst.

This particular definition of DOP does not consider the signal amplitude. 

Different arrival types not only have different polarization characteristics, but also 

have different amplitude characteristics. To consider both polarization and amplitude 

information, I define a modified function of the DOP:

MF(t) = F(t) x (6.1)

Where M(f) is a smoothed relative function of modulus Mft) of the 3-C recording in

a window which is also independent of the source position. The normalization factor 

is taken from the window between the onset point and the following ten points, in 

which the maximum is defined as unity. Note that MF(t) and F(t) may have slightly 

different patterns. As the MFft) patterns are complex and identifying them requires an 

intensive amount of the pattern recognition, it is difficult to find a method which is 

both simple and reliable to distinguish their types. Here the identification is 

accomplished by using a BPNN to recognize the MFft) patterns. The MFft) is 

presented to the BPNN in a segment selected from a window in which the arrival 

onset-time is at the centre.

6.3 APPROACH OF IDENTIFYING ARRIVAL TYPES USING BPNN

Fig 6.2 shows a flow chart of the approach of identifying arrival types using a BPNN. 

In this approach, unlike the BPNN approach of picking arrivals developed in Chapters 

4 and 5, which use a BPNN as a filter to deal with an entire seismic trace, only arrival 

segments are input into the BPNN. An arrival segment is selected by its onset time 

which is obtained using another method, such as the conventional STA/LTA method
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Figure 6.1 The degree of polarization (lower diagram) determined from 3-C seismograms (upper diagram). Three vertical lines indicate the arrival onset times of 
a noise burst, a P-arrival and an S-arrival. The degree of polarization has a low value for the noise burst, a high value for the P-arrival and a middle value for the S-arrival. The corresponding modified DOP are shown below them respectively 
(arrowed).



Chapter 6: Arrival identification using BPNN 8 lb

Three component recording 
, y(t), z(t)]

Computing 
modulus

Computing degree 
of polarization 

[DOP]

Picking arrivals 
(onset time)

Selecting segment 
ofm(t)

Selecting segment 
of DOP

Modifying DOP

Selecting 
Training data

Training BPNN Trained BPNN

m
N P S

Figure 6.2 The flow chart of the approach of identifying arrival types using a BPNN.
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or my own BPNN picker. Here, I use the BPNN picker developed in Chapter 4 to pick 

the arrival onset times.

The first step in this approach is to calculate the vector modulus (m(tj) and the 

DOP. The second step is to use a BPNN arrival picker to pick possible arrivals and 

measure their onset times. The third step is to use the onset times to select the 

segments of DOP and the modulus. The fourth step is to modify the DOP by using 

the smoothed relative modulus. The modified DOP is then fed into a BPNN for 

training and testing. The fifth step is to select a suitable training dataset of the 

modified DOP to train the BPNN. The final step is to use this trained BPNN to 
process the new data and identify the arrival types.

6.3.1 Input characteristics: modified DOP, MF(t)

In this approach, the input to the BPNN is the MF(t) segment of an arrival 

which is calculated using Equation 6.1. This arrival segment is selected by its onset 

time which is previously picked and the onset time is positioned at the centre of the 

segment. Due to the picking error, the onset time may not be exactly at the centre of 

the segment. It is found that this may affect the output. In order to avoid this effect, 

an adjustment of the onset time is necessary to ensure that the performance of the 

trained BPNN is not affected by the onset time error. For each MF(t) segment, its first 

local maximum after the onset-time is set at the centre of the segment. The MF(t) 

segment has 60 samples or 590ms length which are chosen to include the complete 

MF(t) pattern of an arrival.

6.3.2 BPNN structure

The BPNN used in this approach also has three layers (Figure 6.3). Its input 

layer has 60 nodes, giving a MF(t) segment with a fixed 590ms (60 samples) length. 

There are three nodes in its output layer to flag the result: the output is (1,0,0) for a 

noise burst, (0,1,0) for a P-arrival, and (0,0,1) for an ^-arrival in training. Ten hidden 

nodes are chosen after a process of trial and error with different training runs.



Chapter 6: Arrivla identification using BPNN 82a

Noise P S

Output Layer

10
Hidden Layer

Input layer

Figure 6.3. The structure of a BPNN for seismic arrival identification. It has three layers including an input layer with 60 nodes, a hidden layer with 10 nodes and an output layer with three nodes. The BPNN input is a MF(t) segment of the 3-C seismogram. The three output nodes indicate the input segment with (1,0,0) as a noise burst, (0,1,0) as a P-arrival and (0,0,1) as an S-arrival.
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6.3.3 Training procedure

In this procedure, only a small number of recordings from station DP are used 

to train the BPNN. As the BPNN performance depends on the training datasets, 

selecting the training dataset is crucial. For example, if incorrect or inconsistent data 

are used to train the BPNN, the BPNN cannot be expected to give a correct answer 

to new data. P- and 5-arrivals with similar MFft) patterns should be avoided in the 

training datasets because the BPNN cannot distinguish them and the training procedure 

might not be convergent. At the beginning of training, only three MF(t) segments are 

selected for training, including a noise burst, a P-arrival and an S-arrival with the 

desired output (1,0,0; 0,1,0; 0,0,1) respectively. After training, this BPNN is used to 

handle other data. Using manual analysis results, another three segments, which are 

wrongly identified by this BPNN, are selected, combining with the former training 

segments, to train this BPNN again. This procedure is repeated until the performance 

of the trained BPNN cannot be improved by adjusting the training dataset. Figure 6.4 

shows all training segments of MFft) used in this particular study.

The training parameters used in this approach are still the same as those used 

in Chapters 4 and 5:

learning rate = 0.7

momentum rate = 0.9

system error threshold = 0.00001

pattern error threshold = 0.0001

With the above selected training dataset and training parameters, the final training 

procedure with nine groups of training datasets from station DP took 1352 iterations 

(less than two minutes CPU time on a VAX4000). The system error reached 0.000023 

with all pattern errors less than 0.0001. After this training procedure, the BPNN is 

ready to identify the seismic arrivals in the whole dataset.

I have previously used Equation 4.1 to show the relationship between the 

training parameter (learning rate rj and momentum rate a) and the training 

convergence (iteration number). However, in the approach described in this chapter, 

the BPNN's structure and the training datasets are greatly changed. Can this equation
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Figure 6.4. Nine groups of MF(t) segments of noise bursts, P-arrivals and 
S-arrivals for training a BPNN for arrival identification. Arrows on segments 
indicate the pre-picked onset times for these arrivals and all at the 31st sample.
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still be applied to this BPNN? Several experiments were performed to verify this. 

Table 6.1 shows the training result and the calculated result. Unfortunately, this result 
is worse than those in Sections 4.3.3.2 and 5.3.3. It means the arrival type 

identification is less reliable than the arrival picking. For this BPNN, the difference 
between the real iteration and the calculated one depends on two factors: the learning 

parameters (r| and a) and the system error. When r) and a are small, the differences 
are small. As rj increases, the difference increases. This reflects the fact that a large 

deviation can take place in the weight space with a high r| in the training procedure 
(Pao, 1988). During the learning procedure with a high t|, the weight changes might 

jump over the desired weight state and necessitate re-searching. As a result, the 
learning procedure requires more iterations to reach this state. Although using the 

momentum term can reduce this jump, it cannot be totally overcome. A large training 
parameter may therefore not necessarily result a short learning procedure, in direct 
contrast to the result in Sections 4.3.3.2 and 5.3.3. The iteration number is also related 
to the system error. It seems that the deviation of iteration number is proportional to 
the deviation of the system errors from that at r| = 0.1 and a = 0.0. In the training 
procedure, I have mainly used the pattern error to terminate the training procedure. 
The training procedure stops when all training patterns have an error less than 0.0001, 
but the system error, varying with different learning parameters, does not need to 
reach its threshold (0.00001). A small system error corresponds to a long learning 
procedure. It seems that a better fit between the real and calculated data is obtained 

if the system error is used to terminate the training procedure.

6.3.4 Identifying arrival types

As each MF(t) segment is fed into the trained BPNN, the BPNN outputs three 

values: o,, o2 , and o3 . For the training segments, the output should be desired ones: 

(1,0,0) for the noise burst, (0,1,0) for the P-arrival, and (0,0,1) for the ^-arrival. For 

non-training segments, the output (o,, o2 , and o3) is a measurement of similarity 
between a new segment and training segments. If a non-training segment is similar to 
a training segment, the BPNN output will close to a desired output of the training
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Table 6.1. The iteration number in training with different learning rate r| and 
momentum rate a. In each cell, the top number is the training iteration, the 
middle one is the system error (xlO"5), and the bottom one is the calculated 
iteration by using Equation 4.1. NC means non-convergence.

Iteration 
number

T!

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

a
0.0

20809 
2.23 

20809
10615 
2.35 

10405
7288 
2.25 
6936
5528 
2.66 
5202
5466 
1.91 
4162
3851 
3.31 
3468
3567 
2.64 
2973
2827 
3.62 
2601
2747 
2.98 
2312
2980 
1.40 
2081
2397 
1.72 
1892

0.1
18737 
2.24 

18728
9628
2.32 
9364
6587
2.24 
6243
5199 
1.90 
4682
4418 
2.79 
3746
3523 
3.00 
3122
3309
2.35 
2675
2754 
2.76 
2341
3067 
1.97 
2081
2245 
2.60 
1873
1923 
2.39 
1703

0.2
16667
2.24 

16647
8617 
2.30 
8327
5883
2.23 
5549
4535 
2.51 
4162
4029 
2.86 
3329
3291 
3.04 
2775
2982 
2.41 
2378
2592 
2.30 
2081
2402 
2.14 
1850
2794 
1.27 
1665
1776 
2.77 
1513

0.3
14586
2.25 

14566
7600
2.27 
7283
5176 
2.22 
4855
3890
2.35 
3641
3933 
1.80 
2913
3039 
3.41 
2428
2650 
2.80 
2081
2327 
2.43 
1820
2674 
1.67 
1618
3036 
1.00 
1457
2126 
1.63 
1324

0.4
12510 
2.27 

12485
6588
2.24 
6242
4464 
2.22 
4162
3396 
2.30 
3121
3535 
1.53 
2497
3430 
1.84 
2081
2829 
1.71 
1784
2468 
1.67 
1561
2694 
1.13 
1387
3130 
1.00 
1249
2220 
1.84 
1135

0.5
10431 
2.29 

10405
5587 
2.19 
5202
3744 
2.24 
3468
2989 
2.26 
2601
2608 
2.19 
2081
3553 
1.14 
1734
2936 
1.07 
1486
2818 
1.00 
1300
2627 
1.31 
1156
2037 
2.42 
1041
1604 
2.84 
946

0.6
8356
2.33 
8324
4577 
2.13 
4162
3033 
2.31 
2775
1906
2.35 
2081
2319 
1.68 
1665
3127 
1.00 
1387
2678 
1.00 
1189
2659 
1.34 
1041
2795 
1.19 
925
1734 
1.76 
832
1774 
1.50 
757

0.7
6293 
2.41 
6243
3499 
2.12 
3121
2507 
2.45 
2081
2672 
1.19 
1561
3044 
1.00 
1249
2572 
1.00 
1040
2087 
1.78 
892
1589 
1.70 
780
1422 
3.03 
694
1883 
2.01 
624
1437 
1.31 
568

0.8
4324 
2.41 
4162
2351 
2.70 
2081
1912 
2.18 
1387
1439 
2.19 
1040
1788 
1.36 
832

2188 
1.16 
694
1696
2.34 
585

2507 
1.28 
520

2898 
1.60 
462
1342 
2.69 
416

2079 
2.15 
378

0.9
2405 
2.10 
2081
1356 
2.27 
1040
1051 
3.08 
694

2369 
1.81 
520
1270 
2.14 
416

2051 
1.61
347
1352 
2.28 
297
1833 
1.45 
260
1204 
1.60 
231
547 
3.22 
208

3762 
1.23 
189

1.0
NC

NC

NC

NC

NC

NC

NC

NC

NC

NC

NC
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segment. In order to identify segment types, I only need to seek the maximum of the 

three outputs (o 1? o2, o3). If o, is the maximum, this segment belongs to noise bursts; 

if o2 is the maximum, it belongs to P-arrivals; and if o3 is the maximum, it belongs 

to S-arrivals. Normally, the trained BPNN should have a high output and two low 

outputs in its three output nodes. However, sometimes it has two or three high outputs 

or three low outputs. This means these segments are quite different from training 

segments, but their types can still be identified by the maximum of the BPNN's 

output.

6.4 PERFORMANCE OF TRAINED BPNN

To test the trained BPNN performance, all the previously picked arrival segments are 

fed into this trained BPNN. As I mentioned in Section 3.3.3, the MF(t) patterns are 

different for the data from stations DP and AY. In order to analyse the performance 

of this approach clearly, I will analyse the data from stations DP and AY separately.

6.4.1 BPNN's performance for data from station DP

For the data from station DP, a BPNN picker picked 345 P-arrivals, 302 S- 

arrivals and 174 noise bursts from 371 recordings. A BPNN for arrival identification 

is finally trained with nine groups of MF(t) segments of noise bursts, P-arrivals and 

S-arrivals from station DP shown on Figure 6.4. Figure 6.5 shows an example in 

which this trained BPNN can correctly identify the arrival types. For the noise burst 

and P-arrival, the trained BPNN outputs one high value and two low values in its 

output nodes, (1.1, 0.0, -0.1) for the noise burst, (0.0, 1.0, -0.1) for the P-arrival, 

closing to the training output, but for the S-arrival, its output has one high, one middle 

and one low values (-0.1, 0.6, 1.1), which is rather different from the training output. 

Table 6.2.(a) shows the performance of this trained BPNN for identification. Figure 

6.6 shows the identifying results ralated to event positions. This BPNN has a better 

performance in identifying the /'-arrivals (82.3%) than for identifying ^-arrivals
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Figure 6.5. 3-C seismograms, the vector modulus, and the degree of polarization of a local earthquake. Three vertical lines indicate the arrival onsets of a noise burst, a P-arrivals and a S-arrival. In this case, the BPNN correctly identifies them with its output (1.1, 0.0, -0.1), (0.0,1.0, -0.1) and (-0.1, 0.6,1.1) respectively.
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Table 6.2 The performance of the trained BPNN for arrivals identification. This 
BPNN is trained with 9 groups of training segments from station DP and has 60 input 
nodes.

(a) identifying results for the data from station DP

Pre-picked arrivals

BPNN identifying P

BPNN identifying S

BPNN identifying N

P-arrivals 
(345)

82.3% (284)

10.4% (36)

7.2% (25)

S-arrivals 
(302)

22.0% ( 67)

62.6% (189)

15.2% ( 46)

Noise (174)

9.2% (16)

43.0% (75)

47.7% (83)

(b) Identifying results for the data from station AY.

Pre-picked arrivals

BPNN identifying P

BPNN identifying S

BPNN identifying N

P-arrivals
(274)

42.0% (11 5)

43.8% (120)

14.2% (39)

S-arrivals 
(240)

48.8% (117)

38.8% ( 93)

12.5% ( 30)

Noise 
(28)

42.9% (12)

25.0% ( 7)

32.1% ( 9)
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Figure 6 6(a) The location map of events which recorded in station DP. Each symbol represents an event whose P-arrival was picked for identification. Grey circles represent P-arrivals which are correctly identified by the BPNN, and grey squares represent P-arrivals which are wrongly identified by the BPNN. Black circles 
represent the training P-arrivals.
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Figure 6.6(b). The location map of events which recorded in station DP. Each symbol represents an event whose S-arrival was picked for identification. Grey circles represent S-arrivals which are correctly identified by the BPNN, and grey squares represent S-arrivals which are wrongly identified by the BPNN. Black circles represent the training S-arrivals.
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(62.6%) and noise bursts(47.7%). Visual checking of the seismograms shows that the 

MF(t) patterns of arrivals indicate their types. If a P-arrival has a MF(t) pattern which 

is similar to the pattern of a training ^-arrival or a noise burst, the trained BPNN 

wrongly classifies it as an ^-arrival or a noise burst. If an S-arrival has the MF(t) 

pattern which is similar to the pattern of a training P-arrivals or a noise burst, the 

BPNN wrongly classifies it as a P-arrival or a noise burst. In these cases, even manual 

identification cannot make a correct decision by only using the MFft) segment itself. 

Figure 6.7 shows such an example in which the P-arrival has a MF(t) pattern with low 

values, similar to the pattern of a training noise burst, and the S-arrival has a MFft) 

pattern with high values, similar to the pattern of a training P-arrival. The trained 

BPNN classified the P-arrivals as a noise burst with the output (1.1, 0.0, -0.1) and 

classified the ^-arrival as a P-arrival with the output (-0.1, 0.7, 0.6). The fact that the 

different types of arrivals have similar MFft) patterns makes the trained BPNN 

difficult to deal with them.
Note that 17 recordings have been contaminated with excessive noise. In these 

recordings, noise bursts are very similar to the coherent seismic arrivals and their 

MFft) patterns are similar to the patterns of P- or S-arrivals, therefore the BPNN 

cannot be expected to identify them correctly. Figure 6.8 shows such an example in 

which three of the noise bursts are incorrectly classified as S-arrivals. If such 

recordings are omitted, there are only 118 noise bursts picked. The BPNN then 

classifies 11(9.3%) of them as P-arrivals, 41(34.5%) as ^-arrivals and 66 (56.0%) as 

noise bursts.

6.4.2 BPNN's performance for data from station AY

For the data from station AY, a BPNN picker picked 274 P-arrivals, 240 S- 

arrivals and 28 noise bursts from 391 recordings. The above BPNN is applied to these 

arrivals to identify their types. Table 6.2 (b) shows its identification performance. 

Unfortunately it only correctly identifies 42% of the P-arrivals, 38.8% of the S-arrivals 

and 32.1% of the noise burst. As I mentioned in Section 3.3.3, the MFft) patterns of
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Figure 6.7. 3-C seismograms, the vector modulus, and the degree of polarization of 
a local earthquake. Two vertical lines indicate the arrival onsets of a P-arrival and an 
S-anival. The BPNN output are (1.1, 0.0 -0.1) for the P-arrival and (-0.1,0.7, 0.6) 
for the S-arrivals.
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Figure 6.8. 3-C seismograms, the vector modulus and the degree of polarization of a local earthquake. Vertical lines indicate a P-arrival, an S-arrival and some noise bursts. The MF(t) patterns of these noise bursts are similar to the patterns of seismic arrivals.
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seismic arrivals are different between the data from stations DP and AY, even for the 

same arrivals of the same event (Figure 3.9). In the data from station AY, many 

P-arrivals have middle or low values of MF(t) and many S-arrivals have high values 

ofMFft), unlike the training dataset. Such differences make the BPNN fail to identify 

these arrivals correctly because the output of the trained BPNN is the measurement 

of the similarity between the testing segment and training segments. For example, 

some recordings have P-arrivals with low or middle values of MFft) pattern and S- 

arrivals with high values of MFft) pattern, and these patterns are opposite to the 

training ones, so that the trained BPNN cannot correctly classify them. To deal with 

the data from station AY, it is necessary to train this BPNN by using the data from 

station AY, so that it can remember the MFft) patterns from station AY and use this 

to classify the new data from station AY correctly.

Another BPNN with the same structure is trained by using the data from 

station AY. The best performance is obtained when the BPNN is trained by using 

five group datasets shown on Figure 6.9. The training procedure took 527 iterations. 

The system error reached 0.000033 with all pattern errors less than 0.0001. Table 6.3 

(a) shows its identification performance. Figure 6.10 shows the identifying results 

ralated to event positions. This BPNN has a much better performance for the data 

from station AY than the one trained with data from station DP, although 76.6% for 

the P-arrivals and 60.4% for the ^-arrivals is not as good as the previous one for 

station DP. However, the two BPNNs have a similar performance in dealing with data 

from their own stations. This BPNN is also used to test the data from station DP 

(Table 6.3 (b)). Although it can identify 84.9% of the P-arrivals, the 36.1% success 

rate for the ^-arrivals is too low. Note that the identification performance for the noise 

bursts seems statistically meaningless because only 28 noise bursts are tested.

6.4.3 Effect of training dataset

As the performance of a trained BPNN depends on the training dataset, an 

investigation of the performance of the trained BPNN is taken by varying the training
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Figure 6.9. Five groups of MF(t) segments of noise bursts, P-arrivals and 
S-arrivals from station AY for training a BPNN for arrival identification. Arrows 
on segments indicate the pre-picked onset times for these arrivals and all at the 
31st sample.
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Table 6.3. The performance of the trained BPNN for arrival identification. This BPNN 
is trained with 5 groups of training segments from station AY and has 60 input nodes.

(a) Identifying results for the data from station AY

Pre-picked arrivals

BPNN identifying P

BPNN identifying S

BPNN identifying N

P-arrivals 
(274)

76.6% (210)

12.8% (35)

11.3% (31)

S-arrivals 
(240)

22.1% (53)

60.4% ( 145)

17.5% ( 42)

Noise 
(28)

21.4% (6)

53.6% (15)

32.1% (9)

(b) Identifying results for the data from station DP

Pre-picked arrivals

BPNN identifying P

BPNN identifying S

BPNN identifying N

P-arrivals 
(345)

84.9% (293)

8.1% (28)

7.0% (24)

S-arrivals 
(302)

45.4% (137)

36.1% (109)

18.5% ( 56)

Noise 
(174)

30.0% (52)

17.8% (31)

52.3% (91)
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Figure 6.10(b). The location map of events which recorded in station AY. Each symbol represents an event whose S-arrival was picked for identification. Grey circles represent S-arrivals which are correctly identified by the BPNN, and grey squares represent S-arrivals which are wrongly identified by the BPNN. Black circles represent the training S-arrivals.
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dataset from Station DP. Table 6.4 (a) shows a comparison of three BPNNs trained 

with different datasets. As the number of segments in the datasets increases, the 

performance for identifying P-arrivals improves, but the performance for identifying 

S-arrivals and noise bursts becomes worse. This is due to the complexity of the MF(t) 

patterns. MF(t) patterns of P-arrivals are more typically alike, but MF(t) patterns of 

•S-arrivals are often quite different. In addition, some P-arrivals, S-arrivals and noise 

bursts have similar MFft) patterns. If such a P-arrival pattern is used to train the 

BPNN, the trained BPNN will classify all of them as P-arrivals irrespective of what 

they actually are. In theory, the BPNN should classify these arrivals according to the 

linearity of their polarization as defined in the training datasets. The P-arrival, S- 
arrivals and noise bursts have high, middle and low linearity of polarization 

respectively. It seems that in practice the MF(t) alone is not enough to distinguish 

these arrivals. Other properties of the seismic arrivals such as the direction of 

polarization and frequency might be needed. But this is outside the scope and time 

frame of the present work.

6.4.4 Effect of input nodes

I also investigated the BPNN's sensitivity to the input segment length as this 

decides the BPNN structure. Various input nodes between 50 and 70 nodes were 

tested, retaining the same hidden nodes and output nodes. The training procedure is 

the same: beginning with one group of training segments and increasing to nine 

groups. The training segments are different for these three BPNNs due to their 
different performance at every training stage but are all from station DP. Table 6.4 (b) 

shows the testing results of three BPNNs. On balance, the BPNN with 60 input nodes 

has the optimum performance. This suggests that, the segments should include 

appropriate information of an arrival, otherwise too much or too little information will 

degrade the BPNN performance. This also reflects the general observation that BPNN 

architecture must be specifically tailored to individual applications. Further 

optimization is required to adapt to particular event types.
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Table 6.4 (a): The comparison of the performance of three BPNNs with 60 input 
nodes trained with different training datasets from station DP. Only correct 
identification percentages are shown in this table. The best performance is from the 
BPNN trained with nine training groups.

8 training groups

9 training groups

10 training groups

P-arrivals

81%

83%

86%

S-arrivals

58%

63%

59%

Noise

51%

47%

38%

Table 6.4 (b): The comparison of the performance of three BPNNs with different 
input nodes trained with nine groups of segments from station DP. Only correct 
identification percentages are shown in this table. The best performance is from the 
BPNN with 60 input nodes.

50 input nodes

60 input nodes

70 input nodes

P-arrivals

88%

83%

87%

S-arrivals

45%

63%

44%

Noise

47%

47%

48%
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6.5. DISCUSSIONS AND SUMMARY

6.5.1 Weight pattern analysis

In order to demonstrate the ability of the trained BPNN to identify the arrival 

types, a weight map for the trained BPNN is shown on Figure 6.11. This map is 

similar to the previous figures (Figures 4.4, 4.5, 4.6, 4.17 and 5.15) shown in Chapters 

4 and 5, but this BPNN with 60 input nodes was trained by nine groups of noise burst, 

P-arrival and S-arrival segments from station DP. Before training, the weights and 

thresholds were initialized randomly between -0.5 and +0.5.

This map shows that, after training, these values range from -7.26 to +5.74, 

much greater than those in Figures 4.17 and 5.15. In contrast with the weight pattern 

in those maps, this map shows that the pattern of weights connecting the input to the 

hidden layer concentrates on the portion of the signal between samples 25 and 45 

(240ms to 440ms), corresponding to the main energy in the training input MF(t). The 

weights in this portion have larger values than the weights outside this portion. Large 

weights have a strong effect in the summation of the products of weights and signal 

inputs because all values in the input segment are positive and normalized between 

1.0 and 0.0. According to the nature of the sigmoidal activation function in which its 

denominator has a negative exponential with the exponent being the summation, these 

large values produce in turn a large negative or positive exponent, thus yielding a high 

output or low output in the hidden nodes. The weight pattern between the hidden 

nodes and the output nodes is related to the pattern between the input nodes and 

hidden nodes. For example, the weights connected to the noise node and the third, 

fifth and eighth hidden nodes, and the weights connected to the S-node and first, ninth 

and tenth hidden nodes have large negative values. In contrast, no weight connected 

to the P-node and hidden nodes has a larger positive value. It seems the hidden nodes 

have different activities to indicate the different type segments.

In Figure 6.4, the main difference among three types of MF(t) is localized on 

the portion roughly between sample 25 and 45. The shape of an input segment in this
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Figure 6.11. Weight map of the trained BPNN for arrival identification. Notations as 
in Figure 4.4(a). This BPNN is trained with nine groups of MF(t) segments of noise 
bursts, P-arrival and S-arrival.
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portion mainly indicates its type. As an input segment is fed into the BPNN, its values 

in the portion will activate the hidden nodes according to the input values and the 

weights connected to them, and then, in turn, light the output nodes. Although it is not 

possible to fully understand the logic underlying the network solution by visually 

inspecting the weight pattern, the weight map may still lead some perspective as to 

which aspects of the modified DOP are more relevant to the solution than others, and 
thus be of benefit to further processing schemes.

6.5.2 Summary

In this chapter, a BPNN approach has been developed to identify P~ and 

S-arrival types from local earthquake data using the polarization state, the modified 

degree of polarization, MF(t), of 3-C recordings. The results show that a BPNN 

trained with a small subset of the data from station DP can correctly identify 82.3% 

of the P-arrivals and 62.6% of the ^-arrivals from station DP, and another BPNN 

trained with data from station AY can correctly identify 76.6% of the P-arrivals and 

60.5% of iS-arrivals from station AY. The overall performances are 79.8% for the P- 

arrivals and 61.6% for the iS-arrivals. This performance, combined with the advantage 

of not requiring programs to construct special variables and parameters with 

complicated mathematics, suggests that the BPNN is a natural choice for such 

applications. This method is adaptive, and training datasets can be altered to enhance 

particular features of different datasets. Adding new training datasets and retraining 

a BPNN is easy and quick, and can improve its performance. Although the training 

time in this approach is longer than that in Chapter 4 and 5, once trained the BPNN 
is sufficiently quick to operate in most real-time applications.

The performance of the trained BPNN, however, has inherent limitations due 

to the complexity ofMF(t) patterns. The first limitation is that the training dataset and 

test data must be from the same station due to the inter-station complexity of MF(t) 

patterns. For example, the BPNN trained with data from station DP can only identify 

48% of the /'-arrivals and 44% of the ^-arrivals from station AY, and another BPNN
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trained with data from station AY only identify 84.9% of the ^-arrivals and 36.1% of 

the S-arrivals from station DP. It means that the polarization information is dependent 

on stations. This is unlike the approach developed in Chapters 4 and 5 which can use 

one BPNN trained with P-arrivals from station DP to pick both P- and S-arrivals from 

both stations DP and AY. The second limitation is that the BPNN's performance 

cannot be improved by simply adding more training datasets due to the complexity of 

MF(t) patterns. It shows that selecting the input information is critical. This suggests 
that other information such as the direction of polarization and frequency information 
may be needed. The third limitation is in finding an optimum architecture for a 
particular application because no theory can be used to help find this optimum 
architecture. The BPNN's performance depends upon the training set, and its ability 
to predict cannot lie too far outside its experience. Although the weight map can give 
us a rough impression of how this BPNN works, the exact boundaries of this 
behaviour have not yet been completely explored.

In fact, these limitations are also due to the disadvantage of the supervised 
learning scheme being used to train the BPNN. Without training, a BPNN cannot learn 
new strategies for a particular situation that is not covered by the set of examples used 
to train the network (Haykin, 1994). However, this might be overcome by the use of 
an unsupervised learning scheme or other kind of neural network such as ART2 

(Carpenter and Grossberg, 1987).



Chapter 7: Conclusions and future work 92

CHAPTER 7 

CONCLUSIONS AND FUTURE WORK

7.1 INTRODUCTION

The aim of this thesis was to investigate the possibility of using artificial neural 
networks (ANNs) to develop automatic processing techniques to pick and identify 
seismic arrivals from earthquake data. To reach this target, I wrote my own back- 
propagation neural network (BPNN) system, and, based on it, developed two BPNN 
approaches to pick and identify seismic arrivals for data including 762 three 
component recordings from stations DP and AY of the local earthquake network of 
the TDP3 project. The BPNN's performances and the effect factors are examined in 
the previous chapters. In this chapter, I shell summarize the main results and then give 
some suggestions for further research.

7.2 MAIN RESULTS OF THIS THESIS

7.2.1 Arrival picking

A BPNN approach was developed to pick P- and S-arrivals automatically from 
three-component (3-C) recordings in Chapter 4 and single-component (1-C) recordings 
in Chapter 5. This approach employs a BPNN trained by a small but representative 
training dataset which acts as a filter on the entire seismograms using a sliding 
window along the entire input characteristic trace which is the vector modulus of the 
3-C recordings or the absolute value of the 1-C recordings. The input of the BPNN 
is a segment of the input characteristic which is individually normalized. The output 
of this trained BPNN yields a time series which is to be interrogated for a decision 
regarding the seismic arrivals. The significant feature of this output time series is that 
some peaks emerge from a smooth background. These peaks correspond to changes
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in the input characteristics, with values implying the levels of changes. From the 

transformation point of view, the trained BPNN transforms the rates of changes of the 

input characteristics into the value of this time series from which the changes are 

enhanced and can then be more easily detected. If a peak value exceeds a given 

threshold, an arrival is detected and its maximum indicates the onset time. In order to 

improve its performance, some simple post-processing procedures are introduced to 

discard some false alarms.

In Chapter 4, this approach is used to deal with 3-C recordings. The input 

characteristic is a segment of the relative vector modulus of these 3-C recordings. A 

BPNN trained by only nine pairs of P-arrivals and background noise segments from 

station DP can detect and pick not only P-arrivals but also ^-arrivals. This ability is 

extended to picking arrivals from station AY as well. This approach can detect 94.3% 

of the P-arrivals and 86.4% of the S-arrivals with the detection threshold at 0.6, 

compared with manual picks as references. Using this to further pick the onset times, 

the success rate is 74.5% for the P-arrivals and 63.2% for the S-arrivals with an error 

of 10ms (one sample increment). Even though all the training datasets have high 

signal-to-noise-ratios (SNRs), this BPNN still works for seismograms with low SNRs.

In Chapter 5, this method is adapted to pick arrivals from 1-C seismograms. 

The input characteristic is a segment of the relative absolute value of 1-C recordings. 

Here the BPNN trained by ten pairs of P-arrivals and background noise segments from 

vertical components (V-C) of station DP can successfully detect and pick seismic 

arrivals not only from the vertical components but also from the other two horizontal 

components (E-W and N-S) and other stations. Its performance is different for each 

of three 1-C recordings due to strong effects of raypath and source position. The effect 

on P-arrivals is smaller than on ^-arrivals. The picking success rates for P-arrivals are 

93.1%, 89.4%, and 83.1% from the V-C, E-W, and N-S recordings respectively, and 

for S-arrivals are 75.0%, 90.9%, and 87.2% from the V-C, E-W, and N-S recordings 

respectively. The accuracy of the onset times picked from each individual 1-C 

recording is similar. With the error < 10ms (one sample increment), 66.2%, 59.2% and
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63.3% of the P-arrivals and 52.7%, 61.2%, and 57.7% of the S-arrivals are picked 

from the V-C, E-W and N-S recordings respectively. In comparison to the 3-C 

picking, the performance of 1-C picking is thus understandably lower with the 

associated disadvantage of a large BPNN structure. However, it has an obvious 

advantage of flexibility over 3-C picking and can be used on 1-C recordings when 3-C 

recordings are not available.

7.2.2 Arrival identification

In Chapter 6, another BPNN approach is developed to identify P- and S-arrival 

types from local earthquake data, using the polarization state, the modified degree of 

polarization (DOP), of 3-C recordings. As a procedure applied after arrival picking, 

this approach has a different logic behind it. As seismic arrivals including some noise 

bursts have been picked by the BPNN approach developed in Chapter 4, only the 

arrival segments are input in this BPNN approach for processing. This greatly reduces 

the processing time compared to processing the whole seismic recording. This 

approach is also used to deal with the same data used in Chapter 4.

Due to the inter-station complexity of DOP, the training dataset and test data 

must be from the same station. Compared with manual analysis, a BPNN trained with 

nine groups of training P-arrival, S-arrival, and noise burst segments of DOP from 

station DP can correctly identify 82.3% of the P-arrivals and 62.6% of the ^-arrivals 

from station DP, and another BPNN trained with five groups of training dataset from 

station AY can correctly identify 76.6% of the P-arrivals and 60.5% of S-arrivals from 

station AY. The overall performances are 79.8% for the P-arrivals and 61.6% for the 

S-arrivals. The performance cannot be improved by simply adding more training 

datasets due to the complexity of DOP patterns. This suggests that using the degree 

of polarization only is not enough to resolve this problem, and other information such 

as the direction of polarization and frequency information may be necessary.
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7.2.3 Weight pattern analysis

In order to understand how a BPNN works, a weight map is designed in this 

thesis to show the weight patterns of a trained BPNN. Applying the weight map to 

three trained BPNNs shows that it is a useful tool to investigate the interior and 

performance of BPNNs. For the two BPNNs which are used to pick arrivals, although 

their structures and training datasets are different, they have similar weight patterns 

both of which are divided into two portions corresponding to the onset of training P- 

arrivals and having different functions in the picking work. For the BPNN which is 

used to identify arrival types, its weight pattern has a special portion which is linked 

to the main energy of segments in the training dataset. These weight patterns show 

that hidden nodes have different individual activities according to the weight 

connected to them. The hidden nodes with high activity can recognize the main 

features of an input segment and other hidden nodes with low activity recognize the 

subtle features of the input signal, improving the BPNN performance. It seems that 

if such low active nodes are reduced or damaged, the BPNN may still recognize the 

input segment, However, the BPNN's performance may be decreased.

Although it is not possible to fully understand the logic underlying the BPNN 

solutions by visually inspecting the weight patterns, it may still provide some 

perspective as to which aspects of the input characteristics are more relevant to the 

solution, and thus be of benefit to refine the methods or apply it to other processing 

techniques.

7.2.4 Factors affecting the BPNN performance

(a) Training parameters.

Results from this thesis show that the training parameters strongly affect the 

training convergence. A relationship between the training parameters (learning rate r\ 

and momentum rate a) and the training convergence (iteration number) is obtained 

(Equation 4.1). Testing on three BPNNs shows that this equation is better fitted when 

r| and a are small than when r) and a are larger. The fitting is varied with different
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BPNNs. It seems that the fitting is better for a small BPNN which is applied to some 

simple problems. The deviation of this relationship is for two causes: the oscillation 

in finding a desired weight state during training, and the different system error at the 

termination of the training phase. Although different values of the training parameters 

may be used in the training procedure, the weight pattern of a trained BPNN and its 

performance is not affected too much. It may be important if a large BPNN structure 

and a large training dataset are involved. This will allow us to devote our attention 

only to the performance of a trained BPNN, and can make a complex problem simple.

(b) BPNN structure

The structure of a BPNN is decided by the number of its layers and the 

numbers of nodes in each layer. The results in this thesis show that a three-layer 

BPNN is sufficient for the applications of picking and identifying seismic arrivals. The 

number of input nodes of a BPNN is important in these approaches. Each approach 

has his own optimum number of input nodes. This number corresponds to the 

segment of input characteristic which should include suitable information for its 

purpose. Too much or too little information will make its performance worse. The 

number of hidden nodes has a small effect to its performance although too few or too 

many hidden nodes make the BPNN performance worse. In this thesis, ten hidden 

nodes in all three BPNNs are selected by a process of trial and error.

(c) Training dataset

The most important factor in these approaches is the training dataset. The 

performance of a trained BPNN is highly dependent on the training dataset. A similar 

BPNN can be used for different purposes with the different training datasets. As our 

human experiences and prejudices are embodied in the selection of a training dataset, 

the BPNN actually acts according to the experiences and may fail to handle the data 

which are different from the training dataset. Selecting a suitable and correct training 

dataset is crucial.
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7.2.5. Summary

Compared with other conventional methods of picking and identifying seismic 

arrivals, there are some distinct advantages of using BPNNs. One of the significant 

advantages is its adaptiveness. In this thesis, I applied the same programs to the 

problems of picking arrivals from 3-C recordings and 1-C recordings, and identifying 

the arrival types with only changes of the BPNN structure and the input/output. Once 

the generic routines of BPNN are developed, it is easy to apply them to resolve a 

particular problem without requiring additional programs to construct special variables 

and parameters with complicated mathematics. The knowledge of resolving a problem 

is minimized so that it is only necessary to select suitable training examples for the 

new application. The input data may be the raw data which is the most objective, but 

may be handled with difficulty by conventional methods. The BPNN's performance 

can be easily improved by adding or adjusting the training dataset. In addition, a 

trained BPNN has an objective and consistent performance.

However, there are also some limitations of using BPNNs. The performance 

of a trained BPNN depends strongly upon the training set and its ability to predict 

cannot lie too far outside its experience. Although the weight map can give us a rough 

idea of how a BPNN works, the exact boundaries of its behaviour have not yet been 

completely explored and not yet fully understood. Another limitation is in finding an 

optimum BPNN architecture for a particular application. At present, no theory can be 

used to help find this optimum architecture. Although such an optimum architecture 

exists for a particular application, finding it is dependent on the operator's experience 

and knowledge of the problem, and sometimes it is difficult to achieve.

Although potentially useful, it is important to emphasize that the ANN is not 

a panacea. As a general rule, it should not be used when an explicit algorithm already 

exists or can be simply developed for solving a particular problem. The ideal 

application of ANNs is that the relationship between two sets of data is believed to 

exist but its nature is unknown. In order to obtain a better performance, ANNs must 

be considered as one part of an intelligent system, in combination with other methods. 

For example, the approach used in Chapters 4 and 5 employed some simple methods
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to discard small noise bursts and spikes which would otherwise have been incorrectly 

picked by the BPNN. These simple methods improved the performance of the 

approach.

7.3 FUTURE WORK

So far, the result in this thesis shows that the BPNN is a natural choice for 

applications in many problems in seismology. In particular, it has great potential as 

an automatic tool to analyze earthquake data, especially for the problems of picking 

and identifying seismic arrivals. This is important because of the exponential increase 

in the quantity of digital seismic data becoming available. This automatic processing 

is faster, more consistent and less labour-consuming than manual processing. However, 

before it can be put into practice in building a fully automatic seismic analysis system 

(ASAS), there is still some work ahead.

7.3.1 Dealing with regional and teleseismic earthquake data

In this thesis, I focus the BPNN approach on dealing with the local earthquake 

data. However, the adaptive nature of the BPNN led us to expect similar results when 

applying the same method to processing regional or teleseismic observations. For the 

regional and teleseismic events, their recordings may have features, such as 

dominating frequency, bandwidth, sample rate, and arrivals types, different from the 

local events. Their arrivals may be more complex and composed of several distinct 

signal processes (Der, Baumgardt and Shumway, 1993), As a consequence, the BPNN 

structure, input characteristics and training dataset may need to be altered somewhat 

to suit them. However, this could be achieved in principle by relatively simple 

modification to the methods presented here.

7.3.2 Alternative approach of identifying arrival type

In Chapter 6, the approach was used to identify seismic arrivals from 3-C 

recordings. However, if 3-C recordings are unavailable, as is often the case, a method
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is necessary to identify the seismic arrivals from 1-C recordings. The limitations of 

this approach highlighted in Chapter 6 shows that other information which might be 

necessary to tackle this problem. For example, in manual identification, the analyst 

does not only look at the specific segment of an arrival, but also looks at the whole 

seismograms to make his decision. Usually, the information from the whole 

seismograms has a bigger weight in making such a decision. It might be possible to 

follow this method to improve the performance of the BPNN approach described in 

Chapter 6 using other information such as amplitude, spectrum, and arrival-onset-time 

series.

7.3.3 Applying ANNs to other earthquake analysis procedures

The whole procedure of earthquake analysis (see Chapter 1) includes many 

steps of which the picking and identifying of arrivals are the key steps. Consequently, 

in future schemes, it is ultimately hoped to integrate ANN units into other procedures 

which involve intensive pattern recognition, including filtering and editing poor 

recordings (before arrival picking) and classifying the event type (after arrivals 

identification). In future, it may be possible to apply the method to other applications 

such as focal mechanism determination, shear-wave splitting analysis, or seismic 

velocity inversion.

7.3.4 Understanding more about ANNs

Although the BPNNs used in this thesis have been successfully applied to the 

problems of picking and identification of arrivals, and their performances and effect 

factors have been examined, it is still difficult to fully understand or inspect their 

interior which hides in a black-box. In addition, there are no well defined rules to find 

an optimum architecture and develop a specialized structure by building prior 

information into its design. The BPNN used in this thesis has some limitations on its 

performance due to its supervised learning scheme. In order to overcome this 

difficulty, other kind of ANNs and learning schemes may be necessary in future.
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7.4 CONCLUSIONS

The work in this thesis shows encouraging results obtained by applying ANNs to 

earthquake analysis. ANNs have great potential in the development of a fully 

automatic system for earthquake analysis. This can be achieved by embedding ANN 

units into an existing earthquake analysis system to replace their equivalents which are 

difficult to be automated by conventional methods. Such an automatic system will be 

more reliable, robust, objective and less time-consuming than other conventional 

systems and will be of benefit to the development of seismology.
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APPENDIX A: 

GENERALIZED DELTA RULE

The Generalized Delta Rule is used to train the back-propagation neural network 

(BPNN). It was first introduced by Rumelhart, Hinton and Willams (1986), later Pao 

(1988) gave a good mathematical summary. This appendix is based on Pao's 

description, but I have changed some notations for convenience in computer 

programming.

To train a BPNN by using the Delta Rule, the sample patterns X={;cy.} are 

presented as input and the BPNN is asked to adjust the set of weights in all the 

connecting links and also thresholds in the nodes so that the desired outputs T={tk} 

are obtained at the output nodes. In general, the output {ok} is not the same as the 

desired values {tk}. For each pattern, the square of the error is:

where the factor of — is inserted for mathematical convenience.

In the learning procedure, the weights and thresholds are varied in a manner 

calculated to reduce the error E by as much as possible. The error at each node 

propagates backward from the output layer to the input layer with changes of weights 

and thresholds. The changes of the weights and thresholds are achieved by taking

dE incremental change Awijk proportional to -— — , that is:
IJK

(A'2)
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Here, r| is a proportional constant. The change of threshold qi+]k is expressed by this 

as AH>,./A (see Section 2.3.1.1). However, E is expressed in terms of the output oi+lk 

each of which is the non-linear output of the node ni+lk in the /+7th layer:

where neti+lk, the weighted linear sum of the outputs from the previous layer, is the 

input to the Mi node in the i+lth layer:

^u = i>^ • (A -4)
7=0

dE The partial derivative -— — can be evaluated using the chain rule:

dE dE —™* _ (A>5)
dneti+ik

j
Replacing neti+lk with \^ w...0..> we obtain:

7=0

^ = '.-
can be defined as:

(A.7) 
dnetMk

So Aw^ is written as:

A^-T,»ft^ . (A.8) 

To compute dik, the chain rule is used to express the partial derivative in terms 

of two factors. One factor expresses the rate of change of error with respect to the 

output 0& and the other one expresses the rate of change of the output of the node k 

with respect to the input to the same node. That is:
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(A. 9)
<*! it

If the /+7th layer is the output layer, the two factors are obtained as follows:

(A.
i+lk

and

Because

• ——— ̂ - . (A. 12)
-+exp

so that:

From this, 5tt is obtained:

If the /+7th layer is a hidden layer, we also have:

But the factor ——— can not be evaluated directly. Instead, it can be written in terms

of quantities that are known and other quantities that can be evaluated. Specifically, 

it is written as:

dE ^ dE
^ doi+lk
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dE

7=0 . +2j i+lk

7=0

From these emulation for the hidden layer, 6^ is obtained:

7=0

So that the Delta Rule can be written as :

for the output layer, and

7=0

for the hidden layer.

Equations (A. 19) and (A.20) show that the change of wijk is proportional to the 

output Oy of node n^ and 5,^ of node ni+1 k . For an output node, Equation (A. 1 5) shows 

that 5ik is calculated from its output and its error, the difference between its network 

output and its desired output. For a hidden node, Equation (A. 18) shows that 8/A is 

also calculated from its output and its error, but the error is more complex and is 

defined as the sum of weighted errors of output nodes. This implies the errors of 

output nodes propagate backward from the output layer to the hidden layer for 

changing weights and thresholds.
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ABSTRACT

A preliminary study is performed to test the ability of an artificial neural network (ANN) to 
identify seismic arrival types from local earthquake data after they are picked. This is 
achieved using the degree of polarization (DOP) for a segment of three-component time 
series, as the ANN input. The ANN was designed to classify arrivals into three groups: 
P-arrivals, ^-arrivals and noise, corresponding to the maximum output of the output nodes. 
The ANN was trained with nine groups of segments of P- and ^-arrivals and noise. 327 
pre-triggered recordings from a station in a local earthquake network are firstly processed by 
an ANN picker for all possible P- and S-arrivals and measured their onset times. Segments 
of the DOP are selected according to these onset and then fed into the trained ANN. 
Compared with manual analysis, the trained ANN can correctly identify 84% P-arrivals and 
63% S-arrivals. Its performance has inherent limitations due to the complexity of DOP 
patterns which cannot be improved by simply adding new training datasets. The example is 
shown that the ANN trained with data from one station fails to deal with seismic data from 
another station as the DOP patterns are station-dependent. This limitation shows that selecting 
the input information is critical. The ANN has potential as a tool to identify the arrivals type 
automatically but needs to be associated with other information.

Keywords: artificial neural network, seismic arrival identification, degree of polarization. 

1. INTRODUCTION

The most important procedure of analysing earthquake events is the estimation of the arrival 
times of the primary (P) and secondary (S) waves, as these measurements form the basis of 
subsequent analysis schemes employing processing for event location, event identification, 
source mechanism analysis and spectral analysis. These tasks are often performed by the 
trained analyst who manually picks arrival times according to his individual experience, 
involving an intensive amount of pattern recognition. With the increase in the number of 
digital seismic networks being established worldwide, there is a pressing need to provide an 
automatic alterative, which is more reliable, robust, objective and less time-consuming.

The estimation of arrival times includes two steps: 1) arrival picking which is a 
reliable and accurate estimation of the onset time of a definite seismic arrival; 2) arrival 
identification which classifies individual arrivals into categories relating to their polarization, 
their amplitude and the nature of their propagation. A great deal of effort, stretching back 
several decades, has been devoted to the automation of arrival picking (Alien, 1982; Bache 
etal, 1990; Bear and Kradolfer, 1987; Chiaruttini, Roberto and Saitta, 1989; Chiaruttini and 
Salemi, 1993, Dai and MacBeth, 1995; Houliston, Waugh and Langhlin, 1984; Jowsig, 1990, 
1995; Jowsig and Schulte-Theis, 1993; Kracke, 1993; Klumpen and Jowsig, 1993, Pisarenko, 
Kushnir and Savin, 1987; Takanami and Kitagawa, 1988, 1993). Identifying arrival types is



more difficult than picking their onset time and still is an unresolved problem. For a seismic 
network, arrival identification based on horizontal velocity from an f-k filter can provide a 
major simplification of the interpretation task (Mykkeltveit and Bungum, 1984; Bache et al, 
1990; Kvaema and Ringdal, 1992). Der, Baumgardt and Shumway (1993) have investigated 
the feasibility of adaptive, automatic recognition of regional arrivals by a wavefield 
extrapolation scheme for data from a mini-array. However for single station data, there are 
few methods which can be used to pick special type arrivals. Roberts, Christoffersson and 
Cassidy (1989), based on the auto- and cross-correlations of the three orthogonal components 
within a short time window, detect the arrival of a P-wave or a linearly polarized ^-wave. 
Cichowicz (1993) developed a 5-phase picker which depends on a well defined pulse of the 
first-arrival P-wave. In this paper, we will introduce an artificial neural network (ANN) 
approach to the identification problem.

2. THE LOCAL EARTHQUAKE DATA

In this work, real earthquake data are used to design and test an ANN approach. The data are 
local earthquake events recorded at station DP which is located near the centre of the TDP3 
seismic network and station AY which is on the edge of the TDP3 seismic network (Lovell, 
1989) between April 1984 and December 1984. Several hundred local earthquakes are 
recorded on three-component seismometers at a 10ms sampling interval. These recordings are 
not continuous and are triggered by a digital system (Evans et al 1987). All are local, with 
depths from 2km to 14km and epicentral distances less than 30km from the stations, and most 
are closer to station DP than to station AY. For these local events, we identified predominant 
Pg and Sg waves in the seismogram records. Most events have magnitudes (ML) between -0.3 
and 1.0, and possess a wide distribution of signal-to-noise ratio (SNR) which are shown in 
Fig. 1 for the complete dataset. All SNRs lie between 1 and 200, with station DP being of 
higher fidelity than station AY. Not all of these recording can be used due to following 
reasons. Some events were not earthquakes and some small earthquakes, recorded on Station 
DP or AY, were not confirmed by network data. These recordings are discarded by comparing 
with network data. In some cases, the seismometers did not function properly and either one 
or two components were inactive or possessed high amplitude noise so that some of the three 
component sets were incomplete; and some recordings have excessive noise preceding the 
events or ringing throughout the record which produce many false alarms. Here we manually 
selected the recordings in which the earthquake event has been confirmed by the seismic 
network data. We must be aware that our statistics will appear more successful than if this 
procedure had been applied to all the data irrespective of quality. In total, 327 recordings in 
station DP and 282 recordings in station AY were selected respectively for further processing. 
We can visually pick 333 ^-arrivals and 317 S-arrivals at DP and 283 P-arrivals and 261 
S-arrivals at AY. All these recordings were processed by an ANN arrival picker (Dai and 
MacBeth, 1995) to measure the onset times of all possible P- and ^-arrivals. Compared with 
the manual analysis, the ANN picks 326 (97%) P-waves and 286 (92%) S-waves at station 
DP and 242 (87%) P-waves and 235 (90%) S-waves at station AY.

3. THE DEGREE OF POLARIZATION

The identification of different arrival types is accomplished using a combination of the degree 
of polarization (DOP) of arrival and the vector modulus of its three-component motion. In
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each single component, the seismic signals are strongly dependent on the source position and 
ray direction, which may otherwise give rise to a misleading interpretation. We must separate 
this dependency from the seismic recordings. In this paper, we input the DOP which is 
independent of the source position. The DOP is calculated from the covariance matrix of 3-C 
recordings which is a useful measure of the polarization of seismic signal (Samson, 1977; 
Cichowicz, Green and Brink, 1988; Cichowicz, 1993). The covariance matrix is defined as:

C =
COV(X,Y) 

COV(Y,X) COV(YJ) COV[Y2) 
COV(ZJC) COV(ZJ) COV(ZtZ)

where the covariance is measured for N samples:



N

COV(X,Y) = (xt -xKyt -y)
N i=l

where x and y are the average values of X and Y. N is determined from the signal 
predominant frequency (Cichowicz, 1993), which is ten samples in this case.

The diagonalization of the covariance matrix gives the principal axis of this matrix. 
The direction of polarization is measured by considering the eigenvector of the largest 
principal axis. This direction is parallel to the propagation direction for a P-waye and is 
perpendicular to the propagation direction for a S-wave in an isotropy medium. It is difficult 
to use this direction, related to the source position, as a decision parameter for arrival 
identification. Some parameters which are independent of the source location should be 
defined to extract the polarization properties. Samson (1977) defines the degree of polarization
as:

w, _
r Iff ^™

. 3trS 2 -(trS)
^^^—— "^™^^™«^^^^^""^^

where the X,, X^ and X^ are eigenvalues of the covariance matrix of a moving window of
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width N samples; trS, defined as X1 +X2+X3, is the trace of C and trS2, is defined as
A^+A^+A^2 . This equation shows that the function can be calculated without having to
diagonalize the covariance matrix. As these are independent of the coordinate system, they
also are independent of the
source location and depend
only on the polarization
state. According to this
definition, if only one ..VERTICAL
eigenvalue is non-zero, then
F=\, and the signal is
linearly polarized; if all of
the eigenvalues are equal,
then F=0, and the signal can
be considered as completely
unpolarized or circularly
polarized. Thus F(t) enables
us to study the evolution of
the degree of polarization
(DOP).

For the data used, 
most P-arrivals have high 
values of F(t) and most 
S-arrivals have medium or 
low values of F(t). Fig. 2 
shows an example. The 
patterns of polarization are 
too complex to find
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Figure 2. The degree of polarization and three-component seismograms. Three 
vertical lines indicate the arrivals onset times of noise, a P-arrival and a S-arrival. 
The degree of polarization has a low value for the noise, a high value for the 
P-arrival and a middle value for the S-arrival.



threshold values to distinguish them. Most of the F(t) patterns of P-arrivals usually differ 
from those of ̂ -arrivals. There are also some noise bursts whose F(t) patterns are similar to 
those from the seismic arrivals. Spikes manifest as special patterns in which F(t) is very high, 
near unity, with about ten point length and can be easily discarded by a conventional 
program. Comparing the data from Stations DP and AY, the F(t) patterns are different even 
for the same earthquake and arrival.

To calculate the degree of polarization, all three components must have the same 
frequency bandwidth, the same scale and the same noise level. If one of the three-components 
has a different property, the DOP is highly biased. In this case, even manual identification 
using only the DOP cannot be used. This particular definition of DOP does not take into 
account the signal intensity. Different arrival types not only have different polarization 
characteristics, but also have different amplitude characteristics. To take into account both 
polarization and amplitude information, we define a modified function of the DOP:

x

where M(t) is the smoothed relative function of modulus M(t), defined as [x(t)2+y(t)2+z(t)2] 1/2 , 
of 3-C recording in a window which is also independent of the source position. The 
normalization factor is taken from the window between the onset point and following ten 
points, in which the maximum is defined as unity. Note that MF(t) and F(t) may have slightly 
different patterns. MF(t) is now presented to the neural network in segments selected from 
a window in which the centre is the onset-time of arrival.

4. IDENTIFYING ARRIVAL TYPES USING AN ANN

4.1 ANN structure
The ANN used in this study is a nonlinear, multilayer, feed-forward and 

back-propagation of error (Rumelhart, Hinton, and Williams, 1986). This is the most popular 
type of ANN in use today as it is well understood. It also incorporates a back-propagation 
learning algorithm, or Delta Rule which is usually used to train this type of ANN ~ a good 
mathematical summary is given by Pao (1988).

This ANN has three layers, the input having 60 nodes, giving a MF(t) segment with 
a fixed 590ms (60 samples) length which is chosen to include several complete cycles of a 
wave. There are three nodes in the output layer to flag the result: the output is (1,0,0) for 
noise; (0,1,0) for a P-arrival; and (0,0,1) for a S-arrival in training. The number of hidden 
nodes depends on various factors such as input nodes, output nodes, system error, pattern 
error, and training samples. There is no fixed generic relationship between the number and 
these factors for this type of ANN. However, we do know that in ANN learning, 
generalization is increased and memory is reduced by limiting the number of hidden nodes 
(Dowla, Taylor and Anderson, 1990). Too few hidden nodes will lead to a long learning or 
no convergence. In this case we chose ten hidden nodes after a process of trial and error with 
different training runs.

4.2 Training procedure
As each segment of MF(t) is fed into the trained ANN, the output will be three values: 

o, f o2 , and o3 . If the segment is the same as the training segment, the output will be perfectly 
(1,0,0) for noise; (0,1,0) for the /'-wave; and (0,0,1) for the 5-wave. For non-training 
segments, the output (o,, o2 , and o3) is the measurement of similarity between the new



segment and training 
segment. To identify segment 
types, we simply seek the 
maximum of the three 
outputs (o,, o2, o3). If o, is 
the maximum, this segment 
belongs to the noise 
category; if o2 is the 
maximum, it belongs to the 
/'-wave; and if o3 is the 
maximum, it belongs to the 
S-wave. This method is also 
applied to some segments 
which are far different from 
training segnments and have 
low outputs.

In this procedure, 
only a small number of 
recordings from station DP 
are used to train the ANN 
and the remainder to test its 
performance. The ANN 
performance depends on the 
training datasets, if we use 
incorrect or inconsistent data 
to train the ANN, we cannot 
expect it to give a correct 
answer for new data. P- and 
S-arrivals with similar MF(t) 
patterns should be avoided. 
At the beginning of training, 
we select only three MF(t) 
segments for noise, P- and 
iS-arrivals. Using manual 
analysis results, we select 
another three segments, to 
combine with the former 
training segments, to train 
again. This procedure is 
repeated until the 
performance of the trained 
ANN cannot be improved by 
increasing the training 
dataset or we are satisfied by 
its performance. Fig. 3 
shows all training segments 
of MF(t) used in this 
particular study.
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Figure 3. Nine group of MF(t) segment of noise, P-waves and 
S-waves. The arrows indicate the adjusted onset times



4.3 Testing procedure
Here we focus on the data from 

the ANN is not used as a filter to 
deal with an entire seismic trace, but 
arrival segments are input which are 
picked previously. The results are 
time-sensitive and a small shift in 
segment can greatly effect the 
output. Because the onset-times of 
picked arrivals have errors, we must 
adjust the onset time to ensure the 
performance of the trained ANN is 
not affected by the onset time error. 
For each MF(t) segment, we set the 
first local maximum after the 
onset-time on the centre of the 
segment. To test the trained ANN 
performance, we input all the pre- 
picked arrival segments into this neural

station DP. Unlike our earlier ANN arrival picking,

Table 1: The performance of the ANN trained with 9 
groups of training segments. The ANN has 60 input nodes. 
The percentage is the BPNN identifying result.

Manual 
Picks

P-arrivals

S-arrivals

Noise

P-arrivals 
(326)

84% (274)

11% (35)

5% ( 17)

S-arrivals 
(286)

20% ( 58)

63% (180)

17% ( 49)

Noise 
(146)

10% (16)

42% (62)

47% (69)

network.

4.4 The performance of the 
trained ANN

For a three-layer ANN with 
60, 10, 3 nodes, the final training 
was taken by using 27 training 
segments (nine noise, nine P-arrivals 
and nine S-arrivals). Training takes 
1422 iterations, about 1.5 minutes on 
a VAX 4000. Table 1 shows the 
performance of the final trained 
ANN, with Fig. 4 displaying an 
example of correct identification. 
However, if we use this to deal with 
Station AY, it only identifies 43% of 
P-arrivals and 41% of S-arrivals 
since many P-arrivals have low 
values of F(t) and most of S-arrivals 
have high values of F(t) which is 
contrary to the training. Another 
ANN is needed to specifically 
process data from station AY.

Table 2 shows a comparison 
of three trained ANNs with different 
datasets. As the datasets increase, 
the performance for identifying 
P-arrivals improves, but the 
performance for identifying 
S-arrivals and noise becomes worse.
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Table 2: The comparison of the performances of three ANNs 
trained with different training dataset Only correct identification 
oercentage are shown. The best performance is with 9 training 
groups

8 training groups

9 training groups

10 training groups

P-arrivals

82%

84%

87%

S-arrivals

58%

63%

59%

Noise

51%

47%

38%

This is due to the complexity 
of the MF(t) patterns. MF(t) 
patterns of P-waves are more 
typically alike, and MF(t) 
patterns of S-waves are quite 
different. In addition, some 
.P-arrivals, S-arrivals and noise 
have similar MF(t) patterns. If 
we use such a P-arrival pattern 
to train the ANN, the trained 
ANN will generate all them as 
P-arrivals regardless of what 
they are. It seems that using 
the MF(t) alone is not enough 
to solve this problem. Other 
properties, for example, the 
direction of polarization, or 
some other methods, such as 
an expert system, may be 
needed.

We also investigated 
the sensitivity to the input 
segment length as this decides 
the ANN structure. Various 
input nodes were tested, 
between 50 and 70 nodes, 
retaining the same hidden 
nodes and output nodes. The 
training procedure is the 
same: beginning with one 
group of training segments
and increasing to nine groups. The training segments are different for these three ANNs due 
to their different performance at every training stage (Table 3). On balance, the ANN with 
60 input nodes has the best performance. From this a rough guideline is suggested: the 
segments should include several complete cycles of a wave. This reflects the general 
observation that network architecture must be specifically tailored to individual applications. 
Further optimization is required to adapt to particular event types.

Table 3: The comparison of the performance of the ANN with 
different input nodes trained with nine groups of segments. Only 
correct identification percentages are shown in this table. The 
best performance is from the ANN with 60 input nodes.

50 input nodes

60 input nodes

70 input nodes

P-arrivals

89%

84%

88%

S-arrivals

45%

63%

44%

Noise

47%

47%

48%

5. CONCLUSIONS

An ANN is used as a tool to identify P- and S-arrivals from local earthquake data, using the 
polarization state of three-component records. Our results demonstrate that an ANN trained 
using a small subset of the data can identify most P-arrivals (84%) and S-arrivals (63%) 
simultaneously. This high performance, combined with the advantage of not requiring 
programs to construct special variables and parameters with complicated mathematics, suggest 
that the ANN is a natural choice for such applications. The method is adaptive, and training 
sets can be altered to enhance particular features of different datasets. Adding new training



datasets and retraining an ANN is easy and quick, and can improve its performance. However 
it also appears to have a limitation due to the inter-station complexity of the DOP.

Although the training time can be long, especially as the ANN architecture becomes 
large, once trained the ANN is sufficiently quick to operate in most real-time applications. 
However, the ANN cannot be viewed as all encompassing, as the performance still depends 
upon the training set and its ability to predict cannot lie too far outside its experience. The 
exact boundaries of this behaviour have not yet been completely explored. Another limitation 
is in finding an optimal architecture for a particular application.

This work forms part of an ongoing programme of research to develop a fully 
automatic system for earthquake analysis. It is ultimately hoped to integrate other ANN units 
into a processing flow for record editing and event classification.
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SUMMARY
A preliminary study is performed to test the ability of an artificial neural network 
(ANN) to detect and pick seismic arrivals from local earthquake data. This is 
achieved using three-component recordings by utilizing the vector modulus of these 
seismic records as the network input. A discriminant function, F(t), determined 
from the output of the trained ANN, is then employed to define the arrival onset. 
877 pre-triggered recordings from two stations in a local earthquake network are 
analysed by an ANN trained with only nine P waves and nine noise segments. The 
data have a range of magnitudes (ML ) from -0.3 to 1.0, and signal-to-noise ratios 
from 1 to 200. Comparing the results with manual picks, the ANN can accurately 
detect 93.9 per cent of the P waves and also 90.3 per cent of the S waves with a F(t) 
threshold set at 0.6 (maximum is 1.0). These statistics do not include false alarms 
due to other non-seismic signals or unusable records due to excessive noise. In 17.2 
per cent of the cases the ANN detected false alarms prior to the event. Determining 
the onset times by using the local maximum of F(t), we find that 75.4 per cent of 
the /*-wave estimates and 66.7 per cent of the S-wave estimates are within one 
sample increment (10ms) of the reference data picked manually. Only 7.7 per cent 
of the f-wave estimates and 11.8 per cent of the 5-wave estimates are inaccurate by 
more than five sample increments (50 ms). The majority of these records have 
distinct local P and S waves. The ANN also works for seismograms with low 
signal-to-noise ratios, where visual examination is difficult. The examples show the 
adaptive nature of the ANN, and that its ability to pick may be improved by adding 
or adjusting the training data. The ANN has potential as a tool to pick arrivals 
automatically. This algorithm has been adopted as a component in the early stages 
of our development of an automated subsystem to analyse local earthquake data. 
Further potential applications for the neural network include editing of poor traces 
(before present algorithm) and rejection of false alarms (after this present 
algorithm).

Key words: arrival time, artificial neural network, pattern recognition, picking.

i INTRODUCTION

The primordial task of estimating arrival times for the 
primary (P) and secondary (S) waves found in recordings of 
an earthquake event still forms an important foundation for 
schemes employing automatic processing for event location, 
event identification, source mechanism analysis and spectral 
analysis. There is no shortage of techniques which profess to 
tackle this problem; however, they do tend to he data 
specific and are not generally available. The goal of global 
automation is far from achieved and such elementary

seismogram interpretation still forms a bottleneck in the- 
routine work of many observatories.

A great deal of effort, stretching back several decades, has 
been devoted to the automation of arrival picking, and many 
different varieties of algorithm exist. Only a few notable 
procedures are mentioned in this review for reasons of 
brevity. The method populari/ed by Alien (197N) uses a 
short-term and long-term average ratio to pick I' waves. 
Numerous variants of this general scheme have been 
implemented. For example. Bear & Kradolfer (1987) used 
an envelope function for each signal trace in this algorithm



and then passed it through a non-linear amplifier. The 
resulting signal is then subjected to a statistical analysis to 
yield P-wave arrival times and a measure of reliability for 
the picking. Pisarenko, Kushnir & Savin (1987) developed 
an optimal P-wave picker using an asymptotic approxima­ 
tion of the likelihood function. Roberts, Christoffersson & 
Cassidy (1989) made an assessment of whether data are 
consistent with the arrival of a P wave or linearly polarized
5 wave using the auto- and cross-correlations of 
three-component data. Takanami & Kitagawa (1988, 1993) 
developed a method for P and 5 waves by fitting a locally 
stationary autoregressive model. Kracke (1993) developed a 
simple method based on the displacement vector of a 
seismic trace in a spherical coordinate system for P waves. 
Cichowicz (1993) developed an S-wave picker based on a 
filter which combines polarization and energy ratios. Joswig
6 Schulte-Theis (1993) used a master-event-correlation 
method to detect P-wave arrivals in weak local earthquake 
records. All of these are traditional programs: they quantify 
some attribute of the seismic trace and use this as the basis 
of the decision. These algorithms are not adaptive, working 
well under certain conditions, but quite often not producing 
good results. Analysts are still required to interactively 
check the quality of the result.

The tasks performed by the trained analyst in manually 
picking arrival times involve an intensive amount of pattern 
recognition. Experience provides a judicial balancing of 
wave characteristics such as amplitude, frequency and 
polarization from previous records at the same station to 
determine the most likely onset time. If questioned about a 
particular decision, however, the analyst may offer a few 
rules for guidance but can often give no obvious systematic 
reasoning because the decision has been partly subjective. 
This reasoning is based upon past experience. Consequently, 
different trained analysts give different answers, and the 
same analyst may choose a different interpretation after 
some time has elapsed. With the increase in the number of 
digital seismic networks being established world-wide, there 
is a pressing need to provide a more reliable and robust 
alternative, which is less time-consuming and more 
objective. The application of artificial intelligence methods 
to earthquake analysis is a relatively recent development 
which attempts to tackle these objectives. Various methods 
have been applied to the interpretation of seismic signals 
from a local seismic network such as knowledge-based 
systems according to the blackboard method used by 
Chiaruttini, Roberto & Saitta (1989), and later developed by 
Chiaruttini & Salemi (1993). Bache et al. (1990) developed 
an intelligent monitoring system based on this approach, 
data-base management systems and signal processing. As an 
alternative strategy Joswig (1990) developed a pattern 
recognition approach for P waves using a sonogram. 
Klumpen & Joswig (1993) used a pattern recognition 
technique to identify generic polarization patterns to 
estimate P-wave and 5-wave onset times.

Artificial neural networks (ANNs), another group of 
techniques from the area of artificial intelligence, provide a 
natural alternative to this type of earthquake analysis as 
they have proven useful at handling complicated pattern 
recognition problems in other applications. ANNs have been 
used to solve a diversity of geological and geophysical 
problems. For example, Dystart & Pulli (1990) use them for
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the problem of automatic event classification. McCormack 
(1991) uses an ANN to combine synthetic spontaneous 
potential (SP) and resistivity logs to estimate lithology logs. 
Poulton, Sternberg & Glass (1992) use an ANN to estimate 
the offset, depth and conductivity-area product of a 
conductive target given an electromagnetic image of the 
target. Wang & Mendel (1992) use a Hopfield network to 
implement an adaptive minimum prediction-error decon- 
volution. The ANN also has been used in the first-break 
picking of surface seismic data (Murat & Rudman 1992; 
McCormack, Zaucha & Dushek 1993). The wide range of 
applications emphasizes the particular strength of this 
approach over traditional methods incorporating a fixed 
algorithm to solve a particular problem, as the ANNs utilize 
a learning scheme to develop an appropriate solution so that 
the network is flexible and adaptive to different data sets. In 
our application, the ANN may be likened to an analyst and 
is trained by presenting it with many different earthquake 
records. After training is accomplished, the ANN should be 
able to recognize new arrivals from a variety of new 
seismograms.

2 THE THEORY OF ARTIFICIAL NEURAL 
NETWORKS (ANNs)

The ANN is designed to simulate the neural connections of 
the human brain. It is made up of sets of nodes arranged in 
layers, consisting of an input layer, one or more 
intermediate hidden layers and an output layer. Fig. 1 
schematically illustrates the architecture of such a neural 
network. Each node, the basic processing unit of the neural 
network, is usually drawn as a solid circle. Fig. 2 shows the 
components of this node, and what it represents. The 
outputs of the nodes in one layer are transmitted to nodes in 
another layer through links called 'weights'. These weights 
are real numbers, which are applied as simple multiplicative 
scalars, and effectively amplify or attenuate the signals. With

Output layer

Hidden layer

Input layer
Figure 1. The neural network structure for picking arrivals on local 
earthquake records. Solid circles represent nodes, and straight lines 
represent weights. This is a three-layered neural network. The 
segment of vector modulus is input according to a time-series 
order. The output nodes give the results which are (1,0) or (0, 1) for 
P wave or noise during training and are defined by the /•"(') during 
testing.
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NEURODE / NODE

INPITS OUTPUT

INPUTS

WEIGHTS

-cu­ OUTPUT

Figure 2. Schematic showing various constituents of a node in the 
neural network of Fig. 1. X represents summed input to the node, l 
the threshold, and O(t) is the output. The node input is the sum of 
the weighted output of nodes in the previous layer and the node is 
then activated in accordance with the summed input using a pre-set 
function (usually a sigmoid function) and its threshold. All weights 
and thresholds are determined during the learning procedure.

the exception of the nodes in the input layer, the net input 
to each node is the sum of the weighted outputs of nodes in 
the previous layer. Each node is then activated in 
accordance with the summed input using a pre-set activation 
function (usually a sigmoidal function), and a threshold 
parameter for the function. In the input layer, the net 
inputs to each node are the components of the input pattern. 

The ANN used in this present study is non-linear, 
multilayer, feed-forward and back-propagation of error 
(Rumelhart, Hinton & Williams 1986). This means that the 
activation function is non-linear, there are many layers in 
the network, and the signals feed through the network only 
in a forward direction. This is the most popular type of 
ANN in use today as it is well understood. It also 
incorporates a back-propagation learning algorithm, or 
Delta Rule which is usually used to train this type of neural 
network—a good mathematical summary is given by Pao 
(1988). This method attempts to find the most suitable 
solution (numerical values of weights and thresholds) for a 
global minimum in the mismatch between the desired output 
pattern and its actual value for all of the training examples. 
The degree of mismatch for each input-output pair is 
quantified by solving for unknown parameters between the 
hidden layer and output layer and then by propagating the 
mismatch backwards through the network to adjust the 
parameters between the input layer and hidden layer. In this 
learning procedure, the first pattern is presented as 
input to a randomly initialized network, and these weights

and thresholds are then adjusted in all the links. Other 
patterns are then presented in succession, and the weights 
and thresholds adjusted from the previously determined 
values. This process continues until all patterns in the 
training set are exhausted (an iteration). The final solution is 
generally accepted to be independent of the order in which 
the example patterns are presented. A final check can be 
performed by looking at the pattern error, which is defined as 
the square of the mismatch between desired and actual 
output for each pattern, and the system error, which is 
defined as the average of all of these pattern errors, to 
determine whether the final network solution satisfies all the 
patterns presented to it within a certain threshold error. The 
set of weights and thresholds in the network are now 
specifically tailored to 'remember' each input and output 
pattern, and can consequently be used to recognize or 
generate new patterns given an unknown input. The 
network is now trained, and can be used in subsequent 
analyses.

3 DETECTION AND PICKING OF SEISMIC 
ARRIVALS USING AN ANN

3.1 Current objective

In order to present our current objective, it is necessary to 
distinguish between the following:

(1) Arrival detection—specification of an arrival time 
close to which an arrival may be bracketed within a 
pre-defined time window.

(2) Arrival picking—reliable and accurate estimation of 
the onset time of a definite seismic arrival. An arrival in our 
case is seismic motion defined by a wavelet for which the 
character resembles the training set wavelets.

(3) Arrival identification—this classifies individual arrivals 
into categories relating to their polarization (not necessarily 
linear) and to the nature of their propagation, for example 
Pg, Sg and Lg waves.

(4) An event—a transient seismic signal generated by a 
phenomenon such as an earthquake, quarry blast, sonic 
boom or underwater explosion, which is recorded as a time 
sequence. The event possesses a fine structure given by a 
definite hierarchy of arrivals, which are of importance in 
defining the event type and the Earth's structure.

(5) A false alarm—a spurious signal of non-seismic 
character or a disturbance sufficiently different in statistical 
character from an event that it cannot be readily utilized in 
defining the Earth's structure. Examples include electrical 
spikes, and continuous traffic noise.

(6) An event window—a time sequence whose endpoints 
bracket a seismic event of interest. This window is usually 
obtained through use of a triggered seismic network, and 
may contain many possible false alarms in addition to the 
main event. Determination of this feature is a robust and 
inherently stable operation. Arrival picking, which requires 
more resolution with a concomitant increase in sensitivity, is 
usually preceded by this stage.

(7) Signal-to-noise ratio (SNR)-ihe ratio between 
maximum vector amplitude of signal and quiescent period 
immediately before the arrival onset. For our purposes the 
noise level is evaluated within a window of 290ms,



coinciding with the length of the input segment to the 
neural network.

In this paper we use the ANN for arrival detection and 
picking for P and S waves in local events, with the intention 
of constructing a hierarchical scheme of analysis in which (1) 
and (2) act as the basis for stage (3), and subsequently is 
used to define (4), (5) and (6). Hence, for the purposes of 
this work we do not consider the concept of an event 
window, and all examples are presented without considera­ 
tion of false alarms. The distinction between a false alarm 
and an event is considered as a secondary objective in later 
work.

3.2 Input characteristics of data

The detection of the different arrivals is accomplished using 
the vector modulus of the three-component motion. This is 
useful as the recorded signal is strongly dependent on the 
source position and ray direction, which may otherwise give 
rise to a misleading interpretation. The instantaneous vector 
modulus M(t), calculated at each individual three- 
component sample along the traces, separates the geometric 
dependency from our recorded vector motion whilst 
retaining the character of the seismogram for picking. M(t) 
is then used as direct input for the ANN. It is believed that 
this attribute facilitates an easier identification, regardless of 
the polarization of the wave (Lomax & Michelini 1988). We 
do not use the polarization properties of individual arrivals 
as we believe it may not provide a satisfactory indicator due 
to such factors as phase changes during propagation, fine 
structure of the waveforms such as that due to shear-wave 
splitting, and directional dependency. The overriding 
concern is the uncertain applicability of such a parametric 
model of the wavefield in a heterogeneous crust (Der, 
Baumgardt & Shumway 1993).

M(t) is presented to the network in segments which are 
selected from a sliding window which passes across the 
entire three-component seismogram. Each segment is 
individually normalized so that it is not dependent upon the 
magnitude and the distance of an earthquake, as otherwise it 
may bias the estimates with large changes. This reduces the 
number of training examples, which would otherwise have 
to cover a range of magnitudes and distances required, with 
a consequent increase in the training time and a larger 
network structure. This means that the network is forced to 
sense the relative amplitude and frequency content of the 
signals, and uses this information to detect the onset. For a 
high signal-to-noise ratio (SNR), the onset is characterized 
by a distinct change in the amplitude of the seismic activity. 
However, if the SNR is low, the major discriminating factor 
is a frequency change due to the different spectra of the 
background signal and earthquake signal. The network is 
similar to a sophisticated wavelet transform.

The data we use are local earthquake events recorded at 
stations DP and AY on the TDP-H1 seismic network 
(Crampin, Evans & (Jeer 1985; Lovell 1989) between 1984 
April and 1984 December. Several hundred local 
earthquakes are recorded on three-component seismometers 
at a 10ms sampling interval. These recordings are not 
continuous and are triggered by a digital system (Evans el ul. 
1987). All are local, with depths from 2km to 14km and
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epicentral distances less than 30km: most are closer to 
station DP than to station AY. For these local events, we 
identified predominant Pg and Sg waves in the seismogram 
records. Most events have magnitudes (ML ) between -0.3 
and 1.0, and possess a wide distribution of SNRs which are 
shown in Figs 3 and 4 for the complete data set. All SNRs 
lie between 1 and 200, with station DP being of higher 
fidelity than station AY.

For the first test of the performance of the ANN we will 
apply it to a small subset of these data. The data set consists 
of 210 high-quality events recorded at stations DP (120 
events) and AY (90 events). In the second test, we will use 
this trained neural network to process the complete data set 
of 877 recordings at stations DP and AY on the TDP-H1 
network, with a mixture of good and bad data.

3.3 Neural network structure

A sliding window length is fixed at 290ms (30 samples), and 
is chosen to include several complete cycles of the waves, 
giving 30 input nodes. There are two nodes in the output 
layer to flag the result: the output is (1,0) for an arrival; and 
(0,1) for pure noise. The number of hidden nodes depends 
on various factors such as input nodes, output nodes, 
system error, pattern error and training samples. There is no 
fixed generic relationship between the number and these 
factors for this type of network. However, we do know that 
in network learning, generalization is increased and memory 
is reduced by limiting the number of hidden nodes (Dowla, 
Taylor & Anderson 1990). Too few hidden nodes will lead 
to a long learning process or no convergence. In this case we 
finally chose 10 hidden nodes after a process of trial and 
error with different training runs. Although this solution is 
considered optimal for the current application, further 
architecture optimization could undoubtably be achieved by 
a more exhaustive search procedure on a more powerful 
computer.

3.4 Training procedure

A small number of recordings are used to train the network, 
and the remainder are used to test the performance of the 
trained network. The performance of a trained neural 
network depends on the training data sets. If we use 
incorrect or inconsistent data to train the neural network, 
we cannot expect it to give a correct answer for new data. 
For training, the M(t) segments include either background 
signal or the P wave with some early background signal. The 
f-wave training segments are chosen to include waves with 
different characters. We do not include S waves in the 
training data set because M(t) for these displays appears to 
exhibit a similar character. The function of this primary 
picker is to flag as many changes of M(t) as possible and 
discard those which are neither P nor S arrivals. The 
segments are arranged so that the predicted onset time of 
every signal lies at the tenth sample, for which the network 
output flags (1,0). This behaviour is imprinted on every 
training example. Fig. 5 shows the nine /'-wave and nine 
background signal training segments used in the study. In 
the first experiment, we use seven training segments of /'
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Figure 5. Nine P-wave segments and nine noise segments used for training the network. Noise segments are extracted prior to the P-wave 
arrival in the same seismogram. Arrows on P-wave segments indicate arrival times used to train the network, all are at the tenth sample. These 
segments are individually normalized before being input into the neural network.

arrivals and noise (Fig. 5). The training procedure takes 498 
iterations (less than one minute of CPU time on a 
VAX4000). The system error reached is 2.5 x 10" 5 , with a 
pattern error of 10~ 4 . After training, the neural network is 
ready to pick the waves.

3.5 Arrival detection

To detect or pick an arrival we first calculate the observed 
M(t), take each windowed segment of this, and then feed it 
into the trained neural network. We shift the window by one
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sample at a time and feed each segment into the network, 
storing the output. The procedure is repeated until the end 
of the seismogram is reached. In general, the output 
(<>,(0, o 2(t)) lies between the ideal for a signal or for a noise 
(for example, (0.8. 0.2) or (0.4. 0.6)). To provide a single 
indication of the onset, we use a function F(t) which 
highlights the difference between the actual output and ideal 
noise:

/="(/) = 5[(<M'))- + (l-«2('))-]. (1)
Figure 6 shows an example of F(r) for one of the data 

segments in our chosen data set. The peaks in F(t)

correspond to abrupt changes in M(t), with a small value 
implying a smooth change. These in turn are dependent on 
changes of the amplitude and frequency through the 
weightings in the network. In this curve, there are two large 
peaks corresponding to P and S waves. The positions of 
their maxima occur exactly at the manually chosen onset 
times of the P and 5 waves. We find that for most cases an 
arrival corresponds to a sharp change in F(t), so that a 
threshold may be sufficient to detect the arrival. With a 
threshold of 0.6 it is possible to detect 200 P-wave arrivals 
(95.2 per cent) and 184 5-wave arrivals (87.6 per cent) from 
210 sets of three-component data. If we decrease this
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Figure 6. Three-component vector modulus M(t) and F(t) function computed from output of the neural network. The vertical lines are automatically picked by the network, and indicate exact picks without error. The maxima correspond to the P and 5 waves, although there are some small maxima in F(t) prior to the main arrivals which show small changes in M(t). There is a small precursor before each main peak in Fit) which disappears in better trained networks.



threshold to 0.5, 205 P-wave arrivals (97.6 per cent) and 200 
S-wave arrivals (95.2 per cent) are detected. Given that onlv 
seven P-waves from station DP were used to train this 
network, this result is extremely encouraging. It is 
interesting to note other peaks in this function, which 
'indicate other wave arrivals, spikes or noise bursts. Fig. 7 
shows such an example including some spikes in the 
seismogram. Other techniques are necessary to disregard 
these signals. If the peaks correspond to spikes which are 
typically one or two sample points of anomalously large 
amplitude relative to the background noise, they may be 
flagged using a conventional algorithm. It is also possible to 
discriminate false arrivals by examining the peak of F(t),
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the arrival being rejected if only one or two points are 
greater than the threshold and if the M(t) maximum is less 
than a pre-specified amount. Otherwise, we confine such 
discrimination to a secondary stage of our analysis scheme.

3.6 Picking of onset time

As the segments of M(t) are fed into the trained neural 
network, F(t) reaches a maximum when the arrival time is 
at the tenth point (see Section 3.4). Either side of this 
maximum, M(t) is shifted and the network output F(t) 
decreases as shown in Figs 6 and 7. This implies that the 
onset time may be estimated bv searching for a local
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Figure 8. Statistics for P-wave picks on a data set of 210 local earthquake records. A negative value indicates a later pick than that given by the 
visual analysis. MIS refers to all those unpicked arrivals, defined as picks with errors larger than 10 sample increments (100ms).

maximum after /•"(/) exceeds the threshold. The F(t) 
maxima exactly indicate the P- and 5-arrival onset times in 
Figs 6 and 7. Note that each maximum has a small precursor 
which connects with the main peak, together with a base 
length equal to the input segment. According to the training 
procedure, small values of input nodes before the tenth 
point increase the value of F(t). As the arrival onset comes 
into the input window, the relative values of input nodes 
before the onset decrease and the F(t) should increase. For 
a well trained network, the F(t) should gradually increase 
until the onset reaches the tenth point and then the F(t) 
should gradually decrease until the onset moves out of the 
input window. However, for a less well trained network, as 
the onset moves forward in the window, F(t) may decrease 
at some points forming a precursor. We find that as more 
training data are included, this precursor and the large peak 
merge into one wide peak (Fig. 14). Figs 8 and 9 show the 
statistical results of using this method for a network trained 
with the seven training sets of P arrivals and noise (Fig. 5). 
Here, we can estimate at least 75.2 per cent of the P waves 
and 50.0 per cent of the S waves having onset times of less 
than or equal to one sample increment using a threshold of 
0.6, or 77.1 per cent of the P waves and 53.8 per cent of the 
S waves with a reduced threshold of 0.5. The onset time is 
relatively insensitive to the threshold, confirming that it is 
determined by the local maximum.

Let us now consider the possibility of improving the 
P-wave picks missed by the neural network. The arrivals not 
picked have no clear first motion, and the change of M(t} is 
not visually obvious, with a small corresponding maximum 
in F(t). A more suitable strategy is to retrain the neural 
network by including this type of data. This approach may 
be outweighed if too many training data are used, as this 
increases the training time, and there is the possibility of 
having to accommodate more subtle variations using a larger 
neural network structure. To tackle this, we include two 
extra P-wave segments (segments 8 and 9 in Fig. 5) which 
have different shapes from the other P-wave segments and 
two corresponding noise segments (Fig. 5). The training 
procedure takes 712 iterations, with a system error of 
2 x 10~ 5 and a maximum pattern error of 10~ 4 . Figs 8 and 9 
compare the results for this new trained network, with the 
previously trained network. The retrained neural network 
has an improved performance over the previous one. It 
detects 202 (96.1 per cent) P waves and 207 (98.6 per cent) 5 
waves using the threshold for F(t) of 0.6. The estimated 
onset times are also more accurate, with at least 172 (81.9 
per cent) P waves and 162 (77.1 per cent) 5 waves (for 
F(t) >0.6) or 173 (82.3 per cent) P waves and 163 (77.6 per 
cent) 5 waves (for F(t)>0.5) having onset times < one 
sample increment. Only one P wave and three 5 waves have 
onset times with errors > five sample increments, and only
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Figure 9. Notation similar to Fig. 8 but for 5-wave picks.

eight P waves and three S waves are missed completely. It 
is interesting to note that only two extra P waves are 
detected but 23 more S waves, with a commensurate 
increase in the picking ability. The 5-wave picking ability is 
improved as the additional P-wave segments actually 
resemble many of the 5 waves. Again, decreasing the F(t) 
threshold to 0.5 does not significantly improve the picking, 
with only one more P wave and one more 5 wave picked. 
This comparison substantiates the well-known adaptive 
behaviour of neural networks, that improvement can always 
be achieved by judicious choice of the training data sets.

3.7 Sensitivity to segment length

The time taken during analysis depends on the neural 
network structure. The structure can be decreased by 
decreasing the nodes in the input layer and in the hidden 
layer. A reduction in the input nodes was tested by reducing 
from 30 to 20 nodes, keeping the hidden nodes and output 
nodes the same. We use the nine pairs of P-wave and noise 
segments to train this network. In this case, the training 
procedure is slower, and it took 2018 iterations to reach a 
satisfactory convergence point. The results are now worse 
than before, although the number of unpicked P waves 
remains the same (eight sets of records), with the number of 
unpicked S waves increasing from 3 to 14 events. The onset 
estimation is worse, with only 57.6 per cent of the P waves 
and 55.2 per cent of the S waves having estimates with 
errors < one sample increment. There is also a larger

number of spurious picks. Figs 10 and 11 summarize the 
comparison for this case and the original. The input nodes 
are also increased to 40 for comparison, with the network 
now taking 362 iterations to converge. Now, only 67.8 per 
cent of P waves and 63.8 per cent of S waves are picked with 
an error < one sample increment (Figs 10 and 11). There is 
a larger number of unpicked arrivals.

We should point out that the input segment length 
depends on the characteristics of the signals. It is suggested 
that this segment should include several complete cycles of 
a wavelet. It appears that reducing or increasing the number 
of input nodes dramatically affects the performance and 
there appears to be an optimum number of input nodes for 
our particular configuration. This reflects the general 
observation that network architecture must be specifically 
tailored to individual applications. This represents the 
'Achilles heel' of ANN applications, and further optimi/a- 
tion is required to adapt to particular event types.

4 APPLICATION TO COMPLETE DATA 
SET WITH A RANGE OF SEISMOGRAM 
QUALITY

4.1 Data character and adaptation of ANN processing

Here, we test our neural network further by incorporating 
additional recordings from stations DP and AY, which now 
form the complete data set of 1754 three-component sots
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Figure 10. Notation similar to Fig. 8. Comparison of />-wave picks for three neural networks with 20, 30 and 40 input nodes.
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(877 from DP and 877 from AY), from which only the 
high-quality data were selected in the previous section. In 
many of these cases the seismometers did not function 
properly, and either one or two components were inactive or 
possessed high-amplitude noise so that some of the 
three-component sets were incomplete. For the recordings 
in which one or two components do not record seismic 
signals, the ANN described above can still use M(t) and 
analyse them with significant error. The ANN used to 
accomplish this task has a similar design to the one 
described above, but uses different threshold parameters for 
arrival detection. There are also 159 recordings from station 
DP and 60 recordings from station AY with excessive noise 
preceding the event or ringing throughout the record. They 
produce false alarms, and necessitate an additional 
component to the system to act as a quantity-control 
procedure. This may be achieved by the use of neural 
networks, and such a trace editing system is not uncommon; 
for example, McCormack, Zaucha & Dushek (1993) 
designed an ANN to detect noisy and dead traces in raw 
surface seismic field data. Here we Select the recordings 
manually, leaving the design of this procedure to a later 
investigation. Consequently, we must be aware that our 
statistics will appear more successful than if this procedure 
had been applied to all the data irrespective of quality. We 
find that 325 recordings from station DP and 198 recordings 
from station AY are unusable, leaving 373 and 504
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recordings respectively for further processing. These data 
are reduced further as manual picks for comparison with the 
ANN results are only possible for 360 P waves and 341 5 
waves at station DP and 342 P waves and 320 S waves at 
station AY.

The ANN used in this more extensive test is trained by 
nine pairs of P waves and noise segments, and again has 30 
input nodes. With an F(t) threshold of 0.6. the ANN can 
detect 348 P waves (96.7 per cent) and 3175 waves (93.0 per 
cent) from Station DP, and 311 P waves (90.9 per cent) and 
280 S waves (87.5 per cent) from station AY. Most of the 
failures arise at the low SNRs of between 1 and 3. The 
method appears to pick all phases with an SNR>3. Figs 12 
and 13 show the estimation results. For station AY. 234 
(68.6 per cent) P waves and 207 (64.7 per cent) 5 waves 
have onset times within one sample increment (10ms) of the 
expected manual values. For station DP. 295 (81.9 per cent) 
P waves and 234 (68.4 per cent) S waves have onset times 
within the same tolerance. In addition, only 7.7 per cent of P 
waves and 11.8 per cent of 5 waves have onset times with 
errors greater than five sample increments or are missed 
entirely. Once picked, the SNR does not affect the accuracy 
of the estimate. In the situation where not all 5 waves picks 
are manually possible, a valid comparison with the ANN 
results cannot be made and they are excluded from our 
statistics. This produces a small bias in our results as it only 
affects 10 seismogram sets.

Average 
Station DP 

F~D Station AY

-10 -9 -8 -7 -6 -5 -4 -3 -2 -1 10 MIS

TIMEERROR(IOms)

Figure 12. Statistics for f-wave picks on the complete data set of 877 local event recordings, with notation similar to Fig. 8. The success of the 
ANN relative to manual reference picks is quoted as a percentage.
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Figure 13. As in Fig. 12 but for S waves.

4.2 Sensitivity to signal-to-noise ratio

One additional benefit in using a trained neural network is 
its ability to pick waves in low SNR conditions with only a 
high SNR training data set. Fig. 14 shows an example in 
which F(l) has two peaks, indicating a high SNR 
seismogram set. The peaks are rectangular in shape, with a 
width of roughly 30 sample points. Fig. 15 shows an example 
in low SNR, for which the P-wave peak appears sharper. 
Although the three-component particle motion does not 
display a significant difference between the signal and the 
noise for this case, M(t) does indicate the change in the 
nature of the signal, and this translates to the narrow peak 
in F(t) which now indicates the onset. This reveals the 
possibility of interpreting the shape of these peaks to extend 
the ability of the trained neural network beyond the 
boundaries of the training set. Fig. 16 shows a low SNR 
example in which the 5 wave (SNR =1.8) can still be 
automatically picked by the ANN.

5 DISCUSSION AND CONCLUSIONS

5.1 ANN performance

A multilayered neural network is used as a tool to pick P 
and 5 waves from local earthquake data. The neural 
network input is the vector modulus of each set of 
three-component records. The results are encouraging, and 
demonstrate that a neural network trained using a small

subset of the data (only nine P waves and commensurate 
noise segments in this case) can detect 93.9 per cent of the P 
waves and 90.3 per cent of the 5 waves. Using this to further 
pick the onset times, we find a success rate of 75.8 per cent 
(with F>0.6) for the P waves and 66.7 per cent (with 
F >0.6) for the 5 waves with an error of one sample 
increment (10ms). Although false arrivals and spikes can be 
discarded by using pre-processing steps, here we chose to 
include these in the selection, to be discriminated at a later 
stage. However, a pre-processing stage is required to discard 
excessively noisy and unusable recordings. They are not 
included in the statistics which we quote. For the data set in 
Section 4, 17.4 per cent of the detections include false 
alarms. Inspection of the seismograms revealed that most of 
the false arrivals are similar to the P or S wavelets, and in 
fact it would not be possible to distinguish them visually if 
only one segment were available. Additional information is 
required for this task.

These results, combined with the advantage of not 
requiring programs to construct special variables and 
parameters with complicated mathematics, suggest that the 
ANN is a natural choice for such applications. All that is 
necessary is to select suitable example arrivals in a training 
set. The method is adaptive, and training sets can be altered 
to enhance particular features of different data sets. Adding 
new training data sets and retraining the network is easy and 
quick, and can improve the performance of the network. 
Although the training time can be long, especially as the 
network architecture becomes involved, once trained the
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Figure 14. Example of picking P and 5 waves in a high signal-to-noise ratio. Three-component vector modulus M(t) and F(t) function 
computed from output of the neural network trained with nine pairs of P waves and noises. Compared with Figs 6 and 7, there are no 
precursors before the main peaks in F(t) corresponding to the P and 5 arrivals. The peaks have a base length equal to the ANN input segment 
(290ms).

network is sufficiently quick to operate in most real-time 
applications. However, the network cannot be viewed as all 
encompassing, as the performance still depends upon the 
training set and its ability to predict cannot lie too far 
outside its experience. The exact boundaries of this 
behaviour have not yet been completely explored. Another 
limitation is in finding an optimal architecture tor a 
particular application. This is not yet fully understood for 
multilaycred back-propagation networks, although there are 
certain other network designs where this is possible 
(Falman & Lebicre 1990: Kusuma & Brown 1992). The

current network design is limited to three-component 
recordings, but this method has now also been adapted for 
single-component recordings.

5.2 Comparison with other picking algorithms

As discussed earlier, there are many picking algorithms 
already in use on many seismic networks world-wide. I able 
1 gives a comparison of the performance ol our technu|ue 
for local earthquake data and the performance ol .1 lew 
selected techniques in common use. Because articles lend to
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Figure 15. Example of picking P wave in a low signal-to-noise ratio. Three-component vector modulus M(t) and F(t) function computed from 
output of the neural network trained with nine pairs of P waves and noises. Although the three-component particle motion does not display a 
significant difference between the P wave and the noise, M(t) does indicate the change in the nature of signal, and this translates to a narrow 
peak in F(t ) which indicates the P onset.

describe principles and show a few examples these cannot be 
directly or wholly compared with our result which is applied 
to a specific data set of local events, so that this table may 
not be truly representative of the optimal forms of each 
technique. As false alarms were not fully treated in our 
algorithm, we do not suggest without further tests and 
development that our method is better. However, it does 
appear that the small estimation error for both P-wave and 
5-wave analysis is potentially encouraging for future work. 
We believe that an additional strength of the neural network

is that it can deal with raw data once it has been trained 
appropriately. This contrasts with many other techniques, 
which rely upon pre-processing steps to generate control 
parameters. The network presented here is relatively quick 
to train and has been shown to be adaptive to various types 
of waves. To demonstrate this feature fully, and avoid 
data-specific results, further tests are to be performed on 
the network, to extend application to other three- 
component data sets and single-component data sets. We 
suggest that it may be possible to process regional or
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Figure 16. Example of picking 5 wave in a low signal-to-noise ratio. Three-component vector modulus M(t) and F(t) function computed from 
output of the neural network trained with nine pairs of P waves and noises. Due to P wave coda it is difficult to indicate the 5 arrival where the 
SNR is only 1.8. The peak in F(t) is sharper and its maximum is only 0.64.

teleseismic observations also using this approach. In these 
cases, however, the network architecture may need to be 
adjusted to suit the behaviour of these data.

5.3 Future work

This work forms part of an ongoing programme of research 
to develop a fully automatic subsystem for earthquake 
analysis, for which picking the seismic arrivals is the key 
procedure. In this analysis we make a concerted effort to 
develop an approach which avoids any preconceived notions 
regarding the polarization properties of the individual

arrivals in the earthquake record. This is important as we 
recognize that a parametric model may not be generally 
applicable to local and teleseismic events in a heterogeneous 
crust where the arrivals may be composed of several distinct 
signal processes (Der el al. 1993). Consequently, in future 
schemes we intend to direct our current approach towards 
the task of arrival identification using generic polarization 
characteristics, so that more complex wave trains such as Sn 
and Lg may be identified and analysed. Ultimately we hope 
to integrate other ANN units into a processing flow for 
record editing and event classification and mechanism 
determination.
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Table 1. A summary comparison of selected picking methods.

Author

Alien 
(1978)
Bear&
ICradolfer 
(1987)
Joswig & 
Schulte- 
Theis 
(1993)
KJumpen 
& Joswig 
(1993)
Kracke 
(1993)

Dai& 
MacBeth 
(1994, this 
paper)

input Data

single trace

single trace

single trace

3-component 
recording

modulus of 
3-component 
recording
modulus of 
3-component 
recording

Method

STA/LTA

modified 
STA/LTA

Master- 
event 
correlation

generic 
polarizatio 
n
LTA/ 
threshold

neural 
network

Wave 
Type
P

P

P

P&S

P

P&S

Picking Result

60-80%

Local: 65.9% 
Region:79.5% 
Tele:90%
80 7c for weak 
events

67% for P & S

96.5%

94% for P 
90% for S 
75% for P 
67% for S

Time Error

<0.05 sec

<1 sample 

<3 sample
<1 sample

<50ms

not 
mentioned

< 100ms 
< 100ms 
<10ms 
<10ms
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Split shear-wave analysis using an artificial neural 
network?

Hengchang Dai 1 ' 2 and Colin MacBeth 1

Introduction parameters. Recognition and quantification of these 
Artificial neural networks (ANNs) are simple models split shear waves in seismic data can provide informa- 
that attempt to simulate the operation of neurons in the tion about the effective anisotropy of the rockmass from 
brain. Although ANNs are relatively new in seismology, which information regarding the distribution of internal 
their origins can be traced back to the 1940s when heterogeneity may be determined. This does not restrict 
psychologists began developing models of human the more general relevance of our conclusions to other 
learning. One of the most exciting developments in types of vector particle motion. Our incentive is that the 
ANNs was the advent of the Perceptron, the idea that a visual analysis of such waves is time-consuming and 
network of elemental processors arrayed in a manner individual recordings are more difficult to interpret. It is 
reminiscent of biological neural networks might be able usual to group the recordings according to the 
to learn how to recognize and classify patterns in an acquisition geometry to make the measurements more 
autonomous manner. However, in 1969, Marvin robust. However, even experienced interpreters may still 
Minsky, one of the founding fathers of artificial be subjective and inconsistent in their results and human 
intelligence, proved mathematically that perceptrons investigation is still required to inspect the data initially 
were incapable of solving many simple problems. After and perform the pre-conditioning. Here, we concentrate 
over a decade of being in the scientific wilderness, ANNs on two parameters for estimating this splitting: the 
have once again become a popular tool for many polarization direction of the faster shear-wave and the 
applications requiring algorithms with pattern recogni- time-delay between split shear-waves. Can the neural 
tion capability as those mathematical difficulties have network, a natural choice for this type of problem, 
been overcome by the introduction of more complex satisfactorily distinguish between different splitting 
neural network architectures in the 1980s. These new characteristics, and what parts of the particle motion 
network designs offer increased flexibility and robust- does it weight in order to do this? 
ness. They are particularly attractive as, unlike conven­ 
tional methods that incorporate a fixed algorithm to What are artificial neural networks? 
solve a particular problem, ANNs utilize a learning In the brain, a neural cell, or neuron, receives input from 
scheme to develop an appropriate general solution, many other neurons via interconnections called axons. If 
making them flexible and adaptive to different datasets. the energy level of the combined input exceeds a 
ANNs are now starting to be used in seismic applica- threshold level, then the neuron transmits an output 
tions for event picking, or correlation of seismic electrical signal depending on its active function to other 
horizons with sparse well-log data, and are likely to neurons through electrical and chemical transport 
find other applications of great value. mechanisms. The output signal strength is modified by 

Here, we explore a new area where ANNs may prove a special connection called a synapse before entering 
of benefit: the recognition of the vector motion of another neuron. It is believed that certain forms of 
seismic waves. For convenience we will confine ourselves learning occur when the synapses are trained to assume 
to the identification of the particular patterns of the certain strength or weights by repeated exposure to the 
particle motion recorded in the horizontal plane, which same stimulus. An ANN consists of nonlinear proces- 
arise from split shear-waves: the interfering fast shear- sors called nodes (corresponding to neurons) linked to 
wave qSl and slow shear-wave </S2, and investigate each other by interconnections analogues to the axons. 
whether the pattern recognition capability is sufficiently Each interconnection has an associated scalar weight 
powerful to be used to extract their characteristic (corresponding to a synapse) whose value can be modified

	during the learning phase of the neural network.
—————————————————————————————————— Although the concept of a neural network appears
'British Geological Survey. Murchison House. West Mams Road. initia ,, y lo he qujte straightforward, there is a hcwilder-
Kdinburnh KH9 M.A, Scotland. UK. . ' ,- ,.,,- . , , ,- A VIK , , • . • .
:,, * ,-,. , f - u i. ,v ,r rHinhnrt.h ing urrav of different kinds ot ANNs which now exist lo
Department of Geology and Geophysics. University ol hdmburgn. & -

West Mams Road. Edinburgh HH9 3JW, Scotland. UK solve different problems; Hg. 1 gives a classification.
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Fig. 1. General artificial neural network classification. The neural 
networks are divided into three main categories: feed-forward, feed­ 
back and self-organization neural networks. In each category, there are 
many kinds of neural network, but we only list two to demonstrate the 
classification.

lithology logs. Poulton et al. (1992) used ANNs to 
estimate offset, depth, and conductivity-area product of 
a conductive target given an electromagnetic image of 
the target. ANNs also have been used in the first-break 
picking of surface seismic data (Murat and Rudman 
1992; McCormack et al. 1993). Moreover, other kinds of 
neural networks are also used in seismic event classification 
(Leggett et al., 1993). This kind of network represents 
our first and simplest choice of network architecture to 
solve our problem; will it be successful?

Our chosen network is composed of sets of nodes 
arranged in layers: one input layer, two intermediate 
hidden layers, and one output layer. This architecture is 
illustrated schematically in Fig. 2. where we have drawn 
nodes as solid circles and interconnections as straight 
lines. The node forms the basic processing unit of the 
network, and the various components of this unit are 
shown in Fig. 3, alongside a real neuron of the human 
brain. The first (input) layer just passes the signals to the 
various nodes in the second layer through the 
interconnections. The nodes in the hidden layers and 
the output layer receive and sum the signals and output 
according to their activation functions. As not all nodes 
need be given the same priority, a weighting is applied to 
each input signal before a summation procedure. These 
weights are applied as simple multiplicative scalars and

Different ANNs have different topological structures for 
the neurons and their connections, and use different 
learning algorithms based on different philosophies. The 
main categories for this classification are listed below.

• Feed-forward neural networks—the output of each 
layer feeds the next layer of units;

• Feed-back neural networks—the input information 
defines the initial activity state of a system. The first 
output of the system is taken as the new input, which 
produces a new output and so on;

• Self-organizing neural networks—where neighbour­ 
ing cells compete in their activation by means of 
mutual lateral interactions, and develop adaptively 
into specific detectors of different signal patterns.

Each of them has applications in solving different types 
of problem. The ANN used in this study is defined as 
nonlinear, multilayer, and feed-forward, being trained 
by the back-propagation of error (Rumelhart et al. 
1986). This is the most popular type of ANN in use for 
pattern recognitions, as it is well understood and 
appears quite versatile. ANNs are used to solve a 
diversity of geological and geophysical problems. For 
example, Palaz and Weger (1990) use ANNs to 
rccogni/c waveforms in seismic data. ANNs have also 
been used to combine synthetic spontaneous potential 
(SP) and resistivity logs (MacCormack 1991) to estimate

Input Layer Hidden Layer 1 Hidden Layer 2 Output Layer 
(lOOnodes) 0nodes) (lOnodes) (2nodes)

22
13 Polarization 

Direction

Time-delay

Fig. 2. Neural network structure used lor analssing sheat-w.ise 
splitting in VSP data f-our lasers are used the lust l.isei has |()(i 
nodes and inputs the radial and transverse components m the order ol 
r|. n. . . . . TV,,. 11. t •. . . IMI There .ire 25 and Id nodes m the In si ,md 
second hidden lasers respectisels ()nls two output mules arc present, 
corresponding to the polan/ation and time-del.is estimates
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Fig. 3. Schematic diagram of various constituents making up an 
artificial node in a neural network, compared to a real neuron in the 
human brain. The symbol, x represents the summed input to the node. 
/ the threshold, and O(x) the output of the node after being 
conditioned by a non-linear activation function.

effectively amplify or attenuate the signals. This 
weighting simulates synaptic connections to the neuron 
body. With the exception of the nodes in the input layer, 
the net input to each node is the sum, .Y, of the weighted 
outputs of nodes in the previous layer. This node 
transmits an output signal, O(x), to other nodes when 
the energy level of the combined input to a particular 
node exceeds a threshold level, /, depending upon the 
characteristic activation function. The activation func­ 
tion may assume some smooth S-shape, which may be 
represented mathematically by the sigmoidal function 
(although other functions are available). The outputs 
of each node in the input layer is a component of the 
input pattern.

In our example we input two horizontal recordings of 
seismic shear waves into the network and output the 
values of two parameters: cf), the polarization of the 
fastest shear-wave, and AT, the differential travel-time of 
the split shear-waves. No assumption is made about 
the polarization of the slower wave, the differential 
amplitude, or the source wavelet shape. The input layer 
has 100 nodes (50 for radial component input and 50 for 
transverse component input), the first hidden layer 2?

nodes, the second hidden layer 10 nodes, and the output 
layer 2 nodes. This provides a window size of 196ms. 
with 4ms sample intervals for the data. The actual 
numbers of hidden layers and nodes in each layer are 
somewhat arbitrary, but do depend on external 
constraints from the physical problem such as the 
number of input and output nodes and also on the 
desired system error, pattern error and the nature of the 
training samples. There is no fixed relationship between 
these various factors for this type of neural network, 
although there are certain other network designs where 
this is the case (Kusuma and Brown 1992). We are 
guided by the knowledge that generalization is increased 
and memory is reduced by limiting the number of 
hidden nodes (Dowla et al. 1990). Too few hidden nodes 
will lead to a long learning process or no convergence. 
Too many hidden nodes will introduce noise in the 
output. In this experiment, our final choice was made 
after trial and error with different configurations.

The choice of a programming language is more critical 
than in other situations due to the computation demands 
of neural networks. Whatever language is used, it is 
advisable to seek a version that has been optimized for 
numeric data. The C language has become something of a 
de facto standard for neural network programming. Our 
neural network was set up using a C program written on 
a VAX4000 under VAX VMS™ operation system.

Training the network
In our application, the ANN may be likened to an 
analyst, and must be trained by presenting many 
different patterns of shear-wave particle motion re­ 
corded by orthogonal horizontal geophones with known 
parameters. In our case these are provided from 
synthetic seismograms. but they could also be field 
data interpreted in an analyst's style or, ideally, several 
analysts' styles. After training is accomplished, it is 
hoped that the ANN can estimate the splitting 
parameters from a variety of field VSP seismograms. 
consistently mimicking the expert interpretation. The 
ability of a neural network to recognize new patterns 
depends on the training patterns used as references. The 
learning occurs when the weights are trained to assume 
certain values by repeated exposure to the same 
stimulus. The most popular way to adjust the weights 
and threshold values of the sigmoidal functions is to use 
a back-propagation learning algorithm, or Delta Rule. A 
good mathematical description of this is given by Pao 
(1988). This method attempts to find the most suitable 
solution (numerical values of thresholds and weights) 
for global minimization of the mismatch between the 
desired output pattern and its actual value lor all of the 
training examples. The degree of mismatch for each 
input output pair is quantified by solving for the 
unknown parameters between the hidden and output 
layer and then by propagating the mismatch backwards 
throueh the network to adjust the parameters between
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the input layer and hidden layer. The first input pattern 
is presented to an initially randomized network, and the 
weights and thresholds adjusted in all the links. Other 
patterns are then presented in succession, and the 
weights and thresholds adjusted from the previously 
determined values. This process continues until all 
patterns in the training set are exhausted. It is generally 
accepted that this procedure is independent of the order 
in which the example patterns are presented. However, a 
final check can be performed by looking at the pattern 
error which is defined as the square of difference between 
desired output and neural network output for each 
pattern and the system error which is defined as the 
average of all pattern errors, to determine whether the 
final network solution satisfies all of the patterns 
presented to it within a certain error. The set of weights 
and thresholds in the network are now specifically 
tailored to 'remember' each input and output pattern, 
and can consequently be used to recognize or generate 
new patterns given an unknown input. The network is 
now trained, and can be used in subsequent analyses. 
Figure 4 summarizes the various stages of training and 
implementation.

The training patterns we used were generated from 
synthetic seismograms computed for a zero-offset VSP 
acquisition geometry using the anisotropic reflectivity 
method (Taylor 1992) because they were simple, regular, 
noiseless and give known splitting parameters. The 
horizontal X and Y recordings were computed for 
shear-waves generated by a horizontal point source 
along the Y direction, propagating through a uniform 
anisotropic half-space which simulates a range of qSl 
polarization directions from — X80'Y to X80 Y with an 
interval of 10°, and time-delays from Oms to 40ms in an 
interval of 4ms. We fed the seismograms, not their

attributes, directly into the ANN as it is difficult to 
know which attributes give suitable information for 
solving the problem. The advantages of using seismo­ 
grams is that we do not need to enforce a preconceived 
wavefield model. The disadvantage is that not all 
mathematical functions can be simulated by the ANN. 
and so we may exclude certain attributes. The radial 
component R(?) = {ri,r 2 . .... r50 } and transverse 
component T(/) = {t t .t2, .... tso} were fed into the 
ANN in the order: {r],r2 . .... r50 . t^t:. .... t 50 }.

Although only 161 patterns in total were used in the 
training, the training procedure was slow (4507 itera­ 
tions in about one and a half hours CPU time on a 
VAX4000). indicating that the global optimum may not 
be well-defined. The procedure did converge, however, 
to an acceptable system error of 8.02 x 10 6 . with all 
output patterns achieving an error of less than 10 4 with 
their ideal form. As a final check on this solution, the 
training data were fed back into the trained neural 
network. The resultant outputs indicated that all, except 
one pattern, lie within a tolerable maximum polarization 
error of 2 , and a maximum time-delay error of 1ms. A 
further check was made by inputing new synthetic data 
with polarizations differing by 5 ; Fig. 5 displays a 
portion of these results. The results indicate that the 
network solution does appear internally consistent, and 
should in principle be capable of recognizing similar 
patterns in field data with unknown characteristics, but 
not lying too far from the experience of the network. 
One important advantage of ANNs is that once trained, 
they are very fast in generating the desired output. With
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our particular solution, it took only 15 s of interactive 
CPU time to process the 161 training datasets.

Is the network successful with real data and what lessons 
can we learn?
Accepting that the trained neural network could 
perform its intended task on synthetic data, we now 
attempted to analyse real data. A three-component 
shear-wave VSP dataset generated by cross-line hor­ 
izontal vibrators at a borehole site in the Paris Basin is 
chosen as it has been studied extensively (Cliet and 
Lefeuvre 1989). The depth surveyed in the borehole 
ranged from 1100m to 2060m with recording levels every 
15m, and for our work we tested recordings of the 272m 
source offset made between 1325m and 2060m. The 
horizontal geophone components were re-oriented using 
the /'-wave offset data prior to our study. The sampling 
rate is also reduced from 2ms to 4ms so that we could 
accommodate a large enough time-window (196ms) for 
the analysis. After this initial rearrangement of the data, 
the seismograms were processed by the neural network 
very quickly, taking only about seven seconds to process 
50 recordings. The shear-wave parameters 4> and AT 
output from the network compared favourably with 
those determined by the single source technique of Zeng 
and MacBeth (1993) (Fig. 6). A selection of five

observed particle motions are shown in Fig. 7, along­ 
side the corresponding synthetic motions chosen by the 
network as being the closest fit. Perhaps the most 
noticeable feature of these comparisons was that the 
direction of the initial onsets of the motions picked by 
visual examination did not correspond to either the 
picked polarization estimates for the observed data, or 
the actual polarization estimates for the observed data, 
or the actual polarization estimates for the synthetic 
data, whilst the network results agree with both. This 
appears to challenge our conceptual understanding of 
such motions: the initial onset should principally 
contain energy from the qSl wave and hence, depend­ 
ing upon the time-delay, give a direct indication of the 
polarization direction. In fact, it appears that the overall 
general character, including mainly the lobe of energy in 
the region of interference between qSl and qS2. is 
matched by the network and is the actual indicator for 
the choice of particle motion.

Given this disparity between visual examination and 
the network results, a further insight is required to view 
the mechanism by which the neural network performs its 
classification. This is achieved by investigating the 
magnitudes of the different weights in the completely 
trained network. Figure 8 displays weight maps of the 
neural network trained on the synthetic seismograms
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Fig. 7. Selection of five observed particle motions in the horizontal 
plane and corresponding synthetic particle motions chosen by the 
network as having the closest fit. Lines on each plot show the 
polarization azimuth chosen by the network (dashed line), polarization 
azimuth chosen by the single source technique (solid line on the 
observed data) and actual model polarization (solid line on the 
synthetic data), and polarization direction chosen by visual examina­ 
tion (dotted line).

used in this study. These maps show the magnitudes of 
each weight connecting the different layers in the 
network in Fig. 2. In each weight map, solid circles 
are shaded on a grey-scale corresponding to a 
magnitude range indicated by the key, with the far 
right row of circles in each map representing the nodal 
threshold. Although is it no possible to fully understand 
the logic underlying the network solution by visually 
inspecting these weight patterns, the weight map may 
still lend some perspective as to which aspects of the 
seismic waveform are more relevant to the solution than 
others, and thus be of benefit to further processing 
schemes or studies.

Before training, the weights and thresholds are 
initialized randomly between -0.5 and -0.5. after 
training these values range from —3.7 to -4.2. It 
appears that the weights connecting the input to first 
hidden layer concentrate on the portion of the signal 
between samples 14 to 40 (52ms to 156ms). correspond­ 
ing to the main energy in the input signal, the c/SI-c/S2 
interference lobe. A curious feature revealed by Fig. 8 is 
that weights of large magnitude appear only for the 
radial component. This result suggests that the network 
is somehow sensing the departure from isotropic 
behaviour, as in an isotropic medium the radial 
component would be zero. Large negative and positive 
weights correspond to negative and positive signal 
values, yielding a large positive product, .v. Due to the 
nature of the activation function in Fig. 3, which has in 
its denominator a negative exponential with the 
exponent being the summation of the product of 
weights and signal input, these large values produce in 
turn a large negative exponent, thus accentuating O(.\). 
The input weights separate into two distinct groups, 
both concentrated around the central lobe, which in 
turn connect separately (but not totally independently) 
with the weight distributions for the output polarization 
and time-delay.

To gain more understanding of the various weighted 
combinations of the input signal, which ultimately 
determine (j) and AT. we trained the network using split 
shear-waves with a source wavelet which is a single pulse 
5(/). In this case, each training example has four non­ 
zero sample values, two of which correspond to delayed 
secondary arrivals. The training dataset is created for 
the same range of polarization and time-delay as in the 
previous example. Figure 9 gives the weight maps for 
this trained network and correctly shows that there are 
large values only for the range of signal amplitudes in 
the training dataset (nodes 20 to 30 and nodes 70 to 80 
inclusive) corresponding to the maximum time-delay of 
40ms. Note that in Fig. 9, the particular input signal 
example has a 20ms time-delay corresponding to input 
nodes 25 and 75. This does not reflect the range of time 
delay in the network which we initially set by presenting 
all training examples. It is interesting to note that both 
components are now strongly weighted. The weight 
combinations for this map are not easily traced as the 
parameter estimates appear to be more widely spread 
amongst the connections, especially for the second 
hidden layer. It must be concluded that the connections 
between the input layer, first and second hidden layers 
appear to be source-wavelet dependent and are probably 
being trained for the specific dataset. This agrees with 
our findings that if the source wavelets used in the 
synthetic training data are too dissimilar from the field 
data, the neural network fails to recogni/e the field data

Several other indicators of these dilliculties ha\e also 
arisen during sensiti\it\ tests ol our results |-or 
example, we find the output of the trained network is
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sensitive to the size and position of the waveforms in the 
time-window. Shifting the position of the window may 
occasionally cause large changes in the neural network 
output. The shear-wave must be carefully picked to 
ensure accurate processing, which necessitates a pre­ 
analysis algorithm for picking (which has been 
attempted for both exploration and earthquake data). 
It appears that the ability of ANN also depends on the 
type of training data, and a critical factor is the choice of 
training datasets to match the field data for source and 
medium characteristics. Consequently, we must inspect 
the field data first, before selecting suitable parameters 
to create the training data. To make the neural network 
more robust, we need to add more training data, 
exploring different wavelets, coherent noise, source 
direction and offsets. The major drawbacks with this 
approach are the excessive increase in training time 
(which increases exponentially!) and a large and 
unmanageable network structure.

Conclusions
It is widely known that neural networks are ideally 
suited to situations where standard algorithms cannot 
be used as the mathematical relationship is uncertain, 
provided a supply of many examples of what is required 
can be generated. Once trained using the example 
patterns, it can recognize new patterns using its 
memory. In this respect, the approach is simple and 
adaptive to any problem. However, there are some 
limitations in this philosophy, which we have encoun­ 
tered in our application of our chosen type of network. 
The performance depends on the training data and its 
ability to generate solutions cannot lie too far outside its 
experience—in our case the solution is a highly non­ 
linear function of wavelet and its shape cannot deviate 
too far from the actual source wavelet. Although, in 
general, extra training sets should help with this 
problem, for this application it is too time-consuming 
to train the network to recognize more complicated 
wavelets, and pre-processing for the source function 
appears necessary. Alternatively, we might choose a 
different network architecture from Fig. 1. On a more 
positive note, this ANN application has been of value in 
exploring the emphasis placed on each component 
part of the seismogram for this particular problem; 
ANNs have the ability to discover a relationship, no 
matter how complex, without prior statistical concepts.

Consequently, application of a network can often be 
used as a tool to highlight relationships which exist 
between certain quantities, and help gain a greater 
insight into the physical process.
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