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Abstract

Synthetic biology applies engineering principles to make progress in the study of com-

plex biological phenomena. The aim is to develop understanding through the praxis of

construction and design. The computational branch of this endeavour explicitly brings

the tools of abstraction and modularity to bear. This thesis pursues two distinct lines of

inquiry concerning the application of computational tools in the setting of synthetic bi-

ology. One thread traces a narrative through multi-paradigm computational simulations,

interpretation of results, and quantification of biological order. The other develops com-

putational infrastructure for describing, simulating and discovering, synthetic genetic

circuits.

The emergence of structure in biological organisms, morphogenesis, is critically

important for understanding both normal and pathological development of tissues. Here,

we focus on epithelial tissues because models of two dimensional cellular monolayers

are computationally tractable. We use a vertex model that consists of a potential energy

minimisation process interwoven with topological changes in the graph structure of the

tissue. To make this interweaving precise, we define a language for propagators from

which an unambiguous description of the simulation methodology can be constructed.

The vertex model is then used to reproduce laboratory results of patterning in engineered

mammalian cells. The assertion that the claim of reproduction is justified is based on

a novel measure of structure on coloured graphs which we call path entropy. This

measure is then extended to the setting of continuous regions and used to quantify

the development of structure in house mouse (Mus musculus) embryos using three

dimensional segmented anatomical models.

While it is recognised that DNA can be considered a powerful computational

environment, it is far from obvious how to program with nucleic acids. Using rule-based

modelling of modular biological parts, we develop a method for discovering synthetic

genetic programs that meet a specification provided by the user. This method rests on

the concept of annotation as applied to rule-based programs. We begin with annotating

rules and proceed to generating entire rule-based programs from annotations themselves.

Building on those tools we describe an evolutionary algorithm for discovering genetic

circuits from specifications provided in terms of probability distributions. This strategy

provides a dual benefit: using stochastic simulation captures circuit behaviour at low

copy numbers as well as complex properties such as oscillations, and using standard

biological parts produces results that are implementable in the laboratory.
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Lay Summary

This thesis is about applying mathematics and computer science to problems in syn-

thetic biology. Biological processes are complex; the interplay between many different

processes produces the astounding variety of structures and behaviour that we see in

nature. This complexity means that biological phenomena are difficult to understand and

model in their entirety. Synthetic biology adopts an engineering approach to developing

such an understanding. By creating and manipulating individual features of biological

processes, we hope to gain insight into their properties in isolation. These insights open

possibilities for the development of novel applications such as the synthesis of new

kinds of biofuels or medicines. We look at two distinct lines of inquiry relating to the

role of computation in this enterprise.

The first line of research begins with a proposal for some notation for describing

computer simulation of certain kinds of mathematical models. We use this notation to

describe a model of the dynamics of epithelial tissues modified to reproduce laboratory

results of bio-engineered cells displaying pattern formation. Comparing the patterns

observed in laboratory images to those produced in simulation is not straightforward.

We develop a mathematical method for quantifying patterning in a principled way in

order to be able to make this comparison. We then extend this method to the more

complex setting of three dimensional anatomical images of house mouse (Mus musculus)

embryos to create a quantitative narrative of the emergence of structure as it develops.

The second line of research concerns synthetic genetic circuits. Though it is possible

to synthetically create DNA sequences and implant them in a host organism (usually

bacteria or yeast) it is much more difficult to design these sequences. We describe

a processing infrastructure to assist with this design, based on a rule-based method

simulating molecular interactions. We introduce annotations on rules so that objects

in simulation can be referred back to the substances in the physical world that they

represent. We then define a variant of the annotation language for describing genetic

circuits together with a compiler that generates the rules corresponding to the description.

Finally we present an evolutionary algorithm for discovering synthetic genetic circuits

that can be built from a library of standardised genetic parts.
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Chapter 1

Introduction

In his book Trickster Makes This World (Hyde, 2008), Lewis Hyde describes the artist as

a worker of boundaries, sometimes transgressing them, or pushing them into the realm

of the absurd. This characteristic of art drives the development of culture, he claims,

and this thread has been present since ancient times and can be seen across cultures

in the archetype of the “fool” and in trickster figures such as Nanaboozhoo, Coyote,

Raven, Br’er Rabbit, Reynard, Eshu, Loki, Dionysus in various mythologies. The

locus of scientific activity is also at the boundaries. When phenomena are unchanging

or thoroughly understood, they are no longer very interesting. The fruitful areas of

research are at the edge of what we know, where one regime of behaviour gives way to

another, where entities which may be well understood on their own interact in difficult

to understand ways. The boundaries of different fields of science, which are often

characterised by differences in time or spatial scale, are particularly productive areas

of research. Historically, these interdisciplinary boundaries are infrequently crossed,

though this situation seems to be improving. The work which follows straddles this

kind of boundary, with mathematics and computer science on one side and biology and

anatomy on the other.

Living creatures are bewilderingly complex. Diverse processes happen within them

simultaneously on many different physical and time scales. Proteins, of which there

are many thousands of kinds, are produced and interact at time-scales on the order of

seconds or less and their size is measured in tens of nanometers (Milo et al., 2009).

Several hundred different kinds of cell undergo mitosis replicate at time scales of

minutes or hours and their diameter is typically measured in the hundreds of nanometers

in humans (Milo et al., 2009). These same cells arrange themselves over a period

ranging from hours to months (O’Rahilly et al., 1975) and years to form a variety of

1



2 Chapter 1. Introduction

physical structures ranging from much less than a millimetre to more than a meter

in extent. These processes do not operate in isolation, they interact with each other.

Proteins produced by genetic machinery traverse cell membranes and interact with the

external universe, perhaps stimulating or suppressing the division of other cells and

growth of tissues. Even without considering cognitive and psychological phenomena

whose relationship to the physical substrate remains unclear, the complete set of such

interactions is vast.

To make progress in understanding the dynamics within biological organisms a dual

approach is necessary. The experimental approach is to isolate one process or behaviour

in the laboratory as far as possible and making observations and measurements varying

external influences in a carefully controlled way. This yields a wealth of data, but can

have little explanatory power; it tells us about what happens, but does little to elucidate

the mechanism. A good example of this is the commonly available drug paracetamol

(acetaminophen). First synthesised 140 years ago, paracetamol has a relatively simple

chemical structure and has been the subject of innumerable scientific studies, yet its

mechanism of action, the nature of the causal relationship between ingesting the drug

and its effects, is not well understood. There is consensus that it has an anti-inflammatory

effect (Botting et al., 2005; Aronoff et al., 2006) through suppression of enzymes called

cyclooxygenases that promote an immune response, but that effect varies throughout

the body for unknown reasons (Ghanem et al., 2016). Nevertheless experimental data

is immensely valuable. For clinical and for public health education purposes it is very

useful to know for sure that paracetamol relieves certain kinds of pain and that overuse

leads to liver disease (Larson et al., 2005). But that knowledge is not very predictive

of scenarios that are even slightly different; it does little to illuminate any general

principles.

To provide explanatory power, the theoretical approach uses models and abstraction

to distil the salient features of the mechanisms underlying the experimental measure-

ments. For a model to be useful for explanation it should be as simple as possible but

not so simple that it omits essential features. In the same way as with experiment, where

aspects of the dynamics of a biological system are isolated and controlled, models

typically address a small subset of the behaviour. Those elements of the system that

are considered external to the model or which have a sufficiently small effect on the

outcome are held fixed or abstracted away. Those same external elements may, however,

be the subject of different models. This insight has led to heterogeneous agglomer-

ative models consisting of many smaller models that communicate. An example of
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this is Karr’s Whole Cell Model (Karr et al., 2012) which consists of 28 sub-models

of processes that occur in the M. genitalium bacteria, each of different character, and

which successfully makes predictions about a cell’s phenotype from its genotype. This

constructive approach to explaining complex phenomena is compelling because, rather

than positing a single monolithic model, it re-uses and combines small and individually

well-understood models.

In Chapter 2 we build on established mathematics of flows in dynamical systems (Ka-

tok et al., 1995) to develop a notation for describing heterogeneous computational

models. This work is motivated by Karr’s Whole Cell Model (Karr et al., 2012) and

by Farhadifar’s vertex model for epithelial tissues (Farhadifar et al., 2007). The main

weakness of Karr’s model is that the mechanism of combining the sub-models (which

he calls “modules”) is ad-hoc and unexamined. Even if the modules are individually

well-defined and sound, it is necessary to understand the properties of the operation by

which they are combined. This is particularly true where the modules have fundamen-

tally different characters. Karr’s model contains modules that are expressed in terms of

systems of ordinary differential equations, optimisation processes, stochastic processes

and procedural programs (Karr et al., 2012). It is not feasible at the present time to

give a complete account of the implications of Karr’s approach on the accuracy of his

combined model, but we can make some progress. Our notation is designed to make

the trade-off of the modular approach clear. What is gained by small sub-models in

clarity and re-usability is lost in accuracy. It is possible, however, to give bounds for

this composition error in some simple cases.

Despite the lack of progress on accuracy estimation for the general case of composed

models of arbitrary kinds, we can show that it is possible to describe them in a clear and

unambiguous way. We show how our notation can be used to express various simple

kinds of numerical modelling techniques. We then apply the notation to Farhadifar’s

vertex model for epithelial tissues (Farhadifar et al., 2007) which is used in the following

chapter. Farhadifar’s model is interesting because it describes the dynamics of cellular

monolayers in simple terms using two very different techniques. In this model, a tissue

is represented as a graph enhanced with spatial coordinates for each vertex. A chord

in the graph is a cell. The force on each vertex depends on a scalar potential energy

function of the cell’s area, perimeter, and the length of each edge shared with adjacent

cells. For a static tissue, obtaining an equilibrium configuration is straightforward: one

simply finds a local minimum of the potential. That can be achieved using any number of

optimisation techniques. The model also includes topological changes. Cells divide and
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reproduce, they may be extruded or removed from the tissue and under certain conditions

they migrate. These operations change the space in which the potential is defined. A

simulation proceeds by interleaving the optimisation process with these topological

changes. To the extent that it can be difficult to tell the precise way this interleaving is

done, and compare different software realisations of the same mathematical model, we

can use our notation to clarify.

In Chapter 3, first published in the journal IEEE Access (Waites; Cavaliere, et al.,

2018), we showcase the interplay between theory and experiment described above. We

use a computational model to reproduce the kind of patterning observed in engineered

cells in the laboratory and invent a novel information-theoretic measure defined on

coloured graphs to justify the claim that the computational results correspond to the labo-

ratory results. We begin with experimental results in a tightly packed cellular monolayer

(though not exactly an epithelial tissue) containing two varieties of cells (Cachat et al.,

2016). These cells are engineered such that the presence of tetracycline modifies the

adhesivity on boundaries between heterotypic cells. The effect of these manipulations

is the spontaneous appearance of patterning reminiscent of Turing’s “dappling” (Tur-

ing, 1952) but, evidently, due only to local interactions and not long-range chemical

signalling. Cachat et al.’s study evinces a certain kind of explanation which can be

summarised as: the introduction of tetracycline causes more cadherin proteins to be

expressed which in turn increase adhesiveness between heterotypic cells and this ad-

hesiveness causes patterning. There is a gap in the explanation. It is not obvious how

adhesiveness should cause patterning. A version of Farhadifar’s model (Farhadifar et al.,

2007), modified to have two kinds of cells, suggests that what is called edge tension in

Farhadifar’s model plays essentially the same role adhesion. Conducting simulations of

this model produces results that appear visually very similar to the imagery from the

experimental study.

To claim that this simple physical model explains how adhesiveness causes pattern-

ing, we need a way to quantify visual similarity. It seems “obvious” that the imagery

produced by the numerical simulation and the imagery taken with a confocal micro-

scope of the experiment are similar, but how can that be substantiated objectively?

We answer this by considering the cellular monolayer as a coloured graph where the

vertices are the cells themselves and the edges are their adjacencies (this graph is dual

to the graph in Farhadifar’s model). Using the colour sequences of paths in this graph

we can define a probability distribution. Not only do we look at how likely a cell is to

be, say, red or green, we also consider how likely a red cell is to be next to another red
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cell or a green cell, how likely sequences of three red cells in a row are to be found

among all sequences of three cells, and so forth. From these probability distributions

we can calculate an information-theoretic measure of order in the graph that we call

Path Entropy. The contention is that order and pattern are related and “more” pattern

corresponds to a less uniform distribution of paths. If the first contribution of Chapter 3

is a physical explanation of patterning due to adhesion, the second, more important one

is a principled way to quantify a certain kind of order that can be present in coloured

graphs.

In Chapter 4, to appear in the Journal of Anatomy (Waites; Jamie A Davies, 2019),

we we show how to extend path entropy to the setting of continuous regions and apply it

to the study of developmental anatomy. The emergence of order in developing organisms

is a known phenomenon (Kauffman, 1993) but what that means, precisely, has not been

articulated in a systematic way (Grizzi et al., 2005). Our starting point is the analysis of

the three dimensional segmented imagery from the Edinburgh Mouse Atlas (Richardson;

Venkataraman; Stevenson; Yang; Nicholas Burton, et al., 2009) done by Jamie A Davies

(2016). Davies considered the change in time of the number of distinct tissue types as the

mouse embryo develops and found an exponential increase and that this count of tissue

types corresponds to a certain notion of anatomical complexity. This analysis doesn’t

account for spatial relationships nor does it explain the qualitative increase in anatomical

order. Though the tissues present in a mouse embryo are clearly made of cells, apart

from perhaps at the very beginning of development, that would be too granular a level

to consider in an analysis of macroscopic anatomical structure. We develop Structural

Entropy by extending Path Entropy to this setting using the random walk of a notional

particle that is free to travel through the body of the embryo. The chance that this

particle is initially found in a particular tissue region or organ is proportional to the

volume of that region. The chance that this particle diffuses across boundaries between

tissues is proportional to the fraction of the source region’s surface area that touches the

destination region. We analyse the starting probability distribution and the steady state

distribution for the Markov process defined by the inter-tissue transition probabilities.

The entropy of these distributions, when normalised to account for the number of

segments (which increases as Davies found), decreases with development. This finding

appears robust despite some defects in the underlying data and furnishes an objective

way to quantify the increase in order attendant with anatomical development.

In Chapter 5, first published as a chapter (Cavaliere et al., 2019) in the book Mod-

elling Biomolecular Site Dynamics (ed. Hlavacek), we turn to the topic of genetic
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circuits with an extended discussion on annotating rule-based models. Our focus is on

rule-based models (Danos; Jérôme Feret; W. Fontana; Russell Harmer, et al., 2007;

Danos; Jérôme Feret, et al., 2008) of molecular biology not only because stochastic

simulation allows for the study of systems characterised by noise and low copy numbers

of molecules but because of expressiveness, for example, in modelling polymer produc-

tion. Chapter 5 is based on our original paper (Mısırlı; Cavaliere, et al., 2015) where we

proposed a simple technique for annotating rule-based models with metadata to facilitate

their re-use for the reasons just mentioned. There is an important insight in this chapter

only briefly mentioned in the original paper, namely that the distinction between what is

an annotation and what is an object being annotated is not so clear-cut as might at first

appear. In particular, for some purposes, such as when providing a rule to a simulation

program, it is convenient to consider the rule to be an object onto which annotations are

placed. For another purpose, such as analysing interactions between rules, it is more

convenient to consider a rule to itself be an annotation on its input and output objects,

documenting their relationships. This freedom to alter perspective (Buneman et al.,

2013) is quite powerful and leads to the idea that it is possible, with suitable auxiliary

information, to produce rules from annotations themselves.

In Chapter 6, first published in the journal ACS Synthetic Biology (Waites; Mısırlı,

et al., 2018), we use this relationship between annotations and rules to show to model

synthetic genetic circuits in a modular way, and describe compiler infrastructure to

generate rule-based models from annotated genetic circuits. Rather than rules as such,

we mainly consider genetic circuits in terms of higher-level constructs: sequences of

biological parts. A biological part is a functional genetic unit larger than a base pair

but smaller than an operon (Canton et al., 2008; Del Vecchio et al., 2008; Shetty et al.,

2008; Pedersen et al., 2009). Examples of these kinds of parts are operators, promoters,

and coding sequences. Standard versions of these parts have been proposed (Cooling

et al., 2010; Galdzicki; C. Rodriguez, et al., 2011) and are available from biomedical

suppliers for assembly into synthetic circuits in the laboratory. Encapsulating the genetic

functionality into biological parts gives us modularity. The principle of modularity

underlies the compositionality described in Chapter 2 and it also means that, so long as

the input-output contract is respected, a module may be freely replaced with a different

module to obtain a different composite model. A key advantage of modularity in

computational models is that their input-output specification or contract is well-defined.

Genetic circuits are themselves computational environments (Buchler et al., 2003) and

we contend that they can be more easily programmed using a modular approach.
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Given a resource for biological modelling that made available a vast library of

small executable models which are designed to be combined in this way, new numeri-

cal experiments could be constructed by assembling modules from this library. New

modules representing specific models could be developed and tested in an otherwise

well-studied environment made of standard, published modules. Such databases of

biological models—the subject-matter mainly consisting of genetic parts and protein

interactions—have indeed been proposed (Snoep et al., 2003; Moraru et al., 2008;

Cooling et al., 2010; Li et al., 2010; T. Yu et al., 2011; Mısırlı; J. Hallinan, et al., 2014).

To be most effective, to permit use of models to identify proteins, DNA sequences and

so forth from different databases, the machinery of linked data is helpful (Heath et al.,

2011; Krause et al., 2010; Klement et al., 2014). Chapter 6 contributes an annotation

language for describing these assemblies and a compiler to translate the descriptions

into executable simulation code. The implementation of the compiler is described in

detail and makes extensive use of inference in order that the description language can

remain succinct, clear, and largely free of implementation details. The result of this

approach is that the compiler can produce output in different languages for simulation

such as Kappa (Boutillier et al., 2018; Krivine et al., 2018) and BioNetGen (Michael L

Blinov; James R Faeder, et al., 2004; James R. Faeder et al., 2009). The input can be

readily transformed into a format that can be consumed by the automated laboratory

assembly, or indeed read and interpreted directly. This is an essential piece of infrastruc-

ture as it enables a degree of parity between the numerical simulation and the laboratory

experiment environment. Laboratory experiments can be slightly modified and studied

in silico and numerical simulations can be reproduced in vitro and the results compared.

In Chapter 7, which is joint work with Matteo Cavaliere and Vincent Danos, we

present the third and final piece in the processing pipeline for synthetic genetic circuits: a

method for discovery genetic circuits that meet a particular specification. In the previous

chapters we developed a way of annotating rule-based models and a way of generating

rule-based models from annotations representing genetic circuits, but the question of

how to discover which genetic circuits to describe remains unaddressed. The space

of possible designs is very large and most synthetic genetic circuits are designed by

hand, with a good dose of informed intuition about what ought to work. We propose an

evolutionary algorithm for discovery of candidate circuits and demonstrate that it works

as specified, at least in simple circumstances. Given a description of desired behaviour,

a library of parts, a starting circuit and a grammar (which can be implicit in the syntax

of the starting circuit), the evolutionary algorithm searches for sequences of parts that
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conform best to the specification. The grammar is important because it guides the search.

At each step of the algorithm, the circuit is mutated. The circuit may only mutate in a

way permitted by the grammar. This eliminates large swathes of the space of possible

synthetic genomes that can be determined to be a priori non-viable: either because they

could not be constructed or because they simply would not work. The specification of the

desired behaviour is also notable. We take inspiration from test-driven development here

and the behaviour is specified as a series of test cases or (input,out put) pairs together

with a method of calculating the output from the time-series produced by a simulation.

The inputs are encoded as starting copy numbers of molecules participating in the rules,

and the outputs, in general, as time-series. The benefit of considering entire time-series

is that we can specify bi-modal equilibrium distributions and time-varying behaviour.

The latter is difficult to measure in the laboratory and we demonstrate it here in simple

circumstances. Using this evolutionary algorithm, and the circuit description language

from the previous chapter, it is possible to systematically search for genetic circuits

that implement a given behaviour which can then be synthesised in the laboratory and

tested.

Finally, Chapter 8 concludes the thesis. We provide a broad perspective on the role of

measurement as applied to modelling, and detail the specific contributions of the thesis.

We then discuss possibilities for future research and reflect on the interdisciplinary

character of our work.
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The ϕ Propagator

2.1 Representing Numerical Simulation Algorithms

In the chapters that follow, models for a variety of biological and other systems will be

presented. Some of these models will be heterogeneous in the sense of being composed

of several fundamentally different processes. In Chapter 3 we examine tightly packed

networks of cells. Starting with the model of Farhadifar et al. (2007) we describe the

continuous action of mechanical forces with differential equations via a scalar potential,

and also subject the system to topological changes as the cells rearrange.

In most cases there is no closed-form solution for the time-evolution of these kinds

of models. It is rare to be able to obtain any analytic solution at all and we must work

mainly with difference or differential equations, or similar forms and conduct numerical

simulations to see how the system behaves. For a given mathematical model there are

choices about how to simulate it: for continuous sub-model, which integration scheme is

best? How are instantaneous changes interspersed with phases of continuous evolution?

Where there are both continuous- and discrete-time sub-models, how are these to be

combined? To what extent is it possible to compare different simulations of the same

model?

In order to address these questions, we need a consistent way to represent a simula-

tion algorithm for a model. Often a simulation algorithm is simply described in words

in a research article. This is unsatisfactory for a detailed understanding of the method

because it is insufficiently precise. This becomes clear when implementing a model

from such a description, perhaps in order to reproduce the results. If the model is even

moderately complex, one is immediately faced with implementation choices on how to

structure the software, which libraries for common mathematical operations to use, and

9
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so forth. One might compare the results of such a simulation to the ones in the original

article, but this does not guarantee that the simulation is the same. It can even be argued

that results reproduced by a different technique are more robust, but it is not clear how

to do this without a consistent way of talking about the similarities and differences

between the techniques.

One can examine the software that implements the simulation. The software is not

always available, though we wish it would be (Barnes, 2010; Peng, 2011; Ince et al.,

2012). When it is available, and is of good quality, there remain barriers to using it as

a tool to understand the simulation. Clarity of exposition may have been sacrificed in

order to optimise for speed of execution or economy of storage. Simulations may be

written in different styles in different programming languages with little possibility of

any universally acceptable notion of equivalence (Blass et al., 2009; Yanofsky, 2010).

The approach that we take here takes inspiration from the mathematics of flows in

dynamical systems. This field has a long distinguished history with origins in the study

of the time evolution of systems operating under Newton’s laws and has well established

treatments of various kinds of systems in both discrete and continuous settings (Katok

et al., 1995). As the goal is to facilitate concise descripions of simulation algorithms

and not to extend the fundamental mathematics as such, we define a notation for

propagators, denoted ϕ , to describe these algorithms. As with flows, these propagators

have a semigroup structure and are endomorpisms (Chicone et al., 1999; LaSalle,

1976) which enables them to be composed, or chained together. These descriptions

are implementation independent. Two propagators are considered equivalent if they

implement the same model, conceived of as a particular kind of computable function.

Difficulties arise, however, when determining if two propagators are indeed in the same

equivalence class. We expect that numerical simulation algorithms only approximate a

given function or model. Different algorithms will produce numerical different results,

yet still be sufficiently similar that they can be reasonably considered to implement the

same model. This can be straightforwardly resolved by thinking about equivalence as

being to within a specified accuracy or tolerance, as is standard with numerical methods.

The initial motivation for the ϕ notation was as an aide-mémoire. When working

with several implementations of Farhadifar’s Vertex model, we frequently wondered

about the fine differences between them. When returning to these software codes after a

time spent on other work, it was often necessary to re-examine them closely to recall the

detail of exactly how the topological transitions were interleaved with optimisation of

the potential function. We found a need to be able to succinctly, yet accurately transcribe
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the simulation algorithm. The notation that we define here accomplishes this. It also

has the desirable property that it can be directly implemented in its own right and serve

implementation in its own right.

We define our notation by extending the notation for flows that is often used in

numerical integrators for differential equations (McLachlan, 1995; Hairer et al., 1996;

Hochbruck et al., 1998), particularly in physics (Forest, 2006; Blanes et al., 2006),

with features to describe hybrid automata or models with a mixed continuous-discrete

character together with stochastic simulations. The extra features are: generalised state,

or configuration space, probabilistic permutation and iteration. Generalised state is

considered in work on dynamical systems (Katok et al., 1995) though systems whose

time evolution rule changes (perhaps probabilistically) is a less thoroughly explored

topic. Together these features enable us to capture topological changes for graph-based

models as well as gradient descent and annealing methods of optimisation. We begin

with some preliminaries, and proceed by describing the basic features of the noation

and then demonstrate how some well-known algorithms, as well as some lesser-known

ones, can be represented.

2.2 Preliminaries

2.2.1 The Model and its State

The models that we consider here are descriptions of how the state of some system

changes. The configuration of the system is described by a point in a state space, X,

also conventionally called configuration space, or phase space. Every point state space

x ∈ X, contains all the information necessary to describe a possible configuration of the

system. The state space contains all possible configurations. The structure of X can be

arbitrarily complex: it can simply be a vector space of real numbers, it can be a space of

sets or graphs, or functions. It can also be the disjoint union of any of these. The state

space can essentially be any well-defined construct.

Deterministic models describe the time evolution of the system from some initial

point in state space. Given such initial conditions, s(0) = x0, we can obtain a unique,

ordered sequence of states, s(t), which we call its trajectory. The parameter, t, represent-

ing time, is drawn from a commutative monoid1, (T,0,+,≤) (Fuchs, 2011) such as the

1 A semigroup is a set, S, with an associative binary operation, ·, such that for any a,b,c ∈ S,
(a ·b) ·c = a ·(b ·c). A monoid is a semigroup with an identity element, 0 such that for any a∈ S, a ·0 = a.
A commutative monoid with a binary relation, ≤, such that for any a,c ∈ S, if a≤ c then there exists a
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integers (for discrete time simulations) or the real numbers (for continuous time). We

restrict the order relation to be linear so that it is possible to tell, for any t1, t2 ∈T, which

is earlier and which is later (t1 ≤ t2 or t2 ≤ t1). The commutative structure guarantees

that for any time t ∈ T and any time-step h ∈ T it must hold that t + h ∈ T. These

properties of commutative monoids are sufficient to be able to describe the system as

stepping forward in time.

We formulate a deterministic model as a function with type, MD : T→ X→ X.

Given a time interval and a point in state space, the function produces a new point that

predicts the configuration of the system after that time has passed,

x′ = MD (h,x) (2.1)

Repeatedly evaluating this function samples a trajectory, with a step-size of h,

s(0) = x0

s(t +h) = MD (h,s(t)) (2.2)

Example: Exponential Propagators

The concept of propagator arises naturally with initial value problems of the form,

ds(t)
dt

= As(t) s(0) = x0 (2.3)

where, in introductory texts, s is typically a vector valued function, s : R→ Rn, and A

is a matrix in Rn×n (Arnold, 1992), though more sophisticated settings that have the

same formal solution are possible (Baez et al., 2012; Behr; Danos, et al., 2016). The

solution is, of course,

s(t) = etAx0 (2.4)

Where this class of model can be used, it is advantageous because it admits exact

solutions. Points on the trajectory at any time in the solution can be directly calculated

so long as the matrix exponential can be evaluated. That is not without challenges but

there are known methods that give good results efficiently (Moler et al., 2003).

Suppose that we want to sample the trajectory of this system to find its configuration

at equally spaced time intervals, s(t) for t ∈ (h,2h,3h, . . .). We can do this by writing

the propagator,

ϕh = ehA (2.5)

b ∈ s such that a ·b = c. For commutative monoids we write the binary operation as + rather than as ·.
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which gives,

s(h) = ϕh(x0) (2.6)

Informally, this is read as the propagator ϕh moves the system forward in time by an

interval h. Repeated application of the propagator gives,

s(nh) = ϕ
n
h (x0) (2.7)

generating the desired trajectory.

2.2.2 Probabilistic Models and Repeatability

Not all models are deterministic. A model may be probabilistic: given the same initial

conditions and a time interval, evaluating the model more than once can produce

different results. Rather than a function whose codomain is the model’s state space, a

probabilistic model is a function to distributions over state space, MP : T→ X→DX.

Trajectories for probabilistic models are produced by iterative evaluation just as

with deterministic models. Because each evaluation is probabilistic, each trajectory is

likely to be unique. For many models, the set of trajectories produced from identical

initial conditions exhibit meaningful statistical properties, for example correlation or

ergodicity.

In practice, probabilistic models are implemented using pseudo-random number

generators. Good pseudo-random number generators produce sequences of numbers

that have statistical properties identical to truly random sequences except that the

sequences are repeatable when given the same starting conditions, called the random

seed (Teukolsky et al., 2007). Repeatability is important for software debugging and

for understanding stochastic processes (Ripley, 1990). More generally, repeatability is

important for science, including numerical experiments.

The use of pseudo-random number generators yields a recipe for turning what would

otherwise be a probabilistic model into a deterministic one: simply augment the model’s

state space with the internal state of the random number generator. Alternatively, we

consider the pseudo-random number generator itself to be part of the model. This allows

putatively probabilistic models to be of the same type as deterministic ones.

Though this approach is sound, there is a certain inelegance in modifying the

model to include the random number generator. It seems like an unwarranted mixing

of concerns, a violation of modularity, mixing a mathematical model of some physical

or other process of interest, with implementation details of random number generators.



14 Chapter 2. The ϕ Propagator

From a “rough and ready” engineering perspective this is not a problem. From a

theoretical perspective it is unsatisfying.

There is a theoretical framework that solves this in a satisfying way. Moggi (1989)

and subsequently Wadler (1990) show how to use monads in purely functional languages

to keep state or receive external input (see also Moggi (1990), Wadler (1995), and Wadler

(1997)). The purely functional Haskell programming language implements random

numbers in just this way (Jones, 2003). The state of the random number generator is

carried in the IO monad and this means that the type of our model needs to be modified

to be a function to the state space under this monad. Iteratively evaluating the model is

then done using the bind operation.

Anecdotally, however, the monad treatment is difficult for working programmers

to grasp. One blog post puts it succinctly, “Monads are not trivial. If they were, there

would not be so many tutorials and articles explaining them.” (McBeath, 2008). They

are not complicated, nevertheless this may be one reason for the relatively slow adoption

of functional languages in scientific computing and industry. For simplicity therefore,

in what follows we sacrifice a degree of elegance and adopt the engineering approach

of augmenting the model and its state to include a random number generator.

2.2.3 Loops and Undefined Behaviour

It is quite possible that the output of a model is not defined for a given (t,x) input. The

typical way this can happen is if the model iteratively computes some function until

a condition is met. If the condition is never met, the iteration continues indefinitely

and no output is ever produced. This might happen because of a bug or error in the the

model. It might also happen simply because the model is incomplete or that there is

some limitation in the underlying numerical routines. Indeed the model may simply be

undefined for some otherwise valid input. In any case it is still of interest to be able to

represent models exhibiting this behaviour in order to understand where they are valid,

what errors may exist and so forth.

To account for the possibility of this kind of non-determinism, we consider that the

model is not a total but a partial function; the model has the type, M : T→ X⇀ X. In

the discussion that follows, the concept of propagator inherits this partial character.
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2.3 Language Constructs

We now proceed to generalise the notion of propagator to permit the expression of

implementation of models more sophisticated than systems of ordinary differential

equations. A propagator is a partial function that maps the state space of the model into

itself,

ϕ : X⇀ X (2.8)

It is a partial function for the same reason that the underlying model (cf. Equation 2.1)

is a partial function: there may be regions of state space for which it is undefined.

Unlike the model that it implements, the propagator lends itself to a homogeneous

description of the system. In other words it has only one parameter and its domain and

range coincide. This type is convenient because it allows for unfettered composition to

create new and different propagators out of simpler ones.

One could object on the grounds that the current time is an important feature of the

state of the system and that in the homogeneous description of the system important

information about time is lost. If time is not part of the structure of the state space and

the propagator simply returns a new configuration of the system then no information

is recorded about how much time has passed. This objection is easily addressed. One

simply augments the state space by appending the elapsed time,

X′ = X×T (2.9)

x′0 = [x | 0 ]

Each propagator must simply update the elapsed time such that,

πt
(
x′
)
= t (2.10)

πt
(
ϕh
(
x′
))

= t +h

where πt : X′→ T is the projection function that extracts the time component from the

state.

2.3.1 Composition as Juxtaposition of Propagators

The exponential propagator has the convenient property that composition coincides

with multiplication. That is,

(ϕaϕb)(x) = ϕa (ϕb (x)) (2.11)
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where the left hand side matrix-matrix and matrix-vector multiplication and the right

hand side is interpreted as function composition.

We take this equality as definitional: in this text, juxtaposing propagators as on

the left hand side of Equation 2.11 means composition regardless of whether the

propagators are of exponential kind. This affords us notational convenience. Extra

symbols are unnecessary and it is possible to consider a composition of propagators as

an entity on its own, without explicitly mentioning the state parameter, as in,

ϕc = ϕaϕb (2.12)

2.3.2 Iteration of Propagators

In some circumstances we wish to repetitively apply a propagator until some condition

holds. We use square brackets with a subscript to denote this,

[ϕ]p (x) =

x if p(x,ϕ(x)) is true

ϕ(x) otherwise
(2.13)

where p is a binary predicate, p : X→ X→ B. If p evaluates to false, the result is the

operation of the propagator. If p evaluates to true, the result is the identity. For iteration

of the propagator until the condition is met we write, [ϕ]→p . Since id(x) = x, we can say

that if there exists some finite n for which the following holds,

[ϕ]→p (x) = [ϕ]n+1
p (x) = ϕ

n(x) (2.14)

This iteration construct is just the same as a while loop and the smallest such n is a count

of how many times it has executed. If such an n exists, the computation terminates,

otherwise it does not and the result is undefined.

2.3.3 Fixed-point Propagators

A useful special case of iteration is the (approximate) fixed point propagator. Given a

function, d : X×X→ R, that encodes some notion of distance between two points in

state space, we define the approximate fixed-point propagator as follows,

ϕ
? = [ϕ]→d,ε (2.15)

This is used when the system should be advanced until it stabilises or converges to a

certain state. In this converged state the following must hold,

d (x,ϕ(x))< ε (2.16)
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where ε : R≥0 is a sufficiently small real number.

As we shall see below when we consider optimisation and gradient descent, this kind

of propagator is crucial for terminating the procedure. There is, however, no guarantee

in general that a system will converge to such a fixed point.

2.3.4 Probabilistic Propagators

The final primitive enables probabilistic selection from a finite set of alternative prop-

agators, Φ = {ϕi}. Given a probability distribution, pΦ, over this set, the stochastic

propagator,

ϕ(x) = σ (pΦ,Φ,x) (2.17)

selects a propagator ϕ ∈Φ according to the probability given by pΦ(ϕ).

Recalling the discussion in Section 2.2.2, we point out that in order to support

random selection of propagators as in Equation 2.17, we have two choices. We can

consider that this kind of propagator is not a (partial) function from the state space to

itself but rather to a distribution over the state space. Doing so would complicate the

exposition so we instead consider only implementations that rely on pseudo-random

number generators. We consider the pseudo-random number generator to be a part of

the model and include its internal state in the models’ state space. This is the reason for

including the state explicitly in the function signature.

A randomly permuted propagator is one where each element of the set Φ is applied

in a random order. The order is chosen by shuffling the elements according to the

distribution pΦ. A common choice is simply the uniform distribution to achieve a fair

shuffling, but we account for the possibility of bias. The selection of an element of Φ is

done by using the pseudo-random number generator to sample from the distribution pΦ.

We construct a randomly permuted propagator in the following way. Let Φ1 = Φ

and pΦi = pΦ. We then define the sequence of propagators,

ϕi (x) = σ (pΦi,Φi,x) (2.18)

where the sets are constructed by removing those elements that have already been used,

Φi = Φi−1 \{ϕi−1} (2.19)

and the probability distributions are renormalised at each step,

pΦi(ϕ ∈Φi) =
|Φi−1|
|Φi−1−1|

pΦi−1(ϕ) (2.20)
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For the common case where pΦ is the uniform distribution, we write,

Φ
:
=
|Φ|

∏
i=1

ϕi (2.21)

2.4 Examples

2.4.1 Recurrent Models

The models for which it is simplest to derive a propagator are discrete recurrent models.

This is because the propagator itself is a recurrence relation, giving a position in state

space in terms of some position in the past. We can directly define propagators such as

this one, for the Hénon map (Hénon, 1976),

ϕ(x) =

[
1−ax2

1 + x2

bx2

]

Figure 2.1: The Hénon map, simulated for 25,000 iterations or time steps with a= 1.4 and

b = 0.3, simulated M O I S (Bucher et al., 2014), a general propagator-centric modelling

software.

2.4.2 Pre-computation

Another simple kind of propagator is pre-computed or pre-measured. Suppose that a

system depends exogenously on some quantity such as the level of the tide in a particular
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place. It might be possible to model this quantity on its own, but perhaps it is expensive

to do so, in which case it should be simulated only once and the results stored. Or it

might not be known how to accurately model it, or inconvenient, or peripheral to the

problem at hand but nevertheless possible to measure it accurately enough in nature.

It is a simple matter to consider such sets of pre-computed or measured data as

models and to construct a propagator so that they may later be combined with other

models more central to the object of study. Such data sets can be considered as sequences

of tuples, ( t,x) and made homogeneous as in Equation 2.9.

A simple propagator for such a data set simply treats it as a step function. This is

most easily written in code,

1 dataprop :: [X] → H → X → X

2 dataprop data h x = if time next ≥ h + time x then next else x

3 where

4 -- assume time is the first coordinate

5 time = head

6 -- not especially efficient way to find the next data point

7 next = head $ filter (λd → time d > time x) data

The propagator is then implemented as a partial application, phi = dataprop

dataset and propagators as step functions obtained by further applying it to a time-

interval argument. This is not an especially efficient implementation, in particular on

each application of the propagator it traverses the entire data set looking for the first

entry where the time is greater than the current time, but it is sufficient to illustrate the

idea.

2.4.3 Numerical Integrators

2.4.3.1 The Forward Euler Method

Suppose that a model has been formulated as a homogeneous initial value problem,

ẋ = f (x) x(0) = x0 (2.22)

and assume for the moment that x(t) is continuous and infinitely differentiable on an

interval of interest, [ t, t +h ].

This class of model is often formulated directly but also arises as a consequence

of models posed in energy terms via the Euler-Lagrange equations or Hamilton’s
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equations (Goldstein, 1980). An exact solution is rarely possible, but expanding in

Taylor series about x a first-order approximation is immediately obtainable:

x(t +h) = x(t)+h ẋ(t)+O(h2) (2.23)

which can be seen to have the form of a propagator,

ϕh(x) = x+h f (x) (2.24)

where terms second order and higher in h have been dropped. Of course this is immedi-

ately recognisable as the forward or explicit Euler numerical integration method (Teukol-

sky et al., 2007; Hairer et al., 1996), which is about the simplest possible of such

methods.

2.4.3.2 The Backward Euler Method

It is well known that the explicit Euler integrator has poor stability properties (Teukolsky

et al., 2007; Hairer et al., 1996). By observing that lim
h→0

ẋ(t +h) = ẋ(t) and reasoning

analogously to the previous Section 2.4.3.1, a closely-related method is obtained,

ϕh(x) = x+h f (ϕh(x)) (2.25)

which uses the rate of change at the end of the time step rather than the beginning.

It is an implicit expression for the result and must be solved by iterative methods,

for example Newton’s method (Teukolsky et al., 2007). For this reason is called the

backward or implicit Euler method. It is much more stable when applied to certain

problems than the explicit version. Though Equation 2.25 is implicit, it is still possible

to write a propagator to approximate it to arbitrary accuracy, and so the method is still

first order.

The implicit Euler method can be implemented as a propagator as follows with

some conditions on f such as being differentiable in the neighbourhood of x. Let eh be

the forward Euler propagator from Equation 2.24. We will use this to make an initial

guess at the correct value for ϕh(x):

x0 = eh(x) (2.26)

Now, rearranging Equation 2.25, let,

g(xk+1) = xk+1−xk−h f (xk+1) = 0 (2.27)
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Netwon’s method gives us the approximation,

ν(xk) = xk+1 = xk− J−1
g (xk)g(xk) (2.28)

where Jg(x) is the Jacobian matrix of g evaluated at x.

All that is necessary to obtain an implicit Euler propagator is to repeat this propagator

until a fixed point emerges, yielding,

ϕh = ν
?en (2.29)

It is possible that this propagator will not terminate, however in practice that is rarely

the case provided that h is sufficiently small. Because it is unusual to have the Jacobian

matrix in analytical form and the cost of computing the Jacobian matrix at each step is

large, a so-called quasi-Newton method (Broyden, 1967) is used.

2.4.4 The Symplectic Euler Integrator

Now we meet our first compound integrator, built out of embedded forward Euler

methods, which will make it very easy to explicitly analyse. Suppose now for simplicity

that x ∈ R2. We can re-write Equation 2.22 as,

ẋ =

[
f (x)

0

]
+

[
0

g(x)

]
(2.30)

and this gives rise to two propagators analogously to Equation 2.24,

ϕ
[ f ]
h (x) =

[
x1 +h f (x)

x2

]

ϕ
[g]
h (x) =

[
x1

x2 +hg(x)

]
(2.31)

working out what the composition produces we get,(
ϕ
[g]
h ϕ

[ f ]
h

)
(x) =

 x1 +h f (x)

x2 +hg
(
[x1 +h f (x), x2]

T
)  (2.32)

or in other words a solution that is explicit in one variable and explicit in the other.

While it is still a first-order approximation to the true solution, it has very good stability

properties (Hairer et al., 1996), much better than the explicit Euler method without the

computational expense of the iterative methods required for the implicit Euler method.

This is called the semi-implicit or symplectic Euler integrator. It is called semi-implicit

because in the calculation of the second coordinate, the system is already advanced in

the first coordinate.
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2.4.5 Splitting and Composition

Equation 2.30 is an example of a split model of the more general form

ẋ = α(x)+β (x) (2.33)

We now consider the relationship of the propagator for the combined function, ϕ [α+β ]

with those for the individual ones, ϕ [α] and ϕ [β ]. This is a broad topic considered in

depth elsewhere (McLachlan, 1995; Hairer et al., 1996; Blanes et al., 2008) and we

will just sketch a simple case here, though it can be shown that it is possible to obtain

composition methods in this way up to very high order (Blanes et al., 2006).

There is a very simple result Hairer et al. (1996) that shows that composing these

propagators, first doing one and then the other, gives results correct to first order. This

echoes the symplectic Euler case but in a more general setting involving arbitrary

splitting of differential equation systems. The result is as follows.

If ϕ [α+β ] is the propagator corresponding to Equation 2.33, and ϕ [α] and ϕ [β ] are

the propagators corresponding each term on the right hand side, then the following

holds:

ϕ
[α+β ]
h = ϕ

[β ]
h ϕ

[α]
h +O(h2) (2.34)

Let us expand the value after the application of the first propagator in Taylor series and

denote it as,

x′ = ϕ
[α]
h (x) = x+hα(x)+O(h2) (2.35)

Similarly, the final value after application of the second propagator is given to first order

by,

x′′ = ϕ
[β ]
h (x′) = x′+hβ (x′)+O(h2) (2.36)

The value for β (x′) is given by β (x) plus terms themselves involving h, so,

x′′ = x+hα(x)+hβ (x)+O(h2) (2.37)

which can be immediately identified as the first order Taylor expansion for the result of

applying the combined propagator.

This very basic result, nearly trivial, is very useful. It provides a bound on the

accuracy of composition methods. It also shows that it is possible to have a composition

method with “known properties” and what this means.

Interestingly the above theorem works in reverse as well. Under similar conditions,

a propagator that is exact in composition can be approximated to first order (at least) by
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the propagator that corresponds to their models acting simultaneously. To the extent

that “acting simultaneously” means “could be implemented in parallel,” this suggests

that parallel approximation of serial programs are possible with known error, at least in

these circumstances restricted to continuous and differentiable functions.

2.4.6 Equilibrium and Optimisation

Some models are not concerned with how a system changes in time at all. Rather they

assert that the system, if it is out of equilibrium, will move rapidly to equilibrium.

Mechanical models of epithelial tissues represented as a graph Nagai et al. (2001) and

Farhadifar et al. (2007), for example, can easily be shown to have this property. The

argument is as follows.

A perturbation to a patch of epithelial tissue, while it may cause a reconfiguration of

the cells, will not cause it to remain in motion for an appreciable time. This is because the

ratio of inertial to viscous forces, a quantity known as the Reynold’s number (Reynolds,

1883), is characteristically low. In such systems, kinetic energy is removed quickly by

friction.

The tissue is modelled with a potential function of the vertices where cell-edges

come together, U(q). In general, its motion will be described by the Euler-Lagrange

equations (Goldstein, 1980) with an external velocity-dependent dissipative force Q(q̇),

∂L
∂q
− d

dt
∂L
∂ q̇

= Q (2.38)

where, L = T −U and T is the kinetic energy of the system. If the systems is hypothe-

sised to be at rest, then both T and its derivative with respect to velocity will be zero.

The friction, Q, will also be equal zero for the same reason. Since U depends only on

position, we are simply left with,

∂L
∂q

=−∇U = 0 (2.39)

and the problem reduces to one of finding a minimum of a scalar function of the

generalised positions.

2.4.6.1 Optimisation Methods

We have already seen an optimisation method in Section 2.4.3.2 for solving the implicit

Euler integration scheme: Newton’s method. Now we examine some others.
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2.4.6.2 Coordinate Descent

The simplest, perhaps most naı̈ve method for finding a local minimum of a function is

to minimise each coordinate in turn. This is computationally cheap but does not work

for many kinds of functions, particularly those that are not smooth. But because it is

so simple it is a nice illustration of how fixed point propagators can be composed to

construct a standard optimisation method.

Let ϕi,η denote the function that for the ith coordinate, moves in the decreasing

direction in proportion to the rate of change of the scalar potential in that direction. The

η is the step size. This propagator is given explicitly by,

ϕi,η(q) =



q1

q2

· · ·
qi−η

∂U
∂qi

· · ·
qn−1

qn


(2.40)

Coordinate descent says that this must be continued until the ith coordinate is at a

minimum, meaning ∂U
∂qi

= 0 so what is required is a fixed point version of this propagator,

ϕ?
i,η .

The prescription then is to do this same procedure for each coordinate in turn. So

the propagator for one iteration of coordinate descent is given by,

ϕη =
n

∏
i=1

ϕ
?
i,η (2.41)

The whole procedure is then repeated until the result converges (if it converges) to a

minimum, so the entire coordinate descent procedure can be written as,

ϕ
?
η =

(
n

∏
i=1

ϕ
?
i,η

)?

(2.42)

2.4.6.3 Gradient Descent

A slightly more sophisticated approach is, rather than minimising each coordinate

independently, to change them all at the same time and move in the direction of steepest

descent, the gradient of the potential,

ϕ∇,η(q) = q−η∇U (2.43)
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giving one step of gradient descent.

As with coordinate descent, this procedure should be repeated until a fixed point is

obtained, so we write ϕ?
∇,η for it.

2.4.6.4 Stochastic Descent

Suppose we were concerned that the coordinate descent above that the order in which

the coordinates were chosen would materially affect the result. To remove this potential

bias, we might choose a random order on each iteration. This is easily represented by

the stochastic propagator,

ϕ
?
η

::

=
{

ϕi,η
}

::::::

? (2.44)

Stochastic gradient-descent, or on-line descent is a standard technique used in

machine learning (Bottou, 1998). It is straightforward to describe this technique in our

notation as well. Suppose that the potential can be written as the sum,

U(q) =
1
n

n

∑
i=0

Ui(q) (2.45)

Such a potential can be split into the corresponding gradient descent propagators, for

each summand,

Ui ⇒ = ϕ
i
∇,η (2.46)

This compact notation says that the propagator does gradient descent ∇, with a step

size or learning rate η , for the ith potential term. On-line descent says that we should

iterate for each potential term in random order. Using our notation, this procedure is

conveniently and compactly written as,

ϕ
?
∇,η

::::

=
{

ϕ
i
∇,η

}
:::::::

?
(2.47)

2.4.6.5 Quasi-Newton Methods

As was pointed out towards the end of Section 2.4.3.2, though it is straightforward to

write Newton’s method as the propagator ν , solving Equation 2.28 can be impractical

because the Jacobian matrix is rarely available. Quasi-Newton methods (Broyden, 1967)

approximate the Jacobian matrix at each step as well. There are several algorithms

used for this, most commonly the classical Broyden-Fletcher-Goldfarb-Shanno (BFGS)

method (Broyden, 1970a; Broyden, 1970b; R. Fletcher, 1970; Goldfarb, 1970; Shanno,

1970) and somewhat more recently the Symmetric Rank One (SR1) method (Conn et al.,

1991).
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In the context of minimising scalar functions that we have been discussing, Equa-

tion 2.28 becomes,

qk+1 = qk−ηkB−1
k ∇U(qk) (2.48)

where Bk is a symmetric matrix approximating the Hessian matrix of the function U ,

and ηk is the step size which, in general, should be allowed to vary for each iteration.

The difference between the BFGS, SR1 and related methods is the specific way in which

Bk is calculated and kept updated. In all methods, however, each iteration requires extra

information not contained in the coordinates—the Hessian approximation and the step

size.

To support these methods within our framework of propagators, we augment their

domain and codomain. We locally augment the state space using a function to a space

that includes an additional n×n matrix and a step size, B= (X,Rn×Rn,R). The inverse

of this function is clearly the projection onto X, πX. So if b : B→ B is the propagator

that executes one step of the BFGS method, the propagator implementing the entire

procedure is,

ϕbfgs = πXb?π
−1
X (2.49)

where π
−1
X is simply defined as,

π
−1
X (x) = [x, | In,η0] (2.50)

for an initial step size η0 and the n×n identity matrix.

2.4.7 The Loch Ness Monster

We next consider an interesting example from statistical mechanics, the treatment of

simple reaction networks. We present this example as a brief tutorial in simple terms

for clarity, inspired by the excellent textbook from Baez et al. (2012) and the thorough

and rigorous treatment of Behr; Duchamp, et al. (2017). Indeed the title of this section

has its origins in a presentation given by Behr some years ago in which the example

reaction A→ /0 was considered in detail. That example is reproduced below followed

by an example of an equilibrium system where the reaction is made reversible.

This tutorial is intended to be merely illustrative and the model given here has severe

limitations. The state-space of the model is infinite-dimensional. Each dimension is

used to represent the probability of having a certain number of particles. There is no

a priori limit on the number of these particles so there is no limit on the number of

dimensions needed to represent their probabilities. We cannot store infinite-dimensional
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counting vectors in computer memory, so we use a finite approximation. Truncating the

state-space means that the probability of having more particles than can be represented,

at any time, is negligibly small. This approximation limits the systems that can be

modelled. A second important limitation pertains to systems with more than one species.

Representing multiple species requires counting vectors for each one. Though it would

be possible to concatenate the (already finitely approximated) vectors for each species

to construct the model’s state-space, doing so would complicate the exposition. We

therefore restrict ourselves to systems involving only one species.

2.4.7.1 The Chemical Master Equation

The main purpose of this tutorial section is to demonstrate the software implementation

of a propagator framework in the Haskell programming language for approximations of

simple models expressed in terms of the Chemical Master Equation,

d |ψ(t)〉
dt

= H |ψ(t)〉 (2.51)

This equation gives the rate of change of a system’s state, |ψ(t)〉 , as an infinite-

dimensional vector describing the number of particles in the system upon which the

Hamiltonian, H, acts to effect a change. The ket notation, |·〉 indicates, essentially, that

the state is a column vector. The conjugate, bra notation, 〈·| indicates a row vector. This

is known as bra-ket or Dirac notation and it is used to distinguish infinite-dimensional

vectors for ordinary, finite-dimensional vectors. The form of Equation 2.51 suggests

that H is either a scalar or a square matrix, and it is, in fact, the latter.

2.4.7.2 Counting State Vectors

We now proceed to define |ψ(t)〉. In this setting, the system state is a count of particles.

We consider only systems with a single kind of particle. For a system with one kind of

particle, |ψ(t)〉, represents a time-varying vector in an infinite-dimensional real vector

space. As such, |ψ(t)〉 is a function from the reals, representing time, to this counting

space, |ψ(t)〉 : R→ [0,1]∞. Each coordinate of the vector represents the probability of

having a certain number of particles, starting at zero. If the system contains n particles,

|ψ(t)〉= [Pr(n = 0),Pr(n = 1),Pr(n = 2), . . .]T (2.52)

For example, the state [1,0,0, . . .]T indicates that there are no particles present and the

state [0,0,0,0,0,1,0,0, . . .]T indicates that there are five. The state [0,0.5,0,0,0.5,0,0, . . .]T

represents an even chance of finding the system with one or four particles.
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The state vector is normalised such that,

∞

∑
i=0

(|ψ(t)〉)i = 1 (2.53)

where the sum is taken over all components so that it can be interpreted as a probability

distribution. The probability to have n, particles, p(n), is simply the value of the nth

component of |ψ(t)〉. It is defined for all non-negative integers n and it is a probability

distribution because of the normalisation of |ψ(t)〉. This ability to represent a distribu-

tion for probabilities of having any given number of particles as a vector is the reason

for using this kind of infinite-dimensional space rather than simply using, for example,

an integer.

The solution to equation 2.51 is,

|ψ(t)〉= etH |ψ(0)〉 (2.54)

which, apart from specialised ket notation, is equivalent to Equation 2.4. Our goal is to

construct the propagator, ϕt = etH , corresponding to Equation 2.5. This is challenging

because of the infinite order of the state space. Our strategy is to approximate it finitely,

and we begin by examining the nature of the Hamiltonian matrix operator.

2.4.7.3 Creation and Annihilation

Changes to the system are naturally expressed in the form,

A k−→ B (2.55)

where some reagents A interact and produce some products B at the rate k. Underlying

this representation are the concepts of creation and annihilation, some inputs to the

reaction are annihilated and some outputs are created. We very loosely follow the

presentation of Baez et al. (2012), who also highlight the intimate connection with

Quantum Mechanics and the correspondence between the Master Equation and the

Schrödinger Equation.

We will write a† for the operator that creates a particle and a for the operator that

destroys one. Both of these operators not only effect the creation or annihilation but

count the ways in which it can be accomplished. Adopting the shorthand |n〉 for the

state vector with a 1 in position n and 0 elsewhere, we write the intended effects of a†
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and a as,

a† |n〉= |n+1〉 (2.56)

a |n〉=

n |n−1〉 n > 0

0 otherwise
(2.57)

The creation operator is straightforward, there is a single way to create a particle, simply

by adding one to the system, and the result is a new state with one more particle than

there was before, |n+1〉. The annihilation operator is more subtle. If there are no

particles, none can be removed, so the result is 0 — note not |0〉 since this not the

state of having no particles but the number of ways no particles can be removed, in

effect, a kind of extinction. If there is a non-zero number of particles there are as many

ways as there are particles to remove one, with one fewer left over, hence n |n−1〉. The

creation or annihilation of several particles are simply powers of these operators. A

double creation operator is just a†a† = a†2.

Let us be explicit about the matrix representation of these operators. After all it will

be necessary to implement them. The creation operator, a†, in explicit (infinite) matrix

form, is,

a† =



0 0 0 0 0 · · ·
1 0 0 0 0

0 1 0 0 0 · · ·
0 0 1 0 0

0 0 0 1 0 . . .
...

... . . . . . .


(2.58)

It is easy to satisfy oneself that this matrix satisfies Equation 2.56.

In code, this matrix can be generated easily from a sparse association list for finite

arbitrary size. We cannot generate infinite matrices as such, therefore we truncate the

state space so that the matrix representation of the operator can be of finite size. Such

truncated representations have been studied. Munsky et al. (2006) and later Burrage et al.

(2006), for example, dynamically computes the truncation error and finitely expands the

state space as required. Cao et al. (2016) employs reflecting boundaries on a truncated

state space where increases in particle counts above the finite size become decreases, and

they compute the error for this. Here, we are simply demonstrating a toy implementation

of our propagator notation for some interesting particular cases, so we do not implement

dynamically changing state dimension or reflecting boundaries or compute rigorous
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error estimates. We do note that, owing to the unchanging state dimension, the reflecting

boundary strategy appears most amenable to treatment in our framework.

This sparse representation is transformed to a dense matrix for pragmatic purposes

because the matrix exponential function expm that we will eventually use requires a

dense matrix representation. The code is as follows,

1 create :: Int → Int → Matrix Double

2 create n p = LD.toDense $ ((n-1, n-1), 0):m

3 where m = [ ((j+p, j), 1) | j ← [0..(n-p-1)]]

The first argument n to create is the size of the matrix to produce, and the second

one, p, is the power. Because we can calculate powers of these matrices directly, and

this will be a frequent requirement, we optimise here instead of multiplying individual

creation matrix operators together. This function produces a matrix of size n for a†p.

The association list is prepended with a zero entry in the bottom right corner to establish

the intended size of the matrix.

The annihilation operator can be handled in a similar way. It can also be explicitly

represented as an infinite matrix,

a =



0 1 0 0 0 · · ·
0 0 2 0 0

0 0 0 3 0 · · ·
0 0 0 0 4

0 0 0 0 0 . . .
...

... . . . . . .


(2.59)

Note that the case definition in Equation 2.57 follows directly from this matrix rep-

resentation. Calculating a |0〉 by multiplication with this matrix gives the required 0
vector.

To represent the annihilation operator in code, similarly optimised for directly

calculating powers of this matrix without multiplying them explicitly, we need to

implement an auxiliary falling factorial function,

1 (!.) :: Int → Int → Int

2 n !. k = product [(n-k+1)..n]
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Implementing ap is now,

1 annihilate :: Int → Int → Matrix Double

2 annihilate n p = LD.toDense $ ((n-1, n-1), 0):m

3 where m = [ ((j, j+p), fromIntegral (j+p !. p)) | j ← [0..(n-p-1)] ]

where the arguments have the same meaning as with create.

To construct a reaction from these operators, one might be tempted to simply write

a†tas where t and s are the number of particles created and destroyed, respectively. This

would be wrong because of the counting behaviour of the annihilation operator. When

applied to |n〉 it is wrong by an extra factor of n(n−1)(n−2) . . .(n−s) so long as n≥ s.

To correct for this, we subtract a†sas to arrive at the reaction, ρ , which first counts the

number of ways in which s particles may be consumed and if there are enough, creates

t new ones,

ρ = k(a†t−a†s)as (2.60)

where k is the average rate at which the reaction occurs. This is the realisation in terms

of creation and annihilation operators of the reaction that is normally written as,

sA→ tA (2.61)

2.4.7.4 Reactions and the Hamiltonian

Reactions are now straightforwardly defined in code, as before with a certain finite

matrix size, n, and a number of instances of particles that they create t or destroy s at a

rate, k,

1 reaction :: Int → Int → Int → Double → Matrix Double

2 reaction n t s k = scale k (ct × as - cs × as)

3 where

4 ct = create n t

5 cs = create n s

6 as = annihilate n s

For a model with more than one reaction, the total effect is just the sum of their

individual effects, and its Hamiltonian is written,

H = ∑
τ∈T

ρτ = ∑
τ∈T

kτ(a†tτ −a†sτ )asτ (2.62)
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where T is the set of reactions, and for each of them kτ is the rate at which it happens,

tτ is the number of particles created and sτ is the number annihilated.

If we specify reactions in code as a tuple of the form, (t, s, r), in other words

the parameters that we need to create an individual reaction, we can construct a finite

representation of size n of the Hamiltonian from it,

1 hamiltonian :: Int → [(Int, Int, Double)] → Matrix Double

2 hamiltonian n rs = foldl1 (+) $ map(λ(t, s, k) → reaction n t s k) rs

In words, we create a reaction for each specification in the list, and then add them all

together.

2.4.7.5 The Propagator

The propagator corresponding to the Hamiltonian, ϕt = etH , is nearly trivial to write in

code,

1 propagator :: Double → Matrix Double → Matrix Double

2 propagator t h = expm (scale t h)

where, for clarity because of the syntax of the Haskell language, h is in fact the Hamil-

tonian, H, and t represents time. The function expm is from the HMatrix package (Ruiz,

2012) and computes a matrix exponential. (In this case, using a scaling and squaring

technique with Padé approximation from Golub et al. (2012), though this is just an

implementation detail. Numerical computation of matrix exponentials is not at all

straightforward, see Moler et al. (2003).)

Finally we add a utility function that does the very straightforward computation

conducting the evolution n times for an interval of dt and saves each step to a file on

disk,

1 timeseries :: FilePath → Int → Double →
2 Matrix Double → Matrix Double → IO ()

3 timeseries base n dt h x = mapM_ (λk → dump k (fromIntegral k∗dt)) [1..n]

4 where

5 filename k = printf "%s_%04d.dat" base k

6 dump k t =
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7 saveMatrix (filename k) "%f" $ propagator t h × x

Note that because the problem admits an exact solution this function makes use of the

fact that eαHeβH = e(α+β )H and produces the result for each time directly. In some

instances this may be beneficial for reducing accumulated numerical error, leaning on

the underlying implementation of the matrix exponential instead of explicit repeated

application of the propagator. This approach is also computationally more expensive

because a matrix exponential must be computed for each time-step.

Instead, accepting the risk of possible numerical errors, we use an implementation

with a fixed propagator that is calculated only once. Not only is this more in the spirit

of the framework that we have discussed so far, it is much faster since multiplying a

matrix by a vector is far cheaper than computing a matrix exponential.

1 timeseries :: FilePath → Int → Double →
2 Matrix Double → Matrix Double → IO ()

3 timeseries base n dt h x = dump n x

4 where

5 filename k = printf "%s_%04d.dat" base k

6 prop = propagator dt h

7 dump 0 y = saveMatrix (filename n) "%f" y

8 dump k y = do

9 let y’ = prop × y

10 saveMatrix (filename (n-k)) "%f" y’

11 dump (k-1) y’

2.4.7.6 Nessie

Using what we have created so far, here is a simple driver program to compute the

dissipation reaction,

A→ /0 (2.63)

where it is fed with an initial probability distribution of equal probability to have 10,

100, 200 or 300 particles. The size of the finite matrix representation is chosen to be

slightly larger than the greatest number of particles that is expected.

1 main :: IO ()
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Figure 2.2: Probability distribution evolution for the dissipation reaction. In each plot, the

vertical axis is probability and the horizontal axis is the number of particles. Starting from

a distribution with a 25% probability of having each of 10, 100, 200 or 300 particles, the

plot shows the distribution at t = 0.1, t = 1, t = 2 and t = 4.

2 main =

3 let size = 330

4 h = hamiltonian size [(0, 1, 1)]

5 x = tr $ LD.toDense [((0,10), 0.25)

6 , ((0,100), 0.25)

7 , ((0,200), 0.25)

8 , ((0,300), 0.25)

9 ,((0,size-1), 0)

10 ]

11 in timeseries "dissipation" 100 0.1 h x

The results are plotted in figure 2.2, and until the distribution converges to a Kro-

necker delta. The resemblance to the Loch Ness Monster is uncanny.

2.4.7.7 Equilibrium

Consider now the slightly more complicated system,

/0
k0−→ A (2.64)

A
k1−→ /0 (2.65)

This is a reaction system for which the limit distribution, as t→∞, is known analytically

to be Poisson with parameter λ = k0/k1 (Jahnke et al., 2007). To demonstrate this, we

perform the experiment for both λ = 1 and λ = 25. The initial configuration of the

system will be a Kronecker delta shifted to 100, p(x) = δ [100− x], in other words

certainty that there are 100 particles. The results are shown in Figure 2.3.

The driver code is,
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Figure 2.3: Probability distribution evolution for the equilibrium reaction set. In each plot,

the vertical axis is probability and the horizontal axis is the number of particles. Starting

with a distribution for 100 particles, the plot shows the distribution at t = 0.1, t = 10,

t = 25 and t = 50. In each plot, the blue (solid) line is k0/k1 = 1 and the red (dashed)

line is k0/k1 = 25.

1 main :: IO ()

2 main =

3 let size = 600

4 k0 = 25

5 k1 = 1

6 h = hamiltonian size [(1, 0, k0), (0, 1, k1)]

7 x = tr $ LD.toDense [((0,100), 1), ((0, size-1), 0)]

8 in timeseries "equilibrium" 500 0.01 h x

2.4.8 Farhadifar’s Vertex Model

Finally, to illustrate the utility of our propagator notation in the setting of a more complex

model, let us consider the vertex model of epithelial tissue presented in Farhadifar et al.

(2007). It accurately predicts the topology of the embryonic wing disk of drosophila, a

kind of fruit fly, and we briefly describe the model here.

In Farhadifar’s model, a tightly packed single layer sheet of cells is represented as a

graph. The edges in the graph are the edges of cells, and the vertices where these meet

have a valence of three for reasons of mechanical stability (C. S. Smith, 2015). The cells

themselves are chords in this graph. The model is made of two fundamentally different

processes: the movement of vertices in space under the influence of mechanical forces

due to a potential, and topological transitions which happen under certain conditions.

The topological transitions that are possible in such an environment have long been
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known (C. S. Smith, 2015; Weaire et al., 2009) and are,

Division (2.66)

Migration (2.67)

Extrusion (2.68)

Under proliferative conditions, division is performed at the beginning of each simulation

time step. It is the primary source of perturbation in the system. The division rule

says that a cell is chosen and two of its edges are bisected and joined. Migration, or

edge-swapping, is performed when the cells on the left and right of the short edge

are advancing towards each other and become sufficiently close to touch. Extrusion,

the removal of triangles, is performed whenever it is possible. It may happen as a

consequence of either of the two other transitions.

The potential governing the motion of the vertices between topological changes is,

U = ∑
i∈cells

K
2
(Ai−A0)

2 + ∑
i∈edges

Λei + ∑
i∈cells

Γ

2
(Li−L0)

2 (2.69)

Ai

ei

Li

The meaning of the main symbols is shown graphically in

the figure at right. The potential contains a quadratic term

relating to the area of each cell. The area if the ith cell is Ai.

Cells have a preferred area, A0, and experience an inward

or outward force according to whether they are stretched or

compressed. The model parameter K determines how strong

this effect is. Edges have a cost per unit length, Λ, and the

linear term acts to minimise their length, ei, thus modelling

the elasticity of the cell membrane. An addition to this

model not present in the otherwise similar one of Nagai

et al. (2001) is a third, quadratic term in the perimeter of the cell, modelling contractility

or surface tension. Li is the perimiter of the ith cell and, similarly to the case with area,

L0 is a preferred perimeter. Γ governs the strength of this effect.

In words, the simulation proceeds as follows. At the beginning of each time-step a

cell is chosen to divide. Any three-sided cells present are removed. At this point the
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tissue will be out of equilibrium, so the remainder of the procedure is repeated until

it reaches equilibrium. A gradient descent is performed. If applicable, any migration,

or edge-swap transitions are performed. If this has produced any three-sided ells are

produced in the process, they are removed.

The equivalent description of the dynamic tissue simulation in terms of propagators

is both unambiguous, more compact and perhaps more easily understandable. Let ϕ ,

ϕ and ϕ correspond to the division, migration and extrusion transitions respectively.

As in Equation 2.43, ϕ∇,η performs one step of gradient descent. The propagator for

one simulation step is then given by,

ϕ =
(

ϕ
?

ϕ
?
ϕ∇,η

)?
ϕ
?

ϕ (2.70)

An alternate implementation that produces comparable results is present in the

Chaste software package (Mirams et al., 2013). This is used, for example, in Waites;

Cavaliere, et al. (2018) and forms the basis for Chapter 3. It uses the same potential,

and the same topological transitions, but operates differently. Rather than conducting a

gradient descent, each vertex is moved independently, in random order. Essentially this

is a stochastic splitting and composition method such as we have described above. If

we write ϕ i
∇,η for the gradient descent propagator for the ith vertex, then this version of

the simulation is,

ϕ =

(
ϕ
?

ϕ
?
{

ϕ∇,η

}
:::::::

)?

ϕ
?

ϕ (2.71)

The difference between the simulations is very clear simply by inspection.

2.5 Conclusions

We have defined, starting from long-established practice in dynamical systems and

numerical integrators, a notation of propagators for describing heterogeneous simula-

tion algorithms. Existing practice has been extended with a concept of iteration and

probabilistic selection of integrators from the members of a set. We have illustrated

this notation by showing examples from discrete mathematics and some simple nu-

merical methods in widespread use. We have further shown that, with our extensions,

it is possible to express optimisation of optimisation techniques in a novel, succinct

and unambiguous way. We have considered a toy implementation of the Chemical

Master Equation, applied it to a dissipative system, and examined the effects of finitely

approximating matrix operators in numerical approximation of non-dissipative systems.
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Finally, we have shown how this notation can be used to clearly and unambiguously

describe two different implementations of a fairly complex model, Farhadifar’s vertex

model for epithelia.



Chapter 3

Path Entropy

Abstract. We present path entropy, an information-theoretic measure that captures

the notion of patterning due to phase separation in organic tissues. Recent work has

demonstrated, both in silico and in vitro, that phase separation in epithelia can arise

simply from the forces at play between cells with differing mechanical properties. These

qualitative results give rise to numerous questions about how the degree of patterning

relates to model parameters or underlying biophysical properties. Answering these

questions requires a consistent and meaningful way of quantifying degree of patterning

which we define. It is a resolution-independent measure that is better suited than image-

processing techniques for comparing cellular structures. We show how this measure

can be usefully applied in a selection of scenarios from biological experiment and

computer simulation, and argue for the establishment of a tissue-graph library to assist

with parameter estimation for synthetic morphology.

3.1 Introduction

One of the major mechanisms for understanding tissue development is adhesion-

mediated sorting of cell mixtures into homotypic groups which was discovered by

Steinberg in the 1960s (Steinberg, 1962). Interest in this phase separation mechanism

has recently surged, partly because of its ability to create synthetic biological pattern-

c©IEEE. The work presented in Chapter 3 is reprinted with permission from William Waites, Matteo
Cavaliere, Élise Cachat, Vincent Danos and Jamie A. Davies, “An information-theoretic measure for
patterning in epithelial tissues”, IEEE Access (2018). The work was conceived by all of the authors. I
programmed and conducted the simulations that were able to reproduce the biological results, originated
and formulated the concept of Path Entropy for comparing the simulated and laboratory data, implemented
it in software, conducted the numerical experiments, produced the figures apart from those originating
with the laboratory experiments, and drafted the main text.
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ing mechanisms (Cachat et al., 2016) and partly because it has been found to drive

events critical to the formation of organoids from stem cells (Unbekandt et al., 2010;

Lefevre et al., 2017), making the process relevant to biotechnology as well as to basic

development.

These investigations in experimental and synthetic biology have been paralleled by

the development of analytic and computational models to explain pattern development.

The first class of these are reaction-diffusion systems such as those of Turing (Turing,

1952) and Gierer (Gierer et al., 1972) in which a slowly diffusing activator molecule ac-

tivates its own synthesis and also the synthesis of a rapidly diffusing inhibitor molecule.

In such a system, small random asymmetries lead to slightly elevated production of

activator morphogens and become centres of activator production and inhibit nearby

sites from doing the same. The result is a field with separated spots, patches or stripes

of high activator expression, which can be modelled for a two-component fluid system

by the Cahn-Hilliard equation (Cahn et al., 1958).

The second class of model is discrete, and patterning emerges from the mechanical

properties of the cells themselves: cell-cell adhesion, contractility, and the balance

between cell surface area and volume. In this class are the Cellular Potts model (Graner

et al., 1992) and the model of Newman et al. (Sandersius et al., 2011), in which motion

takes place on a mesh of a scale much smaller than a cell, and Vertex models (Nagai

et al., 2001; Farhadifar et al., 2007), in which the the system is represented as a dynamic

and irregular mesh where polygons correspond directly to cells. Recently, analytic

results have become available (Staple et al., 2010; Magno et al., 2015) that predict cell

shapes produced by both numerical simulations and models in a homogeneous setting

and they have been demonstrated (Osborne et al., 2017) to produce phase separation in

simulation in a heterogeneous setting.

Against this background, there is a dearth of tools for comparing data produced

by each of these disparate methods. Qualitatively, snapshots of tissues undergoing

phase separation in simulation (Magno et al., 2015; Osborne et al., 2017) look similar

to those produced experimentally by engineering cells with different levels of cad-

herin molecules (Cachat et al., 2016). In both cases the mechanism is understood to

be Steinbergian differential adhesion, but there commonly used methods for quan-

titative techniques on epithelial sheets are mainly concerned with polygon distribu-

tions (Sánchez-Gutiérrez et al., 2015) or structural motifs (Vicente-Munuera et al., 2017)

and are not straightforwardly extended to a setting with multiple cell types.

Graph-based distance, or graph similarity measures are well known. Eschera and
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Fu (Eshera et al., 1984) define a distance between attributed feature graphs extracted

from images in terms of transformations required to derive one from the other. Others

such as Bunke and Shearer (Bunke et al., 1998) define a distance (in fact, a metric) in

terms of the size of the maximal common subgraph. Measures of these types do not,

however, contain any intrinsic notion of pattern or information so do not adequately

capture these higher-level concepts. They are, in a sense, overspecific.

Shannon’s entropy (Shannon, 2001) has proven difficult to extend to two or more

dimensions in a meaningful way. The fundamental problem is that entropy depends

fundamentally on the underlying probability distribution over some set of possibilities,

but there is no unique way to decide which set is appropriate. It is an extrinsic anthropo-

morphic concept, not an intrinsic property of the system (Jaynes, 1965). Information-

theoretic measures for images are known, but they are typically constructed on the

probability distribution of pixel values in an image (Tsai et al., 2008; Gonzalez et al.,

2004; Mangin, 2000), essentially transforming a two-dimensional problem into one

dimension, sacrificing spatial structure in the process.

The Maximum Entropy technique (Skilling et al., 1984), widely used in image

reconstruction from partial data, treats an image as a two dimensional structure, but is

necessarily sensitive to image resolution. Likewise, other measures such as by Rubner et

al. (Rubner et al., 2000) and the vast literature on distances between images for retrieval

purposes do encode something of the information content, this is relative to the image

resolution. For that reason, without some kind of pre-alignment such as with Cuturi &

Doucet’s technique of fast computation of Wasserstein Barycentres (Cuturi et al., 2014),

they are not directly applicable to the task of comparing tissue examples from vastly

different sources — experimental imagery on the one hand and simulation data on the

other. A similar criticism can be made of Larkin’s delentropy measure (Larkin, 2016)

(however, see section 2 of Larkin’s paper for an extended discussion of information-

theoretic measures of images).

In this chapter, we provide such a method by defining a family of resolution-

independent entropy measures on graphs that captures the different patterns observed

throughout the literature on phase separation in cellular tissues. We choose to frame

the measure in terms of graphs not only because the cell-cell contacts of epithelial

and other biological tissues are intrinsically graph-like (Escudero et al., 2011), but

because it is independent of the scaling or resolution of imagery. The property of

resolution-independence is important because it allows comparison across different

experiments, both in-vitro and in-silico. Using this measure, it is possible to answer such
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salient questions as how quickly a pattern forms when starting from a random tissue or

to meaningfully compare the degree of patterning observed in different numerical or

wet-lab experiments. This capability enables workflows in synthetic mammalian biology

where the goal is to engineer cell lines that will produce these kinds of patterns. Whether

and to what extent the desired pattern is achieved can be consistently measured, and

this information fed back into the system as the genome, host environment or external

stimulus is adjusted.

3.2 Mathematical Preliminaries

We will use some concepts from graph theory and from information theory and probabil-

ity. We assume a basic level familiarity with these on the part of the reader. Nevertheless,

we review some key definitions and clarify the notation that we use throughout.

A set, X is a collection of elements. The number of elements in the set, its cardinality,

is written as |X |. If another set Y is a subset of X , written Y ⊆ X then the chance of

choosing an element x of X uniformly at random and finding that it is also an element

of Y is Pr(x ∈ Y ) = |Y |
|X | .

A partition of a set, is a set of non-empty subsets of X called {Yi}, such that each

element in X is in exactly one of the Yi. A partition gives rise to a probability distribution,

which has the property that,

∑
i

Pr(x ∈ Yi) = ∑
i

|Yi|
|X |

= 1 (3.1)

We will use one fact about Markov processes in this chapter. Suppose that the Yi are

possible states of a system in the state-space X and that there is a certain chance, qi j

that, being in state Yi now at the next instant it will be in state Y j. Since we require that

the system is always in some state, it must be that,

∀i, ∑
j

qi j = 1 (3.2)

A matrix, qi j, with this property is called stochastic.

The Cartesian product of two sets, X ×Y is the set of pairs (x ∈ X ,y ∈ Y ). If both

sets are the same, this is also written as X2 and analogously for higher powers.

A directed graph, G, consists of a set of vertices, V , also called nodes, and a set of

edges that connect the vertices, E ⊂V 2. A path of length n on the graph is a sequence

of vertices, (v0,v1, . . . ,vn) such that (vi,vi+1) ∈ E for 0 ≤ i < n. We take the special
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(a) Initial conditions (b) Case I (c) Case III (d) Case IV

Figure 3.1: A selection exemplar simulated tissue configurations for three cell types in

equal proportion. At left, randomly distributed populations on a regular hexagonal lattice

(typical initial conditions for simulation). The others the resulting configuration after some

elapsed time for different costs of heterotypic and homotypic edges between cells. In

particular, the cost of a heterotypic edge with a white cell increases from left to right, and

the cost of a homotypic edge between white cells decreases. The precise meaning of

Case I through Case IV is explained in Section 3.11.

case of zero-length paths to be simply the set of vertices itself. Let us write Sn(G) for

the set of all paths of length n from the graph, G.

A graph invariant is a quantity that depends only on the structure of the graph itself

and not any representation or labelling. In particular it is a quantity that is invariant

under graph isomorphism.

Let C be a set of colours and χ : V →C be a function that maps vertices to colours.

A coloured graph, (V,E,χ) is a graph together with such a function. Note that χ induces

a partition on G when applied to each vertex. This partition map groups vertices together

by colour.

3.3 Path Entropy

To motivate our pattern complexity measure more concretely, let us consider some

exemplar simulated tissues, shown in Figure 3.1. These consist of three kinds of cells,

represented as different colours, in equal proportion. The qualitative difference between

each of the images is intuitively clear, from no discernible pattern, to a kind of quasi-

uniform distribution of white cells, long, thin stripes and round patches reminiscent of

the “dappling” calculated by hand by Turing. We seek a measurement that can be made

on these that is able to distinguish them.

We choose to define this measure on the coloured adjacency graph of cells as
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opposed to, for example, an image of the tissue as in the approach taken, for example,

in (Larkin, 2016). The reason for this choice is that when calculated on the graph, the

measure is resolution independent. It can be applied equally well to simulation data that

has no intrinsic notion of image or resolution or to processed output from experimental

imagery of cell colonies or epithelial sheets. As an important goal is to be able to

compare data from different sources this property is important.

Let us proceed as follows. The entities of interest are cells so let us say that V corre-

sponds to the set of cells in a given tissue. Further, let E be the edges, the adjacencies

between cells. The patterns of interest are meaningful in terms of different kinds of cells

so let the colours, C, correspond to the kind. For the purposes of this chapter we are

concerned with the resulting coloured graph which we call the adjacency graph of cells.

Intuitively, a pattern is found in the sequence of colours extending out in one

direction or another from a given point in the tissue. To capture this, we lift the colouring

function from operating on vertices, to operating on sequences of vertices, or paths,

χn : Sn(G)→Cn for a given path length, n. As with χ , the χn induces a partition of

Sn(G): paths with the same colour sequence get into the same class.

We use this partition to obtain a probability distribution over Cn,

pn(G)(s) =
|{σ ∈ Sn(G),χn(σ) = s}|

|Sn(G)|
=
|χ−1

n (s)|
|Sn(G)|

(3.3)

where s ∈Cn. Where there is no risk of confusion or ambiguity, we will write pn(s) in

place of pn(G)(s) from now on.

Definition 3.1

Given a coloured graph, G = (V,E,χ) and the probability distribution over colour

sequences given by Equation 3.3, we define the n-th order Path Entropy on the

graph to be the Shannon Entropy of this distribution:

En(G) =− ∑
s∈Cn+1

pn(s) log2 (pn(s)) (3.4)

As with the probability distribution, we write simply En in place of En(G) where

there is no risk of confusion.

Note that though the motivation is a measure on planar graphs representing epithelial

sheets, there is nothing in this formulation that presupposes such a restriction. The

family of entropy measures is equally well defined on graphs that embed into three or

higher dimensional spaces.
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3.4 Generalisation to Motifs

The foregoing is concerned with paths only, one-dimensional sequences of vertices.

There is evidence that it may be fruitful to consider two dimensional motifs, or graph

fragments (Vicente-Munuera et al., 2017). The approach given here can be straightfor-

wardly applied to motifs. The general pattern for defining an entropy on a graph is to

come up with a partition map and use the probability distribution that arises from that

to get an entropy (Dehmer et al., 2011). A set of motifs induces a partition on the graph:

the set of sets of subgraphs matched by each motif. Indeed a path of length n is simply

a special kind of motif.

In order to deal with coloured graphs, or heterogeneous tissues, the matching

function is simply lifted to a form that distinguishes differently coloured motifs as

opposed to the purely structural ones considered by Vincente et al. This is precisely

analogous to the coloured paths that we have used above. The corresponding notion of

Motif Entropy follows directly.

3.5 Computational Complexity of Path Entropy

The steps required to calculate En, following directly from the definition in Section 3.3,

are as follows.

A. We begin by enumerating of paths of length n, Sn(G). This can be accomplished

with a depth-first search to depth n for each vertex. Fortunately, though the

number of paths can be very large, |V |n+1 for a complete graph, we do not need

to store the paths themselves: we can simply proceed to the next step and count

occurrences of each colour sequence. Naturally we need to produce each path,

so we must have time complexity of O(k|Sn(G)|) where k is a factor describing

the complexity of producing a single path. This method time complexity in the

worst case of O(|V |n+1) (Stickel et al., 1985) for a complete graph, and because

paths can be produced incrementally during the search, k must be no more than a

constant. For planar graphs of the kind considered here, where average degree

〈d〉 ≈ 6 (Sánchez-Gutiérrez et al., 2015), the situation is somewhat better, with

time complexity of O(|V | 〈d〉n). The depth-first search has space complexity of

O(|V |) to keep track of each vertex visited.

B. For each path, σ ∈ Sn(G), we compute its colour sequence, χn(σ), and count
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the occurrences of each sequence. This requires visiting each vertex v ∈ σ and

computing χ(v). The time complexity is therefore O(|Sn(G)|), just as for the

previous step. An upper bound on the space complexity can be obtained by

supposing that all possible colour sequences occur. This is certainly the case for

small numbers of colours and short paths such as we consider here. In this case,

a count must be stored for each colour sequence, giving space complexity of

O(|C|n).

C. We next compute the probability distribution, Equation 3.3. We must know |Sn(G)|,
and for each colour sequence count from the previous step, |χ−1(s)|, to work out

the ratio of paths with each sequence to the total number of paths. We can bound

this as we have done with the previous step at one division per sequence, and

store a floating-point number for each, giving both space and time complexity of

O(|C|n).

D. Finally, we calculate the entropy as in Equation 3.4. This entails iterating over

each element, pi, in the distribution and calculating pi log(pi), while keeping a

running sum. This clearly has O(1) additional space complexity and the number

of arithmetic operations is linear in the number of elements in the distribution, so

time complexity is O(|C|n).

In summary, the time complexity of calculating En is bounded by,

O(n|V | 〈d〉n + |C|n) Average case

O(n|V |n+1 + |C|n) Worst case
(3.5)

and the space complexity by,

O(|V |+ |C|n) (3.6)

Additionally we can verify empirically that the running time for the above procedure

for calculating En increases comparably to an exponential function of n, as shown in

Figure 3.2. As we see below, in practice it is unnecessary to calculate En directly for

n > 1 so the exponential running time is not a serious handicap.

3.5.1 Linearity of Path Entropy

As discussed below in Section 3.10, we find an empirical result that, for the graphs and

colourings under consideration here, that the path entropy En is linear in n. That is,

En = (E1−E0)n+E0 n > 0 (3.7)
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Figure 3.2: Empirical running time of calculation of En of the graph of Figure 3.1d for

increasing values of n with an implementation in Python running on a 2.4GHz Intel Xeon

E5645 CPU.

This observation is significant because as shown by Equation 3.5, the computational

work to calculate En directly grows exponentially with n. Since it can be worked out

simply from E0, E1 and n, there is little benefit in the direct calculation.

It is important to note that this result does not hold in general. An easy way to find

a counterexample is to construct a graph where the colour of the (n+1)th vertex in a

path depends not only on the nth but also on previous vertices. Fortunately the paths in

the coloured planar graphs that we consider here do not appear to have this property.

An interesting theoretical problem that we do not treat here is to precisely determine

for which underlying coloured graphs this linear relation holds, and for graphs where it

does not, what can be deduced about the path entropy for paths of lengths greater than

two.

3.6 Relative Entropy

For completeness, and because it will be used later, we review the concept of relative

entropy between two probability distributions. This is known in a more general setting

as the Kullback-Leibler divergence (Kullback et al., 1951) and is written,

D(p |q) = ∑
i

pi log
(

pi

qi

)
(3.8)
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for two distributions, p = {pi} and q = {qi}. For this to be well-defined, it is required

that pi = 0 if qi = 0. Intuitively it gives a notion of distance between two distributions,

however this intuition should be taken with a grain of salt: as formulated, in general it

will violate the triangle inequality.

In the present context, we consider the distance from a reference graph containing

paths R to a given graph G. The reference graph could be the initial conditions for a

simulation or experiment or it could be an exemplar or “typical” pattern. This distance

in this setting is simply,

D1(G |R) = ∑
s∈C2

p1(G)(s) log
(

p1(G)(s)
p1(R)(s)

)
(3.9)

3.7 Examples in Two Colours

To see how path entropy works in practice, and before considering real examples, let

us consider a few simple cases. We first consider very simple patterns in two colours

for which entropies can be calculated by hand on rectangular lattices, and then more

complex but nevertheless artificial patterns in three colours on hexagonal lattices shown

in Figure 3.5.

Starting with the simplest possible regular, symmetric two-colour, diagram will

illustrate how the measure E1 captures clustering. In what follows we do not impose

periodic boundary conditions, although it would be perfectly natural to do so. Instead,

we opt to consider, for clarity of presentation, the graphs exactly as they appear on the

page.

Consider a 2x2 checkerboard,

|S1|= 8

|χ−1
1 (wb)|= |χ−1

1 (bw)|= 4

E1 = 1

This can obviously be extended to checkerboards of arbitrary size. Furthermore, larger

checkerboards will, provided symmetry is preserved, give numerically the same value

for E1 because there are no like-colour adjacencies and for every unlike-colour adjacency

is reflexive.
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|S1|= 8

|χ−1
1 (ww)|= |χ−1

1 (bb)|= 2

|χ−1
1 (wb)|= |χ−1

1 (bw)|= 2

E1 = 2

Rearranging the squares into stripes, we can see the measure E1 distinguish between

different kinds of regularity. With a little more work, we can see that this value for E1 is

characteristic of stripes one cell wide on a rectangular lattice,

|S1|= 48

|χ−1
1 (ww)|= |χ−1

1 (bb)|= 12

|χ−1
1 (wb)|= |χ−1

1 (bw)|= 12

E1 = 2

Rearranging the stripes into a thick and two thin, however, we see that the E1

measure counts it as, in some sense, more regular. Or, more to the point, more clustered,

|χ−1
1 (ww)|= 12

|χ−1
1 (bb)|= 20

|χ−1
1 (wb)|= |χ−1

1 (bw)|= 8

E1 = 1.89

Finally, two thick stripes,

|χ−1
1 (ww)|= 20

|χ−1
1 (bb)|= 20

|χ−1
1 (wb)|= |χ−1

1 (bw)|= 4

E1 = 1.65

and this is maximally clustered and a local minimum of the E1 entropy. It is a local

minimum because any change must increase the number of heterotypic edges, and

decrease the homotypic ones. Such a change to the distribution of paths can only

increase the corresponding entropy.
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These minima are interesting. In general, for the two-colour case, the entropy

will have two minima: one for a maximally clustered pattern and one for maximally

dispersed, checkerboard pattern. The latter is easily seen to be a global minimum as all

adjacencies are of the same, heterotypic, type. For the clustered case, while as many

edges as possible are homotypic, there still must be an interface between clusters of

different colours so not all adjacencies can be the same. The outcome of choosing an

arbitrary adjacency at random cannot then be certain, so the entropy must be greater

than for the checkerboard.

3.8 Two-Species Epithelia

We are now in a position to apply these measures to some real-world cases. We start

with some data from the same series as the phase separation study previously men-

tioned (Cachat et al., 2016). In that study, cells are genetically engineered to vary their

level of production of cadherin molecules in response to external regulation using tetra-

cycline. The cadherin molecules govern the adhesiveness of the cells to their neighbours.

Two varieties of these cells, differing only in the degree of sensitivity to tetracycline,

were mixed randomly together in a 50:50 mixture and allowed to settle. Cell cultures

from experiments with, and without tetracycline are shown in Figures 3.3a and 3.3b.

Some processing is needed to take this data into a form where the measures that we

define here can be applied. The procedure is relatively straightforward. First, positions

and kinds of the nuclei are identified directly from the image. These provide the vertices

for our graph. Next, neighbour relationships are derived from the Voronoi tessellation

of these points. The results of this procedure on the confocal images are shown in

Figures 3.3c and 3.3d.

The simulation method that we use to compare to this experimental data is similar to

that of Osborne et al. (Osborne et al., 2017) using the Chaste software package (Mirams

et al., 2013) and Farhadifar’s potential (Farhadifar et al., 2007). In brief, the tissue is

described by a potential,

U = ∑
i∈V

K
2
(Ai−A0)

2 + ∑
i, j∈V 2

λi jEi j + ∑
i∈V

Γ

2
P2

i (3.10)

where Ai and Pi are the area and perimeter of the ith cell, respectively, A0 is the preferred

area of a cell (assumed to be uniform in the population of interest in the present scenario),

and Ei j is the length of an edge between cells i and j (defined to be zero if the cells are

not adjacent). The first term represents compression or dilation of the cell away from its
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Figure 3.3: Top row experimental data, bottom row simulation data. Figures 3.3a and 3.3b

show raw confocal images from Cachat et al.’s study of phase separation due to differen-

tial adhesion, after 24 hours. All cell nuclei are stained to appear blue, while only the

nuclei of the E-cadherin variety appear green. Figures 3.3c and 3.3d show the graph

derived from the voronoi tesselation of the cell centroids from the confocal images.

Figure 3.3e shows the entropy trace of a typical simulation where heterotypic edges

between cells are more costly than homotypic edges. Figure 3.3f shows the data from

the same simulation compared using relative entropy with the Voronoi tessellations of

Figures 3.3c and 3.3d. Finally, Figures 3.3g and 3.3h show simulated tissues as at the

minimum of the relative entropy curves in Figure 3.3f, that is, those that correspond most

closely to experiment by our measure. Both curves increase as the simulation becomes

yet more clustered than the experiment.
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preferred area and the last, the contractility of the perimeter. The constants, K and Γ

that trade off the relative importance of these effects are held fixed.

The entire coding for differential adhesion takes place in the middle term of Equa-

tion 3.10. λi j is cost per unit length of an edge between the two cells. For the two-species

case, this matrix has entries that are either zero for cells that are not adjacent, or values

that depend on the kind of each cell. Heterotypic edges have one value and homotypic

another. In what follows, we abuse the notation slightly and interpret λαβ to mean the

cost per unit length of an edge between cells of type α and β , and we use Λ to refer to

the matrix of these costs for different cell types.

The simulation proceeds from randomly coloured cells on a regular hexagonal

lattice, and the tissue is allowed to relax, in a direction that minimises the potential,

rearranging according to the standard topological transitions for foams (C. S. Smith,

1952; Weaire et al., 2009). To avoid settling to a local minimum, at each step vertices

are subject to some noise, an additional small force in a random direction.

We model the effect of tetracycline indirectly, representing the induced adhesion

effect as the cost of edges. For these simulations we used values for heterotypic edges

approximately twice as costly as for homotypic2 and the result is a time-series of

tissue exemplars beginning with cells randomly distributed and gradually developing

more structure, or clustering. The claim (Osborne et al., 2017) is that this sequence is

representative of the process that occurs in vitro. Figure 3.3e shows how the absolute

entropy, E1, of these tissue exemplars changes over time. Clearly it is decreasing overall.

Finally, we can use Equation 3.9 to work out the extent to which tissue snapshots

from the numerical simulation are similar to the experimental data. The relative entropies

of the simulation to each of the experimental cases, with and without tetracycline

are shown in Figure 3.3f. Each has a minimum, and the minimum for the case with

tetracycline occurs later, at a stage where the simulation has become more ordered

(lower absolute entropy) than without. The tissue exemplars corresponding to these two

minima are shown in Figure 3.3g and 3.3h, and they correspond qualitatively well with

their experimental counterparts. Our measure makes this impression quantitative.

Notice that the distance to the reference snapshot increases as the simulation pro-

gresses. This means that the simulated tissue, for these parameter values, becomes more

ordered according to our measure than the experimental data. Given a suitably large

library of simulation data with which to compare to experiment, one would naturally

wish to find one where the distance measure converges to zero in order to make a

2In particular, λpp = λee = 0.05 and λpe = λep = 0.096, and in all cases Γ = 0.04 and K = 1
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well-supported claim that the simulation parameters are a good fit to the experiment.

3.9 Rate of Pattern Formation

If a time-series of experimental data is available (unfortunately in this instance it is

not) it is also possible to compare the rate of pattern formation. We can, however, show

how path entropy can be used to quantify the rate of pattern formation with a set of

numerical experiments. In these experiments we aim to understand more precisely how

differential adhesion affects pattern formation. The salient model parameters are the

homotypic edge cost, λαα , which is held fixed, an the heterotypic edge cost, λαβ which

we allow to vary. Other parameters such as perimeter contractility, Γ, the area pressure

constant, K, and the amount of noise, Z, we also hold fixed. The results are shown by

plotting E1 for various values of λαα in Figure 3.4.
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Figure 3.4: Path entropy time series for simulations with various values for the heterotypic

edge cost, λαβ . In all cases the homotypic value is λαα = 0.05.

As suggested by the simple examples in Section 3.7 and can be seen in Figure 3.3,

lower entropy values correspond to more “dappling” patterns as they were described by

Turing. The physical reason for the emergence of the pattern, in discrete models such

as the Vertex or Cellular Potts models governed by a potential such as Equation 3.10

is quite simple. The heterotypic perimeter of a patch is expensive compared to the



54 Chapter 3. Path Entropy

homotypic interior, so the dynamics simply arise from the process of minimising (up

to the appropriate constants) the ratio of perimeter to surface area. Absent topological

constraints, the shape that accomplishes this minimisation is a circle. In an equal mixture

of cells constrained to be a planar graph, both kinds of cells cannot form circular patches

simply because it is not possible to tile a plane with circles. Therefore competing but

symmetric tendencies of each kind of cell to try to form circular patches results in the

familiar pattern.

Given this understanding of the process, what we can read from the figure is, all

else being equal, the greater the difference between the homotypic and heterotypic edge

costs, the more rapidly the entropy of the tissue decreases. It takes about twice as long

for the simulation with a heterotypic edge cost, λαβ = 0.07 as does the one for which

λαβ = 0.09 to reach degree of pattern present that corresponds to E1 = 1.9. When the

heterotypic cost is only slightly larger than the homotypic cost, it may take much longer

indeed to achieve that same degree of patterning.

Not shown are cases where the homotypic cost is allowed to vary, but the conclusions

are straightforward and readily apparent from the time-series of our E1 measure for

them. Larger values of λαα that are still smaller than λαβ do result in patterning, but

more slowly. This makes sense because these larger values are more rigid and as a

result the entire system changes more slowly and the topological transitions that are

necessary for pattern development due to cell migration less frequent. When λαα is

allowed to be greater than λαβ , the resulting pattern is very different because now rather

than minimising the number of heterotypic edges they should be maximised. In this

way we get patterns much like a checkerboard as predicted in Section 3.7. While these

underlying mechanisms are well known, their effect is clearly exposed by studying the

behaviour of E1.

3.10 Examples in Three Colours

The patterns in Figure 3.5 are all regular, except for the first, which is random. The

random pattern is in fact representative of the initial conditions of the simulations which

we will see later. They use three colours and a regular hexagonal lattice. This has some

important consequences for the minimal entropy in a three-colour setting as we will see.

Figure 3.5 shows some example graphs in three colours and the corresponding path

entropies. As usual, the number of cells of each colour is equal. Again, we include
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Figure 3.5: A selection of three-coloured planar graphs Figure 3.5e shows the path

entropies, En, for these graphs, for path lengths n from 0 to 7.

a randomly coloured graph and we include the generalisation of a checkerboard to a

hexagonal lattice. We also include thin and thick stripes.

Some observations about the minima of the entropy can be made here and they are

different from the two colour case. The example with thick stripes, or greater clustering,

has lower entropy than the others and it is a minimum by the same argument from

Section 3.7, namely that any change can only increase the entropy by lessening the

number of homogeneous edges.

In the three-colour case, however it has a lower entropy than the maximally dispersed,

equivalent of the checkerboard. This is because it is not possible to colour a hexagonal

lattice with only two colours while respecting the constraint that no two adjacent cells

may have the same colour. Three colours are needed. This means that it is no longer

true that for the maximally dispersed case all adjacencies are identical. The hexagonal

checkerboard therefore no longer corresponds to a global minimum of E1. In fact the

maximally clustered graph must now be the global minimum.

For these examples, the entropy for longer path lengths was also calculated directly.

The results, shown in Figure 3.5e clearly illustrate that there is no benefit to the extra

computational cost of calculating path entropy for paths of longer than 2 cells. This

provides some further justification to our choice to confine our attention to E1. The

reasoning about the minimum of E1 for the three-colour case shows that this measure

appropriately captures the degree of clustering or homogeneity.

3.11 Three-Species Epithelia

Turning finally to the examples from Figure 3.1, we briefly study the patterning dy-

namics of epithelia consisting of three cells. We show that the E1 metric can also be

employed to evaluate whether one can distinguish the rate of pattern formation in
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systems with multiple cell types. As with the two-cell case, we consider interactions

between cell types, but now form a 3x3 matrix,

Λ =


λrr λrw λrb

λwr λww λwb

λbr λbw λbb

 (3.11)

accordingly as an edge is between red, r, white, w, or blue, b cells. We presume that

this matrix is symmetric, and indeed it can always be symmetrised without changing

the behaviour simply by taking, λ ′
αβ

= λ ′
βα

= 1
2(λαβ +λβα).

We consider four cases, in an attempt to find a regime where the presence of a third

kind of cell materially affects phase separation and pattern development. Namely,

I. Homotypic red and blue edges inexpensive, homotypic white edges are very expen-

sive. Heterotypic edges with a white cell are very inexpensive and heterotypic

red-blue edges are relatively expensive. Absent white cells, this behaves like the

typical red-blue dappled pattern. Adding white cells should have them maximally

dispersed.

II. As with Case I, but the relationships to white cells inverted. Homotypic edges

among white cells are now very inexpensive, and heterotypic ones are now very

expensive. This is expected to form round patches of white cells.

III. All homotypic edges have the same, low cost. Heterotypic edges with white cells

are relatively inexpensive and red-blue edges are relatively expensive. The low

cost of white-heterotypic edges produces long, thin, white borders between red

and blue regions.

IV. As with Case III, but with the heterotypic costs inverted. Edges between a red

or blue and a white cell are now expensive and red-blue heterotypic edges are

relatively inexpensive. This produces results very similar to Case II.

For these numerical experiments, in each case, the proportion of white cells was

varied from 0 to 33%. The results of calculating time-series for E1 are shown in

Figure 3.6.

This cursory search of four regions of the parameter space does not uncover a regime

where a third kind of cell affects the rate or degree of pattern formation. This fact is

made quite clear by the E1 measure, whose rate of change is essentially the same for all

of the cases. It remains an open area of research whether or not there is a regime where



3.12. Tissue Library for Parameter Fitting 57

0 0.5 1 1.5 2
·105

2

2.5

3

n

E
1

0%
2.5%
7.5%
15%
33%

(a) Case I

0 0.5 1 1.5 2
·105

2

2.5

3

n

E
1

0%
2.5%
7.5%
15%
33%

(b) Case II

0 0.5 1 1.5 2
·105

2

2.5

3

n

E
1

0%
25%
7.5%
15%
33%

(c) Case III

0 0.5 1 1.5 2
·105

2

2.5

3

n

E
1

0%
2.5%
7.5%
15%
33%

(d) Case IV

Figure 3.6: Entropy for various population fractions of white cells, for each of the cases

above. The salient observation is that the slope of the curve, the rate at which entropy

changes, do not vary perceptibly with the amount of white cells.

the presence of a third kind of cell accelerates or retards pattern formation by acting

analogously to a lubricant or a glue.

3.12 Tissue Library for Parameter Fitting

A natural supposition, given this ability to measure how well patterns in simulated

tissue graphs correspond to experimentally derived ones, is that we may be able to

estimate the parameters in the Farhadifar potential, Equation 3.10, to the experimental

data. This possibility is suggested by the observation that not only is the degree of

patterning measurable using our technique, so is the rate of pattern development. These

two measures, E1 and its time derivative could in principle be used for parameter
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estimation. Equally they could be used as predictors of experimental behaviour, for

example estimating the concentration of a certain antibiotic required for a given rate of

phase separation.

Up to normalisation, the parameters Λ and Γ do correspond to physical phenomena,

after all. This kind of fitting is indeed possible, with some limitations. The main limita-

tion is that it is not possible to distinguish, within the region of interest between equally

good pairs of parameters, (Λ,Γ), along an iso-surface in the phase diagram (Staple

et al., 2010; Magno et al., 2015). However, holding one fixed (Γ) it is indeed possible to

derive an estimate of the corresponding value for Λ.

The procedure is simple but would require a large library of simulation data. For

each parameter value, the time-series of E1 can be calculated and stored, along with

other statistics of interest (such as the degree distribution of cells). Data emanating from

experimental imagery, processed into a coloured graph using the Voronoi tessellation or

other techniques, can then be compared, and a best guess at the parameters arrived at.

The time derivative of E1 is important because often different adhesion values (Λ) that

produce similar patterns can be distinguished by the rate at which the patterns appear.

Producing such a library is a very computationally intensive task. For the present

work, we have simulated only a small subspace of possible parameter choices for

two cells, and for three, and without necessarily reaching a steady state in all cases

this has consumed several CPU-decades of processing time. Furthermore for accurate

distributions, the tissue size should be as large as possible and at present tissues larger

than about 5000 cells are prohibitive.

Despite the challenges, it is worthwhile to create and make available such a resource

which the authors believe would be a valuable quantitative tool for synthetic morphology

research.

3.13 Conclusions

Aside from application in synthetic morphology, the method presented can also be

adapted to analyse samples of natural tissues and applied to the study of cancer pro-

gression. Recent successes using deep learning neural networks (Esteva et al., 2017)

to characterise cancer progression in tissue imagery samples are instructive. In that

study accuracy rates with deep learning were comparable to trained pathologists but

the technique does not permit inspection or reverse-engineering to identify the salient

features being recognised. Successes using similar techniques have also been reported
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for identifying certain cardiovascular pathologies (C. Xu et al., 2017). By contrast, our

measure has much more stringent requirements on input data — we require input in

the form of a coloured graph — but its principle of operation is straightforward to

understand.

There is an important limitation when applying this technique to imagery from

naturally occurring, as opposed to synthetic, tissue. Path Entropy is defined by cell types

and their adjacencies. Synthetically engineered tissue designed to study mechanical

interactions among cells is much more regular than its naturally occurring counterpart.

This means it is correspondingly easier to extract the information needed to calculate

path entropy from images of synthetic tissues. Accommodating structural heterogeneity

in naturally occurring tissue likely requires segmentation techniques that consider

actual cell boundaries and not a Voronoi tessellation derived from nuclei as we have

done here. Advances in microscopy and optical technologies make possible high-

throughput analysis and simultaneous measurements of proteins and other molecules

(such as miRNA) in histological specimens and tissues micro-arrays which allow the

identification of subpopulations of genetically similar cells within tissue samples, using

measurement of loci-specific fluorescence in-situ Hybridization (FISH) spot signals

for each nucleus (Croce, 2008; Guillaud et al., 2010). The use of neural networks to

perform segmentation at the tissue level has been shown and remains a current topic

of research (Reddick et al., 1997; Wenlu Zhang et al., 2015; Su et al., 2017). These

methodologies could facilitate the construction of the graph underlying an epithelial

tissue and suggest an appropriate extension of the metric proposed in this work.

In this chapter, we have defined a specialised class of entropy measures, path

entropies, on adjacency graphs designed to quantify the degree of patterning present

in cellular tissues and noted some of its interesting properties. We have demonstrated

how this measure can be used on two dimensional epithelial tissues to establish a

correspondence between experimental and simulation data that quantifies the impression

of similarity between the patterns expressed. We have further demonstrated how the

measure generalises to tissues consisting of three species and noted some differences

from the two species case. Finally, we have proposed, for the specific application

of synthetic morphology, the establishment of a library of tissue data upon which

these measures can be calculated, to assist in parameter estimation, providing a useful

quantitative tool for synthetic morphology.





Chapter 4

The Structure of a Mouse

Abstract. We apply an information-theoretic measure to anatomical models of the

Edinburgh Mouse Atlas Project. Our goal is to quantify the anatomical complexity of the

embryo and to understand how this quantity changes as the organism develops through

time. Our measure, Structural Entropy, takes into account the geometrical character of

the intermingling of tissue types in the embryo. It does this by a mathematical process

that effectively imagines a point-like explorer that starts at an arbitrary place in the 3D

structure of the embryo and takes a random path through the embryo, recording the

sequence of tissues through which it passes. Consideration of a large number of such

paths yields a probability distribution of paths making connections between specific

tissue types, and Structural Entropy is calculated from this (mathematical details are

given in the main text). We find that Structural Entropy generally decreases (order

increases) almost linearly throughout developmental time (4d-18d). There is one ‘blip’

of increased Structural Entropy across days 7-8: this corresponds to gastrulation. Our

results highlight the potential for mathematical techniques to provide insight into the

development of anatomical structure, and also the need for further sources of accurate

3D anatomical datato support analyses of this kind.

The work presented in Chapter 4 is reprinted with permission from William Waites and Jamie
A. Davies, “Emergence of Structure in Mouse Embryos: Structural Entropy Morphometry Applied
to Segmented Anatomical Models”, Journal of Anatomy (2019). The work was conceived by both
authors. I developed the mathematical formulation of Structural Entropy by extending Path Entropy to the
continuous setting, implemented the software for processing the segmented anatomical data, conducted
the analysis and drafted the initial text; both authors contributed equally to the final text.
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4.1 Introduction

In his important text on developmental biology (Kauffman, 1993), Kauffman argues that

order in living creatures arises from a combination of evolution and self-organisation.

A remarkable fact about this beautiful text is that the meaning of its title, “Origins of

Order” is left essentially implicit: the meaning of the word “order” is never defined. It

is discussed extensively, contrasted with “chaos”, and asserted as a property of various

remarkable observations about fitness landscapes, but we may continue to wonder what,

precisely, is meant by “order”. It is not hard to account for this ambiguity; exactly

what should be meant by order, or related words such as structure or complexity as

they apply to biological organisms, is not at all obvious. Indeed, authors such as Grizzi

et al. (2005) consider the meaning of anatomical structure in detail, making the key

point that “complexity can reside in the structure of the system,” and suggest the use of

mathematics to quantify this, without explaining precisely how.

In this paper, we offer a possibility for quantifying a particular kind of order: the

physical structure that develops as an organism grows. We call this measure Structural

Entropy.

Structural Entropy is a quantity calculated on an abstract representation of the

organism’s anatomy. To understand how Structural Entropy works, it is helpful to

consider the general concept of entropy in Information Theory (Shannon, 2001). The

quantity now known in that field as entropy was originally called “uncertainty” by

Shannon. Given a probability distribution over some set, if the set is dominated by many

equally likely elements (as in a normal pack of cards), the outcome of choosing one at

random is very unpredictable, and hence the entropy will be large. If some elements are

much more likely to be chosen than others (eg in a pack of cards containing 50 jokers

and 2 aces of spades), we can be a bit more certain about the outcome and the entropy

will be smaller. In this report, we use this concept, as well as our previous work (Waites;

Cavaliere, et al., 2018) to construct such a probability distribution using the topology

of an anatomical model, augmented with geometrical data. This distribution says how

likely it is to find a notional particle, allowed to travel freely through the embryo, in any

given embryonic tissue.

There is, however, a major obstacle in applying this measure, especially in devel-

opmental anatomy: the lack of sufficient good quality data to support applications of

the type we propose. What is required is a complete library of accurate digital models

(“atlases”) of embryonic anatomy, from closely-spaced stages of development, each
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digitally annotated so that each pixel (2D) or voxel (3D) is labelled with the identity

of the tissue in which it lies. We will refer to this labelling process as “tagging”. The

best current approximation of such a data library is the Edinburgh Mouse Atlas or

eMouseAtlas (Davidson et al., 2001; R. A. Baldock et al., 2003; J. H. Christiansen

et al., 2006; Richardson; Venkataraman; Stevenson; Yang; Nicholas Burton, et al., 2009;

Richardson; Venkataraman; Stevenson; Yang; Moss, et al., 2013; Armit; Venkataraman,

et al., 2012; Armit; Richardson, et al., 2015). The eMouseAtlas was constructed by

digitization of serial sections of complete mouse embryos at closely-spaced stages of

development. The different tissues in each digital image were identified and delineated

by expert embryologists, who tagged the different regions of the embryos with the tissue

identity. These tagged images were then assembled into 3-dimensional models of the

corresponding embryo, and the datasets are available online. We use the eMouseAtlas

to illustrate how Structural Entropy can be calculated and show that it captures structure

increasing with time. However, there are very few datasets of this kind available.

The eMouseAtlas contains 3D tagged anatomical models of house mouse (Mus

musculus) embryos at a selection of pre-natal stages of development. It is the best freely

available dataset of its kind for demonstrating the kind of analysis that we suggest.

Nevertheless, it has some defects and inconsistencies which we detail in Section 4.3.1.

More broadly, good quality 3D tagged anatomical models for every developmental stage

are simply not available for any organism. The similarly named Worm Atlas (Altun et al.,

2002-2018), which uses the model organism Caenorhabditis elegans, contains a wealth

of resources: diagrams of adult organisms, cell lineages and gene expression data, but

only scattered anatomical models. There is a wealth of magnetic resonance image data

available for the human brain (Van Essen et al., 2013), but this is intentionally distributed

in a minimally processed way in order to encourage development of techniques for

identifying structures within images and further processing. These data are therefore

not immediately amenable to the analysis that we advocate here, though it is possible to

imagine intermediate processing of those images that could make it so.

Much previous work on the complexity of models of anatomical features is from

neuroscience. Several authors characterise complexity as a dynamic quantity. Tononi

et al. (1994) introduced an information-theoretic measure called Neural Complexity

(NC). They measure the temporal patterns of signals through neural networks and

claim (also Sporns et al. (2000)) that these patterns must depend strongly on the

underlying anatomical structure. Later authors such as Fan et al. (2017) consider

information theoretic measures on the neural connectome directly. Horn et al. (2014)
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use a random-walk approach at a much finer grain to find agreement between the

structural and functional connectivity for the brain’s default-mode network. Chan et al.

(2014) use this technique to measure desegregation of brain networks with age and

long-term memory function. For practical reasons, suitable data pertaining to human

developmental anatomy is difficult to obtain (Huang et al., 2006; Mietchen et al., 2009),

particularly for early developmental stages; therefore computational morphometry is

applied mainly to the study of diseases related to ageing (Testa et al., 2004; Matsuda,

2013). We believe that our Structural Entropy measure might also provide a useful

diagnostic signal in the context of this kind of ageing study and suggest this as an area

of future research.

One of us (Jamie A Davies, 2016) considered a similar question to that which

concerns us here, using a different subset of the eMouseAtlas data. Davies considered

the text annotations, and the number of terms required to describe each developmental

stage, arguing that the greater number of terms needed, the greater the complexity. From

these data, Davies showed that the number of vocabulary terms increases exponentially

over time. We show here that what Davies’ result provides is, in fact, a lower bound on

order.

In this chapter we confine ourselves to developing Structural Entropy in the context

of the data from the eMouseAtlas and show that it captures something of the intuitive

idea of increasing anatomical order as development progresses. This line of reasoning

relies on the assumption that the anatomical analysis is a faithful representation of

the underlying structure in the organism. We show that Structural Entropy appears

reasonably robust to inconsistencies in manual analysis and tagging.

4.2 Methods

Because the detailed mathematical description of our methods (Section 4.2.2) may

not be easily accessible to all readers, we provide an additional illustrated description

written in non-technical English. This account (Section 4.2.1) captures the essence

of how our analysis works but necessarily involves informal and imprecise analogies;

readers wishing to criticise, replicate or build on our work are strongly advised to

engage directly with Section 4.2.2.
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(a) Two tissues, each occupy-

ing half of the embryo, in a sim-

ple spatial arrangement.

(b) Two tissues, each occupy-

ing half of the embryo, in a rich

spatial arrangement.

A

B

(c) A random path (B) from

a random starting point (A)

through and between the tis-

sues.

Figure 4.1: Tissues in simple and rich spatial arrangements and an example random

path.

4.2.1 Informal Description of Method

As mentioned in the introduction, our concept of Structural Entropy is related to Claude

Shannon’s concept of “uncertainty” (later called “entropy”) in the field of Information

Theory. This is a measure of disorder, or unpredictability, in a set of data. If the outcome

of a random dip into a bag of data elements is known with high probability (eg if 90%

of the numbers in the data set were ’1’), then the predictability would be high and

the entropy low. If the outcome of the random dip were only known with very low

probability (eg the numbers in the data set were truly random), then the predictability

would be low and the entropy high.

The structure of an embryo, or any other biological object, can be modelled as a bag

of data, each data element comprising 3D coordinates, (x,y,z), that specify its position

and a tag that specifies the tissue name at that point. A naive approach to measuring the

degree of order might therefore be to make many random dips into the data set for an

embryo, and calculate the probability distribution of finding a tag for different tissues

(eg “ectoderm”, “mesoderm” etc. for a gastrulation-stage embryo), and use this to make

a measure of structure. This approach, however, has a serious problem: an embryo that

consisted of two tissues each of which occupied one half of the embryo (Fig 4.1a) would

have the same probability distribution as one that consisted of the same 50/50 mix of

two tissues in a rich spatial arrangement (Fig 4.1b). Clearly, a measurement that would

ignore such rich anatomical organisation would not be useful.

To avoid this problem, we consider not simply random dips into embryological data,
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but random paths taken through the embryo. We begin at a random point and allow a

particle to traverse a random path (Fig 4.1b). Then, after doing this for many starting

points and paths, we can calculate the probability distribution that a path starting in

tissue 1 (say, ectoderm) finishes in tissue 2 (say, endoderm) within a certain number of

steps. It can be seen intuitively that the probability distributions that would result from

the anatomy in Fig 1a, where most short paths would never leave their starting tissue,

would be very different from those resulting from the anatomy in Fig 4.1c. This way of

proceeding does, therefore, capture a measure of anatomical richness as well as simple

proportions of composition.

We use these path-based probability distributions to calculate Structural Entropy,

as defined in Section 4.2.2.2. This involves one important adjustment. Clearly, the

more different tissues there are in an embryo, the more alternatives there are for the

tissue-type tag corresponding to a spatial position, and the higher the maximum entropy.

To avoid our measure being dominated by this trivial effect, we calculate the maximum

possible entropy (highest possible disorder) of each embryonic stage by imagining

all its tissues being present in an arbitrarily fine, random jumble. We then divide our

measure of Structural Entropy from that embryo by the maximum possible entropy,

to provide a normalised measure of Structural Entropy that can be compared, fairly,

between different embryonic stages that contain different numbers of tissues.

4.2.2 Technical Description of Method

4.2.2.1 Path Entropy

We previously defined Path Entropy as a measure of patterning on tagged graphs (Waites;

Cavaliere, et al., 2018) and we give a brief summary here. See Section 4.5 glossary for

the meaning of “graph” and “tagged” in this context. In our original treatment (Waites;

Cavaliere, et al., 2018) we used the word “colour” instead of tag, as is usual in computer

science.

The intuition underlying Path Entropy is as follows. The standard notion of entropy

for two-dimensional images is constructed from the probability distribution of pixel

colour values (Tsai et al., 2008; Gonzalez et al., 2004; Mangin, 2000). The probability

of a pixel being green, say, is just the fraction of pixels that are green. In order to capture

more structure, we generalised it in two ways. First, rather than a regular rectangular

lattice as in a digital image, we allow an arbitrary graph, with each vertex having a

tag. Second, we consider not only the probability of a vertex having a given tag, but
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the conditional probability distribution of its neighbours’ tags. This is then extended to

neighbours’ neighbours and so forth, for paths of a given length.

More formally, let G = (V,E,C,χ) be a tagged graph, where V and E are vertices

and edges (see glossary, Section 4.5), C is a set of tags, and χ is a function that gives

the tag corresponding to a vertex. In other words if v is a vertex in this graph, then χ(v)

is its colour. This is enough to re-create the standard image entropy mentioned above by

counting the number of vertices with tag a and dividing by the total number of vertices,

p(a) =
|v ∈V,χ(v) = a|

|V |
(4.1)

After all, a pixel grid can be thought of as a graph where each pixel is a vertex and

pixels are adjacent if they share an edge.

Instead of considering the vertices on their own, consider now how they are con-

nected together. A path in the graph is a sequence of vertices connected by edges (loops

are allowed). A path of length n is a sequence of n+1 vertices connected by n edges

in the graph. Define the function χn to be the analogue of χ: rather than giving the tag

for a single vertex, χn(σ) gives the sequence of tags corresponding to a sequence of

vertices σ . If we call Sn the set of all paths of length n in the graph, then we can find

the probability of a tag sequences s by analogously counting all of the paths that have

that sequence,

pn(s) =
|{σ ∈ Sn,χn(σ) = s}|

|Sn|
(4.2)

The nth order Path Entropy is then defined simply the entropy of this distribution,

En =− ∑
s∈Cn+1

pn(s) log(pn(s)) (4.3)

4.2.2.2 Structural Entropy

A 3D anatomical model is not an abstract graph with edges and indistinguishable

vertices. It consists of regions in space that have particular shapes, each region has

a certain tag, and regions can be adjacent to each other. To extend Path Entropy to

a setting where it can be applied to regions with spatial extent, accounting for their

geometrical structure, we reason as follows.

Begin with a space, X , with a Lebesque measure. In two or three dimensions, this

corresponds to normal Euclidean space, but for generality we are not concerned so

long as length, area, volume and any higher-dimensional analogous concepts are well-

defined and can be summed or integrated over. Let this space be sub-divided in to a set
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of regions, R = {Ri}, and ask what the probability is, if a point is chosen uniformly at

random, that it will be found in a given region, Ri. This probability, is the fraction of the

total volume occupied by that region,

p(Ri) =

∫
Ri

dx

∑ j
∫

R j
dx

(4.4)

Analogously to the discrete case of image entropy, define the function χ to yield the

tag for a given region. We can find the probability of a certain tag, c, by adding up the

probabilities of choosing a point in a region with that tag,

pc = ∑
{Ri∈R,χ(Ri)=c}

p(Ri) (4.5)

We would like to extend this in a way that accounts for the shape of the regions and

their adjacencies with each other. To provide some intuition to guide us, we use the

idea that structure is related to communication. In a living organism, the shapes that

different anatomical systems have are strongly influenced by communication. Nutrients

and chemical signals travel along physical pathways and diffuse across boundaries. The

travel of these molecules from one system to another (possibly undergoing transfor-

mation along the way) is a kind of communication. Exchange of molecules between

systems is facilitated by relatively larger shared boundaries. This constraint influences

the shape of the system. Minimising boundary size results in a spherical shape so the

degree to which diffusion and hence communication is prioritised is the degree to which

the volume occupied by the system differs in shape from a sphere.

Proceeding on this basis, imagine that the randomly chosen point somewhere, in

some region, is a notional molecule or particle. This particle is allowed to drift randomly

in each region. When it comes to the edge of a region, adjacent to another it may

diffuse across this boundary. After some time, the particle will be found in some region,

possibly having traversed some others. If s1 represents the path taken through the first

region, s2 the path taken through the second, and so forth, the sequence, s1, . . . ,sn,

represents the trajectory of the particle. There is a tag that corresponds to each region,

so there is a tag sequence that corresponds to this trajectory. If we can work out from

the data all of the tag sequences that can be produced by the notional wandering particle,

then we can ask, as we did before (Equation 4.2) for a probability distribution of tag

sequences. We call the entropy of this distribution the Structural Entropy.

One way to work out the distribution of tag sequences is to consider all the possible

paths that this particle might take through the various regions from each starting, to each
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ending point. This approach affords a large degree of flexibility for modelling: each

region can contribute in different ways to the action, encoding more information than

is present in the spatial relations themselves. However the data necessary for such an

ambitious approach are not available and it is far from clear how to appropriately model

the contributions of different anatomical regions to the complexity of the organisms as

a whole.

We restrict the question to what can be answered with the available data. To this

end, we ask instead, given that the particle started in a region with the tag ci-, what is

the chance that it eventually ends up in one with the tag c j? This question allows us to

quantify the a the notion of communication or interaction mediated by this notional

particle between regions of different type, over any path. This answer to this question is

the basis for our definition of Structural Entropy.

To simplify matters, let us suppose that each Ri has a distinct tag. This can be done

without loss of generality because it is always possible to construct such a set. Let,

R′ =
{⋃

Ri, χ(Ri) = c, c ∈C
}

(4.6)

where
⋃

denotes spatial union. R′ is a set of distinctly tagged regions.

We will model the trajectory of the particle as a Markov process. A Markov process

(in discrete time) is characterised by a stochastic matrix, Q =
[
qi j
]
. Each element of

this matrix, qi j, represents the probability that the notional particle, if it is in a region

with the tag ci, will cross into a region with the tag c j at the next time-step.

The starting position of the particle is given by Equation 4.5. That is, we assume

that the particle has a chance to be starting in region Ri proportionally to its share of the

volume. We write this distribution of starting positions as the column vector p = [pi].

After one time-step, the probability distribution of where the particle will be found is

given by Qp. After n time-steps, the distribution is be given by Qnp. Using this, we

can define the nth order Structural Entropy directly analogously to the nth order Path

Entropy by,

En = (Qnp) · log(Qnp) (4.7)

where the notation log(x) for some vector x = [xi] means [log(xi)], and the product · is
the standard vector dot- or inner-product.

If the regions, Ri are connected, there is no partition in the graph of their adjacencies,

there are no islands, then the Markov process described by Q is ergodic. A particle

beginning in any region will eventually visit every other, and there will be a solution to
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the equation,

π = Qπ (4.8)

giving the unique stationary distribution π that is independent of the starting position

(p) (Pinsky et al., 2010). We define the entropy of this distribution, if it exists, to be the

Stationary Structural Entropy,

Eπ = π · log(π) (4.9)

A method to calculate the Q remains to be determined. A principled way would be to

say that a particle sufficiently close to a Ri’s boundary has a chance of diffusing across

the boundary into R j proportionally to the fraction of Ri’s total surface area that is adja-

cent to R j.

R1

R2

δ12

Consider the figure at right, showing the adjacency

between R1 and R2. The shaded liminal region

δ is taken to be the region where diffusion can

happen. The liminal region is a buffer around of R1,

extending outwards from the boundary, wherever

there is an adjacent region. We can now work out

the transition probabilities,

q11 =

∫
R1−δ12

dx∫
R1

dx
(4.10)

q12 =

∫
δ12

dx∫
R1

dx
(4.11)

The chance to leave R1 for R2 is given by the fraction of R1’s volume that is near enough

to R2 for the particle to diffuse across the boundary. The chance to remain in R1 is the

fraction of its volume that is not sufficiently close to another region.

There are several reasonable ways to define the liminal region, δ . The most natural

approach, suggested by the diagram, is for it to be the region within some constant

distance of the boundary. This fails on practical grounds – namely that determining

the patch of the surface of R1 that is adjacent to R2 relies on the underlying data being

sufficiently accurate and that there is a portion of their surfaces that are indeed spatially

coincident. This is not actually the case in practice with the available data.

We work around this limitation of the data in the following way. We determine the

portion of R1’s volume is near to R2 by dilating the latter by a small amount, k, and take

the intersection of R1 and the dilated region, denoted by D(R2,k). We then calculate

the transition probabilities by first calculating the relative volumes of a region and its
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Figure 4.2: The on-line eMouseAtlas viewer inspecting a cross-section of the tagged

embryo at Theiler stage 12.

liminal volumes with adjacent neighbours,

vi j =


∫

Ri∩D(R j,k) dx i 6= j∫
Ri

dx−∑i6= j vi j otherwise
(4.12)

and then construct the transition probabilities by normalising,

qi j =
vi j

∑ j vi j
(4.13)

4.3 Results

4.3.1 The Mouse Atlas

The eMouseAtlas contains, in addition to genomic data and a large amount of structured

metadata, 3D geometrical models of the delineated anatomy of mouse embryos at

several stages of pre-natal development. In total, there are 69 embryo models avail-

able for download (Armit; R. Baldock, et al., 2017) covering Theiler’s morphological

stages (Theiler, 1989) 7 through 26. Of these, the majority contain untagged 3D re-

constructions and Optical Projection Tomography (OPT) images, but there are 22 with

anatomy delineations.

Figure 4.3 shows some basic information about the delineated datasets. Each 3D

dataset is reconstructed (Hill et al., 2015) from a series of 2D images arranged in layers.

The datasets are made available in the Woolz format (Piper et al., 1985) which is both

compact and suitable for computation of spatial operations such as union, intersection,

convex hulls, and so forth. We will be concerned with volumes of and adjacency
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relations between tagged elements, or in other words the sizes of anatomical regions

and which are in physical contact with each other. For this reason, in addition to the

count of tagged elements in each dataset, Figure 4.3 shows counts of tagged geometrical

elements with non-zero volume and those that touch at least one other tagged element.
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Figure 4.3: Basic statistics about datasets from the eMouseAtlas with anatomical delin-

eations. Some datasets contain tagged elements with zero volume, or tagged elements

which are not adjacent to any other. Elements with zero volume indicate a problem with

the underlying data. For example E M A 2 7 at Theiler Stage 14 has zero volume elements

for the left and right umbilical veins.

It is evident that something unexpected is happening in Figure 4.3. It should not be

the case that a mouse embryo loses anatomical diversity as it develops. The data for

stages 15 through 19 and 21 through 25 seem particularly problematic. The explanation

for this turns out to be quite mundane. The first stages were tagged manually, at

significant cost, and resources were unfortunately not available to consistently continue

this work (Baldock and Hill, personal communication). In some cases the latter stages
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appear to have been tagged according to the particular interest of the researcher doing

the work. This bias in the data is nevertheless interesting in understanding how to

interpret our complexity measure in terms of intrinsic or extrinsic structure, which we

discuss further below. Despite these defects in the data, we are able to obtain a signal,

albeit a noisy one.

We have excluded several models from the following analysis. E M A 1 4 9, at Theiler

Stage 25, though it contains 78 delineated tissues, only four have non zero volume

and only two have neighbours. Models E M A 7 6, E M A 1 0 3, E M A 1 0 8 and E M A 1 1 8

contain disconnected regions. This results in a qi j that is not ergodic and therefore the

Stationary Structural Entropy does not exist. Finally, E M A 3 6 is an outlier suggesting

a drastically different tissue delineation methodology. Its statistics are reported but

excluded from the figures.

4.3.2 Structural Entropy of the eMouseAtlas

We now apply our Structural Entropy measure to the Mouse Atlas. Each stage has

a different number of tagged elements. Since our goal is to quantify the degree of

structure, for each stage, we compare the Structural Entropy (Equations 4.7 and 4.9) to

the maximum possible value given by,

Emax =− log
(

1
m

)
(4.14)

where m is the number of tagged elements. It is easy to see that as the number of tagged

elements increases, the maximum entropy (degree of disorder) likewise increases. From

this, we can define the normalised entropies,

Ē· =
E·

Emax
(4.15)

which take on values from 0 to 1 and thus allow for comparison of the relative degree

of disorder between developmental stages with different sets of tags. A value of 0

represents maximal structure, and 1 maximal disorder.

The results of this calculation are presented in Figure 4.4 and plotted against time

measured in days post-conception. Two curves are shown, the one for Ē0, showing

the amount of structure that is attributable purely to the volume distribution of tagged

elements, with no account taken of their spatial relationships. The second curve, for

Ēπ , corresponds to the stationary distribution of the random walk among the tagged

elements, as described above. The latter incorporates information about the volume

through the qii as well as the spatial relationships through the qi j, i 6= j.
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Figure 4.4: Normalised Structural Entropy as calculated for the eMouseAtlas data. Also

shown is the least squares fit (LS Fit in the figure, with mean squared error 5.5×10−3)

for the Stationary Structural Entropy and a trial exponential fit (Exp Fit in the figure, mean

squared error 4.5× 10−3). The table at right gives the correspondence between the

Theiler stages present in the data and the time in days post-conception. Excluded from

this figure is, Ē0(E M A 3 6) = 0.83, Ēπ(E M A 3 6) = 0.31.
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In both cases, we see a decreasing trend. This is interpreted as a decrease in disorder,

or an increase in structure, as the mouse embryo develops. This signal is much clearer

in the case of Ēπ which displays an orderly, almost linear decrease. Indeed a least

squares fit for the normalised Stationary Structural Entropy has a mean squared error of

5.5×10−3 or two orders of magnitude smaller than the range of the entropy over the

developmental phases covered by the dataset.

Clearly the decrease in disorder cannot be more than piece-wise linear as that would

imply the nonsensical result that at some stage the organism becomes perfectly ordered

with exactly one tissue as E·→ 0 and beyond to negative values of entropy which defy

interpretation. A trial exponential fit is also shown, Ēfit = e−0.2t + 0.6, that does not

suffer from this problem of interpretation and has a mean squared error of 4.5×10−3.

The data at early developmental stages bear closer inspection. While the general

trend of our Stationary Structural Entropy measure, Ēπ , is a steady decrease throughout

the 13 days of development depicted in Figure 4.4, there is a short period, from days

7 to 8 (Theiler stages 10-11), in which Ēπ rises before returning to the trend. This

period corresponds to one of the most remarkable events of metazoan development:

gastrulation, when the primitive streak forms and cell movements in and through the

epiblast transform the relatively orderly bilaminar disc into the three germ layers of the

body. Gastrulation is widely regarded as being pivotal in development, Lewis Wolpert

famously remarking that it is a life event more important than birth and marriage. It is

interesting that this special stage of embryogenesis is detected by our tracking Stationary

Structural Entropy over time.

To ascertain the extent to which the Structural Entropy calculation is biased by the

number of tagged elements, we focus on a particular model, E M A 2 7 from Theiler

stage 14. This model contains 75 tagged elements of which 73 have non-zero volume.

To understand how the Structural Entropy changes as the number of elements decreases,

we merge adjacent elements. We do this by iterating through the list of elements, and

merging between one and four neighbouring elements, chosen at random. We then

calculate the Structural Entropy and Stationary Structural Entropy on this merged

model.

We see that by randomly merging tagged elements, we introduce greater disorder.

This is not unexpected. The original model was tagged in a particular way intended

to correspond to an anatomical understanding of the embryo. This experiment takes

no account of that, it simply merges elements that happen to be adjacent. With that

done, both the Structural Entropy and the Stationary Structural Entropy are relatively



76 Chapter 4. The Structure of a Mouse

20 30 40 50 60 70
0.6

0.7

0.8

0.9

Tagged Element Count

N
or

m
al

is
ed

St
ru

ct
ur

al
E

nt
ro

py
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Figure 4.5: Normalised 0th order and Stationary Structural Entropy for models created

by merging tagged elements from E M A 2 7, at Theiler stage 14. The data points isolated

at the far right are for the original model. The merged models are created by merging

at different depths: pairs, triples or quadruples of adjacent tissues. For each depth,

25 random models are generated and the resulting entropies are plotted according to

the resulting number of tagged elements. The element count is discretised or grouped,

e.g. 20-25 elements, 25-30 elements, and so forth. Error bars represent one standard

deviation within a group.
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stable with 30-60% of elements merged. Only when a clear majority of the elements

are merged together do these measures change appreciably. In particular, we find a

correlation of entropy and element count between 0.2 and 0.3, suggesting only a weak

correlation between our measure and the absolute number of tagged elements.

4.4 Discussion

When Claude Shannon was discussing with John von Neumann what to call the quantity

that came to be known as entropy in Information Theory, the latter famously quipped,

You should call it entropy, for two reasons. In the first place your
uncertainty function has been used in statistical mechanics under that name,
so it already has a name. In the second place, and more important, nobody
knows what entropy really is, so in a debate you will always have the
advantage. (Tribus et al., 1971)

In an important sense, information theoretic entropy is an attributed quantity. It is a

measure, as Shannon originally called it, of uncertainty about the state of a system.

The trick that we have performed here is to define such a system: a particle moving

at random through the organs of an embryonic mouse. We then suggested that our

uncertainty about the whereabouts of the particle corresponds in some way to the

structural complexity of the organism itself.

Tissues of different sizes contribute to our complexity measure in the following way.

The measure is scale-independent in the sense that absolute tissue size plays no role.

Embryos containing a given number of tissues, all of the same size, will have the same

Structural Entropy regardless of their size. If the tissue sizes are different, the Structural

Entropy will be correspondingly smaller. The degree of difference is the essence of

order, to a first approximation. This is captured by the 0th order measure, E0, describing

the role played by tissue volume alone.

To account for the spatial arrangement of tissues, we incorporate information about

the connectivity between tissues. When we consider geometrically complex structures,

an important feature is that their surface area is large compared to their volume. This

large surface area means that the liminal region, or region of connectivity with adjacent

tissues, is also larger. This is the reason that we claim that when we calculate the

Stationary Structural Entropy, Eπ , it captures this kind of structural complexity. More

complex tissues “communicate” more with their neighbours and this, in turn contributes

to a decrease in the Stationary Structural Entropy. The relative difference between
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E0 and Eπ encodes the amount of organisation that can be attributed to the spatial

arrangements as opposed to simply the amount of matter.

This approach may or may not be reasonable. We believe that it is, mainly because

it accords with our intuition about what such order or structure ought to mean. It

captures the sense that, despite the proliferation of tissues as the embryo develops, the

organism becomes more ordered. If it did not, it would simply be a jumble of cells,

an upper bound on disorder such as measured by Jamie A Davies (2016) using the

taxonomy of cell types. That this is an upper bound is precisely what we see here: as

development progresses, the Stationary Structural Entropy decreases relative to the

equivalent disordered system, and it does so nearly consistently.

Another important aspect of the attributive nature of entropy arises from the data

itself. In order to correctly compare like for like, each dataset should be tagged in

the same way, using the same criteria. We have seen that there are defects in the data

with some datasets processed meticulously and some processed more coarsely. Even if

the data were consistently and meticulously processed it can be argued that measures

such as Structural Entropy say more about the complexity of the underlying theoretical

anatomical model than the intrinsic complexity of the body of the mouse. We can,

however, only work with the data and theoretical tools that we have. By deriving

randomly merged models we can see that our Structural Entropy measure is only weakly

dependent on the absolute number of tagged elements.

The potential application of Structural Entropy to neuroscience, ageing and psy-

chological disorders appears promising. Reus et al. (2014) considered the human brain

connectome in an “edge-centric” as opposed to a “node-centric” way. In that article,

communities of edges are identified; they seem to be significant but the meaning is left

open: “The biological meaning of link communities in the brain is not immediately

clear and very much open to scientific debate”. The distinction between edge-centric

and node-centric is reminiscent of that between E0 and Eπ above. De Reus’ approach

was applied as a measure of brain structure as a baseline in healthy elderly popula-

tions (Perry et al., 2015). Yeo et al. (2016) suggests that de Reus’ approach may provide

a useful indicator for psychological phenomena like schizophrenia, where differences

were found, but it is unclear whether they are really significant or due to differences

in methodology. There have also been some attempts to link it to general cognitive

ability (Llufriu et al., 2017).

Voxel Based Morphometry (VBM) (J. Ashburner et al., 2000) is now a standard

technique for comparing MRI scans tagged in a similar way to the anatomical data
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that we have been considering. After some pre-processing: tagging, smoothing and

registering images to the same spatial coordinates, the scans are compared voxel-wise.

Among many applications this approach has been famously used to show plasticity in

response to environmental demands (Maguire et al., 2000), that grey-matter normally

decreases linearly with age (Good et al., 2001), and to ascertain the degree of progression

of Alzheimer’s disease (Testa et al., 2004; Matsuda, 2013). VBM shares some pre-

processing requirements with what we can call Structural Entropy Morphometry (SEM),

but then proceeds very differently. VBM is a calculation on voxels (or pixels in two

dimensions) and SEM is explicitly not, it is concerned with the geometry of the tagged

elements themselves. Crucially, VBM measures the relationship of scans from different

groups whereas SEM is an intrinsic measure of the tagged object. Nevertheless it

is plausible that SEM could recover the results of applying VBM and could yield

additional insight. This possibility suggests potentially fruitful further research.

The concept, and ways of method for measuring, structural entropy can be applied

to a wider range of problems than normal embryonic development. Much research

attention is currently being expended on developing organoids – small structures made

from stem cells that are intended to capture enough of the essence of a natural organ

to be be useful for research (reviewed by Jamie A. Davies et al. (2018)). There is

much debate within that field about how faithfully organoids, particularly organoids

made by the different techniques of different laboratories, capture the complexity of the

organ they are intended to represent. Structural entropy might be one useful measure.

Another possible application is phylogeny: when discussing evolution, and particularly

evolutionary developmental biology, it would be useful to have an objective measure of

the anatomical complexity of adult organisms of different phyla or clades.

In this paper, we have called for the increased availability of high-quality tagged 3D

datasets for the development of computational tools for anatomy. We have examined

the eMouseAtlas dataset and produced some basic statistics about the tagging and

annotation. We have extended Path Entropy to account for spatial structure and intro-

duced Structural Entropy and studied the stationary distribution of a particle’s random

walk through tagged anatomical regions of developing mouse embryos. The stationary

distribution illustrates clearly how the organism becomes more spatially structured as it

develops. Finally applications of Structural Entropy Morphometry to neuroscience and

the study of diseases related to ageing have been suggested as areas for future research.
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4.5 Glossary

Edge A connection between two vertices on a graph (qv).

Entropy A measure of disorder: a highly ordered system (eg a perfectly alternating

sequence of black and white tiles) has high entropy.

Graph A mathematical structure used to model pairwise relationships between objects.

Graphs consist of “vertices” (the objects themselves) and “edges” (lines that

connect them). In a model of a random walk, for example, the vertices might

represent the spatial location of each footprint and the edges the strides that

connect them.

Information Theory A field of science that focuses on the quantification, storage,

retrieval and communication of information, particularly with relation to entropy.

Tag A tissue-type annotation associated with a spatial point on a digital model of an

embryo. Eg point (99,65,432) might have the tag bladder urothelium. Note that

in Section 4.2.2, the word “colour” would usually be used in computer science or

mathematics.

Vertex An elementary object in a graph (qv).



Chapter 5

Annotations for Rule-Based Models

Abstract. The chapter reviews the syntax to store machine-readable annotations and

describes the mapping between rule-based modelling entities (e.g. agents and rules) and

these annotations. In particular, we review an annotation framework and the associated

guidelines for annotating rule-based models, encoded in the commonly used Kappa and

BioNetGen languages, and present prototypes that can be used to extract and query the

annotations. An ontology is used to annotate models and facilitate their description.

5.1 Why Annotations

The last decade has seen a rapid growth in the number of model repositories (Li et al.,

2010; T. Yu et al., 2011; Snoep et al., 2003; Mısırlı; J. Hallinan, et al., 2014; Moraru

et al., 2008). It is also well understood that the creation of models and of repositories

requires expert knowledge and integration of different types of biological data from

multiple sources (Endler et al., 2009). These data are used to derive the structure of, and

The work presented in Chapter 5 is adapted by permission from Springer Nature: Modelling Biomolec-
ular Site Dynamics of Methods in Molecular Biology (ed. William Hlavacek), “Chapter 13: Annotations
for Rule-Based Models” by Matteo Cavaliere, Vincent Danos, Ricardo Honorato-Zimmer William Waites
(2019). The work was conceived by all of the authors and I drafted much of the chapter text. In particular,
I contributed the discussion of reactions and rules, the relationship of annotations to the objects that are
being annotated, and the relationship of the concepts of abstraction and annotation. This work was de-
rived from a previous paper published in the journal Bioinformatics as “Annotation of rule-based models
with formal semantics to enable creation, analysis, reuse and visualization” by Göksel Mısırlı, Matteo
Cavaliere, William Waites, Matthew Pocock, Curtis Madsen, Owen Gilfellon, Ricardo Honorato-Zimmer,
Paolo Zuliani, Vincent Danos and Anil Wipat (2015). I became involved with that paper at the beginning
of my PhD studies after it had been returned from Bioinformatics for major revisions. My contributions
were the method of adding annotations in concrete rule-based languages in a backwards compatible way,
implementation of the krdf software for extracting and processing these annotations, writing queries to
demonstrate how useful information can be extracted from the annotations, generation of the contact map
diagram and significant portions of the final text.
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parameters for, models. However which data is used and how the model is derived from

that data is not part of the model unless we explicitly annotate it in a well-defined way.

In general, annotations decorate a model with metadata linking to biologically

relevant information (Michael L Blinov; Ruebenacker, et al., 2010). They can facilitate

the automated exchange, reuse and composition of complex models from simpler ones.

Annotations can be used to aid in the computational conversion of models into a

variety of other data formats. For example, PDF documents (Li et al., 2010) or visual

graphs (Funahashi et al., 2007) can be automatically generated from annotated models

in order to aid human understanding.

On the computational and modelling side, rule-based languages such as Kappa (Danos;

Laneve, 2004; Danos; Jérôme Feret; W. Fontana; Krivine, 2007) and BioNetGen (James

R. Faeder et al., 2009) have emerged as helpful tools for modelling biological sys-

tems (Köhler et al., 2014). One of the key issues is that rule-based modelling is used to

concisely represent the combinatorial explosion of the state space inherent in modelling

biological systems.

These types of modelling languages have facilities to add comments that are intended

for unstructured documentation and usually directed at the modeller or programmer.

These comments are in general human and not machine-readable. This can be a problem

because the biological semantics of the model entities are not computationally accessible

and cannot be used to influence the processing of the models.

There are other previous works that have addressed the issue of annotations in

rule-based models. In particular, (Chylek; Hu, et al., 2011) suggest extending rule-based

models to include metadata, focusing on documenting models with biological informa-

tion using comments to aid the understanding of models for humans. More recently, in

(Klement et al., 2014) authors have presented a way to add data in the form of proper-

ty/value pairs using a specific syntax. On the other hand, machine-readable annotations

have been applied to rule-based models using PySB, a programming framework for

writing rules using Python (Lopez et al., 2013a). However, this approach is restricted as

annotations cannot be applied to sites or states.

In this chapter we first discuss the general idea of annotation, its relation with the

concept of abstraction and then review the proposal of the annotation framework for

rule-based models as recently introduced and defined by Mısırlı; Cavaliere, et al. (2015).
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5.2 Reactions, Rules, Annotations and Abstractions

Before entering into the technicalities of the presented annotation framework, we would

like to discuss in an informal and intuitive manner the differences between models

created using reactions versus those obtained using rules, discussing the advantages

of considering annotations and how they are strictly linked to the much more general

notion of abstraction.

5.2.1 Reactions and Rules

Rules as they are to be understood in the present context are a sort of generalisation of

reactions of the type familiar from chemistry. The reason this generalisation is useful

can be easily seen. Consider the following toy examples,

+ →

which can be understood as a step in the creation of a polymer from two monomers.

Multiple applications of this rule result in a progressively longer chain of molecules,

+ →

+ →

·· ·

Writing this down with traditional reaction notation, we would be forced to explicitly

generate the entire unbounded sequence of reactions with an unbounded number of

chemical species,

A+A→ A2

A2 +A→ A3

A2 +A2→ A4

A3 +A→ A4

· · ·

Clearly this is unworkable for computation. The solution is to allow a species to have

sites at which connections can be made. In the above example, the species could be

described as A(u,d), that is substance A with an upstream and a downstream site. The

interaction can then be written as,

A(d), A(u)→ A(d!1), A(u!1)
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where the notation d means that the downstream site is unbound, and the !1 means

bound with a particular edge. Note that this says nothing about the state of the upstream

site in the first instance of A nor the downstream in the second, so there can be an

arbitrarily long chain of molecules attached at those sites. It is easy to see that this

compact notation captures both the infinite sequence of reactions and the infinite set of

species that would be required to express the same interaction as a chemical reaction.

5.2.2 Annotations

Informally, the word “annotation” has a meaning similar to “documentation” but with a

difference in scale. Whereas documentation connotes a rather large text describing some

thing, annotation is expected to be much shorter. It also evokes proximity: it should

be in some sense “near” or “on” the thing being annotated. In both cases there seems

to be a sharp distinction between the text and its object. The object should exist in its

own right, be operational or functional in the appropriate sense without need to refer

to extraneous texts. Annotation might help to understand the object but the object can

exist and work just fine on its own.

This folk theory of annotation breaks down almost immediately under inspection. A

typical example is data about a book such as might be found in a library catalogue. This

is actually the canonical example used to explain what is meant by metadata or data

about data. The first observation is that if we look at a book and peruse the first few

pages it is almost certain that we will find information about who wrote it and where

and when it was published. This information is not the book, it is metadata about the

book, but it is contained within the covers of the book itself.

Perhaps this is not so serious a problem. It is possible in principle to imagine that

a book, say with the cover and first few pages torn out, is still a book that can be read

and enjoyed. Perhaps somehow the metadata is separable and that is the important idea.

The book part of the artefact can exist on its own and serve its purpose independently

of any annotation or metadata that while it might usually be found attached, can easily

be removed without affecting the fundamental nature of the thing. But what of other

things that we might want to do with a book?

A favourite activity of academics is citing documents such as books and journal

articles. This means including enough information in one work to unambiguously refer

to another. There is an urban legend that Robarts Library at the University of Toronto is

said to be sinking because the engineers charged with building it did not account for
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the weight of the books within. Supposing that this were true, these poor apocryphal

engineers could have used metadata within the university’s catalogue to sum up the

number of pages of all the books and estimate their weight to prevent this tragedy.

More mundanely, categorising and counting books in order to plan for the use of

shelf space in a growing collection, or even locating a book in a vast library seem to be a

plausible things to do with metadata that do not involve any actual books. Manipulation

and productive use of annotation is possible in the absence of the objects and well-

defined even if the objects no longer exist. One imagines the despondent librarians and

archivists of Alexandria making such lists to document and take stock of their losses

after the great fire.

Now suppose that this list created by the librarians of Alexandria itself ended up in

a collection in some other library or museum. It is given a catalogue number, the year

it was acquired is marked. Now what was metadata has now itself become the object

of annotation! And here we arrive at the important insight: what is to be considered

annotation and what is to be considered object depends on the purpose one has in mind

for it. If the interest is the collection of books in Alexandria, the list is metadata, a

collection of annotations, about them. If the interest is in the documents held by a

contemporary museum, among which the list is to be found, the list is an object. The

distinction is not intrinsic.

Turning to the subject at hand, the objects to be annotated are rules. According to

the folk theory of annotation, there should be a sharp distinction between rules and their

annotation. When it comes to executing a simulation, the software that does this need

not be aware of the annotations. Indeed the syntax for annotating rules described here is

specifically designed for backwards compatibility such that the presence of annotations

should not require any disruption or changes to existing simulation software.

So long as the purpose of the annotations is as an aid to understanding the rules the

location of the distinction between rule and annotation is fixed in this way. The obvious

question is, are there other uses to which the annotations can be put?

In the paper where the presented annotation mechanism was first described ((Mısırlı;

Cavaliere, et al., 2015)) one of the motivating examples was to create a contact map, a

type of diagram that shows which agents or species interact with each other and labels

these interactions with the rule(s) implementing them (an example of contact-map is

also recalled later in this chapter, see Figure 5.6).

The contact map use is illustrative of how movable the separation between object

and annotation is (Buneman et al., 2013). The entities of interest, rules and agents, are



86 Chapter 5. Annotations for Rule-Based Models

on the one hand decorated with what seems to be purely metadata: labels, or friendly

human-readable names that are suitable for placing on a diagram, preferable to the

arbitrary machine-readable tokens that are used by the simulator (arbitrary because

they are subject to renaming as required). On the other hand, the interactions between

the substances, what we wish to make a diagram of, are written down in a completely

different language with an incompatible syntax.

A minor change of perspective neatly solves this problem. It is simply to rephrase

the rule, saying “A and B are related, and the way they are related is that they combine

to form C”. This has the character of annotation: the rule itself is a statement about the

substances involved. More particularly it describes a relation between the substances.

On close inspection, giving a token used in a rule a human-readable name is also

articulating a relation, that is the relation called “naming” between the substance and a

string of characters suitable for human consumption.

With this change of perspective, all of the information required to make the diagram

is now on the same level. The only construct that must be manipulated is sets of relations

between entities (and strings of text, which are themselves a kind of entity). Fortunately

there exist tools and query languages for operating on data stored in just this form.

Having worked out the correct query to extract precisely what is needed to produce the

diagram, actually doing so is trivial.

5.2.3 Abstractions and Annotations

In the preceding section on annotation, much was made of a “movable” line. “Above”

this line are annotations and “below” it are the objects. The sketch of a procedure for

producing a diagram to help humans understand something about a system of rules as a

whole illustrated that it can be convenient to place this line somewhere other than might

be obvious at first glance—and this example will be worked in more detail below to

demonstrate how this happens in practice. However the idea of such a line and how it

might be moved and what exactly that means is still rather vague. Let us now make this

notion more precise.

Formally, a relation between two sets, X and Y is a subset of their Cartesian product,

X×Y . In other words it is a set of pairs, {(x,y) |x ∈ X ,y ∈ Y}, and it is usually the case

that it is a proper subset in that not all possible pairs are present in the relation. In order

to compute with relations, the sets must be symbols, X , Y ⊆ S, ultimately sequences

of bits because a computer or Turing machine is defined to operate on such sequences
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and not on every day objects such as books, pieces of fruit, molecules or sub-atomic

particles, or indeed concepts and ideas.

This last is an important point. It is not possible to compute with objects in the

world, be they concrete or abstract, it is only possible to compute with representations

of these objects. Another kind of relation is required for this, R⊆ S×W where W is

the set of objects in the world. It is not possible to write down such relations between

symbols and real-world objects any more than it is possible to write down an apple. So

we have two kinds of relations to work with: annotations which are relations among

symbols and live in S×S and representations which map between symbols and the

world, S×W.

Some observations are in order. First, the representation relation has an inverse,

W×S. This is trivial and is simply “has the representation” as opposed to “represents”.

Second, of course, symbols are themselves objects in the world, so S ⊂W. Finally,

relations among symbols—annotations — are likewise objects in the world, so S×S⊂
W also. This is useful because it means that it is possible to represent annotations with

symbols and from there articulate relationships among them using more annotations,

constructing a hierarchy of annotation as formalised by Buneman et al. (2013). We run

into trouble though if we try to say that representations are in the world because S×W 6⊂
W, and this is why they cannot be written down. Symbols represent, annotations are

relations among symbols, and the character of representation is fundamentally different

from that of annotation.

Now we have enough to explain the intuition behind the folk theory of annotation,

that there is a difference of kind between the annotation and its object. This difference

is just the same as considering a notional pair (x ∈ S,−) qua annotation or qua repre-

sentation, that is, deciding the set from which the second element of the tuple should be

drawn. A similar choice is available, mutatis mutandis, for the inverse, (−,x ∈ S). If

unspecified element is in W\S, those objects in the world that are not symbols, there

is only one choice: the relation can only be treated as representation. If it is in W∩S
then either interpretation is possible, and one or the other might be more appropriate

depending on the purpose or question at hand.

The ability to make this choice is the ability to select an appropriate abstraction.

Selecting an abstraction means deciding to interpret a relation as representation and

not annotation. This is best illustrated with an example. Here is a (representation of an)
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agent or substance,

u d

b

A A(u,d,b)

Perhaps it is a fragment of DNA which can be connected up-stream and down-stream to

other such fragments, and it has a binding site where RNA-polymerase can attach as

part of the transcription process. Some annotations involving A might be,

(A,“Promoter”) ∈ L

(A,TTGATCCCTCTT) ∈M

where the first is from the set of labellings, L and the second is from the set of corre-

spondences with symbols representing nucleotide sequences which we will call M. A

more conventional way of writing these corresponding more closely to the Semantic

Web practice is,

A label "Promoter" .

A has sequence TTGATCCCTCTT .

The labelling annotation is easy to understand. It simply provides a friendly string for

humans.

The second annotation is more challenging. It says that the DNA fragment repre-

sented by A corresponds to a certain sequence of nucleotides. On the one hand the

symbol for that sequence could simply be taken as-is, since it does not play an ex-

plicit role in the computer simulation of whatever interactions A is involved in. That

corresponds to treating the symbol TTGATCCCTCTT as a representation. It is the end of

the chain, there only remains the relation from that symbol to something in the world,

which is not something that we would wish to write down or compute with.

On the other hand, it is equally possible to write down an annotation on the sequence

symbol that specifies the list of (symbols representing) the nucleotides that it consists

in,

TTGATCCCTCTT consists [T,T,G,A,T,C,C,C,T,C,T,T] .

Such a verbose formulation might be useful if one had, for example, a machine for

synthesizing DNA molecules directly to implement an experiment in vitro for a genetic

circuit that had already been developed and tested by simulation in silico. In this

case the symbols, A, C, T and G play the role of representing real-world objects and the

symbol TTGATCCCTCTT is merely a reference that can be used to find the (list-structured)



5.2. Reactions, Rules, Annotations and Abstractions 89

relations among them. By making this choice, the selected abstraction has become more

granular.

Another example, pertinent because while we do not yet have machines for arbitrar-

ily assembling DNA molecules from individuals, we do have tools for drawing contact

map diagrams which we will use later, is a rule involving this agent. This agent has a

binding site which may be occupied by an RNA-polymerase molecule at a certain rate.

This could be expressed as,

#ˆ r1 label "Binding of RNAp to A"

’r1’ A(b!_), RNAP(s!_) -> A(b!1), RNAP(s!1) @k

where now we have introduced a little bit more of the syntax that will be more fully

elaborated later for annotating rules written in a file using the Kappa language. Here a

rule is simply given a useful human-readable label, the canonical example of annotating

something. On its own, it is useful, imagine a summary of the contents of a set of such

rules using labels like this. For that purpose the symbol r1 can be considered just to

represent the rule without looking any deeper.

A
b

RNAp
sr1For a contact map diagram, more information is needed.

At right is the diagram that corresponds to the example rule.

It shows that A and RNAp interact, that it happens through

the action of the rule r1 and in particular involves the sites b and s. Perhaps including

which sites are involved in the interaction is too granular and it might be desireable in

some circumstances to have a similar diagram involving just the agents and the rules.

Or perhaps more information is desired to be presented in the diagram such as whether

the rule involves creation or annihilation of a bond, say using arrows or a broken edge.

No matter the level of granularity required, it is clear that the necessary information

is contained within the rule itself, so simply considering the symbol r1 to represent

to the rule qua rule is not enough. Such a level of abstraction would be too coarse, it

must be elaborated further. Instead it should be considered to represent annotations that

themselves represent the structure of the rule.

To elaborate the rule sufficiently to support the production of such a diagram involves

a much greater amount of annotation structure than we have seen so far. A rule has

a left and a right side. Each of those has zero or more agent patterns. A rule does

not involve agents as such, rather it involves patterns that can match configurations of

agents, so patterns then relate, intra alia, to agents and sites, and finally bonds between

sites that are either to be matched (on the left-hand side) or created or annihilated (on

the right-hand side).
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5.3 Rule-Based Models: Brief Introduction

After the general discussion on the role of annotations and rule-based models, in this

Section we move to the more technical aspects (focusing on two languages, Kappa

and BioNetGen) and follow the terminology and the definitions provided in (Mısırlı;

Cavaliere, et al., 2015).

Biological entities are represented by agents in Kappa and molecule types in BioNet-

Gen (we use ‘agent’ to generically refer to both types). Agents may include any number

of sites that represent the points of interactions between agents. For example, the binding

domain site of a transcription factor (TF) agent can be connected to a TF binding site of

a DNA agent. Moreover, sites can have states. For instance, a TF could also have a site

for phosphorylation and the DNA binding can be constrained to occur only when the

state of this site is phosphorylated.

For an agent with two sites, of which one with two internal states and the other

with three, the number of possible combinations is six (Figure 5.1A, B). A pattern is

an (possibly incomplete) expression of an agent in terms of its internal, and binding

states. Rules, that specify biological interactions, consist of patterns on the left hand side

which, when match, produce the result on the right hand side (Figure 5.1C). Specific

patterns of interest can be declared as an observable of the model.

It is important to highlight that while the syntactic definition of an agent identifies

sites and states in rule-based models, the semantics of sites and states is usually clear

only to the modeller. Cleary, if one wishes to have machine access, then this information

must be exposed in a structured way. The key idea of the approach presented in (Mısırlı;

Cavaliere, et al., 2015) and that we review in what follows, is to extend the syntax of

rule-based models to incorporate annotations.

Existing metadata resources include machine readable controlled vocabularies and

ontologies, Web services providing standard access to external identifiers and guidelines

for the use of these resources. For example, the Minimum Information Requested in

the Annotation of Models (MIRIAM) standard (Le Novère et al., 2005) propose the

standard minimal information required for the annotation of models.

Following (Mısırlı; Cavaliere, et al., 2015) we suggest that entities in models are

linked to external information through the use of unique and never ambiguous Uniform

Resource Identifiers (URIs), which are embedded within models. The uniqueness

and global scope of these URIs are then crucial for disambiguation of model agents,

variables and rules.
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1 A: An agent definition
2 A(site1˜u˜v, site2˜x˜y˜z)
3

4 B: Possible combinations of internal states
5 A(site1˜u,site2˜x)
6 A(site1˜u,site2˜y)
7 A(site1˜u,site2˜z)
8 A(site1˜v,site2˜x)
9 A(site1˜v,site2˜y)

10 A(site1˜v,site2˜z)
11

12 C: An example binding rule
13 A(site1˜v,site2˜z),A(site1˜v,site2˜y)
14 -> A(site1˜v!1,site2˜z),A(site1˜v!1,site2˜y) @kf

Figure 5.1: A. An agent with two sites. site1 has two possible internal states while
site2 has three. B. This agent can be used in six different ways depending on the
internal states of its sites. C. A rule that specifies how agent A forms a dimer when the
state of site1 is v and the states of site2 are z and y, respectively. The symbol !n
means that the sites where it appears are bound (connected) together. The constant kf
denotes the kinetic rate associated with the rule.

We also choose to represent annotations using the Resource Description Framework

(RDF) data model (Cyganiak et al., 2014; Gandon et al., 2014) as statements or binary

predicates. A statement can link a modelling entity to a value using a standard qualifier

term (predicate), which represents the relationship between the entity and the value.

These qualifiers often come from controlled vocabularies or ontologies in order to

unambiguously identify the meaning of modelling entities. URIs are used as values

to link these entities to external resources, and hence to a large amount of biological

information by keeping the amount of annotations minimal. The links themselves are

typed, again with URIs. The qualifiers and resources to which they refer are drawn from

ontologies that encode the Description Logic (Harmelen et al., 2004) for a particular

domain.

Semantics can be unified by means of metadata with controlled vocabularies. There

are several metadata standard initiatives that provide controlled vocabularies from which

standard terms can be taken. For instance, metadata terms provided by the Dublin Core

Metadata Initiative (DCMI) (DCMI Usage Board, 2012) or BioModels qualifiers can be

used to describe modelling and biological concepts (Le Novère et al., 2005; Li et al.,

2010). On the other hand, ontologies such as the Relation Ontology provide formal
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definitions of relationships that can be used to describe modelling entities (B. Smith

et al., 2005). There are also several other ontologies and resources that are widely used

to classify biological entities represented in models with standard values (Swainston

et al., 2009): the Systems Biology Ontology (SBO) (Courtot et al., 2011) to describe

types of rate parameters; the Gene Ontology (GO) (The Gene Ontology Consortium,

2001) and the Enzyme Commission numbers (Bairoch, 2000) to describe biochemical

reactions; the Sequence Ontology (SO) (Eilbeck et al., 2005) to annotate genomic

features and unify the semantics of sequence annotation; the BioPAX ontology (Demir

et al., 2010) to specify types of biological molecules and the Chemical Entities of

Biological Interest (ChEBI) (Degtyarenko et al., 2008) terms to classify chemicals.

URIs of entries from biological databases, such as UniProt (Magrane et al., 2011) for

proteins and KEGG (Kanehisa et al., 2008) for reactions, can also be used to uniquely

identify modelling entities.

The access to the data should be unified in the sense that well-known identi-

fiers should be used so that an entity can be referred to independently in different

models, or works or bodies of research. This can be done by accessing external

resources through URIs using MIRIAM or Identifiers.org URIs (Juty et al., 2012),

The former is not directly dereferencable, which means that it does not contain,

built-in, enough information to retrieve more information about the entity that it

denotes. It requires out of band knowledge to retrieve information, the knowledge

of where additional information about the MIRIAM identitifiers is kept and how it

can be retrieved. By contrast, Identifiers.org provides a standard HTTP mechanism

for finding more information and should be preferred for this reason. These URIs

refer to collections of entities and terms representing the entities themselves. For

example, the MIRIAM URI urn:miriam:uniprot:P699053 and the Identifiers.org

URI http://identifiers.org/uniprot/P69905 can be used to link entities to the

P69905 entry from UniProt. The relationships between modelling entities, annotation

qualifiers and values can be represented using RDF graphs.

We suggest to use RDF syntax that represents knowledge in the form of (subject,

predicate, value) triples, in which the subject can be an anonymous reference or a URI,

the predicate is a URI and the object can be a literal value, an anonymous reference or a

URI.

Subjects and objects may refer to an ontology term, an external resource or an

3A dereferenceable URI using the MIRIAM Web services is http://www.ebi.ac.uk/miriamws/
main/rest/resolve/urn:miriam:uniprot:P69905

urn:miriam:uniprot:P69905
http://identifiers.org/uniprot/P69905
http://www.ebi.ac.uk/miriamws/main/rest/resolve/urn:miriam:uniprot:P69905
http://www.ebi.ac.uk/miriamws/main/rest/resolve/urn:miriam:uniprot:P69905
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entity within the model. RDF graphs can be then serialized in different formats such as

XML or the more human readable Turtle format(Prud’hommeaux; Carothers, 2014).

Modelling languages such as the Systems Biology Markup Language (SBML) (Hucka

et al., 2003), CellML (Cuellar et al., 2003; Hedley et al., 2001) and Virtual Cell Markup

Language (Moraru et al., 2008) are all XML-based and provide facilities to embed

RDF/XML annotations (Endler et al., 2009).

Moreover, there are also other exchange languages, such as BioPAX and the Syn-

thetic Biology Open Language (SBOL) (Galdzicki; Wilson, et al., 2012; Galdzicki;

Clancy; Oberortner; Pocock; J. Quinn, et al., 2014), that can be serialised in RDF/XML

allowing custom annotations to be embedded.

Following the suggestion of (Mısırlı; Cavaliere, et al., 2015) one can extend the

use of RDF and MIRIAM annotations to describe a syntax to store machine-readable

annotations and an ontology to facilitate the mapping between rule-based model entities

and their annotations. We illustrate annotations using terms from this ontology and

propose some examples.

5.4 Annotations for Rule-Based Models

In this Section we review the syntax originally defined in (Mısırlı; Cavaliere, et al.,

2015) for storing annotations.

We start by noticing that a common approach, when trying to add additional struc-

tured information to a language where it is undesirable to change the language itself, is

to define a special way of using comments. This practice is established for structured

documentation or “docstrings” in programming languages (Acuff, 1988; Stallman et al.,

1992).

The idea is to use this same approach so that models written using the conven-

tions that we describe here do not require modification of the modelling software,

KaSim (Krivine et al., 2018) and RuleBender (W. Xu et al., 2011), that is their primary

target.

For this reason, we use the language’s comment delimiter followed by the ‘ˆ’

character to denote annotations in the textual representation of rule-based languages.

Kappa and BioNetGen use the ‘#’ symbol to identify comment lines, so in the case of

these languages, comments containing annotations are signalled by a line beginning

with ‘#ˆ’. This distinguishes between comments containing annotations and comments

intended for human consumption. Annotation data for a single modelling entity or a
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model itself can be declared over several lines and each line is prefixed with the ‘#ˆ’

symbol.

Annotations are then serialised in the RDF/Turtle format, that leads to a good

balance between the need for a machine-readable syntax and a human readable textual

representation. Rule-based modelling languages are themselves structured text formats

designed for this same balance, so RDF/Turtle is more suitable than the XML-based

representations of RDF.

Annotations for a single rule-based model entity are a list of statements. It is

important to stress that annotations may refer to other annotations within the same

model. When all the lines corresponding to a rule-based model and the annotation

delimiter symbols are removed, the remaining RDF lines can represent a single RDF

document. This enables annotations to be quickly and easily extracted without special

tools4.

In textual rule-based models, it is difficult to store annotations within a modelling

entity since Kappa and BioNetGen represent modelling entities such as agents and

rules as single lines of text. As a result, there is no straightforward location to attach

annotations to an entity. Following (Mısırlı; Cavaliere, et al., 2015) we achieve the

mapping between a modelling entity and its annotations by defining an algorithm

to construct a URI from the symbol used in the modelling language. The algorithm

generates unique and unambiguous prefixed names that are intended to be interpreted as

part of a Turtle document. The algorithm simply constructs the local part of a prefixed

name by joining symbolic names in the modelling language with the ‘:’ character,

and prepending the empty prefix, ‘:’. This means that one must satisfy the condition

that the empty prefix is defined for this use. Using this algorithm, we can derive

a globally unique reference for the y internal state of site site2 of agent A from

A(site1˜u˜v,site2˜x˜y˜z) as :A:site2:y.

In Kappa, rules do not have symbolic names but each rule can be preceded by free

text surrounded by single quotes. Such free text should be consistent with the local

name syntax in Turtle and SPARQL (Prud’hommeaux; Seaborne, 2013) languages. If

that is satisfied, identifiers for subrules are created by just adding their position index,

based on one, to the identifier for a rule (see Figure 5.4B). A similar restriction is placed

on other tokens used in the models; agent and site names, variable and observable names

4For example, on a UNIX system, the following pipeline could be used:

grep 'ˆ#\ˆ'| sed 's/ˆ#\ˆ//'
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must all conform to the local name syntax.

Controlled vocabularies such as BioModels.net qualifiers are formed of model and

biology qualifiers. The former offers terms to describe models. BioModels.net qualifiers

are also appropriate to annotate rule-base models, but additional qualifiers are needed

to fully describe rule-based models. These are specific to the annotation of rule-based

models and this is done by using a distinct ontology—the Rule-Based Model Ontology—

in the namespace http://purl.org/rbm/rbmo# conventionally abbreviated as rbmo

(we omit the prefix if there is no risk of ambiguity). Each qualifier is constructed by

combining this namespace with an annotation term. A subset of significant terms are

listed in Appendix A.2 (presented in the appendix) while the full ontology is available

online at the namespace URI.

The Model classes such as Kappa and BioNetGen specify the type of the model being

annotated. The term Agent is used to declare physical molecules. Hence, the Agent class

can represent agents and tokens in Kappa, or molecule types in BioNetGen. Site and

State represent sites and states in these declarations respectively. Rules are identified

using Rule. The predicates hasSite and hasState and their inverses are used to annotate the

links between agents, sites and internal states declarations. Appendix A.2 reviews the

terms related to the declaration of the basic entities from which models are constructed.

We assume that the terms that start with an uppercase letter are types (In the sense

of rdf:type, and also in this instance owl:Class) for the entities in the model which the

modeller could be expected to explicitly annotate. The predicates begin with a lowercase

letter and are used to link entities to their annotations.

Appendix A.3 includes terms to facilitate representation of rules in RDF. This change

of representation (materialization), from Kappa or BioNetGen to RDF is something that

can easily be automated and a tool is already available (for models written in Kappa).

This representation in RDF is helpful for analysis of models because merges the

model itself with the metadata in a uniform way easy to query. Annotations that

cannot be derived from the model (as well as the model itself) are written explicitly in

RDF/Turtle using the terms from Appendix A.2 embedded in comments using a special

delimiter. Extra statements can then be derived by parsing and analyzing the model

using terms from Appendix A.3 and the same naming convention from the algorithm

previously described. These statements are then merged with the externally supplied

annotations to obtain a complete and uniform representation of all the information about

the model.

The open-ended nature of the RDF data model means that it is possible to freely

http://purl.org/rbm/rbmo#
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incorporate terms from other ontologies and vocabularies, including application-specific

ones. In this respect, two terms are crucial. The dct:isPartOf predicate from DCMI

Metadata Terms is used to denote that a rule or agent declaration is part of a particular

model (or similarly with its inverse, dct:hasPart).

The bqiol:is predicate from the Biomodels.net Biology Qualifiers is used to link

internal states of sites to indicate their biological meaning. This term is chosen because

it denotes a kind of identification that is much weaker than the logical replacement

semantics of owl:sameAs. Using the latter would imply that everything that can be said

about the site qua biological entity can also be said about the site qua modelling entity.

Clearly, these are not the same and identifying them in a strong sense would risk

incorrect results when computing with the annotations.

Appendix A.1 enumerate useful ontologies and vocabularies with their conventional

prefixes to annotate rule-based models. This list is not exhaustive and can be extended.

5.5 Adding Annotations to Rule-Based Models

In this Section we demonstrate how the suggested annotations can be added to rule-

based models. Again we follow the methodology originally presented in (Mısırlı;

Cavaliere, et al., 2015).

1 #ˆ@prefix : <http://.../tcs.kappa#>.
2 #ˆ@prefix rbmo: <http://purl.org/rbm/rbmo#>.
3 # ... other prefixes elided ...
4 #ˆ@prefix dct: <http://purl.org/dc/terms/>.
5 #ˆ@prefix foaf: <http://xmlns.com/foaf/0.1/>.
6

7 #ˆ :kappa a rbmo:Kappa ;
8 #ˆ dct:title "TCS_PA Kappa model" ;
9 #ˆ dct:description

10 #ˆ "Two component systems and promoter architectures" ;
11 #ˆ dct:creator "Goksel Misirli", "Matteo Cavaliere";
12 #ˆ foaf:isPrimaryTopicOf <https://.../tcs.kappa> .

Figure 5.2: An example model annotation (as in Mısırlı; Cavaliere, et al. (2015)), with
details about its name, description, creators and online repository location. The prefix
definitions required to annotate the model are defined first, and the empty prefix is
defined for the model namespace itself.
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1 A:
2 #ˆ:ATP a rbmo:Agent ;
3 #ˆ bqbiol:isVersionOf chebi:CHEBI:15422 ;
4 #ˆ biopax:physicalEntity biopax:SmallMolecule .
5 %token: ATP()
6 B:
7 #ˆ:Kinase a rbmo:Agent ;
8 #ˆ rbmo:hasSite :Kinase:psite ;
9 #ˆ bqbiol:is uniprot:P16497 ;

10 #ˆ biopax:physicalEntity biopax:Protein ;
11 #ˆ ro:hasFunction go:GO:0000155 .
12 #ˆ:Kinase:psite a rbmo:Site ;
13 #ˆ rbmo:hasState :Kinase:psite:u, :Kinase:psite:p .
14 #ˆ:Kinase:psite:u a rbmo:State ;
15 #ˆ bqiol:is pr:PR:000026291 .
16 #ˆ:Kinase:psite:p a rbmo:State ;
17 #ˆ bqiol:is psimod:MOD:00696 .
18 %agent: Kinase(psite˜p˜u)
19 C:
20 #ˆ:pSpo0A a rbmo:Agent ;
21 #ˆ rbmo:hasSite :pSpo0A:tfbs ;
22 #ˆ bqbiol:isVersionOf so:SO:0000167 ;
23 #ˆ biopax:physicalEntity biopax:DnaRegion ;
24 #ˆ sbol:nucleotides "ATTTTTTTAGAGGGTATATAGCGGTTTTGTCGAATGTAAACATGTAG" ;
25 #ˆ sbol:annotation :pSpo0A_annotation_28_34 .
26 #ˆ:pSpo0A:tfbs a rbmo:Site ;
27 #ˆ bqbiol:isVersionOf so:SO:0000057 ;
28 #ˆ biopax:physicalEntity biopax:DnaRegion ;
29 #ˆ sbol:nucleotides "TGTCGAA" .
30 #ˆ:pSpo0A_annotation_28_34 a sbol:SequenceAnnotation ;
31 #ˆ sbol:bioStart 28;
32 #ˆ sbol:bioEnd 34 ;
33 #ˆ sbol:subComponent :pSpo0A:tfbs .
34 %agent: pSpo0A(tfbs)
35 D:
36 #ˆ:Spo0A a rbmo:Agent .
37 %agent: Spo0A(psite˜p˜u)
38 #ˆ:Spo0A_p a rbmo:Observable ;
39 #ˆ ro:has_function go:GO:0045893 .
40 %obs: ’Spo0A_p’ Spo0A(psite˜p)

Figure 5.3: Examples of agent annotations for A. An ATP token agent. B. A kinase agent
with phosphorylated and unphosphorylated site. C. A promoter agent with a TF binding
site. D. An agent and an associated observable for the phosphorylated Spo0A protein,
which can act as a TF.
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Annotations are added by simply adding a list of prefix definitions representing

annotation resources providing relevant terms for the annotation of all model entities

(such as agents and rules). These definitions are followed by statements about the title

and description of the model, using the title and description terms from Dublin Core.

Annotations can be expanded to include model type, creator, creation time, its link to an

entry in a model database (Figure 5.2).

Appendix A.4 lists predicates, both from the rbmo ontology and from other vocabu-

laries, for annotating distinct entities in a model. Figure 5.3 shows examples of Agent

annotations. In Figure 5.3A the ATP token is annotated as a small molecule with the id

of 15422 from CHEBI. Agents without sites can also be annotated in a similar way. In

Figure 5.3B, the agent is specified to be a protein using the biopax:Protein value for the

biopax:physicalEntity term. This protein agent is annotated as P16497 from UniProt, which

is a kinase (i.e. an enzyme that phosphorylates proteins) involved in the process of sporu-

lation. It has a site with the phosphorylated and unmodified states, which are annotated

with corresponding terms from the Protein Modification Ontology (Montecchi-Palazzi

et al., 2008).

The ro:hasFunction term associates the agent with the GO’s histidine kinase molecular

function term GO:0000155. In Figure 5.3C, a promoter agent with a TF binding site is

represented. Both the promoter and the operator agents are of “DnaRegion” type, and

are identified with the SO:0000167 and SO:0000057 terms. Although the nucleotide information

can be linked to existing repositories using the bqbiol:is term, for synthetic sequences

agents can directly be annotated using SBOL terms. The term sbol:nucleotides is used to

store the nucleotide sequences for these agents. A parent-child relationship between the

promoter and the operator agents can be represented using an sbol:SequenceAnnotation RDF

resource, which allows the location of an operator subpart to be specified.

This approach can be used to annotate a pattern with a specific entry from a database

(patterns can also be stated as observables of the model). For instance, Figure 5.3D

shows an example of such an observable. Spo0A p represents the phosphorylated

protein, which acts as a TF and is defined as an observable.

Figure 5.4 demonstrates annotation of rules. The first rule (Figure 5.4A) describes

the binding of LacI TF to a promoter. This biological activity is described using the

GO:0008134 (transcription factor binding) term. In the second example (Figure 5.4B), a

phosphorylation rule is annotated. The rule contains a subrule representing ATP to ADP

conversion. This subrule is linked to the parent rule with the hasSubrule qualifier. Moreover,

the annotation of the rate for this rule is presented in Figure 5.4C. The annotated Kappa
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and BioNetGen models for a two-component system (TCS), controlling a simple

promoter architecture can be found in directory5.

Finally, in Figure 5.5 we present the fragment of a specific rule (taken from the TCS

Kappa model) materialised using the krdf tool. The tool generates a version of the

rules themselves in RDF together with the annotations (in this way the entire model is

presented in a more uniform way).

5.6 Using Annotations

The discussed framework could be coupled to the development of tools that allow to

extract and analyze the annotations embedded in a model. Several tools are currently

under development. We demonstrate here the krdf tool that can be used for checking

duplication of rules and inconsistencies between different parts of the model, basic

problems encountered when composing and creating biological models (M L Blinov

et al., 2008; Lister et al., 2009). Another application is to draw an annotated contact

map visualising the entities involved, the interactions and the biological information

stored in the annotations – this merges the classical notion of contact map used in Kappa

models (Danos; Laneve, 2004; Danos; Jérôme Feret; W. Fontana; Russ Harmer, et al.,

2009) with biological semantics.

The krdf tool operates on Kappa models and has several modes of operations that

can provide increasingly more information about the model. The first, selected with the

-a option, extracts the modeller’s annotations. The second mode, selected with the -m

option, materialises the information in the rules themselves into the RDF representation

(as illustrated in Figure 5.5). Finally the -n option normalises the patterns present in

the rules according to their declarations.

Once a complete uniform representation of the model in RDF has been generated,

one can query it using SPARQL with a tool such as roqet (Beckett, 2015). For example,

a SPARQL query can deduce a contact map—pairings of sites on agents that undergo

binding and unbinding according to the rules in the model. These pairings form a

graph that can be visualised using tools such as GraphViz (Ellson et al., 2002). With

an appropriate query6, roqet can output the result in a GraphViz format. A more

sophisticated manipulation7 can extract annotations from the RDF representation of the

5Files tcs.kappa and tcs.bngl in the http://purl.org/rbm/rbmo/examples directory respec-
tively.

6See the binding.sparql file in the krdf directory.
7See the contact.py script in the krdf directory.

http://purl.org/rbm/rbmo/examples
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TCS example model and easily create a richly annotated contact map diagram (Figure

5.6). In this way, biological information extracted from the annotations can be added to

the agents, sites and interactions (using GraphViz for rendering)8.

An example of a simple version of such a query, to extract the binding interactions

is below:

1 ## Return a sequence of (rule, agentA, siteA, agentB, siteB) tuples
2 ## that correspond to binding operations.
3

4 PREFIX rbmo: <http://purl.org/rbm/rbmo#>
5 SELECT DISTINCT ?rule ?agentA ?siteA ?agentB ?siteB
6 WHERE {
7 ?rule rbmo:lhs [
8 ## the left hand side of a rule has an agent
9 ## with a site bound to nothing

10 rbmo:agent ?agentA;
11 rbmo:status [
12 a rbmo:UnboundState;
13 rbmo:isStatusOf ?siteA
14 ]
15 ]; rbmo:rhs [
16 ## the right hand side of a rule has the same
17 ## agent with the site bound to something.
18 rbmo:agent ?agentA;
19 rbmo:status [
20 rbmo:isBoundBy ?binding;
21 rbmo:isStatusOf ?siteA
22 ]
23 ] .
24

25 ?rule rbmo:lhs [
26 ## the left hand side of a rule has an agent
27 ## with a site bound to nothing
28 rbmo:agent ?agentB;
29 rbmo:status [
30 a rbmo:UnboundState;
31 rbmo:isStatusOf ?siteB
32 ]
33 ]; rbmo:rhs [
34 ## the right hand side of a rule has the same
35 ## agent with the site bound to something.
36 rbmo:agent ?agentB;
37 rbmo:status [
38 rbmo:isBoundBy ?binding;
39 rbmo:isStatusOf ?siteB
40 ]

8The tool assumes that only single instances of an agent are involved in a rule. It can be generalized.
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41 ] .
42 ## this filter is necessary to check that the binding
43 ## actually is one, that is blank nodes are used to
44 ## bind sites
45 FILTER isBlank(?binding)
46 ## Apply a predictable ordering on the sites so that
47 ## edges do not appear twice.
48 FILTER (STR(?siteA) < STR(?siteB))
49 ## ORDER BY ?rule
50 }

and together with the corresponding query for unbinding and some cosmetically moti-

vated queries to extract human readable labels, this results in sufficient information to

generate Figure reffig:contact.

Moreover, one can easily create a query that implements a join operation on the

property of bqbiol:is, enforcing a stronger form of identity semantics than this predicate

is usually given. A filter clause is necessary to prevent a comparison of a rule with itself

(see the SPARQL query in Figure 5.7). In this way, the discussed annotations could also

be used to detect duplication of rules (e.g, obtained when combining different biological

models).

Another possible application of the presented annotation schema is the checking

of inconsistencies in a rule-based model. This can be done in several different ways.

A simple way is to use the replacement semantics of owl:sameAs. A statement of the

form a owl:sameAs b means that every statement about a is also true if a is replaced by

b. In particular if we have statements about the types of a and b, and these types are

disjoint, the collection of statements is unsatisfiable (hence, the model has been found

to be inconsistent). Then, an OWL reasoner such as HermiT (Shearer et al., 2008) or

Pellet (Sirin et al., 2007) can derive that a and b have type owl:Nothing.

This can be implemented with the following work-flow (here only sketched): (i)

generate the fully materialised RDF version of a model using, e.g. krdf. For each

use of bqbiol:is, add a new statement using owl:sameAs; (ii) retrieve all ontologies that are

used from the web. For each external vocabulary term with bqbiol:is or bqbiol:isVersionOf

retrieve a description and any ontology that it uses (recursively). Merge all of these into

a single graph. This graph contains the complete model and annotations, with entities

linked using a strong form of equality to external vocabulary terms, and descriptions of

the meaning of these vocabulary terms; (iii) the reasoner can be used to derive terms that
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are equivalent to owl:Nothing and if any of these terms is found then an inconsistency has

been identified. Using the proof generation facilities of OWL reasoners, the sequence

of statements required to arrive to foo rdf:type owl:Nothing can be reproduced (in this way,

the initial source of the inconsistency can be also identified).

5.7 Perspective and Future Works

In this chapter we have reviewed the recent proposal to incorporate annotations to

rule-based models, following the approach recently presented in (Mısırlı; Cavaliere,

et al., 2015). We have also discussed in a more general way the role of annotations and

how they are strongly related to the notion of abstraction. In general, for consistency, we

have followed the terms originally defined in (Mısırlı; Cavaliere, et al., 2015). However,

the suggested standardized terms can be used in a complementary manner with existing

metadata resources such as MIRIAM annotations and URIs, and existing controlled

vocabularies and ontologies. Although, the approach has only described the annotations

of Kappa and BioNetGen files, it can be easily applied to other rule-based models.

In particular, PySB (Lopez et al., 2013a) already includes a list of MIRIAM an-

notations at the model level, and can be extended to include the type of annotations

described here. SBML’s multi9 package is being developed to standardise the exchange

of rule-based models. The entities in this format inherit the annotation property from

the standard SBML and can therefore include RDF annotations. These SBML models

could thus be imported or exported by tools such as KaSim or RuleBender, avoiding the

loss of any biological information.

It is important to remark that annotations are also useful for automated conversions

between different formats. Conversion between rules and reaction networks is already

an ongoing research subject (M L Blinov et al., 2008), and the availability of annotations

can play an important role for reliable conversion and fine-tuning of models (Tapia et al.,

2013; L. A. Harris et al., 2015). It is straightforward to use the framework presented and

automatically map agents and rules to glyphs (Chylek; Hu, et al., 2011) or to convert

models into other visual formats such as SBGN or genetic circuit diagrams (Mısırlı;

J. S. Hallinan, et al., 2011).

More generally, annotations are designed for machine readability and can be pro-

duced computationally (e.g., by model repositories). This can be done by developing

APIs and tools to access to a set of biological parts (Cooling et al., 2010; Mısırlı; J.

9http://sbml.org/Documents/Specifications/SBML_Level_3/Packages/multi

http://sbml.org/Documents/Specifications/SBML_Level_3/Packages/multi
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Hallinan, et al., 2014) that will incorporate rule-based descriptions and will be annotated

with the proposed schema (the authors are currently working on this line of research).

This will open the possibility of composing together rule-based models extracted from

distinct repositories. Tools such as Saint (Lister et al., 2009) and SyBIL (Michael L

Blinov; Ruebenacker, et al., 2010) could be extended to automate the annotation of

rule-based models and help to address the automatic annotation of models. In this way,

the extensive information available in biological databases and the literature can be

integrated and made available via rule-based models, taking advantage of the syntax

and the framework presented in this chapter.

One of the ultimate goals is to use annotations for helping the automatic compo-

sition of rule-based models. As recently suggested in (Mısırlı; Waites, et al., 2016)

the proposed schema can be used to automate the design of biological systems using

rule-based model with a workflow that combines the definition of modular templates to

instantiate rules for basic biological parts. The templates, defining rule-based models

of basic biological parts10 can be associated with quantitative parameters to create

particular parts models, which can then be merged into executable models. Such models

are annotated using the reviewed schema leading to a feasible protocol to automate

their composition for the scalable modelling of synthetic systems (Mısırlı; Waites, et al.,

2016).

The described annotation ontology for rule-based models can be found at http:

//purl.org/rbm/rbmo while the tool and all the presented examples can be found at

http://purl.org/rbm/rbmo/krdf.

10Available at http://github.com/rbm/composition

http://purl.org/rbm/rbmo
http://purl.org/rbm/rbmo
http://purl.org/rbm/rbmo/krdf
http://github.com/rbm/composition
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1 A:
2 #ˆ:LacI.pLac a rbmo:Rule ;
3 #ˆ bqbiol:isVersionOf go:GO:0008134 ;
4 #ˆ dct:title "Dna binding" ;
5 #ˆ dct:description "TF1 binds to the promoter" .
6 ’LacI.pLac’ Target(x˜p), Promoter(tfbs1,tfbs2) <-> Target(x˜p!1), Promoter(

tfbs1!1,tfbs2) @kf,kr
7 B:
8 #ˆ:S_phosphorylation a rbmo:Rule ;
9 #ˆ bqbiol:isVersionOf sbo:SBO:0000216 ;

10 #ˆ dct:title "S Phosphorylation" ;
11 #ˆ dct:description "S is phosphorylated" ;
12 #ˆ rbmo:hasSubrule :S_phosphorylation:1 .
13 #ˆ:S_phosphorylation:1 a rbmo:Rule ;
14 #ˆ bqbiol:isVersionOf sbo:SBO:0000216 ;
15 #ˆ dct:title "ATP -> ADP" ;
16 #ˆ dct:description "ATP to ADP conversion" .
17 ’S_phosphorylation’ S(x˜u!1), K(y!1) | 0.1:ATP -> S(x˜p), K(y) | 0.1:ADP

@kp
18 C:
19 #ˆ:kp a sbo:SBO:0000002 ;
20 #ˆ bqbiol:isVersionOf sbo:SBO:0000067 ;
21 #ˆ dct:title "Phosphorylation rate" .

Figure 5.4: Annotating rules and variables. A. TF DNA binding rule. B. Phosphorylation
rule with a subrule for the ATP to ADP conversion. C. Annotation of a phosphorylation
rate variable.
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1

2 :As1As2Spo0A_to_As2Spo0A a rbmo:Rule ;
3 dct:title "Cooperative unbinding" ;
4 rbmo:lhs [
5 a rbmo:Pattern ;
6 rbmo:agent :Spo0A ;
7 rbmo:status [
8 rbmo:isBoundBy :As1As2Spo0A_to_As2Spo0A:left:1 ;
9 rbmo:isStatusOf :Spo0A:DNAb ;

10 a rbmo:BoundState ;
11 ], [
12 rbmo:internalState :Spo0A:RR:p ;
13 rbmo:isStatusOf :Spo0A:RR ;
14 a rbmo:UnboundState ;
15 ] ;
16 ].

Figure 5.5: Fragment of the RDF representation of a materialised rule obtained by
merging the metadata supplied by the model author with an RDF representation of the
rule. The left hand side of the rule contains a pattern involving :Spo0A and that there are
two pieces of state information: The first one refers to the :Spo0A:DNAb site, and it is bound
to something (that can only be recovered using the rest of the model, not presented
here). The second refers to the :Spo0A:RR site, it has a particular internal state, and it is
unbound.

b0: Spo0A binding to Operator 1
b1: Spo0A binding to Operator 2

b2: Spo0A-KinA binding
u0: Cooperative unbinding: Spo0A unbinds from Operator 1
u1: Cooperative unbinding: Spo0A unbinds from Operator 2

u2: Spo0A unbinding from Operator 1
u3: Spo0A unbinding from Operator 2

u4: Spo0A(phosp)-KinA unbinding
u5: Spo0A(unphos)-KinA unbinding

Promoter (DnaRegion)

Spo0A (Protein)

KinA (Protein)

TTCGACA

DNAb

b0 u0 u2

AGTCGAA

b1 u1 u3

RR

H405

b2 u4 u5

Figure 5.6: Contact map generated by a SPARQL query on the RDF materialisation

of the TCS example in Kappa. Biological information concerning the agents, rules and

sites, types of the molecules, DNA sequences and typology of the interaction, are

extracted automatically from the model annotations. Figure has been redrawn as in

(Mısırlı; Cavaliere, et al., 2015).
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1 SELECT DISTINCT ?modelA ?ruleA ?modelB ?ruleB
2 WHERE {
3 ?ruleA a rbmo:Rule;
4 dct:isPartOf ?modelA;
5 bqbiol:is ?ident.
6 ?ruleB a rbmo:Rule;
7 dct:isPartOf ?modelB;
8 bqbiol:is ?ident.
9 FILTER (?ruleA != ?ruleB)

10 }

Figure 5.7: Detection of duplicate rules.



Chapter 6

A Genetic Circuit Compiler

Generating Combinatorial Genetic Circuits
with Web Semantics and Inference

Abstract. A central strategy of synthetic biology is to understand the basic processes

of living creatures through engineering organisms using the same building blocks.

Biological machines described in terms of parts can be studied by computer simulation

in any of several languages or robotically assembled in vitro. In this paper we present

a language, the Genetic Circuit Description Language (GCDL) and a compiler, the

Genetic Circuit Compiler (GCC). This language describes genetic circuits at a level

of granularity appropriate both for automated assembly in the laboratory and deriving

simulation code. The GCDL follows Semantic Web practice and the compiler makes

novel use of the logical inference facilities that are therefore available. We present the

GCDL and compiler structure as a study of a tool for generating κ-language simulations

from semantic descriptions of genetic circuits.

6.1 Introduction

Synthetic biology extends classical genetic engineering with concepts of modularity,

standardisation, and abstraction drawn largely from computer engineering. The goal

The work presented in Chapter 6 was previously published in the journal ACS Synthetic Biology
as “A Genetic Circuit Compiler: Generating Combinatorial Genetic Circuits with Web Semantics and
Inference” by William Waites, Göksel Mısırlı, Matteo Cavaliere, Vincent Danos and Anil Wipat (2018).
The work was conceived by all of the authors. I originated the concept of using inference to materialise
implicit information to achieve the goal of succinctness, designed, implemented and tested the kcomp
compiler software and templates, produced the figures (except where otherwise noted) and drafted the
majority of the text.
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is ambitious: to design complex biological systems, perhaps entire genomes, from

first principles (Baldwin, 2012). This enterprise has met with some success such as

microbial drug synthesis (Paddon et al., 2013; Galanie et al., 2015), production of new

biofuels (Ferry et al., 2012), and alternative approaches to disease treatment (Ruder

et al., 2011). However, most applications are still small and mostly designed manually.

The are several obstacles to designing more complex circuits. The design space of

potential circuits is very large. Even when a design is chosen, there is large a priori

uncertainty about what its behaviour will be. In many cases the available information

about molecular interactions in a cell is incomplete. A secondary obstacle is that designs

can be brittle and very sensitive to the host environment in which they execute. In

this context computational techniques become important for identifying biologically

feasible solutions to problems of biological system synthesis. Beyond the challenges of

the huge design space and associated uncertainties, writing these programs by hand is

time-consuming and error prone, and there are very few tools available for verification

and debugging them. Descriptions of models in terms of simulation code are tightly

coupled to the language of the simulation program, and it may be difficult or impossible

to use a different interpreter without completely rewriting the code.

We solve these problems by providing a high-level, modular, implementation-

independent language for describing gene circuits called the Genetic Circuit Description

Language (GCDL) and a compiler called Genetic Circuit Compiler (GCC). We use

a strategy of contextual reasoning to obtain flexible output from this succinct input,

and templates to support any number of output languages and modelling granularities.

An overview of information flow through the compiler is shown in Figure 6.1. We

demonstrate the utility of this approach by describing, compiling and simulating a

complete genetic circuit, the well-known Elowitz repressilator (Elowitz et al., 2000).

The compiler and example code are available at https://github.com/rulebased/

composition.

Code generation from this high-level description to a low-level language for simula-

tion greatly reduces the scope for error in coding simulations. Because the language is

implementation-independent, it is not tightly coupled to any particular interpreter or

hardware. In this way GCDL facilitates evergreen models, models that are specified

sufficiently well to be unambiguous but not so specifically that they can only be executed

or constructed in one software package or environment.

Domain specific languages and examples of compilers processing these languages

have previously been shown (Pedersen et al., 2009; Beal et al., 2011; Cai; Beal, et al.,

https://github.com/rulebased/composition
https://github.com/rulebased/composition
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Figure 6.1: High-level data flow through the compiler. The compiler for synthetic gene

circuits takes a model description written in GCDL and, using language-appropriate

appropriate templates, creates code for simulation and laboratory assembly. We have

implemented templates for annotated-κ for the KaSim software, and envision similar for

the BNGL as well as SBOL.

2011; J. Hallinan et al., 2014). These languages are designed to allow for simulations

using a particular methodology such as solving systems of ordinary differential equa-

tions or using Monte Carlo simulations. Unlike previous approaches, we emphasise the

use of abstraction to facilitate retargeting or production of output suitable for different

simulation environments and techniques as well as automated circuit assembly in the

laboratory from a single description. Compiler targets are implemented using condi-

tional inference, defining the semantics of the terms used in the description of the circuit

in a way that is determined by the desired output type. The design of the compiler is

general, and not limited to the present context of genetic circuits. The design is shown

schematically in Figure 6.2.

The GCDL is an RDF (Cyganiak et al., 2014) vocabulary and attendant inference

rules which facilitates gathering and collation of information about the constituent parts

of a genetic circuit (Neal et al., 2014). The output programs can be specialised to various

languages, such as the KaSim flavour of κ (Danos; Jérôme Feret; W. Fontana; Russell

Harmer, et al., 2007; Krivine et al., 2018), BioNetGen’s BNGL (Michael L Blinov;

James R Faeder, et al., 2004; Leonard A. Harris et al., 2016), other representations such

as SBOL (Galdzicki; Clancy; Oberortner; Pocock; J. Y. Quinn, et al., 2014) or indeed

whichever form is required by robotic laboratory equipment that assembles circuits in

vitro. This output flexibility is accomplished using templates that use facts derived by

inference rules (Berners-Lee, 2005) from the input model.

We now proceed as follows. In Section 6.2 we give an overview of those aspects of
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Figure 6.2: Detailed data flow through the compiler. This illustrates the use of inference

to expand the GCDL model to derive consequent information appropriate to producing

the next stage of output in the specific target language.
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synthetic biology and genetic engineering that are necessary to contextualise our work.

Next, in Section 6.3, we explain the representation of this kind of genetic circuit model

in GCDL, this is the main input to the compiler. In order to understand the desired

output of the compiler, in Section 6.4 we illustrate how these constructs are represented

as rule-based code for the κ language simulator, KaSim. There follows a discussion in

Section 6.5 of how the compiler infers the executable model from the input description.

Finally, in Section 6.6 we discuss some possible uses and limitations of our technique.

6.2 Background

6.2.1 Rule-based Modelling of Genetic Processes

A weakness of reaction-based methods for modelling the processes of transcription,

translation and the production of chains of proteins is that they require chemical species

for each bound state of the reagents. This in turn requires specification of reactions for

each combination of these reagents. To solve this problem of needing combinatorially

many reactions to describe substantially the same process, a generalisation of reactions

called rules are used (Hlavacek et al., 2003; Danos; Laneve, 2004; Danos; Jérôme Feret,

et al., 2008).

In the rule-based representation, agents correspond to reagents and they can have

slots or sites that can be bound, or not. They can also have internal state. Unlike

reactions which have no preconditions apart from the presence of the reagents, with

rules, a configuration of the sites—bound in a particular way, bound in some way,

unbound, or unspecified—is a precondition for the application of the rule. A rule may

re-arrange the bonds, creating or destroying them, without the need to invent new agents

in order to represent different configurations of a given set of molecules.

The reader should note that the word rule is used in two distinct senses in this

chapter. The first is as we have just described. The second is in the sense of inference

rule as used in logic and in particular the way in which we deduce executable rule-based

models from their declarative representations in RDF.

6.2.2 The κ Language

To briefly illustrate the essentials of rule-based modelling we will use the language of
the Kappa simulation software, KaSim (Krivine et al., 2018). An agent declaration and
rule expressing the formation of a polymer can be written as,
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1 %agent: A(d,u)
2

3 ’binding’ A(u[.]), A(d[.]) -> A(u[1]), A(d[1]) @k

We can gloss this as an agent with two sites, u and d for upstream and downstream,

and a rule. The rule concerns two agent patterns one of which has an unbound upstream

site, and the other an unbound downstream site, and the action of the rule is to bind

them, the notation [1] denoting the bond. This process happens at some rate k.

The state of the other site of each agent is left unspecified, so implicit in this rule is

the possibility that either or both the agents may already be bound to others and so part

of arbitrarily long chains. In other words this expression covers not only two monomers

joining together but an n-mer and an m-mer for arbitrary n and m. This is the essence

of the expressive advantage that rule-based modelling provides. To express a similar

concept using a reaction network would in fact require infinitely many reagents for

every possible n (and m) and infinitely many reactions for every possible combination.

6.2.3 Biological Parts and Annotation

For efficiency, and economy of representation, we claim that the description of a compu-

tational model should include minimum information necessary for simulation. However,

in order to use these models in an automated design process, additional metadata, or

annotations, about the meaning of different modelling entities is needed (Neal et al.,

2014). Annotation facilitates the drawing of specific parts from a database such as the

Virtual Parts Repository (Mısırlı; J. Hallinan, et al., 2014). Models in that database

are annotated with machine-readable metadata intended for combination into larger

models. Myers and his colleagues have used annotations to derive simulatable models

from descriptions of genetic circuits (Roehner et al., 2015) and vice versa (Nguyen

et al., 2016), though these use reaction-based techniques and so inherit the poor scaling

properties of that method.

To facilitate the in silico evaluation of potential synthetic gene circuits, a library of

descriptions of genetic parts, together with their modular models is suggested in (Cool-

ing et al., 2010; Mısırlı; J. Hallinan, et al., 2014). These parts are intended to be large

enough to have a particular meaning or function (i.e. larger than individual base pairs)

but not so large that they lack the flexibility to be recombined (i.e. entire genes). Thus

we are concerned with coding sequences for particular proteins, promoters that, when

activated, start the transcription process, operators that activate or suppress promoters



6.3. A Language for Synthetic Gene Circuits 113

according to whether they are bound or not by a given protein, and a small number of

other objects. A sequence of these objects is a genetic circuit, and our goal is to have a

good language for describing such sequences.

Annotation in this setting means machine-readable descriptions of entities of bio-

logical interest. This is done with statements, triples of the form (subject, predicate,

object) according Semantic Web standards (Cyganiak et al., 2014; Harmelen et al.,

2004). Entities are identified with Universal Resource Identifiers (URIs) (Masinter et al.,

2005). This provides the dual benefit of globally unique identifiers for entities and a

built-in mechanism for retrieving more information about them providing that some

care is taken to publish data according to best practises (Hyland et al., 2014; Sauermann

et al., 2011). Large bodies of such information about biologically relevant information

are published on the Web (M. Ashburner et al., 2000; U. Consortium et al., 2008) and

the use of Semantic Web standards for annotating our models allows us to express how

an entity in a model description corresponds to a real world protein, or gene sequence

or other entity.

The Semantic Web also affords us a technical advantage: inference rules. These can

be either explicit as in Notation3 (Berners-Lee; Connolly, et al., 2008; Berners-Lee;

Connolly, 2011) or implicit as in OWL Description Logics (Horrocks, 2005; Brickley et

al., 2014). In either case this facility makes it possible, given a set of statements, to derive

new statements according to inference rules. We use this to improve the ergonomics of

our high-level language: while the compiler itself will make use, internally, of a large

amount of information, we do not expect the user to supply it in painstaking detail.

Rather, we allow the user to specify the minimum possible and provide rules to derive

the necessary detail. Inference rules provide for both economy of representation for the

high-level model description and flexibility for the different implementations.

6.3 A Language for Synthetic Gene Circuits

This section describes the GCDL, the high-level language for describing genetic circuits

made from standard biological parts (Cooling et al., 2010)(Mısırlı; J. Hallinan, et al.,

2014). We begin by stating the properties that we want in such a language and showing

how we achieve them. There follows a synopsis of the vocabulary terms essential to the

language. Finally, we illustrate salient language features applied to example circuits.
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6.3.1 Desired Language Features

Our desired language features for high-level representation of a genetic circuit are as

follows,

1. sufficiency, there should be enough information to derive executable code for the

circuit,

2. identifiability, it should be possible to determine to which biological entities

(DNA sequences, proteins) the representation refers,

3. extensibility, it should be straightforward to add information or constructs that

are not presently foreseen,

4. generality, there should be no requirement that information about biological parts

comes from any particular set or source, and

5. concision, there should be a minimum of extraneous detail or syntax.

The third and fourth requirements are readily met by using RDF as the underlying

data model. The open world presumption (Drummond et al., 2006) means that adding

information as necessary is straightforward. The use of URIs (Masinter et al., 2005)

which can be dereferenced to obtain the required information means that information

from different web-accessible databases can be obtained, mixed and matched as desired.

The use of URIs goes some way towards meeting the second requirement, albeit with

some well-known caveats (Halpin et al., 2010).

The first and last of the desired features are the primary areas of innovation of

the present work. We suggest (but do not require) the use of Turtle (Prud’hommeaux;

Carothers, 2014) or indeed Notation3 (Berners-Lee, 2005) as the concrete surface syntax

for writing models. This goes some way towards a representation that is intelligible by

humans. Even then, we aim to minimise what needs to be written and we do this using

inference rules—if a needed fact can be derived from the model under the provided

rule-set, it is unnecessary to write it explicitly in the model. Indeed it may even be

undesirable to do so since it is a possible source of errors, for example some kinds of

assertions may be correct in the context of some output types and incorrect in others.

We aim for a minimal, yet complete under the inference rules, description of the model.

6.3.2 Vocabulary Terms

New terms introduced in this paper have the prefix gcc which can be read as the “Genetic

Circuit Compiler” vocabulary. The list of terms is reproduced in Table 6.3 and their

complete definitions are given in Appendix B.1 together with the accompanying rules
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in Appendix B.2. The GCDL is the union of terms from the gcc namespace with those

from the Rule-Based Model Ontology (RBMO) that we previously defined (Mısırlı;

Cavaliere, et al., 2015) together with terms from the Simple Knowledge Organization

System (SKOS) (Miles et al., 2005) vocabulary, RDF Schema (RDFS) (Brickley et al.,

2014) and Resource Description Framework (RDF) (Cyganiak et al., 2014).

6.3.3 Model Description

(a) An example genetic circuit: the Elowitz repressilator. It is a negative feedback oscillator. The

circuit is arranged linearly. Protein production and inhibitory protein-operator relationships are

shown using the SBOL visual standard. (Figure drawn by G. Mısırlı)
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(b) Sample simulation data from a program produced by the compiler showing the expected oscil-

lations. Note in particular the relatively small copy numbers of the proteins for which stochastic

simulation in the κ language is well suited.

Figure 6.3: Diagram and sample simulation results of the Elowitz repressilator

To illustrate the syntax of the high-level language, we use the well known Elowitz

repressilator shown diagrammatically in Figure 6.3a. The complete model can be found

in Appendix B.3 as well as distributed in the examples/ subdirectory of the compiler

distribution. Also included with the compiler is a hand-assembled implementation of

this circuit for comparison. A sample trace produced by generated program is shown in
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Classes
gcc:Part Generic biological part
gcc:Operator Operator
gcc:Promoter Promoter
gcc:RibosomeBindingSite Ribosome Binding Site
gcc:CodingSequence Coding Sequence
gcc:Terminator Terminator
gcc:Token Token or symbol in a template

Predicates
gcc:include Include a low-level model fragment
gcc:prefix The prefix to use for generated annotations
gcc:init Specifies initial copy numbers
gcc:part Links a part to its token or symbol
gcc:overlaps Indicates that two parts overlap (symmetric)
gcc:linear Linear circuit type
gcc:circular Circular circuit type
gcc:transcriptionFactor Relates an operator to its transcription factor
gcc:transcriptionFactorBindingRate Various rates
gcc:transcriptionFactorUnbindingRate
gcc:rnapBindingRate
gcc:rnapUnbindingRate
gcc:rnapRNAUnbindingRate
gcc:ribosomeBindingRate
gcc:ribosomeRNAUnbindingRate
gcc:ribosomeProteinUnbindingRate
gcc:transcriptionInitiationRate
gcc:transcriptionElongationRate
gcc:translationElongationRate
gcc:rnaDegradationRate
gcc:proteinDegradationRate

Table 6.3: Selected terms from the GCC vocabulary
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1 ## Model declaration
2 :m a rbmo:Model;
3 ## bibliographic metadata
4 dct:title "The Elowitz repressilator constructed from BioBrick parts";
5 dct:description "Representation of the Elowitz repressilator given in

the Kappa BioBricks Framework book chapter";
6 rdfs:seeAlso <http://link.springer.com/protocol/10.1007/978

-1-4939-1878-2_6>;
7 gcc:prefix <http://id.inf.ed.ac.uk/rbm/examples/repressilator#>;
8 ## include the host environment
9 gcc:include <.../host.ka>;

10 ## initialisations
11 gcc:init
12 [ rbmo:agent :RNAp; gcc:value 700 ],
13 [ rbmo:agent :Ribosome; gcc:value 1000 ];
14 ## The circuit itself, a list of parts
15 gcc:linear (
16 :R0040o :R0040p :B0034a :C0051 :B0011a
17 :R0051o :R0051p :B0034b :C0012 :B0011b
18 :R0010o :R0010p :B0034c :C0040 :B0011c
19 ).
20

Figure 6.4: Example model for a synthetic gene circuit, Elowitz’ repressilator.

Figure 6.3b. Figure 6.4 shows a description of this the core of the model, in the GCDL.

Some bibliographic metadata is included, using the standard Dublin Core (Kunze et al.,

2007) vocabulary, as well as a generic pointer (rdfs:seeAlso) to a publication about

this model.

The term gcc:prefix is necessary in every model, it instructs the compiler that any

entities that it creates should be created under the given prefix. Ultimately annotated

rules will be generated for the low-level representation and the annotated entities require

names. To give them names, a namespace is required and this is how it is provided.

Next there is a gcc:include statement. This is a facility for including extra infor-

mation in the low-level language. Extra information typically means rules for protein-

protein interactions which are beyond the scope of the current work and as such it

is simply supplied as a program fragment in the output language. This corresponds

roughly to calling an assembly or machine language routine to perform a specialised

task when programming a computer in a high-level language like C.

There follows initialisation for specific variables. In this case these are the copy
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1 :C0012 a gcc:CodingSequence;
2 gcc:label "Coding sequence for LacI";
3 gcc:part "C0012";
4 gcc:protein :P0010;
5 gcc:proteinDegradationRate 0.0001.
6

7 :P0010 a gcc:Protein;
8 bqbiol:is uniprot:P03023;
9 skos:prefLabel "P0010";

10 rdfs:label "LacI".
11

Figure 6.5: A coding sequence part description from the repressilator model. Notice how
the coding sequence is linked to the protein that it codes for.

numbers for RNA polymerase molecules and ribosomes. These are denoted using

rbmo:agent because of our choice to support rule-based modelling for greater general-

ity than reaction-based methods. Finally, the circuit itself is specified. The argument, or

object is an rdf:List which simply contains identifiers for the parts, in order.

The circuit itself is now defined. However at this juncture, we simply have a list of

parts without having specified what they are or what their intended behaviour is. To

obtain a working model, we need more.

6.3.4 A Part Description

A simple example of a part description is shown in Figure 6.5. This is a coding sequence,

as is clear from the type annotation on the part. It codes for a particular protein,

specified with gcc:protein. This term is specific to proteins because under normal

circumstances other kinds of part do not code for proteins. It is given a part symbol using

gcc:part because the output language will not typically permit the use of URIs as

identifiers, so this symbol via the implied skos:prefLabel (Miles et al., 2005) is what

will appear instead. The protein produced by this coding sequence is also specified and

linked using gcc:protein. It too is given a label using skos:prefLabel for the same

reason, and its degradation rate is also specified with gcc:proteinDegradationRate.

It is equally possible to specify the rates for transcription and translation in a similar

manner though not shown here. In practice, rates are known primarily from experiment

and this is an important reason to have accessible databases or repositories of part

specifications.
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Importantly, following the practice in our previous paper on rule annotation (Mısırlı;

Cavaliere, et al., 2015), a weak identity assertion is made with identifiers in external

databases for the parts. This uses bqbiol:is instead of owl:sameAs because the strong

replacement semantics (Leibniz’ Law (Forrest, 2016)) of the latter can yield unwanted

inferences when terms are not used perfectly rigorously (Halpin et al., 2010). This

weaker identify assertion permits the identification of the :P0010 in the example with

the identifier for the protein in the well-known UniProt (U. Consortium et al., 2008)

database.

6.3.5 A More Complex Part Description

A more involved example demonstrating how an operator-promoter combination is

encoded is shown in Figure 6.6. Here we have an operator with the rates for binding

and unbinding of the transcription factor specified explicitly. If the operator is bound by

the transcription factor, the neighbouring promoter is repressed—an RNA polymerase

will not be able to bind. By contrast if the operator is unbound, the promoter will accept

binding of RNA polymerase easily and frequently. The language supports an arbitrary

amount of operator context for operators and promoters enabling the specification of

complex regulatory structures such as combinatorial logic gates (R. S. Cox et al., 2007;

Wang et al., 2011; Sanchez et al., 2011) and some forms of cooperative binding.

The transcription factor is specified by using gcc:transcriptionFactor to refer

to the protein that will turn the operator on or off. Like gcc:protein for coding

sequences, the term is unique to operators.

The promoter comes next and it is the most complex part to specify. Because the

rate for binding of RNA polymerase depends on the state of the operator, two rates

must be specified. States of the nearby parts are specified using the rbmo vocabulary

which makes available the full range of expressiveness for rule-based output languages.

For generality, a list of parts, upstream or downstream on the DNA strand may be

specified along with their states. This enables a promoter to be controlled by two or

more operators. The rate itself in this case is given with gcc:value for each case.

6.3.6 Host and Protein-Protein Interactions

The language can also support protein–protein interactions in a basic way. To see why

these are useful, consider an example from the engineering of a bacterial communication

system where the subtilin molecule is used to control population level dynamics. Cells
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1 :R0040o a gcc:Operator;
2 rdfs:label "TetR activated operator";
3 gcc:part "R0040o";
4 gcc:transcriptionFactor :P0040;
5 gcc:transcriptionFactorBindingRate 0.01;
6 gcc:transcriptionFactorUnbindingRate 0.01.
7

8 :R0040p a gcc:Promoter;
9 rdfs:label "TetR repressible promoter";

10 gcc:part "R0040p";
11 gcc:rnapBindingRate
12 [
13 gcc:upstream ([ a rbmo:BoundState;
14 rbmo:stateOf :R0040o ]);
15 gcc:value 7e-7
16 ], [
17 gcc:upstream ([ a rbmo:UnboundState;
18 rbmo:stateOf :R0040o ]);
19 gcc:value 0.0007
20 ].
21

Figure 6.6: An operator and promoter from the repressilator model. The binding rates for
the promoter depend on the state of the adjacent operator.
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have the receiver device (Bongers et al., 2005; Mısırlı; J. Hallinan, et al., 2014) to

sense the existence of subtilin, and the reporter device to initiate downstream cellular

processes (Figures 6.7a and 6.7b). In the subtilin receiver, the interactions among the

proteins produced by translation and the operator-promoters are mediated by a cascade

reaction initiated by the subtilin molecule. Subtilin combines to phosphorylate the SpaK

protein, which in turn phosphorylates the SpaR protein that finally binds to the promoter

that controls the emission of a fluorescent green protein.

While the genetic circuit can straightforwardly be described similarly to the previous

repressilator example, the protein–protein interactions cannot. We do not attempt here to

model these interactions in the GCDL though a future extension could do so. Instead we

simply allow for inclusion of the relevant program, as a file in the output language (in

this case κ-language). It is possible to supply arbitrary code in the low-level language

using the gcc:include term. This facility makes it feasible to represent such genetic

circuits which depend strongly on the host environment in order to operate.

6.3.7 Protein Fusion

It is also worth noting that this example illustrates that in the high-level language it

is immediately possible to represent devices that produce chains of proteins. This is

known as protein fusion and is interesting for some applications (K. Yu et al., 2015). A

chain of proteins is produced by adding adjacent (and appropriate) coding sequences. It

is enough to simply list the coding sequences in the circuit; nothing else need be done.

6.3.8 Other Parts

The descriptions for the other kinds of biological parts, terminators, coding sequences,

follow a similar pattern. There are terms for specifying the rates for the rules in which

they participate, and a few specialised terms according to the function of the specific

part. It is possible to find the available terms out by inspecting the gcc vocabulary

included in Appendix B.1.

6.4 Output Representation

We now briefly consider the form of the output representation. By using different tem-

plates, the compiler can produce output in different languages. We focus on rule-based

representations here and use the language of the KaSim simulator (Krivine et al., 2018)
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(a) Diagram of the subtilin genetic circuit. The figure shows the multirelay phosphorylation, and

hence the activation, of SpaR TFs to induce the downstream gene expression. As a result, GFP

reporter proteins are produced in the presence of Subtilin molecules. (Figure drawn by G. Mısırlı)

1 :m a rbmo:Model;
2 dct:title "Subtilin Receiver Two-Component System";
3 gcc:include <.../subtilin-host.ka>;
4 gcc:linear (
5 :pSpaRK :RBSa :spaK :RBSb :spaR :Ta
6 :pSpaS :RBSc :gfp :Tb
7 ).
8

(b) Corresponding semantic model.

Figure 6.7: Representations of the Subtilin Receiver model.

for concrete illustration as it is widely adopted for stochastic simulation of rule-based

models (Wilson-Kanamori et al., 2015). The rule-based modelling approach is merely

outlined here and follows that used in Kappa BioBricks Framework (KBBF) (Wilson-

Kanamori et al., 2015) closely. We stress that though output as executable program in

the KaSim language is demonstrated here, alternative rule-based representations like

BioNetGen are equally possible as are descriptions in a language like SBOL as input to

an experimental process in the laboratory.

The remainder of this section differs from the published version of this chapter in

its detail. In the published version, for brevity, only the first sliding rule is included

and explained. The remaining rules were relegated to supplementary materials.

Here, we restore the section.
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1 %agent: D-LacI(us, ds, bs)
2 %agent: R-LacI(us, ds, bs)
3 %agent: P-LacI(us, ds, bs)
4

(a) Distinct agents for each variant of part.

1 %agent: DNA(us, ds, bs, type{LacI})
2 %agent: RNA(us, ds, bs, type{LacI})
3 %agent: Protein(us, ds, bs, type{LacI})
4

(b) Generic agents for each variant with part indicated by the type site.

Figure 6.8: Dual representations of parts as agents.

6.4.1 Generic Agents

The behaviour of each kind of genetic part can be specified with rules, examples of

which are given below. Fundamentally these rules operate on representations of DNA,

RNA and proteins. Since each part can be linearly adjacent to others, there must be sites

to stand for this linkage. These will be called us and ds for “upstream” and “downstream”

respectively. There is also a need for a site to stand for the binding of protein or RNA

polymerase to DNA, or the ribosome to RNA. This will be called bs for “binding site”.

We immediately arrive at a modelling choice: the specific part, for example an

operator to which the Lac repressor binds, could be represented as distinct kind of

agent with DNA, RNA and protein variants (Figure 6.8a) or it could be represented as a

label or tag on a generic DNA, RNA and protein agents (Figure 6.8b). We choose the

latter because not only does it remove the need for having a large number of agents and

inventing names for each DNA and RNA variant, but it greatly simplifies the rules. As

we shall see the generic representation means that rules can easily be written where it

only matters that a part is adjacent to some other part without specifying which one in

particular. This is simply done by not specifying the type site. This is not possible with

distinct agents because the Kappa language does not allow for unspecified or wild card

agents.

These constructs, with their upstream and downstream linkages are enough to form

the “rails” along which transcription and translation happen but we still require agents

to join these together, namely RNA polymerase and the ribosome. These agents have
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1 %agent: RNAp(dna, rna)
2 %agent: Ribosome(rna, protein)
3

Figure 6.9: RNA polymerase and ribosome agents.
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1 ’transcription-termination’ DNA(bs[1]), RNAp(dna[1])
2 -> DNA(bs[.]), RNAp(dna[.]) @k
3

4 ’translation-termination’ RNA(ds[1]), RNAp(rna[1])
5 -> RNA(ds[.]), RNAp(rna[.]) @k

Figure 6.10: Termination rules: transcription and translation

two sites, one for each rail that they straddle (Figure 6.9).

6.4.2 Unbinding Rules

To understand how this works in practice, consider the simplest kind of rule, the

unbinding rule. Those for transcription and translation are shown in Figure 6.10. This

does not yet use any of the features that motivated our choice of agent representation,

but does already show the “don’t care, don’t write” way of the KaSim dialect of Kappa:

those sites that are not necessary for the operation of the rule do not appear. This brevity

is a great boon.

An unbinding rule of the same form exists for each DNA part. Particularly significant

among these is the unbinding of a protein from an operator.
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1 ’RNAp-binding-unbound’ DNA(type{operator}, ds[1], bs[.]),
2 DNA(type{promoter}, us[1], bs[.]),
3 RNAp(dna)
4 -> DNA(type{operator}, ds[1], bs[.]),
5 DNA(type{promoter}, us[1], bs[2]),
6 RNAp(dna[2])
7 @k_u
8

9 ’RNAp-binding-bound’ DNA(type{operator}, ds[1], bs[_]),
10 DNA(type{promoter}, us[1], bs[.]),
11 RNAp(dna)
12 -> DNA(type{operator}, ds[1], bs[_]),
13 DNA(type{promoter}, us[1], bs[2]),
14 RNAp(dna[2])
15 @k_b

Figure 6.11: Binding of RNA polymerase to a promoter with different rates, ku and kb

according to context given by operator state.

6.4.2.1 Binding Rules with Context

The simplest kind of binding rule is just the same as unbinding with the direction of

the arrow reversed. Such rules appear for the initiation of translation—the binding of a

ribosome onto a ribosome binding site — as well as for the activation of an operator.

These are not reproduced here. Instead, we consider binding rules with context, as in

Figure 6.11.

The explicit context, with the operator adjacent to the promoter being bound to a

protein, or not, allows for the modelling of inducible or repressible promoter architec-

tures. The transcription process begins with the binding of RNA polymerase and the rate

at which this happens depends on the state of the operators as illustrated in Figure 6.11.

This is the simple case with only one operator but there is no restriction on the number
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1 ’coding-sequence-translation’ RNA(type{X}, us[2], bs[.]),
2 RNA(ds[2], bs[1]),
3 Ribosome(rna[1], protein[.]),
4 .
5 -> RNA(type{X}, us[2], bs[1]),
6 RNA(ds[2], bs[.]),
7 Ribosome(rna[1], protein[3]),
8 P(type{X}, bs[3])
9 @k

Figure 6.12: Translation of the RNA segment corresponding to a coding sequence to

produce a protein.

of operators; we allow for upstream and downstream context of arbitrary size.

This example is illustrative in that rules are posed in terms of a “main” part that

becomes bound or unbound and in principle it is possible to provide arbitrary amounts

of context for any rule. This is supported by the low-level language here, but however

it is only implemented in the compiler for the particular family of rules depicted in

Figure 6.11, the activation of promoters through the binding of RNA polymerase. This

is sufficient for models involving complex promoter architectures, but an extension

allowing for context everywhere is not difficult.

6.4.2.2 Sliding Rules

The real work of modelling the transcription and translation machinery is done with

sliding rules. Figure 6.12 shows how this works for the creation of a protein from a

coding sequence. This is our first example of a rule where though the adjacent part

figures explicitly in the rule, its type does not. It is sufficient to know that it is a piece of

RNA. In this case, two pieces of RNA are involved, the part that is central to this rule

corresponds to the coding sequence for X . It is adjacent to another piece of RNA, and

the ribosome slides from one to the other (to the left, where sliding on DNA happens,

as we will see next, to the right) and in the process, emits a protein of type X .
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1 ’transcription-elongation’ DNA(ds[2], bs[1]),
2 DNA(type{X}, us[2], bs[.]),
3 RNAp(dna[1], rna[3]),
4 RNA(ds[3]),
5 .
6 -> DNA(ds[2], bs[.]),
7 DNA(type{X}, us[2], bs[1]),
8 RNAp(dna[1], rna[3]),
9 RNA(ds[4]),

10 RNA(type{X}, us[4], ds[3], bs[.])
11 @k

Figure 6.13: Transcription, production of an RNA sequence from DNA

A somewhat more complicated sliding rule than the one presented in the Output

Representation section of the main text is used to implement transcription, as shown

in Figure 6.13. This shares the feature of the translation rule above where there is a

part that is central to this rule, part X , and there is an adjacent part whose type does not

matter. Here, the RNA polymerase starts off bound to the adjacent DNA part, whose

type does not matter and so is not specified, and slides onto the central part of type X .

In the process, an RNA part of type X is inserted into the growing chain.

Other rules are necessary, of course. The rule in Figure 6.13, for example, cannot

operate without a piece RNA bound to the polymerase. Chains of RNA cannot be

produced before the first link has been added. The rule that does that is exactly analogous

to that of Figure 8 in the main text. And similarly in the other direction, there is a rule

to produce protein chains where a protein already exists and a coding sequence is slid

across. This is almost identical to making an RNA chain. All of the other core rules are

simply variations on those given above.
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6.5 Genetic Circuit Compiler

Having described the GCDL in some detail, we now briefly sketch our implementation

of the compiler. Many compiler implementations are possible; ours innovatively com-

bines the logical inference that is native to the semantic web with the use of templates

to generate the target program. The templates define standard models for each type of

part in a given output language. Different output languages or model granularities are

achieved by choosing a different set of templates. The overall information flow through

the compiler is illustrated in Figure 6.1.

Our strategy is to first gather all the input statements and background facts that are

asserted by the various vocabularies in use. In the first inference step, standard RDF

rules are used to make available consequent facts that will be needed to produce the

ultimate result. The result is a program in a language such as κ and not RDF, and which

uses local variable names and not URIs, so the materialised facts are transformed into

a suitable internal representation. Substitution into templates is done next, and finally

the result is post-processed to derive any remaining program directives that are only

knowable once the complete circuit is assembled.

It is interesting to consider that the entire compiler can be thought of as implementing

a kind of inference quite different from what is commonly used with the Semantic Web.

The consequent, the executable model, is in a different language from the antecedent,

the declarative description. Through the use of embedding annotations, however, the

original model is nevertheless carried through to the output, and is unambiguously

recoverable. There is thus an arrow from the space of declarative models in RDF to

the space of annotated executable models. There is an arrow in the other direction that

forgets the executable part and retains the declarative part. In an important sense, the

two representations contain the same information, only that the executable model has

more materialised detail in order that it may be run.

6.5.1 Semantic Inference

The input from the user is the model description in the high-level language as described

in Section 6.3. This description uses terms from, and makes reference to the gcc and

rbmo vocabularies. The meaning of these terms, in the context of deriving an equivalent

version of the program in the low-level language, is given by the companion inference

rules. This is a somewhat subtle concept so let us illustrate what it means. Consider the

statement,



6.5. Genetic Circuit Compiler 129

1 :R0040a a gcc:Operator.

This statement gives the type of :R0040a as gcc:Operator.

The implications of this statement allows to identify the correct template to use

for this part, found from information provided by the gcc vocabulary. Indeed, as a

background fact, we have,

1 gcc:Operator gcc:kappaTemplate rbmt:operator.ka.

or in other words that an gcc:Operator corresponds to the template rbmt:operator.ka.

We also have an inference rule, provided with the gcc vocabulary that says,

1 { ?part a [ gcc:kappaTemplate ?template ] }

2 => { ?part gcc:kappaTemplate ?template }.

In the Notation 3 (Berners-Lee; Connolly, et al., 2008; Berners-Lee; Connolly, 2011)

language this means that, “for all ?parts that has a type that corresponds to a kappa

?template, that ?part itself corresponds to that ?template”. Alternatively,

type(p,x)∧kappa(x, t)→ kappa(p, t)

It would have been perfectly possible to explicitly write what template should

be used for each part in the high-level model description. That is not desirable be-

cause it would leak implementation details of the compiler into what ought to be an

implementation-independent declarative description.

The above rule, and others like it serve to elaborate the high-level description into a

more detailed version suitable for the next stage of the compiler and relieve the user

of the need to supply the extra details. All implications that can be drawn under the

rdfs inference rules and the gcc specific rules are drawn and become part of the in the

in-memory RDF storage as the transitive closure of the rules (given the background

facts and the provided model facts).

6.5.2 Internal Representation

The output of the first stage of the compiler contains all the information necessary

to completely describe the output, but it is not in a convenient form for providing
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to the template rendering engine. Our implementation choice for the compiler is the

Jinja2 (Ronacher, 2008) rendering engine. This means that the appropriate data-structure

is a dictionary or associative list that can be processed natively by these tools without

need of external library. The required internal representation is built up by querying the

in-memory RDF storage for the specific information required by the templates.

Our implementation does not require modification when new terms are added to the

vocabulary and templates. To add support for a new kind of part it is necessary to write a

new template for it and possibly add some terms to the vocabulary but does not require

changing the compiler software itself. What makes this possible are the inference rules

described in the previous Section 6.5.1. The queries on the RDF storage that produce

the internal representation are posed in terms of the consequents of the inference rules

rather than the specific form of input.

6.5.3 Template Substitution

The templates that produce the bulk of the low-level output are written in the well-known

Jinja2 language. This language is commonly used for the server-side generation of web

pages. KaSim or BNGL programs are not web pages but they are text documents and

Jinja2 is well suited to generating them. It has a notion of inclusion and inheritance that

is useful for handling the variations among the different kinds of parts, which typically

differ in the rules for one or two of the interactions in which they participate with the

others being identical. We provide a total of 15 templates for KaSim, of which there

are top-level templates for each of the five distinct types of biological part defined in

the gcc vocabulary as well as a generic part template, five templates implementing

functionality shared among parts, and five consisting of supporting boilerplate required

by KaSim.

A full description of the facilities provided by Jinja2 is beyond the scope of this

paper, but a flavour is given in Figure 6.14 which shows an example of a template

for a generic part (not having specific functionality like a promoter or operator might)

demonstrating substitution of the name variable derived from annotation, and include

statements referencing several other templates, one of which is reproduced and shows

the KaSim code that is produced.

We use specific terms for defining the rates for the rules in which biological parts

are involved, and a few other terms according to the function of the biological part of

interest. It is possible to find the available terms out by inspecting the gcc vocabulary
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(Appendix B.1).

A fragment of the gcc vocabulary is reproduced in Figure 6.15. Though this exposes

some implementation detail, it is useful to understand the relationships between the

various terms used to describe models. This is also important when supplying customised

templates.

There are gcc:Tokens, so named because they correspond to tokens in the low-level

language that are replaced. Each must have a preferred label that gives the literal token.

In cases where there exists a sensible default value, this is given with gcc:default.

The purpose of these statements is to act as a bridge between the fully materialised

RDF representation of the model and the templates that require substitution of locally

meaningful names.

For each kind of part (such as the gcc:Operator in the example in Figure 6.15),

there are two main annotations that are necessary. For each machine-readable low-level

language, a template is specified. The gcc:tokens annotations give the tokens that

are pertinent to this kind of part. These must be specified in the high-level model or

allowed to take on their default values. In addition to documenting the requirements of

the templates for each kind of part, these statements are, “operationalised” and used by

the compiler. They can equally well be used to check that a supplied high-level model

is sufficiently complete and well-formed to produce an output program.

6.5.4 Derivation of Declarations

The KaSim language requires forward declaration of the type signatures of agents. This

is by design (Jérôme Feret et al., 2015) so that the simulator can check that agents are

correctly used where they appear in patterns in the rules. While this design choice can

help a modeller that is writing a simulation program in the low-level language by hand,

to assist in finding mistakes and typographical errors, it is not possible to know a priori

what these declarations should be in the present context. The correct declarations for

DNA, RNA and Protein depend on the complete set of parts that make up the model so

their correct declarations cannot be in any template for an individual part.

To solve this issue, the compiler implements a post-processing step. The rules that

are produced by instantiating the templates for each part are concatenated together with

any explicitly supplied rules and then the whole is parsed. The use of each agent in each

rule in this rule-set is assumed to be correct by construction. From there a declaration

that covers each use of each agent is built up.
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6.5.5 Initialisation

At this final stage of the compiler, all rules are present, both supplied by the user for

the host environment and implied by the parts that form the genetic circuits and all

declarations are also present. What is missing is the statement that creates an initial

copy of the DNA sequence itself, which each upstream–downstream bond present. This

information is, of course, available in the definition of the circuit, and so an appropriate

%init statement, creating a single instance of the DNA sequence with correct linkages

between the agent-parts is produced and added to the output. The low-level program is

finally complete and ready to be executed.

6.6 Discussion

We have presented a language, the GCDL for describing genetic circuits and our

compiler for generating simulation executables from it. We have made the case that

the succinctness of the GCDL affords the user the benefit of describing the salient

aspects of these circuits free of extraneous detail, that this reduces the potential for

user error inherent in detailed coding of molecular interactions, and that this approach

also affords flexibility in choosing the simulation or experimental methodology for the

model. We have further developed the argument that modularity in modelling of genetic

circuits has similar benefits of modularity in high-level programming languages, namely

encapsulation and clarity. We now consider some of the limitations and benefits of our

design choices and explore some areas ripe for future research.

It is important to understand the correctness and verification properties of the

compiler and the GCDL. The GCDL is an RDF-based language and models are typically

written in Turtle. The syntax (Cyganiak et al., 2014)(Prud’hommeaux; Carothers, 2014)

on a concrete level is well defined and models that are badly formed will be rejected. The

standard templates are documented in machine-readable form in the GCDL vocabulary.

Annotations that are required for a given part type also cause the model to be rejected

by the compiler if they are not present. But the compiler does not perform verification

in terms of how the parts are composed. Users are free to choose any DNA parts and in

any order. For example, a model that includes a coding sequence part without preceding

promoter and ribosome binding site parts is allowed, though and the resulting model

would emit no protein agents and perhaps not be very interesting. Verifying whether

a given circuit expressed in the GCDL is accepted by a parts grammar (Cai; Hartnett,



6.6. Discussion 133

et al., 2007; Pedersen et al., 2009) verification of part sequences is out of scope for the

compiler but could be the subject of future work.

The expressive power afforded by the design choice of modularity—fixing the level

of abstraction for a model—comes at a cost. Biological parts are considered as atomic

units. While it is straightforward to model complex mechanisms like combinatorial

logic operators and cooperative binding it is not straightforward to mix models in

terms of the part abstraction with models of the underlying substrate. Phenomena that

inherently involve the physical or chemical structure of the DNA molecule or the shape

of a protein cannot be modelled directly and we are restricted to simply asserting that

they occur or not at some rate. Similarly, while parts which share nucleotide sequences

and may overlap can be marked as such with the gcc:overlaps term, this has no effect

on the modelling. If the fact of parts overlapping is significant in the behaviour of the

circuit, those parts are not modular and that would break the abstraction barrier. Such

an annotation can, however, be used when selecting parts for assembly in vitro. Parts

for which overlap is functionally significant can also be treated as an atomic unit with a

suitable template. The modelling abstraction, once chosen, is fixed. This is by design,

in order that models so expressed remain tractable.

Similar reasoning applies to optimisation of DNA sequences. This is not our focus

in the present work. Here, our main goal is to capture the dynamics of genetic circuit

designs and to automate the process of model generation. Hence, deriving final DNA

sequences encoding the behaviours captured in models is not our focus, and related

research can indeed be incorporated in the future (Mısırlı; J. S. Hallinan, et al., 2011).

Because the language is based on RDF, custom user based data can be stored as

annotations (Mısırlı; Cavaliere, et al., 2015) to facilitate later optimisation.

We do, however, envision optimisation of circuits at the level of abstraction that we

have chosen, and derivation of circuits to a given specification. A method for doing

this, which we only sketch here, is to define a suitable fitness or distance measure on

the output of simulations with respect to the desired specification. A starting candidate

circuit is chosen, constructed from a given library of parts, and measured. Parts of

the circuit are swapped, added or removed at random, subject to the constraint that

the circuit remains well formed according to an operon grammar (Cai; Hartnett, et

al., 2007; Pedersen et al., 2009) and the new circuit is measured with respect to the

specification. If the result is better than the previous circuit, the change is accepted,

and the process is repeated until a locally optimal solution is found. This evolutionary

algorithm approach is in contrast to the approach of assembling all possible circuits in
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vitro seen elsewhere (Guet et al., 2002; Menzella et al., 2005; Smanski et al., 2014; Cress

et al., 2015) and is likely to be less efficient in cases where the desired behaviour of

the circuit can be measured simply, such as by detecting the production of a fluorescent

protein. However for cases that may be more difficult to measure in vitro such as

oscillations or more complex outputs it can be more straightforward to measure the

output and compare to the specification when done in silico.

Currently, the templates that we have supplied only handle single stranded genetic

constructs. Parts are composed using upstream and downstream bonds to create chains

of DNA sequences, and our framework currently does not consider whether the other

strand is free or not regarding the elongation RNAP or the binding of molecules and so

on. One reason why we have chosen to support the single-stranded case first is simplicity.

Another is that databases of models for double-stranded parts are not available. Adding

support for this in templates, and developing a library of suitable parts is another topic

for future research.

Here, we presented the application of rule-based models and Semantic Web tech-

nologies to automate the design of genetic circuits. Representations of cellular activities

were captured using modular rules to support scalability of designs. The automation

process is facilitated by the GCDL high level language, which is built upon the Semantic

Web and is used to describe genetic circuits. Furthermore, we presented a compiler

that generates rule-based executable models from the high-level description. The imple-

mentation of the compiler is notable in its use of semantic inference and the language

is sophisticated enough to support several classes of complex regulatory mechanisms.

Despite the expressive power afforded by this approach, the language maintains a suc-

cinctness and simplicity that we hope will be a boon to those modelling genetic circuits

in silico. The implicit modularity in our rule-based approach and the high-level lan-

guage presented will be beneficial to synthetic biologists to model complex regulatory

relationships through the use of widely adopted standards.
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1 ## Auto-generated generic part {{ name }}
2 {% include "header.ka" %}
3 {% import "context.ka" as context with context %}
4 {% import "meta.ka" as meta with context %}
5

6 {% include "transcription_elongation.ka" %}
7 {% include "transcription_termination.ka" %}
8 {% include "translation_chain.ka" %}
9 {% include "translation_elongation.ka" %}

10 {% include "translation_termination.ka" %}
11 {% include "host_maintenance.ka" %}

1 {% set rule = "%s-translation-chain" % name %}
2 //
3 //ˆ :{{ rule }} a rbmo:Rule;
4 //ˆ bqbiol:isVersionOf go:GO:0006415;
5 {{ meta.rule() }}{# #}
6 //ˆ rdfs:label "{{ name }} formation of \
7 //ˆ translational chains, due to \
8 //ˆ gene fusion or leakiness of \
9 //ˆ stop codons".

10 // {{ name }} formation of translational chains,
11 // due to gene fusion or leakiness of stop codons
12 //
13 ’{{ rule }}’ \
14 RNA(ds[2], bs[1]), \
15 Ribosome(rna[1], protein[3]), \
16 RNA(type{{ curly(name) }}, us[2], bs[.]), \
17 Protein(ds[.], bs[3]), . \
18 -> \
19 RNA(ds[2], bs[.]), \
20 Ribosome(rna[1], protein[3]), \
21 RNA(type˜{{ name }}, us[2], bs[1]), \
22 P(ds[4], bs[.]), \
23 P(type{{ curly(name) }}, us[4], bs[3]) \
24 @{{ translationElongationRate }}

Figure 6.14: Template examples. On top is the template for a generic part, and it
references several other templates, one of which, translation_chain.ka, is reproduced
on bottom.
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1 gcc:transcriptionFactor a gcc:Token;
2 skos:prefLabel "transcriptionFactor".
3 gcc:transcriptionFactorBindingRate a gcc:Token;
4 skos:prefLabel "transcriptionFactorBindingRate";
5 gcc:default 1.0.
6 gcc:transcriptionFactorUnbindingRate a gcc:Token;
7 skos:prefLabel "transcriptionFactorUnbindingRate";
8 gcc:default 1.0.
9

10 gcc:Operator rdfs:subClassOf gcc:Part;
11 gcc:kappaTemplate rbmt:operator.ka;
12 gcc:bnglTemplate rbmt:operator.bngl;
13 gcc:tokens
14 gcc:transcriptionFactor,
15 gcc:transcriptionFactorBindingRate,
16 gcc:transcriptionFactorUnbindingRate.
17

Figure 6.15: The specification in the gcc vocabulary of an gcc:Operator and associated
terms.



Chapter 7

Guided Evolutionary Discovery of

Genetic Regulatory Networks

Abstract. An important strategy for rendering the study of synthetic genomes tractable

is modularity. Nucleotide sequences for operators, promoters, and coding sequences

are considered as interchangeable atomic units with defined interactions. Given a

library of such genetic parts, the design space of possible gene regulatory networks is

combinatorially large. Building on our previous work on modular representation and

rule-based simulation of genetic circuits, we propose an evolutionary algorithm guided

by domain knowledge to explore this space in silico to obtain networks that satisfy

a given specification and that can be interfaced, by means of appropriated meta-data,

with automated biofoundries. We test the proposed computational framework on noisy

oscillatory networks, an important class of synthetic circuits difficult to evaluate in

vitro.

7.1 Introduction

Synthetic biology approaches genetic engineering by attempting to design biological

systems, even entire genomes, from first principles (Mukherji et al., 2009; Baldwin,

2012). This approach has met with success in synthesis of drugs (Paddon et al., 2013;

Galanie et al., 2015), production of biofuels (Ferry et al., 2012), treatment of dis-

ease (Ruder et al., 2011) and biological computing (Macia et al., 2014). The design

The work presented in Chapter 7 is joint work with Matteo Cavaliere and Vincent Danos. The
work was conceived by all of the authors. I originated the concept of employing a grammar to guide
the evolutionary search for synthetic genetic circuits that match a given specification, developed the
mathematical formulation, implemented the kgen software performs the algorithm and drafted the text.
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space of possible genetic circuits is combinatorially large (Somogyi et al., 1996). The

transcription regulatory apparatus of genetic circuits is computationally powerful; it

has been shown to be formally equivalent to the class of Boltzmann machines (Buchler

et al., 2003). It is not known how to efficiently search this design space for solutions to

particular problems, therefore circuits that have been studied are typically small and

manually designed. We build on previous work using abstraction and modularity to

constrain this design space and propose the use of an evolutionary algorithm to explore

it to discover circuits with particular specified behaviours.

Abstraction and modularity, concepts imported from computer science where de-

sign components are encapsulated and considered as atomic units that interact only in

well-defined ways, has been used to render the problem of synthetic genome design

more tractable (Endy, 2005; Del Vecchio et al., 2008; Wang et al., 2011; Kittleson et al.,

2012). There are efforts to standardise these modules and construct databases of descrip-

tions (Canton et al., 2008; Li et al., 2010; Galdzicki; C. Rodriguez, et al., 2011) and

models (Snoep et al., 2003; Moraru et al., 2008; T. Yu et al., 2011; Mısırlı; J. Hallinan,

et al., 2014). Many of these standard biological parts are currently manufactured for

use in a commercial or research settings.

When genetic regulatory networks are studied in silico, they are modelled and

simulated numerically with deterministic or stochastic techniques (De Jong, 2002).

Stochastic models are essential to capture the effects of noise which play an important

role in natural and engineered biological systems (Balázsi et al., 2011). It is also

infeasible in general to finitely represent molecular interactions in a chemical reaction

formalism amenable to representation in differential equation form. To address these

limitations, a more general rule-based formalism has been developed (Danos; Laneve,

2004; M L Blinov et al., 2008; Danos; Jérôme Feret, et al., 2008; Chylek; Leonard

A Harris, et al., 2014) and software tools exist for stochastic simulation of models

expressed in this way (Michael L Blinov; James R Faeder, et al., 2004; James R. Faeder

et al., 2009; Lopez et al., 2013b; Boutillier et al., 2018).

Recent work has sought to bridge these simulation techniques with the model

databases and automate the simulation process. An essential prerequisite is the ability

to annotate models in an expressive, machine-readable and implementation-neutral

way (Galdzicki; Clancy; Oberortner; Pocock; J. Quinn, et al., 2014; Madsen et al., 2016;

Mısırlı; Cavaliere, et al., 2015; Cavaliere et al., 2019). In this way, knowledge about the

biological parts is made available for use in automated assembly, both in silico and in

vitro. The κ BioBrick Framework (KBBF) (Wilson-Kanamori et al., 2015) approach is
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framed precisely to express stochastic models of biological parts in a generic way for

simulation. We developed the Genetic Circuit Compiler (Waites; Mısırlı, et al., 2018)

to bridge the description-simulation gap by generating simulation code from abstract

annotated circuit descriptions.

Evolutionary algorithms for discovering regulatory networks and their parameters

have been studied theoretically (François; Hakim, 2004; François; Siggia, 2008), includ-

ing using rule-based modelling techniques (S. Feng et al., 2015). The latter approach (S.

Feng et al., 2015) has the drawback that while it may discover a suitable circuit that can

be simulated there is no guarantee that it can be constructed from real standard parts.

Biological parts have been systematically assembled in vitro on plasmids (Guet et al.,

2002), with the advantage that a large number of cells implement each combination in

parallel. However the use of a simple threshold for selection (production of a fluorescent

protein) is relatively insensitive and does not account for time variation (Ziv et al., 2007)

or inspection of the intermediate products.

We describe an evolutionary algorithm for obtaining synthetic genetic circuits which

can be constructed from a library of parts to meet a given specification. This algorithm

is shown schematically in Fig. 7.1. The search for an optimal circuit is guided by

the knowledge encoded in the semantically annotated descriptions of the parts in the

library (Mısırlı; Cavaliere, et al., 2015; Waites; Mısırlı, et al., 2018) and by a grammar

that generates a syntactically correct genome (Cai; Hartnett, et al., 2007; Pedersen et al.,

2009). With a suitable grammar, evolutionary trajectories obtained using sequences of

mutations that add or remove functionality to a circuit can be achieved. This combined

approach, leveraging semantic annotation and syntactical constraints is key to obtaining

results that can then be constructed in vitro. In particular, models appropriately annotated

with meta-data can be interfaced with automated biofoundries. In this way, approaches

such as the one we describe here become important tools for the design, testing, and

construction methodologies in synthetic biology (Chao et al., 2017).

Our approach is novel in that it combines methods that have previously only been

considered separately: guided evolutionary search together with annotated biological

parts used to produce a stochastic simulation program. To our knowledge, guided

evolution, which attempts to lower the total cost of identifying a circuit that performs

well by constraining the search space and prioritising simpler circuits has not previously

been applied to discovery of synthetic genomes. Neither has an annotated library of

standard parts been used to further constrain the search space to only those circuits

that are implementable in vitro. The use of rule-based stochastic simulation has the
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Figure 7.1: Workflow of the evolutionary algorithm. The inputs are shown in two groups.

The initial model and the specification shown in orange are provided by the user. The

genetic part database and implementation templates, as well as the grammar (which may

alternatively be inferred from the initial model), shown in green, are typically fixed and

used for different circuits. The evolutionary algorithm makes use of the Genetic Circuit

Compiler, the KaSim rule-based simulator (Krivine et al., 2018), and implements mutation

of the circuit and fitness evaluation on the output of the simulator to select the result,

shown in blue. Results are annotated descriptions of synthetic genetic circuits which

can be interfaced with automated biofoundries using meta-data such as SBOL (Madsen

et al., 2016).
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further benefit that it enables exploration of circuits under noisy conditions and with

low protein copy numbers.

7.2 Background

The operation of our evolutionary algorithm builds heavily on previous work by our-

selves and others on describing and simulating biological parts and genetic circuits. We

provide a brief overview of the salient concepts and technologies here.

7.2.1 Regulatory Networks and Genetic Circuits

We briefly describe genetic circuits and regulatory networks, for those readers unfamiliar

with the domain, otherwise it may safely be skipped. For more background on the

subject, we recommend a text such as Synthetic Biology: A Primer (Baldwin, 2012).

The functional unit of a gene is the operon. A stylised example of the simplest kind

is shown in Fig 7.2.

+
o1 r1 c1 t1

po pc

Figure 7.2: A stylised diagram of an operon.

This is composed of the sequence of parts, (o1,r1,c1, t1), representing an operator,

a promoter, a coding sequence and a terminator respectively. This device functions as a

gate. If protein po is bound to the operator, then the promoter initiates the transcription

and translation machinery creates a new protein pc of a kind determined by the coding

sequence. The terminator causes the operation of the device to finish.

Promoters can be controlled by more than one operator enabling the construction of

Boolean gates. The operator can be inductive, as in the above example, or repressive

(which we would draw as − ) in which case the output protein is produced if it is not

bound. More complicated operator-promoter architectures are equally possible. For

example in co-operative binding with a pair of operators, one is much more likely to

become bound only when the other is bound.

Boolean networks may thus be constructed from a set of operons, conventionally laid

out in sequence, called a genetic circuit. The output protein produced by one serves as
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input to the operator-promoter control gate of another. In addition, proteins may interact

directly with one another, for example by binding to create new proteins. In principle,

arbitrarily complex networks can be created. The operator-promoter conditional gate

control and the fact that loops can be created with the output protein of a series of

operons controlling the input means that, in principle, these networks have sufficient

expressivity to compute a large class of functions. In practice, their size is constrained

by the limited repertoire of proteins and operators.

Though it may provide a useful intuition for understanding genetic regulatory

mechanisms, this account of genetic circuits is idealised in several ways. Each action

of binding or unbinding proceeds in a probabilistic way, likely to happen or not at a

given time according to the quantity of molecules available and the underlying kinetic

rate. The picture of a promoter initiating transcription only if its operator is bound is

more accurately described as initiating transcription at a much higher rate in that case.

Proteins degrade at a certain rate. Importantly, input and output are encoded not as the

presence or absence of a protein, but as the copy number of these molecules. Using

threshold functions, a facsimile of digital behaviour can be recovered, but the underlying

mechanism, in experiment and in simulation, has a far more analogue character.

7.2.2 Grammars for Genetic Circuits

The functional separation of biological parts implies that they should be assembled in a

particular order. Grammars for this assembly are established (Cai; Hartnett, et al., 2007;

Pedersen et al., 2009), and we use a simplified version here:

-

� �
�� �� operator � promoter

� �� coding sequence � terminator �-

〈circuit〉 ::= 〈operon〉 〈circuit〉 | 〈operon〉

〈operon〉 ::= 〈opers〉 〈promoter〉 〈codes〉 〈terminator〉

〈opers〉 ::= 〈operator〉 〈opers〉 | 〈operator〉

〈promoter*〉 ::= 〈promoter〉 〈ribosome binding site〉

〈codes〉 ::= 〈coding sequence〉 〈codes〉 | 〈coding sequence〉
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According to this grammar, a genetic circuit is a sequence of one or more operons. An

operon in turn consists of one or more operators, a promoter, a ribosome binding site,

one or more coding sequences, and a terminator. The terminals for this language are the

parts in the database. Their lexical class is identified by the type of the object.

7.2.3 Databases of Biological Parts

Biological parts from which a circuit may be built are represented in RDF (Cyganiak et

al., 2014) in the database. The primary vocabularies used are the Rule Based Modelling

Ontology (RBMO) (Mısırlı; Cavaliere, et al., 2015), containing terms for annotating

rule-based models. The Genetic Circuit Compiler (GCC) vocabulary (Waites; Mısırlı, et

al., 2018) designed for the specific purpose of representing implementation-independent

models of genetic circuits from which simulation code may be derived. For readability,

we write data of this kind in the Turtle language (Prud’hommeaux; Carothers, 2014).

An extract of the database is shown in Listing 7.1. It contains a selection of objects:

proteins, and various biological parts. A complete description is found in Chapter 6, but

we recap some features of note here.

Each object has a variety of rates associated with it. This information is primary

motivator for having such a database. The rates of interaction between proteins, DNA,

RNA, RNA polymerases and ribosomes are usually only known empirically and the

functioning of regulatory networks depends crucially on them. The binding and unbind-

ing rates are specified explicitly for the operator, and other rates take on a default value

from the GCC vocabulary.

The most sophisticated object in the extract is the promoter. It has rates for RNA

polymerase binding (which initiates the transcription process) according to whether the

operator to its left is bound or not. It is possible to specify an arbitrary amount of such

upstream or downstream context. This facility is available for operators as well in order

to support cooperative binding and unbinding in more complex regulatory scenarios.

1 :P0040 a gcc:Protein;
2 gcc:molecule "P0040";
3 rdfs:label "TetR";
4 gcc:proteinDegradationRate 0.0001.
5

6 :O0040 a gcc:Operator;
7 rdfs:label "TetR activated operator";
8 gcc:part "OTetR";
9 gcc:transcriptionFactor :P0040;

10 gcc:transcriptionFactorBindingRate 0.01;
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11 gcc:transcriptionFactorUnbindingRate 0.01.
12

13 :PrRM a gcc:Promoter;
14 rdfs:label "Medium repressible promoter";
15 gcc:part "PrRM";
16 gcc:next "B0034";
17 gcc:rnapBindingRate [
18 gcc:upstream ([a rbmo:BoundState; rbmo:stateOf []]);
19 gcc:value 7e-7
20 ], [
21 gcc:upstream ([a rbmo:UnboundState; rbmo:stateOf []]);
22 gcc:value 0.0007
23 ].
24

25 :C0040 a gcc:CodingSequence;
26 rdfs:label "Coding sequence for TetR";
27 gcc:part "CTetR";
28 gcc:protein :P0040.

Listing 7.1: Extract from example parts database

Two crucial links can be seen on inspecting the operator and the coding sequence.

For the operator, the protein that activates or deactivates it is indicated with the

gcc:transcriptionFactor predicate. Likewise for the coding sequence, the protein that

will be produced through transcription and translation is indicated with gcc:protein.

These links, together with the rate information, are the foundation of the regulatory

model.

7.2.4 Descriptions of Genetic Circuit Models

A starting point in the search for the target behaviour is provided by the user. This

is done with an underspecified model (Listing 7.2). This model has the same form

as a model of a complete circuit as described in Chapter 6, with some bibliographic

metadata and other required scaffolding. What makes this model underspecified is the

way that the circuit is written. Rather than the parts of the circuit being identified with

specific entities using Uniform Resource Identifiers (URIs), they are indicated using

blank nodes (Cyganiak et al., 2014).

1 :m a rbmo:Model; ## Model declaration
2 dct:title "An two operon circuit";
3 gcc:prefix <.../twooperon#>;
4 gcc:include <.../host.ka>;
5 gcc:init ## initialisations



7.3. Evolutionary Algorithm for Genetic Circuits 145

6 [ rbmo:agent :RNAp; gcc:value 700 ],
7 [ rbmo:agent :Ribosome; gcc:value 1000 ];
8 gcc:linear ( ## The circuit is a list of parts
9 [ a gcc:Operator ] [ a gcc:Promoter ]

10 [ a gcc:RibosomeBindingSite ]
11 [ a gcc:CodingSequence ] [ a gcc:Terminator ]
12 [ a gcc:Operator ] [ a gcc:Promoter ]
13 [ a gcc:RibosomeBindingSite ]
14 [ a gcc:CodingSequence ] [ a gcc:Terminator ]
15 ).

Listing 7.2: Two operon circuit example, with parts represented by blank nodes. Blank
nodes are variables, indicated with square brackets, [ . . . ].

The form, [ a gcc:Operator ] in the Turtle language is equivalent to the exis-

tentially qualified statement, ∃x.T Y P E(x,gcc:Operator). Each of these variables is

thought of as a “blank” to be filled by parts from their database. The user thus pro-

vides an initial circuit skeleton with blanks to be filled in according to their type. The

type information makes it possible to check the circuit against the grammar to ensure

well-formedness. Such a description can be understood as a query against the database;

the result identifies specific parts corresponding to the variables in the specification. A

concrete circuit is obtained by randomly selecting from the result set for the query. Note

that partial specification is possible: parts may also be specified as URIs, without the

existential quantification.

7.3 Evolutionary Algorithm for Genetic Circuits

To discover circuits, we propose an evolutionary algorithm (Algorithm 1). Its operation

is straightforward. It functions to fill in the blanks in the underspecified genetic circuit

description. Each generation, a starting point or set of parent circuits are chosen (or

supplied in the case of the first generation). The size of the population of circuits under

test is fixed. The next generation is created with a combination of elitism and mutation.

A fraction, γ of the next generation is obtained by selecting individuals from the previous

generation proportionally to their fitness (see Section 7.4). The remaining fraction, 1−γ ,

of the next generation is obtained by selecting individuals, again proportionally to their

fitness, and mutating them. See Alg. 2 for a simple kind of mutation.

Using this mutation algorithm, the exploration of the space of possible circuits is

guided by the syntactical structure of the starting circuit. Each mutation produces a

circuit that has the same shape, the same sequence of types of parts. The permitted
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Algorithm 1 Evolutionary Algorithm. This function performs one generation of the

evolutionary algorithm. The function’s argument, parents, is the set of individuals that

make up the previous generation. There are three global parameters of the algorithm:

db, the database of parts from which to assemble the circuit, β , the mutation rate and,

γ the fraction of the previous generation to retain. Some circuits are retained from

the parent generation using an elitist strategy, chosen proportionally to their fitness,

S E L E C T(pop,γ). The remaining fraction of the next generation, 1− γ , is created by

selecting individuals from the population, again proportionally to their fitness, and

randomly mutating them. Each offspring undergoes one or more mutations according to

a sample from the exponential distribution with rate 1
β

. The function S A M P L E returns

a random variable sampled according to the provided probability mass function.
1: function G E N E R AT I O N(parents)

2: children← S E L E C T(parents, γ)

3: for parent in S E L E C T(parents, 1− γ) do
4: child← parent

5: m← C E I L(S A M P L E( 1
β

exp( x
β
)))

6: for 1 . . .m do
7: child← M U TAT E(child)

8: A P P E N D(children, child)

9: return children

Algorithm 2 Simple mutation. This function mutates the parent circuit by replacing

one part with a randomly chosen one of the correct type from the global database db. It

returns the mutated circuit.
1: function M U TAT E(parent)

2: i← R A N D I N T(0, L E N(parent))

3: kind← T Y P E O F(parent[i])

4: child← C O P Y(parent)

5: child[i]← R A N D O M C H O I C E(db, kind)

6: return copy
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evolutionary changes are restricted to swapping parts for others of the same type.

Because the mutation only changes one part at a time, it is possible, likely even,

that the algorithm will become stuck in a set of circuits that are two or more changes

away from a better performing circuit. Simply changing one part may not be sufficient

to go from a non-functioning circuit to one that is even a little bit better: almost any

fitness is unlikely to be a smooth function of circuits. To avoid getting trapped in these

kinds of local minima, the evolutionary algorithm will occasionally mutate an offspring

more than once, infrequently more than twice, and so forth. This is controlled by the

mutation rate, β . The number of mutations is drawn from an exponential distribution

with this rate. This strategy promotes exploration of a larger portion of the space of

circuits while prioritising circuits similar to those that have been already tested and

evaluated to perform well.

The question arises: is it possible for this evolutionary algorithm to produce an

infeasible circuit, one that cannot be simulated? The answer is no, and this is true by

construction. Every circuit is composed of modular parts that are linked together. The

translation of parts to their corresponding rules is given by the templates supplied with

the compiler. All parts in the database are translatable in this way. So every circuit

produced by this algorithm can be represented as a set of low-level rules that can be

interpreted by the κ-language simulator. There may, however, be circuits that cannot be

represented in the rule-language in this way, either because they require behaviour that

is not implemented in the templates or because the behaviour is somehow not rule-like.

These circuits are not produced by the evolutionary algorithm at all because such parts

are excluded from the database.

7.4 Test-Driven Evolution

To discover genetic circuits using the evolutionary algorithm, we adopt a practice

analogous to that which is practice known as test-driven development (Janzen et al.,

2005) in software engineering. Before writing the implementation of a given function,

one first writes a test, or series of tests that checks that, for a certain input, the function

should produce the desired output. If the tests are complete—rarely achievable in

practice — the implementation of the function is considered correct. This process

ideally begins with tests for the simplest function needed for the task at hand, and is

repeated, gradually building up a library of functions needed to create the software

program that is the ultimate goal. We take inspiration from this process for our task of
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evolutionary genetic engineering.

In the setting of stochastic simulations of genetic circuits, we do not have the luxury

of determinism. For all but the most trivial circuits, each simulation is likely to produce

different results. This is the case even if the circuit under test is the best possible

implementation of the desired behaviour. We can fix the input deterministically, but

rather than specific outputs, we must consider the changing behaviour of the system in

time. For stable circuits that enter a steady-state, the output specification can simply be

an expected value of copy numbers of proteins of interest. For unstable or oscillating

circuits, more sophisticated encoding is needed to specify the output.

We now give such a general framework suitable for evaluating the performance

of synthetic genetic circuits in silico. Let C be the set of all possible genetic circuits

and X be the set of multi-sets of agents. A simulation input, x ∈ X , is a multi-set

representing the initial conditions, the copy number of each agent—transcription factor,

RNA polymerase, ribosomes, etc.—that participates in the simulation. Let T be a set

with a total order representing time. In the case of discrete simulations, it is usual to

have T ⊂ N, the natural numbers, or for continuous simulations T ⊂ R, the reals.

A stochastic simulation is a non-deterministic function from circuits and agents to

time-series of agents,

Sim : C×X → (T → X) (7.1)

For a concrete instance of a simulation of a circuit, we write,

Sim(c,x) = sx(t) (7.2)

To evaluate the performance of a circuit under test, we need initial conditions, x,

a target object, ω , in some measured space Ω and a function, γ : (T → X)→ Ω that

takes a time-series and maps it into the same measurable space. Let dω : Ω→ R be the

function that computes the distance in Ω to the target object. We can then define the

general fitness function for that particular target as the expected value,

f̂ (c,x,ω) =−E [dω ◦ γ ◦ sx] (7.3)

This is just the average distance from the image through γ of simulated system state

sx to the target object ω . The use of a measured space is so that this distance is well

defined. The sign is chosen to be negative to follow the semantics that “fitness” is a

quantity to be maximised.

Calculating the expectation of Eq. 7.3 is straightforward if the system is ergodic. If

there is no absorbing state, there is a non-zero chance of reaching any state from any
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other eventually. Von Neumann’s mean ergodic theorem (Neumann, 1932) tells us that

in this case that the time average of a single trajectory and the expectation of the system

as a whole are the same. As a consequence we have,

f̂ (c,x,ω) =− lim
T→∞

1
T

∫ T

0
(dω ◦ γ ◦ sx)(t)dt (7.4)

To account for the possibility of modelling non-ergodic systems or choices of Ω or

γ that cannot be expressed in terms of a time integral or sum, Eq. 7.3 must simply be

computed directly by averaging over an ensemble of many simulations at some point in

time. A steady state is one in which the chance of the system leaving a given region of

state space is arbitrarily small. This condition can be observed. The expectation is then

calculated In this way one can support population-level evaluations of genetic circuits

rather than simply evaluating individual instances for both ergodic and non-ergodic

systems.

Test cases are pairs supplied by the user, (x,ω) ∈U with U ⊆ X×Ω. This allows

us to define the fitness of a circuit as the sum of Eq. 7.3 over all test cases,

f (c) = ∑
(x,ω)∈U

f̂ (c,x,ω) (7.5)

This quantity is used in Alg. 1 (line 6) to score circuits and select the most promising

candidate for further evolution.

7.5 Examples

7.5.1 Bi-stable Switches

One of the simplest circuits that can be generated is the bi-stable switch (Gardner et al.,

2000). A bi-stable switch is realised as a pair of operons arranged in a mutual negative

feedback, shown diagramatically in Fig. 7.3.

−
o1 r1 c1 t1

−
o2 r2 c2 t2

p1

p2

Figure 7.3: A bi-stable switch.
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When the protein p1 is being produced, it inhibits the production of p2 and vice-

versa. Starting from a state where neither protein is present, both will be produced at

first but soon the system will settle into a state where either one or the other is produced

exclusively. The chance of this being p1 or p2 depends on the rate that these proteins

bind to o1 and o2 and the rate of RNA polymerase binding to r1 and r2, assuming that

all other rates are equal in both operons. If the circuit is in the state where it produces p1

and a quantity of p2 is transiently introduced, the production of p1 is suppressed and it

will, with high probability, switch to the state where it is producing p2. Thus the circuit

has two stable modes of operation and behaves like a switch whose state is toggled by

transient introduction of one or the other protein.

This kind of circuit is well known and studied. We do not need a genetic algorithm

to find it. We will use it as a test case, where we know the answer in advance, to show

how our input/output encoding works. Our challenge is to produce a specification that

will guide the evolutionary algorithm to discover it. We assume, of course, that it is

possible to construct this circuit from the parts available. We give a solution for this

simple case.

Inspection of the above circuit suggests that when in some state, si, i ∈ 1,2, the

proteins will be produced at some rate k̄i−kdi , where k̄i is the overall production rate of

the operon and kdi is the degradation rate for the protein. So long as k̄i > kdi , this means

that the copy number of the protein will continue to increase with time, and there is no

single number or distribution of the proteins themselves that can be used independently

of time to characterise the circuit. We therefore define a functions of the copy numbers,

q1(p1, p2) =
p1

p1 + p2

q2(p1, p2) =
p2

p1 + p2
(7.6)

and we expect that at steady state the following should hold,

i1 = [n,0] → o1 = [1,0]

i2 = [0,n] → o2 = [0,1] (7.7)

where input, ii, are the initial copy numbers of p j (n > 0) and oi are the desired outputs

for each test case i.

Now, given a circuit to test, we can fix the input and measure the extent to which

its output differs from the specification. If ei are the empirical results obtained by

calculating q j for simulation at steady state, they can be compared to the specification
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with some appropriate measure, for example the sum of their Euclidean distances,

f (e) = ∑
i
‖ei−oi‖ (7.8)

and used as a fitness function.

7.5.2 Noisy Oscillators

In practice, bi-stable switches of the kind described above are not stable in the long-

term because the transcription and translation machinery is noisy. An operon in the

suppressed state is not simply inert; it expresses its protein at a very low rate. This

means that it can transiently express a protein that will then flip the switch into the

opposite state. The long-term behaviour of the circuit, absent any external influence,

can both be independent of the initial state and bimodal. This phenomenon is clearly

illustrated in Fig. 7.4a, which shows just such an unstable switch. It oscillates irregularly

between its states of expression of one or the other proteins (LcI and LacI).

To capture this behaviour, we can reason that as the time-series are anti-correlated,

a suitable fitness function can be constructed from the normalised cross-correlation,

f (p) =−(pLcI ? pLacI)(0) (7.9)

where, for two time series a(t) and b(t) with means µa,µb and standard deviations

σa,σb respectively. The standard discrete cross-correlation is normalised as follows,

(a?b)(τ) =
1

nσaσb
∑
n
(a(n+ τ)−µa)(b(n)−µb) (7.10)

Note that the provided fitness function is expressed in terms of statistical properties

of the simulation observables over time. This illustrates an important benefit of our

approach. Not only can circuits be evaluated based on the quantity of products that

are not directly observable in the laboratory, but their time-varying behaviour can be

incorporated as well.

We used an example database containing coding sequences for the LacI, TetR and

λ -cI proteins as well as the corresponding operators, inductive and repressive promoters

acting at different rates, and generic ribosome binding sites and terminators. Using the

fitness function given by Eq. 7.9 with the evolutionary algorithm Alg. 1, we discovered

two families of circuits.

The first family corresponds to the mutually repressive circuit described above. An

exemplar of this kind of two-operon circuit whose behaviour is shown in Figure 7.4b is,
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(a) LcI induces LcI, LcI represses LacI
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(b) LcI represses LacI, LacI represses LcI

Figure 7.4: Simulation trace of two varieties of unstable switch or oscillator. Notice the

characteristic anti-correlation of the two proteins, LcI and LacI. Figure 7.4a shows an

inducer-repressor circuit with sharp transitions between stable states and exhibiting

nearly maximal anti-correlation, (pLcI ? pLacI)(0)≈−1. Figure 7.4b shows a mutually

repressive circuit exhibiting strong anti-correlation, (pLcI ? pLacI)(0)≈−0.7.

OLcIa PrRFb B0034c CLacId B0011e

OLacIf PrRFg B0034h CLcIi B0011j

Sequence represents parts from the database. Those beginning with O are operators,

P are promoters, and C are coding sequences. Those beginning with B are parts that

are required for the circuit to function, ribosome binding sites and terminators, but do

not interact with proteins and so do not govern the interaction between operons. The

lower-case suffix in the part labels represents the position in the circuit and enables

distinguishing between parts of the same kind that occur in multiple positions. Circuits

of this kind, A represses B, B represses A, exhibit a fitness in the range of 0.4-0.7 as

measured with Equation 7.9. The difference in fitness between circuits in this range is

explained by the rates of the chosen promoters: faster promoters produce a stronger

anti-correlation.

The second family is of inducer-repressor type. The exemplar shown in Figure 7.4a

is,

OLcIa PrIFb B0034c CLcId B0011e

OLcIf PrRFg B0034h CLacIi B0011j

Circuits of this kind, A induces A, A represses B, exhibit a very high fitness typically

between 0.8-1.0, likewise as measured with Equation 7.9. The operation of this circuit is
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less obvious. Initially, there is no LcI present, and so LacI is produced rapidly. A small

amount of LcI is produced which halts production of LacI and feeds more production of

LcI. Eventually, by chance, no LcI is produced for a time and state of the system reverts

to the initial state. Unlike the mutually repressive family of circuits where quasi-periodic

behaviour might be expected, the oscillatory behaviour of the inducer-repressor family

can mainly be attributed to noise. Again, the magnitude of the fitness, the strength of

the anti-correlation is a result of the rates of the promoters.

The existence of multiple solutions is a feature: a primary task of the user of

an evolutionary algorithm such as this is to design an appropriate fitness function

according to their needs. If the fitness function is constructed so as to admit a larger set

of acceptable results, this can permit the discovery of several circuits with equivalent

behaviours in silico. Recall that the models of biological parts used for simulation are

idealisations; having several alternatives to try in the laboratory is useful.

7.6 Software Implementation

The software with which the above results were produced is distributed with the krdf

Python package1 which also contains the implementation of the Genetic Circuit Com-

piler. The infrastructure for executing our evolutionary algorithm consists of several

pieces:

ksim A worker process that receives model descriptions, simulates them using the

KaSim software, and returns the resulting time-series.

kq A load-balancing server that receives requests to simulate circuits and distributes

them among ksim workers.

krun A simple client program that requests excution via kq of a single, fully specified

model.

kgen The implementation of the evolutionary algorithm as described above, that re-

quests simulations via kq.

This distributed architecture enables simulation of circuits for an entire population to

proceed in parallel.

1Available at: https://github.com/rulebased/composition

https://github.com/rulebased/composition
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The results reported above were obtained with the example parts database (partsdb.ttl)

and two-operon partially specified circuit (twoop.ttl) provided in the examples/ sub-

directory.

7.7 Performance Evaluation

As a baseline, we compare the performance of our evolutionary algorithm to a random

search of the space of possible circuits to find a suitable circuit. By “suitable”, we

mean an inducer-repressor or a mutually repressive circuit that exhibits a fitness in

the range 0.65-0.8. We searched the space of possible circuits by beginning with a

population and randomly mutating circuits at each generation with no regard to fitness

at all. We performed these random searches for population sizes of between 5 and 50

individuals with a variety of mutation rates from 0.25 to 1.5. For each combination

of population size and mutation rate, we repeated the random search 100 times. We

found that on average 483 distinct circuits must be evaluated, with a standard deviation

of 40 globally and 25 within a given population size. Though population size and

mutation rate influenced the number of generations required to find a suitable circuit,

these parameters had no appreciable effect on the number of distinct circuits that needed

to be evaluated.

We then performed a similar experiment using our evolutionary algorithm, exe-

cuting the algorithm for a maximum of 1000 generations, for a variety of population

sizes, fraction of the population retained in an elitist manner between generations, and

mutation rates. For each set of parameters, the experiment was repeated 250 times. The

main results are reported in Fig. 7.5.

We first consider, in Fig. 7.5a, the number of distinct evaluations required to find a

suitable circuit. The effect of elitism is shown in the figure, where the horizontal axis

shows γ , the fraction of the previous generation retained in the next. The trend is clearly

that fewer evaluations are required if a greater fraction of the population is retained. The

reason for this is straightforward: retained elite individuals are not simulated again, so

the more that are retained, the fewer circuits must be simulated. As we will see below,

this result is not quite as encouraging as it might at first appear.

The number of generations, shown in Fig. 7.5b, increases with the fraction, γ . As

more individuals are retained in the population, there is less change with each generation.

Therefore it takes more generations to find a suitable circuit. This shows how γ can be

understood as analogous to a population growth rate in settings where the population
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size is not fixed. A high growth rate corresponds to a a low γ as a relatively greater

proportion of each generation consists of new individuals.

The dependence of the success rate on γ , shown in Fig 7.5c, is revealing. The more

of the previous generation that is retained, the lower the success rate of finding a suitable

circuit. This observation tempers the result from the previous Fig. 7.5a. With a low

population turnover, i.e. a larger value for γ , there is a higher chance of getting stuck

and producing no result at all. Greater elitism yields a shorter path to success, but

with a higher chance of failure. Fig. 7.5d shows the result of correcting the number of

evaluations by dividing by the success rate. The result is somewhat noisy, but it shows

that the population size does not strongly influence the number of circuit evaluations

required.

Overall, we can see it typically takes 150 evaluations of distinct genetic circuits in

order to find a suitable one. This represents a speed increase of 60-70% over a random

search. The number of generations required to find a solution depends quite strongly

on the population size, the degree of elitism and the mutation rate. However because

the simulation of genetic circuits is vastly more computationally intensive than the

evolutionary search itself. A single simulation of a two-operon circuit can take from

30 seconds to several minutes, and simulations are conducted multiple times to obtain

an average fitness. When a previously simulated circuit is encountered as a result of

mutation, the previous result is simply used rather than simulating it again. The running

time of the algorithm depends therefore far more strongly on the proportion of the space

that is explored than on the number of generations. This is the reason why the running

time is not especially sensitive to the parameters of the evolutionary algorithm.

We also observed during the course of these experiments that, in addition to finding

the best circuits our simulations also reliably produced less effective yet functional

circuits differing mainly in the speed of the promoters in the course of the search. This

characteristic of exploring the neighbourhood of functional circuits is useful when we

remember that our simulation technique is based on an idealisation and real circuits

assembled in vitro may well display different behaviour. Providing a short list of

candidate circuits for laboratory experiment is more important than finding an exact

local optimum in the fitness landscape.
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7.8 Extension: Syntactical Mutation

While the simple mutation above is sufficient to search for regulatory networks where

the structure of the underlying circuit is given in advance such as (Guet et al., 2002), it

is possible to generalise it and enlarge the space of circuits that can be explored. We

sketch, but do not implement, how such a generalisation of our evolutionary algorithm

could work.

Suppose now that each mutation operation can, with some probability, change the

type of a part before selecting which part will be selected to produce a new candidate

circuit. We extend the grammar given above in a way that supports the incremental

addition of functionality but which does not, as a matter of syntax, destroy functionality.

Specifically, we introduce a new kind of part, an inert spacer, and allow padding between

operons. The addition of such spacers at the beginning of an operon enables its extension

to the left with additional operators. We also allow terminators on their own to constitute

an inert operon. This facilitates a sequence of mutations that results in an operon with

additional coding sequences for cases where fused proteins are required,

OP,PR,RBS,CS,T,SP→ OP,PR,RBS,CS,T,T

→ OP,PR,RBS,CS,CS,T

where the abbreviations for part types have the obvious meaning (OP for operator, PR

for promoter, and so forth).

The new and modified production rules required to accomplish this are shown below.

With this modified grammar, an upper limit on the size of the circuit measured in number

of parts is established by the user-provided underspecified model, and the number of

operons is fixed, but they may grow to fill the available space to the left (operons) and

to the right (coding sequences).

〈circuit〉 ::= 〈spaces〉 〈operon〉 〈circuit〉
| 〈spaces〉 〈operon〉 〈spaces〉

〈operon〉 ::= 〈opers〉 〈promoter*〉 〈codes〉 〈terminator〉
| 〈terminator〉

〈spaces〉 ::= 〈spacer〉 〈spaces〉 | 〈empty〉

The corresponding mutation algorithm is shown as Alg. 3. The type of a part is
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Algorithm 3 Syntactical mutation. This function mutates the syntax of the input parent

circuit with some probability p by randomly selecting a new type (kind) of part from

the database db. It then replaces a part in the circuit with a randomly chosen part of the

new type.
1: function S Y N TA X M U TAT E(db, parent)

2: i← R A N D I N T(0, L E N(parent))

3:

4: if R A N D()< p then
5: kind← R A N D O M C H O I C E(db, type)

6: else
7: kind← T Y P E O F(parent[i])

8: child← C O P Y(parent)

9: child[i]← R A N D O M C H O I C E(db, kind)

10: return child

mutated with some probability before the part itself is mutated. As this may produce a

circuit that is not grammatical, this must be checked before it is returned as a candidate

to the evolutionary algorithm,

Algorithm 4 Syntactical mutation. This function mutates the input parent circuit using

information from the database, db. It does this by calling S Y N TA X M U TAT E above

and checking that the result is accepted by the circuit grammar. If the resulting circuit is

accepted, it is returned.
1: function M U TAT E(db, parent)

2: repeat
3: child← S Y N TA X M U TAT E(db, parent)

4: until A C C E P T S(grammar, child)

5: return child

A further generalisation of the grammar to allow incremental construction of operons

is equally possible. One approach is to first allow an operator and a terminator with

any number of intervening spacers. From there, the circuit is built up from the left, first

adding a promoter, then ribosome binding site and coding sequences, sequences of
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transformations such as the following,

SP,SP,SP,SP,SP→ OP,SP,SP,SP,T

→ OP,PR,SP,SP,T

→ OP,PR,RBS,SP,T

→ OP,PR,RBS,CS,T

It is straightforward to extend the grammar appropriately to include this evolutionary

trajectory.

7.9 Discussion

In this chapter we have described several novel contributions to the design of genetic

circuits. The evolutionary algorithm that we have outlined is guided by a starting design

encoded in predicate logic using data in semantic web form. The design is mutated

according to a grammar chosen to not only accept only valid genetic circuits but to

support an evolutionary pathway to progressively more complex circuits from a simple

starting point. The fitness function at the core of the evolutionary algorithm operates

not on single measurements but on time-series measurements of proteins and other

agents, enabling high fidelity comparison of in silico numerical results to the provided

specification. By working with time-series produced by simulations we are able to

account for noise, time-varying behaviour and population-level statistics which are

important issues in the engineering of biological systems (Andrianantoandro et al.,

2006).

Our evolutionary algorithm for discovering synthetic genetic circuits begins with an

underspecified model description and a database of parts that can be used to complete

the model. This approach showcases the strength of using an RDF representation for

both. The use of blank nodes, understood as existentially quantified variables in the

description, representing parts that are to be substituted, is intrinsically compatible with

the content of the database. Indeed the underspecified model can be thought of as a

query against the database which is satisfied in a specialised way using the evolutionary

algorithm. Given an accurate database of this kind, because all of the parts in it are

annotated with metadata that refers to the real-world entities to which they correspond,

in principle there would be enough information to construct and validate the results

of this query in vitro. Such an accurate database does not, however, exist today, and

validation by laboratory experiment remains as an important line of future research.
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Noise is an inherent quality of genetic circuits and indeed any molecular interaction

where copy numbers are small. A limitation of laboratory experiments is that it is

difficult to accurately measure these time-varying dynamics directly (Purnick et al.,

2009). The strength of stochastic simulations of molecular interactions is that the

entire system can be inspected and traced and distributions of any agent can be studied

without the need for indicator molecules. Noise can be accurately characterised and

measured and taken into account when comparing the behaviour of genetic circuits.

The development of this capability in the context of the pipeline for discovering genetic

circuits that we have described is novel.

The abstraction of biological parts as atomic entities that interact only in well-

specified ways is a useful strategy to obtain tractable models for simulation. However is

important to recognise the limitations of the approach. In particular, no attempt is made

to model cross-talk or erroneous binding which, in real systems, can radically change

the behaviour. It is assumed, for example, that either a given operator is bound by the

LacI protein or it is not. No provision is made for the possibility that some other protein

could bind to it with a different affinity and thus induce (or suppress) transcription at the

adjacent promoter. Because the simulation environment is idealised, results must then

be validated in the laboratory using real biological parts. It is for this reason that the

procedure described here is designed to produce a set of candidate circuits rather than a

single solution. In particular once a plausible circuit has been located, it is valuable to

explore the genetic neighbourhood of that circuit because a related circuit that performs

well but sub-optimally in simulation may indeed perform ideally in the laboratory.

This efficiency of the evolutionary algorithm compared to a random search depends

crucially on the fitness function. The fitness landscape can be very discontinuous with

respect to some kinds of changes and smoother with respect to others. A single change

to a coding sequence in a mutually repressive circuit, for example, produces a radical

change in overall fitness. On the other hand, replacing a promoter by a faster or a slower

variant does not fundamentally alter the functioning of the circuit but will alter the

response to the presence of whichever transcription factors govern its activation. The

conclusion is that once basic regulatory structure has been established, there is value

in optimisation by exploring closely related circuits, but exploring near relations of

non-viable circuits has limited value.

There are additional opportunities for guiding the search for circuits that match the

given specification. Above, we demonstrate searching a space of circuits constrained

by a grammar, and additionally by partial specification if desired, where some parts
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are varied and some held fixed, and the performance of the circuit is then scored.

Absent syntactical mutation, mutated circuits are drawn uniformly from the set of

circuits that differ in exactly one place. The random selection need not be uniform. For

example, if a circuit already contains an operator-promoter segment activated by some

protein, a change that would produce a second operator-promoter segment activated

by that same protein may be penalised to avoid duplication. Mutated circuits could

be selected proportionally to some monotonic function of their symbol entropy, for

example, to prioritise searching of more heterogeneous candidates and avoiding those

with redundant parts.

A note is in order about the generalisation mentioned at the end of Section 7.8:

evolutionary trajectories adding or removing functionality to circuits. The general

principle that simpler solutions should be preferred over more complex ones for the

same problem should be reflected in the evaluation of circuits. A simple choice is to

assign a circuit cost proportional to the number of (non-spacer) parts in the circuit.

Another choice that accounts for the types of parts used is to use a function of the

Shannon entropy (Shannon, 2001) of the circuit. The precise details of how best to

combine such a measure of circuit complexity with the measures that we give above

for circuit performance, and the behaviour of circuits whose genomes are permitted to

evolve in this way, is an interesting area for future research.

It should also be emphasised that though we have only considered cross-correlation

in detail, the framework that we have described admits more general functions of the

simulation state. One interesting possibility is to consider probability distributions of the

values in the simulation time-series compared with a reference distribution. There exist

measures useful for comparing probability distributions, among them the Wasserstein

distance (Givens et al., 1984) and the Kullback-Leibler divergence (Kullback et al.,

1951). Working with directly with probability distributions over system states rather

than summary statistics suggests that we may provide the evolutionary algorithm with

more nuanced descriptions of the desired behaviour of genetic circuits and how their

products might interact. This is another topic suitable for future research.

In this, and previous papers, we have been concerned mainly with engineering

of regulatory networks at the nucleic acid level, describing synthetic genetic circuits

where the principle underlying the computation is production of transcription factors

which then induce or inhibit the production of other transcription factors. In our circuit

compiler work (Waites; Mısırlı, et al., 2018), the question of protein-protein interactions

was left to the side, to be provided by the user. However, recent work has shown
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that it is equally possible to compute with proteins (Gao et al., 2018). It should be

relatively straightforward to express that class of model within the present framework.

Protein fusion, resulting from adjacent coding sequences for degrons, cleavage sites

and the proteins themselves are readily represented at the genetic circuit level, and the

interactions of the resulting fused proteins are systematic so amenable to templating

for simulation. The entire system, now supporting programs in the genetic regulatory

network language and the protein-protein interaction language, would be brought into

scope for evolutionary algorithms such as the one presented in this paper. In addition to

these two computational environments, there are others, among them Non-Ribosomal

Peptide Synthases (NRPS) (Cane et al., 1998; Fischbach et al., 2006; Strieker et al.,

2010), CRISPR/Cas systems (Cong et al., 2013) that modify the genetic material itself,

synthetic guanine exchange factors (Yeh et al., 2007) and possibly others.

Our paper suggests a possible use of rule-based models to facilitate the automatic

discovery of synthetic circuits annotated with meta-data that facilitate their in vitro

implementation. However, this leads to the general question concerning the trade-off

between the different formal languages for synthetic biology and the most appropriate

ways to interface them with the emerging area of synthetic biology automation (Chao

et al., 2017).
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(b) Average number of generations, as a func-

tion of the fraction of elite individuals retained,

γ , for various population sizes, n.
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(c) Simulation success rate, as a function of

the fraction of elite individuals retained, γ , for

various population sizes, n.
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(d) Average effective number of distinct circuits

evaluated, corrected for the failure rate, as a

function of the fraction of elite individuals re-

tained, γ , for various population sizes, n.

Figure 7.5: Results of evaluating the evolutionary algorithm. We consider the following

required to find an inducer-repressor or mutually repressive circuit: the number of

evaluations of distinct circuits, the number of generations, the success rate of the

algorithm and the effective number of evaluations taking into the success rate.
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Conclusion

If there is one theme that is consistent throughout this thesis, it is the role of measure-

ment as applied to modelling. Chapter 2 describes a general framework for representing

models, which provides a better understanding of the subject matter that is being

measured. Chapter 3 develops the concept of Path Entropy to measure the agreement

between a model of epithelial tissues and experimental results. Next, Chapter 4, gen-

eralises this measure to segmented 3D empirical models, developing the concept of

Structural Entropy to quantify the degree of anatomical organisation in developing

organisms. Chapters 5 and 6 contain an extended excursion, developing an infrastruc-

ture for modelling genetic circuits. Chapter 7 returns again to measurement, using

the infrastructure developed in the previous chapters to simulate genetic circuits and

measure their performance relative to a specification to find the best performing circuit.

Mathematical and computational models are useful to the extent that they correspond to

the phenomena they purport to represent. Defining measures to determine that extent in

a principled way has been a central activity of this thesis.

There are several distinct contributions in this thesis. The first, a language of propa-

gators, sets the stage by describing computational simulations in general. Though the

original motivation was as an aide-mémoire, to provide a succinct yet accurate way to

communicate the behaviour of simulation programs written in languages such as C or

C++, it can also serve as a specification against which implementations can be verified.

In principle, it could also be implemented directly, so that the specification could simply

be executed. The power of the propagator language is demonstrated by showing how

a variety of common algorithms and techniques (and some less common ones) can be

expressed in the language.

The second contribution is a family of measures, Path Entropy and Motif Entropy,
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for measuring the degree of order inherent in coloured graphs. These generalise the

standard concept of Image Entropy, which is insensitive to patterns and restricted

to a rectangular lattice. Path Entropy applies broadly in any setting where a graph

representation can be used and captures what is intuitively perceived as “pattern”, for

at least some kinds of patterns of interest in morphology. There is reason to believe

that this information-theoretic measure is generally useful. The evidence for this is that,

when applied to the output of models of epithelial tissues, there is good agreement with

laboratory experiment. This measure then provides support for the claim that the model

is a good one and purports to explain the underlying dynamics that give rise to the

observed pattern.

The next contribution is the generalisation of Path Entropy to the Structural En-

tropy of continuous geometrical objects. This adds a spatial character to the measure.

Importantly, this is a contribution to an open question in anatomy. It has long been

known that structure emerges as organisms develop. This may be obvious—from an

initial mass of cells comes differentiation and spatial arrangement to form complex yet

well-ordered organ systems. There has been little study before now of how to quantify

this phenomenon, and the relationship between ill-defined notions of complexity and

order have remained muddy. Structural Entropy provides a way to think about the

emergence of order in biological organisms in a systematic way.

The second half of this thesis contains a series of contributions related to synthetic

genetic circuits. Chapter 5 describes a method for annotating rules used for describing

interactions in molecular biology. Crucially, this method is backwards-compatible: it

does not require any modification to the interpreter of the rule-language. An insight

arises from this work: that the distinction, which at first seems to be well-defined,

between annotation and the object to be annotated, is in fact dependent on the intended

use of the annotations and objects. This idea itself is not new, it was previously described,

for example, by Buneman et al. (2013). The application of relativity of annotation in the

domain of rule-based models is new, and affords a new way of looking at rules: as being

annotations describing relations among agents. This phenomenon was demonstrated to

good effect by showing how to use annotations to generate contact map visualisations

of the interactions between agents.

In Chapter 6 the contributions are a language for describing and a compiler for

generating genetic circuits. The input to the compiler is posed purely in the anno-

tation language and the objects of annotation are generated. The objects are absent

from the input for good reason: by changing the context in which the annotations
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are interpreted, it is possible to produce different kinds of objects. It is possible to

produce rules for simulation in any number of rule languages. Whereas programs in

rule-based languages are considered information resources, that is, they exist as files or

sequences of bytes, it is equally possible to interpret the circuit description as referring

to non-information resources such as actual genetic parts which can be assembled in

the laboratory. The Genetic Circuit Description Language (GCDL) provides a suffi-

ciently broad, implementation-independent way to describe genetic circuits in computer

simulation and laboratory experiment.

The Genetic Circuit Compiler (GCC) is a tool that generates rule-based programs

from GCDL descriptions. In addition to being a crucial piece of the infrastructure for

working with genetic circuits, there is another contribution here that lies in its novel

implementation. The GCDL is a Semantic Web language. This means that the often

neglected facilities of logical inference are available, and the GCC is designed around

them. A common criticism of logical inference in the Semantic Web realm is the lack

of a way to account for context. The GCC demonstrates how contextual reasoning with

Semantic Web data can be accomplished. Context is used to determine how the input is

to be interpreted, i.e. in terms of the required kind of output. From this demonstration the

following general observation arises: inference rules can be understood as determining

the meaning of terms and the choice of rules as determining context. This contribution

is important both as a demonstration of the use of contextual reasoning in the Semantic

Web and for the general observation that results.

The final contribution addresses the question of how to find synthetic genetic circuits

that meet a certain specification. Circuits are typically designed by a combination of trial

and error and/or educated guesswork. Chapter 7 adds a new technique to the toolbox

of synthetic genetic circuit design. Taking inspiration from nature, which has, after

all, evolved many complex genomes adapted to the needs of biological organisms, the

technique uses an evolutionary algorithm to evolve, in simulation, synthetic circuits

from a library of building blocks. There are several sub-problems to be solved to make

this work. An important one is to define a framework for evaluating the fitness or

performance of a candidate circuit. Accomplishing this returns us to the central thread

of measurement.

There is significant scope for future research suggested by the work described in

this thesis. Future research directions are highlighted in the concluding sections of each

chapter, fitting their stand-alone character, yet it is useful to highlight some of them

here.
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Already mentioned is the possibility of a direct implementation of the propagator

language. Such a project would provide two-fold benefit. First it would enable a kind

of practice where, when a model is described in a research paper, today usually in an

under-specified way, it could be accompanied by a succinct and accurate description in

the propagator language. The question of how efficient such an implementation could

be remains open. Even if it is not possible to make the implementation as efficient

as coding it in a low-level language, the propagator description could function as a

canonical reference to verify that other implementations actually represent the behaviour

of the same model. Secondly it would be useful for teaching and research in numerical

methods. Propagators are already used to describe certain kinds of numerical integrators.

The propagator language generalises these and so opens up the possibility of testing

new kinds of integrators. Being able to write an integrator in a way that corresponds

directly to the mathematical description, and then to execute it would be a useful tool

for in this domain.

In Chapter 3, the claim was made that the vertex models of epithelial tissues like

that of Farhadifar et al. (2007) capture the kind of mechanical dynamics that reproduce

the laboratory results of Cachat et al. (2016). An interesting question is whether there

are simpler models which also capture these dynamics. A promising line of inquiry has

been suggested by Sachs and Danos (private correspondence) involving treating cells

as freely moving point masses with interactions depending on their type. In a sense

this model is simpler, however it may lack the realism required to be convincing to a

biologist. Nevertheless, we can apply the measurement tools described here to evaluate

the extent to which models such as that produce the kinds of patterning that is observed

in the laboratory.

The observation that the rate of pattern formation, as measured by Path Entropy,

depends on the underlying physical properties of the tissue suggests a strategy for

parameter fitting. Vertex models can display a variety of behaviours from quasi-liquid to

completely static depending on the parameters representing edge elasticity and perimeter

contractility. The standard method for estimating these values for a physical tissue is

laser ablation, which is rather destructive. Finding parameter values that faithfully

represent a given physical tissue in a model is not straightforward, especially if the

goal is to do so without destroying the cells in the process. Exhaustively searching the

parameter space is very computationally intensive so, in order to constrain the search

space, a library of simulations, characterised by Path Entropy, its time derivative, and

other measures could be created. Since these measures can be evaluated against an
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image of the physical tissue as it develops, they could be used to look up the model

parameters that produce similar behaviour. Developing such a library of tissues and their

measures, and correctly calibrating against measurements taken using the destructive

technique, is a potential future research thread.

A pervasive shortcoming exposed by this work is lack of data. Highlighted in Chap-

ter 4 is the small amount of three dimensional (or even two dimensional) anatomical

data. Though the results reported here with the application of Structural Entropy to

the data that we have are promising, further validation based on more data would be

beneficial. If anatomical models of different organisms at different stages of develop-

ment were available there may well be significant differences in the rate and manner in

which order emerges and these differences might be made plain using a measure such

as Structural Entropy. Such work must wait for the availability of suitable datasets.

Chapters 5 through 7 suggest an entire research programme dedicated to putting

a synthetic genetic circuit development pipeline into practice. Such a pipeline, con-

sisting of simulation activities leading to laboratory production of engineered cells

and validation, is still quite far off. Genetic part databases, the basic requirement, still

contain insufficient information (particularly about interaction rates) to serve as input

for accurate simulation. It is not feasible, in general, to accurately estimate interaction

rates from the underlying chemistry, and so they must be measured in the laboratory.

This measurement is technically challenging and the number of parts that are available

for in vitro assembly is large. There is also no standard, as yet, for communicating

genetic circuit specifications to the assembly facilities. It is possible that the Genetic

Circuit Description Language (GCDL) could form the basis for such a standard and

developing it to the point of standardisation is another thread of future work. Addi-

tionally, the main mechanism of genetic circuit behaviour that has been considered

here is protein-DNA-RNA interaction. There are, of course, other mechanisms. Future

research could extend both the GCDL and the Genetic Circuit Compiler (GCC) to in-

clude computations with protein-protein interactions (Gao et al., 2018), Non-Ribosomal

Peptide Synthases (NRPS) (Cane et al., 1998; Fischbach et al., 2006; Strieker et al.,

2010), CRISPR/Cas systems (Cong et al., 2013) that modify the genetic material itself,

synthetic guanine exchange factors (Yeh et al., 2007) and possibly others.

The terrain that we have covered in this thesis is varied. We have progressed

from a theoretical framework for representing computational models, through the

mechanics of cellular monolayers, information-theoretic image processing and solid

geometry, annotation and knowledge representation, logical inference with the semantic
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web, genetic circuit design and evolutionary algorithms. Most of this work has an

interdisciplinary character, bringing concepts from mathematics and computer science

to biology and anatomy. Though there might be some novelty in their formulation—

Path Entropy as a generalisation of Image Entropy to arbitrary coloured graphs is, I

believe, a new idea—the majority of these concepts are hardly at the very forefront of

mathematics. Setting up a random walk through a partitioned three dimensional space

might seem like a fairly obvious thing to do. But what is not obvious is that doing this

leads to a way of understanding what has long been known by anatomists but has not

been rigorously articulated previously. Similarly, the concept of annotation has been

studied as an entity in its own right, but its application, with an understanding of its

subtleties, to synthetic genetic circuits turns out to be very productive.

There are very many concepts in mathematics and computer science that have yet to

find purchase beyond those fields. They remain as beautiful and fascinating pieces of

abstract art, appreciated by those who know and understand them. Too often boundaries

between disciplines become barriers that prevent theoretical concepts from finding

productive concrete applications and at the same time rob us of ways of understanding

the world around ourselves. In the course of producing this body of work, it is my hope

to have bridged a small number of those barriers.
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KÖHLER, Agnes; KRIVINE, Jean; VIDMAR, Jakob, 2014. A Rule-Based Model of
Base Excision Repair. In: MENDES, Pedro; DADA, Joseph O.; SMALLBONE,
Kieran (eds.). Computational Methods in Systems Biology - 12th International
Conference, CMSB 2014, Manchester, UK, November 17-19, 2014, Proceedings.
Springer Verlag, vol. 8859, pp. 173–195. Lecture Notes in Computer Science. ISBN
978-3-319-12981-5. Available from DOI: 10.1007/978-3-319-12982-2_13
(cit. on p. 82).

KRAUSE, Falko; UHLENDORF, Jannis; LUBITZ, Timo; SCHULZ, Marvin; KLIPP,
Edda; LIEBERMEISTER, Wolfram, 2010. Annotation and merging of SBML
models with semanticSBML. Bioinformatics. Vol. 26, pp. 421–422. Available from
DOI: 10.1093/bioinformatics/btp642 (cit. on p. 7).
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Appendix A

The Rule-Based Modelling Ontology

A.1 Conventional Namespace Prefixes

Prefixes for ontologies and controlled vocabularies used to annotate models.

Prefix Description
rbmo Rule-based modelling ontology (presented in this paper)
dct Dublin Core Metadata Initiative Terms (http://www.dublincore.

org/documents/dcmi-terms)
bqiol BioModels.net Biology Qualifiers (Li et al., 2010)
go Gene Ontology (The Gene Ontology Consortium, 2001)
psimod Protein Modification Ontology (Montecchi-Palazzi et al., 2008)
so Sequence Ontology (Eilbeck et al., 2005)
sbo Systems Biology Ontology (Courtot et al., 2011)
chebi Chemical Entities of Biological Interest Ontology (Degtyarenko

et al., 2008)
uniprot UniProt Protein Database (Magrane et al., 2011)
pr Protein Ontology (Natale et al., 2011)
ro OBO Relation Ontology (B. Smith et al., 2005)
owl Web Ontology Language (http://www.w3.org/TR/

owl-features)
sbol The Synthetic Biology Open Language (Galdzicki; Wilson, et al.,

2012; Galdzicki; Clancy; Oberortner; Pocock; J. Quinn, et al., 2014)
foaf Friend of a Friend Vocabulary (http://xmlns.com/foaf/spec)
ipr InterPro (Mulder et al., 2008)
biopax Biological Pathway Exchange Ontology Ontology (Demir et al.,

2010)

A.2 Terms for Representing Models

Term Description
Kappa, BioNetGen Model types.
Agent Type for declarations of biological entities.
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Site Type for sites of Agents.
State Type for internal states of Sites.
hasSite, hasState, siteOf, stateOf Predicates for linking Agents, Sites and States.
Rule Type for interactions between agents.
hasSubrule, subruleOf Specifies that a rule has a subrule (i.e., KaSim

subrules).
Observable Type for agent patterns counted by a simulation.

A.3 Terms for Representing Rules

Term Description
Pattern Type of a pattern as it appears in a Rule or Observable.
lhs, rhs Predicates for linking a Rule to its left and right hand side Patterns.
pattern Predicate for linking an Observable to the patterns that it matches.
agent Predicate for linking a Pattern and a site within it to the corre-

sponding Agent.
status Specifies a status of a particular Site (and State) in a Pattern.
isStatusOf,
internalState

Predicates for linking a status in a Pattern to corresponding Site

and State declarations.
isBoundBy Specifies the bond that a Site is bound to in a particular Pattern.

Bonds are identified via URIs.
BoundState,
UnboundState

Terms denoting that a Site in a Pattern is bound or unbound.

A.4 Annotation Predicates

Annotating entities in rule-based models. Terms marked with † are used for machine-
generated representations of rules and patterns, and are not usually for annotating
models.

Term Annotation Values
Agent declarations:
rdf:type Agent

dct:isPartOf Identifier for the Model.
hasSite Identifier of a Site.
biopax:physicalEntity A biopax:PhysicalEntity term, e.g.

DnaRegion or SmallMolecule.
bqbiol:is A term representing an individ-

ual type of an Agent entity, e.g.
a protein entry from UniProt.

bqbiol:isVersionOf A term representing the class
type of an Agent entity, e.g. a
SO term for a DNA-based agent.

Site declarations:
rdf:type Site

hasState Identifier for an internal state.
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bqbiol:isVersionOf A term representing the type of
the site, e.g. A SO term for a
nucleic acid-based site or an In-
terPro term for an amino acid-
based site.

Internal state declarations:
rdf:type State

bqbiol:is A term representing the state as-
signment, e.g. a term from the
PSIMOD or the PO.

Rules:
rdf:type Rule

dct:isPartOf Identifier for the Model.
bqbiol:is A term representing an individ-

ual type of a rule, e.g. a KEGG
entry.

bqbiol:isVersionOf A term representing a class type
of a rule, e.g. an EC number, a
SO term or a GO term.

subrule Identifier for a Rule entity.
lhs

†
rhs

† References to the patterns form-
ing the left and right hand side
of the rule.

Observables:
rdf:type Observable

dct:isPartOf Identifier for the Model.
pattern

† References the constituent pat-
terns.

Patterns:
rdf:type Pattern

ro:hasFunction A GO term specifying a biologi-
cal function.

agent
† Reference to the corresponding

Agent declaration
internalState

† Reference to a representation of
a site’s state

isStatusOf
† Reference from a site’s state to

the corresponding site
Variables:
rdf:type sbo:SBO:0000002 (quantitative sys-

tems description parameter)
dct:isPartOf Identifier for the Model.
bqbiol:isVersionOf A term representing a variable

type. If exists, the term should a
subterm of SBO:0000002.





Appendix B

The Genetic Circuit Compiler Ontology

B.1 GCC Vocabulary Terms

1 # -*- n3 -*-
2 @prefix dct: <http://purl.org/dc/terms/>.
3 @prefix foaf: <http://xmlns.com/foaf/0.1/>.
4 @prefix owl: <http://www.w3.org/2002/07/owl#> .
5 @prefix prov: <http://www.w3.org/ns/prov#>.
6 @prefix rbmo: <http://purl.org/rbm/rbmo#>.
7 @prefix gcc: <http://purl.org/rbm/comp#>.
8 @prefix rbmt: <http://purl.org/rbm/templates/>.
9 @prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>.

10 @prefix skos: <http://www.w3.org/2004/02/skos/core#>.
11

12 gcc:part a gcc:Token; skos:prefLabel "name".
13 gcc:Part a owl:Class;
14 gcc:tokens gcc:part.
15

16 gcc:next a gcc:Token; skos:prefLabel "next".
17

18 gcc:transcriptionFactor a gcc:Token;
19 skos:prefLabel "transcriptionFactor";
20 gcc:default 1.0.
21 gcc:transcriptionFactorBindingRate a gcc:Token;
22 skos:prefLabel "transcriptionFactorBindingRate";
23 gcc:default 1.0.
24 gcc:transcriptionFactorUnbindingRate a gcc:Token;
25 skos:prefLabel "transcriptionFactorUnbindingRate";
26 gcc:default 1.0.
27

28 gcc:rnapBindingRate a gcc:Token;
29 skos:prefLabel "rnapBindingRate";
30 gcc:default 1.0.
31 gcc:rnapDNAUnbindingRate a gcc:Token;
32 skos:prefLabel "rnapDNAUnbindingRate";
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33 gcc:default 1.0.
34 gcc:rnapRNAUnbindingRate a gcc:Token;
35 skos:prefLabel "rnapRNAUnbindingRate";
36 gcc:default 1.0.
37

38 gcc:ribosomeBindingRate a gcc:Token;
39 skos:prefLabel "ribosomeBindingRate";
40 gcc:default 1.0.
41 gcc:ribosomeRNAUnbindingRate a gcc:Token;
42 skos:prefLabel "ribosomeRNAUnbindingRate";
43 gcc:default 1.0.
44 gcc:ribosomeProteinUnbindingRate a gcc:Token;
45 skos:prefLabel "ribosomeProteinUnbindingRate";
46 gcc:default 1.0.
47

48 gcc:transcriptionInitiationRate a gcc:Token;
49 skos:prefLabel "transcriptionInitiationRate";
50 gcc:default 1.0.
51 gcc:transcriptionElongationRate a gcc:Token;
52 skos:prefLabel "transcriptionElongationRate";
53 gcc:default 1.0.
54

55 gcc:translationElongationRate a gcc:Token;
56 skos:prefLabel "translationElongationRate";
57 gcc:default 1.0.
58

59 gcc:rnaDegradationRate a gcc:Token;
60 skos:prefLabel "rnaDegradationRate";
61 gcc:default 1.0.
62 gcc:proteinDegradationRate a gcc:Token;
63 skos:prefLabel "proteinDegradationRate";
64 gcc:default 1.0.
65

66 gcc:overlaps
67 rdfs:domain gcc:Part;
68 rdfs:range gcc:Part.
69

70 gcc:Operator rdfs:subClassOf gcc:Part;
71 gcc:kappaTemplate rbmt:operator.ka;
72 gcc:bnglTemplate rbmt:operator.bngl;
73 gcc:tokens
74 gcc:transcriptionFactor,
75 gcc:transcriptionFactorBindingRate,
76 gcc:transcriptionFactorUnbindingRate,
77 gcc:rnapDNAUnbindingRate,
78 gcc:rnapRNAUnbindingRate,
79 gcc:transcriptionInitiationRate,
80 gcc:transcriptionElongationRate,
81 gcc:ribosomeRNAUnbindingRate,
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82 gcc:ribosomeProteinUnbindingRate,
83 gcc:translationElongationRate,
84 gcc:rnaDegradationRate,
85 gcc:proteinDegradationRate.
86

87 gcc:Promoter rdfs:subClassOf gcc:Part;
88 gcc:kappaTemplate rbmt:promoter.ka;
89 gcc:bnglTemplate rbmt:promoter.bngl;
90 gcc:tokens
91 gcc:next,
92 gcc:rnapBindingRate,
93 gcc:rnapDNAUnbindingRate,
94 gcc:rnapRNAUnbindingRate,
95 gcc:transcriptionInitiationRate,
96 gcc:transcriptionElongationRate,
97 gcc:ribosomeRNAUnbindingRate,
98 gcc:ribosomeProteinUnbindingRate,
99 gcc:translationElongationRate,

100 gcc:rnaDegradationRate,
101 gcc:proteinDegradationRate.
102

103 gcc:RibosomeBindingSite rdfs:subClassOf gcc:Part;
104 gcc:kappaTemplate rbmt:rbs.ka;
105 gcc:bnglTemplate rbmt:rbs.bngl;
106 gcc:tokens
107 gcc:rnapDNAUnbindingRate,
108 gcc:rnapRNAUnbindingRate,
109 gcc:transcriptionElongationRate,
110 gcc:ribosomeBindingRate,
111 gcc:ribosomeRNAUnbindingRate,
112 gcc:ribosomeProteinUnbindingRate,
113 gcc:translationElongationRate,
114 gcc:rnaDegradationRate,
115 gcc:proteinDegradationRate.
116

117 gcc:protein a gcc:Token;
118 skos:prefLabel "protein".
119

120 gcc:CodingSequence rdfs:subClassOf gcc:Part;
121 gcc:kappaTemplate rbmt:cds.ka;
122 gcc:bnglTemplate rbmt:cds.bngl;
123 gcc:tokens
124 gcc:protein,
125 gcc:rnapDNAUnbindingRate,
126 gcc:rnapRNAUnbindingRate,
127 gcc:transcriptionElongationRate,
128 gcc:ribosomeRNAUnbindingRate,
129 gcc:ribosomeProteinUnbindingRate,
130 gcc:translationElongationRate,



204 Appendix B. The Genetic Circuit Compiler Ontology

131 gcc:rnaDegradationRate,
132 gcc:proteinDegradationRate.
133

134 gcc:Terminator rdfs:subClassOf gcc:Part;
135 gcc:kappaTemplate rbmt:generic.ka;
136 gcc:bnglTemplate rbmt:generic.bngl;
137 gcc:tokens
138 gcc:rnapDNAUnbindingRate,
139 gcc:rnapRNAUnbindingRate,
140 gcc:transcriptionElongationRate,
141 gcc:ribosomeRNAUnbindingRate,
142 gcc:ribosomeProteinUnbindingRate,
143 gcc:translationElongationRate,
144 gcc:rnaDegradationRate,
145 gcc:proteinDegradationRate.

data/compiler/composition.ttl
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B.2 Additional Inference Rules for GCC

1 # -*- n3 -*-
2 @prefix dct: <http://purl.org/dc/terms/>.
3 @prefix foaf: <http://xmlns.com/foaf/0.1/>.
4 @prefix owl: <http://www.w3.org/2002/07/owl#> .
5 @prefix prov: <http://www.w3.org/ns/prov#>.
6 @prefix rbmo: <http://purl.org/rbm/rbmo#>.
7 @prefix gcc: <http://purl.org/rbm/comp#>.
8 @prefix rbmt: <http://purl.org/rbm/templates/>.
9 @prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>.

10 @prefix skos: <http://www.w3.org/2004/02/skos/core#>.
11

12 ## The preferred label of a part is it’s part slug
13 { ?part gcc:part ?label } => { ?part skos:prefLabel ?label }.
14

15 ## Derivation of templates
16 { ?part a [ gcc:kappaTemplate ?template ] } => { ?part gcc:kappaTemplate ?

template }.
17 { ?part a [ gcc:bnglTemplate ?template ] } => { ?part gcc:bnglTemplate ?

template }.
18

19 ## Translation of special predicates to replacement instructions
20 { ?kind gcc:tokens ?token .
21 ?token skos:prefLabel ?label .
22 ?part a ?kind; ?token ?value } =>
23 { ?part gcc:replace [ gcc:string ?label; gcc:value ?value ] }.
24

25 ## overlaps is a symmetric relation
26 { ?a gcc:overlaps ?b } => { ?b gcc:overlaps ?a }.

data/compiler/composition.n3
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B.3 Complete Model of the Elowitz Repressilator

1 # -*- n3 -*-
2 @prefix : <http://id.inf.ed.ac.uk/rbm/examples/repressilator#>.
3 @prefix dct: <http://purl.org/dc/terms/>.
4 @prefix foaf: <http://xmlns.com/foaf/0.1/>.
5 @prefix prov: <http://www.w3.org/ns/prov#>.
6 @prefix rbmo: <http://purl.org/rbm/rbmo#>.
7 @prefix gcc: <http://purl.org/rbm/comp#>.
8 @prefix rbmt: <http://purl.org/rbm/templates/>.
9 @prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>.

10 @prefix skos: <http://www.w3.org/2004/02/skos/core#>.
11

12 ## Top-level model description.
13 :m a rbmo:Model;
14 ## bibliographic metadata
15 dct:title "The Elowitz repressilator constructed from BioBrick parts";
16 dct:description "Transcription of the treatment of the Elowitz

repressilator given in the Kappa BioBricks Framework book chapter";
17 rdfs:seeAlso <http://link.springer.com/protocol/10.1007/978

-1-4939-1878-2_6>;
18 gcc:prefix <http://id.inf.ed.ac.uk/rbm/examples/repressilator#>;
19 ## include the host environment
20 gcc:include <host.ka>;
21 ## The expression of the model as a genetic circuit
22 gcc:circular (
23 :R0040o :R0040p :B0034a :C0051 :B0011a
24 :R0051o :R0051p :B0034b :C0012 :B0011b
25 :R0010o :R0010p :B0034c :C0040 :B0011c
26 ).
27

28 :P0040 a gcc:Protein;
29 skos:prefLabel "P0040";
30 rdfs:label "TetR".
31

32 :P0051 a gcc:Protein;
33 skos:prefLabel "P0051";
34 rdfs:label "lambda-Cl".
35

36 :P0010 a gcc:Protein;
37 skos:prefLabel "P0010";
38 rdfs:label "LacI".
39

40 :C0051 a gcc:CodingSequence;
41 rdfs:label "Coding sequence for lambda-Cl";
42 gcc:part "C0051";
43 gcc:protein :P0051;
44 gcc:proteinDegradationRate 0.0001.



B.3. Complete Model of the Elowitz Repressilator 207

45

46 :C0012 a gcc:CodingSequence;
47 gcc:label "Coding sequence for LacI";
48 gcc:part "C0012";
49 gcc:protein :P0010;
50 gcc:proteinDegradationRate 0.0001.
51

52 :C0040 a gcc:CodingSequence;
53 gcc:label "Coding sequence for TetR";
54 gcc:part "C0040";
55 gcc:protein :P0040;
56 gcc:proteinDegradationRate 0.0001.
57

58 :B0034a a gcc:RibosomeBindingSite;
59 rdfs:label "Ribosome binding site";
60 gcc:part "B0034a".
61

62 :B0011a a gcc:Terminator;
63 rdfs:label "Terminator, stop codon";
64 gcc:part "B0011a".
65

66 :B0034b a gcc:RibosomeBindingSite;
67 rdfs:label "Ribosome binding site";
68 gcc:part "B0034b".
69

70 :B0011b a gcc:Terminator;
71 rdfs:label "Terminator, stop codon";
72 gcc:part "B0011b".
73

74 :B0034c a gcc:RibosomeBindingSite;
75 rdfs:label "Ribosome binding site";
76 gcc:part "B0034c".
77

78 :B0011c a gcc:Terminator;
79 rdfs:label "Terminator, stop codon";
80 gcc:part "B0011c".
81

82 :R0040o a gcc:Operator;
83 rdfs:label "TetR activated operator";
84 gcc:part "R0040o";
85 gcc:transcriptionFactor :P0040;
86 gcc:transcriptionFactorBindingRate 0.01;
87 gcc:transcriptionFactorUnbindingRate 0.01.
88

89 :R0040p a gcc:Promoter;
90 rdfs:label "TetR repressible promoter";
91 gcc:part "R0040p";
92 gcc:next "B0034a";
93 gcc:rnapBindingRate [
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94 gcc:upstream ( [a rbmo:BoundState; rbmo:stateOf :R0040o] );
95 gcc:value 7e-7
96 ], [
97 gcc:upstream ( [a rbmo:UnboundState; rbmo:stateOf :R0040o] );
98 gcc:value 0.0007
99 ].

100

101 :R0051o a gcc:Operator;
102 rdfs:label "lambda-Cl activated operator";
103 gcc:part "R0051o";
104 gcc:transcriptionFactor :P0051;
105 gcc:transcriptionFactorUnbindingRate 0.01;
106 gcc:transcriptionFactorBindingRate 0.01.
107

108 :R0051p a gcc:Promoter;
109 rdfs:label "lambda-Cl repressible promoter";
110 gcc:part "R0051p";
111 gcc:next "B0034b";
112 gcc:rnapBindingRate [
113 gcc:upstream ( [a rbmo:BoundState; rbmo:stateOf :R0051o] );
114 gcc:value 7e-7
115 ], [
116 gcc:upstream ( [a rbmo:UnboundState; rbmo:stateOf :R0051o] );
117 gcc:value 0.0007
118 ].
119

120 :R0010o a gcc:Operator;
121 rdfs:label "LacI activated operator";
122 gcc:part "R0010o";
123 gcc:transcriptionFactor :P0010;
124 gcc:transcriptionFactorBindingRate 0.01;
125 gcc:transcriptionFactorUnbindingRate 0.01.
126

127 :R0010p a gcc:Promoter;
128 rdfs:label "LacI repressible promoter";
129 gcc:part "R0010p";
130 gcc:next "B0034c";
131 gcc:rnapBindingRate [
132 gcc:upstream ( [a rbmo:BoundState; rbmo:stateOf :R0010o] );
133 gcc:value 7e-7
134 ], [
135 gcc:upstream ( [a rbmo:UnboundState; rbmo:stateOf :R0010o] );
136 gcc:value 0.0007
137 ].

data/compiler/repressilator.ttl
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