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ABSTRACT 

The heathlands of north-west Europe, dominated by the species Calluna vulgaris (L.) 
Hull, have for centuries determined the physiognomy of the landscape. In recent 
times, however, many countries have recorded an alarming decline in the area of 
lowland dry heaths. The mechanisms that underlay the impoverishment process have 
still not been fully understood but the deterioration has been linked to high loads of 
atmospheric nitrogen and sulphur pollutants. Nitrogen pollutants may also disrupt the 
terrestrial carbon cycle, which modern studies suggest is vulnerable to climate 
warming. Calluna-dominated heathlands are an important carbon store that cover 
about 15 % of the land area in the UK but contain nearly 75 % of the soil organic 
carbon. Therefore, understanding and predicting the response of soil carbon in 
heathiand ecosystems to changes in global temperature and nitrogen pollution is 
critical, particularly since increased release of respired carbon dioxide to the 
atmosphere has the potential to exacerbate global warming. 

This study examined the degree to which enhanced nitrogen inputs in a Calluna-
dominated ecosystem can alter plant physiological responses, affect the response of 
soil respiration to environmental parameters by disturbing acclimatised soil microbial 
populations, influence the relationship between soil carbon fluxes and soil microbial 
populations, and change soil mineral nitrogen availability to the plants. 

A pilot study investigated the response of nitrogen deposition on Cailuna vulgaris 
plants maintained in open-top chambers. Heathiand monoliths were exposed to acid 
mist treatments of ammonium nitrate spanning across extreme values. Growth 
response to increasing fertiliser additions was detectable and high nitrogen fertiliser 
inputs significantly stimulated shoot growth. Fertiliser inputs were reflected in soil 
and tissue nitrogen concentrations with an increase in total nitrogen content within 
actively growing tissues while shoot phenolic concentration decreased in response to 
nitrogen additions in agreement with the carbon-nutrient hypothesis. 

A field study was conducted in experimental plots set up in a dense stand of mature 
heather at Castlelaw Hill, near to Edinburgh. A new, simple methodology is 
developed and operated to accurately measure soil respiration under controlled 
laboratory conditions using small soil microcosms with a gas analysis unit. Annual 
seasonal pattern of soil carbon dioxide effluxes and environmental parameters of soil 
temperature, moisture, pH, organic matter, microbial biomass and plant growth were 
measured. Soil temperature, pH, organic matter and microbial biomass were found to 
be important determinants of carbon dioxide fluxes from soil. In all the soil horizons, 
carbon dioxide efflux in response to temperature followed the exponential first order 
equation with an increase with increasing temperature but soil carbon dioxide fluxes 
decreased with depth. Nitrogen inputs significantly increased soil respiration and the 
results suggest that long-term effects of atmospheric N deposition, with accelerated 
mineralisation at higher temperatures, could disrupt the carbon balance of nutrient-
poor ecosystems, as noted for heathlands. 
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Chapter 1 

1. INTRODUCTION 

1.1 HEATHLANDS AND THEIR CHANGING ENVIRONMENT 

The term heathiand describes a landscape covered largely by semi-natural, 

evergreen, dwarf-shrub communities of ericoid plant species, such as Calluna 

vulgaris, Erica tetralix and Vaccinium myrtillus, which form a closed canopy with 

few or no trees. This vegetation type, extending over the geographical range of north-

west Europe, generally occurs under humid, oceanic climatic conditions in a nutrient-

poor environment (Gimingham, 1972). 

Since the early nineteenth century there has been a steady reduction in the heathiand 

regions of Europe, primarily due to changing land-use practices and large-scale 

human impacts (Aerts, 1993 b). The substantial losses have been exacerbated over 

recent decades by the successional conversion of heathlands to grasslands, brought 

about by an increase in the deposition of atmospheric pollutants. The widespread 

eutrophication of nutrient-poor ecosystems, as a result of nitrogen fertilisation, poses 

a constant threat to the remaining Calluna-dominated heaths. The change from 

ericaceous towards gramineous dominance has been found to progress sequentially, 

wherein the unnatural opening of the vegetation canopy via stress and disturbance 

factors increases susceptibility to the invasion of competitive grass species. 

Management techniques adopting an integrated approach need to be urgently 

implemented if the declining trend is to be halted. 

Heathland ecology has been the subject of numerous research projects through the 

years. Studies have focused on ecosystem dynamics with respect to nutrient cycling 

(Helsper, Glenn-Lewin and Werger, 1983; Brunsting and Heil, 1985; Heil and 

Bruggink, 1987; Berdowski and Zeilinga, 1987; Berendse et al., 1987), and nutrient 

impoverishment of heathlands (Diemont and Heil, 1984; Aerts, 1989), while some 
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have explored the conversion of heathiands to grasslands as an example of natural 

selection on different adaptive strategies with respect to varying levels of nutrient 

availability (Aerts, 1990). The mechanisms which underlay the deterioration process 

are still not fully understood but they are widely believed to include the deposition of 

oxides of nitrogen and ammonium from anthropogenic sources. This chapter 

summarises our state of knowledge of heathlands and examines the complex 

interaction between heathlands and their changing environment. 

1.1.1 The Atmosphere 

Over the past 30 years heather moorlands in upland regions of the UK have been 

under threat from increased atmospheric N deposition, changes in the land use and 

management, and climate warming (Thompson, McDonald and Marsden, 1995; 

Werkman, Callaghan and Welker, 1996). Emissions of atmospheric sulphur dioxide, 

nitrogen oxides and ammonia are elevated across Western Europe (Rodhe and Rood, 

1986; Fowler et al., 1989). The main source of sulphur compounds is industry, while 

oxides of nitrogen primarily originate from the combustion of fossil fuels and 

biomass, lightning, ammonia oxidation, microbial soil processes, stratospheric inputs 

and marine biological processes, and ammonia is volatilized in great quantities from 

intensive agricultural and livestock production systems (ApSimon, Kruse and Bell, 

1987). 

Drastic changes in the nitrogen cycle have occurred with time and currently, 

approximately 140 Tg of reactive nitrogen per year are being released into the 

environment (Lee, 1998). Galloway et al. (1995) estimate that fertiliser production, 

fossil fuel burning and agriculture are now releasing more combined nitrogen into 

the environment than that due to nitrogen fixation by micro-organisms in semi-

natural ecosystems and lightening. Estimates include an increase of atmospheric 

nitrogen deposition rates by more than ten-fold over the last 40 years to current 

values of 0.5 - 2.5 g N m 2  yr' in eastern North America and 0.5 - 0.6 g N m 2  yr' in 

OA 
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northern Europe (Wedin and Tilman, 1996). This trend is likely to continue as a 

result of fossil fuel consumption and fertiliser use and to lead to a projected 60 % 

increase by 2020 in combined annual nitrogen release (Matthews, 1994). 

Measurements made across Europe have indicated a distinct upward trend in the 

nitrogen component of rainfall since 1950 (Grennfelt and Hultberg, 1986; Pitcairn, 

Fowler and Grace, 1995). The inputs of nitrogen, in the form of nitrates and 

ammonium in the rain, range from 5 - 20 kg N ha' annually, of which atmospheric 

ammonia contributes 50 - 80 %. The average deposition of ammonia in the UK is 

approximately 15 - 20 kg ha' yr' while in the Netherlands, which records the 

highest rates of deposition, the value fluctuates between 40 and 50 kg ha -  

Within the past decade, the concentrations of ammonia in rural air, as recorded in 

Wales, has risen from 0.1 parts in 109  to 5 parts in 109  by volume (Ashenden and 

Edge, 1995), with the result that in many regions of Europe nitrogen inputs are 

believed to be dominated by reduced nitrogen species, collectively known as NHy 

(Sutton, Fowler and Moncrieff, 1993). 

Forests are aerodynamically rough, and the surface structure promotes dry deposition 

of sulphur and nitrogen (Mayer and Ulrich, 1974; Van Breemen et al., 1982; Johnson 

and Siccama, 1983; Nihlgard, 1985; Fowler, Cape and Unsworth, 1989). Similarly, 

modern research has shown that in contrast to the conventional views, the leaf 

canopy of heathlands is also quite rough and can capture gaseous ammonia (Miranda, 

Jarvis and Grace, 1984; Lindberg et al., 1986; Sutton, Moncrieff and Fowler, 1992, 

Sutton, Pitcairn and Fowler, 1993). The importance of the nitrogen biogeochemical 

cycle has long been recognised but until recently much less emphasis has been 

placed on the ecological consequences of the perturbations of these cycles by human 

activities. The best documented evidence of vegetation change caused by 

atmospheric nitrogen deposition is provided by the acidic heathland ecosystems in 

the Netherlands where the decline of many plant species has been caused by the 

acidification of the environment by nitrogen (Van der Eeden et al., 1991). 

3 
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1.1.2 The Vegetation 

Heaths in Europe, traditionally represented by woody shrubs, form characteristic 

heathiands on acid soils and moorlands on peaty soils (Gimingham, 1972). However 

with the passage of time, heathiand ecosystems have undergone a dramatic change in 

terms of the floristic composition (Gimingham, Chapman and Webb, 1979; Bunce 

1989). Since the end of the 1970's, a serious deterioration in species diversity has 

been apparent with the disappearance of Cal/una-dependent flora and fauna (Usher, 

1992), both in terms of species number and in cover percentage as documented by 

De Smidt and Van Ree (1991) for ten heathland areas in The Netherlands. The 

alarming loss of lowland dry heath has been characterised by the invasion of either 

monospecific stands of perennial grass species such as Deschampsia flexuosa (L.) 

Trin. and Molinia caerulea (L.) Moench. (Marrs, 1993; Pitcairn, Fowler and Grace, 

1995) or scrub and bracken (Marrs, 1987 a, b). 

The change in species composition is thought to have commenced during a period in 

which nitrogen and phosphorus nutrient availability in the originally nutrient-poor 

ecosystems steadily rose. Much of the published literature documenting the effects of 

increased atmospheric nitrogen deposition on heathlands has originated from the 

Netherlands, where the change from ericaceous towards gramineous dominance has 

been widespread (Heil and Diemont, 1983; Aerts, 1990). The main attributing causes 

for this increase have been stated as, a) the high loads of atmospheric nitrogen, b) the 

continuous accumulation of litter and humus which leads to the formation of a thick 

organic layer, with a high mineralisation rate acting as a catalyst and c) attacks of 

Calluna-dominated heathlands by the heather beetle, Lochmaea suturalis (Brunsting 

and Heil, 1985; Berdowski and Zeilinga, 1987). 

Nitrogen eutrophication has been established to be the most significant factor in 

determining the species composition of heathland vegetation (Buijsman, Maas and 

Asman, 1987; Hargreaves et al., 1992). Nitrogen availability has essentially risen 

4 
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simultaneously with the atmospheric depositions of pollutants, which amounts on 

average to 3 - 4 kg N ha' yf t . Raised nutrient availability levels in turn drastically 

alter competitive relationships between dominant plant species thereby encouraging 

the replacement of heather by grasses (Heil and Diemont, 1983; Bobbink, 1991). 

This hypothesis has been supported by the field and laboratory experiments of Heil 

and Diemont (1983), Berendse and Aerts (1984), Heil and Bruggink (1987) and 

Aerts et al. (1990) which confirm the importance of nutrient inputs. 

It was hypothesised by Loach (1968) that the high productivity of Molinia is a 

crucial feature responsible for the exclusion of Calluna and Erica from high-nutrient 

sites. Enhanced productivity due to fertilisation leads to a higher litter production 

with a higher organic nutrient input into the soil. Elevated rates of accumulation of 

litter and humus thereby promote higher rates of nitrogen mineralisation. In many 

heathlands in the Netherlands, this accumulation has led to rates of nitrogen 

mineralisation as high as 10 - 13 g N m 2  yf' (Berendse, 1990). 

Increased nitrogen availability alone cannot explain the replacement of Calluna by 

grasses, as a number of field experiments suggest that Calluna is capable of 

remaining dominant even with the high rates of nitrogen input. Intact Calluna plants 

appear to be competitively superior to Molinia and Deschampsia plants, even at a 

nitrogen availability of 20 - 25 kg N ha' yr' (Aerts, et al., 1990). Heathlands have a 

strong filtering effect on ammonia/ammonium and the canopy structure of the 

vegetation has been proven to play a pivotal role (Heil and Bruggink, 1987; Heil et 

al., 1988). It appears that Calluna is a superior competitor for light, due to its 

evergreen nature, which permits canopy closure early in the growing season, thus 

suppressing potential competitors. The rapid conversion to grassland seen in the field 

is therefore thought to be triggered by gap formation in the Calluna canopy, allowing 

understorey grasses access to light, which in combination with greater nitrogen 

availability, permits them to become dominant and prevent regeneration of Calluna. 

Increased nitrogen deposition could accelerate natural canopy breakdown by causing 
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high shoot nitrogen contents, which may be associated with an increase in plant 

susceptibility to insect attack, frost and drought (Brunsting and Heil, 1985; Marrs, 

1986; Van der Eerden et al., 1991; Caporn, Risager and Lee, 1994). During an 

outbreak of heather beetle pest, Heil and Diemont (1983) observed that Calluna 

vulgaris was more severely affected by heather beetles in the more heavily nitrogen 

fertilised vegetation. This observation indicated that the replacement of Calluna 

vulgaris was not due to the higher potential growth rate of the grasses at a higher 

level of nitrogen availability, but because more Calluna plants died in the heavily 

fertilised zones and as a result grasses invaded the barren places. Therefore, Lee 

(1998) concluded that heather can remain dominant in moorland under high nutrient 

conditions provided that the integrity of the canopy is maintained to suppress faster 

growing plant species. However, overgrazing has also resulted in extensive canopy 

losses of heather moorland and stands are also being competitively displaced by 

bracken, Pteridium aquilinum (L.) Kuhn, which has more than doubled its area over 

this period (Armstrong, 1991; Marrs et al., 1992). As the bracken stand moves 

forward discrete surface layers of organic matter develop overlying material derived 

from heather (Anderson and Hetherington, 1999). Such changes in physical and 

chemical properties of the litter layers can have important feedback effects on the 

growth and species balance of moorland vegetation (Van Vuuren and Berendse, 

1993; Snow and Marrs, 1997). These interactions between plants and soils can be 

further complicated by mixtures of plant litters showing enhanced rates of 

decomposition and soil organic matter turnover (Chapman, Whittaker and Heal, 

1988; Williams and Alexander, 1991; McTiernan, meson and Coward, 1997). There 

is no consensus on the mechanisms involved and so the magnitude and importance of 

organic matter and nutrient dynamics, and plant species interactions, are 

unpredictable (Facelli and Pickett, 1991). 

Nutrient economy and secondary metabolite production are the two main plant 

physiological processes found to govern the changing patterns in semi-natural 

vegetation associated with heathlands. 
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1.1.2.1 Nutrient Economy 

In many terrestrial ecosystems plant productivity is limited by the availability of 

nutrients as is shown by many fertilisation experiments in the field (Vermeer, 1986; 

Bobbink, Bik and Willems, 1988; Aerts, 1989; Aerts and De Caluwe, 1989). In all 

plants, there are losses and gains of nutrients to and from the shoot environment 

(Clarkson, Kuiper and Luttge, 1986), so that net accumulation within plant tissues is 

the resultant of these two processes, upon which the success of perennial plant 

species is largely dependent. Increased nutrient availability not only leads to an 

increased production, but very often causes a dramatic shift in the species 

composition of plant communities. This has been shown in heathiands (Heil and 

Bruggink, 1987; Aerts and Berendse, 1988), grasslands (Williams, 1978; Berendse, 

1983; Elberse, Van den Bergh and Dirven, 1983; Bobbink, Bik and Willems, 1988) 

and fens (Vermeer and Berendse, 1983). 

Exogenous dissolved nitrogen is available to the shoots of terrestrial plants mainly 

from three sources. One is the inorganic nitrogen in rainwater and occult 

precipitation derived from ammonia, nitrogen, or nitrogen oxides in the gas phase 

(Nihlgard, 1985; Duyzer, 1994); another is the organic solutes leached from the 

shoots of taller plants, by rainwater and dew and the third being in the form of 

solution sprays employed in agriculture and horticulture (Mengel and Kirkby, 1978). 

The relationship between atmospheric nitrogen deposition and tissue nitrogen content 

of vegetation, is therefore based on the degree of reliance of that vegetation on 

atmospheric inputs for nutrient supply. 

Leaf nitrogen concentrations are generally higher in comparison to other plant 

tissues, because of the high concentration of nitrogen-containing enzymes, which are 

involved in photosynthesis (Mooney et al., 1981; Hunt, Weber and Gates, 1985; 

Evans, 1989). In the dry heathiand different seasonal patterns were observed, with 

nitrogen concentrations being largest in young leaves particularly in early summer 

and at a minimum in winter, although the difference is negligible in mature plants 

7 
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(Brunsting and Heil, 1985). In Calluna, leaf nitrogen concentrations showed high 

values shortly after leaf emergence and lower values during the growing season, 

declining to a steady low level after about six years. Most nutrients, especially 

nitrogen are known to attain their greatest concentration in the current year's shoot 

tips in June, when growth is most active (Robertson and Davies, 1965; Grant and 

Hunter, 1966). 

In a field experiment by Lee, Caporn and Read (1992) involving the addition of 

ammonium nitrate at rates of 40 - 200 kg ha' yf' of nitrogen to an upland Calluna 

monoculture in the UK, shoot nitrogen levels increased from 1.1 % in the control 

treatment to 1.4 % in the 40 kg ha' treatment and to 2.3 % in the 200 kg ha' 

treatment following only two years of application. Increases in nitrogen content 

resulting from nitrogen applications in the range 60 - 200 kg ha' yf' of nitrogen 

have also been quoted in the Netherlands (Brunsting and Heil, 1985; Aerts, 1989; 

Van der Eerden et at., 1991). In a study conducted by Dueck et at. (1991), shoots 

exposed to a range of ammonia treatments revealed varying nitrogen contents. Shoot 

concentration in plants grown without added nitrogen and exposed to ammonia at 11 

pg m 3  was 1.4 %, which increased to 2.6 % with the highest rate of added nitrogen 

but surprisingly, percent nitrogen escalated to 3.3 % upon exposure to ammonia at 

550 pg m 3 . The results suggest that there is a significant positive correlation 

between tissue nitrogen concentrations in this investigation and the atmospheric 

inputs of nitrogen. 

The most recently published figures set a mean foliar nitrogen content of 1.5 % for a 

number of European sites studied in the 1970s (Heil and Diemont, 1983) and 1.75 % 

to 1.9 % in the Netherlands in the 1980s and 1990s respectively (Brunsting and Heil, 

1985; Pitcairn, Fowler and Grace, 1995). The foliar nitrogen content of Calluna can 

effectively range from 0.8 % to 2.6 %. These figures reflect the increasing deposition 

of nitrogen in Europe over the past 30 years. 

8 
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In yet another study, Heisper, Glenn-Lewin and Werger (1983), clearly showed 

germination and growth inhibition of Calluna by repeated applications of nitrogen as 

either NPK, ammonium nitrate or even as sheep manure. In the manner in which 

nitrogen fertilisation negatively affects the germination and growth of Ca/tuna 

vulgaris seedlings it is possible that nitrogenous air pollutants may act in accordance. 

To date, the application of nitrogen expressed in terms of total deposition rates 

slightly in excess of what is generally regarded as the 'critical load' has exhibited no 

deleterious effects on Calluna. However, initial application of nitrogen even at 

moderate doses, stimulate Calluna and bolster regeneration. Large positive effects on 

growth have been shown, which may actually result in a denser canopy, thereby 

reducing the likelihood of grass invasion. In a thorough review, Kinzel (1982) 

concluded that nitrogen fertiliser concentrations of 100 ppm or more in soil retard the 

growth of members of the Ericaceae, but growth was usually stimulated by nitrogen 

in lesser amounts. At low concentrations, ammonium is reported to be a stronger 

growth stimulator than nitrate. While some experiments suggest that nitrate may 

indeed stimulate growth when the initial content is low, Kinzel (1982) concluded that 

it is uncertain if the Ericaceae can use nitrate as a nitrogen source. Fertilisation 

except for an initial pulse of nitrogen, is not advantageous for hastening Calluna 

regeneration and the effects of the fertiliser will disappear after a few years, probably 

due to leaching of the soil. 

Elevated foliar nitrogen levels are so strongly associated with the decline of Calluna 

in Europe that current concentrations in important Calluna heaths and moors in the 

UK must be viewed with grave concern (Armstrong, 1991). 

1.1.2.2 Secondary Metabolites 

A major goal of ecologists has been to explain herbivore feeding habits since 

increased foliar nitrogen levels have been shown to increase the likelihood of heather 

beetle outbreaks in the Netherlands, which can open up the Ca/tuna canopy and 

promote the invasion of grasses (Brunsting and Heil, 1985; Berdowski and Zeilinga, 
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1987; Uren, 1992). Food selectivity is thought to be a response to plant metabolite 

composition, with preferred plant species having the highest concentrations of 

nutrients or the lowest levels of secondary compounds (Freeland and Janzen, 1974). 

Orkney voles, Microtus arvalis orcadensis, have shown marked selectivity in their 

choice of food plants, especially utilising herbaceous food low in fibre, which is 

difficult to digest, and low in total phenolics which exhibit detrimental effects 

(Hartley, Nelson and Gorman, 1995). 

A fundamental problem facing herbivores is the low nitrogen content of plants. 

Nitrogen is limited in time and space; for example it may be in a form that herbivores 

cannot digest. Therefore maximising nitrogen assimilation is an important goal for 

herbivores, and for most insect herbivores increased availability of nitrogen is 

associated with an increase in the growth rate, survival, or population density 

(Mattson, 1980). Consequently plant nutritional quality is a significant factor in 

determining patterns of abundance of sap-feeding insect herbivores, although how 

this interacts with other host plant characteristics remains to be determined. 

The chemical response of different plant species to variations in the availability of 

nutrients has long been studied (Chapin, 1980). Species associated with nutrient-rich 

environments tend to be fast growing, allocating resources to growth and 

reproduction rather than to defensive compounds, whilst species associated with 

nutrient-poor habitats are slow growing and usually have a higher allocation to 

secondary metabolites (Coley, Bryant and Chapin, 1985). Compounds such as 

phenolics and tannins, which have a slow turnover constant and which are also the 

end products of pathways, are suggested to be the most sensitive to nitrogen 

availability (Bryant et al. 1992), particularly since protein and phenolic biosynthesis 

share a common precursor (Margna, Margna and Vainjärv, 1989). Furthermore, 

plants adapted to low nutrient environments have been shown to exhibit smaller 

chemical responses to changes in soil nutrient levels than plants from richer habitats 

(Chapin and Shaver, 1985; Bryant et al., 1987). 

Fill 
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Given the current concern over the loss of Calluna-dominated moorlands to 

grassland in Europe (Thompson, McDonald and Marden, 1995), the fluctuations in 

plant chemical composition in response to nutrient inputs has warranted further 

investigation. The carbon/nutrient balance hypothesis (Bryant, Chapin and Klein, 

1983) predicts a decrease in the level of carbon-based secondary compounds in 

plants in response to fertiliser. This has been shown for many plants (Bryant et al., 

1987), but Jason and Hester (1993) found that phenolic and tannin levels in Calluna 

did not decrease in response to increased nutrient supply. In a subsequent study, in a 

series of fertilised plots, conducted by Hartley and Gardner (1995), Calluna shoots 

had a greater nitrogen content and lower fibre and lignin content with respect to the 

controls, and the authors concluded that in general, Calluna plants exposed to high 

levels of fertiliser tend to exhibit reduced levels of shoot secondary metabolites, total 

phenolics and condensed tannins. 

The resource quality of litter is an expression of the degree to which its chemical 

constituents meet the nutritional requirements of soil microorganisms and is 

therefore a key factor determining the rates of litter and soil organic matter 

decomposition (Anderson, 1991). Hence the concentration of secondary metabolites 

and modifiers such as tannins, which can inhibit enzyme or organism activities 

(Swift, Heal and Anderson, 1979), can significantly influence soil respiration. Heal, 

Latter and Howson (1978) studied the decomposition rates of organic matter and 

concluded that within groups of similar resource types decomposing in similar 

environments, lignin, nitrogen and tannins appear to act as a hierarchical series of 

controls. In high quality resources, the effect of tannins on the microbial community 

acts as a rate determinant (Palm and Sanchez, 1991) but as resource quality declines 

organic matter decomposition depends largely on the initial lignin concentration 

(Fogel and Cromack, 1977; Berendse, Berg and Bosatta, 1987) or the lignin:N ratio 

(Aber and Melillo, 1980; Melillo, Aber and Muratore, 1982; Harmon et al., 1986). 

Therefore, the concentration of secondary metabolites in the litter of Calluna plants 
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exposed to elevated nitrogen inputs may play a significant role in determining carbon 

dioxide effluxes from heathland soils. 

1.1.3 The Soil 

Soil profile studies are capable of accurately reflecting the history of the resident 

vegetation, as there exists a clear relationship between soil properties and vegetation 

type. The first heathlands were probably composed of grasses and herbs preferring 

nutrient-rich sandy soils which gradually developed into moder podsols. Later with 

the expansion of heathland areas, nutrient-poor sandy soils, which progress to form 

humus podsols, were also incorporated. With the abandonment of ancient 

management regimes, as part of the old agricultural system, the soil of heathlands 

became poorer in nutrients until the turn of the century. 

In general heathiands have since been restricted to oligotrophic, nutrient-poor, 

weakly buffered, sandy soils consisting of an acidic substrate, with pH ranging from 

3.8 - 4.8 (Gimingham,1989). They tend to be freely drained and podsolic with a layer 

of raw humus, of approximately 5 centimetres in thickness, at the surface, overlying 

the mineral material. 

Gimingham (1972), pointing out the low nutrient status and high carbon-nutrient 

ratios of heathland soils, stated that nitrogen fertilisation produces a rapid response in 

Calluna, and that there is a considerable demand for nitrogen in heathlands. 

Moreover, in many nutrient-poor ecosystems, most of the nutrients that are absorbed 

by the vegetation originate from the decomposition of the plant litter and humus 

(Staaf and Berg, 1977; Rosswall and Granhall, 1980). Although heathiand soils are 

mainly acidic by nature, there are often zones where, due to natural causes such as 

upwellings, or due to disruptive human activities the soil becomes slightly buffered 

thus less acidic. It is well known that nitrifying bacteria are scarce or absent in 

moorland soils and most inorganic nitrogen comes from rainfall or from the 

decomposition of plant and animal residues in the soil. Consequently, ammonium 

12 



Chapter 1 

ions exhibit a definite impact on heathiand vegetation by causing soil acidification 

and nitrogen enrichment since if the soil on which ammonium is deposited is acidic, 

a strong accumulation of nitrogen occurs in the soil layer, because ammonium is 

bound much more strongly to the soil absorption complex than nitrate. Ammonia 

uptake and assimilation from the soil is found in plants that tend to be perennial, and 

the Ericaceae seems to be a family where ammonia is preferentially favoured 

(Smirnoff, Todd and Stewart, 1984). 

Early findings of consistently higher productivity, over a period of seven years, at a 

moor site in north-east Scotland overlying a relatively base-rich rock in comparison 

to an adjoining moor over granite (Moss and Miller, 1976) revealed the importance 

of soil nutrient composition in plant growth. Originally the plant species were 

restricted to the slightly buffered, less acidic sediments but in the course of time a 

heterogeneous environment with a rich plant community subsequently developed. 

The atmospheric deposition of ammonium at these slightly buffered locations was 

quickly transformed into nitrate by the process of nitrification, causing soil 

acidification and nutrient enrichment. Subsequent fertilisation experiments Calluna-

dominated moorlands by Miller (1979) confirmed that soil type and nutrient 

availability greatly influenced productivity at different sites, since apart from 

calcium, the availability of nitrogen and phosphorus is a major restraint on herbage 

production. Similarly, in the case of heathlands, when there is competition between 

heather species such as Calluna vulgaris and grasses such as Molinia caerulea, the 

grasses profit from higher nitrogen levels (Sheikh, 1969). Field experiments have 

shown that nitrogen enrichment indeed stimulates the development of grasses in 

heathlands and the biomass of the grasses is not negatively influenced by the acidity 

of the precipitation (Heil and Bruggink, 1987; Berendse and Elberse, 1989; Aerts et 

al., 1990; De Smidt and Van Ree, 1991). However, the problem with many field 

fertilisation experiments is that the high input of atmospheric nitrogen deposition are 

not taken into account (Roelofs, 1986). Natural levels of ammonium deposition in 

'cleaner areas' of the Netherlands have already caused a marked increase in biomass 
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of grass species (Aerts, 1993). Therefore, it can be concluded that the high 

atmospheric nitrogen enrichment is a main cause for changes from heather 

dominated into grass dominated heathiands. 

Another ecological effect of nitrogen pollutants involves a disruption of the carbon 

cycle (Rastetter et al., 1991). Moorlands, typically dominated by heather, Calluna 

vulgaris (L.) Hull, cover about 15 % of the land area in the UK but contain nearly 

75 % of the soil organic carbon (Howard et al., 1995). Turnover times for 

decomposition and mineralisation of organic matter have been found to be relatively 

slow with high rates of litter accumulation (Swift, Heal and Anderson, 1979). The 

primary production of upland vegetation is fairly low and these large accumulations 

of organic matter are a consequence of poor quality litters decomposing slowly in 

predominantly cold, wet and nutrient-limited environments (Heal, Latter and 

Howson, 1978). Organic matter generally accumulates on the soil surface under these 

conditions and little is chemically or physically stabilised in the mineral soil 

horizons. Consequently, rates of carbon mineralisation and soil respiration can show 

rapid responses to changes in the climate or resource quality (Anderson, 1991). The 

Qio temperature responses of soil microbial activity in cool temperate systems are 

generally higher than those for plant production (Lloyd and Taylor, 1994) and small 

increases in temperatures can result in significant net losses of unstabilised soil 

organic matter over one or two growing seasons (meson, Coward and Hartwig, 

1998). Kirschbaum (1995) has suggested that the low quality of soil organic matter 

can limit the magnitude of these short-term temperature responses but this can 

change as a consequence of higher quality litter inputs caused by increased nutrient 

availability, changes in plant species cover, or a combination of these factors 

(Hobbie, 1996). 

Nitrogen fertilisation experiments are providing the evidence for a strong interaction 

between atmospheric nitrogen deposition and nitrogen mineralisation processes 

resulting in increased nitrogen availability (Morecroft, Sellers and Lee, 1994; Fisk 
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and Schmidt, 1996; Wedin and Tilman, 1996). Vinton and Burke (1995) examined 

mineralisation processes in plots of undisturbed shortgrass steppe from a 1971 

nitrogen addition experiment, wherein 5 g N m 2  yf' ammonium nitrate had been 

added for three years to treatment plots which subsequently produced a 5 to 10 fold 

increase in net primary productivity and large changes in species composition 

(Lauenroth, Dodd and Sims, 1978), to show that 20 years after the experiment had 

ended, nitrogen mineralisation was still simulated in the treated plots and plants from 

these plots still had lower C:N tissue ratios. Thus nitrogen enhancement in semi-

natural ecosystems potentially has large and long-lasting effects on plant community 

composition and soil processes, making a prolonged contribution to the total nitrogen 

economy. These changes in mineralisation suggest that major changes in microbial 

communities and activities may be occurring in soils subject to high atmospheric 

nitrogen inputs, but there are few studies that have investigated its importance in 

terms of interactions with the carbon cycle. Caporn et al. (1995 b) demonstrated 

little effect of nitrogen deposition on mycorrhizal infection in an upland Calluna 

heathland soil but a later study showed large increases in utilisation of substrates by 

bacteria at the same site, suggesting changes in microbial activity and composition to 

long-term nitrogen addition. Other workers have shown a decrease in mycorrhizal 

infection in response to atmospheric nitrogen deposition (Arnolds, 1991). There is 

considerable need to extend the studies and examine the underlying dynamics of soil 

microbial processes in response to elevated nitrogen inputs because although 

vegetation and soil accumulate anthropogenic nitrogen, the soil is the major nitrogen 

and carbon sink (Nadelhoffer et al., 1994) susceptible to environmental fluctuations. 

Thus, atmospheric nitrogen deposition through the partial removal of nitrogen 

limitation on the growth of plants in nutrient-deficient ecosystems may have an 

appreciable influence on atmospheric carbon dioxide concentrations. 

1.1.3.1 Respiration 

Soils and vegetation of tropical forests represent the largest terrestrial carbon pools in 

the biosphere and their destruction is a significant contribution to non-industrial 
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sources of increased CO2 concentrations in the atmosphere. Soil organic matter 

contains approximately 1,500 Pg C in the top meter of the soil, which is about 2.5 

times more than is contained in terrestrial vegetation (Schlesinger, 1977). An 

additional 840 Pg C resides between I and 3 m depth (Jobbágy and Jackson, 2000). 

Plant production creates approximately 60 Pg C of organic C each year, while 

approximately 77 Pg C returns to the atmosphere as soil respiration reflecting the 

sum of root respiration and decomposition of organic matter (Raich and Potter, 

1995). Even a small net change in the flux of carbon from soils could dramatically 

affect the accumulation of atmospheric CO 2 . 

Soil respiration is a major flux in the global carbon cycle and is greatly influenced by 

climatic change. Rates of microbial and root respiration are highly sensitive to soil 

properties of temperature, moisture and nutrient availability. Any changes in 

temperature, moisture or nutrient availability due to climate change or the addition of 

fertilisers could have an important effect on carbon fluxes and rates of carbon 

sequestration in an ecosystem. Current climate models predict that global mean 

temperatures are likely to increase by 3 ± 1.5 °C in this century (Liss and Crane, 

1983; Dickson, 1986; Bouwman, 1990). But above 50 degree latitude in the Northern 

Hemisphere temperatures would increase by a factor of two in summer and three in 

winter (Manabe and Stouffer, 1980; Wigley, Jones and Kelly, 1980; Anderson, 

1991). There is considerable debate over predictions based on global climate models 

but if current climate-warming trends continue, it will affect species composition of 

plant and soil communities, the mass chemical composition of above- and 

belowground litter inputs, litter composition, soil organic matter dynamics and 

nutrient cycling. The long-term status of the biomes as net carbon sources or sinks 

under changing climate conditions will thus depend upon the interactions of all these 

factors determining the balances between production and decomposition. 

Two critical questions limit our ability to accurately predict feedbacks between the 

biosphere and atmosphere CO2 namely, a) to what extent does carbon storage in 
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vegetation and soils change with elevated atmospheric nitrogen deposition, and b) to 

what extent does soil respiration respond to increased temperature. 

Lundegârdh (1927) first stated that fertilisation of agricultural crops generally 

increases soil respiration rates, but few direct comparisons of annual CO 2  efflux from 

fertilised and unfertilised crops have been investigated. In forests too the impacts of 

fertilisation on soil respiration rates are ambiguous, though fertilisation with a broad 

array of mineral nutrients increased soil respiration rates in pine forests studied by 

Repnevskaya (1967). Soil respiration can increase after the addition of N fertiliser for 

a range of reasons such as high root respiration rates since energy is required for the 

reduction of nitrate, incorporation of ammonium into amino acids, and maintenance 

of high N content in tissue (Johnson, 1983; Morris and Dacey, 1984; Margolis and 

Waring, 1986; Lambers, 1987; Vessey and Layzell, 1987; Goodwin and Mercer, 

1990; Ryan, 1991), elevated organic matter decomposition due to increased 

microbial biomass (Anderson, 1991) and raised plant productivity resulting in 

increased root exudates (Waring and Schlesinger, 1985). The net result of these 

different effects may vary among sites, soils and vegetation types, and no clear 

patterns are apparent in the. available data. Short- and long-term effects of 

fertilisation may also differ as vegetation adapts to the new nutrient regime (Chapin, 

Shaver and Kedrowski, 1986). Therefore, the potential impacts of fertilisation on soil 

respiration rates are poorly documented and few studies have investigated 

heathlands. 

Understanding and predicting the response of soil carbon in specific ecosystems to 

changes in global temperature and pollution is critical, particularly since increased 

release of respired carbon dioxide to the atmosphere has the potential to exacerbate 

global warming (Woodwell et al., 1978; Jenkinson, Adams and Wild, 1991; Schimel 

et al., 1994; Kirschbaum, 1995). The present study addresses this question in Chapter 

5. 

17 



Chapter 1 

1.1.4 Conservation and Management 

Awareness regarding the conservation of Calluna-dominated heathiands in lowland 

Europe has steadily grown with time. The two main objectives for the conservation 

of lowland heaths are a) to prevent succession, in order to maintain the heathland free 

of invasion species such as birch and bracken, and b) to encourage regeneration of 

Calluna so that all phases of the Calluna cycle are present as a mosaic in the same 

area (Marrs, 1987 a). 

Various management measures, in conjunction with associated land uses, are aimed 

to control the species composition of heathlands as part of conservation and 

restoration programs (De Smidt, 1983). Regulated species performance can be 

achieved by decreasing nitrogen availability and enhancing the establishment of 

specific plants. The practices of mowing, burning and sod cutting ensure a periodical 

removal of nutrients from the ecosystem, besides creating a diversity of habitats 

ranging from bare ground to sheltered heather niches. Data over a period of 25 years 

also showed the effects of abiotic and biotic stress and disturbance factors such as 

summer drought, frost, heather beetle infestations and sheep grazing (De Smidt, 

1977; Berendse, 1985). 

Nutrient balances of the most important types of heathland farming systems were 

reconstructed and summarised by Gimingham and De Smidt (1983) in order to reveal 

that during the past few decades, the equilibrium between the input and output of 

nutrients has been lost by increased atmospheric nitrogen deposition and a change in 

management priorities. Increasingly, ideas on the management of heathlands have 

changed since the establishment of heathland reserves began (Gimingham, 1992). 

Currently pollution control policy on a European scale is being focused around the 

concept of the critical load. This approach can support an effects-based policy for 

emission control and is considered by many to be a scientific method of linking 

emission reductions on both national and international levels to environmental 

benefits. Critical loads set on the basis of dynamic, simulation models which 
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incorporates information from field observations and experimental studies have 

proposed a critical load of 15 - 20 kg N ha- I  yr' for dry heathland (Van Breemen et 

al., 1982; Bobbink, Heil and Raessen, 1992; Heil and Bobbink, 1993). 

It must be emphasised, however, that the long term conservation of heathiands 

require a substantial reduction of the current, unacceptably high atmospheric nitrogen 

deposition levels in addition to the short term corrective measures. The success of a 

management strategy strongly depends on setting management goals, which in order 

to achieve, ought to adopt a technically feasible, economically viable and 

environmentally sustainable integrated approach. 

1.2 AIMS OF THE STUDY 

This study aimed to determine the degree to which enhanced nitrogen deposition in 

Calluna-dominated heathland ecosystems can 

alter plant physiological responses in terms of a) shoot growth, b) tissue 

nitrogen, c) tissue carbon and d) secondary phenolic metabolites, which serve 

as defence compounds, 

affect the response of soil respiration to environmental parameters by 

disturbing acclimatised soil microbial populations, 

influence the relationship between soil carbon fluxes and soil microbial 

populations, and 

iv) 	change soil mineral nitrogen availability to the plants. 
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1.3 STRUCTURE OF THE THESIS 

This thesis investigates the effects of atmospheric nitrogen deposition on heathiand 

ecosystems. There are seven chapters. 

Chapter 1: 	Introduces the subject of heathiand ecology and provides a review of 

literature in order to summarise our knowledge of heathlands in relation to their 

changing environment. A database of previous work in the field was created with an 

aim to compare and contrast the results obtained by different studies, compile the 

conclusions into a coherent structure and finally, map changing trends with the 

passage of time, so as to gain a better understanding of nutrient cycling between 

atmospheric processes, heathland communities and soil properties in order to identify 

areas of weakness, which would benefit from further research. 

Chapter 2: 	This chapter describes an experimental study investigating the effects 

of nitrogen deposition on Calluna vulgaris (L.) Hull grown in open-top chambers 

providing a range of fertiliser input rates, spanning across extreme values. Plant 

physiological responses, within a controlled system simulating field conditions, were 

carefully monitored to determine the degree to which environmental changes are 

reflected in heather, confirm reported trends and validate proposed critical loads with 

regards dry heathiands. 

Chapter 3: 	The field site and experimental design is described. A new, simple 

methodology is developed and operated to accurately measure soil respiration under 

controlled laboratory conditions using small soil microcosms with an 18 channel, 

continuous flow, multipoint, gas analysing unit that was specially built for the study. 

Data from four supporting experiments are presented to establish the best working 

technique to measure soil respiration. 

20 



Chapter 1 

Chapter 4: 	Soil microbial biomass was monitored during the period of study to 

gain an insight into the soil microbial community governing soil carbon fluxes. The 

fumigation-extraction technique was employed to determine the relationships 

between biomass-C, biomass-N, and microbial C:N ratio for heathland soils. The 

respiration profile in soils following the addition of a specific C or N nutrient can 

demonstrate if that factor increases respiration with or without simulating microbial 

growth. This approach was developed in an attempt is made to link the compartments 

of soil carbon, namely microbial biomass and respiration, in conjunction with the 

climatic conditions and elevated nitrogen inputs. 

Chapter 5: 	The annual seasonal patterns of soil carbon dioxide effluxes and 

environmental parameters were measured to determine the effect of elevated nitrogen 

inputs on the response of soil respiration to soil temperature, moisture, pH, organic 

matter and microbial biomass. The modelling of respiration in soil is critically 

discussed and the ability of the three most commonly used models to accurately 

describe the temperature dependence of soil respiration was tested. 

Chapter 6: 	An unconventional, though simple, growth measurement technique is 

described whereby growth rings of mature Calluna vulagris (L.) Hull can be studied 

by staining shoot cross-sections with blue ink. The effect of ammonium nitrate 

fertiliser on the carbon:nitrogen ratio of shoot tissues is also examined. 

Chapter 7: 	A summary of the main conclusions drawn from all the experiments 

so as to bring together the entire body of work and highlight the main findings of the 

study. 
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2. PILOT STUDY - RESPONSES OF CALLUNA 

VULGARIS TO NITROGEN DEPOSITION 

2.1 INTRODUCTION 

The heathlands of north-west Europe, dominated by the species Calluna vulgaris (L.) 

Hull, have for centuries determined the physiognomy of the landscape (Gimingham, 

1972). In recent times however, many countries have recorded an alarming decline in 

the area of both lowland dry heath and upland heather moorland (Farrell, 1989; 

Webb 1990; Aerts, 1993 b). The loss has been characterised by a transition from 

heathlands to grasslands with the invasion of non-native grass species, such as 

Deschampsia flexuosa (L.) Trin. and Molinia caerulea (L.) Moench and this 

observation has been investigated in field and laboratory experiments by several 

authors (Heil and Diemont, 1983; Berendse and Aerts, 1984; Heil and Bruggink, 

1987; Aerts, 1990; Aerts et al., 1990; Bobbink, 1991). 

Modern research has linked the impoverishment of heathlands to large-scale 

environmental disturbances; the key threatening factors being nutrient enrichment 

due to high loads of atmospheric pollutants and the discontinuation of traditional 

heather management practices (Gimingham, 1992). The three environmentally most 

damaging air pollutants across Europe are sulphur dioxide, nitrogen oxides and 

ammonia. The main source of sulphur dioxide is industry while nitrogen oxides 

originate mainly from the burning of fossil fuels and ammonia emissions are elevated 

in areas with high densities of animal husbandry (ApSimon, Kruse and Bell, 1987; 

Sutton, Fowler and Moncrieff, 1993; Ashenden and Edge, 1995). 

Studies have shown that environmental acidification and eutrophication as a result of 

sulphur and nitrogen deposition have led to a decline in species abundance in 
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nutrient-poor aquatic and terrestrial ecosystems (Buijsman, Maas and Asman, 1987; 

Hargreaves et al., 1992). Documented evidence has proved that elevated tissue 

nitrogen levels in heathland plant species can dramatically change plant 

physiological and soil chemical processes that lead to greater stress sensitivity, alter 

growth rates, suppress regenerative capacities, promote gap formations within the 

closed vegetation canopy and increase the probability of devastating pest outbreaks 

(Brunsting and Heil, 1985; Mans, 1986; Berdowski and Zelinga, 1987; Van der 

Eerden et al., 1991; Capom, Risager and Lee, 1994). Increases in Calluna foliar 

nitrogen content resulting from experimental nitrogen fertiliser applications in the 

range of 40 - 200 kg ha' yr' have been periodically reported by workers in the UK 

(Lee, Caporn and Read, 1992; Caporn et al., 1995 a, b) and the Netherlands (Dueck 

et al., 1991; Van der Eerden et al., 1990; 1991). 

Species associated with nitrogen-rich habitats tend to allocate vital resources to 

growth and reproduction rather than to defensive compounds, whilst in species 

residing in nutrient-poor niches, carbon-based secondary metabolites accumulate as 

growth is limited by nutrient deficiency (Coley, Bryant and Chapin, 1985). In 1983, 

Bryant, Chapin and Klein put forth the carbon/nutrient balance hypothesis which 

predicts a decrease in the levels of carbon-based secondary compounds in plants 

upon fertiliser treatment, which would cause a direct effect on pest resistivity. The 

theory was shown to apply to many plant species by Bryant et al. (1987); however, 

lason and Hester (1993) found that phenolic and tannin concentrations did not 

decrease in Calluna in response to elevated nutrient supply. Similar results were 

found in a study conducted by Hartley and Gardner (1995), lending support to the 

idea that though inputs of nitrogen greatly influence the nutritional status of plants, 

species surviving in nutrient-low environments, such as Calluna vulgaris may exhibit 

smaller fluctuations in chemical composition when subject to raised nutrient inputs, 

as opposed to species adapted to nutrient-rich environments. In 1994 the United 

Nations Economic Commission for Europe (UN-ECE, 1994) proposed a critical load 

of 15 - 20 kg N ha' yf' based on a computer simulation model for dry heaths in the 
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Netherlands which incorporated only limited data from field and experimental 

observations. 

The impact of large-scale atmospheric pollution on the complex biotic and abiotic 

interactions of heathlands is an intriguing field of research providing an insight into 

species dynamics. This study aimed to investigate some aspects of the response of 

Calluna vulgaris (L.) Hull, maintained in open-top chambers, to nitrogen deposition. 

Much of the published experimental work undertaken to propose critical values at 

which a conversion from ericaceous to gramineous dominance would be imminent, 

relates to experimental additions at rates much higher than the proposed critical load. 

This experiment involved the regular application of six acid mist treatments of 2, 20, 

40, 60, 80, 100 kg N ha' yr to lowland dry heath monoliths in a controlled 

environment. Ammonium nitrate was employed as the fertiliser in view of the co-

deposition of nitrogen oxides and ammonia frequently observed in the field. By 

investigating soil and plant physiological responses in a controlled experimental 

system simulating field conditions, it was hoped to determine the degree to which 

present day environmental changes impact upon Ca/luna-dominated ecosystems, and 

validate proposed critical loads of N with regards to heathlands. 

2.2 STUDY SITE AND METHODS 

To investigate the effect of increased atmospheric pollutants on vegetation dynamics 

an experiment was conducted in which the supply of nitrogen was varied to 

heathland monoliths maintained in a series of open-top chambers (Fowler et al., 

1989; Leith et al., 1989) at the Centre for Ecology and Hydrology (CEH), Bush 

Estate, Edinburgh (Figure 2.1). The work described in this chapter was done in 1997, 

and formed part of an experiment which had been designed and established in 1995 

by colleagues at CEH (formerly the Institute of Terrestrial Ecology, ITE). 
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Figure 2.1 Open-Top Chamber site, Centre for Ecology and Hydrology, Edinburgh. 

2.2.1 Treatment 

2.2.1.1 Chamber Design 

Six octagonal open-top chambers, glazed with 3 mm horticultural glass set in 

aluminium frames, with a side length 3.0 m, floor area 7.0 m 2  and height 2.3 m to the 

base of a frustum, were used. Air was supplied to each chamber by a pump unit at a 

rate of 40 m 3  mind  to ensure two air changes per minute. The air was filtered through 

activated charcoal plates, to remove ozone, nitrogen dioxide, sulphur dioxide, and 

subsequently injected from a polyethylene manifold 1.5 m above the plants to 

provide uniform air distribution at the chamber floor. Rainfall was excluded from the 

system by fixing a polyethylene ceiling inside the chamber below the frustum, with a 

central outlet drain to divert the rainwater out of the chamber. The environment 

within the open-top chamber was inevitably modified relative to ambient conditions 

by the enclosure and air delivery system. The framework intercepted approximately 

15 % of the short-wave solar radiation, and modified the net long-wave energy 

exchange above the plant canopies. The air blower altered the microenvironment by 

25 



Chapter 2 

raising the air temperature inside the chambers by 0.5 - 2.0 QC above the ambient 

temperature and reducing the relative humidity by 5 - 13 %. 

2.2.1.2 Acid mist application 

Six simulated acid mist treatments, at a rate of nitrogen supply of 2, 20, 40, 60, 80 

and 100 kg N ha yr', were applied using serial dilutions of a stock solution of 

ammonium nitrate. The treatment commenced in July 1995. NH4 and NO 3  were 

applied in a 1: 1 ratio, which is consistent with the average ratio of these ions in UK 

precipitation (ROAR, 1997). The solutions were simultaneously pumped to the 

chambers from 25 litre polypropylene bottles, via 6 mm diameter horticultural 

polyethylene tubing, using compressed air, at an application rate of 3 mm h 1 . 

Droplets with a mean mass diameter of 90 pm and a mean diameter of 40 pm were 

generated using a spinning disc, rotating at 5000 rpm (Micromax 84, CDA-Micron 

Sprayers Ltd., UK) mounted centrally 1.5 in above the plants. The treatments were 

applied twice weekly to give 2 1 m 2  ground per treatment which is equivalent to 2 

mm precipitation. This was just sufficient to exceed the water-holding capacity of the 

young plants, so that water began to drip from foliage after misting. The distribution 

and deposition of droplets within the chamber was uniform over the area occupied by 

the plants and the material used for the spray delivery systems did not modify the 

composition of the spray droplets. To avoid excessive rates of evaporation from 

foliage and scorch, the treatments were applied early in the morning. 

2.2.2 Sampling Procedure 

The monoliths were collected on 31 May 1995 from an upland Cal/una-dominated 

moorland site at an altitude of 450 m above sea level near Glossop in Derbyshire (53° 

26' N, 10  56' W). The site receives a wet N deposition of approximately 40 kg N ha' 

yr'. The soil profile revealed a peat depth of 46 cm with a pH of 4.04. Eighteen 

monoliths were cut with a spade and carefully transferred to 16 litre buckets with 

dimensions 30 cm diameter x 45 cm depth. All the monoliths were transported back 
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to CEH, Edinburgh and randomly established in six open-top chambers (three per 

chamber) by the end of July 1995 and subsequently fertiliser treatment commenced. 

In 1997, 30 young shoots for each treatment, 10 per monolith, were randomly 

selected and marked with white latex paint at the beginning of the growing season 

and growth was periodically measured via length increments. Shoot samples for 

chemical analysis were harvested in three replicates on a fortnightly basis from May 

to July 1997. The top 2.5 cm of growing shoot tips were excised and transported to 

the laboratory in dark, sealed polythene bags. At the same time, soils were collected 

at a depth of 5 cm from the soil surface and sampled at the commencement of the 

study period. 

2.2.3 Chemical Analysis 

Shoot and soil samples were oven dried at 60 C for 16 hours and then the replicates 

of each treatment were individually ground in a ball-mill. A further three sub-

samples for each replicate were taken for chemical analysis. Total tissue nitrogen and 

carbon were estimated by mass spectrometry (Carlo Erba 1400 Automatic Nitrogen 

Analyser interfaced to a VG Isogas Micromass 622 Triple Collector Mass 

Spectrometer, Milan, Italy). Total phenolics were determined by the Prussian Blue 

Method (Price and Butler, 1977; Waterman and Mole, 1994). Results were expressed 

as percent dry matter. Analyses were validated by inclusion of a standard reference 

material and concentrations obtained for the replicates were always within 5 % of the 

certified value. 

2.2.4 Statistical Analysis 

The effects of fertiliser on growth, the concentration of nutrients and secondary 

compounds in Cailuna vuigaris were assessed using regression analysis and one-way 

factorial analysis of variance (Fowler and Cohen, 1990). Where significant treatment 

effects were found on shoot growth (P < 0.001) histograms were plotted for the 

maximum lengths of seedlings (Sokal and Rohlf, 1981). 
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2.3 RESULTS 

2.3.1 Shoot Growth 

Growth of new Cailuna shoots increased with higher nitrogen inputs and time. 

Differences in shoot extension between the higher nitrogen applications and the 

lowest control treatment were statistically significant (Figures 2.2 and 2.3). 

Figure 2.2 Mean growth curves plotted for ('alluna shoot exposed to fertiliser treatments equivalent 
to 2 (.), 20(o), 40(v), 60(v), 80 (.) and 100 ( ) kg N ha- I  yr' within open-top chambers. 

The growth curves showed that the shoots exposed to a nitrogen input of 20 kg N 

ha' yr' grew most rapidly, attaining maximum annual growth (Figure 2.3). Shoots 

increased by more than 100 mm in length over a period of three months for 20 kg N 

ha' yr' and 100 kg N ha' yr' while for the remaining treatments the asymptotic 

growth ranged between 76.7 and 87.6 mm. 
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Figure 2.3 Maximum C'al/una shoot length increments (mean ± SE., it = 18) for each fertiliser 
treatment. The differences between the mean values were statistically significant (P < 0.05). Tukey's 
critical difference, T = 4.11, for comparing the means, based on ANOVA. 

2.3.2 Plant and Soil Nitrogen 

Results of one-way analysis of variance to test the effect of treatment on total tissue 

nitrogen concentration showed that there was a statistically significant (r2  = 0.73, P < 

0.001) positive correlation between percent nitrogen expressed as a dry weight and 

fertilisation (Figure 2.4). In May the percent tissue nitrogen concentration increased 

from a mean value of 1.37 % to 2.08 % for 2 kg N ha' yr' and 100 kg N ha' yr' 

input levels respectively. During the growing season the mean tissue nitrogen 

concentration was 1.53 %. The upward trend was sustained for the subsequent two 

months of the study period through June (r2 = 0.89, P <0.001) and July (r2 = 0.95, P 

< 0.001). However, with the commencement of the Calluna flowering season, the 

relationship was no longer significant and the average dropped to 1.25 %. 
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Figure 2.4 Relationship between tissue nitrogen concentration (% dry weight) of Calluna vulgaris 
(L.) Hull terminal shoots and fertiliser input levels for samples collected on 9th May 1997 (.), 28th 
May 1997 (0), 

10th  June 1997 (v). 23rd  June 1997 (v), 81h July 1997 (.), and 21 July 1997 ( ). Points 
represent mean tissue N concentration per treatment and statistical significance of this relationship is 
r2 =O.73,P<O.00l. 

Soil analysis revealed that there was a positive relationship between total soil 

nitrogen concentration and ammonium nitrate fertiliser treatment levels. A steady 

statistically significant increase (? = 0.98, P <0.001) from a mean value of 1.63 % 

for 2 kg N ha' yr' to 1.72 % for 100 kg N ha' yr' was observed during the period 

of study, as shown in Figure 2.5. 
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Figure 2.5 Relationship between soil nitrogen concentration (% dry weight) and ammonium nitrate 
fertiliser input levels equivalent to 2, 20, 40, 60, 80 and 100 kg N ha' yr '. Points represent tissue N 
concentration (mean ± SE., n = 18) during the study period per treatment and the fitted line shows the 
least squares regression line. The significance of this relationship is ? = 0.98, P < 0.001. 

2.3.3 Tissue and Soil Carbon 

Results of the carbon estimation study reveal that the total tissue carbon 

concentration for Caliuna shoots values were not significantly (r2  = 0.28, P < 0.05) 

affected by elevated nutrient supply during the growing season (Figure 2.6). 

Soil studies for total carbon concentration also recorded no rise or fall in mean values 

during the period of study (r2  = 0. 18, P < 0.05; figure not shown). 
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Figure 2.6 Relationship between tissue carbon concentration (% dry weight) of Ca/tuna t'ulgaris (L.) 

Hull terminal shoots and fertiliser input levels for samples collected on 9th May 1997 (.), 28th May 
1997 lO June 1997 (v), 23rd  June 1997 (v), 8th  July 1997 (.), and 21 July 1997 ( ). Points 
represent mean tissue C concentration per treatment. The statistical significance of this relationship is 
r2  = 0.28, P < 0.05. 

Ammoniurn nitrate application had a strong effect on the phenolic secondary 

compounds of Caliuna shoots (Figure 2.7). The fertilised monoliths revealed a 

significant (r2  = 0.91, P < 0.001) decrease in the levels of total phenolic 

concentration with increasing nitrogen inputs during active growth. Prior to the 

growing season there were no statistically significant interaction effects between the 

factors, though a trend is observed. During the growing season a sharp decline is 

observed from a peak value of 14.9 % in May for an input of 2 kg N ha' yr' to 12.2 

% in July for 100 kg N ha' yr ' . At the end of the growing season, the phenolic 

levels once again rise correspondingly through the fertiliser gradient. 
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Figure 2.7 Relationship between tissue phenolic concentration (% dry weight) of Ja11una terminal 
shoots and fertiliser input levels for samples collected on 9th May 1997 (.), 28th May 1997 (0), 

10th 

June 1997 (v). 23 d  June 1997 (v), 8th  July 1997 (.). and 21 July 1997 ( ). Points represent mean 
tissue phenols concentration per treatment. The significance of this relationship is r2= 

0.9  1, P <0.001. 

2.4 DISCUSSION 

The experimental design allowed for a study of the response of Calluna vulgaris (L.) 

Hull to fertilisation treatments in a controlled environment. Field conditions were 

simulated within the constraints of the chamber construction with the possible rise in 

air temperature and fall in relative humidity not being viewed as major contributory 

factors when considered in relation to the annual seasonal variations. Moreover, there 

was no evidence of any visible injury to Calluna plants, such as leaf browning, in 

response to the high concentrations of ammonium nitrate during the period of study 

as reported by other researchers (Van der Eerden et al., 1990). 
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2.4.1 Growth 

Under natural conditions, the growth rate of plants is largely regulated by the nutrient 

flux density from the soil to the roots, that is, the amounts of nutrients made available 

for plant uptake through mineralisation per unit time and unit area (Ingestad, 

Aronsson and Agren, 1981). Therefore, growth is markedly suppressed within an 

ecosystem where the natural fertility is too low to support the maximum biomass 

potential, as observed within nutrient-poor heathiands. However, plants readily 

respond to increased nutrient availability with rapid increases in growth rate, as first 

documented by long-term forest fertilisation experiments with Scots pine and 

Norway spruce in Sweden (Tamm, 1961; Nohrstedt etal., 1989; Linder, 1990) and 

Ecalyptus stands in Portugal (Pereira et al., 1989). Similar positive effects on growth 

of Calluna by the application of ammonium sulphate in the field have also been 

periodically reported (Heil and Bruggink, 1987; Aerts, 1989: Caporn et al., 1995 a, 

b; Uren etal., 1997). The importance of nutrient availability during active growth is 

reflected in the response of Calluna vulgaris (L.) Hull to elevated nitrogen levels 

with experiments undertaken by other authors suggesting that ammonium uptake 

leading to a stimulation in growth is predominantly via the shoots (Raven, 1988). 

Isotopic studies conducted by Van der Eerden et al. (1990) with ' 5N-labelled 

ammonium sulphate have illustrated shoot dominance over root uptake and canopy 

adsorption studies in the field revealed that 45 - 90 % net throughflow of wet 

deposited ammonium was directly assimilated upon uptake by Calluna shoots. 

In this experiment, the growth response of Calluna vuigaris (L.) Hull shoots with 

increasing fertiliser inputs was weak and not easily detectable between low and high 

treatment levels. The length increment histogram revealed a statistically significant 

increase in length increments for shoots exposed to a fertilisation rate of 20 kg N ha' 

yr, which is the United Nations Economic Commission for Europe proposed critical 

load, in comparison to 2 kg N ha - I  yf' treatment level. Thereafter the nitrogen effect 

appears to decline with higher ammonium nitrate inputs of 40, 60 and 80 kg N ha- I 

yr' but then unexpectedly the shoots exposed 100 kg N ha' yr exhibit a sharp 
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increase in length so that no clear trend emerges. A number of possible explanations 

may exist as to why neither a linear trend nor an 'optimum' response curve was 

noted. 

Firstly, ammonia-nitrogen, which can be taken up by shoots, is also made available 

to the plants by the root system upon deposition on the soil surface through 

nitrification or ammonium accumulation (Cowling and Lockyer, 1981; Dueck, Dil 

and Pasman, 1987). The mineralisation-nitrification process is driven by the soil 

microbial biomass and activity, which in turn are affected, either positively or 

negatively, by the fertiliser treatment levels (Anderson, 1991; Arnold, 1991; 

Nadelhoffer et al., 1994; Caporn et al., 1995 b). The results suggest that high levels 

of nitrogen inputs may have decreased microbial activity and had deleterious effect 

on microbial biomass as a result of which nitrogen availability was reduced above 

the critical level and growth did not reach the maximum attainable rate. A number of 

field studies have recorded a significant decline in microbial activity and biomass 

after high additions of urea and ammonium nitrate to experimental plots 

(Kowalenko, Ivarson and Cameron, 1978). In a fertilisation experiment, Bààth, 

Lundgren and Söderström (1981) found that microbial biomass and soil respiration 

rate decreased by 81 - 91 % at all sites within three months after application of 150 

kg NH4NO3  - N ha - I  to different coniferous forest podsols. High concentrations of 

nitrogenous compounds to a small volume of soil can have a direct inhibiting effect 

on microbial processes as demonstrated for ligninolytic enzyme production (Keyser, 

Kirk and Zeikus, 1978). 

Secondly, soil carbon may have also become less available owing to the 

condensation of nutrient-rich compounds (Haider, Martin and Filip, 1975; Witter, 

Màrtensson and Garcia, 1993); there might have been a partial sterilisation effect 

owing to a toxic potential in the soil solution (Leuken, Hutchinson and Paul, 1965) or 

an increase in soil acidity could impose a stress factor on microbial biomass thereby 

reducing yield and efficiency of the biomass (Killham, 1985). Other nutrient 
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limitations within the closed microcosm system may have set in as well. Optimal 

biomass production in a given climate is achieved when all essential mineral 

elements are available at a time and rate suitably adjusted to soil mineralisation rates 

and nutrient demand of the crop (Ingestad, 1987). Therefore, plant growth could be 

inhibited by limiting factors such as phosphorus, even in the presence of excess 

nitrogen, as emphasised by the results of a series of long-term experiments conducted 

by Van der Eerden et al. (1990; 1991). Furthermore, prolonged inputs of high 

nitrogen can adversely affect root growth (Vessey and Layzell 1987; Wallander and 

Nylund, 1990; Lu etal., 1998) and that too can stunt plant growth. 

Another possibility is that the 100 kg N ha' yr' treatment chamber was a 'rogue' 

chamber in the series of six OTC's. It was economically not feasible to replicate all 

the chambers hence the experimental set-up could not accommodate the existence of 

an erroneous chamber. The monoliths within the chamber could have received 

comparatively more sunlight, which could have increased photosynthesis and 

consequently shoot length. 

This study highlights the need to fine-tune the critical load concept for nitrogen 

inputs to heathlands, which must be set on a site-specific basis because a number of 

inter-related environmental factors come into play that may determine the effects of 

excessive nitrogen availability to Cal/una-dominated heathlands. Site-specific 

critical loads for specific species would prove to be more accurate and effective in 

preventing the nutrient enrichment of terrestrial ecosystems that alter the balance of 

species composition as observed in the conversion of heathlands to grasslands. 

2.4.2 Tissue and Soil Nitrogen 

The relationship between atmospheric nitrogen deposition and tissue nitrogen 

concentration of vegetation depends on the degree of reliance of that species on 

atmospheric inputs In the case of Calluna, which grows in acidic upland soils, 

rainfall is an important source of nutrients, especially nitrogen, and during the last 
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two decades the atmospheric deposition of fixed nitrogen has increased throughout 

Europe from 2 -6 kg N ha' yr to 15 -60 kg N ha yr '  (Pitcairn, Fowler and Grace, 

1995). Field experiments have been conducted across the continent to demonstrate 

the effects of such a rising trend and have recorded significant increases in the foliar 

nitrogen concentrations resulting from fertiliser applications, ranging from 40 kg N 

ha' yr' in the UK to 200 kg N ha' yr' in the Netherlands (Brunsting and Heil, 1985; 

Aerts, 1989, Van der Eerden et al., 1990; Lee, Caporn and Read, 1992; Pitcairn, 

Fowler and Grace, 1995). 

In this experiment ammonium nitrate has a significant effect on the tissue nitrogen 

percentage which rises in accordance with increasing fertiliser inputs. A clear 

upward trend in nitrogen levels is seen during the growing season with the mean 

tissue nitrogen value rising by 0.61 % in a period of three months, indicating a 

considerable seasonal variation with time. Recently published figures for tissue N 

concentrations of Calluna range from a mean value of 1.75 % and 1.90 % in The 

Netherlands in the 1980's and 1990's respectively (Pitcairn, Fowler and Grace, 

1995). The figures indicate a rise in atmospheric pollution in Europe with time, and 

if foliar nitrogen concentrations reflect atmospheric nitrogen levels as suggested by 

Pitcairn, Fowler and Grace (J 995), then the overall mean value of 1.53 % recorded in 

this study indicate that nitrogen deposition is still lower in UK in comparison to The 

Netherlands, which records the highest rates of nitrogen depositions (Heil and Aerts, 

1993). Therefore, atmospheric nitrogen inputs are capable of stimulating plant 

growth within nutrient-deficient ecosystems and the degree of pollution is 

successfully reflected in plant tissue nutrient levels. 

The significant increases in soil nitrogen with increasing fertiliser inputs suggest that 

a fraction of the applied N was taken up directly by the shoots while the balance 

remained in the soil. Calculations revealed that approximately half of the fertiliser N 

was found in the soil, and with no concomitant increase in soil carbon being 

detected, the results support the theory that microbial biomass did not increase with 
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increasing ammonium nitrate additions. Hence, soil nitrogen availability to the plant 

via microbial activity did not increase with an increase of N additions as a result of 

which the growth response was weak. The microbial population too may not have 

been able to utilise the applied N due to a number limitations within the closed 

system, as also noted by Söderström, BAáth and Lundgren (1983). 

2.4.3 Tissue and Soil Carbon 

The carbon-nutrient balance hypothesis predicts that in nutrient-poor environments, 

when plant growth is limited by nutrient deficiency, carbon-based secondary 

compounds accumulate within tissues (Bryant, Chapin and Klein, 1983). Defence 

compounds, determining susceptibility to pests and insect attacks, such as phenolics 

and tannins, which have a slow turnover and are also the end-products of pathways, 

are most sensitive to nitrogen availability (Bryant et al., 1992), especially since 

protein and phenolic biosynthesis share a common precursor (Margna, Margna and 

Vainjarv, 1989). A reduction in the concentration of carbon-based secondary 

metabolites in response to fertiliser treatment has been observed experimentally for 

many plants (Bryant etal., 1987) but poorly reported for Calluna. 

The levels of total secondary metabolites in Calluna vulgaris (L.) Hull shoot tissue 

responded sharply to the treatments in this study as stated by the carbon-nutrient 

balance theory. Prior to the growing season the level of phenolics does not decline 

with rising fertiliser inputs. Previous studies by lason and Hester (1993) and Hartley 

and Gardner (1995) during the non-growing months also failed to demonstrate a 

decline in phenolics when treated with fertilisers. The observed statistically 

significant decreases in the concentration of phenolics, during the growing season, 

are in agreement with previous laboratory experiments. The total carbon 

concentration of heather shoots was less drastically affected by the additions of 

ammonium nitrate and no fertiliser effects were observed. The problem with 

detecting carbon differences in plant material with time is that tissue carbon 

concentrations are sensitive to changes in the ratio of leaf:wood with tissue 
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maturation (Poorter and Bergkotte, 1992), and in Calluna shoots this is naturally 

quite variable. However, this response may suggest that higher nutrient availability 

alters the allocation of carbon to defence compounds, while maintaining the crucial 

level of total carbon percent within tissues to promote the active growth of new 

shoots. Chapin and Shaver (1985) found that the plants of low nutrient habitats, as 

Calluna, revealed smaller changes in chemical composition in response to fertiliser 

addition in comparison to plants which are dependent on frequent nutrient inputs. 

Therefore it may be stated that the carbon-nutrient hypothesis holds true during the 

growing season for the ericaceous shrubs. Consequently, new growing shoots would 

be highly susceptible to devastating pest outbreaks since insects show feeding 

preferences for young succulent plant tissues with lower defence compounds 

(Hartley, Nelson and Gorman, 1995). Therefore, Calluna growing in nitrogen-rich 

conditions would exhibit diminished pest resistivity due to a higher carbon:phenol 

ratio. Researchers have successfully linked the frequency of heather beetle attacks to 

the high nitrogen deposition (Heil and Diemont, 1983) and attribute 'gap formation' 

with a closed Calluna canopy to be the factor that allows understorey grasses to 

gradually dominate over heather (Brunsting and Heil, 1985; Bobbink, Heil and 

Raessen, 1992). Increased atmospheric nitrogen deposition is thus the trigger that 

aids the conversion of heathlands to grasslands by altering the carbon:nutrient ratio 

in plant tissues. No changes in soil carbon levels were detected which revealed that 

microbial biomass did not utilise or benefit from increasing fertiliser inputs, hence 

suggesting the possible limitation of other important nutrients such as phosphorus. 

2.5 CONCLUSIONS 

Growth was remarkably unresponsive to the applied N, much less so than one 

expects from previous work on forest stands, and may be attributed to the possible 

inhibitory effects of excessive nitrogen on soil microbial biomass and activity, and 

other nutrient limitations, such as phosphorus, within the closed environment of a 
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microcosm. Shoot tissue-N responded significantly over a period of three months 

with increasing fertiliser inputs. The results suggest that a fraction of the applied N 

was directly taken up by the shoots while approximately half was found remaining in 

the soil. No changes were observed in the soil carbon concentration, which suggests 

that microbial biomass did not increase with increasing nitrogen additions. However, 

phenolics in the shoots declined significantly with increasing N. Since secondary 

metabolites govern chemical defence systems, the plants may be more susceptible to 

pest attack by herbivores. There was not a threshold response but a gradual decline in 

phenolics with increasing nitrogen application. The study reveals the need for the 

'critical load concept' for atmospheric nitrogen depositions to be more site and 

species specific in order to be truly effective. 

40 



Chapter 3 

3. A LABORATORY TECHNIQUE TO MEASURE CO2 

FLUXES FROM SOIL 

3.1 INTRODUCTION 

The storage of carbon as soil organic matter plays a vital role in the global carbon 

cycle. Approximately 1,500 x 1015 g of carbon is stored in the upper meter of soil 

(Jobbágy and Jackson, 2000), which constitutes the second largest pool of carbon in 

the biosphere after oceans (Schlesinger, 1991). The reservoir of carbon stored in the 

soil has the potential to greatly influence atmospheric CO2 concentrations because 

the process of decomposition returns carbon sequestered by photosynthesis to the 

atmosphere. CO 2  flux from the soil to the atmosphere is estimated to be 50 - 70 x 

10 15 g of carbon per year and makes up 20 - 38 % of annual inputs of carbon in the 

form of CO2 to the atmosphere from terrestrial and marine sources (Raich and Potter, 

1995). Thus, the efflux of CO 2  from the soil is an important component of the global 

carbon balance (Baldocchi et al., 1986). Currently, the global terrestrial biosphere is 

a carbon sink of about 2 x 1015 g because the net primary productivity is enhanced by 

elevated CO 2  and nitrogen deposition (IPCC, 2000). However, climatic warming 

ranging from 1.5 - 5.0 °C is predicted in 100 years that may effectively change the 

sink into a source because of the impact of temperature on decomposition of soil 

organic matter (IACGEC, 1996). Many previous studies have measured CO2 

evolution and demonstrated the relationship between soil respiration and 

environmental factors (Anderson, 1973; Weber, 1985; Gordon, Schlenter and Van 

Cleve, 1987, Lloyd and Taylor, 1994). However, it is not entirely known how 

climate change would affect the storage of organic carbon in soils (Van de Geijn and 

Van Veen, 1993; Post et al., 1990). In some models, the entire global stock of carbon 

is deemed to be vulnerable to climatic warming and is considered to be uniformly 

sensitive to temperature (Cox el al., 2000), but in practice this sensitivity is not well 
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established (Liski et al., 1999; Valentini et al., 2000). Hence, the ability to accurately 

quantify carbon dioxide flux from soil is of paramount importance to improve the 

understanding of soil organic matter turnover and incorporate this knowledge into 

simulation models (Hansen et al., 1991). Moreover, the rate of soil respiration is 

governed directly or indirectly not only by a major environmental factor such as 

temperature but also affected by secondary factors of soil depth, nutrient status of the 

soil, moisture, oxygen status and the availability of the substrate. All these factors 

vary with depth, hence, the need arises to determine the region within a soil profile 

that contributes most to soil respiration and the response of that layer to changes in 

temperature and nutrient inputs. 

Soil respiration has previously been determined in the field as well as in the 

laboratory, as summarised by Schinner et al. (1996). Field investigations are 

commonly done with closed measuring devices (Fang and Moncrieff, 1996; 

Rayment, 2000). However, the measurements are subject to uncontrolled variations 

in the environment. Laboratory methods on the other hand enable single variables to 

be controlled at will whilst others are held constant. The three main laboratory 

techniques involve a) carbon dioxide measurements in a closed system, b) carbon 

dioxide measurements with continuous measurements, and c) continuous 

measurements of oxygen uptake. In this study an 18 channel, continuous flow, multi-

point gas analysing unit was constructed wherein soil microcosms were continuously 

aerated with ambient air and the CO2 flux was derived from the difference in carbon 

dioxide concentration between the inflowing and outgoing air. In laboratory 

experiments, sample preparation also plays an important role in determining the 

accuracy of measurements. A majority of the previous studies have used restructured 

soil. However, altering the inherent structure of the soil profile may change the 

response of soil respiration to environmental variables such as temperature (Fang and 

Moncrieff, 2001). In this project intact soil microcosms have been studied under 

laboratory conditions with the aim of introducing minimum disturbance to the soil 

structure and composition so as to increase the accuracy and reliability of 

42 



Chapter 3 

measurements. The phase of initial CO 2  flush was also closely monitored to 

determine the time period taken by small soil samples to attain a state of equilibrium. 

While a significant correlation between soil temperature and carbon mineralisation is 

well established, there is no agreement about which function best describes the 

relationship between soil carbon mineralisation and temperature (Lloyd and Taylor, 

1994). From laboratory experiments, two main approaches can be distinguished to 

obtain data for fitting functions: first, comparing instantaneous CO 2  efflux rates at 

different soil temperatures and second, an analysis of the time series of CO2 efflux 

using a decomposition model. Each approach has certain disadvantages: when 

measuring instantaneous CO 2  efflux one has to cope with the problem that the 

apparent temperature sensitivity of CO2 efflux may be dependent on the point in time 

when the flux is measured, implying that studies are not comparable when measuring 

respiration at different pre-incubation times. On the other hand, when measuring 

longer time series CO2 efflux, artificial conditions may arise due to the formation of 

toxic by-products. These problems introduce uncertainty into the estimation of 

parameters for temperature response functions of decomposition used in ecosystem 

and soil organic matter models. In this study the response of soil respiration to 

temperature was analysed during short- and long-term laboratory incubations using 

instantaneous CO 2  efflux rates and monitoring decomposition to determine the 

temperature sensitivity of the process. 

The aim of this thesis is to use the laboratory technique to explore the effect of 

temperature and N-deposition on CO 2  fluxes. In this chapter the basic methodology 

of flux measurement is presented and some of the critical aspects of the technique are 

demonstrated with a series of experiments to investigate i) the equilibration time of 

small soil samples, ii) the influence of sampling depth in the soil, iii) the effect of 

incubating at a given temperature prior to measurement, iv) the occurrence of 

hysteresis, and v) differences in field and laboratory measurements. 

43 



Chapter 3 

3.2 MATERIALS AND METHODS 

3.2.1 Site 

Field experiments were carried out in six plots located at Castlelaw Hill (55° 52' 22" 

N, 3° 14' 3" W) in the Pentland Hills near to Edinburgh, at an altitude of 435 meters 

above mean sea level. The area receives an annual rainfall of 1000 - 1200 mm; 

however, 1999 - 2000 was wetter than average. The moderately steep hill slope was 

covered with a dense stand of mature heather, Calluna vulgaris (L.) Hull (Figure 

3.1). Based on a study by Fowler et al. (1989), wherein atmospheric inputs were 

measured for an area of moorland along the Scottish borders in Northern Britain, the 

background levels of nitrogen inputs were estimated to be 12.4 kg N ha -1  yr1  made 

up from 8.0 kg N ha- ' yr1  of wet deposition, 4.0 kg N ha-1  yf' of dry deposition and 

0.4 kg N ha-1  yr1  by cloud interception. 
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Figure 3.1 Site location of the experimental plots at Castlelaw Hill, in the Pentland Hills near 
Edinburgh, Scotland. A dense stand of mature heather Calluna vulgaris (L.) Hull covers the 
moderately steep hill sides. 
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Soil at the site is classified as a 'Dirrington', a freely drained humus iron podzol of 

the Bemersyde association, which averages 25 cm deep (Ragg and Futty, 1967; 

MISR, 1969). The parent material is stony drifts derived from rhyolites and trachytes 

(Trudgill, 1989). The heathiand floor is mainly composed of a thin 0.5 - 1 cm litter 

layer, also known as the 0 horizon, followed by a 3 - 5 cm raw humus H horizon that 

exhibits a strongly acid reaction. The A 1  horizon measures 1 cm, is dark in colour 

and incorporates humic acids. The 7 - 10 cm thick, grey bleached A 2  horizon dark 

with a low organic content, is pale in colour. The underlying 5 - 7 cm B 2  horizon is 

well developed and bright in colour with strong humus/iron staining at the top edges. 

There is a sharp change into a paler, indurated, intermittent B 1  and C horizon of 

parent bed rock. Most heather roots were concentrated in the upper H and A horizons 

of the soil profile. 

3.2.2 Experimental Design 

Three treatment and three control plots, each measuring a 3 m X 3 m square, were 

laid out with a separation gap of Im between adjoining plots. Nitrogen was applied 

to three randomly selected treatment plots as an ammonium nitrate, NH 4NO 1 , 

solution (BDH Laboratory Supplies, Poole, England) in six, 10 kg N ha yr doses 

over a period of one year; thus input being equivalent to a total of 60 kg N ha yr 

Every N aliquot was applied uniformly over each plot in 2 litres of distilled water as 

a fine mist using a controlled pressure knapsack sprayer (KS - 15L: P/N 100221, 

Oregon, Blount, UK). The treatment plots were fertilised in August, October, 

December 1999 and February, April, June August 2000. 

A wooden temperature probe, was inserted into the soil profile with type-T 

thermocouple wires measuring soil temperature at depths of 1, 3, 5, 10 and 20 cm 

from the surface. The output data were collected by a data logger (DL-5864, Delta-T 

Devices, Cambridge, England) during different seasons of the year. 
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3.2.3 Soil Collection 

A sampling corer was designed to collect blocks of soil with minimum disturbance to 

the structural integrity. The galvanised steel corer was rectangular in shape with a 

movable head plate, which was internally connected to a piston enclosed within a 

short central shaft (Figure 3.2). When the corer was pushed into the soil, the piston 

rose out of the central shaft to provide a handle to remove the corer from the soil and 

subsequently the sample could easily be ejected from the corer by pushing down the 

piston. The dimensions of the corer were 1.0 cm smaller than the microcosm 

chamber so that the sample could be directly and swiftly transferred to the chamber, 

allowing an aeration space around the sample. The lids of all the chambers were 

immediately sealed with non-corrosive silicon rubber (Valiance, Leeds, UK) in the 

field and transported to the laboratory in a cold box at approximately 5 °C. Soil 

respiration was measured in the laboratory with an 18 channel, continuous flow, 

multipoint gas analysing unit. 
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Figure 3.2 A sampling corer designed to collect small, intact soil samples with minimum disturbance 
to the structural integrity. 
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To explore the effect of sample size, samples of two sizes were collected. The larger 

samples had a volume of 21 x 14 x 4 cm while the smaller samples measured 9 x 7 x 

4 cm. All microcosm samples for CO 2  flux studies were collected from the H horizon 

of the soil profile in autumn after the growing season in October 2000. Samples were 

incubated at the field temperature of 5 °C and soil respiration was monitored on an 

hourly basis using the laboratory gas analysis system. After all the samples had 

achieved a steady state of respiration, the incubation temperature was increased to 

15 °C and CO 2  fluxes were measured once again. 

To investigate the effect of depth in the soil, additional soil samples were collected 

from the experimental site in the summer month of July 2000 at the peak of the 

heather growing season and once again in October 2000 at the end of the growing 

season in late autumn. A soil corer of length 65 cm, with an inner diameter of 5.8 cm 

was used to collect an undisturbed, intact core from the soil profile. The core was 

subsequently sliced into 4.0 cm thick sections at mean depths of 2 cm in the H 

horizon, 7 cm in the A2  horizon and 12 cm in the B 2  horizon from the top surface, 

and the sections were carefully transferred to soil chambers. All chambers were kept 

in a cooled incubator (Gallenkamp, Loughborough, England) at 6 °C for an initial 

period of 18 hours for the soils to stabilise after the initial flush of CO 2. Carbon 

dioxide efflux from the different depths was determined at 6 0  12 0  20 0  and 25 °C 

using the gas analysis system. 

To study the effect of incubating at a fixed temperature prior to measurement, two 

batches of soil samples were collected from the H horizon of all plots in the month of 

December 1999 for the incubation experiment. The first batch of soil samples was 

further sub-divided into two sets, where one was incubated at 5 °C and the other at 15 

°C, for a period of seven weeks in cooled incubators (Gallenkamp, Loughborough, 

England). Carbon dioxide evolution was measured by the gas analysis unit on days 1, 

6, 15, 29 and 49 at the respective incubation temperatures. The second batch was 

incubated at 5 °C for a period of 44 days and respiration readings were periodically 
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determined on days 1, 5, 13, 25, and 44 across a temperature gradient from 5 °C to 

25 °C in 5 degree intervals. During the period of incubation, the inlet and outlet tube 

openings of the soil chambers were left open so as to allow diffusion of gases to and 

from the soils. The samples were frequently weighed and moistened with distilled 

water, if necessary, to replace water lost by evaporation. 

To examine the response of soil respiration across an increasing and thereafter 

decreasing temperature gradient, the hysteresis effect, soil samples were collected 

from the H horizon in July 2000 from the experimental field with the help of the 

sampling corer. Samples were stored in a cooled incubator (Gallenkamp, 

Loughborough, England) set at 5 °C for 18 hours to allow for the initial flush of CO 2  

before measuring the response of soil respiration to temperature using the gas 

analysis system. Soil respiration was measured across a rising temperature gradient 

of 50 - 25 °C with 10 °C increments and thereafter a falling temperature gradient 

from 25 °C to 5 °C with a step-wise 10 °C interval. 

To compare the laboratory reading of soil respiration with field measurements, a 

portable CO 2  analyser with an environmental gas monitor (WMA3 - EGM2, PP 

Systems, Hertfordshire, England) was used to take soil surface carbon dioxide 

effluxes from the experimental field site at a mean depth of 3 cm from the surface. 

Thereafter, the upper H horizon of soil was removed and soil respiration was 

measured at a mean depth of 7 cm. Simultaneously, soil samples were collected in 

June 2001 from the H horizon of all plots, immediately transported to the laboratory 

in cold boxes, and CO 2  fluxes were measured at field temperature in the laboratory 

using the gas analysis system. 

3.2.4 Gas Analysis System 

An analytical unit was designed to measure CO 2  fluxes at a range of temperatures in 

the laboratory from a series of soil samples collected from the field. The 18 channel, 

continuous flow, multi-point, 'open chamber system' is shown in Figure 3.3. 
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Figure 3.3 Gas analysis system for measuring carbon dioxide fluxes from small, intact soil cores in 
the laboratory. Key: C = soil chamber, F = flow meter, V = 3-way solenoid valve 

A diaphragm pump (B100DE-Duplex 2F, Charles Austen, Weybridge. UK) drew 

ambient air at a rate of approximately 20 litres per minute from an external pipe into 

a 10 litre humidifying 'buffer' tank and pumped the moist air into all the microcosm 

chambers. The humidifier provided water saturated air, and prevented desiccation of 

the samples, while the volume of the tank reduced fluctuations in atmospheric CO 2  

concentrations in the gas handling unit. The chambers were constructed from 

standard sealed diecast boxes (224 - 802, RS Components, Corby, England) with 

inlet and outlet connectors fitted on to the lids. The temperature of each soil sample 

was recorded by a type-T thermocouple, inserted into the soil and connected to a 

49 



Chapter 3 

datalogger (21X, Campbell Scientific, Shepshed, UK). The chambers stood 

immersed in a controlled temperature water bath (W46 DC1O - EK20, Haake, 

Karlsruhe, Germany). Each sample line was fitted with a polycarbonate air flow 

meter (Key Instruments, USA) to enable the flow rates to be adjusted and balanced, 

and a 3-way solenoid valve, which when activated, diverted the outlet airstream to 

the Infra Red Gas Analyser (225 MK3, Analytical Development Co. Ltd., 

Hoddesdon, England), through which air was circulated by the IRGA's internal 

pump and further monitored by the in-built flow meter. The solenoid valves were 

manually controlled by illuminated neon switches mounted on a control panel. A 

heating tape was fitted around both the reference and analysis air lines to prevent 

condensation of water vapour in the lines and minimise errors resulting from cross-

sensitivity to water vapour in the gas analyser. Sequential measurements of soil 

respiration were made for all the samples at either a set temperature or across a range 

of temperatures. Every chamber was sampled for 5 minutes at every set temperature, 

with the mean value being recorded. After every reading the sensor cell of the gas 

analyser was flushed for a minute. For each temperature change, the soil sample was 

allowed to slowly attain the temperature over a period of 30 minutes and thereafter 

stabilise for an additional four hours with continuous aeration before readings were 

taken. The entire system was monitored on a personal computer with a graphical 

display of the CO 2  concentrations and corresponding chamber temperature readings. 

3.3 RESULTS 

3.3.1 Sample Size and Time Course 

Figure 3.4 shows the time course of respiration when large and small soil samples 

were incubated initially at 5 °C and then exposed to a stepwise increase of 

temperature to 15 °C. A marked difference was noted for the time taken by the 

smaller soil cores to achieve a steady state of respiration as compared to the larger 

samples. Constant soil respiration readings were recorded within 16 hours for the 
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smaller samples but required an additional 3 hours in the larger samples. Thereafter, 

rates were constant and independent of the size of the soil sample. 
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Figure 3.4 The time course of respiration when small [control (o), treatment (•)I and large [control 
(v), treatment (v)J soil samples were incubated and monitored, immediately upon collection, at 
initially 5 °C and then at 15 °C after 21 hours (mean ± SE., n = 9). 

Following the stepwise change in incubation temperature, after 21 hours of 

incubation, the smaller microcosms reached a state of thermal equilibrium in 35 

minutes while the larger microcosms took an average of 50 minutes. All the samples 

recorded a sharp increase in soil respiration at 21 hours followed by a gradual decline 

to a constant. The period of initial CO 2  flush after a 10 degrees rise in temperature 

for the small and large samples was 4 and 6 hours respectively. 
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Both small and large cores reached the same state of equilibrium at 5 and 15 °C and 

soil respiration readings did not differ significantly between the large and small 

samples. 

Treatment had no significant effect on the either the length of time taken to attain 

thermal equilibrium or the period of CO 2  flush in both the small and large 

microcosms. However, all cores collected from treatment plots showed higher rates 

of respiration than the controls at 15 °C. 

3.3.2 Sample Depth 

Soil respiration declined significantly (P < 0.005) with sample depth (Figure 3.5) and 

at all incubation temperatures, the H horizon at a mean depth of 2 cm had the highest 

rate of respiration in both control and treatment plots, followed by A2 (mean depth = 

7 cm) and B 2  (mean depth = 12 cm) horizons. The rates of respiration from all 

sample depths increased with temperature in accordance with the exponential first-

order equation. The estimated Qio  decreased with depth over the temperature range 

of 6 °C to 25 °C (Figure 3.6). 

In summer, for control plots, the Qio  decreased from 2.47 in the H horizon to 2.27 in 

the A2  horizon and then to 2.00 in the B2 horizon. A similar trend was observed in 

the treatment plots with the Qio  value dropping with each depth level; from 2.53 in 

the H horizon to 2.37 in the A 2  to 2.01 in the B 2. The same declining trend was 

recorded in autumn for all the plots, however, in comparison to summer values, Qio 

was slightly lower in the H and A2 horizons while remaining constant in the B 2  

horizon over the two seasons. 

Although treatment had no statistically significant effect on the response of soil 

respiration to temperature, during both sampling times, respiration in all horizons is 

slightly higher in the treatment plots as compared to control plots. 
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Figure 3.5 Soil CO2  flux rates at depths of 2, 7 and 12 cm from the surface during (A) summer - July 
2000 and (B) autumn - October 2000 (mean ± S.E., n = 9). 
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SOIL PROFILE DEPTH CONTROL TREATMENT 
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Figure 3.6 The decreasing response of Qio  with depth across the soil profile, as noted for the H, A 
and B horizons during summer - July 2000 and autumn - October 2000. 

The daily temperature of the different soil horizons was logged during the study 

period in 2000 and the temperature probe interfaced with a datalogger recorded a 

gradual decrease in temperature with an increase in soil depth as shown in Figure 

3.7. 
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Figure 3.7 Diurnal soil temperatures during summer and autumn at 1, (.), 3 (0), 5 (v), 10 (v), and 20 
(a) cm depths as recorded by a temperature probe interfaced with a datalogger at the experimental 
field site at Castlelaw Hill. Data points are the mean temperatures recorded at 1200 hours. 

3.3.3 Incubation Time 

In the incubation experiments respiration rates for both control and treatment 

samples remained constant during the first 15 days of incubation at 5 °C and 15 °C 

with variation less than 0.005 .tmol CO2 m 2  s1  in absolute respiration rates (Figure 

3.8). Thereafter, a constant decline in soil respiration was noted in all samples 

incubated at both temperatures. 
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Figure 3.8 Soil respiration rates for small, intact cores, from control [ 5 °C (s), 15 °C (0)1 and 
treatment [ 5 °C (v), 15 °C (v)] plots (mean ± SE., n = 9), incubated and measured at the same 
temperature of 5 °C or 15 °C. 

A similar pattern was observed for the Qio  values, which fluctuated no more than 

0.01 during the first 15 days of incubation and then sharply increased (Figure 3.9) 

from 2.31 to 2.67 and from 2.39 to 2.72 for control and treatment samples 

respectively. 

Nitrogen fertiliser inputs had no significant effect on the rates of soil respiration 

during incubation but treated samples recorded slightly higher readings at 15 °C. 

During the last 34 days of incubation, soil respiration values recorded a greater 

absolute decline at 15 °C than at 5 °C, for both control and treatment samples. 
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Figure 3.9 Response of Qio  with time over a period of 46 days for control (o) and treatment (.) 
samples (mean ± S.E., n = 9) incubated and measured at 5 °C or 15 °C. 

When control and treatment samples, maintained for 44 days at a constant 

temperature of 5 °C were subjected to an increasing range of temperatures, they 

showed an exponential increase in soil respiration with respect to temperature 

(Figure 3.10). The respiration rate at 5 °C was fairly constant till Day 5 and thereafter 

rapidly dropped to almost half the initial respiration rate by the end of the incubation 

period. 

The Qio  values were constant till Day 5 but then steadily increased (Figure 3.11). 

After 2 weeks of incubation the Qio  increased from 2.5 to 2.9. There was no 

detectable effect of treatment on this pattern. 
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Figure 3.10 The time response of soil respiration rates for (A) control and (B) treatment samples 
(mean ± S.E., n = 9) incubated at 5 °C but measured across a rising temperature gradient of 5 —25 °C 

on Day i(s), Day  (o), Day 13 (v), Day 25 (v), and Day 46 (.). 
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Figure 3.11 Response of Qio  with time over a period of 49 days for control (o) and treatment (.) 
samples (mean ± S.E., n = 9) incubated at 5 °C but measured across an increasing temperature 
gradient of5-25 °C. 

3.3.4 Hysteresis 

The effect of increasing and decreasing temperatures on carbon mineralisation of 

heathiand soils is shown in Figure 3.12. In this experiment the warming and cooling 

cycles took 11 hours each. In all samples, both control and treatment, soil respiration 

increased exponentially with an increase in soil temperature and thereafter decreased 

exponentially in the same way. The trend was reflected in the Qio  values with no 

significant difference between the Qio  values across the temperature gradients, either 

while increasing or decreasing. 
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Figure 3.12 The response of soil CO 2  fluxes with temperature for (A) control and (B) treatment 
samples (mean ± S.E., n = 9) across an increasing (.) and decreasing (0) temperature gradient. 
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Treatment had no significant effect on the response of soil respiration and did not 

change the magnitude of the response at any given specific temperature over a period 

of 22 hours, irrespective of the previous soil temperature. However, higher Qio 

values were noted for treatment samples as compared to control. Treatment plots 

recorded Qio  values as 2.70 and 2.75 while control plots revealed slightly lower Qio 

values at 2.36 and 2.40 for increasing and decreasing temperature intervals 

respectively. 

3.3.5 Field versus Laboratory Measurements 

Carbon dioxide fluxes from the soil profile as measured in the field ranged from a 

mean value of 1 .25 to 1 .45 tmol CO2  m 2  s 1  for control and treatment plots 

respectively. 

Experimental Plot (no.) 

Figure 3.13 Comparison of soil carbon dioxide fluxes from the H horizon as measured in the 
laboratory (.) and in the field (o) for control (no. 2, 4, 6) and treatment (no. 1, 3, 5) plots (mean ± 
S.E., n=9). 
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Upon removing 4 cm of H horizon and determining soil respiration from the 

subsequent reduced profile, the carbon dioxide fluxes contributed by the H horizon 

could be calculated. The field values compared well with the laboratory 

measurements of soil respiration from the H horizon and there was no statistically 

significant difference between the means for each plot (Figure 3.13). 

3.4 DISCUSSION 

3.4.1 Sample Size and Time Course 

A general problem faced with laboratory incubated soil samples is that the 

respiration rate is initially very high due to the disturbance of the soil structure 

during sample preparation but then gradually declines to a lower level (Winkler, 

Cherry and Schlesinger, 1996). Even after the initial flush, CO, efflux may be 

several times higher during the initial stages of decomposition than that observed at 

the end of the incubation period under constant conditions (Liebeg et al., 1995; 

Torbert, Prior and Rogers, 1995). This flush is not well-understood. Disturbance may 

provoke a wound' response in broken roots and hypae. Another possibility is that 

we are dealing with the release of carbon dioxide trapped in gas-filled pores, and the 

larger samples take longer because the diffusion path is longer. Irrespective of the 

cause, determining the time period of flush and stabilisation for a specific sample 

size is vital to accurately determine soil respiration rates in the laboratory. Moreover, 

incubating soil samples to study the response of soil respiration to temperature under 

laboratory conditions may lead to anomalies in CO 2  efflux rates due to the altered 

structure and size of the soil sample (Lomander, Kätterer and Andrén, 1998). 

Lomander, Kätterer and Andrén (1998) modelled the effects of temperature on 

carbon dioxide evolution from soil and concluded that flux measurements performed 

on intact soil cores yield far more accurate results than disturbed samples. 
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Several authors have argued that soil samples should be large in order to adequately 

represent field conditions (Thomson et al., 1997; Fang and Moncrieff, 1998 b). 

However, harvesting large samples from field sites may not prove to be ideal or 

convenient if the samples need to be frequently collected, with replication, especially 

during long-term, intensive studies monitoring seasonal trends. The removal of large 

volumes of soil from experimental plots would affect the plant-soil interactive 

balance and introduce a further element of error. Moreover, small soil samples would 

ensure a rapid equilibration time. Therefore, the smaller the sample, the more 

accurate will be the laboratory representation of the response of soil respiration to 

temperature under natural field conditions. Small re-constructed soil samples have 

been previously studied but some authors have shown a continual decrease in 

respiration rates after an initial CO, flush (Pohhacker and Zech, 1995; Winkler, 

Cherry and Schlesinger, 1996). This has been attributed to the removal of roots, 

which may deactivate microbes during incubation, and the constant depletion of soil 

organic matter with time. The use of small intact soil cores has not yet been 

thoroughly explored. Hence, one objective of this study was to determine if smaller 

samples of intact soil could provide accurate estimates of soil respiration during 

laboratory incubations at different temperatures. 

The results in the present experiments do prove that small samples of intact soil can 

provide accurate measures of soil respiration by the laboratory incubation technique. 

The steady state of respiration reached by the small and large samples within a short 

period of 16 and 21 hours respectively may be attributed to the fact that the samples 

were not tightly fitted into the chambers but had a circulation space all around. Thus 

CO2  molecules within the sample could more rapidly diffuse into the airstream, 

thereby also preventing the build-up of a CO 2  gradient in the soil profile. Thus the 

equilibration time for temperature was much shorter than the 18 hours reported by 

Fang and Moncrieff (2001) for a 4500 cm 3  chamber. After reaching a steady state in 

the small chambers, soil respiration was recorded for a further 5 hours and no 

significant decrease with time was noted. This suggests that the soil organic matter 
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does not rapidly deplete in agreement with the findings of Winkler, Cherry and 

Schlesinger (1996) who found organic matter to be considerably stable even after a 

120 day incubation. Recently, a similar result was also recorded by Grisi etal. (1998) 

for temperate and tropical soils. Hence, it may be concluded that the soil organic 

matter of small samples can support the resident microbial population just as well as 

larger samples because the proportion of microbial load will correspond with soil 

volume. 

The flush of CO 2  from all samples after the temperature change, when the soil 

temperature was raised to 15 °C, might be accounted for by the reduction of carbon 

dioxide solubility in the soil solution upon warming and the consequent release of 

CO2 from CO2-saturated solution. Thereafter, the smaller chambers attain a steady 

state of respiration within 4 hours while the larger chambers take an additional two 

hours. However, all cores reach the same state of equilibrium at both incubation 

temperatures proving that small samples do not reduce the accuracy of response of 

soil respiration to temperature. On the contrary, small samples provide a rapid and 

convenient measure of CO 2  efflux from soil. 

3.4.2 Sample Depth 

Previous studies have shown contrary trends in soil respiration rates with an increase 

in soil depth. Early investigations (Lundegárdh, 1924; Smith and Brown, 1932; 

Makarov, 1958) revealed a decrease in CO 2  concentration down the soil profile and 

De Boois (1974) found that Qio  between 5 °C and 20 °C in a woodland soil profile 

averaged 3 for the upper litter layers and 2 for humus layers, thereby concluding that 

the magnitude of microbial temperature responses may decrease down the soil profile 

as the residual organic matter becomes depleted in available carbon. Similar patterns 

of decreasing Qio  values with increasing depth in soil profiles have been described 

by De Jong and Schappert (1972); Bunnell et al. (1977); Ross and Tate (1993); 

Winkler, Cherry and Schlesinger (1996); Lomander, Kätterer and Andrdn (1998). 

However, contrary patterns with an increase in soil CO 2  concentration with 
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increasing soil depth have also been periodically documented (Cosby et al., 1985; 

Castelle and Galloway, 1990; Crill, 1991; Hersterberg and Seigenthaler, 1991; 

Fernandez et al., 1993; Yavitt, Fahey and Simmons, 1995; Fang and Moncrieff, 1998 

b). Despite the widespread belief that higher global temperatures will increase the 

rates of microbial decomposition in soils, there is little information on the magnitude 

of this effect in different soil horizons of specific ecosystems (Kirschbaum, 1995), 

and especially in conjunction with elevated deposition of atmospheric pollutants. 

The surface horizons contain 'fresh' organic material with constituents such as 

protein and cellulose, which are known to decompose rather easily (Kladivko and 

Keeney, 1987). The older deeper horizons are likely to be depleted in these labile 

constituents and enriched in recalcitrant compounds such as lignin and chitin. A 

range of techniques have been adopted through the years to measure soil respiration 

down the soil profile. In laboratory investigations, to determine the soil respiration of 

a specific layer, De Jong and Schappert (1972) took undisturbed core samples and 

measured CO2 evolution in a controlled environment while Witkamp and Frank 

(1969) calculated the respiration of individual layers of the soil profile by 

progressively removing layers from the top of the profile and measuring the changes 

in CO2  evolution. In later ex-situ studies (Ross and Tate, 1993; Winkler, Cherry and 

Schlesinger, 1996) samples from different horizons were collected from the wall of a 

large single pit, excavated to expose the entire soil profile. In this project, soil corers 

were utilised due to the shallow depth of the soil profile. 

The results observed in the present study suggest that in spring, with the 

commencement of the growing season after a low period of metabolic activity in 

winter, decomposition rapidly increases in the top of the soil profile with soil 

respiration rates being highest in the uppermost horizon and gradually decreasing 

with depth. Soil organisms are capable of long period of minimal activity or 

dormancy and becoming highly active when environmental conditions are most 

favourable (Paul and Clark, 1989). Winkler, Cherry and Schlesinger (1996) studied 
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CO2 effluxes in the soil profile of a temperate forest and also found that the soil 

respiration varied with soil horizon, wherein the A-horizon had the highest rates of 

respiration, followed by B- and E- horizon soils. Lomander, Kätterer and Andrén 

(1998) modelled soil C evolution rates under laboratory conditions to conclude that 

the CO2 evolution rate per unit of soil carbon is about twice as high for topsoil than 

for subsoil. This trend can be explained by higher soil temperatures and microbial-

plant activity in the surface layers of soils. The H horizon contains the bulk of 

heather plant roots, and probably also the highest microbial density. Microbial 

population, root growth and plant exudates would thus be maximum in the H 

horizon, which consists of raw humus while the underlying grey-coloured bleached 

A2 horizon has little organic matter, which is the key substrate of soil respiration. 

Respiration in the mineral B 2  layer is constant with no fluctuations between all the 

plots because it is a root-free zone and the soil material would not be able to support 

a proliferating microbial population. Ross and Tate (1993) documented microbial C 

and N, and respiratory activity in a Beech forest soil and reported that microbial C 

and N, and total soil C and N percentages decrease with depth. The lower CO 2  fluxes 

measured in late October 2001, at the end of the growing season in autumn, can thus 

be attributed to reduced activity with decreasing carbon inputs, as a result of which 

the CO2 profile in the soil strata drops to a slightly lower level. 

Soil respiration for each horizon increased across the incubation temperature 

gradient. The rates of respiration from all the horizons increased with temperature in 

accordance with the exponential first order equation. The Qio  for the horizons 

decreased with depth and varied between 2.53 - 2.00 over the temperature range of 

6 °C to 25 °C. This result compares well with the findings of Ross and Tate (1993) 

and Winkler, Cherry and Schlesinger (1996) where metabolic quotients in all 

samples, and under all incubation conditions were higher in organic than in mineral 

horizons in a vertical soil profile. Under field conditions, soil temperature decreased 

with depth, as recorded by the temperature probe during the summer and early spring 

of 2000. Hence, the results suggest that in situ soil carbon dioxide fluxes would also 
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decrease down the soil profile since in the laboratory soil respiration increases with 

temperature. 

No significant difference was noticed between the control and treatment plots during 

both sampling times but respiration and Q 10  values were consistently higher in the 

treatment plots for the upper two horizons. This pattern suggests that the nitrogen 

inputs do support higher rates of respiration in the H and A 2  horizon but the fertiliser 

does not reach the lower B 2  horizon. 

3.4.3 Incubation Time 

Winkler, Cherry and Schlesinger (1996) incubated soil samples to find soil 

respiration rates increased exponentially in accordance with the Arrhenius equation 

for temperatures between 4 - 38 °C, however, CO 2  evolution varied significantly 

with time of incubation. In a similar incubation study, Holland, Townsend and 

Vitousek (1995) found that increasing the temperature from 5 - 15 °C caused large 

increases in CO2 evolution whereas increasing the temperature beyond 25 °C had a 

lesser effect on respiration, which may be attributed to substrate limitation. In the 

incubation studies of this project it was demonstrated that respiration remains stable 

for two weeks after the samples had been collected and a high correlation between 

soil respiration and soil temperature, that is in general agreement with many previous 

reports (Oberbauer et al., 1992: Bridgham and Richardson, 1992; Fang et al., 1998). 

The main reason for the high correlation between CO2 efflux and soil temperature in 

the experiment could be that soil moisture was never a limiting factor during the 

period of incubation. Thereafter a steady decline in soil respiration was observed till 

the end of the incubation period suggesting that the labile substrate concentration has 

decreased to a value lower in relation to the rates of respiration because the pool of 

labile carbon was not replenished by new inputs of organic C from roots and above 

ground litter. This trend, presented in Figure 3.8, contrasts with previous 

investigations (Pohhacker and Zech, 1995; Holland, Townsend and Vitousek, 1995; 

Winkler, Cherry and Schlesinger, 1996), wherein respiration rates decreased during 
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incubation without an initial steady state. However, the constant decline recorded in 

the studies may have been due to the pre-treatment, where homogenisation of the soil 

samples could have made larger surfaces available to microbial attack (Caberra and 

Kissel, 1988), thereby disrupting the natural decomposition regime. In the present 

study, the sharper decline in soil respiration after 15 days for all samples incubated at 

15 °C, in comparison to samples at 5 °C, may be attributed to the fact that at higher 

temperatures, the easily decomposable fraction will be mineralised more quickly than 

at lower temperatures (Pal, Broadbent and Mikkelsen, 1975; Kralova, Kubat and 

Novak, 1980; Donnelly et al., 1990; Trumbore, Bonani and Wolfi, 1990; Townsend, 

1993; Schimel et al., 1994). Hunt (1977) pointed out the risk of substrate depletion 

with exhaustion of readily available substrates under conditions favourable for 

microbial activity, but not under less favourable conditions. Thus soil respiration 

determined within the first two weeks of incubation would best represent natural 

field conditions where the microbial physiological response to temperature is not 

confounded with substrate limitation. 

The soil respiration pattern over time is supported by the dynamics of Qo  for 

instantaneous C-mineralisation rates. The carbon mineralisation rates were clearly 

dependent on soil temperature between 5 and 15 °C. The temperature dependence 

was best described by the exponential Qio  model with higher Qio  values with 

increasing time intervals. The absolute values of Qio  during the period of incubation 

range between 2.38 and 2.85 for treatment and control samples, which fall within the 

reported range of 1.9 and 3.7 (Anderson and Domsch, 1986; Carlyle and Than, 1988; 

Crill, 1991; Kim and Verma, 1992; Hanson etal., 1993; Howard and Howard, 1993; 

Peterjohn et al., 1994; Fang et al., 1998). Initially the Qo values for both control and 

treatment plots are fairly constant, with a variation of no more than 0.002 for all the 

plots, and consistent with the mean value of 2.4 given by literature reviews (Raich 

and Schlesinger, 1992; Kätterer et al., 1998), but when the easily decomposable 

fraction is almost completely decayed the Qo  values start rising sharply. This 

suggests that other interactions may influence the mineralisation response to 

68 



Chapter 3 

temperature, such as substrate quality (Novak, 1974; Bunnell et al., 1977; Anderson, 

199 1) and incubation time (Lomander, Kätterer and Andrén, 1998). Therefore, it may 

not be advisable to derive the Qio  of C-mineralisation from the respiration rates at 

any one arbitrary incubation time, because the temperature effect is affected by the 

incubation-time effect. Nicolardot, Fauvet and Cheneby (1994) conclusively proved 

that mineralisation rates are influenced by substrate-temperature interactions. 

Subsequently, temperature responses will depend on the time selected for the 

analysis. One way to solve the problem faced by the incubation technique to 

determine the temperature response of soil carbon mineralisation under laboratory 

conditions is to calculate the Qio  values from only the respiration rates at the 

beginning of the incubation, soon after the initial flush, introduced by sample 

preparation because the samples are still unaltered. Soil respiration readings within 

the first week of incubation would best represent field measurements. 

Nitrogen addition had no statistically significant effects on the response of soil CO 2  

fluxes over time and increased temperature rates but ammonium nitrate treated 

samples incubated at 15 °C had higher respiration rates during the first 15 days and a 

sharper decline thereafter in comparison to the control samples. An identical trend 

was also observed by Söderström, Btâth and Lundgren (1993) on coniferous forest 

podzolic soils treated with ammonium nitrate fertiliser and incubated for 45 days, 

wherein supplemented soils had higher respiration rates during the first 5 - 12 days 

and subsequently lower CO 2  production rates as compared to control soils. The initial 

increase could be due to increased activity of microorganisms that were nitrogen 

limited and the decrease may be attributed to the more rapid depletion of carbon by 

the microbial population. 

Control and treatment samples incubated for a period of 44 days at a constant 

temperature of 4 °C showed a clear dependence of carbon mineralisation rates on soil 

temperatures. Soil respiration was periodically measured and at every sampling time 

CO2  efflux increased with increasing temperatures. The trend was reflected in the Qin 

69 



Chapter 3 

values calculated by the exponential first-order equation. The initial Qio  values for all 

samples fall within the range of Qio  calculated by previous investigators (Schieser, 

1982; Kirschbaum, 1995) and are similar to the average Qio  of 2.4 calculated by 

Raich and Schlesinger (1992). This result corresponds well with the findings of 

previous soil warming studies (Pohhacker and Zech, 1995). Peterjohn et al. (1993) 

found exponential increases in respiration rates with increasing temperature from 

measurements of a forest floor. It is interesting to note that even during the period of 

incubation, the response of soil respiration to temperature follows an exponential 

trend with an increase in incubation temperature. This suggests a significant 

robustness of the response of soil respiration to temperature even during a long 

period of incubation under fluctuating temperatures. However, a decline in the rate of 

soil respiration is seen earlier, after 5 days, in samples incubated at a constant 

temperature of 5 °C but measured across an increasing temperature gradient, as 

compared to after 15 days in samples incubated and measured at a constant 

temperature. This could be due to the rise in incubation temperature from 5 - 25 °C 

while taking measurements as a result of which more soil organic matter must have 

been consumed by the activated microbial population. In samples where a constant 

incubation and measurement temperature was maintained the microbial communities 

may have got acclimatised with a steady state of respiration. 

3.4.4 Hysteresis 

Soil respiration may vary significantly with fluctuating soil temperature and the 

response may be influenced by the temperature regime. The magnitude of the 

hysteresis shift in response to temperature cycles could provide a useful measure of 

labile carbon pools in litter and soil organic matter in a soil sample and hence the 

potential response of upland soils to rapid environmental change. Little is known 

about the uniformity of the response of soil respiration to temperature. 

Few researchers have studied the influence of fluctuating temperatures on soil 

respiration during laboratory incubations of soil microcosms, especially when using 
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small intact cores. Chapman and Thurlow (1998) conducted peat incubation 

experiments to find differing results where the majority of samples showed no 

change in soil respiration rates whether the temperature was rising or falling but 

others showed a hysteresis effect with higher respiration rates for rising than falling 

temperatures. Anderson and Hetherington (1999) studied heather and bracken litter 

samples, and concluded that litter decomposition also shows a similar hysteresis 

pattern across a temperature gradient. However, Fang and Moncrieff (2001) 

subjected different continuously and staggered temperature changes on large intact 

soil cores from a sitka spruce site and could detect no significant change in soil 

respiration to varying temperature regimes. 

The results suggest that soil respiration rates respond in an exponential manner to 

temperature variations of a small intact soil core over a range of 5 - 25 °C. However, 

soil respiration at a specific soil temperature behaves conservatively and is not 

significantly influenced by the temperature in preceding hours. The lack of hysteresis 

may be partially attributed to the stable chemical composition of peats and soil 

organic matter during the initial phases of decomposition (Anderson and 

Hetherington, 1999). The Qio  values fall within the generally accepted range of 1.9 - 

3.7 (Anderson and Domsch, 1986; Carlyle and Than, 1988; Crill, 1991; Kim and 

Verma, 1992; Hanson et al., 1993; Howard and Howard, 1993; Peterjohn et al., 

1994; Fang et al., 1998) and do not deviate much from the mean value of 2.4 as 

suggested by literature reviews (Raich and Schlesinger, 1992; Kätterer et al., 1998). 

The results agree well with the recent findings on large intact soil samples by Fang 

and Moncrieff (2001) wherein the different procedures for changing the incubation 

temperature, such as continuously increasing/decreasing or increasing and decreasing 

alternately, did not affect soil respiration rates. A similar result was also documented 

by Chapman and Thurlow (1998) investigating temperature responses of microbial 

respiration in 15 Scottish peats, with the exception of samples from two locations 

that showed higher respiration rates for rising than falling temperatures. The 

inconsistent data in their study may possibly have resulted from a high load of raw 
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litter in the soil samples because the chemical composition of litter is far less stable 

than that of soils and changes rapidly during the early stages of decomposition. 

Anderson and Hetherington (1999) studied heather and bracken litters incubated in a 

laboratory experiment under fluctuating temperatures to find microbial respiration of 

the litter samples showed a similar hysteresis pattern with higher rates of CO2 

production for rising temperatures than at the same temperature when temperatures 

were falling. Hence microbial respiration rates for a soil, as opposed to litter, are the 

same for a particular temperature whether the temperatures are rising or falling. 

3.4.5 Field versus Laboratory Measurements 

Laboratory measurements of soil respiration using the gas analysis system compared 

well with field measurements and there were no statistically significant differences 

between the comparative mean values for control and treatment plots. However, 

laboratory measurements were slightly higher than the field values. Hokkanen and 

Silvola (1993) also found that dependency of respiration measurements on 

temperature in intact soil corers differed slightly from those measured in the field and 

concluded that the enhanced mineralisation in the laboratory was due to pre-

treatment, wherein the digging out of the sample would make larger surfaces 

available to microbial attack (Cabrera and Kissel, 1988) thereby increasing fluxes; a 

response that seems to increase with the clay content of soils (Craswell and Waring, 

1972). Lomander, Kätterer and Andrén (1998) attributed the relatively higher CO 2  

fluxes observed in their comparative study to the disintegration of carbonates upon 

homogenisation of the soil samples, which Coleman et al. (1980) showed may 

contribute 30 - 60 % of the carbon dioxide released from carbonate-rich soils. Field 

techniques using static, closed or dynamic chambers, are not entirely error free 

(Ewel, Cropper and Gholz, 1987; Raich and Nadelhoffer, 1989; Nakayama, 1990; 

Rochette, Gregorich and Desjardins, 1992; Hutchinson and Livingston, 1993; Dugas, 

1993; Rayment, 2000) however, the gross over-estimation of C mineralisation by the 

laboratory technique is almost certainly due to the pre-treatment. In the present study 

where intact soil corers were collected with minimum disturbance to the structural 
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integrity of the soil, the laboratory measurements compared well with the field 

measurements. The insignificant differences between the field and laboratory 

measurements could also be attributed to the fact that removing the H horizon in the 

field may have caused an initial flush of CO 2  from the disturbed pore spaces within 

the soil matrix thereby over-estimating soil respiration for the remaining profile. 

Nevertheless, the differences were negligible thus suggesting that the laboratory 

incubation technique using intact soil corers as described in this chapter is an 

accurate, reliable and rapid technique. 

3.5 CONCLUSIONS 

This experiment showed that CO 2  fluxes from soil can be successfully measured in 

the laboratory using small intact soil cores. Microcosms provide a rapid and 

convenient way to measure soil respiration and allow considerable replication. There 

was no evidence to suggest a depletion of substrate in the small samples over a 

periods of several days. Ideally soil respiration must be estimated within the first two 

weeks of a laboratory incubation experiment using small intact soil core samples 

because decomposers may become substrate-limited after a period of time. The 

initial period of CO 2  flush is considerably reduced by employing a small volume of 

soil, surrounded by an aeration space, which also allows thermal equilibrium to be 

quickly achieved within the soil chamber. The laboratory incubation technique can 

accurately estimate the response of soil respiration to temperature under controlled 

conditions. The results suggest that in all the horizons, soil respiration in response to 

temperature follows the exponential first order equation with an increase with 

increasing temperature. However, soil carbon dioxide fluxes decrease with depth, 

and the decline down the soil profile may be caused by decreasing temperatures and 

lower microbial activity. Ammonium nitrate fertiliser did not show a statistically 

significant effect on heathland soils but respiration in plots that received inputs of 

nitrogen inputs was higher in both the H and A 2  horizons as compared to the control 
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plots. Heathland soils rich in organic matter did not show a hysteresis effect. 

Laboratory measurements with the gas analysis system compare well with field 

measurements proving that the gas analysis system designed to measure carbon 

dioxide fluxes from intact soil corers provides an accurate and reliable laboratory 

technique for determining soil respiration. 
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4. ESTIMATING SOIL MICROBIAL BIOMASS 

4.1 INTRODUCTION 

Soil microorganisms play a critical role in the sustainability of ecosystems by being 

both a source and sink for plant nutrients. On one hand, the microbial biomass in soil 

is a relatively large and labile pool of organic matter containing important plant 

nutrients, such as nitrogen and phosphorus, and on the other hand, microorganisms 

are also the main mediators of carbon turnover in soil. During soil organic matter 

decomposition, nutrients pass from the organic matter, through the microbial 

population and are released to become available for plant use. Thus, soil microbial 

biomass performs an important function in nutrient cycling and the capacity of 

microoganisms to serve as a relatively labile source of nutrient elements in soils, is 

well recognised (Bonde, Schnürer and Rosswall, 1988; Duxbury, Lauren and Fruci, 

1991; Franzluebbers, Hons and Zuberer, 1994). 

A measure of the size of soil microbial biomass is of importance in studies of 

nutrient cycling in soils and has been used as an ecological marker (Smith and Paul, 

1990). It has been found that within certain limits there often is a close relationship 

between the soil microbial biomass and the soil's organic carbon content (Jenkinson 

and Ladd, 1981; Smith and Paul, 1986), although the underlying mechanisms for this 

relationship are less well understood. The relationship between the size of the 

biomass and the soil organic carbon content has been shown to be modified by 

factors such as the macroclimate and the presence of pollutants (Chander and 

Brookes, 1991; Christie and Beattie, 1989). Microbial life in the soil is largely 

determined by environmental factors. Seasonal changes in soil moisture, soil 

temperature and carbon input from plant roots, rhizosphere products (such as, root 

exudates, mucilage and sloughed cells) and plant residues can have a great effect on 

soil microbial biomass and its activity (Ross, 1987), which in turn, affect the ability 
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of soil to supply nutrients to plants through soil organic matter turnover (Bonde and 

Rosswall, 1987). Nitrogen fertilisation has been documented to enhance the growth 

of forest trees in boreal and temperate podzolic soils (Söderström, BâAth and 

Lundgren, 1983; Tamm, 1991) but apart from increasing plant growth, the fertiliser 

treatment may also affect the soil animals (Lohm et al., 1977) and microorganisms. 

A number of studies dating back to the 1960's have shown that after nitrogen inputs, 

an increase in microbial activity occurs (Roberge and Knowles, 1967; Salonius and 

Mahendrappa, 1975; Roberge, 1976; Kelly and Henderson, 1978; Van Cleve and 

Moore, 1978). However, these results were in contrast to other studies, in which after 

urea or ammonium nitrate additions, soil microbial activity and biomass were 

significantly lowered in fertilised plots (Leuken, Hutchinson and Paul, 1962; Viro, 

1963; Nömmik and Popovic, 1971; De Jong, Schappert and MacDonald, 1974; 

Kowalenko, Ivarson and Cameron, 1978; Bââth, Lundgren and Söderström, 1981; 

Söderström, Bââth and Lundgren, 1983). The inconsistency in the cited results 

suggests the subject clearly merits further studies on the effect of nitrogen 

fertilisation on soil microorganisms. 

Microbial biomass is an active participant in nutrient cycling that mediates residue 

decomposition, which results in the efflux of carbon dioxide from the soil surface 

that represents a major flux of carbon to the atmosphere. Estimating the pool sizes of 

microbial carbon and nitrogen is therefore required for understanding one of the 

important driving forces behind soil respiration. The ability to accurately quantify 

soil surface carbon dioxide flux in situ is of importance if we are to improve our 

understanding of the soil carbon budget. One of the key questions in climate change 

research relates to the future dynamics of the large amount of carbon that is currently 

stored in the soil organic matter, and specifically, whether the amount of carbon in 

this pool increases or decreases with global warming (Grace and Rayment, 2000). 

The future trend in amounts of soil organic carbon will depend on the relative 

climatic sensitivities of net primary productivity and soil organic matter 

decomposition rate. Literature on the climatic effects on soil microbial biomass is 
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however limited and hence, there is a need to link the seasonal patterns of soil carbon 

and nitrogen with climatic conditions and elevated nitrogen inputs. Nitrogen 

fertilisation enhances the growth of Calluna vulgaris (L.) Hull in temperate podzolic 

soils as documented in the pilot study. Apart from increasing plant growth, the 

fertiliser treatment may also affect microorganisms. Indeed, the stimulation of plant 

growth may have been caused partly by enhanced mineralisation of the organic 

matter. In this study, biomass-C and biomass-N for the control and treatment plots 

was measured to study the effects of nitrogen fertilisation on the microbial biomass. 

The seasonal distribution of carbon and nitrogen, and fertiliser-induced changes in 

C:N ratios is also investigated. Measurements of ninhydrin-reactive nitrogen released 

and extracted from fumigated soils are known to provide a useful sensitive assay of 

biomass-C and biomass-N, however the relationship varies for different soil types 

(Carter, 1991; Rowell, 1994). The experiment also aims to determine the relationship 

between biomass-C, biomass-N and ninhydrin-N for heathland soils. 

4.2 MATERIALS AND METHODS 

4.2.1 Soil Collection 

Soil samples were regularly collected, for a period of one year from September 1999 

to September 2000, from the control and treatment plots established at the 

experimental field site located at Castlelaw Hill, in the Pentland Hills of Penicuik 

near Edinburgh. Soil samples for microbial studies were collected from the H 

horizon of the soil profile at the same instance when microcosms were collected for 

laboratory soil respiration measurements and the field conditions of soil temperature, 

pH, moisture and organic matter content were simultaneously monitored. In autumn 

and winter, samples were collected every alternate month viz. September, November 

1999, February 2000 while during spring and summer the frequency of collection 

was increased to once-a-month from March through till September 2000, with the 

exception of June. Samples were transported to the laboratory in a cold box and 
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thereafter, stored overnight in a cold room maintained at 5 °C before microbial 

biomass analysis on the following day. 

4.2.2 Microbial Biomass Analysis by Fumigation-Extraction Method 

The estimation of soil microbial biomass by the fumigation-extraction (FE) method 

works on the basic principle that soil microorganisms die after their cell membranes 

are attacked by a strong fumigant like chloroform, and part of the microbial 

constituents, especially in the cytoplasm, is degraded by enzymatic autolysis and 

transformed into extractable components (Ohlinger 1996 a, b). Microbial biomass-C 

and biomass-N may be estimated by the FE method using chloroform as the fumigant 

and potassium sulphate as the extractant. 

a) Biomass-C 

The fumigation-extraction method was performed according to Vance, Brookes and 

Jenkinson (1987). Each moist soil sample was split into two portions of 25 g (on an 

oven dry basis), one for fumigated and the other for the unfumigated treatment. One 

set of samples was fumigated with ethanol-free chloroform for 24 hours at 25 °C in a 

vacuum oven (7627F, Gallenkamp, Loughborough, England) containing a vial of 

soda lime. After fumigant removal all the samples were extracted with 100 ml of 0.5 

M potassium sulphate on an orbital shaker set at 80 rpm (5B-6736B, Gallenkamp, 

Loughborough, England) for 1 hour. The samples were filtered through filter paper 

(Ashless Paper 42, Whatman Ltd., Maidstone, England) for 3 hours and the clear 

filtrate diluted in the ratio 1:1 with 5 % sodium hexametaphosphate solution, pH 2.1. 

Organic C in the extracts was measured using a total organic carbon analyser 

(Dohrman 80, Sartec Ltd., Kent, England) with UV-persulphate oxidation and JR 

detection (Wu et al., 1990). Microbial biomass-C was calculated as follows: 

MB c  = Ec / kEc 
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where, Ec is (organic C extracted from fumigated soil) - (organic C extracted from 

unfumigated soil) and kEc  is the extractable component of microbial biomass-C, 

which was estimated to be 0.45 for C analysis after UV-persulphate oxidation (Wu et 

al., 1990; Joergensen, 1996). 

b) Ninhydrin-Reactive Biomass-N 

The soil filtrate generated from the fumigation-K 2SO4  extraction technique was 

utilised to determine biomass ninhydrin-reactive N as describes by Joergensen and 

Brookes (1990). The clear .filtrates were treated with 0.2 M citric acid buffer and 

ninhydrin reagent in thick-walled glass test tubes, mixed thoroughly and heated for 

25 minutes in a boiling water bath (CC20-CC25, Grant Instruments, Cambridge, 

England). The solutions were then cooled to room temperature, a 1:1 ethanol-water 

solution added to each tube and the absorbance read at 570 nm in a 

spectrophotometer against a water blank. Microbial biomass ninhydrin-reactive-N 

was calculated as follows: 

MBN1 = ENi.  

where, ENI is (ninhydrin-N extracted from fumigated soil) - (ninhydrin-N extracted 

from unfumigated soil) 

Ninhydrin-N released by fumigation is significantly correlated to microbial biomass-

N, biomass-C and total microbial biomass and the relationships can be defined by 

following the Rothamsted conversions (Ocio and Brookes, 1990), wherein the factors 

used were: 

MBN=4.6 XMBN fl  

MBc31 XMBNI fl  

MBT =62 x MBNI fl  
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where, MBN is microbial biomass-N, MBc  is microbial biomass-C, MB T  is microbial 

biomass-total and MBN fl  is ninhydrin-reactive microbial biomass-N. 

The conversion factors stated are an average for all soil types and hence may vary 

slightly for specific soil types under varying environmental conditions. 

4.3 RESULTS 

An important observation for microbial biomass was that biomass-C and biomass-N 

for both treatment and control followed a similar annual pattern of increasing at the 

height of winter, decreasing slightly over spring and then reaching a steady state 

during summer and autumn (Figure 4.1 and Figure 4.2). However, treatment charted 

the same trend as control but at an elevated level, and the difference between 

treatment and control increased progressively with cumulative fertiliser input. 

4.3.1 Biomass-C 

A statistically significant difference (P <0.001) in biomass-C between treatment and 

control samples was visible but not great for the first six months of the experiment 

(Figure 4.1). Subsequently, with an increase in cumulative N inputs, treatment 

samples exhibited a gradual increase evident from May 2000, corresponding to the 

onset of growth. During the study, the difference between the control and treatment 

plots rose from 0.12 mg MB c  g' dry soil to 0.80 mg MB c  g' dry soil. Biomass-C 

measured for the treatment plots in September 1999 and 2000 was the same at 3.37 

mg MB c  g' dry soil with seasonal fluctuations through the year, but control values 

steadily fell from 3.26 mg MB g' dry soil to 2.57 mg MB c  g 1  dry soil over the 

period of one year. After the one-year fertilisation period, the treatment recorded an 

average annual mean value of 3.30 mg MBc g' dry as opposed to 2.28 mg C g' for 

control. 
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Figure 4.1 The effect of ammonium nitrate fertiliser treatment on soil microbial biomass-C, MB c , for 

control (o) and treatment (.) samples (mean ± S.E., n = 9) as measured by the fumigation-extraction 
method from September 1999 to September 2000. 

4.3.2 Biomass-N 

Fertiliser inputs had a significant effect (P <0.001) on microbial biomass-N, with 

treatment and control plots exhibiting annual trends that were similar to biomass-C 

(Figure 4.2). After April 2000 the concentration of microbial biomass-N (MBN) per 

gram of dry soil with the treatment plots started increasing while control showed a 

gradual decline. After one year's treatment, plots showed an increase of 0.002 mg 

MBN 9 - 1  dry soil from 0.108 mg MBN 9 1  dry soil in September 1999 to 0.110 in 

September 2000 while the control recorded a drop of 0.022 mg MBN 9 -1  dry soil from 

0.104 mg MBN 9 -  1  dry soil to 0.082 in the same period of time. At the end of the 

study, samples that received 60 kg N ha yf' recorded an annual average of 0.106 

81 



Chapter 4 

mg MBN g dry soil in comparison 0.091 mg MBN g dry soil measured in the 

control plots. 
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Figure 4.2 The effect of nitrogen inputs on ninhydrin-reactive soil microbial biomass-N, MBN, for 
control (o) and treatment (.) samples (mean ± S.E., n = 9) as determined by the fumigation-extraction 
method from September 1999 to September 2000. 

Biomass-C calculated indirectly from ninhydrin-reactive N agreed very closely with 

the observed values for biomass-C during the entire period of study. There was no 

significant difference between the observed and calculated values of biomass-C with 

the average deviation in mean readings being 0.043 and 0.003 for control and 

treatment samples respectively. 
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4.3.3 Microbial C:N Ratio 

The microbial C:N ratio as derived indirectly from biomass-C and biomass-N, both 

calculated as functions of ninhydrin-reactive N, agree closely to the observed values. 

The observed mean value 6.81:1 for the C:N ratio of the soil microbial biomass 

compares well with the calculated C:N ratio of 6.74:1. Both the observed and 

calculated mean C:N ratios of soil microbial biomass closely agree to the mean 

MBC:MBN value of 6.7 as reported by Anderson and Domsch (1980) and Shen, 

Pruden and Jenkinson (1984) for a heterogeneous population of soil microorganisms. 

Fertiliser input did not have a statistically significant effect on the observed 

microbial C:N ratio as shown in Figure 4.3. 
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Figure 4.3 Profile of the time course of the effect of fertiliser treatment on the soil microbial C:N 
ratio for control (o) and treatment (.) samples (mean ± S.E., n = 9) over a period of one year. 
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However, after four doses of fertiliser application during the first 7 months of the 

study, treatment samples consistently showed a lower microbial C:N ratio as 

compared to the control plots. Hence confirming that microbial-N within the 

treatment samples increased with time while control samples had decreasing N 

values as a result of which the C:N ratio steadily decreased. 

4.4 DISCUSSION 

Nutrient additions to an ecosystem can have a marked influence at the species level, 

especially in a system that is nutrient limited (Macura and Kunc, 1961). Plant 

responses to environmental change are underpinned by mechanisms that control 

microbial community processes and by potential nutrient feedback loops that govern 

net primary production in terrestrial ecosystems (Cardon, 1996; Berntson and 

Bazzaz, 1997; Robinson and Conroy, 1999). Several authors have shown that in 

nutrient-poor ecosystems, the nitrogen concentration is an important factor which 

largely regulates the organic matter decomposition process (Berg and Staaf, 1980 b; 

Melillo, Aber and Muratore, 1982) and past studies on soil transformation processes 

have documented significant increases in nitrogen mineralisation with nitrogen salt 

additions (Johnson and Guenzi, 1963; Broadbent and Nakashima, 1971; Heilman, 

1975; Báâth et al., 1978). In this study, inorganic N application resulted in 

significantly higher microbial biomass within plots that were treated with ammonium 

nitrate as compared to plots that did not receive nitrogen inputs during the period of 

study. Insam, Mitchell and Dormaar (1991) also found the effect of inorganic 

fertilisation on microbial biomass was more pronounced in soils with low nutrient 

status, such as those of heathiands and moorlands. 

Cheng (1999) put forth a 'preferential substrate utilisation' model to explain how the 

nutritional status of a soil determines the process of mineralisation. The hypothesis 

states that that in fertile soils, micro-organisms preferentially exploit labile root- 
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derived carbon to soil-derived carbon resulting in decreased SOM decomposition but 

if mineral nutrients are in short supply then soil micro-organisms must resort to 

utilising nutrient-rich soil organic matter, resulting in increased SOM decomposition. 

Therefore, microbial activity is essentially governed by the surplus of an easily 

metabolised energy source. Liljeroth, Kuikman and Van Veen (1994) suggested that 

negative effects on SOM decomposition in high N availability could be due to a 

disruption of the competition between potent and less potent decomposers or a 

decrease in the production of specific enzymes by fungi. 

The seasonal trend observed for microbial biomass-C and biomass-N in this study 

suggests that during the winter period ecosystem activity is at a minimum and the 

nutritional requirements of both plant and microbial communities can be met by the 

background nutrient levels of soil (Insam, Parkinson and Domsch, 1989). In late 

spring, as the soil temperatures begin to rise, the heather growing season commences 

and plant nutrient uptake rapidly increases, thereby decreasing the source of freely 

available nitrogen for the microbial population to maintain itself (Drury, Voroney 

and Beauchamp, 1991). Hence, the control plots record a decline during summer but 

in the treatment plots, receiving regular inputs of nitrogen, the microbial population 

is sustained at a steady state. Berendse, Berg and Bosatta (1987) studied the effect of 

nitrogen on the decomposition of litter in nutrient-poor ecosystems and also 

concluded that nitrogen limits microbial growth, if the soil nitrogen concentration is 

below a critical level and the external supply of inorganic nitrogen is not sufficiently 

great to satisfy the nutritional needs of the growing biomass. The annual pattern of 

change for microbial biomass in the control plots was high in autumn, low in winter, 

fluctuating in spring due to fluctuating spring temperatures (Martin and Kemp, 1980) 

and low in summer, which agrees with studies conducted on pastoral soils (Lynch 

and Panting, 1982; Sarathchandra et al., 1988; Sarathchandra, Perrott and Littler, 

1989). A similar trend was observed for treatment plots though with an increase 

through summer. 
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Seasonal changes in microbial biomass associated with the low concentrations of 

total inorganic-N measured in the rhizosphere soil for both control and treatment 

plots, shown in Chapter 5, suggest that there is a strong competition for mineral 

nutrients between root and soil micro-organisms. Under conditions of nutrient stress, 

the nutrient cycling process becomes stringent with lower inputs being 

counterbalanced by lower losses resulting in a decrease of plant nutrients released 

(Cheng, 1999). Hence, with the commencement of the plant growing season, the 

microbial community would solely rely on SOM decomposition to meet all 

nutritional requirements, which is supported by the annual trend observed for soil 

organic matter content, shown in Chapter 5, wherein a sharp decline in total organic 

matter was recorded in May 2000. During summer, through till autumn, MBc and 

MBN were noted to gradually decrease in the control plots with the depletion of 

nutrients and the effectiveness of the internal circulation of nitrogen between the soil 

organisms was probably less effective than the root uptake of the system. However, 

the treatment plots showed a gradual increase because the N inputs would provide 

additional available soil nutrients, aid plant growth and also increase fine root 

growth, thereby increasing organic C inputs via the roots in the soil, which would 

further support microbial activities. Anderson and Domsch (1986) proposed that the 

stabilised fraction of the C input to the soils is the basis for the size of the soil 

microbial biomass under steady-state conditions and the labile fraction would then be 

responsible for the short-term fluctuations of biomass content during the year. The 

theory is supported by studies of seasonal changes in microbial biomass in wheat 

management systems which showed soil microbial biomass-C to increase during the 

flowering season in early spring due to increased C inputs from rhizosphere products 

to the soil (Xu and Juma, 1993). Therefore, the effect of fertiliser inputs may also be 

indirect, wherein inorganic N stimulates plant growth with increased C inputs by 

enhancing production of root and shoot biomass (Fauci and Dick, 1994), and 

promoting the release of C exudates (Coleman, 1976; Prikryl and Vancura, 1980). 

The trend observed for treatment plots supports the 'priming effect' theory 

(Jenkinson, Fox and Rayner, 1985) that suggests that the extra input of labile root- 
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derived C initially decreases SOM decomposition as a result of the increase in 

immobilisation of mineral nutrients, but subsequently stimulates SOM 

decomposition and nutrient release with the turnover of this newly grown microbial 

biomass. The rate at which these reactions take place would determine the overall N 

availability, with important consequences on long-term nutrient dynamics. 

The priming effect is supported by the findings of this study. In a uniform substrate 

with known chemical components, the rate of mineralisation or immobilisation is a 

positive linear function of the C:N ratio of the substrate (Rowell, 1994). If the C:N 

ratio is higher that the critical C:N ratio, a net release of nitrogen is expected and a 

net immobilisation of nitrogen occurs if the C:N ratio is below the critical threshold 

value. Moreover, high C:N ratios are prevalent in soils where conditions are less 

favourable for decomposition and the C:N ratio becomes narrower as soil organic 

matter is rapidly broken down by microbes (Bosatta and Staaf, 1982). The soil C:N 

ratio, as determined for the experimental field site at the end of the study (Chapter 5), 

showed a high value in the control plots and a comparatively lower value in the 

treatment plots suggesting that fertiliser inputs may increase microbial populations in 

soil with a shift to net immobilisation, thereby increase SOM decomposition and 

control the release of N in soils. 

Thus the results suggest that the long-term effect of inorganic N additions on MBc 

and MBN under field conditions may be a combination of direct and indirect nutrient 

availability to the plant and microbial populations during changing seasons of plant 

growth. 

The continuous supply of energy and nitrogen to the soil mixture would also strongly 

influence the microbial population. Ingestad (1962) showed that in nitrogen deficient 

conditions of a pine forest soil, additions of N had a positive effect on the fungal 

mycelium biomass. Moreover, very few algae were found in the upper horizons in 

the forest soils, all arthropods were fungivorous and the species composition of 
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nematodes shifted to the fungivorous species. The microbial C:N ratio provides an 

insight into the relative biomass of fungal and bacterial populations within a soil 

microbial community. Hence, the results of this study indicate that increased 

ammonium nitrate inputs to the treatment plots, not only supported plant and 

microbial growth but also increased bacterial populations in relation to the fungal 

population, and in turn could have influenced the microbial consumers. Anderson 

and Hetherington (1999) also suggest that N treatments affect the composition and 

activities of fungal communities in heather moorland and Park (1976) found that the 

cellulolytic ability of a wide range of fungi showed positive responses to increasing 

concentrations of mineral N in cultures. Hence the structure of fungal communities 

that decompose plant materials, and their net functional characteristics are affected 

by application of mineral-N and the extent to which is determined by the total N 

inputs. Build up of microbial biomass as evidenced by accumulation of MBN during 

winter and early spring in all plots may be a result of the dominance of fungal 

biomass decomposing dead roots because bacteria in the rhizosphere mainly depend 

on soluble root exudates for energy but fungi on the other hand are able to digest 

cellulose and pectin and obtain energy from dead roots and organic matter (Newman, 

1985). Onset of higher temperatures in late spring may induce considerable release of 

N from soil microbial biomass, which would supplement the nutritional needs of the 

plants, increase plant activity, and thereby cause a decline of microbial nutrients with 

a decrease of fungal biomass in the control plots. However, the same effect was not 

observed in the treatment plots, which continue to receive N inputs, and these 

nutrients being taken up by growing plants and microbial communities. Nicolardot, 

Fauvet and Cheneby (1994) concluded that variations in nutrient releases from the 

biomass might be attributed to changes in atmospheric temperature. A controlled 

climate experiment using soil cores revealed that microbial N, and anaerobic 

mineralisation increased during winter-early spring and then declined with increasing 

temperatures (Sarathchandra, Perrott and Littler, 1989) and in a study by Nicolardot, 

Fauvet and Cheneby (1994), more carbon was incorporated in the microbial biomass 

at low temperatures of 4 °C. Okano, Nishio and Sawada (1987) calculated that 21 kg 
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ha' yr t  of N was released through the soil biomass in the root mat layer of a pastoral 

soil, and concluded that soil biomass plays an important role as a source of available 

N. Therefore, the seasonal trend observed for the microbial biomass was likely to be 

driven by the environmental parameter of temperature and suggests that the 

fluctuations portray changes in the composition of microbial population. 

The relative amounts of fungal and bacterial biomass are reflected in the microbial 

C:N ratios. The observed and calculated C:N ratios of microbial biomass, namely 

6.81 and 6.71, compared well with data in the literature and helped give an insight 

into the species composition of the microbial population. Anderson and Domsch 

(1980) found a mean C:N ratio of 5.61 for 10 species of soil bacteria; Marumoto, 

Anderson and Domsch (1982) a mean of 4.59 for an actinomycete and a bacterium 

and Jenkinson (1976) a mean of 3.83 for 7 bacteria and actinomycete, giving an 

overall mean of 4.85 for all 19 organisms of bacteria and actinomycetes. However 

corresponding values for 14 species of soil fungi were much higher at 8.26 

(Anderson and Domsch, 1980); for 2 species of fungi and 2 yeasts 8.08 (Jenkinson, 

1976) and for 3 species of fungi 10.26 (Marumoto, Anderson and Domsch, 1982), 

giving a weighted mean for all 21 organisms of 8.51. Anderson and Domsch (1980) 

proposed a mean value of 6.7 for the C:N ratio of soil microbial biomass based on a 

study of 3 fungi and 1 bacterium. Shen, Pruden and Jenkinson, (1984) also supported 

a common value of 6.7 for all microbial biomass, assuming that the C:N ratio of the 

larger spherical organisms, like protozoa and fungal spores, are similar to those of 

bacteria and that the ratio of hyphal to spherical biovolume is 1 (Jenkinson, Powlson 

and Wedderburn, 1976, mean value for 8 soils). However, it must be stressed that 

most C:N values were derived for microflora and the value of 6.7 for the C:N ratio of 

soil biomass was computed from measurements made on organisms grown in vitro 

and the relevance to soil organisms in situ is not confirmed by models computing the 

dynamics of carbon and nitrogen in soils (McGill et al., 1981). In this study, 

microbial biomass-C and biomass-N were determined for soil samples collected from 
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the field and hence proves that the value of 6.7 is an accurate estimate of the soil 

microbial C:N ratio under natural in situ conditions. 

Anderson and Domsch (1980) concluded that higher microbial C:N ratios could be 

indicative of a comparatively high fungal component growing in an environment 

with appreciable available C, as seen in the control plots wherein the soil microbes 

were relatively starved of nitrogen. Hence, the narrower MB c: MBN ratio, as observed 

in the treatment plots, would indicate a shift from fungal to bacterial populations. No 

qualitative data were available for the experimental site but the occurrences of large 

and varied fungal populations in the soil profile of heathlands has been reported 

(Gimingham, 1992). 

In summary, the changes in microbial C and N pools would have resulted from the 

seasonal differences in C and N inputs from litter and roots in conjunction with rates 

of N immobilisation in the present study, as hypothesised by the 'added nitrogen 

interaction' (ANI) or 'priming effect'. The increase or decrease of biomass-C and 

biomass-N would also be influenced by climatic conditions, especially by 

temperature and soil organic matter content. The C:N ratio in both control and 

treatment plots recorded a low in winter and early spring, but a sharp increase is 

observed in summer, followed by a drop in autumn. The decrease in biomass 

corresponds to the decline in available substrates with the commencement of the 

plant growing season (Robertson et al., 1988; Sarathchandra, Perrott and Littler, 

1989), and the simultaneous release of nutrients from biomass which is, in turn 

related to the temperature (Anderson and Domsch, 1986; Insam 1990). Ross and Tate 

(1993) also found that microbial N differed significantly between the late-spring and 

autumn samples as a result of which MB c : MBN were significantly higher and lower 

respectively for the two seasons, and hence stated that climatic factors have a major 

impact on the overall levels of microbial biomass in the uppermost litter layers. 

Therefore, short-term fluctuations in soil microbial biomass may increase microbial 
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activity and subsequent turnover rates are important factors in the nutrient transfer 

from soil to plants (Bottner, Sallih and Billds, 1988). 

4.5 CONCLUSIONS 

This study indicated that fertiliser treatment sustained and increased microbial 

biomass. Nitrogen inputs were rapidly utilised by the microbial population which 

caused a decline in the C:N ratio of microbial biomass. The change in C:N ratio also 

indicated a possible shift in microbial species composition from fungi to bacteria. It 

may therefore be concluded that ammonium nitrate fertiliser treatment may act in 

conjunction with climatic conditions, like temperature, to set annual patterns of 

nitrogen utilisation by plants and microbes within a soil profile and is capable of 

altering the storage and release of nutrients by causing a shift in species dominance. 
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5. MEASURING CO2  FLUXES FROM HEATHLAND 

SOILS 

5.1 INTRODUCTION 

Soils are a major reservoir of carbon in terrestrial ecosystems, containing more than 

two-thirds of total carbon in the terrestrial fraction of the biosphere (Lin et al., 1999), 

and the evolution of carbon dioxide from soils represents a major component in the 

global carbon cycle (Baldocchi et al., 1986). Estimates of carbon recycled to the 

atmosphere from belowground sources range from 70 (Raich and Schlesinger, 1992) 

to greater than 100 Pg per year globally (Musselman and Fox, 1991) and therefore, 

the response of soil carbon stores to anticipated climate changes is of vital 

importance. Even small percentage changes in the average soil carbon pool could 

result in relatively large changes in fluxes of CO 2  to the atmosphere and 

measurement of climate-driven changes in fluxes can be useful indicators of changes 

in soil organic matter turnover, and rates of energy and nutrient cycling (Prentice and 

Fung, 1990; Trumbore, Chadwick and Amundson, 1996). Many studies have 

measured soil CO2  fluxes and demonstrated the relationship between soil respiration 

and environmental factors, especially temperature, but we have limited knowledge of 

the magnitude of fluxes, the interrelationships between factors that regulate these 

fluxes, and potential responses of factors to climatic change. Moreover, there is 

rather little work on the effect of nitrogen deposition on the temperature sensitivity of 

the process, and in particular from heathland soils. 

Early studies of soil respiration were summarised by Romell (1932) and since then 

estimates of soil respiration have been made in a range of ecosystems, which have 

been in reviewed by Schlesinger (1977), Singh and Gupta (1977), Raich and 

Nadelhoffer (1989) and Raich and Schlesinger (1992). Factors known to influence 

the rate of CO2 evolution include soil temperature and moisture (Wiant, 1967; 
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Garrett and Cox, 1973; Edwards, 1975; Schienter and Van Cleve, 1985; Weber, 

1985; Fung, Tucker and Prentice, 1987; Naganawa et al., 1989; Hanson et al., 1993; 

Peterjohn et al., 1993, 1994; Holland, Townsend and Vitousek, 1995; Fang et al., 

1998; Fang and Moncrieff, 2001), soil pH (Kowalenko, Ivarson and Cameron, 1978), 

soil nitrogen content (Söderström, BâAth and Lundgren, 1983), litter quality (Rout 

and Gupta, 1989), and content (Van Cleve and Sprague, 1971), soil organic content 

(Chapman, 1979; Ewel, Cropper and Gholz, 1987; Gordon, Schlenter and Van Cleve, 

1987; Rout and Gupta, 1989), and management practices (De Jong, Schappert and 

MacDonald, 1974; Weber, 1985, 1990; Gordon, Schienter and Van Cleve, 1987; 

Vose et al., 1995). Since many of these factors vary temporally, either diurnally or 

seasonally, considerable variation in soil CO 2  evolution has been recorded (Garrett 

and Cox, 1973; Edwards and Sollins, 1973; Schlenter and Van Cleve, 1985; Hanson 

et al., 1993; Lloyd and Taylor, 1994; Vose, Elliot and Johnson, 1994; Fang and 

Moncrieff, 2001). 

Inherent soil properties have both direct and indirect effects on soil efflux, and 

interactions of these limiting properties can be complex (Keith, Jacobsen and Raison, 

1997) and appear to vary greatly depending on environmental conditions at a site 

(Ellis, 1969; Holt, Hodgen and Lamb, 1990; O'Connell, 1987; Richards, 1981). 

There have been insufficient studies to assess these relationships for heathlands and 

any changes in temperature, moisture, pH, and nutrient availability due to climate 

change or land use management such as addition of fertilisers could have important 

effects on carbon fluxes and rates of sequestration of carbon in heathland 

ecosystems. To predict such potential impacts on ecosystem carbon dynamics it is 

necessary to define the responses of both above-ground and below-ground 

components to changes in each of these environmental variables (Anderson, 1991). 

Moreover, few studies have examined the direct effects of nitrogen availability, in a 

nutrient-poor ecosystem, on soil CO2 efflux (Keith, Jacobsen and Raison, 1997), 

although nutrient availability influences soil respiration via total productivity and 
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allocation of assimilate belowground, quality and quantity of the substrate entering 

the soil organic matter and biomass of the microbial community. 

The specific objectives of the study were a) to quantify seasonal patterns of soil CO 2  

evolution, b) to determine the impact of elevated nitrogen deposition on soil carbon 

fluxes by applying ammonium nitrate to experimental plots, c) to examine the 

temperature dependence of soil respiration under laboratory conditions with an intact 

soil incubation technique and d) to evaluate the capacity and accuracy of the 

exponential, quadratic and Arrhenius equations to define the response of soil 

respiration rates to temperature, in the absence of soil moisture limitations. 

5.2 MATERIALS AND METHODS 

5.2.1 Field Site and Treatment 

Field experiments were carried out in experimental plots located at Castlelaw Hill 

(550 52' 22"N, 3° 14' 3"W) in the Pentland Hills of Penicuik near Edinburgh 

(Ordinance Survey Map - Penicuik & Dalkeith Pathfinder 420 NT 26/36, Great 

Britain), at an altitude of 435 meters above mean sea level. The moderately steep hill 

slope was covered with a dense stand of heather, Calluna vulgaris (L.) Hull, and the 

site received an annual rainfall of 1200 - 1400 mm during 1999 - 2000. Soil at the 

site is a freely drained humus iron podzol averaging a depth of 25 cm. Total 

background levels of nitrogen deposition in the region is approximately 12 kg N ha' 

yr (Fowler et al., 1989). Six 3 m x 3 m plots were laid out, of which three were 

demarcated as control and another three as treatment plots. Nitrogen was applied to 

three randomly selected treatment plots as an ammonium nitrate, NH 4NO3 , solution 

in six, 10 kg N ha' doses over a period of one year; thus at a rate equivalent to a total 

of 60 kg N ha- I  yf'. Every N aliquot was uniformly applied over each treatment plot 

in 2 litres of distilled water as a fine mist using a Controlled Pressure Knapsack 

Sprayer (Oregon - KS. 15L PIN 100221, Blount, UK). The treatment plots were 
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fertilised every alternate month in August, October, December 1999 and February, 

April, June August 2000. 

5.2.2 Sample Collection 

A soil corer was designed to collect small, intact soil microcosms from the 

experimental plots with minimum disturbance to the soil structure. Microcosm 

samples for CO 2  flux studies were collected from the upper 5 cm of the soil surface 

in the H horizon of the soil profile, on a regular basis for a period of one year, from 

September 1999 to September 2000. In autumn and winter, samples were collected 

every alternate month viz. September, November 1999, February 2000 while during 

the growing season, samples were collected every month viz. March, April, May, 

July, August September 2000, with the exception of June. 

5.2.3 Environmental Monitoring 

Environmental variables of soil temperature, pH, organic matter and moisture were 

recorded at every sample time during the entire period of study from September 1999 

to September 2000. Mineral-N, namely ammonium-N and nitrate-N, and phosphate 

ion concentrations in the plots was determined at the end of the study period in 

September 2000 after the treatment plots had received a total dose of 60 kg N ha'yr' 

of ammonium nitrate fertiliser. 

5.2.3.1 Temperature 

Field temperature readings at sample collection times were recorded using a hand-

held digital thermometer with a stainless steel sensor probe (AT 1, Airflow 

Developments Ltd., High Wycombe, UK). A multi-channel, data logger (DL-5864, 

Delta-T Devices, Cambridge, England) with copper-constantan (type-T) 

thermocouples was used to log soil temperatures at 1, 3, 5, 10 and 20 cm depths for 

every half an hour interval during different seasons of the year. 

95 



Chapter 5 

5.2.3.2 pH 

25 ml of distilled water was added to 10 g of moist soil and stirred thoroughly. pH 

was measured after 20 minutes using a pH meter (CD-620, Russell Scientific 

Instruments, Norfolk, England), calibrated using two buffer solutions with pH values 

of 4 and 7. 

5.2.3.3 Moisture 

10 grams of each soil sample were weighed in aluminium foil dishes and oven dried 

at 105°C for 18 hours for water content determination. The samples were cooled in a 

dessicator to room temperature and weighed again. 

Water content (%) = [(MA - Mo)! M0 ] x 100 = g H 20 per 100 g air-dry soil 

where, MA is mass of air-dry soil (g) and M0 is mass of oven-dry soil (g). 

5.2.3.4 Organic Matter as Loss on Ignition 

10 grams of soil was weighed into a porcelain crucible and oven dried at 105 °C for 

18 hours and re-weighed. Each sample was ashed in a muffle furnace (FR-520, 

Gallenkamp, Loughborough, England) at 450 °C for 4 hours. The samples were 

cooled in a dessicator to room temperature and weighed again. 

Loss on ignition (%) = [(M0  - M1)! M0] x 100 = g per bOg oven-dry soil 

where, M0  is mass of oven-dry soil (g) and M1  is mass of ignited soil (g). 

5.2.3.5 Soil C:N Ratio 

Organic carbon and nitrogen contents in soil samples were determined by the 'flash 

combustion' technique described by Verardo et al., (1990) using a Carla Erba NA-

1500 Analyzer and AS200 Autosampler interfaced with a Hewlett-Packard 3390A 

Integrator. The soil samples were tested for the presence of calcium carbonate by 
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treating a group of randomly selected sub-samples with 8 % sulphurous acid. No 

traces of calcium carbonate were observed in the samples viewed under a compound 

microscope, so the acidification step was omitted. The soil samples were oven dried 

at 60 °C for 36 hours. The samples were ground in a clean agate mortar and pestle, 

sieved using a 0.353 mm aperture sieve (Endecotts Ltd., London, England) and 

stored in high density polyethylene scintillation glass vials with linerless screw caps 

(Wheaton Science Products, New Jersey, USA). Approximately 5 mg of sample was 

weighed into tin foil capsules (Elemental Microanalysis Ltd., UK) using a 

microbalance (AT261 Delta Range, Mettler-Toledo Ltd., Leicester, UK) and the 

sample cups were carefully moulded into small round pellets measuring less than 5 

mm in diameter with the help of fine forceps. The sample balls are placed into the 

autosampler tray and loaded into the autosampler of the NA-1500 Analyzer for direct 

analysis. 

5.2.3.6 Mineral N 

The chemical extraction techniques for determining soil ammonium derived nitrogen 

(NH4-N) and nitrate derived nitrogen (NO 3-N), are important for the measurement of 

available nutrients in soil. Fresh soil was sieved through a 1.5 mm aperture sieve 

(Endecotts Ltd., London, England) and 10 g weighed into a glass bottle. 100 ml 1M 

KC1 extractant was added to each sample and a set of blanks, then the bottles were 

well sealed and the solution thoroughly mixed on an orbital shaker (Gallenkamp, 

Loughborough, UK) for 2 hours. The solution was transferred to 15 ml centrifuge 

tubes and centrifuged (T52 Centrifuge, Clandon Scientific Ltd., Farnborough, 

England) at 4500 rpm for 20 minutes. NH 4-N was determined by the salicylate 

method using an autoanalyser system (Autoanalyser ifi, Bran and Luebbe, 

Norderstedt, Germany) as described in the Bran & Luebbe Application Sheet G-102-

93. NO3-N was determined using a flow-injection analyser (Flow Solution 3000 

Analyser, Perstorp Analytical, USA), wherein nitrate is reduced to nitrite by passing 

through a cadmium column. The nitrite is colorimetrically determined as an azo dye 
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at 540 nm following a reaction with sulfanilamide and naphthylethylenediamine as 

described in the Perstorp Application Sheet 001975 Rev. B, 11/94. 

5.2.3.7 Phosphate 

The soil extraction procedure for soil phosphorus analysis is similar to the technique 

for soil mineral nitrogen determination. Fresh soil was sieved through a 1.5 mm 

aperture sieve (Endecotts Ltd., London, England) and 10 g weighed into a glass 

bottle. 100 ml of 2 % acetic acid extractant was added to each sample and a set of 

blanks. The bottles were well sealed and the solution thoroughly mixed on an orbital 

shaker (Gallenkamp, Loughborough, England) for 2 hours. The solution was 

transferred to 15 ml centrifuge tubes and centrifuged (T52 Centrifuge, Clandon 

Scientific Ltd., Farnborough, England) at 4500 rpm for 20 minutes. Phosphorus was 

determined as phosphate by the molybdate-ascorbic acid method using an 

autoanalyser system (Autoanalyser III, Bran and Luebbe, Norderstedt, Germany) as 

described in the Bran & Luebbe Application Sheet G-103-93. 

5.2.4 Laboratory Measurements of Soil Carbon Dioxide Fluxes 

Soil respiration in the laboratory was measured by an Infra Red Gas Analyser, IRGA, 

(ADC 225 MK3, Analytical Development Co. Ltd., Hoddesdon, England) with an 18 

channel continuous flow multi-point gas analysing unit specially constructed for the 

study, as described in Chapter 3. A humidifier was placed in line to prevent drying of 

the samples in the soil chambers, which were maintained in a temperature-controlled 

water bath (W46-DC10-EK20, Haake, Germany). Carbon dioxide concentrations 

were recorded by a data-logger (21X, Campbell Scientific, Shepshed, UK) and the 

results displayed on a personal computer. The concentrations were converted to 

fluxes as follows: 

R= CxF/A 
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where, R is efflux rate of soil carbon dioxide, AC is the change in CO2 concentration, 

F is air flow rate and A is surface area. 

5.2.4.1 Rate of Respiration 

The seasonal pattern of the response of soil respiration to temperature was defined on 

the basis of area, mass, microbial-C and microbial-N, so as to facilitate easy 

comparison with previously published data and account for the seasonal fluctuations 

in microbial biomass that naturally occur through the year. The three most commonly 

used models to describe the relationship between soil respiration and temperature, 

namely the first-order exponential, Arrhenius and quadratic equations, were fitted to 

the response of soil respiration across the temperature gradient ranging from 5 °C to 

25 °C to determine the model of best fit. 

5.2.4.2 Qio 

Qio was computed according to the first-order exponential, Arrhenius and quadratic 

equations and the seasonal values compared to determine the model that best 

describes the response of soil respiration to temperature. 

5.2.5 Data Analysis 

A statistical approach was taken to parameterising the relationship in a multiple 

regression model and quantifying the interaction between all the variables and soil 

respiration. Regression analyses were used to explore relationships between carbon 

dioxide fluxes with environmental variables, and to examine the possible effects of 

fertiliser treatment. The statistical computer packages used were MINITAB (version 

12.1 for Windows), SIGMA PLOT (Version 4.00 for Windows) and EXCEL (Office 

97). 
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5.3 RESULTS 

5.3.1 Environmental Monitoring 

5.3.1.1 Temperature 

Soil temperature of the top layer of the soil profile showed a strong seasonal pattern, 

increasing from April to August and then decreasing after September (P <0.001), 

with no significant difference between the control and treatment plots (Figure 5.1 A). 

All plots followed the identical seasonal pattern through the year with the lowest 

temperature being recorded in the month of February 2000 and the highest in August 

2000. 

There was also a marked seasonal pattern in soil temperature at 1, 3, 5, 10, and 20 cm 

depth (P <0.001) as documented earlier in Chapter 3 in Figure 3.7. The amplitude of 

diurnal soil temperature fluctuations was greater in the upper 5 cm of the soil, 

especially during the summer season. During late autumn and winter, the soil 

temperature range decreased across the entire soil profile and did not exhibit sharp 

diurnal changes. Nitrogen addition did not affect the soil temperature. 

5.3.1.2 pH 

The control plots followed an annual pattern wherein the pH gradually decreased 

from pH 3.93 in September 1999 to pH 3.40 in spring of 2000, and then increased 

again in summer to reach a pH of 3.91 (Figure 5.1 B). In contrast, the addition of 

ammonium nitrate solution affected the soil pH of the treatment plots, with a pH drop 

of 0.75 in the year from 3.90 in September 1999 to 3.15 in September 2000. 

Treatment plots also showed a drop in pH in autumn but the steady decline continued 

through winter, spring and the summer with the acidifying effect of the fertiliser 

becoming clearly visible in March 2000 after the first four doses of ammonium 

nitrate. 

100 



U 
0 

I- 

E2 

5.0 

4.5 

4.0 

3.5 

3.0 

2.5 

2.0 

Month 

Chapter  

(B) 

Sep99Nov Feb Mar Apr May Jul AugSep00 

Month 

100 

99 

98 

97 

96 

0
95 

94 

93 

(D) 

I- 

I 
Sep99Nov Feb Mar Apr May Jul AugSepOC 

Month 
	

Month 

Figure 5.1 The seasonal pattern plotted by the environmental variables of (A) temperature, (B) pH, 
(C) moisture and (D) organic matter (mean ± S.E., n = 9) for control (o) and treatment (.) samples 
collected at a mean depth of 5 cm during the study period from September 1999 to September 2000. 
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5.3.1.3 Moisture 

There was no significant difference in total moisture content among the six plots 

(Figure 5.1 Q. The control and treatment plots both recorded an annual average of 

75.7 %. The highest moisture was 79.0 % at the height of winter in February 2000 

when the field site was covered with approximately 4 cm of snow. 

5.3.1.4 Organic Matter as Loss on Ignition 

The organic matter of the control plots varied in an annual cycle with a decrease 

during spring and summer, reaching the lowest value of 94.3 % in May 2001, and 

subsequently increased with a decrease in soil temperature (Figure 5.1 D). The 

treatment plots followed a similar trend, albeit at a slightly elevated level. 

Ammonium nitrate additions had a positive affect on the soil organic matter content, 

visible in March 2000 and thereafter. At the end of the study in September 2000 the 

treatment plots recorded mean organic content at 98.2 % as compared to 95.7 % in 

control plots. 

5.3.1.5 Soil C:N ratio 

Soils in the control and treatment plots showed significant differences (P <0.001) in 

the total organic carbon and nitrogen percentages, determined at the end of the study 

period in September 2000. In the control plots the mean carbon and nitrogen values 

were 29.0 % and 0.8 % respectively, while treatment recorded a far higher average of 

44.3 % average for carbon and 1.4 % for nitrogen. The soil C:N ratio for control 

plots was 37.8 while treatment plots had only 30.9 (Table 5.1). 

5.3.1.6 Mineral-N 

Mineral-N was determined for all plots at the end of the experiment as shown in 

Table 5.1. None of the six plots showed nitrate-N with all the readings being well 

below the 0.005 mg 100 g' detectable limit of the instrument. However, there was a 

significant difference in ammonium-N between the treatment and control plots. 

102 



Chapter 5 

Control samples exhibited a mean concentration of 0.08 mg per 100 g fresh soil as 

against a high 1.32 mg per 100 g fresh soil for the treatment samples. 

5.3.1.7 Phosphate 

There was a negligible difference in the concentration of phosphate ions between the 

control and treatment plots. At the end of the study period in September 2000, 

control and treatment plots showed similar concentrations of phosphate ions in the 

soil with a mean value of 4.29 and 4.24 mg per 100 g fresh soil respectively (Table 

5.1). 

ELEMENT 
CONTROL 

(S.E.) 

TREATMENT 

(S.E.) 

Carbon (%) 29.02 (0.54) 44.24 (0.37) 

Nitrogen (%) 0.77 (0.03) 1.43 (0.03) 

C:N 37.69 (0.78) 30.94 (0.56) 

NH4  - N (mg 100 g' dry soil) 0.07 (0.01) 1.32 (0.09) 

NO3  - N (mg 100 g 1  dry soil) <0.005 (NA.) <0.005 (N.A.) 

P043  (mg 100 g' dry soil) 4.29 (0.11) 4.24 (0.08) 

Table 5.1 Soil chemical analysis conducted at the end of the study period in September 2000 (n = 9). 
Soil samples were collected from the H horizon at a mean depth of 5 cm from the surface. (N.A. = Not 
Applicable). 
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5.3.2 Laboratory Measurements of Soil Carbon Dioxide Fluxes 

5.3.2.1 Rate of Respiration 

The response of soil respiration to an increasing temperature from 5 °C to 25 °C was 

computed for every soil microcosm collected from September 1999 to September 

2000. Mean CO2  effluxes showed a highly significant temperature effect (P < 0.001) 

and responded exponentially to increasing temperatures with a minimum mean efflux 

of 0.41 and 0.41 jimol CO2  m 2  s 1  at 5 °C in the winter month of February and a 

maximum mean efflux of 2.96 and 3.65 pmol CO2  m 2  s at 25 °C in May for control 

and treatment plots respectively (Figure 5.2). 

Treatment had a statistically significant effect on soil respiration across the range of 

temperatures (2-way ANOVA). At higher temperatures, ~! 15 °C, the CO 2  efflux 

from treated soils was markedly higher at all sampling times during the entire period 

of study from September 1999 to September 2000. 

The response of soil respiration to temperature calculated on the basis of: area of soil 

(pmo1 CO2  m s'), microbial-C content (pmol CO 2  g-micro-C s'), and microbial-

N content (pmol CO 2  g-micro-N' 1),  showed a similar seasonal trend at every 

temperature (Figure 5.3). The rate of respiration was seen to fall to a minimum 

during winter in February 2000 and thereafter increase to a peak value during the 

summer. 

The statistically significant effect of ammonium nitrate additions on the response of 

soil respiration to temperature was also observed when computed on a different 

basis. The effect is clearly visible at higher temperatures as seen at 25 °C in 

comparison to 5 °C as shown in Figure 5.3. 
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Figure 5.2 Examples of the response of soil respiration (mean ± S.E., n = 9) across a temperature 
range of 5 °C to 25 °C during (A) winter - February 2000 and (B) spring - May 2000 for control (0) 

and treatment (.) samples. 
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Figure 5.3 Soil respiration calculated at 5 °C on the basis of (A) area, (B) microbial-C, (C) microbial-
N and at 25 °C on the basis of (D) area, (E) microbial-C and (F) microbial-N (n = 9) for control (0) 

and treatment (.) samples from September 1999 to September 2000. 
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The relationship between soil respiration and temperature was described by first-

order exponential, quadratic and Arrhenius types of equations (Table 5.2). All three 

functions could be fitted to the data and there is no significant difference between the 

values calculated from the different models for any sampling time through the year. 

EQUATION FITTED PARAMETERS r 2  

EXPONENTIAL Control: 	a = 0.36 (0.03), b = 0.08 (0.003) 0.99 

k = ae)T Treatment: a = 0.38 (0.04), b = 0.09 (0.005) 0.98 

ARRHENIUS Control: 	a = 0.83 (0.03), E = 5.85 x 	(2.19 x 10) 0.99 

k = aeT732) Treatment: a = 0.91 (0.05), E = 6.30 x iO4  (5.85 x 10) 0.98 

QUADRATIC Control: 	a = 0.41 (0.04), b = 0.004 (0.0002) 0.99 

k = a + b T 2 Treatment: a = 0.38 (0.07), b = 0.005 (0.0002) 0.98 

Table 5.2 Fitted relationships between soil respiration and temperature. The fitted parameters were 
calculated as an annual average of all the sampled months (± S.E.) for control and treatment plots. 

Figure 5.4 shows an example of the fitted curves using the first-order exponential 

equation between simulated and measured data for both control and treatment plots 

through the period of study. Residual analysis did not show a systematic variation in 

differences between the observed and calculated data across the temperature range, 

although the residual is more variable at 15 °C for all equations and for both control 

and treatment plots. 
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Figure 5.4 The observed (.) and calculated (o) soil respiration (mean ± S.E., n = 9) for (A) control 
and (B) treatment samples during the entire study period. 
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5.3.2.2 Qio 

Qio values were calculated for each sampled month with the three fitted relationships 

between soil respiration and temperature. Despite the fact that all three equations 

fitted the observed data well and provided similar estimates of soil respiration at 

different temperatures, derived Qio  values from the first-order exponential and 

Arrhenius equations compared very closely while the quadratic equation gave 

slightly higher values (Table 5.3). 

MONTH 

EXPONENTIAL 

k = ae)T 

ARRHENIUS 

E 	T-10 

k = ae T732832  

QUADRATIC 

k= a+ bT 2  

Control Treatment Control Treatment Control Treatment 

Sep. '99 2.26 (0.99) 2.35 (0.98) 2.29 (0.99) 2.31 (0.98) 2.44 (0.99) 2.52 (0.98) 

Nov. '99 2.28 (0.98) 2.31 (0.98) 2.31 (0.98) 2.35 (0.98) 2.47 (0.98) 2.49 (0.98) 

Feb. '00 2.07 (0,98) 2.24 (0.98) 2.10 (0.99) 2.28 (0.98) 2.23 (0.99) 2.40 (0.98) 

Mar. '00 2.08 (0.98) 2.29 (0.98) 2.11 (0.98) 2.33 (0.98) 2.23 (0.98) 2.46 (0.98) 

Apr. '00 2.34 (0.99) 2.48 (0.93) 2.38 (0.99) 2.53 (0.93) 2.54 (0.99) 2.72 (0.93) 

May '00 2.45 (0.99) 2.50 (0.99) 2.50 (0.99) 2.55 (0.99) 2.65 (0.99) 2.81 (0.99) 

Jul. '00 2.57 (0.99) 2.76 (0.97) 2.62 (0.99) 2.83 (0.97) 2.71 (0.97) 3.06 (0.97) 

Aug. '00 2.32 (0.99) 2.58 (0.99) 2.36 (0.99) 2.64 (0.99) 2.50 (0.99) 2.91 (0.99) 

Sep. '00 2.34 (0.99) 2.52 (0.98) 2.38 (0.99) 2.58 (0.99) 2.49 (0.98) 2.88 (0.99) 

Table 5.3 Monthly Qio  values (r2) derived from different equation models to describe the 
relationship between soil respiration and temperature. The Q0  for the Arrhenius and Quadratic 
models, was estimated from the calculated respiration rates at 10 °C and 20 °C. 
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A seasonal pattern was observed for Qio  derived from the first-order exponential 

equation during the one-year study period from September 1999 to September 2000 

with the lowest value being recorded in winter and the highest in summer (Figure 

5.5). Treatment did not have a significant effect on the Qio  value during the initial 

stages of the study in the winter season. However, after spring the Qio  value of the 

treatment plots increased with time, while the control plots exhibited a relatively 

constant value. 
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Figure 5.5 The seasonal trend of Qio  (mean ± S.E., n = 9) for control (o) and treatment (.) plots 
during the study period from September 1999 to September 2000. 

Qio was plotted across different temperature ranges (Figure 5.6) and the seasonal 

pattern charted by both control and treatment plots was observed to be similar for 

each temperature interval with insignificant shifts in magnitude. 
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Figure 5.6 The seasonal trend of Qo  (n = 9) for control (o) and treatment (.) plots during the study 
period from September 1999 to September 2000 across the temperature intervals of (A) 5 - 25 °C, (B) 

5 —20°C,(C)5-15 °C and (D) 10-25 °C. 
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5.4 DISCUSSION 

The seasonal changes in CO 2  fluxes from the soil were comparable with other 

published studies on the rates of soil respiration from heathiand ecosystems (Singh 

and Gupta, 1977; Raich and Schlesinger, 1992), ranging from 0.407 - 3.92 pmol 

CO2  m s 1  over a temperature range of 5 - 25 °C. Chapman (1979) working at a 

lowland Calluna heath in southern England, found that soil respiration increased 

exponentially with temperature from 0.69 - 2.84 pmol CO 2  m 2  s- I  over the 

temperature range 2 - 18 °C. Brown and Macfadyen (1969) studied a Calluna heath 

in Denmark, where respiration of the soil varied according to the age of a heather 

stand: pioneer stage, 0.79 - 2.29 tmol CO 2  m 2  s'; mature stage, 0.92 - 2.20 jimol 

CO2 M-2 s'; building stage, 0.81 —2.03 jimol CO2 M-2  s'; and degenerate stage, 0.71 

- 1.26 jimol CO2  m 2  s 1 . The clear decline in the degenerate phase suggests a strong 

link between soil respiration and primary productivity. 

In the present study soil respiration was positively related to soil temperature, 

especially under non-limiting moisture conditions, as shown in numerous other 

ecosystems (Reiners, 1968; Garrett and Cox, 1973; Edwards, 1975; Schlentner and 

Van Cleve, 1985; Weber, 1985; Ewel, Cropper and Gholz, 1987; Peterjohn et al., 

1993; Hanson et al., 1993). Soil respiration closely followed changes in soil 

temperature in both control and treatment plots with values being high during the 

summer, reaching a maximum in August and thereafter rates gradually declining 

during late autumn. The seasonal pattern in soil temperature was observed down the 

entire soil profile suggesting that heat penetration occurred through the successive 

soil strata to a depth of 20 cm, though the amplitude of seasonal soil temperature 

change decreased exponentially with depth, as also noted by Anderson (1991), with 

the uppermost layers showing maximum diurnal and seasonal fluctuations. The top 5 

cm of the soil profile were constantly subjected to wide fluctuations in temperature 

and consequently moisture due to evapotranpiration, especially during the summer 
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season, and hence would have had the greatest influence on soil respiration. 

However, as a general approximation, the annual wave is known to be virtually 

extinguished at only 19 times the depth penetration of the diurnal wave (Rosenberg, 

1974), therefore, in areas with shallow soil profiles as observed in the present study, 

lower mineral soil horizons are also exposed to wide temperature fluctuations and 

hence, also contribute to the variation in soil carbon dioxide fluxes at the 

experimental site. The seasonal pattern of soil respiration agrees closely with 

previously published data which describes a similar trend for a range of ecosystems 

and soil types with a seasonal maximum in middle to late summer, followed by a 

rapid decrease during winter (Anderson, 1973; Edwards and Sollins, 1973; Singh and 

Gupta, 1977; Edwards and Harris, 1977; Lawrence and Oechel, 1983; Sowell and 

Spomer, 1986; Raich and Schlesinger, 1992; Bowden et al., 1993; Lloyd and Taylor, 

1994; Toland and Zak, 1994; Jensen et al., 1996; Silvola et al. 1996; Zogg et al., 

1996; Boone et al., 1998; Lin et al., 1999). For example, Edwards and Sollins (1973) 

also found that the mean CO2 release from a deciduous forest ecosystem was low in 

spring from March to July, peaked in August and thereafter steadily decreased while 

a similar trend was also observed by Jensen et al. (1996) for an arable soil, wherein 

the soil surface CO 2  flux was maximum in August followed by a gradual decline. 

Though moisture is not a limiting factor at this site, which in most years receives 

moderate rainfall throughout the year and is well drained, it is important to note that 

the relationship between CO2 efflux and soil temperature usually involves complex 

interactions with the soil moisture content, depending on the relative limitation of 

each variable to both microbial and root activity under given conditions. Howard and 

Howard (1993) and Schlentner and Van Cleve (1985) found a strong interaction 

between temperature and moisture content in determining the soil respiration. 

However, in the present work, the rainfall was high enough to maintain moisture 

close to field capacity. It is quite unlikely that the experimental addition of water 

with ammonium nitrate additions, equivalent to merely 0.22 mm per month, would 

have influenced the result. 
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Carbon dioxide fluxes from the soil have both an autotrophic and heterotrophic 

component. These heterotrophic fluxes arise from the metabolic activity of a wide 

range of soil bacteria, fungi and micro and macro fauna which are responsible for 

organic matter decomposition (Christensen et al., 1996). This in turn depends on 

favourable environmental conditions, especially temperature, because 

microorganisms are capable of long periods of minimal activity or dormancy to be 

followed by a highly active phase when the natural conditions are more conducive 

and populations flare up (Holland, Townsend and Vitousek, 1995). Hence, the rate of 

soil respiration may also be affected by the microbial population and organic content 

of soil, which is an indicator of the quantity and quality of litter. Litterfall can 

influence the seasonal pattern of CO 2  efflux from the soil surface by adding both 

soluble carbon and fresh organic material (Schlesinger, 1977). The effects of litterfall 

on patterns of soil CO 2  efflux have been shown in a study by Weber (1985), wherein 

patterns of above-ground litter would also be accompanied by seasonal patterns of 

high carbon loss from the soil, especially roots due to mortality and exudation that 

would also stimulate CO2  efflux. The timing of litterfall inputs to the soil surface is 

generally high during the summer and autumn, after the flowering season. In the 

present study, soil respiration was highest during late summer and autumn with the 

beginning of summer litterfall in September 1999 and 2000 probably contributing to 

the markedly high values in CO 2  efflux at those sampling times. Moreover, organic 

matter increased with an increase in nitrogen inputs because fertiliser addition would 

aid plant productivity, which in turn would lead to higher levels of organic matter in 

the soil by enhancing litter quality and quantity (Jager, 1971; Fauci and Dick, 1994) 

and promoting the release of highly decomposable root exudates (Coleman, 1976; 

Prikryl and Vancura, 1980). Therefore, as Swift, Heal and Anderson (1979) 

proposed, the rate of decomposition of organic matter is regulated by four groups of 

variables namely, a) the soil organisms, both vertebrates and microorganisms, b) 

physical rate determinants, primarily temperature, c) mineralogical constituents of 

soil, and d) the chemical composition of litter, which is a function of carbon 
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availability, mineral nutrient content and the presence of modifiers, such as lignin, 

tannins and nitrogen. Heal, Latter and Howson (1978) investigated the 

decomposition rates in a peat bog of 14 litter types, including Calluna vulgaris, to 

conclude that in N-limited sites, decomposition rates are highly sensitive to 

variations in nitrogen concentrations. This was also shown in fertiliser trials on Scots 

pine stands in Sweden (Berg and Staaf, 1980 a, b), where increased concentration of 

nitrogen in needles were reflected by increased decomposition rates of up to 5 % 

over 2 years (Berg and Ekbohm, 1993). In this study, nitrogen inputs clearly had a 

strong effect on the organic composition of soil with the ammonium nitrate fertiliser 

increasing both organic carbon and nitrogen levels in the soil and typically, a high 

rate of respiration is found in soils with a recent input of easily degradable substrates. 

The low soil C:N ratio in the treatment plots, as compared to the control plots, may 

be attributed to an increase in the microbial population, organic root exudates and 

organic matter. The functional relationship between microbial biomass and soil 

respiration is not yet fully understood. Sparling (198 1) considered soil respiration to 

be representative of the active part of microbial biomass while Anderson and 

Domsch (1986), viewed soil respiration as representing the activity of the whole 

microbial community, both dormant and active stages. However, Insam (1990) and 

Rodrigo et al. (1997) demonstrated an intimate relationship between climatic 

conditions, respiratory C flux and the entire microbial soil C pool by explaining part 

of the climatic effect to be responsible for an altered quantity of metabolizable 

substrates due to an influence on primary production or substrate allocation to the 

roots, in addition to decomposition responding to climatic conditions as well. Both 

factors result in distinct effects upon the mediator of decomposition, the microbial 

biomass and in turn, soil respiration. Hence, in the present study the rate of soil 

respiration in the treatment plots would have been greatly influenced by the 

increased microbial activity due to increased soil organic matter content with added 

fertiliser treatment. 
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Another factor influencing rates of CO 2  evolution is soil pH, which determines the 

types of microorganisms active in soil organic matter decomposition. When organic 

tissue or exudates enter the soil, the bulk of the material, readily-degradable 

compounds mainly composed of recently-incorporated plant remains plus the 

components of the growing and dying microbial population, undergoes enzymatic 

oxidation with carbon dioxide, heat and water as the major products, while the 

essential elements, nitrogen, phosphorus and sulphur are released and/or immobilised 

by a series of secondary reactions specific for each element (Vanhala, Fritze and 

Neuvonen, 1996). The more degradation-resistant components, chiefly humic acid, 

that are the major components of soil organic matter (Tate, 1980) and have been 

shown to vary with soil type and vegetation cover (Stevenson, 1982), may be 

decomposed in alkaline or neutral soils by bacteria (Kontchou and Blondeau, 1992). 

However, at low pH (:!~ 4.0) such as those observed in heathland ecosystems, fungi 

become more important (Haider and Martin, 1988; Blondeau, 1989). Therefore, a fall 

in soil pH would strongly influence the soil microbial biomass and community 

dynamics, which in turn would affect the rate of soil respiration, as noted in the 

present study. The significant drop in soil pH observed in the treatment plots shows 

that the addition of ammonium nitrate fertiliser would affect soil respiration by 

increasing the acidity of the soil. In most soils previously studied, nitrification of 

ammonium salts occurs with the production of nitric acid, which lowers pH, whereas 

nitrate salts have no effect on the pH (Fog, 1988). Foster, Beachamp and Corke 

(1980) found that ammonium sulphate lowered the pH of a pine forest soil by 1 unit, 

while ammonium nitrate reduced the pH by 0.75 unit over one year. Hence, the 

higher rates of soil respiration observed in the treatment plots may possibly be 

attributed to a drop in soil pH caused by fertiliser additions, which triggers an 

expansion of fungal hyphae. 

Treatment plots exhibited a build up of ammonium-N while nitrate-N was not 

detected in any of the experimental plots. This may be attributed to the fact that 

treatment plots with high organic matter content, would also have high 
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mineralisation rates compared to the control plots, which would lead to higher 

ammonium-N concentrations upon fertilisation (Stanford, Frere and Schwaninger, 

1973; Schenk and Wehrmann, 1979). Simultaneously, a high denitrification rate of 

nitrate by the plant root system and microbial population, and the immobilisation and 

leaching of nitrates through the soil pores would result in negligible nitrate-N values 

(Stanford, 1982). Although it is generally assumed that plants are an important sink 

for the atmospheric deposition of NO 3  (Aber et al., 1989; 1991), it appears that NO 3  

is of less importance than NH 4  in the nitrogen metabolism in N-deficient soils, as 

also postulated by Rothstein, Zak and Pregitzer (1996). However, the added NO 3  

may cycle through microbial biomass and ultimately re-enter soil solution as NH 4  

thereby indirectly influencing respiratory rates over the long term by increasing total 

N availability (Aber et al., 1991). Changes in soil N availability could influence soil 

respiration by several mechanisms. For example, an increase in the quantity of 

available N in soil will likely affect root respiration by increasing tissue N 

concentration because NH 4  can be assimilated directly into biologically active plant 

compounds (Veen, 1980; Johnson, 1983), and the associated protein maintenance 

and construction costs (Merino, Field and Mooney, 1982; Waring et al., 1985; Irving 

and Silsbury, 1987; Ryan 1991) with increasing protein concentration (Ryan, 1991). 

If an increase in N availability results in higher N concentrations in root tissue then 

root respiration is likely to increase, thereby increasing total soil respiration. Zogg et 

al. (1996) studied the effect of nitrogen availability on root respiration in a hardwood 

forest to also conclude that differences in root respiration rates among stands resulted 

from differences in soil N availability. 

Differences in soil CO 2  efflux in response to nutrient availability, especially soil 

nitrogen, represent the net result of many processes that involve changes in root and 

microbial activity with biomass production (Söderström, BAâth and Lundgren, 1983). 

In a nutrient-poor ecosystem, the processes that could potentially be affected by an 

increase in soil N availability include first, stimulation of microbial activity and 

second, increase in allocation of assimilate belowground by plants, thus increasing 
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root and microbial respiration. The net change in total CO 2  efflux as soil respiration 

therefore depends on the balance between initially, microbial and root respiration, 

and subsequently, total productivity and allocation above and belowground. The 

immediate response after fertiliser application as observed in the treatment plots, 

before significant root growth could have occurred, indicated differences in CO 2  

efflux due to microbial activity. This suggests a small short-term stimulation of 

microbial activity due to N addition followed by the response of the plant root 

system in later months. In late summer the treatment plots showed a marked 

increased in soil respiration rates. This may be an indication of the greater effect of 

high temperatures on stimulating microbial activity, with the gradual build-up of 

nutrient availability in soil and increase in nutritional quality of litter, all of which 

would influence the microbial utilisation efficiency of organic compounds. Van Veen 

et al. (1991) found lower bacterial biomass in nutrient-poor as compared with 

nutrient-rich soils having a higher proportion of soil organic carbon in an available 

form, but decomposition was instantly stimulated when soil nutrient levels were 

increased. Changes in nutrient availability can cause changes in the composition of 

microbial populations, as noted in Chapter 4 while estimating the soil microbial 

biomass, and thus alter soil CO 2  efflux. Tewary, Pandey and Singh (1982) also found 

a positive correlation between soil CO 2  efflux and percent nitrogen in soil and litter. 

As well as the direct effect of N addition to the soil on microbial activity, it is likely 

that the composition of root exudates and dying fine roots was enhanced by increased 

N availability. Orchard, Cook and Corderoy (1992) also found that a higher soil 

nutrient availability increased the capacity of microorganisms to utilise higher carbon 

inputs from litterfall resulting in increased rates of respiration, and suggested that this 

was due to a change in microbial population. These direct and indirect effects would 

both tend to stimulate microbial activity and therefore, soil respiration. 

A number of factors influence the fluxes of carbon dioxide from soils but with 

growing concerns regarding global warming, the temperature sensitivity of soil 

respiration will largely determine the effects of a warmer world on net carbon flux 
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from soils to the atmosphere. Hence, temperature is the single best predictor of the 

annual soil respiration rate of a specific location (Raich and Schlesinger, 1992). 

The temperature dependence of all biochemical processes is widely recognised, and 

soil respiration in particular is known to vary with temperature (Amthor, 1984; 

Johnson, 1990; Reichstein et al., 2000). The response of soil respiration and other 

mineralisation processes in the soil to temperature are commonly described using 

exponential, Arrhenius and quadratic equations. However, uncertainties remain in 

understanding and describing the relationships and in recent times, a range of 

variations have been introduced by researchers to produce an accurate universal 

model to best describe the response of soil respiration to temperature, for example, 

exponential or Arrhenius based equations (Lloyd and Taylor, 1994; MacDonald, Zak 

and Pregitzer, 1995; Thierron and Laudelout, 1996); linear models (Rochette, 

Desjardins and Pattey, 1991); quadratic models (Holthausen and Caldwell, 1980); 

logistic models (Schlentner and Van Cleve, 1985; Jenkinson, 1990). Although these 

models may fit well with sets of experimental data under specific conditions, they 

suggest different explanations for the response of soil respiration to temperature. The 

Qio value, which defines the temperature dependence or sensitivity of soil respiration 

to temperature variation, when derived from different models is also different, 

whether by magnitude or with respect to temperature (Howard and Howard, 1993; 

Lloyd and Taylor, 1994; Kirschbaum, 1995; Lomander, Kätterer and Andrén, 1998; 

Winkler, Cherry and Schlesinger, 1996). Nevertheless, an exponential increase in 

soil respiration with respect to temperature is still commonly accepted and observed 

for biological systems over a limited range of temperatures (O'Connell, 1990; 

Thierron and Laudelout, 1996; Winkler, Cherry and Schlesinger, 1996). Hence, the 

relationship between soil respiration and temperature in the present study has been 

described by the three most commonly used models are viz, first-order exponential, 

Arrhenius and quadratic equations. 
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In 1898, Van't Hoff described the following exponential relationship to examine the 

effect of temperature on different reactions, over a limited temperature range: 

Iog 10k=a+bT 

where, k is the rate constant, a and b are constants, and T is the temperature. Using 

natural logarithms, the equation can be expressed for the rate of respiration (R) as: 

R = ae bT  

The above-mentioned first-order exponential is widely used by researchers to 

determine the relationship between soil respiration and temperature. 

Another widely used equation is the following Arrhenius rate equation derived in 

1889, which takes into consideration the energy distribution of reacting molecules: 

k=ae -E/(9?T) 

where, k is the rate constant (respiration rate), a is a constant, E is the activation 

energy, 9? is the universal gas constant, and T is the absolute temperature (K). 

The third equation commonly applied is a simple quadratic equation that was 

originally developed by Ratkowsky et at. (1982) to explain temperature responses of 

microbial growth for pure bacterial cultures, namely 

k=a+bT 2  

where, k is the rate constant (respiration rate), a and b are constants, and T is the 

temperature. 
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DIas-Ravina, FrostegArd and Bâàth (1994) showed that the quadratic function can 

also be applied to predict microbial temperature responses in soil and since microbial 

activity is the basis of much of soil respiration, the model has been used to describe 

the relationship between soil carbon fluxes and temperature. 

The temperature dependence of respiration is often expressed as the Qio  value. When 

the relationship between soil respiration and temperature is exponential, Qio  is 

related to the slope of log R versus temperature and can be calculated by the 

following linear relationship. 

lnR =lna+kT 

In Qo = 10 k 

Q 	
10k 

10 = e 

where, R is rate of respiration, a is a constant, k is the rate constant, T is temperature. 

Qio is the factor by which the respiration rate (R) differs for a temperature (T) 

interval of 10 °C, as defined below, and has been the focus of many studies. 

Qlo = R(T+ 10)'RT 

In this study, soil respiration is positively correlated with soil temperature and the 

Q 1  derived from the exponential, quadratic and Arrhenius equations range from 2.11 

to 2.91 across a temperature gradient from 5 to 25 °C. Chapman (1979) had also 

recorded values between 2.09 - 2.68 across a temperature range from 2 - 18 °C. The 

values compare well with published Qio  values for soil CO2  efflux given by literature 

reviews, which range from 1.3 to 3.3 with a mean value of 2.4 (Raich and 

Schlesinger, 1992; Kätterer et al., 1998). Schleser (1982) noted that the wide 

variation in Qio  values for soils is dependent on natural conditions such as nutrient 

supply because the metabolism of soil organic matter by microorganisms is 
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influenced by the physico-chemical conditions and the quality of organic matter. 

Howard and Howard (1993) also recorded an increase in Qio  values with increasing 

temperatures for podzols and high peat soils with pH 3.0 - 3.7 with Calluna-

dominated vegetation and concluded that in acidic soils decomposition of plant 

detritus is naturally slow and resistant organic matter tends to accumulate and hence 

a lower rate of organic matter decomposition. The first-order exponential and 

Arrhenius equations, both gave similar Qio  values suggesting that soil respiration 

does increase exponentially with temperature. The first-order exponential equation 

was chosen to describe the response of soil respiration to temperature, which also 

helped facilitate the comparison of this project to the results of previous studies. 

In the present study, it can be stated that factors affecting the rate of soil respiration 

were ammonium nitrate fertiliser treatment, temperature, pH and organic matter 

content. In order to express the magnitude of influence of each environmental factor 

(± S.E.), multiple regression was applied on Qio  to generate the following equation 

(r2  = 61.4 %): 

Qio = 4.929 (± 0.85) + 0.206 (± 0.04) N + 0.029 (± 0.01) T 

-0.150 (± 0.08) pH-0.025 (±0.01)5 

where, T is field temperature (°C), N is nitrogen treatment (1 or 2) and S is soil 

organic matter (%). 

Residuals showed slight seasonal behaviour but it proved impossible to improve the 

fit by using an index of seasonality. The use of non-linear terms was tried but they 

did not prove to be significant. 
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It is noteworthy that the Qio  increases significantly with temperature. Thus with 

climate warming, temperature may exert a stronger influence than would be 

predicted by a simple Qio  model, at least until substrate exhaustion becomes 

important. Simulation of the annual soil carbon efflux under conditions of increased 

and decreased temperature and organic matter by using the above regression model 

illustrated that substantial changes in soil changes in soil carbon fluxes could occur 

(Figure 5.7). 

Figure 5.7 Model results of the effects of temperature and organic matter on carbon dioxide fluxes 
from the soil using the multiple regression equation for control (o) and treatment (.) samples. 
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The dynamics between soil properties and belowground carbon fluxes provides an 

essential baseline for understanding and predicting potential changes in terrestrial 

ecosystems and their capacity to sequester carbon. The close relationship of 

belowground biological activity with temperature, moisture and soil nutrient 

availability indicates that potential impacts of disturbance to these soil properties can 

greatly influence CO 2  efflux from the soil. The high correlation of soil CO 2  efflux 

with temperature and nutrient status of the soil means that the carbon flux can be 

predicted at any given time with accuracy, if these variable and the relationships 

between them are known for a specific site, moisture not being a limiting factor, and 

substrate quality and quantity does not change as a consequence of depletion of 

carbon pools that constitute the substrate. These caveats are in practice very 

important, and long term soil warming experiments suggest that the decomposition 

process does in fact show an acclimation process, probably associated with the 

depletion of labile carbon pools (Jarvis and Linder, 2000). This acclimation process 

tends to undermine the use of fixed Qio  in global circulation models (eg. Cox et at., 

2000), and may explain why the temperature sensitivity of soil respiration is 

markedly less in long-term experiments (Grace and Rayment, 2000). Nevertheless, 

predicted changes in global climates include significant increases in temperature, and 

this could result in higher rates of soil CO 2  efflux (Raich and Schlesinger, 1992). 

This effect is likely to provide a positive feedback to the greenhouse effect, 

particularly as CO 2  efflux, as respiration is an exponential function of temperature. 

The results in this study represent short-term responses in CO 2  efflux from soils that 

are related to root and microbial activity. However, even small changes in soil carbon 

fluxes, if sustained, will have major impacts on carbon cycling; for example, using 

the Rothamsted model of soil organic matter turnover, Jenkinson, Adams and Wild 

(1991) predicted that the increase in CO 2  release from soil organic matter due to a 

temperature rise of 0.03 °C per year will be 6 x 1015 g C, over the next 60 years. 
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5.5 CONCLUSIONS 

In the present study, environmental variables of soil temperature, pH, organic matter 

and microbial biomass were found to be important determinants of carbon dioxide 

fluxes from soil. Nitrogen application as ammonium nitrate significantly increased 

soil respiration and the results suggest that long-term effects of atmospheric N 

deposition, with accelerated mineralisation at higher temperatures, could disrupt the 

carbon balance of nutrient-poor ecosystems, as noted for heathlands. Therefore, soil 

environmental parameters and nitrogen availability are important factors that 

influence the carbon dioxide effluxes from soil and should be considered in 

terrestrial C budget models describing the response of ecosystems to global change. 
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6. EFFECTS OF N DEPOSITION ON PLANT GROWTH 

AND TISSUE C:N RATIO 

6.1 INTRODUCTION 

The physiological effects of excessive nitrogen consumption by plants is not always 

easy to predict, although, the consequences at the ecosystem level can be profound 

(Lee, 1998). Amongst, the ecological repercussions, increases in the concentration of 

organic nitrogen compounds in leaves may have significant influence on herbivory 

(McNeil! and Southwood, 1978; Mattson, 1980; Bryant, et al., 1987, 1992, Hartley, 

Nelson and Gorman, 1995). Secondly, a decrease in the C:N ratio in litter may have 

marked stimulatory effects on decomposition processes (Fog, 1988; Anderson, 1991; 

Van Vuuren and Berendse, 1993). Carbon dioxide is an end product of microbial 

respiration during the process of organic matter decomposition, and respiration by 

live roots, and so N deposition can be expected to increase the carbon dioxide fluxes 

to the atmosphere. Microbial respiration is related to the quantity and quality of 

substrate and root respiration is related to the rate of assimilate transfer belowground; 

hence both processes are dependent on total productivity, allocation of assimilate and 

nutritional status of the plant. 

Vegetation change, as result of excessive N inputs, may also alter the distribution of 

soil nutrients because as a soil-forming factor, plants affect the pattern and rate of 

rock weathering, the rate of organic inputs to the soil, and the distribution of soil 

nutrients spatially and temporally, all of which influence root and microbial growth 

and respiration. Therefore, changes in plant life forms that alter root profiles, 

maximum rooting depths and microbial dynamics may consequently alter vertical 

nutrient distributions (Jama et al., 1998), including the soil C pool, which is the 

largest terrestrial pool of organic C (Trumbore, 2000). Thus, soil dynamics, including 
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carbon dioxide fluxes, bears the imprint of plant activity through time. When these 

community responses are considered together with the potential effects of nitrogen 

deposition on individual species, far reaching effects on ecosystems can be 

envisaged. Hence the need in this present study to estimate the effects of ammonium 

nitrate fertiliser inputs on plant growth and tissue C:N ratio of Calluna vulgaris (L.) 

Hull, especially since plants confined to low nutrient status soils are susceptible to 

enhanced nitrogen deposition (Ellenberg et al., 1991). 

In early investigations, the age of Calluna plants was estimated by counting growth 

rings on a sample of stems (Watt, 1955; Gimingham, 1960; Kayll and Gimingham, 

1965; Miller and Miles, 1970). Beijernck (1940) in a detailed study entitled, 

'Calluna: A Monograph on the Scotch Heather', wrote "the annual rings are pretty 

distinctly delineated and can be clearly recognised with low magnifications by the 

differences in size of the vessels in the winter- and summer-wood, especially when 

stained they show well" (Figure 6.1). 

_aii2 
PiF1 

Figure 6.1 Annual growth rings of a Ca/tuna vulgaris (L.) Hull stem sample as observed under low 
magnification with a compound microscope after staining with blue ink. 
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By extension, the last season's incremental growth may be determined by the width 

of the last annual ring. A number of studies have shown that nitrogen inputs can 

promote shoot growth and alter tissue C:N ratio as discussed in Chapter 2 and 

supported by the pilot study findings. 

This chapter presents a technique to accurately determine shoot diameter increments 

of Caliuna plants as an indicator of the effect of fertiliser treatment on plant growth. 

Tissue C:N ratio was also estimated to study the degree to which applied nitrogen 

inputs are reflected in tissue nitrogen concentrations, which can directly influence 

soil processes like soil respiration and microbial communities via root exudates. 

6.2 MATERIALS AND METHODS 

Terminal shoots from all six plots were studied for shoot increments, in order to 

determine the growth pattern during the last growing season with higher nitrogen 

inputs, and total organic carbon and nitrogen content to determine the effects of 

ammonium nitrate fertiliser additions. Samples were taken at the end of the study 

period in October 2000. 

6.2.1 Growth 

Growth during the last growing season was estimated by measuring the width of the 

last growth ring as observed in a cross-section of apical shoot samples collected from 

all the experimental plots. The terminal shoots were excised at a point corresponding 

to three years old, that is, there were three radial growth increments. The thin cross-

sections were stained with blue writing ink (Helix, Austria) for 10 seconds and 

viewed under a binocular microscope with a calibrated eyepiece. The average width 

of the last growth ring was measured in millimetres to determine incremental 

increases in shoot diameter. 
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6.2.2 Total Carbon and Nitrogen 

Total carbon and nitrogen contents in plant samples were determined by the flash 

combustion' technique described by Verardo et al., 1990 using a Carla Erba NA-

1500 Analyzer and AS200 Autosampler interfaced with a Hewlett-Packard 3390A 

Integrator. The samples, consisting of the young apical shoots of individual heather 

plants, were oven dried at 60 °C for 36 hours. Each sample was ground in a clean 

agate mortar and pestle, sieved using a 0.353 mm aperture sieve (Endecotts Ltd., 

London, England) and stored in high density polyethylene scintillation glass vials 

with linerless screw caps (Wheaton Science Products, MilIville, USA). 

Approximately 5 mg of sample was weighed into tin foil capsules (Elemental 

Microanalysis Ltd., Devon, UK) using a microbalance (Delta Range AT26 I, Mettler-

Toledo, Leicester, UK) and the sample cups were carefully moulded into small round 

pellets measuring less than 5 mm in diameter with the help of fine forceps. The 

sample balls are placed into the autosampler tray and loaded into the autosampler of 

the NA-1500 Analyzer for direct analysis. 

6.3 RESULTS 

6.3.1 Growth 

The growth increments were readily measured on the ink-stained cross-sections 

(Figure 6.2). 

Nitrogen fertiliser had a significant effect (P <0.01) on the shoot growth. The width 

of the last growth ring within the treatment plots recorded a mean value of 0.708 mm 

(S.E. ± 0.007) in comparison to a mean of 0.503 mm (S.E. ± 0.008) in control plots 

as shown in Figure 6.3. 
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Figure 6.2 A stained cross-section of a terminal shoot of Calluna vulgaris (L.) Hull excised at a point 
corresponding to three years old so that three radial growth increments are visible for measurement. 
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Figure 6.3 Annual shoot diameter increments (mean ± S.E., n = 18) during the last growing season as 
measured in October 2000 after fertiliser treatment. 
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6.3.2 Plant C:N Mass Ratio 

Figure 6.4 shows that nitrogen inputs do not significantly affect the carbon 

concentration in foliar tissue as observed from the tissue composition of shoots from 

both control and treatment plots. The average carbon percentage in control and 

treatment plots was 50.41 % and 50.43 % respectively. However, the nitrogen 

concentration in young shoots was significantly higher (P < 0.01) in plants treated 

with ammonium nitrate. The mean percentage was 1.15 % (S.E. ± 0.007) in control 

plots while treatment showed a higher concentration, 1.34 % (S.E. ± 0.008), after one 

year of fertiliser application. The C:N ratio was therefore observed to be higher in 

control at 43.7 (S.E. ± 0.26) as compared to 37.7 (S.E. ± 0.25) in treatment plots 

(Figure 6.5). 
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Figure 6.4 Total shoot carbon and nitrogen concentration expressed as a percentage of dry weight 
(mean ± S.E., n = 9) measured at the end of the fertilisation period in October 2000. 
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Figure 6.5 Shoot C:N ratio (mean ± S.E., n = 9) determined at the end of the treatment regime in 
October 2000. 

6.4 DISCUSSION 

The effect of nutrition on the growth and yield of plants have long been studied in 

trees. More than a hundred years ago, the German scientist Ebermayer (1876) could 

demonstrate the deleterious effects of forest yield on repeated litter removal. 

Thereafter, Swedish scientists took an early interest in the nutritional requirements of 

trees and clearly proved that nitrogen was the most limiting element in old conifer 

forests in Sweden (Tamm, 1968), a fact that may also hold true for most heathiands 

that grow in similar organic soils and under similar climatic conditions. In long-term 

fertiliser experiments in forest stands of Scots pine in Central Sweden which 

included repeated additions of nitrogen, a significant increase in the concentration of 

nitrogen in the foliage was noted with a pronounced growth response, and stem 
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volume increment doubled on all plots receiving nitrogen (Linder and Axelsson, 

1982). The results of this present study also show that nitrogen inputs have a marked 

effect on plant growth and tissue C:N mass ratio. 

The observations recorded in this chapter were in agreement with the trends observed 

in the pilot study. Enhanced shoot growth of Calluna vulgaris plants was observed in 

all treatment plots in comparison to the control plots, in a manner similar to the 

positive effects elicited by ammonium nitrate fertiliser inputs on the shoot extension 

of plants maintained within the open-top chambers. The stimulation of growth may 

be attributed to the direct removal of nitrogen-limitation in the nutrient-poor 

ecosystem by regular fertiliser additions. Similar results have been reported for 

fertilisation studies conducted on Calluna wherein nitrogen additions significantly 

enhanced growth (Heil and Bruggink, 1987; Aerts, 1989; Capom et al., 1995 a, b; 

Uren et al., 1997). Importantly, the observation suggest that the staining technique 

employed can accurately represent the growth pattern of a Calluna plant, thereby 

providing a powerful tool for determining the effects of fertilisers on plant growth 

and productivity. 

The high percentage of tissue nitrogen in treated plants suggests that added fertiliser 

could significantly disrupt the tissue C:N ratio within plants. The high concentrations 

of foliar N suggest a foliar uptake of nitrogen in conjunction with the absorption of 

nutrients via the root system. In isotopic studies conducted by Van der Eerden et al. 

(1990), on heathland vegetation, using ' 5N-labelled ammonium sulphate, the authors 

revealed that the uptake of ammonium ions from atmospheric sources is 

predominantly via the shoots. Moreover, field experiments have shown that 45 - 90 

% net throughflow of wet deposited ammonium can be directly assimilated upon 

uptake by Calluna shoots (Fowler et al., 1989). The foliar N concentrations observed 

for treated and control plants compare well with the values observed during the pilot 

study, as described earlier in Chapter 3, and increases in foliar nitrogen concentration 

upon fertiliser application have also been observed by other researchers (Brunsting 
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and Heil, 1985; Van der Eerden et al., 1990; Lee, Caporn and Read, 1992). In a 

fertilisation experiment, Aerts (1993 b) showed that foliar N concentration in dwarf 

shrub species of Calluna vulgaris and Erica cinerea correlated with N deposition. 

Pitcairn, Fowler and Grace (1995) reported increases in foliar N content in Calluna 

vulgaris over the last 30 years in the British Isles, reflecting N deposition levels. The 

foliar carbon concentrations are less drastically affected by nitrogen inputs as also 

seen in the pilot study. There it was concluded that although the total carbon 

percentage may not vary considerably, the carbon allocation pattern changes wherein 

less carbon is utilised for the production of secondary metabolites, which serve as 

vital defence compounds against pest attacks, while more energy is channelled 

towards growth. Therefore, foliar C:N ratios provide a good indicator of the effects 

of atmospheric fertilisers on plant physiological processes and stress susceptibility. 

N enrichment promotes plant growth, with a differential uptake of NH 4  and NO3  

ions, and thereby increases productivity (Jefferies and Maron, 1997). An increase in 

the fine root structure and production of root exudates would in turn influence root 

and microbial respiration within the soil and thereby increase carbon dioxide effluxes 

from the soil. The plant-soil interactions, including the carbon balance, can thus be 

easily disrupted by elevated nitrogen inputs. 

6.5 CONCLUSIONS 

The study showed that ammonium nitrate fertiliser treatment significantly increased 

plant growth and altered tissue C:N mass ratio, which may consequently result in 

more litter and root exudates to the soil and exert an influence on the soil microbial 

profile. Therefore, elevated nitrogen inputs can indirectly cause an increase of carbon 

dioxide effluxes from soils, especially in nitrogen-limiting ecosystems where plant 

growth responds rapidly to elevated nutrient levels. It may hence be concluded that 
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atmospheric deposition of nitrogen directly affect the growth and yield of plants and 

subsequently affect soil processes, including root and microbial respiration. 
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7. CONCLUSIONS AND SUMMARY 

The heathiands of north-west Europe, dominated by the plant species Calluna 

vulgaris (L.) Hull, have for centuries characterised the physiognomy of the landscape 

(Beijernck, 1940; Watt, 1955; Kayll and Gimingham, 1965; Miller and Miles, 1970). 

Distinctive assemblages of plants and animals have, therefore, had time to develop in 

the tree-less habitats, created years ago by forest clearance, and these ecological 

niches have with time been adopted by species which are now rare or of scientific 

interest (Gimingham, 1972; Uren, 1992). In recent times a steady decline in the area 

of dry heaths has been the cause of much concern, especially in the Netherlands, 

Denmark and the south of England, and today heathlands serve as important 

indicators of nutrient-poor terrestrial ecosystems which are constantly threatened by 

large-scale human activities. The substantial loses have been exacerbated over the 

past years by a dramatic change in the floristic composition with a successional 

conversion of heathlands to grasslands (Heil and Diemont, 1983; Aerts, 1990; Mans, 

1993). Calluna vulgaris (L.) Hull is thus a typical example of a high conservation 

value plant species, playing a pivotal role in the maintenance of plant-animal species 

diversity and of considerable economic importance for sheep grazing and for 

sporting purposes, however presently succumbing to a suite of anthropogenic stress 

factors. In the future, heathlands may suffer even more as a result of climate 

warming, and further anthropogenic nitrogen deposition. 

Since the end of the 1970's, a serious deterioration in species diversity has been 

apparent with the disappearance of Calluna-dependent flora and fauna (Bunce, 1989; 

Usher, 1992). The impoverishment process has been the subject of many research 

studies, which suggest that increased atmospheric nitrogen depositions cause the 

eutrophication of heathland ecosystems and nitrogen appears to be the crucial trigger 

controlling the conversion of heathiands to grasslands (Heisper, Glenn-Lewin and 

Werger, 1983; Brunsting and Heil, 1985; Berdowski and Zeilinga, 1987; Berendse et 
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al., 1987; Van der Eerden et al, 1991; Anderson and Hetherington, 1999). However 

the mechanisms which underlie the complex deterioration process are rather 

complicated and still poorly understood. Moorlands dominated by the heather species 

Calluna vulgaris (L.) Hull, cover 15 % of the land area in the UK but contain nearly 

75 % of the soil organic carbon (Howard et al., 1995). However, few investigations 

have linked the ecological effects of nitrogen pollutants to the disruption of the 

carbon cycle. Soils are a major terrestrial sink of carbon and the response of carbon 

dioxide effluxes to environmental change is of vital importance in the global carbon 

cycle. In the boreal region, the organic soils contain vast deposits of carbon in the 

form of undecomposed and partially decomposed phytomass (Rapalee et al., 1998). 

In the UK, such soils are found mainly as bogs, moors and heaths (Grace and Marks, 

1978). Therefore, an important goal is to characterise factors such as soil 

temperature, moisture, pH, organic matter, carbon:nitrogen ratio and microbial 

composition that determine soil respiration rates, with respect to elevated nitrogen 

inputs in a heathland ecosystem. There is often a lack of integrated studies of the 

biogeochemical cycling of carbon and nitrogen in terrestrial ecosystems, in which 

inputs from atmospheric depositions are related to outputs, in terms of respiration 

and net mineralisation of soil elements. This has caused major gaps in knowledge 

regarding the rates of transfer of anthropogenic pollutants within specific ecosystems 

and not enough is known about how these rates affect population dynamics of 

individual species and trophic relationships. 

The research project aimed at investigating the response of Calluna-dominated 

heathlands to nitrogen deposition as large-scale environmental disturbances, notably 

nutrient enrichment due to high loads of atmospheric pollutants, have been identified 

as the key factors threatening the existence of heathlands. The experimental design of 

the research project allowed for the study of plant, soil and microbial community 

interactions in a heathland ecosystem exposed to a fertiliser treatment that simulated 

atmospheric inputs, within both a controlled and field environment. In the pilot 

study, field conditions were carefully simulated in open-top chambers within the 
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physical constraints of the chamber construction. The environment within the OTC 

was inevitably modified relative to ambient conditions by the enclosure and air 

delivery system. The exposure system was noted to alter the microenvironment, by 

raising the air temperature inside the chambers by 0.5 - 2.0 °C above the ambient 

temperature and reducing the relative humidity by 5 - 13 % (Leith et al., 1998). 

However, the alterations are not viewed as major contributory factors when 

considered in relation to the annual seasonal variations. In the field experiment, the 

investigation was taken a step further, shifting the emphasis to the response of soil to 

atmospheric pollutants. The annual pattern of soil respiration was monitored under 

elevated and ambient nitrogen conditions with the simultaneous determination of 

important soil properties. 

The research project revealed that increased nitrogen availability in a heathiand 

ecosystem can drastically change plant physiological processes which increase 

growth rates, and raise pest susceptibility levels by decreasing secondary defence 

metabolite production, while influencing the carbon storage potential of soils by 

increasing soil respiration and microbial biomass. The general conclusions may 

briefly be enumerated as follows. 

/ Growth of new Calluna shoots increased with nitrogen inputs of greater than 20 

kg N ha- I  yf' and differences in length and diameter increments between the 

control and treatment samples were clearly significant. 

/ Dilute solutions of ammonium nitrate, applied to the plants in order to simulate 

present-day and possible future inputs, had a significant effect on tissue nitrogen 

content as observed during the pilot and field study periods. 

/ Higher nutrient availability reduced the plant allocation of carbon to herbivore-

defence compounds, measured as phenolic secondary metabolites. 
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/ Nitrogen additions significantly altered soil C:N ratio from control levels. 

I' Soil respiration increased with temperature. The Qio  was in the range 2.07 - 2.57. 

/ Inputs of nitrogen fertiliser magnified the response of soil respiration to 

temperature; carbon dioxide effluxes in a nutrient-poor ecosystem were observed 

to increase across a rising temperature gradient. 

/ Soil respiration was noted to decrease with soil depth and across long periods of 

incubation due to substrate depletion. 

/ Microbial biomass and species composition are sensitive to fluctuations in soil 

properties, such as temperature, pH, organic matter content and nitrogen 

concentration as reflected in the microbial C:N ratios and biomass. 

The results indicate that biogeochemical processes in a heathiand ecosystem are 

sensitive not only to the effects of changes in climatic variables but to N availability. 

Nitrogen enrichment may initiate changes in plant tissue chemistry and microbial 

decomposition processes, which could have important indirect effects on species 

interactions in plant and microbial communities that may enhance the rates at which 

the system responds to environmental changes, as well as affecting rates of 

herbivory, all of which may be expected to result in changes in plant species 

assemblages. Changes in plant species assemblages associated with N additions may 

result in feedbacks that reflect interactions between plant tissue chemistry, litter 

accumulation and N mineralisation. Enrichment can change competitive interactions 

between species, which may favour introduced species, and also increase palatability 

of forage plants to herbivores. Nitrogen deposition may not necessarily lead to 

increased biomass, particularly where phosphorus is limiting at a specific site, and a 

series of studies in the UK has shown that plant growth appears to be co-limited by 

the availability of both N and P (Wilson, Wells and Sparks, 1995). However, 
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elevated levels of N in plant tissues can increase herbivory. The most dramatic 

example is the increased mortality of Calluna vulgaris plants brought about by the 

heather beetle, Lochmaea suturalis, which feeds on the N-rich shoots of heather and 

densities of beetles may be as high as 2000 m 2  (Jefferies and Maron, 1997). The 

death of Calluna plants and their replacement by Deschampsia flexuosa can create a 

vegetation mosaic as seedlings of Calluna are unable to establish in the dense litter 

mats of the grass (Prins, Berdowski and Latuhihin, 1991). Hence, the interaction 

results in the changes in plant assemblages and in soil structure. Autotroph-herbivore 

relations, once modified, become increasingly destabilised as predicted by the 

paradox of enrichment. Over-consumption of N-rich plant tissue set up positive 

feedbacks between sustained nitrogen deposition, herbivory and species composition, 

leading to instability and destruction of systems. Once soil-N is raised to the level 

where plant biomass is increased, and rates of nitrogen cycling are altered, it may 

take many years for the pool of soil-N to diminish, even in the absence of new 

inputs. Thus anthropogenic inputs of nitrogen may ultimately produce long-term 

changes in ecosystem function. Therefore, individual concepts such as 'annual 

nitrogen saturation' (Agren, 1983) and 'critical load' (Nilsson, 1986), used to 

describe the effects of enrichment on soil, community, ecosystem processes and 

species assemblages, cannot easily accommodate the range of interactions between 

nitrogen and different environmental processes. The critical load depends on 

availability of inorganic nutrients at a site, nutrient-use efficiency by different 

species are different stages in their life history, and land-use practices. Hence, the 

critical load in reality is a 'moving target' that depends on nitrogen inputs and their 

chemical form, the responses of individual species, and the ecosystem attribute under 

consideration. The critical loads set by the United Nations Economic Commission 

for Europe (UN-BCE, 1994) for heathlands need to be viewed with due caution. 

It is clearly difficult to fully examine heathland ecosystem dynamics in response to 

experimental N-additions but the integrated responses to high inputs of nitrogen may 

entail a cascade effect as shown in Figure 7.1. 
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Figure 7.1 A schematic and hypothetical influence diagram showing the sequential manner in which 
atmospheric nitrogen deposition promotes the conversion of heathlands to grasslands. 
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In heathiands dominated by Calluna vulgaris, the change from ericaceous towards 

gramineous dominance proceeds in a sequential manner wherein the opening of the 

vegetation canopy by senescence or by stress and disturbance factors such as 

drought, frost and heather beetle infestation promotes the invasion of competitive 

grass species. However, far more work is needed to turn this flow chart into a 

quantitative tool for management purposes. In order to gain a complete 

understanding of heathiand ecology, long-term experiments simulating field 

conditions within a controlled environment are vital to investigate how large-scale 

atmospheric pollutions can modify Calluna response patterns to natural elements of 

stress. Impact assessment studies on heathlands can help evaluate how increasing 

nitrogen inputs dramatically change plant physiological and soil chemical processes 

that lead to greater stress sensitivity, alter growth rates, disrupt the tissue 

carbon/nutrient balance, suppress vegetative regeneration, promote pest outbreaks 

and subsequently govern species assemblage. Moreover, in soils, although organisms 

are the proximate determinants of biological transformations, process measurements 

are closely related to a range of distal variables like organic matter quality and 

physical environmental variables. Results from the soil respiration—microbial 

biomass experiments, effects of nitrogen fertilisation and the temperature responses 

of microbial respiration revealed that the composition of the microbial community to 

be a neglected factor in understanding the effects of environmental change on upland 

systems. The laboratory experiments described have largely concerned the initial 

stages of decomposition, which are dominated by the utilisation of carbohydrates, 

which are readily accessible to the fungal community. However, under field 

conditions, over a period of years, the depletion of these pools is likely to affect the 

successional development, species dominance and activity of fungi decomposing 

cellulose and ligno-cellulose complexes which form the bulk of peaty organic soils. 

Hence, a number of approaches need to be used in tandem and far greater emphasis 

is required on these longer term processes which determine the turnover of organic 

matter at the system level. 
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Long-term multidisciplinary research, exploiting new technology, to advance the 

science of terrestrial ecology is crucial to explore the physical, chemical and 

biological processes of nature. Stable isotope analysis of organic and inorganic 

compounds at natural abundance levels is a powerful tool in the resolution of the 

sources, history and pathways that an element can have as it enters an environment. 

Studies of ' 5N natural abundance in ecosystems at various stages of development and 

across wide ranges of environmental conditions should be pursued to thoroughly 

explore how distributions of nitrogen isotopes in ecosystems may be linked to 

nitrogen cycling and other biochemical processes. Utilisation of the stable isotope of 

carbon, and the 14C 'bomb carbon' signature can shed further light on the carbon 

dynamics within heathland ecosystems (Harrison, Harkness and Bacon, 1990; 

Trumbore, 2000). 

Impact assessment studies incorporating satellite imagery can help provide data for 

computer modelling programs to accurately evaluate the vitality of heathland 

vegetation and set site-specific critical loads. Priority ought to be placed on 

developing and advancing knowledge regarding the factors which determine the 

composition, structure and reactions of terrestrial ecosystems, taking into 

consideration the characteristics of individual plant and animal species. For example, 

the high capacity of both Calluna and Erica to produce a long-lived seed bank (Heil 

and Aerts, 1993 b) can be successfully exploited for the regeneration of heathlands 

with ericaceous dominance. Furthermore, a decrease in carbon-based secondary 

defence metabolites to the changing nutritional status of Calluna raises wider 

concerns about the potential long-term effects of additional nutrient inputs from 

atmospheric deposition on the balance of insect-plant interactions as elevated foliar 

nitrogen levels have been shown to increase the frequency of pest attacks and alter 

the feeding behaviour of invertebrates. Well-monitored field and laboratory 

investigations help provide data for computer modelling programs in order to present 

an accurate experimental appraisal of the validity of proposed critical loads for dry 

heathlands and ultimately help draft a technically feasible, economically viable and 
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socially acceptable integrated management plan for the conservation of heathiands so 

as to conserve and restore the characteristic landscape of dry heathiands. Long-term 

conservation of heathlands would require a substantial reduction of the current, 

unacceptably high atmospheric deposition levels 

Ecologists ought to focus on the securing, expansion and dissemination of ecological 

data so as to further scientific research and provide the basis for management 

schemes on environmental protection, conservation and the sustainable use of natural 

resources. The case of Calluna is only one example where the ecosystem is 

threatened, directly or indirectly, by human activities. In a broader context, this 

project and many other projects are beginning to contribute to the development of a 

sound scientific database for the monitoring, modelling and predicting of 

environmental trends in order to define the past, present and future effects of natural 

and anthropogenic pressures. 
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Figure A The soils of the Bush Estates, Pentland Hills, Edinburgh, UK. 
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PLOT# 6 
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TREATMENT =60 kg N ha' yr 

Figure B Experimental plots at Castlelaw Hill, in the Pentland Hills near to Edinburgh. UK. 
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