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Abstract

The lattice Boltzmann (LB) method is a versatile way to model complex fluids

with hydrodynamic interactions through solving the Navier-Stokes equations. It is

well-known that the role of hydrodynamic interactions is ignorable in studying the

Boltzmann equilibrium of colloidal (Brownian) particles. However, full hydrodynamic

interactions play an important role in their dynamics. In the LB framework for moving

colloids, the “bounce-back on links” method is used to calculate the hydrodynamic

forces. In this thesis, three kinds of colloidal complex fluids with full hydrodynamic

interactions are simulated by lattice Boltzmann methods: colloids in a binary fluid,

magnetic colloids in a single fluid and magnetic colloids in a binary fluid.

First, we have done extensive simulations of nanoparticles in a binary fluid, following

up previous work[1] which predicted formation of a “bijel” (bicontinuous interfacially

jammed emulsion gel) in symmetric fluid quenches. Our work in this thesis focuses

on the analysis of the dynamics after nanoparticles become arrested on the fluid-fluid

interfaces under conditions varying from a symmetric quench to a strongly asymmetric

quench. Although these new simulations extend the time window studied by a factor

of two, slow domain growth is still observed. Our new analyses address the mechanics

of the slow residual dynamics which involves cooperative motion of the nanoparticles

at the fluid-fluid interfaces.

The second topic is the LB simulation of colloidal ferrofluids to see the effect

of full hydrodynamic interactions among magnetic colloids. The main focus is on

how the hydrodynamic interaction affects both the equilibrium dynamics of these

dipolar systems and also their transient dynamics to form clusters. Numerically,

magnetic colloids are implemented with the long-range dipolar interactions described

by Ewald summation. To check the effect of full hydrodynamic interactions, Brownian

dynamics without any hydrodynamic interaction has been done for comparison: Monte

Carlo results are also reported. We confirm that our LB generates the Boltzmann

distribution for static equilibrium properties, by comparison with these methods.

However, the equilibrium dynamics is altered: hydrodynamic interactions make the

structural relaxations slower in both the short-time and the long-time regime. This
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slow relaxation rate is also found for transient motions.

The third topic addresses magnetic colloids in a binary fluid. In contrast with

the preceding two systems which correspond directly to laboratory experiments, this

last system is so far only predicted by the LB results in this thesis. To explore this

hypothetical new material by the LB method, the basic structures are investigated in

terms of both domain growth morphology and the arrangement of magnetic colloids.

Under conditions varying from a symmetric quench to an asymmetric quench, a

chainlike arrangement is observed for dipoles jammed on the surfaces, but the basic

morphology of domains is still maintained regardless of the dipolar strength. In

addition, applying external field affects the morphology of domains and the stability of

domain structures.
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Chapter 1

Introduction

Complex fluids[16, 17] are single or multiphase fluids whose components couple different

length scales. Many are composite materials having internal coexistence of two or more

than two phases, e.g. solid-liquid, liquid-gas, liquid-liquid; familiar examples are found

broadly in our daily products such as foods, shampoo and cosmetics. From mixing

different materials, complex fluids arise with distinctive microstructures which lead

to distinguished physical properties macroscopically and mechanically. The simplest

examples, containing two different local phases, are colloidal dispersions, emulsions and

foams.

Colloidal dispersions are one of the archetypes of complex fluids. They are

solid/liquid composites which have two different scales: solid colloids with size about

10−6m ∼ 10−9m, and a liquid molecule that has a length less than 10−9m. Dilute

colloids in a thermal solvent are dispersed, obeying Brownian motion as described by

the Stokes-Einstein relation. Common products using colloidal dispersions are paint

and ink. The properties of colloidal dispersions depend on the interaction potentials

of the colloids. By designing these interaction potentials, their structure and dynamics

are controllable: for example, the particular aggregation structure, “nose-to-tail” or

“head-to-tail”, is found for magnetic colloids with long-range dipolar interactions. (In

this Thesis, simulations using magnetic colloids have been done and will be discussed

later.) The second example, emulsions, consist of two immiscible liquids such as

water/oil and such composites are found as butter and cream. By agitating two

liquids, a homogeneous microstructure can arise where one liquid disperses in the other

liquid. Mechanically, emulsions are still flexible, but more sticky than the original

two liquids. For stabilisation of emulsions, usually surfactants such as amphiphilic

molecules are added, to reduce the interfacial tension of fluid-fluid interfaces. Instead

of the addition of surfactants, colloids can make oil/water emulsions stabilised, forming

“Pickering emulsions”. This colloid-stabilised emulsion can be simulated by our LB

(lattice Boltzmann) method; this will be discussed later in detail. In contrast with the

composition of emulsions, foams have gas bubbles dispersed in a liquid or solid. (An

example is beer foams.)
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Chapter 1. Introduction

Due to the diverse utilities of complex fluids, predictions for novel materials have

been of great interests for a long time. Recently, after developing the numerical methods

and the computational hardware, simulations for complex fluids have contributed to

design for novel materials and understanding their physics.

In this Thesis, colloidal systems including full hydrodynamic interactions are

investigated via lattice Boltzmann methods: colloids (or magnetic colloids) are

studied in a single or binary fluid. Among many competing numerical methods[18,

19], most ignore hydrodynamic interactions in colloidal systems, although indirect

hydrodynamic forces can be introduced in Brownian dynamics methods[19, 20, 21],

and Stokesian dynamics introduces many-body hydrodynamic interactions when solving

the Langevin equation[22, 23]. The lattice Boltzmann framework is very efficient when

adapted for simulations of composite complex fluid systems while including many-body

hydrodynamic interactions, e.g. a binary fluid[24, 25], amphiphilic fluids[26, 27], liquid

crystal[28], or colloids in a binary fluid[12].

The following section will discuss the experimental systems of colloidal complex

fluids considered in this Thesis. First, colloid-stabilised emulsions will be discussed

including a special emulsion “bijel” whose structure was initially predicted by LB

simulation[1]. Secondly, magnetic colloids in a single fluid (so-called “colloidal

ferrofluids”) will be discussed to study the effect of long-range dipolar interactions.

Finally, the prediction of a novel complex fluid (the magnetic bijel) will be briefly

discussed.

1.1 Pickering emulsions and “bijels”

Pickering emulsions[29, 30, 31] are stabilised by solid particles and characterised by

the contact angle θow of three-phase contact for the particle at oil-water interfaces

shown in Figure 1.1(a). The contact angle θow is defined by three interfacial tensions:

γpo (particle-oil), γpw (particle-water) and γow (oil-water), and explained by Young’s

equation[32]: cos θow = (γpo−γpw)/γow. This contact angle can be determined from the

hydrophobic or hydrophilic property of particles. For hydrophilic particles, θow is less

than 90◦, while θow > 90◦ is observed for hydrophobic particles at oil-water interfaces.

These situations for particles partially absorbed at interfaces are called “non-neutral

wetting”. For 90◦ wetting angle, it is called “neutral wetting”. Neutral wetting particles

are optimal for stabilising Pickering emulsions.

Removing a particle from oil-water interfaces requires an energy depending on

contact angle θow[33]:

∆E = πr2γow(1 ± cos θow)2, (1.1)
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1.1. Pickering emulsions and “bijels”

(a) (b)

Figure 1.1: (a) Contact angle (from [2]). Three different angles, θow < 90◦, θow = 90◦

and θow > 90◦ are shown from left to right. The interfacial curvature is determined
by a particle’s contact angle. (b) Microscopy image of a Pickering emulsion (from [3]),
a water-in-cyclohexane droplet stabilised by monodisperse particles of radius 1.6µm.
The scale bar on the bottom of right corresponds to 50µm.

where the sign in the bracket is positive for removal into oil and negative for removal

into water. From this equation, the energy for a neutral wetting particle can be

estimated: for 0.5µm as a radius of particle and γow = 50mN/m as oil-water interfacial

tension, ∆E is obtained as 107kBT which means this particle is irreversibly absorbed

at interfaces. Figure 1.1(b) shows an optical image of a Pickering emulsion droplet in

a lab experiment; a single layer of particles is seen on the surface.

Using this idea of colloids at the fluid-fluid interfaces, a bicontinuous emulsion, the

so-called “bijel” (bicontinuous interfacially jammed emulsion gel), was achieved in lab

experiments[4, 34, 35, 36]. Initially, the structure of the bijel was predicted by LB

simulation[1] using neutral wetting nanoparticles in a quench of two well-mixed fluids

at equal volume fraction. Then the arrested fluids were monitored with a particular

morphology: each fluid percolates other and jammed colloids are observed at the fluid-

fluid interfaces. Moreover, this LB prediction also gave insight on the mechanism

to form the arrested morphology; the experimental work confirms the mechanism

suggested by LB simulations. Figure 1.2 shows the time-evolution of bijel formation

in a recent experiment; after a quench of the single-phase fluids, the phase separation

sweeps out domains with colloids trapped at interfaces, and then coalescing domains

result in decreasing surface area and particles jammed together at interfaces. However,

in contrast with the experimental bijel which maintains a stable formation during a

few weeks, the LB simulations failed to reach the fully arrested state. Instead, slowly

growing domains were observed.
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Chapter 1. Introduction

Figure 1.2: Time-evolution of bijel formation in experiment[4]: fluorescence confocal
microscopy images of a 2,6-lutidine-water composition with 2% particle fraction. The
time interval between images is 0.7s. White is particles while dark parts are liquids:
the domains are distinguished by the difference in the shade of grey. The scale bar
corresponds to 100µm.

In this Thesis, we will present new LB simulations that extend the previous study[1].

Especially, our extended work focuses on analyses of the dynamics after nanoparticles

are arrested on the fluid-fluid interfaces, under conditions ranging from a symmetric

quench to a strong asymmetric quench. Besides, through the new analyses, we will

interpret the mechanism of the slow residual dynamics.

1.2 Colloidal ferrofluids

Magnetic colloids[37] of nano-sized diameter have a permanent magnet core, such as

cobalt, iron oxide or magnetite (Fe3O4), coated with a molecular layer, e.g. a surfactant;

the size of this magnet core determines the strength of dipolar moment. Principally

due to such a small particle size, thermal fluctuation of a solvent maintains particles

suspended, showing Brownian motion despite the long-range dipolar interactions, and

the coated layer prevents particles to stick to each other.

According to the alignment of magnetic spins (or magnetic moments) of atoms
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1.2. Colloidal ferrofluids

in a material, its magnetic properties are determined as either ferromagnetic or

paramagnetic; in ferromagnetism, magnetic spins have a long-range ordering, while any

long-range ordering is not observed in paramagnetism. Basically bulk ferromagnetic

materials consist of multi-crystalline domains to minimise internal field energy[38].

However, if a sample of material is of nanometer scale, a single crystalline domain

is found; the critical size between a single magnetic domain and multiple domains is

theoretically predicted by Kittel as around 15nm[39]. In contrast to multiple domains

with zero net magnetisation, this small crystallite is magnetised in one direction with

a finite value of the magnetic domain moment; the long-range dipolar interactions

originate from magnetic fields generated by these magnetic domain moments. In

simulations, this magnetic domain moment is chosen to model magnetic colloids.

(Section 2.4.2. will discuss this in detail.)

For magnetic colloids in a thermal solvent, thermal energy can change the direction

of their magnetic domain moment (magnetic colloids undergo Brownian motion) but is

not high enough to fluctuate magnetic spins of individual atoms. In addition, magnetic

domain moments respond to an external field. In terms of the macroscopical behaviour

of magnetic colloids, their motion shows a similar behaviour to paramagnetism; this

is called “superparamagnetism”[37, 40, 41], and arises at any temperature below the

Curie temperature. In the absence of an external field, magnetic colloids are free to

rotate; after applying the external field, their magnetic diplar moment tend to align

along the direction of the external field although individual magnetic spins of atoms

are not directly affected by the external field. The saturation magnetisation under the

external field can be explained by Langevin theory according to the ratio of thermal

fluctuation and strength of magnetic field acting on magnetic particles.

Ferromagnetic colloids in a carrier liquid, named “colloidal ferrofluids”[42, 43] show

particular aggregation structures of the magnetic colloids, and unusual phase behaviour

due to long-range dipolar interactions, even in the absence of external field. In 1970,

de Gennes and Pincus[44] discussed the trend of aggregated structures like chains and

predicted a van der Waals-like phase diagram. This tendency to form chainlike structure

is the key issue in studies of ferrofluids phase equilibrium and dynamics. In experiment,

chain structures were first observed by Hess and Parker using electron microscopy[45],

but the quantitative experiments for ferromagnetic colloids made by iron and magnetite

have been done by Philipse and co-works[46, 47, 5] using cryogenic transmission electron

microscopy (cryo-TEM). Figure 1.3 presents the recent measurement of aggregated

structures in 2 dimensions by Klokkenburg et al.; on increasing pair interaction energy

between magnetic particles, chains and rings are monitored in the cases B and C,

whereas clusters are also seen at A with lower interaction energy.

While there are only a few observations of microstructures in experiments, many
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Figure 1.3: The cryo-TEM images of magnetite dispersions[5]. A: surface fraction is
0.14 and pair interaction energy is −4kBT . (The surface fraction is defined as NAp/AI ,
where N is the total number of particles in the images, Ap is the cross-sectional area
of a particle, and AI is the total area of all images.) B and C are −9kBT for pair
interaction energy with surface fraction 0.14 and 0.03 respectively.

numerical works have confirmed the structural characteristics in both 2D and 3D. To

study ferrofluids, a simple interaction potential is introduced as the sum of a short-range

interaction and a long-range interaction; for spherical magnetic colloids, the interaction

of two magnetic colloids with point dipolar moments, si and sj , is given as

U(rij ; si, sj) = USR(rij) +
1

r3ij

[

si · sj −
3(si · rij)(sj · rij)

r2ij

]

, (1.2)

where rij is the distance of centre-to-centre of magnetic colloids and USR is the

short-range potential. In ferrofluids, this short-range interaction influences the phase

diagram. Three kinds are mostly used: hard-sphere, soft-sphere and Lennard-Jones

potentials. For analytical calculation, the dipolar hard-sphere (DHS) [48, 49] is taken as

a simple model. The other models which consider soft-repulsive short-range potential

are the dipolar soft-sphere (DSS) [50, 51, 52, 53] and the Stockmayer fluid (SMF)

[54, 55]. An aggregate structure based on “nose-to-tail” originates from the long-range

dipolar interactions which strongly depend on the directions of dipolar moment: in the

simple case of DHS, two close dipoles aligned “nose-to-tail” have a much lower energy

(−2µ2/d3) than aligning side by side with antiparallel moments (−µ2/d3). (Here, µ is

the strength of the dipole moment and d is the particle diameter.) That means dipoles

6



1.3. Prediction of a new composite

prefer the “nose-to-tail” structure energetically.

Figure 1.4 presents the phase diagram for microstructures of DHS according to

the density and the strength of the dipole moment. In bulk ferrofluids, similar phase

behaviour to nonmagnetic colloids and atomic models is found for weak dipolar strength

with the range µ2/kBTd
3 < 1. This has been confirmed in experiments on citrate coated

maghemite particles[56]. In simulations, dispersion of monomers are clearly observed

at µ2/kBTd
3 < 2. In analytical calculations, mean-field model and simple statistical

models[6, 57, 58, 43] can predict magnetic properties such as susceptibility at weak

dipolar strength and high density. But for strong dipole moment, the anisotropic term of

the dipolar interactions increases so that this mean-field approximation is not available.

Around µ2/kBTd
3 ≥ 2.5 at low densities[48, 8], magnetic colloids start to form small

chains; on increasing the density, the fraction of chains and the cluster size increase.

At ρ∗ ≃ 0.06, a network is formed with long chains. At higher density ρ∗ ≥ 0.2, the

phase becomes like the normal liquid instead of the network structure. Above ρ∗ ≥ 0.6,

the system has a ferroelectric phase[8] which has long-range orientational orderings[9].

Applying these characteristics, magnetic colloids have been very significant material,

for modern data recording and storage devices, e.g. music tape and computer hard-

disks, for a long time. Recently, formulations using ferrofluids have been of great

interest for biotechnological applications such as cancer detection[59, 60, 61] and as

a carrier for drug delivery[59, 62]. Especially in biomedical applications like drug

delivery systems, hydrodynamics plays an important role. However, none of many

numerical studies on ferrofluids include full hydrodynamic interactions. In contrast

to other numerical methods which have been used to simulate colloidal ferrofluids, LB

provides the full calculation of hydrodynamics of colloids. In Chapter 4, we will present

LB simulations for colloidal ferrofluids, comparing with the simulations of Brownian

dynamics and Monte Carlo and we will discuss the role of hydrodynamic interactions

in both equilibrium and nonequilibrium situations.

1.3 Prediction of a new composite

In Chapter 5 of this Thesis, we present simulations of new complex fluids, comprising

magnetic colloids in a binary fluid mixture, which experiences spinodal decomposition.

This composite has not yet been implemented in lab experiment, but magnetic Pickering

emulsions have been made by Meller et al.[63], using paramagnetic colloids. To explore

this new composite, we quantify the same basic properties as are measured in the other

two systems of this Thesis; especially, their microstructures, such as morphology of

fluid domains and dipolar structure of magnetic colloids, are one of the most interesting

issues in this study. Additionally, the effects of external fields will be discussed in terms

7



Chapter 1. Introduction

Figure 1.4: Schematic phase diagram of 3D dipolar hard-sphere[6, 7] in simulations.
The parameters on each axes are the reduced density and the reduced dipolar moment
defined as ρ∗ = Nσ3/V (N : number of particles, V : volume of the system, σ:
characteristic length of the hard core) and µ∗ = (µ2/σ3kBT )1/2. The dimensionless
dipolar coupling constant is defined as λ = µ∗2. The star symbol indicates the critical
point of a condensation[8, 9]. The open triangle marks the limits of mechanical stability
of the bct(body-centered tetragonal) structure and the filled triangle signs that of the
fcc (face-centered-cubic) structure[10].

of the stability conditions for stable emulsions, as linking to the experiment work[63].

1.4 Thesis layout

To investigate colloidal complex fluids, described in the above introduction, the

next chapter (Chapter 2) will introduce the simulation methods including the lattice

Boltzmann (LB) framework, from the basic single fluids to colloids in LB, and the

interacting potentials to design magnetic or non-magnetic colloids.

The next three chapters will mostly present the simulation results found by LB

simulations. In Chapter 3, the simulation results for “colloids in a binary fluid” will be

discussed through extensive analyses of slow dynamics after particles are arrested at

interfaces. Chapter 4 will discuss the hydrodynamic interactions in colloidal ferrofluids

in equilibrium and nonequilibrium, comparing with the data from BD and MC.

Transient motion to form clusters will be also discussed to quantify the statistics

8



1.4. Thesis layout

for cluster size at various conditions controlled the strength of magnetic moment and

particle fraction. In Chapter 5, we will present the simulation results of magnetic

colloids in a binary fluid and some discussions.

Lastly, Chapter 6 summarises our LB simulation results and discusses further works

possible in the future.
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Chapter 2

Simulation Methods

This chapter describes the numerical methods used: the LB framework[64], solid

particles in LB and interaction potentials for particles. All work in this thesis has been

done using the LB code Ludwig[11] which includes the LB scheme not only for a single

fluid and a binary fluid with and without particles, but also for thermally fluctuating

fluids to implement the Brownian motion of particles. For magnetic colloids, the Ewald

summation is set up within Ludwig for the long-range dipolar interactions in a periodic

boundary box.

In LB, distribution functions for discrete fluid particles on a lattice provide an

efficient way to solve the kinetic equations of fluids. The lattice approach can also be

easily developed for parallel computing. Section 2.1 below will discuss the simple LB

idea in Stokes flow for a single fluid, and then fluctuating LB for thermal fluids is also

discussed. In Section 2.2, the theoretical approach for a binary fluid will be explained

and then the LB framework including the kinetic equation for a binary fluid will be

shown.

In Section 2.3, the description of colloids on the lattice will be discussed and then

the bounce-back on links algorithm will be shown to characterise moving colloids in

lattice fluids. The lubrication correction will be discussed for colloids and the updating

algorithm for colloidal motion will be shown at the end of this section.

Finally, Section 2.4 will talk about the interaction potentials for the short-range and

long-range interactions. The modified soft-core potential for short-range interaction will

be discussed. For magnetic colloids, the long-range dipolar interactions are derived from

the external field of a magnetic source. For a periodic boundary system, the Ewald

summation is used to calculate the long-range dipolar interaction.

2.1 Kinetics of a fluid and lattice Boltzmann

The fluid motion represents the flow of physical quantities[65], e.g. density, momentum

and energy, in time and space. A closed system obeys conservation laws for the

total density and the total momentum. The continuity equation describes the time-
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Chapter 2. Simulation Methods

dependent local density flow:
∂ρ

∂t
+ ∇ · (ρv) = 0 (2.1)

where ρ is a local density at (r, t) and v is the velocity. The momentum transfer in an

incompressible viscous fluid is described by the Navier-Stokes equation,

ρ (∂tv + (v · ∇)v) = η∇2v −∇p+ f . (2.2)

Here η is a shear viscosity and p is a pressure. Incompressible fluids in the absence of

a body force (e.g. gravity) have zero as the force term f . However to deal with the

fluctuating fluid or a binary fluid, the space dependent force tensor term f has to be

set up to be nonzero. For fluctuating fluids, the random stress is added in terms of a

tensor whose divergence is f . In the case of a binary fluid, the term f is from interfaces

of fluids. These will be shown in following consecutive sections for fluctuating fluids

and a binary fluid.

Using the isothermal and incompressible conditions, the space differential term in

equation (2.2) is rewritten using the stress tensor Παβ in Cartesian coordinates:

Παβ = ρvαvβ + pδαβ − ηαβγǫ∇γvǫ. (2.3)

The subscripts, α, β and γ denote the Cartesian coordinate components. The pressure

p = ρc2s, where cs is a speed of sound and cs = 1/
√

3 in lattice units. Tensor viscosities

ηαβγǫ for Newtonian fluid are given as ηαβγǫ = ηδαγδβǫ + ηδβγδαǫ + ζδαβδγǫ where ζ is

a bulk viscosity, η is a shear viscosity and δαβ is the Kronecker delta.

Therefore, equation (2.2) combined with the stress tensor Παβ is

∂ρvα

∂t
+ ∇βΠαβ = fα. (2.4)

Solving the continuous equations (2.1) and (2.2) or (2.4) characterises the fluid

motion. Numerically, LB gives the solutions of these equations by following the route

which can be defined from the pseudo particles on lattice points. On each lattice point,

one defines a distribution function fi(r, t) associated with the discrete velocities ci of

these particles. For one time step ∆t, the displacement ci∆t represents either the

displacement to neighbour lattice sites or the null displacement.

This spatially discrete approach to fluid dynamics on underlying grids has to satisfy

symmetry conditions in order to recover hydrodynamic behaviour with full rotational

symmetry of space[66]. To satisfy the appropriate symmetries, the moments of the set

of lattice vector ci must obey
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2.1. Kinetics of a fluid and lattice Boltzmann

n
∑

i=0

ωi = 1,

n
∑

i=0

ωiciα = 0,

n
∑

i=0

ωiciαciβ = ρc2sδαβ ,

n
∑

i=0

ωiciαciβciγ = 0,

n
∑

i=0

ωiciαciβciγciǫ = (ρc2s)
2(δαβδγǫ + δαγδβǫ + δαǫδβγ).

Here, ωi is the quadrature weight for each velocity vector ci.

The type of LB model is denoted by DdQn which indicates d−dimensions and an

n discrete velocity vector set which can include the zero velocity. The most frequent

models are D1Q3, D2Q9, D3Q15 and D3Q19. Figure 2.1 shows the velocity vector set

in D3Q15 and D3Q19, frequently used models in 3D. The velocity vectors including

the zero velocity and the weight factors in D3Q15 and D3Q19 respectively are given

as

ci = (c1, c2, c3, c4, c5, c6, c7, c8, c9, c10, c11, c12, c13, c14, c15)

=









0 1 1 1 1 1 0 0 0 0 −1 −1 −1 −1 −1

0 1 1 0 −1 −1 1 0 0 −1 1 1 0 −1 −1

0 1 −1 0 1 −1 0 1 −1 0 1 −1 0 1 −1









,

ωi =

(

16

72
,

1

72
,

1

72
,

8

72
,

1

72
,

1

72
,

8

72
,

8

72
,

8

72
,

8

72
,

1

72
,

1

72
,

8

72
,

1

72
,

1

72

)

,

and

ci = (c1, c2, c3, c4, c5, c6, c7, c8, c9, c10, c11, c12, c13, c14, c15, c16, c17, c18, c19)

=









0 1 1 1 1 1 0 0 0 0 0 0 0 0 −1 −1 −1 −1 −1

0 1 0 0 0 −1 1 1 1 0 0 −1 −1 −1 1 0 0 0 −1

0 0 1 0 −1 0 1 0 −1 1 −1 1 0 −1 0 1 0 −1 0









,

ωi =

(

12

36
,

1

36
,

1

36
,

2

36
,

1

36
,

1

36
,

1

36
,

2

36
,

1

36
,

2

36
,

2

36
,

1

36
,

2

36
,

1

36
,

1

36
,

1

36
,

2

36
,

1

36
,

1

36

)

.

Using the velocity distribution function fi(r, t), the local physical values in equation
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(2.1)-(2.4) can be defined:

ρ(r, t) =
∑

i

fi(r, t), (2.5)

ρvα(r, t) =
∑

i

fi(r, t)ciα, (2.6)

Παβ(r, t) =
∑

i

fi(r, t)ciαciβ , (2.7)

where ciαciβ is a dyadic product.

(a) D3Q15 (b) D3Q19

Figure 2.1: The lattice Boltzmann models in 3D (from [11]).

2.1.1 Dynamic equation of LB for a single fluid

With the local values defined by fi, the dynamic equation for the computation is

constructed by two parts, collision and propagation:

fi(r + ci∆t, t+ ∆t) − fi(r, t) =
∑

j

Lij(fj(r, t) − f eq
j (r, t)). (2.8)

The right-side term is the collision process. The Lij is a collision matrix often chosen

as the lattice BGK matrix δij/τ with a single relaxation time τ . Its relaxation time

τ determines the viscosity η as η = (2τ − 1)ρ/6. After each time step, the local fi is

relaxed towards the distribution which describes the local equilibrium. The f eq
j (r, t)

is an equilibrium distribution which depends on the local values of ρ(r, t) and v(r, t)

written here as

14



2.1. Kinetics of a fluid and lattice Boltzmann

f eq
j = ωj

(

ρ+
ρvαcjα
c2s

+
ρvαvβQjαβ

2c4s

)

, (2.9)

where Qjαβ is the kinetic projector, defined as Qjαβ = cjαcjβ − pδαβ = cjαcjβ −
ρc2sδαβ . More generally, instead of choosing the BGK collision matrix, δij/τ , a

multiple-relaxation-time operator[67] is used for the lattice Boltzmann equation,

because different relaxation times for each mode can achieve more stability; using the

conservation laws for mass and momentum, two or more relaxation times can be chosen

via the stress tensor and ghost modes, described in next section for fluctuating LB.

The second part of the dynamic evolution is the propagation on the left hand side

of equation (2.8), fi(r+ ci∆t, t+∆t)− fi(r, t), which means each distribution function

fi passes along the next lattice links as ci∆t at each time step.

2.1.2 Fluctuating lattice Boltzmann

Brownian colloidal particles in thermal solvents are set in motion by random forces

generated from the surrounding fluctuating fluids. These random forces acting on

particles in LB were first described by Ladd[68]. He introduced the LB equation

containing the stochastic term ξH
i (r, t) to represent thermal fluctuation:

fi(r + ci∆t, t+ ∆t) = fi(r, t) + Lij(fi(r, t) − f0
i (r, t)) + ξH

i (r, t), (2.10)

where ξH
i is only determined by the fluctuating stress moment Ŝαβ(r, t) =

∑

i ξ
H
i ciαciβ .

Recalling equation (2.3), the shear tensor including Ŝαβ is rewritten as

Παβ = ρvαvβ + pδαβ − ηαβγǫ∇γvǫ − Ŝαβ. (2.11)

The Ŝαβ is a random Gaussian distribution whose mean is zero and vari-

ance satisfies with the fluctuation-dissipation theorem (FDT), 〈Ŝαβ(r, t)Ŝαβ(r′, t′)〉 =

2kBTηαβγǫδ(r − r′)δ(t − t′). In the D3Q19 model used here, Ladd’s algorithm only

applies noise to 10 hydrodynamic quantities: one is the local density ρ, 3 are the

momentum components in x, y, and z, and 6 modes are entries in the stress tensor

which is symmetric. This leaves 9 degrees of freedom undefined; these are called

“ghost” modes. However, the FDT in Ladd’s approach is only satisfied by the

continuous model with hydrodynamic limit q → 0 which corresponds to the infinite size

of a colloidal particle. Moreover, in a fluid without particles, the algorithm by Ladd

fails to obtain the Boltzmann statistics on the local equilibrium of physical values, e.g.

density, momentum and stress tensor, at nonzero q[69].

To improve this fault, Adhikari et al. accomplished the fully consistent equations
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including the fluctuating nonlinear hydrodynamic modes which are “ghosts”. Adhikari

et al.[69] introduce noise for the full set.

Therefore, the dynamic equation for the improved FLB is completed by adding the

extra stochastic term ξG
i contributed by the ghost modes in equation (2.10):

fi(r + ci∆t, t+ ∆t) = fi(r, t) + Lij(fi(r, t) − f0
i (r, t)) + ξi(r, t), (2.12)

where ξi = ξH
i +ξG

i . The extra stochastic term, ξG
i , is determined by the noise structure

through the concepts of statistical mechanics. Previously, it was mentioned that the

velocity distribution function, fi(r, t), includes information on the physical quantities

of the fluids. That means that the number of these physical quantities can be anything

up to the total number of velocity vectors, ci, where i = 1, 2, 3, ..., n. (Here n = 19.)

From this, the local kinetic modes can be written down as

Ma(r, t) =
n
∑

i

ma
i fi(r, t), a = 1...n. (2.13)

Here ma
i is the ath eigenvector so that the set of ma

i is a (n×n) matrix. Inversely, the

velocity distribution fi(r, t) is defined:

fi(r, t) =
∑

a

Naωim
a
iM

a(r, t). (2.14)

Here Na is found from Na∑

i ωim
a
im

b
i = δab. M

a are the kinetic quantities: ρ, ρvα, Παβ

and ghosts. Using the equation (2.13) and conservation laws for mass and momentum,

the total fluctuating distribution ξi is finally obtained as

ξi =
∑10

a=0 ωim
a
i ξ̂

a(r, t)Na +
∑19

g=11 ωim
g
i ξ̂

g(r, t)Ng

= ωi
QiαβŜαβ(r,t)

2c4s
+
∑19

g=11 ωim
g
i ξ̂

g(r, t)Ng. (2.15)

Here the first term on the right side is the noise, ξH
i , defined by Ladd[68]. The other

term on the right side is ξG
i , the noise term for “ghost”modes.

To calculate the ghost noise ξG
i , this improved algorithm derives the amplitude of

the extra noise from the FDT relation:

〈ξ̂aξ̂b〉 =
τaτb − 1

τaτb
〈δMaδM b〉, (2.16)

where τa and τb are relaxation times for the modes, Ma and M b in equation (2.13).

The fluctuating matrix 〈δMaδM b〉 can be worked out from equation (2.13) and (2.14)

for the given LB model.
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2.2. Lattice Boltzmann for a binary fluid

2.2 Lattice Boltzmann for a binary fluid

A deep quench of mixed fluids can separate the fluids into distinct regions of each

component. (This is the spinodal decomposition.) The later dynamics of coarsening

fluids falls into three regimes distinguished by the growth rates of domains: diffusive,

viscous hydrodynamic and inertial hydrodynamic. During the late (post diffusion)

stages of the demixing process, fluid flow arise from a finite pressure difference across

the interface between two fluids: ∆P = σH, where σ is the interfacial tension and H

is the interfacial curvature.

In the theoretical approach to this process of spinodal decomposition, the kinetic

equations of “Model H” provide the thermodynamics and the coarsening dynamics for

the binary fluid. In development of simulation methods, Swift et al.[24] suggested an LB

model which includes the term for the ordering kinetics of a binary fluid, and Kendon[25]

contributed simulations for the coarsening of a binary fluid in 3D by using the code

Ludwig. In this section, the theoretical approach for demixing fluids is discussed, and

then the corresponding LB algorithm will be explained.

2.2.1 Thermodynamics: the spinodal decomposition

The spinodal decomposition for a binary fluid stems from the simple Ginzburg-Landau

free energy function for the order parameter φ:

F [φ] =

∫

dr[V (φ) +
1

2
κ|∇φ|2]. (2.17)

Here φ is the conserved order parameter defined by φ = (nA − nB)/(nA + nB) with

ρ = nA + nB fluid density; nA and nB are densities of each fluid. The V (φ) comes

from a general Landau expansion; for a symmetric binary fluid, V (φ) = 1
2Aφ

2 + 1
4Bφ

4.

The remaining term, called the gradient free energy, arises from an increase of the free

energy when the field φ slowly varies in space. The prefactors A, B, and κ controls the

fluid-fluid interfacial tension σ and the interfacial width ξ.

From equation (2.17) one can first deduce a dynamic equation of motion for φ(r)

appropriate to the case where only φ is conserved. The local rate of displacement of

the order parameter for the conservation condition is

∂φ(r)

∂t
= −∇ · j, (2.18)

where j denotes the flux driven by the thermodynamic force (chemical potential µ),

δF/δφ. With the flux j associated with the linear coefficient, M (“mobility”), the
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dynamic equation (‘Cahn-Hilliard’ equation for “Model B”) is given by

j(r) = −M∇µ,
∂φ

∂t
= ∇ ·

[

M∇∂F

∂φ

]

= M

[

κ∇2φ− dV (φ)

dφ

]

. (2.19)

The interfacial tension σ and the interfacial width ξ can be calculated from the

static situation in equilibrium. This obeys dφ
dt = 0 so that using equation (2.19), the

static profile is obtained as

κ∇2φ = κ
d2φ

dx2
=
dV (φ)

dφ
, (2.20)

where ∇2φ is rewritten as d2φ/dx2 in one dimension and the order parameter varies

between φ = −φ∗ for x → −∞ and φ = +φ∗ for x → ∞. Here φ∗ is the magnitude

of equilibrium order parameter, where the minima of V (φ) are found. For the protocol

of spinodal decomposition (or phase separation), the model potential V (φ) presents

a symmetric double well (seen in Figure 2.2). The equilibrium values of the order

parameter φ∗ are derived from the given V (φ):

∂V

∂φ
= Aφ+Bφ3 = 0 (2.21)

φ(φ2 +
A

B
) = 0.

According to the sign of the prefactor A, the model is determined in either the mixing

or the demixing regime by the solutions:

φ = 0 for A > 0 (T > Tc) (2.22)

φ = ±φ∗ for A < 0 (T < Tc). (2.23)

Here, the magnitudes of equilibrated order parameters are φ∗ = ±
√

−A
B and Tc is the

critical temperature.

The surface energy per unit area σ associated with interfaces is computed by

subtracting the bulk energy from the total energy:

σ =

∫

[
1

2
κ(
dφ

dx
)2 + V (φ) − V (φ∗)]dx = κ

∫ +∞

−∞

(

dφ

dx

)2

dx. (2.24)
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2.2. Lattice Boltzmann for a binary fluid

From equation (2.20), the interfacial profile is given by

φ/φ∗ = tanh(x/ξ), (2.25)

where the interfacial width ξ is measured by

ξ =

(−2κ

A

)1/2

. (2.26)

With the given free energy in equation (2.17), the interfacial tension (or surface energy)

is obtained as σ = (−8κA3/9B2)1/2; the chemical potential obeys µ = Aφ+Bφ3−κ∇2φ.

2.2.2 Kinetic equation for a binary fluid

The time evolution of the order parameter for “Model H” is governed by the Cahn-

Hilliard equation written as

∂φ

∂t
+ v · ∇φ = M∇2µ, (2.27)

where v is the fluid velocity, M is the mobility, and µ is chemical potential. In

the above equation, the second left term is the advection of the order parameter to

account for the transport of the order parameter by hydrodynamics. The right term

is the diffusive term. The fluid velocity v obeys the Navier-Stokes equation for an

isothermal/incompressible fluid which includes an extra force term arising from the

chemical potential of φ in equation (2.2):

ρ

(

∂v

∂t
+ (v · ∇)v

)

= η∇2v −∇p − φ∇µ = η∇2v −∇Pth . (2.28)

Here Pth is the thermodynamic pressure tensor consisting of two parts: an isotropic part

and a chemical part. The isotropic part is given as pδαβ = 1
3ρδαβ in lattice Boltzmann

model. The chemical pressure tensor is deduced from the term φ∇µ coming from the

free-energy change per unit volume that accompanies the transport of a fluid region

with order parameter φ over a distance for which change in the chemical potential is δµ.

Alternatively the chemical potential gradients act as a driving force on the fluid. Hence

this force, F = −φ∇µ, can be considered as the divergence of a ‘chemical’ pressure

tensor: φ∇µ = ∇ ·Pchem. Here the chemical pressure tensor is

P chem

αβ = δαβ

[

φ
dV

dφ
− V − κφ∇2φ+

1

2
κ|∇φ|2

]

+ κ(∂αφ)(∂βφ). (2.29)
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−1.0 1.0

T

Tc

phase separation

0.0 φ
0

Figure 2.2: The phase diagram governing spinodal decomposition. The x axis is the
initial order parameter φ0 = (nA − nB)/(nA + nB). The mixed phase is found in the
region above Tc and the potential curve is single-welled with the zero minimum value.
The region below Tc under the line is for the phase separation which has the double-
well potential curve with minima found at positions ±φ∗. (The colour region is for
nucleation, but that is not discussed in this thesis.)

Therefore, in Cartesian coordinates for LB, the thermodynamic pressure tensor is

rewritten as

P th

αβ =

(

1

3
ρ+

1

2
Aφ2 +

3

4
Bφ4 − κφ∇2φ− 1

2
κ∇φ2

)

δαβ + κ(∂αφ)(∂βφ). (2.30)

2.2.3 Dynamic equation of LB for a binary fluid

For the ordering kinetics for the φ, a second distribution function gi is introduced in

the original LB framework alongside fi, such that

φ =
∑

i

gi. (2.31)

Recall the velocity distribution fi in equations (2.5)-(2.7):

ρ =
∑

i fi

ρvα =
∑

i ficiα
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Παβ =
∑

i ficiαciβ , (2.32)

where the stress tensor Παβ is derived from equation (2.29) as

Παβ = ρvαvβ − ηαβγǫ∇γvǫ + P th
αβ . (2.33)

The time-evolution equations for the pair of distribution functions, fi and gi, involve

the two single-relaxation parameters, τ1 and τ2:[25]

fi(r + ci∆t, t+ ∆t) − fi(r, t) = −(fi − f
(eq)
i )/τ1, (2.34)

gi(r + ci∆t, t+ ∆t) − gi(r, t) = −(gi − g
(eq)
i )/τ2. (2.35)

The relaxation time τ1 is determined by the fluid viscosity with η = (2τ1 − 1)ρ/6, and

the other relaxation time τ2 is set to unity in Ludwig. The equilibrium distribution

functions, f
(eq)
i and g

(eq)
i can be derived from equation (2.31)-(2.33) with the condition

that the order parameter is advected by hydrodynamics as in equation (2.27):

∑

i

f
(eq)
i ciαciβ = P th

αβ + ρvαvβ , (2.36)

∑

i

g
(eq)
i ciαciβ = M̃µδαβ + φvαvβ . (2.37)

The parameter M̃ is set by the order-parameter mobility M as M̃∆t(τ2 − 1/2) = M so

that M̃ = 2M [25]. In practice, instead of the single relaxation times used in equations

(2.34) and (2.35), multiple relaxation times and a reprojection similar to equation (2.9)

are used[12].

2.3 Colloids in LB

Figure 2.3(a) presents the mapping of a spherical colloid with a physical radius a0 given

by an input value onto a lattice grid. The boundary nodes denoted {rb} for the surface

are half way between pairs of lattice nodes near the distance a0 from the centre of the

particle. For an isolated solid object, a full complement of links obeys the conditions:

∑

b

wcb
cb = 0 (2.38)

and
∑

b

wcb
(rb × cb) = 0, (2.39)
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rb

Figure 2.3: Boundary nodes of a solid particle[12] with a radius a0. Blue circles are
boundary nodes; (green and red) squares are lattice nodes. The boundary links are
indicated by arrows (velocity vectors) cutting the boundary surface.

where wcb
are again the quadrature weights appropriate for the boundary links.

When a solid colloid moves with the linear velocity U and the angular velocity

Ω, the fluid distribution function is updated by the bounce-back on links algorithm

(BBL) which is described by Ladd[15, 70]. The following subsections discuss the

treatment of BBL and the force and torque of the momentum transfer in detail. In

order to understand the physics of moving colloids defined by the boundary nodes, the

hydrodynamic radius ah will be defined and the calibration of ah will be discussed in

the next subsection. The remaining subsection describes the lubrication corrections for

particles in close contact.

2.3.1 Bounce-Back on Links

A set of links {cb∆t} connects lattice nodes inside and outside of the surface. When

particles move with the velocity U and the angular velocity Ω, the total mass has to be

conserved. As using the boundary condition, the incoming distribution fb is updated

by

fb′(r, t+ ∆t) = f∗b (r, t) − 2wcb
ρ0ub · cb/c

2
s (2.40)

where the second term in right side is the mass transfer due to moving the object; f∗b is

the postcollision distribution at position r and time t in the direction cb and cb′ = −cb.

f∗b is obtained after collision stage in equation (2.8) as

f∗i = fi +
∑

j

Lij(fj − f0
j ). (2.41)
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2.3. Colloids in LB

The local velocity of the particle surface is written as ub = U + Ω × rb. The above

procedure for redistributing fb is performed at the stage between the collision step and

the propagation step in Section 2.1.1.

For one link, the hydrodynamic force on a moving particle can be calculated from

momentum transfer as

FH(rb, t+
1

2
∆t) =

∆L3

∆t

[

2f∗b − 2wcb
ρ0ub · cb/c

2
s

]

cb, (2.42)

where ∆L is the lattice spacing unit and ∆t is the lattice time unit. The corresponding

torque THcan be obtained as rb × FH(rb, t + 1
2∆t). For one object, the total

hydrodynamic forces are obtained from the sums of FH and TH respectively for all

links. Then, the total force and torque for one object can be written as a combination

of the linear velocity and the angular velocity:

FH = F0 − ζFU · U− ζFΩ ·Ω, (2.43)

TH = T0 − ζTU ·U − ζTΩ · Ω. (2.44)

Here the velocity independent force and torque at the half-time step are written as

F0(t+
1

2
∆t) =

∆L3

∆t

∑

b

2f∗b cb, (2.45)

T0(t+
1

2
∆t) =

∆L3

∆t

∑

b

2f∗b (rb × cb). (2.46)

The friction coefficients, ζFU , ζTU , ζFΩ and ζTΩ are given as

ζFU =
2ρ∆L3

c2s∆t

∑

b

wcb
cbcb, (2.47)

ζFΩ =
2ρ∆L3

c2s∆t

∑

b

wcb
cb(rb × cb), (2.48)

ζTU =
2ρ∆L3

c2s∆t

∑

b

wcb
(rb × cb)cb, (2.49)

ζTΩ =
2ρ∆L3

c2s∆t

∑

b

wcb
(rb × cb)(rb × cb). (2.50)

2.3.2 Dynamics of Colloids in LB

Using the hydrodynamic forces calculated above, the particle velocities are updated by

the following:
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Table 2.1: Hydrodynamic radius ah according to input radii a0 and fluid viscosities in
D3Q19, calibrated by Kevin Stratford[14]. See also [15].

η a0

1.25 2.30 3.71 6.21

1/6 1.02 2.19 3.64 6.19
1/10 1.10 2.30 - -
1/100 1.31 2.46 3.87 6.39
1/1000 1.42 2.57 4.00 6.51

[

U(t+ ∆t)

Ω(t+ ∆t)

]

=

[

U(t)

Ω(t)

]

+

[

m
∆t + ζFU ζFΩ

ζFU I
∆t + ζTΩ

]−1

×
[

F0 − ζFUU(t) − ζFΩΩ(t)

T0 − ζTUU(t) − ζTΩΩ(t)

]

.

(2.51)

Here m is the mass of the solid particle and I is its moment of inertia. The friction

coefficients, ζFU , ζFΩ, ζTU and ζTΩ are shown in equations (2.47)-(2.50). The F0 and

T0 are the total force and torque which are sums of the hydrodynamic force and torque

and the extra forces calculated from interacting potentials of particles.

2.3.3 Calibration of hydrodynamic radius

When a particle with a radius a0 moves with a constant velocity U in a stationary

solvent, the hydrodynamic radius ah can be obtained simply from the drag force, Fd =

6πηahU . In LB, the hydrodynamic force[70, 71] acting on moving colloids with a input

radius a0 in lattice units can be calculated from equation (2.42) and it should be equal

to the drag force Fd = 6πηahU , where ah is the hydrodynamic radius (or Stokes radius).

For lattice systems, this is a fluctuating quantity, but its mean value can be deduced

by the relation 〈ah〉 = 〈F h〉/6πηU , where 〈· · ·〉 is an average over time. For a finite

system of size Λ, the hydrodynamics radius is calculated as

〈ah〉 =
〈F h〉
6πηU

[

1 − 2.837(a0/Λ) + 4.19(a0/Λ)3 − 27.4(a0/Λ)6
]

, (2.52)

where the term [...] is for the finite size correction[70]. From now, we use ah to denote

this mean value.

For hard-sphere colloids in continuous space, the hydrodynamic radius ah is equal

to the input radius a0. However, in lattice systems, there is a discrepancy between a0

and ah, which can depend on the viscosity η. Table 2.1 shows the data of ah measured

for various viscosities η and input radii a0. For convenience, all simulations should have

the parameters such that ah is set as the same length as the input radius a0. Thus we
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2.3. Colloids in LB

Figure 2.4: Close particles on lattice grids. Those are not satisfied with the conditions
in equations (2.38), (2.39) for closed objects by the boundary links.

choose the optimal viscosity and the input radius as η = 0.1 and a0 = 2.3. Since ah

is now matched with a0, only ah will be mentioned below when discussing simulation

parameters of the systems that this thesis studies.

2.3.4 BBL for particle close to contact

As seen in Figure 2.4, when particles are close, some boundary links are lost. Thus the

total mass is not conserved; the total mass transfer of particles from equation (2.40) is

written as

∆M = −2∆L3ρ

c2s

[

U ·
∑

b

wcb
cb + Ω ·

∑

b

wcb
rb × cb

]

. (2.53)

For the conservation laws in Stokes flow, particles defined by equations (2.38) and (2.39)

ensure that the total mass transfer is zero, ∆M = 0, but in close contact of particles,

the mass transfer is not zero, ∆M 6= 0. This is easily corrected by redistributing the

fb′ of equation (2.40) subtracting the term of ∆M :

fb′ = f∗b − 2wcb
ρub · cb/c

2
s −wcb

ρ
∆M

A
, (2.54)

where A = ∆L3ρ
∑

bwcb
.

Also the force and the torque from redistribution of mass are obtained as

∆F =
∆L3ρ

∆t

[

−∆M

A

∑

b

wcb
cb

]

, (2.55)

and

∆T =
∆L3ρ

∆t

[

−∆M

A

∑

b

wcb
rb × cb

]

. (2.56)

From equation (2.43) and (2.44), the total force and torque with the redefinition of

mass conservation can be rearranged to give new friction coefficients which are slightly
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different from equation (2.47) - (2.50):

ζFU = −2ρ∆L3

c2s∆t

∑

b

wcb
(cb − cb)cb, (2.57)

ζFΩ = −2ρ∆L3

c2s∆t

∑

b

wcb
cb(rb × cb − rb × cb), (2.58)

ζTU = −2ρ∆L3

c2s∆t

∑

b

wcb
(rb × cb)(cb − cb), (2.59)

ζTΩ = −2ρ∆L3

c2s∆t

∑

b

wcb
(rb × cb)(rb × cb − rb × cb). (2.60)

where

cb =

∑

b wcb
cb

∑

bwcb

(2.61)

and

rb × cb =

∑

bwcb
rb × cb

∑

b wcb

. (2.62)

2.3.5 Lubrication forces

When the gap between particles is less than hc ≃ 0.1ah, a breakdown occurs in the

calculation of hydrodynamic interactions in equation (2.55) and (2.56). This error can

be fixed by adding a normal lubrication force for two particles which have radii, a1 and

a2 and linear velocities, U1 and U2 respectively[15]:

F = −6πη
a2

1a
2
2

(a1 + a2)2

(

1

h
− 1

hc

)

U12 · R̂12 , h < hc (2.63)

= 0 , h > hc. (2.64)

Here U12 = U1 − U2, h = |R12| − a1 − a2 is the gap between two particles and the

unit vector R̂12 = R12/|R12|. However, in our simulations, this normal lubrication

force is generally not used because the repulsive short-range potential keeps particles

at distance larger than 0.1ah.

For colloids in a closed box with solid walls the specification can be completed by

including a normal lubrication force between colloids and walls defined as

Fα = −6πηa2
h

(

1

hα
− 1

hlub

)

, hα < hlub (2.65)

= 0 , hα > hlub, (2.66)

where the subscript α is Cartesian coordinate components: x, y and z. Thus hx is the
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gap between a particle surface and the box wall lying normal to the x direction.

2.4 The Simulation potentials for particles

Choosing suitable interaction potentials is essential to the design of simulation models

for colloids. Particles in LB employ the general molecular dynamic algorithm to update

their states by forces and torques via interacting potentials. Especially, in LB, the short-

range interaction is chosen not only in light of the simulated model, but also to reduce

the computational error at close contact of particles. In a solid particle defined by its

boundary links on a lattice, the soft-sphere potential is modified to be a function of the

gap distance of surface-surface of colloids for preventing overlapped particles.

Another important potential is the long-range dipolar interaction between magnetic

particles. The dipole is a source of a magnetic field B(r) which falls as 1/r3,

where r is distance. To derive the dipole-dipole interaction potential, we start from

the general equation of magnetic field of a dipolar source. For the computational

implementation for a periodic boundary box, the Ewald summation is used for the

long-range interaction, and it will be described later.

2.4.1 Short-range potential

A simple soft-sphere potential is given by

U ss(r) = γ

(

r0
r

)ν

, (2.67)

where the distance r is the centre-to-centre distance of two particles and γ, r0 and ν

are the short-range parameters; as ν is increased, U ss becomes harder. This soft-sphere

potential naturally has a long tail. However, to save a computational cost, a truncation

method using ‘cut-and-shift’ with the cutoff distance rc is used and it can be rewritten

as

U sc(r) = U ss(r) − U ss(rc) − (r − rc)

(

dU ss

dr

)

r=rc

. (2.68)

To embed this in LB, a modification of this basic form is needed; the distance r is

substituted by the gap separation h = r− 2ah, the cutoff is hc = rc − 2ah and the scale

parameter h0 = r0. So the short-range potential for colloidal particles on the lattice is

given as

U sc(h) = U ss(h) − U ss(hc) − (h− hc)

(

dU ss

dh

)

h=hc

. (2.69)

The parameters, γ, h0, ν and hc, are chosen for each simulation model and this

information will be mentioned in “Simulation parameters” in each chapter. The force
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between two particles is calculated via

Fij(h) = −
[

dU ss(h)

dh
−
(

dU ss

dh

)

h=hc

]

ĥij , (2.70)

where ĥij is the unit vector for surface-to-surface of particles i and j.

2.4.2 Long-range dipolar interaction

A magnetic dipole can be viewed as two equal and opposite point monopoles. In the

case of a magnetically polarised substance, uniform magnetisation creates an effective

surface density of monopoles on the ends of the body. The magnetic dipole moment m

can be defined as

m = M(add)d̂, (2.71)

where M is the magnetisation, d̂ is the unit vector of the polarised direction of the

substance, and add is the volume of the element.

At a position r from the centre of a magnetic dipole, the external field emanated

by the magnet can be found by Coulomb’s law[37] and it results in

B(r) =
µ0

4πr3
[−m + 3(m · r̂)r̂] , (2.72)

where µ0 is vacuum permeability, the dipole moment is m = md̂ and r̂ is the unit

vector of r. Note that the magnetic field B(r) in equation (2.72) is distinguished from

the vector field H(r) via the relation, B(r) = µ0H(r).

Let us think of a dipolar particle with a dipolar vector mi = miŝi subject to an

external magnetic field, B0, which can be considered as two types: B0(r) as a function

of position r and constant B0 as an uniform field in space.

The force on mi can be given by

Fi = (mi · ∇)B0, (2.73)

and the torque is derived as

Ti = mi × B0. (2.74)

By a vector identity, (m · ∇)B0 is rewritten as

Fi = ∇(mi ·B0) − mi × (∇× B0). (2.75)

If there is no flow of electric current, ∇× B0 is zero. The Fi is also deduced from the

energy Eh by F = −∇Eh. Therefore the energy can be defined from equation (2.75)
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si

ijr

sj

Figure 2.5: The pair dipolar interaction. In simulations, a point dipole is embedded in
the centre of each sphere.

as Eh = −(m · B0) that one regards as the interacting energy Ud(r) for two dipoles.

Consequently, the dipole-dipole interaction for two dipoles, mi = miŝi and mj = mj ŝj ,

with the centre-to-centre distance rij is written as

Ud
ij(rij) =

µ0

4π

mimj

r3ij
[ŝi · ŝj − 3(ŝi · r̂ij)(ŝj · r̂ij)] , (2.76)

where the prefactor µ0/4π is 10−7H/m in SI units. For many body systems, the total

external field, Bt
0, acting on one particle can be superposed by the B0 from all dipoles

except the dipole itself. Calculating the force and the torque is quite straightforward

from the Bt
0. The direct calculation using equations (2.73) and (2.74) is possible for the

nonperiodic system in all dimensions. For the periodic boundary condition, the Ewald

summation technique is used for the calculation of the long-range part of the dipolar

interactions.

2.4.3 Ewald summation for the long-range dipolar interaction

Ewald summation[19, 72] is an efficient method to compute the long-range electrostatic

interactions for a periodic system. The original method of Ewald summation[73] was for

the ionic crystal system, but it can be readily extended to other systems: charge-dipole,

dipole-dipole, and charge-quadrupole.

To satisfy the periodic boundary condition, the dipolar potential with periodic

image boxes can be considered and rewritten as

Ud =
∑

n

′




∑

1≤i<j≤N

mimj

r′3ij

[

ŝi · ŝj − 3(ŝi · r̂′ij)(ŝj · r̂′ij)
]



 , (2.77)

where the prime on the summation denotes that the sum is over all periodic images n

and the distance between particles for all image boxes is r′ij = rij + nΛ, where Λ is

the box length. For the long-range potential in equation (2.76), this summation[74] is

only conditionally convergent. To improve the convergence, the dipole is replaced by
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the Gaussian dipolar distribution as

ρd
i (r) = (mi · ∇)α3 exp(−α2r2)/π3/2 (2.78)

where the convergence factor α decides the width of the distribution and must be

determined to maximise numerical accuracy[75]; α can be chosen to ensure that terms

of order exp(−α2L2) are negligible. Here, r is the position relative to the centre of the

distribution.

The dipolar interaction potential evaluated by Ewald technique consists of three

parts: the real space part for the short-range contribution, the Fourier space part

for the long-range contribution and the self-energy correction term. The short-range

interaction is easily summed in real space truncated by the cutoff rc, but the long-range

is the problem; so this part is treated by using the sum in Fourier space. The final

term for the self energy correction, which arises from the Gaussian distribution acting

on its own centre at ri, should be subtracted from the total summation.

As a result, for monodisperse dipolar particles where the strength of dipoles for all

particles is the same , mi =
√

4π
µ0
µ, the total potential energy[19] is obtained as

Ud = µ2
∑

i,j;rij<rc

[b1(rij)(ŝi · ŝj) − b2(rij)(ŝi · r̂ij)(ŝj · r̂ij)]

+ (4πµ2/Λ3)
∑

i,j

∑

k 6=0

(1/k2)(ŝi · k)(ŝj · k) exp(−k2/4α2) cos(k · rij)

− (2α3µ2N/3
√
π), (2.79)

Here,

b1(r) = erfc(αr)/r3 + (2α/
√
π) exp(−α2r2)/r2,

b2(r) = 3b1(r) + (4α3/
√
π) exp(−α2r2),

where erfc() is the complementary error function[76] and the Fourier space component

k is given as k = 2π
Λ (nx, ny, nz) for −Λ ≤ nx, ny ≤ Λ and 0 ≤ nz ≤ Λ.

When one applies this technique to model systems, the medium surrounding the

systems[77] should be specified as either a conducting medium (infinite dielectric

constant, ǫ′ = ∞) or the vacuum atmosphere (ǫ′ = 0). For the vacuum condition,

the extra term, 2πµ2N
3L3 |∑N

j=1 ŝj |2, is added in equation (2.79).

In the limit α→ 0 without periodic image boxes, the equation (2.79) reduces to the
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simple dipole result as

Ud = µ2
∑

i<j

1

r3ij
[ŝi · ŝj − 3(ŝi · r̂ij)(ŝj · r̂ij)] . (2.80)

2.4.4 Force and torque for the dipolar interaction

In the system with many dipoles, from equations (2.72)-(2.74), the force fi and the

torque ti, acing on a dipolar particle i, can be derived as

fi =
∑

j(6=i)

µiµj

r4ij
[(ŝi · ŝj)r̂ij − 5(ŝij · r̂ij)(ŝij · r̂ij)r̂ij + (ŝj · r̂ij)ŝi + (ŝi · r̂ij)ŝj ] , (2.81)

ti =
∑

j(6=i)

µiµj

r3ij
[(ŝi × ŝj) − 3(ŝj · r̂ij)(ŝi × r̂ij)] .(2.82)

For a periodic boundary conditions in the Ewald summation[78], the force f ew
i

and the torque tew
i are calculated from the equation (2.79) and these also consist

of two parts: the short-range part worked out from equations (2.81) and (2.82) for

the condition rij < rc and the long-range part in Fourier space. However the last

constant term for the self correction in equation (2.79) vanishes. Therefore, the resulting

expressions are

f ew
i =

∑

j(6=i);rij<rc

µ2[a2(rij)(ŝi · ŝj)r̂ij − a3(rij)(ŝij · r̂ij)(ŝij · r̂ij)r̂ij

+a2(rij)(ŝj · r̂ij)ŝi + a2(rij)(ŝi · r̂ij)ŝj ] +
4πµ2

Λ3

∑

k 6=0

k(k · ŝi) exp

(

−k2

4α2

)









∑

j

(k · ŝj) cos(k · rj)



 sin(k · ri) −




∑

j

(k · ŝj) sin(k · rj)



 cos(k · ri)



(2.83)

and

tew
i =

∑

j(6=i);rij<rc

µ2 [a1(rij)(ŝi × ŝj) − a2(rij)(ŝj · r̂ij)(ŝi × r̂ij)]

−4πµ2

Λ3

∑

k 6=0

exp

(

−k2

4α2

)

(ŝi × k)









∑

j

(k · ŝj) cos(k · rj)



 sin(k · ri) −




∑

j

(k · ŝj) sin(k · rj)



 cos(k · ri)



 .(2.84)
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Here

a1(r) = erfc(αr)/r3 + (2α/
√
π) exp(−α2r2)/r2,

a2(r) = 3a1(r)/r + (4α3/
√
π) exp(−α2r2)/r,

a3(r) = 5a2(r)/r + (8α5/
√
π) exp(−α2r2)/r.

2.4.5 Dimensionless parameter for magnetic colloids

In the study of magnetic colloids in thermal solvents, the dimensionless parameter λ

can be defined to represent the ratio of dipolar strength and thermal agitation from

solvents:

λ =
µ0

4π

m2

kBTD3
. (2.85)

This is called the “dipolar coupling constant”; in equation (2.85), the vacuum

permeability is given as µ0 = 4π × 10−7Hm−1, m is the strength of magnetic dipole

moment, the Boltzmann constant is kB = 1.38×10−23NmK−1, and D is the diameter of

particles. For a spherical magnetic particle, the strength of dipole moment is defined as

m(x) = π
6Msx

3, where Ms is the bulk magnetisation (or saturation magnetisation) of

the magnet core and x is its diameter and is important to control a dipolar strength for

magnetic colloids in thermal solvents. In experiments for ferrofluids[79, 5], each colloid

consists of a magnet core with diameter x and the surfactant layer with the thickness

σ0 ∼ 2nm to prevent the irreversible aggregation. So the diameter of magnetic colloid

is given as D = x+ 2σ0. For example, to manufacture spherical magnetic colloids with

λ = 4, the diameter of a magnetised core should be x ∼ 17nm in the case of magnetite

(Fe3O4), the most widely studied material for ferrofluids. The bulk magnetisation of

magnetite is given as Ms = 4.8 × 105Am−1 at T = 293K.

In simulations, the dipolar coupling constant can be also defined: λ = µ2/kBTD
3,

where µ =
√

µ0

4πm. In contrast to real magnetic colloids with a diameter x, the

simulation model colloids address a point dipole with the dipolar strength µ and the

dipolar unit vector ŝi embedded in the centre of each colloid (as seen in Figure 2.5).

In general, despite this difference, the study of magnetic colloids requires the dipolar

coupling constant as the parameter to be matched in both simulations and experiments.

2.5 Summary

The lattice Boltzmann method is a versatile way to simulate complex fluid flows since it

effectively calculates the hydrodynamic forces through Navier-Stokes equations. From

a single fluid and a binary fluid, this chapter described how the lattice Boltzmann

framework has been created by use of the kinetic equations. It was also shown that the
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thermal solvent achieved by FLB[69] recovers the hydrodynamics in the discrete model

and the fluctuations satisfy the fluctuation-dissipation theorem.

For modelling colloidal systems, the surface of a solid colloid is mapped onto the

lattice half way between a pair of lattice nodes at the input radius a0 from the centre

of the colloid. Moving objects can update the incoming velocity distributions by the

bounce-back on links algorithm and the hydrodynamic forces can be calculated acting

on solid objects. The calibration of the hydrodynamic radius ah found the discrepancy

between ah and a0 depending on fluid viscosities; in LB, we chose a0 to coincide with ah

at a certain viscosity. In the case of particles in close contact, lubrication corrections

can be used for correcting the numerical error. For Brownian colloidal simulations,

FLB is employed to transfer thermal energy to colloids whose motion is diffusive.

The interaction potentials can be used to classify the kinds of colloids present. For

the short-range interaction, the modified soft-sphere type is used to ensure colloids do

not overlap at the hard-core radius; all our simulations use this short-range potential.

The long-range dipolar interaction characterises magnetic particles for modelling a

ferrofluid. Also the dimensionless parameter λ was defined to express the dipolar

strength of magnetic colloids in thermal fluids.

The next chapters 3, 4, and 5 will show the results of the complex fluid systems

simulated by the lattice Boltzmann methods. Chapter 3 is for colloids in a binary

fluid experiencing a phase separation. The next two, Chapters 4 and 5, will show

magnetic particles in a single and binary fluid. All models use Brownian colloids which

is accomplished by FLB.
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Chapter 3

Colloids in a Binary Fluid

This chapter will discuss the simulation results of colloids in a binary fluid undergoing

spinodal decomposition. This thesis extends a previous study[1] that successfully

predicted the formation of a new emulsified system, the bicontinuous interfacially-

jammed emulsion gel (“bijel”) in a symmetric quench with spherical colloids which have

no long-range interactions. Through the extensive analyses given below, the process

for the arrest of demixing fluids by colloids will be quantified and the mechanism will

be discussed.

For emulsions stabilised by colloids, the basic idea is inspired by the wetting property

of colloids at the fluid-fluid interfaces. Wetting properties are generally quantified by

the contact angle determined by three interfacial tensions between a solid and oil,

between a solid and water, and between oil and water. These three interfacial tensions

can lead to the stability of a solid colloid placed on an interface[2, 29, 30, 31]. For

example in a colloid which has two equal solid-fluid interfacial tensions, the contact

angle is 90◦, called “neutral wetting”. Solid colloids trapped at interfaces have high

energy barriers arising from capillary forces[80]. Even if colloids of radii in nanometers

are considered, the energy barrier for detachment, is very large compared to kBT so

that the local minimum of the free energy is deep compared to kBT . So colloids at

interfaces are trapped efficiently. For bijels, the simulation model[1] has used neutral

wetting spherical colloids with the interfacial tension σ. For a single spherical colloid at

the fluid-fluid interface, the fluid-fluid interfacial energy is reduced by σπa2, where πa2

is the area of a disc on the interface covered by the colloid. Therefore moving a spherical

colloid to the bulk of either fluid requires an energy as much as the capillary energy,

ǫ = σπa2 so that ǫ/kBT ≫ 1. In practice, LB simulations choose the capillary energy

to match one achievable in experiment. Section 3.1 will discuss the LB parameters to

be adapted to address the stability of colloids at the fluid-fluid interfaces.

In recent experimental work, bijels[4, 36, 34] have been made from a roughly

equal-volume immiscible fluid pair: 2,6 lutidine (2,6-dimethylpyridine)-water, with

2% concentration of silica colloids. The lutidine-water mixture has a lower critical

temperature point and heating causes the fluids to demix. The initially dispersed

35



Chapter 3. Colloids in a Binary Fluid

colloids in the single-phase fluids are created by agitation, using an ultrasound probe.

Upon warming above the critical point for the spinodal decomposition, the separated

fluids sweep out domains and colloids become trapped on the fluid-fluid interfaces. As

the surface area decreases due to the coarsening dynamics, colloids are jammed together

at interfaces. Eventually the bijel is obtained and it endures in a stable formation for

a month.

Broadly the mechanism for bijel formation in experiment agrees with the hypothesis

that inspired the simulations of [1]. In these simulations, a random initial state,

with mean order parameter ψ0, is generated at an initial temperature Ti where the

single phase fluid is found (as seen in Figure 2.2). Suspended colloids are dispersed

in this initial fluid. After deeply quenching below the spinodal line for the spinodal

decomposition, the phase separation occurs in the fluids and eventually colloids are

arrested at the fluid-fluid interfaces. Then coarsening dynamics reduces the surface

area covered by these colloids.

For a pure binary fluid, the coarsening dynamics[81] is governed by “Model

H” consisting of three dynamical regimes: diffusive, viscous hydrodynamics and inertial

hydrodynamics. However, our simulations do not address the regime of inertial

hydrodynamics which can be reached by varying the parameters in free energy.

In the early stage known as the “diffusive” regime, the thermodynamics of spinodal

decomposition is determined by the free energy functional in equation (2.17); three

parameters, A, B and κ in F [φ], determine the values of the interfacial width ξ and the

interfacial tension σ. In the kinetics, the domain growth rate is observed as L(t) ∼ t1/3

for domain sizes up to L ≃ (Mη)1/2. The next process, “viscous hydrodynamic”, is

controlled by fluid viscosities; the domain size obey (Mη)1/2 ≪ L ≪ 100η2/ρσ. (Here

the prefactor 100 was found by Kendon et al.[25].) The time evolution of the growing

domain is faster than the diffusive motion of coarsening: L(t) ∼ t1. Because this

coarsening dynamics reduces the surface area, any colloids on the fluid-fluid interface

become jammed together; this leads to a slow growth rate and in practice makes the

size of domains remain smaller than 100η2/ρσ (as seen in Figure 3.3).

Evidence of a cooperative interplay of coarsening and colloid dynamics is also found

in motions of colloids. The initial state at Ti provides the environment for colloids

to diffuse: R(t) ∼ t1/2, where R(t) is a root mean square displacement (RMSD).

However, after the diffusive regime of fluid phase separation has ended, the coarsening

as L(t) ∼ t1 creates a faster motion of colloids trapped at interfaces which continues

until these colloids are jammed closely on the surface. In Section 3.3, motions of colloids

are quantified by several measurements to see the time-dependent dynamics through

the two-time RMSD. We also examine the interfacial ordering of colloids by the radial

distribution function g(r).
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In the condition for the stability of colloids at the fluid-fluid interfaces, allowing for

the curved geometry of these interfaces, the energy barrier to detach a colloid must

include the geometry-dependent parameter α, so that total energy barrier is obtained

as αǫ, where ǫ = πσa2 is the capillary energy and a is the radius of a colloid. The

geometry-dependent parameter α is contributed by a crowded monolayer of particles

causing complex curvature of local interfaces during coarsening. In the simple case

for a particle on a flat surface, the energy barrier to separate a particle corresponds

to α = 1. In contrast, for a complicated geometry, α is hard to estimate precisely

due to the complicated energy landscape. However if a layer might have pathways

allowing sequential particle expulsion while continuously decreasing surface area, it

would correspond to α = 0. In Section 3.4, the parameter α is directly estimated

from an activation energy calculated from the simulations at high temperatures, and a

mechanism for residual dynamics at late times will be discussed.

This Chapter consists of four parts. In the next Section, the simulation parameters

are discussed to interpret the corresponding parameters in laboratory experiments. In

Section 3.2 and 3.3, the results for basic analyses of coarsening and motion of colloids

will be shown. The final Section will show the analyses for the residual dynamics and

present the direct estimation for α.

3.1 Simulation methods and parameters

Our simulations for colloids in a binary fluid are performed using the LB for a binary

fluid in Section 2.2, the fluctuating LB for Brownian motions in Section 2.1.2, and the

bounce-back on links (BBL) method for colloids on lattice grids as seen in Section 2.3.

The protocol for a deep quench can be controlled by parameters, A, B and κ, in the

free-energy function of equation (2.17). The initial mixed state at Ti = ∞ is set up

as a randomly mixed single phase with a certain value of the conserved mean order

parameter ψ0. As discussed in Section 2.2.1, the minus sign of A drives the phase

separation of the demixing fluids. A symmetric double well potential is used, with B

having the same magnitude as A but with opposite sign; specifically, −A = B = 0.002 is

chosen. With the last parameter κ = 0.0014, the interfacial width ξ and the interfacial

tension σ are given as ξ = 1.14 and σ = 1.58 × 10−3 in lattice units (LU). For the LB

section of the code, the fluid density and the viscosities of both fluids are ρ = 1 and

η = 0.1 respectively. The fluid temperature is set as kBT = 2.133×10−5 LU, within the

range that ensures the stability of the fluctuating LB[69]. Monodisperse colloids are

used with the radius ah = 2.3, although ideally this size should be much larger than ξ

for fully accurate simulation of colloids trapped at fluid-fluid interfaces. However, this

size is acceptable for accuracy, and required for the efficiency of our LB simulations[1].
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Chapter 3. Colloids in a Binary Fluid

With the interfacial tension and the colloid radius given above, the capillary energy is

obtained as ǫ = 0.026 in LU so that ǫ/kBT = 1230.

In a colloid-free binary fluid, the hydrodynamic coarsening in the late stage obeys

the dynamical scaling hypothesis[25], L/L0 = f(t/t0), where the characteristic length

(L0) and time (t0) scales are defined as

L0 = η2/(ρσ),

t0 = η3/(ρσ2).

With the parameters used in this work, the characteristic length and time can be

calculated as L0 = 6.33 LU and t0 = 401 LU respectively. In a laboratory experiment,

these parameters in LB can be interpreted to represent systems such as a short-chain

hydrocarbon/water or hydrocarbon/alcohol mixture with ρ = 103 kg m−3, η = 9.3 ×
10−4 Pa s and σ = 6.1 × 10−2 Nm−2. Hence the characteristic scales are given as

L0 = 14 nm and t0 = 0.22 ns. Equating the simulated temperature kBT = 2.133×10−5

LU to room temperature, 300 K, gives the practical radius ah = 5.1 nm. In practice for a

given particle size ah, we can match to experiment the dimensionless control parameters:

ǫ/kBT = 1230 and ah/L0 = 0.363. We also match τB/t0, where τB = 6πηa3
h/kBT is

the Brownian time for a single diffusive colloid. However all dimensionless control

parameters of potential relevance can not be fully matched. For example, the Reynolds

number, Re = (dL/dt)ρah/η, can not be made as small as the true physical value, but

it is smaller than unity, which is sufficient in simulations[82].

To design the type of hard-sphere-like colloids used in this work, only the short-

range potential in equation (2.69) is considered with the parameters set as γ = 10kBT ,

h0 = 0.1, ν = 1.0 and hc = 0.25. In comparison to a perfect hard sphere, the cutoff hc

produces a larger effective particle size, aT > ah, so that is reflected in the positions of

peaks in g(r). The lubrication correction in equations (2.63) and (2.64) is not used in

this work because this repulsive short-range cutoff is enough to keep the hydrodynamic

interaction accurate even at close contact.

Most simulations in this chapter have used the D3Q19 model in a simulation volume

Λ3 = 1283 with periodic boundary conditions. The volume Λ3 = 643 was also used

to explore some morphologies in a closed box with solid walls. The latter included a

normal lubrication force for colloids within the cutoff hlub = 0.5 between the plane of

the wall and the surface of the colloid[15] (see Section 2.3.5).

For a large system of Λ3 = 1283 at a colloid volume fraction φ = 0.20, a single run

requires ∼ 56 hours (so that tfinal = 106 LU) on 256-processor 700MHz PowerPc 440

machine[83]. The runs with a small volume, Λ3 = 643, have been done on a single Intel

core2 2.4GHz for which tfinal = 105 LU requires around 54 hours.
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3.2. Coarsening dynamics of a binary fluid

3.2 Coarsening dynamics of a binary fluid

This section focuses on the characteristics of domains in a binary fluid with various

different initial ψ0. The mean conserved order parameters are given as ψ0 = 0.0, 0.1,

0.2, 0.3 and 0.4. These correspond to the volume ratios of two fluids, 50 : 50, 55 : 45,

60 : 40, 65 : 35 and 70 : 30. In most cases, the volume fraction of (monodisperse)

particles is set as φ = 0.20. To check the effect of concentration of particles, the time

evolution of domain growth with φ = 0.25 is also measured, to enable comparison with

domain growth for φ = 0.20.

In the morphology of fluid domains with colloids, one can expect a crossover between

bicontinuous and dropletlike structures according to the volume ratio of the fluids. In

principal, even at ψ0 = 0, depercolated structures, like droplets, can originate from a

viscosity mismatch of fluids, and from an asymmetry in the phase diagram. This work

has the same viscosity value for the two fluids and a symmetric phase diagram, so that

only volume asymmetry (ψ0 6= 0) can cause dropletlike structures. In addition, the

case of a closed box is studied to see as well if the walls influence domain morphologies.

Like the previous study[1], the time evolution of domain growth is measured at various

ψ0 with a particle fraction φ.

3.2.1 Domain morphology

In the spinodal decomposition of a colloid-free binary fluid, the threshold, ψp, where

bicontinuity is lost, is found at ψp ≃ 0.44 ± 0.04[84] theoretically, experimentally and

by simulation. At ψ0 around ψp, on quenching into the spinodal region, the initial

diffusion forms a bicontinuous pattern, but at a later stage, when the coarsening is

controlled by viscosity, the bicontinuous domain breaks into droplets.

Figure 3.1 presents the snapshots for ψ0 = 0.0, 0.1, 0.2, 0.3 and 0.4 with φ = 0.20

at t = 5 × 105 LU corresponding to t = 275 ns in a periodic box. Although all

configurations sustain these domain morphologies until the end of the time window, a

slow residual dynamics is found to reduce their surface area. This slow dynamics is

observed in the time evolution of domain growth. The following sections will discuss

the residual slow dynamics.

In Figure 3.1(a), the bicontinuous domains present for ψ0 = 0 remain even at

ψ0 = 0.3, which has strong asymmetry. In contrast, the quench of ψ0 = 0.4 shows a

dropletlike phase in Figure 3.1(b). Therefore, the threshold ψp lies between ψ0 = 0.3

and ψ0 = 0.4 for bicontinuity in a binary fluid with colloids. In the case of a closed box

in a volume Λ3 = 643, ψ0 = 0.0 and 0.4 are considered to compare domain morphologies

with the systems with a periodic boundary condition. Figure 3.2 shows the domain

morphologies with ψ0 = 0.0 and 0.4 at t = 2 × 105 LU (corresponding to t = 110 ns);
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(a)

(b)

Figure 3.1: The morphologies in a periodic box for various ψ0; lattice size Λ = 128
cropped to Λ = 64. The right side shows the fluid-fluid interfaces plus colloids given as
spheres with a radius ah. The left is the same image without particles and it shows the
clear domain morphologies. (a) (top to bottom) ψ0 = 0.0, 0.1, 0.2 and 0.3 for φ = 0.20.
(b) ψ0 = 0.4 for φ = 0.20.
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(a)

(b)

Figure 3.2: The morphologies in a closed box with solid walls. The right side shows
the fluid-fluid interfaces plus colloids given as spheres with a radius ah. The left is
the same image without the particles and it shows the clear domain morphologies. (a)
symmetry: ψ0 = 0.0. (b) asymmetry: ψ0 = 0.4. The boundary condition on the fluid
order parameter at the solid walls is that of neutral wetting.
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Figure 3.3: The time-evolution of domain size L(t) for various quenches; (topmost
curve) symmetric quench ψ0 = 0.0 with φ = 0.20; asymmetric quenches of ψ0 = 0.4
with φ = 0.20 (middle curve) and φ = 0.25 (lowest curve). The lattice size is Λ = 128.
The LB time scale t = 106 LU corresponds to t = 549 ns in lab; the domain length
L = 40 LU corresponds to L = 88.4 nm in lab.

the main morphologies with symmetry and asymmetry are maintained, even though

the neutral wetting condition holds between a solid wall and the fluid-fluid interfaces.

Therefore, although neutral wetting might promote bicontinuity in principle, its effect

on ψp is small in practice.

3.2.2 Domain growth kinetics

In the phase ordering kinetics, one can define the characteristic length scale L(t) of the

demixing domains[25] in a system with periodic boundary conditions as

L(t) = 2π

∫

S(k, t)dk
∫

kS(k, t)dk
(3.1)

where k = |k| and k is a wavevector in Fourier space and S(k, t) is the equal-time

structure factor defined as

S(k, t) = 〈δψk(t)δψ−k(t)〉. (3.2)

Here, δψk(t) = ψk(t) − ψ0 and 〈· · ·〉 is an average over a shell at a fixed k.

Figure 3.3 shows the results of time evolution of L(t) for a symmetric quench with

φ = 0.20 and asymmetric quenches with φ = 0.20 and 0.25. These runs have time

windows extending until t = 106 LU (double that of the previous study[1]), which is
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3.3. Dynamics of colloids at intermediate time

around one Brownian time as τB ≃ 106 LU. The run with ψ0 = 0.4 and φ = 0.20 has

been extended still further to t = 1.4× 106. However with our mapping of parameters,

these time windows are still very short (t = 0.55 µs and t = 0.77 µs) in laboratory time.

The L(t) curve for a symmetric quench with φ = 0.20 is the topmost line in Figure 3-3.

This curve is similar to that found in the previous work[1]. After t = 2 × 105 LU, the

slow growth rate is observed in both studies; however, permanent arrest is not found

in either. The domain size L reported here is larger than in the previous study due to

the smaller effective radius aT in this work. The L(t) curves for asymmetric quenches

with different particle fractions (ψ0 = 0.4 with φ = 0.20 and 0.25) are also presented

in Figure 3.3. These lead to the droplet morphologies seen in Figure 3.1(b). Higher

particle concentration makes the droplets smaller so that the domain length, L, is

shorter than one with less concentration at any given time t. The droplet structures also

have slow residual dynamics after a long time has elapsed (especially after t = 2× 105)

and the next section will discuss these slow residual dynamics by the extensive analyses

of colloidal motion. For L(t) in a closed box, one cannot use the equation (3.1) but L(t)

can be determined from the spatial correlation function of ψ(r) in real space[85, 86, 87]

as also explained in Appendix D; this confined system has strong finite size effects.

This thesis does not consider the analysis of L(t) for non-periodic systems.

3.3 Dynamics of colloids at intermediate time

In the last Section, the characteristic length scale L(t) showed continuously increasing

domains of fluid at long times, t ≥ 2 × 105, instead of the fully steady state, originally

envisaged in [1] as the result of colloidal arrest on the fluid-fluid interfaces. This section

discusses colloidal motions, aiming to explain these slow residual dynamics. Since the

simulations have a runtime of t < τB , note that only the “intermediate” time regime is

studied here. The final regime, t ≫ τB, still remains to be discussed.

To understand the slow dynamics, it is assumed that three candidates are involved:

1. the colloids slowly make a semi-crystal structure on the fluid-fluid surfaces allowing

closer packing; 2. rearrangement due to the continuous ejection of particles from the

interfaces caused by the smallest geometric barrier parameter α for a crowded layer; 3.

numerical artefact in LB.

In this study, monodisperse spherical particles only are simulated. To see the time-

evolution of configurations of colloids, a radial distribution function (RDF) g∆(r, ti) is

measured by averaging g(r, t) over a time interval ∆t starting from various initial times
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ti. Thus the time-dependent RDF is defined as

g∆(r, ti) =
1

∆t

∫ ti+∆t

ti

g(r, t), (3.3)

where g(r, t) is a RDF at time t. The simulation results for g∆ will be shown in Section

3.3.1 for the interfacial ordering of colloids. This allows us to probe candidate 1 above.

During the coarsening, it could be interesting to measure the contact angles of

colloids on the interfaces with time. However, defining the exact interfaces on the

lattice grid is very difficult at the crowded particles on the surface. Thus instead of

measuring contact angles, a new time-dependent quantity is defined as the number of

particles that have been ejected from the fluid-fluid interfaces. The detail will be shown

in Section 3.3.2. In addition, the effect of thermal noise is studied there by switching

off the stochastic term in equation (2.12) at t = 4 × 105 LU. After switching off noise,

colloids lose the property of Brownian motion, so that the motion of colloids becomes

only dependent on hydrodynamic forces of fluids.

The second candidate, particle detachment, depends crucially on the parameter α.

This is estimated directly from the activation energy and it will be discussed in Section

3.4.1. The interplay of the coarsening and the jamming smooths out the geometrical

features with time so that α is time-dependent. Ideally α should be measured for time

scales larger than one Brownian time, τB.

The final candidate, a numerical artefact of LB, cannot be totally ignored in our

simulations. Particularly for the stabilisation of particles at fluid-fluid interfaces, the

colloid radius should ideally be much greater than the interfacial width: ah ≫ ξ.

However, in practice in LB, ah is not too much larger than ξ as ah = 2.3 and ξ = 1.14.

It is possible that shallowly attached particles at interfaces could escape too easily to

become free in the bulk fluids. However in previous work[1] high resolution tests of

ripples and cylinders coated with colloids did not find any ejection of particles. To

solve this issue requires the simulations of a full bijel with ah ≫ 2.3. But this is out

of reach with current computational resources as a factor 2 radius increase requires a

10-fold increase in computational power.

3.3.1 Interfacial ordering

Figure 3.4 shows g∆(r, ti) and time-evolution of the height of the first peak for a

symmetric and an asymmetric quench with φ = 0.20. The radial distribution function

g(r, t) measure the spatial ordering as

g(r, t) =
2Λ3

N2

〈

∑

i,j

δ(r − rij)

〉

, (3.4)

44



3.3. Dynamics of colloids at intermediate time

where rij is the distance between a pair of particles, i and j, and N is the number of

colloids. This g(r, t) is used to calculate g∆(r, ti) in equation (3.3). The initial time ti

is given as ti/10
5 = 0.5n, where n = 1, 2, ..., 19, and the time window for the average

∆t = 0.5 × 105 LU. The averaging over this time window reduces noise to acceptable

levels while allowing the slow evolution of g(r) to be detected.

Figures 3.4(a) and 3.4(b) show g∆(r, ti) at ti/10
5 = 9.5 for ψ0 = 0.0 and 0.4.

Clear peaks are found at the positions corresponding to hexagonal lattice scaled to the

effective radius aT . These peaks gradually increase with time in Figure 3.4(d). After

t = 2 × 105 LU where slow dynamics are found, the first peak tends to increase as

particles slowly form a more crystalline layer.

After the thermal noise was switched off at t = 4 × 105 LU, the g∆(r, ti) for a

symmetric quench is shown in Figure 3.4(c); the height of peaks is higher in comparison

with the peak height of a symmetric quench with noise (seen in Figure 3.4(a)). This

effect can be explained by the presence of metastable minima in the complicated energy

landscape of the bijel. Less thermal energy allows it to fall into a local minimum of the

total energy (the sum of the interfacial energy and interparticle energy). Therefore the

height of peaks is sharper, but their positions are not changed. This probably means

the layer of particles on the surface was effectively trapped in a state, close to a local

metastable minimum, even prior to switching off the thermal noise.

3.3.2 Particle ejection

To quantify the ejection of particles, a free particle in either bulk fluid is identified as

one which is not in contact with the fluid-fluid interface. In practice, a free particle is

determined by the sign of the order parameter ψ(r) within a distance ah +
√

3 from the

center of a particle. If all order parameters have the same sign, it is a free particle.

Figure 3.5 shows the time evolution of Nf (t), the number of free particles. In Figure

3.5(a), showing both symmetric and asymmetric quenches, the Nf (t) monotonically

increases throughout the slow dynamics regime after t = 2 × 105. The Nf (t) in

the dropletlike phase is remarkably higher than one in the bicontinuous phase. The

higher ejection rate in the droplet phase results in a smaller surface area of the droplet

compared to the bicontinuous phase. In the asymmetric case, most of the free particles

are in the continuous phase rather than inside of droplets. This suggests that the

droplets prefer detachment from the exterior surface. For a symmetric quench, the

fraction of free particles in each fluid is almost equal.

Figure 3.5(b) shows the Nf (t) switching off the thermal noise at t = 4 × 105 LU

in a symmetric quench. Soon after switching off noise, there is no significant ejection.

However, at much late times, some ejection occurs. It is possibly happening when the
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Figure 3.4: Late time g∆(r) for colloidal particles; the data is time averaged over the
interval 9.5×105 < t < 106. (a) ψ0 = 0.4. (b) ψ0 = 0.0. (c) ψ0 = 0.0 with thermal noise
switched off at t = 4 × 105. (d) time evolution of the first peak height for conditions
(a)-(c) (bottom to top).
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Figure 3.5: (a)Time evolution of the number of free particles Nf (t) for droplets (ψ0 =
0.4, upper curve) and a bicontinuous phase (ψ0 = 0.0, lower curve) with Λ = 1283,
φ = 0.20. (b) The upper curve is the same data for a bicontinuous phase (lower curve
in Figure 3.5(a)) compared with the case where noise is switched off in t = 4 × 105

(lower curve). (c) L(t) data in Figure 3.5(b); (solid line) a symmetric quench; (dash
line) the data after thermal noise is switched off. The inset of (c) is a zoom-in for the
late times.
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local force to drive the coarsening dynamics is enough to overcome the energy barrier to

detach a colloid shallowly contacted to the fluid-fluid interface. The motion of a domain

wall is driven by the mean curvature, H, having the relation as ∆P = σH, where ∆P

is a finite pressure difference. In equilibrium, the H is zero for symmetric quenches so

that the force acting to reduce curvature to H = 0 leads to the coarsening dynamics.

In the situation after switching off the thermal noise, the geometry of interfaces covered

by particles without Brownian motion controls the remaining coarsening dynamics, and

leads not only the late-time ejection in Figure 3.5(b) but also a slow growth rate in

Figure 3.5(c).

3.3.3 Colloid dynamics

Colloids in a thermal solvent exhibit Brownian motion with R(t) ∼ t1/2. For colloids

in a binary fluid undergoing the demixing of fluids, one can expect time-dependent

deviations from this according to the coarsening dynamics which defines the chance

for colloids to be arrested and to be jammed at interfaces. The initial motion for

colloids at Ti exhibits diffusive behaviour. Later the particles are trapped at the fluid-

fluid interfaces. The velocity of trapped particles is first accelerated by the coarsening

dynamics up to the speed of the moving interfaces, dL(t)/dt ∼ σ/η, before the beginning

of the residual slow dynamics, when the interfaces arrest. The transition time is around

t = 2 × 105 LU in Figure 3.3.

From the definition of RMSD (root mean square displacement), the time-dependent

heterogeneous motions of particles can be quantified by the RMSD R(t, tw) between

various waiting times “tw” and later times tw + t:

〈R(t, tw)〉 =

[

1

N

N
∑

i=1

|ri(tw + t) − ri(tw)|2
]1/2

. (3.5)

Figures 3.6(a) and 3.6(b) present the data for RMSD at the various tw in symmetric

and asymmetric quenches. In both cases the RMSD at a fixed time t monotonically

decreases with tw since the system is slowing down continuously at late time. For late

waiting times, diffusive motion is seen in both the RMSD curves.

To examine the effect of thermal noise, the RMSD, after switching off the thermal

noise, is measured and the data is shown in Figure 3.6(c) to compare with the data

with the thermal noise, still present.

For 0 < t < 104, there is clear evidence of a crossover in motion from diffusive

(R ∼ 10−3 t1/2) to ballistic (R ∼ 10−5 t1) after switching off the noise in Figure

3.6(c). The motion without noise originates from the flow of particles by the residual

coarsening of fluid-fluid interfaces. The RMSD data also show that the particle motion
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3.3. Dynamics of colloids at intermediate time

after t = 104 is slower than the motion with thermal noise, despite the change from

diffusive to ballistic character.
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Figure 3.6: Log-log plots of R(t, tw), for tw/10
4 = 2n, n = 0, 1, 2, ..., 6 with (a) ψ0 = 0.4

and (b) ψ0 = 0.0. (c) curves for tw/10
5 = 4, 6 and 8 at ψ0 = 0.0 are compared with

and without thermal noise switched off at t = 4 × 105. Solid lines are at tw/10
5 = 4;

dotted lines are at tw/10
5 = 6; Dashed lines are tw/10

5 = 8; Upper three curves are for
the data with thermal noise; other three curves below are for the data without thermal
noise. Straight line in (a,b) represents diffusive motion with slope 1/2.

3.3.4 Droplet dynamics

Figure 3.7 presents the time evolution of a single droplet obtained within the quench

at ψ0 = 0.4 in Λ3 = 1283. The shape of the stable droplets covered by the colloids is

determined by the number of particles trapped at the interface at early times, while

a stable droplet of a colloid-free binary fluid will inevitably have a spherical shape.

However, for the droplet covered by colloids, local crystallinity is clearly found on the
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(a) (b) (c) (d)

(e) (f) (g)

Figure 3.7: Snapshots for time evolution of a droplet shape; (a) t = 1 × 105; (b)
t = 2 × 105; (c) t = 3 × 105; (d) t = 4 × 105; (e) t = 5 × 105; (f) t = 10 × 105; (g)
t = 14 × 105.

facets of a droplet. The ellipsoidal shape is maintained after t ∼ 5 × 105 LU, and

for the droplet (with ∼ 120 particles) shown in Figure 3.7, no particle ejection occurs

after t ∼ 5× 105. In the similar system such as a liquid-gas system, colloidal-armoured

gas bubbles[88, 89, 90] have both the spherelike shape and the nonspherical shape in

experiments.

3.4 Discussion of mechanism and residual dynamics

In Section 3.2 and 3.3, the analysis for the behaviour of particles showed that the slow

dynamics in the domain growth for t > 2 × 105 results from the semi-crystallisation of

particles on the surface and from the ejection of particles at the fluid-fluid interfaces. In

the case of switching off the thermal noise, it was found that Brownian motion does not

completely stop the ejection of particles; the remaining coarsening still plays a role in

the slow domain growth. Therefore the residual slow dynamics presumably arise from

the interplay of the crystallisation and the remaining coarsening. The RMSD results

also support this conclusion in both the thermal and athermal cases.

To understand the residual dynamics, remember that the simulation time window

in this work is not much longer than Brownian time scale, τB ≃ 106 LU. This relatively

short time scale could be responsible for the residual dynamics; after particles have

joined the fluid-fluid interfaces, they require some time to achieve the local equilibrium

with respect to the interfacial energy and inter-particle energy. Even if the interfaces

50



3.4. Discussion of mechanism and residual dynamics

are nearly flat (α is not small), until t ≃ τB, continuous ejection of some particles which

are attached shallowly to the interfaces can occur. These particles have relatively low

detachment energy barriers. Afterwards, particle ejection could decrease and then

finally stop. Indeed α seems to be time-dependent, decreasing with the ejection of

particles and the coarsening of fluids. Also a broad distribution of energy barrier

heights could cause very slow “aging” dynamics on Brownian time scales. In the rest

of this Section, the geometry-dependent parameter α will be discussed to explain the

residual dynamics.

3.4.1 Direct estimated activation energy barrier

An activation barrier EA to particle ejection can be estimated from the Arrhenius

equation as applied to the ejection rate r: r(T ) = r0 exp(−EA/kBT ). Here r0 is

generally a diffusive factor, called the“attempt frequency”, with the unit s−1 given as

r0 ≃ τ−1
B ∝ kBT . In practice, this expression becomes reliable when t≫ r−1

0 so that the

escape process is sampled on time scales large compared to the attempt frequency for the

barrier crossing process. On the other hand, even though r0 is generally temperature-

dependent, one can expect a temperature-independent rate reduction in the case of the

crowded layers. Entropic barriers in the crowded layers could reduce the diffusivity

leading to a decrease of the attempt frequency so that detachment requires a longer

time scale to be seen. In this case, the rate reduction is temperature-independent as

it is entropy-controlled, not energy-controlled. Thus this contribution is not directly

visible in EA.

For calculation of EA, the runs with ψ0 = 0.0 with φ = 0.20 are simulated at eight

higher temperatures up to kBT = 2 × 10−4 LU. The highest temperature 2 × 10−4

LU is the upper limit to ensure accurate simulations in LB[69] and the corresponding

Brownian time is τB ≃ 105 LU which is 10 times smaller than τB at kBT = 2.133×10−5

LU. (The latter corresponds to the room temperature ∼ 300 K in a lab.) In the final

stage (after 10τB) with kBT = 2 × 10−4 LU, 20% of particles become free in either

fluid, compared to the number of particles initially trapped at the interfaces.

At each temperature, the ejection rate r is deduced from the number of trapped

particles on the interfaces with time, NT (t). This can be obtained by subtracting Nf (t)

from the total number of particles N = NT +Nf .

In a simple activated process, the trapped particles NT can be formulated as a

function of time: NT (t) = N0 exp(−rt), where N0 is the initial number of particles on

the interface. Figure 3.8 shows the number of trapped particles against t in log-linear

scales as seen in Figure 3.8(a), and against t/τB in log-linear scales as seen in Figure

3.8(b). In the early time region of Figure 3.8(a), curvature is seen at all temperatures.
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Figure 3.8: Number of trapped particles NT in log-linear plot for temperatures (from
top to bottom at extreme right) 105kBT = 2.13, 3†, 4.5, 6, 8, 11† , 12.5, 15 and 20. Those
marked with †symbol are averaged over two runs; the variation in the late-time slope
is about ±10%. (a) ln(NT (t)) vs t. (b) ln(NT (t)) vs t/τB, where τB is the Brownian
time for each corresponding temperature.

Especially for t < 105, the curves look overlapped, but in the plot on the scale t/τB

instead of t, the overlapped curves are not seen anymore but the same shape of curves

at all temperatures are found. In both Figures 3.8(a) and 3.8(b), straight slopes are

clearly found only at the late times, t/τB ≥ 3.5, and at higher temperatures. Thus

reliable ejection rates r(T ) can be obtained at four temperatures. In regard to the

local thermal equilibrium of particles, t/τB ≥ 3.5 is a reasonable scale to be satisfied

with our assumption mentioned above, that particles take some time to achieve such

equilibrium.

From the ejection rate r found in Figure 3.8, two different analyses are considered,

with r0 either temperature dependent or not. The standard analysis of the Arrhenius

plot assumes that r0 is diffusive and linear in temperature. In this analysis, EA is

estimated by fitting the plot with ln(r/kBT ) versus 1/kBT . However, the results of

this fit in Figure 3.9(a) are quite poor; the EA is 7.0 × 10−5 with an uncertainty

±2.0 × 10−5(∼ 30%). Interestingly better results are obtained by the fitting assumed

by non-diffusive r0. This can be explained if the barrier-crossing attempt rate is fixed

by the coarsening dynamics of interfaces rather than only the diffusion of the particles.

Figure 3.9(b) is the Arrhenius plot with non-diffusive r0; it gives an activation barrier

EA = 2.2 × 10−4 ± 1.6 × 10−5 and r0 = 5.5 × 10−7 ± 7 × 10−8.

Our previous simulations had kBT = 2.133×10−5 LU corresponding to 300 K in the

lab. Although the running at this temperature for t/τB ≥ 3.5 is out of our simulation

window, the EA could be estimated by considering all data after t > 6×105 LU. Figure

3.9(c) shows ejection rates at all temperature after t > 6 × 105 LU. On decreasing
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Figure 3.9: Arrhenius plots for the four highest temperatures. Dotted line is the result
of linear least square fit. (a) plot of ln r/kBT vs 1/kBT for the standard analysis with
r0 assumed to be diffusive. (b) plot of ln r vs 1/kBT for r0 assumed to be non-diffusive.
(c) plot of ln r vs 1/kBT for non-diffusive r0 fitted after t > 6×105 at all temperatures.
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temperature, increasing errors are found in r fitted after t > 6 × 10−5: the error of r

at kBT = 2.133 × 10−5 LU is 2.5 times larger than at kBT = 2 × 10−4 LU, but the

error bar is smaller than the size of symbol in Figure 3.9 so that the error could not

been plotted together. Despite the relatively poor statistics, analysis of these curves

would lead to systematically smaller scopes at lower T , so that a smaller EA than the

one quoted above is obtained at kBT = 2.133 × 10−5 LU.

In summary, by analysing data within the temperature range studied (up to 2×104

LU), we findEA < 10kBT for kBT = 2.133×10−5 LU, corresponding to lab temperature

for 5 nm particles. Using EA to calculate the αǫ with ǫ/kBT = 1230, the geometry-

dependent parameter α is given as α ≤ 8 × 10−3. This is very close to zero but not

exactly zero. This small α might come from weakly attached particles whose ejection

rate is due to the very low barriers in the late time window, 3.5τB ≤ t ≤ 10τB .

3.4.2 Domain growth kinetics at high temperatures

Figure 3.10 shows the time evolution of domain growth with time scaled as t/τB at

all temperatures. At the three lowest temperatures (for 105kBT = 2.133, 3 and 4.5) in

Figure 3.10(a), the domains gradually grow but do not have any particular trend in

growth rate. Interestingly, for higher temperatures within the time window t/τB ≥ 3.5

in Figure 3.10(b), the domain size grows as “apparent” power law with L(t) ∼ (t/τB)β,

where β = 0.25±0.01. At two intermediate temperatures shown in Figure 3.10(a), this

power law appears for t/τB ≥ 3.0, although the run time in these cases was not long

enough to obtain ejection rates. However the apparent power law does not match

any relevant theory in growth kinetics[84, 91, 92, 93]. Also, the range of L for which

the apparent power law is seen remains quite narrow (a factor of 2). Presumably the

behaviour of domain growth might be related to the activated process to eject particles.

This is consistent with the onset of the power law regime after an indication time that

scales with τB (t/τB ≥ 3.5). Thus, the growth kinetics of colloids in a binary fluid

remains a open question.

3.5 Conclusions

This chapter presented in detail new LB simulations of nanoparticles in a binary fluid

undergoing demixing after a deep quench at various initial fluid compositions ψ0. Across

various volumes of the two fluids, the threshold for the depercolation to droplets was

found as 0.3 < ψp < 0.4 which is somewhat lower than that for a colloid-free binary

fluid. In domain growth kinetics, although a wider time window (t = 106 LU) was

chosen for this work than in previous studies[1], we did not obtain a permanent arrested
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Figure 3.10: Time evolution of domain size at temperatures: (a)105kBT =
2.13, 3†, 4.5, 6 and 8. (b) 105kBT = 11†, 12.5, 15 and 20. Those marked with †symbol
are averaged over two runs; the variation in the late-time slop is about ±10%. The red
dashed line shows the power law with the exponent α = 0.25 ± 0.01. Colours of lines
are matched with the lines in Figure 3.8. The domain length L = 40 LU corresponds
to L = 88.4 nm in lab.

state. Slow residual dynamics were found for the late time regime (t > 2 × 105 LU)

giving domain growth for both symmetric and asymmetric quenches. To explain these

slow residual dynamics, we presented extended analyses for the post-arresting dynamics

of colloids during the intermediate time scales, t ≃ τB . These slow dynamics appear

to involve particle ejection, and particle rearrangement to produce local crystallisation

at interfaces for packing. The pair correlation functions, g(r), reveal that colloids

rearrange toward the higher packed ordering and the height of the first peak at late time

slowly increases. During the intermediate time regime, the Brownian particles do not

achieve local thermal equilibrium so that they can escape from the interfaces. Therefore

the number of free particles present continuously increases. The time evolution of a

single droplet shows relaxation toward the ellipsoidal shape including facets with local

crystallisation.

In contrast to our simulations showing the slow evolution, the bijels in experiments

sustain their stable arrested structures for a month, far beyond the time scales accessible

in LB simulation. It is possible that ejection of particles results from tenuous contact

between particles and also involves a numerical artefact in LB combined with the

complex geometry of interfaces during the coarsening dynamics of fluids. In LB the

size of colloids and the interfacial width do not obey ah ≫ ξ. Increasing ah by a

factor 2 costs a 10-fold increase in computational power currently. The complicated

geometry of interfaces is estimated from the activation energy EA deduced from the
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ejection rates at various temperatures up to kBT = 2 × 10−4 LU (shown in Section

3.4.1). Remembering that the EA is set as the energy barrier to detach a particle,

αǫ, the geometry-dependent parameter α was obtained as ∼ 0.008 leading to a much

smaller effective energy barrier to eject particles than the corresponding barrier for a

single particle on a flat interface. This small activation barrier might be caused by a

breakdown of local equilibrium for arrested colloids during short time scales compared

to their Brownian time τB. This could produce a population of weakly bound particles

at interfaces until time t≫ τB .

Section 3.4.2 discussed the growth kinetics at various temperatures. At high

temperatures for t/τB ≥ 3.5 , an apparent power law growth is found as L(t) ∼
(t/τB)0.25±0.01 over a factor 2 interval in domain size. Since we do not understand

the residual dynamics causing behaviour, it remains an open question to investigate in

detail this aspect of the growth kinetics of the bijel.
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Chapter 4

Magnetic Colloids in a Single Fluid

During the last two decades, many simulations of colloidal ferrofluids (“magnetic

colloids in a single solvent”) have confirmed that dipolar colloids form particular

aggregated structures aligned like chains. Exploiting the development of computational

power, the equilibrium phase behaviour[7, 8, 94, 95] and dynamical processes of chain-

like structures[96, 97] have been investigated by several simulation methods: molecular

dynamics (MD)[53, 98, 99, 79], Brownian dynamics (BD)[100, 101, 97] and Monte Carlo

(MC)[49, 9, 102]. Among these recent simulation works, only Mériguet et al.[101] have

considered indirectly the hydrodynamic interactions using Brownian dynamics to study

the orientational relaxations in charge-stabilised ferrofluids. However, none of these

studies fully considers hydrodynamic forces, derived from a solvent, acting on magnetic

colloids.

In this chapter, LB simulations for colloidal ferrofluids are investigated to see how

fully many-body hydrodynamic interactions play roles in equilibrium and transient

dynamics for cluster formation. In contrast to the Brownian dynamics used by Mériguet

et al.[101], our LB method calculates the full hydrodynamic forces deduced by the

momentum transfer of moving solid particles in fluids. The detail of our LB method

was discussed in Section 2.3. Generally speaking in Stokes flow, it is well-known that

the hydrodynamic interactions acting on colloids only affect their dynamics, but not

equilibrium structural properties. Thus, this chapter has regard to three points: the

structural properties and the dynamics in equilibrium, and transient motions during

formation of clusters. First, the structural properties of magnetic colloids in equilibrium

are studied by LB, BD and MC. We use BD, in which many-body hydrodynamic

interactions are absent, so all simulations in LB are compared with those in BD to

check the effect of hydrodynamic interactions. In addition, MC data[103] is compared

with data for equilibrium statistics found by BD and LB in order to check the accuracy

of static properties.

In colloidal ferrofluids, one of the most interesting features is the aggregated

structures based on a nose-to-tail formation[44]. This originates from the long-range

dipolar interactions, which depend anisotropically on the positions of dipoles and
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orientation of dipole moments, but which tend to make dipoles aligned in low energy

states. In the case of two dipolar hard spheres, the lowest energy state is found at

the nose-to-tail configuration with the bonding dipolar energy −2λkBT , where λ is

the dipolar coupling constant discussed in Section 2.4.5. In a bulk ferrofluid, the

phase of magnetic colloids is controlled by the particle fraction φ and the dipolar

coupling constant λ[6, 7] (see Figure 1.4). In this chapter, all simulations have been

done in conditions of φ up to 20% and λ up to 8. For accurate simulations in a

periodic boundary box, the long-range dipolar interactions are accomplished by Ewald

summation. The following Section 4.1 will discuss the detailed simulation parameters

for magnetic colloids and a fluid. Especially, the parameters of the short-range potential

will be discussed in detail, because the short-range potential used in LB simulations is

chosen not only to prevent the overlap of colloids but also to reduce the discretisation

error in noise forces at close contact of colloids.

In the simulation results, Section 4.2 presents the equilibrium static properties

which are quantified by the radial distribution functions, the equilibrium energies

including the long-range potential energy, Ud/NkBT , and the short-range potential

energy, U sc/NkBT . The data from both LB and BD are presented alongside the data

from MC to check the accuracy in equilibrium. Also the equilibrium dynamics are

measured through the dynamic correlators which describe the relaxations of particles

by translational and rotational modes. These correlators represent the time-relaxation

of structure in Fourier space q from which the diffusion coefficients are obtained as a

function of q according to the time scales for Brownian motions (short-time Brownian

and long-time Brownian).

In dilute colloidal systems with hydrodynamic interactions[104], the relaxations

can be divided into three regimes by the time scale for the diffusion relaxation (τD ≡
6πηa3/kBT ) and the velocity relaxation time (τv ≡ m/6πηa ∼ 2a2ρ/9η) which is the

same scale of the fluid momentum relaxation time (τη = a2ρ/η). These three regimes

are the pre-Brownian, the short-time Brownian and the long-time Brownian; the

characteristics of these motions are clearly seen at the dynamic correlators. Especially

the diffusive behaviour is observed as the exponential decay in the dynamic correlators.

For t≪ τv, the motion of colloids are evolved by the collision with fluids, so that non-

diffusive motion appears. After this ballistic motion, colloids are diffusive before they

encounter other particles. So on increasing the concentration of colloids, the duration

of this short-time diffusive motion is shortened due to caging by neighbouring colloids.

Generally short-time motion has the time scale “τv ≪ t≪ τD”. Lastly, for a long time

(t≫ τD ≡ 6πηa3/kBT ), colloids show the diffusive motion characterised by a distance

comparable to a radius of colloid. In comparison with the distance that particles travel

on the long-time Brownian time scale, particles hardly move during the short-time
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Brownian regime.

However, hydrodynamic effects are observed even at the short-time Brownian

timescale. Indeed, from the short-time diffusion coefficients (Ds(q)) and the static

structure factor (S(q)), the “hydrodynamic factor” H(q) can be calculated. In contrast,

H(q) is always unity in colloidal systems without any hydrodynamic interactions. In

Section 4.3, we will discuss the relaxations of dynamic correlators and the hydrodynamic

effect on the short-time Brownian regime by comparing LB and BD simulations for the

various λ.

In Section 4.4, transient dynamics will be discussed to quantify the process of cluster

formation after quenching from configurations equilibrated with λ = 0 to ones with

λ 6= 0. In a previous study in 2D Brownian dynamics simulations of dipolar fluids[97],

the aggregation kinetics has been monitored using the time-evolution statistics of cluster

sizes. Using the same analysis as for the 2D model, the probabilities of cluster sizes are

measured here in LB and BD runs for 3D ferrofluids. The relaxation of energetic

quantities will be also discussed to support our interpretation of the aggregation

process. Therefore, Section 4.5 will discuss the transient scattering functions to see

time-dependent correlations at various initial times tw for each φ and λ.

4.1 Simulation parameters

In LB simulations for colloidal ferrofluids, monodisperse colloids (with a radius a =

ah = 2.3 LU) are used in a fluid of temperature kBT = 5 × 10−5 LU and viscosity

η = 1/40 LU. These choices optimise the computational efficiency and stability. The

thermal fluid is handled by the fluctuating lattice Boltzmann method (discussed in

Section 2.1.2) on a D3Q19 lattice. For comparison, a simple BD algorithm of matched

bare particle diffusively D0 is used to simulate dipolar colloids. The detail of the BD

algorithm is presented in Appendix A.

With this parameter set for a, kBT and η, the relaxation times are calculated as

τv = m/6πηah ∼ 2a2ρ/9η ∼ 50 LU,

τη = a2ρ/η ∼ 210 LU,

τD = 6πηa3/kBT ∼ 115, 000 LU,

where τv is the velocity relaxation time, τη is the fluid momentum relaxation time for

local equilibrium around a particle (whose time scale is similar to τv), and τD is the

diffusive relaxation time. For a single particle, the translational diffusion coefficient is

given as D0 = 4.6132 × 10−5 LU.

To achieve magnetic colloids in a periodic box, Ewald summation is used to calculate
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the long-range dipolar interactions in Section 2.4.2. As mentioned previously, the short-

range part of the interaction potential is designed to reduce the error of noise for

close contact colloids. The following section will discuss the parameters for interaction

potentials for magnetic colloids in detail.

4.1.1 Interaction potentials for magnetic colloids

To specify our magnetic colloids, the total potential is given as the sum of the short-

range potential U sc(hij) and the long-range potential Ud(rij , ŝi, ŝj):

Uij = U sc(hij) + Ud(rij , ŝi, ŝj), (4.1)

where rij is the centre-to-centre vector of the pair particles, i and j, and ŝi is the unit

vector of the dipole on a particle i. The distance hij is the surface-to-surface separation

for particle pair i and j, given as hij = rij − 2a with rij = |rij |.
In LB simulations for colloids, the choice of parameters for U sc(hij) in Section

2.4.1 is an important issue for equilibrium static structures represented by the radial

distribution functions and total energy. Colloidal Brownian motion in LB is induced

by the thermal lattice fluid surrounding the colloids. However close-contact particles

feel a lack of thermal fluctuation due to losing lattice points in the gap between colloids

(see Figure 2.4). This makes an inevitable error in the short-range ordering, detectable

in g(r) and equilibrium energies, even though this effect is ignorable for the long-time

Brownian motion and the static structure factor. To reduce this error, a fairly repulsive

short-range potential is used, with the parameters γ = kBT , h0 = 1.0 and hc = 1.2 in

equation (2.69), to prevent loss of lattice points. More detail of the parameter steering

will be shown in the following.

Short-range potential

For accurate simulations, we searched for the optimal parameters for short-range

potential using the comparison with g(r) in equilibrium. Figure 4.1 shows three sets of

the short-range parameters examined to find the most effective parameters. Most test

runs ignore the long-range interactions which means λ = 0; only the particle fraction

φ = 0.10 is considered, in Λ3 = 643. The steepest curve, SP1, is the parameter set

used to simulate colloids or magnetic colloids in a binary fluid in Chapters 3 and 5.

However, in Figure 4.2(a), the curves of g(r) obtained by LB and BD show significant

discrepancy for distances r/(2a) < 1.5. The equilibrium energy, U sc/NkBT , also

shows a discrepancy between 0.0098 (LB) and 0.0113 (BD). In the case with long-

rang dipolar interactions, e.g. λ = 4, the energies in LB do not agree with those in
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Figure 4.1: Short-range potentials U sc(hij): (Black solid line) “SP1” has γ = 10kBT ,
h0 = 0.15, ν = 1.0 and hc = 0.25; (red dotted line) “SP2” has γ = kBT , h0 = 1.0,
ν = 1.0 and hc = 1.2; (green dashed line) “SP3” has γ = kBT , h0 = 1.4, ν = 1.0 and
hc = 2.0.

BD: for Ud/NkBT , we find values −4.214 (LB) and −3.788 (BD); for U sc/NkBT , 0.062

(LB) and 0.060 (BD).

Figure 4.2(b) shows the data of g(r) in LB and BD runs with the parameter set

SP3. Both have good agreement for all range of distance r/2a. However, the particle

repulsion is now quite “soft”. The middle curve ‘SP2’ in Figure 4.1 is also examined as

a candidate for a better compromise between efficiency and approximately hard-core

behaviour. This set ‘SP2’ is proved quite acceptable and is actually chosen below for all

simulations to study colloidal ferrofluids. In Section 4.2, the static structure properties

will be presented for runs by LB, BD and MC: Figures 4.4-4.6 will show the radial

distribution functions; the equilibrium energies will be seen at Table 4.1. In each case,

agreement between the methods is satisfactory. Thus parameter set ‘SP2’ is an accurate

and efficient choice to set up the generic model for ferrofluids used in this work.

To model specific ferrofluids numerically, the short-range potential is determined

by the type of ferrofluid. For instance, in contrast to ferrofluids consisting of magnetic

colloids made by magnetite(Fe3O4) in hydrocarbons, the charge-stabilised ferrofluids,

using magnetic colloids produced by an iron-core plus organic acid shell[46, 47, 105],

have a screened Coulomb interaction. For modelling such ferrofluids, a Yukawa repulsive

potential should use alongside the long-range dipolar interactions and the effect of this

soft repulsive short-range potential cannot be ignorable[100, 101]. However, in this

chapter, the main interest is the process of chain formations so that we choose the

rather simple short-range potential SP2 as our generic model. In comparison with the

Yukawa repulsive potential, the short-range potential SP2 is closer to a hard sphere
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Figure 4.2: Radial distribution function g(r) for λ = 0: (black) BD and (red) LB. Inset
in Figure 4.2(a) is the zoom-in figure of g(r).

potential even in the case of fairly strong repulsive interaction.

Long-range potential

The long-range interaction, Ud(rij , ŝi, ŝj) in equation (2.76), can be rewritten in terms

of the dipolar coupling constant λ as

Ud(rij , ŝi, ŝj) = 8λkBTa
3

[

(̂si · ŝj) − 3(̂si · r̂ij)(̂sj · r̂ij)

r3ij

]

. (4.2)

Using equation (4.2), the simple configurations for two dipoles can be classified

according to dipolar energies: the lowest energy is Ud = −2λkBT when two dipoles

are aligned parallel at a separation 2a, in the “nose-to-tail” structure. The second

lowest energy structure is the “side-by-side”, arrangement of antiparallel dipoles,

perpendicular to r, which has Ud = −λkBT . A positive dipolar energy is deduced

as Ud = λkBT for “side-by-side” parallel dipoles.

Figure 4.3 shows the total interaction potentials for λ = 0, 4 and 8 in both the

nose-to-tail state and the side-by-side parallel state of two dipoles. Despite the fairly

repulsive short-range potential “SP2”, the characteristics of a dipole-dipole interaction

among hard-core particles is still found in this model for ferrofluids. In this chapter, we

only consider three values for the dipolar coupling constant as λ = 0, 4 and 8. Values

of λ up to ≃ 4 are easily available in experiments, whereas higher values are possible

but unusual to study numerically and experimentally[5, 7]. (The critical point between

rings or chains and networks is at around λ = 6 and the volume fraction 5% ∼ 6% for

hard-sphere magnetic particles. Values 4 < λ < 6 are dynamically significant to make
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Figure 4.3: Total interaction potential Uij . Green lines are for λ = 8: (green dash-dot-
dotted line) side-by-side parallel; (green dash-dotted line) nose-to-tail. Red lines are
for λ = 4: (red dashed line) side-by-side; (red dotted line) nose-to-tail. Black solid line
is for λ = 0. The selected short range interaction in SP2.

these aggregated structures[5, 7].)

In numerical practice, a periodic box is used to simulate the colloidal ferrofluids

using the Ewald summation to calculate the long-range dipolar interaction, as shown

in Section 2.4.3. In LB and BD simulations, the parameters for Ewald summation

are given as rc = 16 and α = 0.15625. From the given α and rc, the wavevectors for

the Fourier part of Ewald summation are obtained from k = (2π/Λ)(nx, ny, nz) with

nx, ny, nz ≤ 8 and nx, ny, nz ≤ 16 for Λ3 = 643 and 1283 respectively. The Ewald

summation boundary condition at infinity was chosen to be “conducting”, representing

an infinite dipolar susceptibility of the surroundings[74, 77]. To generate the equilibrium

structures in accordance with Boltzmann statistics, the canonical (NVT) Monte Carlo

simulations[19, 103] were performed in the cubic box with periodic boundary conditions.

The long-range dipolar interaction is again handled by the Ewald summation with

conducting boundary condition, the convergence parameter αΛ = 5.6 and wavevectors

k = (2π/Λ)(nx, ny, nz) with nx, ny, nz ≤ 6. For the static properties in equilibrium,

the MC runs were performed from t = 2 × 105 MC cycles to t = 5 × 105 MC cycles.

4.1.2 Computational resource

The LB and BD simulations have been done on a cluster of 3GHz Intel Dual-core

processors[106]. For a large system Λ3 = 1283 at a volume fraction φ = 0.10, a single

run by LB up to ∼ 106 time steps required 56 hours on 64 cores, while a single run

by BD required 112 hours on 8 cores of the same cluster machine. For a system size

Λ = 643 at φ = 0.10, a single run by LB up to ∼ 106 time steps needed 38 hours on
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8 cores of a same cluster and a run by BD required 19 hours on a single core process.

Thus, to generate the data on fully equilibrium samples, a small system Λ3 = 643 is

used to run for t ≥ 2 − 3 × 106 ≃ 25τD at λ = 8.0. To obtain good statistics on the

transient dynamics, a large system of Λ3 = 1283 was used.

4.2 Static structure in equilibrium

This section presents the equilibrium static properties of LB, BD and MC, in each

case for λ = 0.0, 4.0 and 8.0 with the particle volume fraction φ = 0.10. These

properties for magnetic colloids are quantified by four radial distribution functions

and the dimensionless energies of short-range interaction and long-range interaction.

As a result, we confirm that the data from LB and BD have good agreements with

the data generated by MC. This provides an important check to see that our LB

algorithm generates the Boltzmann distribution for thermal equilibrium properties,

even if a careful treatment to choose the parameters for the short-range potential is

demanded to reduce the discretisation error for the noise. (As stated previously, all

these results use the parameter set SP2.)

4.2.1 Equilibrium energy

Table 4.1 shows the data for time-averaged energy in equilibrium resulting from various

simulation runs. The data from LB and BD in Λ3 = 643 are averaged after full

equilibration, t > 30τD. For λ = 0 and λ = 4, LB and the other methods have

remarkably good agreement and the energy data for λ = 8 are also in quantitatively

good agreement with errors less than 5%. Systems with the volume fraction φ = 0.20

are simulated in a larger volume, Λ3 = 1283. These have run until ∼ 7τD and the

energy data in Table 4.1 are averaged over the time window from 6τD to 7τD. The

corresponding energy curves against time are presented below in Figure 4.14. However,

within the simulation time window used when Λ3 = 1283, the curves for energies are

still undergoing slow relaxation to make aggregated clusters as shown in section 4.5.

Thus, these discrepancies of energies at φ = 0.20 represent the systematic error from

incomplete equilibration, and do not test the accuracy of our LB algorithm.

4.2.2 Radial distribution functions

Figures 4.4(a), 4.5 and 4.6 show the radial distribution function g(r) and the projections

of the dipolar pair distribution functions onto rotational invariants[107], which are

measured in the various simulation runs. These measurements are obtained only for
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Table 4.1: Equilibrium energy data for LB, BD and MC runs. The quoted statistical
errors are estimated on the basis of a standard deviation. The system volumes are
reported in lattice units for LB and BD runs, while the MC volumes are reported in
units of the hard-core radius a (equal to 2.3 in LU).

λ φ N V Method Ud/NkBT U sc/NkBT

0 0.10 529 643 LB - 0.08671 ± 0.00028
0 0.10 529 643 BD - 0.0870 ± 0.0004
0 0.10 529 22156a3 MC - 0.08757 ± 0.0001

4 0.10 529 643 LB −2.929 ± 0.003 0.2923 ± 0.0006
4 0.10 529 643 BD −2.964 ± 0.002 0.2935 ± 0.0006
4 0.10 529 22156a3 MC −2.8830 ± 0.0008 0.2850 ± 0.0002

8 0.10 529 643 LB −11.811 ± 0.002 1.1692 ± 0.0007
8 0.10 529 643 BD −11.609 ± 0.002 1.1253 ± 0.0007
8 0.10 529 22156a3 MC −11.565 ± 0.003 1.1196 ± 0.0006

4 0.20 8239 1283 LB −3.966 ± 0.001 0.5140 ± 0.0004
4 0.20 8239 1283 BD −3.902 ± 0.001 0.4970 ± 0.0006
4 0.20 529 11079a3 MC −4.1895 ± 0.0008 0.4534 ± 0.0002

8 0.20 8239 1283 LB −11.833 ± 0.003 1.233 ± 0.001
8 0.20 8239 1283 BD −11.646 ± 0.003 1.188 ± 0.002
8 0.20 529 11079a3 MC −11.677 ± 0.003 1.1925 ± 0.0006

φ = 0.10 in Λ3 = 643, since full equilibrium is not achieved in the runs in a larger

system (Λ3 = 1283) as reported in Table 4.1.

The radial distribution functions (RDFs)[10, 102] are given as

g(r) =
Λ3

N22πr2

〈

∑

i<j

δ(r − rij)

〉

, (4.3)

h110(r) =
3Λ3

N22πr2

〈

∑

i<j

δ(r − rij)(ŝi · ŝj)

〉

, (4.4)

h112(r) =
2

3

Λ3

N22πr2

〈

∑

i<j

δ(r − rij)[3(ŝi · r̂ij)(ŝj · r̂ij) − (ŝi · ŝj)]

〉

, (4.5)

h220(r) =
5

2

Λ3

N22πr2

〈

∑

i<j

δ(r − rij)[3(ŝi · ŝj)
2 − 1]

〉

. (4.6)

Figure 4.4(a) shows g(r) for λ = 0 in LB, BD and MC; the other three RDFs are not

presented, but show fluctuating curves near zero. That means there is no orientational

ordering of dipoles. The g(r) in real space corresponds to the structure factor S(q) in

Fourier space. To see the detailed short-range ordering, the g(r) is more precise than

S(q). On the other hand, S(q) is more suitable to see any long-range ordering, because

a wavevector q is reciprocal to a distance r in real space. In the test run with SP1 as
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Figure 4.4: (a) Radial distribution function at λ = 0.0. Black open circle is BD, red
open square is LB and green open diamond is MC. (b) Static structure factors in LB
with SP1 (black circle) and SP2 (red square), and MC (green line).

the short-range potential, we found that the static structure factors do not show any

discrepancy (Figure 4.4(b)) despite these being visible in g(r) (Figure 4.2(a)).

In Figure 4.5, the RDFs for λ = 4 also show adequate agreement between all

methods, even if LB and BD have slight discrepancies from the the MC data at the

position of the nearest neighbour. However, for λ = 8.0, a clear discrepancy between

LB and other two methods is seen in Figure 4.6. It is about 10% at the first peak in

all the RDFs. This error is consistent with the energy discrepancies in Table 4.1; it

could be also explained by the discrepancy of noise error for close particles with strong

interaction forces in λ = 8. Bearing in mind the other sources of error in LB[82], this

error is considered acceptable, though only just.

Generally, the RDFs present the spatial orderings of particles in real space r

reflecting the total energy of a certain configuration with given interaction potentials.

For λ = 0, it shows the short-range ordering corresponding to the short-range potential.

At a fixed φ, increasing λ generates the higher short-range ordering throughout the plots

of RDFs shown in Figures 4.5 and 4.6; the data of g(r) show that more short-range

ordering is obtained at λ = 8.0.

Contrary to a simple aggregation for drops of particles simulated with Lennard-

Jones potential or Stockmayer potential[19], dipolar colloids combine to form chainlike

structures based on nose-to-tail. These structures are quantified by the other three

RDFs which include factors that describe orientational ordering. The RDF h110(r)

helps to recognise the parallel or anti-parallel alignment between the pairs of dipoles,

as it depends on the angle between two dipoles in equation (4.4). The RDF h112(r)
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Figure 4.5: Radial Distribution functions: g(r), h110(r), h112(r) and h220(r), for λ = 4.0
and φ = 0.10. Black open circle is BD, red open square is LB and green open diamond
is MC.
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(a) λ = 4 (b) λ = 8

Figure 4.7: Snapshots from LB simulations of N = 529 colloids at a volume fraction
φ = 0.10. Each particle is colour-coded to reflect the total number of particles in the
cluster to which it belongs: (dark blue) monomers; (light blue) dimers; (green) trimers;
(yellow) tetramers; (red) clusters with 5 or more particles. The quantitative criterion
used to define clusters in given in Section 4.4.2.

is proportional to the dipolar potential energy at a distance r with the factor giving

decay as 1/r3 omitted. The RDF h220(r) quantifies the extent of nematic ordering. As

a signature of structures of the nose-to-tail chains, the RDFs contain positive peaks at

the inter-particle distances ∼ 2a × n, where n = 1, 2, ... For confirmation of the chain

structures, Figure 4.7 presents the two snapshots in equilibrium from LB simulations

for λ = 4 and 8. The colours are classified by the number of particles in the cluster

from monomer to 2-5 particles; those show clear chain structures.

4.2.3 Orientational order parameters

Any macroscopic alignment, caused by the long-range dipolar interactions, can be

quantified by the orientational order parameters: the nematic order parameter N2

and the polarisation P . Usually at higher volume fractions (∼ 50%) above λ ∼ 2.5,

there is a phase transition[7] from isotropic phase to a polar nematic phase, the so-

called ferromagnetic state. We will show the data for orientational ordering in a bulk

system within the given conditions of φ up to 0.20 and λ up to 8.

The N2 and P are defined by the second-rank order tensor, Q,[108] which is given

as

Q =
1

2N

N
∑

i=1

(3ŝiŝi − I) (4.7)
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where I is the second-rank unit tensor and ŝi is the dipolar unit vector of a

particle i. The diagonalisation of the tensor Q produces three eigenvalues and three

eigenvectors. The highest eigenvalue is the second-rank order parameter (or nematic

order parameter), N2, and the corresponding normalised eigenvector is the director

n̂[109]. For oriented states, e.g. ferro or antiferro phases aligned perfectly, the nematic

order parameter N2 is unity; on the other hand, it is zero for an isotropic phase.

Using n̂, the polarisation P can be calculated as

P =

∣

∣

∣

∣

∣

1

N

N
∑

i=1

ŝi · n̂
∣

∣

∣

∣

∣

. (4.8)

The polarisation P distinguishes a ferro-phase from an antiferro phase or an isotropic

phase[110]. In the case with N2 ∼ 1, P could signify either ferro (+1) or antiferro (−1)

orders.

Table 4.2 shows the nematic order parameter N2 and the polarisation P in various

simulation runs. For the parameters given with λ up to 8 and φ = 0.10, all data

appear to describe isotropic phases. However, the data from MC for φ = 0.20 have big

discrepancy with the data from LB and BD simulations. This can be explained by finite

size effect due to the small number of particles in these MC simulations. In contrast

to LB and BD simulations, which use a fixed system box Λ3, we use the fixed number

of particles, N = 529, to simulate MC runs. (These control the particle fraction by

reducing the system volume Λ3.) The orientational order parameter N2 obtained from

Q in equation (4.7) show a strong N -dependency, which is expected to vary as ∼ 1/
√
N

in an isotropic phase[110]. As shown in the table, this scaling is obeyed for N2, but

with worse agreement for P .

4.3 Dynamic correlators in equilibrium

This section will discuss the collective relaxation of dipoles in space and time in

equilibrium. In the last section, we monitored the ordering into chains on varying

λ through the radial distribution functions and the snapshots. This section will discuss

how the dipoles that form clusters relax translationally and rotationally in equilibrium.

Those relaxations are quantified by the dynamic correlators via intermediate scattering

functions, S(q, t) and F (q, t), that dynamic light scattering enables to measure in

experiments. Here, we only investigate dynamic correlators for λ = 0, 4 and 8 with

φ = 0.10 in Λ3 = 643.

In addition, the effect of hydrodynamic interactions is investigated by comparing

the data for dynamic correlators from LB and BD runs; this hydrodynamic effect is
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Table 4.2: Orientational order parameters, N2 and P . The quoted statistical errors
are estimated on the basis of a standard deviation.
λ φ N V Method N2 P N2† P †

0 0.10 529 643 LB 0.0361 ± 0.0002 0.0198± 0.0003 0.8303 0.4554
0 0.10 529 643 BD 0.0352 ± 0.0002 0.0120± 0.0002 0.8096 0.276
0 0.10 529 22156a3 MC 0.03514± 0.00008 0.0208± 0.0001 0.8082 0.4784
4 0.10 529 643 LB 0.0375 ± 0.0003 0.0376± 0.0004 0.8625 0.8648
4 0.10 529 643 BD 0.0403 ± 0.0003 0.0424± 0.0006 0.9269 0.9752
4 0.10 529 22156a3 MC 0.0379 ± 0.0001 0.0333± 0.0003 0.8717 0.7659
8 0.10 529 643 LB 0.0463 ± 0.0002 0.0164± 0.0002 1.0649 0.3772
8 0.10 529 643 BD 0.0558 ± 0.0003 0.0348± 0.0004 1.2834 0.8004
8 0.10 529 22156a3 MC 0.0559 ± 0.0006 0.055± 0.002 1.2857 1.2650
4 0.20 8239 1283 LB 0.0115 ± 0.0003 0.0078± 0.0003 1.0438 0.7080
4 0.20 8239 1283 BD 0.0091 ± 0.0002 0.0063± 0.0003 0.8260 0.5718
4 0.20 529 11079a3 MC 0.0402 ± 0.0001 0.0426± 0.0006 0.9246 0.9798
8 0.20 8239 1283 LB 0.0184 ± 0.0001 0.0185± 0.0004 1.6702 1.6792
8 0.20 8239 1283 BD 0.0164 ± 0.0002 0.0104± 0.0006 1.4886 0.9440
8 0.20 529 11079a3 MC 0.0564 ± 0.0007 0.083± 0.002 1.2972 1.909

† notes the data, multiplied by
√
N .

clearly found for short-time Brownian motions. We present the short-time diffusion

coefficients as a function of wavevector q, and also the static structure factors, in LB

and BD simulations. Combining these, a non-unity hydrodynamic factor (H(q)) is

obtained in the results from LB. That will be discussed in Section 4.3.3.

To improve the statistics of our data, overlapped sampling[76] is used to average

correlators, which are measured at different initial times, and the final averaged

correlators at each q are obtained by the summation of each intermediate scattering

function over the same magnitude q = |q|.

4.3.1 Translational intermediate scattering function, S(q, t)

The function S(q, t) presents the density fluctuation in Fourier space q[111, 112], defined

as

S(q, t) =
1

N
〈ρ(q, t)ρ(−q, 0)〉, (4.9)

where ρ(q, t) is the time-dependent density in Fourier space, calculated by Fourier

transform of the density in real space, ρ(r, t):

ρ(q, t) =

∫

ρ(r, t) exp[−iq · r]dr =
N
∑

j

exp[−iq · rj(t)]. (4.10)

(The real space density is ρ(r, t) =
∑N

i=1 δ(r − ri(t)), where ri(t) is the position of a

particle i.) Therefore, as considering the real part in S(q, t), equation (4.9) is rewritten
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as

S(q, t) =
1

N
〈

N
∑

j

exp[−iq · rj(t)]
N
∑

l

exp[iq · rl(0)]〉 (4.11)

=
1

N
〈[

N
∑

j

cos(q · rj(t))
N
∑

l

cos(q · rl(0)) +
N
∑

j

sin(q · rj(t))
N
∑

l

sin(q · rl(0))]〉.

(4.12)

Here, the wavevector q is given as 2π
Λ (x, y, z), where Λ is the one-dimensional length of

a cubic box and x, y, and z are integers for −Λ ≤ x, y ≤ Λ, and 0 ≤ z ≤ Λ. At t = 0 in

equation (4.12), S(q, 0) is the static structure factor S(q). The t-dependent relaxations

of S(q, t) can represent the stochastic dynamics of sinusoidal density fluctuations as a

function of the wavelength 2π/q which can distinguish the dynamics in terms of a

characteristic length d chosen as a diameter of particle. For 2π/q ≪ d, S(q, t) can show

the collective diffusion motion. At 2π/q ≈ d, the structural relaxation of the particle in

the environment formed by neighbouring particles can be observed. For 2π/q ≫ d, the

simple self diffusion of individual particles can be seen in S(q, t). These q-dependent

characteristics can be also interpreted for the rotational relaxation function, F (q, t).

In this chapter, we consider three different wavevectors to be plotted for dynamic

correlators to see how dipoles belonging to chains are relaxed in equilibrium: one close

to the peak (q = q∗ ≈ 2π/d), one larger and one smaller. (The q∗ corresponding to the

interparticle distance is mainly considered for the dynamic correlators. Additionally,

for transient motions on the way to equilibrium, the dynamic correlators at q∗ can show

the relaxation and the aggregation of dipoles simultaneously; Section 4.5 will discuss

this in detail.)

Figure 4.8 shows S(q, t) for λ = 0, 4 and 8 at φ = 0.10. In comparison with the

S(q, t) found by BD in all ranges for λ, hydrodynamic interactions delay the relaxation

of S(q, t) especially on early time scales. This effect is larger at smaller q and at

smaller λ. The long-time relaxations are not far from exponential decays in all cases;

besides, there is no sign of the decay into α and β relaxations as found in colloidal

systems on approach to a glass transition[104] in Figure 4.8(d). However, at higher

λ in Figures 4.8(c) and 4.8(d), the effect of hydrodynamic interactions is reduced at

smaller q, because the energetic arrangement for colloidal aggregations controls the

structural relaxation.
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Figure 4.8: Translational intermediate scattering functions with λ = 0, 4.0 and 8.0.
Solid lines are BD runs and dash lines are LB runs. Black is qa = 1.1514, green is
qa = 4.0456. Red is q∗a at the peak of S(q, 0): (a) q∗a = 2.6139 at λ = 0, (b)
q∗a = 3.0712 at λ = 4.0, (c) and (d) q∗a = 3.2409 at λ = 8.0.
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Figure 4.9: Orientational Relaxations in longitudinal (FL) and transverse (FT )
correlation functions, φ = 0.10 and (a) λ = 0, (b) λ = 4, and (c) λ = 8. In (a),
(b), and (c), black lines are BD and green lines are LB: (solid lines) FL; (dotted lines)
FT . In (d), solid lines are BD and dashed lines are LB: (black lines - upper) qa = 1.1514;
(red lines - middle) qa = 3.2409; (green lines - lower) qa = 4.0456.
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4.3.2 Rotational intermediate scattering functions, F (q, t)

The F (q, t) can characterise the orientational relaxation of dipoles to form chain

clusters at a wavevector q. In the similar manner to density relaxation shown in

the previous section, F (q, t) is derived from a wavevector-dependent dipole density,

M(q, t) =
∑N

j=1 ŝj exp[−iq.rj(t)] which can be divided into two components[113]:

the longitudinal component and the transverse component as ML = M.q̂q̂ and

MT = M − ML. Therefore, the three dynamic correlators of interest are given as

F (q, t) = N−1〈M(q, t) ·M(−q, 0)〉 (4.13)

FL(q, t) = N−1〈ML(q, t) ·ML(−q, 0)〉 (4.14)

FT (q, t) = N−1〈MT (q, t) ·MT (−q, 0)〉, (4.15)

where the F (q, t) is the sum of FL(q, t) and FT (q, t), which are the longitudinal

correlator and the transverse correlator respectively.

Figures 4.9(a)-4.9(c) show the orientational relaxations for λ = 0, 4 and 8 at q =

q∗. The curves generally behave like S(q, t) as an exponential decay with a long-time

behaviour of F (q, t) ∼ exp[−Dr(q)q
2t], where Dr(q) is a rotational diffusion coefficient

at wavevector q. The F (q, t) found by LB runs relax more slowly than one by BD.

At lower q, F (q, t) relaxes slower. However, in contrast to the density ρ, M is not

a conserved quantity so that this is not compelled to relax slowly for small q. The

relaxation of M for small q suggests the slower collective rearrangement for particles

that are frozen in chains. In addition, Figures 4.9(a)-4.9(c) show that the dipoles in

a cluster relax more slowly on increasing the strength of dipolar interaction. (That is

caused by the strong bonded dipoles inside of chains for high λ.) It is obvious that

colloids in a long chain take a longer time to rotate through angle π. In both LB

and BD at λ = 4 and 8, the longitudinal relaxations are slower than transverse ones.

This could be explained by the slow rotational diffusion of chains with respect to the

wavevector q. Slow longitudinal relaxations means that the relaxation of chains is faster

along perpendicular direction to local chain orientation.

4.3.3 Short-time diffusion

For a diffusive motion of colloids, the S(q, t) decays exponentially so that the (collective)

short-time diffusion coefficient can be obtained as

Ds(q) = − 1

q2

[

d lnS(q, t)

dt

]

s
(4.16)
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where [· · ·]s is the time scale window in which particles move diffusively before colliding

with their neighbours. For a single particle, the short-time diffusive motion is found

within the time scale τη, τv ≪ t. Figure 4.10 shows the exponential decay of S(q∗, t) at

short times at φ = 0.10 with all three λ values, found by LB and BD runs. In the curves

found by LB at the earliest times, non-exponential decays appear, but curves recover

the diffusive behaviours after several relaxation times of colloid momentum and fluid

viscosity. The onset of the short-time diffusive motion is delayed, yet it is ended as soon

as particles collide, so that the short-time diffusive regime shortens upon increasing λ.

Meanwhile, the S(q∗, t) of BD runs does not have any non-diffusive behaviour during

the pre-Brownian time scale, because there is no pre-Brownian timescale (beyond the

basic time step of the algorithm).

In practice, the Ds(q,N) is estimated by fitting a slope in the log-linear plot within

a fixed time window which is identified by eye. The final data in Figures 4.11-4.13 were

binned every ten wavevectors. Here, the statistical error are measured for the binned

data. The Ds(q) is related with the hydrodynamic factor H(q)[104] as

Ds(q)S(q) = D0H(q). (4.17)

Here, D0 is a single particle diffusion coefficient and S(q) is the static structure factor.

The hydrodynamic factor H(q) is always unity for all q in the absence of hydrodynamic

interactions. In the study of hard-sphere colloids, H(q) shows dependency on the

wavevector q; Segre et al.[114] found 0.2 ≤ H(q) ≤ 0.6 at φ ≃ 0.30 whereas H(q∗) ≃ 0.8

for φ ≃ 0.10.

In LB simulations, the diffusion coefficient, Ds(q), is known to have a strong finite

size effect in periodic systems. For the case of hard spheres (λ = 0) for thermodynamic

limit, it can be rectified by selecting the correction term[114, 115]:

Ds(q)

D0
=
Ds(q,N)

D0
+

(

η∞
η

)

[

1.7601

(

φ

N

)1/3

− φ

N

]

, (4.18)

with particle number N = φΛ3/v0 at a fixed φ and a volume of spherical particle,

v0 = 4
3πa

3. Here η∞ is the high-frequency viscosity with suspended particles present,

and η is the solvent viscosity. For the evaluation of equation (4.18) in our ferrofluids

model, the recipe by Ladd[70, 71] is used to measure the high-frequency viscosities in

the fully equilibrated systems. Appendix B discusses the method to measure η∞ and

the results in detail. There, the ratio η∞/η is obtained to be 1.0532, 1.0717 and 1.1687

for λ = 0, 4 and 8 respectively at the particle volume fraction, φ = 0.10. However,

originally, this procedure to correct the finite-size effect was invented for hard-sphere

colloids. So, its validity for the magnetic system is uncertain. Thus we plot both
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Figure 4.10: Short time decay of ln[S(q, t)/S(q)] vs t for (a) λ = 0, (b) λ = 4, and (c)
λ = 8, showing the extent of the linear regime in each case. Solid lines are BD and
dash lines are LB.
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Ds(q,N) as actually measured and Ds(q) as calculated via equation (4.18).

Figures 4.11-4.13 show the plots of S(q), D0/Ds(q) and H(q) measured from the

translational dynamic correlators for λ = 0, 4 and 8. To check the correction effect in

equation (4.18), the uncorrected curves for D0/Ds(q,N) by LB are also presented. For

the data in BD, the actual calculations without any treatment are shown, because the

above correction method is only for the systems with hydrodynamics; remember that

our BD switches off hydrodynamic interactions. Since there is no similar method to

correct for the finite size effect arising from the long-range magnetic interactions, we

make no attempt to do such a correction. In the absence of hydrodynamic interactions,

H(q) = 1 is found as required for λ = 0. But, H(q) is less than unity at λ = 4 and 8,

possibly suggesting that such a correction is needed.

To check the accuracy of our simulations by LB and BD, the S(q) from MC is

shown with ones from BD and LB. The data for S(q) in LB, BD and MC have good

agreements. Density fluctuations at low q are enhanced by the formation of large

clusters[9]. Therefore, S(q) at low q increases consistently with λ. The H(q) in LB is

found in the range 0.6 − 0.8 for all three λ values. H(q) also show a rising tendency a

small wavevectors, q ≤ q∗/3, but this is so far unexplained.

4.4 Transient dynamics and cluster formations

This section discusses the transient process of cluster formations following a quench

from equilibrated configurations at λ = 0 to states with either λ = 4 or 8. The

particle volume fractions considered are φ = 0.03, 0.10 and 0.20 in Λ3 = 1283. The

aggregation of magnetic colloids can be monitored through the energy relaxation of

dipolar interactions and the cluster statistics. In this section, the data of both BD and

LB will be presented to see the effect of hydrodynamic interactions.

4.4.1 Transient energy

Figure 4.14 shows the relaxations of the dipolar interaction energy as a function of

time, after quenching from equilibrated configurations with λ = 0 at each particle

concentration. On increasing λ, the relaxation time to reach equilibrium is increased

by no more than a factor 2 in both BD and LB simulations. Compared with BD, LB

shows that the hydrodynamic interactions make the relaxations slower approaching to

equilibrium. Note that adding hydrodynamic interactions does not always slow down

relaxations. For instance, a binary fluid has the faster phase-separation route than pure

diffusion at intermediate and late times[25, 85, 86].
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Figure 4.11: Data for λ = 0 and φ = 0.10. Black open circle is BD and red open square
is LB. Green line is MC in (a). In (c), green is uncorrected Ds(q,N) and red is the
corrected Ds(q).
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Figure 4.12: Data for λ = 4 and φ = 0.10. Black open circle is BD and red open square
is LB. Green line is MC in (a). In (c), green is uncorrected Ds(q,N) and red is the
corrected Ds(q).
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Figure 4.13: Data for λ = 8 and φ = 0.10. Data for λ = 0.0 and φ = 0.10. Black
open circle is BD and red open square is LB. Green line is MC in (a). In (c), green is
uncorrected Ds(q,N) and red is the corrected Ds(q).
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Figure 4.14: Relaxation of the dipolar energy following a quench from λ = 0 to (a)
λ = 4; (b) λ = 8. Black lines are BD runs and orange lines are LB runs. Pair of BD/LB
curves correspond to the volume fraction of particles, φ = 0.03, 0.10 and 0.20, from top
to bottom.

4.4.2 Cluster statistics

We choose to define the clustering of magnetic colloids by a criterion involving a pair

dipolar energy, Ud, in equation (4.2). If Ud for a pair is less than a threshold energy Ud
C ,

the two dipoles are defined to belong the same cluster. In hard-sphere magnetic colloids,

some previous works[52, 116] have presented cluster distributions in equilibrium with

various energy thresholds, −1.7λ < Ud
C/kBT < −1.4λ whose range is approximately

in middle between the nose-to-tail state, −2.0λ, and the antiparallel side-by-side state,

−1.0λ.

In this thesis, the soft-core repulsive potential is used for short-range interactions; we

choose a threshold Ud
C determined by the geometry of dipoles based on the nose-to-tail,

such that the antiparallel side-by-side structure is rejected by our Ud
C/kBT = −0.75λ.

On this basis, we found the criterion for Ud as

Ud/kBT < −0.75λ. (4.19)

In numerical practice, the cluster algorithm[19] is used to determine the clusters

with the criterion in equation (4.19) replacing one based on the distance between two

particles.

Using equation (4.19), we classify our N particles into a set of disconnected clusters.

Figures 4.15-4.17 present the fraction Pn of particles, where the subscript n is the cluster

size. The time evolution of Pn provides the growth trend of clusters after quenching
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from the equilibrated state with λ = 0. First, the Pn is measured every t = 2000

time steps and then all data points in Figures 4.15-4.17 are binned every 25 points

for t < 200, 000 and every 50 points thereafter. This condition for binned data is the

optimal choice to resolve the peaks of P (n) in the data with λ = 8.

The Pn of BD are also shown in Figures 4.15-4.17 to compare with those of LB as a

check of the hydrodynamic effect in chain formation. Although the slow relaxations in

Pn observed in LB are similar to those of the dynamic correlators in Section 4.3.1 and

4.3.2, there is no remarkable difference between BD simulations and LB simulations.

For all λ and φ values, the monomer fraction P1 decays to reach a saturated value. For

λ = 4 with φ = 0.03, 0.10 and 0.2, Pn for n = 2, 3, 4 take roughly equal times to become

saturated. However, in the data for λ = 8, before P1 reaches the steady value, peaks

are found in the curves of P2, P3 and P4. That means that small clusters in the early

time are later assembled into large clusters. Note that λ = 8 has a large mean cluster

size as N̄p > 7 for all particle volume fractions, while λ = 4 has small mean cluster as

N̄p < 2. Meanwhile, in the 2 dimensional system by BD[97], a similar transient in the

self assembly of chain has been found at φ ≥ 0.20 and λ > 4.

Figure 4.18 shows the mean number of particles per cluster N̄p as a function of

time: N̄p = Nt
∑

c
Nc

, where Nc is the number of clusters with a size c and Nt is the total

number of particles. For φ = 0.10 with λ = 4 and 8, N̄p at late time is reflected in the

snapshots in Figure 4.7, although the small system box (Λ3 = 643) is used to simulate

these.

Throughout the energy relaxations and the cluster statistics, we could not find any

significant discrepancy of the results between BD runs and LB runs. On the other hand,

the hydrodynamic effect for cluster formation[117] has been studied in the colloidal

system with a Lennard-Jones potential for the short-range attraction in an athermal

fluid. That study concluded that hydrodynamic interaction makes the relaxation faster

and the clusters bigger. However, in our simulations, as considering long-range dipolar

interactions in a thermal fluid which influence the colloidal diffusive motion, a slower

relaxation rate only is found and there is no evidence for larger clusters in LB than the

ones in BD without hydrodynamic interaction.

4.5 Transient scattering functions

The last section discussed the time evolution of cluster statistics for magnetic colloids.

These cluster statistics provide evidence concerning the transient process from the

configuration equilibrated with λ = 0 to ones with λ 6= 0. Consistently, transient

behaviour could be expected to arise in dynamic correlators for various waiting times:

tw. This section will discuss the waiting-time dependency of transient scattering
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Figure 4.15: Relaxation of cluster probabilities Pn(t) following quenches from λ = 0 to
λ = 4 and 8 at φ = 0.03: (black circles) BD with λ = 4; (green squares) LB with λ = 4;
(blue circles) BD with λ = 8; (orange squares) LB with λ = 8.
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Figure 4.16: Relaxation of cluster probabilities Pn(t) following quenches from λ = 0 to
λ = 4 and 8 at φ = 0.10: (black circles) BD with λ = 4; (green squares) LB with λ = 4;
(blue circles) BD with λ = 8; (orange squares) LB with λ = 8.
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Figure 4.17: Relaxation of cluster probabilities Pn(t) following quenches from λ = 0 to
λ = 4 and 8 at φ = 0.20: (black circles) BD with λ = 4; (green squares) LB with λ = 4;
(blue circles) BD with λ = 8; (orange squares) LB with λ = 8.
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Figure 4.18: Time evolution of mean cluster size for (a) λ = 4.0 and (b) λ = 8.0 at
φ = 0.03, 0.10, 0.20. Black, red and blue are φ = 0.03, 0.10, 0.20 in BD. Green, orange,
and cyan are φ = 0.03, 0.10, 0.20 in LB. Inset of (b)

functions: structure factor, translational relaxation and rotational relaxation. To

observe the properties relevant for cluster assembly, the transient motions at the

wavevector q∗ ≈ 2π/d will be discussed. In contrast to previous sections, the LB data

only are presented. (We haven’t seen any important effect of hydrodynamic interactions

in transient dynamics.)

4.5.1 Structure factors

Figure 4.19 shows the transient structure factors S∆(q, tw) for various λ and φ. For

good statistics from the data with φ = 0.03 and 0.10, S∆(q, tw) is obtained by the

average over the static structure factors during a time interval ∆t between a initial

time tw and a final time tf = tw + ∆t:

S∆(q, tw) =
1

∆t

∫ tf

tw
S(q, t)dt. (4.20)

However, for the particle concentration φ = 0.20, the large number of colloids

(N = 8239) causes good statistics for the measurements of S∆(q, tw), so that just one

configuration at tw is used to calculate S∆(q, tw). The function S∆(q, tw) quantifies

the spatial ordering for colloids at different “waiting” times, including the long-range

structures.

In Figures 4.19(a)-4.19(d), strong transient behaviours are observed in the data

for λ = 4.0 and 8.0 with φ = 0.03, 0.10. However, for φ = 0.20 in Figures 4.19(e)

and 4.19(f), relatively weak transient behaviours are seen in comparison to those for
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φ = 0.03 and 0.10. For λ = 4 with φ = 0.20 in Figure 4.19(e), the peak near q∗ is

more narrow at the late waiting time and the curves for qa < 2 are slightly raised. At

fixed λ = 4, despite increasing the particle volume fraction, the mean cluster size is less

than 2. As concerning the high volume fraction effect on the static structure factor at

φ = 0.20 with λ = 0, the mean cluster size N̄p ∼ 1.8 in the equilibrated configuration

with λ = 4 is not crucial in terms of the positional structure of particles. In comparison

with the small mean size at λ = 4, λ = 8 has large clusters so that S∆(q, tw) for qa < 2

have a rising trend and the peak q∗ is more narrow at late waiting times.

4.5.2 Translational relaxation

In contrast to pure hard-sphere diffusive particles at similar volume fraction (0.03 <

φ < 0.20), magnetic colloids travel for only short distance before colliding with

nearby particles in the same chain. That leads to a smaller diffusion coefficient and

slower relaxations at a fixed q. Section 4.3.1 discussed the equilibrium dynamics

through the translational intermediate scattering function (TISF) which shows the

time-independency explained in equilibrium.

In the transient dynamics, we examine the waiting-time dependency of the TISF,

S(q, tw, t), which is rewritten from equation (4.11) as

S(q, tw, t) =
1

N

∑

i,j

exp[−iq{rj(tw + t) − ri(tw)}], (4.21)

where, ri(tw) is a position of particle i at the initial time tw.

Figure 4.20 presents the transient TISF, S(q∗, tw, t), where q∗ is chosen as the

highest peak of transient structure factors at late tw in Figure 4.19. Although strong

structural changes are observed at φ = 0.03 and 0.10 for λ = 4 in Figures 4.19(a) and

4.19(c), the two-time relaxation curves in Figures 4.20(a) and 4.20(c) do not have any

strong waiting-time dependency. For λ = 8, the curves at φ = 0.10 show stronger

transient behaviour than those at φ = 0.03.

In Figures 4.20(e) and 4.20(f), more clear transient effects are found at high particle

fraction φ = 0.20 whose structure factors change relatively weakly (as seen in Figures

4.19(e) and 4.19(f)). At late tw, the relaxations are slower; on approaching the

equilibrium states corresponding to λ = 4 and λ = 8, the observed transient behaviour

is getting weaker and finally the transient scattering functions are no longer dependent

on tw in equilibrium. Therefore, overlapped curves are seen at tw = 200, 000 and

400, 000. At these late times, more-or-less saturated curves are found in the energy

relaxations as seen in Figure 4.14.

These time-dependent relaxations can be explained by the process for cluster
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Figure 4.19: Transient structure factors at various tw. (a) λ = 4 with φ = 0.03: (black)
tw = 0; (red) tw = 90, 000; (green) tw = 400, 000; (blue) tw = 800, 000. (b) λ = 8
with φ = 0.03: (black) tw = 0; (red) tw = 90, 000; (green) tw = 200, 000; (blue)
tw = 400, 000; (orange) tw = 600, 000; (purple) tw = 800, 000. (c) λ = 4 with φ = 0.10:
(black) tw = 0; (red) tw = 10, 000; (green) tw = 80, 000; (blue) tw = 200, 000. (d)
λ = 8 with φ = 0.10: (black) tw = 0; (red) tw = 4, 000; (green) tw = 30, 000; (blue)
tw = 70, 000; (orange) tw = 170, 000; (purple) tw = 300, 000; (magenta) tw = 500, 000.
(e) λ = 4 with φ = 0.20: (black) tw = 0; (red) tw = 10, 000; (green) tw = 80, 000; (blue)
tw = 200, 000; (magenta) tw = 400, 000. (f) λ = 8 with φ = 0.20: (black) tw = 0; (red)
tw = 10, 000; (green) tw = 80, 000; (blue) tw = 200, 000; (orange) tw = 400, 000.
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formations and the resulting cage effect. For λ = 4 with φ = 0.03 and 0.10, only small

clusters are formed as N̄p < 2 in equilibrium. That means the cage effect is rather weak

during transient motion; so on length scales near the structure factor peak magnetic

colloids still move like pure diffusive particles. Therefore strong transient behaviours

are not found in Figure 4.20(a) and 4.20(c). Similarly, for λ = 8.0, the strong transient

motions occur during the process of forming large clusters (as N̄p > 7). In addition,

with increasing φ for λ = 4 or 8, the transient relaxation function at fixed time t

increases monotonically.

4.5.3 Rotational relaxation

In a similar manner to translational correlators for transient dynamics, two-time

rotational correlators can be rewritten following equations (4.13)-(4.18) as

F (q, tw, t) =
1

N
〈M(q, tw + t)M(q, tw)〉

FL(q, tw, t) =
1

N
〈ML(q, tw + t)ML(q, tw)〉

FT (q, tw, t) =
1

N
〈MT (q, tw + t)MT (q, tw)〉 .

The total rotational correlator F (q, tw, t) is the sum of the longitudinal component,

FL(q, tw, t), and the transverse component, FT (q, tw, t).

Figure 4.21 presents F (q∗, tw, t) for various φ at λ = 4 and λ = 8. Even if general

characteristics for rotational relaxations are similar to ones for the translational mode

in Figure 4.20, more distinct transient behaviours are now seen at φ = 0.03 with λ = 8

and at φ = 0.10 with λ = 4.

Figures 4.22-4.27 show the two-time rotational correlators for the longitudinal

component and the transverse component at various tw; the relaxations of chain

orientation along a wavevector at q∗ are slower than ones of chain orientation transverse

to the wavevector. For λ = 4 with φ = 0.03 (which shows no transient in translational

and orientational relaxations) FL(q∗, tw, t) and FT (q∗, tw, t) have similar relaxation

rates, although, at tw = 800, 000, longitudinal relaxation is slightly slower after

t > 10, 000. Except for this case, the longitudinal relaxations are dominant in

orientational motions; at late waiting time tw, the gap between two relaxation rates is

getting wider.
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Figure 4.20: Transient relaxation on translational mode at various tw around q∗. (a)
qa = 3.1160 at λ = 4 with φ = 0.03: (black) tw = 0; (red) tw = 90, 000; (green)
tw = 400, 000; (blue) tw = 800, 000. (b) qa = 3.4047 at λ = 8 with φ = 0.03: (black)
tw = 0; (red) tw = 90, 000; (green) tw = 200, 000; (blue) tw = 400, 000; (orange)
tw = 600, 000; (purple) tw = 800, 000. (c) qa = 3.0579 at λ = 4 with φ = 0.10: (black)
tw = 0; (red) tw = 10, 000; (green) tw = 80, 000; (blue) tw = 200, 000. (d) qa = 3.3548
at λ = 8 with φ = 0.10: (black) tw = 0; (red) tw = 4, 000; (green) tw = 30, 000; (blue)
tw = 70, 000; (orange) tw = 170, 000; (purple) tw = 300, 000; (magenta) tw = 500, 000.
(e) qa = 3.0993 at λ = 4 with φ = 0.20: (black) tw = 0; (red) tw = 10, 000; (green)
tw = 80, 000; (blue) tw = 200, 000; (magenta) tw = 400, 000. (f) qa = 3.0993 at
λ = 8 with φ = 0.20: (black) tw = 0; (red) tw = 10, 000; (green) tw = 80, 000; (blue)
tw = 200, 000; (orange) tw = 400, 000. 91
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Figure 4.21: Transient relaxation on rotational mode at various tw around q∗. (a)
qa = 3.1160 at λ = 4 with φ = 0.03: (black) tw = 0; (red) tw = 90, 000; (green)
tw = 400, 000; (blue) tw = 800, 000. (b) qa = 3.4047 at λ = 8 with φ = 0.03: (black)
tw = 0; (red) tw = 90, 000; (green) tw = 200, 000; (blue) tw = 400, 000; (orange)
tw = 600, 000; (purple) tw = 800, 000. (c) qa = 3.0579 at λ = 4 with φ = 0.10: (black)
tw = 0; (red) tw = 10, 000; (green) tw = 80, 000; (blue) tw = 200, 000. (d) qa = 3.3548
at λ = 8 with φ = 0.10: (black) tw = 0; (red) tw = 4, 000; (green) tw = 30, 000; (blue)
tw = 70, 000; (orange) tw = 170, 000; (purple) tw = 300, 000; (magenta) tw = 500, 000.
(e) qa = 3.0993 at λ = 4 with φ = 0.20: (black) tw = 0; (red) tw = 10, 000; (green)
tw = 80, 000; (blue) tw = 200, 000; (magenta) tw = 400, 000. (f) qa = 3.0993 at
λ = 8 with φ = 0.20: (black) tw = 0; (red) tw = 10, 000; (green) tw = 80, 000; (blue)
tw = 200, 000; (orange) tw = 400, 000.
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Figure 4.22: Transient relaxation on rotational mode at various tw around q∗ at λ = 4
with φ = 0.03. (a) tw = 0. (b) tw = 90, 000. (c) tw = 400, 000. (d) tw = 800, 000.
Black line is longitudinal (F t

L) and green dash is transverse (F t
T ).
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Figure 4.23: Transient relaxation on rotational mode at various tw around q∗ at λ = 8
with φ = 0.03. (a) tw = 0. (b) tw = 90, 000. (c) tw = 400, 000. (d) tw = 800, 000.
Black line is longitudinal (F t

L) and green dash is transverse (F t
T ).
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Figure 4.24: Transient relaxation on rotational mode at various tw around q∗ at λ = 4
with φ = 0.10. (a) tw = 0. (b) tw = 10, 000. (c) tw = 80, 000. (d) tw = 200, 000. Black
line is longitudinal (F t

L) and green dash is transverse (F t
T ).
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Figure 4.25: Transient relaxation on rotational mode at various tw around q∗ at λ = 8
with φ = 0.10. (a) tw = 0. (b) tw = 4, 000. (c) tw = 70, 000. (d) tw = 500, 000. Black
line is longitudinal (F t

L) and green dash is transverse (F t
T ).
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Figure 4.26: Transient relaxation on rotational mode at various tw around q∗ at λ = 4
with φ = 0.20. (a) tw = 0. (b) tw = 80, 000. (c) tw = 200, 000. (d) tw = 400, 000.
Black line is longitudinal (F t

L) and green dash is transverse (F t
T ).
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Figure 4.27: Transient relaxation on rotational mode at various tw around q∗ at λ = 8
with φ = 0.20. (a) tw = 0. (b) tw = 80, 000. (c) tw = 200, 000. (d) tw = 400, 000.
Black line is longitudinal (F t

L) and green dash is transverse (F t
T ).
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4.6 Conclusions and discussions

This chapter discussed the simulations of colloidal ferrofluids via the LB method which

allows for full many-body hydrodynamic effects acting on magnetic colloids. To check

these hydrodynamic effects, BD simulations were also performed to compare with the

results of LB runs. Data from MC runs were introduced to compare with the data of BD

and LB for static structures in equilibrium. This chapter addressed the hydrodynamic

effects on equilibrium dynamics, especially for the short-time Brownian regime, and

on transient dynamics to form chain clusters. To ensure accurate simulations of

static structures in equilibrium, we used a soft-core repulsive potential for short-range

interactions to prevent the noise error that arises on close approach of particles in LB.

Static structures in equilibrium were measured by the radial distribution functions

and equilibrium energies. Regardless of hydrodynamic interactions, these measure-

ments have quantitatively good agreements with the Boltzmann statistics obtained by

MC runs. However, with the strong dipolar interaction at λ = 8, a discrepancy is found

at the first peak of radial distribution functions and for equilibrium energies presumably

because of the noise error for close particles.

In equilibrium dynamics, the translational and rotational intermediate scattering

functions were measured to see the wavevector-dependent relaxations. Here, it is found

that the hydrodynamic interactions delay the relaxations and this effect is larger at

smaller q and smaller λ. At high λ, we found the long-time relaxations are driven

by the dipolar interactions. For rotational intermediate scattering functions, slower

relaxations are observed for the longitudinal component on increasing λ. A clear

effect of hydrodynamic interactions is found on the short-time diffusion coefficients

in comparison with the BD data for which hydrodynamic interactions are absent. At

larger λ and φ, a stronger hydrodynamic effect is observed, but its effect on long-time

relaxation appears to be decreasing. In addition, although the full equilibration is

difficult to achieve even at φ = 0.20 and λ = 8, we found no evidence for a glass regime,

whose signature is the presence of separate α and β relaxations in S(q, t).

For transient dynamics during the process to form clusters, the size distribution of

clusters as a function of time confirms the character of the transient motions, as do

energy relaxations. These transient motions are also observed though the dependence

of the scattering functions on waiting times, which show time-dependent behaviour.

In comparison to BD simulations, LB simulations require more computational power

to achieve the same physical time scale. Also the treatment for the correct noise

in LB method still remains an issue particularly for λ = 8. In our simulations, a

fairly repulsive short-range potential minimises this noise error by preventing close

contact for particles. For hard-sphere colloids, very high hydrodynamic forces occur
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when particles exist in lubrication contact. However, the soft-core repulsion in our

simulations maintains the separation between particles, so that it is possible that these

lubrication effects would increase the relative role of hydrodynamic interactions. To

study this effect, an algorithm such as accelerated Stokesian Dynamics[23, 118] or

Stokesian Dynamics[22, 119] might be more suitable than LB. Throughout several

results in this chapter, we found the effect of hydrodynamic interaction is rather weak

in equilibrium and during transient dynamics. However, the hydrodynamic effects

could become more strongly noticeable in various nonequilibrium situations such as

the rheological response to steady and/or time-dependent shearing. Hopefully, these

will be studied in future work.
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Chapter 5

Magnetic Colloids in a Binary Fluid

This chapter will introduce a new class of emulsions, “magnetic colloids in a binary

fluid”, simulated by our LB method. Chapter 3 discussed the formation of arrested

fluids by colloids, which have no long-range interactions, using a broad range of analyses

in LB simulations. After a quench of the well-mixed fluids, fluids start to demix

and colloids become trapped at the fluid-fluid interfaces. As the coarsening dynamics

reduces the surface area between fluids, colloids become jammed at interfaces. Due to

these jammed colloids, slow dynamics was observed for domain growth; local hexagonal

packing or semi-crystalisation was seen for colloids at the interface. We also found

domain morphologies varying from bijel to droplets by controlling ψ0, the fraction of

fluids.

Simulations for this new emulsion are accomplished by the LB method used in

Chapter 3. Magnetic colloids are implemented using the long-range dipolar interactions

shown in Section 2.4.2. With regard to the long-range dipolar interactions, Chapter 4

addressed the basic properties for the effect of hydrodynamic interactions on magnetic

colloids in a single solvent through comparison with data from BD and MC. This

confirmed that our LB method is adequate to study colloidal systems with long-range

interactions. In the formation of chainlike structures in colloidal ferrofluids, the length

of chains is controlled by λ (the dipolar coupling constant) at fixed particle fraction φ.

Concerning the aggregated structure of magnetic colloids in a binary fluid under-

going spinodal decomposition, one can look forward to seeing nose-to-tail structure

among the interfacial colloids. Also we can expect an effect of external field on domain

morphologies and orientational ordering of dipoles.

On the other hand, there has been no exactly corresponding study in experiment.

However, Melle et al.[63] investigated the destabilisation of magnetic Pickering

emulsions under field gradient to find a critical field strength for the stability threshold

between emulsion droplets and their coalescence to form continuous fluid phases. In this

chapter, we will discuss the stability of a droplet under external fields (both uniform

field and gradient field). In terms of coarsening dynamics of fluids, colloids at the

fluid-fluid interfaces determine the fluid morphology. So after switching on dipolar

101



Chapter 5. Magnetic Colloids in a Binary Fluid

interactions and applying an external field to a stable droplet covered by randomly

orientated colloids, one expects dipoles to become arranged along the direction of the

external field; this could vary the droplet morphology.

In Section 5.1, simulation conditions will be briefly introduced, specifying the

parameter sets for magnetic colloids in a binary fluid. In next three sections, simulation

results will be discussed in detail; Section 5.2 will present the domain morphologies at

various conditions, e.g. symmetric and asymmetric quenches, different temperatures

to control the relaxation time and capillary energy, varying strength of dipoles, and

applying an uniform external field; Section 5.3 will discuss the domain growth; and in

Section 5.4, properties of magnetic colloids are quantified through the energy relaxation

and dipolar ordering. Finally Section 5.5 will discuss the effect of external fields on the

deformation of a droplet covered by magnetic colloids.

5.1 Simulation parameters

The simulation method used in this chapter consists of two parts. The first is the LB

framework for a binary fluid. The second treats the dynamics for magnetic colloids by

adding the terms of force and torque derived from the long-range dipolar interactions

in the update step for velocities of particles (as seen in Section 2.3.2.).

From the initial mixed fluids with composition ψ0 (the conserved mean order

parameter), a deep quench is given by using the parameter set, −A = B = 0.002,

in the free energy potential of equation (2.17). The last parameter in equation (2.17) is

given as κ = 0.0014, so that the interfacial width and the interfacial tension are obtained

as ξ = 1.14 LU and σ = 1.58 × 10−3 LU, respectively. The viscosity of both fluids is

set as η = 0.1 in all simulations. Monodisperse colloids are used with a radius ah = 2.3

LU; φ = 0.20 is the concentration of colloids used in all simulations in Sections 5.1-5.3.

Two temperature choices are made, with different values for the dimensionless control

parameter for capillary energy, σπa2
h/kBT , and the diffusive time τD for magnetic

particles; one is the standard temperature kBT = 2.133 × 10−5 LU which corresponds

to 300 K in a lab; another is the higher temperature kBT = 2×10−4 LU. The diffusion

time τD at kBT = 2×10−4 LU is 10 times faster than one at kBT = 2.133×10−5 LU, so

that we can expect faster relaxation of dipoles at kBT = 2 × 10−4 LU. With the given

parameters, the capillary energy is obtained as ǫ = 0.026, so that the dimensionless

parameters are given as ǫ/kBT = 1230 at kBT = 2.133× 10−5 LU and ǫ/kBT = 130 at

kBT = 2 × 10−4 LU; this means that the capillary energy still dominates for colloids

at interfaces within this temperature range.

For the short-range potential of colloids, the parameter set is chosen as γ = 10kBT ,

h0 = 0.1, ν = 1.0 and hc = 0.25. All simulations in this chapter have been done in
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a D3Q19 model with the system volume Λ3 = 643 with either periodic or fixed-wall

boundary conditions. For the latter system, a normal lubrication force is introduced

for colloids at distances h < hlub = 0.5 between the plane of the wall and the surface

of the colloid; the neutral wetting condition is maintained between a solid wall and the

fluid-fluid interfaces.

To calculate the long-range dipolar interactions for a periodic boundary box, Ewald

summation is used (see Section 2.4.3). The parameters are chosen as the real space

cutoff rc = 16 and the convergence parameter α = 0.15625. With given α, the

wavevectors for the Fourier part obeys k = (2π/Λ)(nx, ny, nz) with nx, ny, nz ≤ 8.

The conducting boundary condition is used in the Ewald summation. In a non-

periodic box system, the long-range dipolar interactions can be simply calculated from

equation (2.76). The corresponding force and torque, derived from the long-range

dipolar equation, were shown in Section 2.4.4.

For study of the external field effect, we examine one droplet covered by colloids

(as in Figure 3.7(g)) under either a uniform field or a field gradient. A uniform field

B0 directly creates torque but not net forces on the dipoles. By aligning the dipoles,

it alters the dipole-dipole interactions. In superparamagnetic colloids, Langevin theory

predicts the equilibrium magnetisation as a function of uniform field strength (discussed

in Appendix C). A uniform field applied within the simulation box always obeys ∇·B0 =

0, so that it can be used with both periodic boundary condition and nonperiodic one.

On the other hand, study of field gradient effects requires care; it is hard to have a

function of nonuniform field which satisfies zero-divergence of the field in a periodic

box, so that only nonperiodic boundary conditions are used to study the effect of a

field gradient. To allow parameter mapping onto laboratory conditions, we assume an

external permanent magnet as the source for the field gradient whose form is then given

as equation (2.72).

Most of simulations have been done until tfinal = 5 × 105 LU; this time window

is enough to reach a near-steady state in Λ3 = 643, so long as one disregards the

slow residual dynamics discussed in Chapter 3. For a single run, one single Intel core2

2.4GHz requires 270 hours. However the parallel computation using 8 cores of a cluster

of 3GHz Intel Dual-core processors[106] reduce the computational time to about 26

hours; 8 cores of IBM Power5 processor requires 63 hours to simulate a single run[120].

5.2 Morphologies of fluid domains

This section presents the morphologies of fluid domains under various conditions

according to the initial volumes of fluids (ψ0), the dipolar coupling constant (λ), the

fluid temperature (kBT ) and either an absence or a presence of uniform external field
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(B0). We always use the same initial configurations with a uniformly mixed fluid phase

and random positions of colloids.

The following sections will present the morphologies at two temperatures, kBT =

2.133 × 10−5 LU and kBT = 2 × 10−4 LU, for ψ0 = 0.0 and 0.4. We set λ = 4 in

these runs and study the effect of varying the relaxation time for dipolar interactions.

A higher dipolar strength, λ = 40, is also examined for a symmetric quench and then

the effect of uniform fields will be discussed for two different values of the strength of

field.

5.2.1 Bicontinuous phase and droplet phase

In Section 3.1, the domain morphologies have been shown for colloids in a binary fluid

undergoing spinodal decomposition. By controlling the initial mean order parameter

ψ0 from a symmetry to a strong asymmetry, the percolation threshold ψp between the

bicontinuous phase and the droplet phase was estimated within the range from 0.3 to

0.4. At ψ0 = 0.4, a clear dropletlike phase was found as seen in Figure 3.1(b).

After a quench of a system of magnetic colloids in a binary fluid, one can imagine

that the aggregation process of magnetic colloids and the phase separation of the binary

fluid occur coincidentally. In addition, the fast diffusion time at kBT = 2 × 10−4

LU could induce a faster process to aggregate magnetic colloids, which in turn could

influence domain morphologies.

Figures 5.1 and 5.2 present snapshots at different two temperatures, kBT = 2.133×
10−5 LU and kBT = 2 × 10−4 LU. The same dipolar coupling constant λ = 4 is used

for all simulations in Figures 5.1 and 5.2. Even at the higher temperature, their basic

morphologies are maintained consistent with the results in Section 3.1; the bicontinuous

phase is found at a symmetric quench whose volumes of fluid are 50:50; the droplet

phase is obtained at an asymmetric quench with fluid volumes 70:30. Moreover, it is

found that the long-range dipolar interactions make dipoles align as nose-to-tail chains

on the surfaces at all cases. To see the arrangement of dipoles on the surface, one

droplet is selected from the droplet phase in Figure 5.1(b). The following sections will

discuss the geometry of dipoles in detail.

The morphologies of fluid domains in a closed box are seen in Figure 5.3. Comparing

with fluid domains in a periodic box, fluid domains in a closed box have more strongly

curved surfaces. In an asymmetric quench, sizes of droplets are smaller than ones in a

periodic box. Although a closed box makes more interfaces, aligned magnetic particles

are still observed at the fluid-fluid interfaces.

On increasing the dipolar strength, we expect strong interactions to make more

orientational ordering of dipoles. Figure 5.4 presents the snapshot for λ = 40 in a
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5.2. Morphologies of fluid domains

symmetric quench at kBT = 2 × 10−4 LU. We find that the dipolar strength does not

affect the main morphology of the fluid domains, but that longer chains are seen along

the surfaces in comparison with those for λ = 4.

5.2.2 Droplet covered by magnetic colloids

Figure 5.5 shows a droplet chosen from the snapshot in Figure 5.1(b). Magnetic

particles on its surface align to reduce their interaction energies so that interesting

patterns of dipoles are found on the surface. Figure 5.5(a) shows the droplet with

different view points rotating by a full turn counter-clockwise; so pictures 1 and 6

are the same. The particles undergo local hexagonal ordering; their dipolar ordering

is based on the nose-to-tail along the curve of surfaces. In pictures 1 and 3, larger

domains are seen where dipoles are aligned parallel, but the orientations of dipoles on

these two faces of the droplet are opposite. The cross-domains between these two faces

(picture 2 and 4) show the change in direction of dipoles. Figures 5.5(b) and 5.5(c)

show snapshots of the top and bottom of the droplet.

5.2.3 Effect of uniform external field

In the absence of an applied external field, magnetic dipoles have only local orientational

correlations. However, under the external field, dipole moments partially align along

the direction of the field according to the strength of field compared with thermal

fluctuations. So at very high field strength, completely aligned dipoles can be expected

and the total magnetisation is saturated close to unity per dipole, as predicted by

Langevin theory (Appendix C). This predicts the magnetisation of colloids in terms

of the dimensionless parameter αB = µB/kBT , assuming that dipolar interactions of

particles are ignorable. Although the classical Langevin theory neglects dipole-dipole

interactions, a recent study of ferrofluids in a uniform field[121] has shown that this

Langevin theory is still applicable in systems with moderate dipolar interactions.

Figure 5.6 shows the final snapshots for simulations under the uniform external

fields, αB = 2 and 20 respectively. These simulations have retained the long-range

dipolar interactions for magnetic particles with λ = 4. The applied uniform field is

given as B = (0, 0, Bz) and the corresponding equilibrated particle magnetisations are

0.54 and 0.95 provided by Langevin theory. The analysis for the nematic ordering and

energy relaxations will be presented in Section 5.3.

On increasing the strength of the uniform field, stretched domains of fluids along

the direction of the field are observed and dipoles also form chain structures aligned

along B. However, the morphologies for ψ0 = 0.0 still maintain bicontinuity for both

αB values.
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Chapter 5. Magnetic Colloids in a Binary Fluid

(a)

(b)

Figure 5.1: The morphologies in a system with periodic boundary conditions for λ = 4
at kBT = 2.133 × 10−5 LU in Λ3 = 643. The right side shows the fluid-fluid interfaces
plus colloids given as spheres with a radius a. Cylinder represents a dipole whose poles
are painted by red (+) and white (-). The left is the images without the particles that
are shown on right side and it shows clear domain morphologies. (a) symmetric quench:
ψ0 = 0.0. (b) Asymmetric quench: ψ0 = 0.4. One droplet (circled by red) is chosen to
see the geometry of magnetic particles on the surface, discussed in Section 5.3.2.
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(a)

(b)

Figure 5.2: The morphologies in a system with periodic boundary conditions for λ = 4
at kBT = 2× 10−4 LU in Λ3 = 643. The right side shows the fluid-fluid interfaces plus
colloids given as spheres with a radius a. Cylinder represents a dipole whose poles are
painted by red (+) and white (-). The left is the images without the particles that are
shown on right side and it shows clear domain morphologies. (a) symmetric quench:
ψ0 = 0.0. (b) asymmetric quench: ψ0 = 0.4.
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(a)

(b)

Figure 5.3: The morphologies in a closed box for λ = 4 at kBT = 2×10−4 in Λ3 = 643.
The right side shows the fluid-fluid interfaces plus colloids given as spheres with a radius
a. Cylinder inside of a sphere represents a dipole whose poles are painted by red (+)
and white (-). The left is the images without the particles that are shown on right side
and it shows the clear domain morphologies. (a) symmetric quench: ψ0 = 0.0. (b)
asymmetric quench: ψ0 = 0.4.
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5.2. Morphologies of fluid domains

Figure 5.4: Domain morphologies for ψ0 = 0.0 with λ = 40 in Λ3 = 643.

5.2.4 Domain growth

The size of demixed fluid domains can be quantified by the characteristic length scale,

L(t), defined in equation (3.1) for a periodic box system. Figure 5.7 and Figure 5.8

present the time evolution of domain growth at various conditions shown in the last

section for domain morphologies. In Figure 5.7, the curves of L(t) for symmetric and

asymmetric quenches are seen at different temperatures and dipolar strengths. We find

that the L(t) depends on kBT and λ. In Section 3.4.2, L(t) for nonmagnetic colloids

showed dependency on kBT . Consistently, with given fixed λ, the domain growth of

a binary fluid with magnetic colloids also shows the same tendency. In addition, on

increasing λ, larger domains are observed in Figure 5.7. That might be caused by slower

relaxation of magnetic colloids at higher λ; we showed slow relaxations on translational

and rotational modes for magnetic colloids belonging to chains in Chapter 4.

For the cases with applied external fields, Figure 5.8 shows the time-evolution of

domain sizes for symmetric quenches at two different uniform fields, αB = 2 and αB =

20. Figure 5.8(a) presents L(t) measured by the equation (3.1) for periodic boundary

conditions; larger L(t) is obtained at the stronger field (αB = 20) at any fixed time. In

the domain morphologies of Figure 5.6, we found stretched domain along the direction

of the field, so we measure the domain size along each axis[87]. (The detailed method

to measure these Lx, Ly and Lz is discussed in Appendix D.) Figures 5.8(b)-5.8(d) show
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(a)

(b) (c)

Figure 5.5: The dipolar ordering on the facets of the droplet. (a) snapshots for sides
of the droplet rotating counter-clockwise. (b) Viewed from above. (c) Viewed from
below.
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(a)

(b)

Figure 5.6: The morphologies for λ = 4 at kBT = 2×10−4 LU in Λ3 = 643. (a) αB = 2.
(b) αB = 20.
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Figure 5.7: The characteristic length scale, L(t). (a) a symmetric quench (ψ0 = 0.0)
with λ = 4: black solid is kBT = 2.133×10−5 LU, green dash is kBT = 2×10−4 LU and
red dash is for λ = 40 at kBT = 2×10−4 LU. Blue solid is λ = 0 at kBT = 2.133×10−5

LU. (b) an asymmetric quench (ψ0 = 0.4) for λ = 4: black solid is kBT = 2.133× 10−5

LU, green dash is kBT = 2 × 10−4 LU. Blue solid is λ = 0 at kBT = 2.133 × 10−5 LU.
The length L = 10LU in simulation corresponds to L = 22.1nm in lab unit; the time
scale t = 5 × 105LU corresponds to t = 247ns in lab.

the length scales at each axis, x, y and z. For αB = 2 at final time step, length scales

along all directions are almost isotropic with the range between 32 and 37. But, for

αB = 20, the domain lengths show strong anisotropy; the length along z (the direction

of field) is about 50% larger than lengths along the other axes, x and y.

5.2.5 Summary: characteristics of fluid domains

In the above sections, we presented the morphologies of fluid domains and the time-

evolution of domain growth under various conditions. In Chapter 3, we concluded that

the basic structure of fluid domains is controlled by the initial mean order parameter,

ψ0, from bicontinuous phase to droplet phase. To extend that previous study, we

investigated how magnetic interactions change the morphologies of domains. As a

result, although the same initial random fluid mixture was used for all simulations,

different morphologies were observed, depending on temperature, strength of dipolar

interactions and external field strength. However, although the presence of magnetic

colloids influences the curvature of fluid surfaces, the main morphologies, bicontinuous

or droplet phases, are maintained.
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Figure 5.8: The characteristic length scales for applied uniform fields: black solid is
αB = 2; green dash is αB = 20. (a) L(t). (b) Lx. (c) Ly. (d) Lz. The length L = 10LU
in simulation corresponds to L = 22.1nm in lab unit; the time scale t = 5 × 105LU
corresponds to t = 247ns in lab.
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These domain morphologies can be quantified using the size of demixed fluid

domains, through the characteristic length scale L(t). In the presence of the dipolar

interactions, we found the resulting chain structures to affect not only the form of the

domains, but also their domain size, L(t); the strongly aggregated clusters help to make

larger domains of fluids at fixed time. We also obtained similar domain growth rates,

depending on the detachment of colloids at interfaces as shown in Section 3.4.2, even

though magnetic colloids are used instead of nonmagnetic colloids. In the absence

of an external field, magnetic colloids can change the microstructures of the fluid

domains, but their length scales show isotropy. In contrast, we found that an external

field can create strong anisotropy of domain morphology. We examined how external

fields can change the domain morphologies by controlling the arrangement of magnetic

dipoles. Strong anisotropy in length scales is found for strong external uniform fields;

on the other hand, at weaker fields, length scales are still isotropic. But for symmetric

quenches, both cases still keep the bicontinuous structure of fluid domains.

5.3 Energy relaxation and dipolar ordering

In Chapter 4, we have investigated the equilibrium and the transient properties of

colloidal ferrofluids. In contrast with colloidal ferrofluids, the post-arrested motions of

magnetic colloids in a binary fluid are not free translationally due to the confinement

by the capillary energy at the fluid-fluid interfaces. However, their rotational motions

are rather independent of this restricted circumstance. Therefore, even if particles are

localised in space, they tend to find low energy states through rotating their dipoles.

This section will address the properties of magnetic colloids in a binary fluid by

measuring the energy relaxation and the nematic ordering from the simulations shown

in last section. Also an individual dipolar energy is defined to see the dependency on

environment such as surface geometry and neighbouring dipoles. Finally, the number

of free particles as time is also measured as a function of time to see the ejection effect.

5.3.1 Energy relaxations

After a quench of a binary fluid with magnetic colloids which are equilibrated with

λ = 0, the process for magnetic colloids to aggregate should arise concurrently with the

phase separation to demix into each fluid. Even if particles are arrested by the fluid-

fluid interfaces after the diffusive regime of the spinodal decomposition, continuing

relaxations of the dipolar energy are clearly observed in Figures 5.9 and 5.10(a). In the

cases with applied uniform fields, the relaxation curves for the energy of interaction

with the external field are also seen in Figure 5.10(b). All curves in Figures 5.9 and
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5.3. Energy relaxation and dipolar ordering

5.10 seem to approach steady states (although the curve for an asymmetric quench at

kBT = 2.133 × 10−4 LU is still slowing down). Table 5.1 presents the dimensionless

energies averaged over the time window between 4.5 × 105 LU and tfinal = 5 × 105

LU at all cases. For magnetic colloids in a single fluid, the equilibrium dipolar and

soft-core energies at λ = 4, αB = 0 and φ = 0.20 are measured in Chapter 4 as

Ud/NkBT = −4.904 ± 0.004 and U sc/NkBT = 0.0326 ± 0.0001. In comparison with

the latter, higher values are obtained for U sc/NkBT in magnetic colloids in a binary

fluid. That means colloids are closer to each other; that results from the jamming

of colloids on surfaces. However, in the dimensionless dipolar energy, Ud/NkBT , no

systematic trend is found at any ψ0 and any kBT for αB = 0. At αB = 2 and 20, the

similar Ud/NkBT values are obtained, while UB/NkBT at αB = 20 is much greater

than one at αB = 2.
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Figure 5.9: Ud/NkBT at λ = 4. Black is kBT = 2.133×10−5. Green is kBT = 2×10−4.
Solid line for ψ0 = 0.0. Dash is for ψ0 = 0.4.

5.3.2 Local (or individual) dipolar energy

Due to the nature of the long-range and many-body dipolar interactions, magnetic

particles easily become frustrated energetically. These frustrated particles usually lead

to higher energy states. For magnetic colloids in a binary fluid, we could also expect

frustrated behaviour of dipoles on the confined geometry of the fluid-fluid interfaces

with neighbouring colloids jammed onto these surfaces.

Figure 5.11 presents two simple cases drawing a dipole surrounded by six neighbours:

Figure 5.11(a) shows the diagonal case, with 60◦as the angle between the vector of dipole

i and the distance vector r̂ij, between dipoles, i and j; Figure 5.11(b) shows the case
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Figure 5.10: (a) Ud/NkBT and (b) UB/NkBTat λ = 4, kBT = 2 × 10−4. Black solid
is αB = 2 and green dash is αB = 20.

Table 5.1: Dimensionless energies.

ψ0 kBT λ φ αB Ud/NkBT Usc/NkBT †UB/NkBT
0.0 2.133 × 10−5 4 0.20 0 −3.870± 0.001 3.067 ± 0.002 0.0
0.0 2.133 × 10−5 0 0.20 0 0.0 2.852 ± 0.009 0.0
0.4 2.133 × 10−5 4 0.20 0 −8.152± 0.001 4.400 ± 0.006 0.0
0.4 2.133 × 10−5 0 0.20 0 0.0 2.363 ± 0.010 0.0
0.0 2.0 × 10−4 4 0.20 0 −6.411± 0.003 0.419 ± 0.002 0.0
0.4 2.0 × 10−4 4 0.20 0 −1.9761± 0.0009 0.388 ± 0.002 0.0
0.0 2.0 × 10−4 40 0.20 0 −88.940± 0.007 2.242 ± 0.004 0.0
0.0 2.0 × 10−4 4 0.20 2 −6.871± 0.003 0.428 ± 0.001 −1.3371± 0.0007
0.0 2.0 × 10−4 4 0.20 20 −6.840± 0.003 0.424 ± 0.001 −18.658± 0.003

†UB =
∑

i U
B
i , where UB

i = −µŝi ·B.

with 90◦for this angle. The dipole at the center in Figure 5.11(a) has lower energy

than the dipole at the center in Figure 5.11(b). Similarly, this diagonal pattern is also

observed at dipoles on the surfaces for domain morphologies in Section 5.1; dipoles on

the fluid-fluid interfaces show nose-to-tail packings.

In general, the individual dipolar energy can be defined from equation (2.76) as

Ud
i = µ2

∑

i6=j

1

r3ij
[ŝi · ŝj − 3(ŝi · r̂ij)(ŝj · r̂ij)]. (5.1)

The dipolar energy for a particle i is calculated by the sum of pairwise dipolar energies

with particles j within rc = Λ/2 in real space. In the case of periodic boundary

conditions, the long-range contribution for rij > Λ/2 is obtained from the Fourier

space part of the Ewald summation. However, since dipolar interaction decays as 1/r3,
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5.3. Energy relaxation and dipolar ordering

the long-range contribution for rij > Λ/2 is negligible. So we calculate Ud
i /kBT by

summing over interacting particles within rij < Λ/2.

Figure 5.12 presents the same snapshots in Figure 5.1, with particles colour-coded

by the strength of individual dipolar energy. In Table 5.1, the total dipolar energy for

ψ0 = 0.4 at kBT = 2.133 × 10−5 LU is about two times lower than one for ψ0 = 0.0;

the colour distribution in Figure 5.12(a) accordingly depicts higher energies than one

shown in Figure 5.12(b). In morphologies of fluid domains, ψ0 = 0.0 shows more curved

surfaces in comparison with the curvature of ψ0 = 0.4, so that broad colour spectrum is

monitored at individual energy for magnetic particles. Figures 5.12(c) and 5.12(d) show

the histograms of Ud
i /kBT to see the energy relaxation for the individual particle at

certain times after onset of the slow relaxations in Figure 5.9. Consistently, as following

total energy relaxation, this distribution is shifted to get peaks at smaller ∆Ud
i /kBT .

To find a frustrated dipole in terms of the individual dipolar energy, we do the

high resolution test for a single droplet covered magnetic colloids in Figure 5.4. To

select a fluid droplet and magnetic colloids covering its fluid drop in Figure 5.1(b), we

first find the boundary lattice points between this droplet and the continuous phase;

then magnetic colloids are chosen if their distance from boundary lattice points is

less than
√

3. Figure 5.13(a) shows the corresponding single droplet with magnetic

colloids coloured by strength of dipolar energy, Ud
i /kBT . Through measurement for

Ud
i /kBT in equation (5.1), the highest dipolar energy is obtained as -2.93, but this

corresponding dipole (red colour in Figure 5.13(a)) is actually a free particle which

is in very close contact with particles on the surfaces. However, the dipole with the

second highest energy is found on the surface itself, and it shows frustration with six

neighbour particles forming the ring structure around it.

5.3.3 Nematic ordering parameter and magnetisation

Table 5.2 shows the nematic order parameter, N2, whose definition was given in Section

4.3.2 and the magnetisation, M , measured by equation (C.2). Except for the data

for applied external fields, all data refer to the isotropic phases. Comparing with

λ → 0, higher orientational orderings in both N2 and M are found at λ = 4 and

40 for all kBT . In the cases of applied external fields, comparing with the equilibrium

magnetisations by Langevin theory, M of our simulation for αB = 2 has the lower value

than theoretical value as M eq = 0.54. For αB = 20, our simulation has the slightly

lower value (M = 0.9335) in comparison with the theoretical value (M eq = 0.95).
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Figure 5.11: (a) the angle between the dipole and the horizontal is 60◦; the individual
dipolar energy is given as −7λkBT . (b) the angle between the dipole an the horizontal
is 90◦; the individual dipolar energy is given as −3λkBT .

5.3.4 Particle ejection

Figure 5.14 shows the number of free particles as a function of time. The definition

of free particle was already introduced in Section 3.3.2. To check the effect of dipolar

particles, the data for non-magnetic particles in Section 3.3.2 can be compared. A

more-or-less data saturated plateau is found at Nf (t) after t > 1 × 105 LU in Figure

5.14(a) instead of the continuous ejections of non-magnetic colloids in Figure 3.5. At

t = 5×105 LU in a system of ‘room’ temperature kBT = 2.133×10−5 LU, the fractions

of free particles for non-magnetic colloids are higher than ones for magnetic particles;

non-magnetic particles have 3.6% and 11.5% at ψ0 = 0.0 and ψ0 = 0.4 respectively,

whereas magnetic particles have 2.4% and 4.9%. This smaller number of free particles

suggests that the dipolar interactions attract particles to each other at the fluid-fluid

interfaces.

However, in Figure 5.14(b) and 5.14(c), a continuously increasing Nf (t) is observed

in a system at enhanced temperature kBT = 2 × 10−4 LU. Although there is ejection

of magnetic particles, the rate is about one half of that for non-magnetic colloids: for a

symmetric quench, 5% are free particles in magnetic colloids, but 9% are free particles

in non-magnetic colloids. The dimensionless capillary energy at kBT = 2× 10−4 LU is

10 times lower than at kBT = 2.133×10−5 LU; that means that, for Brownian particles,

the escape from the fluid-fluid interfaces is 10 times easier. Thus continuous ejection in

Figure 5.14(b) can be understood by the weak capillary energy. Figure 5.14(c) shows
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Figure 5.12: Individual magnetic particles are coloured by the strength of Ud
i /kBT :

(a) ψ0 = 0.0 and (b) ψ0 = 0.4, kBT = 2.133 × 10−5 LU. The spectrum of Ud
i /kBT

is shown in the left of Figure (a). During the slow relaxation of dipolar energy, the
Ud

i /kBT distributions are shown in (c) ψ0 = 0.0 and (d) ψ0 = 0.4: the black circle is
t = 100, 000; red square is t = 300, 000; blue diamond is t = 500, 000.
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Figure 5.13: (a) The directions of dipoles covering the droplet are shown with coloured
particles according to Ud

i /kBT . Here, the frustrated particle (orange colour) is found
among dipoles on the surface, having the higher energy as Ud

i /kBT = −4.70. (b) The
local dipolar energy distribution at dipoles shown in (a).

Nf (t) for αB = 2 and 20; this shows that the ejection of particles does not depend on

the strength of applied external field in cases of αB 6= 0, but these fractions of Nf (t)

are higher than the one in αB = 0.

5.4 Structure deformation under external fields

For an initial droplet, the single droplet in Figure 3.7(g) is used in a closed box with

Λ3 = 643. The same droplet is shown in Figure 5.15(a) from a different view point.

We consider paramagnetic particles which are randomly orientated initially; the neutral

wetting particles cover the surface of the fluid droplet as discussed in Section 3.3.4. After

switching on an external field, the dipolar long-range interactions are coincidentally

switched on.

The type of external field determines the forces and torques acting on dipolar

particles. A uniform field creates only torques which cause dipoles to arrange along

the direction of field; a field gradient creates both forces and torques. To deform a

fluid droplet, the interaction energy, arising from both dipole-dipole interaction and

dipole-field interaction, should affect the rearrangement for colloids on the surfaces;

also the rate for detachment of particles has an influence of these dipolar interactions

in comparison with the strength of capillary energy. For uniform fields, we consider

two temperatures as before: kBT = 2.133 × 10−5 LU and kBT = 2 × 10−4 LU. These
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Table 5.2: Nematic ordering N2 and magnetisation M .

ψ0 kBT λ φ αB N2 M

0.0 2.133 × 10−5 4 0.20 0 0.0270 ± 0.0005 0.0554 ± 0.0003
0.0 2.133 × 10−5 †0 0.20 0 0.0174 ± 0.0008 0.024 ± 0.001
0.4 2.133 × 10−5 4 0.20 0 0.0496 ± 0.0003 0.0569 ± 0.0004
0.4 2.133 × 10−5 †0 0.20 0 0.0143 ± 0.0004 0.0198 ± 0.0007

0.0 2.0 × 10−4 40 0.20 0 0.0588 ± 0.0005 0.0756 ± 0.0002

0.0 2.0 × 10−4 4 0.20 0 0.0657 ± 0.0005 0.0872 ± 0.0008
0.4 2.0 × 10−4 4 0.20 0 0.0430 ± 0.0005 0.0717 ± 0.0004

0.0 2.0 × 10−4 4 0.20 2 0.3499 ± 0.0006 0.6888 ± 0.0004
0.0 2.0 × 10−4 4 0.20 20 0.8149 ± 0.0003 0.9335 ± 0.0001

† is actually the case for the limit of λ→ 0. (N2 and M therefore remain well defined.)

can control both the capillary energy and the diffusion time for particles.

To study the effect of a field gradient, we consider only the higher temperature. In

addition, we introduce a buoyancy force on the fluid droplet that is chosen to balance

the net force upon it caused by the field gradient. This prevents an overall translational

motion of the droplet.

5.4.1 Uniform external field

Figure 5.15 presents snapshots of a droplet. The initial droplet is seen in Figure

5.15(a); we apply a strong field, given as αB = 20, which creates the equilibrium

magnetisation 0.95 per dipole (Appendix C). For the lower temperature (high capillary

energy, ǫ/kBT = 1230), the droplet snapshot after t = 590, 000 LU is shown in Figure

5.15(b). We found that no particle ejection happens even at the final time steps;

instead a slight elongation of the droplet is found along the field direction. Due to

the rearrangement of magnetic colloids, the surface area of the domain is a little

bit reduced from 2793 LU to 2730 LU. For the higher temperature (weak capillary

energy, ǫ/kBT = 130), however, particle ejection begins at around t = 65, 000 LU; the

corresponding snapshot is seen in Figure 5.15(c). Again an elongated structure of the

fluid droplet is observed. Finally 30 particles become free by t = 590, 000 LU and a

different shape of droplet more like a sphere is obtained with the smaller surface area.

In conclusion, under the uniform field, the elongation of a droplet is observed in both

cases with different capillary energies. The ejection of particles is seen in the case with

the low capillary energy at the high temperature kBT = 2×10−4 LU. After starting the

ejection, the droplet starts to lose its initial shape as the coarsening dynamics drives

to reduce the surface area of the domain.
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Chapter 5. Magnetic Colloids in a Binary Fluid

5.4.2 Gradient external field

This study for the effect of field gradient is initially motivated by the experimental

work[63]. In experiment, Melle et al.[63] has investigated the controllable stability of

magnetic Pickering emulsions to undergo a phase transformation from droplet phase

to bicontinuous phase according to strength of field gradient. When the field force

is greater than the buoyancy force acting on droplets, droplets begin to move along

the field direction in the continuous phase; they found the critical strength of magnetic

field that droplets start to move according to concentration of particles; below this field

strength, the droplets remain in a cream of the top of the sample. A stronger magnetic

field far above the critical strength completely destabilises emulsions leading to a

coalescence of droplets causing an evolution from the droplet phase to a bicontinuous

phase. However, if the strength of gradient field is not strong enough to induce droplet

movement, a slight elongation of droplets along the field direction can be observed.

The experimental magnetic Pickering emulsion is made by paramagnetic particles

with a diameter 1 µm in decane (oil) and water, so that the final composition has

decane droplets covered by paramagnetic particles dispersed in water. Due to the

density difference between decane (oil) and water, the buoyancy force acts to keep the

decane droplets afloat. To generate the magnetic gradient field, an electromagnet below

the sample is used.

In simulations to examine the effect of a field gradient, we consider the same droplet

also used in the study of uniform field effect shown in last section. Most of simulation

conditions are same as ones in last section, but we use a field gradient generated by

an external magnet whose material is the same as the ferromagnetic colloids in the

simulation box. This field gradient from that magnet does not satisfy the ∇·B = 0 for

periodic boundary conditions, so that we only consider a closed box with nonperiodic

conditions. To check the buoyancy effect, we introduce an artificial buoyancy force to

balance the net forces of particles from the field gradient.

Comparing with the experimental setup[63], a few conditions are different in our

simulation methods: the type of dipoles, the source of field gradient and the buoyancy

force.

In experiment, paramagnetic particles are used instead of ferromagnetic particles,

so long-range dipolar interactions are calculated from dipoles induced by an external

field. In the case of using the field gradient, this induced dipole is almost independent

of the applied field due to effects of saturation magnetisation. Thus we can consider a

constant strength of dipoles to calculate the dipole-dipole interactions; dipolar colloids

(ferromagnetic colloids) in our simulation model are adequate to simulate this induced

dipolar systems as well.
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5.4. Structure deformation under external fields

The second difference is the source of external field gradient. In experiment, an

electromagnet generates a field gradient acting on the sample of magnetic Pickering

emulsions, while our simulations assume an external magnet made from the same

material as the ferromagnetic colloids in the system box.

Final difference is a buoyancy force; whereas the buoyancy force from the density

difference is of fixed value for a given stabilised droplet, our artificial buoyancy force

depends on the directions and the positions of dipoles covering the droplet. The recipe

for the artificial buoyancy force is the following; first, the number of lattice nodes (Nb)

inside of the droplet is counted and then the forces on dipoles from the gradient field

B(r) is calculated as Fb(r) =
∑

i µ·∇B(r), where i labels the particles; next the uniform

buoyancy force is derived from fb = Fb(r)/Nb and then −fb is added in the divergence

of the stress tensor (shown in equation (2.33)) of the lattice nodes constituting the

droplet. In addition, that means this force is time-dependent because the positions and

the directions of dipoles are varied in time. The magnitude of the artificial buoyancy

force varies with the strength of external field, so that we can only check the effect

with or without the buoyancy force in our simulations; we do not discuss the effect of

gradient field strength at a fixed buoyancy force.

Despite several differences between the experimental setup and the numerical setup,

our simulation model is enough to study the effect of field gradient for magnetic

emulsions. The important issue in this study is to design the field gradient whose

strength in simulations corresponds to the equivalent strength in lab. As mentioned

above, the gradient field in simulations is defined from the external magnet so that

the field gradient as a distance is determined by the dipolar moment in equation(2.72);

the size of magnet core decides the strength of dipolar moment. Assuming that the

external magnet and magnetic colloids in the system box have spherical shape and are

made by the same material, we can calculate the diameter of the external magnet with

given strength of dipolar moment in simulations.

In these simulations, we consider λ = 4 for dipole-dipole interactions in the system

box; here, the dipolar moment is given as µ = 0.27 LU and µ(d) = 1.2348 × 10−28Am2

with a diameter d = 17nm of magnet core (Fe3O4) in simulation and lab respectively.

For the external magnet (Fe3O4) with M = 103 LU of the dipolar moment, the

corresponding dipolar moment M(D) = 4.41733 × 10−15Am2 with a diameter D =

260nm is obtained in lab experiment. Therefore, using equation (2.72), the field

gradient B(r) generated byM(D) can be plotted. The diameter of the external magnet,

D, exceeds the distance from dipole to box, but this does not matter since the lab system

does not have the extra dipole but an electromagnet coil instead.

Figures 5.16(a) and 5.16(b) show the field gradient emitted from M at the position

(0, 0, 0), to the simulation box with Λ = 643 with midpoint at the position (0, 0,
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Chapter 5. Magnetic Colloids in a Binary Fluid

632); a clear gradient field along the z axis is found in the range of the system box,

while the field strength is homogeneous at x and y axes. The corresponding strength

of magnetic field at z = 0 is given as 0.0002 Tesla. Using the relation 1LU = 2.2nm

from the characteristic length L0, this is 300T/m, which is a reasonable strength of

field gradient in a lab.

Figures 5.16(c) and 5.16(d) present the snapshots of the droplet under the field

gradient shown in Figures 5.16(a) and 5.16(b) after t = 590, 000 LU; both simulations

are considered with the capillary energy ǫ/kBT = 130. In Figure 5.16(c), the ejection

of particles occurs and 30% of particles becomes free in a bulk fluid; a more spherical

droplet is observed like the droplet in Figure 5.15(d). In the case of the existence of

the buoyancy force, Figure 5.16(d) shows that the buoyancy force resists the particle

ejection on the bottom of the droplet so that its deformation is rather weaker than one

without the buoyancy force, comparing with the simulation shown in Figure 5.16(c).

5.5 Conclusions

In this chapter, we presented simulations of a binary fluid with magnetic colloids

undergoing a quench causing phase separation of the fluids. For both a symmetric

quench and an asymmetric quench, we found the basic morphologies remain the same

as for the systems with non-magnetic colloids. However, due to the long-range dipolar

interaction, pattern formation is observed among the magnetic colloids on the surfaces

of the fluid domains; alongside the curvature of interfacial surface, a pattern based

on nose-to-tail is seen. However in the cases of the absence of the external field,

globally isotropic orientational ordering is found, although approximately twice as much

fluctuating nematic order is obtained in comparison with orientational ordering of the

magnetic systems found in the limit λ→ 0. Using the idea of dipolar structure reflecting

dipolar energy, frustrated particles are monitored as magnetic particles with higher

individual dipolar energy. Especially, it is found that these frustrated particles on the

surface are strongly dependent on the geometry of the surface and the neighbouring

particles, through our high resolution trial for magnetic colloids covering a single

droplet.

In the simulations of the existence of external uniform field and the high dipolar

strength, the morphologies of fluids, e.g. bijel or droplets, are maintained even though

interactions among magnetic colloids affect the residual coarsening dynamics after

magnetic colloids are arrested at the interfaces. In the results for the characteristic

length scales, we found strong anisotropy of domains under strong uniform fields; the

stretched domain length is oriented along the direction of external field. In addition,

larger domains were obtained by increasing the strength of dipoles. In comparison
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with the particle ejection of non-magnetic colloids, we found less ejection of magnetic

colloids from the fluid-fluid interfaces; this may arise because dipolar interactions make

particles strongly bonded at close contact.

In the last section, the deformation of fluid structures by the magnetic external

fields, such as the uniform field and the field gradient, was discussed in the simple case

of a stable droplet. On applying an external uniform field, the ejection of particles

occurs at lease for modest capillary energy (ǫ/kBT = 130). Even if there is no particle

ejection in the case with high capillary energy (ǫ/kBT = 1230), the droplet becomes

elongated along the dipolar axis (field axis).

The study of the field gradient effect aims at a preliminary study comparing with the

experimental work[63]. We found the buoyancy force resists the particle ejection on the

bottom of the droplet while the final droplet without any buoyancy force results obtains

more spherical shape due to the particle ejection. To understand the destabilisation

of magnetic Pickering emulsions under the field gradient, further works are required

in simulations. Technically, we hope to implement a precise calculation for the more

realistic buoyancy force. Furthermore, simulations with two or more droplets would be

needed to study the coalescence process from the droplet phase to a bicontinous phase.

In addition, dependency on particle concentrations leading to smaller droplet size will

be also of interest in the further work.
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Figure 5.14: The number of free particles, Nf (t). (a) λ = 4 at kBT = 2.133 × 10−5;
black is a symmetry and green is an asymmetry. (b) λ = 4 at kBT = 2 × 10−4; black
is a symmetry and green is an asymmetry. The red is λ = 40 at kBT = 2 × 10−4. (c)
λ = 4 at kBT = 2 × 10−4; black solid is for αB = 2 and green dash is for αB = 20.
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(a) (b)

(c) (d)

Figure 5.15: (a) the initial droplet. (b) tfinal = 590, 000 LU at the capillary energy,
ǫ/kBT = 1230. For the capillary energy, ǫ/kBT = 123, (c) t = 65, 000 LU and (d)
tfinal = 590, 000 LU.
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(a) (b)

(c) (d)

Figure 5.16: (a) The magnitude of external magnetic field: |B|. The field strength at
the bottom of the box is 300 T/m. The snapshots at tfinal = 590, 000 are shown in (a)
the case without buoyancy and (b) the case with buoyancy.
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Chapter 6

Conclusions and Further Work

In this Thesis, the simulations for colloidal complex fluids have been investigated

by LB methods. Above all, we confirmed that our LB methods are remarkably

efficient to simulate complex fluids including the fully hydrodynamic interactions acting

on solid colloids. Compared with other techniques to calculate the hydrodynamics,

e.g. computational fluid dynamics, LB provides efficiency to solve the Navier-Stokes

equation for incompressible fluids by introducing discrete lattice grids. This basic

lattice construction also improves the computational efficiency as it is easily developed

for parallel simulation. Indeed, the LB scheme is easily compatible with other kinetic

equations governing the evolution of complex fluids such as a binary fluid and moving

particles in a single/binary fluid. For a binary fluid undergoing phase separation,

another distribution function for the order parameter of the binary fluid is introduced

along with the fluid distributions on the lattice. In colloidal systems, the dynamics

of colloids follows a general Molecular Dynamics scheme and fully hydrodynamic

forces are calculated by the “bounce-back on links” method for moving particles.

For Brownian particles, thermal fluids are generated by the fluctuating LB algorithm;

colloidal particles surrounded by thermal fluid on the lattice experience full Brownian

motion. However, noise error from the discrete lattice fluid occurs for close-contact

particles. To solve this problem, a repulsive short-range potential is used in the study

for colloidal ferrofluids, but this issue of noise error should be considered in the future.

To specify the kind of colloids, extra potentials can be added to the interaction between

colloids. For magnetic colloids simulated here, the long-range dipolar interactions is

calculated; in practice, Ewald summation is used for this in periodic boundary systems.

In the study for colloidal ferrofluids with hydrodynamic interactions, our LB approach,

incorporating the long-range dipolar interaction, generates reasonably good data in

equilibrium and nonequilibrium.

In terms of research for complex fluids, LB is more adequate than other methods

to study dynamical properties in equilibrium and nonequilibrium; especially, LB is

outstanding to simulate complex composites including three phases such as colloids in

a binary fluid. On the other hand, the static properties for colloids in equilibrium obey
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the Boltzmann statistics so that other methods such as Monte Carlo and Brownian

Dynamics with the absence of hydrodynamics are more efficient than the LB method.

In the simulations for hard-sphere colloids in a single solvent, ASD (accelerated

Stokesian Dynamics) or SD (Stokesian Dynamics) is more suitable to implement full

hydrodynamics without any noise error found in LB.

Among our results of LB simulations, there are several achievements to understand

their dynamics and the basic structures for colloidal complex fluids: colloids in a binary

fluid, colloidal ferrofluids and magnetic colloids in a binary fluid.

First, in the study for colloids in a binary fluid (as discussed in Chapter 3), LB

originally predicted the new morphology of “bijel”. The extensive works reported in

this Thesis (and published recently) shows the droplet structure for a strong asymmetric

quench; this droplet structures was observed in the recent lab experiment as well[34].

In the mechanism for arrested fluids demixing, our simulation results quantitatively

agree with experimental results in terms of cooperating coarsening dynamics and

particles jammed at interfaces. However, our simulations failed to reach fully arrested

domains due to the short simulation time (so-called “intermediate time”) related to

Brownian time scale, whereas a bijel in the lab is stable for one month. Instead of fully

arrested domains, slow residual dynamics is found, caused by ejection of particles at

interfaces and remaining coarsening dynamics of fluid domains. To explain this slow

dynamics for intermediate time scales, we directly measure the geometry-dependent

parameter α throughout simulations at various temperatures; we found α as ∼ 0.008

leading to a much smaller effective energy barrier to eject particles on the complicated

geometry of interfaces than the corresponding barrier for a particle on a flat interface.

In growth kinetics at various temperatures, an apparent power law is observed as

L(t) ∼ (t/τB)0.25±0.01 over a factor 2 interval in domain size. The growth kinetics

of fluids arrested by colloids remains an open question in the future.

Secondly, in colloidal ferrofluids, the effect of hydrodynamic interactions was

investigated in comparison with BD and MC simulations. On increasing the dipolar

strength, controlled by dimensionless parameter λ, it is observed that magnetic colloids

form larger clusters. By studying the dynamic correlators in equilibrium (defined as

intermediate scattering functions in the lab), we found that hydrodynamic interactions

delay the relaxations at all λ regimes and the dipolar interactions drive the long-time

relaxations at high λ. Clear evidence for hydrodynamic interactions is also found in the

short-time diffusion coefficients in comparison with the BD simulations. For transient

dynamics during process to form clusters, the time-evolution of cluster size distribution

is measured, but no significant difference is found, while slow relaxation is also seen.

Transient motions are observed via two-time scattering functions which show time-

dependent behaviour.

130



Finally, by using magnetic colloids in a binary fluid undergoing spinodal decomposi-

tion, our LB study predicts a new emulsified system, arrested demixing fluids covered by

magnetic colloids. Even if the basic morphologies of fluid domains (from bicontinuity

to droplets) follow those of emulsions with non-magnetic colloids on controlling the

fraction of fluids, we found that these morphologies are perturbed by the structures of

magnetic colloids. Especially, along the direction of external field, stretched domains are

observed in the presence of a strong uniform field. We also observed interesting ordering

structure, based on nose-to-tail, among magnetic particles jammed at surfaces. The

dipolar directions of these jammed magnetic colloids show strong dependency on the

surface geometry and neighbouring particles, so that energetically frustrated particles

are observed.

Using the external magnetic field, it is possible to deform the fluid structures by

using magnetic colloids which interact with the external field. Through a few test

runs under uniform fields or field gradients, the preliminary study for destabilisation

of a droplet was examined in Section 5.4. Both external field types can control the

stability of a droplet by the arrangement of magnetic dipoles and the ejection of

particles. Relating to the experiment work for the destabilisation of magnetic Pickering

emulsions under a field gradient, some issues requires more simulations in further work.

In experiment, coalescence of magnetic Pickering emulsions can be started from the

particles pulled from the bottom of droplets when the magnetic force from an external

field is stronger than the buoyancy force; also, higher concentrations of particles can

respond to smaller strengths of magnetic field for moving droplets. Hopefully, these

issues will be explained by further LB simulations.
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Appendix A

Brownian Dynamics Algorithm

In a simple Brownian dynamics algorithm[19, 100] for dipolar colloids, the update

scheme is given as

ri(t+ ∆t) = ri(t) + ∆t
Dt

kBT
Fi(t) + ζt

i (∆t) (A.1)

si(t+ ∆t) = si(t) +

(

∆t
Dr

kBT
Ti(t) + ζr

i (∆t)

)

× si(t). (A.2)

Here ri(t) and si(t) are respectively a position and a unit vector of dipole of particle i

at time t. Fi(t) and Ti(t) are the force and the torque acting on particle i. From the

long-range dipolar interactions, Fi(t) and Ti(t) are shown in equations (2.81)-(2.84).

The force term corresponding to the short-range potential is easily calculated by the

relation: F = −∇U sc, where U sc is seen at equation (2.68). At a given temperature

kBT , translational and rotational diffusion coefficients are given respectively from the

Stokes law as

Dt =
kBT

6πηa
, Dr =

kBT

8πηa3
, (A.3)

where, η is the fluid viscosity and a is the radius of particles. This correspondence

allows exact matching onto LB parameters so that the only difference between LB and

BD is the presence of hydrodynamic interactions in LB. In equations (A.1) and (A.2),

ζt
i (t) and ζr

i (t) are random Gaussian variables with the following conditions:

〈ζt
i 〉 = 0, 〈ζr

i 〉 = 0,

〈ζt
i · ζt

j〉 = 2∆tDtδij , 〈ζr
i · ζr

j 〉 = 2∆tDrδij .
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Appendix B

Shear Viscosity

The fluid viscosity η can be found from a time integral via the Green-Kubo formula[70,

71]:

ηρΛ3kBT =

∫ ∞

0
〈Σf

αβ(t)Σf
αβ(0)〉dt. (B.1)

Here Λ3 is the system volume, kBT is temperature, and Σf
αβ(t) is the stress tensor; α

and β are components in Cartesian coordinates.

Using the velocity distribution fi(r, t) in LB, the stress tensor is defined as Σf
αβ(t) =

∑

i fi(r, t)ciαciβ −∑i f
eq
i ciαciβ in equations (2.7) and (2.9). The shear components in

the stress tensor are the off-diagonal terms, e.g. Σxy,Σyz and Σxz, so that, in equation

(B.1),the correlations of each components are calculated and the shear viscosity is

obtained by the average over all three correlations.

B.1 Shear viscosity of fluids without colloids, η

By considering the shear components for numerical calculations, equation (B.1)

becomes

η =
1

3ρΛ3kBT

∫ tf

0
〈Σf

xy(t)Σ
f
xy(0) + Σf

yz(t)Σ
f
yz(0) + Σf

xz(t)Σ
f
xz(0)〉dt, (B.2)

where ρ is the fluid density and tf is a final cutoff time for the integral.

To examine the measurement of viscosity from equation (B.2), two different

viscosities are considered as the input values: η = 1/2 and 1/40. The D3Q19

model is used with the system box, Λ3 = 643. The temperature of fluid is chosen

as kBT = 5 × 10−5. Figures B.1(a) and B.1(b) show the results of the normalised

stress-stress correlation functions. Both curves converge into zero. Using equation

(B.2) and tf = 200, the viscosities are found as 0.50471 for the input viscosity 0.5

and 0.02556 for the input viscosity 0.025. Moreover, Figures B.1(a) and B.1(b) show

the different shapes for the relaxation curves depending on the fluid viscosities. In the

Navier-Stokes equation (2.2), the shear viscosity of the fluid determines the collison
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Figure B.1: (a) Stress-stress correlation function with η = 1/2. The corresponding
collision operator ω is −0.5 which obeys under-relaxing, −1 < ω < 0. (b) Stress-
stress correlation function with η = 1/40. The corresponding collision operator ω is
−1.74 which obeys over-relaxing, −2 < ω < −1. (c) the total correlation functions for
λ = 0(black), 4(red) and 8(green).

operator parameter ω:

η = −1

6
ρ

(

2

ω
+ 1

)

, (B.3)

where, ρ is the density of fluid. This in turn determines the relaxation shape of the

stress-stress correlator[70, 71].

B.2 High-frequency shear viscosity, η∞

In the case of solid colloids in a single/binary fluid, the high-frequency shear viscosity

can be calculated from the ratio of the viscosity with solid particles and the pure fluid

viscosity: η∞(φ)/η. The value of η∞ can be computed by the integral of the total stress

correlation function across the short time window, tf :

η∞3V kT =

∫ tf

0
〈Σt

αβ(t)Σt
αβ(0)〉dt (B.4)

where Σt = Σs + Σf . The particle stress Σs is found by summing components of

rbf̄(rb), where f̄(rb) is the average of all fb shown in equation (2.2) around boundary

nodes of particles. Figure B.1(c) presents the total stress correlations for λ = 0, 4

and 8. For good statistics, the correlation functions are averaged over 298900 different

initial times with tf = 100. Three curves in Figure B.1(c) look overlapped, but, on

integrating these by equation (B.5), the high-frequency viscosities η∞ are obtained as

0.0263301±0.0003271, 0.0267933±0.0002877 and 0.0292169±0.0002291 respectively.
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Langevin Theory

In ideal paramagnetism, ignoring the dipolar interaction, Langevin theory provides the

equilibrium magnetisation under the uniform external field:

Meq = MsatL(αB), (C.1)

where αB is the dimensionless parameter as the ratio of the interaction energy (for

the dipole µ and the uniform field B) and the thermal energy kBT , L is the Langevin

function: L = coth(αB) − 1/αB . The saturation magnetisation is given as Msat =

µN/Λ3. In simulation, Msat is set as unity per a particle and the magnetisation M is

generally defined as

M =
1

N

[

m2
x +m2

y +m2
z

]1/2
. (C.2)

Here mα =
∑

i s
α
i , where α is x, y and z in Cartesian coordinates. Figure C.1 presents

the equilibrium magnetisations with various αB in our LB simulations. From these

data, we confirm that the equilibrium mangetisation is satisfied by a Langevin curve

over the whole range of αB .
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Figure C.1: Equilibrium magnetisation at αB = 1, 2, 3, 4, 5, 8, 10, 15 and 20 (from
bottom to top): (a) τD = 19, 111 with the fluid viscosity η = 1/600 and (b) τD = 18, 350
with the fluid viscosity η = 1/60. (c) Langevin curve resulting from the data in Figures
C.1(a) and C.1(b).
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Appendix D

Measurements for domain length scales

The discrete structure factor for order parameter ψ in a binary fluid[87, 122, 123] is

defined as

s(k, t) =

〈

1

V

∣

∣

∣

∣

∣

∑

r

exp(ikr)ψ(r, t)

∣

∣

∣

∣

∣

2〉

. (D.1)

Here k = 2π
Λ (x, y, z), where Λ is one-dimensional length of a cubic box with the

volume V .

Generally, the spherically averaged structure factor is given as

S(k, t) =

∑

k̂
s(k, t)
∑

k̂
1

, (D.2)

where k = 2πn
Λ , n = 0, 1, 2, ...,Λ, the sum

∑

k̂
is over a spherical shell defined by

n− 1
2 ≤ |k| Λ

2π ≤ n+ 1
2 and

∑

k̂
1 is the normalisation factor. Using S(k, t), the length

scales can be deduced from the pth moment:

[kp(t)]
p =

∑

k k
pS(k, t)

∑

k S(kt)
. (D.3)

Considering the first three moments, possible length scales are

R1(t) ∼ 2π/k1, R2(t) ∼ 2π/k
1

2

2 ,

R3(t) ∼ 2πk1/k2, R4(t) ∼ 2π/k
1

3

3 ,

R5(t) ∼ 2π(k1/k3)
1

2 . (D.4)

In equation (D.4), R1(t) is equivalent to L(t) in equation (3.1) to measure the domain

length in periodic box. For nonperiodic systems, such as sheared system or nonisotropic

domains, methods based on Fourier transforms cannot be used to measure length scales.

In this case, a length scale can be deduced from R5(t) which can be evaluated in real
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space:

R2
5 =

∑

k s(k)
∑

k,α sin(kα) sin(kα)s(k)

=

∑

r,α ψ
2(r, t)

∑

r ∂
D
α ψ(r, t)∂D

α ψ(r, t)
, (D.5)

where ∂D
α is the symmetric discrete derivative in direction α. To extract two or three

length scales in 2D or 3D respectively, we can define a symmetric tensor written as

dαβ =

∑

r ∂
D
α ψ(r, t)∂D

β ψ(r, t)
∑

r ψ
2(r, t)

. (D.6)

This tensor dαβ can be diagonalised to extract three eigenvalues (l1, l2, l3) and

three eigenvectors (ê1, ê2, ê3) in 3D. In practice, we calculate these eigenvalues

and eigenvectors numerically, while 2D solutions are easily obtained[87]. From these

eigenvalues and eigenvectors, three orthogonal length scales are:

L1 =
1

l1ξ
, L2 =

1

l2ξ
, L3 =

1

l3ξ
(D.7)

where ξ is the interfacial width.

Similarily, length scales along axes x, y and z can be calculated from the tensor

dαβ directly:

Lx =
1

dxxξ
, Ly =

1

dyyξ
, Lz =

1

dzzξ
. (D.8)

Figure D.1 shows the example of length scales in 2D: L1, L2 and Lx, Ly. For an

arbitrary shape of domain, the smallest eigenvalue represents the longest length scale

of the domain; the other two eigenvalues in 3D give the lengths which are orthogonal

to the longest length (inverse of smallest eigenvalue).
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Figure D.1: The schematic picture of length scales in a simple 2D domain. Using the
equation (D.7), two eigenvalues (l1 and l2) give two length scales L1 and L2. The
longer length L1 (the smaller eigenvalue l1) is perpendicular to the shorter length L2

(the large eigenvalue l2). Lx and Ly are the averaged domain lengths along x and y
axes repectively.
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Appendix E

Ewald Summation in Ludwig

E.1 Cell list in Ludwig

The fluid part in LB is easily parallelised by a regular domain decomposition[11]. For

implementation of dynamics of colloids in LB, the “cell list“[19] is employed to reduce

the O(N2) problem[13]. Figure E.1(a) presents a schematic cell list and domain in

2D. The domain is divided into cuboid cells whose width ensures that all pairwise

interactions can be identified by particles in the adjacent cells. The minimum width of

a cell is usually given as 2ah+hc, where hc is the surface-surface cutoff of the lubrication

interaction between particles. Zero or more particles are contained in a cell.

For long-range dipolar interactions, choosing this cell width arises as an important

issue to calculate the Ewald summation (discussed in Section 2.4.3). Ewald summation

for the long-range dipolar interactions consists of three parts: the short-range part in

real space, the long-range part in Fourier space and the self energy correction term.

Among the three parts, the short-range calculation in real space is strongly restricted

by the cell width. (On the other hand, the Fourier space contribution and the self

energy correction term do not depend on the cell width.)

For the Ewald technique, the real space cut-off distance rc determines the

convergence factor α and the maximum Fourier space component nmax: α = 2.5/rc

and nmax = α2rcΛ/π[124]. This says that decreasing rc demands more Fourier space

calculation which requires more computational power.

For the real space interaction, the cell width must be larger than rc. Thus in

practice, the cell width is equal to the real space distance rc = 16 in cases of the

parallel computation with 8 processors in Λ3 = 643 and 64 processors in Λ3 = 1283; also

the sub-domain length is given equal to the cell width. This condition is reasonably

optimised choice in our simulations. Figure E.2 shows a cartoon of particle-particle

interactions in the nearest neighbouring cells.

The following section shows the implementation of the Ewald sum in Ludwig as

written by E. Kim and K. Stratford.
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(a)

r c

(b)

Figure E.1: (a) the cell list on the basis of domain decomposition in 2D (from [13]).
The thick line represents each sub-domain which consists of cells (dash lines) which
constitute the cell list. (b) the long-range dipolar interactions based on the cell
list; for the chosen particle (red), the dipolar energy is calculated by the short-range
contribution (with cyan particles) in real space truncated by rc and the long-range
contribution (with green particles) which is calculated in Fourier space.

E.2 Codes of Ewald summation

void ewald_init(double mu_input, double rc_input) {

int nk;

rpi_ = 1.0/sqrt(PI);

mu_ = mu_input;

ewald_rc_ = rc_input;

alpha_ = 5.0/(2.0*ewald_rc_);

nk = ceil(alpha_*alpha_*ewald_rc_*L(X)/PI);

info("\nThe Ewald sum:\n");

info("Real space cut off is %f\n", ewald_rc_);

info("Ewald parameter alpha is %f\n", alpha_);

info("Dipole strength mu is %f\n", mu_);

info("Self energy (constant) %f\n", ewald_self_energy());

info("Max. term retained in Fourier space sum is %d\n", nk);

nk_[X] = nk;

nk_[Y] = nk;

nk_[Z] = nk;
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E.2. Codes of Ewald summation

kmax_ = pow(2.0*PI*nk/L(X), 2);

nkmax_ = nk + 1;

nktot_ = ewald_get_number_fourier_terms();

info("maximum square wavevector is %g\n", kmax_);

info("Total terms retained in Fourier space sum is %d\n\n", nktot_);

sinx_ = (double *) malloc(nktot_*sizeof(double));

cosx_ = (double *) malloc(nktot_*sizeof(double));

sinkr_ = (double *) malloc(3*nkmax_*sizeof(double));

coskr_ = (double *) malloc(3*nkmax_*sizeof(double));

return;

}

static void ewald_sum_sin_cos_terms() {

double k[3], ksq;

double fkx, fky, fkz;

int kx, ky, kz, kn = 0;

int ic, jc, kc;

int ncell[3];

fkx = 2.0*PI/L(X);

fky = 2.0*PI/L(Y);

fkz = 2.0*PI/L(Z);

ncell[X] = Ncell(X);

ncell[Y] = Ncell(Y);

ncell[Z] = Ncell(Z);

for (kn = 0; kn < nktot_; kn++) {

sinx_[kn] = 0.0;

cosx_[kn] = 0.0;

}

for (ic = 1; ic <= ncell[X]; ic++) {
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Appendix E. Ewald Summation in Ludwig

for (jc = 1; jc <= ncell[Y]; jc++) {

for (kc = 1; kc <= ncell[Z]; kc++) {

Colloid * p_colloid;

p_colloid = CELL_get_head_of_list(ic, jc, kc);

while (p_colloid != NULL) {

double r[3];

kn = 0;

r[X] = p_colloid->r.x;

r[Y] = p_colloid->r.y;

r[Z] = p_colloid->r.z;

ewald_set_kr_table(r);

for (kz = 0; kz <= nk_[Z]; kz++) {

for (ky = -nk_[Y]; ky <= nk_[Y]; ky++) {

for (kx = -nk_[X]; kx <= nk_[X]; kx++) {

double udotk, kdotr;

double skr[3], ckr[3];

k[X] = fkx*kx;

k[Y] = fky*ky;

k[Z] = fkz*kz;

ksq = k[X]*k[X] + k[Y]*k[Y] + k[Z]*k[Z];

if (ksq <= 0.0 || ksq > kmax_) continue;

skr[X] = sinkr_[3*abs(kx) + X];

skr[Y] = sinkr_[3*abs(ky) + Y];

skr[Z] = sinkr_[3*kz + Z];

ckr[X] = coskr_[3*abs(kx) + X];

ckr[Y] = coskr_[3*abs(ky) + Y];

ckr[Z] = coskr_[3*kz + Z];

if (kx < 0) skr[X] = -skr[X];
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E.2. Codes of Ewald summation

if (ky < 0) skr[Y] = -skr[Y];

udotk = dot_product(p_colloid->s, k);

kdotr = skr[X]*ckr[Y]*ckr[Z] + ckr[X]*skr[Y]*ckr[Z]

+ ckr[X]*ckr[Y]*skr[Z] - skr[X]*skr[Y]*skr[Z];

sinx_[kn] += udotk*kdotr;

kdotr = ckr[X]*ckr[Y]*ckr[Z] - ckr[X]*skr[Y]*skr[Z]

- skr[X]*ckr[Y]*skr[Z] - skr[X]*skr[Y]*ckr[Z];

cosx_[kn] += udotk*kdotr;

kn++;

}

}

}

p_colloid = p_colloid->next;

}

/* Next cell */

}

}

}

#ifdef _MPI_

{

double * subsin;

double * subcos;

subsin = (double *) calloc(nktot_, sizeof(double));

if (subsin == NULL) fatal("calloc(subsin) failed\n");

subcos = (double *) calloc(nktot_, sizeof(double));

if (subcos == NULL) fatal("calloc(subcos) failed\n");

for (kn = 0; kn < nktot_; kn++) {

subsin[kn] = sinx_[kn];

subcos[kn] = cosx_[kn];

}
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Appendix E. Ewald Summation in Ludwig

MPI_Allreduce(subsin, sinx_, nktot_, MPI_DOUBLE, MPI_SUM, cart_comm());

MPI_Allreduce(subcos, cosx_, nktot_, MPI_DOUBLE, MPI_SUM, cart_comm());

free(subsin);

free(subcos);

}

#endif

return ;

}

double ewald_real_space_energy(double u1[3], double u2[3], double r12[3]) {

/* u1[3] and u2[3] are dipolar vectors,

r12[3] is the centre-to-centre separation between particles. */

double e = 0.0;

double r;

double erfc(double); /* ANSI C does not define erfc() in math.h. */

r = sqrt(r12[X]*r12[X] + r12[Y]*r12[Y] + r12[Z]*r12[Z]);

if (r < ewald_rc_) {

double rr = 1.0/r;

double b, b1, b2, c;

b1 = mu_*mu_*erfc(alpha_*r)*(rr*rr*rr);

b2 = mu_*mu_*(2.0*alpha_*rpi_)*exp(-alpha_*alpha_*r*r)*(rr*rr);

b = b1 + b2;

c = 3.0*b1*rr*rr + (2.0*alpha_*alpha_ + 3.0*rr*rr)*b2;

e = dot_product(u1,u2)*b - dot_product(u1,r12)*dot_product(u2,r12)*c;

}

return e;

}

double ewald_fourier_space_energy() {
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E.2. Codes of Ewald summation

double e = 0.0;

double k[3], ksq;

double fkx, fky, fkz;

double b0, b;

double r4alpha_sq;

int kx, ky, kz, kn = 0;

ewald_sum_sin_cos_terms();

fkx = 2.0*PI/L(X);

fky = 2.0*PI/L(Y);

fkz = 2.0*PI/L(Z);

b0 = (4.0*PI/(L(X)*L(Y)*L(Z)))*mu_*mu_;

r4alpha_sq = 1.0/(4.0*alpha_*alpha_);

for (kz = 0; kz <= nk_[Z]; kz++) {

for (ky = -nk_[Y]; ky <= nk_[Y]; ky++) {

for (kx = -nk_[X]; kx <= nk_[X]; kx++) {

k[X] = fkx*kx;

k[Y] = fky*ky;

k[Z] = fkz*kz;

ksq = k[X]*k[X] + k[Y]*k[Y] + k[Z]*k[Z];

if (ksq <= 0.0 || ksq > kmax_) continue;

b = b0*exp(-r4alpha_sq*ksq)/ksq;

if (kz == 0) {

e += 0.5*b*(sinx_[kn]*sinx_[kn] + cosx_[kn]*cosx_[kn]);

}

else {

e += b*(sinx_[kn]*sinx_[kn] + cosx_[kn]*cosx_[kn]);

}

kn++;

}

}

}
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return e;

}

double ewald_self_energy() {

double eself;

eself = -2.0*mu_*mu_*(alpha_*alpha_*alpha_/(3.0*sqrt(PI)))*get_N_colloid();

return eself;

}

void ewald_real_space_sum() {

Colloid * p_c1;

Colloid * p_c2;

int ic, jc, kc, id, jd, kd, dx, dy, dz;

double r12[3];

FVector r_12;

FVector COLL_fvector_separation(FVector, FVector);

double erfc(double);

ereal_ = 0.0;

for (ic = 1; ic <= Ncell(X); ic++) {

for (jc = 1; jc <= Ncell(Y); jc++) {

for (kc = 1; kc <= Ncell(Z); kc++) {

p_c1 = CELL_get_head_of_list(ic, jc, kc);

while (p_c1) {

for (dx = -1; dx <= +1; dx++) {

for (dy = -1; dy <= +1; dy++) {

for (dz = -1; dz <= +1; dz++) {
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E.2. Codes of Ewald summation

id = ic + dx;

jd = jc + dy;

kd = kc + dz;

p_c2 = CELL_get_head_of_list(id, jd, kd);

while (p_c2) {

if (p_c1->index < p_c2->index) {

double r;

/* Here we need r2-r1 */

r_12 = COLL_fvector_separation(p_c2->r, p_c1->r);

r12[X] = r_12.x;

r12[Y] = r_12.y;

r12[Z] = r_12.z;

r = sqrt(r12[X]*r12[X] + r12[Y]*r12[Y] + r12[Z]*r12[Z]);

if (r < ewald_rc_) {

double rr = 1.0/r;

double b, b1, b2, c, d;

double udotu, u1dotr, u2dotr;

double f[3], g[3];

int i;

/* Energy */

b1 = mu_*mu_*erfc(alpha_*r)*(rr*rr*rr);

b2 = mu_*mu_*(2.0*alpha_*rpi_)

*exp(-alpha_*alpha_*r*r)*(rr*rr);

b = b1 + b2;

c = 3.0*b1*rr*rr + (2.0*alpha_*alpha_ + 3.0*rr*rr)*b2;

d = 5.0*c/(r*r)

+ 4.0*alpha_*alpha_*alpha_*alpha_*b2;
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udotu = dot_product(p_c1->s, p_c2->s);

u1dotr = dot_product(p_c1->s, r12);

u2dotr = dot_product(p_c2->s, r12);

ereal_ += udotu*b - u1dotr*u2dotr*c;

/* Force */

for (i = 0; i < 3; i++) {

f[i] = (udotu*c - u1dotr*u2dotr*d)*r12[i]

+ c*(u2dotr*p_c1->s[i] + u1dotr*p_c2->s[i]);

}

p_c1->force.x += f[X];

p_c1->force.y += f[Y];

p_c1->force.z += f[Z];

p_c2->force.x -= f[X];

p_c2->force.y -= f[Y];

p_c2->force.z -= f[Z];

g[X] = b*p_c2->s[X] - c*u2dotr*r12[X];

g[Y] = b*p_c2->s[Y] - c*u2dotr*r12[Y];

g[Z] = b*p_c2->s[Z] - c*u2dotr*r12[Z];

p_c1->torque.x += -(p_c1->s[Y]*g[Z] - p_c1->s[Z]*g[Y]);

p_c1->torque.y += -(p_c1->s[Z]*g[X] - p_c1->s[X]*g[Z]);

p_c1->torque.z += -(p_c1->s[X]*g[Y] - p_c1->s[Y]*g[X]);

/* Torque on particle 2 */

g[X] = b*p_c1->s[X] - c*u1dotr*r12[X];

g[Y] = b*p_c1->s[Y] - c*u1dotr*r12[Y];

g[Z] = b*p_c1->s[Z] - c*u1dotr*r12[Z];

p_c2->torque.x += -(p_c2->s[Y]*g[Z] - p_c2->s[Z]*g[Y]);

p_c2->torque.y += -(p_c2->s[Z]*g[X] - p_c2->s[X]*g[Z]);
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p_c2->torque.z += -(p_c2->s[X]*g[Y] - p_c2->s[Y]*g[X]);

}

}

p_c2 = p_c2->next;

}

/* Next cell */

}

}

}

p_c1 = p_c1->next;

}

/* Next cell */

}

}

}

return;

}

void ewald_fourier_space_sum() {

double k[3], ksq;

double b0, b;

double fkx, fky, fkz;

double r4alpha_sq;

int ic, jc, kc;

int kx, ky, kz, kn = 0;

int ncell[3];

ewald_sum_sin_cos_terms();

fkx = 2.0*PI/L(X);

fky = 2.0*PI/L(Y);
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fkz = 2.0*PI/L(Z);

r4alpha_sq = 1.0/(4.0*alpha_*alpha_);

b0 = (4.0*PI/(L(X)*L(Y)*L(Z)))*mu_*mu_;

ncell[X] = Ncell(X);

ncell[Y] = Ncell(Y);

ncell[Z] = Ncell(Z);

for (ic = 1; ic <= ncell[X]; ic++) {

for (jc = 1; jc <= ncell[Y]; jc++) {

for (kc = 1; kc <= ncell[Z]; kc++) {

Colloid * p_colloid;

p_colloid = CELL_get_head_of_list(ic, jc, kc);

while (p_colloid != NULL) {

/* Sum over k to get the force/torque. */

double f[3], r[3], t[3];

int i;

r[X] = p_colloid->r.x;

r[Y] = p_colloid->r.y;

r[Z] = p_colloid->r.z;

ewald_set_kr_table(r);

for (i = 0; i < 3; i++) {

f[i] = 0.0;

t[i] = 0.0;

}

efourier_ = 0.0; /* Count only once! */

kn = 0;

for (kz = 0; kz <= nk_[Z]; kz++) {

for (ky = -nk_[Y]; ky <= nk_[Y]; ky++) {

for (kx = -nk_[X]; kx <= nk_[X]; kx++) {
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double udotk, g[3];

double coskr, sinkr, ckr[3], skr[3];

k[X] = fkx*kx;

k[Y] = fky*ky;

k[Z] = fkz*kz;

ksq = k[X]*k[X] + k[Y]*k[Y] + k[Z]*k[Z];

if (ksq <= 0.0 || ksq > kmax_) continue;

b = b0*exp(-r4alpha_sq*ksq)/ksq;

/* Energy */

if (kz > 0) b *= 2.0;

efourier_ += 0.5*b*(sinx_[kn]*sinx_[kn] + cosx_[kn]*cosx_[kn]);

skr[X] = sinkr_[3*abs(kx) + X];

skr[Y] = sinkr_[3*abs(ky) + Y];

skr[Z] = sinkr_[3*kz + Z];

ckr[X] = coskr_[3*abs(kx) + X];

ckr[Y] = coskr_[3*abs(ky) + Y];

ckr[Z] = coskr_[3*kz + Z];

if (kx < 0) skr[X] = -skr[X];

if (ky < 0) skr[Y] = -skr[Y];

sinkr = skr[X]*ckr[Y]*ckr[Z] + ckr[X]*skr[Y]*ckr[Z]

+ ckr[X]*ckr[Y]*skr[Z] - skr[X]*skr[Y]*skr[Z];

coskr = ckr[X]*ckr[Y]*ckr[Z] - ckr[X]*skr[Y]*skr[Z]

- skr[X]*ckr[Y]*skr[Z] - skr[X]*skr[Y]*ckr[Z];

/* Force and torque */

udotk = dot_product(p_colloid->s, k);

for (i = 0; i < 3; i++) {
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f[i] += b*k[i]*udotk*(cosx_[kn]*sinkr - sinx_[kn]*coskr);

g[i] = b*k[i]*(cosx_[kn]*coskr + sinx_[kn]*sinkr);

}

t[X] += -(p_colloid->s[Y]*g[Z] - p_colloid->s[Z]*g[Y]);

t[Y] += -(p_colloid->s[Z]*g[X] - p_colloid->s[X]*g[Z]);

t[Z] += -(p_colloid->s[X]*g[Y] - p_colloid->s[Y]*g[X]);

kn++;

}

}

}

/* Accumulate force/torque */

p_colloid->force.x += f[X];

p_colloid->force.y += f[Y];

p_colloid->force.z += f[Z];

p_colloid->torque.x += t[X];

p_colloid->torque.y += t[Y];

p_colloid->torque.z += t[Z];

p_colloid = p_colloid->next;

}

/* Next cell */

}

}

}

return;

}
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Supporting Movies

1. fig3-1b.avi: droplet phases in asymmetric quench ψ0 = 0.4 in Λ3 = 643.

2. fig3-2a.avi: bijel in a closed box with solid walls.

3. fig3-2b.avi: droplet phases in a closed box with solid walls.

4. fig4-7a.avi: LB simulation of colloidal ferrofluids in λ = 4 and φ = 0.10.

5. fig4-7b.avi: LB simulation of colloidal ferrofluids in λ = 8 and φ = 0.10.

6. fig5-2a.avi: magnetic bijel with periodic boundary conditions for λ = 4.

7. fig5-6b.avi: bijel under uniform field (αB = 20) for λ = 4.

8. fig5-15c.avi: a droplet under uniform field with capillary energy (ǫ/kBT = 1230).

9. fig5-15d.avi: a droplet under uniform field with capillary energy (ǫ/kBT = 130).

10. fig5-16c.avi: a droplet under field gradient without arteficial buoyancy.

11. fig5-16d.avi: a droplet under field gradient with arteficial buoyancy.
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