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Abstract
Intensive Care Units (ICUs) host patients in critical condition who are being monitored

by sensors which measure their vital signs. These vital signs carry information about

a patient’s physiology and can have a very rich structure at fine resolution levels. The

task of analysing these biosignals for the purposes of monitoring a patient’s physiology is

referred to as physiological condition monitoring.

Physiological condition monitoring of patients in ICUs is of critical importance as their

health is subject to a number of events of interest. For the purposes of this thesis, the

overall task of physiological condition monitoring is decomposed into the sub-tasks of

modelling a patient’s physiology a) under the effect of physiological or artifactual events

and b) under the effect of drug administration. The first sub-task is concerned with mod-

elling artifact (such as the taking of blood samples, suction events etc.), and physiological

episodes (such as bradycardia), while the second sub-task is focussed on modelling the

effect of drug administration on a patient’s physiology.

The first contribution of this thesis is the formulation, development and validation of the

Discriminative Switching Linear Dynamical System (DSLDS) for the first sub-task. The

DSLDS is a discriminative model which identifies the state-of-health of a patient given

their observed vital signs using a discriminative probabilistic classifier, and then infers

their underlying physiological values conditioned on this status. It is demonstrated on

two real-world datasets that the DSLDS is able to outperform an alternative, generative

approach in most cases of interest, and that an α-mixture of the two models achieves

higher performance than either of the two models separately.

The second contribution of this thesis is the formulation, development and validation of

the Input-Output Non-Linear Dynamical System (IO-NLDS) for the second sub-task. The

IO-NLDS is a non-linear dynamical system for modelling the effect of drug infusions on

the vital signs of patients. More specifically, in this thesis the focus is on modelling the

effect of the widely used anaesthetic drug Propofol on a patient’s monitored depth of

anaesthesia and haemodynamics. A comparison of the IO-NLDS with a model derived

from the Pharmacokinetics/Pharmacodynamics (PK/PD) literature on a real-world dataset

shows that significant improvements in predictive performance can be provided without

requiring the incorporation of expert physiological knowledge.
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Chapter 1

Introduction

This thesis treats the subject of developing dynamical probabilistic graphical models

(DPGMs) and how they could be applied to the task of monitoring the physiological

condition of patients whose health is in a critical state.

The importance of such a task is hopefully obvious to the reader. An approach that could

characterise accurately and in a timely manner the changes in the state of health of a

critically ill patient could have highly beneficial consequences. A decision support system

could emerge from such an approach with the goal of providing severity-graded alerts to

the clinical personnel so they could prioritise their scarce time in a more appropriate

manner.

DPGMs are a natural formalism for such a setting. A patient’s health evolves over time

and thus the dynamics of this temporal evolution need to be explicitly captured. Fur-

thermore, a multitude of complex, interacting factors renders this task into one of high

uncertainty, which needs to be incorporated into the modelling process. This leads natu-

rally to the domain of probabilistic calculus and the associated graphical models’ frame-

work.

The remaining of this introductory chapter provides a description of the Intensive Care

Unit setting in Section 1.1, presents the concept of physiological condition monitoring in

Section 1.2 and summarises the contributions of this thesis in Section 1.3. Finally, Section

1.4 provides an overview of the structure of the remainder of the thesis.

1
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1.1 Intensive Care Units

Intensive Care Units (ICUs) constitute departments within hospitals that are especially

designed in order to provide advanced care to patients whose condition is critical and

their health is deemed to be at very high risk. They are staffed with doctors and nurses

who have received special training and they always have a higher staff-to-patient ratio

than other clinical departments, which translates into higher levels of patient monitoring

and eventually reduced incidences of mortality (Pronovost et al., 2002). ICUs are further

divided in sub-categories, depending on their area of specialisation.

The main source of information for this thesis will be extracted from Neuro-ICUs. Neuro-

ICUs host patients in critical condition who have been moved there usually after having

suffered some serious trauma, like traumatic brain injury (TBI). Brain trauma can occur

either after delivery of a focal impact on a specific area of the head, by a sudden acceler-

ation/deceleration within the cranium or potentially by a combination of both movement

and sudden impact (Maas et al., 2008). Frequent brain trauma sources include falls, vehi-

cle accidents and violence.

Neonatal ICUs (NICUs) will form the secondary subject of this thesis’ models. NICUs

specialise in care delivery for ill or prematurely born infants. Often, the lack of devel-

opment associated with a premature birth is the only complication these infants face. In

these cases the goal is simply to provide the necessary physiological support and tackle

any additional complications that may arise. In other cases however, prematurity can be

associated with serious respiratory or cardiovascular problems or other types of pathology

and can result in reduced survival rates (Cooper et al., 1998).

1.2 Physiological condition monitoring

Patients admitted in ICUs need to be, by definition, under constant monitoring. Their vital

signs are being monitored on a 24-hour basis by sensors which measure their heart rate, ar-

terial blood pressure, intracranial pressure, respiratory trace, temperature and other biosig-

nals. The monitoring equipment used to capture these biosignals is highly specialised and

consists of various devices such as electroencephalography (EEG) and electrocardiogra-

phy (ECG) monitors which record a patient’s brain and heart activity, intracranial pres-
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sure monitors that (invasively) measure the pressure that develops inside a patient’s skull,

a ventilator that provides oxygen and mechanically assists patients’ breathing etc. and a

bedside monitor which displays all of the aforementioned biosignals. Also, a number of

intravenous pumps are used to deliver medication to the patient in a controlled manner.

The sampling rate of these monitors can be high (e.g. 125 Hz) which means that the sig-

nals have a very rich structure at fine resolution levels. We refer to the task of analysing

these biosignals for the purposes of monitoring a patient’s physiology as physiological

condition monitoring (or simply condition monitoring).

1.2.1 Clinical need

Physiological condition monitoring of patients in ICUs is of critical importance as their

health is subject to a number of potentially fatal physiological episodes which include but

are not limited to events such as hypotension, bradycardia, atrial fibrillation, sepsis etc.

Therefore, correctly identifying such events can trigger an alarm so that clinical personnel

can tackle the situation appropriately.

Additionally, a variety of artifactual processes are present in such settings where the clin-

ical personnel interact with the patients in various ways (e.g. taking blood samples, per-

forming suctions, recalibrating sensors etc. ). This frequent interaction coupled with the

simplicity of rules behind most ICU alarm systems, which often utilise simple magnitude

thresholds to indicate important changes on the state of a patient’s health as mentioned in

Chambrin et al. (1999), results in a very high false alarm rate which can fluctuate between

72% to 99% according to Sendelbach and Funk (2013). This leads very frequently to the

development of alarm fatigue. Alarm fatigue is defined in that same work as a “sensory

overload when clinicians are exposed to an excessive number of alarms, which can result

in desensitization to alarms and missed alarms”. More importantly even “patient deaths

have been attributed to alarm fatigue”. This is recognised as a major issue in ICU op-

eration and measures that can lead to a considerable decrease of false alarms need to be

taken.

Furthermore, frequent interactions result in the observed data being “contaminated” with

artifacts that can potentially interfere with the task of modelling critical events that are

solely due to the physiology of the patient (e.g. hypotension or bradycardia) and not

due to some external interference (e.g. blood sample). In addition, precise modelling
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of artifactual processes can indirectly increase a model’s performance on the inference of

physiological patterns. This occurs because a large number of potential training data for

physiological patterns need to be discarded due to the presence of artifact. For example,

a high percentage of potential hypotension episodes end up being discarded if any of the

observed channels’ values lie outside the range of acceptable physiological values. How-

ever, the latter is a usual case when an artifactual process occurs, thus causing clinicians

to discard a potentially valid training instance. More specifically, in Tarbet, 2012 it was

shown that out of 3158 potential hypotension events (collected from a cohort of 256 pa-

tients), 1174 (27%) had to be rejected due to the fact that the recorded blood pressure was

found to be outside the physiologically acceptable values, most likely due to an artifactual

process such as the taking of a blood sample. Correctly identifying such artifactual pro-

cess and at the same time providing an estimate of the underlying physiological process

could result in “salvaging” many training instances.

1.3 Contributions

This thesis aims to develop models that could be used to tackle the issues identified in the

previous section. In summary, we aim to develop a model that will be able to:

i) Identify artifactual events in order to reduce false alarms.

ii) Track the underlying physiology of a patient in the presence of artifact.

iii) Identify events of physiological importance.

To that end, the following contributions have been made:

a) The Discriminative Switching Linear Dynamical System (DSLDS) addresses all

three of the above points and was first published in Georgatzis and Williams (2015).

The DSLDS is described in Chapter 4.

b) The Input-Output Non-Linear Dynamical System (IO-NLDS) tackles point iii) above

and improves on the modelling task at hand by incorporating the effects of drug in-

fusions, in contrast to the DSLDS which does not take those into account. The

IO-NLDS was first published in Georgatzis et al. (2016b) and is described in Chap-

ter 5.
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c) Finally, previous work on Factorial Switching Linear Dynamical Systems which

was conducted by Quinn et al. (2009) in the context of NICUs, was extended to

adult Neuro-ICUs by Georgatzis et al. (2016a).

The ultimate goal of this project is to implement an efficient and effective model which

could be used as a reliable decision support system by medical staff. We hope that by

accurately modelling various processes that occur in the Neuro-ICU environment we

could aid in the reduction of uncertainty and in the increase of predictive capability when

medical decisions are being made. This could lead to a decrease in the rate of poor pa-

tient outcomes and thus the author believes that it is a project with a deeply beneficial

prospect.

1.4 Structure of thesis

The remainder of this thesis is structured according to the following plan: Chapter 2 pro-

vides an exposition of the datasets that will be used in this thesis and contains details

about the acquisition and preprocessing stages, preceding their usage in subsequent chap-

ters. Chapter 3 provides an overview of the relevant literature and work that formed the

basis of this thesis both in terms of methodologies and applications. In Chapter 4, the

first research contribution of this thesis is described via the presentation of the DSLDS.

Chapter 5 contains the details about the second research contribution of this thesis which

is comprised of the formulation, development and validation of the IO-NLDS. Finally,

Chapter 6 concludes by summarising this work in light of the presented material and

includes suggestions for future work.





Chapter 2

Data

The purpose of this chapter is to provide a description of the data that will be used in

subsequent chapters in order to achieve the tasks set out in the introductory chapter. Data

constitute the driving force behind any machine learning algorithm and indeed provide

the testbed for any proposed model. Most modelling assumptions require a large quantity

of data and the models’ outputs tend to become more reliable as the number of datapoints

increases. In the context of physiological condition monitoring, datasets comprise pri-

marily of patients’ vital signs, which reflect the evolution of a patient’s physiology across

time. Additionally, in some cases, annotations are provided by expert clinicians with re-

spect to clinical events of interest. Thus, in those cases, vital signs are accompanied by

labels which leads to the task of supervised learning. Pertaining to the sensitive nature of

medical data, it is not as straightforward to obtain high quality data from a large cohort of

patients. However, it is reasonably feasible to obtain a considerable amount of data per

patient in most cases.

Vital signs belong to a category of measurements that are indexed by time with successive

observations usually exhibiting high correlations. These observations constitute what is

known as sequential data or time series, which describes their temporal character, while

the less descriptive term, signal, is also frequently used. All these terms will be used

interchangeably within this thesis.

The remaining structure of this chapter is as follows: In Section 2.1 a brief description

of the various collected vital signs is given. In Section 2.2, details about the various

data sources and the data preprocessing stages are given. In Section 2.3, a description of

7
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clinical events of interest is given which are broken down into: i) artifactual events and ii)

physiological events. In the same section, we describe the process that was followed in

order to annotate the aforementioned events. Finally, this chapter concludes with a brief

summary of the presented material in Section 2.4. Parts of this chapter are based on Lal

et al. (2015).

2.1 Vital signs

Vital signs are defined as signs of life and are used as indicators of a patient’s condition.

These include various measurements such as blood pressure, heart rate etc. which collec-

tively characterise the patient’s observable physiological status. Since the true physiology

of a patient is always latent and cannot be observed directly, these vital measurements are

the basis upon which all inferences regarding a patient’s physiology must be drawn. What

follows is a brief description of the vital signs used within this thesis.1 Since they are col-

lected from various hospitals and can refer to either adults or neonates, normal ranges can

vary depending on each case. Also, some vital signs are only collected for adults, whereas

others are only collected for neonates (this pertains to the datasets used in this thesis and

is not a general remark).

Blood pressure

Blood pressure (BP) is defined as the pressure exerted by the blood against the walls of

the blood vessels, especially the arteries (arterial BP) and it depends on the strength of

the heartbeat, the elasticity of the arterial walls, the volume and viscosity of the blood,

and a person’s health, age, and physical condition. Blood pressure is measured in mil-

limeters of mercury (mmHg) and is usually expressed in terms of systolic (maximum) BP

(BPsys) and diastolic (minimum) BP (BPdia) which are acquired during the duration of

a cardiac cycle. Their (weighted) average is also frequently used and referred to as mean

BP (BPmean). BPsys is measured during systole, when the ventricles contract, pumping

blood into the arteries and BPdia is measured during diastole, when the ventricles relax

and the heart fills with blood. Normal resting BP ranges for adults are 90–119 mmHg for

BPsys and 60–79 mmHg for BPdia, according to the American Heart Association, while

1Definitions were taken from http://medical-dictionary.thefreedictionary.com/.

http://medical-dictionary.thefreedictionary.com/
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for neonates the corresponding ranges are 27–55 mmHg and 23–43 mmHg as mentioned

in Quinn (2007, table 2.2).

Heart rate

Heart rate (HR) is defined as the number of heartbeats per unit of time, and is most often

measured in beats per minute (bpm). The normal resting HR range for adults is 60–100

bpm according to the American Heart Association, while for neonates it is 119–175 bpm

according to Quinn (2007, table 2.2).

Intracranial pressure

Intracranial pressure (ICP) is defined as the pressure of the cerebrospinal fluid in the

subarachnoid space, which is the space between the skull and the brain. ICP is measured

in millimeters of mercury (mmHg) and its normal resting range is at 7–15 mmHg for an

adult in the supine position as suggested by Steiner and Andrews (2006). Similarly to

the BP signal, ICP can be expressed in terms of systolic ICP (ICPsys) and diastolic ICP

(ICPdia) depending on the phase of the cardiac cycle (systole or diastole). ICP is only

collected in the case of adults. In this thesis we focus on ICPsys and thus the abbreviations

ICP and ICPsys will be used interchangeably.

Respiratory rate

Respiratory rate is defined as the frequency of breathing, usually expressed in breaths

per minute. Its normal resting range for adults who are spontaneously breathing is 12–

20 breaths per minute according to Ganong and Barrett (1995). Patients admitted in the

ICU most often receive mechanically assisted ventilation and thus their respiratory rate

is decided by the clinical personnel. The respiratory rate is only collected in the case of

adults.

Bispectral index

The bispectral index (BIS) is a statistically derived, dimensionless scale that measures

depth of anaesthesia and can take values from 0–100. It is a weighted sum of several fea-

tures derived from the electroencephalogram (EEG), including time domain, frequency

domain, and higher order spectral features. A BIS of 100 means that the patient is fully
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conscious, while zero values correspond to EEG silence. A value of 40–60 is consid-

ered to be within the appropriate range for general anaesthesia. The exact algorithm used

for the calculation of BIS is proprietary but an overview of the methodology is as fol-

lows: First, the digitised EEG is filtered to exclude low and high frequency artifacts and

is further divided into two-second segments. Next, a set of artifacts, such as electrocar-

diogram (ECG) and/or pacer spikes, eyeblink events, low-frequency electrode noise etc.

are detected and removed. After the EEG signal is deemed artifact-free, two different

algorithms, called burst suppression ratio (BSR) and QUAZI, are used to calculate the

degree of burst supression2 observed in the EEG segments. After those two time-domain

features, another two, frequency-domain features are calculated, called BetaRatio and

SynchFastSlow. BetaRatio is the log ratio of power in two empirically chosen frequency

bands: log((P30−47Hz)/(P11−20Hz)) and is computed on the Fourier transform3 of the orig-

inal EEG signal. The SynchFastSlow feature is the log ratio of the sum of all bispectrum

peaks in the band from 0.5–47 Hz over the sum of the bispectrum in the band from 40–47

Hz, where the bispectrum is a higher-order spectrum (compared to the power spectrum

one obtains from the standard Fourier transform). The resulting index is then defined as

a proprietary combination of those four features. More details about BIS can be found in

Rampil (1998). BIS is only collected in the case of adults.

Partial pressure of gases

Various gases are dissolved in a patient’s blood, and the partial pressure is used to measure

the amount of each. It is defined as the amount of pressure that a particular gas would

exert on a container if it was present without the other gases. In the case of neonates a

transcutaneous probe, placed on the chest, measures the concentration of oxygen (TcPO2)

and carbon dioxide (TcPCO2) in capillary blood underneath the skin by heating the skin

to improve perfusion and measuring how much of each gas is emitted through the skin

electrochemically. Partial pressures are measured in kiloPascal (kPa) and normal ranges

for neonates are 5.5–13.5 kPa and 2.6–7 kPa for oxygen and carbon dioxide respectively.

These measurements are only considered in the case of neonates for the purposes of this

thesis.

2Burst suppression is a distinctive EEG pattern, during which periods of normal to high voltage alternate
with periods of low or even zero voltage.

3The Fourier transform is a way of transforming a time series from the time domain to the frequency
domain. A detailed exposition of frequency-domain (also known as spectral) methods is outside the scope
of this thesis but more details can be found in Brigham (1988).
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Oxygen saturation

A pulse oximeter, attached to the foot of a neonate, measures the saturation of oxygen

(SpO2) in arterial blood. SpO2 is defined as what proportion of the blood’s capacity to

carry oxygen is being utilised and is expressed as a percentage. In the case of neonates,

the pulse oximeter shines two wavelengths of light through the neonate’s foot into a pho-

todetector which measures the changing absorbance at each of the wavelengths, allowing

it to determine the absorption spectrum of oxygenated hemoglobin due to the pulsing

arterial blood. These measurements are only considered in the case of neonates for the

purposes of this thesis.

Temperature

The core body temperature (CT) and peripheral temperature (PT) are measured by two

probes, one of which is placed under the neonate’s back and the other is attached to a

foot. Temperature is expressed in degrees Celsius (◦C) and normal ranges for neonates are

35.7–38.5 ◦C for CT and 34.6–38.0 ◦C for PT. These measurements are only considered

in the case of neonates for the purposes of this thesis.

Resting values

It should be noted that the provided normal resting value ranges should not be expected to

always represent typical values in an ICU environment. In an ICU it is not straightforward

to provide absolute normal values for vital signs since a) there is baseline variability in

the population (e.g. a given BPsys measurement may be normal for a young woman but

severely hypotensive for an older man) and b) patient’s physiology is often aggressively

manipulated. For example a given BPsys measurement which would be considered very

high under some circumstance might be regarded normal if the patient is under the influ-

ence of a vasoconstrictor4. To some degree, an indication of normal value ranges in an

ICU environment can be obtained via the inspection of “early warning scores” definitions,

such as the National Early Warning Score (NEWS) as formulated by Smith et al. (2013),

where a score of 0 indicates normality, while higher scores indicate increasing levels of

abnormality/criticality of a patient’s physiology.

4Vasoconstrictors are medications causing vasoconstriction, which is the narrowing of the blood vessels
resulting from contraction of the muscular wall of the vessels.
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2.2 Data acquisition and preprocessing

The data have been mainly obtained at two sites: a) the Southern General Hospital (SGH)

in Glasgow and the Golden Jubilee National Hospital (GJNH) in Clydebank. We note that

later in this thesis, another dataset collected from 15 neonates from the Edinburgh Royal

Infirmary (ERI) will be used.

Data acquisition and distribution at a large scale for medical data is considerably restricted

by regulations that govern the handling of data of such a sensitive nature. All data used

in this thesis have undergone through the appropriate patient consent forms and approval

requests, and furthermore they have been deidentified prior to research use. It should also

be noted that the collected data are the product of copious and continuous work involving

multiple parties for a period of approximately three years.

More specifically, the SGH dataset is part of routinely collected clinical data and none of

the administered clinical care was adapted on the basis of this collection proces. There-

fore, no formal approval from the Research Ethics Service was required but instead ap-

proval was provided by the local Caldicott Guardian5

The GJNH dataset was obtained from patients who were formally consented for an in-

dependent clinical research project. Patients were approached during their pre-operative

clinic attendance and provided with a written and verbal description of the study proce-

dure. They were either consented at this stage or allowed further time to consider their

involvement prior to attendance on the day of surgery. The analysis carried out in the

context of this thesis falls within the objectives of the original clinical study.

SGH

Data from seven traumatic brain injury (TBI) and two subarachnoid haemorrhage (SAH)

adult patients were collected in the Neuro-ICU of the SGH. An average of 33-hour periods

were collected from each of these patients. The collected signals were arterial blood

pressure (ABP), ECG, pulse oximetry pulse, intracranial pressure (ICP), end tidal CO2

(EtCO2) and the respiratory signal (Resp), from the patients’ bedside Philips Intellivue

monitors. The ECG signal was sampled at a frequency of 500Hz, while the remaining

signals were sampled at the lower frequency of 125 Hz. For seven out of the nine patients,

the waveform data were recorded into a laptop computer which was connected to the

5More details can be found in https://www.gov.uk/government/groups/uk-caldicott-guardian-council.



2.2. Data acquisition and preprocessing 13

bedside monitor. The remaining two patients’ data were recorded and transmitted via the

waveform capture software ixTrend from ixellence GmbH (2015). This software captures

waveform data from all available channels and transmits them on a minute-by-minute

basis via a local area network to a SQL database that is hosted on a local server.

The waveform data, which are sampled at a high frequency of 125/500 Hz, are used as

source signals in order to produce second-by-second summary values of vital signs. As

it has been shown in Quinn (2007), this temporal resolution is more than adequate for

the purposes of physiological condition monitoring. The approach of deriving summary

measures from high-frequency waveform data is described in detail in Shaw (2013) which

in turns makes use of the methodology described in Clifford (2002). The key idea behind

the approach is that for each of the aforementioned signals, an index channel is selected

first. The purpose of the index channel is to facilitate the identification of a physiologically

meaningful interval within which the original signal can be then measured. For example,

the ECG is used as the index channel for ABP. In order to derive second-by-second ABP

measurements, the ECG is processed in order to identify the R–R intervals6 and then the

original signal is normalised, filtered (according to a band-pass filter with a 5–15Hz band)

and is subsequently differenced and squared. Finally a running average of the transformed

signal is calculated and the results are resampled to 1 Hz. For example, in the case of the

ABP signal, the systolic, mean and diastolic channels are obtained per R–R interval and

are then resampled.

GJNH

In this case, data from 40 adult patients were collected in the Neuro-ICU of the GJNH.

The collected signals were systolic, mean and diastolic BP, HR and Resp. Additionally,

the BIS signal was collected for 27 out of the 40 patients. The data were recorded into

a laptop computer which was connected to the bedside monitors and they were subse-

quently transmitted to a remote server hosted by a third party. All derived vital signs

are available at a sampling period of Ts = 15 seconds, with the exception of BIS which

was sampled every 5 seconds and was subsequently downsampled to 15 seconds. Addi-

tionally, drug infusion rates were recorded from the bedside drug infusion pumps. The

sampling frequency varies, with higher frequency sampling occurring during periods of

rapid infusions (with highly variable infusion rates), while lower frequency sampling took

6An R–R interval is the interval between two successive ventricle depolarisations in the heart.
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place while the infusion rate was more constant. These infusion rates were downsampled

to 1 Hz for the rapid-infusion stage and linearly interpolated to 1 Hz for the slow-infusion

stage, and were subsequently downsampled to 15 seconds.

Only a subset of the vital signs that were collected from those two sites will be used in

subsequent chapters. A list of those is given in Table 2.1 for reference purposes.

Table 2.1: List of captured/derived channels from SGH and GJNH that will be used later in

this thesis.

Vital sign Abbreviation

Blood pressure BP

Heart rate HR

Intracranial pressure ICP

Bispectral index BIS

ERI

Data comprising 24-hour periods from 15 neonates of the NICU of the ERI have been

collected for the purposes of the analysis conducted in Quinn (2007) and will be used

for the purposes of this thesis as well. In the case of ERI, all signals are collected by

the Siemens SC7000 patient monitor (Dräger Medical, 2007). ECG measurements are

recorded at a sampling rate of 225Hz and heart rate measurements are obtained based on

an average of identified beats in the preceding 15 seconds. ABP is measured internally

by the monitor at a maximum frequency of 32Hz. When ECG measurements are not

available, the ABP waveform is used to calculate the heart rate as a smooth periodic signal

with peaks produced by the contraction of the heart muscle. A number of additional vital

signs, namely TcPO2, TcPCO2, SpO2, PT and CT are collected as described in Section

2.1.

2.3 Events of interest

The collection of vital signs serves the purpose of identifying various events of clinical

interest. These are decided after close consultation with clinical experts and are chosen so
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as to include events that are considered to be of major concern in the quest for effective

physiological condition monitoring.

2.3.1 Artifactual events

Artifactual events refer to changes in the observed vital signs of a patient that are not

associated with a change in their physiology but are rather the product of an artifactual

process, such as e.g. the taking of a blood sample. Since, by definition, in ICUs there is a

high degree of interaction with the patient by the clinical personnel, artifactual events are

a very common occurrence. As such, they contribute considerably to the high false alarm

rate observed in ICUs and to the corresponding alarm fatigue as described in Section 1.2.

What follows is a description of the most commonly occurring artifacts in the Neuro-ICU

of the SGH.

Blood samples

For the accurate modelling of blood sample events, BPsys and BPdia are a sufficient set

of channels. Blood pressure in adult patients is measured with the help of an arterial

line (A-line) which is usually inserted into the radial artery of the patient. The A-line is

connected with a transducer which converts the arterial blood pressure at one end to the

actual readings on the monitoring device at the other end. A three-way tap is connected

in the A-line which can be set in one of three modes: a) open to the arterial line (for

measuring the arterial blood pressure) b) open for taking blood samples and c) open to

the air for calibration purposes.

Blood samples are taken from patients in a Neuro-ICU on a regular basis as a way of

keeping track of the physiological indices (i.e. quantities measured through blood tests

such as the concentration of C-reactive protein etc. ) of the patient. Thus, a long period of

channel readings can always be expected to contain a significant amount of blood sample

events. There are four steps that are followed when a blood sample is being taken: 1)

the three-way tap is turned so that the blood can be diverted to a syringe for the needs of

blood sampling. During this stage the patient is disconnected from the transducer and a

saline pump acts against it, causing an artifactual ramp to the BP measurements. 2) The

transducer is exposed to the air for calibration purposes, causing measurements to drop

to zero. 3) The tap is turned to its original configuration and BP measurements continue



16 Chapter 2. Data

as normal. 4) The tap is flushed with a pulse of saline solution to remove blood residues

and avoid infection, causing a sharp increase in measurements. A state transition diagram

describing this process is shown in Figure 2.1, while two representative examples are

shown in Figure 2.2.

Ramp

Stable

Zero

Flush

Figure 2.1: State transition diagram of a blood sample event’s stages. In practice, all

transitions are allowed.

Suctions

Another very frequently occurring event during the hospitalisation of a patient in a Neuro-

ICU is that of endotracheal suctioning. During that event an endotracheal tube is inserted

in the airway of the patient with the aim of removing pulmonary secretions that have

accumulated over time in the patients pulmonary system. Its high frequency is due to

the high importance of keeping the pulmonary system of a patient free of secretions.

Suctioning is usually combined with a sharp increase in the values of (almost) all observed

channels. It can also induce a coughing episode in the patient if the endotracheal tube

comes in contact with the carina (the lowest part of the trachea), which causes a reflexive

reaction that leads to coughing. A coughing episode is reflected in the observed channels

in a very similar way to suctioning and the two events are not easily distinguishable. Two

representative examples of suction events are shown in Figure 2.3.

Damped traces

Another frequently occurring artifactual event in the Neuro-ICU is a damped trace event.
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Figure 2.2: Two examples of blood sample events with the annotated periods in gold colour.

Blood samples affect only the BP channels.
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Figure 2.3: Two examples of suction events with the annotated periods in gold colour.
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A damped trace occurs when blood residues are accumulated over time within the ar-

terial line causing its occlusion, which in turn leads to a damping of the observed BP

signals. The BPsys and BPdia gradually converge to similar values, thus obscuring the

BP corresponding to the patient’s stable condition. This damping is usually resolved when

noticed by a nurse via a flushing of the arterial line which clears it from the blood residue

buildup. Since a damped trace can remain unnoticed for several hours at a time (e.g. dur-

ing a night shift), it can have a considerable contribution to the artifact contamination of

the recorded values. Two representative examples of damped trace events are shown in

Figure 2.4.
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Figure 2.4: Two examples of damped trace events with the annotated periods in gold

colour. Damped traces affect only the BP channels.

Other

A plethora of other artifactual events have also been annotated. However their frequency

and duration compared to the already mentioned events were not deemed high enough
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to be included separately into the modelling process within this thesis. These artifacts

include events such as patient movement/turning, hygiene (oral, eye care), physiotherapy,

clinical examination, change of ventilator circuit, generic signal deterioration and other

minor events. These were collectively assigned to a special category and will be modelled

accordingly in later chapters. These “other” artifactual events are collectively called the

“X-factor” category and two representative examples are shown in Figure 2.5.
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Figure 2.5: Two examples of abnormal events (X-factor) with the annotated periods in gold

colour.

As mentioned already, data from the ERI were also used. These included annotated ar-

tifactual events which included: a) blood sample events, b) disconnections of the tem-

perature probe, c) openings of the neonates’ incubator and d) other artifactual events

(X-factor). These are described in detail in Quinn (2007, sec. 2.3).
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2.3.2 Physiological events

Physiological events refer to changes in the observed vital signs of a patient that reflect

a change in their underlying physiology and can be associated with potentially critical

situations. A patient admitted in an ICU is by definition in a critical condition, but shortly

after admission a stabilisation of the patient’s condition is usually achieved. This stable

condition is usually desirable as it allows for the gradual healing of the patient in the

absence of other complications.

Stability

Stability characterises the physiology of a patient when the patient is stable, and no arti-

factual/physiological factors are in effect. These periods are important for our application

because they provide the baseline with respect to which the models for the artifactual/-

physiological factors will be fitted. An example of stable physiology is given in Figure

2.6.
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Figure 2.6: Example of a stable patient’s vital signs.
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Drug effects

The physiology of patients admitted in ICUs is expected to be affected by the drugs which

are administered to them. The collected drug infusions from the GJNH correspond to drug

dosages of the anaesthetic drug Propofol. Propofol is a sedative and hypnotic drug with

rapid onset and short duration of action, which is used intravenously for induction and

maintenance of general anesthesia. It thus has the direct physiological effect of increasing

a patient’s depth of anaesthesia (translating into a decrease of BIS) and the side effect of

also decreasing a patient’s blood pressure. This latter side effect can sometimes lead to

episodes of hypotension (see next paragraph). A representative example of observed vital

signs under the effect of a Propofol infusion are shown in Figure 2.7.
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Figure 2.7: Example of vital signs under the effect of drug (Propofol) administration.

Hypotension

Hypotension events will not be directly modelled in the context of this thesis but can be

accounted for indirectly by modelling drug effects. According to the EUSIG definition

(Jones et al., 1994), a hypotension event refers to severely low BP (BPsys < 90 mmHg

or BPmean < 70 mmHg) for at least five minutes and is associated with adverse patient

outcome and increased mortality. Thus, averting such episodes could be highly beneficial
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to a patient’s physiology. Direct modelling of hypotension events is not of interest as

they are algorithmically defined and thus identification of such events is trivial. However,

predicting their onset is important (see e.g. Donald, 2014) but not within the scope of this

thesis.

Bradycardia

Bradycardia is the only known physiological factor which will be explicitly modelled

within this thesis (since it was the only one that annotations were available for) and is

encountered in the case of the ERI NICU. It refers to a considerable decrease in the heart

rate and short incidences can be frequent in neonates. Its severity can vary from non-

concerning to critical. More details are provided in Quinn (2007, sec. 2.4.1).

Other

Finally, as in the case of artifactual events, there is a variety of physiological events that

are annotated by expert clinicians but are not explicitly modelled due to their rarity7.

These are treated as a single category (X-factor) and include physiological events such as

tachycardia (or tachyarrhythmia), atrial fibrillation, painful stimuli etc.

2.3.3 Data annotation

Data were annotated in two stages in the case of the SGH. First, start times of artifactual

events were noted by the nursing staff and/or clinical experts at bedside. Then, a single

expert clinician would retrospectively annotate the high frequency data using the bed-

side notes of start times of events to pinpoint exactly the intervals of artifactual patterns

that were spotted in the patients’ measurements. During this second stage, the clinician

also provides annotations of physiological processes that manifest themselves as abnor-

mal traces in the high frequency data. In the case of the ERI dataset, fifteen (one for each

neonate) 24-hour periods were annotated by two clinical experts. Near the start of each

period, a 30 minute time segment was used as an example of stability. Each of a set of

known physiological and artifactual patterns of interest were then also annotated. Initial

estimates as to the durations of these events were made by the author and were subse-

quently audited and amended as necessary by the clinical experts. The annotation process

7These events are deemed rare in the context of the datasets used in this thesis.
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is described in more detail in Quinn (2007, sec. 7.1). No expert clinician annotations were

provided for the GJNH dataset.

2.4 Summary

In this chapter a description of the various datasets that will be modelled in subsequent

chapters has been given. Brief definitions of the various collected vital signs have been

given and a description of the mechanisms that were used to collect, preprocess and an-

notate the available datasets was subsequently presented. Furthermore, descriptions and

examples of clinical events of interest that will be the focus of the following chapters

were given. The focus was centred around a limited number of clinical events that were

deemed important by clinician experts. Also, the exposition was primarily based on the

data collected from the SGH and GJNH as this thesis analyses these datasets for the first

time. A more concise description was presented in the case of the ERI dataset as this has

been described in detail in Quinn (2007).





Chapter 3

Background & related work

This chapter contains an overview of the work which the material presented in Chapters

4 and 5 is based and builds upon. Firstly, we introduce some basic models in Section 3.1,

which constitute components of more complex ones presented later or serve as simple

baselines for comparison purposes. Secondly, in Section 3.2, the focus turns on models

that are developed explicitly for modelling sequential data and thus comprise a more

natural approach to this thesis’ goals. Furthermore, in Section 3.3 a review is conducted

on models that have been developed in relevant sub-fields for the purpose of modelling

the behaviour of drugs after their administration into a patient’s body. Section 3.4 reviews

prior work which has been concerned with the application of machine learning methods

for the task of physiological condition monitoring and finally Section 3.5 concludes with

a summary of this chapter.

3.1 Basic models

In this section we present a brief overview of a series of models for regresssion and clas-

sification which will be used as components of the more complex models presented in

subsequent chapters. These models do not explicitly model the temporal continuity un-

derpinning the processes that give rise to sequential data. Rather they rely on the assump-

tion that the modelled data are drawn independently from the same distribution, which

are also known as independent and identically distributed (i.i.d.) data. Such an assump-

tion might be restrictive when sequential data are the object of modelling, but nonetheless

25
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these models can still be of considerable use, especially when coupled with time-series

models and/or when the temporal aspect can be captured implicitly.

3.1.1 Linear regression

Perhaps the simplest model that can be used for regression is linear regression. According

to this model, each observation y∈R can be modelled as a linear combination of a number

of input variables x ∈ Rdx such that a prediction made by the model is of the form:

ŷ = w0 +
dx

∑
j=1

w jx j , (3.1)

where w = [w0 w1 . . . wdx ]
> denote weights to be estimated. The above equation is

usually presented as ŷ = w>x for compactness where an extra element equal to 1 is pre-

pended to the input vector so that x ∈ Rdx+1. Assuming we have a set of training data

{(xi,yi), ...,(xN ,yN)}, the parameters of the model are usually fitted via the least squares

method which minimises the residual sum of squares (RSS):

RSS(w) =
N

∑
i=1

(yi− ŷi)
2 . (3.2)

Differentiating eq. 3.2 with respect to w and setting to zero yields the formula for esti-

mating the weights w. It can be shown that minimisation of the RSS is equivalent to max-

imising the likelihood function under the assumption that the residuals follow a Gaussian

distribution, as shown e.g. in Bishop (2006, sec. 3.1.1). Linear regression is a very well

studied model and one can find many relevant examples in the literature apart from the

already cited reference; thus, further exposition of this model within this thesis is deemed

unnecessary.

3.1.2 Logistic regression

The linear regression model can be adapted to classification tasks, giving rise to what is

known as logistic regression. The same modelling idea as in linear regression forms the

basis of logistic regression with the addition that the output of the model is non-linearly

transformed so as to always reside within the [0,1] interval, which is more appropriate for
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classification purposes. This is done as follows:

ŷ = σ(w>x) , (3.3)

where σ is the logistic sigmoid function:

σ(x) =
1

1+ exp(−x)
. (3.4)

The logistic sigmoid has the convenient property that it maps the whole real line to the

[0,1] interval and thus its output can be interpretted as the probability of an input belong-

ing to a class or not (after an appropriate choice of a threshold). Parameter estimation

cannot be conducted in closed form as in the case of linear regression but rather an iter-

ative algorithm like iteratively reweighted least squares needs to be used. Further details

can be found in Bishop (2006, sec. 4.3).

3.1.3 Decision trees

So far, the presented models could only model linear relationships between inputs x and

output y. One way of relaxing this rigid assumption is via a decision tree. Decision trees

recursively partition the input space into rectangular, axis-aligned regions and then fit a

single model (e.g. a constant for regression or a majority vote for classification) within

each region. As such, decision trees can model more complex input-output relationships.

Further analysis is outside the scope of this thesis but more details can be found in e.g.

Hastie et al. (2009, sec. 9.2).

3.1.3.1 Random forests

Decision trees can produce very noisy predictions and are also prone to overfitting when

grown in an unbounded fashion. One way of combating both of those limitations is via

the use of random forests, which were introduced by Breiman (2001). A random forest is

an ensemble of decision trees, where each tree is trained on a bootstrapped sample of size

N and for each node in the tree, a random sample of dr (< dx) variables is selected and the

optimal variable/splitting point is selected amongst those dr variables. After all trees of the

forest are fully grown, a prediction is made either as the average of the tree predictions (for

regression) or as their majority vote (for classification). More details are given in Hastie
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et al. (2009, chap. 15). This bootstrap aggregation (called bagging) and random sampling

of variables has the effect of reducing the variance of the ensemble’s output and can lead

to significantly better performance. Indeed, extensive benchmarks conducted in Caruana

and Niculescu-Mizil (2006) and Fernández-Delgado et al. (2014) place random forests

amongst the best performing models, while being almost hyperparameter-free1.

3.2 Dynamical models

The models presented so far do not attempt to explicitly model the temporal aspect of a

time-series. Our attention is now turned on dynamical models which attempt to capture

explicitly the temporal behaviour of the observed data. These models also have a rich

literature.

Graphical models

As this thesis is centred around probabilistic modelling, graphical models will be often

used as a way of representing the probabilistic relationships within the presented models.

A graphical model is a diagrammatic representation that merges elements from graph

theory and probability theory into a single, compact form. A graph is comprised of nodes

and edges connecting the nodes. In the probabilistic graphical model framework, nodes

represent random variables and edges represent probabilistic dependences between these

variables. Edges can be directed or undirected but we will only focus on directed edges in

this thesis. The overall graph then describes the way in which the joint distribution over all

random variables decomposes according to the dependences specified by the edges. In this

thesis, shaded nodes will be used to denote observed random variables, while unshaded

(white) nodes will be used to denote unobserved (latent) random variables. Furthermore,

square nodes will denote discrete random variables, while circular nodes will be used

for continuous ones. An excellent tutorial on graphical models is given by Heckerman

(1998), while a very detailed textbook is provided by Koller and Friedman (2009).

1Increasing the number of trees does not result in overfitting and “using fully grown trees seldom costs
much” as reported in Hastie et al. (2009, 15.3.4).
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3.2.1 Autoregressive processes

We start with the presentation of what is considered a classical approach to time-series

analysis. This approach was introduced by the seminal work of Box and Jenkins (1970).

Other, introductory textbooks, include Chatfield (2003) and Diggle (1990). A more ad-

vanced exposition is given by Brockwell and Davis (2009).

One of the simplest time-series models is an autoregressive (AR) process. An AR process

models an observation y at time t as a linear combination of a number of p previous

observations. As such, the previous observations of the time-series regress on the current

one and hence the term “autoregressive”. The simplest AR process is an AR(1) process,

such that yt = αyt−1 +wt , where wt’s at different times are assumed independent with

wt ∼N (0,σ2
w), and in general an AR(p) process is given by:

yt =
p

∑
i=1

αiyt−i +wt . (3.5)

The graphical model of an AR(2) process is shown in Figure 3.1.

yt−2 yt−1 yt yt+1 yt+2

Figure 3.1: Graphical model of an AR(2) process.

3.2.2 Moving average processes

Another simple time-series model is a moving average (MA) process. An MA process

models an observation y at time t as a linear combination of a number of q+ 1 previous

and current white noise terms. In general an MA(q) process is given by:

yt =
q

∑
j=0

β jwt− j . (3.6)

AR(p) and MA(q) processes can be combined into ARMA(p,q) processes.
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3.2.3 ARIMA processes

An AR process assumes that the modelled time series is (at least weakly) stationary2. Real

data rarely exhibit stationarity but a non-stationary process can be rendered (near) station-

ary via differencing. Applying then an AR process on differenced data yields:

yt− yt−1 =
p

∑
i=1

γi(yt−i− yt−i−1)+wt . (3.7)

As shown in Quinn (2007), this model can be applied to the initial, undifferenced data

such that:

yt =
p+1

∑
i

αiyt−i +wt , (3.8)

where α1 = 1+ γ1, αi,1<i≤p = γi− γi−1 and αp+1 = −γp. The first-order differencing of

eq. (3.7) can be generalised to d-order differencing, such that:

zt = ∇
dyt =

p

∑
i=1

γizt−1 +wt , (3.9)

which provides an example of an autoregressive integrated moving average ARIMA pro-

cess. Eq. (3.9) is an example of an ARIMA(p,d,0) process which denotes an AR(p) pro-

cess on data that have been differenced d times (also denoted as ARI(p,d)). In general,

a moving average (MA) component can be included in the construction of an ARIMA

process but MA process are not investigated within the framework of this thesis.

3.2.4 Vector AR processes

So far, we have been restricted to yt being a scalar. However, a vector yt ∈ Rdy can be

modelled as a vector AR (VAR) process such that:

yt =
p

∑
i=1

Aiyt−i +Gwt , (3.10)

2A stochastic process is weakly stationary if its mean is constant and its autocovariance depends only
on the lag with respect to which it is computed.
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where Ai,G ∈Rdy×dy and wt ∈Rdy is a white noise vector (i.e. wt ∼N (0,Idy)). It should

be noted that an AR(p) process can be expressed as a VAR(1) process. For example, an

AR(2) process can be written as a VAR(1) process in the following way:

[
yt

yt−1

]
=

[
α1 α2

1 0

][
yt−1

yt−2

]
+

[
1 0

0 0

][
wt

wt−1

]
(3.11)

3.2.5 Linear dynamical systems

The models that have been described so far in this chapter assume that the processes are

fully observed. Alternatively, if we assume that the real underlying temporal process is

unobserved (latent) and we have only access to observations that are generated by those

unobserved quantities, then we enter the realm of latent variable models (also known as

state space models) where the latent space is considered to be a space of (unobserved)

states. One of the most well-known latent variable models is the linear dynamical sys-

tem (LDS), which assumes that the associated random variables are continuous, follow a

Gaussian distribution and the temporal process is governed by linear relationships. The

LDS was introduced by the seminal work of Kalman (1960) and has been since dis-

seminated in several textbooks including the work of Harvey (1990), Harrison and West

(1999), Grewal and Andrews (2001) and Durbin and Koopman (2012), while a very in-

teresting exposition unifying several concepts under the linear and Gaussian assumptions

(including LDSs) is given in Roweis and Ghahramani (1999). The LDS, a graphical

model representation of which is shown in Figure 3.2, is defined by the following joint

distribution:

p(x,y) = p(x1)p(y1|x1)
T

∏
t=2

p(xt |xt−1)p(yt |xt) , (3.12)

where xt ∈ Rdx is the latent state vector at time t, which represents the underlying latent

process and yt ∈ Rdy is the observation vector at time t. The involved random variables

are distributed according to:
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xt ∼N (Axt−1,Q) , (3.13)

yt ∼N (Cxt ,R) , (3.14)

where A ∈ Rdx×dx is the dynamics matrix governing the temporal evolution of the latent

states which is driven by Gaussian noise with covariance Q ∈ Rdx×dx and C ∈ Rdy×dx is

the observation matrix which projects the latent vector xt into observation space corrupted

by Gaussian noise with covariance R ∈ Rdy×dy .

xt−1 xt xt+1

yt−1 yt yt+1

Figure 3.2: Graphical model of the LDS. The continuous latent state at time t is denoted by

xt (white circular nodes). The shaded circular nodes correspond to the observed variables,

yt .

3.2.5.1 Inference in LDS

Since all relationships within the LDS are linear and governed by Gaussian noise, infer-

ence of the latent states, which amounts to computing the filtering distribution p(xt |y1:t),

can be carried out in an exact manner using the Kalman Filter algorithm. Also, due to

the Gaussian assumption, moments up to second order comprise a sufficient set of statis-

tics for a full characterisation of the filtering distribution. Therefore, by representing

p(xt |y1:t) ∼ N (µµµt ,ΣΣΣt), inference translates into calculating µµµt and ΣΣΣt . Assuming that

the parameters of the model {A,Q,C,R} are known, exact inference can then be bro-

ken down into two steps: a) the prediction step and b) the update step, as shown e.g. in

Murphy (2012).
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Prediction step

The prediction step involves inferring the predictive distribution of the latent state at time

t given observations up to time t−1 and is given by:

p(xt |y1:t−1)∼N (µµµt|t−1,ΣΣΣt|t−1) , (3.15)

µµµt|t−1 = Aµµµt−1 , (3.16)

ΣΣΣt|t−1 = AΣΣΣt−1A>+Q . (3.17)

Update step

The update step involves inferring the posterior distribution of the latent state at time t

given observations up to time t and is given by:

p(xt |y1:t)∝ p(yt |xt)p(xt |y1:t−1) , (3.18)

which is equal to:

p(xt |y1:t)∼N (µµµt ,ΣΣΣt) , (3.19)

µµµt = µµµt|t−1 +Kt(yt− ŷt) , (3.20)

ΣΣΣt = (I−KtC)ΣΣΣt|t−1 , (3.21)

where ŷt = Cµµµt|t−1 is the predicted observation and Kt = ΣΣΣt|t−1C>(CΣΣΣt|t−1C>+R)−1,

is the Kalman gain matrix. It should be noted that for time-series forecasting, we usu-

ally need to compute the predictive posterior density for the observations which is given

by:

p(yt |y1:t−1)∼N (Cµµµt|t−1,CΣΣΣt|t−1C>+R) . (3.22)
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The predict-update cycle outlined above describes what is known as filtering and is an

on-line inference algorithm in the sense that it can be performed in real-time. Since the

focus of this thesis is on on-line physiological condition monitoring, inference will be

(mainly) referring to filtering in the following chapters.

3.2.5.2 Learning in LDS

The previous section focussed on inference under the assumption that the parameters of

the LDS were known. Apart from models that have very well established, underlying

theoretical properties underpinning them, in most cases the set of a model’s parameters

will need to be determined under a parameter estimation scheme.

EM

The most common estimation algorithm for LDSs is the expectation-maximisation (EM)

algorithm which provides maximum likelihood estimators (MLEs) for the model’s pa-

rameters. EM is an iterative algorithm and was developed by Dempster et al. (1977)

for deriving MLEs in the presence of missing data, but can be readily extended to latent

variable models by treating the latent variables as missing data. The EM is an appealing

learning method since it is numerically stable and also possesses the property that the

likelihood is guaranteed to increase (or stay the same) per each iteration. A derivation of

EM is given in Appendix A.

Spectral learning

An alternative method for learning a LDS is spectral learning, also known as subspace sys-

tem identification in the control theory community (see e.g. Van Overschee and De Moor,

1996). Spectral learning has become increasingly popular in the machine learning com-

munity, being used for learning in a variety of models and is a well established learning

method in the case of LDSs. The first step in this approach is to arrange the set of obser-

vations y in a specific matrix form, called block Hankel matrix:
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H =


y1 y2 y3 . . . yτ

y2 y3 y4 . . . yτ+1
...

...
... . . . ...

yr yr+1 yr+2 . . . yr+τ−1

 , (3.23)

with H ∈ R(r×dy)×τ. Matrix H is effectively comprised of stacked observation sequences

with a “horizon” τ, where each subsequent sequence in the stack is shifted by one time

unit. The key observation is that this matrix, which is comprised exclusively of observable

quantities, can be decomposed according to the parameters of the LDS, revealing them in

the process. The most commonly used decomposition is the singular value decomposition

(SVD, see e.g. Press et al., 1996, sec. 2.6). Decomposing H according to SVD yields

H = UΣΣΣV>, where U ∈ R(r×dy)× (r×dy) is a matrix whose columns are the left-singular

vectors of H, ΣΣΣ∈R(r×dy)×τ is a rectangular diagonal matrix whose entries are the singular

values (i.e. the square root of the eigenvalues) of H and V ∈ Rτ×τ is a matrix whose

columns are the right-singular vectors of H. Estimates for the parameters can then be

obtained as follows:

Ĉ = U Â = X1:τ−1X+
2:τ (3.24)

where X = ΣΣΣV>, X1:τ = [x1,x2, . . . ,xτ] ∈ Rdxτ and X+ is the Moore-Penrose pseudoin-

verse (Penrose, 1955) of X. The Moore-Penrose pseudoinverse of a matrix M is a general-

isation of the inverse of a matrix (M−1), is used as a way to approximate M−1 when M is

not invertible and can be calculate via SVD since M+=VMΣΣΣ
+
MU>M, where M=UMΣΣΣMV>M

determines the SVD of M and ΣΣΣ
+
M can be calculated by taking the reciprocals of its non-

zero elements and then transposing it. The noise covariance matrices Q̂ and R̂ can then

be directly estimated from residuals. We should also note that the dimensions of matrix H
need to be specified. There is not one simple rule for this but practical advice is given in

Van Overschee and De Moor (1996): The number of block rows r needs to be “sufficiently

large”, i.e. at least as large as the maximum order, dx, of the system to be identified, which

in turn is determined by keeping all singular values of H above a threshold. The number

of columns τ is usually taken to be τ→∞ for theoretical guarantees. However, in the case

of finite data, a usual practice is to take τ = N− r+1, where N is the number of available

samples.
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Spectral learning is an appealing approach because it is non-iterative and therefore is

faster than a maximum likelihood based method. However, it leads to sub-optimal results

when compared to the EM algorithm. In fact, spectral learning can be considered as one

iteration of a sub-optimal version of the EM algorithm as argued in Smith and Robinson

(2000). In practice, spectral learning algorithms can provide a consistently good starting

point for the EM algorithm with a very low computational cost. The EM algorithm then

can improve this starting point by further optimisation, as pointed out in Barber (2012,

sec. 24.5.3) or Murphy (2012, sec. 18.4.4).

3.2.5.3 Stability in LDS

In real-world applications it is important for the dynamics of the learned model to be

stable. This is usually overlooked in the machine learning community but can be of

critical importance especially when modelling patients’ vital signs. A system with linear

dynamics is stable if the spectral radius of its dynamics matrix A is at most 1.3 In Siddiqi

et al. (2007) it is shown how one can project an unstable matrix back to the space of stable

matrices by treating this projection process as a constrained convex optimisation process.

In Siddiqi et al. (2007), this approach is applied to LDS parameters that are obtained by

the spectral learning algorithm but the approach remains virtually unchanged in the case

of parameters learned under EM, as shown in Boots (2009).

3.2.5.4 AR process as LDS

Concluding the presentation of the LDS, it is worth stating that there is a connection

between AR processes and LDSs, since any AR process can be cast into LDS form.

For example, an AR process as defined in eq. (3.5) with added observation noise vt ∼
N (0,σ2

v) can be cast into state space form as follows:

3The spectral radius of a square matrix is defined as the modulus of its largest eigenvalue.
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xt = [xt xt−1 . . . xt−p+1 xt−p]
> , (3.25)

A =


α1 α2 . . . αp−1 αp

1 0 . . . 0 0
...

... . . . ...
...

0 0 . . . 1 0

 , Q = σ
2
wee> , (3.26)

C = [1 0 . . . 0] , R = σ
2
v , (3.27)

where e = [1 0 . . . 0]>. Once cast into state space form, one can use the already pre-

sented LDS methodology for inference and learning.

3.2.6 Discrete-latent-variable models

Retaining the same graphical structure as in an LDS, but with latent random variables

being discrete instead of continuous, a hidden Markov model (HMM) is obtained (Ra-

biner, 1989). HMMs’ joint distribution factorises as in the case of LDSs and are thus

formally equivalent to LDSs and admit analogous inference and learning routines with

the only difference that the latent space is discrete. HMMs (as LDSs) are generative mod-

els which means that they can be used to generate sequences of observations. However,

often we are only interested in the conditional distribution of the latent variable given

an observation at time t. In that case, a graphical model that is especially tailored to

this task can be more appropriate, giving rise to the Maximum Entropy Markon Model

(MEMM) (McCallum et al., 2000). The joint distribution of a MEMM factorises ac-

cording to p(x,y) = p(x1|y1)∏
T
t=2 p(xt |xt−1)p(xt |yt). The graphical models of those two

approaches are depicted in Figure 3.3.

3.2.7 Switching linear dynamical systems

An LDS is restricted by the fact that all involved relationships are modelled as linear. Al-

though many real-world processes can be approximated by LDSs in a satisfactory manner,



38 Chapter 3. Background & related work

xt−1 xt xt+1

yt−1 yt yt+1

xt−1 xt xt+1

yt−1 yt yt+1

Figure 3.3: Graphical model of the HMM (left) and the MEMM (right). Note that in the case

of the MEMM the conditional probability p(xt |yt) is modelled directly.

it is expected that there are cases where such approximations might produce poor results.

One could then use non-linear dynamical systems, an example of which we will encounter

in Chapter 5. However, there are cases where an observed process could be well approxi-

mated by multiple LDSs instead of one. For example, let us assume that a patient’s status

can be modelled satisfactorily by an LDS when their condition is stable.4 Let us also

assume that their status can be modelled by a different LDS (i.e. with different param-

eters) when their condition is unstable (assuming an appropriate definition of instability

is provided). In that example a simple LDS learned over both conditions might provide

poor results, but a collection of the two, where each one is used appropriately depending

on the patient’s status could provide much better results. This is the idea behind a switch-

ing LDS (SLDS) (Ghahramani and Hinton, 2000). At each time t a “switch” variable

st ∈ {1, ...,S} determines which of a set of LDSs should be used. Thus, conditioned on st ,

the SLDS “reverts” to an LDS and in some sense the SLDS provides a piece-wise linear

approximation to the observed non-linear relationships. The SLDS’s joint distribution is

defined as:

p(s,x,y) = p(s1)p(x1|s1)p(y1|x1,s1)
T

∏
t=2

p(st |st−1)p(xt |xt−1,st)p(yt |xt ,st) , (3.28)

and the graphical model which induces this factorisation is shown in Figure 3.4. The

involved parameters remain as in the case of the LDS, where now a different set of LDS

parameters is associated with each switch state (i.e. there are S different sets of LDS

parameters). Additionally, we now also need to establish the transition relationship p(st =

j|st−1 = i) = Si j which governs transitions from state i at time t− 1 to state j at time t.

4Here, “stable” refers to a patient’s physiological health status as defined in Section 2.3.2 and is not to
be confused with the notion of stability defined for LDSs.
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st−1 st st+1

xt−1 xt xt+1

yt−1 yt yt+1

Figure 3.4: Graphical model of the SLDS. The discrete latent state is represented by the

white square nodes and is denoted by st . The continuous latent and observed variables

(xt and yt respectively) are represented as in the case of the LDS.

This can be parameterised by a stochastic (i.e. each of its rows sums to 1) matrix T, the

elements of which can be estimated as:

T̂i j =
ni j +ζ

∑
S
k=1 nik +ζ

, (3.29)

where ni j denotes the number of transitions from discrete state i to discrete state j in the

training dataset and ζ is a small value (set to 1 in this thesis as in Quinn, 2007), that

ensures no state transition is set to zero.

3.2.7.1 Inference in SLDS

Exact inference in the SLDS is intractable since its computational complexity scales ex-

ponentially with time, as shown in Lerner and Parr (2001). For an intuitive explanation,

let us assume that at time t−1 the joint posterior distribution of the latent states is a set of

S Gaussians. Then, at time t, due to the summation over the states st−1, the joint posterior

will be a set of S2 Gaussians. Under the same reasoning, it then becomes apparent how

computational demands scale exponentially with time.

One way of resolving this intractability is by ensuring that the number of Gaussians used

to model the joint posterior density remains bounded across time. Similarly to the pre-

vious paragraph, if we assume that at time t a set of S2 Gaussians is obtained, then we

can collapse this back to S Gaussians by matching moments (up to second order) for the
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distribution obtained for each setting of st . This is known as the Gaussian Sum algorithm

and was introduced by Alspach and Sorenson (1972).

Another approximation method that can be used to overcome the intractability is Rao-

Blackwellised particle filtering (RBPF). The RBPF technique exploits the conditionally

linear dynamic structure of the SLDS to avoid sampling both st and xt , or in other words

it takes advantage of the fact that if we know st , we can compute xt exactly using the

Kalman filter algorithm. Thus, RBPF proceeds by using a particle filter to estimate the

distribution of st and exact computations (i.e. one Kalman filter per particle, where the

value of the switch state for each particle is obtained by sampling from the transition

probabilities) to estimate the mean and variance of xt .5 RBPFs have been used before in

settings with switching linear dynamics as in De Freitas (2002) for the purposes of fault

diagnosis.

In Quinn et al. (2009) a practical comparison between the two inference methods (in the

context of a variant of an SLDS) showed that the Gaussian Sum approximation outper-

forms RBPF when the computational cost is the same for both methods. The number

of particles used was such that both methods took an (approximately) equal amount of

computational time6. Based on these findings, we will be using the Gaussian Sum ap-

proximation later in this thesis.

3.2.7.2 Learning in SLDS

Under the assumption that training data are available for each switch setting st , the learn-

ing process decomposes into learning independently a number of S LDSs, one for each

configuration of the switch variable. This can be done as already explained in Section

3.2.5.2 for the LDS specific parameters and the transition matrix probabilities are given

by eq. (3.29). It should be noted that it is possible to fit an SLDS even if no switch variable

labels are provided by using EM, as shown in Quinn (2007, app. C.3).

5For a tutorial on particle filters see Doucet and Johansen (2009).
6A set of limited, preliminary experiments considering the same trade-off between effectiveness and

computational efficiency led to the same conclusions in our case and thus further exploration of the RBPF
was not deemed necessary.
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3.2.7.3 Factorial SLDS

In some applications, such as in condition monitoring, it could be possible that the ob-

servations are affected by the contribution of multiple independent factors. In these cases

it is possible to factorise the state variable, representing it in terms of all the involved

factors. This could prove advantageous in terms of model interpretability and space re-

quirements. Such an approach is presented in Ghahramani and Jordan (1997) in the con-

text of factorial hidden Markov models. In a similar vein, Quinn et al. (2009) present

a variant of the SLDS called the factorial SLDS (FSLDS), which can be formulated by

assuming that the switch variable factorises according to the cross-product of J factors,

so that st = f 1
t ⊗ f 2

t ⊗ ...⊗ f J
t and p(st |st−1) = ∏

J
j=1 p( f j

t | f
j

t−1). A graphical model of the

FSLDS can be seen in Figure 3.5. Inference and learning takes place as in the case of the

SLDS.

f 2
t−1 f 2

t f 2
t+1

f 1
t−1 f 1

t f 1
t+1

xt−1 xt xt+1

yt−1 yt yt+1

Figure 3.5: Graphical model of the FSLDS with two factors f 1 and f 2. The remaining

nodes are as in the case of the SLDS.

3.2.7.4 Hierarchical SLDS

The FSLDS can also admit a hierarchical decomposition of its discrete latent structure in

order to model more complex interactions between modes of operation, e.g. when there

is evidence (or is assumed) that the transitions between latent discrete variables of lower
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levels in the hierarchy are governed by the dynamics of latent discrete variables of higher

levels as is the case in Stanculescu et al. (2014). This leads to the formulation of a hier-

archical SLDS (HSLDS) in which, analogously to the FSLDS, the discrete latent space

can be decomposed as st = zt ⊗ f 1
t ⊗ f 2

t ⊗ ...⊗ f J
t , where zt denotes the top level discrete

latent variable, and the transition probability of the joint discrete space is factorised as

p(st |st−1) = p(zt |zt−1)∏
J
j=1 p( f j

t |zt , f j
t−1). A graphical model of the HSLDS can be seen

in Figure 3.6.

zt−1 zt zt+1

f 2
t−1 f 2

t f 2
t+1

f 1
t−1 f 1

t f 1
t+1

xt−1 xt xt+1

yt−1 yt yt+1

Figure 3.6: Graphical model of the HSLDS with two levels of hierarchy, z and f , and two

factors, f 1 and f 2. The remaining nodes are as in the case of the SLDS.

3.3 Pharmacokinetics/Pharmacodynamics

In this section we review work that is developed specifically for the purpose of modelling

drug behaviour in a patient’s body. Establishing a relationship between drug dose and

resultant drug concentration and subsequently establishing a relationship between drug

concentration and effect (e.g. in observed signals) can lead to better modelling of the ob-

served vital signs and has the potential to lead to better patient treatment overall. The
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field of pharmacokinetics (PK) is concerned with the study of the concentration of drugs

in tissue as a function of time and dose schedule. The distribution of drugs in the body

is affected by complex transfer and metabolic processes, many of which are poorly un-

derstood, as mentioned in Bailey and Haddad (2005). On the other hand, the field of

pharmacodynamics (PD) is concerned with the biochemical and physiological effects of

drugs on a patient’s body. We start by providing an introduction to the main approach

in PK/PD which is called compartmental modelling. Our description consists of simple

compartmental models which are represented by systems of linear ordinary and stochas-

tic differential equations (ODEs & SDEs respectively) and then we focus on previous

approaches taken in the specific domain of anaesthsesia as described in the medical and

control-theoretic literature.

3.3.1 Compartmental models

Compartmental models are an abstraction used in the field of PK to describe the rate of

change of a drug’s concentration in a subject by accounting for the processes of absorp-

tion, distribution, metabolism and excretion of the drug in different parts (compartments)

of the human body. An initial approach then is to build a system of ODEs that describe the

evolution of drug concentrations at different compartments. The simplest compartmen-

tal model one could think of would be a deterministic one-compartment model (1-CM),

described by the following ODE:

dCt

dt
=−k10Ct , (3.30)

with initial value C0 = D/V , where D is an injected intravenous bolus dose of the drug,

V is the volume of the compartment and k10 is the elimination rate of the drug from

the compartment. This linear ODE has a solution of the form: Ct =
D
V

e−k10t . Such a

deterministic approach does not account for sources of error in our models and most

importantly does not take into account uncertainty about the modelled process which is

inherent to any such attempt since one cannot possibly expect to capture all sources that

contribute to the modelled process either because that would lead to an overly complex

model or most frequently because such a complete model is unknown. Therefore, taking

a probabilistic perspective leads us to a respective SDE of the form:

dCt =−k10Ctdt +ρCtdBt , (3.31)
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as presented in Ramanathan (1999), with the same initial values and where Bt is a Brown-

ian motion7 and ρ is a constant. Such a linear SDE also has an explicit solution (Øksendal,

2013, sec. 5.1) with mean and covariance:

E[Ct ] =C0e−k10t ,

Cov[Ct ,Cs] =C2
0e−k10(t+s)(eρ2s−1) . (3.32)

Single compartment models can be rather restrictive and have been extended to multi-

compartment models which allow for more flexibility in modelling the pharmacokinetic

behaviour of a drug. These models are loosely based on physiological arguments with e.g.

one compartment modelling the target site of a drug (e.g. brain) and another compartment

modelling other components (e.g. tissue) with potentially different transfer/elimination

rates but the main motivation is the introduction of additional parameters to allow for

extra flexibility in modelling the observed processes. A simple 2-CM is shown in Figure

3.7. This diagram encodes the following deterministic system:

dC1t

dt
= (−k12C1t + k21C2t− k10C1t) ,

dC2t

dt
= (k12C1t− k21C2t) , (3.33)

where Ci is the concentration of drug in compartment i and ki j is the drug’s transfer rate

from compartment i to j. When j = 0 this turns into an elimination rate from compartment

i. Thus the diagram in Figure 3.7 describes the drug concentration and rate of transfer

in/between C1 (central compartment) and C2 (target site). We then might be interested

only in the concentration of the drug in the target site and treat the central compartment

as a means to describe the transfer in and out of C2 and out of the subject’s body (via the

elimination process).

Again, a system of two SDEs might be more appropriate, as shown in Donnet and Samson

(2013):

7A white noise process can be formally defined as the derivative of a Brownian motion, see e.g. Särkkä
and Solin (2014, sec. 3.1).
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Figure 3.7: A simple 2-compartment model.

dC1t = (−k12C1t + k21C2t− k10C1t)dt +ρ1dB1t ,

dC2t = (k12C1t− k21C2t)dt +ρ2dB2t , (3.34)

where B1t ,B2t are independent Brownian motions and ρ1,ρ2 are the respective diffusion

coefficients. All of the above examples admit exact maximum likelihood estimation meth-

ods (see e.g. Donnet and Samson, 2013) as they are linear and are not corrupted by ob-

servation noise. Non-linear SDEs might be a more appropriate choice in some cases and

in Andersen and Højbjerre (2003) an example of a 3-CM non-linear model for modelling

glucose and insulin plasma concentration is described but the authors tested this model

only on synthetic data.

3.3.1.1 Compartmental models in anaesthesia

One of the most widely used anaesthetics in ICU patients is Propofol. Two well-known

models that describe the concentration of Propofol in human subjects are the Marsh model

(Marsh et al., 1991) and the Schnider model (Schnider et al., 1998). They are both based

on a 3-CM presented in Gepts et al. (1987) and shown in Figure 3.8. C1 denotes the drug

concentration in the central compartment, which is the site for drug administration and

includes the intravascular blood volume and highly perfused8 organs, such as the heart,

brain, kidney and liver. The highest fraction of the administrated drug is assumed to

reside in the central compartment. The remainder is diffused in two peripheral compart-

ments which represent the body’s muscle and fat. The drug’s concentration in these two

compartments is denoted as C2 and C3 respectively. The infusion scheme used in Gepts

8High ratio of blood flow to weight.
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et al. (1987) was a bolus injection, followed by an initial rapid infusion and a slower main-

tenance infusion, giving rise to a tri-exponentially decreasing infusion rate describing the

initial distribution of the drug, its transfer to remote compartments and its elimination

from the central compartment. In that work the authors are only interested in the drug

concentration in the central compartment (C1), which is given by:

C1(I + t) = A1(1− e−πI)e−πt +A2(1− e−ξI)e−ξt +A3(1− e−φI)e−φt , (3.35)

where I is the infusion duration, t is the postinfusion time and A1,A2,A3,π,ξ,φ are the

intercepts and decay parameters of the aforementioned three exponential stages, respec-

tively. The parameters are then learned using an extended least squares estimation method

as described in Peck et al. (1984).

C1 C2C3
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k31

Figure 3.8: A 3-compartment model for Propofol.

So far, this describes the PK component. The PD component has a similarly long history.

In Colburn (1981), one, two and three compartmental PK models with the addition of an

effect site compartment to model PD effects were investigated. Similarly, in Fuseau and

Sheiner (1984), a three compartmental PK model with an additional effect site compart-

ment was studied. An approach which is more motivated by control-theoretic arguments

is a PK/PD model presented in Bailey and Haddad (2005), where a three-compartmental

PK model with an effect site compartment (which is assumed, for simplicity, to have zero

volume and thus equilibrate instantaneously with the central compartment) is cast as a

state space model and a sigmoidal function links the drug concentration at the effect site
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to the patient’s observed level of consciousness, y, as follows:

dC1t

dt
=−(k10 + k12 + k13)C1t + k21C2t + k31C3t +ut ,

dC2t

dt
=−k21C2t + k12C1t ,

dC3t

dt
=−k31C3t + k13C1t ,

dCet

dt
= k1e(C1t−Cet) ,

yt = h(Cet) . (3.36)

where ut is the drug dosage at time t, k1e is the drug transfer rate between the central and

the effect site compartment, Cet is the drug concentration at the effect site at time t and

h(·) is a sigmoidal function called the Hill function. The Hill function has the following

form:

h(Cet) = E0 +
EmaxCν

et
ECν

50 +Cν
et
, (3.37)

where E0, Emax, EC50 and ν are parameters to be estimated. The Hill function is frequently

used in the PK/PD literature (see e.g. Goutelle et al., 2008) and a similar sigmoidal func-

tion will be used later in this thesis. However, the above model is non-stochastic, and

in Bailey and Haddad (2005) it is evaluated on simulated data with parameters fixed on

a priori known values. A graphical representation of this approach is shown in Figure

3.9.

3.4 Applications to physiological condition monitoring

In terms of research which is closer to the machine learning community, there has been

work which tackles various tasks of interest with respect to physiological monitoring in

ICUs. The work which is most similar to this thesis’ Chapter 4 is that presented in Quinn

et al. (2009), where a FSLDS was used to infer artifactual and physiological processes

of interest. In that work a generative approach is taken for modelling a number of ob-

served vital signs under the influence of different factors of clinical interest. These factors
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Figure 3.9: A three compartment model with one added effect site compartment.

were divided into two categories: artifactual and physiological ones. The former models

artifactual processes such as channel dropouts, while the latter models physiological pro-

cesses such as bradycardias. A naive construction of the factored space can quickly lead

to a high demand for training data, since training instances for each potential combination

of factors need to be collected. However, the authors noted that some factors can over-

write others which can mitigate the training data volume requirements. For example, a

HR channel dropout will overwrite the HR observations even in the presence of a brady-

cardia (which would have affected the HR observations in a different way), and therefore

this explicit combination of factors does not need to be part of the training set, since it is

equivalent to a dropout event in terms of the observed signals. This overwriting mecha-

nism leads to a partial ordering of the factors that allows the FSLDS to be trained with

less training data. Overall, this work made use of carefully constructed processes which

require a significant level of expert clinical knowledge and can also be time consuming to

develop and validate. In the same work, a method for handling events that are classified

as abnormal but do not fall into the category of known abnormalities is presented; this

tackles in some sense the task of anomaly detection in a patient’s physiology (see also

Quinn and Williams, 2007).

In a similar vein, work presented by Aleks et al. (2009) makes use of a dynamic Bayesian

network to detect short artifactual events in a neonatal ICU based solely on minute-by-

minute blood pressure measurements. Stanculescu et al. (2014) turn their focus on mod-
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elling a physiologically critical condition for neonates. To that end they use a HSLDS for

the purposes of predicting the onset of sepsis in neonates by adding a higher-level dis-

crete variable with semantics sepsis/non-sepsis which enables the modelling of changes

in lower-level, physiological factors that signal the presence of sepsis. Furthermore, in

Lehman et al. (2015), a switching vector autoregressive process was used to extract fea-

tures from vital signs which were used as input in a logistic regression classifier to predict

patient outcome, while work by Nemati et al. (2013) was focussed on discriminatively

training a SLDS for learning dynamics associated with patient outcome. These meth-

ods are primarily concerned with the classification of events of interest and they do not

incorporate any additional information, such as administered drugs. Additionally, all of

the aforementioned works use linear models as their core elements, while non-linearities

might govern the observed data.

In Saria et al. (2010), a Bayesian non-parametric approach is developed for exploratory

data analysis and feature construction in continuous time series for the task of condition

monitoring in the case of neonates. Finally, methods based on Recurrent Neural Networks

(RNNs) have recently started showing promising results such as the work by Lipton et al.

(2015) who made use of RNNs for the task of classifying diagnoses from electronic health

records.

There is also considerable work focussed on regression for physiological time-series. In

Clifton et al. (2013), a model based on the Gaussian process (GP) regression framework

is developed for deployment in wearable sensors for patient monitoring with an empha-

sis on handling artifacts and missing observations, where it is shown that a personalised

medicine approach using GPs can result in a significant increase in the amount of warning

time provided prior to the deterioration of a patient’s physiology. In that work, an inde-

pendent GP is used per vital sign and thus the dependences between observed vital signs

are not taken into account. This independence assumption can be improved upon via the

use of multi-task GPs, which can model multiple physiological time-series including their

correlations in the modelling process as shown in Dürichen et al. (2015). Although GPs

provide a very flexible probabilistic framework, they come at a computational complex-

ity cost which can be prohibitive for large datasets since it scales cubically with the total

length T of a vital sign. This is further exacerbated in the case of multi-task GPs where

the computational complexity increases to O
(
M3T 3), where M is the number of “tasks”,

namely the number of vital signs to be modelled, although some approaches such as the
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use of inducing variables(Quiñonero-Candela and Rasmussen, 2005) can be used to miti-

gate these concerns to some extent. Also, it should be noted that the GP formulation lends

itself very naturally to the task of regression but is rather more complicated in the case of

classification (see e.g. Rasmussen and Williams, 2006, sec. 3.3).

Finally, work more similar to this thesis’ which also models the effect of infused drugs

is presented by Enright et al. (2011) and Enright et al. (2013), where a non-linear dy-

namical system is developed to model the glucose levels of patients under the intravenous

administration of glucose and insulin. However, their approach relies solely on converting

existing systems of ODEs into a probabilistic model which is only a subset of this thesis’

proposed work in Chapter 5.

A comprehensive review of the use of machine learning in critical care which provides

references to a wide scope of relevant work can be found in Johnson et al. (2016).

3.5 Summary

In this chapter we have reviewed prior work that prepares the ground for the subsequent

chapters that contain the original research contributions of this thesis. Section 3.1 briefly

touched on some basic models that will be used mainly as components of more complex

methods, while Section 3.2 presented in more detail various dynamical systems which are

more tailored to the task at hand. In Section 3.3, the focus turned on prior work dealing

explicitly with modelling drug effects via PK/PD models and Section 3.4 concluded the

literature review by describing a number of machine learning methods that have been

applied to the task of physiological condition monitoring.



Chapter 4

Discriminative Switching Linear

Dynamical Systems

In Section 3.2.7.3, a generative approach via the FSLDS (Quinn et al., 2009) was de-

scribed for the task of physiological condition monitoring in ICUs. In this chapter, a

different, discriminative process is developed which gives rise to a discriminative switch-

ing linear dynamical system, henceforth termed as DSLDS. Although a generative model

can be more parsimonious, it is also restricted by its need to explicitly model the distribu-

tion over observed variables (and potential features thereof) which can be highly complex.

Thus, it can be “very hard, and often impossible” to construct such a model (Koller and

Friedman, 2009, Sec. 20.3.2). On the other hand, a discriminative approach sidesteps this

challenge altogether by directly modelling the conditional probability of the hidden state

given the observed variables. This approach enables one to directly focus on the desired

task, which is the identification of the hidden states given the observed variables, while

at the same time facilitates greatly the incorporation of prior knowledge into the model

via the construction of arbitrarily complex (and potentially highly correlated) features.

Indeed, building a generative process for the task at hand (via the FSLDS) required the

construction of very detailed models of the events of interest. For the modelled events, es-

pecially artifactual ones, this can be non-trivial since some of them exhibit high variability

which is hard to capture with a generative process, but can nonetheless contain informa-

tive features which can act as input to a discriminative process. Thus, the DSLDS makes

use of a discriminative model for discrete-state inference and retains an almost identi-

cal inference scheme as in the FSLDS for the continuous latent variables conditional on

51
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the inferred discrete state. The results show that using the DSLDS gives increased per-

formance over the FSLDS in most cases of interest, and that a combination of the two

methods via an α-mixture approach was able to achieve a higher performance than either

of the two models separately.

The reader is reminded that the goals under the DSLDS remain the same as in the FSLDS,

namely:

• Identifying artifactual processes (e.g blood samples), which will reduce the high

false alarm rate in ICUs and facilitate the task of identifying physiological pro-

cesses.

• Identifying physiological processes which can be of critical importance (e.g brady-

cardias).

• Providing an estimate of a patient’s true physiological values when these are ob-

scured by artifact.

The structure of the remainder of the Chapter is as follows: in Section 4.1 a description of

the proposed model is given, and its graphical structure and inference methods are com-

pared to those of the FSLDS. In Section 4.2 a description of the performed experiments

is provided and results for the comparison between the DSLDS and the FSLDS are given.

Finally, Section 4.3 concludes with general remarks about the proposed model and sug-

gestions for future work. Parts of this chapter have been adapted from Georgatzis and

Williams (2015).

4.1 Model description

The graphical model of the DSLDS is depicted in Figure 4.1 (left). The FSLDS is also

depicted in Figure 4.1 (right) for the purpose of comparison1. The DSLDS, as the FSLDS,

operates on three different sets of variables: The observed variables, yt ∈ Rdy represent

the patient’s vital signs obtained from the monitoring devices at time t, which act as

inputs to the model. The continuous latent variables, xt ∈ Rdx , track the evolution of the

dynamics of a patient’s underlying physiology. The discrete variable, st , represents the

switch setting or regime which the patient is currently in (e.g. stable, a blood sample is

1This graphical model is equivalent to the one presented in Figure 3.5 but slightly modified for ease of
comparison to the DSLDS’s graphical model.
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being taken etc.). The switch variable can be factorised according to the cross-product of

M factors, so that st = f 1
t ⊗ f 2

t ⊗ ...⊗ f M
t . Each factor variable, f m

t , is usually a binary

vector indicating the presence or absence of a factor, but in general it can take on L(m)

different values and K = ∏
M
m=1 L(m) is the total number of possible configurations of the

switch variable, st .

It is perhaps convenient to consider the DLSDS by mapping its discriminative components

to their generative FSLDS counterparts. We remind the reader that, conditioned on a

particular regime, the FSLDS is equivalent to an LDS. The FSLDS can be seen then

as a collection of LDSs, where each LDS models the dynamics of a patient’s underlying

physiology under a particular regime, and can also be used to generate a patient’s observed

vital signs. An LDS provides a generative framework for modelling our belief over the

state space, given observations. Switching to the DSLDS’s discriminative perspective,

we start by modelling p(st |yt−l:t+r) with a discriminative classifier, where (features of)

observations from the previous l and future r time steps affect the belief of the model about

st . The inclusion of r frames of future context is analogous to fixed-lag smoothing in an

FSLDS (see e.g. Särkkä, 2013, sec. 10.5). It is noted that inclusion of future observations

in the conditioning set means that the DSLDS will operate with a delay of r seconds,

since an output of the model at time t can be produced only after time t + r, as explained

further in Section 4.2.1.1. The LDS can also be regarded from a similarly discriminative

viewpoint which allows us to model p(xt |xt−1,yt). This is similar to the MEMM (see

Section 3.2.6) with the difference that the latent variable is continuous rather than discrete.

The main advantage of this discriminative view is that it allows for a rich number of

(potentially highly correlated) features to be used without having to explicitly model their

distribution or the interactions between them, as is the case in a generative model. A

combination of these two discriminative viewpoints gives rise to the DSLDS’s graphical

model. The DSLDS can be seen then as a collection of MEMMs, conditioned on st ,

where each MEMM in the DSLDS plays a role equivalent to that of each LDS in the

FSLDS.

The DSLDS can be defined as

p(s,x|y) = p(s1|y1:1+r)p(x1|s1,y1)
T

∏
t=2

p(st |yt−l:t+r)p(xt |xt−1,st ,yt) . (4.1)

The simplest assumption we can make for the DSLDS is that p(st |yt−l:t+r) factorises, so

that
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st−1 st st+1

xt−1 xt xt+1

yt−1 yt yt+1

st−1 st st+1

xt−1 xt xt+1

yt−1 yt yt+1

Figure 4.1: Graphical model of the DSLDS (left) and the FSLDS (right). The state-of-health

and underlying physiological values of a patient are represented by st and xt respectively.

The shaded nodes correspond to the observed physiological values, yt . Note that in the

case of the DSLDS the conditional probability p(st |yt−l:t+r) is modelled directly.

p(st |yt−l:t+r) =
M

∏
m=1

p( f (m)
t |yt−l:t+r) . (4.2)

However, one could as well make use of a structured output model to predict the joint

distribution of different factors.

The DSLDS bears similarities to the model used by Lu et al. (2009) for the task of es-

timating true terrain elevation (potentially obscured by buildings, trees etc.) from Light

Detection and Ranging (LiDaR) data. The idea behind their model, dubbed a “hybrid

conditional random field”, is that conditioned on an observation (which is the height of

a surface point as measured by LiDaR), they first classify it as belonging to the ground

or not (corresponding to our discrete variable, st ) and then conditioned on this variable,

they infer the true height of the terrain on that point (corresponding to our continuous

variable, xt). Although there are similarities on the graphical representation of the model,

their approach was used to model spatial relationships and they were only concerned

with a binary discrete latent space (ground, non-ground). In our case, we are concerned

with modelling temporal structure and we have a richer and more complex discrete latent

space. More importantly, in their work the distribution maintained over the continuous la-

tent space is a single multivariate Gaussian, whereas in our model, as described in Section

4.1.4, the belief over the continuous latent space is modelled as a mixture of K Gaussians.

This allows us to keep track of multiple modes about the belief over a patient’s underlying
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physiology, since this is potentially affected by multiple factors.

In the remainder of this section, the models for the discrete underlying state of health

(st) and the continuous underlying physiological state (xt) of a patient are presented in

Sections 4.1.1 and 4.1.2 respectively. The learning process is documented in Section

4.1.3 and inference is explained in Section 4.1.4.

4.1.1 Predicting st

The belief about the state of health2 of a patient at time t is modelled by p(st |yt−l:t+r), the

conditional probability of the switch variable given the observed vital signs. Following

the factorisation of the switch variable in eq. 4.2, we model the conditional probability of

each factor being active at time t given the observations with a probabilistic discriminative

binary classifier, so that p( f (i)t = 1|yt−l:t+r) = G(φ(yt−l:t+r)), where G(·) is a classifier-

specific function, and φ(yt−l:t+r) is the feature vector that acts as input to our model at

each time step as described in Section 4.2.1. As is evident from Figure 4.1 (left) there

is no explicit temporal dependence on the switch variable sequence. However, temporal

continuity is implicitly incorporated in the model through the construction of the features.

Thus, the classifier can make use of the additional information present in the temporal

structure of the observations to infer the value of the switch variable.

4.1.1.1 An α-mixture of st

The DSLDS model can be seen as complementary to the FSLDS, and they can be run in

parallel. One way of combining the two outputs is to maintain an α-mixture over st . If

pg(st) and pd(st) are the outputs for the switch variable at time t from FSLDS and the

DSLDS respectively, then their α-mixture is given by:

pα(st) = c
(

pg(st)
(1−α)/2 + pd(st)

(1−α)/2
)2/(1−α)

, (4.3)

where c is a normalisation constant which ensures that pα(st) is a probability distribu-

tion. The family of α-mixtures then subsumes various known mixtures of distributions
2Here, state-of-health is meant to be taken in a broader context so as to include events, such as various

artifacts, that are potentially not related directly to the actual health of patients but could nonetheless affect
their observed physiology.
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and defines a continuum across them via the α parameter. For example, for α = −1

we retrieve the mixture of experts (with equally weighted experts) framework, while for

α→ 1, eq. 4.3 yields p1(st) = c
√

pg(st)pd(st), rendering it equivalent to a product of

experts viewpoint. In general, as α increases, the α-mixture assigns more weight to the

smaller elements of the mixture (with α→∞ giving p∞(st) = min{pg(st), pd(st)}), while

as α decreases, more weight is assigned to the larger elements (with α→ −∞ giving

p−∞(st) = max{pg(st), pd(st)}). The interested reader can find a thorough treatment of

α-mixture models in Amari (2007).

4.1.2 Predicting xt

The model of the patient’s physiology should capture the underlying temporal dynamics

of their observed vital signs under their current health state. The idea is that the current

latent continuous state of a patient should be dependent on (a) the latent continuous state

at the previous time step, (b) the current state of health and (c) the current observed values.

These assumptions are modelled as follows:

p(xt |xt−1,st ,yt) ∝exp{−1
2
(xt−A(st)xt−1)

>(Q(st))−1(xt−A(st)xt−1)}×

exp{−1
2
(C(st)xt−yt)

>(R(st))−1(C(st)xt−yt)} . (4.4)

The first term on the RHS of eq. 4.4 is the system model for an LDS and captures the

dynamics of a patient’s latent physiology under state st . The second term can be seen

as the discriminative counterpart of the observation model of an LDS. In our condition

monitoring setting, the observed vital signs are considered to be noisy realisations of the

true, latent physiology of a patient and thus, the observation model encodes our belief

that xt is a noisy version of yt . Under this assumption, C(st) consists of 0/1 entries, which

are set based on our knowledge of whether the observations yt are artifactual or not under

state st . In the FSLDS, the corresponding observation model encodes the belief that the

generated yt should be normally distributed around xt with covariance R(st), whereas in

our discriminative version, the observation model encodes our belief that xt should be

normally distributed around yt with covariance R(st). The idea behind this model is that

at each time step we update our belief about xt conditioned on its previous value, xt−1,
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and the current observation, yt , under the current regime st . For example, under an arti-

factual process, the observed signals which are obscured by artifact do not convey useful

information about the corresponding latent variable of the underlying physiology of a pa-

tient. In that case, the connection between yt and xt is dropped (for the artifact-affected

channels) which translates into setting the respective entries of C(st) and the Kalman gain

matrix to zero. Then, the latent state xt evolves only under the influence of the appropriate

system dynamics parameters (A(st),Q(st)). Conversely, operation under a non-artifactual

regime incorporates the information from the observed signals, effectively transforming

the inferential process for xt into a product of two “experts”, one propagating probabilities

from xt−1 and one from the current observations.

It should be noted that the step of conditioning on the current regime st in order to predict

xt is required for the task at hand, as no training data are available for the x-state. Oth-

erwise, one could imagine building a simpler model such as a conditional random field

(CRF) (Lafferty et al., 2001), to predict the x-state directly from the observations. How-

ever, in our case, where only labels about the patient’s regime are available, this is not

possible.

4.1.3 Learning

The parameters that need to be learned are: A(s), Q(s), C(s), R(s). Given training data

for each switch setting, these can be learned independently as LDS parameters for each

configuration of s. Following Quinn et al. (2009) we use an independent ARI model with

added observation noise for each channel. Casting such a model into state space form

is a standard procedure, as was described in Section 3.2.5.4, and amounts into reformu-

lating the parameters of the aforementioned model into the parameters of a state space

model. Once the model is in state space form, A(s), Q(s), C(s), R(s) can be learned ac-

cording to the maximum likelihood criterion by using numerical optimisation methods

(like Newton–Raphson, Gauss–Newton), as presented in Shumway and Stoffer (2000,

sec. 2.6) or the EM algorithm as presented in Section 3.2.5.2. We note that the vector

ARMA (VARMA) representation is used, where for example a one-dimensional AR(p)

process can be encoded as a (p+1)-dimensional VAR(1) process by maintaining a latent

state representation of the form xt = [xt xt−1 ... xt−p].

In the DSLDS, the same set of parameters needs to be learned. Also in our system, the
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observation model encodes our belief that xt is a noisy version of yt . This imposes a

constrained form for the observation matrix C(s) which consists of 0/1 entries, which

are set so as to pick the most recent value xt under the VARMA representation and are

also affected based on our knowledge of whether the observations yt are artifactual or

not under state s. A simple example is provided for clarity, where it is assumed that two

channels which are both modelled as AR(1) processes are adequate to capture the event of

interest. A further assumption is made that an artifactual event is being modelled, whose

observed values of the first channel are artifactual, while the observed values of the second

reflect the actual physiology of the patient. Under these assumptions:

C(BS) =

[
0 0 0 0

0 0 1 0

]
(4.5)

The first row of C(BS) sets the contribution of the first (artifact-obscured) observed channel

to zero, while the second row picks the most recent value of the latent state of the second

(unaffected by artifact) channel. Under this form of C(s), the observation matrix R(s) can

be obtained as in the case of the LDS. In the LDS, the observation model encodes our

belief that the generated yt should be normally distributed around xt with variance R. In

our discriminative version of the LDS, the observation model encodes our belief that xt

should be normally distributed around yt with variance R. Therefore, once the model is in

state space form, As, Qs and Rs can be fit according to the maximum likelihood criterion

by using the EM algorithm.

The task of determining the order of the respective ARI models is less straightforward.

A practical approach was followed, as suggested in (Diggle, 1990, sec. 6.2). The partial

autocorrelation function (PACF) of the stationary data (if a time series is not stationary,

we make it stationary by successive differencing) was examined to provide an estimate

of the appropriate model order. A clear cut-off at lag p in the PACF plot is suggestive

of an AR(p) process. Clear cut-offs are rare in a real world application, in which case

we looked for less clear tail-offs in the PACF plot as demonstrated in Figure 4.3 for two

different channels.
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4.1.4 Inference

In this work we are concerned with the task of computing the distribution p(st ,xt |y1:t+r).

According to our proposed model, p(st |yt−l:t+r) can be inferred at each time step via a

classifier as described in Section 4.1.1. However, exact inference for xt is still intractable,

and we use the Gaussian Sum algorithm3 as already described in Section 3.2.7.1. There-

fore, at each time step t an approximation of p(xt |st ,y1:t+r) is maintained as a mixture of J

Gaussians. Moving one time step forward will result in the posterior p(xt+1|st+1,y1:t+r+1)

having KJ components, which are again collapsed to J components (we use J = 1 for our

experiments4) by matching moments (up to second order) of the distribution for each

setting of st . Thus, inference in the DSLDS can be seen as a two-step process, where

p(st |yt−l:t+r) is inferred by a discriminative classifier, and p(xt |st ,y1:t+r) is inferred ac-

cording to the Gaussian Sum algorithm. A derivation of the Gaussian Sum filtering up-

dates for the DSLDS is given in Appendix B.

It should be noted that the FSLDS, being a generative model, can naturally handle miss-

ing observations. If a component of the observation vector is missing, then inference

can proceed by ignoring its current contribution and relying only on the corresponding

latent dynamics. In a discriminative model, such as the DSLDS there is no such natu-

ral mechanism. However, there are various ways in which missing data can be tackled.

The simplest one perhaps is via imputation, which is deemed satisfactory in cases of few

missing values. Other methods include the use of: a) reduced models, that effectively

translates into building separate models for each pattern of missingness and b) response

indicator variable augmentation, which augments the input space with indicator variables

that function as an encoding mechanism for the observed variables. More details about

these approaches can be found in Marlin (2008, Ch. 6). Finally, it should be mentioned

that some discriminative models can handle missing data more naturally than others. For

example , tree-based models can make use of surrogate splits during their construction

phase, which allow for a different path to be taken during test time, should the primary

split variable be missing (see e.g. Hastie et al., 2009, sec. 9.2.4).

3The version of the Gaussian Sum algorithm presented here is also known as the second order Gener-
alised Pseudo Bayes (GPB2) filter as mentioned in Murphy (2012, sec. 18.6.1.1).

4In a real-time application, speed of inference is a critical concern. Setting J = 1 results in an efficient
approximation as this boils down to simple moment matching.
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4.2 Experiments

In this section we describe experiments on two datasets comprising patients admitted to

ICUs in two different hospitals, namely the NICU of ERI and the Neuro-ICU of SGH.

It should be emphasised that it is highly non-trivial to obtain annotations for medical

datasets as it requires the very scarce resource of experienced clinicians. Indeed, for the

Neuro-ICU of SGH, the annotated data are the product of a one-year collaboration with

that ICU. Physionet (Goldberger et al., 2000), a freely available medical dataset, is not

suitable for our identification (i.e. filtering and not prediction) task due to the fact that the

only available time-series annotations are a limited set of life threatening/terminal events,

for which identification would not be of practical use in the ICU, since by the time such

an identification is made it would be already too late for an intervention.

For both datasets, we evaluate the performance of the DSLDS compared to the FSLDS.

Note that the FSLDS has been shown in Quinn et al. (2009) to achieve superior results

compared to more basic models such as a factorial hidden Markov model (FHMM) for

the task of condition monitoring in ICUs. In Section 4.2.1 we provide a description of

the various features that were used as input to the state-of-health model as described

in Section 4.1.1, followed by an outline of the main characteristics of the two datasets.

This section concludes by providing results on two tasks: a) inferring a patient’s state

of health and b) inferring a patient’s underlying physiology in the presence of artifact

corruption.

4.2.1 Features & Classifiers

As described in Section 4.1.1, the estimate of st is the output of a discriminative classifier.

For both datasets, it was found (see Section 4.2.4) that using a random forest (Breiman,

2001) as our classification method (DSLDSr f ) yields the best performance. We followed

suggestions for judicious selection of various tree construction parameters provided in

(Hastie et al., 2009, Ch. 15). For each tree in the random forest, a bootstrapped sample B

of size ntrain and dimension
√

dtrain (where ntrain and dtrain is the size and dimension of

the feature matrix, constructed from the training dataset) was provided as input and the

Gini index was used as the criterion for splitting nodes. The output of the random forest

for a new test point is a prediction probability, obtained as an average of the predictions
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produced by each tree, where the prediction of each tree is the proportion of the obser-

vations that belong to the positive class in the leaf node in which the test point belongs

to. Experiments were also conducted with a logistic regression classifier (DSLDSlr) but

results were generally inferior compared to the random forest approach. Results (e.g.

plots of specific examples, combinations of models etc.) are based on the DSLDSr f and

whenever the subscript is omitted, the DSLDSr f model is implied.

A variety of features is used to capture interesting temporal structure between successive

observations. At each time step, a sliding window of length l + r+ 1 is computed. For

some features we also divide the window into further sub-windows and extract additional

features from them. More precisely, the full set of features that are being used is: (i) the

observed, raw values of the last l and future r time steps (yt−l:t+r); (ii) the slopes (calcu-

lated by ordinary least squares fitting) of the segments of that window that are obtained

by dividing it in segments of length (l+ r+1)/k; (iii) an exponentially weighted moving

average of this sliding window of raw values (with a kernel, kmavg, of width smaller than

l + r + 1); (iv) the minimum, median and maximum of the same segments; (v) the first

order differences (of length l + r) of the original window; and (vi) differences of the raw

values between different channels.

4.2.1.1 Acausal features

As already explained, experiments were conducted with the inclusion of a small num-

ber of future observations in the feature vector, which renders our model into an acausal

system, meaning that the model’s output is dependent on future observations. The reason

behind this decision is that a lag was observed at the onset of an inferred regime due to the

construction process of the feature vectors. Since a number, l, of previous time steps is al-

ways added to the feature vector, the classifiers require generally inputs which are already

l steps within a specific regime before they can identify it as belonging to that regime’s

class. Feature vectors which correspond to inputs near the onset of a regime (i.e. less than

l steps within it) will contain previous values corresponding (most likely) to stability and

will thus be harder to classify correctly. One example of this effect can be seen in Figure

4.2, where the predictions about two blood sample events based on causal features (top

bar under the plotted physiological values, labelled “causal”) capture the events correctly,

but with a small delay. One solution to this issue is to allow to our features a brief “peek”

into the future by adding a small number, r, of future time steps. From a practical view-
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point, this means that the model would operate with a delay of at least r seconds, since an

output from the DSLDS at time t can be produced only after time t + r. Provided that r is

small enough (r≤10 in experiments, see Section 4.2.4), this delay is negligible compared

to the increase in performance. An example of how the issue is tackled is demonstrated in

Figure 4.2 by the predictions which are based on the acausal features (middle bar under

the plotted physiological values, labelled “acausal”).
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Figure 4.2: Example of DSLDS inference with causal and acausal features for two blood

sample events.



4.2. Experiments 63

4.2.2 NICU

The first dataset is obtained from the NICU of the ERI which was also the one used in

Quinn et al. (2009)5 and has been already described in Chapter 2. The modelled events

of interest include: i) blood sample events (BS), ii) periods during which an incubator is

open (IO), iii) core temperature probe disconnections (TD), iv) bradycardias (BR), and v)

periods that are clearly not stable but no further identification was made by the clinicians

(X). We used the same parameters for the underlying physiology model as the ones used

in Quinn et al. (2009).

4.2.3 Neuro-ICU

The second dataset comprises data collected from the Neuro-ICU of the SGH in Glasgow

and has already been described in Chapter 2. We give a brief description of the learning

process for stability periods and modelled factors, which include blood sample events

(BS), damped traces (DT), suction events (SC), and the X-factor (X).

Stable periods correspond to time periods when no annotation occurred from the experts,

suggesting that the patient is in a stable condition. In Williams and Stanculescu (2011)

it was found that a 15 minute period of stability provides an adequate amount of training

data. We use the same time interval for our experiments. We found that ARI(2,1) models

were adequate for all channels.

An example of a blood sample is shown in Figure 4.6 (bottom). Changes in BPsys and

BPdia can be modelled as a four-stage process: i) the blood is diverted to a syringe for

blood sampling, which causes an artifactual ramp in the observed measurements. This

is similar to the blood sample model described in Quinn et al. (2009) and we follow the

same approach here. ii) A recalibration stage follows, causing measurements to drop to

zero which can be modelled similarly to a dropout event as in Quinn et al. (2009). iii)

BP measurements continue as a stable period for a brief period. iv) The blood sample

is concluded with a flushing event which causes a sharp increase in measurements. This

stage is modelled as an AR(3) process for both the BPsys and BPdia channels. A total

number of 64 blood sample events have been annotated, with an average duration of 1.6

minutes.

5The dataset has been anonymised and is available at: www.cit.mak.ac.ug/staff/jquinn/software.html
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During a suction event, a significant increase in the values of all channels is observed. An

AR(2) process models the HR channel (motivated by its PACF plot as shown in Figure 4.3

(left)), while AR(3) processes were used to model the remaining channels. A total number

of 53 suction events have been annotated, with an average duration of 4.3 minutes.

A damped trace, an example of which is shown in Figure 4.6 (top), leads both BPsys

and BPdia to converge to a similar mean value while at the same time the measurements

exhibit high variability. Both channels were modelled with AR(3) processes (motivated

by their PACF plots, of which the one corresponding to BPsys is shown in Figure 4.3

(right)). A total number of 32 damped trace events have been annotated, with an average

duration of 14 minutes.

All remaining events, which are not explicitly modelled, are treated as belonging to the

X-factor and we model them according to the X-factor model proposed in Quinn et al.

(2009). A total number of 278 X-factor events have been annotated, with an average

duration of 7.5 minutes.

Channels which are unaffected by an artifactual process (as shown in Table 4.1) are mod-

elled as in the stable case. For example, during a blood sample event, only the BPsys and

BPdia channels are affected. In that case, the latent state dynamics of these two channels

evolve according to the parameters learned by the four-stage blood sample model, but the

remaining channels’ (i.e. HR and ICPsys) latent state dynamics continue to evolve under

the model learned for stability. In every case, the parameters of the x-state models were

further optimised by EM.
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Figure 4.3: Example of partial autocorrelations for a series of lags in the case of the HR

channel for suction events (left) and the BPsys channel for damped trace events (right).
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Table 4.1: Channels affected by different processes for the Neuro-ICU are marked by •.

HR BPsys BPdia ICPsys

Blood sample • •
Damped trace • •

Suction • • • •
X-factor • • • •

4.2.4 Results

For both datasets we compare the performance of the DSLDS and the FSLDS for the task

of inferring a patient’s state of health. We measure the performance of the models by

reporting the Area under the Receiver Operating Characteristic curve (AUC). Also, we

provide plots of the Receiver Operating Characteristic (ROC) curves for the classification

of the factors of interest for the DSLDSr f , the DSLDSlr, the FSLDS and an α-mixture of

the DSLDSr f and the FSLDS.

We note that we treat the problem of inferring a patient’s state of health as a second-by-

second classification task. Given an event annotation with a start and end time, we treat

each intermediate time point as belonging to that event and evaluate the models according

to their classification performance for each elapsed second within the event of interest.

Thus, ROC curves are constructed by treating each second-by-second observation as an

instance that needs to be classified. A downside of this approach is that it treats all points

within an event equally, whereas it could be argued that the start and/or end of an event

are more important for their identification. An alternative approach would be to adopt

an event-based evaluation, where we consider the whole period of an event as a single

classification task and score our models with respect to their capability in correctly iden-

tifying whole events. Such an approach is taken in Stanculescu et al. (2014). However,

other issues arise with this approach as well, such as what constitutes a correctly identi-

fied event as a whole (i.e. what percentage of an event needs to be identified in order to

be considered as correctly classified in its entirety) and the issue of how to treat start/end

times remains.

In the case of the DSLDS, the features described in Section 4.2.1 involve a number of

hyperparameters that need to be chosen. Fitting them with a standard cross-validation
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(CV) scheme when data are not abundant poses a non-negligible risk of overfitting. As

is shown in Varma and Simon (2006), using CV to evaluate performance of a model

when the model’s hyperparameters have been themselves tuned using CV can lead to an

optimistic bias of the estimate of the true performance. In that same work, a nested CV

approach is shown to yield an almost unbiased estimate of the true performance, which is

also followed in our experiments. In the outer loop the data are partitioned into P disjoint

test sets. After choosing one of these partitions, the rest of the data are used in the inner

loop in a standard CV setup to select the hyperparameters. The hyperparameters which

yielded the highest performance (average cross-validated AUC across factors in our case)

in the inner loop are then used to estimate the performance of the model on the partition

(test set) in the outer loop. This process is repeated P times, once for each partition in

the outer loop. For both datasets, we use leave-one-patient-out CV for the inner loop

and 3-fold (with each patient’s data belonging to only one fold) CV for the outer loop.

In the inner loop, a grid search is performed over hyperparameters in the following sets:

a) number of trees for random forest classifiers (DSLDSr f ) in {10, 25, 50, 100, 200};
b) l in {4, 9, 14, 19, 29, 49}; c) r in {0, 5, 10}. The sub-segments lengths (for slope

features) were always set to max{5, (l + r + 1)/5} and the kernel widths (for moving

average features) were always set to max{5, (l + r+1)/5}.

The FSLDS does not involve a similar hyperparameter selection process6, and thus it is

not necessary to follow the same procedure. We therefore use 3-fold CV to evaluate the

FSLDS’s performance.

To evaluate the α-mixture model, we have chosen the optimal α value as the one that

maximises the average AUC across factors, via 3-fold CV. This also allowed us to explore

the behaviour of the model as a function of α for both datasets.

4.2.4.1 NICU

In the case of the NICU we compare the two models on the full set of annotated fac-

tors reported in Quinn et al. (2009). Summary results are reported in Table 4.27. The

6Except for the orders of the ARI processes which are chosen as described in Section 4.1.3.
7The FSLDS results were obtained using code provided by Quinn et al. (2009) with the same parameters

as the ones mentioned there. The results are very close with the exception of the core temperature discon-
nection factor (for which the reported AUC in Quinn et al. (2009) was 0.79, while we obtained a value of
0.88), and the blood sample factor (for which the reported AUC in Quinn et al. (2009) was 0.96, while we
obtained a value of 0.92).
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DSLDSlr cannot match the performance of the other two models, with the exception of

the blood sample factor, where its performance is higher than the FSLDS and on par with

the DSLDSr f . Its generally lower performance is not surprising since the model is linear.

The DSLDSr f outperforms the FSLDS in three out of the four clinically identified fac-

tors. The difference in favour of the DSLDSr f is clear for bradycardias and blood samples,

but less pronounced for core temperature disconnections. The FSLDS achieves slightly

higher performance in the case of the incubator open factor, and clearly outperforms the

DSLDSr f in the case of the X-factor. The FSLDS models the presence of outliers by the

inclusion of an extra factor, which is essentially governed by the same parameters as sta-

bility with the only difference being that the system noise covariance is an inflated version

of the respective covariance of the stability dynamics (for more details, see Quinn et al.,

2009). Such an approach has the potential to address the issue of outlier detection in a

more general and thus more satisfactory way. In the case of the DSLDS, our approach is

to collectively treat all abnormal events, other than the ones attributed to known factors,

as an “X-class” and build a binary classifier to distinguish that class. As the training data-

points for this class are highly inhomogeneous in terms of shared discriminative features,

and test points belonging to the X-class may not exhibit a high degree of similarity to

the training set, it is not surprising that the DSLDS may perform rather poorly for the

X-factor. However, by considering an α-mixture of the two models, we can combine the

discriminative power of the DSLDSr f for known factors with the increased performance

of the FSLDS for the X-factor, thus achieving a higher performance (bottom line of Table

4.2) compared to considering the two models separately. The behaviour of the α-mixture

model as a function of α is shown in Figure 4.4. The optimal α-mixture (α = 0.5) yields

the best average AUC across factors (in fact, α = 0.5 yields optimal performance for each

factor separately except bradycardia, where it is almost optimal) compared to all other

considered α values and also outperforms the DSLDS and the FSLDS in all cases except

for the bradycardia factor, where the DSLDSr f performs slightly better.

In a real-world setting, a choice has to be made with respect to a threshold, according

to which the model would classify an example as belonging to the positive or negative

class. A ROC curve thus can be more informative than the AUC since it depicts a model’s

classification behaviour as this threshold varies. In Figure 4.5, the ROC curves for the

classification of each factor are shown. The DSLDSr f dominates (i.e. always achieves

higher classification accuracy regardless of the choice of threshold) almost entirely in the

ROC curve space over the FSLDS for both the blood sample and bradycardia factors,
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Table 4.2: Comparison of DSLDS, FSLDS and α-mixture performance for the NICU

dataset. Optimal value of the α parameter is shown inside parenthesis.

AUC BS IO TD BR X

DSLDSr f 0.98 0.83 0.90 0.94 0.57

DSLDSlr 0.98 0.75 0.73 0.81 0.51

FSLDS 0.92 0.87 0.88 0.85 0.66

α-mixture(0.5) 0.98 0.89 0.93 0.92 0.67
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Figure 4.4: Performance of the α-mixture models as a function of α (step = 0.25) for the

NICU dataset. The asterisk marks the optimal value for α.

while the FSLDS dominates in the case of the X-factor. In the case of the open incuba-

tor factor, the FSLDS dominates above a threshold choice which would correspond to a

false positive rate (FPR) of approximately 0.1, while below this threshold the DSLDSr f

exhibits a slightly better performance. This picture is effectively reversed in the case of

the temperature probe disconnection factor, where the DSLDSr f dominates for threshold

choices corresponding to FPRs ranging in 0.25–0.65, while the FSLDS dominates out-

with that interval. In concordance to the AUC results, the α-mixture model dominates

in ROC curve space over all other models, with the exception of bradycardias, where the

DSLDSr f is the better choice.
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Figure 4.5: ROC curves for each modelled factor in the case of the NICU, using the DSLDS

(red line for DSLDSr f , green line for DSLDSlr), the FSLDS (blue line), and their α-mixture

(magenta line). The dashed diagonal line corresponds to a random classifier.
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4.2.4.2 Neuro-ICU

In the case of the Neuro-ICU, inferences for two example events are shown in Figure 4.6.

In the top, a damped trace event is shown, which lasts for almost one hour before being

resolved by a flushing event (spiking of both channels). The DSLDS accurately identifies

the damped trace event, while the FSLDS fails to detect it, but hypothesises several in-

correct blood sample events instead. In the bottom panel a blood sample event is shown,

where the multiple stages are clearly visible. The event starts with two artifactual ramps,

followed by a flushing, a zeroing, and finally with another flushing. This is slightly dif-

ferent than the description we have already given, but slight deviations from the standard

protocol due to human error is to be expected. In this case, both models manage to capture

the event in a generally satisfactory manner. Summary results are reported in Table 4.3.

The DSLDSr f outperforms the FLSDS on all of the known factors. The damped trace and

suction events particularly are characterised by high variability which is hard to capture

with a generative process. However, simple discriminative features are able to capture

them with higher accuracy. As was expected, the FSLDS achieves a higher AUC for the

X-factor. Similarly to the case of the NICU the DSLDSlr exhibits a lower performance

compared to the DLSDSr f , but manages to outperform the FSLDS in two out of the four

factors, reinforcing the belief that (even simple, linear) discriminative models are more

appropriate for the investigated tasks.

Table 4.3: Comparison of DSLDS, FSLDS and α-mixture performance for the Neuro-ICU

dataset. Optimal value of the α parameter is shown inside parenthesis.

AUC BS DT SC X

DSLDSr f 0.96 0.93 0.67 0.65

DSLDSlr 0.88 0.91 0.62 0.54

FSLDS 0.95 0.79 0.57 0.74

α-mixture(0) 0.99 0.94 0.70 0.71

Again, the optimal α-mixture (α = 0) outperforms the DSLDSr f and the FSLDS in all

cases except for the X-factor, where the FSLDS achieves a slightly higher AUC. Contrary

to the NICU dataset, as shown in Figure 4.7 there are alternative α values which can yield

higher AUC across different factors. For example, an X-factor AUC value of 0.76 can be

obtained by setting α = 5. However, apart from the superior (on average) performance
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a blood sample event (bottom).
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of the α-mixture, another appealing property is that α could be treated as a user-tunable

parameter. In a practical setting, the model could be preset with the optimal α value, but a

clinician could decide, for example, to make the model focus on maximising its predictive

performance on the X-factor (or some important physiological factor like bradycardia) to

the potential detriment of other factors. Then the model could adjust its α parameter

in real-time based on training data results to maximise its performance on the desired

factor.
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Figure 4.7: Performance of the α-mixture models as a function of α (step = 0.25) for the

Neuro-ICU. The asterisk marks the optimal value for α.

In Figure 4.8, the ROC curves for the classification of each factor are shown. The

DSLDSr f dominates almost entirely in the ROC curve space over the FSLDS for the

suction (for a threshold choice corresponding to FPR > 0.15) and damped trace factors,

while the FSLDS dominates in the case of the X-factor. In the case of the blood sample

factor, the DSLDSr f dominates until a threshold choice which would correspond to an

FPR of approximately 0.25, while over this threshold the results are reversed in favour

of the FSLDS. As expected, the α-mixture model dominates in ROC curve space over all

other models, with the exception of the X-factor (and the damped trace factor for thresh-

olds corresponding to FPRs < 0.1, where interestingly, the DSLDSlr is the best choice),

where the FSLDS achieves a higher performance.
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Figure 4.8: ROC curves for each modelled factor in the case of the Neuro-ICU, using the

DSLDS (red line for DSLDSr f , green line for DSLDSlr), the FSLDS (blue line), and their

α-mixture (magenta line). The dashed diagonal line corresponds to a random classifier.
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Figure 4.9: Example of the inferred underlying physiology in the presence of a blood sam-

ple in the case of the DSLDS (left) and the FSLDS (right). The solid line corresponds to

the actual observations, while the estimated true physiology is plotted as a dashed line

with the shaded area indicating two standard deviations.

4.2.4.3 Inference for x-state

Finally, Figure 4.9 shows the inferred distribution of underlying physiology during a blood

sample taken from a neonate for both models. In both cases, estimates are propagated

with increased uncertainty under the correctly inferred artifactual event. Note a small

difference at the start of the event: The DSLDS partially identifies the event causing an

increase in uncertainty, while the FSLDS (incorrectly) identifies this part as stable and

thus its x-state update exhibits lower uncertainty. Maintaining an estimate of the underly-

ing vital signs in the presence of artifacts can then be used for data imputation. Another

use, which has been deemed important by clinical experts, is that such an estimate can

help doctors maintain an approximate view of a patient’s underlying physiology during

artifactual events that would otherwise completely obscure a patient’s vital signs. This

can be crucial during treatment of a patient under critical conditions, such as the ones

found in an ICU.

4.3 Summary

In this chapter, a discriminative approach has been presented for the application of patient

monitoring in ICUs. It was shown that the proposed discriminative approach is able to
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outperform the previous generative approach used for the same task in most of the inves-

tigated cases. Additionally, the DSLDS provides a more data-driven framework within

which it is more straightforward and less time consuming to model a patient’s state of

health compared to the generative approach for which a very detailed understanding of

the associated factors based on expert knowledge is a prerequisite. It was also shown that

an α-mixture of the two approaches yields better results than either model separately. In

our approach we have assumed that the prediction of the switch variable factorises over

the state space. However, one could use a structured output model to predict the joint dis-

tribution of different factors. For example, one could set up a graphical structure to model

factors that are mutually exclusive, so that one factor’s presence could be explained away

in the presence of another, competing factor or potentially set up a hierarchy of factors

motivated by domain knowledge where factors higher in the hierarchy could affect the

dynamical behaviour of factors at the lower levels as is the case in Stanculescu et al.

(2014).

Finally, another issue is the lack of explicit temporal continuity in the s-chain. Implicitly,

this is handled by the feature construction process. However, a future direction could

be to establish a Markovian connection on the s-chain too and compare with the current

approach.





Chapter 5

Input-Output Non-Linear Dynamical

Systems

In the previous chapter, the development of the DSLDS was motivated by the problem

of identifying clinical events of interest (mainly artifactual) and capturing the underlying

physiology of a patient in the presence of artifact. In this chapter, the focus is centred on

the problem of predicting the effect of infused drugs on the vital signs of a patient. In

the biomedical literature this problem is broken into pharmacokinetics (PK) and pharma-

codynamics (PD). As already mentioned in Section 3.3, pharmacokinetics is concerned

with the behaviour of drugs once they enter a patient’s body, while pharmacodynamics

addresses the biochemical and physiological effects of drugs on the body. As already

described in the same section, PK models are typically expressed as sets of ordinary dif-

ferential equations (ODEs), while PD models are typically nonlinear functions relating

drug concentration to observed vital signs.

From a machine learning point of view, these models consist of a linear dynamical sys-

tem with control inputs (the drug infusion rates), and a non-linear output model. The PK

models are based on quite a number of assumptions that are arguably not highly accurate

representations of a patient’s physiological reaction to drug administration (see Section

3.3 for more details). Thus this chapter’s contribution is to take a more “data-driven” ap-

proach to the problem, fitting an input-output non-linear dynamical system (IO-NLDS1)

to predict the vital signs based on input drug infusion rates. A notable difference to the

PK/PD approach is that the latent process is not constrained to be mapped to any physio-

1Inspired by the IO-HMM of Bengio and Frasconi (1995).
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logically interpretable quantity and the model is free to learn any latent representation that

might better explain the observed data. The results show clear improvements in perfor-

mance over the PK/PD approach. As a second contribution, the IO-NLDS model is fitted

using an unscented filter (Wan and Van Der Merwe, 2000) within an EM algorithm. To

the best of the author’s knowledge this is the first time such an approach has been taken for

a system including control inputs on a real-world dataset with several parameters.

The structure of the remainder of this Chapter is as follows: in Section 5.1 a description of

the PK/PD model and the IO-NLDS is provided, their structure is compared, and details

about inference and learning are given. In Section 5.2 follows a description of experiments

and results are provided on the comparison between the two methods. Finally, Section

5.3 concludes with general remarks about the proposed model and suggestions for future

work. Parts of this chapter have been adapted from Georgatzis et al. (2016b).

5.1 Model description

In this section, details about the PK/PD model and the IO-NLDS are provided. In Section

5.1.1 the standard formulation of the PK/PD approach is described, motivated by the

relevant literature. In Section 5.1.2 the IO-NLDS is described, while in Section 5.1.3 the

PK/PD model is cast as a probabilistic NLDS. Sections 5.1.4 and 5.1.5 provide details

about inference and learning in the IO-NLDS setting.

5.1.1 PK/PD model

A description of the standard PK/PD approach which is based on compartmental mod-

elling has already been given in Section 3.3 and what follows here is a more detailed

exposition of this approach focussing on the anaesthetic drug Propofol. As already ex-

plained, compartmental models are an abstraction used to describe the rate of change of

a drug’s concentration in a patient by accounting for the processes of absorption, dis-

tribution, metabolism and excretion of the drug in different parts (compartments) of the

human body. This approach then involves building a system of ODEs that describe the

evolution of drug concentrations at different compartments. The standard compartmental

model for modelling the pharmacokinetical properties of Propofol is comprised of three

compartments and dates back to Gepts et al. (1987). Based on that work, a model widely
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used in practice is the one introduced by Marsh et al. (1991) which has been further im-

proved upon by White et al. (2008). This line of work only addresses the PK aspect of

the task. In order to quantify the effect of the drug on the observed vital signs, one needs

to add an extra “effect” compartment for each observed vital sign, and link the concentra-

tion at the effect compartment with the observed physiology as in e.g. Bailey and Haddad

(2005).

A graphical representation of this overall PK/PD approach is shown in Figure 5.12, where

xi is the concentration of drug in compartment i and ki j is the drug’s transfer rate from

compartment i to j.3. Tne functional relationship between xe and the observed vital sign

y can be modelled via a generalised logistic function (also known as Richards’ curve; see

Richards, 1959) of the form:

g(xe) = m+
(M−m)

(1+ e−γxe)(1/ν)
, (5.1)

where the parameters m, M govern the lower/upper asymptote respectively, γ controls

the decrease rate and ν determines near to which asymptote maximum decrease occurs4.

The whole model can be described by a system of linear ODEs with the addition of a

generalised logistic function as follows:

dx1t/dt =−(k10 + k12 + k13)x1t + k21x2t + k31x3t +ut ,

dx2t/dt = k12x1t− k21x2t ,

dx3t/dt = k13x1t− k31x3t ,

dxeqt/dt = k1eq(x1t− xeqt) ,

yqt = g(xeqt) , (5.2)

where q ∈ {1,2,3}. An important aspect of this model is that the parameters associated

with the PK part (i.e. the set of ki j’s) are considered fixed and their values have been

2This representation is equivalent to the one presented in Figure 3.9 but with three effect sites instead of
one.

3Parameter k1e is known as ke0 in the PK literature.
4This form of the generalised logistic function with four parameters was used to mirror the Hill function

(see Eq. 3.37). We also note that the generalised logistic function was used instead of the Hill function due
to its ability to handle negative values.
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determined by Marsh et al. (1991) based on principles of human physiology. In White

et al. (2008) it was established that this PK model could be improved by allowing k10 to

vary according to a patient’s age and gender. Hence, in this work, the improved version

of White et al. (2008) is followed.

x1 x2x3

xe1 xe2 xe3

y1 y2 y3

k10

u

k1e1

k1e2

k1e3

g(·) g(·) g(·)

k12

k13 k21

k31

Figure 5.1: A three compartment model for Propofol with one added effect site compart-

ment. See text for details.

5.1.2 IO-NLDS

In contrast to the PK/PD an alternative approach is adopted which makes no explicit use of

expert physiological knowledge and is not restricted in associating the model’s parameters

with physiologically relevant quantities. Instead, the minimal assumptions made are that

a latent temporal process with linear dynamics driven by control inputs (drug infusion

rates), gives rise to observed quantities (vital signs) which are non-linearly dependent on

the latent process. This gives rise to an input-output non-linear dynamical system (IO-

NLDS), which can be thought of as an LDS with control inputs and a generalised logistic

function (see Eq. 5.1) as its observation model and is further defined by the following

joint distribution:



5.1. Model description 81

p(x,y|u) = p(x1|u1)p(y1|x1)
T

∏
t=2

p(xt |xt−1,ut)p(yt |xt) , (5.3)

where xt ∈ Rdx , ut ∈ Rdu and yt ∈ Rdy denote the latent states, control inputs and observed

vital signs at time t, and T denotes the total length of the observed vital signs. It is further

assumed that the random variables are distributed according to:

xt ∼N (Axt−1 +But ,Q) , (5.4)

yt ∼N (g(Cxt),R) . (5.5)

The graphical model corresponding to these equations is shown in Figure 5.2. Equation

(5.5) encodes the assumption that the latent state is linearly projected onto the observation

space via matrix C, is subsequently non-linearly transformed via the generalised logistic

function g(·), and corrupted by Gaussian observation noise with covariance R to give rise

to the observations. Function g(·) is parameterised as in the PK/PD approach. The latent

state itself is following linear dynamics, governed by matrix A and a linear transforma-

tion (via matrix B) of control inputs, and additive Gaussian noise with covariance Q. A

notable difference to the PK/PD approach is that the latent process is not constrained to

be mapped to any physiologically interpretable quantity and the model is free to learn any

latent representation that might better explain the observed data. In contrast to the PK/PD

model, the latent process exhibits a higher degree of flexibility, being unconstrained of any

(simplifying) physiologically motivated assumptions and can thus be expected to model

the patient-specific underlying dynamics in a more expressive way.

5.1.3 PK/PD model as NLDS

The PK/PD model as described in Section 5.1.1 does not incorporate any uncertainty

while the IO-NLDS is a probabilistic model. In order to compare the two models, the

PK/PD model is cast into the IO-NLDS form as described in eqs. (5.4), (5.5). This

involves two steps: a) the discretisation of the continuous time dynamics as described

by the system of ODEs in the first four equations of eq. (5.2) and b) the addition of
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xt−1 xt xt+1

yt−1 yt yt+1

ut−1 ut ut+1

Figure 5.2: Graphical model of IO-NLDS. The latent physiological state of a patient and

the drug infusion rates at time t are denoted by xt and ut respectively. The shaded nodes

correspond to the observed physiological values, yt .

Gaussian noise on the discretised dynamics and on the non-linear output. This can be

done by setting the following parameters (assuming here dy = 1 for compactness) as

A = exp{F∆t},B = [1 0 0 0]>,C = [0 0 0 1], where:

F =


−(k10 + k12 + k13) k21 k31 0

k12 −k21 0 0

k13 0 −k31 0

k1e 0 0 −k1e

 .

The dynamics matrix A is the discretised version of its continuous time counterpart F,

which involves computing the matrix exponential of F times the discretisation step ∆t as

described e.g. in Aström and Murray (2010, sec. 5.3). Matrix F is made of the continuous-

time parameters that govern the system of ODEs presented in eq. 5.2. It is noted that the

PK model provided by White et al. (2008) provides estimates for the parameters involved

in F, except for k1e. To fit an appropriate k1e a fine-grained one-dimensional grid search

per observed channel around a clinically relevant value was performed. The noise matri-

ces Q and R have the same interpretation as in the case of the IO-NLDS and can be learned

in the same way, as described in Section 5.1.5. Under this form, the PK/PD model can be

seen as an IO-NLDS with a constrained parametric form, where the parameters A, B, and

C are constrained in such a way as to capture the physiological processes involved with
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the infusion of an anaesthetic drug, as already described in Section 5.1.1.

5.1.4 Inference

If the observation model was linear, then the overall model would be a linear dynami-

cal system (LDS) and exact filtering would be feasible via the well-known Kalman filter

(Kalman, 1960). With the addition of the nonlinear observation function g(·), exact in-

ference becomes intractable and one must resort to some form of approximation. Here,

a sigma-point filtering approach is adopted, and more specifically the unscented Kalman

filter (UKF) is used, as described in Särkkä (2013).

The main component of UKF is the unscented transform (UT) as presented by Julier and

Uhlmann (1996) (although the term “unscented” was introduced later). The UT is also

described in Appendix C. The idea behind it is that a non-linear transformation of a Gaus-

sian distribution can be approximated by first deterministically selecting a fixed number

of points (called sigma points) from that distribution to capture its mean and covariance,

then computing the exact non-linear transformation of these points, and subsequently

fitting a Gaussian distribution to the non-linearly transformed points. Under this proce-

dure, the UKF reduces to applying the UT twice at each time step t: a) once to compute

the predictive density p(xt |y1:t−1,u1:t), by using the UT on the previous filtered density

p(xt−1|y1:t−1,u1:t−1) and b) to compute the current filtered density p(xt |y1:t ,u1:t) by us-

ing the UT on the predictive density to compute the current likelihood p(yt |xt) and then

using Bayes rule to obtain the required filtered (posterior) density. These two steps con-

stitute the standard predict-update cycle that also forms the basis of inference in a LDS

via the KF as seen in Section 3.2.5.1. Since the model is governed by linear dynamics,

the first step can be calculated by the standard Kalman filter equivalent step with both

methods yielding the same results.

The task of inference in non-linear dynamical models has been thoroughly explored and

methods such as the extended Kalman filter (see e.g. Särkkä, 2013, sec. 5.2), the UKF

(Wan and Van Der Merwe, 2000) and the particle filter (Gordon et al., 1993) have been

proposed. The UKF is shown empirically to outperform the extended KF (see e.g. Haykin,

2001, Ch. 7), and was chosen over the particle filter (PF) because the PF can require

“orders of magnitude” (see Wan and Van Der Merwe, 2000) more sample points compared

to the UKF’s fixed, small number of sigma points to achieve high accuracy, rendering it
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computationally prohibitive for a real-time application such as ours.

5.1.5 Learning

The parameters of the proposed model that need to be learned are θθθ = {µµµ1,ΣΣΣ1,A,B,C,Q,

R,ηηη}, where it is assumed that x1 ∼N (µµµ1,ΣΣΣ1) and ηηη = {m,M,γγγ,ννν} are the parameters

of g(·). Maximum likelihood (ML) estimates of these parameters are learned by using the

expectation maximisation (EM) algorithm (Dempster et al., 1977). EM then maximises

the likelihood via maximising the following surrogate function:

Q (θθθ,θθθold) = Ep(x|y,u,θθθold)[log p(x,y|u,θθθ)] , (5.6)

which, due to the Markov properties of the model, can be further decomposed as:

Q (θθθ,θθθold) = Ep(x1|y1:T ,u1:T ,θθθ
old)[log p(x1|u1,θθθ)]

+Ep(xt ,xt−1|y1:T ,u1:T ,θθθ
old)[log p(xt |xt−1,ut ,θθθ)]

+Ep(xt |y1:T ,u1:T ,θθθ
old)[log p(yt |xt ,θθθ)] . (5.7)

Expectations with respect to the smoothing distributions p(xt |y1:T ,u1:T ,θθθ
old) and the

pairwise joint smoothing distributions p(xt ,xt−1|y1:T ,u1:T ,θθθ
old) are involved in these

terms. These distributions can be computed in general via the unscented Rauch–Tung–

Striebel (URTS) smoother as described in Särkkä (2008). In this case, since the system’s

dynamics are linear, the backward smoothing step can be performed by the standard RTS

smoother after obtaining the unscented filtered estimates during the forward filtering step

via the UKF. Analogously to the UKF, where the UT is used to approximate the required

expectations, the UT needs to be employed here to approximate the expectation appear-

ing in the last term of the RHS of eq. (5.7). More details are given in Kokkala et al.

(2014).

Computing the required distributions and expectations in order to calculate eq. (5.7) con-

stitutes the E-step of EM. During the M-step the model parameters are set such that
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θθθ
∗← argmaxθθθ Q (θθθ,θθθold). This maximisation step can be done analytically in the case of

the LDS, but one needs to make use of numerical optimisation methods in the non-linear

case. In this work, the subset of parameters θθθ
∗
L = {µµµ1,ΣΣΣ1,A,B,Q} which correspond

to the linear part of the model can be computed in closed form as shown in Cheng and

Sabes (2006), and R∗ can be computed similarly to the linear case as shown in Särkkä

(2013, sec. 12.3.3). These ML estimates are provided in Appendix C. The remaining set

of parameters θθθ
∗
NL = {C,ηηη} can be then optimised via numerical optimisation. For this

work’s experiments the Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm (see e.g.

Fletcher, 2013) is used. It should be noted that EM is a natural choice in this case since

the model involves a linear sub-component which can be exploited in the decomposition

of eq. (5.7) to derive a subset of parameters in closed form. In a fully non-linear case how-

ever one could use a numerical optimisation procedure to directly maximise the likelihood

function instead of a surrogate function, as argued in Kokkala et al. (2015). Finally, the

subset {A,C,Q,R} of the IO-NLDS’s parameters is initialised via the spectral learning

approach of Siddiqi et al. (2007) which has been described in Section 3.2.5.2.

In general, learning is not as thoroughly explored as inference in NLDSs but in Hagenblad

et al. (2008) a gradient-based iterative search method combined with numerical integra-

tion is used for deriving maximum likelihood estimates of the parameters of a Wiener5

model, while in Schön et al. (2011) and Wills et al. (2011) the EM algorithm is used in

conjunction with PF for parameter estimation. In Wills et al. (2013) the same method is

used for parameter estimation in a Hammerstein-Wiener6 model. Finally in Gašperin and

Juričı́c (2011) and Kokkala et al. (2014) the EM is used in conjunction with the UKF for

the same task, but they do not include control inputs in their formulation as we do.

5.2 Experiments

This section contains an exposition of experiments that were conducted in order to estab-

lish if the newly proposed approach can model accurately the effect of drug infusions on

the observed physiology of patients in ICUs. To this end, the IO-NLDS and the PK/PD

5In the control theory field, LDSs with nonlinear observation models are known as Wiener models
(Schetzen, 1980).

6A static non-linearity connecting the input to the latent state of the model is known as a Hammerstein
model (Narendra and Gallman, 1966). A Hammerstein-Wiener model is the combination of a Wiener and a
Hammerstein model.



86 Chapter 5. Input-Output Non-Linear Dynamical Systems

model are compared with respect to the task of predicting the effect of Propofol on pa-

tients’ vital signs. Also, an additional comparison is conducted between the IO-NLDS

and a more direct approach that does not make use of a latent space.

5.2.1 Data description

A general description of vital signs data under the effect of drug infusions has already

been given in Section 2.3.2. Here, a more detailed description is provided pertaining to

the ensuing experiments. The dataset comprises of 40 Caucasian patients admitted in the

Neuro-ICU of the GJNH. All patients were spontaneously breathing with the maximum

airway intervention being an oropharyngeal airway, and none was classified higher than

Class 2 with respect to illness severity according to the American Society of Anesthesiol-

ogists.

Two controlled Propofol infusion protocols were investigated pre-operatively on these

patients during a period of approximately 45 minutes. This investigation was part of an

independent clinical study and the data have been anonymised. Each patient was ran-

domly assigned to one of the two protocols. The first protocol involved a target Propofol

concentration of 2 µg/ml for the first 15 minutes followed by a target concentration of 5

µg/ml for the next 15 minutes and 2 µg/ml for the last 15 minutes. The second protocol

was the inverse of the first with a 5–2–5 µg/ml target sequence. The drug pumps which

automatically administer Propofol calculate internally the desired infusion rates and these

rates were used as control inputs of the model. Propofol doses are at peak during the early

phase of the protocol making it very likely that the maximum haemodynamic effects will

be seen during the study period and not after discontinuation of the drug. Also, during the

study very few interventions were required in the case of hypotension (treated by small

incremental doses of either ephedrine or Metaraminol) and bradycardia (treated by Gly-

copyrolate). The frequency and duration of these interventions were deemed sufficiently

low so as to treat the relevant periods as unaffected by them.

During the duration of the protocol, six vital signs were recorded, namely systolic, mean

and diastolic blood pressure (BPsys, BPmean, BPdia), heart rate (HR), respiratory rate

(RR) and the bispectral index (BIS). From these values, BPsys, BPdia and BIS were ex-

pected to be affected by Propofol administration and the signals were of adequate quality

so that they could be further analysed.
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5.2.2 Model fitting

For both models EM was used as described in Section 5.1.5 to learn the parameters on

each patient separately and then obtain predicted values using those fitted parameters. For

both models, 100 iterations of EM where used and the BFGS algorithm was run with 1000

function evaluations during the first 10 iterations and 100 evaluations during the remain-

ing iterations. An important advantage of the models’ linear dynamics is that stability

constraints can be enforced which are of paramount importance in a real-world setting. If

the system dynamics matrix, A, becomes unstable (i.e. if the modulus of its largest eigen-

value is greater than one) this matrix is projected back to the space of stable matrices

such that it is also closer (in a least-squares sense) to the originally learned matrix. The

approach proposed by Siddiqi et al. (2007) is followed to achieve this, which involves

solving for a quadratic program inside EM as has already been mentioned in Section

3.2.5.3. This process is very fast and is performed only if an instability is observed. Also,

the noise covariance matrices Q and R are constrained to be diagonal.

Furthermore, a number of different dx = {2,3,4,5} is explored for the IO-NLDS. Under

these assumptions, the IO-NLDS has a variable number of parameters which is higher or

equal than the PK/PD model’s parameters for dx = {3,4,5} and lower for dx = 2.7 This

variable number of parameters in the case of the IO-NLDS reflects its greater expres-

sive power since it is not constrained by physiological assumptions. In contrast with the

PK/PD model, one has the flexibility to decide on alternative latent space dimensionalities

by making use of an information criterion to determine dx under a more formal measure

of optimality, turning the whole process into a standard model order selection procedure.

In the PK/PD case, a higher latent space dimension would correspond to an increased

number of compartments, which could require years of additional research to validate

physiologically appropriate extensions of the already existing literature. However, to per-

form a more fair model comparison between the two models and to make an informed

decision about the optimal dx from an information theoretic perspective, Bayesian Infor-

mation Criterion (BIC) scores are also computed.

Finally, the UT involves determining three parameters α, β, κ (see Appendix C for de-

tails). Following Haykin (2001, sec. 7.3), these are set to α = 0.5, β = 2, and κ = 3−dx.

The choices for β and κ are optimal under the assumption of Gaussianity and α, which

7Calculations of the number of parameters for the IO-NLDS and the PK/PD model are provided in
Appendix C
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determines the sperad of the sigma points around the mean, is recommended in that work

to be set to a small positive value in the range of 10−4–1.

5.2.3 Results

The standardised mean squared error (SMSE)8 between predictions and actual observa-

tions is used as the evaluation metric, and also representative examples of curve fits on the

observed data produced by the two models are provided. The SMSE takes into account

the variance of the observed data and provides a natural baseline with SMSE = 1 denoting

the mean prediction. For both models the SMSE is calculated between model predictions

and measured outputs of BPsys, BPdia and BIS across a number of different prediction

horizons; namely 1, 10 and 20-step ahead predictions, (corresponding to 15 seconds, 2.5

minutes and 5 minutes respectively). The SMSE is also calculated for the “free-running”

case, which corresponds to predictions for the whole duration of the protocol. These time

intervals, apart from the 1-step interval, were decided as clinically relevant. Results on

the 1-step ahead prediction task are included as well, since this is a standard evaluation

task when assessing predictive performance of dynamical models.

A summary of the mean SMSEs of the two models per prediction horizon, per channel and

for all investigated values of dx for the IO-NLDS is shown in Table 5.1. The IO-NLDS’s

prediction errors are consistently lower than the PK/PD model’s and by a large margin

in most cases. Both models’ errors are comparably low at the 1-step ahead prediction

level. Moreover, the difference in favour of the IO-NLDS becomes more obvious as the

prediction horizon increases. Also, in most cases the predictive errors for both models are

increased as the prediction horizon increases, as expected. Another expected behaviour

is that the predictive errors for the IO-NLDS exhibit in general (with a few exceptions) a

downward trend as dx increases since more parameters are fitted. In the same table, BIC

scores are also provided per prediction horizon for all models to account for IO-NLDS’s

generally higher number of parameters. The BIC is defined as: BIC =−2ln(L)+b ln(N),

where L is the data likelihood under the model, b is the number of free parameters9 and

N is the number of data points. The IO-NLDS achieves a lower (better) score in most

8SMSE = MSE/vary, where MSE is the mean squared error and vary is the variance of the observed
vital sign. The SMSE is also known as the fraction of unexplained variance (FUV) and is also equal to 1
minus the coefficient of determination (1−R2).

9In the case of the PK/PD model the ki j (i, j = {1,2,3}) parameters are treated as the result of a separate
optimisation process carried out in the relevant literature and are thus included in the calculation of b.
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cases and thus demonstrates that the increase in likelihood is not just an effect of higher

statistical capacity but rather that the IO-NLDS manages to model the observed temporal

structure better than the PK/PD model.

The results from Table 5.1 suggest that the IO-NLDS achieves higher performance (in

terms of the combination of lower SMSE and BIC) when dx = 4, thus the remaining re-

sults will refer to the IO-NLDS with a latent dimension of four (IO-NLDS(4)). Thus, in

Figures 5.4–5.7, four representative examples of observed vital signs and the fitted traces

produced by the two models for each of the four prediction horizons are presented. In

Figure 5.4, four examples on the 1-step ahead prediction task are given. The performance

of the two models is comparable and both models manage to stay quite close to the ob-

served signals. In Figure 5.5, four examples of the 10-step ahead task are given. Again,

both models seem to have captured the temporal structure of the observed signals with

satisfactory accuracy although the IO-NLDS(4) seems to be able to stay closer to the true

signal. In Figure 5.6, four examples of the 20-step ahead task are given. Here the dif-

ference in performance is clearer, with the IO-NLDS(4) tracking the temporal evolution

of the observed signals more accurately especially during the time that the vital signs

decrease more rapidly which is an important haemodynamic event (as captured by BP-

sys/dia) and also corresponds to a rapid increase in the patient’s depth of anaesthesia (as

captured by BIS). Finally, in Figure 5.7, the “free-running” predictions of the two models

are shown. The IO-NLDS(4) manages in general to stay close to the actual signal, while

on the other hand the PK/PD model showcases a considerably higher degree of error in

its predictions. Especially in the bottom right panel, it seems that the PK/PD model has

failed to capture the temporal dynamics of the signal and has underestimated its decrease

rate.

Overall, in all cases the IO-NLDS(4) manages to stay closer to the observed signal espe-

cially at the beginning of the protocol during the steepest decrease of the observed signal.

This constitutes the most critical phase of the protocol during which the uncertainty of

an anaesthetist about the patient’s reaction to the drug is considerable and the risk of an

undesirable episode (e.g. hypotension) is at its highest. Therefore, accurate predictions

during that phase are much more critical compared to the rest of the signal.

Retaining the focus on the IO-NLDS(4), results for all three channels and the four pre-

diction horizons are shown as boxplots in Figure 5.3, where the central mark denotes the

median, the edges of the box are the lower and upper quartiles and the whiskers extend to
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outliers with extreme outliers being denoted separately by a red cross. For all three chan-

nels, the IO-NLDS’s predictions are consistently more accurate than the PK/PD model’s

across all four prediction horizons10.

The output of a more fine-grained comparison is displayed on Figure 5.8 which reveals

that in 92% of all investigated cases the accuracy of the IO-NLDS(4)’s predictions is

better than the PK/PD model’s. Finally, twelve paired, right-tailed t-tests (one per channel

and per prediction horizon) were performed on the differences of the obtained SMSEs

(SMSEPKPD−SMSEIO−NLDS(4)) across the 40 patients. The null hypothesis that the mean

of this difference is zero, is rejected in 10 out of 12 cases with p-values ranging from

1.6×10−2 to 4.8×10−17. In the case of the 1-step ahead predictions on BPdia and BIS,

p-values of 0.14 and 0.37 respectively were obtained and thus the null hypothesis could

not be rejected at the 95% confidence level.

The experiments which were conducted so far aim to answer the question of whether

a data driven approach (IO-NLDS) is more appropriate than a knowledge-based one

(PK/PD model) which is well established in the relevant field. However, the focus is

now shifted on the question of whether the latent space along with its temporal dynamics

which is present in the IO-NLDS is crucial to its performance or whether perhaps a more

direct method that does not make use of a temporal latent space could model the vital

signs equally satisfactorily.

To this end, for each vital sign, a linear regression model coupled with a generalised logis-

tic function was used to predict y directly from u. Thus a prediction made by this model

would be of the form ŷt = g(ŷlr,t), where ŷlr,t = w>ut−l:t is the prediction made at time

t by a linear regression model trained via ordinary least squares (with target outputs y)

and learned weights w and l is a lag value such that a sliding window of drug infusions

u is used as input at each time step t similarly to the DSLDS’s classification approach

presented in Section 4.1.1. The function g(·) was fitted as previously via the BFGS al-

gorithm in order to minimise the residual sum of squares RSS(ηηη) = ΣT
t=1(yt − g(ŷlr,t))

2.

This regression approach (henceforth called LRg) was tried for different values of l =

{6,11,17,24} so that the overall sum of the parameters per fitted channel would follow

very closely the number of parameters learned by the IO-NLDS for the different values

of dx. Since the LRg does not make use of any past values of y for its predictions, the

comparison is made with respect to the free-running results for the IO-NLDS.

10With the exception of the 1-step predictions for BIS where the two models are effectively tied.
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The results from this comparison, which are presented in Table 5.2, show that the IO-

NLDS clearly achieves a higher performance in all investigated cases, suggesting that for

these two fully data-driven approaches, the presence of a latent space and the use of a

model which captures explicitly the temporal continuity of the investigated signals seem

to result in a higher expressive power.

Table 5.1: Comparison of IO-NLDS and PK/PD model with respect to mean SMSE per

channel and prediction horizon and mean BIC per prediction horizon. Lower numbers are

better. Numbers inside parenthesis denote the latent dimensionality of the IO-NLDS.

SMSE/BIC 1-step 10-step 20-step free-running

BPs BPd BIS BIC BPs BPd BIS BIC BPs BPd BIS BIC BPs BPd BIS BIC

IO-NLDS(2) 0.14 0.23 0.13 2534 0.24 0.32 0.22 4932 0.29 0.36 0.28 7286 0.45 0.52 0.40 19970

IO-NLDS(3) 0.13 0.19 0.06 2494 0.22 0.29 0.20 5049 0.25 0.31 0.27 7909 0.31 0.38 0.33 21047

IO-NLDS(4) 0.13 0.20 0.08 2592 0.19 0.27 0.21 4458 0.20 0.27 0.25 6656 0.25 0.36 0.32 16588

IO-NLDS(5) 0.12 0.24 0.10 2786 0.19 0.31 0.18 4821 0.24 0.30 0.25 7385 0.23 0.33 0.23 19959

PK/PD 0.30 0.23 0.10 2709 0.52 0.53 0.41 5314 0.73 0.75 0.74 7919 0.84 0.82 0.89 19008

Table 5.2: Comparison of IO-NLDS and LRg model with respect to mean SMSE per chan-

nel for the free-running case. Lower numbers are better. Numbers inside parenthesis

denote the latent dimensionality in the case of the IO-NLDS and the lag length of the input

vectors in the case of the LRg model.

SMSE BPs BPd BIS

LR(6)
g 0.75 0.80 0.83

IO-NLDS(2) 0.45 0.52 0.40

LR(11)
g 0.69 0.73 0.76

IO-NLDS(3) 0.31 0.38 0.32

LR(17)
g 0.64 0.68 0.68

IO-NLDS(4) 0.30 0.38 0.33

LR(24)
g 0.60 0.63 0.58

IO-NLDS(5) 0.18 0.31 0.34
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Figure 5.3: Summarised SMSE results for IO-NLDS(4) compared to PK/PD for BPsys,

BPdia and BIS across the four prediction horizons for all patients. The green dashed line

corresponds to the mean predictions. The x-axis is labelled according to the model name

followed by the prediction horizon, where FR stands for free-running.
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Figure 5.4: Examples of observed vital sign traces (blue solid line) and the predictions

made by the IO-NLDS(4) (red dashed line) and the PK/PD model (green dashed line) for

the 1-step ahead prediction task.
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Figure 5.5: Examples of observed vital sign traces (blue solid line) and the predictions

made by the IO-NLDS(4) (red dashed line) and the PK/PD model (green dashed line) for

the 10-step ahead prediction task.
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Figure 5.6: Examples of observed vital sign traces (blue solid line) and the predictions

made by the IO-NLDS(4) (red dashed line) and the PK/PD model (green dashed line) for

the 20-step ahead prediction task.
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Figure 5.7: Examples of observed vital sign traces (blue solid line) and the predictions

made by the IO-NLDS(4) (red dashed line) and the PK/PD model (green dashed line) for

the free-running case.
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Figure 5.8: SMSE results for all patients across all four prediction horizons and all three

measured channels. Points below the 45 degree line correspond to lower errors for the

IO-NLDS(4) on the same task and points above that line correspond to lower errors for the

PK/PD model. The diagonal line represents equal performance between the two models.
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5.3 Summary

In this chapter, a purely data-driven approach for the important application of modelling

drug effects on the physiology of patients in ICUs has been presented and it was shown

that the new data-driven approach outperforms the previous expert-knowledge based one.

To the best of the author’s knowledge, this is the first time that a complex, real-world

model has been fully learned via a combination of unscented filters and EM, making this

a promising direction for related tasks. The increased performance of the IO-NLDS does

not come as a surprise, since the IO-NLDS has (genrally) more parameters that are learned

based on the present patient cohort. However, this flexibility is also the key idea behind

the conception of the IO-NLDS: that a more personalised and data-driven approach should

be a more suitable approach for the explored setting than a method like the PK/PD model

which is based on a model that has been mostly fitted on a different patient cohort with

the hope that this would generalise across all future patients.

Also, a use case scenario with a real-world application is now presented: The current

practice in an ICU is that an anaesthetist will start drug administration on a patient with

an initial target dosage and then readjust it according to the evolution of the patient’s vital

signs. This implies that the anaesthetist needs to be at bedside continuously and for the

whole duration of the drug administration, and by definition can only be reactive to po-

tential vital sign deteriorations. Also, this monitoring is not always straightforward. For

example, during drug induction when the risk of hypotension is high, the anaesthetist’s

attention is divided as they will be also managing the airway (e.g. by inserting an endo-

tracheal tube). Therefore a use case for the system is to take a clinician-specified drug

infusion protocol, and make predictions for the time-course of the vital signs. The clini-

cian could then inspect these forecasts, and either continue with the original protocol or

adjust it accordingly. (In that case the model could also automatically notify the clinician,

e.g. if a threshold is crossed by the predicted values). This extra functionality would help

the anaesthetist to be proactive and to avert undesirable episodes for the patient (e.g. an

episode of hypotension). The PK/PD literature has become very focussed on compart-

mental models, but more data-driven models may give rise to better, more personalised

predictions which could thus translate to better clinical outcomes.

In the presented experimental setting, a separate NLDS was fitted per patient. However,

the model would be more powerful if its parameters, θθθ could be predicted from patient
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covariates z (e.g. age, gender, weight etc.) and this could be the target of future work. In

that case, a functional relationship could be learned in a supervised manner between z and

θθθ from existing training data and personalised model parameters θθθnew could be assigned

to each new patient during test time such that θθθnew = f (znew), where f (·) can be any

appropriate regression algorithm. Finally, as the model is drug-agnostic, it can be applied

to other drugs as well in a straightforward manner.





Chapter 6

Conclusion

This thesis has explored the development of dynamical probabilistic graphical models

and their application to the critical task of physiological condition monitoring of patients

admitted in ICUs. We conclude this document by summarising the research contributions

made so far and providing suggestions for extending the presented material further.

6.1 Contributions

The main contributions of this thesis are as follows:

• The formulation, development and validation of the Discriminative Switching Lin-

ear Dynamical System (DSLDS). The DSLDS adopts a discriminative approach to

the task of physiological condition monitoring and was shown to compare favourably

to a prior generative approach (FSLDS). Furthermore, an α-mixture of the two ap-

proaches was developed and was shown to achieve higher performance compared

to both the DSLDS and the FSLDS.

• The formulation, development and validation of the Input-Output Non-Linear Dy-

namical System (IO-NLDS). The IO-NLDS was developed with the goal of ex-

plicitly incorporating drug effects into the modelling process; something that the

DSLDS (or the FSLDS) do not take into account. The IO-NLDS was shown to

outperform prior work which is based on domain-specific, expert knowledge and

provides a “plug-and-play”, purely data-driven approach.

101
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• As a secondary, minor contribution, prior work (FSLDS) which was successfully

applied to the case of neonatal ICUs, was extended to the case of adult ICUs.

6.2 Future work

The nature of research is such that no project could ever be deemed fully completed.

Here, we attempt to identify a number of approaches that could be fruitful avenues of

exploration for researchers that might wish to carry on the work presented so far. We start

by making suggestions which are specific to the DSLDS, then the IO-NLDS and then to

a potential fusion of the two.

DSLDS

The DSLDS makes the simplifying assumption that the joint distribution of the latent fac-

tors is fully factorised as in the case of the FSLDS. It could be the case that more complex

interactions are present between different factors in which case a different graphical struc-

ture could be more appropriate. Such a structure could be potentially motivated by the

available domain knowledge. Furthermore, the DSLDS in its current formulation mod-

els temporal continuity across the factors in an implicit manner, via the construction of

features derived from the observations. An explicit link could also be added between

the factors at different times and investigate if that impacts performance in a significant

manner.

IO-NLDS

The current learning method for the IO-NLDS is carried out per patient and thus does not

allow for the modelling of a new patient. This can be achieved by establishing a func-

tional relationship between the learned parameters of the IO-NLDS per patient and their

demographic characteristics (e.g. age, gender etc. ). In that case a new patient’s demo-

graphic information can be used to construct an appropriate IO-NLDS. Perhaps a more

principled approach would be to have a hierarchical IO-NLDS. One could form a prior

over the IO-NLDS’s parameters (potentially conditioned on demographics) and then de-

rive posterior beliefs via the hierarchical structure, so that statistical strength can be shared

between (similar) patients. However that would further complicate inference and it is not

guaranteed that it would yield better results compared to the previous approach. Finally,
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it should be mentioned that the IO-NLDS and the PK/PD represent the two ends on the

data-driven vs. expert-knowledge spectrum. A combination of the two is possible as well.

One could initialise the IO-NLDS via the PK/PD parameterisation and allow its parame-

ters to be learned (e.g. via EM) while retaining the structural zeros imposed by the initial

PK/PD parameterisation. It would be then very interesting to examine whether the learned

model would potentially retain the interpretability of the PK/PD model while exhibiting

a similarly high performance as in the case of the fully data-driven IO-NLDS.

IO-(D)S(N)LDS

A more complete monitoring system would have the capacity to combine the DSLDS’s

and IO-NLDS’s capabilities. That is, it would be able to identify artifactual and physi-

ological processes of interest, model the effect of drug infusions on the observed phys-

iology and maintain beliefs about the underlying physiology of a patient. This can be

achieved via a fusion of the two models that would lead to an Input-Output Discrimina-

tive Switching (Non-)Linear Dynamical System (IO-DS(N)LDS). The graphical model

for the proposed IO-DS(N)LDS is shown in Figure 6.1 and the model is defined by the

following joint distribution:

st−1 st st+1

xt−1 xt xt+1

yt−1 yt yt+1

ut−1 ut ut+1

Figure 6.1: Graphical model of the IO-DS(N)LDS. Comapred to the DSLDS, past and

future values of u can now affect inference about s. Inference about xt now additionally

depends on ut .
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p(s,x|y,u) =p(s1|y1:1+r,u1:1+r)p(x1|s1,y1,u1)

T

∏
t=2

p(st |yt−l:t+r,ut−l:t+r)p(xt |xt−1,st ,yt ,ut) . (6.1)

Such a model could be seen as an extension to the DSLDS so that drug effects on a

patient’s physiology can be captured. Inference about the state-of-health of a patient can

now incorporate drug information; for example, the model could learn that a hypotension

episode would be more likely under a higher dosage of an anaesthetic drug. Similarly,

the underlying continuous physiology could be more accurately modelled so that if an

artifact obscures the observed physiology while a drug is being infused, the x-chain could

be updated solely under the influence of the drug, ignoring the incorporation of artifactual

observations. For example, if a damped trace obscures BP readings while an anaesthetic is

being infused, the model could still alert clinicians of a potential upcoming hypotension if

such an event is deemed likely by the learned dynamics, even if the (artifactual) readings

might be suggesting otherwise.

Finally, a generative approach has still its own merits, especially with respect to mod-

elling previously unseen abnormalities via the X-factor. It is worth mentioning that the

IO-NLDS can be combined with the (generative) SLDS as well, giving rise to the IO-

S(N)LDS. The graphical model of this generative approach can be seen in Figure 6.2 and

is defined by the following joint distribution:

p(s,x,y|u) =p(s1|u1)p(x1|s1,u1)p(y1|x1,s1,u1)×
T

∏
t=2

p(st |st−1,ut)p(xt |xt−1,st ,ut)p(yt |xt ,st ,ut) . (6.2)

It should be noted though that as data become more readily available, the discriminative

approach should be able to outperform the generative approach with increasing gains and

thus could be a more fruitful avenue of research. Finally, it should be mentioned that

the models developed within this thesis aim at operating on a real-time basis. As such,

all methods are formulated in such a way so as to admit on-line inference procedures.

Thus, advancing from the research prototyping stage into deploying them on-site in an

ICU should not pose a significant challenge.
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st−1 st st+1

xt−1 xt xt+1

yt−1 yt yt+1

ut−1 ut ut+1

Figure 6.2: Graphical model of the IO-SLDS. Compared to the SLDS, the drug infusion

at time t, ut , affects now the state of health, st , the underlying physiology, xt , and the

observed values, yt .





Appendix A

EM algorithm for the LDS

Here, details are provided about the EM algorithm used for learning in the case of the

LDS. The parameters to be estimated are θθθ = {πππ1,V1,A,Q,C,R}, where πππ1,V1 are the

mean and covariance of the initial state and the rest of the parameters are as described in

Section 3.2.5.

A.1 EM

The EM algorithm is a two-step process which is guaranteed to maximise the likelihood

by maximising a surrogate function Q :

Q (θθθ,θθθold) = Ep(x|y,θθθold)[log p(x,y|θθθ)] , (A.1)

which is called the expected complete data log-likelihood. During the E-step, moments

of the latent posterior density p(x|y,θθθold) are calculated as shown below and during the

M-step, new estimates θ̂θθ← argmaxθθθ Q (θθθ,θθθold), are produced.

E-step

The E step requires access to the smoothed posterior densities. Smoothing is an off-

line inference algorithm that updates the filtered posterior densities in a recursive manner
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after the entirety of a temporal signal of total length T has been observed. The smoothed

posteriors are then given by the Rauch–Tung–Striebel (RTS) smoothing algorithm (Rauch

et al., 1965) as follows:

p(xt |y1:T )∼N (µµµt|T ,Vt|T ) , (A.2)

µµµt|T = µµµt|t +Jt(µµµt+1|T −µµµt+1|t) , (A.3)

Vt|T = Vt|t +Jt(Vt+1|T −Vt+1|t)J>t , (A.4)

Jt = Vt|tA>t+1V−1
t+1|t , (A.5)

where Jt is called the backwards Kalman gain matrix. It is noted that this smoothing

process does not need access to the observations y but only to the filtered means and

covariances calculated via the Kalman filter. We also require the following two quanti-

ties:

Pt = Vt|T +µµµt|T µµµ>t|T , (A.6)

Pt,t−1 = Vt,t−1|T +µµµt|T µµµ>t−1|T , (A.7)

where Pt,t−1 can be obtained through the backward recursion:

Vt−1,t−2|T = Vt−1|t−1J>t−2 +Jt−1(Vt,t−1|T −AVt−1|t−1)J>t−2 , (A.8)

which is initialised by VT,T−1|T = (I−KT C)AVT−1|T−1.

M-step

Having computed the required quantites and defining µµµt|T = µ̂µµt for brevity, we can con-

tinue with the M step. For each parameter of the LDS, the M-step involves taking the

corresponding partial derivative of eq. (A.1), setting them to zero and solving them. The

results are listed below:
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Â =

(
T

∑
t=2

Pt,t−1

)(
T

∑
t=2

Pt−1

)−1

, (A.9)

Q̂ =
1

T −1

(
T

∑
t=2

Pt− Â
T

∑
t=2

Pt−1,t

)
, (A.10)

Ĉ =

(
T

∑
t=1

yt µ̂µµt

)(
T

∑
t=1

Pt

)−1

, (A.11)

R̂ =
1
T

T

∑
t=1

(yty>t − Ĉµ̂µµty
>
t ) , (A.12)

V̂1 = P1− µ̂µµ1µ̂µµ>1 , (A.13)

π̂ππ1 = µ̂µµ1 . (A.14)

More details are provided in Ghahramani and Hinton (1996).





Appendix B

Gaussian Sum approximation for the

DSLDS

Here, we derive the updates of the approximate inference scheme used in the DSLDS.

The exposition follows closely Murphy (1998), with appropriate modifications.

We define the following quantities:

xi j
t|τ = E[xt |y1:τ,st−1 = i,st = j]

x j
t|τ = E[xt |y1:τ,st = j]

V j
t|τ =Cov[xt |y1:τ,st = j]

V j
t,t−1|τ = E[xt ,xt−1|y1:τ,st = j]

w j
t|τ = p(st = j|y1:τ)

Filtering then amounts to performing the following steps:

[xi j
t|t ,V

i j
t|t ] = f ilter(xi

t−1|t−1,V
i
t−1|t−1,yt ;A j,C j,Q j,R j) (B.1)

wi = p(st−1 = i|y1:t−1) (B.2)

[x j
t|t ,V

j
t|t ] = collapse(xi j

t|t ,V
j
t|t ,w

i) (B.3)

The f ilter and collapse operators are defined below.
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B.1 Filter

We first compute the predicted mean and covariance under state j.

x j
t|t−1 = A jxi

t−1|t−1

V j
t|t−1 = A jVi

t−1|t−1(A
j)>+Q j

We then compute the error in our prediction (known also as innovation), the covariance

of the error term and the Kalman gain.

e j
t = C jx j

t|t−1−yt

S j
t = C jV j

t|t−1(C
j)>+R j

K j
t = V j

t|t−1(C
j)>(S j

t )
−1

Finally, we compute the updated mean and covariance that correspond to the transition

from state i to state j.

xi j
t|t = x j

t|t−1 +K j
t e j

t

Vi j
t|t = V j

t|t−1−K j
t S j

t (K
j
t )
>

B.2 Collapse

We first compute the collapsed mean for state j.

x j
t|t = ∑

i
wixi j

t|t

We then compute the collapsed covariance for state j.

V j
t|t = ∑

i
wiCov[xt |st−1 = i]

= ∑
i

wiE[(xt−x j
t|t)(xt−x j

t|t)
>|st−1 = i]

= ∑
i

wiE[(xt−xi j
t|t +xi j

t|t−x j
t|t)(xt−xi j

t|t +xi j
t|t−x j

t|t)
>|st−1 = i]

= ∑
i

wiE[(xt−xi j
t|t)(xt−xi j

t|t)
>|st−1 = i]+∑

i
wi(xi j

t|t−x j
t|t)(x

i j
t|t−x j

t|t)
>

= ∑
i

wiVi j
t|t +∑

i
wi(xi j

t|t−x j
t|t)(x

i j
t|t−x j

t|t)
>



Appendix C

Inference and learning details for the

IO-NLDS

Here, details are provided about the unscented transform (UT) and the EM algorithm used

for inference and learning in the case of the IO-NLDS.

C.1 Unscented transform

Calculations of integrals of the form Ep(x)[g(x)] =
∫

g(x)N (x|µµµ,Σ)dx are involved in the

UKF and EM. Since g(·) is non-linear, these integrals are approximated via Gaussian

cubature (i.e. multidimensional Gaussian quadrature) as: Ep(x)[g(x)] ≈ ∑i wig(xi). Fol-

lowing similar notation to Murphy (2012, sec. 18.5.2.1), we first define a set of 2d + 1

sigma points xi:

x = {µµµ,{µµµ+(
√
(d +λ)ΣΣΣ)i},{µµµ− (

√
(d +λ)ΣΣΣ)i}} ,

where ΣΣΣi denotes the i’th column of matrix ΣΣΣ and i = 1, ...,d. This set of sigma points is

propagated via g(·), producing a new set of transformed points yi with mean and covari-
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ance:

µµµy =
2d

∑
i=0

wi
myi ,

ΣΣΣy =
2d

∑
i=0

wi
c(yi−µµµy)(yi−µµµy)

> ,

with weights w’s defined as:

w0
m =

d
d +λ

,

w0
c =

d
d +λ

+(1−α
2 +β) ,

wi
m,w

i
c =

1
2(d +λ)

,

where λ = α2(d +κ)−d and α, β, and κ are method-specific parameters.

C.2 EM

We provide ML estimates for the parameters involved in eq. (5.7) for the i’th iteration of

EM that can be derived in closed form. First, the following quantities are defined:

Sx−x− =
T

∑
t=2

Vt−1|T +µµµt−1|T µµµ>t−1|T ,

Sxx− =
T

∑
t=2

Vt,t−1|T +µµµt|T µµµ>t−1|T ,

Sxx =
T

∑
t=2

Vt|T +µµµt|T µµµ>t|T ,

Sx−u =
T

∑
t=2

µµµt−|T uuu>t ,

Sxu =
T

∑
t=2

µµµt|T uuu>t ,

Suu =
T

∑
t=2

uuutuuu>t ,
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where µµµt|T , Vt|T denote the smoothed mean and covariance estimates at time t and Vt,t−1|T

denotes the smoothed pairwise covariance estimates at times t− 1, t, as outputted by the

URTS smoother. What follows is:

µµµi
1 = µµµ1|T ,

ΣΣΣ
i
1 = V1|T ,

[Ai Bi] = [Sxx− Sxu]

[
Sx−x− Sx−u

S>x−u Suu

]−1

,

Qi =
1

T −1
(Sxx−AiS>xx−−BiS>xu) .

Finally:

Ri =
1
T

T

∑
t=2

Ep(xt |y1:T ,u1:T ,θθθ
i−1)[(yt−g(xt ,θθθNL))(yt−g(xt ,θθθNL))

>] ,

where the expectation is another Gaussian integral that can be computed via the unscented

approximation as described in section C.1.

C.3 Parameter counts

Here, we provide calculations for counting the number of parameters involved during the

learning process of the IO-NLDS and the PK/PD model. The parameters to be fitted are:

θθθ = {µµµ1,ΣΣΣ1,A,B,C,Q,R,ηηη}. In the case of the IO-NLDS, the number of parameters

is:

bIONLDS = dx +
dx(dx +1)

2
+d2

x +dx +dy(dx +dη)+dx +dy , (C.1)

where dx and dy are the latent space and observations space dimensionalities respectively

and dη is the number of parameters associated with the generalised logistic function as

defined in eq. (5.1) and is always equal to four. Each term in the above formula reflects

the contribution to the parameter counting made by each respective element in θθθ.
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The PK/PD model follows a more constrained parameterisation. All elements of µµµ1 are

set to 0 to reflect the fact that the initial drug concentration in all compartments equals

zero. Matrix B is a vector with one element set to 1 and the rest set to 0 to reflect the

drug quantity which is infused solely into the central compartment. Matrix C is similarly

constrained to have 1/0 entries so as to link the appropriate effect site concentration with

the respective observed signal. Therefore, these parameters do not contribute to parameter

count for the PK/PD model. The contributions in the parameter count stem from the fitted

elements in ΣΣΣ1,A,ηηη,Q,R. Therefore, in the case of the PK/PD model, the number of

parameters is:

bPKPD =
dx(dx +1)

2
+(dPK +dy)+dx +dydη +dy , (C.2)

where dPK refers to the parameters of A associated with the pharmacokinetic aspect of

the model (k12,k21,k13,k31,k10) and dx = 6 in the case of the PK/PD model.
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Särkkä, S. and Solin, A. (2014). Applied Stochastic Differential Equations. Lecture notes

of the course Becs-114.4202 Special Course in Computational Engineering II, Aalto

University.

Schetzen, M. (1980). The Volterra and Wiener Theories of Nonlinear Systems.

Schnider, T., Minto, C., Gambus, P., Andresen, C., Goodale, D., Shafer, S., and Youngs,

E. (1998). The Influence of Method of Administration and Covariates on the Pharma-

cokinetics of Propofol in Adult Volunteers. Anesthesiology, 88(5), 1170–1182.

Schön, T. B., Wills, A., and Ninness, B. (2011). System Identification of Nonlinear State-

Space Models. Automatica, 47(1), 39–49.

Sendelbach, S. and Funk, M. (2013). Alarm Fatigue: A Patient Safety Concern. AACN

advanced critical care, 24(4), 378–386.

Shaw, M. (2013). A concise description of the clinical waveform pre-processing work-

flow. Unpublished manuscript.

Shumway, R. H. and Stoffer, D. S. (2000). Time Series Analysis and Its Applications.

Springer New York.



126 Bibliography

Siddiqi, S. M., Boots, B., and Gordon, G. J. (2007). A Constraint Generation Approach

to Learning Stable Linear Dynamical Systems. In Advances in Neural Information

Processing Systems 20, pages 1329–1336.

Smith, G. and Robinson, A. (2000). A Comparison Between the EM and Subspace Iden-

tification Algorithms for Time-Invariant Linear Dynamical Systems. Technical report.

Smith, G. B., Prytherch, D. R., Meredith, P., Schmidt, P. E., and Featherstone, P. I. (2013).

The Ability of the National Early Warning Score (NEWS) to Discriminate Patients at

Risk of Early Cardiac Arrest, Unanticipated Intensive Care Unit Admission, and Death.

Resuscitation, 84(4), 465–470.

Stanculescu, I., Williams, C. K. I., and Freer, Y. (2014). A Hierarchical Switching Linear

Dynamical System Applied to the Detection of Sepsis in Neonatal Condition Monitor-

ing. In Proceedings of the Thirtieth Conference on Uncertainty in Artificial Intelligence

(UAI), pages 752–761.

Steiner, L. and Andrews, P. (2006). Monitoring the Injured Brain: ICP and CBF. British

Journal of Anaesthesia, 97(1), 26–38.

Tarbet, C. (2012). Internal Report. Department of Clinical Physics, NHS Greater Glasgow

and Clyde, Unpublished manuscript.

Van Overschee, P. and De Moor, B. (1996). Subspace Identification for Linear Systems:

Theory, Implementation, Applications, volume 1. Kluwer Academic Publishers.

Varma, S. and Simon, R. (2006). Bias in error estimation when using cross-validation for

model selection. BMC Bioinformatics, 7(1), 91.

Wan, E. A. and Van Der Merwe, R. (2000). The Unscented Kalman Filter for Nonlinear

Estimation. In Adaptive Systems for Signal Processing, Communications, and Control

Symposium 2000. AS-SPCC. The IEEE 2000, pages 153–158. Ieee.

White, M., Kenny, G. N., and Schraag, S. (2008). Use of Target Controlled Infusion to

Derive Age and Gender Covariates for Propofol Clearance. Clinical Pharmacokinetics,

47(2), 119–127.

Williams, C. K. I. and Stanculescu, I. (2011). Automating the Calibration of a Neonatal

Condition Monitoring System. In Artificial Intelligence in Medicine, pages 240–249.

Springer.



Bibliography 127

Wills, A., Schön, T. B., Ljung, L., and Ninness, B. (2011). Blind Identification of Wiener

Models. IFAC Proceedings Volumes, 44(1), 5597–5602.

Wills, A., Schön, T. B., Ljung, L., and Ninness, B. (2013). Identification of Hammerstein-

Wiener Models. Automatica, 49(1), 70–81.


	cover sheet
	Georgatzis17
	Introduction
	Intensive Care Units
	Physiological condition monitoring
	Clinical need

	Contributions
	Structure of thesis

	Data
	Vital signs
	Data acquisition and preprocessing
	Events of interest
	Artifactual events
	Physiological events
	Data annotation

	Summary

	Background & related work
	Basic models
	Linear regression
	Logistic regression
	Decision trees

	Dynamical models
	Autoregressive processes
	Moving average processes
	ARIMA processes
	Vector AR processes
	Linear dynamical systems
	Discrete-latent-variable models
	Switching linear dynamical systems

	Pharmacokinetics/Pharmacodynamics
	Compartmental models

	Applications to physiological condition monitoring
	Summary

	Discriminative Switching Linear Dynamical Systems
	Model description
	Predicting st
	Predicting xt
	Learning
	Inference

	Experiments
	Features & Classifiers
	NICU
	Neuro-ICU
	Results

	Summary

	Input-Output Non-Linear Dynamical Systems
	Model description
	PK/PD model
	IO-NLDS
	PK/PD model as NLDS
	Inference
	Learning

	Experiments
	Data description
	Model fitting
	Results

	Summary

	Conclusion
	Contributions
	Future work

	EM algorithm for the LDS
	EM

	Gaussian Sum approximation for the DSLDS
	Filter
	Collapse

	Inference and learning details for the IO-NLDS
	Unscented transform
	EM
	Parameter counts

	Bibliography


