
Parallel Algorithms for

Atmospheric Modelling

Simon F.B. Tett

Doctor of Philosophy

University of Edinburgh

1992

Abstract

In this thesis, the usefulness of massively parallel computers of the MIMD

class to satisfy atmospheric modellers demands for increased computing

power is examined.

Algorithms to use these computers, for the dynamics, are developed for

both grid-point and spectral methods. Scaling formulae for these algorithms

are developed and the algorithms are implemented on the Edinburgh Con-

current Supercomputer (ECS).

Another component of atmospheric models is parameterization; in which

the effects of unresolved phenomenon on the mean-flow are modelled. Two

parameterization schemes are implemented on the ECS and a study of the

effects of load-balancing is made. Furthermore it is concluded that imple-

mentation of parameterization schemes on data-parallel computers is likely

to be difficult, unlike MIMD machines where the implementation is straight-

forward.

1

Acknowledgements

First I would like to thank my three supervisors, Bob Harwood, Richard

Kenway and Peter White for their various and valued contributions to my

education. In particular I would like to mention Bob, for encouraging me to

nail this thesis to a church door. I would also like to thank Alan Dickinson

at the U.K. Meteorological office who "minded" me during my CASE visits.

Thanks go to Tuomo Kauraime at the European Centre for Medium Range

Weather Forecasting for many stimulating discussions on the subject of par-

allel computing and Meteorology. The spectral model code used in Chapter 4

was provided by the Department of Meteorology, Reading University. I am

grateful to Mike Blackburn and Andy Heaps for help with understanding

the workings of the model.

Financial support was provided by the S.E.R.C. and the U.K. Meteoro-

logical Office.

Reference should be made here to my colleagues and friends in Edinburgh

who made my Ph.D time there such a pleasure: Steve, Ken and Hon for

many Friday nights; Nick who shared an office with me; everyone in 2009

who showed me the ins and outs of the Meiko kit; Mike Brown for keeping

the ECS going; Brian Pendleton for relentless good cheer; Charlotte for her

friendship; my parents for knowing that I'd make it.

I would also like to mention Richard, Lorna and Andrew and all the rest

at E.U. S.F. soc. for many "interesting" nights; Jeremy, Simon and Alan

who provided entertainment in Oxford for me whenever I visited Bracknell

3

Acknowledgements

and the various people in E.U. Wargames Soc. for the many games that we

played.

Thanks to Simon and Robert who put up with me while I wrote this

thesis.

Many thanks are due to the Hadley Centre for employing me and giving

me time and computer facilities to write this thesis. Particular thanks are

to Vicky Pope for the use of her groups' Vax.

Most especially I'd like to thank Claire for her love and devotion to me,

and also for latenight typesetting and proofreading above and beyond the

call of duty.

Table of Contents

Abstract 	 1

Declaration 	 1

Acknowledgements 	 3

Table of Contents 	 5

List of Figures 	 9

List of Tables 	 12

I Introduction 14

1.1 	Thesis Overview19

1.2 	Parallel Architectures 22

1.2.1 	Modestly Parallel Architectures 23

1.2.2 	Data-Parallel Architectures25

1.2.3 	MIMD Architectures 27

1.3 	Physical Meteorological Background32

1.3.1 	Dry Primitive Equations32

1.3.2 	Hydrodynamic Cycle 35

5

Table of Contents

1.3.3 	Co-ordinates 36

1.4 	Numerical Methods For Meteorology 37

1.4.1 	The Spectral Method39

1.4.2 	Grid-point Methods45

1.4.3 	Fast Fourier Transform 51

1.5 	Summary54

Parallel Algorithm Design 55

2.1 Overview 55

2.2 Decomposition Strategies 57

2.3 Topology 58

2.4 Deadlock and Livelock 61

2.5 Associative Operators 64

2.6 Parallel Efficiency67

2.6.1 	Throughput versus Efficiency70

2.6.2 	Measuring Parallel Efficiency 72

2.7 Input/Output 72

Subgrid Processes 	 75

3.1 Introduction75

	

3.2 	Properties of Parameterization Schemes80

3.3 Load-Balancing91

	

3.4 	Conclusion and Discussion100

Table of Contents
	 7

Spherical Harmonic Methods
	 102

4.1 Introduction102

4.2 Pipelines104

4.2.1 General Pipelines105

4.2.2 Pipelining the Spectral Method108

4.3 The Fast Fourier Transform110

4.3.1 Balancing the Fourier Pipeline115

4.3.2 	Inverse FFT117

4.3.3 Real Fourier Transforms118

4.3.4 FFT Summary124

4.4 Legendre Transform126

4.5 The Full Spectral Transform135

4.5.1 The Pipeline136

4.5.2 Time-Step Increments142

4.6 Implementation Details149

4.7 Results153

4.8 Conclusion and Possible Extensions161

Grid-Point Methods
	

166

5.1 Introduction166

5.2 Limited Area Models168

5.2.1 Geometrical Decomposition168

5.2.2 Vertical Decompositions 181

Table of Contents
	 ro

5.3 Global Models187

5.3.1 Computing the Maximum Velocity187

5.3.2 Fourier Transforms in Grid Point Models190

5.3.3 Load-balancing the Fourier Transforms194

5.4 Conclusion203

6. Conclusion 	 206

A. Terminology 	 214

B. Grid-point Model Description 	 217

B.1 Primitive Equations217

B.2 Finite Difference Scheme Used218

B.2.1 Adjustment Step218

B.2.2 Advection Scheme221

C. Technical Proofs
	 222

C.1 Derivations for the FFT222

C.1.1 Mapping Proof222

C.1.2 Proofs for the Real packing of the FFT223

C.2 Derivations for the Legendre Tree224

C.3 	Vertical Iterations Grouping factor226

Bibliography 	 228

List of Figures

1-1 	The T800 Transputer29

1-2 T800 communicating speeds31

1-3 	One dimensional grids49

1-4 	Arakawa grids 50

2-1 	Deadlock in a ring61

2-2 	Process design that leads to livelock63

2-3 	Topology for cascade sum65

2-4 	Schematic illustration of parallel iterative operations . . . 	68

3-1 	Surface data used for the large-scale rainfall parameteriza-

tion scheme 82

3-2 	Surface data used for the convection scheme83

3-3 	Time distribution functions for convection and rainfall schemes 84

3-4 	Distribution of work for the large-scale rainfall scheme . . 	86

3-5 	Distribution of work for the convection scheme87

3-6 	Scaled time for parameterization schemes89

3-7 	Schematic diagram of load-balancer93

3-8 	Scaled speedup with load-balancing98

rrJ

List of Figures
	

10

4-1 	A simple pipeline 	 . 105

4-2 	Task work patterns107

4-3 	Flowchart of spectral transform109

4-4 	Pipeline and computational complexity for spectral method 109

4-5 	The processor topology for the fast Fourier transform 115

4-6 	Communications pattern for computation of real fields . . . 121

4-7 	Communications pattern for computation of real fields from

a transformed complex field . 123

4-8 	Processor topology for entire FFT127

4-9 	Processor topology for Legendre transform129

4-10 Processor topology for the inverse spectral transformation . 138

4-11 Communications within trees143

4-12 Plot of relative speedup vs 13 and AS,,,,.147

4-13 T21 model partitioned into 9 T7 modules152

4-14 Times taken with increasing Gaussian latitudes159

4-15 Estimate of efficiency, processors and speedup against trun-

cation number162

5-1 	Processors with grid over-laid 169

5-2 	Idealized separation of sub-domain into inner and outer re-

gions.................................171

5-3 	A more typical example of how the grid-points split up into

two regions171

5-4 	Calculated efficiencies for different communications. 177

List of Figures
	 11

5-5 	Times and efficiencies for the grid-point model with changing

sub-domain size179

5-6 	Times taken with varying processor number180

5-7 	Movement of data so that every atmospheric column is on a

single processor182

5-8 	Processor topology used to map a sphere188

5-9 	A grid point processor row with a FFT butterfly added . . . 192

5-10 Vertical Butterfly195

5-11 Simulated effects of FFT load-balancing198

5-12 Times per site for multiplexer200

5-13 Speedups for the FFT with different amounts of load-balancing 202

List of Tables

1-1 	Parallel computing taxonomy 	 22

1-2 	T800 compute speeds32

3-1 	Minimum and maximum times for two schemes76

3-2 	Parameterization schemes on the ECS90

3-3 	Balancer results99

4-1 	Required parallel complexity110

4-2 	Maximum speedup132

4-3 	Maximum speedup for the non-concurrent communications 132

4-4 	Properties of the spectral transform components (concurrent

case)140

4-5 	Properties of the spectral transform components (non-concurrent

case)140

4-6 	Times for the serial spectral model155

4-7 	Sizes for varying spectral truncations155

4-8 	Times for the parallel spectral model156

4-9 Extra computations required by the parallel model 157

4-10 Effects of increasing task numbers 158

12

List of Tables
	

13

5-1 	Values of N(c, I) for the grid-point model176

5-2 	Values of k(c, I) for the grid-point model176

5-3 Timing results for grid-point model with a fixed number of

processors 178

5-4 	Timing results for grid-point model180

5-5 	Times for grid-point model with FFTs193

5-6 	Times for grid-point model with software multiplexing . . . 199

5-7 	Times for FFT load-balancing201

Chapter 1

Introduction

The first attempt at a numerical weather prediction was described in a book

by Richardson (1922). In that book, in a flight of fantasy, he envisaged using

massive parallelism to build a computational engine to carry out operational

weather forecasting. The nodes of this engine were people, and he planned

on using many of them as the following quote illustrates.

After so much hard reasoning, may one play with a fantasy?

Imagine a large hall like a theatre, except that the circles and

galleries go right through the space usually occupied by the stage.

The walls of this chamber are painted to form a map of the globe.

The ceiling represents the north polar regions, England is in the

gallery, the tropics in the upper circle, Australia on the dress

circle and the antarctic in the pit. A myriad computers are at

work upon the weather of the part of the map where each sits,

but each computer attends only to one equation or part of an

equation. Numerous little "night signs" display the instantaneous

values so that neighbouring computers can read them. Each

number is thus displayed in three adjacent zones so as to maintain

communications to the North and South on the map. From the

14

Chapter 1. Introduction
	

15

floor of the pit a tall pillar rises to half the height of the hail. It

carries a large pulpit on its top. In this sits the man in charge

of the whole theatre; he is surrounded by several assistants and

messengers. One of his duties is to maintain a uniform speed

of progress in all parts of the globe. In this respect he is like

the conductor of an orchestra in which the instruments are slide-

rules and calculating machines. But instead of waving a baton he

turns a beam of rosy light upon any region that is running ahead

of the rest, and a beam of blue light upon those who are behind.

Four senior clerks in the central pulpit are collecting the future

weather as fast as it is being computed and dispatching it by

pneumatic carrier to a quiet room. There it will be coded and

telephoned to the radio transmitting station.

Messengers carry piles of used computing forms down to a

storehouse in the cellar.

In a neighbouring building there is a research department,

where they invent improvements. But there is much experiment-

ing on a small scale before any change is made in the complex

routine of the computing theatre. In a basement an enthusiast is

observing eddies in the liquid lining of a huge spinning bowl, but

so far the arithmetic provides the better way. In another building

are all the usual financial, correspondence and administrative of-

fices. Outside are playing fields, houses, mountains and lakes,

for it was thought that those who compute the weather should

breathe of it freely.

Richardson's fantasy captures the main ideas of massive parallelism: he

has each one of his computers responsible for a small region of the atmo-

sphere and his computers communicate with their nearest neighbours by

sending messages to one another (the night signs). In order to produce an

j.

Chapter 1. Introduction
	

16

operational forecast Richardson estimated that 64,000 human computers

would be required. However Richardson's attempt at Numerical Weather

Prediction (NWP) was flawed. The timestep he used was too long and so

his method was numerically unstable. This problem is discussed later in

this chapter. The first successful NWP using a digital computer was carried

out by Charney et al. (1950). One of the authors of that paper, von Neu-

mann, was involved in many early developments in computing including

the von Neumann architecture where the processor has a single memory for

instructions and data and fetches one instruction or datum at a time. The

processor carries out one instruction on one datum and is, in essence, the

serial computer in widespread use today. In contrast to the von Neumann

architecture there now exist parallel architectures with several processors.

Since the mid 1960's, numerical models have been used to forecast the

future behaviour of the atmosphere. The complexity, resolution and predic-

tive power of those models has been increasing ever since. Bengtsson (1991)

states that the five day prediction of the 500 mbar height field is as accurate

in 1991 as the one day forecast was in the early 1950's. In the paper by

Simmons et al. (1989) it is shown that the impact of a higher resolution

spectral model on forecast skill in the one to ten day period is positive. One

important user for weather forecasts is the civil aviation industry,-the paper

by White et al. (1987) shows how increased model resolution and complexity

has had a positive impact on forecast skill. However weather forecasts are

only useful for a limited period of time, therefore the computations for the

numerical weather prediction must be done quickly. Thus in order to utilize

more complex models and higher resolution models for NWP it is necessary

to use increasingly powerful computers. The development of these trends at

the U. K. Meteorological Office (UKMO) is shown in Houghton (1991).

Juckes and McIntyre (1987) investigated a single layer high resolution

model and concluded that an accurate representation of the steep gradi-

Chapter 1. Introduction 	 17

ents necessary to understand some important stratospheric dynamical phe-

nomenon required high resolution models.

Extended range prediction of future weather in the timescale of 10-30

days, in which several forecasts from slightly different initial conditions

were integrated forwards in time have been described by Murphy (1988);

Brankovié et al. (1990) and Tracton et al. (1989). Brankovié et al. carried

out extended range forecasts by integrating nine forecasts from different

initial conditions. The initial conditions were consecutive analyses with six

hour separations between them. The forecasts are all integrated forwards

in time until they have all reached a point 30 days in the future from the

latest analysis. In order to carry out this process significant amounts of

computing power are required.

A significant problem in atmospheric modeling is predicting the effect

of increasing atmospheric carbon dioxide and other trace gases from man-

made sources on the world's climate. Interest in the possibility of climate

change lead to the formation, in 1988, of the International Panel on Climate

Change (IPCC). The scientific assessment has been published (Houghton et
&-h-

al., 1990) and amongst the conclusions reached area need for greater reso-

lution in atmospheric models and that available computer power is a serious

limiting factor on coupled atmosphere-ocean models (see Chapters 5 and 6

of Houghton et al. (1990)). Climate models are integrated forwards in time

for many decades, unlike the six days of a typical NWP model. Traditionally

the resolutions of climate models have been significantly lower than that of

NWP models. Amongst the conclusions, in the paper by Tibaldiet al. (1990),

was that a very low resolution version of the then ECMWF model failed to

correctly simulate the non-linear dynamics of the extratropical regions. Cli-

mate modelling therefore poses a great challenge to computing in that it

requires considerable amounts of computing resource.

Chapter 1. Introduction

Raving shown that increased computing power is required, how will this

be achieved? The present generation of supercomputers, of which the Cray

Y-MP is one example (discused in Subsection 1.2.1), are vector computers

with small numbers of processors. Existing supercomputers have a single

shared memory which all processors can access. It is unlikely that this

technology can be pushed significantly further forward. Unless a radical

change in micro-technology occurs, the clock speed' is not likely to get much

greater than one per nano-second (Hack, 1989). One way in which the need

for ever greater computing resources can be satisfied is to use large numbers

of processors.

In response to this perceived need for greater computing power, there

has been an increased interest in parallel computing in the meteorological

community. The European Centre for Medium Range Weather Forecasting

(ECMWF) has held four bi nnial workshops in the use of parallel processors

in meteorology. By 1991 two publications, based on these workshops, have

appeared in print (Hoffmann and Snelling, 1988; Hoffman and Maretis,

1990).

The problem with having many processors share a single memory is that

the connections between the processors and the memory become saturated

as the number of processors increase. One solution to this problem is to give

each processor its own memory. These processors are connected together

by communications channels by which the processors can exchange data,

as necessary, with one another. This method of communications is often

called message-passing. It is very expensive to build such a computer with a

connection from every processor to every other processor and therefore each

processor can only communicate directly with a limited sub-set of processors.

I The rate at which a processor executes instructions.

Chapter 1. Introduction
	

19

In this thesis, the use of such computers in meteorology will be explored,

focusing mainly on global atmospheric models. The thesis will show the

importance of communications in parallel algorithms for methods used in

present atmospheric models. Work must be distributed over the available

processors as equally as is possible. In the paper by Kauranne (1990) some

general remarks on inherent parallelism in weather models are made. In

this thesis, specific parallel algorithms are described and the results of their

implementation on a parallel computer are presented.

Li Thesis Overview

This thesis examines the utility of computers built from many processors,

each with their own memory and own program. Communications between

the processors is via message-passing. A study of the problems involved in

implementing some parameterization schemes is made and two schemes are

implemented and benchmarked. Two methods for simulation of the large-

scale dynamics are examined and implemented. The only major component

of forecast models which is not examined is the assimilation scheme, which

converts observations into an initial state suitable for the model.

The following section examines, in a broad manner, a number of differ-

ent parallel architectures. First, the parallel machines presently used in

meteorological centres are examined. These computers have small numbers

of very powerful vector processors and have a shared memory. The Cray

Y-MP is a typical example of such a computer. Second, there follows a dis-

cussion on array or data-parallel computers. These computers are naturally

programmed using the Fortran 90 array model which is described by Met-

calf and Reid, 1989. The final architectural type that will be considered

is the MIMD computer. In particular the focus is on the Inmos Transputer

Chapter 1. Introduction 	 20

from which the Edinburgh Concurrent Supercomputer (ECS) is built, al-

though the algorithms considered in this thesis could apply to many MIMD

computers.

The remaining two sections in this chapter are concerned with a discus-

sion of the meteorological background and the numerical methods used to

solve them. One section concentrates mainly on the primitive equations

and is intended to provide some background for the other, longer, section

on numerical methods. The discussion of numerical methods will provide

sufficient detail to understand how the parallel algorithms for them are

constructed.

The second chapter outlines the principles used in designing parallel

algorithms computers, similar to the ECS, in which processors interact by

message passing. The first part of the chapter considers the various different

decomposition strategies that can be used to divide a problem so that it can

be computed in parallel by many processors. Following on from this, the

way in which the separate components of a parallel program communicate

and interact with one another is discussed. The machine's topology and

the interaction with the algorithm are also considered here. The use of

associative operators, of which addition and maximum are examples, is

considered. An extended discussion on efficiency for parallel computers is

then followed by a short section on input and output from the computer.

Chapter Three examines the problems involved in implementing param-

eterization schemes on parallel computers. For computers like the ECS this

is fairly straightforward as long as the scheme is designed to process single

atmospheric columns. Load balancing of these schemes is also considered.

Chapters Four and Five examine methods used to model the atmospheric

dynamics. Chapter Four is concerned with the spectral method. The main

component of this method, and also that part which causes the difficulties

Chapter 1. Introduction 	 21

in a parallel scheme, is the transformation from spectral space to grid-

point space and vice versa. A section each, in that chapter is devoted to

the fast Fourier transformation (FFT) and the Legendre transform which

together make up the spectral transformation. Prior to these, the concept

of a pipeline is introduced. Next, a section shows how the components

of the spectral transformation are connected together. Following this, the

details of the implementation on the ECS are described. The results of

this implementation are presented in the penultimate section. The final

section of the chapter draws some conclusions and makes some suggestions

for further work.

Three-dimensional grid-point models are examined in the Fifth chapter.

Results of the implementation of a three-dimensional grid-point model are

also discussed in this chapter. For limited area or regional models, the ap-

proach taken of using horizontal geometrical decomposition is efficient. In

order to increase the number of processors that can be used, algorithms for

limited vertical decomposition are presented. Global grid-point models are

considered next in the chapter. It is necessary to carry out Fourier trans-

forms in these models and this extra requirement makes it impossible for

the ECS to obtain satisfactory speeds. The effects of load-balancing on the

Fourier transforms are considered and results of implementations show-

ing increased efficiencies for the Fourier transforms when load-balancing is

used are shown.

The final chapter presents some conclusions and considers what atmo-

spheric modellers require from parallel computers.

Chapter 1. Introduction
	

22

Table 1-1 Parallel computing taxonomy

Instructions

Single Multiple

Data Single

Many 11

SISD MISD

SIMD MIMD

L2 Parallel Architectures

One way in which parallel architectures can be classified was introduced by

Flynn (1972), shown in Table 1-1 reproduced from Trew and Wilson (1991)

No example of the MISD (Multiple Instruction, Single Data) has been

built as the utility of carrying out several operations on one set of data

values is not apparent. The SISD (Single Instruction, Single Data) architec-

ture is the well understood von Neumann processor design. SIMD (Single

Instruction, Multiple Data) computers perform the same operation on many

data values, vector and array processors are examples of this class. MIMD

(Multiple Instruction, Multiple Data) computers can carry out different in-

structions on many data values, these are machines with both multiple

processors and multiple programs.

Parallel computers can also be classified by the way in which their mem-

ory is distributed. Existing supercomputers have a small number of proces-

sors and a global memory which all processors can access. Access to this

memory is normally achieved through a single bus. This architecture has

limits, in that access to the single memory will become a bottleneck as the

number of processors increases.

Chapter 1. Introduction
	

23

An alternative approach is to provide each processor with its own lo-

Cal memory. Rather than information passing between the processors by

one processor writing it to memory and another processor reading it from

memory, one processor makes a copy of the information and sends that as a

message to the other processor.

This section gives a broad overview of a small number of different parallel

architectures and where appropriate refers to work done by other authors

on parallel algorithms for atmospheric modelling. It is divided into three

parts. The first, under the heading of modestly parallel architectures exam-

ines the Cray Y-MP, an example of a shared memory multi-processor vector

machine. The following subsection examines data-parallel SIMD machines,

the examples considered are the AMT DAP (Distributed Array Processor)

and the Connection Machine from Thinking Machines Corp. (TMC). Finally

the Edinburgh Concurrent Supercomputer (ECS) which is constructed from

400 T800 transputers is discussed as an example of a distributed memory

MIMD computer. The final subsection will go into more detail than the rest

as the implementations described in the thesis were carried out on this com-

puter. There are, of course, many more computers than those listed above.

For a survey of parallel computers as of 1991, see Trew and Wilson (1991).

1.2.1 Modestly Parallel Architectures

One approach taken to obtain greater computing performance, which has

been successful in the 19805.is to build computers with small numbers of

very powerful processors. These processors interact through a single shared

memory. An example of such a computer is the Cray Y-MP. The Cray Y-MP

can have up up to 8 vector processors and it is a development of the Cray-1.

There has been a further development along this line, resulting in the Y-MP

C90 with up to 16 processors.

Chapter 1. Introduction

In 1976 the first Cray-1 was delivered to the Los Alamos National Lab-

oratory. It was the first computer to offer vector chaining and pipelined

vector units in hardware. Vector computer architectures are covered in

many undergraduate computer science text books, see for example Ibbet

(1982). A vector machine is an example of a SIMD machine in which the

same instruction is applied to many data, in this case the components of the

vector.

The next development of the Cray-1 by Cray Research Inc. (CR1) was

the Cray X-MP. The X-MP is a shared memory multi-processor computer,

with up to 4 vector processors. The individual processors are developed from

the Cray-1 with some other enhancements. An example of a spectral model

implemented on an X-MP is described by Dent (1988). The Cray Y-MP is a

further development of the Cray X-MP with up to 8 vector processors and

a faster clock time allowing peak speeds of approximately three Gigaflops

(3 >< 109 floating point operations per second). For the U.K. Meteorologi-

cal Office's (UKMO) forecast model, sustained rates of approximately one

Gigaflops have been obtained using 8 processors (Dickinson, 1990).

Many scientific programs have repeated operations on multi-dimensional

arrayse, in Fortran this is usually implemented by "do" loops. Utilization of

the fast vector units in machines such as the Cray-1 is normally done by

"vectorising" certain do loops. Compilers have been designed that can recog-

nise the loops which can be safely vectorised. These compilers allow many

Fortran programs to run on these machines without requiring modifications.

However, to use these computers effectively, the code does need to contain

large vectorisable loops. Some restructuring or rewriting of the program

may be required so that the program has these large vectorisable loops.

Cray Research Inc. have, with time, developed increasingly more sophis-

ticated compilers for the machines described above, which can recognise

and safely vectorise increasingly complex loop constructions, and requiring

Chapter 1. Introduction 	 25

less programmer intervention. The present compiler can also divide loops

up over multiple processors 2. A master/slave approach is taken in which

the master processor finds out if there are free processors and, if there are,

partitions the loop over any free processors and itself. The development of

these compilers is described by Fourtney (1990).

Cray technology is mature, providing a compiler which can efficiently

run code on multi-processor machines without requiring much programmer

intervention. The efficiency of their compilers is made possible by the shared

memory nature of the machines the transfer of information for the loop

partitioning between processors is very cheap. The master processor just

needs to pass information to the slave processors telling them which part of

the loop they should compute and where in memory is the data they require.

Unfortunately there are problems with shared memory machines as the

number of processors increases.

1.2.2 Data-Parallel Architectures

Now, an architecture with distributed memory but with one source of control

is considered. In these architectures there is one program whose statements

are executed simultaneously by all processors. These machines are similar

to the vector processors considered previously in that they are SIMD ma-

chines. However, because of the distributed memory, more attention has to

be paid to how the work is divided over the processors. The distribution of

the work of the processors is normally termed decomposition. Unlike vector

processors, where data is read from memory, processed and then written

back, in data-parallel computers, data resides in the memory of each (of

21n addition to vectorising them on each processor.

Chapter 1. Introduction 	 26

the many) processors and all processors carry out the same operation on

their data. In many algorithms, for example finite difference, it is necessary

for processors to access data in neighbouring processor's memories. This is

implemented by shift operators, in which the whole array is moved, for ex-

ample A(i, j, k) would be shifted to A (i + 1, j,k). All existing computers of

this class allow some processors to ignore any given instruction. Examples

of such computers are the AMT Distributed Array Processor (DAP) and the

Connection Machine (CM) from Thinking Machine Corporation.

The DAP is an array of 32 x 32 or 64 x 64 one bit processors called

processing elements (PE). Each processor can have up to 256Kbit of local

memory. The PEs are connected to each other in a grid topology with wrap

around at the edges of the array i.e. the processors at the north edge of the

grid have as northerly neighbours the processors on the south edge. In ad-

dition to the PEs the DAP has a Master Control Unit (MCU) which decodes

instructions and broadcasts them to the PE's for processing if the operations

are parallel or carries them out itself if they are serial operations. For paral-

lel operations, each PE can effectively ignore an operation, depending on the

state of a flag on that PE. The DAP is normally hosted by another computer

on which compilation and I/O is done. Carver (1990) in his thesis explored

the use of the DAP for meteorological modelling and for the dynamics-only

models he looked at, reported positive results.

The Connection Machine was originally developed for Artificial Intelli-

gence applications. It is like the DAP in that it is constructed out of one-bit

processors though with up to 65,536 of them. Nodes of the machine are

constructed from 16 of these and the nodes are connected together in a hy-

percube topology where each node is the corners of a N-dimensional cube.

In a 3 dimensional hypercube each node has 3 links to other nodes and has

8 nodes in total. In the CM-200, pairs of nodes (i.e. 32 of the one-bit proces-

sors) can have a floating point co-processor which allows the nodes to have

Chapter 1. Introduction 	 27

a respectable computing speed. In this case the programmer would think

of the machine as consisting of up to 2048 processing nodes. Like the DAP

each processor can carry out a broadcast instruction or effectively ignore it.

Like the DAP the CM relies on the host computer for I/O, however unlike the

DAP it does not have a MCU, instead it relies on the host computer to decide

which instruction should be done in parallel on the CM and which should be

done serially on the host computer. A far more detailed description of the

CM can be found in the technical document released by Thinking Machines

Corp. (1991).

1.2.3 MIMD Architectures

The third class of Flynn's taxonomy is the MIMD computer. One example of

this computer has already been mentioned, the shared memory Cray Y-MP.

This section will consider MIMD computers with their own local memory

which communicate by message-passing. The example considered is the

Transputer designed by Inmos.

Inmos was founded in 1977 by the then Labour government. It is

presently owned by SGS-Thompson. In 1985, Inmos released the T414

Transputer. Inmos coined the word Transputer to mean a computer on one

piece of silicon. On one piece of silicon the T414 has 2K bytes of mem-

ory, four bi-directional communications links and a central processing unit

(CPU). The chip also has an interface to external memory which allows ex-

tra memory chips to be used. Each link can transfer data concurrently with

CPU operation. However the CPU needs to initiate the transfers. The pro-

cessor is designed to support many processes running in parallel. A process

will run for some time and then halts and another process is run (if it is

ready). This context switching is very fast on the Transputer and is one of

its strengths.

Chapter 1. Introduction

Initially the only language available for the Transputer was Occam. Oc-

cam has features in the language to support message-passing and running

of parallel processes. See Jones (1987) and Bowler et al. (1987) for a de-

scription of the language. In fact the Transputer was originally designed

as an Occam processor. More standard languages such as Fortran were

released later; in these languages, input and output of messages is done by

subroutine calls.

Floating Point Systems (FPS) designed a supercomputer built from many

computing nodes joined together in a hypercube network. The compute

nodes consisted of a T414 Transputer and a vector processing unit. This

architecture was examined by Snelling and Tanqueray (1988) and Grøonas

(1988) for its usefulness for meteorological modelling. The system was un-

successful for two reasons; first the node had communications that were too

slow for the fast vector unit; second FPS did not initially provide a Fortran

compiler which made acceptance by many organisations difficult.

In 1987, Inmos released the T800 Transputer, a development of the T414.

It had a Floating Point Unit (FPU) and an additional 2K bytes of on-chip

memory (see Figure 1-1). The Central Processing Unit (CPU) sends data to

the FPU, which processes it and returns the data to the CPU. The CPU can

do other tasks while the FPU is busy.

Each of the transputer's links can be joined to another transputer's links,

the networks formed can be quite complex. For more information on the

Transputer hardware see the technical documentation from INMOS Limited

(1988).

The Edinburgh Concurrent Supercomputer (ECS) is a machine built from

400 T800 Transputers. The machine was built by Meiko Scientific and

delivered in 1987. Each processor has at least 4 Mega-bytes (4M bytes) of

memory in addition to the on-chip memory of the Transputer. The processors

Link iers

.• . . . _ . _ _ . . a•e • • • . • S S • • -

Bi-directional
Links

Chapter 1. Introduction 	 29

To/From Extra Memory

Figure 1-1 The T800 Transputer

A schematic diagram of the T800 processor showing the major components.

Chapter 1. Introduction 	 30

are connected to switching chips which allow a wide range of inter-processor

connections to be made. The machine is divided into several partitions called

domains. Each domain is allocated to a single user who has sole use of all

the processors in the domain. He or she may choose to use any number of

these processors in the domain. These domains range in size from 1 to 131

processors, with some domains having hardware to support graphics. The

system has its own filing system and runs a version of Unix3. See Bowler

et al. (1989) for a description of the ECS and some of the applications as of

1988; by 1990 the list of applications running on the ECS had increased and

the ECS had reached the form described above, see Wallace (1990) for more

details. Also see Wallace (1988) for some early applications on the ECS and

on the ICL DAP at Edinburgh.

Table 1-2 shows the number of operations per second for two typical pat-

terns in a grid-point model with the data being stored in external memory.

The table shows that the T800 can manage about a half a million floating

point operations per second (a half Mflops). Figure 1-2 shows the communi-

cations speed in bytes per second for various different message lengths and

different configurations. The T800 is capable of communication speeds of

up to 2 million bytes per second. These results are discussed in the relevant

chapters.

'Unix is a trademark of AT&T.

Jr 2.5x1

10 6
0
ci)

6 1.5x10

1.0x106

5.Qx 10 5

anSfer rates for dii i urer]L CUM iuruuiui is

ow

CS—Tools /
rough Routing /

ultuplexer

Chapter 1. Introduction
	 31

01
10 	100 	1000 	10000

!ength (words)

Figure 1-2: T800 communicating speeds

Four different results are shown here. The line labelled "raw" is the speed

between two Transputers. The line labelled "cs-tools" is the speed achieved

by a Meiko supplied library in a Fortran program. This is discussed in

Chapter 4. The line labelled "through routing" is when a message is routed

through another processor, that processor is doing nothing else. The line

labelled "multiplexer" is the speed when a software multiplexer/demultiplex

is used. See Chapter 5 for an explanation of the latter two cases.

Chapter 1. Introduction

Table 1-2: T800 compute speeds

Operation A(I)=B(I)+C(I) A(I)=r* (B(I)+C(I))

No. per Sec 297619 240384

Flops 297619 480768

This table shows the speed at which the T800 can compute. The speeds for

two different, indexed, operations are shown. One is when the element by

element sum of two vectors is formed, while the other is when this sum is

multiplied by a scaler before being stored back in memory.

L3 Physical Meteorological Background

This section will set out the physical basis to the meteorological work, while

the following section will discuss the numerical methods used in meteorol-

ogy. First the dry primitive equations will be detailed. Following this the

effects of water vapour on the atmosphere will be discussed. General intro-

ductions to atmospheric physics can be found in the books by Holton (1979)

and Houghton (1986).

1.3.1 Dry Primitive Equations

This subsection will present the primitive equations. For details 	of the

derivations the reader is referred to Haltiner and Williams (1980) and Gill

(1982), in particular Chapter 1 of the former and Chapters 3 and 4 of the

latter. Many basic meteorological textbooks show that,

DV

Dt
= —1/pVp-2Q xV+g+F. 	 (1.1)

where V is the velocity, p the density of air, p the pressure, F any frictional

j.

32

forces, Q is the rotation vector of the planet, and g is g - (11 x (Q x r)), g

Chapter 1. Introduction 	 33

being the gravitational acceleration and Si x (5? x r) is the centrifugal force

due to the rotation of the planet. The above equation is in a Lagrangian

frame of reference where the frame of reference moves witlj fluid particle.

When the frame of reference is fixedthe operator , in Equation 1.1 is Dt

equivalent to + u + v + az w. See Batchelor (1967) Chapter 2 for an

extended discussion of these two ideas.

Conservation of fluid mass is expressed by,

ap + V . (PV) = 0. 	 (1.2)
at

This can be interpreted as the change of mass in a small volume being the

same as the total inflow or outflow into this small volume.

The atmosphere is normally approximated by a perfect gas which satisfies

the following equation of state,

(1.3)

with R being the gas constant for dry air and I the temperature. The first

law of thermodynamics is,

DT 	Dp 	Dine
Q = c--- -= cj Dt

	
(1.4)

Dt 	Dt

In this equation, e is the potential temperature given by (p/p0)'T and Q is

the rate at which heat is added to a fluid parcel. For adiabatic processes

Q = 0 and thus I = A
Dt

For the dry atmosphere there are six variables and six equations, thus

the system is complete. In practice the observations are not perfect and so

the initial state, from which the model is started, has errors. As the model

is integrated forwards in time these errors grow and cause the model state

to diverge increasingly from reality. The growth of the initial errors in the

ECMWF forecast model was investigated by Lorenz (1982).

Chapter 1. Introduction 	 34

This set of equations support a great variety of wave behaviours, in a wide

variety of length and time scales. In addition to the linear, and reversible,

wave behaviour there are non-linear processes occurring in the atmosphere,

for example the flux of momentum, moisture and other quantities from

tropical regions to polar regions by eddies in the atmospheric flow.

The behaviour of these linear wave solutions can be obtained by linearis-

ing the equations about some state and considering small perturbations to

that state. As will be discussed in the next section, an explicit numerical

scheme will be unstable if 	> 1, where c is the phase speed of the fastest
AX

modelled travelling waves in the problem, Ax and At are the time and space

intervals between points in the numerical approximation respectively. This

is the Courant-Friedrichs-Levy (CFL) condition. If there exist wave solu-

tions to the linearised equations with high phase velocities, a short timestep

will be needed for numerical stability. In many atmospheric conditions the

fastest moving waves (sound waves) have very little energy and so have

negligible impact on the solution.

The co-ordinate system usually chosen for atmospheric modelling is one

in which the direction of gravity is locally vertical. The horizontal surfaces

are then surfaces of equal gravitational potential. These surfaces are al-

most spherical and it is a good approximation to treat them as such. The

atmosphere is a thin layer compared to the radius of the earth and another

approximation that can be made is to neglect the variation in radius (the

shallow atmosphere approximation). Considering the Coriolis term (2S2 x V)

in equation 1. 1, it can be shown (Holton, 1979) that if the geopotential sur-

faces are assumed to be spherical and the the shallow atmosphere approx-

imation is made then terms proportional to cos(0) in the Coriolis terms must

be neglected in order to conserve angular momentum. This is valid as the

terms proportional to cos(0) are small. Gill (1982), sections 6.4 and 6.5,

shows that for plane progressive gravity waves, with the effects of rotation

being ignored that; 	= —(M2/(k2 + 12 + rn2))gp', with p' and p' being the az

pressure and density perturbations from a hydrostatic reference state. k,

and in are the x,y and z components of wavenumber. For the perturbations

to be hydrostatic, k2
1,2

< 	
2 This implies that (L2/H2)>> 1, with L and H

being the horizontal and vertical scales respectively. For synoptic scales this

is true and therefore the vertical component of acceleration () in equa- Dt

tion 1.1 can be neglected. When all these approximations are carried out,

equation 1.1 can be rewritten as two equations:

DVH
= —1/pVp—fkxVH +FH 	 (S) Dt

P az

In the above equation, f is 20 sin e with 8 being the latitude. The horizontal

component of velocity (VH) will from now on be referred to as V.

Chapter 1. Introduction
	

35

1.3.2 Hydrodynamic Cycle

The effects of water vapour on the atmospheric flow are considerable. The

large releases of energy through latent leat when water vapour changes

phase are responsible for driving many processes in the atmosphere. The ac-

curate prediction of rainfall is one of the public's requirements from weather

forecasting.

Water vapour is normally measured by specific humidity, q, which is the

mass of water vapour per unit mass of air, and it is conserved following fluid

motion except for condensation/evaporation and molecular diffusion. For

most of the atmosphere the effects of molecular diffusion can be neglected.

This gives,

Dq

Dt
(1.7)

where E is a term representing condensation/evaporation from the atmo-

sphere. A modification to the equation of state in Equation 1.3 is necessary.

The density is now given by,

(1.8)

T, is the virtual temperature which is T = T(1 +0.61 q) and is the temperature

that dry air would have if it were the same density as the wet air.

A source of heat energy occurs when water vapour condenses to form

precipitation, while a sink is the energy required to evaporate liquid water

or ice. These will form one of the sources of energy on the left hand side of

Equation 1.4. Condensation will occur when the humidity is greater than

the saturation humidity. Occasionally the atmosphere can become super-

saturated although many models neglect this.

Chapter 1. Introduction
	

36

1.3.3 Co-ordinates

Computations cannot be done with primitive equations in the general vector

form, some co-ordinates need to be introduced. This subsection will do that.

First the vertical co-ordinate will be examined.

Introduce a generalised vertical co-ordinate which is monotonic and

single valued with respect to z,

(=(z,x,tj,t) or z=z(,x,ij,t). 	 (1.9)

It can be shown that in this co-ordinate Equation 1.5 becomes,

DV
--=-1/pVP-VD-fkxV+F 	(1.10)
Dt

with being the geopotential height (g x z). The hydrostatic approximation

then becomes,

which implies that

p 8I

	

+ 	= 0, 	 (1.11)

1 ôlnP

	

= D(0) -j
	

d. 	 (1.12)

The Earth's surface occurs when =and 0(0) is the height of the surface,

above some constant reference level times the gravitational constant. The

continuity equation, 1.2, becomes

d(1n)
dt

(1.13)

Various vertical co-ordinates have been used by meteorologists; these

include 0 (potential temperature), logp and p. One popular choice is o

which is defined as o = -, where p,, is the surface pressure. This choice
P.

of co-ordinates has the advantage that co-ordinate surfaces do not intersect

Chapter 1. Introduction 	 37

the surface of the Earth. More recently hybrid co-ordinates have been used.

These define (as,

(= A(ii) - - + B(rQpo.
P. (1.14)

If values of A and B are chosen correctly then this co-ordinate will behave

like cy near the surface and like p high in the atmosphere. These co-ordinates

are used in the grid-point model in Chapter 5.

	

Haltiner and Williams (1980) show that 	Equation 1.5 in spherical

co-ordinates is,

Du 	1 ap 	u tan e

Dt = acosOpA 	
)v+FA 	 (1.15)

a
Dv 	1 ap 	utane

= -----(f+)u+F0 	 (1.16)
Dt 	apO 	a

where A and e are the longitude and latitude respectively.

L4 Numerical Methods For Meteorology

Global atmospheric models can be conceived as having two parts; a simu-

lation of the large-scale atmospheric flow using a numerical approximation

to the equations of motion, normally the primitive equations, and the simu-

lation of the effect on the resolved variables by the unresolved flow termed

parameterization. Existing NWP models have a length scale of approxi-

mately 100km in mid-latitudes while the length scale for climate models is

approximately 500km.

All numerical methods used in meteorology make some kind of approx-

imation in that model variables are stored at discrete values of space and

time co-ordinates. The partial differential equations with continuous space

and time fields and infinite degrees of freedom are replaced by variables

Chapter 1. Introduction 	 38

with finite degrees of freedom. There are two methods widely used in the

meteorological community: the grid-point and spectral methoddescribed in

Subsections 1.4.2 and 1.4.1 respectively. However, because of the non-linear

nature of the equations, unresolved scales of motion will have effects on the

resolved scale. This will be illustrated by considering the one dimensional

advection equation,

A aA
0. 	 (1.17)

at 	8x

Here A is an arbitrary scalar. For a numerical model, the values will be

averaged over a length scale L to form A and U and the numerical equations

will be used to predict the time evolution of these quantities. Formally then

pL 	 pL

A=/ A(x)dx,U=/ u(x)dx. 	 (1.18)
Jo 	 Jo

If A' and it' are defined as the difference from the means, then using this

definition, A = A + A' and A7 = 0, and similarly for u. Using these definitions

Equation 1.17 can be rewritten as,

(A+A')
+(U+u) (A+A')0
	

(1.19)
at 	 ax

If the mean of this equation is taken to obtain an equation to predict the

evolution of A and U, the following is obtained,

oA A A'
—+ti:—+u'--- =0. 	 (1.20)
at 	ax 	ax

Equation 1.20, in addition to terms involving the meaned variables, has

a term to take account of the effects of sub-grid fluctuations on the mean

flow. The sub-grid scale needs to be parameterised in terms of the mean

variables4. In large-scale models this effect is normally parameterised by

'Which is all the numerical scheme will have any information about.

Chapter 1. Introduction 	 39

"eddy" diffusion which in many models for a variable A, is modelled by

kAV2ThA. The value of the constant kA can be different for different vari-

ables. The value of r can also be different for different variables. For some

criticisms of this parameterization see McIntyre (1989).

This occurs in many atmospheric models,- processes whose length or

time scales are unresolved by the model have effects on resolved variables.

These unresolved processes need to modeled in terms of the resolved vari-

ables in order to simulate their effects on them. This process is called pa-

rameterization. Some processes that require this are convection, radiation

and surface exchanges.

1.4.1 The Spectral Method

This subsection describes the spectral method as it is used in meteorology.

The aim is not to go into great detail. Instead, the salient features of the

method from the point of view of implementing it on a parallel computer

will be stressed. See Machenhauer (1979) for an extended discussion on the

method.

In the spectral method, variables are represented by a truncated sum of

orthogonal functions. For global meteorological models, the natural func-

tions to choose are the spherical harmonics, Y(, A), where i. is the sine

of latitude and A is the longitude. These harmonics are eigernt of the

spherical Laplacian; a description of their properties can be found in Arfken

(1985). A variable Z is given by the following relationship,

M N

Z(Ajt)=

	

	 uA,tI). 	 (1.21)
im=-M 1=11nj

For an exact representation of the field, M and N would need to be equal

to infinity. In meteorology two different truncations are used.

Chapter 1. Introduction
	 MO

Triangular N = M. This truncation is denoted by TM, i.e. T21 is a

triangular truncation with M =21. The truncation is called triangular

as when the allowed positive values of 1 and iu are plotted they form a

triangle.

Rhomboidal N = M + rrt. This truncations is denoted by RM, i.e. R15 is a

rhomboidal truncation with M =15. When the allowed positive values

of 1 and m are plotted they form a rhombus.

The spectral harmonic, Y is given by the following relationship.

um\ (1.22)

P() is the associated Legendre function normalised to unity. The spher-

ical harmonic has the following properties,

aym

= thiX

aA

(~l
2 _ I)S = lc1Y1-G+1)cY1

in 	(1.23)

ITt = [(12 11 2)/(4l2

rnm' 	
=

4
1 2'f

1 1

 with 	being the Kronecker delta which is 1 if both indices are the same

and 0 otherwise. The last property in Equation 1.23 is the orthogonality

relationship. In order to show how the spectral method works in practice

the non-divergent barotropicequation will be considered and the triangular

truncation will be used. This is a very simple equation but illustrates the

important features of the method. For a parallel algorithm the details of

the transformation, for this simple equation, will be the same as that for

the primitive equations. The treatment that follows is based on that of

Washington and Parkinson (1986).

The basic equation is,

a~
- - V - V(+ 	 (1.24)

Chapter 1. Introduction 	 41

Here is the vorticity, k V x V. Furthermore the horizontal wind compo-

nents U and V are defined as ucos e and vcos e (with 0 being the latitude).

In addition to this the non-divergence approximation is made, (V - V = 0) and

setting = V2i4, with i4 being the streamfunction, the diagnostic equation

for V is,

V=kxVi4'. 	 (1.25)

The prognostic equation, using these approximations, for i4 is

4.-

1 auv2i.i avv2 __ 120V 	
(1.26)

t 	acos2 C1

From Equation 1.21 the following values are obtained,

m=-M 1=ImI

M M

U = a 	 (1.27)
m.=-M 1=jTnj

M M

V = a
M=-M 1=1MI

The linear parts of Equation 1.26 are straightforward to compute. The

difficult part is the computation of the non-linear terms (UV 24' and VV24').

Using Equation 1.27 to carry out this computation would involve multiplying

two series together—an extremely expensive procedure in terms of computer

time. Orzag (1970) observed that transforming from spectral space to grid

point space and computing the non-linear products there, would be more

efficient than multiplying the two series together.

The computation of V(A, p) can be done in two stages, the first being to

calculate V(M k) at latitudes J.tk using,

M
.' fTflpTfl.

V(I.tk) = 	 . 	 (1.28)

Chapter 1. Introduction 	 42

When this computation has been carried out, values of V are calculated at

longitudes A using,

M
thtA-

Vm(p.)e '. 	 (1.29)
M=-M

As the values of V(A, ik) are real, being values in grid-point space, then

= Vrn(k)*, and so the computation of Vm(Ii.),) need only be done for

positive values of rn.. The set of values A are chosen to be equally spaced

and the number of values are such as to permit a fast Fourier transform to

be carried out.

Before doing this it is necessary to compute the values of U and V'.

They can be diagnosed using Equation 1.25 and the relationships given in

Equation 1.23 to give, where a is the radius of the earth,

= aWLtlj)

	

	 (1.30)

mm im -.
= a[(1.— 1)c 	— G+L)c

m
1141J. 	 (1.31)

The diagnostic relationship for U (Equation 1.31) involves values of i.k at

different values of t from U. This is discussed on page 142 of Chapter 4. An

alternative formulation is possible (private communication, M. Blackburn)

and this will now be discussed as it is used in Chapter 4 to remove the need

for some communications and in the model considered in that chapter.

The problem is to compute the Legendre transform of a derivative. There

are two derivatives to consider:

F(?, i)
A(A,p.) =

2 B(A,.t) = (1—k) ôF(A,)

From Equation 1.21, for the triangular truncation, the following is ob-

tained,

= i: 	
i1

M=-M 1.=jm

Chapter 1. Introduction
	

43

FP(i)exp(irA).
M=-M l=iij

Using this it can then be shown that

= aF

ax
M=M M

mvm

M=-M 1=1MI

(1.32)

Therefore A is equal to thtF.

Now considering the B(A, it) term.

B(Ajt) = (1—pt2) aF -- 	 (1.33)

= 1 - 2) 	(Fm
a 	

exp(imA)).
in=-M 1=jTnj

So, to compute the transformation of the ji derivative from spectral space

to grid-point space, multiply by the derivative of the Legendre polynomial

rather than by the Legendre polynomial. As will be shown in Chapter 4,

a model using this method will require less communications than one that

computes U and V using Equations 1.31 and 1.30.

Most of the details of the computations in grid point space are irrelevant

to the needs of this thesis; the important point is that all computations at

a point (A, k) involve only values defined at that point and not at other

points. The vertical interactions are more complex and will be discussed

briefly in Chapter 4.

Having transformed the variables into grid point space, the various prod-

ucts will need to be transformed into spectral space. This transform can be

carried out using the orthogonality relationship given in Equation 1.23 to

obtain (for any variable X),

1 	I 	2ir

X = -ff
X(,A)Y*(jL,A)djLd?. 	 (1.34)

Chapter 1. Introduction 	 44

It is possible to rewrite this equation as,

1 2n

X 	
= 	f Pt)[-f X(, A)exp(—thA)dA] dL 	(1.35)
2 	2n

Fourier

The Fourier part of this integral can be evaluated exactly by a discrete

Fourier transform with at least 3M + 1 points at equally spaced longitudes.

If the number of points in a longitudinal row is chosen to be a power of 2

or a product of a small numbers of prime numbers then this transformation

can be done very efficiently by using the fast Fourier transform. Defining

the result of this integral as Xm(), it is now necessary to evaluate,

= 2
f P)X)d. 	 (1.36)

This integral can be evaluated exactly for the quadratic terms (in grid-

point space), except for rounding error, by Gaussian quadrature. For this

to be done the latitudes (.L) must be chosen to be certain special values

and there will be, at least, (3M + 1)/4 of them. These values are normally

termed Gaussian latitudes and they are roots of Legendre functions. See

Machenhauand Rasmussen (1972) for details of this.

Having transformed the tendencies into spectral space, the computation

of the values of the spectral coefficients can then be done.

To summarise, the spectral method involves several stages.

Compute values of U and V from the prognostic variables. The

computation of U will require spectral coeffici nts at 1+ 1 and t - 1.

This stage is optional.

Compute Xt = 	PT"(~ t-)X n for all variables that require trans-

forming. If the velocities have not been computed, the computation of

X(= will be required for some of the variables.

Chapter 1. Introduction
	 45

Compute X(t,A) = L....1 	Xm(I.1k)ej. The values of X(kk,A) are

real.

In grid point space, compute the set of non-linear products, {Z} from

the transformed set of variables JXJ. If required, compute any of the

parameterised processes, an example of which is convection.

—(3M+1) Compute Zm() = L.k1 Z(,k)e

Compute Z = 	 G() is the Gaussian

weight.

Using the set of the time tendencies, {Z} compute new values of the

prognostic variables.

1.4.2 Grid-point Methods

In grid point methods, a variable is given values at only a finite set of points.

The value of the variable is predicted only at these points. Compare this

to the previous subsection where variables were defined at all points on the

globe but in terms of a finite number of orthogonal functions. Much of the

analysis for grid point methods is based on the Taylor series,

Lx
2 	 LXT'

f(x+AX) = f(x)f'(x)ix+f
,,
 (x)- j -- ...(+1)f(x)—

it! .
	(1.37)

The derivative f'(x) can be approximately computed using this series by the

centered difference.

f(x + Ax) - f(x - Ax) f<3 x2
=f'(x)+ 3!
	

(1.38)
2Lx

This equation can be rewritten to show that the approximation is second

order accurate in &,

f(x + x) - f(x -x)
 + O(zx2) 	 (1.39)

2Lx

Chapter 1. Introduction

There are many other ways of approximately computing derivatives,

some of them more accurate. The CFL condition will be obtained by analysing

the one-dimensional linear advection term. Following this, the von Neu-

maim method for stability analysis will be explained. Most grid-point me-

teorological models use staggered grids, these will be discussed. Much of

the discussion here can be found and considerably amplified in Haltiner and

Williams (1980).

Turning now to the advection equation,

aF 	aF
-+ C- = 0.
at 	ax

(1.40)

The analytic solution to this equation is F = f(x - Ct) and is the initial

disturbance at time t = 0 propagating with speed c. Next, a numerical

approximation to Equation 1.40 is made. Using the centered difference in

Equation 1.39 to approximate the derivative, and introducing the notation

F 	for F(ntht, nx), gives 	the following approximation to Equation 1.40,

- Fin_i,

	

2L\t 	
+ 	[Fm,n+i - Fm,n_i] = 0 	(1.41)

To analyse stability, a single harmonic component is substituted for F,

i.e. Fm,. = B t exp(h'iux). If I I is greater than 1 then the solution expo-

nentially grows with time and is unstable. Making this substitution gives,

after a little manipulation.

-,2t
ID 	+ 21..D 	

tht
cr - 1 = 0 	r = 	sin(x-v). 	(1.42)

Ax

This has a solution for B, B t = -icr + 0 - 02)1/2. If I cr1 < 1 then the root is

real and the magnitude of B is 1, therefore the solutions are nonamplifying

and stable. There are two solutions for B, giving two wave solutions to the

finite difference scheme, the analytical solution has only one solution. When

Chapter 1. Introduction
	

47

J ul > 1, then JB'1̀ 1 > 1 for at least one of the two solutions, the solution is

unstable as it grows exponentially with time. For o to be less than 1 then

I<1. This is normally called the CFL condition. Physically only points
AX

within a distance cit of a point can interact with it. If a numerical scheme

violates this condition then the scheme is no longer representing physical

reality and problems are likely to occur.

The CFL condition above was obtained by examining the behaviour of

a single harmonic. If the amplification factor (B) has a magnitude greater

than one, then the magnitude of the harmonic will grow exponentially with

time. If a numerical scheme has any harmonic components whose ampli-

fication factor is greater than one then this scheme will be unstable. The

von Neumann method consists of analysing the behaviour of all harmonic

components and computing amplification factors for them: if any are greater

than one then the scheme is unstable. When applying this method to non-

linear schemes, there will be interactions between the harmonics. Such

interactions are complex and difficult to compute. Normally the analysis

is simplified by linearising the scheme and then doing the von Neumann

analysis on the resultant linearised scheme.

In a global longitude-latitude grid, as the meridiQns approach the poles

the physical distance between the grid-points becomes smaller. The CFL

criterion would then require a very short time-step in order that the scheme

stays stable over the entire globe. One way to avoid this short time-step

and thus allow a longer time-step is to carry out the von Neumann analysis

on a linearised version of the model to compute the amplification factor for

all wavenumbers in any latitudinal row due to the numerical scheme. If

any wavenumber in a row is unstable then it is necessary to transform from

grid-point space to wavenumber space, using the Fourier transform. When

in wavenumber space wavenumbers with amplification factors greater than

one have the value of the wavenumber divided by the amplification factor

Chapter 1. Introduction

or set to zero depending on the specifics of the scheme being used. After

this has been done, the transform from wavenumber to grid-point space is

carried out.

The primitive equations, 1.5 and 1.6 can be divided into two parts; adjust-

ment and advection. Advection refers to the left hand part of Equation 1.5,

the non-linear parts of the primitive equations. Equation 1.6 and the rest of

Equation 1.5 is the adjustment part. The two parts have different stability

criter 	In the advection equation the maximum speed is approximately

100ins 1 while in the adjustment there exist wave solutions (gravity waves)

with phase speeds of approximately 300m.s 1 . Accurate numerical schemes

for the advection stage are complex and time consuming. Gadd (1978);

Gadd (1980) showed how a numerical scheme could solve the two parts of

the equation separately, using different timesteps for each part. Normally

the adjustment timestep is three times as short as the advection timestep.

Therefore the adjustment numerical scheme is carried out three times before

computing the effects of the advection scheme.

To complete this subsection, staggered grids will now be considered. Con-

sider the linear equations,

	

h. 	
ah —H

au
-- 	 (1.43)

at 	ax 	at 	ax

where g and H are constants. Equations 1.43 are the shallow water equa-

tions neglecting the non-linear terms. If centered differences are used to

compute approximately the differential equations then the following equa-

tions are obtained,

auj - 	h11 - N-1 	ahi
-H'_- 	 (1.44)

at 	2x 	' 	 2Lx

The grid contains two solutions which do not interact with each other. One

solution will consist of the values of u at even sites and the values of hi at

Chapter 1. Introduction
	

pJ

u, h) 	(u,hp--t u,h) 	u,h

Figure 1-3: One dimensional grids

The top grid is the original grid with two separate solutions. The lower grid

is the staggered grid with only one solution.

odd sites. As the two solutions are independent, nothing is lost by dispensing

with one and a saving of half the computation time will be obtained. A new

grid will be obtained with u at even values of j and h at odd values of 5.

Figure 1-3 shows the original grid and the staggered grid.

For large-scale atmospheric flows, a two dimensional grid is needed.

Figure 1-4 reproduced from Messinger and Arakawa (1975) shows various

possible grids labeled A to E.

When implementing a staggered grid on a computer there are several

ways in which the j+ and i.+ sites could be mapped into the program arrays.

The model implemented in Chapter 5 used the "B" grid and sites labelled

by (i +, +) (the points where the velocities were kept) were stored in an

array at points labelled by (1., j). The model kept all the remaining variables

at points labelled by (, j) and they were also stored in arrays at points

labelled by (1, 5). Th compute the centred differences, an example of which

h 	 E
U,V h

j+1/2 	1'

i—I '-

i-i 	i 	i+1

D 	1-1/2

B
h 	h 	h

J+1

j

ui ' • S

1 h

u,v u,v • .
h h __ 	hi

Chapter 1. Introduction
	

50

A

u,v,h u,v,h u,v,h
j+11

j 	
J,uivihJuivh

U, V

- 	 L,V

liv h
j+1

Fh.

d•IV l ;1 i-1/2 	i i+1/2

U

j 	
hy

U 	4,U 	U

j-1 	hv li

i-i 	i 	i+1

Cd

Figure 1-4: Arakawa grids

Five different grids are shown labeled A to E. The arrow shows the grid

separation and the horizontal grid point labels are also shown.

Chapter 1. Introduction
	

51

is 1-4i+1/2J+1/2) - 1-(+l/2, j_1/2), it is necessary to compute U (I, j) U (i-i, j) •

This point will be returned to in Chapter 5.

1.4.3 Fast Fourier Transform

As has already been discussed, in grid-point models the Fourier transform

allows larger timesteps and in the spectral method the Fourier transform is

used as part of the transform. The derivation that follows is based on that

of Hockney and Jesshope (1988).

The aim here is to compute the discrete Fourier transform for 2" values.

For this it is necessary to compute,

2q_1

F(k) = 	w
ik
f(j) j,k 	{O,1,...,2" - 1} 	 (1.45)

3=0

with w24 = exp(+27ii/2'). The sign depends on the direction of the transform,

but is arbitrary as long as the signs are different for the forward and reverse

transformation. Note that w2 is —1.

To provide some motivation consider
-1

F(k) = 	wf(j) 	 (1.46)

This could be computed by a matrix-vector multiplication with the elements

of w forming a matrix M k and therefore the time to compute the F(k) will

be O(2(2)).

Now separate the sum in Equation 1.46 into odd and even values of j to

obtain,
2q-1 1 	 2q-1 -1

F(k) = T 2q 	Y 	2q wf(2j)+ 	w 1 f(2j + 1).
j=0 	 j=0

5Usmg a Fortran notation

(1.47)

Chapter 1. Introduction
	

52

This then implies

F(k) = 	Wq_1)f(2J)+Wq 	W
jk

 q _ 1 f(2) + 1). 	(1.48)

5=0 	 5=0

Even 	 Odd

The transform has been separated into two parts called "even" and "odd".

The two parts are the Fourier transform of the even sites and odd sites.

It will now be shown that this procedure can be repeated indefinitely and

that the time to compute the Fourier transform will be reduced to O(q2').

Introduce the following definition;

DEFINITION 1.1

-1
5k

= 	
2f(2(_U + t),

j=0

j,kE {O,1,...,2— I

E {0,1,••,2(q_ 11.

Each of the Fk are 2' different Fourier transforms labelled by the

index t with the index within the transform being labelled by k. From this

definition it can be seen that the following holds,

(0)
=fm

1.

(2 -1)
5k

0 =
5=0

i.e. the T90 are the original values and that F' are the final transformed

values. It will now be shown that the following pair of equations are true.

= 	
k F N

 G) 	
(1.49) i 	+ w21+1

21+1

(D
(1.50) = 	

- w + 	N 1
 Fk+

Chapter 1. Introduction
	

53

From Definition 1. 1,

jk f(2q-(+
= 	 + i). 	 (1.51)

j=o

If this is then separated into odd and even parts then the following is oh-

tamed,

1+1)=T(21-1) V-(2'-l) ç-2'-1 (2i+1)kf(2-')-+2 (q 	
+ j 	3=0 	wf(2'j + i) + L....30 W2(11)

(t+1) 	k 	ç-2 -1
+ WjJ) L-_j=O w213k

f(2' 4j +
(1.) fk = F 	=F + 2'+' j+ (q-1)

To show Equation 1.50 consider the first term from left hand side of the first

line and the second term from the second in the proof above, and substitute

k +2' for k in that line to obtain

+ 1)=1 	 +) + (
k+2) y2 '-1

w2,
j(k+2) f(2q-j + +

(1.)
=. 	 + W2 W 1+1) F 2(q _ l)

=, - W 2(1fl F.

Having considered the transform of a complex variable, the transform

of real numbers is now considered. See Press et al. (1986) for a broader

discussion of this topic. In many applications of the FFT the input values

are real. The transformed complex values, Fm, of the input real values, f '

then satisfy, if there are M input values,

= (FM)* 	 (1.52)

and, if the input values, g, are purely imaginary then the following is

satisfied,

- 	= (G M)*. 	 (1.53)

The Fourier transform is a linear operator and the transform of the sum

of two arrays is the sum of the transforms. Using this, two real input

arrays, f and g j can be formed into one complex array h by N. = +

Chapter 1. Introduction 	 54

The transform of the complex array, h1, Hk, will be a linear superposition

of the two complex arrays which satisfy the relationships in equations 1.52

and 1.53. Using these relationships it is easy to show that

Fm = 1 (H + HM))

Gm = 	(H - It(M m)) 	 (1.54)

Consider now the reverse process where two arrays, Fm, Gm, both satisfy

relationship 1.52. The inverse transform can be done by forming Hm =
Fm + W, and carrying out the inverse Fourier transform. As the transform

is a linear operator then f and g j will be the real and imaginary parts of the

transform.

L5 Summary

To complete the chapter a brief summary will now be given. The first un-

successful Numerical Weather Prediction (NWP) was made by Richardson.

He imagined that NWP would be carried out, on an operational basis us-

ing several thousand human computers. The ever increasing demands by

atmospheric modellers for computer power were next examined and it was

concluded that the present technology of shared memory vector computers

was inadequate for modelers' needs. The only likely alternative is paral-

lel computers with distributed memories. The theme of this thesis is what

algorithms or modifications or both to existing methods will be required to

utilize MIMD computers effectively. The next chapter will introduce some

ideas used in designing algorithms for those computers.

Chapter 2

Parallel Algorithm Design

2.1 Overview

The following three chapters will describe how different meteorological mod-

els are implemented on a parallel computer. This chapter will explain the

principles that lie behind the design of the algorithms.

Part of the "folklore" of parallel computing is Amdahl's law which, as

restated by Lazou (1988) is:

When a computer has two distinct modes of operation, a high

speed and a low speed, the overall operation is dominated by the

low speed mode unless the fraction of work processes in the low

speed mode can be virtually eliminated.

In particular, if an algorithm has a serial part, (which cannot be speeded

up) and a parallel part (which can) then, no matter how many processors

are used, it will not be possible to obtain a speed greater than that of the

serial part.

55

Chapter 2. Parallel Algorithm Design
	

56

The model of parallel programming and design that was used here was

that of Communicating Sequential Processes (CSP) described by Hoare

(1985). For the purposes of this thesis, this can be considered as a set of

sequential programs which communicate with one other. Communications

causes synchronisation, in that if a process desires to receive a message from

or send a message to another process it must wait until that process is ready

to send or to receive that message. When both processes are ready then the

exchange takes place and only then can both processes proceed. A similar

model is the calculus of communicating systems (CCS) (Milner, 1989).

When using MIMD computers like the Edinburgh Concurrent Super-

computer (ECS) machine, thought must be given to the decomposition of

the problem over many processors. Once the problem has been decomposed,

the communications between the processors needs to considered. The first

section in this chapter will introduce some decomposition strategies. Fol-

lowing on from that is a discussion of how the components (or processes) of

a parallel program interact through communications and the importance of

the mapping of these processes to the machine hardware.

Having introduced the idea of process topology, a discussion of the con-

ditions which may cause a program to stop, namely deadlock and livelock,

follows. When the program stops in these circumstances it is difficult to

detect that it has stopped. Some general ideas on associative operators are

presented in Section 2.5. These are used in Chapters 5 and 4. The question

of how the efficiency of a parallel program is measured and a case for looking

at scaled speedup is made. Th complete the chapter a very brief discussion

of the input/output problem is given.

Chapter 2. Parallel Algorithm Design 	 57

2.2 Decomposition Strategies

Classically there are three possible decomposition strategies for using par-

allel computers. They are,

Geometrical The computational domain is divided into contiguous pieces

and each piece is given to a processor. The mapping of the pieces to

the processors should preserve the topology of the entire domain, with

adjacent pieces being mapped to adjacent processors. This paradigm

is widely used in physical applications. Chapter 5 shows how this can

be used for grid point models.

Algebraic If a complex operation requires computation, then it may be

possible to break it down into various sub-components with each com-

ponent executed in parallel by a different processor. Sometimes the

operation will have no sub-components which can be computed in par-

allel. Identifying the sub-components may be difficult and the compu-

tations on them are likely to be take different amounts of time. The

speed at which the parallel computer will work at is determined by

the slowest part and if this unbalanced condition does occur then the

efficiency of the implementation will be reduced. Another point that

should be raised is that for many meteorological applications there will

only be a limited amount of parallelism available from this method. It

is therefore unlikely that many meteorological applications will find

this a particularly useful strategy.

Task If many independent tasks need to be done, and the number of tasks

is greater than the number of processors, then each processor will com-

pute at least one task. When a processor has finished with a task it will

Chapter 2. Parallel Algorithm Design

process the next one. In the meteorological context, examples where

this approach would be helpful include ensemble forecasting, where

an ensemble of forecasts is integrated forwards in time (Murphy, 1990;

Brankovié et al., 1990), and climate experiments where several exper-

iments could be run in parallel (Mitchel et al., 1989). Chapter 3 shows

how this approach is used to build a load-balancer for the parameteri-

zation schemes.

Algebraic decomposition can be done by building a pipeline, in which

many tasks move through the pipeline, being processed sequentially by the

sub-components. Normally there will only be a limited number of sub-

components that can be profitably identified and used. In order to use the

parallelism in the problem a geometric decomposition has also to be used.

In Chapter 4 this combined approach is used to implement a spectral model.

2.3 Topology

A program is considered as a collection of processes. A process, at least

for the purposes of this thesis, can be considered as a sequential program

with the addition of communications. See Hoare (1985) or Milner (1989) for

a more formal definition of a process. The communications between them

form a pattern. This pattern is termed the process topology. Analogous to

this are the connections between the processors of a parallel computer, the

computer topology. In this section, the topology of the process network and

its relationship to the topology of the parallel architecture will be discussed.

The communications pattern between the processes of a parallel program

can be expressed as a directed graph (Gelernter, 1981). Processes form

the nodes of this graph while the communications between the processes

are represented as directed edges. The neighbours of a process are those

Chapter 2. Parallel Algorithm Design 	 59

processes connected to it by only one edge. This directed graph will form the

topology of the program.

The topology of the hardware is also important. Many existing computers

use a hypercube topoiogy, where the 2' processors form a it-dimensional

hypercube. Each processor has it neighbours and is separated from any

other processor by at most it edges. Machines using such topologies include

the Connection Machine (Hillis, 1984) and the Intel iPSC/2. A description

of a fluid dynamics application on the latter can be found in Chamberlain

and Chesshire (1990).

Other computers use a mesh topology, where the processors are connected

in a two dimensional grid. An example of such a computer is the AMT DAP

(Associative Memory Technology, 1990).

Many Transputer based machines are reconfigurable and can be con-

nected into many different topologies, although, since the processors only

have a fixed valency, they cannot in general form a hypercube. Valency

means the number of input/output links the processor has, with the T800

having a valency of 4. The symbol v will frequently be used to mean the

valency of the processor.

One problem with fixed valency computers is the mapping of the process

topology to the machine topology. Ideally neighbours in the process topol-

ogy should be mapped to neighbouring processors in the machine topology,

although this is not possible if the machine valency is too low. This could

occur if, for example, a process needs to communicate with 5 other processes

while the machine allows a maximum of 4 processors to be connected to any

one processor. However, Prior et al. (1990) shows that random graphs of

fixed valency nodes can have good properties and in particular for a random

network of N processors it is possible to send a message between any two

processors in an average time of O(ln N).

Chapter 2. Parallel Algorithm Design
	

mo

On many existing machines, communication between processors is sig-

nificantly slower than the computation speed and through-routing through

processors is expensive. Many existing architectures pass messages by

"store and forward" in which, for a message to be through-routed by a pro-

cessor on its way to another processor, the intermediate processor receives

the entire message before sending it towards its destination. In this case

the time for a message to pass along N links, through N - 1 processors, is

proportional to N. The T800 works by this mechanism, with the through-

routing being implemented in software. The efficiency of the computer will

be increased if processes that communicate with one another are mapped to

neighbouring processors.

An alternative to store and forward routing is wormhole routing; once an

intermediate processor receives the first part of a message it starts routing

that message through the correct links. If the message is large enough

then the first part of it could arrive at the destination processor before the

last part leaves the originating processor. Contrast this with store and

forward routing where a processor must receive the entire message before

sending this message onto the next processor. If wormhole routing exists

on an architecture, then through-routing a message will not significantly

increase the time taken by the message to pass between the two processors.

However the N links being used by the message cannot be used by any other

processor until the message has arrived. In effect the total bandwidth of

the machine has been repartitioned with a larger fraction being given to

the single message (Daily, 1990). If many processors wish to communicate

across several links then there may not be sufficient bandwidth to enable

them all to complete rapidly. Again, machine efficiency will be improved by

mapping neighbouring processes as close to each other as possible.

Chapter 2. Parallel Algorithm Design
	

61

Figure 2-1 Deadlock in a ring

Arrows show how the processes (represented by the shaded circles) wish to

send a message.

2.4 Deadlock and Livelock

When designing and writing parallel programs it is imperative that the

designer ensures that the program never enters into either of two states

called "deadlock" and "livelock".

As soon as two parallel processes can interact, there exists the possibility

of deadlock. In a deadlocked set of processes, each process in the set is

waiting for another process, also in the set, to interact with it. In the CSP

model of parallel computing, the interaction is a communication and the

wait is caused by one process starting a send or receive and waiting for the

other process to receive or send data as appropriate. Deadlock may occur

when a cycle exists in the directed graph of the processes. Figure 2-1 shows

an example of deadlock where all the processors in a ring wish to send data

to their right hand neighbour. Deadlock is a property of the topology of the

communications pending at any one time.

Livelock is a less common problem and can occur if a process will stay

active and use processor resources (i.e. CPU time) until it receives a signal

Chapter 2. Parallel Algorithm Design 	 62

from another process. If the other process is on the same processor and the

first process is consuming all the CPU's time, then the second process will

never become active, and so the first process will never receive its signal to

stop it being active. In practice this situation may not arise, but one process

could waste an arbitrarily large fraction of the CPU's time.

An example of this occurs with a simple task farmer, where the processes

are configured as a ring. A task will continue moving around the ring until

it finds a processor which has no work to do, whereupon that processor

will do some work on the task. There are two processes on each processor

as shown in Figure 2-2, with the communications design being such as to

avoid deadlock.

A compute process which does the tasks.

A communications process which moves tasks to the next processor in

the ring or sends them to the compute process on the same processor.

If each processor is processing a task and all of the processors have another

task, then each processor will send this second task to its neighbour. This

passing of tasks around the ring will continue until there is no processor

with more than one task'. At this point there will be no tasks to transfer to

neighbouring processes. However the system may never get into this state;

the CPU time taken to move tasks from processor to processor may not leave

sufficient time for the tasks to be done and so the system will continuously

keep moving tasks around the ring. For this to happen the communications

process would have to take all the CPU time, it is more likely that it would

take a large fraction of the time and in that case the computations process

task will be being processed.

Chapter 2. Parallel Algorithm Design
	

63

Figure 2-2: Process design that leads to livelock

The box represents one processor with two processes, arrows show commu-

nications between processes. The arrows entering and leaving the processor

come from and go to the communications process on the next processor. The

design of the communications process is such as to avoid deadlock.

would eventually finish but it would take a much longer time than would be

expected.

Chapter 2. Parallel Algorithm Design 	 64

2.5 Associative Operators

The aim of this section is to present some useful results about associative

operators. A large class of problems, known as reduction problems, consist

of reducing many values to a single value. A typical example is adding to-

gether many data values to produce their sum. Related problems involve

the computation of iterative forms, for example F 1 = max(F,x,), to which

the techniques described here may be applied. This section discusses algo-

rithms in terms of a general associative operator, which might be + or max.

It is a generalisation of Section 5.2.2 of Hockney and Jesshope (1988) on cas-

cade sums. Also see Brent (1974) for similar ideas for arithmetic operators.

Figure 2-3 shows a routing diagram for a cascade sum, or for that matter

any associative operator. Reference to this figure should made during the

following discussion.

Consider a binary operation o, not necessarily associative, on elements

C11, a2,... e A of type A x A - A. Examples of such operators are max,

x, matrix multiplication and vector cross product. The operator o can be

extended to the N + 1-ary operator fl 0a (the generalised product) which is

defined by the following recursive equations.

DEFINITION 2.1

	

fl 0a1 	a0

N 	 N—i

	

a{ 	° Q0 -= a) 0 aN.

Now assuming that 0 is associative i.e. a1 0 (a2 0 a3) = (a1 0 a2) o a3 then

the following is true,

0rp(1{ 	 VP+1 <R Q —1. 	(2.1)

Chapter 2. Parallel Algorithm Design
	

65

Figure 2-3: Topology for cascade sum

In this diagram the shaded circles represent processes and the communi-
Oft rCPCeSCAttj b9

cations between them arrows. The numbers label the processes at each

level of the tree.

In several meteorological applications, it is necessary to compute A =

where the values of 1. will range across some large computational

domain. Examples of this are the computations of total energy, mass and

the zonal averaging that occur as part of the diagnostics of many models.

The values of a will be held on many different processors. The problem is

how to compute A efficiently. To begin with, a tree thpoiogy, as in Figure 2-3,

is built with the Uj being mapped to leaf processors of this tree such that a

and at4., t being the site labels, are on the same processor or on processors

whose processor labels are P and P + 1.

For a processor P, the minimum value of the site label is denoted by mjfl'

while the maximum is m• Each leaf processor's sub-domain will consist

of the contiguous site labels from Pnin to Pm. Note that if both processor

labels P and P + 1 exist, then Pm. + 1 = (P + 1)min.

Chapter 2. Parallel Algorithm Design 	 66

To compute A, each leaf processor will compute A(P) = 0 	aj. All leaf

processors can do this in parallel. These values of A(P) are passed on to the

nodes in the next level of the tree, connected to the leaf processors. These

node processors compute A(P) from the input values of A(P), in the order of

lowest input processor label to highest input processor label. Again these

labels form a contiguous set. These nodes pass their computed values up to

the next level of nodes, which will again compute a value of A(P) from their

input values and so on. Finally the desired value of A appears in the root

processor.

Having shown how to compute the reduction operation, the question of

the iterative form is examined. In this case it is necessary to compute

something of the following form,

Ai = al 0 A1_ 1
	 (2.2)

with A0 = a0. It is easy to see that Ak is equal to Again this can

be done in parallel, with a similar algorithm to that described earlier in the

section.

The algorithm begins by all leaf processors computing values of fl. for
Pm

all values of k that are on that leaf processor i.e. k E {Tmin' .. , P ax }. In

order to compute Qk the value of 	1)m will need to be input to the leaf

processor. Once this is done then the leaf processor can compute Ok using
'(PI)Max

0 	0 Pmjn

In order to arrange that 0("-')m— '1 	is input to the leaf processor the follow-

ing needs to be done.

Each leaf processor should send the value of O' to the node processor
Pmin

above it in the tree. The behaviour of the node processors is different in this

case from the reduction operation considered previously. Rather than just

passing values to the nodes above them, each node will compute generalised

Chapter 2. Parallel Algorithm Design 	 67

products from their input values. A node, P, receives inputs from processors

labeled P(1), P(2),. .., P(v— 1)with values,'(1 ,•• 0P(v1)max From these
)min 	 mm

the node processor computes 	with I ranging from 1 to v - 1. All node

processors can then send 	to the node processor above them in the

tree2. If a node processor has the smallest label (it is on the left hand edge

in Figure 2-3) then 	is ü' 	for all values of I. To the processors, P06.
below it in the tree, labeled P(I) with I ranging from 2 to v - 1 it sends

fl'(I—l)max All other processors, labelled I, in a row wait until they receive

values of 	from the node processor above them. They can use this

to compute 	with the notation {P'(I)} meaning the set of processor

labels that are below P(I) in the tree. Having computed these values the

node processors can send them to the processors below them in the tree.

Figure 2-4 provides a schematic illustration of this.

Similar ideas to the ones presented above have been extensively devel-

oped in the computer science community, mainly in the field of systolic

algorithms (Kung, 1979).

2.6 Parallel Efficiency

This section will define parallel efficiency, then discuss how throughput

and efficiency are linked and how to measure them. The time taken by N

processors will be denoted by T(N) throughout. There are two contexts in

which efficiency is typically considered and they require slightly different

ways of measuring it. These contexts are discussed below.

'For the node processor with the largest label this value will not be used by the

node processor above it

Chapter 2. Parallel Algorithm Design
	

Mj

Time 1 Time 2

Time 3
	

Time 4

0

[

Figure 2-4: Schematic illustration of parallel iterative operations

At time 0 all leaf processors (the bottom row in the tree) compute 	At

time 1 all the leaf processors send this computed value to the node processors

above them in the tree. At time 2 node processor 1 sends 	to leaf

processor 2 and also sends 02(max) to the root processor (the processor at the

top of the tree). Also, at time 2, node processor 2 sends 	to the root

processor. At time 3 the root processor sends 02(max) to node processor 2

which uses it to compute 03(max) At time 4 node processor 2 sends 0m

and 03(m') m 	to leaf processors 3 and 4 respectively

Chapter 2. Parallel Algorithm Design 	 69

Fixed Problem Size Here the efficiency is examined as the number of

processors solving a fixed size problem increas.Amdahl's law implies that

the efficiency of the algorithm problem will decrease with increasing number

of processors. For example, the relative cost of the loop overheads will

increase as the loop size on an individual processor decreases. This will be

termed the "fixed problem" in the following discussion. A perfectly efficient

parallel algorithm running on 1 processor would take N times as long as

it would take using N processors. This leads to the following definition for

efficiency, denoted by e.

DEFINITION 2.2

'r(1)

e— N'r(N)

Scaled Problem Size In many meteorological problems scientists would

like to run larger models. As more powerful computers become available

they will use these computers to explore larger problems. In this context the

problem size grows linearly with the number of processors available. Here

the relative loop overhead will stay constant but other effects may cause an

efficiency decrease. From here on this will be termed the "scaled problem".

For the "scaled problem", a perfectly parallel algorithm should require the

same time on N processors as on 1 processor (since the problem is N times

as big on N processors). Here the efficiency is defined by the following.

DEFINITION 2.3

T(1)
T(N)

Having defined the efficiency for the two cases, consider the problem of

computing the total efficiency of a program given the efficiency of each of its

sub-components.

	

Chapter 2. Parallel Algorithm Design
	

70

Consider a program with k components; each part labelled by i ranging

over {1,... , k}, and having efficiency e(N) and taking a time 'r(N) on N

processors. For both definitions of efficiency, the total efficiency of the whole

program is given by the following expression,

e(N)-r(N)
e(N) = 	 (2.3)

This can be seen as follows. For the scaled case, from Definition 2.3

e(N) = -r(1)/T(N) therefore the right hand side of Equation 2.3 can be

rewritten to give,

(;(1)/'r(N)) t(N) - 	T(1)
e(N) =- k

i i 	
(2.4)

	

2 ;(N) 	 r(N)

But 	'r(1) is equal to 'r(l) for the whole program and similarly 	T(N) =

'r(N) so this is exactly the scaled efficiency given in Definition 2.3.

For the "fixed problem", a similar argument applies. Use Definition 2.2

and substitute it in Equation 2.3 to obtain,

e(N) - N L1 Ti(i)
(2.5) -

which is the required expression.

2.6.1 Throughput versus Efficiency

In this subsection the tradeoffs required between throughput and efficiency

will be examined. All else being equal it will be more efficient to run several

programs independently on different processors than to run them one after

the other with each one being decomposed over the entire machine. This

will now be shown.

Chapter 2. Parallel Algorithm Design
	

71

Consider the case of a "fixed problem" which has a parallel part, taking

time P, on one processor and P/N on N processors. It has in addition a serial

part which takes a time S on any number of processors. On one processor

the time taken will be P + S while on N processors the time taken will be

P/N + S. By Definition 2.2 the efficiency is

(P+S)/N

e(N) = P/N + 	
(2.6)

Furthermore let S' and P' be the fractions of the total problem taken by the

serial and parallel parts respectively, i.e. S' = S/(S + P) and P' = P/(S + P)

The efficiency for one task running on a N processor machine is

e1 (N) =
P'+

1

 NS' 	
(2.7)

Consider now the case of two such tasks running on the machine with

each task using half the total processors. The efficiency is the same as the

efficiency of one task using a N/2 processor machine.

e2(N) = e1 (N/2) = 	
1 	

(2.8)
P'+ N/2S'

As e2 > e1 it is therefore true that the efficiency of M independent tasks

running on N processors3 is greater tiwi running the M tasks sequentially.

This analysis has ignored two things. First, it assumes that there is

unlimited memory available on the machine. There may not be sufficient

memory on all processors to enable some tasks to be run. The second point

that has been ignored is that for many meteorological applications there is

a maximum time in which the model must run. The best example of this

is a numerical weather prediction (NWP) model at a iorecast centre. If the

model does not run within this time then its results will be of no interest to

the intended users.

'As long as all the processors are used.

Chapter 2. Parallel Algorithm Design 	 72

2.6.2 Measuring Parallel Efficiency

To complete this section, methods of measuring parallel efficiency will be

discussed. Some justification for the idea of scaled speedup will first be

given. In the introduction it was shown that model complexity and size has

increased along with increasing computing power. If this trend continues,

then the concept of scaled speedup is useful. Here the problem size is

allowed to grow in proportion to the number of processors. The time taken

by N processors is directly proportional to the efficiency.

For some problems scaled speedup is not an appropriate measure. In this

case the problem size remains fixed and the efficiency of the program will be

measured as the number of processors increase. What is actually measured

is the time taken by the problem on N processors. Defining the scaled time

as the time taken by N processors multiplied by N, it is straightforward to
(vrSt'9

show that the scaled time isproportional to the efficiency.

2.7 Input/Output

Parallel computers will not be processing in isolation. The data they produce

will need to be transferred to other computers for further processing, to

storage for later analysis and archive, and to be disseminated to users who

require the information contained in the forecast (whether a climate or a

NWP model).

Models also require data. They require initial data and, depending on

the type of model, they may need further data as they integrate forwards in

time. A forecast model while assimilating data observations, see for example

Lorenc et al. (1991), will need these observations at regular model time

intervals. Climate models may need some ancillary fields. For example,

Chapter 2. Parallel Algorithm Design 	 73

an atmosphere-only model will need values of the sea-surface temperature

fields at regular model time intervals.

The scaling behaviour of 110 is examined to see if this may be a bottleneck

and cause the parallel computer to spend as much time transferring data out

of the computer as it does doing the computations to produce this data. The

computational complexity of a three-dimensional model is 0(N4), with 0(N3)

coming from the number of grid-cells in the computational domain and

0(N) from the time-step required for numerical stability or computational

accuracy.

For a serial model, of data set size 0(N3) the wall-clock time to integrate

the model forwards through one model day will be 0(N4). In this time the

amount of data to be transferred out of the model is 0(N3). Therefore the

ratio of 110 time to compute time for a serial model will be 1: 0(N). This

assumes that the model users would not wish to examine data every model

timestep.

Now consider the behaviour of a parallel computer, where the number of

processors is assumed to increase in proportion to the horizontal problem

size. As will be shown in later chapters, the amount of vertical decomposition

is limited. Thus the time to compute a model day is 0(N2), assuming perfect

scaleup. As in the serial case the amount of data that needs to be transferred

out from the computer is 0(N3). Therefore the ratio of I/O time to compute

time is 0(N) : 1. If this situation were allowed to remain then the time

taken by 110 would dominate the computing time. In order to make the

110 balance, the parallel-computer would require 0(N) channels out of the

machine. Note that this argument is a scaling argument and that the

4Assuming that vertical resolution increases as horizontal resolution does.

'That time measured on a clock in the computer room.

Chapter 2. Parallel Algorithm Design 	 74

constant which determines the number of 110 channels required may be

quite small.

Having presented some general ideas on the design of parallel algorithms,

the next three chapters will show how these are used in practice.

Chapter 3

Subgrid Processes

3.1 Introduction

In the previous chapter, parallel algorithms were considered in a general

way. This chapter will consider the parameterization schemes required by

many atmospheric models. The approach taken in this chapter, in contrast

to the next two chapters where dynamics schemes are examined, is mainly

empirical. Approximately 50% of a Numerical Weather Prediction or Cli-

mate model's time is spent computing these parameterization schemes. In

these, physical processes whose length or time scales cannot be explicitly

resolved by the model are parameterized in terms of the model variables.

Examples of these are gravity wave drag, radiation, convection and large-

scale rainfall.

In this chapter, two particular schemes are investigated by implementing

them on the Edinburgh Concurrent Supercomputer (ECS). The particular

schemes investigated are: (1) a large-scale rainfall scheme, used by the

U.K. Met. Office (UKMO) as a benchmark code; (2) a convective rainfall

scheme described by Gregory and Rowntree (1990). The second scheme

75

Chapter 3. Subgrid Processes
	

76

Table 3-1 Minimum and maximum times for two schemes

Scheme Min Max

Rainfall 0.27 0.41

Convection 0.20 0.93

Times are in seconds for 100 trials of the convection scheme and 500 trials

for the rainfall scheme. These maximum and minimum times were taken

from an experiment described later in the chapter.

is used by the UKMO in its present combined forecast and climate model.

Neither of these schemes require any communication between columns of the

atmosphere although considerable communication is required within these

columns. This is a consequence of the vertical resolution in atmospheric

models being much greater than the horizontal resolution.

Parameterization schemes typically have many conditional statements

and different pathways through the code. This causes the computational

time for the schemes to vary in different columns of the atmosphere, depend-

ing on the values of the model variables. Table 3-1 shows the maximum and

minimum calculation times taken for the large-scale rainfall scheme and

the convection scheme from the experiment described later in this chapter.

This chapter will examine parameterization schemes in the context of a

grid-point model. In the grid-point model, for reasons discussed in Chap-

ter 5, it is necessary to map the atmospheric columns to the processors such

that columns that are geographically neighbouring are mapped to the same

or adjacent processors. Furthermore the columns should be shared out as

equally as possible between all the processors. Throughout this chapter

the atmospheric columns are assumed to be mapped such that one or more

entire columns are on a single processor.

In order to put the work of this chapter into a more general context a

Chapter 3. Subgrid Processes 	 77

brief discussion on how these schemes are implemented on a vector machine

is given. In addition the problems that require solving, before an imple-

mentation on a data-parallel machine could be successfully carried out are

examined.

The normal technique used on vector machines is "gathering and scatter-

ing". In each branch of a conditional statement a vector will be constructed

by gathering all the points where the branch condition is true. This vec-

tor will then be acted on by the vector units of the computer. After the

computation is completed the points are scattered back to their original 1-

cations. The model code may need some re-ordering from a purely serial/non-

vectorised state. Consider a simple large-scale rainfall model where, if the

humidity is greater than the saturated humidity, water vapour will precip-

itate out. If there is a falling rain at a single point in the column and the

humidity there is less than the saturated humidity then some of the falling

rain will evaporate.

DO over all points

DO over all levels

IF (relative humidity > sat. humidity)

add contribution to rainfall from condensing vapour

IF (relative humidity < sat. humidity AND falling rain)

evaporate falling rain

ENDIF

ENDDO

On a vector machine this will become,

DO over all levels

GATHER all points WHERE (humidity > sat, humidity)

Chapter 3. Subgrid Processes

DO over all gathered points

compute rainfall increments

ENDDO

SCATTER rainfall increments back

DO over all points

add rainfall increment to falling rain

ENDDO

GATHER all points WHERE (humidity > sat. humidity

AND falling rain)

DO over all gathered points

evaporate rainfall

ENDDO

SCATTER rainfall back

ENDDO

On data-parallel machines this technique of "gathering and scattering"

has two problems:

The movement of points across the processor array so that all proces-

sors have the same thing to do at the same time involves many commu-

nications between processors. If, as is true for many parameterization

schemes, the computational work in a single branch of the model com-

pared to the communications time is small then this approach may

be extremely inefficient. Communications between processors is, of

course, more expensive than memory access on the same processor.

Data-parallel computers tend to have many processors and so conse-

quently the number of points per processor is small. See for example

the Connection Machine (Hillis, 1984). It is possible that the num-

ber of points where one branch is taken is significantly less than the

number of processors in the computer. As a result of this if there are

Chapter 3. Subgrid Processes
	 79

many conditional branches, then the efficiency of this approach may

be small.

These points were also raised in the paper by Swarztrauber and Sato (1990)

who also pointed out that the coding of the physical parameterizations on

such computers could require creative reformulation of the computations.

Such a reformulation (S. Reddaway, private communication) is to identify

from all branches of the conditional expression the common time-ordered

set of operations that are required. It is imperative that the time ordering

is preserved. A simple, contrived, example of this is the following;

IF (a < 0) THEN

b=2.0 * SQRT(-a)

ELSE

b=SQRT (a) /2.0

END IF

is transformed to

IF (a < 0)

c=2 . 0

a=-a

ELSE

c=0. 5

ENDIF

b=c*SQRT (a)

Existing parameterization schemes are written in the language Fortran

77 using the technique of "gathering and scattering" for vector supercom-

puter. Existing data-parallel computers, such as the DAP and the CM-2

require the use of a specialised language to manipulate elements of arrays

Chapter 3. Subgrid Processes 	 80

in parallel (Trew and Wilson, 191). The array manipulation features of

these languages are similar to the proposed Fortran 90 standard. Existing

codes of parameterization schemes would need extensive modifications so as

to use these array features. In addition to the cost of recoding the efficiency

of existing schemes could be quite low for the reasons outlined above. It is

possible that the efficiency could be improved by a major restructuring of

the codes that implement the parameterization schemes.

3.2 Properties of Parameterization Schemes

This section will describe some of the properties of the two schemes inves-

tigated. It will mainly concentrate on the work distribution of the schemes.

Both schemes were written in standard Fortran and both were designed to

run on a vector machine by using the "gathering and scattering" approach

described previously. It is straightforward to make both of them process a

single column by making the vector length one.

A brief description of both schemes, operating in a single column mode,

will now by given, starting with the large-scale rainfall scheme. In this

scheme computing starts in the highest grid-cell and proceeds down through

the atmospheric column until it reaches the lowest levels. For each grid-

cell, if the relative humidity is greater than the saturated humidity then

the excess humidity is precipitated out and added to any falling precipita-

tion. If the relative humidity is less than the saturated humidity then any

falling precipitation partially evaporates. In both cases temperatures in

the grid-cell are adjusted using the Clausius-Clapeyron equation. See any

basic textbook on thermodynamics (e.g. Zemansky and Dittman (1981)) for

details. Any remaining precipitation then falls through to the next grid-cell

down in the column. As precipitation falls it can change phase from "snow"

Chapter 3. Subgrid Processes 	 81

to "rain" or vice versa. The phase changes of the precipitation have an effect

on the temperature of the grid-cell in which they occur.

The convection scheme will now be described. In this scheme computing

commences in the lowest grid-cell and works up. The scheme finds the

lowest layer where there is slight positive buoyancy and initiates convection

of a parcel. This rising parcel represents an ensemble of convective plumes.

In each layer the parcel detrains parcel air and entrains environmental air.

When the parcel is no longer buoyant a fraction of the parcel air is detrained

so as to allow the remainder to have slight positive buoyancy. The process

continues until the entire parcel has completely detrained.

On a serial machine the time taken to compute the effect of a param-

eterization scheme will be dependent only on the mean time and the size

of the data-set. On a parallel computer, the performance is determined by

the slowest processor, therefore in addition to the the mean time, the dis-

tribution of times taken must also be considered. Consider first the work

required to compute the effects of a scheme on a single atmospheric column.

It is expected that the state of the column would affect the time taken. In

order to measure this, data-sets for both schemes were obtained. The data-

sets and codes for the schemes were all supplied by the U.K. Meteorological

Office. For the rainfall scheme, this data-set was for a limited area of the

globe; while for the convection scheme, a global data-set was suplied. The

surface values of these data-sets are shown in Figures 3-1 and 3-2 respec-

tively. There were approximately 3000 atmospheric columns in the rainfall

data-set and approximately 6000 columns in the convection data-set.

For each atmospheric column in the data-set the scheme was rien several

times and the total time taken measured. After each run of the scheme

on a single column, the values of that column were reset to their original

values. For the convection scheme each column was processed 100 times,

while for the rainfall scheme each column was processed 500 times. These

t 	 16 	 32 	 46

Chapter 3. Subgrid Processes

I 	 tI 	 32 	 46 	 64
Eo.t/*..t

- 	 unoco numloely 	 -

12

. 	---;- 	-c
I 	 16 	 32 	 48 	 64

Eo.tf*.t

Figure 3-1 Surface data used for the large-scale rainfall parameterization

scheme

Chapter 3. Subgrid Processes
	

ROM

1rnZTU;

WE No REA

P
60 	 120 	 160 	 240 	 300 	 340

l.0n9?b.d.

Ij11IIIIb:
0 	 60 	 120 	 150 	 240 	 300 	 340

45

-45

-40

Figure 3-2: Surface data used for the convection scheme

Chapter 3. Subgrid Processes
	

RE

Rainfall Scheme Work Density
	

Convection Scheme Work Density
5001. 	

11 1 111 ! 1 1111 1 	30001I'II

400

300
a,
-o
E
:3
Z

200

100

0
0.25

2500

2000

a
-D
E 1500
Z

1000

500

0
0.30 0.35 0.40 0.45 	 0.2 0.4 0.6 0.8

Time 	 Time
Bin size = 0.005 s 	 Bin size = 0.025 s

Figure 3-3: Time distribution functions for convection and rainfall schemes

The times shown for the two schemes were obtained by running the convec-

tion scheme 100 times and the rainfall scheme 500 times. The times were

obtained on a Sun Sparc 2 computer. Modified data values were reset after

each call to their initial value. Mean values are shown with an upward

pointing arrow.

experiments were carried out on a work station. Figure 3-3 shows the

time density functions for both schemes from these experiments. Upward

pointing arrows denotes the mean time taken for that scheme.

For the rainfall scheme the variation in time taken is not very large and

it is centred around the mean. For the convection scheme there is a large

variation in the times taken. Furthermore the distribution is not centred

Chapter 3. Subgrid Processes 	 85

about the mean; there are a large number of columns which take half the

mean time and the distribution has a long tail of large times.

The parameterization schemes act only on a single column and, for the

computation of these schemes, there is no interaction between columns.

However consideration of the dynamics requires that the atmospheric columns

should be mapped to the processors such that two neighbouring columns are

on the same processor or on adjacent processors. This is discussed in greater

detail in Chapter 5. Figure 3-4 shows the geographical distribution of times

taken to compute a column 100 times for the large-scale rainfall scheme.

Figure 3-5 shows the times for the convection scheme. Both fields are quite

noisy and have been smoothed prior to plotting. For the rainfall schemes the

smoothing is a nearest neighbour averaging while for the convection scheme

averaging is done with all points that are 2 or fewer grid-points away.

Having examined some properties of the geographical distribution of

the schemes' work, the implementation on the ECS and the results of this

implementation will now be described. In both cases it was straightforward

to take the schemes, coded in Fortran 77, and run them on the ECS. No

communications were required and the original code could be used almost

as it was. Both codes had a few Cray specific sub-routines, requiring re-

writing; this work would be required for any porting of the code.

In a full atmospheric model, the parameterization schemes are run in

conjunction with a dynamics stage. One of the effects of the dynamics would

be to cause processors to synchronise with their neighbours. Therefore after

each processor has computed all the changes to its atmospheric columns it

will exchange messages with all its neighbours. This prevents processors

with little work to do from "running ahead" of the rest. In addition to these

worker processors, which do the computations, there is also an additional

processor which will read in the original data, distribute it to the workers,

Chapter 3. Subgrid Processes 	 r.iairor

40

NO

20

on

0
0 	 20 	 40 	 60

Figure 3-4: Distribution of work for the large-scale rainfall scheme

Contours are at 0.2,0.3, 0.32, 0.34,0.36 and 0.38 seconds, shading is for times

greater than 0.34 seconds.

Chapter 3. Subgrid Processes
	

MA

Figure 3-5: Distribution of work for the convection scheme

Contours are 0.2,0.4, 0.5, and every 0.1 of a second, shading is for times

greater than 0.5 seconds.

Chapter 3. Subgrid Processes 	 88

and receive the computed results back again after the worker processors

have done all the work required.

Two experiments were carried out for each scheme. The initial data-sets

used were the same as those shown in Figures 3-1 and 3-2 for the rainfall

and the convection schemes respectively. The data was distributed to the

processors with neighbouring columns being on the same processor or on

adjacent processors. In addition the number of columns per processor was

kept as equal as was possible. Each processor repeatedly carried out the

scheme being tested on all atmospheric columns that it contained, synchro-

nised with its neighbours and then reset the data to its initial values. This

was done 100 times for the convection scheme and 500 times for the rainfall

scheme, in order to increase timing accuracy and reduce startup costs such

as data initialization. After this was done the data from all the processors

was then sent back to the manager processor. The times measured were

from the beginning of the data transmission to the processors until the final

piece of data had been received from all processors. In addition to this, a

second experiment was carried out in which the overhead associated with

sending data out, synchronising and returning data was also measured.

These experiments were carried out for differing numbers of processors. For

the rainfall scheme these experiments were carried out using up to 64 pro-

cessors while for the convection scheme up to 128 processors were used. It

was not possible, for the convection scheme, to use 4 x 2 or 2 x 2 processors

due to memory limitations.

The results are shown in Table 3-2. In this table the number of processors

is shown as the number of processor columns x the number of processor rows.

In order to isolate the costs of the parameterization schemes the times are

corrected for the times taken to transfer data and synchronise between the

processors. A plot of these corrected times,, multiplied by the number of

processors used (the scaled times),is shown in Figure 3-6.

Chapter 3. Subgrid Processes

4000
£
0
0
'1)
(I)

0
0
	

50 	 100 	 150
Number of Processors

Figure 3-6: Scaled time for parameterization schemes

The above figure shows the corrected scaled times for both parameterization

schemes. Diamonds denote the convection scheme (with 100 trials) while

the rainfall scheme (with 500 trials) is denoted with crosses.

Chapter 3. Subgrid Processes

Table 3-2: Parameterization schemes on the ECS

Number of Rainfall Convection

Processors Rainfall Correction Convection Correction

16 x8 - - 55.2 9.8

8 x 8 32.7 4.0 97.6 9.6

8 x 4 58.1 6.5 178.8 9.7

4 x 4 109.0 6.3 340.3 9.2

4 x 2 211.9 6.2 - -
2 x2 411.3 6.4 - -
lxi - - 3992.9 0.0

Times shown are for 100 trials for the convection schemes and 500 for the

rainfall scheme. Times are measured in seconds.

Examining first the results of the convection scheme, shown in Figure 3-

6, the difference in scaled speedup when using one processor and using 16

processors is 30%. Beyond this point, as the number of processors increase,

the scaled speedup rises slowly to a value approximately 50% greater than

the single processor case. This represents an acceptable efficiency for the

scheme. Also shown in Figure 3-6 are the results of the large-scale rainfall

scheme. For this scheme the scaled time is approximately constant with

increasing processor number. There is an increase in scaled time when

using 64 processors but it is not clear whether this part of a trend or not.

For both schemes implementation was straight forward and the efficien-

cies obtained are adequate for operational purposes. The reason why the

scaled time dramatically increases, in the convection scheme, when using

16 processors compared to 1 processor may be due to load imbalance, in

which some processors have more work to do than other processors. The

next section explores this issue.

Chapter 3. Subgrid Processes 	 91

3.3 Load-Balancing

This section examines the effects of load-balancing on the scaled times of

the parameterization schemes used in the previous section. Smoothed plots

of the work distribution were shown in Figures 3-4 and 3-5. These can be

considered as showing the averaged work over a small region. As can be

seem from these figures the spatial coherence of the work distribution, for

the convection scheme, is high - that is columns close to one another are

likely to require similar amounts of work, and as a consequence of this some

processors will have more work to do than others. The aim of load-balancing

is to move tasks from processors which have much work, to processors which

have little work to do.

Fox et al. describe an alternative technique called scattered decompo-

sition. For the meteorological parameterization schemes examined in this

chapter, this would involve transferring atmospheric columns to processors

such that columns that began close to one another are now far away. The

hope is that all processors would now have approximately equal amounts of

work to do. However this conflicts with the requirement for the dynamics

stage, that neighbouring atmospheric columns should be on the same or

neighbouring processors. Thus to carry out scattered decomposition, data

would need to be moved large distances across the computer, the computa-

tion of the parameterization schemes carried out, and then the data needs

to be transferred back to the original processors. The communications cost

required make this approach unattractive.

Other authors have carried out some work on load-balancing through

task movement, and reported positive results, although for other disciplines

(Boillatet al., 1991; Boillat, 1989; Smith and Wilson, 1991). Some work has

been done for hypercube architectures (Cybenko, 1989) 0 A (d boic"13.

Chapter 3. Subgrid Processes
	

92

For the purposes of this chapter, a task will consist of a parameterization

scheme acting on a single column of the atmosphere. Data will mean the

variables for this column and any associated control data. This control data

could include, for example, the identifier of the processor from whence the

column came.

The load-balancer will consist of the following three modules all running

in parallel on the same processor.

A compute module; this module will carry out computations on a single

task.

An exchange module which will exchange tasks with neighbouring.

processors as well as providing the compute module with tasks.

A general router module, which will route tasks so that they return

to the correct processor. In many current and proposed parallel com-

puting systems this module is provided as part of the system/library

software (Clarke and Wilson, 1990; Meiko, 1991).

Figure 3-7 is a schematic diagram of such a load-balancer. The dynamics

module which runs in parallel with these three modules is also shown. There

is a possibility of deadlock as a cycle exists between the dynamics module,

the exchange module and the general router. This deadlock can be avoided

by the dynamics module transferring all its tasks to the exchange module

before accepting any tasks.

One of the objectives of the implementation of a load-balance/task-ex-

changer was to reuse the existing serial code easily. The same two parame-

terization schemes examined earlier in this chapter were used in the work

described in this section.

Chapter 3. Subgrid Processes
	

93

Figure 3-7: Schematic diagram of load-balancer

This figure shows the components of a load-balancer. In addition to the

three components of the load-balancer and the dynamics module, the general

network is also shown, this comprising the router modules on all other

processors.

Chapter 3. Subgrid Processes
	

It"

In order to reuse these existing serial codes, the task-exchanger should

treat the parameterization schemes as "black boxes" and assume only that

they act on a single column of the atmosphere with no communications be-

tween columns. Therefore the task exchanger will see the tasks as merely

data to be moved, but which hatvarying length. This length could change af-

ter the compute module is called if some extra data is returned, for example,

in the convection scheme, the atmospheric column will have its structure

changed and the amount of convective rain and snow will be returned.

There is no general a priori method of determining how long a task

will take except by carrying out the computations (cf the "Halting Problem"

Turing (1936)). It is for this reason that the work is measured by the number

of tasks a processor has left to compute. Processors on which the tasks

require little work, after some time, will have less tasks to do than processors

where the tasks require much work. Exchanges of tasks between processors

will be done periodically. The natural time scale for the exchange module is

the time taken by the computations on the task. In this time, a neighbouring

processor could be polled to see if an exchange of tasks would improve the

balance of tasks locally. The number of tasks, and thus the estimate of the
nearig

work left to do, per processor would be more equal after the exchange than

before.

There are two possible ways to carry out the polling of a neighbour. A

processor can poll a neighbour when it has less than a critical number of

tasks left to do. This is called a request strategy as it is likely that the

processor will receive tasks from its neighbours. The alternative is to poll a

neighbour when the processor has more than a critical number tasks left to

do. This is a send strategy as it is likely that the processor will send tasks

to its neighbours.

The exchange module will carry out the following set of alternatives

Chapter 3. Subgrid Processes
	

01

repeatedly, the first one ready will be selected. If more than one is ready at

the same time then the highest numbered one will be taken.

A processor has sufficient tasks. It then chooses at random a neigh-

bouring processor to poll or to not poll any of its neighbours. The reason

for the possibility of polling none of the neighbours is to avoid live-lock

in which a processor repeatedly polls its neighbours. If a neighbour

is selected then that neighbour is told how many tasks the processor

has, and then the processor waits for the neighbour to reply with the

number of tasks it has. Both processors know how many tasks each

has. The one with the greater number of tasks then transfers tasks

to the other to balance up the number of tasks. The number of tasks

transferred is limited so that the time to exchange tasks is not too

great. This is done in order that the compute module has no work to

do while the task exchange is done.

Receive a message from a neighbouring processor telling the processor

how many tasks the neighbour has, then tell the neighbour the number

of tasks this processor has and proceed as in item 1.

Receive some tasks from the dynamics module. This alternative will

happen infrequently compared to the previous two.

After one of these alternatives have occurred the balancer will be in one

of four states.

1. It has tasks and the computational module is processing a task. In this

case the processor will wait for the computational module to complete

its task, at which point the task exchanger will receive the computed

task and pass it on to the router. It will then give a task to the compu-

tational module.

Chapter 3. Subgrid Processes
	

M.

It has no tasks and the computational module is processing a task. The

balancer will then procced as in item 1.

The computational module is empty and the task exchanger has tasks.

In this case a task will be given to the compute module.

The computational module is empty and the task exchanger has no

tasks. Nothing will happen.

After one of the above, the probability distributions for selecting a neigh-

bour or not polling a neighbour will be adjusted to represent the increased

information about its neighbours. In the implementation, the probability of

selecting the neighbour just polled would be set to zero and the probabilit es

of selecting any another neighbour would be relaxed towards their mean

values. The probability of not polling a neighbour would be set to whatever

was required to make the sum add to 1.

Under certain circumstances, the processor could live-lock. This could

happen if the processor has zero tasks, is following a request strategy and

all its neighbours have no tasks. It would poll a neighbour and exchange no

tasks (as its neighbour has none). After this it would be in state 4 and do

nothing, before starting the cycle again.

This cycle would only be broken when it received some tasks from either

its neighbours or the dynamics module. In this live-lock state, the exchange

module could consume much of the processors CPU time. If all the processors

have completed the sub-grid tasks and so none have any tasks, then all of

them could be in this live lock state. If they all consumed all the processors

CPU time polling each other then this state would last indefinitely as the

dynamics module would never be able to omp1ete, and pass tasks to the

exchange module.

Chapter 3. Subgrid Processes
	

97

For this reason a request strategy is not as suitable as a send strategy.

However a remedy is possible: if the exchange module is ever in state 4, then

it should suspend itself for some time, thus allowing the rest of the processor

to do useful work. After this has been done the suspension time should be

doubled. If the processor gets into any of states 1-3, the suspension time

should be reset to its original value.

Times for the load-balancer were measured in the same way as was

done in Section 3.2. As well as load-balancing after each scheme had been

computed on all columns on a processor, all processors would then synchro-

nise with their neighbours in order to stop "running" ahead. The balancer

described in this section was implemented in Occam and data was copied

between processes on the same processor. This made the implementation

easier and also made modifications easier. However the cost of this data

transfer is high and a operational implementation should not do this. As

only two processes, the compute process and the exchange process, could

modify the data, pointers to the data are all that should be manipulated by

all the other processes. For each scheme two experiments were carried out,

one in which the times were measured using the load-balancer and another

in which the total times taken to synchronise between processors and copy

data between the dynamics process and the worker process were measured.

The times from the second experiment were used as corrections to the first

times in order to estimate what times would have been taken by an op-

timised version of the balancer software. The number of processors used

in these experiments was the same as for the experiments in the previous

section. The results of the experiments are shown in Table 3-3.

Figure 3-8 shows a plot of the scaled time for these corrected results.

The times taken when no load-balancing was used is shown as dotted lines,

in order to make comparison easier. For the convection case a very small

gain is observed for up to 32 processors but beyond this the load-balancer

Chapter 3. Subgrid Processes
	

r1i

8000

6000

(0
D
C
0
0

v)

4000

ID

LIIIIS]

OL
0
	

20 	40 	60 	80 	100 	120 	140
Number of Processors

Figure 3-8: Scaled speedup with load-balancing

The results for the convection scheme are denoted by diamonds while the

rainfall scheme is shown with crosses. Dotted lines show the results for the

non load-balanced cases. Times taken are for 100 trials for the convection

scheme and 500 for the rainfall scheme.

Chapter 3. Subgrid Processes

Table 3-3: Balancer results

Convection Scheme Rainfall Scheme

Processors Balancer Copy correction Balancer Copy correction

16x8 74.9 17.7 - -
8 x 8 116.2 25.0 55.3 31.2

8 x 4 206.2 40.2 103.8 55.3

4 x 4 392.4 71.1 200.4 104.2

4 x 2 - - 393.4 201.9

2 x 2 - - 779.8 397.1

causes the times taken to increase. For the rainfall case the load-balancer

produces a small gain.

It seems likely that the differences between the two cases are due to

the different distributions of work over the computational domain. For the

convection case work is distributed more unevenly than in the rainfall case.

In the former case the load-balancer needs to move tasks farther than in the

latter to equalise the distribution. The time to do this is toogreat. However

if the work was distributed more evenly, as in the rainfall scheme, the

processors are already in approximate balance and therefore load-balancing

will be of little benefit.

From this study it is concluded that load-balancing is unlikely to be of

much benefit for the parameterization part of atmospheric models.

100
Chapter 3. Subgrid Processes

3.4 Conclusion and Discussion

This chapter examined parameterization schemes in the context of their im-

plementation on parallel computers. First it concluded that it was unlikely

that the technique of "gathering and scattering" would be efficient on data-

parallel computers. In addition it was concluded that rewriting of existing

codes would be needed to use data-parallel machines. This is in contrast

to MIMD computers, such as the ECS, where implementation of existing

codes is straightforward and should be trouble free if the code is written in

a standard language, and using no extensions, such as Fortran 77.

Two schemes were ported to the ECS; a convection scheme, and a large-

scale rainfall scheme. Measurements of their scaled times were made. For

the convection scheme the scaled time was about 50% higher than the 1

processor case when using 128 processors. The scaled time increased by

about 20% from 16 processors to 128 processors. It was postulated that

this was due to load-imbalance. For the rainfall scheme the scaled time

was approximately constant or increasing slowly with increasing numbers

of processors.

A prototype load-balancer was designed and implemented. After various

corrections had been made to the scaled times observed it was found that

the load-balancer caused an increase in time taken for large numbers of

processors or a small decrease for small numbers of processors. It was

therefore concluded that load-balancing was unlikely to be of any benefit for

a realistic model on a massively parallel computer.

The load-balancer is in effect a process which moves tasks between pro-

cessors; there are other circumstances where task movement between pro-

cessors may be needed. The size of the compiled model for each scheme is

101
Chapter 3. Subgrid Processes

quite large and likely to increase as the model complexity increases. More-

over it may be extremely expensive to provide sufficient memory on each

processor to allow all the parameterization schemes to be present on every

processor. In these circumstances, it may not be possible to have a copy

of each parameterization scheme on every processor. If this is correct then

it could be envisaged that each processor would contain only some of the

parameterization schemes and that data would need to be moved between

processors to allow all the schemes to act on any single column of the at-

mosphere. The number of processors having a particular scheme should be

inversely proportional to the mean time that the scheme takes in order to

minimise the load imbalance problem in what is in essence a pipeline. See

Section 4.2 for a discussion on pipelines. In practice this may not be so easy.

The main problem will be the expense of the additional
communications to

move the tasks between the processors.

In addition, in order to ensure repeatability, a task should visit the dif-

ferent schemes in a deterministic
order. If the order is the same as the serial

model being considered then verification would be made easier. In many

parameterization schemes there is, on physical grounds, a pre-determined

order in which they should be carried out. For example the radiation scheme

requires information on cloud properties which are partially generated by

the convection scheme; so the convection scheme must be called prior to the

radiation scheme.

Chapter 4

Spherical Harmonic Methods

4.1 Introduction

This chapter and the next examine two different methods used to simulate

large-scale atmospheric flow. The next chapter considers grid-point meth-

ods; this one will consider the spectral method.

The spectral method is widely used by the Meteorological community. Its

use ranges from low resolution climate models (James and Hoskins, 1990;

Bourke, 1988) to high resolution numerical weather prediction models (Gi-

rard and Jarraud, 1982; Hogan and Rosmond, 1991). Courtier and Geleyn

(1988) have suggested that the spectral method could be suitable for local

area models if a suitable conformal transformation of the globe is chosen.

Their use is not likely to be discontinued in the near future. Therefore an

efficient parallel algorithm for this method is required. This chapter will de-

tail such an algorithm. The details of the spectral method have already been

described in Chapter 1. The spectral method requires data to be transformed

from grid-point space to spectral space and vice versa. These transforms are

global transformations and require that data be communicated across the

102

Chapter 4. Spherical Harmonic Methods 	
103

entire computational domain. Some models also require some local commu-

nications in parts of the method, an example of this is described in Bourke

(1974). The model whose implementation is described in this chapter has

been in use for some time and was first described in Hoskins and Simmons

(1975) and will be referred to throughout this chapter as the Reading Model.

This model uses the three-dimensional primitive equations.

An overview of this chapter will now be given. The next section will pro-

vide a description of the method used to carry out a parallel implementation
,

namely, a pipeline. The following two sections explain in detail how the two

components of the spectral transformation, the fast Fourier transform and

the Legendre transform are performed. Section 4.5 shows how the compo-

nents are joined together and gives an analysis of the algorithm's scaling

behaviour. Next, details of the implementation of the algorithm on the ECS

are given. Results of this implementation are then presented and finally

some conclusions are made.

Swarztrauber and Sate (1990) described an implementation of the pseudo-

spectral method for the shallowwater-equations for the CM-2. In the

pseudo-spectral method the basis functions are complex exponentials rather

than the spherical harmonics used in global spectral methods. Carver (1988)

implemented the shallow water equations on the DAP computer using the

spectral method. The problem Carver (1988) solved was in effect how to

pack the data onto the processors of the DAP. His algorithm is more inef-

ficient for the inverse transform than for the forward transform. MIMD

computers like the ECS are more flexible than data-parallel computers such

as the DAP and the algorithm described in this chapter is equally efficient

for both the forward and inverse tr
ansformations. The algorithm is for a

MIMI) computer with fixed valency, which is configurable to any desired

topology consistent with this requirement.

Chapter 4. Spherical Harmonic Methods 	
104

4.2 Pipelines

The approach that was chosen for i
mplementing the spectral method was

a pipeline because several of the
sub-components of the spectral transform

could be implemented naturally in that way. A pipeline can be thought of

as algebraic decomposition in which a complex task is broken into several

tasks. If a sequential operation consists of several functional units and this

operation is done several times on different pieces of data then it may be

efficient to split up the operation into its component functional units. Each

unit will operate on a piece of data, pass this computed data out to the next

part and take in another data element to act on. Figure 4-1 is a simple

analogy of this where a brick wall is built using a pipeline.

In this example the task of building a wall is broken into four functional

units. A task for this case is adding one brick to the wall. The four units are

in order;

Prepare the brick.

Apply mortar to the brick.

Place brick on wall.

Tamp brick down.

Bricks (tasks) will be taken from a pile and prepared by the first worker in

stage 1. She will then pass this brick on to the next person in the pipeline.

The process will continue. After, in this case, five time-steps the first brick

will be added to the wall. From this time on a brick will be added to the

wall every timestep. If each stage in the pipeline takes a different amount of

Chapter 4. Spherical Harmonic Methods
	 FW

Building a Wall with a Pipeline
Time 0

I
rre i i- >r i-

1pare 	L
r Brick

Time I

P1a4.e 	

j 	
LTamp BnckL >A

lyI- 	>1 	Down. I Brick

Time 2

P re ____ 	____ Plare j >J npBrick} >r I repa 	L >1 	[Brick I Brickl

Time S

__________ 	__________ P'ace 	__________ - Pre re 	I >1 tit1 	I- >'I Brick — >'I Tamp Brick j >

Time 4

b FTamp Brick

Time 5

are 	 >f- Tamp Brick
I 	

— Prep 	I 	 I- >[__j 	Down._1 _Brick_I

Figure 4-1 A simple pipeline

This figure shows, schematically, how a brick wall could be built using a

pipeline. Note that the first brick will appear on the wall after 5 timesteps.

time then some workers will spend some of their time doing nothing useful.

The time between bricks being added to the wall will be given by the time

taken by the slowest worker or the time taken by the longest task..

4.2.1 General Pipelines

A few preliminary definitions will now be given. The timestep, T, is the time

interval between data elements at the output end of the pipe. The startup

time, S, is the time it takes for the first data element to travel the length

of the pipeline. A pipeline has a very simple work and communications

structure; each stage in the pipeline will take in input data, process it and

output it to the next stage in the pipeline. Synchronisation between stages

of the pipeline occurs at input or output operations. If one stage is not ready

Chapter 4. Spherical Harmonic Methods 	 106

to synchronise with another stage, then the later stage will be forced to wait

until such time as the former stage is ready to proceed.

Consider now a pipeline with timestep T. Another stage, with timestep

is then added to this pipeline. The timestep of the composite pipeline is

now the maximum of T and V.

Having shown how to combine the timesteps of the components of a

pipeline to obtain a timestep for the pipeline, a means of computing the

timestep for any given component will be now be considered. At this stage

the hardware characteristics are relevant. Two models are considered; firsl

hardware like the Transputer where multiple communications and one set

of calculations can proceed concurrently; second,hardware which can only

perform one function at a time i.e. it can communicate along one link or com-

pute. For future reference, these two cases will be referred to as concurrent

and non-concurrent respectively. Figure 4-2 shows possible work, commu-

nication and idle time patterns for both the concurrent and non-concurrent

cases. For the concurrent case, define 71 TW and '1 as the time taken to

do input on channel t, computation and output on channel k respectively,

then T is max(17'}, T", {k°} with labels 1. and k ranging over the possible

inputs and outputs. In the example shown in Figure 4-2 there are three

inputs and one output for stage four of the pipeline. For the non-concurrent

case, in contrast, Yis 	I +1 + (J 0

One final complication will be considered before showing how the startup

time for the pipeline is computed: it is possible that a stage will be receiv-

ing input from several different sub-pipelines which are all proceeding in

parallel. The timestep for each of those pipelines is Ti. For the concurrent

case then the timestep for the composite pipeline will be max({iJ,T). The

argument that leads to this result is the same as that presented earlier. For

the non-concurrent case the analysis proceeds as before with the time step

being the same as before. The processing of inputs from the parallel sub-

Chapter 4. Spherical Harmonic Methods
	

107

Task 4

Task 3

Task 2

Task 1

Figure 4-2: Task work patterns

The above figure shows the work and communication patterns for a simple pipeline.

The top portion of the figure shows this for hardware which cannot carry out simul-

taneous communications and calculations, while the bottom portion of the figure

shows this for hardware which can do concurrent communications and calculations.

Time flows from left to right, computations (work) are shown by a light shaded re-

gion, input by dark shading and output by intermediate shading. The pipeline

consists of three identical processes (tasks 1 to 3) which do some work and send the

results onto another process (task 4). The process, when it has received messages

from tasks 1 to 3 does some computations and then outputs the results.

In the concurrent case, communications and work can all proceed in parallel thus

giving up to three streams for each task. For the non-concurrent case note the

delay in the starting of the communications for tasks one and two, as only one

communication can proceed with task four at a time.

Chapter 4. Spherical Harmonic Methods 	 108

pipelines must be done in the same order in each cycle or the time between

inputs will be increased from+

Finally, considering the startup time, since output in a stage is synchro-

nised with input in the next stage, the time taken is the sum of work and

output times for the concurrent case. For the non-concurrent case, the anal-

ysis is much more dependent on the situation, as the extra communications

introduce delays on inputs. If all the inputs are coming from sub-pipelines,

the first input adds nothing to the startup time but the remaining ones do.

To summarise, the computation of the timestep for the entire pipeline is the

maximum of the timestep for each stage of the pipeline. The startup time

for the pipeline is at least the sum of the output and work times for each

stage.

The efficiency of the pipeline can be computed from the startup time

and the timestep for the pipeline. This pipeline efficiency is given by the

following expression
T

Ve 	
d 	

(4.1) TdS

where d is the number of tasks that the pipeline will process.

4.2.2 Pipelining the Spectral Method

Next, considering the spectral method, a flowchart for one iteration is given

in Figure 4-3. This flowchart is at the level of the different blocks of work

within the spectral transformation. This flowchart can, at least conceptually,

be turned into a pipeline by choosing the transformation of the different

Gaussian latitudes to be tasks. Figure 4-4 shows this and the computational

complexity of each stage in this pipeline.

In order that each stage be balanced, 's the timestep is given by the

slowest part within the pipeline, the number of processors in any stage

Chapter 4. Spherical Harmonic Methods

Forward
Legendre

Transform

Inverse
Fourier

Transform

Do Over
Compute '\ 	 Gauss Latitudes

Non-Linear
Products

Forward
Fourier

Transform

Sum
Contribution

For Gauss Lats

Figure 4-3: Flowchart of spectral transform

G.uia
Latitudes area

Products 	 cqj '11c 	 P=

'ransform Transform 	 1iit Trsn.Ior 11

109

Complexity 	0(N3) 	0(NnN) 	0(N) 	 OWL N) 	0(N3)

Figure 4-4: Pipeline and computational complexity for spectral method

Chapter 4. Spherical Harmonic Methods
	

110

Table 4—b Required parallel complexity

Stage No. of Processors

Time step Inc. 0(N2)

Forward Lgnd. 0(N2)

Inverse FFT 0(N In N)

Non-linear Products 0(N)

Forward FFT 0(N in N)

Gaussian mt 0(N2)

N is proportional to the size of the spectral truncation (either Rhomboidal

or Triangular). The table shows the number of processors that each stage

in the pipeline should have in order that it should remain balanced. The

numbers were obtained by taking the serial computational complexity and

dividing by the number of tasks.

should be proportional to the computational complexity. Table 4-1 shows

the constraints that are required on the number of processors at each stage.

The chapter will proceed by examining the components of the pipeline and

computing startup times and timesteps for each of them. These will be

combined to compute a startup time for the entire pipeline, being the sum

of all the individual startup times, and a timestep for the entire pipeline,

being the maxima of each of the timesteps for the individual components.

4.3 The Fast Fourier Transform

This section will consider the unit of the pipeline that carries out the fast

Fourier transform (or FFT) component of the spectral transform and in

particular a FFT of radix two. This unit is itself broken down into a pipeline,

Chapter 4. Spherical Harmonic Methods 	 111

and there are three types of units within this sub-pipeline. The numerical

details of the FFT were described in Chapter 1. In order to utilize as much

of the inherent parallelism of the algorithm as possible it is necessary to use

two-dimensional decomposition. Therefore a distributed FFT is required.

As will be shown later, this part of the algorithm is the bottleneck in the

entire problem. The number of operations per site that the FFT requires is

small, at most four per site. If the communications speed of the processor,

relative to the computational speed, is slow then the fraction of time doing

useful computations could be unacceptably low. If this is true then the

speedup of the total algorithm will be very slow and the algorithm that will

be presented in this chapter should not be used.

The important parts of the FFT, in terms of its implementation on a mas-

sively parallel computer, are the recurrence relationship which demands a

particular kind of communications pattern and the fact that information

stored on sites with labels in a particular order will need to move to sites

whose labels are obtained by performing bit-reversal on the original labels.

This is discussed below. If, as in the Reading model, no local communica-

tions are required in either grid-point space or spectral space, then it is not

necessary to carry out a bit-reversal or reordering process. For future ref-

erence, the bit-reversing operator for A bits will be denoted by 	i.e M s

the number formed by reversing the bits of a binary representation, length

A, of M. M must satisfy the constraints M > 0 and M < 2' - 1. If M is equal

to 	1 in2 then M? is 	mA_(+1)2 with w = 0 or 1.
i=O

For each timestep of the spectral method the inverse transformation is

carried out first, followed by computation of the sub-grid schemes and the

effects of advection, followed by the forward transformation. Inmost present

models no communications are required between sites in grid-point space

with different horizontal co-ordinates. The use of semi-Lagrangian methods

Chapter 4. Spherical Harmonic Methods 	 112

to compute the advection step in grid-point space would change this. For a

description of this method see, for example,Ritchie (1987).

The method used to compute the FFT is to form a pipeline of width N

(N is an integer power of 2) and length 1092 N + K K being a constant

number of processors, the value of which depends on the size of "internal"

FFT. Details are discussed later. The width is the number of processors

which will act on one Gaussian latitude. Each stage of the pipeline will

compute the recurrence relationships using whichever one of eqns 1.49, 1.50

is appropriate. The number of points on a processor, L with L = 2, is M/N

(M being the total number of points for the Fourier transform with M

q >_ p)

The mapping of the 0 to the processors is now considered. This takes

the form of a mapping, dependent on 1, from the i, k indices to a single index

j. Manipulating this mapping of i and k makes it possible to reason about the

communications necessary between the processors. The processor identifier

is given by j/L using integer division.

The communications patterns required for Equations 1.49 and 1.50 in

terms of the index 5 is,

{j(1., k,), 5(1, k, i + 2_(1+1))} '-* 5(1 + 1, k,) 	 (4.2)

{j(l, k, t), 5(1, k, i+ 2_(1+1))} '
-f 5(1 + 1, k + 2,) 	 (4.3)

with the notation meaning that in order to compute values at a site labelled

5(1+1, k, 1.), sites labelled 5(1, k, i) and 5(1, k, 2_('+1)) are required. This nota-

tion is based on that introduced by Carver (1990). The mapping of 1, k and t

to 5 should have the property that all sites on a processor should all commu-

nicate with the same processor. This is essential for the target architecture

(T800 Transputer), which has only a fixed valency. On other architectures

with more general routing strategies there will be a gain in efficiency if this

Chapter 4. Spherical Harmonic Methods 	 113

restriction is followed, as the effect of communications startup time is re-

duced. This gives the constraint on the mapping for values of j such that

(j + 1)/L = j/L (using integer division),

{j(t,k,i)+ 1,j(1,k,i+ 2-(I+1)) + 1} -* j(t+ 1,k,t) + 1 	(4.4)

with t e {O, .. . , 2q_1)2} and k e {O,. . . , 2 - 1 I. It is also useful for the

transform to not use any extra memory, this leads to the following two

requirements for the transform

	

jG+ 1,k,i) =
	 (4.5)

Vke 10,..., 2' - 11, 	Vt E {0,••,2q-_ I

	

j(t+1,k+2'J) =
	 (4.6)

VkE 10,...,2— 11, 	Vt G
{0,•,2q_ I

Appendix C.1.1 shows that the following expression satisfies these require-

ments

	

5(1, k, i) = 	+ t• 	 (4.7)

Values of k are given by [j/2] and i. is given by 5 mod 2. These are

obvious from the restrictions on the domains of t and 5. This expression has

the properties that 5(q, k, 1) = 1 and that 5(0, k, t) = t, that is the indices start

ordered at the beginning of the transform and are bit-reversed at the end.

This mapping strategy leads to the following communications pattern for

Equations 1.49 and 1.50 respectively.

	

{,5 +
	'-4 5 	 (4.8)

	

i,i +
	

} 	 (4.9)

Communications will be required if the difference between 5 and j + 2q

is greater than the number of points on the processor. As there are

Chapter 4. Spherical Harmonic Methods 	 114

points on the processor this occurs when q - (+ 1) > p. The natural, and

well-known topology (Hockney and Jesshope, 1988) that has this required

communications pattern is shown in Figure 4-5.

When no communications are required between processors, then an in-

ternal FFT can be done. This internal FFT is a purely serial operation, in-

volving no communications between processors, and thus all the well known

optimisations for serial computers can be used, such as those described by

Temperton (1983). It is possible to decompose the internal transform over

processors in a pipeline fashion with, for example, the first processor com-

puting the first two stages of the FFT, and the second the remainder.

The FFT as described here requires some extra operations; the compu-

tation of w1
F 2 	W 2_1+1> is done twice in the distributed FFT, once on each

processor involved in computing the FFT, using whichever one of Equa-

tions 1.49 and 1.50 is relevant. This makes the efficiency of the FFT ap-

proximately 50% less than it would be in a serial implementation. Fox et

al. (1988) proposed a more efficient algorithm, suitable for a computer with

a hypercube architecture. In their algorithm an exchange of data between

processors would be done such that each processor would do several stages

of the FFT, none of which would require communications, and then another

data exchange would be done and so on. In contrast to this, the algorithm

presented here has each processor receive some input data, do one stage of

the FFT and then output the results to the next processors in the pipeline.

All computations concerning the time-step and startup times for the

pipeline in the remainder of this section and of this chapter are expressed

per real word relative to the time to do one floating point operation. For

the pipeline as described, with communications between processors, the

timestep is max(r, 4) and 4i +4 for the concurrent and non-concurrent case

respectively. The startup times are r + 4 and 4 + 2r for the two cases, where

Chapter 4. Spherical Harmonic Methods
	

115

Figure 4-5: The processor topology for the fast Fourier transform

This diagram shows the processor topology required to compute the fast

Fourier transform. The width of the pipeline is 4. The line of 4 processors

at the base of the pipeline feed data into the remainder of the pipeline but

do no computations for the FFT. This example of the topology will when the

pipe is full, process 3 FFTs concurrently.

T is the number of floating point operations that can be done in the time to

transfer one real word to a neighbouring processor.

4.3.1 Balancing the Fourier Pipeline

At this point the balancing of the Fourier pipeline will be considered. All the

distributed parts of the transform take the same time. The time per point

Chapter 4. Spherical Harmonic Methods 	 116

is fixed and cannot be varied. That is max(r, 4) for the concurrent case and

4r +4 for the non-concurrent case. The only free parameter available is the

number of processors that will compute the internal FFT. This will require

pc operations per site; c is the number of operations per site for one stage

and 2' is the number of points on a processor. The length', I, of the internal

FFT is, in order that the pipeline be balanced,

t<max(r,4)/c and l<(4r+4)/c 	 (4.10)

with the left hand expression referring to the concurrent case while the

right hand one is the non-concurrent case. This expression can be obtained

by considering the timestep for the two components of the FFT pipeline: the

part where communications are required has a value of T given by max(r, 4)

or i + 4 depending on the ability to carry out concurrent communications

and calculations: the "internal" FFT will have a time which depends on the

number of stages, p, the number of processors, K, which these stages are

distributed over, and the computational complexity, c, of each stage.

The number of extra processors that should be used is determined by

the need to keep the pipeline balanced. If there are t stages on each pro-

cessor then tc < max(r,4) which requires that 1 < max(r,4)/c. There are

p stages and for the number of processors, K, to be large enough to make

Equation 4.10 true they should satisfy K > pc/(max(r, 4)). A similar analysis

for the non-concurrent case gives that K > pc/(4r + 4).

The startup time for the internal FFT is cl+ Kr for the both cases, as there

is only one input and output from each stage. This result comes from the

computations of the FFT and the communications between the K processors

that make up the internal transformation.

'Length here means the number of stages in the pipeline on one processor.

Chapter 4. Spherical Harmonic Methods 	 117

4.3.2 Inverse FFT

The previous discussion has only considered one part of the transforma-

tion, the inverse FFT. The forward transformation is also required. The

traditional, serial method, is to explicitly carry out the bit-reversal after

the transformation, do computations with the data thus ordered, then do

the other FFT using the same algorithm as the first. Finally the data is

again moved to bit-reversed locations to return it to an ordered state. The

following quote from Press et al. (1986), with some text emboldened, by the

present author, to show emphasis, illustrates this.

"You can use decimation-in-frequency algorithms (without its bit

reversing) to get into the 'scrambled' Fourier domain, do your op-

erations there, and then use an inverse algorithm (without its bit

reversing) to get back to the time domain. While elegant in princi-

ple, the procedure does not in practice save much computation

time, since the bit reversals represent only a small fraction of an

FFT's operations count ..."

In the distributed FFT, on the fixed valency architecture, bit-reversal will

require many communications. Sites that need to be moved onto the same

processor will need to come from processors that are widely separated. For

example consider the site indices 0 and 1. Under the bit-reversal operation of

length A they will be mapped to 0 and 21 respectively. Thus the time taken

by the algorithm is significantly increased. For the model being considered,

it is not necessary to carry out the bit-reversal operation as there are no

communications between adjacent points in grid-point space.

The forward part of the transform (or inverse if the indices start ordered

in grid-point space) is very similar to the inverse transform. The main

difference is that the transform starts bit-reversed and in this case an index

Chapter 4. Spherical Harmonic Methods 	 118

j' which starts with t bit-reversed is used. In this case k and 1.. are given by

the following expressions,

k = (j mod 2') 	 (4.11)

t)

The communications pattern that this leads to is,

{3'(t, k, t), j(1., k, i) + 211 -* 	+ 1, k, 0 	 (4.12)

{j'(l, k,), i'(t, k,) + 2'} i-f j(+ 1, k,) + 2' 	(4.13)

with t = 0 being grid-point space.

4.3.3 Real Fourier Transforms

Values in grid-point space are real not complex, and time can be saved in

computing the transform by utilising this. This subsection explores these

issues and provides algorithms for this class of Fourier transforms. When

the result of the transform is real, then the complex variables satisfy the

following relationship, where there are M complex values in the transform.

Fm = or 	Fm = F* 	 (4.14)

Subsection 1.4.3 explained how the real transform could be done effi-

ciently by packing two transforms into one transform. There are two distinct

problems, which need slightly different algorithms. The first one, is the case

where the complex values start in a normal ordering of their indices and

the real values have bit-reversed indices. This is the problem that needs

solving for the fast Fourier transform that has been described previously.

The other problem is the case where the real values have a normal order-

ing of their indices and the complex values have their indices bit-reversed.

Chapter 4. Spherical Harmonic Methods 	 119

There are many models that require that the data is in a normal ordering

in grid-point space. Any semi-Lagrangian method will require this. Finite

difference models, where Fourier damping is used to control polar instabil-

ities, are also in this category. First the case of bit-reversed index-ordering

of the sites in grid-point space will be considered, that is the sites are nor-

mally ordered in Fourier space; this is what is required for the spectral

transformation discussed previously.

In spectral space only half of the transform is stored and so after the

Legendre transform, the FM_rn need to be generated from the Fm. The com-

munication required to do this involves just the index in and can be done in

place with the site indices M - in being stored on the same processor as M.

If this is done the sites M - in and in will now have the same index.

After the generation of the FM_rn from the Fm the array will be folded such

that in. and M - in have the same site label. This mapping can be formally

stated as,

M i- M—in 	inE{O,...,M/2-1,M/2+1,...,M-1}

M/2 '- 0. 	 (4.15)

For the first stage of the FFT, the communications structure required, in

terms of the unfolded mapping is,

{im,in+M/2} i-* in

{nt,in+M/2} i-p tn+M/2 Vine {0,...,M/2-1}. 	(4.16)

In terms of the folded mapping there are 2 cases that need consideration;

in=0

ine{I,M/2-1}.

Chapter 4. Spherical Harmonic Methods 	 120

For the first case the communications pattern required is {O, O} H- 0 for both

communications. This is a mapping that requires no communications. For

the second region in + M/2 in the folded mapping is M/2 - in. Using this

gives for communications pattern in Equation 4.16

{in,M/2—in} i-f in

{nt,M/2—in} i-* M/2—in 	 (4.17)

Introduce the following definitions, where in E {0,... , L - 11,

DEFINITION 4.1

	

reverse(in, L) 	in i-f (L - (in + 1) mod L)

	

shiftright(in,L) 	ini—.(in+1) mod L

	

shiftleft(in,L) 	in—*(in-1) mod L

For {in, M/2 - in} in a mapping from M/2 - in to in is required for

each in in {1,... , M/2 - 11. There are two possibilities here for this map-

ping; either shiftright(reverse(M/2 - in, M/2), M/2) or reverse (shiftleft(M/2 -

in, M/2), M/2). A short proof of this statement is given in Appendix C.1.2.

After these communications have been done the sites in the FFT will be or-

dered such that sites in and in + M/2 are on the same processor. Figure 4-6

shows the communications pattern required for this transformation.

For the remainder of the Fourier transform there is no interaction be-

tween sites whose labels differ by more than M/4 so the two folded parts of

the transform can be considered to be two separate transforms by the rest of

the pipeline. The unpacking prior to the grid-point computations requires no

communications either and neither do the grid-point computations, though

in grid-point space there are interactions between different variables.

Chapter 4. Spherical Harmonic Methods
	

121

Figure 4-6: Communications pattern for computation of real fields

Dashed lines show the shifting to the right of the data, while the non-dashed

lines show the reversal required.

Considering the forward transform (from grid-point to Fourier space),

the packing of the two real fields requires no communications. The Fourier

transforms then proceed as before until communications are required be-

tween sites in and in + M/2.

The computation of the final stage of the FFT involves no communications

as sites labeled in. and in.i-M/2 are on the same processors. After doing this, it

is necessary to unscramble the packed transforms. From Equation 1.54 the

unscrambled values can be retrieved, the communications pattern required

is,

IM, M-m.}E-1n. 	 (4.18)

The generation of values for M - in is not required due to the symmetry prop-

erty of the completed transformation. The problem then is to carry out this

mapping using the folded mapping, but this was already derived for the in-

verse transform. There are two possibilities, shiftright(reverse(in, M/2), M/2)

or reverse(shiftleft(in, M/2), M/2).

Consider now the situation where data starts ordered in grid-point space.

Chapter 4. Spherical Harmonic Methods 	 122

It is then necessary to compute the complex values from the packed real val-

ues without doing any bit-reversal. Although not necessary for the Reading

Model, the remainder of this subsection will be devoted to this topic because

of its importance in other models.

The communications structure required, after bit-reversal is given by;

{n,N - rt} '-f ii.. 	 (4.19)

Without doing bit-reversal this is

-
{Till,N—m

A
 }--rt 	 (4.20)

with N = 2'. The case where i-i. = 0 does not require this communications

pattern and requires no communications at all. The problem is to find an

algorithm to generate N --n
A

in terms of ii' for all remaining values of it.

The algorithm to compute N - from is to first find the most signif-

icant bit of ñ" and invert all lower bits (invert means 1 i- 0,0 i- 1). This

has a communications pattern shown in Figure 4-7. This can be proved as

follows.

Define n to be E 142t + 2' with n 	(0,1) and r E (1,A). This is a

number whose most significant bit is 'r + 1.

A 	E{1,f-1}

itT 	= 1L1.

i-i

Th.
- i4LX-(r+1)

+ L
-A-(r+i)

i=O
A-i

X-(r+1) 	•ç— = 	m 	= 2 	+
i=x-r

A-i

= 	N - TiT
= 2A - 2A-(r+1) -

i=A-r
A-i

=. 	N - it,. = 2A-(r+1) +

i=A-1

Chapter 4. Spherical Harmonic Methods
	 123

Figure 4-7: Communications pattern for computation of real fields from a

transformed complex field.
The above figure shows the communications topology required to compute

real fields from transformed packed fields. This figure can be interpreted in

two ways: (1) it shows the communications between sites labeled 0 to 7; (2)

it shows the process topology when 8 processes are used, also labeled 0 to 7,

all with the same number of sites.

i•-i

= N - np =i2t +2T

P(N - it) (the processor label) can be formed from P(rt) using the same
..,

algorithm that generated N
-A - it from it. The inter-processor communica-

tions structure required for this algorithm when using 8 processors will be

the same as Figure 4-7.

The parallel FFT algorithm and the mapping of the data to the processors

has now been described. The remainder of the section will record what the

startup time, S, and the timestep, 7, are for the FFT part of the spectral

Chapter 4. Spherical Harmonic Methods 	 124

pipeline. The startup time, per real word is

External FFT

S= 	+1+r + icN(4+r) + 	d+Kr 	(4.21)
FFT 	2 Internal FFT

Real packing

which can be rewritten as 1 +log2 N(4+r)+ct+(K+1)r. The terms identified as

"Real packing" are obtained by considering the times to compute the F m

the packing of two transforms and the communications needed respectively.

A similar analysis for the non-concurrent case gives 1 + N (4 + 2r) + d+ (K + 2)r

for the startup time. The timestep for the concurrent case is max(i, 4) and

for the non-concurrent case it is (4r + r). The calculations of the timestep and

the startup time for the Fourier pipe have all been on a per word basis. It is

important to note that the communications cost is per word, very little can

be done to alleviate this cost. One minor question that needs consideration is

the amount of data in the Fourier transform relative to the Legendre trans-
b.

form. After the Legendre transform has completed there wil1,K transforms

each with N words. After the generation of the complex conjugates, each

transform will have 2N words. When two transforms are packed into one us-

ing the symmetry properties of the real transform, then the total number of

transform required will be approximately halved3, making the total amount

of data that requires transformation the same in the Fourier transform as

is in the Legendre transform.

4.3.4 FFT Summary

This section has described a parallel algorithm for the Fast Fourier Trans-

form (FFT). The algorithm is a pipeline which processes several, indepen-

2There are two real words in one complex number.

31f there are an odd number of transforms then K/2 + 1 transforms are required.

Chapter 4. Spherical Harmonic Methods 	 125

dent Fourier transforms concurrently. Each stage of the pipeline receives

data from a previous stage, carries out part of the Fourier transform and

then outputs data to the next stage. At the far end of the pipeline the

computed transform is output.

The work, for each stage, is in addition decomposed over several proces-

sors. There are four types of process in the pipeline which does the inverse

FFT (Fourier space to grid-point space).

Real Packing Each process inputs data and computes packed complex

transforms from the real input values. These values are output to

the next stage of the Fourier pipeline.

First External Each process inputs data from two Real Packing processes

and computes the first stage of the complex FFT. This is done using the

communications pattern described in Equation 4.17. The results from

these computations are output to the next stage in the FFT pipeline,

either an external stage or an internal stage.

External Each process inputs data from two processes in the previous stage

of the pipeline and carries out one stage of the FFT using whichever

of equations 1.49 or 1.50 is appropriate. It outputs the results of these

computations to the next stage in the pipeline.

Internal Each process inputs data then carries out one or more stages

of the FFT. No communications are needed to do these computations.

The results of these computations are output to either another Internal

process or to the next stage in the spectral method pipeline.

The forward transform is similar to the inverse transform, though there

are slight differences due to the need to avoid having to carry out bit-reversal.

Chapter 4. Spherical Harmonic Methods 	 126

The first stage in the forward pipeline will use internal processes which out-

put the results of their computations to either, other internal or external

processes. The external processes behave in the same manner as described

above. The equivalent of the first external process combines two half length

transforms into one full length transform as described on page 121. The last

stage of the pipeline is to unpack the complex transforms into real transfor-

mations using the 	communications pattern described in Equation 4.18

An example of the entire inverse FFT pipeline is shown in Figure 4-8.

Having considered one component of the spectral transformation, the

next section looks at the other components; the Legendre transformation

and the Gaussian integration.

4.4 Legendre Transform

This section will detail how the Legendre transform is implemented, as well

as the Gaussian integration (which is similar to the Legendre transform). In

order to keep the pipeline balanced, both parts will require 0(N2) processors,

where N is the truncation number.

Schematically, the Legendre transformation can be described as,

upper

VG = 	PGmXm 	 (4.22)
m=1ower

G is the index for Gaussian latitude, Gm is the value of Legendre polynomial

at in. and Gaussian latitude G, while Xm is the value of the variable at

wavenumber in. For any wavenumber, in it is necessary to compute the

Legendre transformation for several different Gaussian latitudes.

Chapter 4. Spherical Harmonic Methods
	

127

Internal FFT

External FFT

Real Packing

Figure 4-8: Processor topology for entire FFT

This figure shows the three components of the FFT pipeline, the packing

stage, the external stage and the internal stage. This pipeline has a width

of four and can process 6 FFTs concurrently.

Chapter 4. Spherical Harmonic Methods
	

128

The strategy used is based on the fact that addition is associative 4. This

sum can be decomposed into several partial sums, and the total sum can

then be formed by adding the partial sums together. Section 2.5 has dealt

with this concept; the reader should refer there for a broader discussion.

As discussed in Section 2.5 the natural topology to compute associative

operators is to form a tree as is shown in Figure 4-9. A leaf processor

should compute the value of PGmXm for all values of m that lie within its

subdomain. This operation is purely local. Having done this the algorithm

proceeds by each leaf processor computing the partial sums from the values

that they have. Having formed the partial sums, these should be passed up

to the node processors "above" them in the tree. Each node processor would

receive up to v - 1 partial sums, v being the valency of the processor which

was defined in Chapter 2. These node processors would then sum these

partial sums, and pass the computed sums "up" the tree. The final sum will

appear at the trunk processor. After the leaf processor has sent out its first

partial sum, it then starts work computing the transformation for the next

Gaussian latitude and passes the results of this to the next node above it

in the tree. This pattern continues with leaf nodes computing partial sums

for each Gaussian latitude and then passing the partial sums up to the next

node in the tree.

Only the leaf processors and the lowest level of node processors are carry-

ing out operations that would be done on a serial computer. These operations

will be termed useful; the remainder of the processors are carrying out work

that would not be needed to be done on a serial computer. Using this defini-

tion of useful the efficiency of the tree will now be computed.

'For the limited precision arithmetic done on a computer this is not strictly true.

However a good algorithm should not be sensitive to the order of addition.

Chapter 4. Spherical Harmonic Methods
	

129

Trunk

Nodes

Leaves

Figure 4-9: Processor topology for Legendre transform

The tree is assumed to have dL + 1 completely filled levels, with a level

being completely filled when the number of processors in a level, depth r

is (v - W. Level 0 is the trunk processor. The number of processors doing

useful work is the sum of the number of leaf processors and the processors

in level dL - 1, that is (v - l) + (v - 1)_l. The total number of processors

is L0(v - 1)1t• The efficiency can be shown to be,

e(dL)=
(v - 1)2

v(v - 2) 	
(4.23)

- (v - 1)-(dL-

This expression drops exponentially fast with the number of levels, to

(v(v - 2))/(v - 1)2 . Assuming that the tree is always completely filled then

the total number of processors P is given by:

(v - 1)(dL+l) - 1
P=

v-2
(4.24)

The efficiency, in terms of P, after some easy algebraic manipulation is,

v(v —2) 	v
(4.25) C(P) = 	+

(v—i)2 (v —1)2P

This efficiency will be termed the utilization as it measures the fraction of

processors doing useful work. Proofs of the above are given in Appendix C.2.

Chapter 4. Spherical Harmonic Methods 	 130

Next, having constructed the pipeline for the Legendre transform, its

balance needs to be considered. Here the constraint is that the time taken

by the leaf processors should be the same as that taken by the node proces-

sors. The number of complex sites on a processor to be multiplied by the

polynomial and added together is it. The Legendre polynomials are real and

so the total number of adds and multiplications required is Zrt - 1; for each

site one multiplication and then it - 1 adds to compute the sum. Each node

processor will do v - 2 operations, an add on each input.

The effect of communications on the total time is heavily dependent on

the processor type. If the processor can carry out communications and

calculations concurrently, then the total time for each type of process is

given by,

eaf = max(2n. - 1, r) 	 (4.26)

Tnode =max(v-2,r).

For processors which cannot carry out concurrent communications then

the timesteps are,

7ieai = 2m1+i 	 (4.27)

Tnode = (v-2)+vr.

Now consider the speedup, the efficiency multiplied by the number of

processors. This is

(v-2)vP 	v
S=e.P= (1)2 + (1)2. 	 (4.28)

The derivative of the speedup with respect to P gives,

8S (v-2)v
(4.29)

= (v-1)

Smax =
2N

max(r,v - 2)+ 1
2N

Sm =
(r+ 1)(v— 1)

(4.32)

(4.33)

Chapter 4. Spherical Harmonic Methods 	 131

As this expression is positive the speedup increases with the number of

processors. This expression was derived using the assumption that the only

factor affecting the efficiency of the tree was the relative proportions of leaf

and useful node processors to the total number of processors. Other factors

will limit the efficiency; the most important of these is that decreasing the

number of sites on a leaf processor will at some point reduce the time taken

doing the work there below that taken by the node processors, at this point

no gain in wall clock time will be achieved. If there is a fixed number

of points to allocate over the N processors, each processor having it points,

then for the concurrent case the constraint is

2n. - 1 > max(r,v - 2) 	 (4.30)

and for the non-concurrent case it is

2rt-1>v-2+(v-1)r. 	 (4.31)

The speedup, obtained, corresponding to these values is,

When these speedups are computed, the values obtained will be fractional.

The number of processors required to achieve these speedups will be the

smallest integer greater than Sm . Table 4-2 shows the maximum speedup

that can be obtained for various different parameter values for the concur-

rent case, Table 4-3 shows the same thing for the non-concurrent case. The

values in these tables correspond, approximately, to the mean number of

meridional waves for truncations of T21, T63 and T213 ON

5Th build a tree, the valency of the processors must be at least 3.

Chapter 4. Spherical Harmonic Methods
	

132

Table 4-2: Maximum speedup

N Smax

r=8, v=4 r=4, v=4 r=4, v=8

6 1.33 2.4 1.71

16 3.56 6.4 4.58

53 11.78 21.2 15.15

Maximum speedup for various values of v (processor valency) and r (com-

munications speed) for the case where the processor can do concurrent com-

munications and computations.

Table 4-3: Maximum speedup for the non-concurrent communications

N Smax

r=8, v=4 r=4, v=4 r=4, v=8

5 0.44 0.3 0.34

16 1.19 2.13 0.91

53 3.93 7.07 3.03

Maximum speedup for various values of v (processor valency) and r (commu-

nications speed) where the processor is not capable of concurrent communi-

cations and computations.

Chapter 4. Spherical Harmonic Methods
	

133

Both tables show that the maximum speedup, even for large models is,

at best, 0(10), not the 0(100) to 0(1000) required to use a massively parallel

computer. These limits on speedup were obtained by assuming that the

decomposition is only being done over meridional wavenumbers. If the

decomposition is also carried out over zonal wavenumbers, using more of

the available parallelism of the method larger speedups could be obtained.

To do this requires the distributed FFT described in the previous section.

This discussion has referred to the maximum speedup when the pipeline

is running at full efficiency. That is, the effect of start up time has been

ignored. These calculated speedups can, of course, only be reached asymp-

totically as the number of tasks tend to infinity. For the case where the

processor can carry out several communications and computations concur-

rently, the startup time for the tree is,

Ste 2(Tt 1)+dL(r+(v-2)) 	 (4.34)

while for the non-concurrent case it is,

Ste 2(1)+di((V_1)T+(V2)) 	 (4.35)

The sending of a message by one processor is done concurrently with the

receiving of that message, thus the (v - 1)r term rather than vi. Section 4.2

discussed this in some detail.

The first term in both expressions is the number of operations done by

the leaf processors, while the second is sum of communications time and

the operations done by the nodes as the data pass up the tree. From Equa-

tion 4.24 it can be seen that dL is approximately 1og_1 P for large enough

P and thus the startup time increases logarithmically with the number of

processors.

Finally in this section the Gaussian integration is considered. This is

schematically written as;

Chapter 4. Spherical Harmonic Methods
	

134

Gmax

Vin = L 	 (4.36)
G=O

It is clear from this expression that the computation of any Vm is in-

dependent for different values of rn. Therefore, the algorithm proceeds

by decomposing the sites labeled in. over the processors and computing

Vm
=TGm

G=0ax PGmXG for all the values of iii. on that processor. As there are

no constraints on how this distribution is carried out, it would be sensible

to use the same distribution of wavenumbers as was used to compute the

Legendre transformation. The problem then is how to efficiently replicate

the XG over the processors. The best way is to build another processor tree

just like in Figure 4-9 although the description of processes on the various

processors of the tree will be different from the Legendre tree.

The XG enter at the trunk of the tree and a copy of each is sent to each

processor below the trunk of the tree. Each node has this behaviour. Each of

the leaf processors then increments its contribution to V for all the values

of m which lie within its domain using the value of XG.

Most of the earlier observations on processor efficiency and utilization are

still true. Utilization is used to mean the fraction of the processors that are

being used and doing useful work. The only difference is that the number

of operations that the leaf processors will do has increased from 2n. - 1 to

2m. Therefore a similar pair of equations to 4.30 and 4.31 t's obtained for

the constraints on n..

2m>r 2m>v-2+(v-1)r 	 (4.37)

The left hand result applies to the concurrent case while the right hand

applies to the non-concurrent case.

This section has presented algorithms for the Legendre transform and

Gaussian integration parts of the spectral transform. Both algorithms use

Chapter 4. Spherical Harmonic Methods 	 135

a tree topology. The Legendre transformation of a single model variable at

a single level and for values on one meridional wavenumber is independent

of any other Legendre transformation. The algorithm proceeds, for each

transform, by having each leaf process multiply the values in spectral space

by the appropriate values of the Legendre polynomials or derivatives thereof.

Then the sum of these products is formed. Once these products have been

computed for all the independent transforms on a process the values are

output to the node processors in the tree. The leaf processes then repeat

this work for further Gaussian latitudes.

The nodes then compute, for each transform, the sum of their input data

and output the results of this sum to the node above them. At the top of

the tree the trunk process outputs the computed Legendre transform to the

next stage in the spectral transform.

The Gaussian integration part of the spectral transform also uses a tree

process topo1ogy. The computations carried out by the node and leaf pro-

cesses are different from the Legendre transformation. Consider each in-

dependent variable arriving at the trunk of the tree. The trunk process

replicates this value to all the node processors below it in the tree. They

in turn replicate this value to the processes below them in the tree. Even-

tually all the leaf processes will receive this value. Each leaf process will

multiply this variable by the the value of appropriately weighted Legendre

polynomial and add this contribution to the total Gaussian integration.

4.5 The Full Spectral Transform

This section will show how the remaining parts of the method are done. It

will also explain how all the functional units are joined together and then

derive some expressions for the speedup of the algorithm (although some

Chapter 4. Spherical Harmonic Methods 	 136

simplifying assumptions will be made). Some details are implementation

dependent and will be discussed in the following section.

The two remaining parts of the method, which are both model depen-

dent, are the non-linear/grid-point computations6 and the time update. This

second part will be considered at the end of this section after the efficiency

of the pipeline has been computed.

4.5.1 The Pipeline

Considering first the coupling of the Legendre transform to the Fourier

transform, to compute the transformation from spectral space to grid-point

space. The processor topologies required were described in sections 4.3

and 4.4. The Legendre transform utilizes a decomposition over zonal wavenum-

bers, 1, and requires no communications between meridional wavenumbers.

Therefore several Legendre transforms could be carried out in parallel, by

constructing several Legendre trees. Each tree would compute Legendre

transforms for the values of m mapped to that tree. Of course all leaf pro-

cessors on a given tree should have the same value of iii mapped to them.

The outputs from the trees need to have a Fourier transform performed on

them in order to compute the spectral transformation. However the Fourier

transformation requires communications between sites with different values

of M.

The pipeline is constructed by taking the FFT topology or butterfly topol-

ogy described in Section 4.3, whose width will be determined by the normal

demands for the number of grid points in a longitudinal circle (see Subsec-

61n a more complicated and realistic model these would include the parameter-

ization schemes.

Chapter 4. Spherical Harmonic Methods 	 137

tion 1.4.1 for details) divided by the number of points per processor. At the

base of the butterfly network each processor has attached a Legendre tree.

It is not required that all the trees have the same number of processors.

Connected to the top of the butterfly will be a number of processors equal

to the width of the butterfly. These processors will compute the non-linear

terms in grid-point space.

The computation of the non-linear terms may cause considerable imbal-

ance in the pipeline and thus a large loss of performance. The computation

per site for the non-linear unit is given by 9. The exact details of 9 are de-

pendent on the exact specification of the model and probably the processor

hardware. For the Reading model, the imbalance over the other parts of

the model is about two. In order to avoid this imbalance for each processor

at the top of the butterfly, another tree should be built, its depth given by

dG. The number of leaf processors, (v - W', should be equal or less than

g/T. For future reference this is denoted by '. There should be at least

one point for each one of the leaf processors, otherwise some processors will

have no work to do. As much as is possible all processors should have the

same number of points in order to minimise load imbalance

Figure 4-10 illustrates this entire reverse spectral transformation (sp-

ectral space to grid-point space).

An alternative approach to building a "fan out" tree for the grid-point

computations would be to pipeline the computation of the non-linear terms.

However, analysis of the algebraic decomposition required here is diffi-

cult, being very model-.and very configuration-specific. Thus, balancing

the pipeline would also be extremely difficult and very specific. If the grid-

point computations were sufficiently time consuming, in relation to other

computations in the pipeline, then this approach would have to be used.

The forward transformation (grid-point to spectral) requires a fast Fourier

Gridpoint

Computations

mm

Fast
Fourier

Transform

LIT

Real
Transform

mi

Legendre

Transform

Tm

JI

M

Chapter 4. Spherical Harmonic Methods
	

138

Figure 4-10: Processor topology for the inverse spectral transformation

Chapter 4. Spherical Harmonic Methods 	 139

transformation followed by a Gaussian integration. Previous sections (4.3,

4.4) have described the required topologies for these functional units. The

network required is identical to that of Figure 4-10 except for two things;

The communications happen in the opposite direction (from top down

rather than bottom up)

No computation of the non-linear terms is required, though if a tree is

built for these terms, then another will be needed to collect the data

together.

The reader should be aware that if the underlying hardware supports ef-

ficient bi-directional communications and rapid process swapping then some

efficiency benefits will be gained if the total topology built is similar to Fig-

ure 4-10. The tree processes will, in this case, run both a Legendre process

and a Gaussian process. The butterfly processors will run both forward and

inverse FFT processes. The node processors should, of course have both

the copying and summing processes running. Doing this will balance out

the pipeline as different numbers of variables could be transformed in the

forward and inverse parts of the pipeline. The startup time will be approx-

imately halved. For models with a small truncation (T21, T42) this may be

helpful. However, only approximately half the number of processors can be

used in this case.

To complete the sub-section some calculations will be done to compute

the efficiency of the pipeline. First the vector efficiency Ve of the pipeline

will be computed. Table 4-4 summarises the startup times and output times

for the overlapping case. Table 4-5 does the same where communications

may not be done concurrently with calculations.

Chapter 4. Spherical Harmonic Methods 	 140

Table 4-4: Properties of the spectral transform components (concurrent
case)

Unit S Y
Legendre 2n— 1 + d1(r+v —2) max(r,v — 2,2n.— 1)
Gaussian 2ri.+ dL(r + v - 2) max(r,v —2, 2n)

FFT 1+(4+r)log2 N+Kr+(q —p)c max(4,r)
Non-linear
Products g/(v - 1) 	+ rd9 max(g/(v - 1), r)

This table shows the startup times and timesteps for hardware which can

carry out concurrent communications and calculations.

Table 4-5: Properties of the spectral transform components (non-concurrent
case)

Unit S

Legendre 2TL— l+dL((v— 1)r+(v-2)) max(2n— l,(v-2)+ VT) +vr
Gaussian 2m + dLftv - 1)r + (v - 2)) max(2n, (v - 2) + vr) + yr

FFT 1+1og2 N(4+2r)+cL+(k+2)r 4r+4
Non-linear
Products GIN - 1) 	+ 2rdG G/(v - J)dG + 2r

This table shows the startup times and timesteps for hardware which can

not carry out concurrent communications and calculations.

Chapter 4. Spherical Harmonic Methods 	 141

The major factor which affects scaled speedup is the vector efficiency and

this is a function of the startup time, S. For the concurrent case this is,

Legendre/Gaussian

	

S = 4n - 1 + 2d1(r + v - 2) 	 (4.38)

+2(l+(4+r)1og2 N + Kr+(q - p)c)+ (v_l)dg +rdG

Fourier Transform 	Non-linear terms
while for the non-concurrent case it is

Legendre/Gaussian

	

S = 4it— 1 +2d1((v— 1)r+v— 	 (4.39)

+2(1+(4+2r)1og2N+(K+2)r+(q_p)c)+ (V_l)dQ+2TdG

Fourier Transform 	 Non-linear terms
These values have been computed assuming that there are equal numbers

of sites to be transformed in both directions. For the Reading model approx-

imately 10% more data needs to be transformed from grid-point space to

spectral space than from spectral to grid-point space. From Equation 4.24

dL is a 1092 PL + b, P1 being the number of processors involved in computing

the Legendre transform, while a and b are constants. The contributions

from the internal part of the FFT are also constant, as is the contribution

from the non-linear computations. Both of Equations 4.38 and 4.39 can then

be rewritten as,

S=Alog2 P1 4-B. 	 (4.40)

The number of tasks is proportional to the truncation number, while from

Table 4-1 P1 is proportional to the square of the truncation. Therefore, the

number of tasks is given by CJP, C being another constant.

The vector efficiency is;

VII =

CT/Pi

Alog2P+B+CYP (4.41)

Chapter 4. Spherical Harmonic Methods
	

142

For -\,/'P--L sufficiently large the number of tasks will dominate the startup

time and Ve will tend to 1. In this limit the utilization will be 	and the

asymptotic efficiency will be 	This result is not particularly surprising.

Referring to Table 4-1, then the number of processors involved in computing

the Legendre Transform/Gaussian integration will dominate for sufficiently

large truncations and the efficiency of the entire pipeline will tend to the

efficiency of Legendre/Gaussian part.

A cautionary note should be sounded, it may well turn out that "suffi-

ciently large truncation" will be so large that the spectral method is uncom-

petitive against a grid point method, due to the computational complexity

of the Legendre/Gaussian transforms. At this point in time it is not clear

at what point the spectral method becomes computationally uncompetitive

against the grid-point method. At the European Centre for Medium Range

Weather Forecasting a T213 model is being used operationally.

4.5.2 Time-Step Increments

The final part of this section will consider the computation of the time-

step increment. These, like the grid-point computations, are highly model

dependent.

The field values for a new time-step can be computed in either the Legen-

dre processors or the Gaussian processors. The choice of which is preferred

is dependent on the size of the data in the forward or inverse transforms. If

the data-set is smaller during the inverse transform than during the forward

transform, then these computations should be done on the Gaussian proces-

sors, as then communications cost is minimised. The opposite is true if the

data-set is larger during the inverse transformation. The data is already

partitioned across the processors and so no extra data movement is required.

Some models of which Bourke (1974) is an example require communications

Chapter 4. Spherical Harmonic Methods 	 143

	

p 	 I

I 	 Ii 	 I
- - --------------------- -I

Figure 4-1h Communications within trees

Nodes are shown as grey disks, leaf processors are shown as circles. Com-

munications needed between the leaf processors are shown as dashed lines,

while the communications already discussed for the transform are shown as

solid lines.

in the latitudinal direction in order to compute the east/west component of

velocity. In this case the leaf processors of an individual tree will need to

communicate with neighbours to the north and south. From the discussion

in Section 2.5 the mapping of indices to the trees should satisfy the prop-

erty that Pm + 1 = (P + 	If this mapping is used then neighbouring

leaf processors will have neighbouring sites. The communications required

are shown in Figure 4-11. The Reading model does not require any such

connections.

Rather than computing the increment on just the Gaussian/Legendre

processors, an extra set of processors could be added in order to speed up the

time-step computations. This issue will now be explored. Define the time

taken by the increment, per discretised point in spectral space, as I. Define

I' to be the I/Y. I' is the time for the increment scaled by the timestep

for the pipeline. S' is the scaled startup time and is defined similarly. The

	

Chapter 4. Spherical Harmonic Methods
	

144

efficiency of the entire algorithm (pipeline plus time-step increment) will now

be computed. Assume that there are PL processors involved in computing the

Legendre or Gaussian transform and that an extra f3L processors are added

to compute the time-step increment (13 e [0, . . . , oo]). These processors take

no part in computing the Legendre or Gaussian transforms7. In Section 2.6

it was shown that the efficiency of an entire algorithm was given by the time

weighted efficiencies of all the units. That is,

e = 	
er 	

(4.42)

In this case there are two units. Subscript t refer to the time-step in-

crement, while p refer to the pipeline. P, is the total number of processors

in the pipeline. Estimates of the efficiency and the pipelines timestep are

shown below-,the effects of communications times have been neglected in

order to simplify the analysis.

PLO + 13)
et

= P -i- 13PL
i

t

Tt
= (1 +13)

vepp
ep

= PP +13PL
= N/Ve

1 	ItPL +NPP
e=

PP +PPL 1'/(1 + 13)+N/Ve

'There would be no gain if they did, as the pipe would then be unbalanced.

Chapter 4. Spherical Harmonic Methods 	 145

It can be shown that - < 0 and therefore the efficiency will decrease,

with increasing 13, the maximum efficiency occurring when 13 = 0. This

efficiency is,

e(0)— 	"L+ NP
(4.44) Pp I'+N/V

When N >> ', P 	Pr,, then e(0) 	Ve. The efficiency in this case is

dominated by that of the pipeline. The speedup is given by the efficiency

multiplied by the number of processors, which gives.

S= eP=e(PP+I3PL)= 	
I'PL+NP

(4.45)
+ 13) + N/V s

It can be shown that > 0 and therefore the maximum speedup will ap
occur at 13 = oc. This is not particularly realistic and will be interpreted as

S(0)= I'PL+NPP
I' + N/Ve 	

(4.46)

Define the relative speedup gain as S(13), given by;

S(13)—S(0) 	
(447)

S(0)

This relative speedup gain measures the speedup gain by using 13 PL extra

processors to compute the time-step increment relative to using no extra

processors. It is

I'+N/Ve
= I'/(l + 13) + N/Ye

- 1. 	 (4.48)

The maximum gain is LSm and, as was already shown, occurs at f3 = oc.

Chapter 4. Spherical Harmonic Methods 	 146

"V
L\S(oo) = 	= Asmax 	 (4.49)

In tel'IflS Of LSm , S(13) can be rewritten as

S(13)
= 	13Smax 	

(4.50)
ASMax 	+ 13)

Figure 4-12 shows a contour plot for a range of values of iSm and f3.

When ASm. is large and therefore when N is small, relative to I', then

quite large speedups may be obtained. This is because the computation of

the time-step increment dominates the time taken by the algorithm; signifi-

cantly reducing the time taken by the time-step will significantly reduce the

time taken by the entire algorithm. In the case when N is large and Ve 1,

then the relative gain from increasing 13 is very small, as the time taken for

the entire algorithm is dominated by the time taken by the pipeline. For the

Reading model, even at low resolutions, the time-step increments take small

amounts of time relative to the total time taken. It is therefore concluded

that for the Reading model that no great gain in speedup would be obtained

by allocating more processors to compute the time-step increments.

Before dealing with the implementation details and presenting some

results a summary of the algorithm and its properties will be given.

The algorithm is a pipeline on the work required for the transformation

from grid-point to spectral space, the processing in grid-point space and the

transformation back to spectral space. The task for the pipeline is this work

on one Gaussian latitude. The pipeline consists of three logical components,

a Fourier transform butterfly, a Legendre transformation/Gaussian integra-

tion tree and processors to carry out the grid-point computations. The tree's

efficiency is dominated by the efficiency of the nodes in the level above the

leaf nodes and the leaf nodes and can be high. The Fourier transforms form

Chapter 4. Spherical Harmonic Methods
	

147

Relative Speedu
20 	'' '"''''

15

Cn 10 87

2 	 3-

0 	10 	20 	30 	40

Figure 4-12: Plot of relative speedup vs 13 and /Sm,

Chapter 4. Spherical Harmonic Methods 	 148

the bottleneck as the work involved in carrying out a transform, relative to

the communications needed, is quite small. Furthermore the communica-

tions required for the Fourier transform are a constant factor per site, unlike

the Legendre transform where the communications is a constant term for

each longitudinal column on a processor. if communications speeds are slow

then the distributed Fourier transform may well have an unacceptably low

efficiency.

The length of the pipeline is approximately proportional to the logarithm

of the number of processors. For small truncations the number of Gaussian

latitudes and thus tasks will be small. The pipeline length will be long

compared to the number of tasks and the effect of startup time will be large.

This algorithm is unusual in that its scaled speedup is super-linear, i.e.

S(P + 1) > --S(P). There are three reasons for this:

The number of tasks grows linearly with the system size while the

startup time grows logarithmically. Therefore Ve will increase with

increasing processor number.

As the number of processors increases the ratio of efficient tree pro-

cessors and grid-point processors to inefficient Fourier processors will

increase. For small numbers of processors the ratio will be less than

one.

The relative effect of the computation of the time-step increment on

the speedup will fall as the number of processors increase.

This super-linearity is occurring because the efficiency at small processor

number is low. However, if the hardware can support efficient multi-tasking

then it is possible to improve this inefficiency. The partition into processes

has divided the computational load equally among many processes—each

Chapter 4. Spherical Harmonic Methods 	 149

process will require the same computational effort. The efficiency for small

numbers of processors could be increased by mapping several processes to

the same processor, this will reduce the startup time of the pipe. In addition

to this when a process is waiting for a communication the processor could

run another process which has some work to do. The communications will

be less efficient, although for small numbers of processors this effect will be

small.

4.6 Implementation Details

This section will detail the prototype implementation of the Reading Model

on the Transputer machine at Edinburgh, described in Chapter 1. Rather

than rewriting the model from scratch, it was decided to convert an existing

Fortran code. This was done for three reasons:

The process of converting this relatively simple model may provide

some guidance to the effort in converting a larger and more complex

model.

It was hoped that this conversion could be done quickly.

Verification of each stage was possible by comparing the partially con-

verted model against the serial model.

The communications between processes was provided by a set of Fortran

library routines supplied by Meiko, called CS-Tools, Meiko (1991). Meiko

also provided a set of routines to build a loader/configurer to allow mapping

of processes to processors. Separation of the two allowed development of

the separate processes to occur on a workstation. Some of the remarks that

follow are specific to the Meiko system and the Reading Model—however,

Chapter 4. Spherical Harmonic Methods 	 150

the author hopes that this will encourage others to convert their spectral

models and provide some aid in the process. The author estimates that

approximately nine months were taken in converting the Reading Model.

This time includes time involved in understanding the model code.

One objective of the implementation was to have the parallel version of

the model give exactly the same results as the serial version of the model.

Doing this made verification easier. For all but the Legendre transform it

was possible to do this. However, because the parallel algorithm uses a tree

to compute the sum, the results for the Legendre transform are dependent

on the number of processors used. This difference is due to rounding error

and for the Reading model, the difference between the parallel and the serial

version, after the Legendre transform was found to be approximately one

part in 107.

The general approach to convert the model was, for each one of the

component subroutines, a "wrapper" module was written which would first

carry out data initialisation, then repeatedly carry out the following tasks:

. Receive a task from the previous module in the pipeline

If necessary process the input data into a format suitable for the sub-

routine.

Call the subroutine.

Again if necessary, do some processing on the data in order to put it in

a form suitable for output.

Finally, transfer the data to the next module in the pipeline.

For the grid-point computation module, there was only one modification

required; the maximum length of the longitudinal sub-strip on the processor

Chapter 4. Spherical Harmonic Methods 	 151

was different from the serial model and needed to be computed by the loader

program. The tree for this part of the algorithm, described earlier, was not

built.

The FFT needed to be re-implemented as the parallel algorithm differed

quite extensively from the serial algorithm though the results produced were

the same.

The next modules that are considered are the Legendre and Gaussian

transforms. In both cases the serial subroutines had a triangular data-

structure. This large triangle can be completely covered by a set of smaller

triangles, all these triangles are the same size as those used by a serial

T(2 - 1) model. This restriction on the size allowed a radix 2 FFT to be

used. Some points on some sub-triangles lay outside the original trian-

gle. At these points the value of the Legendre polynomials are set to zero

so that these points make no contribution to the transform. Figure 4-13

shows this mapping for a T21 model partitioned over 9 leaf processors.

Some of the triangles are upside down and reversed, in this case some data-

manipulation is required to convert the sub-triangles into the required for

for the serial subroutines. After the subroutine has processed the data, more

data-manipulation is required; the longitudinal rows require reversing for

the upside down, reversed triangles.

Only synchronous communications were implemented, therefore concur-

rent communications and computations could not be carried out. Due to lack

of time no conversion of the computations in spectral space were carried out.

This conversion is basically a matter of data initialisation and minor re-

structuring in order to compute the upside down and reversed triangles. It

is not expected that this would affect the times taken by this part of the

computations.

Chapter 4. Spherical Harmonic Methods
	

152

x x x x x x xix x x x x x x xix x x x x x .•
xxxxxixxxxxxxxixxxxxx..
xxxJxxxxxx__xix xx.
xix x x x x x x xix x x x x x••
xxxxxxxIxxxxxx..I
xxxxxixxxxxx..I
X xxix x x x x x0 0
xlxxxxxx ..J
x x xxx. .i
x x x . .i
x..i
.1

Figure 4-13: T21 model partitioned into 9 T7 modules

This figure shows a T21 spectral model decomposed over 9 processors.

Crosses mark original points in the T21 model, the circles show the ex-

tra points introduced so that each processor can run the same code as the

serial model. Meridional wavenumbers run from left to right while zonal

wavenumbers run from top to bottom. The sub-domain assigned to a single

processor is enclosed by lines.

Chapter 4. Spherical Harmonic Methods 	 153

4.7 Results

The previous section provided details of the parallel implementation of the

Reading model. This section presents times and efficiencies measured from

this implementation on the ECS. Efficiencies are measured by taking the

times measured for the parallel implementation and dividing them by the

product of the number of processors used and the times taken by the serial

implementation of the model. The times taken by the serial model are

shown in table 4-6. Times taken by truncations of T21, T42, T63 and T84

were measured and extrapolations made to T168 and T336 truncations. All

experiments carried out using the serial and parallel implementations used

a single hemisphere and five vertical levels.

Table 4-7 shows how the number of points in spectral size, the number of

Gaussian latitudes and the size of the Fourier transform varies with these

truncations.

For the T21 and T42 truncations benchmarks using 1, 4, and 9 leaf pro-

cessors were run. The width of the FFT in these cases was 1, 2 and 4

processors with a depth of 3, 4 and 5 processors respectively. For the T63

benchmark, there was not sufficient memory available on all processors to

carry out an experiment using only 1 leaf processor. For the T63 4 leaf

processor case the FFT had a width of 4 and a length of 5. There were not

sufficient processors available to carry out an experiment using 9 leaf pro-

cessors and a FFT width of 8. The T84 truncation could only be run using

9 leaf processors due to memory limitations. From hereon a configuration

will be referred to by TnLp where n is the truncation number and p is the

number of leaf processors. For each configuration (truncation and number

of leaf processors) four individual benchmarks were carried out. In two

benchmarks each process was mapped to a single processor. In the other

Chapter 4. Spherical Harmonic Methods 	 154

two benchmarks two processes were mapped to a single processor, this be-

ing the doubled mapping described earlier in the chapter. In this doubled

mapping equivalent Legendre and Gaussian processes were mapped to the

same processor as were equivalent forward and inverse FFT processes. For

each pair of benchmarks, one mapping to the processors was carried out

such that neighbouring processes were mapped to neighbouring processors

while for the other member of the pair no great care was taken to ensure

this.

For all the benchmarks no explicit balancing of the pipeline was carried

out and neither was the internal FFT split over several processors. The

results of these benchmarks are shown in table 4-8. The efficiency ranges

from a maximum of 0.330 to a minimum of 0.161 for the optimal mapping.

Where processes were not mapped such that neighbouring processes were

on neighbouring processors the efficiency of the algorithm was 10-30% lower

than when the mapping was optimal. The efficiency loss when using this

poor mapping was at a maximum when the efficiency of the well mapped

benchmark was at its greatest and many processors were being used.

There are three factors affecting the efficiency for each configuration;

Load imbalance between the various components of the pipeline. In

particular the size of the internal FFT will increase with increasing

truncation. In addition the amount of work required to compute the

Legendre transform and the Gaussian integral will depend on the num-

ber of sites on a processor.

In the 4 and 9 leaf processor cases the total number of sites in spectral

space is greater than that required for the serial model. Recall that

this was done to reuse the existing code. Table 4-9 shows the ratio of

spectral sites in the parallel model to that in the serial model.

Chapter 4. Spherical Harmonic Methods
	

155

Table 4-6: Times for the serial spectral model

[f
Legendre

Transform

Inverse

FFT

Grid-point

Comps

Forward

FFT

Gaussian

Integration

Spectral

Comps

Total

Time

T21 2.72 3.28 1.19 3.85 2.58 0.90 14.65

T42 20.63 15.42 4.82 18.03 19.8 3.44 81.76

T63 69.1 50.26 15.02_ - 58.64 63.8 7.65 264.9

T84 160.6 67.0 20.2 78.1 147.4 12.7 486.9

T168 1280. 302. 81. 351. 1179. 51. 3244.

T336 10240. 1340.0 323. 1562. 9433. 203. 23101.

Times shown are for the total times and the times for the individual com-

ponents, in the program. Times are shown in seconds. Times for T168 and

T336 are extrapolated from T84 for later use.

Table 4-7: Sizes for varying spectral truncations

Model Size Gaussian Latitudes Points in Spectral size FFT size

T21 16 121 64

T42 32 462 128

T63 48 1024 256

T84 64 1806 256

Chapter 4. Spherical Harmonic Methods
	

156

Table 4-8: Times for the Parallel snectral model

1 leaf Processor 4 leaf Processors 9 leaf Processors

Truncation Mapping Time P e Time P e Time P e

T21 F2 6.67 7 0.314 3.63 18 0.224 1.06 42 0.330

T21 Fl 4.95 12 0.247 2.60 33 0.171 0.90 79 0.207

T21 S2 6.7 7 0.314 3.9 18 0.21 1.36 42 0.257

T21 Si 5.05 12 0.242 2.76 33 0.161 1.31 79 0.142

T42 F2 44.2 7 0.264 11 24.66 18 0.184 6.67 42 0.292

T42 Fl 27.26 12 0.250 15.13 33 0.164 4.21 79 0.246

T42 S2 44.1 7 0.265 24.96 18 0.182 7.46 42 0.261

T42 Sl 27.14 1 12 0.251 15.63 33 0.159 5.19 79 0.199

T63 F2 35.87 34 0.217

T63 Fl 20.92 63 0.201

T63 S2 36.32 34 0.215

T63 Si 21.88 63 0.192

T84 F2 47.07 42 0.246

T84 Fl 26.83 79 0.230

T84 S2 50.09 42 0.231

T84 Sl 30.4 79 0.203
In the above table, timing results for a given truncation, mapping and num-

ber of leaf processors are shown. Times are accurate to 1 part in the last

digit and are in seconds. P is the total number of processors used and e is

the efficiency relative to the serial model. The mapping is coded as Fm if the

processes were mapped to the processors such that neighbouring processes

were on neighbouring processors or Sm where no great care was taken over

the mapping. The number of processes mapped to a single processor is de-

noted by the number following the mapping code; 2 if the doubled mapping

was used, 1 if not.

Chapter 4. Spherical Harmonic Methods 	 157

Table 4-9: Extra computations required by the parallel model

FFT Width (processors)

Truncation 2 4 8 16 32

T21 2.12 1.19 1.19 1.00 -
T42 2.22 1.25 1.25 1.05 1.0

T84 2.27 1.28 1.28 1.07 1.07

The above table shows the ratio of extra computations in spectral space

required by the parallel implementation, relative to the serial implemen-

tation for different FFT widths, in processors, and with different spectral

truncations.

3. The vector efficiency depends on the number of Gaussian latitudes

which increases with increasing truncation number.

In order to investigate the effect of pipeline startup time and timestep a

further set of benchmarks was run. In this case only the optimally placed

process case was used and the number of Gaussian latitudes that were used

was allowed to vary from 2 to 64. The effect of changing the the number of

Gaussian latitudes is to change the number of tasks that the pipeline has

to process. If the implementation is behaving as expected then the times

taken for each experiment should lie on a straight line. The timestep for

the pipeline is the gradient of this line, while the startup time is the point

at which the line crosses the time axis. The startup time also includes a

contribution from the time it takes to compute the timestep increments. The

experiment was carried out for five cases; T2 1L1, T2 1L9, T42L4, T42L9 and

T84L9 and the results are shown in Table 4-10. Figure 4-14 shows plots of

these results with the straight line fit used to estimate the startup time and

timestep for the pipeline.

Chapter 4. Spherical Harmonic Methods 	 1MJ

Table 4-10: Effects of increasing task numbers

Model N S I

2 4 8 16 32 64

T21 F2 Li 2.29 2.84 3.93 6.67 12.26 23.26 1.50 0.32

T21 Fl Li 1 	2.25 1 	2.64 3.41 4.95 8.03 14.19 1.87 - 0.19

T42 F2 Li 7.35 9.15 14.12 24.09 44.21 84.51 4.295 1.251

T42 Fl Li 7.48 8.78 11.41 16.65 27.26 28.41 6.128 0.660

T42 F2 L4 4.17 5.07 7.88 13.48 24.28 46.96 2.411 0.694

T42 Fl TA 4.20 4.91 6.38 9.31 15.15 26.6 3.497 0.362

T21 F2 L9 0.414 0.489 0.661 1.055 1.98 - 0.268 0.053

T21 Fl L9 0.429 0.495 0.629 0.898 1.434 - 0.361 0.033

T42 F2 L9 1.257 1.473 2.10 3.64 6.66 12.78 0.71 0.19

T42 Fl L9 1.306 1.50 1.89 2.67 4.21 7.38 1.10 0.098

T84 F2 L9 4.261 5.115 7.9 13.5 24.71 47.06 2.484 0.696

T84 Fl L9 1 	4.40 	15.116 6.582 9.493 11.315 26.827 3.689 0.362

The table above shows for different configurations the times taken, in sec-

onds, as the number of Gaussian latitudes (N) is varied. Also shown is the

startup time (8) and the timestep (T) estimated from these results.

Chapter 4. Spherical Harmonic Methods
	

159

121 Li

15
10

0 20 40 : 80
Gaussian Latitudes

T42 L4

T42 L1

I< 0 ° o 60 80
Gaussian Latitudes

T21 L9

4>.
0 	20 	40 	60 	80

Gaussian Latitudes

T42 L9
15

lo -

:4>
0 	20 	40 	60 	80

Gaussian Latitudes

0 	20 	40 	60 	80
Gaussian Latitudes

T84 L9

20

:4>
0 	20 	40 	60 	80

Gaussian Latitudes

Figure 4-14: Times taken with increasing Gaussian latitudes

The times taken by the model for the doubled case are shown as triangles

while for non-doubled case they are shown as diamonds. The straight line

fit used to estimate the startup time and timestep for the pipelines are

shown as a solid line and a dotted line for the doubled and non-doubled

cases respectively.

Chapter 4. Spherical Harmonic Methods
	

160

The straight line fit of these results is highly accurate, showing that

the algorithm is indeed behaving like a pipeline. There are two factors

contributing to the startup time: (1) the time taken by the computations in

spectral space; (2) the time taken by the first task to progress though all the

processors. The first factor is the reason why the startup time does not halve

when the number of processors used is halved in the doubling experiments.

For all but the T2 1L9 case, use of the double mapping results in the timestep

approximately doubling (In fact it should be approximately 10% less than

twice the timestep of the undoubled mapping due to the difference in the

number of tasks in the forward and inverse transforms.). In the T21L9

case the timestep is not doubled when using the double mapping. Here

the bottleneck is the time taken to carry out the grid-point computations.

Though the time taken to carry out the computations in other parts of the

pipeline is reduced, the performance of the pipeline is determined by the

slowest component - in this case the grid-point computations. Increasing

the numbers of processors doing the grid-point computations by building a

tree as described earlier in this chapter would remove this bottleneck and

reduce the time taken by the computer.

It would be expected that the timestep for the T21L1, T42L4 and T84L9

cases should all be the same. The work per processor per task is constant.

The pipeline timesteps for the T42114 and the T84L9 cases agree to within

0.2%. However the T21L1 case has a different, and smaller timestep. Here

the bottleneck is the Legendre transform. In the T21L1 case the one leaf

processor does a T21 Legendre transform; in the other two cases a T31

transform is carried out by each leaf processor.

These results can then be used to estimate the time taken by the algo-

rithm on larger numbeiof processors and on larger truncations. Considering

the scaled problem where the number of points on a processor is the same as

that in the T21 truncation on 9 processors, then the timestep for the pipeline

Chapter 4. Spherical Harmonic Methods 	 161

will be the same but the startup time will increase. It is assumed that each

doubling of the FFT width will cause the startup time, S, to increase by

twice the timestep for the doubled case and four times the timestep for the

non-doubled case. In fact this is somewhat of an over-estimate, and is an

upper limit on the startup time. This assumes that doubling the width of the

FFT will require an extra row of processors for the FFT and also increase the

depth of the Legendre tree by one. Figure 4-15 shows a plot of the estimated

efficiency, total number of processors required and the estimated speedup.

If the extrapolation is correct then speedups of over 2000 are possible for the

T336 case. The number of node processors in the tree is estimated at one

half the number of leaf processors, by using Equation 4.25.

4.8 Conclusion and Possible Extensions

The algorithm presented in this chapter is a pipeline with several func-

tional components. The tasks for the pipeline is the transformation from

spectral space to grid-point space, computations in grid-point space, and the

transformation from grid-point space back to spectral space. The length of

the pipeline grows logarithmically with the number of processors in it i.e.

doubling the total number of processors will cause the pipeline length to

grow by a fixed amount. The efficiency of the algorithm can be increased

by mapping similar forward and inverse Fourier transform processes and

mapping Legendre transformation and Gaussian integration processes to

processors such that there are two processes per processor for this part of

the algorithm. The algorithm also has the useful property that no replica-

tion of the Legendre polynomials is required over the processors. Therefore

the memory requirement of the algorithm per processor is constant. Based

Chapter 4. Spherical Harmonic Methods
	

162

0.50

	

0.40 	

6000

/
0.20

2000

0.10

	

0.00 	I 	I 	I 	I 	 0
121 142 184 T188 1.336

Truncation

Z000

2000

1500 Ii
1000

500

0
121 142 164 T168 13.36 	 T21 T42 184 1168 T336

Truncation 	 Truncation

Figure 4-15: Estimate of efficiency, processors and speedup against trun-

cation number

The left hand plot shows the estimated efficiency, the middle plot shows the

estimated number of processors required and the right plot the estimated

speedup. The doubled case is shown with triangles while the non-doubled

case is shown as diamonds. The serial times for T168 and T336 were ex-

trapolated from the times measured for T84.

Chapter 4. Spherical Harmonic Methods 	 163

on the authors experience with the Reading model, conversion of an existing

serial spectral model seems straightforward.

The previous section presented results of a prototype implementation of

this algorithm on the Edinburgh Concurrent Supercomputer (ECS). Effi-

ciencies varying from 0.16 to 0.33 were measured for differing numbers of

processors and truncations. It was concluded that the greatest contribution

to this variability was from load imbalance between the various components

of the pipeline. Those results also showed the importance of mapping the

process topology onto the processor topology optimally with the loss in effi-

ciency being up to 30% of the 	best efficiency due to a poor mapping.

The prototype implementation used non-concurrent communications and

computations (synchronous communications), an implementation using asyn-

chronous communications would be expected to have greater efficiencies.

The performance of the algorithm was estimated for large truncations (T168

and T336) and very large numbers of processors. The efficiencies for syn-

chronous communications are expected to reach 0.40 to 0.45 and speedups

of approximately 600 for the T168 and over 2000 for the T336 cases were

estimated.

The transform part of the algorithm, that is the Legendre Transform,

Fourier transforms and Gaussian integrations require communications hor-

izontally but require no vertical communications. Therefore several spectral

transformations could be performed independently by different pipelines.

The grid-point computations require vertical communications. In the Read-

ing model, which uses an implicit scheme, the fccro1- LC4CC computations re-

quire a matrix multiplication which can easily be decomposed over several

processors. However, the Legendre polynomials would then be replicated

over several processors. There is more parallelism available in the spect-

ral transformation; the transform and grid-point computations carried out

on each Gaussian latitude is independent. Therefore if there are sufficient

Chapter 4. Spherical Harmonic Methods 	 164

Gaussian latitudes that the vector efficiency of the pipeline is high enough

more pipelines could be built doing several transformations concurrently.

These would all be gathered together in the Gaussian integration stage.

Some research however would be required to put these into practice.

However there are several points that require consideration before im-

plementation should be carried out on several hundreds or thousands of

processors.

Perhaps the most important is that an efficient mapping of the algo-

rithm's topology, to the processor 	topology must be possible or al-

ternatively that the computer has sufficient communications resources that

the exact details of process placement are unimportant. The algorithm is a

very fine grain algorithm and many communications are required, therefore

the communications speed of the machine must be high. Furthermore the

actual size of the tasks on each processor needs tuning to achieve optimal

performance. As described the algorithm is purely for the dynamics part

of a spectral method. For operational use it would need to be extended to

include parameterization schemes.

The problem with the parameterization schemes is that they threaten to

form the bottleneck in the pipeline unless preventative measures are taken.

Speculating now and using some of the ideas discused in chapter 3 on task

movement: the computation of all the parameterization schemes could be

distributed over the processors of the pipeline, in addition to the spectral

transformation. A task-mover would then move tasks in order to use as

many processor as possible to compute these schemes in order that this part

of the algorithm is not a bottleneck.

If all these problems could be solved, and if a single processor delivering

a sustained speed of 100 Mfiops, for the serial model, and with a sustained

communications speed of 100 Mbytes/sec could be made then the author

Chapter 4. Spherical Harmonic Methods 	 165

believes that a T168140 version of the Reading model could deliver a com-

putations speed of 400 Giga-flops using 10000 processors. There are 40

levels which are assumed to be divided up over 10 transformation pipelines,

each with 1000 processors. The doubled mapping is assumed to be used in

each pipeline. If the imdoubled mapping was used with the same number of

processors, then 5 transformation pipelines would be used, each with 2000

processors. In this case a computations speed of only 300 Giga-flops could

be achieved. If only 1000 processors were available then a single transfor-

mation pipeline should be built which could provide a computations rate of

40&iga-flops when using the doubled mapping.

Having examined the spectral method the next chapter looks at grid-

point methods.

Chapter 5

Grid-Point Methods

5.1 Introduction

This chapter examines explicit grid-point models. The problems involved in

implementing an explicit grid point model on a massively parallel computer,

such as the ECS are examined. In addition results of the implementation

of a three-dimensional primitive equation are presented. This chapter only
as

considers the dynamics part of a model, parameterization schemes were

discussed in Chapter 3.

In order to highlight the problems in using geometrical decomposition,

a limited area model is considered first. The idea of interaction range is

introduced. This enables quantitative analysis to be made of the communi-

cation requirements of different schemes. Fox et al. (1988) consider the size

of stencil for various difference schemes but they do not use it to compute

efficiencies. Using this quantitative approach various minimum constraints

on the domain size per processor can be iaveloped and predictions of the

efficiency can be made.

166

Chapter 5. Grid-Point Methods

Next, the problems involved in implementing a global grid point model

will be discussed. This involves the fast Fourier transform (FFT), and also

involves a load-balancing problem.

In order that realistic timings for an atmospheric model can be obtained

a three-dimensional model was implemented on the ECS using the language

Occam. This model uses an Arakawa 'B' grid on a regular latitude-longitude

grid and it uses the horizontal differencing scheme described in Bell and

Dickinson (1987). The vertical coordinates use the hybrid scheme described

by Simmons and Burridge (1981) as well as the changes needed to conserve

energy and angular-momentum. Appendix B gives a description of the dif-

ference equations used.

Most of the comments made will hold for all finite difference schemes.

Many meteorological grid-point schemes use staggered grids and as has been

pointed out by Cats et al. (1990) this reduces the amount of data that need

to be communicated by a factor of two. However, for an architecture which

can carry out several communications concurrently, this should not reduce

the communications time significantly.

Chapter 5. Grid-Point Methods 	 168

5.2 Limited Area Models

ç reCk
This section considers the problems involved in implementing a limited,jgrid-

point model on a MEAD architecture. Only a grid topology is required and

the richer topology provided by, for example, a hypercube topology is not

necessary. An analysis for a two dimensional decomposition is first carried

out, followed by the results of the implementation using this decomposition.

After this, some theoretical analysis of a vertical decomposition is presented.

5.2.1 Geometrical Decomposition

In geometrical decomposition each processor has the same code but different

data. For efficient finite difference schemes, data should be divided up such

that adjacent processors, have neighbouring data points as in Figure 5-1.

It is useful to introduce the concept of temporal decomposition, in which

first some variables are communicated, then all the calculations that are pos-

sible upon these variables are carried out. Algorithms naturally decompose

into blocks where each block consists of communications of some variables

followed by some calculations using these variables. Tn general, the blocks

are ordered in time. For example, the finite difference form of the surface

pressure evolution equation is, with NLEV vertical levels,

it+1 n 	
NLEV -A8

P*
	= 	- ucos 	A(1.1.,l PTh) + (cos ev.p 0) 	(5.1)

in=1

where

2

and

6X
 f(t,= f(+1'D - f(i. -

Chapter 5. Grid-Point Methods
	

169

Figure 5-1: Processors with grid over-laid.

Processors are shown as thick boxes and grid points by dots. Each of the 16

processors has 8 x 8 grid points.

See Appendix B for a description of the variables in the above equa-

tions. Th compute the value of 	first edge values of Ap will have to

be exchanged with neighbouring processors, then the value of t(L + , j) =

zp(t+ 1,j)+ zp(i.,j), for all values of t(i-i- ,j) on the processor, can be com-

puted. Having computed this then these values oft can in turn be exchanged

allowing the computation of
-

p"O . This whole computation therefore consists

of two blocks.

Another useful concept is interaction range. This characterises the neigh-

bourhood size of the algorithm being a measure of how far data must be

moved in grid-point space. Consider a set of variables defined on a grid

of points. For example in the model being considered, some of these vari-

ables would be p, u, and v (where the usual meaning is assumed). Define

a vector X°(t,j) at each grid point where X0 = p(i,j), X = u(t + ,j +

X =v(t+ ,j +), and so on for any other variables. Note that this is for a

Chapter 5. Grid-Point Methods 	 170

particular way of storing the variables, which use a staggered grid, on the

processor. It would be possible to define the vector X in many ways. Then,

given some new vector X1(i,j) = f({X°(it,m)})which is a function of a subset

of the old values, labeled by in, it e a subset of all the grid points, define 'R

(the interaction range) as the smallest integer such that

Vnin. lit-il < I(t,j), in— jJ < I(i,j). 	 (5.2)

Note that the subset of all grid points {(m, in)} for any particular (i, 5) define

the neighbourhood of the point (i, 5) for the algorithm and 'R can take on

a different values at different grid points and at different times. For an

algorithm with a regular communications structure, which Fox et al. would

call "crystalline", the interaction range is best defined for a block of the algo-

rithm and so different parts of the algorithm may have different interaction

ranges.

Consider the algorithmic block f() = SAP. From this definition of inter-

action range and the way that variables are stored on the grid then for this

case the interaction range is one for all grid points. The concept of inter-

action range is particularly useful for finite difference grid point methods.

For semi-Lagrangian methods the interaction range may well be different

at each grid point and vary with time and thus may not be such a useful

concept. For an example of a grid-point semi-Lagrangian scheme see Robert

(1982).

Using the interaction range it is possible to split the subgrid on each

processor into two different regions: an inner region where data to carry out

the calculations is already on the processor and an outer region where some

data needs to be exchanged with neighbouring processors. The size of the

outer region depends only on the interaction range. Figure 5-2 shows this

for an idealized communications pattern. Figure 5-3 shows what would be

required for part of a fourth order finite difference scheme.

Chapter 5. Grid-Point Methods
	

171

Figure 5-2: Idealized separation of sub-domain into inner and outer regions

Figure 5-3: A more typical example of how the grid-points split up into two

regions

Chapter 5. Gnd-Poin t Methods
	

172

On some architectures it possible to do communications concurrently

with computation. Exploiting this feature is useful in obtaining the maxi-

main performance from such an architecture. If each processor sends data

from its outer region to neighbouring processors while simultaneously cal-

culating in the inner region, a substantial overlap of calculations and com-

munications is possible. When both of these processes have been completed,

every processor calculates in the outer region. There are two effects of this;

first communications are at a very low level in the code and second a min-

imum size for the subgrid on each processor is imposed, if the maximum

speed from each processor is desired. The corresponding segment of code

will look like this:

BEGIN SEQUENTIAL

BEGIN PARALLEL

Do communications for outer region

Do calculations for inner region

END PARALLEL

Do calculations for outer region

END SEQUENTIAL

The original sequential code would be similar to:

DO i=l,limit

B (i)=A(i) +A(i+1)

ENDDO

The calculations for the two regions on a processor would be very much

like the original sequential code, though the loop limits would be different.

As can be seen there is quite an increase in code complexity. In order to

minimise the ratio of communications time to computations time a square

Chapter 5. Grid-Point Methods 	 173

subdomain should be chosen. In the analysis that follows it is assumed that

each processor has a subdomain size of n2.

On a staggered grid, the region which does not need data from neigh-

bouring processors has it2 - (21R - 1)n sites. The time taken to carry out the

communications is given by r'rIn and the time to do the computations in the

interior region is (it. - (2I - 1))ivrc. With c being the number of operations

per grid-point that need to be done, 'r the time it takes to do 1 floating point'

instruction and r being the number of instructions that can be done in the

time it takes one word to be transferred between neighbouring processors.

The total time taken by the processor in this case is the sum of the time spent

computing in the interior region and the time spent in the outer region. This

time is given by;

Ttot = [(2I - 1)rt.c+max(rt2c - (21R - 1)nc, Irrt)]'t. 	(5.3)

If the maximum efficiency is required, then a total overlap of the edge

communications with the interior computations is required. This gives the

following constraint on the size of the sub-domain.

hR 	c(m - (21 - 1) 	 (5.4)

which has a solution:

Th>IR(+2)1. 	 (5.5)

If the simplest operation is considered, to give the maximum array size, then

c is 1. For the T800, the bandwidth is 1 x 106 bytes per second per link, and

11n this model of computation one floating point operation is assumed to take

the same time for all operations.

Chapter 5. Grid-Point Methods 	 174

the calculation speed is about 0.5 x 106 floating point operations per second

for 32 bit arithmetic giving an r value of 2 which leads to the condition

it> 4I —1. 	 (5.6)

For 'R = 1 and IR = 2 this gives it > 3 and 7 respectively. Considering the

FPS-T series where r 12 (Snelling and Tanqueray, 1988), the correspond-

ing constraint is that it > 13 and it > 27 for liz = 1, 2 respectively. These

minima of it. depend on the difference scheme used and in particular on the

least computationally intensive block.

If the array size is less than optimal then the efficiency is

'tcatc
e=

(' 	+ Tccjc.ed ge)
(5.7)

In this case the time to communicate edge values is greater than the time

to calculate interior values. From Equation 5.3 this reduces to,

M 	
(5.8)

Having computed the efficiency for a given block, the next problem is

to do this for an entire program. For this analysis the temporal ordering

of the individual blocks is irrelevant. The essential characteristics of a

block are c, the computational complexity and 'R' the interaction range.

A relative weight for each type of block is defined; this just measures its

relative importance in the entire program. Blocks are divided into types

depending on their computational complexity and interaction range.

For a given type the relative weight is defined as the total time neglecting

communications spent in all blocks of this type normalised by the total time,

again neglecting communications, taken by the entire program. This is

equivalent to the following definition, with N(c, IR) being the number of

blocks of a type.

Chapter 5. Grid-Point Methods 	 175

DEFINrn0N 5.1

N(c,I)c
k(c, I0 =

E 	IR(C, IR)c)

The sum in the denominator of the above expression is over all values of c

and 1p that occur in the program. From this definition, it is clear that the

sum of all k is 1. When the time taken by a single block is T(c, l u), the total

efficiency is given by;

VC,VIR N(c, IR)m2cT
(5.9) 57

 Vc,VI,, N(c, I)'r(c, IR)

which can be rewritten as,

1
e

=VC,Ig k(c, I)T(c, 1)/(Tn2c) 	
(5.10)

Communications are only necessary when values of 'R > 0. For blocks

where communications are required, then using Equation 5.3, the time,

'r(c, IR), spent in single block is [(2I - 1)mc + max(m2c - (2I - 1)nc, Irm)]T.

When there are no communications between neighbouring processors, T(c, 0)

is always rt2c. If k0 is defined to be Ec k(c, 0) then expression 5.10 can be

restated as,
1

e = 	
I(c, IR)/(Tcn2) 	

(5.11)

For the model being considered, analysis of the equations in Appendix B

leads to the values of N(c, IR) shown in Table 5-1. The values of k this leads

to are shown in Table 5-2.

The efficiency after substituting for T is then given by the following ex-

pression;

1
e=

..CJIR1 k,,,, {(21R - 1)/n.+max(1 - (2I, - 1)/n,Ir/crt)} 	
(5.12)

Figure 5-4 shows a plot of efficiency against n using the computed values

of k for different values of r for both the concurrent and non-concurrent case.

Chapter 5. Grid-Point Methods 	 176

Table 5—I.: Values of N(c, IR) for the grid-point model

c 1

2

Values of N(c, I,)

FAdvection stage Adjustment stage

1 2 1

30 7 9

22 17 23

No communications 	95 94

Values are for a single column of the atmosphere with five vertical levels

and no vertical communications.

Table 5-2: Values of k(c, IR) for the grid-point model

c 	1

2

1 2

0.0868 0.0107

0.277 0.0.0517

1(0 0.574

These values were derived from Table 5-1.

Chapter 5. Grid-Point Methods 	 177

IM
	 Li jILIe(ILy VS UOiiUIiI SIL

0.75

a)

0.25

5 	10 	15 	20 	25 	30
Sub—domoiri size

Figure 5-4: Calculated efficiencies for different communications.

Lines with values plotted as triangles are for the concurrent case while lines

with stars are for the non-concurrent case. The values of r are from the top

to the bottom 2.0, 8.0, 16.0 and 32.0 respectively.

Note that the benefit from concurrent communications is greatest where the

sub-domains on individual processors are small.

Figure 5-5 show the times measured for both the concurrent and non-

concurrent communications case using the implemented model described

in Appendix B. In addition to these results the times taken relative to a

domain size of 32 x 32 for the concurrent case are also shown, this being an

approximate measure of efficiency. Note how the efficiency of the adIu i rt

step with several 'R = 2 communications is below that for the advection.

The times were obtained using 64 processors arranged in an 8 x 8 grid and

Chapter 5. Grid-Point Methods 	 178

Table 5-3: Timing results for grid-point model with a fixed number of

processors

Domain Size

4 x 4 8 x 8 12x12 16x16 24x24 32x32

Concurrent 347 856 1598 2538 5102 8600

Non-concurrent 377 922 1652 2717 5259 9112

Times are the total time taken in milliseconds for horizontal domains shown

on each processor and with 5 vertical levels. These results are on a 8 x 8

processor grid with 5 levels and using cyclic boundary conditions.

are tabulated in Table 5-3. The efficiencies measured are different from

the calculated values particularly for small values of N. The difference is

probably due to the costs of starting communications.

The effects on the time taken, by varying the total number of proces-

sors while keeping the sub-domain size fixed, are tabulated in Table 5-4

and plotted in Figure 5-6. In addition to the total times measured, the

times measured for the adjustment and advection steps are also shown. As

expected, there is no variation in the time taken when using concurrent com-

munications as the number of processors increase. When using sequential

communications there is small increase in the time taken as the number of

processors in the domain decreases. From the small amount of data avail-

able the increase seems to be logarithmic with increasing processor number.

This increase is most likely a function of the ECS hardware. If this increase

is indeed logarithmic then when using approximately 8000 processors the

time taken would be increased by 10%.

Time
25

20

5

1.0

0.8

II
>'
0
C
a)
C)

Li

0.4

0.2

'

Efficiency vs Domain size

':::.

Chapter 5. Grid-Point Methods 	 179

	

01
	

0.01

	

0
	

10 	20 	30 	40 	 0 	10 	20 	30 	40
N 	 N

Figure 5-5: Times and efficiencies for the grid-point model with changing

sub-domain size

The left hand graph shows the times taken while the right hand graph shows

an estimate of efficiency. Times and efficiencies for the concurrent and non-

concurrent are show as triangles and stars respectively. In both graphes the

values for the advection part of the model are shown with a dotted line, the

adjustment stage with a dashed line and the whole timestep with a solid

line.

Chapter 5. Grid-Point Methods
	 im

Table 5-4: Timing results for grid-point model

Number of processors

2 x 2 4 x 2 4 x 4 8 x 4 8 x 8

Concurrent 2538 2538 2538 2538 2538
11

Non-concurrent 2689 2683 2692 2705 2718 11

Times are the total time taken in milliseconds with a fixed sub-domain size

per processor and the total number of processors changing. Each sub-domain

on a processor has 5 vertical levels and a horizontal size of I G Y! 6 •

Time vs Domain Size
3000

2500

-' 2000
U
(I)

E

1500
0

E
1000

500

Total

X Adjust

Advect

20 	 40 	 60
processors

Figure 5-6: Times taken with varying processor number

This plot shows the effects of varying the processor number on the times

taken for one timestep on fixed sub-domain size of x , Times taken by

concurrent communications are shown as triangles while times taken by

non-concurrent communications are shown by stars.

Chapter 5. Grid-Point Methods

5.2.2 Vertical Decompositions

If a fixed size of problem is considered, then, as the number of processors

increases, the subdomain size will decrease. In the previous subsection it

was shown that the efficiency falls with decreasing sub-domain size.

In order to increase the number of processors that can be used on a given

size of problem, without decreasing efficiency, a vertical decomposition over

processors could be used in addition to horizontal decomposition described

earlier. In the dynamics schemes considered in this chapter and the pre-

vious chapter, on the spectral method, there were many communications

horizontally but only a limited number vertically—there is a strong horizon-

tal coupling but a weak vertical coupling. However for the parameterization

schemes the opposite is true, they have no horizontal communications at all

but they do have very strong vertical communications. As was stated in

Chapter 3 it is necessary that single columns of the atmosphere be on the

same processor for the parameterization scheme. Therefore if a vertical de-

composition is used, there will need to be a movement of data such that the

data for any single atmospheric column is on a single processor. Figure 5-7

illustrates this.

The advection part of the timestep has no vertical coupling at all, but

there is some vertical coupling in the adjustment steps. For the adjustment

step with the exception of Equations B.9, B.11, B.13 and B.28 any vertical

communications that occur are local with an 1p of 1. These four equations

require the computation of terms which are similar Fk = E G, and are

normally calculated iteratively from Fk = Fk_1 + G K _ 1 .

The rest of the vertical interactions are similar to the horizontal inter-

actions discussed in Subsection 5.2.1. There is one difference; the grid is

not staggered in the vertical which changes the size of the interior region

to (u - 21)m2, where u is the vertical extent of the sub-domain, it2 is the

Chapter 5. Grid-Point Methods
	 182

Levels

1,2 2,2 3,2

1,1 2,1 3,1

1,2 2,2 3,2

jdMV
1,1 2,1 3,1

Horizontal

Co-ord

1,2 2,2 3,2

ANOW
	

2,1

1,1 2,1 3,1

Figure 5-7: Movement of data so that every atmospheric column is on a

single processor

The shaded squares each represent a processor, calculating 6 grid points

with 3 levels of vertical decomposition, thus each column labeled i, j has

data on three different processors. The data needs to be moved, as in the

right hand diagram, so that each atmospheric column has its data on the

same processor.

Chapter 5. Grid-Point Methods 	 183

horizontal size of the sub-domain. The equivalent of Equation 5.3 for this

case is,

rv(c I) = [21),c + max((u - 211,)c, 2)c, IRT)ITh . 	 (5.13)

Recognizing that each processor will have some number, K, of partial

atmospheric columns within its sub-domain then the iterative method could

be pipelined. See Section 4.2 for details of pipelines. How this could be done

will now be described. The total number of points in the entire column is

V and it is assumed that each column is divided up amongst P processors

giving each processor a sub-column with V/P = u points. The algorithm that

will now be described is a specific case of the general algorithm shown in

Section 2.5

First introduce the following definition,

DEFINITION 5.2

F

then F is the same as the F3 defined earlier. It is also useful to add the

labels min(p) and max(p) for the minimum and maximum values of the

vertical label on the processor p. To actually compute this3the procedure is,

for all processors except the first2 one: wait until the value 	arrives

from processor p - 1; use this value to compute F for all the values of

on the processor. (j E {min(p), . . . ,max(p)}); now pass Fax(P) onto the next

processor. This is repeated until the processor has done the computation for

all the vertical columns in its horizontal domain. For the bottom processor

'First here means the processor with a sub-domain at the bottom of the atmo-

spheric column.

Chapter 5. Grid-Point Methods 	 184

there is only one slight modification required; it does not need to receive a

value from any other processor, and can immediately compute F.

For the pipeline, the startup time is [V + (P - 1)r]T, this comes from

the total number of additions plus the total time spent communicating;

each communication is a transmission of one word to the next processor.

After the first column has been computed, successive columns will have

been computed a time later given by the maximum of the time to do the

summation on the partial column or the time to transfer one word between

two neighbouring processors. The efficiency of the entire pipeline is,

Ku

V+(P - 1)r+(K- 1)max(u,rY 	
(5.14)

If the vertical granularity, u, is kept fixed as the number of processors,

V, in the vertical domain increases then the startup time of the pipeline will

become important. It is assumed that u is r, in order to give the optimum

efficiency3. The point at which the pipeline is 50% efficient is,

Kr =2(V+(P- 1)r+(K- 1)r) 	 (5.15)

which, after some rearrangement and using P = V/i, shows that the number

of processors at which half efficiency occurs is,

P =
1

(K+ 1). 	 (5.16)

Inefficiencies in this stage of much lower than a half could be accepted

as the computation of the iterative scheme accounts for approximately one

sixtieth of the time spent in the dynamics part of the model. For some mod-

els, in particular models with a large number of vertical levels, in order to

3This assumption is not unreasonable as the time to initiate communications

will make the communications time larger than might be expected, see Figure 1-2.

Chapter 5. Grid-Point Methods 	 185

utilize the available parallelism it may be necessary to have more proces-

sors in the vertical. An example of a stratosphere-mesosphere model with

32 vertical levels on 5'x 50 grid is described in Fisher (1987). For this case

some benefit might be gained by reducing the startup time. This can be done

by modifying slightly the algorithm discussed above.

Each processor computes the partial sum F. As a side effect of this

all processors will have F flfl()Vt E [min(p), max(p)]. All processors can

proceed in parallel for this stage.

Having done this, the first processor will send fl) to the next pro-

cessor. All other processors, with values of p > 1 will input Fr'
-1

and use this to compute 	from FmP) + min(p)

In parallel with sending FX(P) to the next processor in the column, each

processor computes F1 Vi e [min(p), max(p) —1] giving the desired sums.

After each processor has completed both the send and the computation

it can proceed with the normal pipeline.

This reduces the startup time to the following

$ =[u+(P - 1)(r+ 1)+uJ'r. 	 (5.17)

The first term in Equation 5.17 comes from stage 1 where all processors

compute in parallel the partial sums. The second term is the time that

F'_D takes to arrive on the top processor. The last term is the time

that the top processor spends computing the term F. The efficiency of the

pipeline is now,

Ku

e= 2u+(P— 1)(r+ 1)+(K - 1)max(u,r) '
	 (5.18)

In this case the number of processors at which 50% efficiency occurs is,

1'
P= -(K - 1)+ 1, 	 (5.19)

1+1

Chapter 5. Grid-Point Methods 	 M.

which is approximately K for large values of v—about twice that of the

previous case. Therefore, in the case of low communications speeds, relative

to computation rates, the second method would be better.

One further problem is that each communication between processors only

involves the transfer of one word. The effect of the communications startup

time, r0, as distinguished from the pipeline startup time, is quite significant.

See Figure 1-2 and note how the bandwidth rises from low values for small

message length. This effect can be reduced by grouping together tasks into

one packet. The grouping factor is termed G and S3 is defined to be either

2u or V depending on how the pipeline startup is done. Expression 5.17 and

5.14, including the communications start up time, r, can then be rewritten

MN

Ku

e = GS0 + (V - 1)[Gr + rJ-- max(Gu, Gv + ro) 	
(5.20)

Increasing G will increase the pipeline startup time but decrease the ef-

feet of the communications startup. The problem is identifying the optimum

value of G.

There are three cases.

u < r, then the optimum value is G = 1

u > r+To, then the optimum value is G = max(f-
/ Krp
SO V_2)T ,l)

v<u<r+r0 thenG=-- ii- r

See Appendix C.3 for a proof of the above. If it is not possible to overlap

communications then the efficiency is

Ku
e

= GS0 +(V— 1)[Gr+r0]+(K - G)[u+r+v0/G]' 	
(5.21)

The optimum value of G is also computed in Appendix C.3 and is
/_Krp G

Chapter 5. Grid-Point Methods 	 187

5.3 Global Models

This section will discuss the differences in implementing a global model

compared to a limited area model. These differences are

A modified topology is required to take account of "cross-pole" commu-

nications.

Computing polar values of some variables is required by taking the

mean value of the longitudinal row adjacent to the pole.

The need to work out the maximum velocity, for each row, between the

equator and a row. This is done to compute the damping coefficients

required for each timestep.

The need to Fourier damp variables on near-polar longitudes in order

to give a reasonable timestep.

The cross-pole communications required by a global model on a sphere

are between points directly opposite from one another over the poles. Such

points are separated by 180° of longitude and are at the same latitude. This

requires that processors should be connected to processors in the same row

but N/2 processors away, where there are N processors in a row. Figure 5-8

shows this topology for a sphere with 16 processors.

5.3.1 Computing the Maximum Velocity

In order to correctly compute the damping coefficients for the Fourier damp-

ing it is necessary to compute the maximum velocity for the row and all rows

between the equator and it. The ideas discussed in Section 2.5 are useful

Chapter 5. Grid-Point Methods

Figure 5-8: Processor topology used to map a sphere

This figure shows 16 processors configured into a sphere. The links shown

at the east and west sides wrap around. The links shown at the north and

south edges are connected to processors 2 away, to provide the 'over the pole'

communications.

here as maximum is an associative operator. This operation can be divided

into two stages.

Computing the row maximum velocity.

Computing the maximum speed of this row and all rows between the

equator and it.

The computation of the first depends on the architecture being used and in

particular the number of links that the processor has left after connecting it

to its neighbours to form a grid. In the hardware being used at Edinburgh

all links were connected to their four neighbours and so each row is a ring

of processors. The row maximum is computed by the following algorithm

which has also been described by Horiguchi and Miranker (1989).

Chapter 5. Grid-Point Methods

The processor computes the row maximum for each row in its sub-

domain using the points on each row that lie within its sub-domain.

All processors can do this in parallel.

Each processor then sends its values of maximum out to its neighbour,

(either east or west). It will then receive from its other neighbour some

values.

These values will then be compared with the original values and the

maximum stored.

Steps 2 and 3 will be repeated until each processor has processed N - 1

messages, there being N processors in the ring. Each processor will now

have the global maximum stored for each row.

To compute the maximum speed for a row and all rows closer to the

equator than it, requires similar algorithms to those described in Subsec-

tion 5.2.2, which were used to compute the vertical iteration schemes. The

problem in this case is to compute, for a row k rows away from the equa-

tor, Uk = max(uk,Uk_ l). This is an iterative scheme except that max is

used rather than addifionThe algorithms necessary are the same as those

described in Subsection 5.2.2 except that rather than summing values the

maximum should be taken.

The value of variables at points at the poles is the mean of the variable

on the surrounding near-polar row. The algorithm required is the same as

that described for the computation of the row maximum with sums being

performed on incoming data rather than maximum.

It is worth noting here how a parallel algorithm for any associative oper-

ator can easily be extended to any other.

Chapter 5. Grid-Point Methods 	 190

5.3.2 Fourier Transformn in Grid Point Models

At present, global grid point models use regular longitude-latitude grids.

Near the poles the physical separation between grid points decreases and

because of the CFL condition a shorter timestep will be required in order for

the model to be numerically stable. This is unacceptable as it would require

an extremely short timestep which would make integrations prohibitively

expensive. In the early 1970's research was done into using skipped grids

where, as the poles were approached, rows would have progressively fewer

grid points in them (Williamson and Browing, 1973). These were found to

have other problems, in particular there were large inaccuracies in large-

scale cross-polar flow (Holloway et al., 1973). Also see Williamson (1979) for

a general overview of global grid-point methods.

The approach that is taken in the model implemented on the ECS is

to linearise the discretised model equations and compute by how much a

wavenumber will grow in one timestep using the von Neumann procedure

described in Subsection 1.4.2. For stable wavenumbers there will be no am-

plification. If any wavenumbers in a row are unstable then the points in that

row are transformed to Fourier space and unstable modes either damped or

chopped. In damping the amplitude of a wavenumber is divided by its am-

plification factor times a constant factor, while in chopping a wavenumber is

discarded if it is unstable. The constant factor is there to take some account

of the non-linear interactions in the problem. After this has been done the

data is transformed back from Fourier space to grid point space.

Fourier damping for the adjustment step, is only required on rows north

and south of 600 N and 60° S respectively. For the advection, the decision

of whether or not to do Fourier damping depends on the maximum velocity

found in that row or in a row closer to the equator.

In the context of the two dimensional decomposition described earlier

Chapter 5. Grid-Point Methods 	 191

there does not seem to exist an efficient implementation of the fast Fourier

transform. The problem is that all four of the processors links are committed

to connections with their neighbours and none are free to provide extra links

for the FFT. The topology that is left is a ring—the problem is then is how

to implement the FFT on this ring topology.

In Section 4.3 is was shown that an efficient implementation of the FFT

was possible, by building a butterfly topology. Why not do that here? There

should be enough tasks to make the FFT pipeline efficient, the pipelines

length is 0(log2 N) while the number of vertical levels should increase in

proportion to the total horizontal domain size. Each processor row would

have a butterfly added to it. See Figure 5-9 for the modifications to a

single row required to add the FFT butterfly in. The efficiency of the FFT

is now the figure derived in Chapter 4 and will be approximately 50% if the

communications speed, r, is less than 4. The problem is then what is to

be done with these extra processors for the rest of the dynamics step? For

the remainder of the dynamics step these processors will be idle, thus the

utilization factor of the entire computer will be 00 / 1092 N) and this does

not constitute an efficient implementation.

One alternative may be to increase the valency of each processor in order

to provide the required connectivity. A hypercube topology could be built.

If each processor has a valency of v, then 1 2 9
2 N processors will be required

to make each node have the required connectivity. Using homogeneous

processors this has, in essence, recreated a hypercube but with N 1092 N/v

processors. As in the previous example, these processors would be compu-

tationally idle for the remainder of the dynamics step. In contrast to the

previous example, these extra processors would be idle during the FFT as

'There would be N nodes in total.

Chapter 5. Grid-Point Methods
	

192

Fourier
Processors

Grid-
Point
Processors

Figure 5-9: A grid point processor row with a FFT butterfly added

This figure shows a single row, with 8 processors, of the computer. Commu-

nications for the grid part of the problem are shown with lines, while the

communications needed for the FFT are shown by dashed lines. Notice how

the number of processors involved in computing the FFT is much greater

than those used in computing the grid-point part of the calculations.

Chapter 5. Grid-Point Methods 	 193

Table 5-5: Times for grid-point model with FFTs

Processors in Row Time

16 14.0

8 6.64

4 1.52

2 0.21

Measured Times, in seconds, using four rows of processors and differing

numbers of processors in a row are shown in the above table.

well. In a heterogeneous environment where some processors are designed

principally as computational engines and the rest optimised for communi-

cations (small amounts of memory and no floating point unit) then this

approach might be of some benefit. Use of wormhole routing techniques

would be useful in reducing the latency of the communications.

Having rejected the various alternatives above, consider now implement-

ing the Fourier transform on the two dimensional grid. The FFT will take

place on longitudinal rows of the grid. For the FFT distributed over N

processors with it. points on each processor there are log2 N - 1 communi-

cations required where each processor will need to communicate with one

other processor. Messages will need to go along N/2 links for the first stage

and then N/4 for the second and so on. The total number of communica-

tions events required per processor is N - 1. Therefore the total time spent

communicating will be (N - 1)'rrn, while the total time spent computing is

cmlog2(n.N), using the notation from earlier in this chapter. The total time

spent computing could be reduced by overlapping though this would make

very little difference to the total time taken. The time taken by the Fourier

transform will grow linearly with the number of processors in the east/west

row. Table 5-5 shows results for the grid point model on a sphere.

Chapter 5. Grid-Point Methods

If a three-dimensional decomposition is used, then the butterfly pipeline

could be used. In this case it is possible to build a butterfly topology without

using any more processors, or nodes, though the valency of a single node

would have to be at least eight. Consider a vertical east/west cross-section

of the processor cuboid described in Subsection 5.2.2. This can be converted

into a butterfly network by adding extra links between processors. Level

1 processors will be connected to level 2 processors N/2 away, in general

a level V processor will be connected to a level V + 1 processor N/2" away.

Figure 5-10 shows this.

In Section 4.2 it was shown that the length of the butterfly is log2 N +

K, with K being a fixed constant proportional to log2 it. As was already

stated earlier in this chapter, the number of processors over which a vertical

decomposition should be carried out is limited. This limit is a function of the

time spent computing the parameterization schemes, the communications

speed and the number of atmospheric columns on a single processor. The

larger these are the greater the number of processors over which the vertical

decomposition could be carried out. Is this limited vertical decomposition,

likely to form an unreasonable limit on the total number of processors that

can be used? Assume that the number of vertical processors is 10, and

further assuming that K is 2 then this would allow 256 processors in any row,

very modest increases in the number of vertical processors would allow many

more processors in any row. Note that 256 processors in a row, 10 processors

vertically and 256 rows of processors would give a computer composed of

approximately half a million processors, a not unreasonable limit.

5.3.3 Load-balancing the Fourier Transforms

When carrying out the FVI1s as described, there is load imbalance. A de-

terministic calculation of the imbalance is possible for the adjustment step.

Chapter 5. Grid-Point Methods 	 195

Figure 5-10: Vertical Butterfly

This figure shows part of a three-dimensional decomposition with four pro-

cessors in the vertical. Solid arrows show the communications required for

the horizontal finite difference computations, while dashed lines show the

communications needed for the Fourier damping.

Chapter 5. Grid-Point Methods 	 196

Here, Fourier damping will only take place polewards of 60°N/S. For the

advection step, Fourier damping is dependent on the maximum speed on

the row or rows closer to the equator than that row. For the adjustment

step only one third of the processors will be taking part in the transforms,

the remaining two thirds of the processors will be idle. In Chapter 3 a

load-balancer was described. A similar balancer is needed here in order

to move tasks from polar rows to near-equatorial rows. There is however

one significant difference; tasks are divided over the processors in a row.

When a processor makes a decision about how many tasks to move to a

neighbour, each processor in the row must make the same decision about

how many tasks to distribute to its neighbours. This necessitates that the

random selection of neighbours described in Chapter 3 should not be used.

Instead each processor will exchange information with both its north and

south neighbours on how many tasks it has.

Each processor first computes the number of available tasks, which is the

number of tasks it has minus the number of tasks it must keep to process

(usually one). Each processor then computes how many tasks it would like

to exchange with both of its neighbours. This is given by the difference in

available tasks between them times a fractional value. This fractional value

is termed the diffusion constant. If the total number of tasks to be moved

is greater than the available tasks then the tasks moved to the north and

south neighbours are reduced proportionally. All processors at this stage

now know whether they will be receiving tasks, transmitting tasks or not

taking part in any exchange. All processors then carry out any task exchange

required. Processors with no tasks will "sleep" in the manner described in

Section 3.3 in order to avoid live-lock. All other processors will then wait

for the Fourier transform to be comted. If the architecture permits it,

the Fourier transform runs in parallel with the task exchanger described

earlier.

Chapter 5. Grid-Point Methods 	 197

One important parameter for this load-balancer is the diffusion constant.

In order to investigate how the load-balancer would behave, a simple model

of it was constructed. The aims of this simple model, of a load-balancer,

were to give a qualitative understanding of the importance of the diffusion

parameter and to give some guidance on the behaviour of the load-balancer

when using more processors that were available on the ECS.

In this idealized model each row of processors is represented by a single

site with a number of tasks. The FFT takes a unit length of time. The

number of tasks on the site is reduced by one to represent the FFT taking

place. The site then exchanges tasks with its neighbouring sites in the

manner described above. Two different simulations were done. In the first

the maximum number of tasks that could be moved to any neighbour was

set to N. This represents a grid topology where the FFT takes a time

0(N). In the second experiment the maximum number of tasks that could

be exchanged was set to log2 N, this represents a butterfly topology where a

FFT would take a time 0(log2 N). The results of the simulations are shown

in Figure 5-11. These simulations are intended to give qualitative guidance

to a choice of diffusion parameters. They suggest that only in the case

where there are a large number of tasks per processor, will the time taken

be significantly decreased compared to the non-balancing case. For the grid
be.

topology there maysome sensitivity to the value of the diffusion coefficient.

In addition this simple model predicts, for small numbers of processors rows,

that speedups of almost 3 will be achieved.

This model of parallel computing is deficient in that the cost of a transfer

is proportional to the amount of data that needs to be moved. In reality

this may not be true, there is a high cost involved in the "dialogue" between

processors when information is transferred in order to compute how many

tasks should be moved.

In order to construct the load-balancer described above, it was necessary

Chapter 5. Grid-Point Methods

T 	-.1...... t._ 	rcr 	i._ 	 T'- 4I..-.-. 	..._- 	I 'r 4_11-

100
7-1

S

0.351

01
0 20 40 60 60 100

Diffusion (%)

Time taken for 960 tasks

0 V PV UU OU IUU

Diffusion (%)

Time taken for 	120 tasks

100
	

100

U)

0
0

I 	 0 	 _04b
20

Q-

20 40 60 80 100 	 0 20 40 50 80 100
Diffusion (%) 	 Diffusion (%)

Figure 5-1L Simulated effects of FFT load-balancing

The four diagrams all show the time taken relative to the non-balanced

case with varying numbers of processor rows (N) and diffusion constant.

The top two plots are for a grid topology with different numbers of tasks

per processor. The bottom two are for a butterfly topology; The difference

between the two is in the maximum number of tasks that are allowed to

be transferred. For the butterfly topology; a maximum of log2 N tasks can

be transferred, while for the grid topology a maximum of N tasks can be

transferred. No results were computed for less than four processor rows.

Contours are drawn at values of 0.35, 0.4, 0.45, 0.5, 0.6, 0.7, 0.8, 0.9 and

1.0. The number of tasks in the plots is given by the number of variables

on full three-dimensional fields (four for the model in Appendix B) times the

number of levels on a processor plus the number of surface only variables

(one, surface pressure) all times the number of rows. For 8 rows and 5

vertical levels this would give 168 tasks.

Chapter 5. Grid-Point Methods
	

199

Table 5-6: Times for grid-point model with software multiplexing

Domains Size

4 x 4 8 x 8 16x16 32x32

Concurrent 2392 2910 4621 10700

Sequential 2364 2882 4622 10784 	11

to have several processes running in parallel on the same processor. These

are: the deterministic load-balancer; the router process; and the master pro-

cess. All these processes need access to the N/S links while the load-balancer

and the master process need access to the E/W links of the processor. In or-

der to allow this, a software multiplexer/demultiplexer was designed and

implemented in software. This multiplexer system caused the peak commu-

nications rate to drop by about a factor of a half and increased the startup

time. Figure 1-2 shows the communications speeds for various different

configurations; the two to compare are the "through routing" curve and the

"multiplexer" curve. Table 5-6 shows the effect on the speed of execution

of the grid-point model described in Section 5.2. This table should be corn-

pared to 5-3 to show what the effects of slow startup time are on the time

taken for small sub-domains. Note that concurrent communications in these

circumstances produces very little benefit and can even increase the time

taken.

Figure 5-12 shows a plot of the times taken per site for the concurrent

and the sequential cases. Compare Figure 5-12 to 5-5 and note that the

effect of slow communications is most significant for small domains or low

granularity.

The next set of results presented will show that the load-balancing of the

near-polar Fourier transforms leads to an improvement. The experiment

13

Chapter 5. Grid-Point Methods
	

200

Time
	

Efficiency vs Domain size
150
	

1.0 I''

0 	10 	20 	30 	40
N

0.8

0.6
>
U
C
T)
U

Li
0.4

0.2

0.0
0 10 	20 	30 	40

N

Figure 5-12: Times per site for multiplexer

The left hand graph shows the times for the concurrent communications

while the right hand side shows the efficiency relative to the 32 x 32 case.

The times for the non-concurrent communications case are not shown as

they are very similar to the concurrent case. Values for the advection step

are shown with dotted lines, the adjustment with dashed lines and the total

timestep with a SoItc(line.

Chapter 5. Grid-Point Methods
	

201

Table 5-7: Times for FFT load-balancing

No load-balancing Diffusion Coefft (%)

Processors - 0 20 40 60 80 100

4 x 2 2057 2334 1912 1828 1809 1809 1934

4 >< 4 2534 2887 1537 1463 1441 1418 1667

4 x 6 2537 2883 1255 1187 1103 1170 1244

4 x 8 2541 2888 1229 1102 1030 1022 1041

Times are in milli-secs and are accurate to 10 m secs.

that was carried out was to fix the size of the FFT but change the number

of rows in the processor domain with the sub-domain size fixed at 8 >< 8

horizontally and with 5 vertical levels. The only factor in the change in

time taken by the FFT would be due to the load-balancer. Four different

processor configurations were examined, ranging from 4 >< 2 to 4 >< 8; this

notation means that the processors were arranged in a spherical topology

with 8 rows and 4 columns. The transfer rate was allowed to vary from

0% to 100% in steps of 20%. Table 5-7 shows the times measured for the

FFTs while Figure 5-13 shows a plot of the speedup relative to the non load-

balanced case. Also shown in this figure are speedups from the simple model

of the load-balancer. The times for the FFTs were obtained by measuring the

total time taken and subtracting the grid-point times from these. These are

obtained from the results in 5-7 and 5-5. Speedups of up to 2.5 are obtained.

The measured results are not acting in the same way as the simple model

would predict. The simple model predicts that speedup should decrease

with increasing domain size rather thar increase as measured. What is

happening is that the fixed costs of the load-balancer become relatively less

Chapter 5. Grid-Point Methods
	

202

CD
(0
a
0

a)
0

0
0

0

C
0
C:
I.- ci, >
0
0.
3
Dl a)
Q)
0.

U)

*..........

4*8
o 4*6

4*4
+ 4*2

O[
0
	

20 	 40 	 60 	 80 	 100
Transfer %

Figure 5-13: Speedups for the FFT with different amounts of

load-balancing

Solid lines show the measured times for different processor domain sizes and

changing values of the diffusion coefficient. Dotted lines are from the simple

model of a load-balancers behaviour. Symbols correspond to the different

processor domain sizes.

important as the number of rows increase. The shape of the measured curves

becomes more like the model curves as the number of rows becomes larger.

Chapter 5. Grid-Point Methods 	 203

5.4 Conclusion

In this chapter, a three-dimensional limited area model was first examined.

This model was implemented in the language Occam on the ECS. Measure-

ments of the time taken by this model showed that it had a linear scaled

speedup with increasing processor number. Times were measured when us-

ing concurrent and non-concurrent communications. The times taken when

using non-concurrent communications were approximately 10% greater than

th , times taken when using concurrent communications. For the amount

of work required to implement concurrent communications, there seems to

be little gain from using concurrent communications for the bulk of a grid-

point model code. Many vector computers are limited not by the processing

speed of their CPU, but by the time it takes to transfer data from memory

to the CPU and back again. If this were true for parallel computers, then

concurrent 110 may not be possible as the memory bandwidth required for

the transfer would not exist.

The concept of interaction range was introduced to measure the com-

munications volume for any particular stage of the program and was then

used to make predictions about the efficiency with variations in sub-domain

size. The efficiency of an individual processor is expected to increase with

increasing processor sub-domain size. This pattern was confirmed by the

implementations. The effects of communications startup time were not con-

sidered in these calculations of efficiency, but the experience of the software

multiplexer showed these could be quite considerable. The importance of

the communications speed or alternatively the total communications band-

width in the computer should be stressed. The grid-point model examined

and implemented had a rather low ratio of computations work to commu-

nications. This model is typical of many meteorological grid-point models

Chapter 5. Grid-Point Methods
	

204

and suggests that the performance of parallel computers for realistic mete-

orological applications will be less than some other applications, because of

their higher ratio of computations to communications.

For models with only relatively small numbers of grid-points, such as

climate models then relatively small numbers of processors could be used

efficiently. How small that number is depends on the communications speed

of the computer.

In order to increase the horizontal sub-domain size, a limited vertical

decomposition should be used in addition to the horizontal decomposition.

Two parallel algorithms were presented for iterative computation of the

geopotential term though no implementations were carried out. The first

algorithm is simpler, but for slow communication speeds the second one

can use twice as many processors as the first before reaching half efficiency.

However neither iterative algorithm would show linear scaled speedup while

the horizontal decompositions would. There will be a limit on the amount of

vertical decomposition that can be done, the time to compute the iterative

scheme will eventually dominate the time taken by the rest of the problem.

However it is likely that the need for the parameterization schemes to re-

arrange atmospheric columns so that a column was contained entirely on a

single processor, would set the limit on the number of processors over which

vertical columns can be decomposed.

For the global model, the major complication was the need to carry out

Fourier transforms to control numerical instability. On the ECS these are

extremely inefficient. It is believed by the author that the Fourier trans-

forms could be done efficiently but only in the context of efficient long range

communications. An efficient Fourier transform could be done by using a

three-dimensional decomposition, though this would require a processor Va-

lency of eight (see page 194). A very simple model of a load-balancing strat-

egy for the Fourier transforms was made. This model suggested that there

Chapter 5. Grid-Point Methods
	

205

would some benefit in implementing load-balancing, this benefit falling with

increasing processor number and decreasing number of tasks per processor.

The experiments carried out using the model implemented in Occam on the

ECS, with only up to eight processor rows, showed that the load-balancer

could decrease the time taken for the Fourier transforms by a factor of two

and a half.

Chapter 6

Conclusion

This, the final chapter of the thesis, will present some conclusions and

then use these to provide some speculative thoughts on what a massively

parallel supercomputer might look like in the meteorological centre of the

future. Based on the work presented in this thesis the author believes that,

before the end of the decade, massively parallel computers will replace the

present types of super-computers. For meteorologists to benefit from these

computers work would need to start in the near future to convert existing

serial models.

Prior to presenting the conclusions proper, a summary of the results of

Chapters 3,4 and 5 will be given. In Chapter 3 the problems of implement-

ing parameterization schemes on parallel computers were examined. For

the data-parallel class of computers, it was concluded that implementation

would be difficult and efficiencies low. Implementation of these schemes

on MIMIJ computers should be straightforward based on the experiences of

implementing two schemes on the Edinburgh Concurrent Supercomputer.

Results were presented showing the variation in work for different atmo-

spheric columns. A load-balancer was implemented but produced only a

marginal increase in speed for small numbers of processors and a decrease

Chapter 6. Conclusion 	 207

at larger numbers of processors. It was concluded that load-balancing was

likely to be of little benefit for an operational model.

In Chapter 4, a parallel algorithm for the spectral method was presented.

This algorithm was a pipeline built around the spectral transformation of

that method. The analysis presented showed that the algorithm had good

scaling properties but a major question remaining for this algorithm is what

the effects of the parameterization schemes would be on the balance of the

pipeline. Implementation of the algorithm by converting an existing three

dimensional primitive equation code was relatively straightforward as the

number of places where communications are required in the program is

small. Measurements on different configurations of the parallel version of

the model showed a high variability in efficiency. It was concluded that

this was due to load-imbalance in the pipelines. By changing the number

of Gaussian latitudes for a configuration and measuring the changing times

taken, it was possible to extract the startup time and time-step for that

configuration of the pipeline. Extrapolations were made of the algorithm's

performance and it was concluded that a T168 forty level version of the model

could achieve speedups of approximately 4000 when using 10000 processors.

The grid-point model of Chapter 5 has many places in the program where

communications are required, in particular the finite difference computa-

tion. Coding of the three-dimensional model described in Appendix B was

tedious due to the large number of places where communications were re-

quired. Hand conversion of similar models would be expensive and error

prone. However their relatively simple structure should make partial au-

tomation of the process possible. See Gerndt (1989) for a description of

automation for the finite difference part of such programs. The local-area

part of the model has good scaled speedup properties. The FFT implemented

in Chapter 5 was inefficient; successful implementation of the FFT in the

context of grid-point models would require much work and a different hard-

Chapter 6. Conclusion 	 208

ware from the ECS. This illustrates one problem in parallel computing; there

may exist good parallel algorithms for parts of any problem but combining

the algorithms may require a new processor topology or a movement of

large amounts of data from processor to processor. Building a deterministic

load-balancer to transfer FFT tasks from near polar regions of the processor

domain to equatorial regions would be of some benefit.

Having summarised the conclusions from earlier chapters, some general

remarks will be made about massively parallel computers.

When the dynamics schemes were examined, it was found that efficiency

depended on the sub-domain size on each processor. The theoretical analy-

sis showed that the ratio of communications speed to computational speed

would determine the sub-domain size for optimum efficiency. The results

of a practical implementation also confirmed this. The conclusion is there-

fore drawn that to use massively parallel computers it is necessary that

the problems tackled have a large number of spatial degrees of freedom. In

grid-point models there must be a large number of grid-points in a horizontal

plane or, for a spectral model, a large value of the truncation number will be

required. For meteorological models, the decomposition over the processors

will be in the horizontal plane. Only a limited decomposition over the verti-

cal dimension will be possible due to the tight vertical coupling intrinsic to

the parameterization schemes. It is also likely that the number of points in a

horizontal plane on a processor will be quite small (of order 100). Therefore,

if the individual processors have vector units for the floating point compu-

tations, these should have high speeds for short vector lengths required on

massively parallel computers.

However, for small problems with long time integration, such as climate

models, the efficiencies achieved will not be so high. An extreme example

of such a problem is described by James and James (1989) in which a T21

model was integrated for a thousand years.

Chapter 6. Conclusion
	

209

For MIMD computers, the aMlity to nm several processes on a single

processor is advantageous as "automatic" load-balancing could be achieved.

If, for example, a process was idle waiting for a communication to occur then

the processor could run another process keeping the processor busy. To do

this the processor needs to be able to rapidly swap between processes. The

use of concurrent communications is likely to be of most use when several

processes are run in parallel on an individual processor. Its use in speeding

up the time taken was also examined. For the grid-point model a reduc-

tion in the time taken of approximately 10% over the non-concurrent case

was obtained but with a considerable increase in program complexity. This

small gain is probably not worth this extra complexity unless the addition

of communications subroutine calls to the code and the restructuring of the

code required could be done automatically by a compiler.

The programming model used throughout this thesis was that of Com-

municating Sequential Processes (CSP) where serial programs communi-

cated with each other by message-passing. There is often a need to have

several processes on a single processor. These processes are tightly cou-

pled and normally consist of several processes surrounding a process doing

the computations required. These additional processes all carry supporting

functions, for example routing data to the correct processor. An example of

this is the load-balancer described in Chapter 3. In this case the CSP model

is deficient, in that it forces unnecessary copying of data between processes.

Efficiency could be considerably improved if a shared memory mechanism

was available for these intra-processor communications.

One topic that needs consideration is a choice between different parallel

architectures, S1MD or MIMD. The work in this thesis has been with MIMD

computers.

The most effective way to use a paralLi computer is by geometrical de-

composition, in which the computational domain is divided into several

Chapter 6. Conclusion 	 210

patchs. Each patch is then assigned to a single processor. This is true

even for the pipelined spectral algorithm described in Chapter 4. For both

schemes investigated, the spectral and the grid-point, algorithms for SIMD

machines exist.

The algorithm for a regional or limited area model described in Section 5.2

is a data-parallel algorithm in that all processors follow the same sequence

of instructions but on different data. The grid-point model implemented

used "IF" parallelism in that, for most of the time, all processors do the

same thing but can follow different paths for part of the time depending on

the state of certain variables. This makes the programmer's or designer's

task easier as the same program can then be written for all processors. The

smaller the number of different paths that different processors can follow

the easier will be the designers task. Following this approach means that a

large MIMD computer will have many copies of this program running—one

copy per processor.

In order to utilize a large machine, the sub-domain size per processor will

be small. Existing meteorological models use large complex programs and

it is conceivable that the amount of memory required to hold the compiled

program on a single processor will be much greater thr that requirto store

the variables used by the program on that processor. The total cost of the

computer may therefore be dominated by the cost of the memory, on each of

the many processors used to store the replicated program.

The transfer of existing parameterization codes to MI[MD computers

should be trouble free as long as they are written in a standard program-

ming language, such as Fortran 77. Load-balancing is unlikely to increase

the efficiency of the parameterization part of a model. The conversion of the

Reading spectral model to run on a parallel computer though not trouble

free did allow large amounts of the existing software to be reused.

Chapter 6. Conclusion
	

211

MIMD machines are flexible, but this flexibility carries a cost. The danger

is deadlock. In a large program with many people making modifications

it is possible for one person to introduce the possibility of deadlock into

the program' but it may not actually occur until much later when another

modification is made to the program. This second modification causes a

slight change in the detailed timing of the program—the potential deadlock

then becomes realised.

Examining now SIMD machines, for dynamics schemes their efficiencies

would be high and there would be no need for the massive replication of a

single program required for MIMD machines. It seems likely to the author

that the parameterization stage of a model would run at low efficiencies

on data-parallel machines. An acceptable implementation would probably

require a total rewrite of the existing code into a Fortran 90 array format

and code restructuring. The author believes that, mainly due to the prob-

lems with using existing parameterization codes on SIMD machines, MIMD

machines are preferable for atmospheric models. Where possible the model

should be coded in a data-parallel style possibly using Fortran 90.

When designing algorithms for parallel computers there are three crucial

issues which must be considered:

Work decomposition—the algorithm should be decomposed into pieces,

such that processors have equal work to do between synchronisations.

Scaling—The algorithm should scale with increasing numbers of pro-

cessors, though the subdomain size may remain fixed to achieve this.

Communications—communications are important. Placement of the

processes on the hardware should be such as to minimise communi-

The process topology will have cycles in it.

Chapter 6. Conclusion
	

212

cations costs. The importance of process placement will decrease as

the total bandwidth of the machine, relative to the total computational

speed of the machine, increases. For sufficiently high bandwidth, a

computer which appears to have only one global memory could be built.

Many members of the meteorological community have experience with

existing numerical methods. In addition they use large and complex com-

puter codes. Based on the algorithms presented in this thesis the author

feels that both grid-point and spectral methods could be used efficiently on

massively parallel computers. There is no great restriction due to the nature

of these computers to prefer grid-point methods to spectral methods or vice

versa.

The author believes that automatic conversion of existing Fortran 77

codes will be a difficult task. An automatic system would find it difficult to

have the necessary information about the entire code to find good distribu-

tion and mapping strategies.

The author believes the best method to use parallel machines is to begin

with working serial code and convert it. This may not achieve optimum

efficiency but it does allow some of the existing software to be reused. In

addition, values of variables within the code can be compared between the

serial version (running on a single processor) and the parallel version thus

making it easier to verify that the parallel version of the model is producing

the same results as the serial model. Exact agreement for the values of

the variables of two models should not be expected if the parallel algorithm

requires rearrangement of the order of computations as in the spectral model

described in chapter 4. The necessary changes to the program code, for it to

run on a parallel computer, will involve addition of communications; most

likely through subroutine calls. After the model is running on the parallel

computer it can then be further optimised.

Chapter 6. Conclusion
	

2120.

Spectral method models will be easier to convert to parallel computers

than existing grid-point models. This is because the places in the spectral

method models where communications are required are few and can be easily

identified, so the remainder of the code can be used with no changes. In grid-

point models there are many places where communications are required.

The use of the Fortran 90 language with its array syntax makes conversion

of grid-point methods significantly easier. However to exploit this would

require rewriting of most existing grid-point models. For both spectral and

grid-point methods, existing parameterization scheme codes could be used

on MIMD computers without any difficulties greater than transferring these

codes from one serial computer to another.

To complete this chapter, and the main body of the thesis, a few specu-

lative thoughts on what a massively parallel supercomputer should have for

meteorological users will be presented. As stated earlier in this thesis, the

need for increasing computing power is likely to make the use of massively

parallel computers mandatory for atmospheric modelers. The "holy grail"

that many organizations are searching for is a Teraflops 0012 floating point

operations per second) computer. Such a computer would make tractable

many problems which are at present computationally intractable.

The author imagines that such a computer would have 10,000 processors,

with each processor being capable of sustained rate of lOOM flops. The com-

munications bandwidth of the computer would be at least lOOM bytes per

second per processor or a total bandwidth, for the entire machine, of iT

byte/second. If the communications speed could be increased beyond this

point then programming the machine would be easier. The communica-

tions technology should support wormhole routing. In addition, hardware

support for process to process communications rather than processor to pro-

cessor communications should be provided. This would remove the need

for the inefficient multiplexer/demultiplexer software solutions used for this

Chapter 6. Conclusion 	 213

end in Chapters 5 and 3. Each processor would have a limited amount of

memory available for program store but a program cache should be used

and program fragments, or subroutines, could be brought in as required

from slower, cheaper store, such as disk. The author estimates that such

a computer could carry out a century integration of a T168140 atmosphere

model similar to that discussed in chapter 4 in approximately one week. In

making this estimate the author has assumed that the time taken by the

parameterization schemes is the same as that taken by the dynamics.

The design of the computer would need to take account of the hardware

reliability. With so many components in a machine, the mean time between

failure of some component, out of the many in the machine, would be rather

short. The computer would probably need to automatically diagnose, remove

and perhaps replace, the failed component. Software tools and subroutine

libraries would be needed in order to use the machine effectively, examples

of these include: communication libraries; load-balancing libraries; timing

and analysis tools; and tools to aid programmers in their efforts to convert

existing codes to run on such a machine.

Such a machine would be extremely powerful and produce a "fire-hose"

of data; some mechanism would be required to rapidly store this data. Ana-

lysing the data produced by the massively parallel computer would be chal-

lenging; substantial computing resources would be required for this alone.

However the primary requirement for this task is ease of use.

One final remark, the author believes that in order to solve the problems

that face meteorologists increasingly powerful computers will be required.

These computers will need to be parallel computers. It is hoped that this

thesis has shown how a start could be made on implementing present atmo-

spheric models on such computers.

Chapter 6. Conclusion 	 213

failure of some component, out of the many in the machine, would be rather

short. The computer would probably need to automatically diagnose, remove

and perhaps replace, the failed component. Software tools and subroutine

libraries would be needed in order to use the machine effectively, examples

of these include: communication libraries; load-balancing libraries; timing

and analysis tools; and tools to aid programmers in their efforts to convert

existing codes to run on such a machine.

Such a machine would be extremely powerful and produce a "fire-hose"

of data; some mechanism would be required to rapidly store this data.

Analysing the data produced by the massively parallel computer would be

challenging; substantial computing resources would be required for this

alone. However the primary requirement for this task is ease of use.

One final remark, the author believes that in order to solve the problems

that face meteorologists increasingly powerful computers will be required.

These computers will need to be parallel computers. It is hoped that this

thesis has shown how a start could be made on implementing present atmo-

spheric models on such computers.

Appendix A

Terminology

This part of the appendix describes some of the notation used in the thesis,

and a brief description of some technical terms. In addition explanations of

some of the acronyms used is also given.

r The number of words that can be transferred to a neighbouring processor

along one link, in the time it takes to do one floating point operation.

r0 The startup time (in units of r) for a single communication.

{ a, b,. . .} - 1 means in order to compute values at a site labeled t values

from the set of sites {a, b } are required. This notation is based on

that of Carver (1990).

'r is the time for a single floating point operation. 'r is also used in several

places to mean a time.

v is the valency of the processor—how many communication links it has to

other processors.

e is the efficiency.

214

Appendix A. Terminology 	 215

c is the number of computation operations per site. It is normally used in

comparison with communications speed. This measure is similar to the

measure, f, of Hockney and Curington (1989) but for communications

rather than memory access.

Time step the interval between results at the output end of a pipeline.

Startup time the time it takes for the first result to appear at the output

end of a pipeline measured from the time when the first task enters

the pipeline.

Wormhole routing message routing method where intermediate proces-

sors forward partial messages as they are received. Contrast to "store

and forward" routing where the whole message must be received by an

intermediate processor before passing it on.

MIMD Multiple Instruction, Multiple Data, computer architecture where

each processor can do different operations on different data.

SIMI) Single Instruction, Multiple Data. A computer architecture where

all processors do the same operation on different data.

Data-Parallel a computer architecture where the same operation is per-

formed on many data values simultaneously. Fortran 90 uses this

model.

Sealed time the time taken multiplied by number of processors used. Used

when the problem size remains constant as the number of processors

increase.

Speedup Measure of decrease in time taken when using N processors com-

pared to using one processor.

Appendix A. Terminology
	

216

Scaled Speedup speedup measured when the problem size is allowed to

grow with the number of processors used.

CSP Communicating Sequential Processes, a model of parallel computing

in which processes interact by exchanging messages.

CCS Calculus of Communicating Systems. Another model of message-

passing for parallel computing.

CPU Central Processing Unit.

ECS Edinburgh Concurrent Supercomputer.

FFT Fast Fourier Transform.

NWP Numerical Weather Prediction.

DAP Distributed Array Processor. A data-parallel computer.

CM Connection Machine. Another data-parallel computer.

Appendix B

Grid-point Model Description

B.1 Primitive Equations

In the following equations the symbols used and their meanings are p, the

pressure, v, the horizontal velocity, the geopotential, 1, the Coriolis term,

T the temperature, q the specific humidity, and S an arbitrary scaler tracer.

These are the equations for a coordinate 11(po ,p) where ri(O, p) = 0 and

i(p,-p) = 1. p is the surface pressure.

Dv
—+fkxv+V+—VP

RT
= 	0

Dt p
DT

D p

D
= 0

-D
DS

= 0
Dt

—(
ap
--) + V . (v

ap
—) + _(r ap

—) = 0
11 	at

D
—+--

RTap
- - 0

11 p11

217

Appendix B. Grid-point Model Description 	 218

where
Dp

w=—=—fo V.(v
ap
—)d+v.Vp 	 (B.7)

Dt

B.2 Finite Difference Scheme Used

The following notation is used throughout the rest of the appendix;

f(jj)A = f(t+,j)+f(—,j)

2

and
f(+,j)—f(— ,j)

The model uses the hybrid coordinates (i-i) used by the European centre

for Medium Range Weather Forecasting and described by Simmons and

Strüfing (1981). For each model level r is defined implicitly by the following

relationship for the half model level pressures.

= Ak+ IPO + Bk+1p 	 (B.8)

Ak+ i and Bk+1 are constants which are defined by the model. Pa is a constant

pressure and, as usual, p,. is the surface pressure.

B.2.1 Adjustment Step

Each adjustment step consist of:

NLEV
it AO

P. 	= P - 5t T V 	 (B.9)
iit=1

The vertical advection is computed at this point and is given by

0
NLEV 	 k

= {(—)k+ 	V (v)} - 	V (Vr) 	(B. 10)
r=1

Appendix B. Grid-point Model Description 	 219

which using Equation B.8 can be rewritten as:

ap 	 NLEV 	 k

(fl 	k~ = {Bk~ 1 	V 	
- 	

V (vA °) 	(B.11)
r=l 	 r=i

for k = 0 and k = NLEV (i)k+ = 0. In order to conserve energy the

following expression for the vertical advection is used,

• 	F
—)k

(fl)k+ (Fk+l —Fk)+(11
Zhi Mk- (FkFk_l)

((B.12)
a-q =

where F is the quantity being advected.

	

The finite difference approximation to the 	term in Equation B.2 is

KTkWk 	
k-i p -

	

- KTk{—[flfl
k+ IT 	(VrA '°)}

P 	 Pk--j1 r=i
-

+(XkV(VkLpk
AG

)1}/Pk 	 (B.13)

AG

+Vk V(
lflPk++ — Pk

LPk

giving for the finite difference approximation to Equation B.2:

T 1 = T - 6t{(ri
aT
)k

—

KTkWk 	
(B.14)

aTj Pk

where the first and second term on the lefthand side are defined in Equa-

tions B.10 and B.13 respectively.

aq qfl+l
= q t - 5t(1I

DTJ
(B.15)

The equation for the update for any scalar is identical in form to that of

Equation B.15. These are all done with variables from timestep it.

Followed by for each level, the computation of values of velocity by;

	

U 	= W1U
TL
 + W2V - w3(P + (Ti

au
-)) - w4(P9 + (11

av
—)) (B.16)

11 	 aTj

i

	

ii+ TL
V 	= w1vTL

—w2u _WOO +(1
av
 i)+w4(P+(1

au
)) (B.17)

11

Appendix B. Grid-point Model Description 220

where

V(X,Y) =
— 1 	

{AX
o
 +ö9(cosOY)

A
 } 0 acos

VP = 1A 	—A
-()
a Cos O

, 8 P

1 - F 2 t2/4
Wi 	

= l+F2öt/4

rt

= 1 + Fn2t2/4

5t
W3 = 1+FTh2&2/4

Ft2/2

1 + FTh2t2/4 	
(B.24)

F1 	= (f+ u
Tt tan 9)
	 (B.25)

a
0

= 	1 	
Ri5

Pk. p,,+ 	Pk-- 'Pk_
PA) (B.26)

a Cos 0 	 LPk
A

P0 =
	In

	 Pk) 	
(B.27)

a 	 LPk

with

= 	+ R(TV)kln Pk+.
	

(13.28)
Pk- +

01, = 	+ c kR(TV)k 	 (B.29)

= i -
	

in Pk+
	

(B.30)
Lp Pk_+

(Tv)k = T(1+O.61q) 	 (B.31)

In order to stop grid separation the following "cross-grid" term is added,

NLEV 	 A

P. = 	- 	 + RT? 6AL p] /cos 0 + 	 + RT°S0Lp] }

- {A[A °5A ° + RT'° A °] / cos 0 + 5[Ap 600 AeA+RTA0be]}]

This adjustment step is carried out three times.

Appendix B. Grid-point Model Description 	 221

B.2.2 Advection Scheme

The advection step consists of a modified Lax-Wendroff scheme. Only the

advection step for T is shown, both q and S (an arbitrary scalar) will have

the same form.

—

	

Ae 	
A8 t U 	 Ø _A u 2 = [u — —{ 	AU +v 58u }] 	 (B.32)

2a cosO
A8—

IV
At U 	 _e A = [v - —[+v 8 v I 	 (B.33)
2a cose

= [1A0 - Lt{_U —s 	—A

	

bAT +vb8T }I 	 (B.34) 2a cos8

where At = 35t, followed by

rt+1 	 U At —AO 	
e 	_3A

U 	U — ---{ 	
[(1

+ C)bAUe — c{ -) 63A + 53AU }] = 	- a cosO
A 2 __A 1 _e

	

+ C)ô0U--— C{-530U + 639u
}]}h1 	

(B.35)

m+1 	m At AO

	

- 	3A

a 	O[(1 + c)bA — c{o3A0 + V 	= V

	

+V X0U1 + 068 	
A 1 	

(B.36) — c{b30V + b3ev }]}

	

1 = TTh_{ 	
2 —s 1 	—3A T

a Cos 0
-U1+5

At U
8 3sT +b3A)T }]

+ C)beTA - c{b3eTA + lbT3e}I}n++ 	 (B.37)

where

c = 3/40 - 	2);

— c 	u2it2 	v 2,t 2
- 	a Cos e&2 +

Note that all the blocks in Equation B.32 have an 'R of]while some of the

blocks in Equation B.35 have an 'R of 2.

Appendix C

Technical Proofs

C.1 Derivations for the FFT

C.1.1 Mapping Proof

Proof that j = 	+ t satisfies properties 4.4, 4.5 and 4.6. These desired

properties are;

{j(I, k,) + 1, (t, k, t+ 2-U+1)) + I,
-4 j(t + 1, k,) + 1

q
-

 (ls-1)-2
}, 	kE{O,...,2'—l}

i(t + 1, k,) = iG, k, 0,

Vke 10,...,2— 11, 	Vi E {O,...,2— I

iG + 1, k + 2, 0 = jG, k, +

Vice {O,...,2— 11, 	Vi {O,...,2 	- I

Th prove that the expression satisfies requirement 4.4 first consider

j(t,k,+ 1), Vi < 	- 1.

5(,, k, + 1) =
	

+ + 1, Vt E {O,. .. , 	- 1

=. 	j(l,k,t+ 1) = 5(l,k,t) = 1 Vt e {O, . . . 	- 1 }

WK

Appendix C. Technical Proofs 	 223

Similarly iG, k, i12(q-G+1)) 1) is 5G, k, 	2(-('+1)))+ 1 V i e {O, . . . , 	- i

Now consider

{j, k, t + 1), j(, k, i + 	+ 1)j 	j(1 + 1, k, t + 1)

and substitute the expressions above for j to obtain

{j(t, k,) + 1, j(, k, i + 	+ 1) '-+ j(t + 1, k,) + 1

To prove that the expression for j satisfies requirements 4.5 and 4.6

consider k' e {O,2_1 - I then,

1 = 22<)

k'+2 1 = 22<+1

A proof that the expression for j satisfies requirement 4.5 is given below,

j(t+1,k,)= 	 VkE {O,...,2'— 11

= 	iG+ 1,k,t) =

= 5(1-i-1,k,t) =j(t,k,i).

A proof that the expression for 5 also satisfies requirement 4.6 follows,

jG+1,k+2) =2 1 k+2+L 	Vke {O,...,2— 11

= 	j(t+ 1,k+2J) = 	 = 1)+t

=> S(1+ 1,k+2t,i)

C.L2 Proofs for the Real packing of the FFT

It is necessary to prove that the following 2 mappings are equivalent to

mi—+M/2—in V TuE{1,...,M/2-1}

shiftright(reverse(M/2 - m, M/2), M/2)

reverse(shiftleft(M/2 - ui., M/2), M/2)

Appendix C. Technical Proofs 	 224

Begin by considering shiftright(reverse(M/2 — in, M/2), M/2). Use defini-

tion 4.1 for shiftright and reverse to obtain;

shiftright(reverse(m, M/2))

reverse(in, M/2) '— (reverse(m, M/2) + 1) mod M/2

M i —+((M/2 — in + 1) mod M/2 + 1) mod M/2

M '—* (M/2 — in) mod M/2

in 	M/2—in

The last two steps in the above proof use the limits on the range of M. Step

3 requires that (M/2 — in+ 1) e {O, . . . , M/2 — 11 which is true because of the

limits on the range of in. Step 4 requires that M/2 — in e {O, . . . , M/2 — 1 }

which is also true.

Now consider reverse(shiftleft(in, M/2))

reverse(shiftleft(in, M/2))

shiftleft(tn, M/2) '—* (M/2 — (shiftleft(in, M/2))) mod M/2

M '—f (M/2—((in— 1) mod M/2) + 1) mod M/2

m '—* M/2—in

In the above proof the limited range of in is also used.

C.2 Derivations for the Legendre Tree

Define e, the efficiency as fuadvl. P
Ptotal 	

11 is the number of processors doing

useful work, the number of leaf processors and level dL — 1 processors. Ptot,j

is the total number of processors.

usefti1 = (v — 1)dL +
(v — 1)dL_1 	

(C.1)

Appendix C. Technical Proofs
	

225

dL

total = 	- 1)cL 	 (C.2)

v(v-1Y 1
e=

	

	 (C.3)
1)-a

Utilize the following relationship,

K 	1 -

= 	
(C.4)

1—x

to rewrite C.3 as

v(v— 1 2(v-2)
C =

1 —(1/(v— 1))dL

v('v - 2)
= e=

	

	 (C.5)
(v - 1)2 - (v - 1)-(dr-1)

This is the required expression for Equation 4.23. The next proof required

is this in terms of the total number of processors. The total number of

processors in the tree is (1) I-1 	
m

.
v-2 - After some mapulation this can be

rewritten into the following form,

(v - J)(dLl) - 	(v - 1)2

- P(v-2)+1 	
(C.6)

and substituting this into expression C.5 to obtain,

v(v-2) v(v-2)
+ 	 (C.7)

(v—i)2 (v -1)2P

Appendix C. Technical Proofs 	 226

C.3 	Vertical Iterations Grouping factor

Begin with the expression for the efficiency (a copy of Equation 5.20)

Ku

GS0 + --- max(Gu, Gr + r0)

The aim is to maximise e, which is done by minimising the denominator. If

the denominator is rewritten max(d1 , d2) where

d1 = GS0 +(V— 1)(Gr+r0)+(K— G)u 	 (C.9)

d2 	= GS0 +(V— 1)(Gr+r0)+(K— G)(r+r0/G). 	(C. 10)

There are three cases that require consideration.

d >d2 VG i.e. u>r+r0.

d1 <a2 VG i.e. u < r

u>i and u<r+r0

In case 1 d1 should be minimised to maximise e.

ad, S(Vl) 	 (C.11)
aG

But from the definition of S0 in Subsection 5.2.2, S0 is always greater than u

and therefore 	is always positive. Thus the minimum value of d1 occurs aG

at G = 1, giving a value for Gmm of 1.

In case 2 d2 should be minimised to maximise e

= S0 + (V - 2)r - Kr0/G2 	 (C.12)
aG

The minimum of d2 occurs at Kr0/G2 = S0 + (V - 2)r which gives for Gm jn the

following expression

/ / KT
G= max (\1)\/S(V2)) 	 (C.13)

Appendix C. Technical Proofs
	

227

For case 3 then the minimum value will occur at the intersection of the

functions d1 and d2. This occurs at u = r + r0/G giving,

Gnnn - -
To 	

(C.14) -

Bibliography

Arfken, G. 	 1985 	Mathematical Methods for Physicists.
Academic Press, New York.

A C. (v c. Memory 	1990 DAP series FORTRAN Plus Langguage
Thchnology 	 (Enhanced). AMT Ltd, 65 Suttons

Park Avenue, Reading RC6 1AZ.

Batchelor, G. K. 	 1967 	An Introduction to Fluid Dynamics. Cam-
bridge University Press, Cambridge.

Bell, R. and Dickinson, A. 	1987 	The Meteorological office operational nu-
merical prediction scheme. Scien-
tific Paper 41, U.K. Meteorological
Office, Her Majesty's Stationary Of-
fice , London.

Bengtsson, L. 	 1991 	Advances and prospects in numerical
weather prediction. Q. J. R. Mete-
orol. Soc., 117(501), 855-902.

Boillat, J., Brugê, F., and 	1991 	A dynamic load balancing algorithm for
Kropf, P. 	 molecular dynamics simulation on

multi-processor systems. Journal of
Computational Physics, 96, 1-14.

Boillat, J. 	 1989 	Load balancing and poisson equation in a
graph. Preprint.

Bourke, W. 	 1974 	A multi-level spectral model.I. formula-
tion and hemispheric integrations.
Monthly Weather Review, 102, 687--
701.

Bourke, W. 	 1988 	Spectral methods in global climate and
weather prediction models. 	In
Schlesinger, M. E., editor, Physically-
Based Modelling and Simulation
of Climate and Climate Change.
Kluwer Academic Publishers.

228

Bibliography

Bowler, K., Kenway, R., 	1987 	An Introduction to Occam 2 Program-
Pawley, G., and 	 ming. Chartwell-Bratt, Sweden.
D.Roweth

Bowler, K., Kenway, R., 	1989 	The Edinburgh concurrent supercom-
and Wallace, D. J.

	

	 puter: project and applications. In
C.R.Jesshope and Reinartz, R., edi-
tors, CONPAR 88, 635 - 642. Cam-
bridge University Press.

Brankovié, C., 	 1990 	Extended range predictions with ECMWF
Palmer, T. N., 	 models: Time-lagged ensemble fore-
Molteni, F., 	 casting. Q. J. R. Meteorol. Soc.,
Tibakdi, S., and 	 116(494),867-912.
Cubasch, U.

Brent, R. P. 	 1974 	The parallel evaluation of general arith-
metic expressions. Journal of the As-
sociation for Computing Machinery,
21(2),201-206.

Carver, G. 	 1988 	A spectral meteorological model on the
ICL DAP. Parallel Computing, 8,
121-126.

Carver, G. 	 1990 	Meteorological Modelling on the ICL Dis-
tributed Array Processor and other
parallel computers. PhD thesis, Ed-
inburgh.

Cats, G., Middelkoop, H., 	1990 	A meteorological model on a transputer
Streefland, D., and 	 network. In Hoffman, G.-R. and
Swierstra, D. 	 Maretis, D. K., editors, The Dawn of

Massively Parallel Processing in Me-
teorology. Springer-Verlag.

Chamberlain, R. M. and 	1990 	Some computational fluid dynamics appli-
Chesshire, G.

	

	 cations on the Intel iPSC/2. In Hoff-
man, G.-R. and Maretis, D. K., edi-
tors, The Dawn of Massively Parallel
Processing in Meteorology, 277-286.
Springer-Verlag.

Charney, J. G., 	 1950 	Numerical integration of the barotropic
Fjøortoft, R, and von 	 vorticity equation. Tellus, 2(4), 237-
Neumann, J. 	 254.

Clarke, L. and Wilson, G. 	1990 	Tiny: An efficent routing harness for the
INMOS Transputer. Preprint EPCC-
TR90-04.

	

.UOpuO'] 'I 0! 	1 WI IIH 	 U 'IIM
-aoivax.-j 	iqOd .nqn2ej puu 	 pu 'j 'uowjg
s3nbunpj juiauaD 1 9WflOA 's.tos 	 's '°;o ' 'muezkj
-sadoJd juaiinauoo no swa7qojd guinjoS8861 	' 'uosmjof '9 'xoj

T1oA-.i2u!.ldg 891
0T71 'iCO/OJOdldJtJ Vi ffUiSSaaOJJ 7d77V

-.tvj A7arnssvjijJo nmvu aljj 'siorp

'. 	J 'Si9Ip pu j-9 'UtUJOH UJ
DUJ 'qzuase3J Amo ju 2uisseo.zd I8ll'd0661

'096-8'V6 'T7,-3 'S.LdJflhIWO3
no snoiJavsnv4J jqjj
.uip PUU suo suio .xendmoo ouaoS 	ZL61 	

f,IN 'uuji

zgg T9I qsa
PvOH uopuc (Øg D -low)

3kJO Ju3L20j0.10qpjj 'WO I!I
-OJO8JA Mfl 'Zq NJLL3G
aiqdsosem-oiaqdsow.rs OZ o jaW aqL 	L861 	 W

UFH 'PA
-iauudg LTr 	'sJajndwoaiadnS
no ffuyaulffuff puz aanaig '.io;ipe

2 'i9O.I UJ 	 UO SJ8
-pow awp puu 2uijsu;)axoj 2usOn' 	0661 	 y 'UOSUf(J

UIFIOH '2I2eA-.x02uudS

P°11T 7vdo7oJ0a7aJ2- vi ,usaa
-ojdijjnN 'SJOjTp 'J '2uijjaUg

UUWOHJ-9 UJ 	kjA5J

ju IP° 	 8 UJ 	8861 	 'j 'ueJ

*vo 'olfv °IM
'uuUIJfl 	UBIOJ gg—ØJ7J 'nolJ
-vjndwoO jallamd puv IS'IA. '°
-P '9 	 P 	I lagunS
uj 	s.iendwoo ueAup-assew
.ioj ainpaqppau zossexud puu 3.10M8 	0661 	 At 'IIBU

'n7Jndwo3 pa7nq7Jzs puv 7a77awj
Jo ivunor s.iosseoidijnm A.iowom
panqusTp .io.j upujq P°I 3ItUBUAJ 	6861 	 9 'O)JUq3

9M1—TgT
'ICldldOS 7VdiffO7OJOaldJ4J 7mCo1 ayj Jo
7vu.inor 4iavn 	suotnba .ie
_WA MOJ4S alql ol uotoiiddV :Uofl
-njosaj ajquUVA tRIM I°P°1" UO 	 J-f 'uAae9
-Did 	 V.poI 886T 	 prn'I1flO3

og 	 XqcIz8ogq[ff

Bibliography
	

231

Gadd, A. 	 1978 	A numerical advection scheme with small
phase speed errors. Quarterly Jour-
nal of the Royal Meteorological Soci-
ety, 104, 583-592.

Gadd, A. 	 1980 	Two refinements of the split explicit inte-
gration scheme. Quarterly Journal
of the Royal Meteorological Society,
106,215-220.

Gelernter, D. 	 1981 	A DAG-based algorithm for prevention
of store-and-forward deadlock in
packet networks. IEEE &ansactions
on Computers, C-30(10).

Gerndt, H. M. 	 1989 	Automatic Parallelization for Distributed-
Memory Multiprocessing Systems.
PhD thesis, Rheinischen Friedrich-
Wilhelms-Universität.

Gill, A. E. 	 1982 	Atmosphere—Ocean Dynamics. Academic
Press, New York.

Girard, C. and Jarraud, M. 	1982 	Short and medium range forecast differ-
ences between a spectral and grid
point model. an extensive quasi—
operational comparison. Thchnical
Report 32, European Centre for
Medium Range Weather Forecast-
ing, ECMWF, Shinfleld Park, Read-
ing.

Gregory, D. and 	 1990 	A mass flux convection scheme with rep-
Rowntree, P. R.

	

	 resentation of cloud ensemble char-
acteristics and stability-dependent
closure. Monthly Weather Review,
118(7),1483-1506.

Gronas, S. 	 1988 	Parallel integration in the Norwegian pre-
diction model. In Multiprocessing
in Meteorological Models, 407-418.
Springer—Verlag.

Hack, J. J. 	 1989 	On the promise of general-purpose paral-
lel computing. Parallel Computing,
10,261-275.

Haltiner, G. J. and 	 1980 	Numerical Prediction and Dynamic Mete-
Williams, R. T. 	 orology (second edition). John Wiley

and Sons, New York.

Bibliography 	 232

Hillis, D. 	 1984 	The Connection Machine. M.I.T. Press,
Cambridge, Mass. U.S.A.

Hoare, C. A. R. 	 1985 	Communicating Sequential Processes.
Prentice Hall, London.

Hockney, R. W and 	 1989 	f112: A parameter to characterize mem-
Curington, I. J. 	 ory and communication bottlenecks.

Parallel Computing, 10, 277-286.

Hockney, R. W and 	 1988 	Parallel Computers 2. Adam Huger, Bris-
Jesshope, C. 	 tol.

Hoffman, G.-R. and 	 1990 	The Dawn of Massively Parallel Process-
Maretis, D. K., 	 ing in Meteorology. Springer-Verlag,
editors 	 Berlin.

Hoffmann, G.-R. and 	1988 	Multiprocessing in Meteorological Models.
Snelling, D. F., 	 Springer-Verlag, Berlin.
editors

Hogan, T. F. and 	 1991 	A description of navy operational global
Rosmond, T. E. 	 atmospheric prediction system's

spectral forecast model. Monthly
Weather Review, 119(8),1786-1815.

Holloway, Jr., J. L., 	 1973 	Latitude-longitude grid suitable for nu-
Spelman, M. J., and 	 merical time integration of a global
Manabe, S. 	 atmospheric model. Mon. Wea. Rev.,

101,69-78.

Holton, J. R. 	 1979 	An Introduction to Dynamic Meteorolo-
gyy, volume 23 of International Geo-
physics Series. Academic Press, New
York, second edition.

Horiguchi, S. and 	 1989 	A parallel algorithm for finding the maxi-
Miranker, W. L. 	 mum value. Parallel Computing, 10,

101-108.

Hoskins, B. J. and 	 1975 	A multi-layer spectral model and the
Simmons, A. J. 	 semi-implicit method. Quart. J. Roy.

Met. Soc., 101, 637-655.

Houghton, J. T., 	 1990 	Climate Change The IPCC Scientific
Jenkins, G. J., and 	 Assesment. Cambridge University
Ephraumus, J. J. 	 Press.

Houghton, J. P. 	 1986 	The Physics of Atmospheres. Cambridge
University Press, second edition.

Bibliography

Houghton, J. 1991 The Bakerian lecture, 1991: 	The pre-
dictability of weather and climate.
Phil. Trans. R. Soc. Lond A, 337,
521-572.

Ibbet, R. N. 1982 The architecture of high performance com-
puters. McMillan, London.

INMOS Limited 1988 The Transputer Reference Manual. Pren-
tice Hall.

James, I. N. and 1990 An overview of the UK universities' at-
Hoskins, B. J. mospheric modelling project. Tech-

nical 	Report 	12, 	UK 	Universi-
ties' Global Atmospheric Modelling
Project, Dept. of Meteorology, Uni-
versity of Reading, Reading RG6
2AU.

James, I. N. and 1989 Ultra-low-frequency variablity in a simple
James, P. M. atmospheric circulation model. Na-

ture, 342, 53-55.

Jones, G. 	 1987 	Programming in Occam. Prentice-Hall In-
ternational, London.

Juckes, M. N. and 1987 	A high-resolution one-layer model of
McIntyre, M. E. breaking planetary waves in the

stratosphere. Nature, 328, 590-595.

Kauranne, T. 1990 	Asymptotic parallelism in weather mod-
els. 	In 	Hoffman, 	G.-R. 	and
Maretis, D. K., editors, The Dawn of
Massively Parallel Processing in Me-
teorology. Springer-Verlag.

Kung, H. T. 1979 	Let's design algorithms for VLSI sys-
tems. In Proceedings of Conference
on VLSI: Architecture, Design, Fab-
rication at Caltech. 	Also techni-
cal report no CMU-CS-79-151 from
Carnegie-Mellon University, 	Com-
puter Science Department.

Lazou, C. 	 1988 	Supercomputers and their Use. Oxford
Science Publications, Oxford.

Lorenc, A. C., Bell, R. S., 	1991 	The Meteorological Office analysis cor-
and Macpherson, B. 	 rection data assimilation scheme.

Quart. J. Roy. Met. Soc., 117, 59-91.

Bibliography
	

234

ci
Lorenz, E. N. 	 1982 	Atmospheric prectability experiments

with a numerical model. Tellus,
34(6), 505-513.

Machenhauer, B. 	 1979 	The spectral method. In Numerical meth-
ods used in atmospheric models, vol-
ume II of GARP No. 17, 121-275.
ICSUIWMO.

Machenhau, B. and 	1972 	On the integration of the spectral hy-
Rasmussen, E.

	

	 drodynamical equations by a trans-
form method. Technical Report 3,
Københavns Universitet Institut fur
Teoretisk Meteorologi, Available in
U.K. Meteorological Library, Brack-
nell, U.K.

McIntyre, M. E. 1989 	On the antarctic ozone hole. Journal of
Atmospheric and Terrestrial Physics,
51,, 29-43.

Meiko 1991 	CS-Thols for SunOS uer. 1.10-1.14. Meiko
Scientific, 650 Aztec West, Bristol,
BS12 4SD, UK. Ref. No. 83-009A00-
02.02.

Messinger, F. and 1975 	Numerical methods used in atmospheric
Arakawa, A. models, volume I of GARP No. 17.

ICSU/WMO.

Metcalf, M. and Reid, J. 1989 	Fortran 8x Explained. Clarendon Press,
Oxford, revised edition.

Milner, R. 1989 	Communication and Concurrency. Pren-
tice Hall, London.

Mitchel, J. F. B., 1989 	CO2 and climate: 	a missing feedback?
Senior, C. A., and Nature, 341(6238), 132-134.
Ingram, W. J.

Murphy, J. M. 	 1988 	The impact of ensemble forecasts on pre-
dictability. Q. J. R. Meteorol. Soc.,
114(480), 463-493.

Murphy, J. M. 	 1990 	Assessment of the practical utility of ex-
tended range ensemble forecasts. Q.
J. R. Meteorol. Soc., 116(491), 89-
125.

Bibliography
	

235

Orzag, S. A. 	 1970 	Transform method for the calculation of
vector-coupled sums: application to
the spectral form of the vorticity
equation. Journal of Atmospheric
Science, 27, 890-895.

Press, W. H., 	 1986 	Numerical Recipes: the Art of Scientific
Flannery, B. P., 	 Computing. Cambridge University
Teukoisky, S. A., and 	 Press.
Vetterling, W T.

Prior, D., Radcliffe, N., 	1990 	What price regularity ? Concurrency,
Norman, M., and 	 Practice and Experience, 2, 55-78.
Clarke, L.

Richardson, L. F. 	 1922 	Weather Prediction by Numerical Process
(1965 reprint). Dover, New York.

Ritchie, H. 	 1987 	Semi-Lagrangian advection on a Gaus-
sian grid. Monthly Weather Review,
115,608-619.

Robert, A. 	 1982 	A semi-Lagrangian and semi-implicit nu-
merical integeration scheme for the
primitive meteorological equations.
Journal of the Meteorological Society
of Japan, 60, 319-325.

Simmons, A. J. and 1981 	An energy and 	angular momentum
Burridge, D. M. conserving vertical finite-difference

scheme and hybrid vertical coordi-
nates. Monthly Weather Review, 109,
758-766.

Simmons, A. and 1981 	An energy and 	anguler momentum
Strtifing, R. conserving finite-difference scheme,

hybrid coordinates 	and medium-
range weather prediction. 	Techni-
cal Report 28, European Centre for
Medium Range Weather Forecast-
ing, ECMWF, Shinfield Park, Read-
ing.

Simmons, A. J., 1989 	The ECMWF medium-range prediction
Burridge, D. M., models: Development of the numeri-
Jarraud, M., cal formulations and the impact of in-
Girard, C., and creased resolution. Meteorology and
Wergen, W. Atmospheric Physics, 40, 28-60.

Bibliography

Smith, M. and Wilson, G. 1991 	Dynamic load-balancing on a one-dimen-
sional mesh. 	Tech. Report EPCC-
TN91-11, Edinburgh Parallel Com-
puting Centre, EPCC, Kings Build-
ings, Mayfield Rd, Edinburgh, EH9
WT.

Snelling, D. F. and 1988 	Performance modelling of the shallow wa-
Tanqueray, D. A. ter equations on the FPS-T series.

In CONPAR 88 B, 156-159. British
Computer Society - Parallel Process-
ing Specialist Group.

Swarztrauber, P. N. and 1990 	Solving the shallow water equations on
Sato, R. the Cray X-MP/48 and the Connec-

tion Machine 2. 	In Hoffman, G.-
R. and Maretis, D. K., editors, The
Dawn of Massively Parallel Pro-
cessing 	in Meteorology, 	260-276.
Springer-Verlag.

Temperton, C. 1983 	Self—sorting 	mixed—radix 	fast 	fourier
transforms. 	Journal of Computa-
tional Physics, 52, 1-23.

Thinking Machines Corp. 1991 	The Connection Machine CM-200 Se-
ries, Technical Summary. 	, Cam-
bridge,Mass,U.S.A.

Tibaldi, S., Palmer, T. N., 	1990 	Extended range predictions with ECMWF
Brankovié, C., and 	 models: Influence of horizontal reso-
Cubasch, U. 	 lution of systematic errors and fore-

cast skill. Q. J. R. Meteorol. Soc.,
116(494), 835-866.

Tracton, M. S., Mo, K., 	1989 	Dynamical extended range forecasting
Chen, W, Kalany, E., 	 (DERF) at the national meteorolog-
Kistler, R., and 	 ical center. Monthly Weather Review,
White, G. 	 117(7),1604-1635.

Trew, A. and Wilson, G., 	1991 	Past, Present, Parallel—A Survey of
editors 	 Available Parallel Computing Sys-

tems. Springer-Verlag, Berlin.

Turing, A. M. 	 1936 	On computable numbers, with an applica-
tion to the Entscheitungs problem.
Proceedings of the London Math-
emetical Society, 42, 230-265.

Bibliography 	 237

Wallace, D. J. 	 1988 	Scientific computation on SIMD and
MIMD machines. Phil. Trans. R. Soc.
Lond. A, 326, 481-498.

Wallace, D. J. 	 1990 	Supercomputing with transputers. Com-
puting Systems in Engineering, 1(1),
131-141.

Washington, W. M. and 	1986 	An Introduction to Three-Dimensional
Parkinson, C. L. 	 Climate Modelling. University Sci-

ence Books, Mill Valley, California.

White, P. W, 	 1987 	Advances in numerical weather predic-
CuIlen, M. J. P., 	 tion for aviation forecasting. Proc.
Gadd, A. J., 	 R. Soc. London A, 410, 255-268.
Flood, C. R.,
Palmer, T. N.,
Pollard, K., and
Shutts, G.

Williamson, D. L. and 	1973 	Comparison of grids and difference ap-
Browing, G. L. 	 proximations for numerical weather

prediction over a sphere. J. Appi. Me-
teor., 12, 264-274.

Williamson, D. L. 	 1979 	Difference approximations for fluid flow
on a sphere. In Numerical meth-
ods used in atmospheric models, vol-
ume II of GA.RP No. 17, 51-120.
ICSUIWMO.

Zemansky, M. W and 	1981 	Heat and Thermodynamics. McGraw-
Dittman, R. H. 	 Hill.

