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Abstract

This doctoral thesis will present the results of work into optimisation algorithms.

We first give a detailed exploration of the problems involved in comparing optimisa-

tion algorithms. In particular we provide extensions and refinements to no free lunch

results, exploring algorithms with arbitrary stopping conditions, optimisation under

restricted metrics, parallel computing and free lunches, and head-to-head minimax be-

haviour. We also characterise no free lunch results in terms of order statistics.

We then ask what really constitutes understanding of an optimisation algorithm.

We argue that one central part of understanding an optimiser is knowing its Bayesian

prior and cost function. We then pursue a general Bayesian framing of optimisation,

and prove that this Bayesian perspective is applicable to all optimisers, and that even

seemingly non-Bayesian optimisers can be understood in this way. Specifically we

prove that arbitrary optimisation algorithms can be represented as a prior and a cost

function. We examine the relationship between the Kolmogorov complexity of the

optimiser and the Kolmogorov complexity of it’s corresponding prior. We also ex-

tended our results from deterministic optimisers to stochastic optimisers and forgetful

optimisers, and we show that uniform randomly selecting a prior is not equivalent to

uniform randomly selecting an optimisation behaviour.

Lastly we consider what the best way to go about gaining a Bayesian understand-

ing of real optimisation algorithms is. We use the developed Bayesian framework to

explore the affects of some common approaches to constructing meta-heuristic opti-

misation algorithms, such as on-line parameter adaptation. We conclude by exploring

an approach to uncovering the probabilistic beliefs of optimisers with a “shattering”

method.
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Lay Summary

In science and engineering it is common to encounter situations in which you want

to find the best solution from a very large number of possible solutions. When the num-

ber of possible solutions is too large for it to be feasible to simply try them all, then one

must instead rely on some strategy for finding a satisfactory solution. There are many

such strategies, and in this thesis we look at a subset of these strategies called meta-

heuristic optimisers. Meta-heuristics optimisers can be though of as simple, broadly

applicable strategies for finding good solutions.

Firstly we examine the ways in which these optimisers can be compared. We see

that there are important senses in which all meta-heuristic optimisers are equal, but that

there are also situations which result in certain meta-heuristics being provably better

than others.

We then argue that an interesting way to explore meta-heuristic optimisers is to

rephrase them in terms of probabilistic beliefs. Moreover, we show that such a rephras-

ing is always possible. Roughly speaking, we show that any simple strategy for search-

ing for good solutions is optimal behaviour given certain beliefs about the sorts of

problems likely to be encountered.

Lastly we look at how one might go about actually uncovering the prior beliefs that

result in a particular meta-heuristic behaviour, and we introduce a simple numerical

approach and explore it’s results.
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Chapter 1

Introduction and Preliminaries

1.1 Overview

This thesis is about optimisation algorithms. In particular, it is about how we might

better understand the behaviour of optimisation algorithms. Nowadays there are a

variety of powerful optimisers in regular use, but we still do not fully understand how

many of these algorithms actually work.

The task of improving our understanding of optimisers can be approached from

several directions. For example, one can endeavour to achieve a theoretically rigorous

understanding of a particular algorithm, search for the best optimisers for some partic-

ularly important problem type, or look at the behaviour of a commonly used optimiser

in practice. All of these are valuable avenues of research. However, in this thesis we

try to get a better understanding of meta-heuristic optimisers in a broad sense.

Optimisation algorithms are, in general, difficult to understand. There are a vast

number of optimisation algorithms in the literature, and any well established optimiser

has hundreds of proposed variants claiming to result in improved behaviour. Moreover,

even if we focus only on broad classes of algorithms there are still many competing,

and often overlapping approaches: swarm algorithms, genetic algorithms, Gaussian

process optimisation, gradient methods, and simulated annealing to name but a few.

This diversity makes a general framework for understanding optimisation difficult.

In fact, often it isn’t even clear what “understanding” an optimisation algorithm

means. What sort of understanding do we want to achieve, and to what end? In many

ways we already do understand optimisation algorithms. After all, researchers devised

and implemented them, and others have refined and improved on these originals. Yet

although the heuristic idea and low level implementation are generally both well under-

1



2 Chapter 1. Introduction and Preliminaries

stood, the behaviour that emerges when the algorithm is actually run on real problems

is much less well understood. This is especially true when we are interested in opti-

misers for functions with multiple optima and complex high-dimensional structure.

In this work we focus on the behaviour of optimisers removed from any particu-

lar implementation. Given the diversity of optimisation algorithms it is not obvious

whether there exists a simple unified way of understanding them. Can all optimisa-

tion algorithms be described in some unified framework? We answer this question in

the positive and show that any optimisation algorithm can be understood as Bayesian

optimal behaviour with respect to some prior and cost function.

In a Bayesian optimisation setting the prior is a probability distribution which de-

scribes prior beliefs about the sorts of problem that the optimiser will encounter. Equiv-

alently it can be seen as characterising uncertainty about the functions that will be op-

timised. When optimising a particular function, data from sampling is used to update

the beliefs, and reduce uncertainty. The cost function is then used to decide what to do

base on the current beliefs (in optimisation this is just the decision of where to sample

next). In this way a prior and a cost function fully determine a Bayesian optimiser’s

behaviour.

We will show that actually, any optimisation algorithm can be represented as a

prior and a cost function, not just those normally considered to be Bayesian. For ex-

ample, the heuristic-based particle swarm optimisation algorithm can be understood

as being Bayesian. In fact, we will show that there are some cost functions which

can potentially produce any optimisation behaviour. For these cost functions different

behaviours simply correspond to different priors. As a result, all optimisation algo-

rithms can be thought of as the result of particular prior beliefs. Any optimiser can be

expressed just as a prior.

In this thesis we argue that an important part of understanding an optimisation

algorithm’s behaviour is exactly being able to phrase it in a Bayesian way. As just

discussed, we show that this is always possible. We also show that this representation

of the algorithm is compact. Further we show that this representation is agnostic with

regard to the algorithm’s aims; different interpretations of what the algorithm is trying

to do produce different but behaviourally equivalent formulations of the optimiser.

For example, if we decide the optimisation algorithm always samples the expected

minimum then one formulation results, if instead we believe the optimisation algorithm

is always trying to gain maximum information about the location of the minimum then

we get an different, but equivalent, formulation of the optimiser. In other words, for
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any optimiser using a cost function that makes it always sample the expected minimum,

there is a different algorithm that uses a maximum information gain cost function but

produces exactly the same behaviour.

The work in this thesis then can be summarised as an effort to understand optimi-

sation in a rigorous and unified way, and we hope that it is at least a step toward that

goal.

1.2 Problem Statement

Optimisation problems are very varied, and so too are our approaches to solving them.

Some optimisation scenarios are very well understood, for example explicitly solving

a low degree polynomial to find extrema, while some problems are still essentially be-

yond our capabilities, for example minimising very high dimensional, slow to evaluate

problems with missing, non-stationary or uncertain data and no gradient information.

In particular, search and optimisation problems tend to be especially difficult if they:

• are high-dimensional.

• have no gradient information.

• are expensive to evaluate.

• have missing, non-stationary or uncertain data.

When problems are sufficiently simple, we are now able to efficiently solve them

with well understood techniques. However, many important problems are either still

essentially insoluble or are best addressed by relatively new methods for which full

theoretical understanding is still required. These sorts of problems tend to fall in the

categories in the above list.

Meta-heuristics are broadly used for the difficult problems in this latter category,

and many of the more popular meta-heuristic optimisers are not yet rigorously char-

acterized theoretically. Of course, some are relatively well understood, but when this

is the case it generally came about though a detailed and specialized investigation into

the particularities of the algorithm concerned. In other investigations simplified ver-

sions of powerful optimisers have been studied, resulting in a distinction between the

simplified version of the optimiser that we understand, and the version actually used in
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reality, which we do not. Further we still lack a generally applicable framework for de-

veloping understanding of optimisers, and for comparing and contrasting the different

meta-heuristic approaches.

This problem is made more difficult by the no free lunch theorems we will cover

in the next chapter. Essentially they show that all optimisers are equal on average, and

thus it is not a matter of determining whether or not an optimisation algorithm is good,

and algorithm evaluation can not be a simple case of pass or fail, but rather we have to

tease out the problems that a given optimiser is particularly suited to.

Thus it is clear that there are gaps in our understanding of optimisation. On the one

hand there are optimisation algorithms that are well understood behaviourally. These

optimisers tend to either be a very simple procedure, such as grid search, or be in the

family of explicitly Bayesian optimisation algorithms.

On the other hand, there are many optimisation algorithms that seem to be neither

extremely simple nor Bayesian in their behaviour. In fact, these algorithms are often

very popular in practice, generally producing quality solutions quickly and reliably.

For example, common optimisation algorithms like gradient descent and simulated

annealing, and naturally inspired optimisers like genetic algorithms, particle swarm

and cuckoo search do not generally make any reference to a probability distribution

over the space of possible functions seemingly required in a Bayesian framework, they

seem not to work with prior beliefs that are updated in accordance with Bayes’ rule

over the course of the optimisation process. At the same time they are capable of

complex dynamic behaviour that is far from straight forward to analyse and understand.

Put simply, there is a void between pragmatic meta-heuristic algorithms and theo-

retically rigorous approaches to optimisation. The problem, then, is to understand the

spectrum of optimisation algorithms in some unifying way. A framework for under-

standing is only useful if it allows us to think more clearly about an area, or naturally

yields novel insights. In particular, it should enable us to address various questions:

What are the key defining features of an optimiser? What makes optimisers similar?

What makes optimisers good?

1.3 Scope and Limitations

This work focuses on optimisation of functions mapping between finite sets. We do not

consider extension to the case of continuous problems, nor explicitly consider multi-

objective optimisation.
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We review and extend result on optimisation algorithm comparison, in particular

no free lunch results. We conclude that, as argued elsewhere, what determines an

optimisers effectiveness is it’s alignment with the problem at hand.

We then argue that a Bayesian interpretation is the right way to understand this idea

of alignment, and moreover, that a Bayesian framing is possible for any optimisation

algorithm. We prove this for on-policy deterministic optimisers and then we look at

how the same ideas can be extended to full behaviours and stochastic optimisers.

Although we show that priors necessarily exist for all optimisers, we do not present

general methods for extracting these priors from algorithm implementations. Such a

task is certainly difficult, and perhaps impossible in general.

We briefly explore the effect on the prior beliefs of combining optimisers, but a full

understanding of how hybrid optimisers priors relate to the priors of their constituent

parts isn’t reached. In fact, there is the potential for something like an algebra of

optimisers, where algorithm behaviours could be added and subtracted, resulting in

new behaviours. This idea is introduced as a possible application of the Bayesian

framing, but not developed here.

1.4 Roadmap

Here we provide details of the layout of the thesis. The remainder of this chapter

is given over to preliminaries, in particular we define the terms and symbols we use

throughout, and state and prove some central underlying results from which the thesis

builds.

Chapter two consists of both a literature review and a detailed exploration of the

problems involved in comparing optimisation algorithms. In particular it looks at

benchmarking and the various no free lunch results, which are a number of results

showing that in a broad range of situations no algorithm can be expected to achieve

better results than any other. These results will be shown to be central in motivating

our later chapters.

Chapter three introduces the concept of Bayesian optimisation, and starts the ar-

gument that a Bayesian perspective is applicable to all optimisation algorithms. In

particular in the chapter we prove that deterministic non-resampling optimisers are all

Bayesian optimal with respect to some cost function and probability distribution over

problem functions. In this chapter we also discuss Kolmogorov complexity, which can

be thought of as a rigours measure of an algorithm’s complexity in a theoretically im-
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portant sense. In particular we give a proof of a relationship between the Kolmogorov

complexity of an optimisation algorithm’s implied prior beliefs and the Kolmogorov

complexity of the algorithm itself.

In chapter four we look at how the approach to understanding optimisers can be

extended to stochastic optimisers and forgetful optimisers. We also explore its appli-

cation to some general approaches to constructing meta-heuristic optimisation algo-

rithms, like algorithm switching, and on-line parameter adaptation.

In chapter five we look to understand some popular meta-heuristic optimisers, and

try to tease out their underlying beliefs. Here we apply the ideas developed in the

previous chapters.

Finally, in chapter six we conclude, look more clearly at some limitations of the

work, and suggest future avenues for research.

1.5 Novel Contributions

This thesis contains several results and generalisations which are, to the best of our

knowledge, new. The main new results are listed here.

• Chapter 2 contains several no free lunch (NFL) extensions and refinements:

– NFL for algorithms with arbitrary stopping conditions (2.5.2).

– NFL for off-policy behaviour (2.6.6).

– NFL for restricted metrics (2.6.7).

– NFL and parallelism (2.7.7).

– NFL in minimax behaviour (2.8.7).

– NFL order statistics and the curse of dimensionality (2.9.9).

• Chapter 3 looks at representing optimiser in a Bayesian way:

– All deterministic on-policy behaviour is Bayesian (3.5).

– Different cost functions produce different prior distributions (3.8).

– Admissible cost functions exist (3.8).

– The Kolmogorov complexity of the implied prior is related to the Kol-

mogorov complexity of the optimisation algorithm (3.7).
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• Chapter 4 extends the Bayesian representation to a wider range of optimisers:

– Uniform randomly selecting a prior is not uniform randomly selecting a

behaviour (4.2.2.1).

– Full behaviours can be represented as prior and cost function pairs where

the prior is conditioned on the starting data (4.3.2).

– Forgetful optimisers are Bayesian (4.4).

– Stochastic optimisers can be strictly worse behaviourally than deterministic

optimisers, and can never be behaviourally better (4.5.5).

– Hybrid optimisation algorithms do not straightforwardly combine the pri-

ors of the constituent optimisers (4.6.1).

• Chapter 5 examines some prominent optimisers using the framework:

– Algorithm shattering proof of concept (5.2).

1.6 Preliminaries

This thesis is concerned with optimisation algorithms. Optimisation algorithms are

procedures for solving optimisation problems. An optimisation problem is a situation

in which we want to find the best possible solution from a set of feasible solutions.

In the following sections we will formally define the concepts required to discuss

optimisation, and provide examples. Definitions of functions, data, sampling policies

and optimisation algorithms will be introduced in that order. The definitions given in

this chapter are just the formalising of some general concepts and specification of no-

tation. We also use some combinatorics to calculate the number of unique optimisation

algorithms, prove some basic results, and generally lay the ground for the main body

of the thesis.

Readers familiar with optimisation may wish to skip this section, barring perhaps

subsection 1.7.2 where the way we represent partially observed functions is detailed,

and Theorem 1, which is used extensively in the next chapter.

1.7 Functions and Data

We now start with our most fundamental definitions. Functions are used as formal

representations of the problems we want to solve, and data allows us to represent partial
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knowledge of functions.

1.7.1 Functions

A function is a mapping from a set X to a set Y which we write as f : X → Y where f

is the name of the function. f : X →Y can be thought of as a rule for assigning to each

element in X and element in Y . We call X the domain and Y the range (elsewhere Y is

sometimes called the co-domain).

For the majority of this thesis we consider deterministic functions f : X→Y , where

X and Y are finite sets with |X |= n and |Y |= m. We assume that neither X nor Y are

empty, and thus n 6= 0 6= m. We denote the set of all such functions F , with |F |= mn.

As we need to represent functions frequently throughout the thesis we introduce

a simple concise representation scheme. Without loss of generality assume that X =

{1,2, . . . ,n}, then for any f ∈ F we can write an ordered list of y values y1,y2, . . . ,yn

where yi = f (i). This ordered list of y values uniquely and fully describes f . When

there is no ambiguity (e.g. in the case where Y = {0,1}) we will sometimes omit the

commas between elements.

Example 1 (Function). Let X = {1,2,3} and Y = {0,1}. We can then write out all

f ∈ F : 000, 001, 010, 011, 100, 101, 110, 111. For example, 110 corresponds to the

case where f (1) = 1, f (2) = 1 and f (3) = 0. Also note that |F |= 8 as |Y ||X |= mn =

23 = 8.

In the optimisation literature there are many terms used to refer to the function

being optimised. It is called variously the “cost function”, “fitness function”, “target

function”, “objective function”, “problem” and even simply “the function”. Here we

use (cost) function.

We now introduce some extensions to the basic function.

Definition 1 (Bijection). A function f : X → Y is a bijection iff ∀ x1,x2 ∈ X , x1 6=
x2 =⇒ f (x1) 6= f (x2) and ∀ y ∈ Y, ∃ x ∈ X such that f (x) = y.

Definition 2 (Permutation). A permutation is a bijection from a set onto itself. That is,

φ : X → X is a permutation iff φ is a bijection.

Note that by a counting argument, if |X |= n then there are n! unique bijections

φ : X → X . The set of possible permutations of X can be thought of as the set of

possible re-orderings of X .
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Definition 3 (Function Permutation). Let φ be a permutation φ : X → X, and let f :

X → Y be an arbitrary function. We call fφ a function permutation where we define

fφ(x) = f (φ(x)).

A function permutation can be thought of as re-ordering the output values. The

resulting function has exactly the same outputs, but they now correspond to different

inputs.

Example 2 (Function Permutation). Let f : {1,2,3,4,5}→ {1,2,3,4,5,6,7} with f =

2,5,2,3,7 and let φ be a permutation φ = 2,5,4,1,3, then fφ = 5,7,3,2,2. See Figure

1.1 for a graphical representation of this example.

Figure 1.1: Function permutation example, f = 2,5,2,3,7 (left) is permuted by φ =

2,5,4,1,3, resulting in fφ = 5,7,3,2,2 (right).

Definition 4 (CUP). Let G be a set of functions mapping X to Y . We say G is closed

under permutation, or CUP, iff for any permutation φ : X → X, f ∈ G =⇒ fφ ∈ G.

Definition 5 (Permutation Closure). Let G be a set of function mapping X to Y . We

define Gcup as the smallest set containing G that is closed under permutation.

Definition 6 (Multi-set). A multi set is a set in which elements can occur multiple

times. Another way to think of a multi-set is as a set in which each element has an

associated count.

1.7.1.1 Binary Functions

In the examples and figures throughout this thesis we frequently use binary functions.

However, as most optimisers work on the space of floating point numbers it is not

immediately clear that binary functions are suitable. In fact we will see that for the
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majority of results discussed in the coming chapters the range and domain of the func-

tions concerned can be arbitrary finite sets, and thus the use of binary functions is just

useful for brevity. When necessary we will make use of other ranges, but we will use

{0,1} as a default for simplicity.

1.7.2 Data

When discussing optimisation we frequently need to describe a situation in which only

a limited amount is known about a function f . We now introduce a scheme for describ-

ing these partial knowledge situations. Note that we focus on noise-free optimisation,

so, when we sample f at x we always get exactly f (x) as an output.

Assume we know X and Y but only know some of the values y = f (x). In this

thesis we will represent such partial knowledge as a function d : X → Y ∪{?} which

we call the data. The question mark “?” represents an x value for which the f (x) value

is unknown. For all x values where we know y = f (x) let d(x) = f (x), for all other

values of x we let d(x) = ?. In other words, if for some x∈ X we have d(x) = ? then we

currently do not know f (x). Let D be the set of all possible data for functions in F . It

follows that |D|= (m+1)n. We refer to the data where ∀ x ∈ X , d(x) = ? as “no data”,

as this represents the situation in which we know nothing about the cost function.

Example 3 (Data). Let X = {1,2,3,4} and Y = {0,1}. Assume we have partial knowl-

edge of some f ∈ F . In particular we know that f (2) = 1 and f (4) = 1. We can

represent this data as a function d where d(1) = ?, d(2) = 1, d(3) = ? and d(4) = 1.

As discussed in 1.7.1 his can be represented more succinctly as: ?1?1. Note that, as-

suming the data is accurate, there are four possible functions consistent with the data:

0101, 0111, 1101 and 1111.

Another common way of formalising the idea of data is as a set of known X and

Y value pairs (x,y). When |X | is large and we do not know much about f this is

a much more succinct representation than the method described above, and we will

occasionally use it for this reason. Using this representation ?1?1 would be written as

{(2,1),(4,1)}. Another benefit of this representation is it allows us to show if we have

sampled the same point multiple times, e.g. the multi-set {(2,1),(4,1),(2,1),(2,1)}
is still ?1?1 but it can be seen that we sampled x = 2 three times (always returning the

same y value as f is deterministic).
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1.8 Sampling Policies and Optimisation Algorithms

We initially considering the set of all possible optimisation algorithm behaviours over

functions f : X → Y , unrestricted by theoretical limitation on what can feasibly be

computed (in the lifetime of the universe for example) and unconcerned with imple-

mentability.

Optimisation algorithms are intended to solve optimisation problems. Generally

this involves a sequential process: make a decision about where to sample the cost

function, sample there and get some new information, make a decision about where to

sample next, and so on. To this end we define a sampling policy, which is the decision

making component of the optimisation algorithm in isolation.

1.8.1 Sampling Policy

The situation discussed throughout this thesis is the following: you have a function

f : X → Y which you can evaluate at any x ∈ X . Your current knowledge of the f is

represented by data d.

Intuitively, a sampling policy is a rule for deciding where to sample next, based on

the current data; Given the current data it specifies which of the potentially numerous

x we should evaluate next.

Definition 7 (Sampling Policy). A sampling policy s is a function s : D→ X, where D
is the set of all possible data, as defined in 1.7.2.

Example 4 (Sampling Policy). Let X = {1,2} and Y = {0,1}. An example sampling

policy s is: s(??)= 1, s(0?)= 2, s(1?)= 1, s(?0)= 1, s(?1)= 1, s(00)= 1, s(01)= 1,

s(10) = 1, s(11) = 1.

Definition 8 (Non-Repeating Sampling Policy). A non-repeating sampling policy s is

a function s : D→ X s.t. if s(d) = x then either d(x) = ? or |d|= m.

Example 5 (Non-Repeating Sampling Policy). Let X = {1,2} and Y = {0,1}. Then

the set of possible data D = {?? ,?0,?1,0? ,1? ,10,01,00,11} and s(??) = 1, s(?0) =

1, s(?1) = 1, s(0?) = 2, s(1?) = 2, is a non-repeating sampling policy.

We will mostly be considering non-repeating sampling policies, and when there is

no ambiguity we will just call them sampling policies.
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1.8.2 Optimisation Algorithms

So far we have defined sampling policies, which decide where to sample given data.

However, we can add to our data by evaluating the cost function f at some x and up-

dating d by setting d(x) = f (x). Essentially, an optimisation algorithm is the repeated

use of a sampling policy, adding to our data each time we make a sample, until a ter-

mination condition is reached. For the time being we fix our termination condition to:

terminate iff we have sampled f at every x ∈ X . Given this fixed termination condition

an optimisation algorithm is fully specified by a choice of sampling policy.

Definition 9 (Optimisation Algorithm). An optimisation algorithm A based on sam-

pling policy s is iterated use of that sampling policy and data updating:

1. Set d to be the initial data (generally no data, but see Section 1.8.3.2).

2. If ? /∈ d then terminate.

3. Sample at x = s(d) and add the result to the data d, i.e. set d(x) = f (x).

4. Go to step 2.

1.8.3 Optimisation Algorithm Behaviour

One useful observation on the behaviour of deterministic optimisation algorithms is

the existence of what can be thought of as on-policy and off-policy behaviour. This

distinction is important for later proofs, and so we make it clear here.

1.8.3.1 On-Policy Behaviour

The on-policy behaviour of an algorithm is the sampling policy on a restricted set of

possible data inputs. Specifically it is the behaviour on inputs potentially seen when

the algorithm is run until termination starting with no information about f . The on-

policy behaviour is generally not the full sampling policy, as there are data inputs that

will never be seen in the normal execution of the algorithm, regardless off the function

f being sampled. This is clarified in the following example:

Example 6 (On-Policy Behaviour). Consider the sampling policy described in exam-

ple 5. d(??) = 1, and so an optimisation algorithm using this sampling policy will

initially sample f (1), and thus the data ?0 and ?1 will never be seen, as those data

are the possible results from evaluating f (2) first. It is not that f (2) will never be

evaluated, rather that if we follow the policy, f (2) will never evaluated first.
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1.8.3.2 Off-Policy Behaviour

Off-policy behaviour is the sampling policy restricted to exactly those data inputs that

do not appear in the on-policy behaviour. Thus together the off-policy and on-policy

behaviours describe the full behaviour.

Example 7 (Off Policy Behaviour). Figure 1.2 shows the off-policy and on-policy

behaviours for a sampling policy s : D → X, where X = {1,2,3} and Y = {0,1}. The

sampling policy s always samples the lowest (i.e. leftmost) unsampled x. For example

s(?1?) = s(?0?) = 1, s(0??) = s(1?0) = 2.

Figure 1.2: The full sampling policy behaviour graph. Yellow nodes are strictly on-

policy, purple nodes are strictly off-policy, and green nodes are on-policy, but are also

reachable from off-policy nodes.

Broadly speaking, the on-policy behaviour is all the behaviour that is possible in

the normal running of the optimiser, and off-policy behaviour is that that results from

starting the optimisation algorithm with some initial (off-policy) knowledge of the cost

function.

1.8.4 Representing Optimisation Algorithm Behaviour

When discussing optimisation algorithms it is often helpful to consider their behaviour

represented as a behaviour graph, which we now define:
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Definition 10 (Behaviour Graph). An optimisation algorithm’s behaviour can be rep-

resented as a directed graph, in which nodes represent possible data and the edges

show all potential transitions between data resulting from sampling the cost function

in accordance with the optimiser’s sampling policy. We call such a graph the behaviour

graph of the optimiser. See Figure 1.2 for an example of a behaviour graph.

We now show that if we restrict attention to on-policy behaviour of determinis-

tic optimisation algorithms, then the behaviour graph is in fact a tree. This is a key

observation and is used variously throughout the rest of the thesis.

Theorem 1 (Optimisation Algorithm Tree Representation). A deterministic non-resampling

optimisation algorithm’s on-policy behaviour can be uniquely represented as a di-

rected graph. In fact this directed graph is a balanced rooted tree.

Proof. From the definition of on-policy behaviour we start the optimisation with no

data about the function, which we represent as the root node of the tree. The algo-

rithm’s sampling policy determines which x should be sampled given no data, say x1.

When the algorithm performs the sample at x1 there are |Y |= m possible results, and

each of these results necessarily leads to different data (as the data is just a descrip-

tion of the result). Thus, we can potentially transition to any of m new data nodes by

appending the value of (x1, f (x1)) to the data.

At this point, either the node we are at represents data with no unknown cost func-

tion output values, in which case the algorithm halts and we are at a leaf, or the node

contains at least one value for which d(x) = ?. In this second case the sampling policy

will select one of these x to be sampled, and again m possible results exist, we follow

one of the possible edges (dependent on the results of the sample) and then repeat the

process until we do eventually reach a leaf.

We now show that all paths do eventually lead to a leaf. Whenever an x is sampled

an unknown f (x) becomes known. As the algorithm terminates exactly when all f (x)

are known, and there are only n = |X | unknown x at the start, and as, because it is not

resampling, the algorithm only ever samples x for which f (x) is unknown, then the

algorithm necessarily terminates after exactly n samples, and we reach a leaf.

We now show that no two paths arrive at the same node. First we note that all

paths through the tree start at the root node. Assume we have two paths that at some

point separate. If they were to rejoin they must both eventually arrive at the same data

set. However, the very fact that they separated means that for some x they produced
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different f (x) values. Thus, their data can never be the same, and they will never rejoin

at a node. It follows that the graph is a tree.

Finally, as every path necessarily terminates after exactly n steps, and every non-

leaf node leads to exactly the same number of immediate children (m), it follows that

the tree is balanced.

In Figure 1.3 we show how the on-policy behaviour of optimisers can be repre-

sented in a tree as shown in the above theorem and proof. The figure shows both a

detailed explanatory version of the tree and the equivalent more compact version of

the tree in the style we will actually use.

Figure 1.3: Left: The on-policy behaviour of the optimisation algorithm using the sam-

pling policy from Example 5. The yellow circular nodes represent data, the blue rectan-

gular nodes show the sampling policy’s decision based on data. Right: the same tree

shown more compactly by removing the explanatory details. The tree still contains the

same information and is the format we will generally use, for compactness.

Theorem 2 (Tree Representation Details). The tree representing the on-policy be-

haviour of an optimiser for functions mapping X → Y where |X |= n and |Y |= m has

n+ 1 layers. If we label these layers 0,1, . . . ,n starting from the root then layer i

contains mi nodes, and the tree contains 1+m+m2 + . . .+mn nodes in total. The

final layer consists of mn leaves with exactly one representing each of the mn functions

f ∈ F = Y X .

Proof. Each node represents particular data d ∈D . The root node is always d s.t. ∀ x∈
X , d(x) = ?. Call this root node layer 0. Each node on the ith layer, for i ∈ {0, . . . ,n},
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will represent data with exactly n− i unsampled x values. Thus layer i = n (the n+1th

layer) will consist of leaves, and will be the final layer.

Every non-leaf node leads to exactly m = |Y | immediate children. We have also

seen in the proof of theorem 1 that no node is the child of more that one node. Thus,

as in layer zero there is 1 node in layer 1 there will be m, in layer 2 there will be m2

nodes, and in layer i there will be mi nodes for i ranging from 0 to n.

It follows from the tree’s definition that nodes in layer i have had exactly i X values

sampled. And thus the final layer consist of all and only the mn leaves.

In Figure 1.4 we show example on-policy trees for three different domains. It

can be seen that even for |X |= 4 and |Y |= 2 the tree becomes fairly large. Although

trees are possible for any finite X and Y we will generally not be able to show them

explicitly!

Figure 1.4: Thee example policies, represented as trees. Top left: a policy for functions

from X = {1,2} to Y = {0,1}. Top right: a policy for functions from X = {1,2,3} to

Y = {0,1}. Bottom: a policy for functions from X = {1,2,3,4} to Y = {0,1}.

We have so far seen that on-policy behaviour can be represented as a tree. We now

show that when it comes to the full behaviour it is no longer possible to represent the

behaviour as a tree, but we can still represent it as a graph.
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Theorem 3 (Full Behaviour Graph Representation). The full behaviour of a non-

resampling optimisation algorithm over functions f : X→Y where |X |= n and |Y |= m

can be represented as a directed graph with (m+ 1)n nodes. The graph contains mn

nodes with no outgoing edges, with exactly one representing each of the mn functions

f ∈ F . All other nodes have exactly m outgoing edges.

Proof. The full behaviour needs to describe the algorithm’s behaviour for every possi-

ble data input. Thus, the number of nodes will be exactly the number of possible data

sets, which is (m+1)n. As in Theorem 2, each node is either a leaf or has m outgoing

edges corresponding to the m possible results of the sample.

Figure 1.5: Left: Both of the two possible sampling policies on functions f : {1,2} →
{0,1}. Right: Four of the twelve possible sampling policies on functions f : {1,2,3}→
{0,1}.

1.8.5 Enumerating Optimisation Algorithms

We now use counting arguments to calculate the number of sampling policies for full

behaviours and for on-policy behaviours. As we will see, the number of unique be-

haviour grows double exponentially, even if we restrict our attention to only the on-

policy behaviour of deterministic non-resampling optimisers.
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1.8.5.1 Enumerating On-Policy Behaviours

Here we calculate how many unique on-policy behaviours exist over functions f : X→
Y .

Theorem 4 (Number of On-Policy Behaviours). Let |X |= n and |Y |= m. Then there

are ∏
n
k=1 kmn−k

possible on-policy behaviours for algorithms optimising functions f :

X → Y .

Proof. From above we know that on-policy behaviours can be represented as trees with

n+ 1 layers, where the ith layer, for i in 0, . . . ,n, contains mi nodes. Nodes in the ith

layer have (n− i) unsampled X values to potentially select as the next sample. Thus,

layer i has mi nodes each choosing from (n− i) options, yielding (n− i)mi
possibilities

for the layer. Taking the product over all the layers yields ∏
n
i=0(n− i)mi

. Finally, noting

that (n−n)mn
= 1 and substituting k for n− i we get to the result in the theorem. Thus,

# of on-policy behaviours =
n

∏
k=1

kmn−k

Example 8. Figure 1.5 shows the 121 × 220
= 2 possible on-policy behaviours when

|X |= 2 and four of the 122×221×320
= 12 possible on-policy behaviours for |X |= 3.

In both cases Y = {0,1}.

1.8.5.2 Enumerating Full Behaviours

We now enumerate the number of distinct full behaviours for optimisation algorithms.

Theorem 5 (Number of Full Behaviours). Let |X |= n and |Y |= m. Then there are

∏
n
k=1 k(

n
k)mn−k

possible full behaviours for algorithms optimising functions f : X → Y .

Proof. First observe that the number of possible data sets containing exactly k unsam-

pled x values is
(n

k

)
mn−k (

(n
k

)
for the possible positions of the k unknown f (x) values

and mn−k for the possible values of the n− k known f (x)).

Presented with such a data set the optimiser must choose to sample one of the k

as-of-yet unsampled x values. Thus, the behaviour when k values are unsampled is de-

termined by
(n

k

)
mn−k separate choices from k options, producing k(

n
k)mn−k

possibilities

for the layer. Taking the product over all the layers yields the final result:

# of full behaviours =
n

∏
k=1

k(
n
k)mn−k
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1.8.5.3 What Fraction of Behaviour is On-Policy?

We have seen that there is on-policy behaviour, and that this is a subset of the full

behaviour of an algorithm, in the sense that the a full behaviour describes both the

on-policy and off-policy behaviour of an optimiser. There are various distinct full

behaviours with the same on-policy behaviour.

If we let #OPB be the number of on-policy behaviours and #FB be the number of

full behaviours then one immediate question is: what happens to the fraction #OPB
#FB as

the size of X or Y increase?

The number of nodes describing the on-policy behaviours as a fraction of the num-

ber of total nodes in the full behaviour graph behaviours tends to 0 as |X | increases.

The growth of #OPB and #FB can be seen and compared in Figure 1.6, which makes

the above result intuitive.

1.8.6 Paths Down Trees

We have seen that the on-policy behaviour of an optimisation algorithm can be rep-

resented as a rooted tree (Theorem 1). We now show that running an optimiser on a

particular function corresponds to taking a particular path down the optimiser’s tree.

Figure 1.7 provides a graphical example of these paths down trees.

Theorem 6 (Paths Down Trees). When you represent the on-policy behaviour of an op-

timisation algorithm as a rooted tree, then paths down that tree biject with the functions

f ∈ F , and the path shows the choices that the algorithm will make when optimising

the corresponding f .

Proof. The existence of the bijection follows directly from the fact that the graph struc-

ture is a tree, and there is thus only a single path from the route to each leaf.

1.9 Conclusion

In this chapter we have introduced and defined various key concepts for discussing op-

timisation. We have also seen that the number of unique optimisation behaviour grows

double exponentially, even if we restrict our attention to just on-policy behaviour. Thus

considering all possible behaviours explicitly is intractable for all but the smallest toy
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Figure 1.6: The plot shows the doubly exponential growth of the number of optimisation

behaviours on binary output (i.e. Y = {0,1}) functions as |X | increases. It can be seen

that for |X |= n the number of full and on-policy behaviours are approximately 1010
2n
5

and 1010
n
4 respectively.

problems. In fact, describing even a single policy by explicitly writing all input-output

pairs as we have been doing up until now is very quickly untenable as the input space

grows.

Further, we have shown that any deterministic non-repeating on-policy sampling

behaviour can be described by a tree, and that optimisation can be seen as following a

path down such a tree. Both of these facts will be used repeatedly in chapters to come.

In the next chapter we start to look at optimisation algorithms in detail. In particular

we examine how you might begin to compare and evaluate them.
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Figure 1.7: Two example paths taken by the optimisation algorithm down its behaviour

tree. The left path shows the route when the algorithm is run on f = 001 and the right

path shows the behaviour on f = 011.





Chapter 2

Comparing Optimisers

“. . . on average hill climbing performs the same as hill descending,
even when the goal is function minimization!” — Ho and Pepyne, 2002, [1].

“From a theoretical point of view, comparative evaluation of search al-
gorithms is a dangerous, if not dubious, enterprise.” — Whitley, 2014, [2].

2.1 Introduction

In the previous chapter we defined optimisation algorithms and we saw that there are

effectively infinite possibilities for optimisation algorithm behaviour. However, so far

we have not considered what might make one optimisation algorithm better than an-

other, nor have we discussed what makes an optimisation algorithm good. These are

the questions we consider in this chapter.

It is not straightforward to say what makers an optimisation algorithm good. It was

consideration of this problem of a priori optimiser comparison that originally led to

the so called no free lunch results we discuss below. Before we discuss the no free

lunch results though we first examine two potential methods of optimiser comparison,

benchmarking and theoretical assurances. After these short sections, the remainder of

the chapter is mainly a review of the no free lunch theorems.

This chapter also includes some new results. Specifically, we consider no free

lunch theorems for algorithms with arbitrary stopping conditions in section 2.5.2, we

examine the no free lunch theorems in the case of off-policy situations in section 2.6.6,

and the case of restricted metrics in 2.6.7. Further we consider the effects of parallelism

on optimisation and free lunches in section 2.7.7. Additionally, in section 2.8.2 we

discuss how various proofs of optimisation algorithm efficacy can be seen as examples

23
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of restricted setting free lunch results, we provide a new proof regarding algorithm

minimax behaviour in section 2.8.7, and we use order statistics to investigate how no

free lunch theorems relate to the curse-of-dimensionality in section 2.9.9.

2.2 Benchmarking

Perhaps the most common and straight-forward way to compare optimisation algo-

rithms is though benchmarking. At a high level benchmarking is the comparison of

algorithms by comparing their performance on “benchmark” problems.

The details of the specific problems chosen and the definition of performance used

are largely case-specific. This said however, performance is usually concerned with

some or all of: the speed at which the algorithm finds adequate solutions, quality of

solutions found, and how reliably the algorithm finds adequate solutions.

The benchmark problems chosen are generally intended to be varied and represen-

tative. A common set of benchmark functions has emerged in the literature, and often

algorithm comparison defaults to benchmarking on this common set, or some variation

of it. A representative example of such a benchmark set is [3] in which Li et al detail

various benchmark problems for use in The Congress on Evolutionary Computation’s

global optimisation contests.

More recently there has been a trend towards demonstrating the effectiveness of

algorithms by using them on real high dimensional non-convex optimisation problems,

like deep and recurrent neural network training on various complex data sets. Efficient

algorithms for training deep architectures are currently producing cutting edge results

in many areas of machine learning, and the problem is thus a very attractive one.

The underlying idea is that, (1) the benchmarks are good representative examples

of the kinds of function that will be encountered in real applications, and (2) if opti-

misation algorithms perform well on the benchmark problems then they are likely to

perform well on the real problems of which the benchmarks are representative exam-

ples. Both (1) and (2) are potentially false.

2.2.1 Examples

As a simple example of benchmarking we compare the standard particle swarm opti-

misation algorithm with a heterogeneous particle swarm optimiser over four standard

benchmark functions. The results are shown in figure 2.1. We have also included
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a benchmarking example from the heuristic optimization literature which is shown in

figure 2.2. The figure shows select benchmarking results from [4], in which they aimed

to define a standard particle swarm optimization algorithm for comparison purposes.

Figure 2.1: Comparison between a standard particle swarm optimisation algorithm

(blue) and a heterogeneous particle swarm optimisation algorithm (green) on four com-

mon benchmark problems in 30 dimensions. A casual glance would suggest that the

heterogeneous particle swarm optimisation algorithm was better, but in fact each opti-

miser outperform the other in two of the four problem if you consider the final solution

found.

2.2.2 Assumptions of Benchmarking

The use of benchmarking to compare algorithms suggests the following underlying

assumption: The performance of an optimiser on the test problems is representative of

the optimisers performance in some more general sense. When using benchmarking,

the way in which the performance is assumed to generalize should ideally be stated

explicitly. However, the default claim is roughly that performance generalizes to other

problems of the same kind. For example, if an algorithm outperforms its competitors

on a benchmark set consisting of travelling salesman problems, the hope is that this

algorithm is better than its competitors in general at travelling salesman problems.

This said, it is worth noting that problem classes can vary widely in breadth, and what

makes problem the same kind is very much up to interpretation. Often the result of
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Figure 2.2: Figure taken from [4] showing benchmark results for three varieties of par-

ticle swarm optimisation. Like the results in Figure 2.1, these results are also for the 30

dimensional cases.

benchmarking or comparative studies of optimisers is that different algorithms do well

on different problems. As we will see in section 2.4, this is all we can really hope for.

Benchmarking needs to be done carefully, with the focus shifted to understanding the

behaviour rather than ranking it, unless focusing on a particular type of problem.

2.3 Theoretical Assurances

Another way to asses optimisation algorithms is to rigorously prove things about their

behaviour. The issue with this approach is that it is technically difficult and requires

making assumptions in a more obvious way (you make assumptions when you bench-

mark, but these are often implicit, whereas here explicit assumptions are generally

required). Theoretical assurances are also often concerned with the behaviour in the

limit of infinite time. Despite these difficulties and restrictions though, there are vari-

ous interesting results in this area.

For example, in the Gaussian Process optimisation setting bounds on the cumula-

tive regret (the sum of the differences between the samples and the global optimum)

have been proven, provided the function being optimised is sampled from a suitable

Gaussian Process [5, 6].

In the next section we will see how these theoretical assurances relate to the no free

lunch theorem. In particular, in section 2.8 we examine how often theoretical assur-

ances of algorithms performance are equivalent to proving the existence of a restricted
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domain free lunch.

2.4 No Free Lunch Theorems

No free lunch theorems are statements about the non-existence of fully general algo-

rithms. Informally, they show that there is no algorithm that is good at everything.

The original no free lunch theorem first appears in Wolpert and Macready’s 1995 pa-

per No Free Lunch Theorems for Search [7], but became more widely known through

the same authors 1997 paper, No Free Lunch Theorems for Optimization [8]. In this

section we present a review of no free lunch results and introduce some extensions.

However first we briefly cover the conservation law, which can be seen as a precursor

to the no free lunch results.

2.4.1 Conservation Law

A classification problem is a task in which you have a set of objects to classify, and a

set of possible classes, and you need to learn how to correctly classify the objects.

A natural question to ask is if there is a best classifier, that is, a classifier that per-

forms better than any other on average. In 1994 Schaffer published a paper to this end

in which he described a so-called conservation law for generalisation performance [9].

In the paper Schaffer proves that no classifier’s generalisation performance is better

than any others over all learning situations. Moreover, he showed that performance

of a classifier can be neither created or destroyed, but only differently arranged over

potential problems. All classifiers have the same total performance, when aggregated

over all possible problems, the only difference between classifiers is their particular

distribution of performance over problems. In short he showed that in classification

problems aggregate performance is always conserved.

Schaffer’s papers slightly pre-dates Wolpert and Macready’s famous no-free-lunch

papers [7, 8], but builds on earlier work in the area. In [10] Wolpert investigates the

potential of stacked classifiers in this classification task, and had already given much

attention to the (im)possibility of generalisation without prior knowledge about the

problems being considered [11, 12].

The conservation law concerns learning a classifier, and although in this chapter we

are focusing on optimisation, we mention it here for completeness, and for a rounder

picture of no free lunch theorem development. The conservation law can be seen as a
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no-free-lunch result for classification. Also this can be seen as a result for a specific

optimisation task, a find the optimal classifier problem. Schaffer observed that his

results were important for algorithm evaluation:

“[E]mpirical success in generalization is always due to problem se-
lection. Although it is tempting to interpret such success as evidence in
favour of a learner, it rather shows that the learner has been well applied.”
- Schaffer, 1994, [9].

Clearly this claim is an important to understand when considering how to compare

algorithms. We now move on to Wolpert and Macready’s no free lunch theorem. As

we will see the conservation law results and interpretations will be echoed, but with

application to optimisation.

2.4.2 No Free Lunch

The original No Free Lunch (NFL) theorem for optimization [7, 8] states that no search

algorithm can outperform any other under any metric over all problems. There are

many formulations of this statement in the literature with different emphasis. Here we

present a representative selection, starting with Wolpert and Macready’s own charac-

terization:

1. The average performance of any pair of algorithms across all possible problems

is identical [8].

2. For all possible metrics, no search algorithm is better than another when its per-

formance is averaged over all possible discrete functions [13].

3. On average, no algorithm is better than random enumeration in locating the

global optimum [14].

4. The histogram of values seen, and thus any measure of performance based on

it is independent of the algorithm if all functions are considered equally likely

[15].

5. No algorithm performs better than any other when their performance is averaged

over all possible problems of a particular type [16].

6. With no prior knowledge about the function f : X → Y , in a situation where any

functional form is uniformly admissible, the information provided by the value
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of the function in some points in the domain will not say anything about the

value of the function in other regions of its domain [17].

As this selection shows, NFL allows a broad range of assertions. We will now

formally state and prove the NFL theorem, and then show how each of the above

characterisations naturally result. We start with two preliminary definitions:

Definition 11 (Traces). The trace of a search algorithm A running on a function f

is the ordered list of (x,y) pairs sampled (where y = f (x)). We write TA( f ) for the

trace of algorithm A running on function f . We also define T m
A ( f ) to be the trace

after m function evaluations. It follows that if n is the size of the domain of f then

T n
A ( f ) = TA( f ). We call TA( f ) the (full) trace and T m

A ( f ) a partial trace for any m < n.

Let T be the set of all the traces that algorithm A produces on functions mapping X

(where |X |= n) to Y , that is:

TA = ∪ f∈F ∪n
m=0 T m

A ( f )

We also define a trace of just the inputs TA( f )x and a trace of just the outputs

TA( f )y as ordered lists of just the x and y values respectively from the full trace. We

call these the input trace and the output trace. The output trace is sometimes called

the performance vector or range trace in the literature. Similarly, we define TAx and

TAy all possible input traces and all possible output traces respectively.

Example 9 (Traces). Let X = {1,2,3} and Y = {0,1} and let A be an optimisation

algorithm with A(???) = 2, A(?0?) = 3 and A(?1?) = 3 (A is shown graphically in

Figure 2.3). Let f : X→Y with f = 010. Then TA( f ) = {(2,1),(3,0),(1,0)}, T 2
A ( f ) =

{(2,1),(3,0)}, TA( f )x = {2,3,1} and TA( f )y = {1,0,0}, TAy = {{0,0,0}, {0,0,1},
{0,1,0}, {0,1,1}, {1,0,0}, {1,0,1}, {1,1,0}, {1,1,1}, {0,0}, {0,1}, {1,0}, {1,1},
{0}, {1}, {}}.

As noted in [18] search algorithms have no “intrinsic purpose” and their behaviour

needs to be qualified by some external metric. A metric provides a way to evaluate an

algorithms performance. We now make this idea of a metric precise.

Definition 12 (Optimisation Metric). An optimisation metric M is a function that maps

output traces to R. A metric can be thought of as assigning a value, or score, to an

output trace, M : Ty→ R.
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Figure 2.3: The yellow nodes show the behaviour tree for a search algorithm on func-

tions between {1,2,3} and {0,1}. The green squares attached to each yellow node

show the corresponding trace at that point. If we let A be the search algorithm repre-

sented by the tree, then it can see that, for example, TA(010)y = 100 by reading the

trace at the 010 leaf.

An alternative but equivalent way to think of a metric is as a map from an algorithm

and a function to a rating of how well the algorithm performs on that function, that is,

M∗ : A×F → R where M∗(A, f ) = M(TA( f )y).

Example 10 (Optimisation Metrics). A simple metric for measuring minimisation per-

formance is a function that returns the minimum Y value in the trace (i.e. the smallest

y value sampled so far). In fact, although simple, this metric is often used to com-

pare optimisers, especially in cases where the true global minimum of the function is

unknown.

We are now in a position to formally state and prove NFL. We follow the style of

proof used by English [19, 18, 20], as this is in our opinion clearest, and naturally yields

various generalisations to the theorem. It involves explicit reference to the represen-

tation of optimisers as trees. Another particularly clear approach to the proof is using

the “fundamental matrix” method from [1], which is equivalent to our approach here.

We have chosen a tree based method because, in our opinion, it makes the sequential

decision aspect of the problem more explicit. However, we strongly recommend [1] to

any readers wanting an alternative approach.
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Theorem 7 (NFL). All search algorithms produce the same set of traces when run over

all possible functions between two finite sets. More formally, let Y X = { f | f : X→Y},
where X and Y are arbitrary finite sets. For all search algorithms A,B, {TA( f )y | f ∈
Y X}= {TB( f )y | f ∈ Y X}.

Proof. As we have shown in Section 1.8.4, the behaviour of a search algorithm is

uniquely representable as a tree. This tree has |Y ||X | leaves and the trace at each leaf is

unique. However, by a counting argument there are only |Y ||X | possible distinct traces

of length |X |= n. Therefore, every search algorithm produces the same set of traces,

namely every possible trace exactly once.

It is worth noting that the proof above is very succinct, this is in part due to the

reference to the proof that the behaviour of a search algorithm is uniquely representable

as a tree, but also partly a result of the decision tree proof style. We now return to the

various formulations of the no free lunch result found in the literature, and show that

they all follow from the proof above.

1. The average performance of any pair of algorithms across all possible problems

is identical [8].

→ From our no free lunch proof we know that any pair of algorithms pro-

duce the same set of traces over all functions. The set of all traces being equal

implies that the multi-sets of performance values are equal (regardless of metric),

which in turn implies that the mean values are equal.

2. For all possible metrics, no search algorithm is better than another when its per-

formance is averaged over all possible discrete functions [13].

→ This is equivalent to statement one, but with explicit reference to the inde-

pendence of the result on the metric chosen. The reference to discrete functions

is emphasising that X and Y are finite.

3. On average, no algorithm is better than random enumeration in locating the

global optimum [14].

→ This claim has two interpretations, both of which are in fact true. Firstly

we could assume that “random enumeration” means a randomly chosen, but

thereafter fixed, order of X values which we follow when exploring a function.

This order of inspection is just some particular deterministic optimisation algo-

rithm, and so the claim follows from NFL. The second possible interpretation of
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“random enumeration” is that we randomly choose where to sample whenever

we need to make a choice. This leads to a stochastic algorithm, and as we will

show in Theorem 11, a no free lunch theorem holds in this case too.

4. The histogram of values seen, and thus any measure of performance based on

it is independent of the algorithm if all functions are considered equally likely

[15].

→ The set of all traces being equal implies that the multi-sets of values are

equal (regardless of metric). It is this multi-set which is meant by the histogram

(they are both just sets where an element can occur more than once, i.e. ele-

ments have a count or frequency). Also, “All functions being considered equally

likely” is an phrasing which points towards a probabilistic NFL representation

(see subsection 2.7.2).

5. No algorithm performs better than any other when their performance is averaged

over all possible problems of a particular type [16].

→ Here “problems of a particular type” means functions mapping between

some input set X and some output set Y . Assuming that X and Y are finite then

this is exactly the set of problems considered in the above proof.

6. With no prior knowledge about the function f : X → Y , in a situation where any

functional form is uniformly admissible, the information provided by the value

of the function in some points in the domain will not say anything about the

value of the function in other regions of its domain [17].

→ This formulation starts to use a probabilistic framework. More specifi-

cally it invokes (the lack of) a Bayesian prior as a way of understanding the no

free lunch result. This Bayesian interpretation is, we believe, the right one, in

the sense of being clear and informative.

2.5 Basic No Free Lunch Extensions

Having stated and proven the original no free lunch theorem, we now present some

additional results and observations that are of interest in themselves, and will also be

used in refinements of NFL below.

Theorem 8 shows that every algorithm is equivalent when full traces are considered.

We first generalise to the case where we stop the optimisation after m steps, then we
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generalise further to the case of arbitrary stopping conditions. After this we give a

proof that the NFL result still holds if we allow stochastic sampling policies.

Figure 2.4: The behaviour tree showing only the trace values. When considering just

the traces, all algorithms have the same behaviour tree (see Theorem 9). What differ-

entiates algorithms is that for different algorithms a given function will produce different

paths in this tree.

2.5.1 m-Step No Free Lunch

In real applications, optimisation algorithms are not usually run until the entire domain

has been sampled. In the orignal no free lunch papers by Wolpert et al [7, 8] they show

that the no free lunch theorem still applies if algorithms are run for some fixed number

of steps. We restate this theorem here and prove it using tree representations.

Theorem 8 (m-step NFL). All search algorithms produce the same set of traces when

run over all possible function between two finite sets for m steps. More formally,

let Y X = { f | f : X → Y}, where X and Y are arbitrary finite sets. For any search

algorithms A,B, {T m
A ( f )y | f ∈ Y X} = {T m

B ( f )y | f ∈ Y X}. In fact they produce the

same multi-set, in that every possible trace appears the same number of times, with the

exact value depending on m and |X |.

Proof. If we prune the full behaviour tree after m steps the resulting tree will have Y m

leaves. Each leaf has a unique trace and the traces are of length m. Thus, there are only

Y m possible partial traces, and so each partial trace must be present exactly once in the

leaves. This is the case for all search algorithms.

It remains to show that the multi sets are the same. First observe that each partial

trace appears in the multi set once for each leaf it would have lead to in the full tree.

Next note that each leaf in the m-step truncated tree would lead to the same number
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of leaves in the full tree (as every non-leaf node in the full tree branches to the same

number of nodes in the next layer). Thus, all traces appear the same number of times

in the multi-set. Moreover, if |X |= n and we truncate the tree after m steps, then each

trace will occur 2n−m times in the multi-set. In particular, if m = n then each trace

appears exactly once as expected.

We defined the behaviour tree for an optimiser in Section 1.8.4. We now define

a similar but distinct tree representation, the trace tree. Essentially the behaviour tree

show both the x and y values of the algorithms samples, the trace tree in contrast only

shows the y values.

Definition 13 (Trace Tree). Let A be an optimisation algorithm for functions f : X→Y .

The trace tree for A is the behaviour tree with the nodes labelled with the trace, rather

than the data.

An example trace tree is given in Figure 2.4. It is the trace tree of the optimisation

algorithm in Example 2.3, the behaviour tree of the same algorithm is shown in Figure

2.3.

We now show that trace tree only depends on the range and the size of the domain of

the functions being optimised. The detail that we lose when we switch from behaviour

trees to trace trees is exactly the detailed that differentiated the optimisers.

Theorem 9 (Identical Trace Trees). All optimisation algorithms for functions mapping

X to Y produce the same trace tree. In fact, all optimisation algorithms for functions

mapping Z to Y also produce the same trace tree, as long as |Z|= |X |.

Proof. Consider an optimisation algorithm A for functions f : X → Y . We will show

that A’s trace tree does not depend on any of the specific details of A, and thus would

be the same for any optimisation algorithm for functions f : X → Y .

From the definition of a trace tree we know that the algorithm’s trace tree has the

same structure as the algorithm’s behaviour tree. In particular as we are only consider-

ing non-resampling optimisers we know that the trace tree will have |X |+1 layers, and

that each node in the tree will be either a leaf or the parent of exactly |Y | other nodes.

Now we simply observe that if we consider a non-leaf node in the trace tree then we

can detail the node’s children without knowledge of A. Suppose the node we are con-

sidering has trace y1,y2, . . . ,ym, then its |Y | children will have the traces y1,y2, . . . ,ym,y

for each y ∈ Y .
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Next we note that the only influence the domain X has on the trace tree is in setting

the number of layers to be |X |+1, thus it is only the size of the domain that is important

and the trace tree will be the same for any domain of that size.

Corollary 1. The leaves of the trace tree are all possible problem functions.

This was shown in Theorem 2 but is restated as a corollary above, as it is important

in the proofs to follow.

Figure 2.5: The tree in figure 2.4 after m = 2 steps. As |Y |= |{0,1}|= 2 there are

|Y |m= 22 = 4 leaves, each having one of the four possible two bit traces.

Continuing our generalisations of NFL to early stopping scenarios, we now con-

sider the more general situation in which the search process can terminate based on the

results so far, rather than simply after a fixed number of steps. As we will see, a no

free lunch result still pertains.

2.5.2 Stopping Condition No Free Lunch

A stopping condition is a rule for when to stop the optimiser. We make the concept of

stopping condition formal and then we show that the set of traces over all functions is

algorithm independent for any stopping condition. In other words, a NFL result still

holds.

Definition 14 (stopping condition). A stopping condition is a function mapping traces

to either 0 or 1, S : T → {0,1}. The stopping condition can be thought of as looking

at the results of the optimisation algorithm so far and deciding whether to continue

searching. After each function evaluation an optimisation algorithm using a stopping

condition S evaluates S on its current trace T and then stop iff S(T ) = 1.
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Using the above definition we now state and prove a no free lunch result for arbi-

trary stopping conditions.

Theorem 10 (stopping-condition NFL). For any stopping condition S, all search algo-

rithms produce the same set of traces when run over all possible functions between two

finite sets. More formally, let Y X = { f | f : X→Y}, where X and Y are arbitrary finite

sets. For any search algorithms A,B, {TA|S( f )y | f ∈Y X}= {TB|S( f )y | f ∈Y X}, where

TA|S( f )y is the output value trace generated by algorithm A using stopping condition S

running on function f .

Proof. From Theorem 1, we know that the behaviour of an algorithm can be repre-

sented by a tree. A stopping condition can be seen as a pruning of this tree. Whereas

in the m-step NFL proof we cut each branch after the same number of steps, a stopping

condition can potentially prune branches after differing numbers of steps.

As we have seen above in Theorem 9, all algorithms produce the same trace tree

(see Figure 2.4). The stopping condition leads to a pruning of this trace tree, specifi-

cally we prune all the children from any leaf with a trace T such that S(T ) = 1.

A particular stopping condition, then, leads to a particular pruning. As the trace

tree and the pruning are both algorithm independent the resulting pruned trace tree

will be the same for all algorithms, and thus its leaves (the final traces produced) will

be the same. It follows that, for any search algorithms A,B, {TA|S( f )y | f ∈ Y X} =
{TB|S( f )y | f ∈ Y X}.

2.5.3 Stochastic No Free Lunch

We now state and prove the basic no free lunch result for stochastic optimisation algo-

rithms. The stochastic case was considered in Wolpert and Macready’s original papers

[7, 8], although the proof provided here is a succinct one.

Definition 15 (Stochastic Optimiser). A stochastic optimisation algorithm is an opti-

miser that uses a stochastic sampling policy to choose where it samples. Previously a

sampling policy was a function mapping s : D → X. In the case of a stochastic opti-

miser the sampling policy is instead a function s : D → PX where PX is a probability

distribution over X. To select the next x to sample given data d you draw a sample

from the distribution s(x).
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Theorem 11 (stochastic NFL). Let Y X = { f | f : X→Y}, where X and Y are arbitrary

finite sets. For any stochastic search algorithms A,B, if we sample f uniform randomly

from Y X then P(TA( f ) = t) = P(TB( f ) = t) = 1
|Y ||X | for all full length traces t ∈ T .

Proof. Let A be a stochastic optimisation algorithm. This stochastic behaviour is

equivalent to sampling a deterministic algorithm from some probability distribution

over algorithms, then running that. However, we know from the original no free lunch

result that regardless of the deterministic algorithm chosen, each trace is equally prob-

able when each function is equally probable, thus each traces has probability 1
|Y ||X |

regardless of the stochastic optimiser used.

2.6 Refined and Generalised No Free Lunches

Since their original publication the NFL theorems have been augmented and spe-

cialised in various non-trivial ways. In this section we survey these extensions, provid-

ing intuitive explanations of the results, as well as proofs and examples. First though

we cover some preliminary results, showing that search algorithms can be understood

as bijections between functions, and that the no free lunch results are representation

invariant.

2.6.1 Optimisation Algorithms are Bijections

In this section we show that an optimisation algorithm can be seen as defining a func-

tion mapping Y X to itself, and that this function is a bijection, and thus a permutation.

We also look at the behaviour of an optimiser when run on a particular function f , and

we will see that the output trace produced can be interpreted as a function permutation

of the input f . These sorts of results, relating optimisation algorithms to permutations,

are worked through in detail in [21]. We start with a definition.

Definition 16 (Shuffle Permutation). π : Y X → Y X is a shuffle permutation if it is

a bijection and, if π( f ) = g then there exists a permutation φ : X → X such that

∀x ∈ X , f (x) = g(φ(x)). That is, g is a function permutation (see Definition 3) of

f . Intuitively, a shuffle permutation maps a function to new function with the same

output values, but rearranged to correspond to different inputs.

Now we will show the sense in which an optimisation algorithm can be thought

of as a map from Y X to itself. Recall that without loss of generality we assume that
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X = {1,2, . . . ,n}. Recall also that TAy( f ) is the full output trace of optimiser A running

on function f . Thus TA( f )y is an ordered list of n output (i.e. y ∈Y ) values. Given this

trace a new function, g, can be defined as g(i) = TAy(i), where TAy(i) is just the y value

of the i-th position in the trace.

We now show that any optimisation algorithm naturally implies a map from Y X to

itself, and in fact this map is a shuffle permutation.

Theorem 12 (Optimisation Algorithms Imply Shuffle Permutations). Let A be an ar-

bitrary search algorithm, then TAy is a bijection TAy : Y X →Y X . Further this bijections

is a shuffle permutation.

Proof. That the implied map is a bijection follows from Theorem 1. Next we note that

from their definition the optimisers are non-resampling and eventually sample every

point. It follows that for any input function the output trace is just a reordering of the

function’s y values. Thus, the bijection is a shuffle permutation.

Figure 2.6: The bijection induced by the search algorithm shown in Figure 2.4. As the

functions and the traces are both the same set (i.e. length three binary strings) the

bijection is in fact a permutation. Also, as this permutation is a shuffle permutation the

number of 1s and 0s in each input is preserved in the output.

2.6.2 Representation Invariance

The way a problem is represented is often considered when trying to find optimal

solutions. However, an interesting corollary of the no fee lunch theorem is that the

representation doesn’t matter when considering the ensemble of all possible problems.

In other words, there is a representational no free lunch: no representation scheme

is better than any other under any metric for any search algorithm when average per-

formance over all problems is considered. This representation invariance was made

explicit in [22].
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Theorem 13 (Representation Invariance [22]). Given a function h : X → Y we can re-

represent the problem by introducing a set C and a surjective map g : C→ X and then

considering a new function f : C→ Y where f (c) = h(g(c)). As C is surjective then

we know |C|≥ |X |. Then for any optimisers A,B,

|C|= |X |=⇒ {TA(h)y|h ∈ Y X}= {TB(h)y|h ∈ Y X}= {TA( f )y| f ∈ YC}

|C|> |X |=⇒ {TA( f )y| f ∈ YC}= {TB( f )y| f ∈ YC}

A full proof can be found in [22], however it can be seen that the case when |C|=
|X | follows directly from Theorem 9.

2.6.3 Sharpened No Free Lunch

The Sharpened No Free Lunch Theorem (SNFL) was first presented in [23]. Whereas

the original no free lunch theorem is a statement about algorithms on the set of all

functions, SNFL shows that the result still holds even when we restrict consideration to

certain subsets of function. In particular, SNFL states that all optimization algorithms

are equivalent over any subset of functions closed under permutation (see Definition 4

in Chapter 1).

Theorem 14 (SNFL [23]). Let G ⊂ Y X be closed under permutation, then for any

search algorithms A,B, {TA( f )y | f ∈ G}= {TB( f )y | f ∈ G}.

Proof. We have seen in Theorem 12 that the output trace produced when an optimiser

is run on a function f is always some permutation of f . In the same theorem we also

saw that for any optimisation algorithm A, for any two functions f ,g ∈ F f 6= g =⇒
TA( f ) 6= TA(g). From these two facts it follows that if the input set is permutation

closed, then, regardless of the optimisation algorithm used, the set of output traces

will be this same set of functions. In other words, any optimisation algorithm is a

permutation on any permutation closed set of functions. {TA( f ) | f ∈ G}= G for any

optimisation algorithm A. It follows that {TA( f ) | f ∈ G}= {TB( f ) | f ∈ G}.

Many researchers have examined the realism of the closed under permutation con-

dition for real problems. In particular Igel and Toussaint in [24] show that the pro-

portion of subsets of functions that are closed under permutation tends to zero double-

exponentially fast as the domain of the functions increases. A more general consider-

ation of the realism of no free lunch assumptions is given in Section 2.9.1.
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2.6.4 Focused No Free Lunch

The Focused No Free Lunch Theorem (FNFL) is an extension of SNFL. Essentially

it shows that, when only considering a restricted set of algorithms, a (potentially very

small) subset of the permutation closure of a test function is enough for NFL to hold.

This result was first presented in [13]. Intuitively, because of the restriction to a subset

of algorithms a more focused result is possible as there are fewer requirements to

satisfy.

Theorem 15 (FNFL [13]). Let β be a set of test functions, β = { f1, f2, . . . , fm}, and

let A be a set of optimisation algorithms, A = {A1,A2, . . . ,An}. Then there exists a

“focused set” FA(β), with β ⊆ FA(β) ⊆ βCUP such that all algorithms in A have the

same average performance over FA(β). Moreover, this focused set FA can potentially

be much smaller than βCUP (note βCUP is just the permutation closure of β).

The proof can be found in [13], here we omit the proof and instead include some

simple illustrative examples (these examples serve as proofs for the specific A and β

discussed, the paper proves the theorem for arbitrary A and β).

Example 11 (Simple FNFL Example). Consider optimising functions mapping be-

tween {1,2,3,4,5} and {0,1}. Let β= {01010}, call this function f1 (i.e. f1 = 01010).

Consider two optimisation algorithms, A, which inspects the function from left to right,

and B, which inspects the function from right to left. Clearly TAy( f1) = 01010 =

TBy( f1), and thus FA(β) for A = {A,B} is just {01010}.

Example 12 (Second FNFL Example). Again consider optimising functions mapping

between {1,2,3,4,5} and {0,1}. Let β = {00110}, let f1 = 00110. Consider two

optimisation algorithms, A, which inspects the function from left to right, and B, which

inspects the function from right to left. Clearly TAy( f1) = {00110,01100} = TBy( f1),

and thus FA(β) for A = {A,B} is {00110,01100}.

2.6.5 Almost No Free Lunch

Another important extension to the no free lunch theorem is the so called Almost No

Free Lunch Theorem. The Almost No Free Lunch Theorem (ANFL) shows that if

an optimiser performs well on a given function then there is a function of similar

complexity on which it performs badly [25].
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Theorem 16 (ANFL [25]). Let H be a randomized search strategy, X = {1, . . . ,2n},
Y = {1, . . . ,N} and f : X→Y . Define c= 2n/3. Then there exist at least Nc−1 functions

g : X →Y that differs from f on at most c inputs, such that the probability that H finds

the optimum of g within c steps is less than or equal to c−1.

A proof is given in [25]. Functions of similar complexity here means any of evalu-

ation time, circuit size representation, and Kolmogorov complexity.

2.6.5.1 Example

Let n = 6 and N = 2. Then X = {1,2,3, . . . ,64} and Y = {0,1}. In this case ANFL

asserts that there are at least 23 = 8 functions g : X → Y that agree with f on all but

at most 4 inputs such that H finds the optimum of g within 4 steps with probability

bounded above by 1
4 .

2.6.6 Off-Policy No Free Lunch

Here we introduce the Off-Policy No Free Lunch Theorem (OPNFL). As its name

suggests OPNFL is an extension of the no free lunch theorem to “off-policy” behaviour.

Previous no free lunch research has generally focused on the behaviour of algorithms

starting with no data. OPNFL extends consideration to the case where algorithms

potentially start with some data about the function being optimised. As we will see,

the potential inclusion of off-policy decisions means that the optimisation algorithms

can no longer be represented as trees, but a no free lunch result still holds.

An example representation of full-policy behaviour as a graph is given in figure

2.7. In the figure the off-policy nodes are shown, which aren’t accessible in the nor-

mal running of the optimiser, OPNFL is concerned with cases where the optimisation

process potentially begins at on of these off-policy nodes.

Theorem 17 (OPNFL). Running an optimisation algorithm on a uniform randomly

selected function starting with a uniform randomly selected compatible partial trace

results in every full trace being produced with equally probability, regardless of the

optimisation algorithm used.

Proof. First note that if you uniform randomly select a function and start with no data

(i.e. just run the optimiser normally) then regardless of the optimisation algorithm

used, every trace is equally likely. This is just a reformulating the original no free

lunch result an so follows directly from Theorem 8. Thus, we need to show that if we
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Figure 2.7: An example full behaviour. Off-policy decisions are shown as light blue

nodes and on-policy decisions are shown as yellow nodes. Note that full behaviour is

representable as a directed graph (as in this diagram), but not as a tree. This is because

paths from off-policy and on-policy nodes converge.

uniform randomly select any function compatible partial trace and start optimisation

with that data, this doesn’t change the expectation over traces. By definition the partial

trace we start with is uniformly selected, so we just need to show that the rest of the

trace is uniformly distributed over possibilities. However, this is a direct result of the

set of optimisers being exactly the set of all permutations.

2.6.7 Restricted Metric No Free Lunch

Towards the end of [18] English notes the need for a no free lunch theory for the case

of restricted metrics. There has been some work towards this goal, for example in [26]

they restrict attention to maximization and shows that the correspondence between no

free lunch holding and the set of functions considered being closed under permutation

breaks down when you only consider optimisers running for m-steps. Spefically they

show that under a maximization metric, the set of functions being closed under permu-

tation is not necessary for no free lunch type results. This is an example of a restricted

metric free lunch in an m-step optimisation setting.

Here we provide more work on restricted metric free lunches. In this section we

introduce a restricted metric no free lunch theorem (RNFL) as an extension of the

FNFL. The original NFL theorem and its successors consider arbitrary performance

metrics, or equivalently all performance metrics. Here we show how a restriction on
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the set of metrics considered — a choice of a single metric for instance — yields NFL

results on subsets of functions. This is similar to FNFL, except as well as considering

restricted sets of algorithms and functions it also considers a restricted set of metrics.

The key idea is that we compare the multi-sets of scores assigned to traces rather than

the multi-sets of traces themselves. The sets of scores often has fewer unique elements

(and they can never have more) and thus there are more situations in which no free

lunch results hold. Figure 2.8 shows how metrics can reduce the set of traces to a

smaller set of scores.

Figure 2.8: Four example metrics showing mappings of traces to values. The values

are determined as follows (clockwise from top left): 1) number of samples until a zero

is found. 2) number of zeros in first two samples. 3) number of zeros in the whole trace.

4) value based on how many zeros are found, and how quickly they are found.

Theorem 18 (RNFL). Let β be a set of test functions, β= { f1, f2, . . . , fm}, let A be a set

of optimisation algorithms, A = {A1,A2, . . . ,An}, and let M be a set of optimisation

metrics, M = {m1,m2, . . . ,mk}. Then there exists a “restricted set” RA ,M (β), with

β ⊆ RA ,M (β) ⊆ FA(β) ⊆ βCUP such that all algorithms in A have the same average

performance over RA ,M (β). A restricted set RA ,M (β) always exists, regardless of the

choice of β, A and M . In some cases it is identical to the focus set FA(β) from the

FNFL Theorem, but it can also be strictly smaller than the focus set.

Proof. We give a proof by providing an example in which the restricted set is smaller

than the focused set. The fact that a restricted set always exists follows from the fact a

focused set always exists, thus we need only to show that the restricted set is potentially

a subset of the focused set. Let X = {1,2,3,4,5,6}, Y = {0,1}, β = {101001, 001011,

001111}, A = {A1,A2} where A1 deterministically samples from left to right and A2

deterministically samples f (2), f (4), f (6), f (1), f (3), f (5) in that order. Finally, let

M = {m1} where m1 just returns the number of samples until the first 1 is found.



44 Chapter 2. Comparing Optimisers

If follows from the definitions of the algorithms that, when run on the functions

in β, A1 produces the traces {101001, 001011, 001111} and A2 produces the traces

{001110,001011,011011}. These sets of traces are not equal, and when we put these

sets of traces through the metric m1 they result in the multi-set of values {1,3,3} and

{3,3,2} respectively, which are also not equal.

If we define RA ,M (β) = {101001, 001011, 001111, 010010} then running A1 on

the functions in RA ,M (β) produces the traces {101001, 001011, 001111, 010010} and

similarly running A2 produces the traces {001110, 001011, 011011, 100001}. These

sets of traces are still not equal, thus RA ,M (β) is not the “focus set” from the FNFL.

However, when we put these sets of traces through the metric m1 they result in the

same multi-set of values {1,2,3,3}. Thus, RA ,M (β) is a “restricted set” and we are

done. See Figure 2.9 for a visualization of the proof.

Figure 2.9: On the left is a visualization of a FNFL result for β = { f1, f2, f3, f4} and

A = {A1,A2}. Over this set of four functions both optimisers produce the same set

of traces, namely {t1, t2, t3, t4}. On the right we show that a RNFL can hold when a

FNFL does not. For β = { f1, f2, f3, f4} and A = {A1,A3} FNFL does not hold as A1

produces the traces {t1, t2, t3, t4} where as A3 produces {t2, t3, t5, t6}. However, if we

set M = {m1} then a RNFL result holds, as both sets of traces lead to the same set of

scores, {r1,r2,r3,r4}.

2.6.8 Multi-objective No Free Lunch

So far we have considered metrics that map to a scalar. However, within the optimisa-

tion literature there is much work on so-called multi-objective optimisation problems,
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where the metric assigns a vector rather than a scalar. A natural question to ask is

whether no free lunch results generalise to these situations. The answer is yes [27, 28].

The proof used in [27] works by defining a bijection between multi-objective prob-

lems and scalar problems. A further multi-objective result in [27] is that a no free

lunch holds over the set of all multi-objective functions with any particular shape of

Pareto front.

However, as they show in [29], in the case of multi-objective optimisation real

world constraints (such as the algorithm only having finite memory) can readily re-

sult in algorithms with differing performances. The key idea is that, in scalar opti-

misation keeping track of your current best solution is straight forward, whereas in

multi-objective optimisation problems where you are searching from the Pareto front

it becomes more practically difficult to store the current best (in this case a set of points

making up the Pareto front) efficiently, and so even fairly weak restrictions on the algo-

rithm can mean that practically you need to instead store some sort of approximation

of the Pareto front.

Thus, theoretically NFL holds for multi-objective functions, but when it comes

to implementation multi-objective optimisers more often need to violate the NFL as-

sumptions for reasons of pragmatism.

2.7 Interpretations and Unifying Results

We have now seen various no free lunch theorems and refinements. In this section we

seek to provide some unification of the theorems and consider general approaches to

optimisation that lead to the no free lunch results seeming most natural.

2.7.1 Optimisation as Interactive Induction

A standard computer science style phrasing of the problem of induction is the follow-

ing: You receive a series of bits one by one. Each time you receive a bit you then use

all of the bits you’ve received so far to try to guess whether the next bit will be a 0 or

a 1.

Optimisation, in comparison, presents you at each point with the option of which

bit to look at next, and your aim is no longer to accurately predict the values, but rather

to use your (hopefully accurate) predictions to achieve some search metric specified

goal. It is this choice of where to examine, as opposed to having always to simply
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examine the next bit, that allows us to think of optimisation as an interactive version of

the induction problem.

Once a formal relationship between optimisation and induction has been estab-

lished, known results on induction can potentially be of use for optimisation researcher.

To this end an induction phrasing of optimisation is perused by Everitt in [30], with the

aim of understanding how Solomonoff’s universal induction approach can be tweaked

to apply to optimisation problems, and how, if so adjusted, the results would relate to

no free lunch theorems. The conclusion is that the application of universal induction to

optimisation does produce a small free lunch (by assuming problems are drawn from

Solomonoff’s universal prior), but the results are much weaker than in the sequence

prediction setting. We discuss this free lunch in Section 2.8.3.

2.7.2 Probabilistic vs. Set-Theoretic No Free Lunch

There are two distinct but reconcilable framings of the optimisation setting for the no

free lunch theorem. The first is a set theoretic approach, where we consider sets of

problems to be solved but do not make any use of probabilities or expectations. In this

scenario no free lunch results are of the form “the aggregate/average performance over

all problems is algorithm independent.”

The second approach is to consider an ensemble of possible problems. This prob-

lem ensemble is a probability distribution over the possible functions. In this setting no

free lunch theorems take the form of assertions like “all optimisation algorithms have

equal expected performance”. This formulation is more powerful than the set theoretic

approach as non-uniform distributions can be considered.

2.7.3 Geometric Inner-Product Interpretation

Another way to phrase the no free lunch theorem result is in terms of inner products.

This interpretation is from Wolpert in [31], where he discusses “the inner product at

the heart of all search”. An inner product associates to pairs of vectors a scalar repre-

senting how aligned those vectors are. The inner product here indicates how aligned an

optimiser is with a problem class. The geometric inner-product interpretation makes it

somewhat intuitively obvious that an optimiser can be well aligned with some, but not

all, problems.
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2.7.4 Block Uniform Distributions

In [20] English presents an intuitive necessary and sufficient condition for NFL. He

defined block uniform distributions, and proved that NFL holds if and only if functions

are sampled from a block uniform distribution over functions. We state the theorem

below, and a proof can be found in the paper.

Definition 17 (Block-uniform distribution). A probability distribution over the set of

functions { f : X→Y} is block uniform iff ∀ f , ∀ φ, P( f )=P( fφ), where φ is a function

permutation (see Definition 3, Chapter 1).

Figure 2.10: An example of a block uniform probability distribution over functions

f : {1,2,3} → {0,1}. There are four “blocks”, corresponding to the four constituent

permutation closed subsets of functions. The figure is not to scale.

Theorem 19 (NFL iff Block Uniform). For any metric, all optimisation algorithms

have the same expected performance if and only if there is a block uniform probability

distribution over functions.

2.7.4.1 ε-Block Uniform

In [30] Everitt investigates what happens when a distribution is almost block uniform.

He proves that the amount of free lunch available increases at most linearly with in-

creasing ε, where ε characterizes the distance of a distribution from block-uniform.

Thus, not only is it the case that NFL iff block uniform, but also the distance of the

probability distribution over functions from block uniform upper bounds the amount

of free lunch available.
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2.7.5 Fix Function, Pick Optimiser

There is an alternative presentation of the no free lunch result which can be surprising

on first glance, even to those familiar with the traditional no free lunch statement. It

can be seen as a backward no free lunch result. If you choose a particular function to

be optimised and then uniform randomly pick an optimisation algorithm to use, you

get a uniform distribution over possible traces, i.e. permutations of the selected input

function. If you think of the standard NFL result as: for any optimiser, the results

over all functions are equal, then this backward presentation says: for any function,

the results over all optimisers are equal.

2.7.6 Stochasticity

From the very first papers on no free lunch theorems there has been consideration of

their applicability to stochastic search algorithms. Although they may initially seem

more powerful, and one may question the applicability of no free lunch results, in fact,

all of the above results also apply to stochastic optimisation algorithms too.

In Theorem 11 we gave a proof that the original NFL theorem holds for stochastic

optimisers. Similar proofs can be given for all the other NFL results we have seen still

holding for stochastic optimisers. We consider stochastic optimisers in detail in section

4.5.

2.7.7 Parallelism

Another limitation on the NFL results above is that all the discussion has focused on

algorithms that sequentially sample, evaluating points one-by-one. If multiple points

are sampled in parallel do we get different results? This is a natural question to ask,

especially given the increasing popularity of highly parallel architectures.

Theorem 20 (Parallel No Free Lunch). No free lunch theorems hold regardless of the

number of samples you can take in parallel or the number of computations you can

perform in parallel.

Proof. An optimisation algorithm that evaluates n points in the function simultane-

ously is in fact behaviourally more restricted than a sequential algorithm (although it

may well be faster). This is because it must decide the next n points to sample in one

go, whereas the sequential algorithm only has to decide the next sample point, and can
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then use the result of that function evaluation in the next sample point choice, and so

on.

Parallel algorithms can’t behave more intelligently than their sequential competi-

tors, but they may run faster, allowing them to do more in a given time. This chapter

however focuses on algorithm behaviour, and in this regard, as we have seen, parallel

algorithms are at best, equivalent to sequential algorithms.

2.8 Free Lunches

“while the NFL theorems have strong implications if one believes in a
uniform distribution over optimization problems, in no sense should they
be interpreted as advocating such a distribution.”

— D. H. Wolpert 2012 [31].

As we have seen, no free lunch and related theorems are applicable in a wide range

of situations. There are however various interesting scenarios where the results are not

applicable. In this section we highlight settings in which the no free lunch theorems

do not apply, an thus to a greater or lesser extent a “free lunch” is possible. The

free lunches covered here are achieved by altering the set of functions considered,

by considering suitable non-uniform probability distributions over functions, or by

slightly altering one of the definitions used in the original theorem.

2.8.1 Bounded Description Length Free Lunch

The minimal description length of a function is, loosely speaking, the shortest pro-

gram that maps x→ f (x) for all x ∈ X . In 2003 Streeter showed in [32] that if we

only consider functions F = { f | f : X → Y} with a minimal description length below

a threshold θ for θ below an |X | and |Y | dependent constant, then some algorithms

outperform others under some metrics when their performance is averaged over F . In

other words, a free lunch is possible. This free lunch is a result of exploitable struc-

ture in F that results from the description length bound. Specifically, the restriction

means that only a subset of functions are considered, and over these functions some

optimisers outperform others.
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2.8.2 Restricted Smoothness Free Lunch

If we introduce a metric on X and a metric on Y then we can define the smoothness

of functions f : X → Y . It has been shown that smoothness constraints can result in

free lunches. In fact, although often not phrased as such, many theoretical assurances

are examples of restricted smoothness free lunches. We consider two examples below,

and direct readers toward [33] for general proofs that free lunches are available for

cases where a maximum steepness of function or maximum number of local optima

restriction is imposed.

2.8.2.1 Sub-Median Seeker

A classic example of a restricted smoothness free lunch is the sub-median seeker pre-

sented in [34]. In this paper Christensen and Oppacher endeavour to understand what

makes a function searchable, in light of no free lunch. As they observe, “once [the

no free lunch] theorem has been proven, the next logical step is to characterize how

effective optimization can be under modest restrictions.” In the paper they introduce

the so-called Sub-Median Seeker algorithm, and then prove that it performs better than

random search in a restricted-smoothness setting.

2.8.2.2 Gaussian Process Optimisation

We now provide an example of a restricted smoothness free lunch from an area of

optimisation research where free lunches are regularly shown, but are generally not

interpreted as such. There has been much work on the optimisation of functions drawn

from a Gaussian process, and it has been variously shown that a suitable probability

distribution over function smoothness is in fact enough to allow a free lunch [5, 6].

Note that a probability distribution over function smoothness is less restrictive than

a restricted smoothness setting, as in the latter functions of below a certain level of

smoothness are barred, whereas in the former setting they are just suitably unlikely.

2.8.3 Solomonoff-Levin Distribution Free Lunch

As we have disscused in Section 2.8.1, in [32] it is shown that a free lunch is possi-

ble for functions when the description length of the functions is sufficiently bounded.

More generally, a free lunch is possible for functions if their probabilities are assigned

according to a Solomonoff-Levin distribution. Under this distribution the probability



2.8. Free Lunches 51

of a function is inversely related to length of its shortest representation, and it has been

argued that this distribution, taken as a universal prior, is a formalisation of Occam’s

Razor. In the paper they also argue that Solomonoff-Levin type probability distribu-

tions are more relevant to optimisation than the block-uniform distributions that result

in no free lunch results, as, roughly speaking, they are more realistic.

2.8.4 General Not Block-Uniform Free Lunch

In the bounded description length, restricted smoothness and Solomonoff-Levin cases

the free lunches result from the exclusion of certain cost functions from the problem

set, or suitably adjusting the probability distribution over the cost functions. (Note that

excluding a function is equivalent to setting its probability to zero, so we can actually

see all of these examples as probability distribution modifications).

In fact, we have seen in Section 2.7.4 that in all cases when the probability distribu-

tion over cost functions is not block uniform, some sort of free lunch is available. All

the aforementioned results then are simply examples of this fact. We could list end-

less non block-uniform probability distributions over functions, each of which would

necessarily result in a free lunch. The above examples are pertinent though as they

represent restrictions that have been thought of as realistic for “real world problems”.

2.8.5 Resampling Free Lunch

Another requirement for the no free lunch theorems is that resampling of points in the

domain either doesn’t occur or isn’t considered in evaluation of the algorithm, such

that an algorithm is only evaluated on its new point sampling behaviour. However as

often observed, for example by Whitley in [2], many algorithms try to exploit current

good solutions by focusing future search in their vicinity, which leads to an increase

in the chance of resampling (assuming no book-keeping is employed specifically to

avoid this), in comparison to random search. This leads to the observation that random

search is expected to be better than many popular optimisers over all possible functions

simply because it is less likely to resample points, and in this sense it achieves a free

lunch.

More generally, the less an algorithm tends to resample the better, and the actual

behaviour of an algorithm that resamples less is expected to be better than the actual

behaviour of an algorithm that resamples more. Note that this is different from the

exploration behaviour, which only considers the way in which algorithms explore new
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points, and with respect to which the free lunch theorems hold.

Simply put, when you ignore resampling all algorithms are equivalent in the free

lunch sense, and when you do not ignore resampling then the less an algorithm resam-

ples, the better.

2.8.6 Coevolutionary Free Lunch

One key assumption made in the no free lunch theorem is that the metric does not

depend on the test function f . The necessity of this requirement is exemplified by

the existence of Coevolutionary Free Lunches [35]. A coevolutionary free lunch is

an example of a situation where free lunches do exist as a direct result of the metric

used depending on f . Co-evolution can be seen as an example of self-play, and “in

the self-play domain there are algorithms which are superior to other algorithms for all

problems” [35].

This free lunch is particularly interesting because in nature, for example, it is not

usually the case that some external fixed fitness metric is imposed from above, but

rather fitness metrics emerge in some complex way from the dynamics of the system

as a whole. This said however, the authors in [35] observe that real evolution in nature

does not meet the the specific requirements for this free lunch to apply.

2.8.7 Minimax “Free Lunch”

In this section we examine whether algorithms can outperform one-another under min-

imax distinctions. Two algorithms can be minimax compared. To do this you compare

the results of the algorithms on each function, and count how many times each algo-

rithm has the minimum cost (i.e. the lowest of the two). The winning algorithm is the

one of the pair that more often has the minimum cost.

As Wolpert theorised might be possible in [7] and Radcliffe and Surry gave an

explicit simple example of in [22], some algorithms beat others in the minimax sense

over all functions. The example from Radcliffe and Surry is shown in figure 2.11.

However, importantly this outperforming is not transitive, and thus does not induce an

ordering on the optimisation algorithms.

We argue here that this minimax domination is a free lunch only in the same way

that one algorithm doing better than another on a particular function is a free lunch.

Specifically, we prove that all algorithms minimax dominate and are dominated by

exactly the same number of other algorithms.
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time to min

f A B C A vs B B vs C C vs A

000 1 1 1 tie tie tie

001 1 1 2 tie B A

010 1 2 1 A C tie

011 1 3 2 A C A

100 2 1 1 B tie C

101 2 1 3 B B A

110 3 2 1 B C C

111 1 1 1 tie tie tie

winner B C A

Figure 2.11: Comparison of algorithms A,B and C over functions mapping {1,2,3} to

{0,1}. Each algorithms simply samples the points in a given fixed order. Note that

the total cost for each algorithm is 12 - they are all equal as implied by the no free

lunch theorem. However, there is also non-transative minimax domination. This table is

reproduced from [22].

Theorem 21 (Minimax Domination is Cyclic and Equally Distributed). Every optimi-

sation algorithm minimax dominates the same number of optimisation algorithms, and

every optimisation algorithm is minimax dominated by the same number of optimisa-

tion algorithms.

Proof. If C minimax dominates A then an optimiser B can be constructed as B =

C ◦A−1 ◦C, which will dominate C exactly as C dominates A. This construction is

shown in Figure 2.12. In this way for any optimiser C, for every Ai that it dominates

a corresponding Bi is defined that dominates C. It follows that every optimiser domi-

nates the same number of optimisers as it is dominated by. It remains to show that this

number is the same for all optimisers. However, this is a direct result of the fact that

all the optimisers produce the same set of traces.

2.9 No Free Lunch Discussion

We have presented the original no free lunch theorems, numerous extensions and con-

sidered various examples of situations in which free lunches can be achieved. We now
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Figure 2.12: An example of the construction used in the minimax proof. The figure only

shows a CUP subset of functions, but the same method works for the whole function set.

Here A dominates C, and we can thus use C and A−1 to produce a B that dominates A

in the same way.

conclude our examination of free lunches with some discussion.

2.9.1 Are No Free Lunch’s Assumptions Realistic?

There has been much discussion about how realistic the assumptions of the no free

lunch theorems are. In particular, do they pertain in the real problems dealt with in

real-world applications? The consensus is that in the most straight forward sense the

answer is no [36], and refinements such as SNFL can be seen as efforts to address this.

This said, in Section 2.9.8 we argue that the assumptions required for no free lunch to

hold do not have to be realistic for the theorems to be of interest.

2.9.2 Free Appetizers

Various researchers have discussed the idea that in realistic search situations the ad-

vantage a good algorithm has is small. This small advantage held by a well suited

algorithm is sometimes called a “free appetizer”. [36].

For example, a restricted complexity assumption on problems results in a proba-

bility distribution that breaks the requirements for no free lunch to hold, however even

though a free lunch exists, it is at best only small, a so-called free appetizer.

Moreover, it has been shown that if we adopt the universal prior (a probabilistic

version of the complexity restriction, where complex functions are not impossible, but

just unlikely) then a free lunch can be achieved. However, this free lunch is again

small, and the algorithm that obtains it is not computable [37].

Thus, even if there is some structure on the distribution of real problems that vio-

lates the no free lunch assumptions, the resulting free lunch may well be only minimal.
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A free lunch isn’t necessarily much of an improvement.

2.9.3 Computational Complexity

Complexity research also makes claims about the general solubility of problems, for

example that some problems cannot be solved in polynomial time by a deterministic

Turing Machine. There has been investigation into how these two areas relate and, it is

generally the case that algorithmic complexity theorems put much tighter restrictions

on optimisation algorithms than no free lunch theorems do [15]. As observed in [38],

“No Free Lunch has not been proven to hold over the set of problems in the complexity

class NP, . . . in fact, proofs concerning No Free Lunch do not apply to NP-complete

problems unless the proofs also show (perhaps implicitly) that P 6= NP.”

2.9.4 Universal Bias

There has been an argument put forward that a so-called universal bias exists, and that

this would allow a single algorithm to be successful in all real problems of interest

[16]. This comes about by asserting that there is a pervasive bias towards problems

with more structure, and thus the no free lunch theorem’s requirement of a (block-)

uniform distribution over functions is unmet. The idea is that if the intuitive concept

of “structure” is made rigorous through Kolmogorov complexity then this bias towards

problems with more structure is just the formalisation of Occam’s razor. As we have

seen in Section 2.9.2, Everitt in [37] shows that in fact the universal bias would only

lead to a free appetizer type situation, in which a small free lunch could be obtained.

See Section 2.8.3 for more discussion of the free lunch possibilities under a universal

bias.

2.9.5 Algorithmic Complexity

NFL makes a statement about the general solubility of problems. In [39] Borenstein

and Poli examine the relationship between a search problem’s Kolmogorov complexity

and its difficulty. They conclude that algorithmically complex problems are difficult

but that the converse doesn’t hold, that is, difficult problems are not necessarily algo-

rithmically complex.

English proves a relationship between the complexity of an algorithm, the function

input and the trace output in [19]. In particular he shows that the size of the difference
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in complexity between the input and the resulting traces is bounded by the complexity

of the optimiser itself. In the next chapter we will give more consideration to optimi-

sation and algorithmic complexity.

2.9.6 No Free Lunch and Compression

An analogous result to the no free lunch theorem is the impossibility of a universal

compression algorithm. It follows from the fact that there are more binary strings

of length n + 1 than there are binary strings of length n or less that any non-lossy

compressor cannot compress every input. The compressor, to be most effective on

average, must exploit the expected structure of the inputs, highly compressing common

patterns at the expense of only weakly compressing or even expanding rare patterns.

This is the idea behind Huffman coding.

Just as a compression algorithm cannot universally compress but must exploit ex-

pected input structure to compress well on average, so an optimisation algorithm can-

not work well on all possible inputs, but must exploit expected input structure to opti-

mise well on average. As we will see the Bayesian interpretation we put forward in the

coming chapters will directly relate behaviour to what problems the optimiser expects.

2.9.7 Bayesian No Free Lunch

Roughly speaking, in a Bayesian framing of optimisation the standard no free lunch

theorem becomes the claim that informative induction can’t be done without prior

assumptions. In fact, this is a widely known maxim, the necessity of an inductive

bias voiced by various researchers: “A basic insight of machine learning is that prior

knowledge is a necessary requirement for successful learning” [40], in other words,

“[Y]ou can’t do inference . . . without making assumptions” [41].

Making this relationship more precise, Streeter has shown in [32] that the no free

lunch result applies only when a certain form of Bayesian learning is impossible. More

specifically, they prove that a no free lunch result holds if and only if for any D ∈ D
and y ∈ Y

P( f (xi) = y|D) = P( f (x j) = y|D) ∀ xi,x j ∈ X \Dx

In other words, regardless of what data you have so far gathered about the function,

you are still unable to in any way distinguish the unsampled points. (Note that X \Dx

is the set of so far unsampled X values, i.e. those that do not yet appear in the data).
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In 2007 Carroll and Seppi examined how graphical models of supervised learning

problems can be used to better understand the idea of optimal optimisers and no free

lunch. They focus on understanding bias, meta-bias, transfer learning and over-fitting

in a Bayesian way, and reconciling these concepts with the known know free lunch

results. They conclude by proposing another Bayesian restating of the no free lunch

result, that “a uniform prior over functions lead to a uniform off training set posterior

over classes” [42].

More recently Serafino has been emphasising the important close relationship be-

tween Bayesian optimisation and no free lunch results [17, 43]. We think that these

approaches are in the right direction, but they do not consider the fact that many opti-

misers are apparently not Bayesian. That is in essence what we try to address in this

thesis.

2.9.8 Critique of No Free Lunch

Perhaps the most standard criticism of the no free lunch theorem is that its usefulness

is limited by the fact that in reality “the fit functions belong to a narrow subfamily

of functions (e.g., smooth functions), and some algorithms work better than others on

such families” [44]. However, Wolpert himself emphasises in [31] that the original no

free lunch theorem does not advocate a uniform distribution over optimisation prob-

lems, and quotes his original paper which states that the no free lunch theorems tell us

about “the underlying mathematical ‘skeleton’ of optimization theory before the ‘flesh’

of the probability distribution of a particular context and set of optimization problems

are imposed” [8].

Essentially, the mistake of the above criticism is to interpret no free lunch as a theo-

rem aiming to show that all optimisers are equivalent, but relying on false assumptions.

The reality is that it serves as a proof of the fact that in order to compare optimisers

you need to know something about the sorts of problems they will be dealing with.

Moreover, as a result of the no free lunch theorem it is now generally appreciated by

researchers that no optimisers are simply behaviourally better than others a-priori, but

that knowledge of the context of their use is vital.

2.9.9 Order Statistics

The no free lunch theorem states that all optimisers perform as well as random search

when averaged over all functions. A natural next question then is: “how well does
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random search do?”. This is a question that receives surprisingly little attention in the

literature, considering the number of times the first observation is made. In order to

address the question we make use of known order statistics results.

Assume a uniform distribution over functions f : X → Y . It follows that when

sampling a function f from the distribution and then evaluating f at any x we have a

uniform distribution over expected Y values. Also, it is the case that for all x1,x2 ∈X , if

x1 6= x2 then f (x1) and f (x2) are independent. Using this knowledge we can calculate

the expected minimum Y value found after k samples using the order statistics of a

multinomial distribution with |Y |= m possible outcomes.

Assume without loss of generality that Y = { 0
m−1 ,

1
m−1 , . . . ,

m−1
m−1}, so that for any m

the values in Y are uniformly spaced over the unit interval. Let Sk be the set of y values

seen after k samples. We now examine the 0th order statistic, that is, the minimum

value in Sk, min(Sk), with respect to m and k. The probability that min(Sk) takes a

particular value is:

P
(

min(Sk) =
x

m−1

)
=

k−1

∑
j=0

(
k
j

)((
m−1− x

m

) j(x+1
m

)k− j

−
(

m− x
m

) j( x
m

)k− j
)

=

(m− x)k− (m− x−1)k

mk

Thus, the expected value, as a function of m and k is:

E[min(Sk)] =
m−1

∑
x=0

(
x

m−1

)(
(m− x)k− (m− x−1)k

mk

)
=

m−1

∑
x=0

xk

mk(m−1)

If we define Uk as k samples from a continuous uniform distribution on the unit

interval (as a posed to the multinomial above) it is a known result that:

E[min(Uk)]→
1

k+1

Thus, in both the multinomial and the continuous case the minimum quickly ap-

proaches the minimum value in Y . It seems then that if we assume no structure, all

optimisers perform well at optimisation.

In fact, these results have an interesting additional interpretation, they show that

there is no curse of dimensionality in unstructured problems, as the expected sample
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minimum is independent of the domain size |X |. That is, in the above problem setting,

the progress we expect to make in finding the minimum isn’t influenced by the size of

X (assuming we do not intend to eventually sample every x ∈ X).

On the other had, for a very structured space of problems, by the very nature of

having such structure, the curse of dimensionality is again non-problematic, as the

search decisions can be strongly informed by the knowledge of the underlying structure

and the samples seen so far.

Thus, it seems that there should be an intermediate degree of structure at which a

search problems is, to continue the metaphor, maximally cursed.

Here we have worked under the assumption that all functions are equally likely,

and thus the distribution of y-values is uniform. However, similar calculations can be

worked through for alternative distributions of y-values resulting from different prob-

ability distributions over potential functions. In each case the zeroth order statistic

would tell us the expected performance of random search (for minimisation), and any

exploitation of local or global problem structure by an optimiser would improve on

this lower bound.

If there was no exploitable structure then no optimiser would be expected to do

better or worse than the zeroth order statistic. If they do better, this necessarily means

there must exist some exploitable structure, and the better they do, the more there is.

This leads to the following order statistic framing of the no free lunch result:

Theorem 22 (Order Statistic No Free Lunch Formulation). A no free lunch holds if

and only if no optimiser can do better (on average) than the zeroth order statistic for

the appropriate y-value distribution. More formally, let Py be the distribution over Y

values resulting from random search. Let zi be the zeroth order statistic of Py after i

samples. Let EA[yi] be the expected value of the minimum y value found by optimiser

A after i samples. The original no free lunch theorem holds if and only if, for all A,

zi = EA[yi].

Proof. Follows directly from the original no free lunch theorem. See the above discus-

sion for details. Intuitively, the zeorth order statistic zi gives the expected performance

of random search, and the no free lunch theorem holds if and only if no stratergy is

better or worse than random search, i.e. if and only if zi = EA[yi] for all A.
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Figure 2.13: The expected minimum found using a random search on a uniform and a

Gaussian distribution of Y values, both scaled to have unit variance and shifted to have

zero mean.

2.9.10 Needle in a Haystack

The above reasoning leads to the following conclusion: when no free lunch holds,

random search (and thus any optimisation algorithm) is expected to do well. Is it

possible to construct a no free lunch scenario without this property? The answer is

that we can construct the hardest possible optimization problem, and show that this

converges slowly.

Consider the set of functions that are zero everywhere except for at a single X value

at which they are one. These are sometimes called needle-in-a-haystack functions. For

these functions, the expected reward (or equivalently the probability we have found the

“needle”) after k samples when |Y |= m can be seen to be k
m , or 1− (m−1

m )k if we allow

resampling.
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2.9.11 Infinite and Continuous Lunches

In this exploration of the no free lunch theorem we have not considered infinite do-

mains and continuous extensions, though work to this end can be found in the literature

[45, 46, 47]. This decision is in part due to the fact that the algorithms in which we

are interested, and will be exploring in detail in the coming chapters, will be running

on finite sets of possible inputs, and in part because optimisation algorithms in general

use run on finite procession machines.

2.9.12 Other No Free Lunch Results

Here we have focused on no free lunch in search and optimisation, but there are no free

lunch type theorems know in other areas too, for example in supervised learning [48],

cross validation [49] and human-machine interface [50]. We also have not discussed

time varying cost functions, which are examined in [7].

2.10 Comparing Optimisers After No Free Lunch

In the above sections we have covered in detail the original no free lunch theorems,

their extensions and modifications and their caveats and exceptions. It is evident that,

as emphasised in [51], the existence and importance of free lunches is far from a

straight forward question, and the opinions of researchers vary. This said, we now

try to briefly summarise what the results, when considered as a whole, seem to really

mean for algorithm comparison and evaluation:

1. The no free lunch results preclude meaningful comparison of optimisation algo-

rithm’s exploration behaviour without reference to specific problems.

2. However, almost all restrictions on the set of problem functions result in possible

free lunches.

3. Similarly, but more generally, almost all probability distributions over problem

functions result in possible free lunches.

4. More specifically, block-uniform distributions capture exactly the scenarios where

no free lunch results hold for any metric.
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5. However, when we are interested in no free lunch results with respect to partic-

ular metrics, and for limited numbers of samples, then free lunches are possible

even under block-uniform distributions.

6. When free lunches are possible, their prominence tends to depend crucially on

the optimisation metric used.

7. When free lunches are possible, the algorithms that achieve them are aligned

with the probability distribution over problem functions (what exactly this means

is discussed in the next chapter).

8. When considering more than just the exploration behaviour of an algorithm,

algorithms can be ranked. For example, some optimisers are simpler, some are

faster and some tend to resample less than others.

Pragmatically the results mean that benchmarking alone cannot be used to evaluate

an algorithm, but must be used in combination with clear underlying assumptions. The

benchmark functions must be representative of the problems and there must be some

smoothness, in the sense that being good at a problem means that you are likely to be

good at similar problems.

Of particular importance for this thesis is the idea that the alignment of problem

structure and algorithm behaviour determines how well an algorithm performs on the

problem. This statement is well captured by the inner-product phrasing of the no free

lunch theorem [31] (see section 2.7.3). In the following chapters we try to understand

how this idea of alignment can be best rigorously characterised.
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Bayesian Optimisation

3.1 Introduction

In the previous chapter we saw that no free lunch results mean that we should not

search for fully general optimisers, as these do not exist, and we should instead focus

on producing optimisation algorithms that are behaviourally aligned with the problems

we want to solve. In this chapter we begin to investigate more closely this idea of

alignment. We will look at what it means for an optimisation algorithm to be Bayesian,

and show that a Bayesian approach to optimisation allows us to make this problem of

alignment rigorous.

Using this Bayesian approach we then present a general method for interpreting

the behaviour of optimisation algorithms. We show that all deterministic function op-

timisation algorithms behave as Bayesian optimal greedy optimisation for some prior,

and simultaneously as optimal information gain optimisation for another prior. We

also show that, in both cases, the Kolmogorov complexity of the prior is equal to the

Kolmogorov complexity of the original optimisation algorithm up to a constant.

There has much been recent interest in Bayesian optimisation, and it has proven to

be as good as or better than the state of the art in many optimisation tasks [52]. The

standard view is that Bayesian methods differ from other optimisation techniques in

that they construct a probabilistic model of the function being optimised and use this

model to inform their decisions [53, 54]. Often, for example, a Gaussian process is

used to define the prior distribution over functions, as it is both flexible and computa-

tionally tractable [55, 54].

The statements are formulated in this chapter for a deterministic, discrete problem,

and in later chapters we relax these constraints. Some discussions on the relaxations

63
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to follow is given in section 3.10.

This chapter proceeds as follows: In Section 3.2 we define Bayesian optimisation,

in Section 3.3 we give some chapter specific preliminaries, in Section 3.4 we make

the concept of alignment rigorous, in Section 3.5 we present in detail a proof that all

deterministic optimiser’s on-policy behaviour can be seen as Bayesian, in Section 3.7

we give our complexity argument, in Section 3.8 we discuss the idea of simultaneous

interpretation and we conclude in Section 3.10 with more general discussion.

3.2 Bayesian Optimisation

Thomas Bayes (1701-1761) was an English statistician, philosopher and Presbyterian

minister. He is most famous for his eponymous theorem, which describes how proba-

bilistic beliefs should be updated in light of evidence.

In a Bayesian setting we have a probability distribution P over F , called the prior,

which we combine with data D ∈D using Bayes’ theorem to yield a posterior.

P( f |D) ∝ P(D| f )P( f )

As we are dealing with noise-free optimisation the likelihood P(D| f ) is an indicator

function that is zero everywhere except where D agrees with f .

P(D| f ) = 1⇔∀ (x,y) ∈ D, f (x) = y

The posterior is then used in conjunction with a cost function to choose the next

sample point. Thus, in order to define a Bayesian optimisation algorithm all that is

required is to specify the prior and the cost function. In this setting a cost function b is

of the form b : X×P → R.

Having specified the prior P and cost function b a sampling policy s : D → X can

be constructed as follows.

s(D) = argmin
x∈X

b(x,P( · |D)) (3.1)

Various functions can be used as the cost function b. A simple example is the

expected value of f (x) given P.

b(x,P) = ∑
f∈F

P( f ) f (x) (3.2)
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For this choice of cost function, b, the resulting sampling policy samples the point

at which it expects the lowest output will be obtained. This is a simple greedy policy

for function minimisation. We define sg to be this sampling policy, that is:

sg(D) = argmin
x∈X

∑
f∈F

P( f |D) f (x) (3.3)

The simple greedy optimiser sg will be used throughout the remainder of this chap-

ter as an example Bayesian optimisation algorithm.

3.3 Preliminaries

In this section we introduce the definitions and notation used throughout the chapter.

3.3.1 Complexity

Measuring complexity is a difficult and ill-defined task. In this chapter we use Kol-

mogorov complexity (also called algorithmic complexity), which we simply call com-

plexity. This is a common choice in the literature and is well theoretically grounded

[56]. Here we give an intuitive definition of this complexity measure.

Definition 18 (Kolmogorov Complexity). The complexity of a string s can be intu-

itively thought of as the length in bits of the shortest program that produces s as an

output and then halts. We write K(s) to mean the complexity of s.

An important fact is that the complexity of s is programming language independent

up to a language dependent constant factor. This means that for two programming

languages p1 and p2, if we write Kpi(s) to mean the complexity of s using language pi

then we know that Kp1(s)−c1 ≤ Kp2(s)≤ Kp1(s)+c2 for two constants c1 and c2 that

do not depend on s.

3.3.2 Notation

In this chapter, without loss of generality, we will consider function minimisation al-

gorithms. Thus the algorithm’s aim to find a minimum of a function f : X → Y for

some finite domain X and range Y ⊂ R. Again we fix X and Y and let F be the set of

all such functions, F = Y X , as we have done in previous chapters.
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As discussed above, here we look at function optimisation from a Bayesian per-

spective. Thus, we will be concerned with priors. In this setting a prior is a probability

distribution over F . We define P to be the set of all such probability distributions and

let P ∈ P to be some arbitrary prior.

3.3.3 On-Policy Behaviour

For the remainder of this chapter we will only be concerned with the on-policy be-

haviour of optimisation algorithms, and two such algorithms are thought of as equiv-

alent if they have identical on-policy behaviour. When we say two algorithms are the

same, we mean only that they have the same on-policy behaviour.

3.4 Alignment

So far we have claimed that the only way one optimisation algorithm can be better

behaviourally than another is by being more aligned with the problem. This claim

is the result of examination of the no free lunch theorems in the previous chapter.

But what exactly is alignment? In this section we examine alignment, try to make its

meaning clear, and argue that it is best understood in a Bayesian way, that is, through

the idea of exploiting prior beliefs about the problems likely to be encountered.

Let us start by assuming that we are interested in optimising functions of some

particular kind. For example, we could be interested in how the quantities of various

chemicals present in the environment affect cell growth, with the aim being to find the

mixture of chemicals producing the fastest growth. Thus, phrased as an optimisation

problem, the aim would be to find the maximum of some function f : X → Y where

x ∈ X represents the mixture of chemicals used and y ∈ Y is the resulting cell growth.

Alternatively we could be concerned with a very broad range of functions, for example

we might simply be interested in all computable functions.

Regardless of the kind of problems we focus on (the problem class), the assump-

tion is that we can think of the functions representing problems in this class as being

drawn from some probability distribution over all functions. We call this probability

distribution the real problem distribution. This distribution exists and is fixed, although

the details of it are most likely unknown. A problem class then is simply a probability

distribution over functions.

Alignment is intended to be a way of describing how well a particular optimisation
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algorithm is suited to a particular problem class (i.e. a particular probability distri-

bution over functions). Intuitively, an algorithm and a problem class are aligned if

the algorithm usually does well on problem instances from that class. The better an

optimiser typically performs on a problem, the more aligned it and the problem class

are.

If we were using Bayesian optimisation, and we did know the real problem distri-

bution, then regardless of our optimisation metric (e.g. find the minimum) we would

be able to optimally sample the function, achieving our aim with maximum efficiency.

However, in general we do not know the real problem distribution, and instead, if

we want to perform Bayesian optimisation, we have to make an educated guess. We

behave in accordance with our guess of the distribution, and hope that this is close to

the optimal behaviour, which is exactly the behaviour that would result if our guess

was correct.

It is not straight forward to calculate how errors in our guess at the real problem dis-

tribution translate to deviation in our behaviour from the optimal. Firstly, one can have

a guessed problem distribution that is different from the real problem distribution, but

still results in optimal behaviour. Secondly, the way in which discrepancy between the

real and guessed problem distributions translates into a difference between the actual

and optimal behaviour is dependent on the optimisation metric. One way to capture

this second fact is to say that the distance metric on the space of probability distribu-

tions used is determined by the optimisation metric being used in the optimisation. In

this case the closeness of probability distributions is dependent on the similarity of the

behaviour they produce.

These ideas allow us to be rigorous about alignment in a Bayesian optimisation

setting. An optimisation algorithm and problem class are aligned if the probability

function that describes the problem class is close to the optimiser’s prior distribution

with respect to the metric induced by the optimiser’s cost function. Here what we mean

by close depends on what we want to mean by aligned. The closer the two distributions

are in the above sense the more aligned the optimiser and problem class are.

3.5 All Deterministic Optimisers are Bayesian

This section contains the first of the main results in this chapter. We have so far seen

that, as the no free lunch theorem makes explicit, no algorithm is behaviourally better

than any other a-priori, and that in order to do well at a particular type of problem an
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algorithm must be aligned with the structure of that problem. In Section 3.4 above

we argued that this concept of alignment is best captured in a Bayesian framework, in

which the degree of alignment can be understood as the similarity between the proba-

bility distribution from which the function to be optimised really comes, the so called

true problem distribution, and the Bayesian optimiser’s prior. Thus, a Bayesian opti-

misation algorithm performs best if the prior it is behaving in accordance with matches

the true problem distribution.

However, very many prominent optimisation algorithms are seemingly not Bayesian.

The question then is what does alignment mean in these cases? The answer is that, al-

though the algorithms are not explicitly Bayesian, they are still Bayesian. More specif-

ically, they behave identically to some explicitly Bayesian optimiser. Because of this,

the alignment of these algorithms with problem classes is defined in the same way,

with the only difference being that rather than being able to look at the prior explicitly

defined in the algorithm as you can in the Bayesian optimiser case, now you have to

refer to the prior implied by the algorithm’s behaviour.

Although the above is true for all algorithms, showing it will take most of the

remainder of this thesis. In this section we make a start by showing how the on-policy

behaviour of a prior and cost function pair can be mapped to the on-policy behaviour

of a deterministic optimisation algorithm, and vice versa.

3.5.1 Prior and Cost Function→ Algorithm

Before we look at how to decompose an algorithm into a prior and a cost function we

first look at how a prior and a cost function can be composed to make an optimiser.

If we are tasked with constructing an optimisation algorithm from a given prior P and

cost function b it is simply a case of assembling the pieces as described in section 3.2.

The sampling policy A can be directly constructed as follows:

A(D) = argmin
x∈X

b(x,P( · |D)) (3.4)

In this way A is produced directly from P and b. Whenever we refer to “the algo-

rithm resulting from the cost function and prior”, or similar, we mean an algorithm, A,

produced by inputting the relevant cost function and prior into equation (3.4).
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3.5.2 Algorithm→ Prior and Cost Function

We now address the core of the problem. Given any arbitrary optimisation algorithm A,

can we decompose it into a prior P and cost function b such that the algorithm defined

through equation (3.4) by P and b has identical on-policy behaviour to A.

The mapping in this direction is more involved. One reason for this is that, as we

will soon show, various prior and cost function pairs can result in the same algorithm.

In other words the decomposition is not unique. Here we give two examples for an

arbitrary sampling policy A ∈ A . In the first example essentially all the complexity

of the behaviour is embedded in the cost function, and in the second example the

complexity is contained in the prior.

3.5.2.1 Complexity in the Cost Function

This example serves to show that various cost function and prior pairs can result in the

same algorithm. Let A ∈ A be an arbitrary sampling policy, that is, A : D→ X . We use

A to define the outputs of our cost function, regardless of the prior, as b(x,P( · |D)) = 0

iff A(D) = x and b(x,P( · |D)) = 1 otherwise. As the prior has no effect on the cost we

leave it unspecified.

Although this construction may initially seem circular, it is not. We do not need

to use A to actually compute the values, but instead we just construct b to mimic the

known behaviour of A, for example using a look up table mapping D→ X .

This example can be thought of as making the cost function do all the work. The

complexity of the prior could be made very small, and thus the bulk of A’s complexity

must be contained within the cost function b.

Although this is a legitimate decomposition, it isn’t a very satisfying one. This

cost function could just be anything and it seems reasonable to wonder why it is this

way rather than that. Of course it is defined so as to produce the same behaviour

as the original optimiser A, but it doesn’t seem to do anything to help understand or

interpret the original optimiser’s decision. Essentially this decomposition hasn’t aided

our understanding of the algorithm. We are in no better position to say what sorts of

problem the algorithm would excel on.

3.5.2.2 Complexity in the Prior

We now consider a decomposition that is helpful in understanding the algorithm. We

first fix the cost function b, which can be seen as deciding what it is that the algorithm
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is trying to achieve. Here we set b to be the expected value as defined in (3.2). Now

we have what the algorithm is trying to achieve (captured in b), and also what the

algorithm does in ever situation (captured in A). We can now deduce the prior belief P

by iterating through all possible inputs to sampling policy A and noting the results.

The intuition is as follows: a sampling policy is nothing more than the decisions

it makes in every situation. We can theoretically iterate through all possible situations

and note the output of the sampling policy in each case, we can then build a prior from

scratch that produces identical outputs to the ones observed when combined with the

greedy expectation maximizing cost function, b.

Essentially we build a prior that, when conditioned on some data D produces a

posterior in which the input expected to yield the minimum output is exactly the in-

put selected to be sampled next by the algorithm when given the same input D, i.e.

A(D). Our cost function b is of some small fixed complexity and thus the bulk of the

complexity must be captured in P.

We now prove that it is indeed possible to build a suitable prior for any sampling

policy. Note that the reverse is trivially true, as shown in Section 3.5.1.

3.5.3 All Optimisers are Greedy

We have seen that the decomposition of an optimiser is possible both in the somewhat

trivial way detailed in section 3.5.2.1 and the potentially more interesting way shown

in section 3.5.2.2.

The claim that it is possible to construct a suitable prior for any sampling policy is

made explicit in the following theorem:

Theorem 23 (All Optimisers are Greedy). For any optimisation algorithm, A, there

exists a prior, P, such that, in any on policy situation, the x value sampled by A is

exactly the x with minimum expected y (= f (x)) value according to P. That is,

∀A ∈ A ,∃P ∈ P s.t.D ∈DA⇒ A(D) = argmin
x∈X

∑
f∈F

P( f |D) f (x)

In other words, all optimisers behave as if they are just greedily minimising with

respect to a certain prior.

Proof. Assume we have some sampling policy A from which we want to determine a

prior P. The cost function used in the theorem is exactly Bg from equation (3.3), and

so at each point we will sample the x expected to give the lowest output y = f (x).
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Sampling policy A chooses the initial sample point x0 based on no data. To capture

this in the prior define ȳ = ∑
y∈Y

y
|Y | . Set P( f ) = α if f (x0) < ȳ and P( f ) = β otherwise

for some α > β. Thus E[ f (x0)]< E[ f (x)] ∀ x 6= x0 ∈ X as required.

Now without loss of generality let f (x0) = y0 and A({(x0,y0)}) = x1. Then the

posterior, P( f |{(x0,y0)}) is again uniform where it is non-zero, as (pre-normalization)

either P( f |{(x0,y0)}) = 0 or P( f |{(x0,y0)}) = c, where c = α if y0 < ȳ and c = β oth-

erwise. Note the likelihood P(D| f ) and thus the posterior can never be 0 everywhere

as F contains all functions f : X → Y .

Observe that redistributing the weights over the non-zero elements of the posterior

without changing the total doesn’t affect the previous behaviour as f (x0) = y0 for all

non-zero weighted f in the posterior. Thus we now redistribute the weight over all

non-zero weighted f in the posterior such that E[ f (x1)] < E[ f (x)] ∀x 6= x1 ∈ X . We

can now repeat this process until every x ∈ X has been sampled. As X is finite this

process will eventually terminate.

3.6 Importance of the On-Policy Restriction

Theorem 23 above is stated and proved subject to the on-policy restriction, that is, the

theorem is shown to be true only for the on-policy behaviour of the algorithm. In this

section we show that this restriction is in fact necessary for the theorem to hold in

general.

Let X = {0,1,2} and Y = {0,1}. Then we have 23 = 8 possible functions f : X→Y

which we can represent as the eight possible three bit binary strings, where the ith bit in

the string is f (i). Thus 010 represent the function where f (0) = 0, f (1) = 1 and f (2) =

0. A prior over Y X consists of eight values, p1, . . . , p8, giving the prior probabilities

for each of the possible functions: P(000) = p1, P(001) = p2, ..., P(111) = p8.

Suppose we have a sampling policy, A, with the following behaviour:

• A(1??) = 1 (that is, given that f (0) = 1, A samples at x = 1).

• A(?1?) = 2

• A(??1) = 0

It follows that if we wanted to construct a prior such that equation (3.4) produced
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a sampling policy with the same behaviour as A, using (3.2) as the cost function, then

we would have the following requirements on p4, p6, p7:

A(1??) = 1⇒ p6 > p7

A(?1?) = 2⇒ p7 > p4

A(??1) = 0⇒ p4 > p6

Comparing the implications show us that no such prior exists, thus is not always

possible to represent the behaviour of a sampling policy on all possible input data

within the Bayesian framework described above. However, restriction to the on-policy

behaviour is a natural constraint which avoids this issue. The problem of off policy

behaviour is considered in more detail in Section 4.3.

3.7 Complexity Result

Using the mappings above we can now proceed with the second main result of the

chapter. Let A be an arbitrary sampling policy. Then there is a prior P which produces

the behaviour of A when combined with the greedy cost function, b, defined in (3.2).

Theorem 24.
K(P) +

= K(A)

Proof. P and b can produce A using a small program of complexity c0 as in equation

(3.4). Thus:

K(A)≤ K(P)+K(b)+ c0

However, K(b) is also constant (i.e. independent of A and P). Thus we get:

K(A)≤ K(P)+ c1

Next we note that, from the proof of Theorem 23, A can produce the prior P via

a simple recursive procedure, which can be performed by a small program with com-

plexity c2. Thus:

K(P)≤ K(A)+ c2

and thus:



3.8. Simultaneous Interpretations 73

K(P) +
= K(A)

Where +
= means equal up to a constant. Note that as multiple priors can produce the

same sampling policy via equation (3.4) we only differentiate priors up to the equiva-

lence class induced by the surjection from priors to algorithm behaviours used in the

proof above. The complexity of P is thus the complexity of the least complex member

of the equivalence class to which it belongs. We will give a more detailed examination

of the relationship between priors and behaviours in Section 4.2.

Note that the choice of the cost function b is flexible. All that is required is that

K(b) is constant (i.e. independent of A and P), and that for a given A, a prior P can be

created for the chosen b using a fixed length program.

3.8 Simultaneous Interpretations

The above result was proved for the greedy cost function given in (3.2). However,

it seems that it is extensible to a class of cost functions, and we now explore that

possibility. Firstly and observation: It can be seen that there are cost functions for

which no suitable prior can be constructed (most clearly, cost functions that make no

use of the prior, for example b(x,P) = x). Thus, there is some non-trivial subset of cost

functions for which Theorem 23 holds.

Define the set of admissible cost functions as those for which Theorem 23 holds.

All optimisation algorithms are behaving Bayesian optimally with respect to all admis-

sible cost functions simultaneously, each with respect to a particular prior.

Moreover, from Theorem 24 all fixed complexity cost functions are behaving with

respect to priors of equal complexity, up to a constant. Thus in this regard there is no

reason to choose one interpretation over another, they are all equally simple. We now

explicitly illustrate this multiple interpretations principle.

So far we have looked exclusively at the greedy cost function. Another common

cost function is expected information gain. Maximizing information gain can be ex-

pressed as minimising the expected entropy after sampling. Thus, the cost function to

minimize is:

be(x,P) = ∑
y∈Y

P( f (x) = y)H(P( · |{(x,y)}))
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Where P( f (x) = y) is the probability f (x) = y, i.e. ∑
f∈F

P( f )δ( f (x) = y), and H is

the entropy:

H(P) =− ∑
f∈F

P( f ) log(P( f ))

Using be we can write down the information gain maximizing policy as:

Be(D) = argmin
x∈X

be(x,P( · |D)) (3.5)

In Figure 1 we show how both the naive greedy cost function Bg defined in 3.2 and

the information gain maximizing policy Be defined in 3.5 can be made to produce a

required behaviour by selecting suitable priors.

Our investigations suggest that Be is also an admissible cost function. The intuitive

idea is to follow a level-by-level tree construction similar to that used in the proof of

Theorem 23. Note that at each choice of x to sample, entropy minimization will select

the x which is expected to yield the least uniform posterior, i.e. the posterior with the

lowest entropy. Thus, each desired choice should be made to decrease the entropy

by some fraction r of the amount the choice at the level before decreased the entropy

by, with the other choices staying as uniform as possible. The fraction r > 0 must be

sufficiently small so as to not cause choices on the lower levels to alter the choices

already made at the higher levels, but r can be chosen to be arbitrarily small.

3.9 Caveats and Limitations

In this section we consider some possible problems of the approach to understanding

optimisation that we have been exploring. The first potential issue is that probability

distributions over functions are hard to represent, understand, interpret or visualise. It

is true that probability distributions over function are hard to deal with in general, but

those that correspond to optimisers are necessarily those that are more readily repre-

sentable, in that they are represented already in some compact way in the optimiser

itself. Moreover, in Section 3.7 we saw that the complexity of the optimiser implies

a constraint on the complexity of the prior. A potential challenging project, in line

with the efforts in [57], would be to develop mappings between natural language de-

scriptions of problem function properties, e.g. “the functions are generally smooth, but

have small scale noise” and suitable meta-heuristic optimisers. A mapping the other

way would also allow an arbitrary optimiser’s behaviour to be broadly described.
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Figure 3.1: This figures shows a particular on-policy behaviour for two cost functions.

(A) shows the behaviour of the greedy cost function Bg and (B) shows the behaviour

of the maximum information gain cost function Be. In this toy example f : {1,2,3} →
{0,1}, and a prior consists of a probability for each of the eight (23) possible functions.

Suitable priors has been selected for each cost function so that their Bayesian optimal

behaviours are identical. Green nodes show the current state of knowledge about f ,

and lead to various sampling choices shown as yellow nodes. The results of off-policy

choices (dashed lines) aren’t shown as they are never reached. In each tree the prior

probability of each of the eight possible functions is shown at the associated leaf in a

blue box. Larger boxes represent greater probability. The pink boxes show the cost

assigned to each of the possible next sample points. Tree (A) shows the behaviour

of the greedy cost function Bg and so the pink boxes show the expected f (x). Tree

(B) shows the behaviour of the maximum information gain cost function Be so the pink

boxes show the expected entropy of the posterior after sampling the corresponding x.

The algorithm always samples at the x with the lowest cost. It can be seen that, as a

result of the priors chosen, this produces the same behaviour in both trees.
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A second difficulty is that we need to know the true distribution of problems we

are dealing with in order to know the effectiveness of an algorithm, and thus to decide

which optimiser to use. Although this is in some sense an issue, the fact is that it is not

a binary situation; the more we know about the problems the better, and anything we

know can in theory be used to better select the optimiser.

3.10 Discussion

We have introduced the set of admissible cost functions — cost functions that all sam-

pling policies can be interpreted as behaving Bayesian optimally under with respect

to some prior — and have shown that the greedy cost function is admissible. Thus,

on-policy behaviour of any sampling policy can be interpreted as Bayesian optimal be-

haviour with respect to some prior under the greedy cost function. We have also argued

that information gain is admissible, and that all sampling policies can be thus seen as

simultaneously optimally greedy and optimally information gaining with respect to

different priors.

Further, we have shown that the complexity of a sampling policy is equal to the

complexity of the prior with respect to which it is optimally greedy, up to a constant

factor. As a result the length in bits of an implementation of a sampling policy gives

an upper bound on the complexity of the prior it implies. Additionally, it is observed

that this generalizes to any small fixed complexity admissible cost function. A diagram

capturing a high level view of the ideas presented in this chapter is given in Figure 3.2.

For a fully general perspective, further investigation should be made into algo-

rithms with stochastic behaviour, algorithms where sampling is noisy and also the

continuous case. The generalization of information gain to the continuous case with

Gaussian noise has been carried out in [58], suggesting that such expansions are indeed

possible. In the next chapter we will extend consideration to stochastic optimisers.

We have shown a relationship between the Kolmogorov complexity of priors and

algorithms. It may be fruitful to investigate whether there are similar relationships be-

tween the time-complexity or space-complexity of priors and optimisation algorithms

behaving with respect to these priors.
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Figure 3.2: The figure shows: (1). A representation of optimisation algorithm construc-

tion in line with Equation 3.1. (2). A decomposition into prior and cost. Note that as

discussed above, there are in fact may such possible separators performing different but

valid compositions. (3). Given an admissible cost function a prior can be constructed.





Chapter 4

Broadening the Definition of Optimiser

4.1 Introduction

In the previous chapter we proved that the on-policy behaviour of any deterministic

optimiser is the same as the on-policy behaviour of some Bayesian optimiser using the

greedy cost function. In this chapter, among other things, we look at removing the

on-policy and deterministic restrictions, such that the result holds for a broader set of

optimisers.

To this end we examine stochastic optimisation (which we have so far discussed

only briefly in the no free lunch setting), consider so-called forgetful algorithms, and

look at meta-heuristics. However, before we do that we first examine some details of

deterministic optimisers, and in particular, some of the less straightforward aspects of

the Bayesian characterisation.

In Section 1.2 we commented on how optimisation problems could be difficult in

various respects, and in this chapter we look at properties of optimisers that are used

in real applications on these more difficult problems. In other words, we now expand

our definition of optimiser in that it applies to real meta-heuristics.

The chapter proceeds as follows: first we will refine and clarify or current under-

standing of the Bayesian framework by looking at deterministic behaviours in more

detail in Section 4.2, and then examining full policy behaviour in Section 4.3. Next we

broaden our current definition of optimiser by introducing forgetful optimisers in Sec-

tion 4.4 and stochastic optimisers in Section 4.5. Lastly, we look at how the Bayesian

framework we have been developing can be used to examine the effects of common

meta-heuristic strategies in Section 4.6.

79
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4.2 Deterministic Optimisers

So far we have been mainly focused on understanding deterministic algorithms. In

this section we continue towards this goal, discussing some more subtle details of the

Bayesian approach in the previous chapter.

4.2.1 Mapping Behaviours to Priors

Previously we have seen that given an algorithm and an admissible cost function there

exists a probability distribution over functions such that the algorithm’s on-policy be-

haviour is just Bayesian optimal behaviour with respect to the cost function and the

probability distribution. However, there are infinitely many possible probability distri-

butions over functions, but only a finite number of different deterministic behaviours.

As a result some behaviours must be produced by multiple priors, and so given a be-

haviour we can’t necessarily produce a unique prior that produces it. In other words

for a given behaviour and cost function admissible priors are not unique.

4.2.2 Behaviour Regions

In fact, under the greedy cost function each optimisation algorithm behaviour corre-

sponds to a convex region in the space of priors. To see this it is enough to observe

that a particular decision at a node corresponds to the prior satisfying a set of linear

inequalities, and the feasible region defined by a set of linear inequalities is necessarily

convex. Figure 4.1 aims to clarify this relationship between regions and behaviours,

and Figure 4.2 shows some real behaviour regions.

A probability distribution over a finite set X where |X |= n can be represented

uniquely by a list of n positive numbers that sum to one, and every list of n posi-

tive numbers that sums to 1 represents a unique prior. Because of this bijection we

can think of the space of priors as the positive part of the surface of an n dimensional

sphere under the L1 norm. Simply put, a prior can be represented as an n-element

vector, where the elements sum to one, and none of the elements are negative. These

vectors describe a surface, and behaviours correspond to reigons on this surface.

4.2.2.1 Random Priors

We performed an experiment where a prior was uniform randomly selected, and the

behaviour it produced was calculated, we repeat this process and counted the number
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Figure 4.1: Left: A graphical representation of the space of possible priors showing the

way that a particular optimisation behaviour corresponds to a region of the space of

possible priors, and a prior distribution result in the behaviour of the region it falls in. In

the diagram there are 12 behaviours, b1, . . . ,b12, and a prior represented by the red

dot which would produce behaviour b7. As we will see this grid layout of behaviours

in prior space is not actually realistic. Right: A more realistic graphical representation

of the space of possible priors. The positive “quadrant” of the surface of the sphere

(under the L1 norm) is the space of possible priors, and the coloured regions show the

corresponding behaviours

of times each behaviour occurred. The result should be that the proportion of times

a behaviour occurs is the same as the fraction of the surface its region covers. The

results are shown in Figure 4.3 and detailed in Figure 4.4. As these figures show,

uniform randomly selecting a prior is not the same as uniform randomly selecting a

behaviour. This result is interesting because it shows that some behaviour regions are

larger than others. It also means that if we assume that all probability distributions over

functions are equally likely to describe the problems we intend to optimise, then some

optimisers are better than others. This is a novel free lunch result.

4.2.3 Cost Functions

In this thesis we have only really considered two cost functions, greedy and informa-

tion gain maximising, and in fact information gain maximisation has only been dis-

cussed briefly. It seems reasonable to wonder what we can we say about cost functions

in general. Are some cost functions better than others in some sense? For example, do

perhaps some cost functions lead to more interpretable priors for popular optimisers?

Are some cost functions able to characterise more full behaviours than others? Are any
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Figure 4.2: Each of the graphs shows a two-dimensional cross-section of the space

possible probability distributions over functions mapping from X = {1,2,3} to Y =

{0,1}. As there are |Y ||X |= 32 = 8 possible functions this is just a two-dimensional

cross-section of [0,1]8 ∈ R8. Each point on the graph is coloured according to the be-

haviour it produces under the greedy cost function. Note that these colours are random

and similar colours do not imply similar behaviours. White indicates that a point isn’t a

valid prior and so has no resulting behaviour. These non-valid priors occur when the

probabilities do not sum to one, or aren’t all positive. Note that, as discussed in the

main text, behaviour lie in convex regions. The top two cross-sections are centred on

the uniform distribution, which is the point at the centre from which all the behaviours

fan out. As can be seen very many behaviours are accessible by slight deviations from

the uniform distribution. The bottom two figures are arbitrarily selected cross-sections.

The bottom left cross-section is examined in detail in Figures 4.5 and 4.5 below.
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Figure 4.3: Bar graphs showing the probabilities of the 22 full optimiser behaviours, for

optimisers on functions mapping {0,1,2} to {0,1} that initially sample at f (0), that can

be achieved under the greedy cost function from a single prior. The left graph shows the

optimisers probabilities when the probability distributions over functions are uniformly

sampled. The right graph shows the resulting probabilities when the probability distribu-

tions are constructed by uniform randomly selecting a probability for each function, then

normalizing such that they all sum to one. Note that there are 64 full behaviours that

initially sample at f (0), and 42 of them do not result from any prior under the greedy

cost function. On the x axis, the labels consist of 6 numbers which correspond to the

optimisers sampling decisions (i.e. whether to sample f (0), f (1) or f (2) next) for the

data 0?? ,1?? ,?0? ,?1? ,??0 and ??1 in that order.
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Figure 4.4: The 22 possible full deterministic behaviours that initially sample f (1) under

a greedy cost function. Here we also use a succinct color-key representation of the

behaviour trees, so that a behaviour can be conveniently represented on a single line.

The blocks on the left of the behaviours show the colour of their corresponding bars in

Figure 4.3.
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Figure 4.5: Top: A two dimensional cross section of the space of possible priors over

functions mapping from X = {1,2,3} to Y = {0,1} with the distinct full behaviour re-

gions coloured and labelled. It can be seen that behaviour regions sharing an edge

differ in their behaviour at a single node. The edges are the linear boundaries between

behaviours. Bottom: A two dimensional cross section of the prior space with the distinct

on-policy behaviour regions coloured and labelled.
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commonly used cost function not admissible? What are the necessary and sufficient

conditions for a cost function being admissible? These questions are outside of the

scope of this thesis however, and we will for the time being have to proceed knowing

only that admissible cost functions do exist, and that the two we have considered are

examples of such.

4.2.4 Measuring Behaviour Performance

Roughly the claim is that a behaviour does well on the probability distribution that it

implies, however as we have seen a behaviour could actually be the result of a set of

probability distributions. Let A be an algorithm carrying out a deterministic behaviour

b and let Pb be the set of all priors that result in that behaviour under the greedy cost

function. How does A’s behaviour vary over elements of Pb? Does the algorithm do

better on some priors in this set than others? As the example below shows, the prior

that induces a behaviour can result in various performances. Essentially we know that

the optimiser is taking the best decision, but that doesn’t tell us how good the best

decision is in an absolute sense.

Example 13. Consider an optimiser A for functions mapping between X = {1,2} and

Y = {0,1}. Assume the A always samples f (1) first, i.e. that A(??) = 1. Let us

assume also that A is greedily minimising, and that the cost of the sample is just its

corresponding Y value. Clearly A(??) = 1 is the Bayesian optimal strategy if and

only if E[ f (1)] ≤ E[ f (2)], but this doesn’t actually determine the performance of the

optimiser.

Thus, a better way of understanding an implied behaviour is that it is the behaviour

that does as well as possible, although in absolute terms this might not be well. Also,

knowing the behaviour doesn’t tell you the expected performance. It tells you what is

best to do, but not how good that best approach is.

4.2.5 Deterministic Optimiser Summary

In this section we have looked at the Bayesian framing of deterministic optimiser in

more detail. We have seen that a single behaviour corresponds to various priors, and

under the greedy cost function the priors for a given behaviour form a connected con-

vex region of prior space. We have also seen that randomly sampling a prior is not

the same as randomly sampling a behaviour, which is a free lunch result of a sort not
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addressed by the no free lunch results. Further, we have seen that there are a range of

performances possible for a given behaviour.

There are many other potential lines of investigation for further understanding de-

terministic optimisers. We could investigate the connectivity of regions, exploring how

many behaviours neighbour a particular behaviour for example.

4.3 Full Behaviours

Previously we have seen that for deterministic algorithms, given a cost function, the

on-policy behaviour always implies a prior over functions. However, we have also

seen that when we expand consideration to full behaviour, and consider not just the on-

policy behaviour but also the off-policy behaviour, then we encounter some difficulties

when we try to infer prior beliefs from the behaviour.

Essentially, the problem is that some full behaviours are seemingly irrational. That

is, there is no probability distribution over functions that results in their behaviour with

respect to the greedy cost function we have so far been using. We briefly examined

this problem in Section 3.6. Below we work through a more detailed example of the

problem.

4.3.1 The Full Behaviour Problem

Let A be an optimisation algorithm for functions f : {0,1,2} → {0,1}. We want to

try to understand the behaviour of A in terms of beliefs about the problems it will

encounter. We can decide on our cost function, here we will assume that it is greedily

searching for minima, so that at each point it selects the x value to sample that has the

lowest expected f (x). The cost function, then, is:

c(x,d) = E[ f (x) | d ] (cost function)

Given the cost function, a particular decision made by the optimisation algorithm

corresponds to a belief about the probabilities of functions. For example, if the opti-

miser initially samples at f (0), then we can infer certain inequality relationships. For

example, A(???) = 0 =⇒ E[ f (0)] < E[ f (1)]. This in turn implies that P( f (0) =

1)< P( f (1) = 1), and thus P(100)+P(101)+P(110)+P(111)< P(010)+P(011)+

P(110)+P(111) which simplifies to P(100)+P(101)<P(010)+P(011). A(???)= 0
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also implies that E[ f (0)] < E[ f (2)], and further inequalities on the prior probabilities

can be deduced from this in the same way.

In this way, the behaviour of an algorithm implies various constraints on the prior

beliefs. We have seen that when considering only the on-policy behaviour these con-

straints are never unjustifiable. In the case of full behaviour however, sometimes the

implied beliefs are inconsistent. An example of this problem is given in Figure 4.6.

Figure 4.6: Example of a problematic full behaviour. The white boxes show the in-

equalities between the probabilities of the functions implied by the decision at the node

they are attached to. For example, at node 1?? the next sample is at x = 1 yielding

either 10? or 11?. As a result the algorithm must believe that, given f (0) = 1, then

P( f (2)) = 0) < P( f (1) = 0). That is, P(100)+P(110) < P(100)+P(101), implying

that P(110)< P(101), i.e. p7 < p6.

4.3.2 Resolving the Full Behaviour Problem

We have now seen how the full behaviour dilemma arises. In this section we consider

what it means, in what sense it is a problem, and how it might be “resolved”.
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4.3.2.1 Restrict Attention to Consistent Optimisers

One important point is that the full behaviour problem is not an issue present in all

optimisers. Some optimisers have a consistent prior under the greedy cost function for

their full behaviour. For example, all the behaviours shown in Figure 4.4 are free from

this problem.

When an optimiser doesn’t suffer from the full behaviour problem it means that a

single prior explains all of its behaviour. Everything the optimiser does, regardless of

the data it is presented with, is consistent with a single coherent belief about the world.

On the other hand, optimisers that suffer from the full behaviour problem behave in a

way that seemingly can’t be rational (or at least, not straightforwardly, but see Section

4.3.2.3 below for an alternative approach). It seems perfectly reasonable to only be

interested in rational optimisers. Thus, one sensible move might be to restrict attention

to only those optimisers that have consistent full behaviours. It is also worth noting

that this in no way restricts the richness of on-policy behaviours, rather it simple forces

the off-policy behaviour to line up with the on-policy behaviour in a natural way.

4.3.2.2 Ties and Tie-Breaking

Another potential resolution of the apparent inconsistency in the implied prior is to

allow draws in the prior, and then have a tiebreaker mechanism. For example, in the

example optimiser detailed in Figure 4.6 the problem is that the behaviour seems to

require that p6 < p4 < p7 < p6, which is impossible. However, if we instead assume

that p6 = p4 = p7 = p6 then this is consistent. If we are now given f (0) = 1, then

P( f (1) = 0) = P( f (2) = 0), and so we need a tie-breaker rule to decide where we

should sample.

The problem with this approach however is that these tie-breaking rules may need

to be arbitrarily complex, and essentially might amount to just listing the sampling

decisions, which moves the whole understanding away from the natural Bayesian be-

haviour back toward arbitrary rule based behaviour with no clear underlying motiva-

tion.

4.3.2.3 Conditional Priors

We now consider a viewpoint from which the behaviour of all the optimisers remains

Bayesian. A potential interpretation which keeps all the full behaviours Bayesian is

to allow the prior to be conditional on the starting data. This would mean that the
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algorithm has different beliefs about what functions are likely, depending on what data

it is presented with. This interpretation is in some sense scientific. The idea is that the

data we are presented with is telling of the underlying structure in some way over and

above just the literal content of the data.

4.3.3 Full Behaviour Summary

In this section we re-examined full policy behaviour, and in particular, we looked more

closely at the existence of inconsistent full behaviours. We have seen that restricting

attention to only coherent full-policy algorithms is one option, which doesn’t alter the

possible on-policy behaviours, but means all optimisers are consistent. However, some

popular optimisers may well turn out to not be consistent in their full behaviour, in

which case it may be necessary to focus only on the on-policy behaviour. This is not

an issue theoretically, as essentially all optimisation research restricts attention to the

on-policy behaviour.

4.4 Forgetful Optimisers

So far we have only considered optimisation algorithms that remember every point

they sample over the entire course of the optimisation. In this setting, as the algorithm

explores a function it builds a history of visited x values and their corresponding y val-

ues, and when determining where to sample next the decision can potentially depend

on all those previous results. Some real optimisation algorithms do keep track of all

the points visited and use them to inform their future sampling decisions, but there are

also algorithms that do not. Some algorithms, for example, forget all but a selection of

the visited points or store some lossy statistics of the samples. They then use this lossy

memory of the past to direct their future behaviour.

In this section we expand our concept of optimisation algorithms to include those

in this latter category. We will call algorithms that do something other than simply

remember everything they have seen forgetful, and so this section is dedicated to con-

sidering forgetful algorithms. We will still restrict our attention to deterministic algo-

rithms.

As we saw in the previous chapter, all non-forgetful optimisers can be understood

as behaving optimally with respect to a prior and cost function. Can forgetful algo-

rithms also be understood in this Bayesian way? If so, we can ask various pertinent
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questions, but perhaps most importantly, we can ask how different strategies for com-

pressing previous samples affect the algorithm’s implied prior.

When is it good to keep track of sampling histories in order to use them to guide

future sampling? When is it better to forget? The general idea is that when function

evaluations are expensive, we try to build better surrogate models and make use of

those to avoid sampling the real function too much. On the other hand, when functions

are easy and cheap to evaluate we are often better off using our time and computational

resources actively evaluating the real function. This intuition makes sense, but can it

be more rigorous?

Maximally exploiting the past samples in practice means conditioning the prior

on all points seen so far, yielding the full posterior. This is often expensive or even

impossible. In the case of a Gaussian process prior the complexity grows cubicly in

the number of points sampled. More specifically, a high end personal computer as of

2015 can invert n×n matrices for n up to a few tens of thousand in a few minutes. This

becomes quickly prohibitively expensive in real optimisation tasks.

As a result of this problem, many techniques have been developed to try to alleviate

this computational cost issue. A common approach is to try to find a small number of

data points m that in some way summarise the large number of real data points n. If

this can be done then you reduce the complexity from n2 to m2 with m� n [59].

Let s(d) = x be the actual application of the sampling policy to the known data.

This has some cost related to the input d, for example in the Gaussian process case

larger data sets have larger cost, although different sampling policies have complexity

related to the inputs to greater or lesser degrees. For example, the time taken by the

random search sampling policy is independent of the current knowledge of the prob-

lem.

In order to reduce the complexity of computing the next sample we use some sum-

marised data d̂ = g(d). In fact this produces a new optimisation algorithm ŝ = s ◦ g,

ŝ : D → X . It is thus the case that summarising the data is equivalent to adjusting

the optimisers prior. If summarising the data allows the sampling policy to be com-

puted more efficiently, then the summarising has necessarily resulted in a more easily

computable prior. Work on how various data summary techniques affect a Gaussian

process optimiser can be found in [60]. The conclusion is that essentially the different

summary techniques just alter the Gaussian process’s prior in some way.

Here we show that this idea generalises to all optimisers. Any optimiser with a

scheme for summarising the history can instead be seen as an optimiser with no data
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summary scheme, but a simpler prior.

4.4.1 Definitions

We start with a preliminary definition, then give a formal definition of forgetful sam-

pling policies and forgetful algorithms.

Definition 19 (Iterative Compression Strategy). Let X and Y be finite sets, F be the

set of all possible functions from X to Y , D be the set of all possible data for functions

in F , and C be an arbitrary finite set.

We call α : D → C an iterative compression strategy iff there exists a function

g : C×X ×Y → C such that for all d ∈ D , x ∈ X and y ∈ Y , g(α(d),x,y) = c =⇒
α(d|(x,y)) = c (where d|(x,y) is the set of samples in d plus sample point (x,y)).

The arbitrary finite set C in the above definition can be thought of as the set of

possible compressed or lossy versions of the sample history, and α : D→C is then the

compression operation, or compressor. For example, α might forget all the previous

sample details except for the position and value of the maximum. In this case C =

X×Y and, for example, α({(0,3),(2,7),(8,5)}) = (2,7).

The restrictions on the compressor α ensure that the algorithm only uses the com-

pressed version of the previous data, along with the new sample result, to construct the

new compressed data. This allow the algorithm to avoid requiring an internal state on

which the behaviour is conditioned. If it wasn’t for this restriction, then there might

exist d1,d2 ∈ D , x ∈ X and y ∈ Y s.t. α(d1) = α(d2) but α(d1|(x,y)) 6= α(d2|(x,y)).
This would be problematic as, if d1 and d2 both result in the same compressed state

then they should produce the same new compressed state when they each have the

same new data point appended. We require the next compressed state to depend only

on the current compressed state and the latest data point.

It is worth noting that the definition of compressor we present is order invariant

in the sense that the compressed representation is required to depend only on the set

of (x,y) pairs that have been sampled by the algorithm and not the order in which the

samples were made.

An alternative representation would be an algorithm that kept some internal state,

and then mapped S×X×Y → X , where S was the set of potential internal states. Rep-

resented this way the algorithm would be a function, conditioned on some internal

state, mapping the latest sample point (x,y) to a new point to sample in X . The in-

ternal state would serve as the compressed memory of all the previous sample results.
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However, the representations are equivalent, and the one we have chosen avoids inter-

nal states, makes the compression of previous data an explicit function, and allows the

algorithm to be defined as mapping D → X (rather than X ×Y → X), which is in line

with or definition of non-forgetful optimisers. We now use the concept of an iterative

compression strategy to define forgetful sampling policies and algorithms.

Definition 20 (Forgetful Sampling Policy). Let X and Y be finite sets, f be an arbitrary

function f : X → Y , F be the set of all such f , D be the set of all possible data

for functions in F , C be some finite set, and α : D → C be an iterative compression

strategy.

Let s : D → X be defined as s(d) = a(α(d)), where a : C → X is an arbitrary

function. We call such an s a forgetful sampling policy.

Here the function a :C→X determines where next to sample, based on compressed

version of the sample history, c = α(d). Thus, this decision is made without access to

the full data d.

Definition 21 (Forgetful Optimisation Algorithm). A forgetful optimisation algorithm

A is iterative use of a forgetful sampling policy s.

Figure 4.7: On the left a representation of a non-forgetful optimiser, which is given

for comparison with the representation of a forgetful optimiser shown on the right. As

can be seen, the forgetful optimiser has an additional compressor function, α, which

transforms the input to the optimiser.

Figure 4.7 compares the composition of forgetful and non-forgetful optimisers.

Having given a definition we can now consider the properties of forgetful optimisers,

and contrast them with our original non-forgetful optimisers.

Firstly, forgetful optimisers contain non-forgetful optimisers as a sub-set. To see

this we can set C = D and let α be the identity map. Also, it can be observed that the

above definition allows for infinite looping behaviour. As a trivial example, if |C|= 1,

e.g. C = {c}, then the algorithm will just repeatedly sample x = a(c) (with y = f (x)

always resulting) and will never make any further progress in exploring f . This could
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be thought of as being too forgetful, the algorithm does something, then immediately

forgets and does it again, and so on.

We will restrict our attention to those forgetful algorithms that eventually explore

the whole function, regardless of the function being optimised. We call these algo-

rithms “eventually exploring forgetful optimisers” (EEFO).

As X ,Y and C are finite, the necessary and sufficient conditions for a forgetful

algorithm to be EEFO is that the algorithm does not get stuck in a loop before it has

sampled the function at all x ∈ X . If we exclude the possibility of forgetful algorithms

getting stuck in a loop, then forgetful algorithms are just resampling algorithms under

a different name.

4.4.2 Graph Representation

Just as a non-forgetful optimiser can be represented as a behaviour graph with data

as nodes, and edges representing the possible transitions resulting from sampling (see

Definition 10), so forgetful optimisers can be represented as graphs, but now with

nodes representing the compressed versions of the data.

Definition 22 (EEFO Behaviour Graph). The behaviour of an everywhere exploring

forgetful optimiser can be represented as a directed graph in which the nodes represent

the compressed states c ∈ C from the optimiser’s forgetful sampling policy, and the

edges represent possible transitions resulting from sampling in accordance with the

sampling policy. See the left hand graph in Figure 4.9 for an example of an EEFO

behaviour graph.

Theorem 25 (EEFO Behaviour Graphs can be Mapped to Trees). An eventually explor-

ing forgetful optimiser’s behaviour graph is acyclic at-least until every x ∈ X has been

sampled. If we stop the optimiser when every x ∈ X has been sampled then all even-

tually exploring forgetful optimiser’s behaviour graphs are equivalent to behaviour

trees.

Proof. From the fact that EEFO does not get stuck in a loop we know that its graph

representation is loop free. Thus, the theorem is just a direct result of the fact that any

finite graph without loops can be “unfolded” into a tree.

Figure 4.8 shows how an EEFO truncated behaviour graph can be unfolded into a

tree. Figure 4.9 then shows how meaningful labels can be inferred for the compressed
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states c ∈C.

Figure 4.8: Unfolding the compressed behaviour graph. On the left is the behaviour

graph showing the behaviour on the

Figure 4.9: The behaviour of an example EEFO is shown on the left. As we have

shown above, the graph is necessarily acyclic until all x ∈ X have been sampled. For

any EEFO graph, the state of knowledge (of an observer who doesn’t forget) can be

inferred for each node. The graph with the resulting inferred node labels are shown on

the right.

We can now begin to prove other requirements that an EEFO must necessarily meet.

We start by showing that in order to be eventually exploring, a forgetful optimiser must

have its set of compressed sample data C be such that |C|≥ |X |.

Theorem 26 (Minimum Number of States). In order to be able to fully explore func-

tions f : X →Y , a forgetful optimiser must have c ∈C such that a(c) = x for all x ∈ X.

It follows that in order for a forgetful optimiser to be eventually exploring, |C|≥ |X |.
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Proof. The function a : C→ X determines where the algorithm will next sample given

compressed sample history c. If there exists some x such that there is no c∈C for which

a(c) = x then x will never be sampled. As each x must be sampled to fully explore f

then there must be at least as many states as there are x values, thus |C|≥ |X |.

4.4.3 Ignoring Resampling

We saw in previous chapters, the (on-policy) behaviour of a non-forgetful optimisation

algorithm can be represented as a tree. We have now seen that this is also true for

EEFO. From 4.4.2 we know that an EEFO can’t revisit any c ∈C until it has sampled

every x ∈ X , and the behaviour of the algorithm up until this point can be represented

as a tree. We now show that EEFO algorithms naturally surject onto non-forgetful

optimisers. In fact, if we take a EEFO and simply ignore any resampling behaviour,

then we obtain a standard non-forgetful optimiser. As an example the EEFO from

Figure 4.9 is shown alongside its equivalent non-forgetful optimiser in Figure 4.10.

Figure 4.10: On the left is the behaviour graph for a EEFO. On the right the same

behaviour graph is shown, with the resampling decisions skipped.

Thus by the three step process of unfolding the graph, inferring the labels of the

nodes, and ignoring resampling we can see that the on-policy behaviour of any EEFO

is equivalent to the behaviour of some non-forgetful optimiser, and thus can be inter-

preted as Bayesian optimal behaviour.

However, we have not really dealt with why the algorithm forgets and has to re-

sample. If we are satisfied with considering resampling as meaningless behavioural

blips that do not say anything about the EEFO beliefs then we can stop, and interpret

the EEFO’s prior to be the same as it’s corresponding non-forgetful optimiser’s. As we
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have seen, forgetting does nothing more than introduce resampling. It does not allow

any new behaviours. Thus, it seems that compression strategies may have computa-

tional benefits, but do not have behavioural ones.

4.4.4 The Effects of Forgetting

We now seek to understand how the forgetful nature of an algorithm can affect the

prior distribution implied by the algorithm’s behaviour. If an algorithm has only a lossy

representation of the results of previous samples, as is necessarily the case if |C|< |D|,
then it cannot distinguish all possible situations, and as a result its behaviour cannot

be as fine grained as a non-forgetful alternative. At the same time, as discussed above,

allowing an optimiser to be forgetful does not result in a broader range of possible

behaviours; any forgetful optimiser can be mimicked exactly by a non-forgetful one.

Forgetful optimisers don’t allow new behaviours, but forgetfulness may well bias

the sorts of behaviours possible towards particularly effective implied priors. Thus,

although forgetful optimisers are restricted to a set of behaviours it may be that this

restricted set is somewhat well aligned with common problems. The idea is that not

being able to keep hold of too much information restricts your behaviour options in a

way that tends to make them better.

4.4.5 Forgetful Optimisation Summary

In this section we have expanded our definition of optimisation algorithm to include

those optimisers that store only some information about the previous samples, be that

through simply only keeping some sample results, or by storing the previous results

in some lossy compressed way. Many real world optimisation algorithms fall into the

class of forgetful optimisers, particle swarm optimisation, gradient descent optimisers,

and genetic algorithms to name but a few prominent examples (note however that only

the second of these is generally deterministic). We then showed that on this extended

class of algorithms it is still the case that all algorithms are describable as a prior and

cost function pair. Lastly we considered how, although not capable of producing new

behaviours, forgetfulness might favourably skew the sorts of behaviours produced by

optimisers.

Forgetful optimisers, due to their forgetting, can have low memory requirements.

However, it is worth observing that an ideal forgetful algorithm, i.e. one that samples

without repetitions, can be realised only through systematic exploration behaviour.
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This may well result in greater temporal complexity.

In summary, it is true that storing all the samples is necessarily maximally in-

formative. If an algorithm stores everything it can always behave as if it has only

stored some results later, if required. For this reason forgetfulness isn’t beneficial be-

haviourally. Rather, it seems to have two possible non-behavioural benefits: it is often

chosen for its computation efficiency and logistical benefits, and moreover, it may well

coincidently produces good sampling behaviour.

4.5 Stochastic Optimisers

So far in this thesis we have almost exclusively focused on deterministic optimisation.

However, in reality very many optimisation algorithms, quite possibly the majority, are

not deterministic. Genetic algorithms, particle swarms, simulated annealing, random

search and stochastic gradient descent, to name but a few, all use stochasticity in their

optimisation behaviour.

Thus, in this section we shift our focus on to stochastic optimisation algorithms.

Stochastic optimisers are a more general class of algorithms as they contain determin-

istic optimisation algorithms as a proper subset. As a result, in shifting our attention to

stochastic algorithms we are actually just broadening our considerations.

In previous chapters we have presented a framework for understanding all deter-

ministic optimisation algorithms as Bayesian. Here we will investigate whether we can

extend this framework to include stochastic optimisers. As we will see, the answer is

essentially yes, but there are some technical details that need to be carefully worked

through in order to reach this result.

Before we proceed, it is worth highlighting the relationship between stochastic

behaviour and the “everywhere exploring” optimisers discussed in Section 4.4. Prac-

tically speaking, stochasticity is a behaviour that, if correctly used, can be shown to

mathematically guarantee that an optimiser will eventually sample everywhere in X .

Practically, however, interesting functions are usually more complex than available

algorithms, such that stochasticity is a mathematical assumption which guarantees that

the algorithm goes everywhere in X. E.g. a forgetful optimiser would not get stuck if it

was stochastic, so stochasticity is a way to implement an exploring forgetful optimiser:

Of course, it will resample a lot.
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4.5.1 Defining Stochastic Optimisers

Informally, a stochastic optimisation algorithm is an optimisation algorithm that can

involve randomness in its decisions. Whereas a deterministic optimisation algorithm

always makes the same decision for a given input, a stochastic optimiser selects ran-

domly from possible decisions according to a probability distribution. As a result, if

given the same function to optimise multiple times, the stochastic optimiser may well

make different sampling decisions on each occasion. Below we make this definition

more rigorous. Additionally, Figure 4.11 shows diagrammatically an example of a

stochastic optimiser’s behaviour policy, which can be helpful for guiding intuitions.

We first give two equivalent definition of a stochastic sampling policy, and then a defi-

nition of a stochastic optimisation algorithm.

Figure 4.11: Example of a stochastic optimiser. Note that although the above diagram

shows a tree, in reality the paths converge on the eight possible three-bit functions in

the final layer, which isn’t shown here for clarity. As discussed in the main text, the fact

that the behaviour doesnt form a tree means that extra care needs to be taken when

thinking about the Bayesian interpretation of stochastic algorithms.

Definition 23 (Stochastic Sampling Policy v1). Define PX as the set of probability

distributions over X. A stochastic sampling policy is a function s : D→ PX .

Definition 24 (Stochastic Sampling Policy v2). A stochastic sampling policy is a prob-

ability distributions over X parametrised by d, PX( · |d).

Definition 25 (Stochastic Optimisation Algorithm). A stochastic optimisation algo-

rithm repeatedly uses a stochastic sampling policy to obtain a probability distribution
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over X, it then draws a sample from this distribution to determine which f (x) to eval-

uate next, adding the results at each step to the data.

4.5.2 Comparing Stochastic and Deterministic Optimisers

We have now seen a definition of stochastic optimisers. Of course, it is not immediately

clear from the definition if there are any important differences between stochastic and

deterministic optimisers. One key way in which stochastic optimisers differ from their

deterministic counterparts is that their behaviour lacks an obvious on-policy/off-policy

distinction. This is potentially an issue as we have previously focused on the on-policy

behaviour of deterministic algorithms, showing that the on-policy behaviour implies a

coherent prior over problems.

As a brief recap, we have seen that deterministic algorithms can be represented

by a decision tree if we assume that they are always run starting with no data about

the function being optimised. We call the behaviour described by this tree the algo-

rithm’s on-policy behaviour, as it contains all and only the situations the algorithm can

encounter when following its own behaviour from a blank slate. Distinct from this

on-policy behaviour is the so-called off-policy behaviour. The off-policy behaviour

describes the behaviour of the algorithm in situations it would never encounter when

following its own decisions. As an example consider an optimisation algorithm for

functions f : {1, . . . ,7} → N that samples the x values in increasing order. First it

would evaluate f (1), then f (2) and so on up to f (7). Thus, after k function evalua-

tions the algorithm would know exactly the k leftmost values of f . For example after

three function evaluations the data might be 3,7,2,? ,? ,? ,?, and we would next sample

f (4), yielding say, 3,7,2,7,? ,? ,?. An example of an off-policy situation for such an

algorithm is 1,? ,4,? ,? ,3,2. This state of knowledge about f would never result from

following the algorithm’s own decisions starting from ? ,? ,? ,? ,? ,? ,?. To summarise,

for deterministic behaviour the on-policy decisions are the nodes of the tree starting

from no data, the off-policy decision are all other decisions.

The problem with extending this idea to stochastic optimisers is that in the stochas-

tic case there isn’t necessarily a fixed decision tree starting from no data. Instead of

data being either on-policy or off-policy as in the deterministic case, each particular

data set now has some probability of being in the path the algorithm takes down the

graph. In fact, we will now show that a stochastic optimiser implies a probability

distribution over deterministic optimisers.
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Theorem 27 (A stochastic optimiser implies a probability distribution over determin-

istic optimisers). A stochastic optimisation algorithm is equivalent in behaviour to a

suitable distribution over deterministic optimisation algorithms. Specifically, running

the stochastic optimiser on a problem is equivalent to sampling a deterministic opti-

miser from the distribution and then running that on the problem.

Proof. A deterministic optimiser is defined by the decision it makes at each node.

Any particular run of the stochastic optimiser will produce a set of decisions equiva-

lent to some deterministic optimiser. More generally making a decision at every node

produces a full deterministic behaviour (and thus necessarily also an on-policy be-

haviour). The probability of a full behaviour is just the product of the probabilities of

the decisions at each node. The probability of an on-policy behaviour is the sum of

the probabilities of the full behaviours that produce the on-policy behaviour of inter-

est.

An example of a run of a stochastic optimiser corresponding to a particular deter-

ministic optimiser is given in Figure 4.12. We have seen that a stochastic algorithm

is equivalent to a probability distribution over deterministic algorithms. Figure 4.13

shows the probability distribution over deterministic algorithms that is implied by the

stochastic optimiser shown in Figure 4.11.

4.5.3 A Bayesian Characterising of Stochastic Optimisers

As we have seen, a stochastic optimisation algorithm S can be understood as a proba-

bility distribution Q over deterministic optimisation algorithms A ∈A . Each determin-

istic algorithm A can be understood as a probability distribution over functions, PA, and

so a stochastic algorithm can be thought of as a probability distribution over probabil-

ity distributions over functions. This naturally produces a new probability distribution

over functions, R, defined as:

R( f ) = ∑
A∈A

Q(A)PA( f ) (4.1)

As this R is itself a probability distribution over functions it corresponds to a par-

ticular deterministic algorithm, call the deterministic algorithm induced by a stochastic

algorithm S in the above way AS.

Thus, is in some sense the stochastic optimisation algorithm S is behaviour is in-

formed by the probability distribution R. However, what algorithm actually does in a
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Figure 4.12: This diagram shows how a random decision at each node produces a

deterministic algorithm behaviour tree. The red arrows in the upper tree show the choice

made, and the tree on the bottom right is constituted from all and only these decisions.

Choices only need to be made at nodes that might be encountered in the course of the

optimisation if we are only interested in the resulting on-policy deterministic behaviour.

single run is, behave optimally with respect to one of the many probability distribution

that constitute R. Every time the optimiser is run it randomly selects a constituent part

of R with probability equal to the weight the constituent part in question is given in the

construction of R.

The key idea that we have been perusing is that the behaviour of an algorithm

reveals its beliefs about the sorts of problems it is likely to encounter. In particular,

if we assume a given goal (in the form of a cost function) then the behaviour reveals

a probability distribution over functions that the algorithm believes in, which we call

the algorithm’s prior. When we consider stochastic optimiser, it seems that behaviour

is the result of a sample from a probability distribution over beliefs. This distribution

over beliefs can be used to create a deterministic optimiser via Equation 4.1. We now

examine whether any benefits can be had from the stochastic approach.
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Figure 4.13: The stochastic optimiser in Figure 4.11 implies a probability distribution

over deterministic optimisers. This diagram shows the decision tree and probability for

each one of the twelve possible deterministic algorithms.

4.5.4 Are there Benefits to Stochastic Behaviour?

As we have noted above, stochastic optimisers are a strictly broader class of optimisa-

tion algorithms than deterministic optimisers. As a result, anything we could achieve

with deterministic optimisers we can also achieve with stochastic optimisers. The

question then is whether stochasticity enables us to achieve anything that is impossible

with purely deterministic behaviour.

We have already seen that the no free lunch theorem holds for stochastic algo-

rithms, and thus no stochastic algorithm is better than any other over all problems. In

particular, as deterministic algorithms are a subset of stochastic algorithms this means

that no stochastic algorithm is better than any deterministic algorithm over all prob-

lems. The no free lunch result then is that stochastic algorithms are no better be-

haviourally than deterministic ones. In this sense then, there are no benefits to stochas-

tic algorithms. Further, as we saw in Chapter 2, various no free lunch extensions also
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hold for stochastic optimisers, such as m-step no free lunch, sharpened no free lunch

and focused no free lunch.

4.5.4.1 Non-Behavioural Benefits

That said however, the no free lunch algorithm is only concerned with the behaviour in

a mathematical sense, i.e. the mapping that is performed. In this sense we do not gain

an advantage from allowing randomness. Importantly though, no free lunch theorems

do not address the practicality of the algorithm. Thus, although stochastic optimisation

provides no behavioural benefits (and in fact has a disadvantage, as we will shortly see)

computationally, and in terms of algorithm simplicity allowing randomness seems to

be very advantageous, hence its wide application.

4.5.5 Are there Downsides to Stochastic Behaviour?

We have seen that there is no behavioural advantage from stochastic behaviour. In

this section we show that actually random behaviour is in a sense less powerful that

deterministic. This is a general result that is not ruled out by the no free lunch results

seen in Chapter 2.

To see this let us first define the set of strictly stochastic optimisers; optimisers that

are in the set of stochastic optimisers but are not in the set of deterministic optimisers.

Strictly stochastic optimisers necessarily involve some randomness in their behaviour,

whereas stochastic optimisers can involve randomness. Note that a strictly stochastic

optimiser doesn’t need to involve randomness in all of its decisions, just in at least

one. We now state and prove a theorem that shows that for any strictly stochastic opti-

miser there is a deterministic optimiser that is expected to behave better the stochastic

optimiser on any class of functions on which the stochastic optimiser performs well.

The result comes about because, as we will see, stochastic optimisers mix Bayesian

optimal belief updates with semi-random belief updates.

Theorem 28 (Strictly stochastic optimisers behave sub-optimally). A strictly stochas-

tic optimiser mixes optimal Bayesian belief updating with random belief selection,

resulting in behaviour that cannot be more effective than a deterministic optimiser.

Proof. Assume that we are optimising problems that are in reality distributed accord-

ing to some distribution Pr. A deterministic optimiser could in theory be constructed

which behaved optimally with respect to the distribution Pr and a cost function of our
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choosing. The optimiser would perform as well as possible, behaviourally, at the op-

timisation task. Consider now a strictly stochastic optimiser. It may well be that it

sometimes produces the behaviour that is optimal given that the real distribution is Pr,

but if it always did then it would not be behaving randomly, it would be the determinis-

tic optimiser just discussed. Thus, its randomness must result potential deviation from

the optimal strategy, by randomly behaving with respect to a sub-optimal (i.e. false)

prior belief.

4.6 Exploring Common Meta-Heuristic Approaches

In this section we direct our attention toward some common approaches to meta-

heuristic optimisation with the aim of understanding how these approaches affect the

underlying Bayesian structure. A good overview of meta-heuristic ideas can be found

in [61]. Here we specifically consider hybrid optimisers and adaptive optimiser. Hy-

brid optimisers attempt to exploit the strengths of various other optimisers by combin-

ing them in some way, and adaptive optimisers are optimisation algorithms that change

their behaviour over time base on the results of its exploration.

There is a dilemma that needs to be directly addressed when designing meta-

heuristic optimisers. On the one hand, we know from the no free lunch theorems

discussed in Chapter 2 that regardless of how we cleverly adjust, augment and com-

bine optimisation algorithms we can never create a better algorithm in a totally general

sense. Yet on the other hand, we know from experience that these clever algorithm

adjustment strategies, often discussed in the literature under the umbrella of “meta-

heursitic algorithms”, do change the algorithms in some way. The algorithm isn’t

better in a fully general sense, but it is different. The dilemma then is this: How do we

make new optimisers that are different in the right kind of way?

We argue that this is exactly the sort of problem the Bayesian interpretation is able

to address. As we have shown over the previous chapters, all optimisers are repre-

sentable as priors and cost functions. In this section we examine how meta-heuristic

algorithm strategies change the underlying prior implied by the optimiser, and so adjust

the type of problem with which the optimiser is best aligned.

We will see that meta-heuristic algorithms that intelligently switch between multi-

ple optimisation algorithms or dynamically adapt parameters on-line are still optimi-

sation algorithms, and thus themselves respect this rule. The prior which they use is

composed in some way from the priors of the underlying algorithms. The exact nature
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of this composition depends on the details of the meta algorithm. In the next two sec-

tions we discuss two popular meta mechanisms, parameter adaptation and algorithm

gating.

4.6.1 Hybrid Optimisers

Hybrid optimisers attempt to exploit the strengths of various existing optimisation al-

gorithms by combining them intelligently. We first consider the case where one of

the optimisation algorithms is initially run with the express purpose of deciding which

optimiser from a selection would be best for the problem at hand, and then the chosen

algorithm is run as normal. We call this the algorithm selection meta-heuristic. We

will see that this kind of meta-heuristic optimisation is a special type of prior combin-

ing, and, roughly speaking it allows sections of the prior corresponding to conditional

scenarios to be defined by different optimisers.

4.6.1.1 Algorithm Selection

An algorithm selection meta-heuristic optimisation strategy initially runs an optimisa-

tion algorithm A1 for a short time, it then uses those results to select an algorithm from

algorithms A2, . . ., An to run for the remainder of the optimisation.

Figure 4.14: Algorithm selection. The initial algorithm (yellow) is run until it decides

which of the thee algorithms (red, blue or green) is best suited to the problem, then

it switches to that algorithm. The algorithm selection construction means that, in any

given path down the tree the algorithm (ie, the colour) can change at most once.

A interesting question is, how is the resulting algorithm’s prior related to the priors

of the constituent algorithms? In Figure 4.14 we show how the behaviour tree of
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the hybrid optimiser can be created by splicing together sections of the constituent

optimiser’s behaviour graphs.

Note that the sections of the behaviour graphs of A2, . . . ,An present in the resulting

meta-optimiser’s on-policy behaviour tree may not be from the on policy regions of

the original optimisers. However, what can be seen by considering Figure 4.14 is that

the resulting meta-heuristic optimiser’s prior is constituted from conditional sections

of A2, . . . ,An, weighted so as to result in the behaviour of A1 initially.

4.6.1.2 Algorithm Gating

An algorithm gating meta optimisation strategy uses a set of optimisation algorithms,

A1, A2, . . ., An which it can switch between over the course of the optimisation. Of

course, an algorithm created by switching between A1, A2, . . ., An is behaviourally

identical to another non-gated optimisation algorithm, say B, regardless of how you

implement the gating. What can we say about how the prior implied by B relates to the

priors implied by A1, A2, . . ., An?

Figure 4.15: Optimisation algorithm B, shown with its composite parts in different

colours. Note that in algorithm gating, in contrast to algorithm selection, a path down

the tree can change algorithm (ie change colour) any number of times. For example the

right most path down the tree goes from yellow to green to blue to yellow to red.

Again, as in algorithm selection, the sub-trees of the constituent algorithms used

to construct the behaviour tree of B may well not come from their on-policy behaviour

tree.
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4.6.2 Adaptive Optimisers

There is an idea in optimisation that the algorithm may be able to adapt itself to the

kind of problem at hand, and thus have a robust good performance over a broad range

of problems.

We now turn to adaptive optimisers. Adaptive optimisers are optimisation algo-

rithms that change their behaviour over the course of the optimisation based on the

results of the exploration so far. Generally this is done though modulating some pa-

rameter(s) on which the algorithm’s behaviour depends.

Parameter adapting meta-heuristic algorithms take a parametrised optimisation al-

gorithm, Aθ, and augment it with a parameter adaptation rule, z : D→ θ, which updates

the algorithm’s parameter vector θ on-line in response to the results of the samples seen

so far. The intention is that the algorithm can adapt to the circumstances and exploit

the information it gains about the objective function not just by selecting the next sam-

ple point intelligently, but also by changing the way it will select sample points in the

future.

For any fixed parameter vector θ the algorithm’s behaviour can be described by a

prior over functions. Thus, the set of possible parameter vectors can be seen as describ-

ing a set of possible priors over functions. One view then is that the meta algorithm’s

prior changes as the parameter vector changes. This is a valid interpretation, but there

is a less obvious alternative interpretation. For a deterministic parameter adaptation

rule the meta algorithm has behaviour describable as a single prior over functions con-

stituted from pieces of the priors from the aforementioned set. In this way we can

see that parameter adaptation is an example of gating, which we discussed in Section

4.6.1.2.

4.6.2.1 Critical Optimisers

A critical optimiser is an algorithm that aims to optimally balances exploration and

exploitation by maintaining a so-called critical state of activity. As an example we can

consider a particle swarm type optimisation algorithm, which explores the problem

space with a host of particles. Intuitively you want to avoid two situations: Firstly you

do not want all the particles to collapse down into a single point, or a very small region

of the parameter space. Secondly you do not want the particles to shoot off unrestricted

in all directions.

Various critical optimisers have been proposed by researchers. Some of these are
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critical variants of established meta-heuristics, for example adapting the standard parti-

cle swarm optimisation algorithm so that it self organises toward criticality [62]. Other

optimisers are in some sense naturally critical. For example cuckoo search is naturally

critical due to its hard-coded Levy flight jump dynamics, providing a random walk

with power-law distributed step size [63].

Whether the criticality comes about though on-line adaptation or is a property of

the optimiser generally, we can seek to understand how this critical balance between

explosion and collapse is reflected in the algorithm’s prior beliefs. This is a difficult

question, and we will not be able to resolve it here. However, we make the following

observation: It seems that the prior itself must maintain, in spite of being conditioned

on the results as the optimisation progresses, a broadness that does not result on sin-

gling in on a focused X region, but at the same time does produce exploitation locally.





Chapter 5

Shattering

5.1 Introduction

Function optimisation research has two goals. The more obvious of the two is to create

good algorithms for optimisation problems of various kinds. The other is to understand

what makes optimisation algorithms “good”, and how they should be compared and

evaluated.

Here we consider an approach to the second challenge that draws inspiration from

research on the Vapnik-Chervonenkis (VC) dimension and shattering [64], and is theo-

retically underpinned by the Bayesian framing of optimisers we have introduced in the

previous chapters. A classification algorithm f parametrized by θ is said to shatter a

set of points if for all possible labellings of the points as positive and negative there is

a θ that results in f correctly classifying every point. The VC dimension of a classifier

is the maximum number of points that can be arranged so that they are shatterable.

In this chapter we consider parametrized probability distribution over functions,

and show that for these distributions we can find parameter settings which favour dif-

ferent optimisation algorithms. In particular, we show that any one of three popular

optimisation algorithms can be made to out-perform the other two by selecting the sort

of problem considered, and that by finding those problems on which an optimiser is

better than its competitors, we learn about the sorts of problems it is suited to. This

chapter can be seen as a case-study of no free lunch results which also has implications

for the practical evaluation of optimisation algorithms.

As we covered in detail in chapter two, It has been known since the publication of

Wolpert and Macready’s no free lunch theorem in the late 90s that we can’t have an

optimisation algorithm that performs well on all possible problems [8], and instead the

111
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best we can do is have an optimisation algorithm that is good at a subset of problems.

Although this may seem disheartening for optimisation research, it is worth noting

that this strong result holds only when the function to optimise is sampled froma block

uniform distribution over the set of all function. In reality however, even a algorithm

needing to handle a very broad range of problems is unlikely to be dealing with all

problems with the required block probability. Instead, the hope is that there is common

structure in the problems it encounters, and it is this structure that allows us to create

optimisation algorithms that perform better than random guessing in general on real

problems.

Moreover, for a given class of real-world problems some algorithms are better than

others. In these cases their is a good match between structure the algorithm can exploit

and the structure actually present in the problems. Ideally when selecting algorithms

for a problem we would try to optimise this matching of algorithm strength and prob-

lem type. In order to do this, and thus make the best use of available algorithms, it

is necessary to understand the kinds of problems each algorithm is particularly suited

to. In this chapter we present an approach to this problem, more specifically, we try

to address the following question: Given an optimisation algorithm, how can we learn

the sorts of problems it excels at?

Another question is pertinent here. What sorts of problems do we want optimisa-

tion algorithms to be good at? The natural answer of course is that we want algorithms

to be good at the sort of problems on which they are likely to be used. Although this

answer is no doubt true, it is not very useful. Thus, we suggest the following more

concrete approximation to the above intuitive response: each algorithm was designed

to be good in some sense, to solve a particular type of problem that someone needed to

solve for example. Thus, if we knew the sort of problems algorithms were collectively

good at, we might start to get an understanding of the problems that arise in reality.

Rather than making a algorithm good at everything, which we know to be impossible,

the aim could be to make an algorithm that is better than other algorithms at what they

are good at. Assuming that what they are good at is useful, then this new algorithm

should be a useful tool. The cost of course, as we know from no free lunch theorem,

is that the new algorithm will be even worse at the things the original algorithms were

bad at.

There has been previous related work, in which researchers tried to evolve via

a genetic algorithm problem functions that a particular optimiser found difficult to

optimise [65, 66, 67]. This was doen to find weaknesses in optimisers. Here however
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we are interested in when an algorithm does well. All optimisers have weakness, and

we focus on understanding their strengths.

We now formally introduce a concept of shattering for optimisation algorithms.

Let A be a set of optimisation algorithms and let P be a set of probability distributions

over functions. We say P shatters A iff ∀A ∈ A , ∃P ∈ P s.t. ∀ Â 6= A ∈ A , E[Â|P]>
E[A|P]. Where E[A|P] is the expected performance of A on functions sampled from

P, under some performance metric. In other words, a set of probability distributions

shatters a set of optimisation algorithms iff each optimisation algorithm is better than

the others on average on at least one probability distribution.

5.2 Proof of Concept

Above we defined shattering in abstract, we now give a concrete example. In our

example the problems (or test functions) are sampled from the following parametrized

probability distribution over possible functions. Parameters a,b,c ∈ R+ are set, then

a function f : Rn→ R is created by uniformly sampling 200 points, p1, . . . , p200 from

[−50,50]n ⊂ Rn and 5 points, r1, . . . ,r5 from [0,1]n ⊂ Rn. With these values fixed, f

is defined as follows:

fa,b,c(x) = ka,b(x)+hc(x)

hc(x) =
1
4

200

∑
i=1

sin(c|pi− x|r1i2π+ r2i2π)

ka,b(x) =
−2

1+ e−λa,b(x)
+1

λa,b(x) = b
200

∑
i=1

r3i(a+ r4i)sin(2π(r5i +
|pi− x|
a+ r4i

))

Thus, the probability distribution is parametrized by {a,b,c} and we sample from

it by drawing p1, . . . , p200 and r1, . . . ,r5 from uniform distributions as described above.

We write f = Pf (α,β,γ) to mean f is sampled from the distribution described above

with the given parameters, i.e. a = α,b = β,c = γ.

This parametrised probability distribution is not the only possibility. It was de-

signed to allow different parameter choices to create very different kinds of functions.

It necessarily only covers a small part of function space, but as we show below, this
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is enough to achieve our goal. Broadly speaking the h term provides larger slower

variations to which the k term adds clipped noise of various strengths and frequencies.

Figures 5.1 and 5.2 show examples of functions k and h respectively for various pa-

rameter choices. Figure 5.3 show a selection of example 1D and 2D functions sampled

from the final distribution.

Figure 5.1: k(a,b) for various values of a and b. Note that the values of b are functions

of the values of a.

Figure 5.2: h(c) for three values of c. Note that unlike k, the output of h is not always

between -1 and 1.

This is the space of function distributions we will use to compare the optimisation

algorithms.

5.2.1 Experimental Details

We used 10 dimensional functions in all experiments, the algorithms were allowed

5000 function evaluations in total. All function evaluations counted towards this limit,

including the samples taken for numerical approximation of the gradient. For each

parameter set ten functions were generated, then for each of these functions the mean

and variance over ten runs was taken.
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5.3 Algorithms

We have chosen three algorithms to compare using our method, these are the Broyden-

Fletcher-Goldfarb-Shanno algorithm (BFGS), simulated annealing (SA) and particle

swarm optimisation (PSO). These three algorithms were chosen as they each work in

a distinct way. BFGS is a powerful gradient descent algorithm, SA is an effective

probabilistic technique, and PSO uses the emergent behaviour of a swarm of agents.

We now briefly introduce each of the algorithms.

5.3.1 Broyden-Fletcher-Goldfarb-Shanno

BFGS is a Quasi-Newton method which searches for optima using numerical gradient

approximations and line searches. We use a python implementation from the SciPy

library [68], which follows the description in ”Wright, and Nocedal ’Numerical Op-

timization’, 1999” [69]. Essentially it is a hill-climbing method, that is known to

produce good results fairly reliably.

5.3.2 Simulated Annealing

Simulated annealing takes its name from chemical annealing techniques. The function

being optimised is explored by making random “jumps” from the current solution and

(stochastically) updating the optimum if better positions are found. The method was

first introduced in 1983 by Kirkpatrick et. al. [70] and is still popular. A tempera-

ture parameter scales the jump size, and is decreased to zero over the course of the

optimisation. The result of this decreasing temperature is a tendency for the search

to become more local over time. We use the following simple simulated annealing

algorithm, where T is the maximum number of time-steps, t is the current time-step,

b is the current best position and N(µ,σ2) is a sample from a normal distribution with

mean µ and standard deviation σ.

pt = N(b,(T − t)c/T )

if f (pt)< f (b) then b = pt
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5.3.3 Particle Swarm Optimization

PSO is a popular meta-heuristic optimisation technique. Originally inspired by the

flocking behaviour of birds, the algorithm simulates a swarm of agents exploring the

function space [71]. Each agent’s exploration is based both on the global best, and the

agent’s personal best, with parameters determining the relative importance of these two

influences. Here we use a heterogeneous PSO where these parameters are randomly

selected for each particle. Specifically, each particle has two parameters α1 and α2, α1

is set uniform randomly in [0,4], and α2 is set to be 4−α1. In addition, each particle

has a starting inertia, ω0 uniform randomly sampled from [0.4,0.8]. At time-step t

ωt = ω0− 0.4× t
T where T is the total number of steps the optimiser will be run for.

These are standard parameter ranges from the literature. We use the heterogeneous

PSO variant here rather than the standard PSO as it tends to more quickly find reason-

able results (sometimes paying for this by doing less well in the long run), and this is

suitable here as we only run the optimisers for 5000 samples in our experiment. Let

vt , pt be the particle’s velocity and position respectively at time t and let b,g be the

particles personal best position found and the best position found among all particle

respectively. Then we update the particle as follows:

vt+1 = vtωt +α1u1(b− pt)+α2u2(g− pt)

pt+1 = pt + vt+1

Where u1,u2 are independent uniform random sample from [0,1].

5.3.4 Algorithm Differences

The algorithms introduced above consist of a modern hill climbing optimiser, a stochas-

tic optimiser and a swarm approach. Broadly speaking, the BFGS algorithm attempts

to move efficiently to the optimum by exploiting gradient information, SA is a random

search that focuses in around promising results over the course of the optimisation,

and PSO preferentially explores the regions between and around pairs of strong can-

didate solutions. Each of these approaches has its own particularities, and here we are

interested in how these will shape the resulting prior distributions.
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5.4 Results

The performance of three optimisation algorithms was compared on various points in

the space of probability distributions over functions. First we searched for parameters

that favoured each of the three algorithms. Such parameter sets were found, and the

results are shown in Figure 5.4. Finding such points serves as a constructive proof that

our set of three optimisation algorithms is shattered by our set of priors over functions.

By examining the figures produced from the probability distributions found (Figure

5.4) we can comment on the relative strengths of the algorithms. For the BFGS opti-

miser, the best suited functions seem to have medium length scale smooth variations

with little global structure. The PSO dominates when slow changing global structure

is riddled with small scale sharp fluctuations between extremes. Finally, SA is best on

large scale fluctuations that are partially noised at the small scale.

5.4.1 A Meta-Algorithm

When presented with the results above, showing that each algorithm excels on particu-

lar problems, a natural question is whether this knowledge can be exploited to produce

a meta-algorithm that intelligently selects the best algorithm for the problem. Here we

use a simple method to produce such a meta-algorithm, and show that it does indeed

outperform the three original algorithms on average.

For the meta-algorithm we split the optimisation into two stages, the first 500 func-

tion evaluations are used to determine which optimiser is best to use, then the selected

optimiser is run for the remaining 4500 function evaluations. As a simple selection

technique, we make use of the fact that BFGS has very different expected results after

500 evaluations on each of the three parameter sets. Thus, we run BFGS for 500 eval-

uations, then use the result obtained to decide which optimiser to run for the remainder

of the optimisation. The result of this meta optimiser and also the individual algorithm

is shown in Figure 5.5.

5.5 Conclusion

We have shown that any one of three popular optimisation algorithms can be made to

out-perform the other two by selecting the sort of problem considered. This sort of

knowledge is important when choosing optimisation algorithms for a particular task.

We have begun to uncover the prior beliefs of the meta-heuristic optimisers.
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An interesting follow up investigation would be to test a set of function optimisa-

tion algorithms on functions sampled from a Gaussian-process for various choices of

parameters and kernels. This would provide further insight into the sorts of function

the various algorithms excel in optimizing.
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Figure 5.3: One and two dimensional example functions for nine different parameter

choices. As the examples show, a wide variety of functions can be produced.
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Figure 5.4: The first row shows an example function sampled from the distribution with

parameters tuned such that hPSO out-performs the other optimisation algorithms. The

second row shows a function where simulates annealing outperforms, and the last rows

shows a function for which the BFGS optimisation performs best. Each row shows a

2D cross-section of a 10D function, a zoomed view of the same function, and then

the algorithm’s performance on functions sampled from the distribution with parameters

given, averaged over ten sample functions each optimisation ten times.
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Figure 5.5: Side-by-side comparison of the final results obtained by the three optimisa-

tion algorithms and the meta optimiser on the three parameter settings. For each of the

parameter settings ten functions were sampled and each optimisation algorithm ran ten

times on each function. Mean values and error bars are plotted. Observe that the meta

optimiser is competitive on all three problem types.





Chapter 6

Conclusion

6.1 Further Applications

We have already examined some uses of the Bayesian framework in the latter half of

Chapter 4, and in Chapter 5. In this section we explore other potential applications. As

we will see, there are various possible directions that further investigation could take.

6.1.1 Meta-heuristics as Bayesian Optimisers

One key result of this work is that it opens the door to the use of meta-heuristic op-

timisers as fast but theoretically well understood Bayesian optimisers. As we have

seen, all optimisers are Bayesian, it is just that in most cases the optimiser’s prior is

compressed into its program in a highly obfuscated way. Now that it is clear that it

always makes sense to talk about an optimisers prior, it opens up the possibility of

trying to accurately determine the prior for a given optimiser. For example, it would be

both interesting and potentially very useful to have a better understanding of the im-

plied beliefs resulting from particle swam optimisers with different parameter choices.

This approach could potentially formalise the still somewhat “dark art” that is meta-

heuristic parameter tuning.

6.1.2 Approximate Bayesian Inference

Another possibility is that fast meta-heuristic optimisers could be tuned, by parameter

adjustment, to maximally align with slower Gaussian process optimisers, and then

used as a high speed approximate alternative. Moreover, if we understood the priors of
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meta-heuristic optimisers well enough we would know in what way our approximate

results were biased.

6.1.3 Learning and Evolving Optimisers

As we briefly touched on in Section 4.2, further investigation into algorithm behaviour

regions could lead to interesting results in connectivity structure. For example, sup-

pose you have an optimiser behaving with respect to a particular prior, how would

small variations in that prior affect the optimisers behaviour? Are there generally many

behaviours that are next to a given behaviour, or are behaviours often somewhat iso-

lated except for a few neighbours? These sorts of questions are directly relevant to

research into evolution of optimisation algorithms, and other approaches to learning to

optimise.

6.1.4 The Bayesian Brain

Investigation into how behaviour relates to underlying beliefs is also at the centre of

the Bayesian brain hypothesis, which is broadly the idea that brains are performing

Bayesian inference [72, 73]. In this field of study it is again a case of trying to infer

underlying beliefs from the examination of behaviour. We have seen here that every

on-policy behaviour is Bayesian, and so the brain, when performing an optimisation

task, is in some sense necessarily Bayesian, although what “on-policy” might mean in

terms of brains is not an easy question.

6.1.5 Blending and Interpolating Meta-Heuristics

Another rich potential application is the developing of an “arithmetic” for optimisers.

The idea is that now all optimisers can be understood as points in the same space (prior

distribution with respect to an admissible cost function), concepts like the average

optimiser, the difference between optimisers, and the sum of optimisers can all be

made rigorous. Further, vector space ideas can be applied. Suppose optimiser A is

better at a task than optimiser B, then we could meaningfully ask about optimiser

A+(A−B). Similarly, the approach provides a way to meaningfully ask “is optimiser

X more similar to optimiser Y or optimiser Z”, which could then be useful for choosing

which algorithms to try on a problem.

As well as the potential to develop a better understanding of how algorithms can
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be interpolated between in the ways discussed above, we can also investigate a more

direct mixing of optimisers. For example, if we examined the result of running two

optimisers in step, such that they each take turns sampling.

Thus, in these and other ways there is potential to understand not just particular

algorithms, but rather the space of behaviours which a collection of algorithms span.

6.1.6 Automatically Developing Specialised Optimiser

Given a specific problem class, defined by a distribution over problems and a cost func-

tion, we have seen that there is, in theory at least, an optimal optimiser. However, there

is currently no general way to automatically construct an optimiser specialised for a

particular problem. Even if we were able to construct the optimal behaviour optimiser,

it might be the case that the complexity of the problem distribution necessarily resulted

in a very slow running algorithm.

Given sufficient understanding of the priors of existing meta-heuristics, and knowl-

edge of how these algorithms could be combined and extrapolated, as discussed in Sec-

tion 6.1.5, an automated algorithm constructor could be in theory be produced, which

would take as an input a very specific problem class, and which would produce a fast

approximately Bayesian optimal optimiser for the input problem class by tuning and

combining various well understood meta-heuristics.

6.2 Summary

In this thesis we have looked at optimisation algorithms, in particular, we have in-

vestigated how their behaviour is best understood. We saw that no free lunch shows

universal optimisers to be impossible, and instead the alignment between problem and

optimiser is all that matters behaviourally. We made this concept of alignment rigor-

ous through a Bayesian understanding of behaviour. However, although the Bayesian

approach to optimisation is known to be theoretically powerful, it is generally thought

to apply only to a sub-set of meta-heuristic optimisers, namely those that explicitly

behave in a Bayesian way. In fact, we have shown that all deterministic, forgetful, and

stochastic optimisers are necessarily Bayesian, that is, they behave Bayesian optimally

with respect to a prior and cost function pair.

Specifically, in this thesis we have provided various extensions and refinements to

the no free lunch theorems, including extension to algorithms with arbitrary stopping
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conditions 2.5.2, off-policy behaviour 2.6.6, restricted metrics 2.6.7, parallelism 2.7.7,

minimax behaviour 2.8.7 and order statistics 2.9.9. We have show that all deterministic

on-policy behaviour is Bayesian 3.5, and moreover, that different cost functions pro-

duce different prior distributions 3.8. Further, we have show that some cost functions

can be used to produce any on-policy behaviour 3.8, and that the Kolmogorov com-

plexity of the implied prior is related to the Kolmogorov complexity of the optimisation

algorithm 3.7.

We then further examined this Bayesian approach, showing that uniform randomly

selecting a prior is not the same as uniform randomly selecting a behaviour 4.2.2.1. We

considered in detail the issues related to full behaviours 4.3.2. We then extended our

framework to forgetful optimisers in 4.4 and stochastic optimisers in 4.5.5, showing

in both cases that the behaviour can be seen as Bayesian. We also saw that stochastic

optimisers can be worse behaviourally than deterministic optimisers, and can never be

behaviourally better 4.5.5.

We then used the Bayesian framework to examine various approaches to meta-

heuristic optimiser construction, such as algorithm gating, and on-line parameter adap-

tation 4.6.1, and lastly we introduced the idea of algorithm shattering and gave a proof

of concept example 5.2, which also served as a case studied of the real life importance

of no free lunch results.

The fact that this Bayesian framing is universally applicable gives the various di-

verse approaches to optimisation a unified underlying framework. It also gives us a

clear inroad to a better understand the strengths of existing optimisers. Moreover, it

shows that when developing new meta-heuristics, behaviourally, the single defining

feature is the implied prior.
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