
Regulation of P-glycoprotein and Glucocorticoid
Receptor Expression in the Rat Intestine

Fiona M Moodie

Doctor of Philosophy
The University of Edinburgh

2005



Chapter 1 - Introduction

( ■ I IUkU4■ I

ft:
1 Intestinal glands

2 Lining
spittialium
(with goblat
cells)

"\.\v" ■'<-

w.Vrv-

7 Serosa

8 Myenteric
plexus

10 Intestinal glands
(longitudinal and
cross section)

11 Musculeris
mucosae

12 Submucosa

13 Lymphatic
nodule

14 Myenteric
plexus

15 Taeniae coll

16 Blood vessels

17 Adipose cells

Figure 1.1: Diagram illustrating composition of the intestinal mucosa. The three important layers
include the thick basal muscle layer (composed of both circular and longitudinal muscle), submucosa
and mucosal sections. The mucosa is composed of a thin muscle layer separating the mucosa and

submucosa, lamina propria and the epithelial lining. Intestinal glands (crypts) extend through the
lamina propria to the thin muscle layer. Within these crypts, epithelial cells differentiate and migrate
from the base of the crypt towards the tip. These cells are involved in the absorption/excretion of

compounds (Keshav 2003).
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found dexamethasone increased P-gp expression, an effect initiated through

GR, as well as increase the levels of cytoplasmic NF-kB.

A number of observations made were novel, and collectively these data

suggest a role for dexamethasone treatment as well as bacteria in the

regulation of genes determining steroid sensitivity in the healthy and
diseased rodent intestinal epithelium. The complex interactions between P-

gp and GR expression in response to bacteria have implications for potential
mechanisms by which inflammation is induced in the colon.
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1.1 BACKGROUND

Chapter 1 - Introduction

Ulcerative colitis (UC) and Crohn's disease (CD) are chronic inflammatory bowel
diseases (IBD) which now represent common cause of morbidity in young people.
The combined prevalence of these two diseases in the United Kingdom is 400 per

100,000 (Watts & Satsangi 2002). Both diseases commonly first present in young

adults (Jewell 1999). Ulcerative colitis is characterised by chronic inflammation
limited to the colon, whereas in Crohn's disease inflammation may present in any

region of the gastrointestinal tract, in particular the ileo-caecal region (Jewell 1999;

Satsangi et al. 1997).

The mucosa of UC and CD patients is characterised by an infiltration of acute and
chronic pro-inflammatory cells. In UC, inflammation is limited to the mucosal layer
of the intestine, whereas in CD the entire wall is involved. In UC inflammation is

known to initiate abscesses within the crypt, whereas in CD inflammation causes

deep ulcers within the mucosa, which may penetrate the intestinal wall to initiate
abscesses or fistulae (Hall 2002). This can lead to a variety of symptoms including

bloody diarrhoea, passage of mucus as well as weight loss, pain, lethargy and
anaemia.

The aetiology of these diseases is uncertain. However there has been recent progress

made in identifying immunological, environmental and genetic factors involved in the

pathogenesis of these diseases. Both environmental factors such as smoking, and

genetic factors are known to contribute to the pathogenesis and outcome of IBD

(Roussomoustakaki et al. 1998; Satsangi et al. 1996b; Satsangi et al. 1997).
Concordance rates in siblings and twins have provided strong evidence that UC and
CD are related polygenic diseases (Hampe et al. 1999). More importantly for this

thesis, the development of transgenic animal models, such as the HLA-B27

transgenic rat and the mdrla knockout mouse, which develops intestinal
inflammation by 12 weeks after birth, has emphasised the importance of immune

dysfunction and gut flora contributing to the disease states (Breban 1998; Panwala et

al. 1998).
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Chapter 1 - Introduction

Although new therapeutic drugs are emerging, corticosteroid therapy remain the drug
treatment of choice for active disease. However between 10-20% of patients are

steroid insensitive, not responding to therapy, and a similar proportion will become

steroid-dependent, unable to discontinue treatment (Faubion et al. 2001; Honda et al.

2000). Alterations in the intestinal expression P-glycoprotein (P-gp) and

glucocorticoid receptor (GR), both of which are involved in determining steroid

sensitivity, have been implicated in disease (Farrell et al. 2000; Langmann et al.

2004; Rogler et al. 1999) although the molecular mechanism behind the regulation of
these genes remains elusive.

This introductory chapter reviews the structure and function of the intestinal

epithelium, and mechanisms by which it protects itself against potential inflammatory
mediators as well as immune regulation within the intestine. Factors involved in

initiating disease, in both man and animals will be discussed, with particular emphasis
on the role of bacteria and disease in animal models of inflammation. The role of

glucocorticoids in the treatment of disease will be reviewed, as well as the actions of

glucocorticosteroids in regulating genes determining intestinal steroid sensitivity.

Finally the aims of the experiments described in chapter 3-7 of this thesis are listed.

-3 -



1.2 INTESTINAL EPITHELIUM

Chapter 1 - Introduction

The intestinal epithelium functions as a barrier, separating the contents of the lumen
from the epithelial lining, and plays a pivotal role in maintaining intestinal
homeostasis despite the persistent presence of potentially pro-inflammatory
substances. To prevent these substances from breaching the barrier and initiating

disease, a number of structural and functional barriers are present and will be outline
below.

1.2.1 Structure and Function of the Epithelium

1.2.1.1 Basic Structure

The epithelial lining forms a continual layer of cells throughout the gastrointestinal

tract, and regulates the entry of luminal contents. It is made up of three main layers:

mucosal, submucosal and muscle layers (see figure 1.1). The mucosal layer is of

great importance as it is involved in the absorption and excretion of substances from
the body as the first cellular barrier separating the epithelium from the lumen contents

(Meddings et al. 2003).

A thin muscle layer separates the mucosa from the submucosal and large muscle

layers (Keljo & Squires 2000). The mucosal layer is composed of the lamina propria
and the epithelial lining. In the colon, the colonic mucosal layer is indented with long
tubular extensions called colonic crypts, which extend through the lamina propria to

the thin muscle layer (see figure 1.1). In the small bowel, the epithelial lining is
characterised by inward folds of the inner lining (plicae) and villi, each with a

covering of hair-like extensions called brush-border (Hall 2002), and this aids in the

absorptive function of this area of the intestine (see 1.2.1.2).

As the gut is a major site of immune regulation the intestinal mucosa is heavily laden
with macrophages, lymphocytes and other cells involved in the immune system in
lamina propria or between epithelium cells (intraepithelial cell lymphocytes) (Makala
et al. 2004). It is not surprising therefore that around 25% of intestinal mucosa is

comprised of lymphoid tissue. The gut recognises potential pathogenic bacteria in

Peyers patches located in the mucosa of the small intestine (Makala et al. 2004).

-4-



Chapter 1 - Introduction
These are specialised lymph nodes, part of the gut-associated lymphoid tissue

(GALT), and are located in the mucosal layer of the intestine extending into the
submucosal layer (MacDonald 2003a).

Epithelial cells lining the mucosa are constantly renewed every 2-3 days, and this aids
in maintaining a protective barrier in response to stress and injury (MacDonald

2003b). Cells within the crypt migrate and differentiate from the base, where they
reside as stem cells, up towards the tip of the crypt where they become integrated into
the surface epithelium. As cells differentiate, they develop characteristics of
intestinal epithelial cells which include maintaining water and electrolyte

homeostasis; mucosal defence; and epithelial efflux mechanisms. Stem cells are

located at the base of the crypt as the environment of the crypt lumen of the crypt is
less hostile; bacterial concentrations are low (Meddings et al. 2003). This ensures the

protection of the stem cell from a potentially lethal environment and ensures the

viability of the epithelium (Meddings et al. 2003).

1.2.1.2 Epithelial Function

The epithelial cells lining this layer are tightly packed and form a lipid bilayer, which
allows the absorbance of lipid soluble molecules but offers a strong barrier against
water soluble compounds (Meddings et al. 2003). In the small intestine the digestion
is the most active process occurring in this area, and it is here where the most

nutrients are absorbed, aided by the high epithelial surface layer produce by the villi.
No digestion occurs in the colon. Epithelial cells also play a pivotal role in

maintaining salt and electrolyte balance, nutrient absorption as well as immune
homeostasis in the intestine (Keljo & Squires 2000). These cells are also involved in

actively transporting potentially toxic substances out of cells and also produce
substances involved in mucosal defence (both of which will be discussed in detail in
section 1.2.2) (Ho et al. 2003; Meddings et al. 2003; Meyer & Schmidit 1994).
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1.2.1.2.1 Water and Electrolyte Balance

The colonic epithelium, especially the distal colon, is a key tissue in maintaining

electrolyte balance (Sellin 2000). The cells of the colonic epithelium express the
mineralocorticoid receptor (MR). This receptor is activated by the mineralocorticoid

aldosterone, which is produced by the adrenal gland. Activation of MR by
aldosterone inhibits sodium chloride electrogenic absorption while inducing

electrogenic sodium absorption (Meyer & Schmidit 1994). Other glucocorticoids,
such as dexamethasone, activate MR although these agonists induce the opposite

electrogenic changes noted by aldosterone (Meyer & Schmidit 1994). To maintain an

electrolyte balance during times of increased glucocorticoid concentrations, such as

during stress or steroid treatment, an enzyme called 11 beta-hydroxysteroid

dehydrogenase type 2 (11P-HSD2) is co-localised with MR (Ronald & Funder 1996).
This enzyme inactivates physiological glucocorticoids (Cortisol, corticosterone),

enabling aldosterone selectively to bind MR and initiates its effects.

Recent studies in Wistar rats have shown regional differences in water and electrolyte

absorption along the rat colon (Nishinaka & Matsuura 2004). The main action of
water transport across the epithelium occurs by diffusion, and is dependent on the

presence of the osmotic gradient. Nishinaka and Matsuura noted that perfused
distilled water was not absorbed in the small intestine, unlike the colon of healthy
rats. However after the intestine was perfused with isotonic solutions, potassium was

seen to be mostly absorbed in the small intestine, whereas net chloride and sodium

absorption occurred in the colon. This absorption pattern in the colon is most likely
due to the presence of MR which activates sodium and chloride absorption. This

suggests that these receptors are not as abundant in the small intestine and therefore

may explain this regional variation in electrolyte absorption.
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1.2.1.2.2 Immune Homeostasis

The epithelium is in contact with a flora of bacteria, consisting of around 500
microbial species (Gilmore & Ferretti 2003). This leads to an infiltration of
mononuclear cells, including T-cells involved in activating the immune response into
the mucosa. In fact, in the 'normal' lamina propria, T-cells constitute one third of all
cells in the lamina propria (Pallone et al. 2003). T-cells are activated by foreign

substances, and are known to activate the immune system and be involved in cell-
mediated immunity and antibody production (discussed in section 1.2.2). As the

epithelium is always in contact with bacteria, a 'controlled' inflammation must be

constantly present to maintain a healthy epithelial barrier function. Although the
infiltration of 'foreign' compounds must be able to activate this system and produce
an 'uncontrolled' inflammatory response (Pallone et al. 2003). Therefore the

epithelium functions as an 'immuno-modulatory' organ, maintaining gut homeostasis.
The mechanisms behind this will be discussed further in the following section
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Figure 1.1: Diagram illustrating composition of the intestinal mucosa. The three important layers
include the thick basal muscle layer (composed of both circular and longitudinal muscle), submucosa
and mucosal sections. The mucosa is composed of a thin muscle layer separating the mucosa and

submucosa, lamina propria and the epithelial lining. Intestinal glands (crypts) extend through the
lamina propria to the thin muscle layer. Within these crypts, epithelial cells differentiate and migrate
from the base of the crypt towards the tip. These cells are involved in the absorption/excretion of

compounds (Keshav 2003).
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1.2.2 Regulation of the immune system in the intestinal

epithelium

One of the main functions of the intestinal epithelium is to prevent the 'uncontrolled'
inflammation which may occur when foreign substances (xenobiotics), or even

micro-organisms, breach the epithelial lining and enter the mucosa. The mucosal
immune system is comprised of Peyer's patches, lamina propria lymphocytes,

intraepithelial lymphocytes and mesenteric lymph nodes (Makala et al. 2004). This

system maintains gut homeostasis, despite the continual exposure to potentially pro¬

inflammatory compounds. The mechanisms behind this will be discussed further in
this section.

1.2.2.1 Acquired Immunity

1.2.2.1.1 Antigen recognition in the intestinal mucosa

Antigen presenting cells (APC) in the intestinal mucosa these are mainly composed of

macrophages, dendritic cells, and B-cells. These have the ability to process antigens
and present their peptide fragment on the cell surface (Makala et al. 2004). The

proteins of the major histocompatibility complex (MHC) are critical in immune
activation. Depending on the class of MHC and the other co-stimulatory molecules

expressed on the cell surface, specific subset of T-cells recognise the MHC-antigen

complex and the immune system is activated. MHC class II activate CD4+ cells,
whereas CD8+ cells recognises MHC class I (Hershberg & Mayer 2000c).

1.2.2.1.2 Lymphocyte Production and Activation

There are two types of lymphocytes and these are called B-cells and T-cells. B- and
T-cells are produced in the bone marrow; however B-cells mature in the bone marrow

before entering the circulation, whereas T-cells mature in the thymus. Each B- and T-
cell is specific for each antigen.
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1.2.2.1.2.1 T-cells

T-cells recognise antigens through T-cell receptors (TCR) located in the surface.
Most of the T-cells in the body can be divided into two groups: CD4+ and CD8+.
These are glycoproteins which determine what type cell T-cells can bind. CD4+ bind
cells expressing the MHC class II, whereas CD8+ cells can bind those expressing the
MHC class I (Hershberg & Mayer 2000b). Most cells in the body express class I

molecules, whereas only specific APCs express class II. These cells include dendritic

cells, macrophages and B-cells (Hershberg & Mayer 2000a).

CD8+ T-cells are best known as cytotoxic T-cells. These cells are capable of

monitoring all the cells in the body; ready to destroy any cell which presents an

antigenic peptide on a MHC class I molecule. CD4+ T-cells are important in the
initiation and maintenance of cellular immune response, as they bind antigens

presented by dendritic cells and macrophages. After binding IL-12 is produced from
the APC which causes the T-cell to produce other cytokines including tumour

necrosis factor-alpha (TNF-a) and interferon-gamma (INF-y) (Acheson & Luccioli

2004c). This type of immune response is called Thl, characterised by the types of

cytokines released by the T-cells, and results in inflammation. CD4+ T-cells are also

required in the production of antibodies, where they bind B-cells to stimulate

antibody production. Some cells in the gut mucosa, such as dendritic cells,

macrophages and B-cells, can contain both classes of MHC; capable of activating
both subsets of T-cells, and therefore are known as 'true professional APC' (Makala
et al. 2004).

The intestinal mucosa has evolved effector mechanisms to prevent over-excessive
immune reactivity to avoid inflammation and tissue injury. Firstly the reactivity of
lamina propria T-cells with the T-cell receptor (TCR) is reduced, and this has been
associated with the local production of immunosuppressive molecules including IL-

10 and TGF-P (Pallone et al. 2003). Moreover, a high number of these T-cells

express the Fas antigen which triggers suicidal death (apoptosis), and lamina propria
T-cells have been shown to have an increased susceptibility to Fas-induced apoptosis

(Pallone et al. 2003).
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Previously it was thought that the Thl and Th2 responses mutually suppress each

other by the secretion of IFN-y and IL-4 respectively, and this may prevent over

activation of the immune system (Mills & McGuirk 2004). However, the discovery
of another type of regulatory T-cell (Tr) which secretes the cytokines IL-10 and/or

TGF-P, has also been shown to repress both Thl and Th2 responses and is known as

the Th3 immune response. Tr cells are produced in response to antigens, and this Th3

response damps the Thl and Th2 responses to these antigens, allowing resolution of
infection with minimal collateral damage to host tissues (Mills & McGuirk 2004). It
is now thought the balance between these molecules-Thl, Th2 and Th3, is important
in preventing an inflammatory reaction to bacterial flora, as well as the initiation of

allergies and autoimmune diseases.

1.2.2.1.2.2 B-cells

The primary role of the B cell is antibody production. Helper T-cells bind the B-cell

receptor and T-cells secrete lymphokines which drive B-cells to proliferate and

produce antibodies (Acheson & Luccioli 2004). The type of helper T-cell (Th)
involved in this type of immunity is called Th2. This is classified by the type of

lymphokines secreted by the helper cell and these include interleukin (IL)-4, IL-5, IL-
10 and IL-13 (Acheson & Luccioli 2004). B-cells recognise antigens using B-cell

receptors. The antigen is engulfed, digested and a peptide fragment is displayed on

the cell surface by MHC protein. There B-cells are acting as an APC. Therefore T-
cells bind the MHC protein and active the immune system.
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Figure 1.2: Antigen presenting cells (APCs) engulf, digest and present a peptide fragment on major

histocompatibility molecules (MHC) on its surface. Depending on the class of MHC presenting the

antigenic fragment, specific subsets of T-cells, CD4+ or CD8+ cells bind MHC through its surface T-
cell receptor. CD4+ T-cells recognise MHC class II molecules, and after binding are stimulated by IL-
12 produced by APC to secrete lymphokines. These lymphokines recmit more T-cells and other
immune cells to the site of activation and initiating inflammation. This is also known as Th-1 immune

response. CD8+ T-cells recognise MHC class I molecules, and after binding release cytotoxic

cytokines which kill the cell presenting the antigenic fragment. (Figure adapted from (Sartor 2004b).
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1.2.2.1.3 Bacterial Recognition by intestinal epithelial cells-'M

cells'

There are specialised cellular mechanisms present in both man and rodents which are

involved in the recognition of bacteria and in turn activate the mucosal immune

system. One type of cell involved in the recognition is the microfold or 'M' cell.
This appears to be a specific cell type in the intestinal epithelium over lymphoid
follicles that endocytose a variety of protein and peptide antigens. This tissue is
called the gut-associated lymphoid tissue (GALT). M cells transport bacterial

antigens into the underlying tissue, where they are taken up by local dendritic cells
and macrophages, whereby the immune system is activated after these cells present

the antigen on its surface in association with the MHC molecular complex

(MacDonald 2003d). Another unique feature of these lymphoid tissues is the ability
to produce IgA. Production of this immunoglobulin typically requires T cell help:

specific interactions between the CD4+ T-cells and dendritic cells within the area

surrounding these follicles lead to secretion of transforming growth factor-(3 (TGF-(3)
which in turn favours B-cells switching to IgA secretion. B cells then migrate out of
the follicles into the surrounding mucosa and release secretary IgA into the gut lumen

(Acheson & Luccioli 2004).

1.2.2.2 Innate Immunity

1.2.2.2.1 Toll-like Receptors

Another mechanism whereby the body recognises bacterial products involve the

family of Toll-like receptor (TLR). There have been ten TLR genes cloned and

characterised, where the structure is similar to the IL-1 receptor (Abreu et al. 2002).
In the intestine, TLR4 is involved as the sole sensor for lipopolysaccharide (LPS-a

component in the wall of gram negative bacteria), whereas TLR2 involves the

recognition of peptidoglycans and lipoprotein present in gram-positive bacteria

(Abreu et al. 2001b).
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TLR4 is thought to act as a transmembrane co-receptor with CD 14 recognising LPS.
LPS binding to the receptor recruits intracellular adapter proteins, such as MyD88

(Neish 2004). This adapter protein subsequently activates a phosphorylation cascade
of mitogen-activated kinases (MAPK). The first of this includes the IL-1 receptor

associated kinase (IRAK). Binding of IRAK to Myd88 induces the phosphorylation
of IRAK, which subsequently causes it to disassociate from Myd88 and

phosphorylates tumor necrosis factor (TNF) receptor-associated factor 6 (TRAF6)

(Moynagh 2003). This ultimately leads to the phosphorylation and activation of IkB

kinase kinase (IKK) complex, where IKK phosphorylates I-kB-cc (an inhibitor of

NF-kB); inducing its degradation; allowing the pro-inflammatory transcription factor

Nuclear Factor Kappa B (NF-kB) to translocate to the nucleus, inducing an

inflammatory response (Cario et al. 2000). See figure 1.3.

In the intestinal epithelium in health, TLR4 protein expression has been shown to be

expressed at low levels, a mechanism thought to have been evolved to prevent the
over-activation of the immune system in the bacterial flora (Abreu et al. 2001a).
However in patients with inflammatory bowel disease, colonic biopsies have shown
increased TLR4 expression (Abreu et al. 2002). Pro-inflammatory cytokines have
been shown to increase TLR4 expression (Abreu et al. 2002), and may facilitate in
the perpetuation of inflammation due to the increased responsiveness to bacterial
flora.

1.2.2.2.2 Caspase recruitment domains (CARD)/nucleotide-

binding oligomerisation domain (Nod)

These are intracellular proteins, thought to be involved in the recognition of
intracellular LPS, peptidoglycan (PGN) and/or invasive bacteria (Hisamatsu et al.

2003). CARD15/Nod2 and CARD4/Nodl represent regulatory proteins with a

nucleotide-binding oligomerisation domain (Nod) and N-terminal caspase recruitment
domains (CARD) and are involved in programmed cell-death and immune responses

(Rosenstiel et al. 2003). Leucine rich repeats in the Nods confer recognition of

microbial molecules such LPS and PGN, where binding leads to activation of NF-kB

through a RICK-dependent domain (Hisamatsu et al. 2003).
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The dipeptide D-Glu-meso-DAP is the minimal PGN structure required for sensing

by CARD4/Nodl, whereas the muramyl dipeptide (MDP) is the minimum essential
structure of PGN that is recognised by CARD15/Nod2 (Philpott & Girardin 2004).
Nod 1 is known to detect gram-negative bacteria, whereas Nod 2 recognises a

broader range of bacteria, including both gram-negative and gram-positive bacterial

products (Philpott & Girardin 2004b). Bacterial clearance is accelerated in cells

expressing CARD15/Nod2 (Jobin 2003), and disruption of CARD15/Nod2 gene has
been identified as a susceptibility locus for Crohn's disease (IBD1); mutated
CARD15/Nod2 may lead to persistent immune activation due to the loss of bacterial
clearance (Hisamatsu et al. 2003; Jobin 2003). Recent data has also suggested that
CARD15/Nod 2 may 'dampen' the pro-inflammatory effect of activated TLR, and
this may explain why a mutation in this gene is associated with both an increase in
NF-kB activation and susceptibility for Crohn's disease (O'Neill 2004).
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Figure 1.3: Toll-like receptors on the cell surface and intracellular Nod 1 and Nod 2 recognise
bacterial products. Binding of these products leads to a phosphorylation cascade which ultimately
leads to the activation of the pro-inflammatory cytokine NF-kB. TLR, such as TLR4, recruit adaptor

proteins (MyD88 as one example), which bind IL-1 receptor associated kinase (IRAK). Binding
causes the phosphorylation of IRAK, where is dissociates and phosphorylates tumor factor necrosis
factor 6 (TRAF6). Intracellular bacterial products are recognised by Nod 1 and Nod 2. Binding
activates the RICK-dependent signalling pathway. TRAF6 and RICK induce the phosphorylation of
IkB kinase kinase (IKK), which subsequently phosphorylates IkB-cc, inducing its degradation and this

releases NF-kB, where it translocates to the nucleus and causes the transcription of pro-inflammatory
molecules. Figure adapted from (Neurath et al. 1998)
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1.2.3 Secretary mucosal defense proteins

The epithelium not only acts as a physical barrier but is also involved in the secretion
of molecules which reduce the access of luminal molecules and micro-organisms into
the epithelium (Meddings et al. 2003). There are three main types of secretory

molecules known to be involved in mucosal defence, and these include antimicrobial

peptides (defensins), mucus and trefoils

1.2.3.1 Defensins

Defensins (also known as cryptidins in mice) are known to have a broad antimicrobial

activity and act by disrupting microbial cell walls (Cunliffe & Mahida 2004). a-

defensins are secreted by Paneth cells and predominantly located in small intestine,
whereas P-defensins are produced in the colon (Meddings et al. 2003). It has been

shown that bacterial products activate the secretion of a-defensins, and mucosal

inflammation is associated with increased expression of a-defensins (Meddings et al.

2003). Although the role of defensins have not been established, it is thought they

play a role in protecting epithelial cells from microbial populations in the crypt, and

prevent bacterial invasion (Ayabe et al. 2004).

1.2.3.2 Mucus

A layer of mucus forms a gel between the luminal contents and the epithelium. It has
visco-elastic properties which function as a cushion as well as a permeable barrier

(Meddings et al. 2003). In the colon, the mucus barrier increases from distal to

proximal colon (Meddings et al. 2003). Mucus is composed of glycoprotein called
mucins. A variety of different mucins exist leading to differences in their physical

properties. Sulphation of mucins is likely to be an adaptive response to bacteria and
confers resistance to bacterial degradation (Shirazi et al. 2000b). Sulphated mucins
are located in areas of the GI tract where there are large number of bacteria, such as

the colon (Meddings et al. 2003).
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Mucus is produced by globlet cells, and is broken down by bacteria (Shirazi et al.

2000f). There is evidence that in patients with UC the mucus barrier is disrupted

(Meddings et al. 2003). Reduced secretion and production of mucus as well as

increased mucus degradation by bacterial enzymes (Meddings et al. 2003) have been

implicated. A putative susceptibility locus, identified by genome-wide scanning,

maps close to the intestinal mucin 3 gene (MUC3) on chromosome 7q22, and has led
to investigation of the contribution ofMUC3 polymorphisms to disease susceptibility.
Mucus production is also seen to be impaired in animals models of inflammation,
further supporting a dysregulated barrier in disease (Renes et al. 2002)

1.2.3.3 Trefoils

These peptides are small proteins produced by globlet cells. So far there are three

known-TFFl, TFF2 and TFF3 (Shirazi et al. 2000). As they are produced by the
same cells as mucus, trefoils are ubiquitously expressed in the mucus throughout the
GI tract (Shirazi et al. 2000). The main functions include mucosal protection and
restitution (cell migration from an edge of an injury site to cover an epithelial defect)

(Meddings et al. 2003). The protective effect of trefoils is likely to be due to the
enhanced protective role of mucus, as an increase in mucus viscosity has been

reported when trefoils are mixed with mucin glycoproteins (Shirazi et al. 2000).
Animals deficient for the gene encoding the trefoil seen in intestine and colon (TFF3)
show increased mucosal damage, whereas over expression of the TFF1 gene protects

the epithelium (Shirazi et al. 2000). A recent study has shown trefoil pretreatment

ameliorated colitis in dextran sodium sulphate induced inflammation in mice

(Soriano-Izquierdo et al. 2004) These supports the theory that trefoils aid in the

biophysical barrier properties of mucus and protection of the intestinal epithelium.
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1.2.4 Epithelial Efflux Transporters

As molecules are able to pass into the intestinal mucosa, there is a system in place
which inactivates these compounds and transports them back across the epithelial

lining in to the lumen of the GI tract, where they are excreted from the body. This

process involves transporter pumps (known as P-glycoprotein) and metabolising

enzymes. These will be discussed further in this section.

1.2.4.1 P-glycoprotein

1.2.4.1.1 Structure

P-glycoprotein is 170kDa transmembrane protein, which belongs to the

adenosinetriphosphate (ATP) binding cassette superfamily of transporters encoded by
the multidrug resistance (MDR) genes (Ho et al. 2003). P-glycoprotein is 1280
amino acids long, and consists of two homologous halves joined by a flexible linker.
Each half contains a hydrophobic N-terminal domain consisting of six transmembrane
domains which form the channel (pore), followed by a hydrophilic C-terminal domain

containing the nucleotide binding site (Endicott & Ling 1989). Energy required for
the transport through the pore is derived from ATP hydrolysis utilizing ATP bound to

the nucleotide-binding site. There are two MDR genes in humans-MDRl and

MDR3, and three in rodents-mdrla, mdrlb and mdr2 (Endicott & Ling 1989). MDR1
and mdrla in humans and rodents respectively, have been implicated in steroid
resistance (Kramer et al. 1993; Silverman et al. 1991), whereas the MDR3 and
murine mdr2 genes are involved in the secretion of phosphatidylcholine into the bile

(Fardel et al. 2001).

P-glycoprotein pumps are located on the apical surfaces columnar epithelial cells the
colon and distal small bowel, as well as epithelial cells located in bilary ductules,

proximal ductules of the kidney pancreas, and also adrenal gland (Borst et al. 1993;
Ho et al. 2003). P-glycoprotein is expressed in the epithelium of the choroids plexus
of the brain, and has been shown to be involved in the transport of drug across the
blood-brain barrier (Mercier et al. 2004). Other cells have also been shown to
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express P-glycoprotein at varying levels, these include macrophages, dendritic cells
as well as T- and B-cell lymphocytes (Klimecki et al. 1994).

1.2.4.1.2 Role of Intestinal P-glycoprotein

P-glycoprotein is thought to be involved in many different functions from cell
volume regulation to the efflux of drugs such as glucocorticosteroids and anti-cancer

drugs as well as xenobiotics from cells (Benet & Cummins 2001; Borst et al. 1993;

Lange & Gartzke 2003; Valverde et al. 1996). In the intestinal epithelium expression
of these pumps in the luminal surface of the epithelial cells suggest a role in the
secretion of endogenous and exogenous toxin substances (Ho et al. 2003; Patel et al.

2002). The development of the mdrla knockout mice has shown the importance of

P-glycoprotein in maintaining a protective barrier; knockout mice develop colitis in a

specific-pathogen free environment whereas non-transgenic mice remain healthy

(Panwala et al. 1998).

The role of P-glycoprotein in the detoxification process has been of recent interest.
Molecules that penetrate the plasma membrane, including drugs and other foreign

(xenobiotics) compounds undergo a process of detoxification and biotransformation
to less toxic substances, which are then excreted via cellular efflux mechanisms (P-

glycoprotein pumps). Nuclear pregnane X receptor (PXR) is a transcription factor
known to be involved in xenobiotic induction of the cytochrome P450 (CYP450)

enzymes (Quattrochi & Guzelian 2001). These enzymes lead to the oxidation of

compounds and as they mostly catalyse the first step of biotransformation, the
function is called phase I. Phase II metabolism is mediated by several different

enzymes; including UDP glucuronosyltransferases, where this enzyme conjugates

compounds to glucuronic acid, glutathione-S-transferases, sulphotransferases and

acetyltransferases (Dietrich et al. 2003). These changes make the compounds more

suitable for excretion into the bile or urine. Phase III metabolism is the elimination of

these products from cells by transporter pumps (Dietrich et al. 2003).

Studies have shown the enzyme CYP450 is co-induced with MDR1 (Geick et al.

2001), and PXR has been shown to induce CYP450 enzymes (Cai et al. 2002; Mei et

al. 2004). It is thought PXR recognises xenobiotics compounds, and this induction
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activates CYP450, where it metabolises the compounds into less toxic substances.
The subsequent induction of MDR (P-glycoprotein) transports the compounds out of
the cell and into the lumen to be excreted and therefore suggests a protective role for

P-glycoprotein in the intestine (see figure 1.4). The protective role of P-glycoprotein
in the intestine is further supported by data from mdrl a knockout mice which develop
inflammation in the presence of bacteria; data from UC patients where reduced
colonic PXR and MDR1 was noted (Langmann et al. 2004; Panwala et al. 1998); and

finally indirectly by the findings that polymorphisms in the MDR1 is associated with
a reduction in P-glycoprotein expression in UC (Ho et al. 2005; Schwab et al. 2002).
These data imply a dysregulation in xenobiotic metabolism/excretion, in particular P-

glycoprotein, may contribute to intestinal inflammation.

1.2.4.1.3 Pharmacological Regulation of P-glycoprotein

The high concentration of P-glycoprotein in the intestinal epithelium makes it an

important membrane involved in the bio-availability of drugs in the body. Studies in
man have shown P-glycoprotein is stimulated by the antihypertensive drug prazosin
and the steroid hormone progesterone (Shapiro et al. 1999). P-glycoprotein in the
intestinal epithelium has also been shown to actively transport steroid hormones

dexamethasone, Cortisol and aldosterone as well as anti-fungal, and anti-microbials
out of cells into the lumen (Ueda et al. 1992; Van Asperen et al. 1998)

The influence of corticosteroids on the expression of P-glycoprotein expression has
been of considerable interest, especially since increased expression of P-gp may be
involved in steroid resistance not only in inflammatory bowel disease (Farrell et al.

2000; Farrell & Kelleher 2003) but other inflammatory disease including asthma

(Adcock & Lane 2003). Nonetheless, at present, the literature is incomplete and

inconsistent.

Studies in vitro have demonstrated differences in dexamethasone regulation of P-

glycoprotein expression, with increases in mdrl a noted in rat and mouse hepatoma
cells but not in non-hepatoma cells (Schuetz et al. 1995; Zhao et al. 1993). Rat

hepatocytes treated with dexamethasone were seen to have decreased P-gp expression
and increased accumulation of doxorubicin, showing this pump is involved in the
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transport of this drug out of cells (Fardel et al. 1993). This suggests divergent

regulation of P-glycoprotein by steroids in normal versus tumoral cells.

Data from in vivo studies have shown a tissue specific regulation of P-gp by

dexamethasone; increased mdrla was noted in liver and lung but not kidney

(Demeule et al. 1999). Other in vivo studies have also shown the importance of

endogenous steroids (corticosterone) in regulating activity of P-glycoprotein

(Murakami et al. 2002). Plasma extracted from inflammation-induced rats showed an

inhibitory effect on P-gp expression in Caco-2 cells compared to plasma from healthy

rats, suggesting corticosterone may be involved in the in vivo regulation of P-

glycoprotein (Murakami et al. 2002).

Collectively these data suggest a tissue- and species-specific regulation of P-

glycoprotein. In addition, disease states per se may also induce differential regulation
of this gene.

1.2.4.2 Other transmembrane pumps

Other transporter pumps which have been shown to be expressed on the surface of

epithelial cells include multidrug resistance protein 2 (MRP2) and the breast cancer

related protein (BCRP) (Courtois et al. 1999; Taipalensuu et al. 2004). Similar to

MDR1, these are also members of the ATP binding cassette family which utilise the

energy from ATP to efflux substances out of cells (Dietrich et al. 2003). MDR1,
MRP2 and BCRP are also known as ABCB1, ABCC2 and ABCG2 respectively

(Dietrich et al. 2003). All are located throughout the intestine at varying levels, are

thought to be involved in the bioavailability of drugs as well as protecting the
intestinal mucosa through the efflux of xenobiotics.

-22-



Chapter 1 - Introduction

LUMINAL CONTENTS

XENOBIOTICS

CELLULAR

INJURY

Figure 1.4: Diagram illustrating the possible role of P-glycoprotein in the detoxification of xenobiotics
in intestinal epithelial cells. Xenobiotics compounds present in the lumen of the intestine enter the

cell, and the pregnane X receptor (PXR) is activated. PXR is known to activate the transcription of

enzymes which are involved in the metabolism of xenobiotics to less toxic molecules. Transporter

pumps, including P-glycoprotein, actively transport these molecules out of the cell into the luminal

contents, where they are excreted. Abnormalities in this system have been implicated in inflammatory
bowel disease, where it is has been suggested that a decrease in PXR and P-gp expression may

perpetuate inflammation due to the increased concentrations of xenobiotics and cause further cellular

injury.
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1.3 INFLAMMATORY BOWEL DISEASE

Inflammatory bowel disease (IBD) encompasses two bowel disorders, Ulcerative
colitis (UC) and Crohn's disease (CD). Ulcerative colitis is characterised by
inflammation limited to any part of the colon, whereas in Crohn's disease
inflammation may present in any region of the gastrointestinal tract, in particular the
ileo-caecal region (Jewell 1999; Satsangi et al. 1997). Histologically in UC, the
inflammation is limited to the mucosal and spares the deeper layers of the bowel wall,
unlike CD where it can be seen through all the layers and as a result the wall is
thickened. Inflammation in ulcerative colitis is maximal in the rectum and extends up

the colon in a continuous manner however, in CD, diseased tissue is interspaced
between normal areas of tissue (Hall 2002). Both UC and colonic CD present in a

similar manner with bloody diarrhoea, passages of mucus and other symptoms

including weight loss and lethargy.

These symptoms can also be accompanied by complications associated with IBD.
These complications include haemorrhaging, dilatation, perianal lesions and intestinal
cancer (Jewell 1999; Picco & Bayless 2000). Stricturing can also occur which may

cause intestinal obstruction, and growth retardation has been noted in children

diagnosed with IBD (Picco & Bayless 2000). The most dangerous complication is

perforation of the intestine, which has been associated with a mortality rate of 16%

(Picco & Bayless 2000). Despite this, the improvements in the management of IBD
over the years has reduced the mortality rate for both diseases, and patients with IBD
now have a life expectancy similar to that of the general public (Hall 2002).
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Although the aetiology of these diseases remain uncertain, recent progress has in
identified genetic, environmental and immunological factors involved in the

pathogenesis of these diseases (Jewell 1999; Ronald & Funder 1996; Watts &

Satsangi 2002). It is believed that IBD results from an interaction between genetic,
immune and environmental factors. The marked increase in these diseases in the last

half a century cannot be solely due to alterations in genetics, and clearly reflect an as

yet unidentified environmental influence (Danese et al. 2004). These factors will be
outline below:

1.3.1.1 Genetic

Strong epidemiological data have implicated genetic background as having a pivotal
role in the susceptibility to inflammatory bowel disease. Concordance rates in twin

studies, multiply affected families, as well as ethnic differences in susceptibility

provided the driving force behind detailed genetic investigations in patients with

inflammatory bowel disease. European studies involving twin pairs have shown the
concordance rates to be 36% and 4% for Crohn's disease patients and 16% and 4% in
ulcerative colitis patients, for monozygotic and dizygotic twin pairs respectively

(Orholm et al. 2000; Thompson et al. 1996). Familial studies have shown between

6-35% of IBD patients have an affected family member (Russell et al. 2004). Other
studies have shown that the prevalence rates for IBD is increased in the Jewish

population in contrast to Afro-American populations, who have the lowest reported
rates of IBD than any other population studied (Russell et al. 2004; Satsangi et al.

1997; Watts & Satsangi 2002). Environmental factors are also thought to underlie
differences within and between ethnic groups, illustrated by Probert and colleagues,
who reported Indian immigrants to Britain had an increased incidence of ulcerative
colitis compared to the indigenous Indian population (Probert et al. 1992).

Genome wide scanning has identified several regions of linkage with susceptibility to

UC and CD. IBD1 on chromosome 16, is now confirmed as a susceptibility locus for
Crohn's disease, and recent data has provided strong evidence that the CARD/Nod-2

gene is the critical determinant involved in a defect of the innate immune response
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(Brent & Shugart 2004; Roussomoustakaki et al. 1998). IBD2 on chromosome

12ql3, has shown linkage most strongly with ulcerative colitis; IBD3 on chromosome

6p23, involves the major Histocompatibility complex and is implicated in both UC
and CD and in determining disease phenotype; IBD4 on chromosome 14ql 1-12 has
been implicated in Crohn's disease and IBD5 on chromosome 5 is also a

susceptibility loci for early onset Crohn's disease (Brent & Shugart 2004; Hampe et

al. 1999; Rioux et al. 1998; Roussomoustakaki et al. 1998; Russell et al. 2004;

Satsangi et al. 1996a; Satsangi et al. 1997; Stokkers et al. 1999; Watts & Satsangi

2002).

1.3.1.2 Environmental

1.3.1.2.1 Diet

Although genes have been shown conclusively to be involved in the susceptibility to

inflammatory bowel disease, the increase in IBD patients in the 20th century,

especially in young people, suggest that other factors must be involved in disease

susceptibility. It is thought environmental factors impact on the susceptibility and

progression of disease due to the genetic background of the susceptible individual.
There are many different environmental factors that may have an influence in IBD.

These include diet, contraceptive drugs and most importantly smoking. Dietary
factors including the intake of fat and refined sugar, have been implicated as a risk
factor whereas increasing fibre intake in the diet in the form of fruit and vegetables,
seems to decrease the risk of IBD (Danese et al. 2004). However no consensus has

emerged and this represents an area of ongoing research.

1.3.1.2.2 Smoking

Smoking has been shown to have definite effects on disease pathogenesis. In Crohn's

disease, smoking not only contributes to disease susceptibility but also affects

progression of disease and the need for surgery (Danese et al. 2004). In contrast,

smoking in UC patients may attenuate the disease process (Jewell 1999). Although
the precise chemical involved in the attenuation of UC is unknown, transdermal
nicotine has been shown to have beneficial effects in the induction of remission in
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patients with ulcerative colitis (McGrath et al. 2004). Moreover the increased
incidence of early-onset disease in children has emphasised a role for passive

smoking, as children rarely smoke at the time of diagnosis (Russell et al. 2004).
Further large scale studies are required to evaluate the importance of the effect of
various environmental factors, particularly passive smoking, in the initiation and

progression of inflammatory bowel disease.

1.3.1.2.3 Bacteria

Over the past ten years there has been substantial work carried out on the role of
bacteria in IBD, and evidence now suggests 'normal' commensal enteric bacteria play
a key role in the development of chronic intestinal inflammation. Animal models of

inflammation, which are reviewed in detail in section 1.4, have provided vital
information governing the effect of the immune system, particularly bacteria, in IBD.
These models have also shown that over-expression/deletion of immuno-regulatory

mediators, T-cells, cytokine receptors and intracellular signalling molecules induce
colitis (Sartor 2004b). This suggests a variety of different pathways are involved in
the regulation of homeostasis in response to bacteria. However for the purpose of this

thesis, the role of commensal bacteria in man in health and disease will be reviewed.

1.3.1.2.3.1 Role of bacteria in health

It is well known that bacteria are involved in the metabolism of food substances,

nutrient and vitamin production, detoxification of dietary carcinogens, differentiation
of epithelial cells as well as the development of the mucosal immune system (Sartor

2004b; Shanahan 2004). Intestinal colonisation with enteric bacteria in man is

relatively stable throughout their lifetime, and prevents colonisation with pathogenic
bacteria by competing for substrates and mucosal binding sites and therefore prevents

binding by other pathogens. However after antibiotic treatment the intestinal balance
is disrupted and therefore makes the host more susceptible to recolonisation with

potentially pathogenic bacteria which may induce an inflammatory response.

Bacteria are also involved in the maturation of the immune system. Animal models
have shown the importance of bacteria in immune regulation as animals in germ-free
environments have underdeveloped gut-associated lymphoid tissue (GALT, see
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section 1.2.2.3.1), as well as an underactive T- and B-cell response (Sartor 2004b).
These observations suggest bacteria are involved in 'priming' immune cells.

As discussed in section 1.2.2.3.1, lymphoid tissue is involved in the production of

IgA antibodies. M-cells transport bacterial antigens into the underlying tissue, where

they are taken up by local dendritic cells and macrophages, whereby the immune

system is activated after these cells present the antigen on its surface together with the

major Histocompatibility complex (MacDonald 2003). B-cells, with the help of T-

cells, secrete this immunoglobulin. IgA antibodies for commensal bacteria are

thought to exist and prevent binding to the epithelium and initiating disease.
Therefore these antibodies are involved in maintaining homeostasis in an

environment where there are potentially pathogenic organisms. In normal hosts,

regulatory T-cells (Tr) and APCs also inhibit pathogenic immune responses to

commensal bacterial by several pathways which include IL-10 (Sartor 2004b). IL-10
is a cytokines which stimulates T-regulatory (Tr) cells to secrete IL-10 and TGF-(3.

IL-10 and/or TGF-j3 feeds back to the APC, and inhibits the secretion of further

cytokines and therefore prevents an inflammatory response (Mills & McGuirk

2004c). Tr cells prevent the over-activation of immune responses to antigens by

dampening Thl responses and therefore inhibit an immune response to commensal

pathogens.

Mechanisms by which cells recognise pathogens are mediated through cell-surface
and cytoplasmic receptor called toll-like receptor and CARD/Nod2 domain. TLR

recognise the bacterial products including lipopolysacchride, flagellin as well as

peptidoglycan, whereas CARD/Nod2 recognises peptidoglycan (Sartor 2004b).

These receptors activate NF-kB activating the immune system. In a healthy
individual this response will be resolved quickly, preventing further damage and
therefore disease. It has also been suggested that the P-glycoprotein pump, encoded

by the MDR1, may be involved in the efflux of bacterial products out of cells, and
therefore may play a role in protecting the cell from potentially harmful substances.
Moreover inherited and/or mutations in TLR4, CARD15/Nod2, MDR1 (all discussed
in detail in sections 1.2.2.3 and 1.2.4) as well as other altered expression of genes

involved in mucosal defence (defensins, trefoils and mucin reviewed in section 1.2.3),
have been implicated in IBD.
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This homeostatic environment characteristic of a healthy individual does not appear

to hold true in patients with IBD. A combination of genetic mutations or triggers
from the environment may disrupt the mucosal defence system. These disruptions

may include a defect in the epithelial barrier, immune system or bacterial clearance.
This mucosal defect may subsequently result in an increased uptake of bacteria into
the mucosa, an over-activated immune system and therefore inflammatory bowel
disease.

1.3.1.2.3.2Role of bacteria in disease

Clinical studies have shown the importance of bacteria in disease, as the use of

antibiotics, probiotics and faecal diversion have all been shown to aid in maintaining
the remission and resolution of disease (Shanahan 2004; Swidsinski A et al. 2002).

Bacteria within epithelial cells has been shown to be increased in patients with IBD

compared to healthy controls, as well as the balance between beneficial to pathogenic
bacteria (Danese et al. 2004; Sartor 2004b; Sartor 2004c). However investigation of
the role specific bacterial pathogens in the inflammatory process is limited in man

unlike animal models, where numerous mono-association studies have implicated

specific bacterial species in disease initiation.

Nevertheless, a number of bacteria, particularly anaerobic bacteria, have been shown
to be increased in IBD and linked to the recurrence of disease (Sartor 2004d).

Bacteroides species has been seen to be increased in faecal samples from Crohn's
disease patients (Giaffer et al. 1991), and a decreased faecal concentrations of
Bacteroides vulgatus correlated with response to the antibiotic metronidazole (Sartor

2004b), as well as aiding post-operative remission (Rutgeerts et al. 1995). In CD

patients where disease reoccurs after ileocolonic resection, an increase in mucosal E.

coli, Bacteroides species and Fusobacterium species has been observed, as well as a

decrease beneficial bacteria, Lacobacillus species and Bifidobacterium species (Neut
et al. 2002). Other studies have shown a decrease in the diversity of colonic
associated bacteria in patients with Crohn's disease, and have shown a reduction in
anaerobic bacteria including Bacteroides and Lactobacillus species in patients with
Crohn's disease (Ott et al. 2004)
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Although changes in the composition of commensal flora have been associated with

IBD, the metabolic function of faecal bacteria has also been shown to be altered

during disease. E. coli have been shown to have an increased adherent phenotype to

epithelial cells in IBD as well as producing cytotoxins whereas B. vulgatus has been
shown to produce mucin degrading enzymes which therefore disrupts the barrier
function of the epithelium (Darfeuille-Michaud et al. 2004; Ruseler-van Embden JG
et al. 1989; Sartor 2004b; van Nuenen MH et al. 2005). The production of cytokines
have been shown to increase the proliferation of E .coli, and these mediators could
therefore have similar stimulatory effects on epithelial adherence and production of

cytotoxins, which in turn would exacerbate inflammation and mucosal injury (Sartor

2004b; van Nuenen MH et al. 2005).

Therefore changes in the composition of bacterial flora, alterations in their metabolic
function as well as changes in the barrier function and uptake/clearance of bacteria,

may all be involved in the initiation, perpetuation and exacerbation of IBD.
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1.4 ANIMAL MODELS OF INFLAMMATION

Animal models of IBD have not just provided a mechanism to explore the in vivo

effects of potentially therapeutic drugs, but have provided important information on

the pathogenesis of disease. Since the first description of animal colitis in 1964

(Kraft et al. 1964) many more animal models have emerged. These have been

categorised into four groups, depending on the induction method of inflammation,
and will be discussed further in section 1.4.1 (Hoffmeyer et al. 2000). The

importance of bacteria the initiation of disease in animal models is worthy of note;

animals in germ-free conditions either have reduced or absent intestinal inflammation

compared to conventionally raised animals.

1.4.1 Categories of animal models of inflammation

1.4.1.1 Chemically induced models

Inflammation can be induced in all rodents, including rats, mice, guinea-pigs and
rabbits. These models are cheap to produce, and have been primarily used in pre¬

clinical drug-discovery trials where large numbers of animals can be included (Sartor

2004a). The most commonly used models include indomethacin-, dextran sodium

sulphate (DSS) -, trinitrobenzene sulphonic acid (TNBS)/alcohol- and peptidoglycan-

polysaccharide (PG-PS)-induced models.

1.4.1.1.1 Indomethacin-induced

Subcutaneous administration of indomethacin leads to mucosal ulcers mostly in the

small intestine, within three days. This type of induced inflammation model has been

predominately studied in rodents, and duration has been shown to be strain specific;
Lewis rats have been shown to have inflammation 77 days after injection, whereas
some Fischer rats resolve inflammation by 14 days (Sartor 2004a). Moreover,

bacterial colonisation is also important in disease as germ-free animals have reduced
inflammation and antibiotic treatment reduces inflammation (Robert & Asano 1977;
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Sartor 2004b). Cyclooxygenase enzymes inhibitors exacerbate disease (Sartor

2004a). There is no evidence to support a role of T-cell in this model of

inflammation, and a defective epithelial barrier is most likely to be the cause of
inflammation.

1.4.1.1.2 DSS-induced

DSS administrated in the drinking water of rodents including, rats, mice and hamsters
induces a pancolitis with symptoms mimicking ulcerative colitis including bloody

diarrhoea, weight loss. Histology shows colonic ulceration and an infiltration of
mononuclear cells into the mucosa (Tahara et al. 2003). A role for bacteria in disease
has been demonstrated as broad-spectrum antibiotics attenuates disease (Hans et al.

2000). Evidence suggests that inflammation in this model may be more due to

epithelial injury rather than T-lymphocyte immune activation as inflammation also
occurs in mice devoid of T-cells (immuno-deficient; SCID mice) (Axelsson et al.

1996), which makes this useful model to study epithelial injury and repair.

1.4.1.1.3 TNBS/alcohol-induced

An enema of TNBS/alcohol induces distal colitis in rats, mice and rabbits, however

the severity of inflammation has been shown to be determined by genetic background
and strain (Sartor 2004a). An over aggressive immune system to TNBS/alcohol has
been suggested where the immune response is Th-1 dominated. Antibiotic treatment

has been shown to prevent inflammation (Videla et al. 1994). The disadvantage of
this model is the variable severity of inflammation, and the potential toxicity of this
chemical.
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1.4.1.2 Spontaneous-induced inflammation models

There are three examples of animals which develop spontaneous inflammation:

Cotton-top tamarins, C3H/Hej Bir mice, SAMP-l/Yit mice (Hoffmann et al. 2003).

1.4.1.2.1 Cotton-top tamarins

Inflammation in tamarins, which are marmosets, shows a similar disease progression
as that noted in UC. Inflammation persists throughout life and in episodic flares

(Hoffmann et al. 2003). Bacteria play a primary role in inflammation, in particular E.

coli, and in the absence of bacteria no disease is present, although it has been

suggested that a genetic mutation in the MHC class I gene is involved in the

susceptibility of disease (Hoffmann et al. 2003). As these animals are endangered

species further investigations are limited.

1.4.1.2.2 C3H/Hej Bir and SAMP-1/Yit mice

C3H/Hej Bir mice are unresponsive to LPS due to a point mutation in toll-like

receptor-4, and develop colitis by 4 weeks of age (Hoffmann et al. 2003). Bacteria

play a pivotal role in disease, as mice in germ-free conditions do not develop
inflammation (Elson & Cong 2002). In this model, inflammation is transdermal and
is characterised an over-reactivity of T-cell to bacterial antigens (Elson & Cong

2002). SAMP-l/Yit mice develop ileal inflammation by 20 weeks of age with less
severe inflammation noted in colon (Sartor 2004a). Disease can be transferred to

severe combined immune deficient (SCID) mice (immuno-deficient) showing a T-cell
driven mechanism (Hoffmann et al. 2003; Strober et al. 2001). Bacteria also play a

role, as germ-free animals remain healthy and antibiotic treatment attenuates disease

(Cong et al. 2002b). Studies in these mice are limited due to the restricted

availability of these animals.
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1.4.1.3 T-ceil transfer

This involves using animals which are immuno-deficient (lack immune cells), which
include RAG-1 and 2 knockout mice as well as SCTD mice. A T-cell surface marker,

CD45RB, is highly expressed in na'ive T-cells but expression decreases upon

activation. Transfer of CD45RBh'sh CD4+ T-cells from normal mice into SCID mice

induce pancolonic inflammation by 8 weeks after transfer (Hoffmann et al. 2003).
The inflammation noted is similar to that seen in UC, even though there is a Thl
driven immune response (Hoffmann et al. 2003). T-cell trafficking is dependent on

bacteria as pathogenic T-cells responsive to bacterial antigens caused disease when
transferred to SCID mice, whereas T-cell from 'healthy' mice caused no

inflammation (Cong et al. 2002a).

Another model includes a CD8+ T-cell specific for heat shock protein 60 (HSP60).
Transfer induces small bowel inflammation even in a germ-free environment. This is
the only model which uses CD8+ T-cells and one of the few models which still

develop inflammation in a germ-free environment.

1.4.1.4 Genetically-induced models

There are a number of genetically induced models of inflammation. All but one

model are mice models, the exception being the HLA-B27-B2 transgenic rat. Genetic
models can be further subdivided into the type of immune response-Thl and Th2. As
discussed in section 1.2.2.2, and this is defined by the types of cytokines released by
the T-cells. Noteworthy, most of the genetically-induced models of inflammation are

Thl mediated, except the T-cell receptor (TCR) a knockout model (Sartor 2004a).

For the purpose of this thesis, the HLA-B27 transgenic rat model, mdrla and IL-10
knockout mice (-/-) model will be discussed.
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These mice develop progressive pancolitis by 2 months of age when in specific

pathogen free (SPF), but not in the absence of bacteria (Madsen KL. et al. 2000).
Inflammation is associated with crypt elongation, mononuclear cell infiltration,

ulceration, with transmural inflammation occurring in the later stage, (Sartor 2004a).

IL-10 is an anti-inflammatory cytokine characterised by its inhibitory actions on pro¬

inflammatory cytokine production by macrophages, and also down-regulating the

expression of MHC class II molecules on APC and IL-12 production; in turn

suppressing Thl and Th2 immune responses (Sartor 2004a). These mice have been
shown to have increased levels of the Thl cytokines, IFN-y and TNF-a (Bhan et al.

1999; Song et al. 1999). Double knock out studies have shown CD4+ T- but not B-
cells are required for in the development of inflammation (Hoffmann et al. 2003)

Moreover, gnotobiotic studies have shown exposure to bacteria increase intestinal
CD4+ T-cell secretion of IFN-y and TNF-a in IL-10 knockout animals, in contrast to

lymphocytes from wild-type animals which have negligible levels (Sartor 2004a).
These studies have also shown a role for specific subsets of bacteria responsible for
disease severity. A group of 6 bacterial species; Bacteroides vulgatus, Streptococcus

faecium, E. coli, Peptostreptococcus productus, Eubacterium contartum, and

Streptococcus avium was shown to produce minimal inflammation (Sellon et al.

1998) However, monoassociation studies with E. faecalis induced distal colitis

(Balish & Warner 2002). Importantly, metronidazole (an antibiotic effective against
anaerobic bacteria) reduced established colitis, where ciprofloxacin (effective against
aerobic bacteria) was ineffective (Madsen KL. et al. 2000). Probiotic treatment with
Lactobacillus and Bifidobacterium attenuates colitis in these animals, but colitis is

prevented when animals are given a combination of four Lactobacillus, three

Bifidobacterium and one Streptococcus species (Sartor 2004b). These data support a

primary role for bacteria in disease, and suggests a role for specific subsets of bacteria
in initiating inflammation, and imply specific subsets of bacteria perpetuate

inflammation once disease is established.
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As described earlier in section 1.2.4.1.2, the mdrla gene, MDR1 in humans, encodes
a P-glycoprotein transmembrane pump which is thought to play a protective role in
the intestinal epithelium, and may be involved in the xenobiotic detoxification

process (Langmann et al. 2004; Li et al. 1999). It is also known to be involved in the
active transport of drugs out of the cell and therefore minimises cellular exposure to

potentially toxic substances (Ambudkar et al. 1999).

mdrla -/- models develop colitis only in specific-pathogen free (SPF) but not germ-

free (GF) conditions, providing further support for a protective role for P-

glycoprotein in the small and large intestine (Panwala et al. 1998). Colitis develops

by 20 weeks of age. Histologically, the intestinal inflammation involves elongated

crypts, crypt abscesses and an infiltration of mononuclear cells. Diarrhoea is also
associated with disease. As with most genetically engineered models of

inflammation, a Thl immune response predominates in the colon, with high

expression of IFN-y, TNF-a and IL-12 (Sartor 2004a). It has been shown that this
disease is mediated by alterations in the epithelium as bone marrow transplant

experiments show these reciprocate mice do not develop colitis (Sartor 2004a),

implying this disease does not originate in bone marrow-derived cells.

Studies have also shown inflammation can be prevented and resolved using oral
antibiotics (Panwala et al. 1998). Importantly, as with many of the other genetically

engineered models, specific bacteria have been shown to potentiate disease.
Helicobacter species have been shown to have varying effects on inflammation in
these animals; H. bilis potentiated inflammation, whereas H. hepaticus delayed the
onset of disease (Burich et al. 2001; Maggio-Price et al. 2002). This clearly further

supports a role for specific bacteria initiating inflammation.
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Expression of the human HLA-27/P2 microglobulin gene in Fischer 344 or Lewis rats,

but not mice, leads to the development of colitis, duodenal inflammation, peripheral
and axial arthritis as well as skin and nail lesions (Sartor 2000). By 10 weeks of age

colitis is developed when rats are housed in an SPF environment, but absent in
bacterial free conditions. Onset is different in adult rats, where if animals re-housed

from a bacterial free into an SPF environment, colitis develops after four weeks of
bacterial colonisation, with predominately caecal inflammation (Sartor 2004a). The
inflammation is characterised by elongated crypts, mucosal thickening as well as

infiltration ofmononuclear cells (Sartor 2000).

Mucosal expression of IFN-y, TNF-a and IL-12 was increased in diseased animals

(DIELEMAN et al. 2004), consistent with a Th-1 immune response. Moreover,
colitis can be induced in healthy HLA-B27 null rats through bone marrow

engraftment (Breban et al. 1993; Breban et al. 1996) or by transferring CD4+ and
CD8+ T-cells. Engraftment of bone marrow from non-transgenic into HLA-B27

transgenic rats, can eradicate inflammation (Rath 2003). This implies disease is
mediated through bone marrow derived cells. This contrasts with the mdrla -/-
mouse model, in which the lack of epithelial P-glycoprotein expression appears to be
critical in disease pathogenesis.

Germ-free transgenic animals have no intestinal inflammation, although skin and nail
lesions are still present (Sartor 2004a). Gnotobiotic studies in these transgenic rats

have shown, as with other models of inflammation, specific bacteria induce disease.
Initial studies showed the importance of Bacteroides species in the initiation of
disease in these transgenic animals (Rath et al. 1996). Further studies reveal that
Bacteroides vulgatus induced a more severe colitis than that seen when animals were

colonised with 5 different types of bacteria without B. vulgatus. Monoassociation
studies showed colonisation with E. coli did not induce inflammation in these

transgenic rats (Rath et al. 1999). Similar to mdrla -/- mice, differences in the

severity of inflammation induced by bacteria from the same Bacteroides genus occur;

B. vulgatus and B. thetaiomicron induce disease, but B. distasonis colonisation does
not. These data support a species-specific role of bacteria in initiating inflammation.
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Treatment with narrow spectrum antibiotics (ciprofloxacin and metronidazole)
attenuate colitis, however treatment with broad-spectrum antibiotics

(vancomycin/imipenum) reverse established colitis (Sartor 2004a; Sartor 2004b).
Probiotic treatment using Lactobacillus prevented reoccurrence of inflammation after
antibiotic treatment, but was ineffective at reversing active, established disease

(Sartor 2004b).

1.4.2 Conclusions from animal studies

Animal model studies of intestinal inflammation have demonstrated four main factors

involved in disease. The studies have emphasised the important of bacterial flora in
the initiation of intestinal inflammation, as well as the strong genetic influence which

governs the severity of disease. Moreover, a dysregulated immune system and a

defect in the intestinal barrier have been implicated as an inducer of inflammation.
Studies using the models of inflammation have also shown inflammation is T-cell
mediated.

It is clear these studies have enabled detailed investigations into possible factors
involved in inflammation, and have provided vital information into immune

dysregulation and factors involved in initiating disease, especially the role of specific
bacteria. These studies provide a platform to study disease factors in man, with the

potential for new therapeutic routes in the treatment of IBD.
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Glucocorticoids, Cortisol in man and corticosterone in rodents, are essential for

survival and exert an influence on most systems of the body including fluid and

electrolyte homeostasis, physiological response to stress and more importantly for
this thesis, the immune system. This section will review glucocorticoid synthesis,
metabolism and secretion as well as the actions of glucocorticoids in the body, with

particular emphasis on their role in inflammation.

1.5.1 Synthesis, release and metabolism

Glucocorticoids are part of a family of steroid hormones that have a common

precursor cholesterol, where each steroid is given its unique properties by the
substitution of chemical groups at various positions on the backbone molecule.

They are synthesised from cholesterol in the mitochondria and endoplasmic reticulum

(ER) of cells in the zona fasciculata and zona reticularis in the adrenal cortex. Steroid

biosynthesis is catalysed by a series of enzymes of the cytochrome (CYP) P450

(CYPP450) family, and by isozymes of 3beta-hydroxysteroid dehydrogenase. This

process is further detailed in figure 1.5.

1.5.2 Hypothalamic-Pituitary Axis (HPA axis)

The synthesis and release of glucocorticoids from the adrenal cortex involves an array

of hormonal interactions with the hypothalamus, pituitary and adrenal. Neuronal and
other stimuli, such as stress, initiate the release of corticotrophin releasing hormone

(CRH) and arginine vasopressin (AVP) from the paraventricular nucleus into the

hypothalamic-hypophyseal portal system which leads into the anterior pituitary. This
leads to the release of adrenocorticotrophic (ACTH) from the anterior pituitary. This
is formed from cleavage from the polypeptide pro-opimelanocortin (POMC).
ACTH binds receptors on the adrenal cortex cell surface where it stimulates

steroidogenesis and the release of adrenocortical steroids including glucocorticoids.
Glucocorticoids have an inhibitory effect on AVP and CRH synthesis as well as

POMC processing and ACTH release (Kretz et al. 1999). This provides a negative
feedback mechanism which helps maintain physiological plasma glucocorticoid
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concentrations. See figure 1.6. This feedback system is mediated through

glucocorticoid receptors (Kitchener et al. 2004b). CRH, AVP and ACTH are

released in a pulsatile manner, with a circadian rhythm. This leads to alterations in

plasma glucocorticoid levels throughout the day. In man, levels are highest before

waking and decline throughout the day, whereas in rats, levels peak in the evening

(Friess E. et al. 1995; Kitchener et al. 2004).

Circulating glucocorticoids are predominantly bound to a protein called corticosteroid

binding globulin (CBG) and albumin, with about 5-10% circulating as free steroid

(Hammond 1990; Yudt & Cidlowski 2001b). The lipophilic nature of these hormones

allows them to pass freely through the cell membrane. It is only when the steroid is
free that it can diffuse across cell membranes and bind intracellular glucocorticoid

receptor.

Pre-receptor metabolism of glucocorticoids plays an important role in modulating
local glucocorticoid action by regulating hormone access to the receptor. This
involves the 1 ip-hydroxysteroid dehydrogenase (HSD) enzymes of which there are

two types. These enzymes catalyse the interconversion of active corticosterone and
Cortisol to their respective inactive 11-keto forms (11-dehydrocorticosterone,

cortisone). The reaction directions in vivo of the isozymes differ such that 1 lp-HSDl

re-activates whereas 11P-HSD2 inactivates glucocorticoids. 11P-HSD2 has been

shown to be of great importance in protecting the foetus from high concentration of
maternal glucocorticosteroids, as well as being localised in kidney tubules, where it

protects MR from over-activation by glucocorticoids (Li et al. 1996; Rabbitt et al.

2002; Shimojo et al. 1997; Whorwood et al. 1994). The intestine is another

mineralocorticoid target tissue (see section 1.2.1.2.1) and 11P-HSD2, but not lip-

HSD1, has been shown to be highly expressed in the mucosa (Whorwood et al.

1994).
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Figure 1.5: Adrenocortical steroid biosynthesis. This illustrates the cytochrome (CYP) enzymes

involved in the biosynthesis of adrenocortical steroids from their precursor cholesterol, in the rodent

(left) and in man (right).
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Figure 1.6: The HPA axis. Corticosterone or Cortisol (in rodents and man respectively) is released
from the adrenal gland in response to ACTH (adrenocorticotrophic hormone) secretion from the
anterior pituitary, secretion of which was stimulated by AVP (arginine vasopressin) and CRH

(corticotrophin releasing hormone) from the PVN (periventricular nucleus) in the hypothalamus. A

negative feedback system exists where corticosterone/cortisol inhibits release of AVP and CRH as well
as ACTH release from the hypothalamus and anterior pituitary respectively. It also influences
neuronal projections to the hypothalamus from the hippocampus which can either increase or decrease
AVP and CRH secretion.
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1.5.3.1 Structure

The glucocorticoid receptor is a member of the nuclear hormone receptor superfamily
of ligand-activated transcription factors, and mediates transactivation of target genes

by binding sequence specific recognition elements in their promoter region. Nuclear
hormone receptors are characterised by comprising of a variable amino-terminal
domain (N-terminal), DNA binding domain, and a carboxy-terminal (C-terminal)

ligand binding domain. The DNA binding domain (DBD) is composed of two highly
conserved zinc finger regions and is the most conserved region among nuclear

receptors. These are responsible for target site recognition by hormones containing a

glucocorticoid responsive element (GRE), stabilizes protein-DNA interactions and

required for dimerisation (Necela & Cidlowski 2004; Oakley et al. 1996). The
central DBD is also required for the repression of other transcription factors such as

nuclear factor-feB and AP-1 (Necela & Cidlowski 2004). The C-terminal contains the

ligand binding site for hormones as well as sequences which interact with chaperones,

receptor dimerisation and transactivation (Oakley et al. 1996).

The human GR receptor contains 9 exons. Exon 1, of which there are multiple

alternatives, consists solely of 5'-untranslated sequence, and exon 2 encodes the
amino-terminal portion of the receptor. The two putative zinc fingers are separately
encoded by two exons, and a total of five exons combine to form the cortisol-binding
domain (Encio & Detera-Wadleigh 1991). There have been two classes of

glucocorticoid receptor found in human- a andp. These are formed by alternative

splicing of exon 9. Until this exon each receptor contains the same 727 amino acids,
but diverge beyond this point with GR-a having an additional 50 amino acids, and

GR-P having an additional 15 non-homologous amino acids (Hecht et al. 1997;

Oakley et al. 1996; Vottero & Chrousos 1999). GR-a is further categorised into GR-
A and GR-B, as two forms produced by alternative translation of the same gene (Yudt
& Cidlowski 2001).
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In the absence of ligand GR is localised in the cytoplasm of cells. Here it forms a

large complex with proteins including HSP90, HSP70 and HSP56, where HSP90

prevents DNA binding (Hecht et al. 1997; Vottero et al. 2002). GR also interact with

transcription factors; more importantly for this thesis, GR interact directly with NF-

kB and AP-1 in the cytoplasm of cells and prevents their DNA binding and

subsequent transcription (Oakley & Cidlowski 1993). After ligand binding, GR-a
dissociates from the complex, dimerises, and translocates to the nucleus where it
binds to glucocorticoid responsive elements (GRE) in the gene promoter. GR-P is

generally thought not to bind ligand, however some studies have shown it binds

GREs, and therefore it is thought to have a dominant negative effect on transcription

(Vottero & Chrousos 1999). There are positive and negative GREs noted in the

promoters of gene; GR-a binding negative GRE prevents transcription, whereas

binding to a positive GR-a induces transcription (Burnstein et al. 1990) (see figure

1.7). The transcriptional activity of GR-a is dependent on various co-activators and

co-repressors present in the complex, which facilitate in the recruitment of basal

transcriptional machinery (Vottero et al. 2002). This complex leads to chromatin

remodelling, which enables GR to bind DNA and therefore increase/decrease the

transcription of target genes (Jenkins et al. 2001).
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Figure 1.7: Glucocorticoid transcriptional activation. Corticosterone/cortisol dissociates from its

binding globulin (CBG) and passes across the cell membrane. Free glucocorticoids in the blood, for

example dexamethasone can also pass across the cell membrane and into the cytoplasm of the cell. In
the cytoplasm, ligands bind GR which is bound to heat shock protein (HSPs) complex. Binding causes

HSP to dissociate and GR dimerises before translocating into the nucleus. In the nucleus, a

transcriptional complex binds glucocorticoid recognition elements in the DNA to increase/decrease

transcription of target genes. Transcription leads to the subsequent translation of a protein product.
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1.5.3.3 Receptor regulation

As glucocorticoids regulate numerous distinct physiological processes, glucocorticoid

receptors are expressed in most cells, although the sensitivity to glucocorticoids
varies between individuals, as well as tissues and cell types (Lim-Tio et al. 1997;
Vottero & Chrousos 1999). The level of expression of GR is critical for cell function
where transgenic mice with a reduction in tissue levels of GR have immunological,
metabolic and neuroendocrine abnormalities (Pepin et al. 1992).

Binding sites for a number of transcription factors have been shown to be present in
the GR promoter, and this may be important in tissue- and cell-specific GR

regulation. Post-translational modification may also regulate GR. Multiple
translation initiation sites have been identified in exon 1 in rat and humans, and these

give rise to a number of GR mRNAs (Breslin et al. 2001; McCormick et al. 2000a).
In rats, it has been shown different exons are tissue-specific, and this shows the tissue

specific variation in the control of GR (McCormick et al. 2000b) Glucocorticoids
themselves regulate GR expression, where an over-activation of the receptor, such as

during stress where there is an increase in the concentration of corticosterone/cortisol,
and this subsequently causes the down-regulation of GR to help maintain

'physiological' activation levels (Freeman et al. 2004). Alterations in tissue levels of

GR, or even levels of the inhibitory isoform-GR-p, may be involved in glucocorticoid
resistance (Rogler 2000).
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The mineralocorticoid receptor belongs to the same nuclear hormone receptor

superfamily as the glucocorticoid receptor family, and therefore both types of

receptors share the structural and structural homology (Funder 1997). The

physiological mineralocorticoid, aldosterone, acts via MR to regulate water and

electrolyte absorption. Glucocorticoids also act through this receptor and regulate
ion fluxes. As corticosterone/cortisol circulates at a much higher concentration than

aldosterone, the enzyme 11-beta Hydroxysteroid dehydrogenase type 2 (11(3HSD2,
which inactivates corticosterone/cortisol) co-localises with MR, and therefore
enables aldosterone to bind MR and regulate water and salt absorption (Sheppard et

al. 1999).

MR encodes for a 107kDa protein consisting of 984 amino acids . The gene is

composed of 10 exons. In man, the first 2 exons are known as exon la and ip and
are untranslated, whereas the other 8 exons are encode the entire protein.

Experiments in rodents have shown 3 untranslated areas of the gene known as la, ip

and ly (Pascual-Le Tallec & Lombes 2005). As with the glucocorticoid receptor,

exon 2 encodes for the N-terminal domain, exons 3 and 4 encode for the two zinc fingers
of the DNA binding domain, and the last five exons encode for the ligand binding
domain of the receptor. Alterative transcription of the untranslated regions generates

two mRNA isoforms known as MR-a and MR-P, however the exact function of

these transcripts are unknown (Pascual-Le Tallec & Lombes 2005).

There is an abundance of the mineralocorticoid receptor and 11PHSD2 in the distal

nephron and colon, and this renders these areas key mineralocorticoid tissues.

However, MR has also been shown to be expressed in other tissues including the

hippocampus and hypothalamus, but as 11PHSD2 is absent in these tissue, MR is

primarily activated by corticosterone/cortisol (Rogerson et al. 2003). Activation of
MR by aldosterone, and the subsequent dimerisation and translocation of MR from
the cytoplasm of cells into the nucleus (as seen with GR) induces the transcription of
aldosterone induced proteins involved in altering sodium transport across the

epithelium. This ultimately alters blood pressure, which is involved in cardiac

hypertrophy and fibrosis (Funder 1997).
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1.5.5.1 Glucocorticoid effects on metabolism

Glucocorticoids regulate the metabolism of various substances including

carbohydrates, protein and fat mainly in the muscle and adipose tissue in the

periphery and in the liver, with the subsequent effect of increasing blood glucose
concentrations. Glucocorticoids increase glycogen synthesis by stimulating glycogen

synthase and inhibiting glycogen breakdown. Moreover, glucocorticoids increase

hepatic gluconeogenesis by stimulating two key enzymes: phosphoenolpyruvate

carboxykinase and glucose-6-phosphate. Glucocorticoids also mobilise substrates for

hepatic gluconeogenesis, by stimulating release of amino acids from skeletal muscle
and fatty acids and glycerol from adipose tissue (Roden & Bernroider 2003). Site-

specific alterations in fat metabolism in situations of glucocorticoid excess, leads to

redistribution favouring visceral fat as noted in Cushing's disease.

1.5.5.2 Glucocorticoid effects on blood pressure

There are a number of mechanisms which glucocorticoid effect blood pressure.

These include increasing vascular sensitivity to the effects of catecholamines, in

particular noradrenaline and angiotensin II, as well as decreasing the production of
the vasodilators nitric oxide and prostacyclin (Yang & Zhang 2004). Glucocorticoids
also act on the distal nephron to regulate salt and water reabsorption, inturn altering
fluid volume and therefore blood pressure.

1.5.5.3 Glucocorticoid effects on mood and behaviour

Glucocorticoids exhibit a range of neuropsychiatry and behavioural effects, with

sleep patterns, mood and receptor of sensory signals all effected by these hormones

(de Kloet et al. 1998; McEwen et al. 1986). During glucocorticoid excess rapid eye

movement, sleep disturbances and depression can all occur, whereas insufficient
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glucocorticoid levels can lead to depression and apathy. It is known that

glucocorticoids have neurotoxic effects (Sapolsky 1999).

1.5.5.4 Glucocorticoid effects on growth and development.

An excess of glucocorticoids inhibit the linear skeletal growth, probably due to its
direct effects on bone, muscle and connective tissue metabolism (as mentioned

earlier). It is also involved in cell-differentiation, where administered to pre-term

babies encourages lung development. However, glucocorticoids given during

pregnancy, in man and rodents, lead to reduced birth weight and possible

'programming effects' of the HPA axis, which leads to the development of
cardiovascular and metabolic problems in later life (Bloom et al. 2001; Nyrienda &
Seckl 1998).

1.5.6 Glucocorticoids and Inflammation

Glucocorticoids have profound inhibitory effects on inflammation and have therefore
been exploited clinically in the treatment of inflammation and autoimmune disease
and prevention of rejection of transplanted organs. The anti-inflammatory effects of
the glucocorticoids are due to actions on blood vessels, inflammatory cells and

inflammatory mediators (Barnes 1998), and these will be outline below.

1.5.6.1 Inflammatory mediators

Glucocorticoids increase the transcription of anti-inflammatory cytokines, as well as

decrease transcription of pro-inflammatory mediators. Lipocortin synthesis is
increased which inhibits the enzyme phospholipase A2 and in turn prevents the

production of lipid mediators (Barnes 1998). The interleukin (IL)-l receptor

antagonist is also increased and this prevents binding by its ligand IL-1, and reduces
inflammation. IL-10 secretion from macrophages has been shown to be increased
after glucocorticoid treatment. This cytokine prevents the transcription of many pro¬

inflammatory mediators, possibly through its interaction with the pro-inflammatory
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transcription factor NF-kB (Barnes 1998). Glucocorticoids bind directly with NF-kB
and AP-1 preventing transcription of target genes. Moreover, glucocorticoids
increase the transcription of IkB which is an inhibitor of the pro-inflammatory

transcription factor NF-kB in monocytes and lymphocytes, but not endothelial cells

(Brostjan et al. 1996).

1.5.6.2 Inflammatory transcription factors

NF-kB is a pro-inflammatory transcription factor formed from a heterodimer

typically consisting of p65 and p50 monomelic protein. It is characterised by a Rel

homology domain important in DNA and IkB binding (de Bosscher et al. 2003). It is
localised in the cytoplasm where it is bound to its inhibitory protein IkB. IkB is a

tripartite molecule, consisting of an N-terminal domain for proteolytic cleavage,

central domain for interaction with NF-kB, and a C-terminal domain which is

essential for sequestration in the cytoplasm (Neurath et al. 1998). There are

numerous isoforms, of which IkB-cx has been shown to be important in NF-kB

activation.

During inflammation, cell surface receptors become activated by pro-inflammatory

mediators, such as IL-1 or TNF, and this initiates a phosphorylation cascade. This
cascade involves the activation of the NF-kB inducing kinase (NIK). TNF activates
NIK via the TNF receptor associated death domain (TRADD) and TNF receptor

associated factor (TRAF), whereas IL-1 and IL-18 activates NIK via IRAK and

TRAF (Neurath et al. 1998). NIK phosphorylates IkB kinase (IKK), which in turn

phosphorylates hcB-a on serine residues. frcB-a thereafter becomes ubiquitinated,
and this causes degradation via the ubiquitin/proteasome pathway (Neurath et al.

1998). Degradation of IkB-cc enables NF-kB to translocate from the cytoplasm into
the nucleus, where it increases the transcription of pro-inflammatory cytokines. See

figure 1.8. There is a negative feedback loop by which NF-kB increases the

transcription of IkB to prevent over-activation (de Bosscher et al. 2003).

Studies in knockout animals have shown the p65 subunit essential for embryonic

development, and animals with an overactivation of NF-kB had small spleens and
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thymus. This shows NF-kB is essential at regulating immune-cell function (Neurath

et al. 1998). An increase in the degradation of IkB-cc and an increase in NF-kB

expression have been shown to be present in epithelial cells from IBD patients,
however after glucocorticoid treatment, NF-kB is localised in the cytoplasm opposed
to untreated cells where its localised in the nucleus (Thiele et al. 1999).

Activating protein-1 (AP-1) is a pro-inflammatory transcription factor encoded by

oncogenes and composed of homo- or hetero-dimers of the fos, jun and activating

protein families. The heterodimer fos/jun has been shown to be involved
inflammation where it increases the transcription pro-inflammatory genes, including
1L-2. Glucocorticoids bind directly with AP- 1 preventing its pro-inflammatory
actions (Barnes 1998).

1.5.6.3 Immune cell function

Glucocorticoids also have important effects of the cells of the immune system T- and

B-cells, neutrophils, and monocytes. T-cells play a pivotal role in initiating chronic
inflammation (see section 1.2.2) and glucocorticoids have been shown to inhibit the

activation, proliferation and induce T-cell apoptosis, and this indirectly inhibits B-cell
and macrophage activation (Barnes 1998). This in turn blocks the release of pro¬

inflammatory mediators, and therefore aiding in the resolution of inflammation.
Glucocorticoid treatment also decreases dendritic cell expression (which are

important antigen-presenting cells (APC) known to activate the immune response), as

well as increasing the survival of neutrophils, although the mechanisms behind these

opposing effects are of yet unknown (Barnes 1998). Other anti-inflammatory actions
include inhibiting the release of pro-inflammatory cytokines from macrophages

(another APC) (see section 1.2.2).
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Figure 1.8: Mechanism of NF-kB activation by pro-inflammatory cytokines IL (interleukin)-l, IL-18
and TNF (tumour necrosis factor). Binding of TNF to its receptor (TNFR) activates a TNF receptor

associated factor (TRAF) via a receptor associated adaptor protein called TNF receptor associated
death domain (TRADD). Binding of IL-1 and IL-18 to their receptors IL-1R and IL-18R respectively,
causes the activation of TRAF and the IL receptor associated kinase (IRAK). These complexes active
NIK (NF-kB inducing kinase), which inturn activates IKK-a (IkB kinase kinase-a). This causes the

phosphorylation of IkB-ci, which induces the ubiquitination of M3-a and this targets IkB-cx for

degradation by a proteasome. This enables NF-kB to translocate into the nucleus where it binds DNA
to increase the transcription of target genes, and subsequent translation of pro-inflammatory mediators.

Figure adapted from (Neurath et at. 1998)
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Although glucocorticoids are effective in the treatment of inflammatory disease,

including asthma and inflammatory bowel disease, a proportion of patients are steroid
resistant. The pathophysiology for steroid resistance has been well studied for
diseases such as asthma and rheumatoid arthritis, but not for IBD (Farrell & Kelleher

2003).

Studies have shown that between 16-20% of patients with IBD are steroid resistant

(Faubion et al. 2001; Munkholm et al. 1994). Munkholm and colleagues showed
that in patients diagnosed with CD between the years 1979-1987, 20% were steroid
resistant and only 55% of the responders remained in prolonged response after
treatment had finished (30days). A more recent study revealed 16% of UC and CD

patients were unresponsive to steroid therapy and the 1 year outcomes showed only
32% and 48% of CD and UC patients were corticosteroid free and in remission

(Faubion et al. 2001). These studies emphasis the major problem physicians
encounter when treating patients with IBD in the clinical setting, and warrants further
studies to investigate the molecular mechanisms underlying steroid insensitivity in
these patients.

For the purpose of this study current understanding of the molecular mechanisms
behind steroid resistance in IBD will be reviewed. Research has highlighted three
main molecular mechanisms behind steroid resistance in IBD:

1.5.7.1 Cytoplasmic concentration of glucocorticoids

The multidrug resistance gene encodes for a P-glycoprotein transporter pump (Ho et

al. 2003; Silverman et al. 1991). This pump is known to transport various drugs out

of cells, reducing their efficacy, and has been implicated in steroid resistance (see
section 1.2.4.1) (Farrell et al. 2000). An increase in glucocorticoid metabolism by

cytochrome P450 enzymes has also been implicated in steroid resistant asthma

(Barnes 1998). Moreover, an increase in expression of MDR1 has been shown in

peripheral blood lymphocytes and epithelial cells in IBD patients who required

surgery due to failed medical therapy (Farrell et al. 2000). It has been suggested that
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expression of MDR1 in patients requiring corticosteroid therapy may be a predictive
factor for determining steroid sensitivity. Treatment with inhibitors of P-glycoprotein

may reverse glucocorticoid resistance by facilitating in the uptake of glucocorticoids
into cells (Meijer et al. 2003).

1.5.7.2 Glucocorticoid receptor

T-lymphocytes are thought to play an important role in steroid-insensitivity in the

setting of IBD. Studies have shown that glucocorticoid treatment inhibited T-cell

proliferation from samples taken from steroid responders, although did not inhibit T-
cell proliferation in samples from non-responders (Farrell & Kelleher 2003), and a

reduced binding affinity of GR in T-cells has been implicated. Of note, no difference
in GR mRNA expression has been found between steroid responders and non-

responders in UC, suggesting the density of GR mRNA is not important in

determining steroid-sensitivity in IBD (Flood et al. 2001). Therefore reduced affinity
of steroids for GR would reduce the potential efficacy of steroid in the resolution of
inflammation

Increased expression of the inhibitory glucocorticoid receptor-beta (GR-P) has been

implicated in steroid resistance, as it does not bind ligand but does bind the DNA

preventing activation of target genes (Barnes 1998). An increase in expression of this
isoform has been noted in lymphocytes from steroid resistant UC patients compared
steroid responders, and this phenomenon has been mirrored in steroid resistant
asthma and rheumatoid arthritis (Chikanza et al. 2003; Farrell & Kelleher 2003;

Honda et al. 2000). As the expression levels of GR-p compared to GR-a within cells

is far less, it seems unlikely that these levels of GR-P can produce a dominant-

inhibitory effect over GR-a. Further studies are required to investigate possible

inducers of GR-P expression, as inflammatory cytokines may increase expression and
therefore may aid in the perpetuation of inflammation (Farrell & Kelleher 2003).
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1.5.7.3 Interactions between GR and transcription factors

Another possible mechanism which is involved in steroid resistance is abnormalities
in the interaction of GR with pro-inflammatory transcription factors. Studies have
shown epithelial expression of NF-kB in steroid resistant Crohn's disease (CD)

patients, whereas in steroid-sensitive patients, localisation of NF-kB was

predominantly in lamina propria (Bantel et al. 2002). Further work also revealed that
AP-1 and upstream kinases were active in epithelial cells from steroid resistance CD

epithelial cells, opposed to steroid-sensitive patients where expression was localised
to the lamina propria (Bantel et al. 2002). This suggests that steroid resistance in CD
is associated with epithelial activation of these pro-inflammatory mediators. The
mechanisms remains elusive although a possible reason could be due constitutive

expression of these transcription factors in epithelial cells, which 'over-run' the cell
and buffer the anti-inflammatory effects of the limited number of GR (Barnes 1998;
Farrell & Kelleher 2003).
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1.6 THESIS AIMS

The aim of this thesis was to investigate the underlying molecular mechanisms
involved in determining steroid sensitivity in the rat intestine, both in health and
inflammation. The work has concentrated on the role of P-glycoprotein and

glucocorticoid receptor. The following specific aims were addressed:

1. To study the regional distribution of genes (mdrla, GR, MR and lipHSD-2)
involved in steroid access and efficacy in the healthy rat colon, and the effect of

systemic glucocorticoid treatment on expression.

2. To investigate the effect of antibiotic induced alterations in colonic flora on

the expression of P-glycoprotein and GR in the healthy rat colon.

3. To study the relationship between intestinal inflammation and expression of

P-glycoprotein and glucocorticoid receptor in the HLA-B27 transgenic rat colon.
Gene expression was compared between animals raised in specific-pathogen free

(SPF) and germ free (GF) conditions.

4. To investigate the effect of systemic dexamethasone treatment on expression
of these genes in the HLA-B27 transgenic diseased model of colitis.

5. The molecular mechanisms underlying the regulation of P-glycoprotein and

glucocorticoid receptor by dexamethasone were investigated in vitro using the rat

small intestinal crypt cell line (IEC-6).
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Unless otherwise stated all chemicals, reagents and drugs were purchased from

Sigma, Poole, UK. All enzymes for molecular biology were purchased from

Promega, Southampton, UK. All radioactively labelled steroids, radioactive isotopes
and secondary horseradish-peroxidase linked antibodies were purchased from

Amersham, Little Chalfont, UK. Sources other than these are indicated.

2.1.1 Buffers and Solutions

Alkaline SDS solution: 0.2M NaOH, 1% w/v SDS

Blocking solution: 25g milk (Bio-rad), 500pl Tween, 50mls lOxTBS (see below)
made up to 500mls with distilled water.

Borate Buffer: 8.25g boric acid, 2.7g NaOH, 3.5ml conc. HC1 (10M) and 5g BSA

made up to 1 litre with distilled water, pH 7.4. Stored at -20°C and thawed at room

temperature immediately before use.

Box Buffer: 20ml 20xSSC buffer, 50ml deionised formamide made up to 100ml in
DEPC-treated water (see below).

Buffer A: lOmM HEPES, lOmM KCL, 2mM MgCl2, ImM DTT, O.lmM EDTA,

0.2mM NaF, lpg/ml Leupeptin, 0.4mM PMSF, lx stock protease cocktail inhibitors

(Complete, Roche Diagnostics, East Sussex, UK.

Buffer B: 10% Nonidet P40 in distilled water

Buffer C: 50mM HEPES, 50mM KCL, 300mM NaCl, O.lmM EDTA, ImM DTT,

10% Glycerol, 0.2mM NaF, O.lmM PMSF, lx stock protease cocktail inhibitors.

Caesium Chloride/TE solution: lOOg CsCl dissolved in 100ml TE buffer (see

below).
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Citrate Buffer:1.8ml 1M Citrate Acid (105.07g dissolved in 500ml distilled water)
and 8.2ml 1M Sodium Citrate (147.05g dissolved in 500ml distilled water), made up

to 11 with distilled water.

DEPC-treated water: Distilled water mixed with diethylpyrocarbonate (DEPC;

300pl/100 ml), shaken and left for 1-24 hours prior to autoclaving.

Deionised formamide: 150ml Formamide mixed with 15g Amberlite ion exchange
resin (MB-6113) (BDH, Lutterworth, UK) for 1 hour, filtered twice to remove

Amberlite and stored at -20°C.

1Kb DNA ladder: 20pg 1Kb ladder (Life Technologies, Paisley, UK), in 200pl
distilled water with 10% (v/v) loading buffer.

250mM EDTA (pH 8.0): 80mls water was added to 9.3g Na2EDTA.2H20. pH was

adjusted to 8.0 with NaOH and the volume adjusted to lOOmls.

GTE: 50mM glucose, 25mM Tris, lOmM EDTA, pH 8.0

Homogenisation Buffer: 50mM Tris pH 7.5, 0.25M sucrose, 5mM EDTA, 20mM

sodium molybdate, lx stock cocktail protease inhibitors (Complete, Roche), lpg/ml

aprotinin, ljag/ml leupeptin, ImM PMSF, made up in distilled water.

2xHybridisation buffer: 1.2M NaCl, 20mM Tris-HCl, 2x Denhardts, 2mM K2-

EDTA, 0.2mg salmon sperm DNA, 0.2mg yeast tRNA and 2g dextran sulphate made

up to 10ml in DEPC-treated water, stored at -20°C.

4x Laemmli buffer: 4% SDS, 20% glycerol, 2mM DTT, 125mM Tris pH 6.8, 16%

(3-mercaptoethanol, bromophenol blue.

LB agar: Luria-Bertoni broth with 15g agar per litre broth added before autoclaving.

Loading buffer: 40% sucrose w/ v, 0.25% bromophenol blue (w/v) in distilled
water.
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Luria-Bertoni broth: lOg bactotryptone, 5g bacto yeast extract, 5g NaCl made up to

1 litre with distilled water and autoclaved immediately.

Lysis buffer: lxPBS, 1% Igepal CA-630, 0.5% sodium deoxycholate, 0.1% SDS, lx
stock protease cocktail inhibitors (Complete, Roche Diagnostics, East Sussex, UK),

lpg/ml aprotinin, lpg/ml leupeptin, ImM PMSF.

4% Paraformaldehyde in 0.1M phosphate buffer: 20mM NaH2P04, 80mM

Na2HP04 in 11 DEPC-treated water, heated to 80°C prior to addition of 40g

paraformaldehyde. Stirred for 1 hour to dissolve and stored at 4°C.

Phosphate Buffer: 0.2M NaH2P04 0.6M Na2HP04, 5mM EDTA. Autoclaved before
use.

Phosphate buffered Saline (PBS): 0.1M phosphate buffer with 137mM NaCl,
2.7mM KC1 in distilled water, pH 7.4, autoclaved before use.

5M Potassium Acetate: 60ml of 5M potassium acetate, 11.5ml glacial acetic acid,
28.5ml water.

2xPre-hybridisation buffer: 1.2M NaCl, 20mM Tris-HCl, 2x Denhardt's, 2mM K2-

EDTA, lOmg salmon sperm DNA, 0.2mg yeast tRNA made up to 10ml in DEPC-

treated water, stored at -20°C.

RNase A buffer: 25mg Rnase A dissolved in ImM Tris, 15mM NaCl made up to

2.5ml with distilled water (lOmg/ml). Heated to 100°C for 15 minutes then cooled to

room temperature and stored at -20°C. RNase A (lOmg/ml) added to RNase box

buffer (3pl/ml).

RNase Box buffer: 0.5M NaCl, lOmM Tris, ImM EDTA in distilled water.

Running buffer: 50mM TRIZMA base, 0.38M Glycine, 1% SDS made in distilled
water.
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20x Saline Sodium Citrate buffer (SSC): 3M NaCl, 0.3M Na citrate in 11 DEPC-
treated water, pH 7.0, autoclaved before use.

5M Sodium Chloride: 29.55g added to 100ml DEPC-water

Stripping buffer: 1M Glycine pH 2, 0.1% SDS, 0.1% Tween made in distilled water

lOxTBE buffer: 0.9M TRIZMA base, 0.9M Boric acid, 20mM K2-EDTA in distilled

water.

IOxTBS buffer (Tris buffered-saline): 0.2M TRIZMA base, 1.4M NaCl in distilled

water, pH 7.6.

TE buffer: lOmM Tris-HCl, ImM EDTA, pH 7.5, autoclaved before use.

5xTranscription optimised buffer: 200mM Tris-HCl, 50mM NaCl, 30mM MgCh,
and lOmM spermidine (ready mixed from Promega).

Transfer Buffer: 50mM TRIZMA base, 0.38M Glycine, 20% Methanol in distilled

water, cooled to 4°C.

0.1M Triethanolamine: 13.3ml Triethanolamine dissolved in 800ml DEPC-water

pH 8, volume adjust to 11 (using sterile glassware to avoid autoclaving)
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GeneQuant RNA/DNA Calculator

Hyper-processor

Beckman J2-MC Centrifuge

Electophoresis Power Pac 300

Western Equipment

EL 312e Bio-Kinetics Microplate

Reader

Labofuge 400R Centrifuge

(Used in Cell Culture)

Ultra-Turrax T8 auto-homogeniser

Leica Cryostat

1450 Microbeta Plus Liquid Scintillation

Counter

Amersham Pharmacia Biotech, Little

Chalfont, UK

Beckman Instuments, High Wycombe,

Buckinghamshire, UK.

Bio-Rad Laboratories Ltd., Hamel

Hampstead, UK.

Bio-Tek Instruments Inc., Winooski,

Vermont, USA.

Heraeus, Brentwood, Essex, UK.

Ika, Labortechnik, Staufen, Germany.

Leica Microsystems, UK.

Wallac Oy.
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MCID-M4 Image Analysis V.3.0 Rev 1.5

Zeiss KS3000

Fujifilm Fluorescent Image Analyser

FLA-200 V.1.0

Aida 2.0 Auto Image Data Analyser

Graphpad Prism 3.03

Statisica v.5.0

Multicalc Advanced v2.0

Chapter 2 - Methods and Materials

Imaging Research

Imaging Associates, UK.

Raytest Scientific Ltd., Sheffield, UK.

Graphpad Software Inc, USA.

Statsoft, Tulsa, Oklahoma, USA.

Wallac Oy.
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2.2 ANIMAL MAINTENANCE

Male Wistar rats were obtained from Charles River, Kent, UK at 6 weeks of age.

Animals were maintained under controlled conditions of lights (lights on 0800 h-2000

h) and temperature (21-22°C), with ad lib access to drinking water and standard rat

chow (Special Diet Sevices, Witham, UK). Rats were acclimatised to their
environment for a period of at least a week before surgery/treatment. After surgery

and during treatment periods the animals were under the primary care of Mrs June

Noble of the Molecular Medicine Centre, assisted by the animal technicians of the
Biomedical Research Facility, Western General Hospital. Rats were housed six per

cage, except during antibiotic treatment where they were housed three per cage.

2.2.1 Surgery

Mrs June Noble of the Molecular Medicine Centre, Western General Hospital, carried
out all surgical procedures under the terms of the UK Home Office Animals

(Scientific Procedures) Act, 1986. 8 week old rats were anaesthetised with 4%
halothane and either bilaterally adrenalectomised (ADX) or sham-operated (Sham)

through dorsal incisions and the incisions closed with staples. After regaining
consciousness rats were re-caged and monitored closely. All ADX rats were

maintained on 0.9% saline as drinking water to maintain their electrolyte balance.

2.2.2 Killing and harvesting of tissues

After treatment rats were killed by CO2 asphyxiation and subsequent decapitation.
Unless otherwise stated, colons were removed by dissection, longitudinally cut so the
colon was in an open structure, and sectioned into ten equal lengths. Each section
was then quickly placed and held on powdered dry ice until frozen.

For the colonic samples from the HLAB27 transgenic and non-transgenic rats, which
were a gift from Professor Sartor, colons were dissection, sections from the caecum,

proximal colon and rectum were frozen directly in OCT medium.

All tissue samples were stored at minus 80°C.
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2.3.1 Maintenance of cell lines

IEC-6 cells (derived from a rat small intestinal crypt epithelial cell, Quaroni et al.

1979) were maintained at 37°C with 5% CO2, 95% O2 in Dulbecco's minimal
essential medium (DMEM (Gibco, Paisley, UK)) supplemented with 5% heat-
inactivated foetal calf serum, insulin (0.1 IU/ml), penicillin/streptomycin (100p,g/ml)

and L-glutamine (2mM). Cells were routinely split 1:4 when confluent. To harvest
and split cells, they were washed with serum-free DMEM (10ml), then treated with

trypsin/EDTA in HBSS (1.5ml) for l-2min to release the cells from the flask surface,
then resuspended in DMEM (8.5ml) with serum. Cells were then diluted as

appropriate in DMEM with serum.

2.3.2 Seeding cells

For all cell line experiments cells were harvested 48hr before treatment by

centrifugation at 1000 x g for 5min and resuspended in medium (30ml). Cells were

counted using an Improved Neubauer haemocytometer (Hawksley) and if necessary

diluted further to give a cell count of 5 x 106 cells/ml. 1ml of cell suspension was

added to each 60mm dish containing 3ml of medium (3 dishes per treatment group)

and incubated at 37°C with 5% CO2. 24hr before treatment the DMEM containing
serum was replaced with DMEM containing serum stripped of steroids. All
treatments were added to plated cells in DMEM containing stripped serum.

Serum was stripped of corticosteroids by adding 5g of activated charcoal to 500ml
serum and stirring overnight at 4°C. Serum was centrifuged at 1000 x g for 5min to

pellet the steroid-bound charcoal, and the supernatant sterile filtered through a series
of filters (Sartorius, Goettingen, Germany) with decreasing pore size (1.20pM,

0.4pM, and 0.2pM).
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2.4.1 Protein Estimation
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The protein concentrations of tissue homogenates and cell lysate preparations were

determined colorimetrically using a Bio-Rad protein assay kit. A range of protein
standards (0.05-0.5mg/ml) was prepared in duplicate in distilled water from the

provided protein standard (BSA, bovine serum albumin). Protein assay dye reagent

was diluted 1:5 in distilled water. Diluted protein assay dye reagent (200pl) was

added to protein standard (10pl) or appropriately diluted tissue homogenate/lysate in
a 96-well plate, mixed and left at room temperature for 20min to allow colour

development. Absorbance of samples at A,570nm was measured using an ELISA

plate reader, and the concentration of protein in each sample was estimated from the
standard curve. An example of a standard curve is shown in Figure 2.1.

2.4.2 Corticosterone radioimmunoassay

Plasma corticosterone levels were measured in aliquots of thawed plasma by

radioimmunoassay. This assay was developed by Dr CJ Kenyon. Plasma samples

were diluted 1 in 10 in borate buffer and denatured at 65° C for 30min to dissociate

corticosterone (B) from corticosterone-binding globulin. A range of concentrations
of B were prepared (0.6-320nM) to allow construction of a standard curve. Samples
and standards were incubated with a mixture of [3H]4-B (10,000cpm per sample) and
B antibody (1 in 10,000 dilution, produced by Dr CJ Kenyon, Molecular Medicine

Centre, Western General Hospital) in borate buffer in a total volume of 70pl for lhr.
Scintillation proximity assay beads (SPA; Amersham, Bucks, UK) were then added to

each sample and the samples were incubated overnight. The SPA beads bind to the

primary antibody and if the primary antibody is bound to [ H]4-B the SPA beads
cause scintillation of the radioactive signal. As the concentration of unlabelled B
increases there is competition between binding of unlabelled and labelled B to the

primary antibody, and the radioactive signal decreases. Samples were counted on a

Wallac Microbeta Plus liquid scintillation counter using the Multicalc programme.

The concentration of B in each sample was estimated from the standard curve. The
inter- and intra-assay coefficients of variation were <10%
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Figure 2.1: Protein Assay Standard Curve

A Bio-Rad protein assay kit was used to colorimetrically determine the protein concentration of tissue
homogenates. Absorbance of protein standards of known concentrations (0.0-0.5 mg/ml) at A,560nm
was measured using an ELISA plate reader. A standard curve was produced allowing subsequent
estimation of protein concentrations in each tissue homogenate. Samples were prepared in a dilution
allowing estimation in the middle range of the curve.

2.5 PREPARATION OF cDNA PLASMIDS

2.5.1 Bacterial Transformation

Escherichia coli HB101 cells were grown in 100ml of Luria-Bertoni (LB) broth at

37°C in a shaking incubator until they reached mid-log phase (A6oo = 0.3-0.6). They

were then centrifuged at 1000 x g for 5min at 4°C, the pellet re-suspended in cold
calcium chloride (0.1M; 20ml) and left on ice for between lOmin and 2hr. The

centrifugation step was repeated to re-pellet the cells and the cells were re-suspended
in cold calcium chloride (0.1M; 2ml). The competent cells were stored on ice in the

fridge for up to 3 days before transformation.
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Competent cells (200pl) were mixed with plasmid DNA (50ng) and left on ice for
20min. The cells were heat shocked at 42°C for 50s and placed back on ice. The heat

shock and the calcium chloride lead to the incorporation of the plasmid DNA into the
cells. The cells were spread onto LB agar plates containing ampicillin (100p,g/ml),
and the plates incubated overnight at 37°C. Only cells that had incorporated the

plasmid DNA grew on the plates containing ampicillin, as HB101 cells do not have
inherent ampicillin resistance.

2.5.2 Plasmid DNA preparation

A single transformed bacterial colony was selected from an agar plate and incubated

for 6 hours in LB (2ml) containing ampicillin (100pg/ml) (Sambrook & Russell

2001). This was then added to LB (500ml) containing ampicillin (100pg/ml) and

incubated overnight at 37°C. The culture was centrifuged at 3500 x g for 5min at 4°C
in a Beckman J14 centrifuge, and the supernatant discarded. The cell pellet was

resuspended in cold GTE buffer (12ml) and freshly prepared alkaline SDS (24ml).
The mixture was shaken vigorously by hand and left on ice for lOmin. Cold

potassium acetate (5M; 16ml) was added and the mixture left on wet ice for 10 min
before being centrifuged at 3500 x g for 5min at 4°C in a Beckman J14 centrifuge.
The mixture was filtered through two layers of sterile gauze to remove the precipitate,

isopropanol (32ml) was added to the filtrate and the mixture was left at room

temperature for 30min to precipitate the DNA. The DNA was pelleted by

centrifiigation at 7800 x g for 3min at 4°C in a Beckman J20 centrifuge, and the

supernatant discarded. The DNA pellet was left to dry. The DNA pellet was

resuspended in TE buffer (2.2ml), CsCl (2.95g) added and dissolved and ethidium
bromide (100pl, lOmg/ml) added. The mixture was transferred to Beckman Quickseal

ultracentrifuge tubes, topped up with CsCl/TE solution (lg/ml) and centrifuged at 175

000 x g for 20hr at 20°C in a Beckman Optima TLX ultracentrifuge. The DNA was

separated into bands that could be visualised by the pink colour of the ethidium
bromide. These DNA bands were removed using a 21 gauge needle and syringe,
transferred to fresh ultracentrifuge tubes, topped up with CsCl/TE solution (lg/ml)

and centrifuged at 356 000 x g for 4hr at 20°C. The DNA bands were collected as

above and the ethidium bromide was removed by extracting repeatedly with
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isopropanol until the pink colour disappeared. The DNA was transferred to dialysis

tubing and dialysed against three changes of TE buffer. The concentration and purity
of the DNA was assessed spectrophotometrically using a GeneQuant RNA/ DNA
Calculator.

2.6 35S In Situ HYBRIDISATION

In situ hybridisation involves the reaction whereby a 35S-UTP labelled 'antisense'
RNA probe hybridises to complementary RNA in tissue sections by means of

hydrogen bonding. This enables the visualisation of the exact cellular and/ or

structural location of specific mRNAs (indicating transcription of the corresponding

gene). To ensure the specificity of the 'antisense probe', 35S-UTP labelled RNA
'sense' probes of similar length, nucleotide content and specific activity but not

complimentary to the gene were included in each experiment.

To prevent degradation of target mRNA by exogenous RNases only RNase free,
sterile solutions and equipment were used for in situ hybridisation experiments.

2.6.1 Slide Preparation

During the handling of microscope slides, gloves were worn at all times to prevent

RNase contamination. Prior to use, glass twinfrost microscope slides (BDH, UK)
were coated in 3-aminopropyltriethoxysilane in order to prevent section dehiscence.
Slides were racked and washed in the following series of solutions; HC1 (0.2M) for

3min, DEPC-treated water for 3min, 3-aminopropyltriethoxysilane in acetone (2%;
filtered through NaSCE) for 10s, acetone for 3min (twice), and finally DEPC-treated
water for 3min. Slides were air-dried for 30-60min before baking at 50°C overnight.
Dried slides were wrapped in aluminium foil and stored for up to 6 months.

2.6.2 Tissue section preparation

Frozen tissue sections were cut using a Leica cryostat. Tissues frozen at -80°C were

placed in the cryostat chamber at -20°C and allowed to equilibrate for approximately
30min. Following equilibration, tissues were embedded in Cryo-m-bed embedding
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compound (Brights, UK) and positioned in the correct orientation for sectioning.

10pm thick sections were thaw-mounted onto 3-aminopropyltriethoxysilane-coated
slides. Slides with tissue sections were stored at -80°C until required.

2.6.3 Fixation protocol

To preserve tissue morphology, prevent RNA degradation and allow easy penetration
of probe slides were removed from the -80°C freezer and kept on dry ice until the
start of the fixation procedure. Slides were fixed in ice cold paraformaldehyde (4%)
in phosphate buffer (0.1M) for lOmin. This maintains tissue morphology and inhibits

endogenous ribonucleases. Slides were rinsed twice in lx PBS for 5min and

acetylated in triethanolamine (0.1M) with acetic anhydride (0.25%) for lOmin (this
reduces non-specific binding of the probe to positively charged amino groups in

tissues), and rinsed in lx PBS for 3min. Following dehydration through a series of
ethanol solutions (70, 80 and 95% ethanol in DEPC-treated water) slides were air
dried for 30min.

2.6.4 Probe templates for in situ hybridisation

Plasmids containing cDNA fragments for GR, MR and 11/3-HSD2 were a gift from
Mrs June Noble. The plasmid containing the mdrla cDNA fragment was a gift from
Dr O Meiger and was synthesised as described previously in 2.5. These fragments
were incorporated into a plasmid which contained RNA polymerase promotors. This
enables the transcription of either 'antisense' or 'sense' probes.

2.6.5 Restriction enzyme digestion of plasmids

Plasmid DNA (20pg) was digested with the appropriate restriction enzyme to linerise

for the production of either 'antisense' or 'sense' probes (lU/pg, see table 2.1) in a

total volume of lOOpl for lhr at 37°C. Digestion of the DNA was confirmed by

electrophoresis of lpl of the digest through a 1% agarose gel (prepared by dissolving

agarose (0.5g) in 0.5 x TBE and adding ethidium bromide (lpl/100ml)). The digest
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was compared with uncut plasmid and a lkB DNA ladder containing fragments

ranging from 75bp-12kb under UV light at 254nm.

The remaining digest was then purified using a DNA Purification kit (Hybaid,

Ashford, Middlesex) and resuspended in DEPC-treated water (50pl). Recovery of the

DNA fragment was confirmed by electrophoresis of 1 pi of the DNA solution through
a 1% agarose gel as described above.

2.6.6 Synthesis of 35S-UTP labeled ribo-probes

For all probes, linear cDNA template (0.5-lpg) was transcribed by incubation with

ATP, CTP and GTP (0.3mM each), 35S-UTP (s.a. 800Ci/ mmol), DTT (lOmM),

RNase inhibitor (0.5pl), and appropriate the polymerase enzyme (lpl) at the optimal

transcription temperature for the specific RNA polymerase (see table 2.2), in a final
volume of lOpl. Following incubation, DNase 1 (RNase free) (lpl) was added and

reactions incubated at 37°C for a further 15min to degrade the DNA template, after
which probes were placed on ice for l-5min and purified using NICK columns

(Pharmacia Biotech, Sweden) to remove unincorporated radioactivity. The column
was prepared by washing through with TE buffer (3ml). The probe mixture was then

applied to the column. The column was washed with TE buffer (400pl) and the
initial elutant discarded. Labelled probe was eluted in an additional TE buffer

(400pl).

For each probe, the total activity was estimated by counting lpl of probe in 1ml

PicoFluor 40 scintillant fluid (Canberra Packard, UK) in duplicate in a P-counter

(minimum activity required 2xl03 cpm/pl). The purity of each probe was determined

by running l-2pl on a urea gel (3.6g urea, 1.32ml acrylamide, 0.1% ammonium

persulphate (v/v), 10pl TEMED in lx TBE) and exposing the gel to Kodak Biomax-
MR film (HA West Ltd, Edinburgh, UK), which should produce a single black band

on the film when developed. Probes were stored at -20°C until required, for a

maximum of 7 days.
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Fragment Plasmid Antisense Enzyme Sense Enzyme
Mdrla- 889bp BS Not1 EcoR1

GR- 673bp GEM3 Aval EcoR1

MR- 513bp GEM4 Hindi EcoR1

11|3HSD2- 659bp GEM-T Not1 Nco1

Table 2.1: Plasmid and restriction enzyme summary table

cDNA fragments flanked by restriction sites were incorporated into a plasmid. The restriction sites
enabled the linearisation of the plasmid using the appropriate restriction enzymes. These enzymes
linerised the plasmid in the correct orientation so either the antisense or sense riboprobe was
transcribed from the linear cDNA template.

2.6.7 Pre-hybridisation

Following fixation, slides were pre-hybridised with 200pl/ slide of 2x pre-

hybridisation buffer diluted 1:1 with deionised formamide, at 50°C for 2hr.

Dampening two layers of Whatman No.3 chromatography paper with box buffer
humidified the slide boxes, hence preventing tissue sections from drying out.
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PROBE RNA POLYMERASE

OPTIMUM

TRANSCRIPTION

TEMPERATURE (°C)
mdrla- as T3 37

mdrla- s T7 37

GR- as T7 37

GR-s SP6 40

MR- as SP6 40

MR-s T4 37

11P-HSD2- as T7 37

11p-HSD2-s SP6 40

Table 2.2: RNA Polymerase conditions for ribo-probe generation

The specific RNA polymerase enzyme required to transcribed individual antisense

(as) and sense (s) probes is given above with the optimal temperature at which the

enzyme transcribes.

2.6.8 Hybridisation

Sense and antisense probes were thawed and added to 2x hybridisation buffer diluted
1:1 in deionised formamide to give a final probe concentration of lOxlO6 cpm/ml.
Probes were denatured at 75°C for lOmin and placed on ice before addition of DTT

(lOmM). Pre-hybridisation buffer was drained from slides and appropriate probe

(200pl) was applied to slides. Slides were hybridised in sealed, humidified boxes at

50°C for an optimum of 16 hours.
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2.6.9 RNase treatment and washes

Following hybridisation, slides were washed three times in 2x SSC for 5min and

carefully wiped dry around the sections with lens tissue. 200pl RNase A buffer was

applied to each slide. Slides were incubated at 37°C for 1 hr in humidified boxes (1

layer of Whatman No.3 chromatography paper dampened with RNase box buffer) to

remove unhybridised probe.

2.6.10 Visualisation of Hybridisation

Slides were exposed to Kodak Biomax-MR film for 3-5 days. Afterwards, slides
were individually dipped in NTB-2 photographic emulsion (Kodak, UK, diluted 1:1

with DEPC-treated water at 42°C) and exposed in light-tight boxes for 3-4 weeks at

4°C. Slides were developed in D19 solution (HA West Ltd, UK) diluted 1:1 with

water at 15°C, fixed in Amfix solution (HA West Ltd, UK) diluted 1:5 with water at

15°C, rinsed in water and counterstained with haematoxylin and eosin.

2.6.11 Quantification of silver grains

The number of silver grains per epithelial cell was measured using the Zeiss KS3000

program. Crypts were arbitrarily divided into three planes (basal, mid and tip), and a

total of 30 or more epithelial cells randomly selected from 2 similar sections were

counted within the designated areas for each probe per animal. Background
measurements were made over adjacent non-expression tissue and all slides were

blinded. When measuring the density of the autoradiograph films, images were

captured via a digital camera and the optical density (units were given arbitrarily)of
whole tissue/epithelial areas was measured, and a average density from 2 tissue
sections calculated using the MCID-M4 Image Analysis V.3.0 Rev 1.5 program.
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2.7 WESTERN BLOTTING

The quantity of specific protein present in a tissue was determined using Western

blotting. Total protein from lysed cells or tissue homogenate was prepared as

described below and the protein concentration estimated using Bio-Rad protein assay

described in section 2.4.

2.7.1 Preparation of cell lysate and tissue homogenates

To prepare total cell lysate, medium was aspirated after treatment and cells washed
with phosphate-buffered saline (1ml). Lysis buffer (500pl/group) was added to the
dishes. Cells were scraped and pipetted into eppendorf tubes; cell debris was pelleted

by centrifugation at 2000g at 4°C for 5min in a microcentrifuge. The supernatant was

frozen at minus 20°C until use.

To prepare nuclear and cytosolic extracts, cells were washed as above and cells
detracted by scrapping the monolayer and resuspended in 1ml PBS. Cells were

centrifuged at 12,000rpm for 15sec at 4°C, and the pellet resuspended in 400pl of

Buffer A and incubated on ice for 15min. Thereafter 7pi of Buffer B was added to

the cell suspension and vortex for 15sec, centrifuged at 14,000rpm for 30sec at 4°C
and the supernatant collected (cytosolic fraction). The nuclei were resuspended in

50pi of Buffer C and incubated for 20min (vortexing frequently). Debris was

collected by centrifuging at 10,00rpm for 5min at 4°C. The supernatant contains
nuclear extracts. Both fractions were then frozen at minus 20°C until use.

Tissues were roughly dissected while frozen and 0.5-lg of tissue was added to 1ml

homogenising buffer and mechanically homogenised. Homogenates were centrifuged
at 2000g at 4°C for 5min to allow any small amounts of unhomogenised tissue to sink
to the bottom and the supernatant was removed and frozen at minus 20°C until

required.
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2.7.2 Separation and transfer of proteins by SDS-PAGE

1mm thick SDS-PAGE gels were prepared in the vertical electrophoresis system

(Bio-Rad). 8% resolving gel containing 5.3ml distilled water, 2ml 40% acrylamide,
2.5ml 1M tris pH 8.8, 0.1% 10% SDS, 75pl 10% ammonium persulphate and lOpl
TEMED was poured between glass plates to two-thirds of their height. The surface
was covered with water-saturated butanol until the gel set, which was then washed
out and a 4% stacking gel (7.565ml distilled water, 1.25ml 1M Tris pH 6.8, 1ml 40%

acrylamide, 0.1ml 10% SDS, 75pl 10% ammonium persulphate and lOpl TEMED)

poured on top, and a comb added.

40pg of protein was diluted 1:4 in 4x Laemmli buffer and denatured for 5min by

heating to 95°C and immediately loaded into each well. Samples were

electrophoresised in running buffer at 30mA versus molecular weight markers (Bio-

rad) until the dye front reached the base of the gel. Proteins are separated according
to their weight, with smaller species migrating further over the same period. The

resolving gel was removed and the gel pre-soaked in cold transfer buffer, along with
ECL blotting membrane, for 15min. Proteins were then transferred to the membranes

by electroblotting in cold transfer buffer at 250mA for 3hr. Complete transfer was

verified by the loss of marker dyes from the gel.

2.7.3 Blocking membranes & antibody preparations

Membranes were transferred to dishes containing blocking solution and left overnight
at 4°C on an orbital shaker to reduced non-specific binding. Primary antibody
dilutions (see table 2.3) in blocking solution were added to the membrane for 2hr,
followed by 3x 5min washes in blocking solution on the orbital shaker. Secondary

antibody dilutions (see table 2.3) in blocking solution were applied to the membrane
for lhr. This was followed by 4x 5min washes in lx TBS to remove unbound

antibody.

A secondary antibody application could be made to the same membrane after the

existing antibody complex had been stripped. Blots were incubated for lhr with
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stripping buffer on the orbital shaker, washed 3x 5min in lx TBS then blocked as

before.

Primary Antibody & Dilution Secondary Antibody & Dilution

Monoclonal-C219 P-glycoprotein 1:200 Anti-mouse 1:1000

Polyclonal - Glucocorticoid Receptor 1:400 Anti-rabbit 1:1000

Monoclonal -AP-1 1:300 Anti-mouse 1:1000

Monoclonal-NF-KB (p65) 1:300 Anti-mouse 1:1000

Monoclonal IkB-oc 1:300 Anti-mouse 1:1000

Table 2.3: Primary and secondary antibody combinations and dilutions

2.7.4 Protein detection and quantification

The antibody complex bound to the membrane was visualised using the ECL
chemoluminescence method. Secondary antibodies are attached to a horseradish-

peroxidase molecule which catalyses the oxidation reaction of luminol in the presence

of hydrogen peroxide and light is emitted. The light produced exposes

chemoluminescence-sensitive film in areas corresponding to the specific protein
bands on the membrane. 1:1 mixtures of ECL reagent 1 and 2 (Amersham

Biosciences) were applied to the membrane for lmin, drained, wrapped in transparent

film, and placed under ECL film for a period of time sufficient to obtain visible
bands. The film was developed using a hyper-processor. Film images were scanned
and the band intensity on the resulting files analysed using AIDA or MCID-M4

Image Analysis programs.
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2.8 STATISTICS

All values are expressed as mean ± standard error. Differences in mean values made
on two comparable treatment groups were tested by Student's t-test, and between

multiple groups by One-Way ANOVA followed by LSD or Tukeys post-hoc

comparisons for parametric data. More statistical details for specific experiments are

given in individual chapters.
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Chapter 3

Expression of genes determining colonic glucocorticoid

sensitivity in the rat colon: regional variation and effect of

glucocorticoids
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3.1 INTRODUCTION

As discussed in section 1.1, GC pharmacotherapy continues to be a mainstay of
treatment for inflammatory bowel disorders (IBD), including Crohn's disease and
ulcerative colitis (Arnott et al. 2003). However, physiological variations in sensitivity
to GCs in healthy individuals and the phenomenon of glucocorticoid-resistance in

inflammatory disorders such as asthma and IBD have highlighted the importance of
tissue sensitivity to GCs in determining biological responses in vivo. GC insensitivity

poses major problems in clinical practice with 20-40% of patients with IBD

developing resistance to GC therapy (Faubion et al. 2001). Before we begin to

address the mechanisms which underlie steroid resistance in IBD, we first need to

investigate colonic expression of key genes involved in steroid sensitivity, in health,
and the effect of glucocorticoids on gene expression.

The density of the glucocorticoid receptor (GR) and the mineralocorticoid receptor

(MR) are key determinants of tissue sensitivity, and both are expressed in the colonic

epithelium (Sheppard et al. 1999; Whorwood et al. 1993). These receptors are

regulated in a tissue-specific manner by their glucocorticoid ligands, but such control
is highly cell and organ specific; for example glucocorticoids have been shown to

down-regulate GR in B-cell lymphocytes, but up-regulate the same gene product in
T-cells (Denton et al. 1993). Although previous studies have been reported (Meyer &
Schmidit 1994; Sheppard et al. 1999), the fine details of GC regulation of GR and
MR within specific regions of the crypts and along the length of the colon is not fully

clarified, and yet this knowledge is essential to begin to comprehend its varying tissue
GC sensitivity.

Recent observations have suggested that tissue responses to GCs are determined not

only by the expression levels of GR and /or MR in particular cells but also by pre-

receptor systems that 'gate' ligand access to receptors. Best documented are the
actions of the isozymes of 1 ip-hydroxysteroid dehydrogenase (lip-HSD). 11B-
HSD2 is highly expressed in aldosterone-selective target organs such as the distal

nephron and colon where 11P-HSD2 ensures that intrinsically non-selective MR bind
aldosterone in vivo in the face of many-fold excess of circulating GC (Whorwood et

al. 1993; Whorwood et al. 1994). Absence of 11B-HSD2 leads to illicit occupation of
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MR by GCs, which cause the syndrome of apparent mineralocorticoid excess (sodium

retention, hypertension and potassium loss).

An additional control of access to specific tissues of synthetic and some physiological
steroids is the multi-drug resistance (MDR) gene, which actively transports its

substrates, including many GCs and xenobiotics, out of the cell (Endicott & Ling

1989; Fardel et al. 2001a; Ueda et al. 1992). In rodents mdrla and mdrlb are

involved in steroid transport (Silverman et al. 1991; van Tellingen 2001). The

development of the transgenic knockout mouse mdrla-/-, which suffer severe

spontaneous intestinal inflammation in germ-free conditions, has provided the

strongest evidence to date that mdrla/P-gp contributes to maintaining a protective
barrier in the intestine (Panwala et al. 1998). Recent data using a mouse model of

colitis, where inflammation was induced by dextran sodium sulphate (DSS) (LIzasa et

al. 2003), have shown a decrease in P-gp expression within the large intestine,

analogous to a decrease in MDR1 mRNA expression (Langmann et al. 2004) in

patients with UC when inflammation was established. There are also some data to

suggest that MDR1 expression (Farrell & Kelleher 2003) may be affected in patients
with GC-resistant IBD. Farrell and colleagues have previously shown MDR1

expression in peripheral blood lymphocytes to be elevated in IBD patients resistant
to glucocorticoids (Farrell et al. 2000).

Although some initial reports of the regulation of each of these key gene products by
GCs have been provided, little work has been done to examine their distribution by

position in colonic crypts or along the length of the colon. Moreover, details of their

regulation by GCs and particularly by synthetic GCs used in pharmacotherapy remain

sketchy. Finally, there are no data on their co-ordinated control in vivo. In this

chapter we address these issues, and this provides the basic platform for the studies in
animal models of intestinal inflammation, as discussed in subsequent chapters of this

thesis, and for cell culture studies described in chapter 7.

-81 -



Chapter 3 - Colonic expression ofgenes determining GC sensitivity

3.2 METHODS

3.2.1 Animals

3.2.1.1 Animals used in preliminary mapping and in glucocorticoid

manipulation experiments.

Male Wistar Rats (250-350g) were housed in cages of 6. All were sacrificed by C02

asphyxiation and subsequent decapitation. Colons were removed, sectioned into 10

equal length sections (1-10, proximal to distal)(see figure 3.2) and snap-frozen.

For the preliminary mapping experiments a 6-month-old healthy male rat was

sacrificed, colon removed and sectioned as described above.

In the dexamethasone treatment experiments, two groups of six animals received
bilateral adrenalectomies (ADX), and two groups of six animals underwent sham-

operation (Sham). All surgery was carried out under anaesthesia. One group (n=10)
underwent no operation (see figure 3.1). 6 animals from each operation condition

(Sham/ADX) received a daily subcutaneous injection of dexamethasone (200pg/kg)
dissolved in ethanol/saline (et/OH), and 6 animals from each group (Sham/ADX)
received vehicle (et/OH) for 1 week. The animals which under went no operation
received vehicle. All were sacrificed on day 8. On day 5 tail blood samples were

obtained from all animals.

3.2.1.2 Animals used to validate the Western blotting technique

To test the validity of the Western blotting technique 6 animals were ADX; 3 animals
were subcutaneously injected with dexamethasone (200pg/kg) dissolved in
ethanol/saline (et/OH), and 3 animals received vehicle (et/OH). On day 3 rats were

sacrificed as above, trunk blood samples taken, hippocampus, liver and colons
removed. Colons were sectioned as described above.
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UNOPERATED Sham ANIMALS ADX ANIMALS

10 Animals 6 Animals 6 Animals 6 Animals 6 Animals

+Vehicle +Vehicle +DEX +Vehicle +DEX

Figure 3.1: Flow Diagram illustrating drug treatments and group numbers for unoperated, Sham-

operated and ADX rats.

3.2.2 Radioimmunoassay

To test the efficacy of ADX, corticosterone was measured using plasma previously
collected.

3.2.3 In situ hybridisation

Colonic sections 1, 4, 7 and 10 (the numbers 1 to 10 represent the number of sections
the colon was divided into, where 1 represents the proximal, and 10 the distal colon-
see figure 3.2) were cut and mounted onto saline-coated slides and in situ

35
hybridisation was performed to analyse mRNA levels using transcribed antisense S-
UTP riboprobes for GR, MR, mdrla and 11[1-HSD2 as described in section 2.6. For
each probe, silver grains/epithelial cell within the axis ofwhole crypts (tip, mid, base)
for each colonic section (1, 4, 7, and 10, proximal to distal colon) were analysed

using Zeiss KS3000 program.
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Figure 3.2: Illustration demonstrating the sectioning of the rat colon. Sections 1, 4, 7 and 10 w<

used to examine colonic expression of genes involved in steroid sensitivity.
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3.2.4 Western Blotting

Protein levels were investigated by Western blotting. Protein homogenates from
colonic sections 1, 4, 7 and 10 (where section 1 is taken from the proximal colon, and
10 the distal colon) from all animals were prepared and analysed as described in
section 2.7. When testing the validity of the blotting method protein homogenates
from hippocampus, liver and section 1 of the colon from ADX animals treated
with/out dexamethasone were prepared as above. GR levels were investigated using
1:400 dilution of anti-rabbit polyclonal GR antibody (see table 2.3) followed by
incubation of a 1:1000 dilution of an anti-rabbit horseradish-peroxidase linked

secondary antibody.

Tubulin expression in each sample was measured, and used to control for

discrepancies in loading. Blots were stripped in stripping buffer and reprobed with a

1:5000 dilution of a monoclonal tubulin antibody followed by a 1:1000 diluted anti-
mouse horseradish-peroxidase linked secondary antibody. All bands were analysed

by densitometry using the AIDA program, and results normalised against tubulin.

3.2.5 Statistics

All data are expressed as the mean ± S.E.M. Differences between values were

compared using unpaired t test (weights) or ANOVA with post-hoc LSD

comparisons.

-85-



Chapter 3 - Colonic expression ofgenes determining GC sensitivity

3.3 RESULTS

3.3.1 Mapping the longitudinal and axial distribution of

mdria, GR, MR & 11PHSD2 along the healthy rat colon

This experiment was used solely as an indicator of expression of these genes within
the crypt axis. If an expression gradient was present, differences within the plane of

crypt axis were analysed in subsequent experiments.

3.3.1.1 Glucocorticoid Receptor & Mineralocorticoid Receptor

Both GR and MR were widely expressed throughout the colonic epithelium. There
were no differences in distribution of GR or MR mRNAs in the epithelial cells within
the axis of the crypts (figure 3.3).

3.3.1.2 11 p Hydroxysteroid Dehydrogenase 2

As shown in figure 3.3, 11P-HSD2 mRNA was more highly expressed in the

proximal than the distal colon. 11P-HSD2 transcripts were more abundant in upper

compared to the basal crypts in proximal colon. However in the distal colon (section

10) all epithelial cells within the crypt expressed similar levels of 11P-HSD2 mRNA.

3.3.1.3 Multi-Drug Resistance Gene 1a

Photomicrographs showed that mdrla expression decreased strikingly from proximal
to distal colon (figure 3.3). There was also a differential distribution of mdrla mRNA

within the axis of the crypts, with greater mdrla mRNA expression at the tip of the

crypt in the proximal colon. This differential distribution within the axis of the crypt

was not present in the distal colon.
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Figure 3.3: Photomicrographs illustrating hybridisation of the antisense probes within the crypt axis in
the proximal (left) and distal rat colon (right), mdrla and 11P-HSD2 had increased expression in
epithelial cells at the tips compared to basal crypt in proximal colon. 11P-HSD2 was highly expressed
in all epithelial cells in the distal colon unlike mdrla, where expression was low in all areas of the
distal colon. MR and GR was ubiquitously expressed in epithelial cells the proximal and distal colon.
B=Base of Crypt, L=Lumen of Crypt
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3.3.2 The effects of GC manipulations on GR, MR, mdria &
11P-HSD2 mRNAs along the colon

In all studies of mdrla, GR, MR and 11P-HSD2 expression, there were no differences
between the vehicle treated controls (no operation) and sham-operated groups. This
led to the conclusion that acute operative stress and/or anaesthesia did not affect

transcription of these genes. As there had been no differences found within the crypt

axis for GR and MR mRNA in the mapping experiments in the present experiment,

epithelial cells were selected from all areas of the crypt and analysed together. In

contrast a gradient in expression had been noted within the crypt for mdrla and 11 [3-
HSD2 mRNA; in view of this, epithelial cells within the tip, mid and base of the crypt

were analysed separately.

3.3.2.1 Animal Weights

Sham/ADX animals treated with vehicle for 1 week had similar levels of weight gain

(11% and 9%, respectively), however both Sham and ADX groups gained less

compared to vehicle-treated control animals (p<0.01 and p<0.001, respectively).
Sham animals treated with dexamethasone gained 33% less than the vehicle-treated
Sham group, and similarly, ADX treated with dexamethasone did not gain weight

(figure 3.4).

3.3.2.2 Corticosterone Levels

In unoperated control rats, mean plasma corticosterone levels were 4.4+2.3 pg/dl and

were similar in vehicle treated sham animals (6.3+1.6 pg/dl). As expected, plasma
corticosterone levels from the adrenalectomised or dexamethasone-treated animals

were below the detection threshold of the assay (figure 3.5). Corticosterone measured
from plasma samples from the ADX animals used to validate the western blotting
method had negligible levels (results not shown).
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Figure 3.4: Percentage weight gain for each animal group over the treatment period. Operational
stress significantly attenuated weight gain in the vehicle-treated Sham (Sham-V) and ADX animals

(ADX-V) (*p<0.01, **p<0.001 respectively) compared to the unoperated control group (Control).
Dexamethasone treated Sham animals (Sham-D) were seen to have a 33% reduction in weight gain

compared to their vehicle treated group. ADX animals treated with dex (ADX-D) had little/no weight

gain (##p<0.001).

* compared to control group

# compared to vehicle treated ADX group
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Figure 3.5: Plasma corticosterone concentrations taken on Day 5. Dexamethasone suppressed
corticosterone release from the adrenals in the sham-operated animals to undetectable levels. No
detectable levels (ND) of plasma corticosterone were seen in the adrenalectomised animals, unlike the
vehicle treated control or sham-operated animals.
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3.3.2.3 Glucocorticoid Receptor & Mineralocorticoid Receptor

Adrenalectomy increased GR and MR mRNA levels along the colon (p<0.001), and
the extent of change was similar in all regions of the colon. Dexamethasone given to

either sham-operated (Sham-D) or ADX (ADX-D) groups significantly reduced GR
mRNA along the colon (p<0.05, p<0.001 respectively), compared to vehicle treated
Sham or ADX animals (Sham-V, ADX-V, respectively) (figure 3.6a). In contrast,

colonic MR mRNA levels were unaltered by dexamethasone in any colonic segment

in either Sham or ADX groups compared to control animals, although dexamethasone
did return the elevated MR mRNA after ADX to control levels (figure 3.6b). There is
a slight trend towards an increase in MR/GR ratio within the distal compared to

proximal colon (figure 3.7) in vehicle-treated unoperated animals, however this was

not statistically significant.

3.3.2.4 11 p Hydroxysteroid Dehydrogenase 2

Adrenalectomy significantly increased 11 [3-HSD2 mRNA expression within all areas

of the colonic crypts and all along the colon with values of p<0.001, except in the
middle and bottom crypt areas in section 4 where the values were p<0.01 and

p<0.005 respectively. The effects of ADX were returned to basal levels by
dexamethasone treatment in all regions (figure 3.8).

3.3.2.5 Multi-Drug Resistance Gene 1a

Dexamethasone treatment in ADX and Sham animals (ADX-D, Sham-D respectively)
reduced mdrla mRNA in all colonic areas. ADX-D animals had significantly
reduced mdrla mRNA within the tip of the crypts in colonic section 1 and 4 (p<0.05)
and also within the basal crypt area of section 1 of the colon. There was also

significantly reduced mdrla mRNA expression in the distal area of the colon

(sectionlO) in the tip (p<0.005) mid and basal areas of the crypt (p<0.001). A trend
towards increased expression in ADX-V compared to Sham-V animals was seen in all
areas of the crypt and colon, and it should be noted the most significant reductions by
DEX occurred in ADX-D opposed to Sham-D animals (figure 3.9).
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Figure 3.6: Dexamethasone treatment of Sham/ADX animals significantly reduced GR mRNA levels
in epithelial cells along the entire length of the colon (sectionsl-10, proximal to distal) compared to

Sham/ADX animals given vehicle (*p<0.05, **p<0.005, ***p<0.001). Vehicle treated ADX animals

compared to control animals given vehicle had a significant increase in expression in all areas of the
colon (#p<0.001). (b) MR mRNA expression was unaffected by dexamethasone, although

adrenalectomy did increase expression within epithelial cells along the colon which was returned to

baseline by DEX (#p<0.01, ##p<0.001).
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Figure 3.7: Graph illustrating the MR/GR mRNA ratio along vehicle treated-unoperated healthy rat

colon.
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Figure 3.8: Graphs illustrating 11P-HSD2 expression in epithelial cells within the tip a), mid b) and
basal c) areas of the colonic crypt. All epithelial cells within the crypt axis and along the colon

(sections 1-10, proximal to distal), has increased 11P-HSD2 levels in the vehicle treated ADX group

compared to control animals (#p<0.01, ##p<0.005, ###p<0.001). This increased was return to basal
levels by DEX (*p<0.05, **p<0.005, ***p<0.001).
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Figure 3.9: Graphs illustrating that dexamethasone-treated animals compared to vehicle-treated
Sham/ADX group significantly decreased the expression of mdrla mRNA in epithelial cells within the

tip a), mid b) and basal c) areas of the crypts along the colon (section 1-10, proximal>distal), markedly
in the proximal colon (section 1) where expression was highest (*p<0.05, **p<0.005, ***p<0.001).
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3.3.3 Effects of GC manipulation on GR protein expression

A power failure was responsible for the defrosting of the freezer containing all

colonic samples and therefore these samples had been freeze-thawed prior to Western

analysis. Western blots performed on proximal and distal sections of the colon from

4 animals from each group (ADX, Sham and control animals treated with/out

dexamethasone) produced inconsistent results (data not shown). It was hypothesised

that the inconsistent results were due to protein degradation during this period. To

ensure the method was viable and inconsistencies in protein levels within each group

were due to degradation, fresh protein samples from hippocampus, liver on proximal

colon were analysed (see section 3.1.1.2). Table 3.1 shows a significant decrease in

hippocampal GR levels in dexamethasone-treated animals (p=0.034). There is also a

trend towards a decrease in colonic GR protein (table 3.1) in response to

dexamethasone, unlike in liver where GR levels seem to be unchanged (table 3.1).

In the following chapter, colonic GR protein and P-glycoprotein expression was

analysed using tissue homogenates from vehicle-treated Wistar rats used in

subsequent experiments, and therefore further supports the hypothesis that the

inconsistent western results noted in the present chapter must have been due to

protein degradation.
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TISSUE HOMOGENATE

VEHICLE TREATMENT

(Optical density + SEM)

DEXAMETHASONE

TREATMENT

(Optical density ± SEM)

HIPPOCAMPUS 2.392 ±0.1763 1.088 ±0.3717

PROXIMAL COLON 2.912 ±0.9408 2.274 ± 0.7945

LIVER 2.248 ±0.6155 2.398 ± 1.097

Table 3.1: Optical density of GR protein expression in rat tissues.

GR protein expression in hippocampal, proximal colon and liver homogenates were analysed by
Western blotting. GR expression in the hippocampus significantly decreased after 3 days
dexamethasone treatment (p<0.034). In the proximal colon GR protein levels were seen to decrease,
however this was not significant, and GR protein expression was unaltered in the liver after DEX
treatment.
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3.4 DISCUSSION

3.4.1 Mapping the longitudinal and axial distribution of GR,
MR, 11PHSD2 and mdrla along the healthy rat colon:

The colon represents a key target tissue for corticosteroid actions. GR stimulates
electroneutral NaCl absorption and inhibits electrogenic Na absorption, whereas MR
induces the opposite effects (Meyer & Schmidit 1994). Thus each receptor produces

overlapping as well as distinct physiological effects. Our data show that both that GR
and MR are ubiquitously expressed in the epithelial cells along the colon, implying
that the colon is a major site for corticosteroid affects. The activity of steroids in the
colon is likely not only is to involve maintenance of salt and water balance (GR and

MR) but also involve immuno-regulation (predominantly GR) since the colon in
contact with a large population of luminal immunogens. The greater MR/GR ratio

distally may facilitate the predominant mineralocorticoid actions (salt retention,

potassium loss) in the distal colon to mirror effects seen in the distal nephron

(Escoubet et al. 1996). Indeed, in the hippocampus, another structure with high

expression of both GR and MR, the MR/GR ratio appears key to determining the
nature of target genes regulated by the two receptor subtypes and hence overall GC
function (de Kloet et al. 1998).

Unlike the hippocampus which has no 11B-HSD2 (Li et al. 1996), the high levels of
the 11 (3-HSD2 in the colon suggests it engenders the known aldosterone selectivity of
the rat colonic MR (Whorwood et al. 1993). Our data illustrate increased expression
of the enzyme in the distal colon, concurring with the higher MR/GR ratio in this
locus. This presumably ensures the documented maximum mineralocorticoid effects

(absorption of fluid and salts) distally, as occurs in the distal nephron (Bocchi et al.

2003). Here however, like in hippocampus perhaps, it may be the ratio of MR/GR
that also drives the effects of specific corticosteroids. The increased levels of 1113-
HSD2 at the tips of the crypts in the proximal colon may reflect the increasing
differentiation of the apical cells (Pacha et al. 2002), or simply an increased exposure

to electrolytes at this site.
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The present investigations have also provided the first evidence for the regional
distribution of mdrla mRNA expression along the rat colon, showing higher levels in
the proximal colon. The explanation behind the colonic distribution of mdrla remains
uncertain. Particularly in the proximal colon, bacterial growth is rapid and there is
also an abundance of substrates for metabolism by bacteria which generate toxins.
The higher levels of mdrla expression may help protect colonic tissue from these
substances (Guarner & Malagelada 2003). In contrast to the present results, a study
in mice showed higher mdrla protein expression in the distal compared to the

proximal colon (Stephens et al. 2002). These conflicting results might be explained

by differences between species, by differential effects of xenobiotics substrates on the
various mdr subtypes, or simply by differences between protein and mRNA levels
due to post-translational effects.

The differential distribution of mdrla mRNA expression within the crypts, with

highest expression in the tips in proximal colon, supports previous

immunohistochemistry studies in healthy human colonic tissue (Meiger et al. 1999).
These data are likely to reflect greater epithelial cell differentiation in the upper crypt

compared with the basal layers, though why more differentiated epithelia require

greater mdrla expression is unclear. One possibility is the cells within the tips of the

crypts simply have the greatest xenobiotic exposure. If this were the case, it would
also support ourllB-HSD2 data where increased expression was noted within this
area of the crypt, and help clarify previous studies implicating this enzyme in the
detoxification of xenobiotics (Maser & Bannenberg 1994).

3.4.2 GC manipulations in the healthy colon:

3.4.2.1 Effects of GC manipulations on GR and MR expression

Our results suggest that colonic GR is under autoregulatory (negative) control by
basal levels of endogenous GCs, effects reversed with dexamethasone 'replacement'

(GR mRNA was increased after the removal of endogenous corticosteroids by

adrenalectomy, but was reduced when DEX was given to ADX animals), confirming

previous data (Meyer & Schmidit 1994). The changes in GR were not due to surgical
stress. Presumably such autoregulatory control adjusts GR levels to modulate the
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signal to the colon from widely varying circulating GC levels in response to stress,

diurnal cues, etc. The implication is that chronic GC pharmacotherapy may partly de¬
sensitise the whole colon to GC action, presumably with the balance of GC efficacy
determined by the individual product of GC levels and local GR density.

In contrast, although ADX increased colonic MR mRJMA, there was no reversal with
the GR agonist dexamethasone, mirroring differential control in the hippocampus
over this timescale (Meyer & Schmidit 1994). Experiments in the hippocampus have
illustrated that the analogous increase in MR mRNA after ADX is reduced to base
levels by reintroducing GCs (GR agonists) but not aldosterone (MR agonist) (Holmes
et al. 1995). The explanation for these observations is unclear. It is possible that the
increase in colonic MR mRNA with ADX may in fact be indirectly mediated rather
than being directly regulated by GCs. The present observations may thus reflect a

mechanism by which colonic cells can maintain control of local salt and electrolyte
homeostasis despite being exposed to varying concentrations of endogenous and

exogenous GCs.

3.4.2.2 Effect of GC manipulations on 11P-HSD2 expression

A novel finding is that exogenous and endogenous GCs regulate colonic 11P-HSD2

gene transcription as ADX increased enzyme mRNA levels, a change reversed with
dexamethasone. GC-mediated down-regulation of 11B-HSD2 has not ubiquitously
been noted in other tissues expressing this isozyme. GC-driven down-regulation of
11B-HSD2 favours increased GC sensitivity by reducing inactivation of active GC
substrates including dexamethasone (Li et al. 1996; Whorwood et al. 1993).

3.2.2.3 Effect of GC manipulations on mdrla expression

There remains intense interest in the importance of P-glycoprotein in the

gastrointestinal tract. Langmann and colleagues have shown MDR expression to be
reduced in patients with UC and this mirrors data from animal models of colitis where
a decrease in mdrla expression was noted (Lizasa et al. 2003). The pregnane X

receptor (PXR), a transcription factor essential for controlling xenobiotic metabolism
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and known for controlling MDR transcription (Ho et al. 2003; Langmann et al. 2004),
has been implicated in the regulation of MDR in patients with UC (Langmann et al.

2004). This study illustrated a decrease in PXR mirroring a reduction in MDR in
these patients. A decrease in PXR and P-glycoprotein expression may increase
xenobiotics exposure in intestinal epithelial cells, consistent with data implicating P-

gp as a protective barrier in the intestine. This hypothesis is further supported by
studies in mdr-/- mice, where all animals develop intestinal inflammation (Panwala
et al. 1998).

Here we show that dexamethasone decreases expression of mdrla mRNA in the

healthy colon. The trend of increased mdrl a mRNA expression after adrenalectomy

compared to Sham-operated animals, and significant reductions only noted in
dexamethasone treated ADX animals opposed to dexamethasone-treated Sham

animals, implies a role for endogenous GCs in the regulation of mdrla, supporting in
vitro studies (Li et al. 1999). The reduction in mdrla with dexamethasone

complements results seen in cultures of rat hepatocytes (Fardel et al. 1993), but
contrasts with observations in hepatoma cell lines (Zhao et al. 1993), healthy liver

(Demeule et al. 1999), and also work in chapter 7 using IEC-6 cells where
dexamethasone increased P-glycoprotein expression. There are a number of possible

explanations for these discrepancies, which may reflect differences in cell culture

methods, tissue specific regulation of mdrla and/or differential regulation in health
and disease. Recent data has shown dexamethasone treatment did not affect mdrla

mRNA expression in the rat colon (Mei et al. 2004), however this could simply be
due to treatment duration as we treated with DEX for 7 days whereas Mei and

colleagues treated for 3 days. Therefore Mei and colleagues may not have treated

long enough to induce changes in expression of mdrla mRNA. Also, dexamethasone
was given orally at 1 and 20mg/kg/day. The cellular concentration of dexamethasone

may be different in these animals compared to those animals given dexamethasone

subcutaneously, and may therefore explain the differences noted between studies.

Intriguingly, mdrla is induced by the 'inflammatory' transcription factors AP-1

(Ikeguchi et al. 1991; Teeter et al. 1991) and NFkB (Thevenod et al. 2000). GCs alter

the expression and function of both transcription factors in a variety of settings

(Barnes 1998). Hence in the colon dexamethasone may prevent AP-1 and NFkB from
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initiating transcription of the mdrla gene. In consequence, dexamethasone could
reduce drug/xenobiotic exclusion from colonic epithelia and ultimately increase its
own pharmacological effect within cells. Indeed, in the healthy colon,
dexamethasone appears to both potentate its pharmacological effect by decreasing
both 11P-HSD2 to basal levels and also reduce the efflux of GCs via mdrla. As noted

above, our data suggest the former predominates distally and the latter proximally

along the colon. Against this, reduced GR may attenuate signal. Further studies of

target gene effects are needed to dissect the overall balance in specific subregions of
the colon in health and disease.

The limitations of this study are principally the lack of parallel protein data due to the

freeze-thawing of the samples. However the western blotting results from
adrenalectomised rats treated for 3 days with dexamethasone indicate a significant
decrease in GR protein levels in the hippocampus, and less evidently in the colon.
This complements previous studies in hippocampus (O'Donnell et al. 1995), and
therefore discrepancies in western blotting data from the rat samples were due to

protein degradation and not blotting technique. The reduction in colonic GR protein
mirrors our mRNA data, although the reduction in protein was not significant. This
could be solely due to differences in treatment length between experiments, and if
dexamethasone treatment had been for 1 week compared to 3 days then GR may have
been decreased significantly. The lack of effect of DEX in liver samples could also
be explained by the short treatment length as previous work has shown liver GR
decreases after one week of dexamethasone.

In conclusion, mdrla and 11(3-HSD2 mRNA expression is highest within the colonic

crypt and decreases longitudinally along the healthy rat colon. In contrast, GR and
MR are uniformly distributed throughout the crypt axis. Dexamethasone regulates

mdrla, 1113-HSD2 and GR, but not MR mRNA expression. These changes in

expression may influence the action of GCs in the healthy rat colon, and may even

have implications for disease states where DEX treatment is effective.
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Chapter 4

Effect of altering bacteria flora on the expression of P-

glycoprotein and the Glucocorticoid Receptor along the

healthy rat colon

- 103 -



Chapter 4 -Decreasing bacterialflora alters colonic P-gp and GR expression

4.1 INTRODUCTION

The bacterial flora in the intestine plays an important role in the development and
maintenance of homeostasis in the gut. The flora are involved in metabolism of non-

digestible food residues as well as the regulation of mucus production, protection

against invasive pathogens, epithelial cell proliferation and differentiation (Guarner &

Malagelada 2003). The mucus layer covering the intestinal epithelium prevents the
influx of bacterial products and toxins, and it is thought that a defect in this barrier

may facilitate the penetration of pathogenic bacterial substances which activate the
mucosal immune system (Garcia-Lafuente et al. 2001).

The importance of bacteria in the initiation of inflammation has been illustrated in

genetically-engineered models of intestinal inflammation, as well as in other induced
models of colitis. Animals in germ-free conditions do not develop inflammation,
whereas in specific-pathogen free condition inflammation develops (Sartor 2004a).

Noteworthy, exceptions to this paradigm include the IL-2 knockout mouse model in
which animals still show signs of mild inflammation in germ-free conditions; and also
the dextran sodium sulphate (DSS)-induced colitis model, in which animals develop

aggressive inflammation in a sterile environment (Sartor 2004a; Sartor 2004b).
Antibiotics have been shown to prevent and treat inflammation in both rat and mouse

models of intestinal inflammation (Sartor 2004b). Broad spectrum antibiotics

(vancomycin and imipenium) can prevent disease in animals when administered prior
to bacterial colonisation (Sartor 2004a) and also reverse established intestinal
inflammation in both HLA-B27 transgenic rats and IL-10 knockout mouse animal
models. Importantly, studies in IL-10 knockout mice have also shown selective-

spectrum antibiotics used to treat aerobic and anaerobic bacteria (ciprofloxacin and

metronidazole respectively) differentially reduced inflammation in the caecum and
colon respectively (Hoentjen et al. 2003). This study emphasises that different
subsets of bacteria may be involved in initiating inflammation in particular regions of
the intestine.

The body has a complex mucosal defence system which protects the intestinal

epithelium from potentially harmful substances in the luminal contents. The

- 104-



Chapter 4 -Decreasing bacterialflora alters colonic P-gp and GR expression

epithelium functions both as a barrier and as a detoxifying organ. To do so, the
intestinal epithelium secretes substances which reduce the access of potentially toxic
substances to cells; has a number of effective rapid repair mechanisms after injury;
and of great importance, is capable of transporting substances back into the lumen.

Foreign substances (xenobiotics) which penetrate the cells undergo a process of
biotransformation to less-toxic substances prior to excretion (Meddings et al. 2003).
A number of molecular mechanisms are involved in this process, most notably the

Pregnene X Receptors (PXR-which recognises foreign material); metabolising
enzymes (such as cytochrome P450, glutathione-S-transferases which breakdown
xenobiotics into less harmful substances); and transporter pumps (which excrete

xenobiotics and their metabolites of out the cells) (Dietrich et al. 2003). Xenobiotics
and steroidal drugs such as dexamethasone, have been shown to increase intestinal
and hepatic expression of the metabolising enzyme - cytochrome P450 in rats and
humans as a result of PXR activation (Geick et al. 2001; Hartley et al. 2004; Kliewer
et al. 2002; Langmann et al. 2004; Pascussi et al. 2000; Watkins 1997). Recent data
have also shown intestinal MDR1 to be regulated by PXR activation (Langmann et al.

2004). Therefore a mechanism is present to protect against and eliminate xenobiotics
and pharmacological drugs from the body.

Previous animal studies have shown that colonisation with specific bacteria

differentially regulate expression of mdrla mRNA and the metabolising enzyme

glutathione-S-transferase (GST) mRNA in the mouse intestine (Hooper et al. 2001).
Germ-free (GF) mice colonised with E. coli and B. infantis were characterised by an

increased mdrla and GST mRNA expression; however no increase was noted after
GF mice were conventionally raised or recolonised with microflora (Hooper et al.

2001). Data in the previous chapter suggest an increase in mdrla mRNA in proximal

compared to distal rat colon mirrors bacterial density. This provides indirect
evidence that bacterial flora may regulate mdrla expression. Intestinal xenobiotic

metabolism, and subsequent expression of mdrla, may be altered due to differences
in the composition of bacterial flora.

As discussed previously, GR has been shown to be involved in the production of anti¬

inflammatory cytokines as well as inhibiting the pro-inflammatory transcription
factor NF-kB (Barnes 1998). A defect in GR, whereby the receptor has reduced
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affinity for dexamethasone, has been implicated in steroid insensitivity and therefore
reflects the importance of this receptor in the anti-inflammatory process (Farrell &
Kelleher 2003). As bacteria initiate inflammation, it would be hypothesised that
colonisation may increase expression of GR as a counter-regulatory mechanism.

However, previous studies have shown endotoxin down-regulates GR in the liver,

lung and heart (Webster & Sternberg 2004). These data imply bacterial colonisation

maybe reduce GR expression in the colon.

The experiments described in the present chapter have investigated whether a

reduction in bacterial load following treatment with a combination of the antibiotics

ciprofloxacin and metronidazole may alter colonic expression of GR and mdrla/P-

glycoprotein. It was hypothesised that reduced bacterial flora and therefore
xenobiotic production would be accompanied by a reduction in PXR activation and a

decrease in mdrla/P-glycoprotein activation and subsequent expression. As bacterial
colonisation seems to down-regulate GR expression, reducing bacterial load would
increase colonic GR expression.
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4.2 METHODS

4.2.1 Animals

12 male Wistar rats (300-350g, of 12 weeks of age) were housed in 4 cages, each

containing 3 animals. Six rats received vehicle, and 6 received a suspension of 2 oral
antibiotics and 1 antifungal in Ribena for 1 week. The antibiotic suspension was

administered in Ribena to mask the taste of the drugs, encourage drinking and prevent

dehydration. The suspension consisted of 125mg/l ciprofloxacin, 500mg/l
metronidazole and 2.5g/l amphotericin. These antibiotic concentrations had

previously been shown to modulate bacterial load in mice, and amphotericin was

used to prevent colonic recolonisation by fungi (Panwala et al. 1998; Velder et al.

2003). All rats were given fresh Ribena +/- antibiotic suspension every 2 days, and
bottles were weighed to ensure ingestion of the drugs. On day 8, all were sacrificed

by C02 asphyxiation and subsequent decapitation. Colons were removed, sectioned
into 10 equal length sections (1-10, proximal to distal colon) and snap-frozen.

4.2.2 Bacterial Analysis

4.2.2.1 Sample preparation

Fresh faecal samples were taken before and after antibiotic treatment and

immediately placed in an air-tight container. Samples were homogenised in pre-

reduced nutrient broth (2g/ml) as soon as possible after collection.

4.2.2.2 Plating and identification of bacteria

To identify both aerobic and anaerobic bacteria, samples were incubated in both
conditions on different agar types to ensure optimal growth of all bacteria present in
the faecal homogenate. See table 4.1. Blood agar comprised of 1% Columbia agar

base (Oxoid) with 5% defibrinated horseblood (Oxoid Limited, Hampshire, UK)
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added, and MacConkey agar plates comprised of 1.2% MacConkey agar base (Oxoid

Limited, Hampshire, UK). Agar was sterilised using an autoclave, and allowed to

cool to 50°C prior to the addition of the supplements. Agar was poured into plates
and left to set. Once set the surface was dried and anaerobic plates were placed and
an anaerobic chamber overnight.

The following day samples were collected, homogenised as in section 2.10.1 and a

standard loop-full plated onto the agar plates using a standard plating technique.
Aerobic and anaerobic plates were incubated at 37°C for 24/48hr respectively and
colonies analysed by Mr Robert Brown, Department of Medical Microbiology,

University of Edinburgh.

4.2.3 In situ hybridisation

Colonic sections 1, 4, 7 and 10 were cut and mounted onto silane-coated slides and in
35

situ hybridisation performed to analyse mRNA levels using transcnbed antisense S-
UTP riboprobes for GR and mdrla as described in section 2.6. Expression was

analysed by measuring autoradiograph films, where the optical density (units were

given arbitrarily) was measured for whole tissue (GR) or epithelial areas (mdrla)

using the MCID-M4 Image Analysis V.3.0 Rev 1.5 program.
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Aqar Type Growth Condition Bacteria Selected

Blood agar Aerobic Total aerobic and

facultative bacteria

MacConkey agar Aerobic Coliforms lactose and

non lactose fermenting

eg E.coli
Blood agar Anaerobic Anaerobic and facultative

bacteria

Blood agar plus

gentimicin

Anaerobic Anaerobic bacteria

Table 4.1 illustrating bacterial selection using different growth conditions.

4.2.4 Western Blotting

Protein levels were measured using Western blotting. Colonic sections 1, 4, 7 and 10
were homogenised and analysed as previously described in section 2.7. GR and P-

glycoprotein levels were analysed using the sample antibody preparations as shown in
table 2.3. Loading discrepancies were controlled by measuring tubulin in each

sample, using the same antibodies and dilutions as described in section 2.3. All bands
were analysed by densitometry using the MCID-M4 Image Analysis programs and
results normalised against tubulin expression.

When analysing the gradient of P-glycoprotein and GR along the colon of vehicle-
treated animals, protein homogenates from colonic sections 1, 4, 7 and 10 from 2
different animals were run together on one gel. This was repeated so the colonic

gradient from 4 animals were analysed.
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When investigating the effect of altering bacterial load on P-glycoprotein and GR

expression, protein homogenates from 3 vehicle- and 3 antibiotic-treated animals
from the same colonic section were run together on one gel. All 4 colonic sections
were simultaneously run and analysed together. This was repeated so all 6 animals
were analysed.

Please note that although the same samples (animals given vehicle) were used to

analyse the gradient of GR and P-gp along the colon as well as investigating the
effect of reduced bacterial load in Wistar rats, as the samples were run on separate

gels and developed on different films, direct comparisons between the results cannot

be made. This is due to differences in the transferring stage and film developing

stages of Western blotting technique; the gels were not simultaneously transferred,
and therefore differences in the amount of protein transferred may have occurred.

Also, in the film development stage, each film would have been developed for

differing lengths of time causing differences in film densities. Therefore as the
conditions could not be similar for each experiment, direct comparisons cannot be
made.

4.2.5 Statistics

All results are expressed as the mean ± S.E.M. Differences between values were

compared using one-way ANOVA with post-hoc Tukey's pair-wise comparisons
when analysing three or more groups. Unpaired Students t-tests were performed
when analysing differences between two groups. Correlation values were measured

using linear regression. Values ofp<0.05 were taken as significant.
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4.3 RESULTS

4.3.1 Average Fluid Intake

Figure 4.1 illustrates the average fluid intake per rat per day for each treatment. It
was assumed that all rats per cage had equal fluid intakes. For the vehicle-treated

group, it was estimated each rat consumed 66mls/day. For animals drinking the

antibiotic/fungal solution, rats consumed an average of 33mls/day.

4.3.2 Bacterial Flora Alteration by Oral Antibiotics

Faecal samples analysed before drug treatment was commenced showed no

differences in bacterial content between all animals. Mr Robert Brown from the

Medical Microbiology department, University of Edinburgh gram-stained bacteria
and concluded that after drug treatment, ciprofloxacin cleared gram negative
facultative bacteria including Escherichia coli and Proteus from the gut, although

gram positive cocci such as Lactobacilli and Bifidobacteria were still present.

Metronidazole cleared the gut of anaerobes, with the notable exception of a

Bacteroides species.
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Figure 4.1: Average daily fluid intake for vehicle- and antibiotic-treated animals. As there were 3
animals per cage, and it was assumed all had equal fluid intakes, vehicle-treated animals drank

approximately 66mls/day, and 33mls/day for the antibiotic/antifungal-treated animals.
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4.3.3 Colonic gradients of mdr1a/P-glycoprotein and GR
expression in healthy rats

In the previous chapter mdrla and GR mRNA expression along the colon in the
Wistar rat was investigated as well as MR and 11(3-HSD2 mRNA expression.

However, protein data could not be studied as protein degradation had occurred due
to a power failure affecting the laboratory freezer, and all tissue samples had been
ffeeze-thawed. As a similar strain of rat was used in the antibiotic experiment
described in the present chapter, colons from vehicle-treated animals were taken to

study P-glycoprotein and GR expression along the healthy colon and investigate
whether mRNA and protein expression correlate. MR and 11(3-HSD2 protein

expression was not studied as these genes are not known to be involved in the

inflammatory/disease process.

4.3.4 mdrla and P-glycoprotein gradient along the colon

Figure 4.2 shows mdrla mRNA and P-glycoprotein expression along the rat colon in
vehicle treated animals. A gradient for both mRNA and protein expression along the
colon was present; decreasing from proximal to distal colon, as noted previously in

chapter 3. mdrla mRNA was significantly decreased in section 7 and 10 compared to

section 1 of the colon (p<0.01 and p<0.001 respectively). P-glycoprotein expression
was significantly decreased in section 4 (p<0.05), 7 (p<0.01), and 10 (P<0.01)

compared to proximal colonic section 1. The correlation between mdrla and P-gp

expression was measured using linear regression, and found to have an R value of

0.8157, with p=0.0968.

4.3.5 Glucocorticoid Receptor mRNA and protein gradient

along the colon

There was no difference in GR mRNA expression along the rat colon in the present

experiments, consistent with data presented in chapter 3. However, figure 4.3 shows
GR protein expression increased significantly towards distal colon, with significance

reaching p<0.01 in section 7, and p<0.001 in section 10 when compared to proximal
section 1. Therefore unlike mdrla and P-glycoprotein, GR mRNA and protein

expression did not correlate (p=0.33).
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(a)
Section

Figure 4.2: (a) A representative autoradiograph and corresponding graph showing mdrla expression
decreased along the rat colon (n=6/group) (b) Western blot and associated graph showing P-

glycoprotein along the rat colon (n=3). Both mdrla and P-glycoprotein expression significantly
decreased towards distal colon, mirroring mRNA results in chapter 3. (*p<0.05, **p<0.01, ***p<0.001

compared to section 1). Comparison of mdrla and P-gp expression was performed using linear

regression and shown to have an R: value of 0.8157, with p=0.0968.
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Section: 1 4 7 10

Section 1 Section 4 Section 7 Section 10

Section: 1 4 7 10

Section 1 Section 4 Section 7 Section 10

Figure 4.3: GR mRNA (n=6) (a) and protein expression (n=3) (b) with a representative

autoradiograph and western film respectively, along the rat colon. There was no difference in mRNA

expression along the colon however GR protein levels increased distally (*p<0.01, **p<0.001

compared to section 1).
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4.3.6 mdria and P-glycoprotein expression after antibiotic
treatment

There was no statistically significant different in mdrla or P-glycoprotein expression
in any region of the colon in animals which had received antibiotic treatment when

compared to vehicle-treated animals (figure 4.4). However there was a trend towards
decreased P-glycoprotein expression in the distal colonic sections after antibiotic
treatment.

4.3.7 Glucocorticoid receptor mRNA and protein expression after
antibiotic treatment

There was no significant difference in either GR mRNA or protein expression when
animals treated with antibiotics were compared to vehicle-treated animals. However
there was a trend towards an increase in GR protein expression in the antibiotic-
treated group compared to vehicle animals in distal colonic section 10, although this

just failed to be statistically significant (p=0.0565) (figure 4.5).
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Figure 4.4: Effect of antibiotics on mdrla (left) and P-glycoprotein (right) expression in sections 1, 4,
7 and 10 (top to bottom of the page), of the rat colon. There was no significant difference between
treatment groups in any colonic section (n=6/group), although a trend towards a reduction in P-gp

expression was noted in colonic sections 4, 7 and 10 (towards distal colon, which just failed statistical

significance) when analysed using unpaired Students t-tests.
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GR mRNA Expression GR Protein Expression

Figure 4.5: GR mRNA (left) and protein (right) expression along the rat colon (proximal>distal, top to

bottom). There was a trend towards increased GR protein levels only in colonic section 10 after
antibiotic treatment which failed to reach significance when analysed by Student t-tests (unpaired)

(p=0.0565) (n=6/group).
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4.4 DISCUSSION

The intestine is more densely populated with micro-organisms than any other organ,

and therefore the epithelium plays a pivotal role in maintaining gut homeostasis in

response to pathogenic and commensal organisms (Hooper et al. 2001). As discussed

previously, there are a series of innate defence mechanisms which protect the
intestine against potentially toxic substances/organisms ingested, or produced by

metabolising bacteria. The work described in this chapter primarily investigated the
effects of altering bacterial load on the expression of P-glycoprotein, a pump

implicated in transporting xenobiotics out of cells (Ambudkar et al. 1999), and also
the glucocorticoid receptor which is involved in the anti-inflammatory process .

However to support data presented in the previous chapter where mdrla and GR
mRNA expression along the colon was studied but not protein expression (due to a

freezer failure), P-glycoprotein and GR protein expression in the healthy rat colon
was also investigated.

4.4.1 Colonic Expression of mdr1a/P-glycoprotein and
Glucocorticoid Receptor

4.4.1.1 mdr1a/P-glycoprotein

Data presented in this chapter describing P-glycoprotein expression along the rodent
colon complement the mRNA mdrla data noted in this and the previous chapter. The
increased expression in proximal compared to distal colon may be due to the high
bacterial concentrations noted in this colonic region (Guarner & Malagelada 2003).
We hypothesised an increase in bacterial concentrations in proximal colon may lead
to increased xenobiotic production, and as a compensatory mechanism to protect the
intestine from these substances, transcription of mdrla and subsequent translation of

P-glycoprotein would be induced. To investigate this, the intestinal bacterial load
was reduced by treating with antibiotics, and expression of mdrla and P-gp studied

(see section 4.4.2).
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4.4.1.2 Glucocorticoid Receptor

The increased expression of GR protein in distal compared to proximal colon was

inconsistent with mRNA data noted in this and the previous chapter, as no difference
in mRNA expression was noted along the colon. The discordance between mRNA

and protein data may reflect post-translational modifications, RNA stability or

differential rates of mRNA/protein turnover.

Our data showed increased GR protein expression in the distal compared to proximal
colon. The explanation behind this novel finding remains to be established. A recent

study has shown endotoxin decreases GR expression in the heart, liver and lung

(Webster & Sternberg 2004), and therefore suggests bacteria down-regulate GR

expression. This supports our findings where decreased GR expression was noted in

proximal compared to distal colon, inversely correlating with bacterial density. A

possible explanation for bacteria down-regulating GR could be due to the

'autoregulatory' mechanism associated with the regulation of the glucocorticoid

receptor (Meyer & Schmidit 1994). GR is activated in proximal colon in response to

pro-inflammatory mediators produced by bacteria, and thus GR is down-regulated via
a 'negative feedback loop'. However in distal colon, where less bacteria and
therefore less pro-inflammatory mediators produced, GR is not activated to the same

extent as in proximal colon, and therefore GR expression is increased via a 'positive-
feedback loop'.

4.4.2 Effect of altering bacterial flora on colonic mdrla and

P-glycoprotein expression

Data presented in this chapter showed metronidazole (selective against anaerobic
bacteria including gram-negative such as Bacteroides species) and ciprofloxacin

(antibiotic against aerobic bacteria with an extend spectrum against anaerobic gram-

positive bacteria) (Rath et al. 2001) decreased colonic bacterial content. However, a

Bacteroides species and other gram positive cocci were still present in the gut.

Previous studies in healthy mice (Velder et al. 2003) showed the doses and time of
treatment of metronidazole and ciprofloxacin used in this study cleared anaerobic and
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aerobic bacteria respectively from the intestine, as measured by real-time PCR and
bacterial isolation.

In the present study, the decrease in bacterial load was not correlated with a

significant decrease in mdrla or P-glycoprotein expression. However in distal colon,
there was a trend towards decreased P-gp expression in animals treated with
antibiotics, further supporting the hypothesis that intestinal bacteria regulate P-

glycoprotein expression.

Previous studies in healthy mice have shown Escherichia coli increase whereas
Bacteroides thetaiotaomicron decrease ileal mdrla expression compared to mice in

germ-free conditions (Hooper et al. 2001). Hooper and colleagues also showed
mdrla expression was increased in mice conventionally raised, albeit to a lesser
extent than noted during E. coli mono-association studies. Studies in IL-10 knockout
mice have also shown E. coli to induce a rapid-onset caecal inflammation, whereas E.

faecalis caused a slow-onset distal colitis (Sartor 2004b). Taken together these data

suggest that, in mice, intestinal mdrla expression may be regulated by bacterial flora
and also emphasise the importance of different subsets of bacteria in regulating mdrla

expression. These data complement the results of mono-association studies in HLA-
B27 transgenic rats which have shown B. vulgatus and B. thetaiotaomicron, but not

B. distasonis induced colitis (Sartor 2004a; Sartor 2004b). E. coli in these rats did not

induce colitis (Rath et al. 2001; Sartor 2004a). However monoassociation studies

using IL-10 knockout mice have shown E. coli but not B. vulgatus induced colitis

(Sartor 2004a). These studies highlight the complexity and species specific role for
bacteria in inducing colitis in animal models.

In the present study we may not be seeing a significant decrease in colonic mdrla/P-

gp expression because bacterial clearance was incomplete and critical strains
maintained. Moreover, a trend towards decreased protein expression was observed

only in distal colon, a possible explanation could be due to different subsets of
bacteria colonising specific areas of the colon (Sartor 2004a). It seems likely that
Bacteroides species and other bacteria still present in the intestine may predominantly

- 121 -



Chapter 4-Decreasing bacterialflora alters colonic P-gp and GR expression

be present in proximal colon, and this may provide an explanation why no decrease in

P-glycoprotein expression was noted in this colonic area.

4.4.3 Effect of altering bacterial flora on colonic GR mRNA
and protein expression

In the distal colon, there was a trend towards increased GR protein expression after
antibiotic treatment. It was hypothesised an increase in bacteria, and therefore pro¬

inflammatory mediators, would increase GR expression due to the glucocorticoid

receptor being involved in the resolution of inflammation. Data present in this

chapter are in direct opposition to this hypothesis, as a decrease in bacterial load
increased GR protein expression in distal colon. As discussed previously, recent data
has shown endotoxin reduces heart, lung and liver GR expression (Webster &

Sternberg 2004), and these studies would be consistent with data presented in this

chapter. The mechanism behind this phenomenon is unclear, although a possible

explanation for increased GR expression in response to reduced bacterial
concentrations in distal colon could be due the 'feedback loop' regulating GR

expression, as discussed earlier in section 4.4.1.2. Another possible reason for the
increase in GR protein expression in the distal colon could simply be due to the
antibiotics directly up-regulating GR, although no studies analysing the effects of

ciprofloxacin and metronidazole on GR expression have been undertaken.

In summary, data in this chapter suggests a possible role for bacteria in the regulation
of P-glycoprotein and GR in Wistar rats. To further clarify the role of bacteria in the

regulation of these genes, subsequent germ-free and mono-association studies (a
condition unavailable during this study) are required. This would help establish
whether these genes are regulated by bacteria, and also if specific bacteria are

involved in the regulation of mdrla/P-gp and GR in these rats. If bacteria were

involved in the regulation of these genes, it would provide possible explanations on

how specific subsets of bacteria alter the barrier function of the intestinal epithelium
and initiate inflammation.
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Chapter 5

Expression and regulation of P-glycoprotein and
Glucocorticoid Receptor in the colon of HLA-B27 transgenic

rats
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5.1 INTRODUCTION

As discussed in chapter 1, animal models of inflammation can be categorised into
four groups based on the method of induction- drug- or chemically-induced,

spontaneous, genetically engineered or T-cell transfer. The genetically engineered
models can be further subdivided into the type of immune response mediating
inflammation-Thl (primarily involved in cell-mediated immunity and involving the

cytokines IL-2 and IFN-y) and Th2 (responsible for antibody responses and involving
the cytokines IL-4, IL-5 and IL-10).

There are a limited number of rat models of colitis, and these include the drug
induced models of colitis, such as the indomethacin and trinitrobenzene sulfonic acid

(TBNS)/alcohol models, as well as the HLA-B27 transgenic rat model (Sartor

2004b). Animal models of intestinal inflammation have provided vital information
on the pathogenesis of inflammatory bowel disease, notably providing compelling
evidence for the role of bacteria in the initiation of disease, since inflammation is

reduced after antibiotic treatment, prevented/attenuated when treated with

probiotics/prebiotics, or is absent when housed in germ-free conditions (Sartor

2004b).

Expression of the HLA-B27/(32 microglobulin transgene in rats (referred to as the
HLA-B27 transgenic rats) is associated with a Thl pattern of intestinal inflammation
as well as extra-intestinal magnifications such as axial arthritis by 12 weeks of age

when housed in a specific pathogen-free (SPF) environment (Sartor 2000). When
these animals are housed in germ-free (GF) conditions, intestinal inflammation and
arthritis are absent, although skin and nail lesions are still present. There have also
been a variety of gnotobiotic studies carried out in this model, with specific strains of
bacteria (Bacteroides vulgatus and Bacteroides thetaioaomicron) shown to

preferentially induce colitis, with the caecum being the site of the most intense
inflammation (Rath et al. 1999). Studies using selective and broad spectrum

antibiotics have also shown inflammation to be attenuated and even reversed in HLA-

B27 transgenic rats with established inflammation (Sartor 2004a).
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The mdrla -/- mouse model is also associated with a Thl pattern of inflammation

(Sartor 2004b). mdrla is known to play a role in the transport of drugs and other

potentially toxic substances including bacterial products, out of cells, and thereby

may be involved in the detoxification of xenobiotic compounds (Langmann et al.

2004). Moreover, the MDR1 gene is now strongly implicated in human IBD (Farrell
et al. 2000; Langmann et al. 2004). Expression genetics have also shown a

correlation between polymorphisms in the MDR1 gene determining disease extent as

well as susceptibility to IBD (Ho et al. 2003; Ho et al. 2005). As with the HLA-B27

transgenic rats, studies have shown these mice develop colitis by 20 weeks of age

when housed in SPF conditions (Panwala et al. 1998). Treatment with antibiotics
attenuates colitis, and when housed in a GF environment, no colitis is present in this
animal model (Sartor 2004a). These data implicate a protective role for mdrla in the
intestinal epithelium against potentially harmful/toxic substances (Panwala et al.

1998). Recent studies in mice, where intestinal inflammation was induced using
dextran sodium sulphate (DSS), have shown a decrease in mdrla in diseased animals

(Lizasa et al. 2003), and this implies that during disease, the intestinal epithelial
barrier is disrupted.

Interestingly, even though the glucocorticoid receptor plays a series of important roles
in the anti-inflammatory process in disease, including both inhibiting pro¬

inflammatory transcription factors and inducing the transcription of anti¬

inflammatory cytokines, the effects of disease on expression of GR within the
inflamed intestinal tissue of these transgenic animal models have not been studied

(Barnes 1998). There are conflicting results surrounding GR expression in patients
with IBD. Patients with CD have been shown to have reduced GR mRNA expression
in peripheral blood lymphocytes (Hori et al. 2002), whereas GR mRNA was

increased in peripheral blood lymphocytes in UC patients in remission compared to

healthy controls (Flood et al. 2001). Expression of GR in the mucosa of IBD patients
were seen to be reduced (Rogler et al. 1999). The effect of inflammation on intestinal
GR expression has not been previously studied in animal models of disease. It is

worthy of note that GR expression in hepatic T-cell lymphocytes has been shown to

be reduced in rats with experimental cholangitis (Tjandra et al. 2003). Primary
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sclerosing cholangitis is a Th-1 driven response disease, similar to the type of
inflammation produced in HLA-B27 transgenic rats (Tjandra et al. 2003).

To complement studies documented in previous chapters where intestinal expression
of mdrla/P-glycoprotein and GR was investigated in healthy adult Wistar rats, the

expression of these genes in a rat model of colitis was investigated. In the

investigation described in the present chapter, the HLA-B27 transgenic rat model was

chosen in view of the well-characterised bacterial studies undertaken in this model.

We hypothesised that the regional variation of expression of mdrla/P-glycoprotein
and GR in the rat colon discussed previous chapters was a consequence of the density
of bacterial colonisation. Expression of mdrla/P-glycoprotein and GR from caecum

to rectum was studied in the Fischer 344 HLA-B27 transgenic and non-transgenic rats

to determine whether a) a gradient in expression of these genes was present in the
colons of these rats; b) expression was associated with the density of bacterial
colonisation; and finally c) to investigate the effect of active colitis on expression of

P-glycoprotein and GR.
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5.2 METHODS

5.2.1 Transgenic and Non-transgenic HLA-B27 Rats

Tissue from these animals was a gift from Professor Sartor, North Carolina, USA.

Transgenic (TG) and non-transgenic (NT) Fischer 344 rats in germ-free (GF) and

specific pathogen free (SPF) conditions were sacrificed at 4-5 months of age.

Sections from the caecum, proximal colon and rectum dissected and frozen in OCT
medium for RNA analysis and adjacent tissue sections were also taken and frozen on

dry ice for protein analysis. All samples were sent on dry-ice.

5.2.2 In situ hybridisation

Caecal, proximal colonic and rectal sections from HLA-B27 rats were cut and
mounted onto saline-coated slides. In situ hybridisation was performed to analyse

35
mRNA levels using transcribed antisense S-UTP riboprobes for GR and mdrla as

described in section 2.6. Expression was analysed by measuring the autoradiograph

films, in which the optical density (units were given arbitrarily) was measured for
whole tissue (GR) or epithelial areas (mdrla).

5.2.3 Western Blotting

Protein levels were measured using Western blotting. Tissues from caecum, proximal
colon and rectum from F1LA-B27 rats were homogenised and analysed as previously
described in section 2.7. GR and P-glycoprotein expression were analysed using the

sample antibody preparations as shown in table 2.3. Discrepancies in loading were

assessed by measuring tubulin expression in each sample using the antibody dilution
as described in table 2.3. All bands were analysed by densitometry using the MCID-
M4 Image Analysis programs and results normalised against tubulin.
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For analysing the gradient along the colon, caecal, proximal colon and rectal

homogenates from 1 animal from each of the 4 groups (TGSPF, NTSPF, TGGF,

NTGF) were run on a single gel, and 3 gels were analysed (n=3).

When analysing differences between TG/NT in GF/SPF conditions in specific areas

of the colon, specific tissue homogenates (caecal, proximal colon or rectum) from 3
animals from each group (TGSPF, NTSPF, TGGF, NTGF) were run together on a

single gel. All 3 gels, containing either caecal, proximal colon and rectal sections,
were run and analysed together. This experiment was repeated so all 6 animals/group
were analysed (n=6).

5.2.4 Statistics

All results are expressed as the mean ± S.E.M. Differences between values were

compared using ANOVA with post-hoc Tukey's pair-wise comparison. P values of
less than 0.05 were considered significant.
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5.3 RESULTS

5.3.1 Histology

Only transgenic (TG) animals in specific-pathogen free (SPF) conditions developed
inflammation in all regions of the colon, most notably the caecum. Tissue sections
taken from these animals showed elongated crypts with an infiltration ofmononuclear
cells compared to non-transgenic animals in the same condition or those in a germ-

free (GF) environment, which are typical characteristics of intestinal inflammation.

Figure 5.1 represents histology pictures taken from the caecum of TG and NT rats in
SPF and GF conditions.

5.3.2 P-gp and mdria gradient along the colon

P-glycoprotein and mdrla expression decreased from caecum to rectum in all animal

groups except diseased animals (TGSPF), in which all sections had low mdrla and P-

glycoprotein expression, as shown in figure 5.2. In NT animals housed in either SPF
or GF conditions, the rectal sections had significantly lower mdrla (p<0.001, p<0.01

respectively) and P-glycoprotein expression (p<0.05 in both areas) compared with the
caecum. TG animals in GF conditions (non-diseased) had reduced mdrla (p<0.001)
and P-glycoprotein (p=0.051) expression in the rectum compared to the caecum.

5.3.3 GR mRNA and protein gradient along the colon

Figure 5.3 shows GR protein expression along the colon. In NT animals in both GF
and SPF conditions, there was a trend towards reduced GR mRNA in rectum

compared to caecum, which reached significance (p<0.05). In contrast, non-diseased
animals with bacterial flora (NTSPF) had increased GR expression from caecum to

rectum (p<0.01). In animals with disease (TGSPF), no gradient was noted.

Both TG and NT animals in bacterial free conditions (GF) (TGGF, NTGF; all non-

diseased) showed no difference in GR protein expression along the colon.
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Figure 5.1: Haematoxylin and eosin staining of caecum from Transgenic (TG) and non-transgenic
(NT) animals in specific-pathogen free (SPF) and germ-free (GF) conditions taken at xlO

magnification. In sections taken from animals with disease, TGSPF, crypts were seen to be elongated
compared to NT animals in SPF conditions (NTSPF), and there was increased nuclear staining of cells
in the TGSPF rat mucosa compared to NTSPF, suggesting an infiltration of mononuclear cells in

response to inflammation.

NTSPF
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Figure 5.2: Colonic mdrla mRNA (n=6/group) (left) and P-glycoprotein expression (n=3/group) in
TG and NT rats in SPF and GF conditions. Diseased animals (TGSPF) had low mdrla and P-
glycoprotein expression in all colonic areas. NT animals in SPF conditions (non-diseased) had
significantly reduced mdrla and P-gp levels in the rectum compared to caecum (p<0.001, p<0.05
respectively) and proximal colon (p<0.01). TG and NT animals in germ-free conditions also had
reduced mdrla expression in rectal compared to caecal and proximal colon (p<0.001, p<0.01
respectively). P-gp expression was reduced in NT animals in GF conditions (p<0.05). Compared to
caecum* and proximal colon #.

(*/# p<0.05, **/## p<0.01, ***/### p<0.001)
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TGSPF

GR mRNA Expression

Caecum Prox. Colon

Section of C olon

3 Caecum
I Prox. Colon
l Rectum

GR Protein Expression

DCaecum
I Prox. Colon
l Rectum

Caecum Prox. Colon Rectum

Section of Colon

NTSPF

^ 0.4-.

III0 0 ^^
Caecum Prox. Colon

Section of C olon

3 Caecum
i Prox. Colon
I Rectum

#

DCaecum
i Prox. Colon
I Rectum

Caecum Prox. Colon Rectum

Section of Colon

Caecum Prox. Colon Rectum Caecum Prox.Colon Rectum

Section of Colon Section of Colon

Figure 5.3: GR mRNA (n=6/group) (left) and protein expression (n=3/group) in TG and NT HLA-B27
rats housed in either SPF or GF conditions. There was a trend towards decreased GR mRNA in rectal
sections from animals in GF environments and non-diseased animals in SPF conditions (NTSPF). A
significant decrease in GR mRNA expression was noted in NT animals GF conditions (p<0.05). This
contrasted to GR protein data, where NT animals in SPF conditions (non-diseased) had increased GR
expression in rectal compared to caecal and proximal colonic sections (p<0.01, p<0.05 respectively).
However in diseased animals (TGSPF) and animals in GF conditions, no GR protein gradient from
caecum to rectum was noted. *compared to caecum #compared to proximal colon.

*/#p<0.05, **p<0.01
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5.3.4 mdrla and P-glycoprotein expression in the caecum,

proximal colon and rectum

5.3.4.1 Caecum

TG rats in SPF conditions (rats with disease) had significantly lower mdrla and P-

glycoprotein (p<0.001) expression compared to NT rats in the same condition

(NTSPF). There was no difference in mRNA or protein expression between TG and
NT rats kept in germ-free conditions (TGGF compared to NTGF). Figure 5.4 shows

P-glycoprotein was significantly decreased in NT rats in GF compared to SPF
conditions (p<0.05).

5.3.4.2 Proximal Colon

As with the caecum, mdrla and P-glycoprotein levels were significantly decreased in
TG compared to NT rats in SPF conditions (p<0.01). Figure 5.4 also shows no

difference between TG and NT rats in germ-free conditions (TGGF compared to

NTGF). mdrla expression was increased significantly (p<0.05) in TG rats without
disease when compared to TG rats with disease (TGGF compared to TGSPF).

5.3.4.3 Rectum

Figure 5.4 shows mdrla levels were similar in TG and NT rats in GF and SPF
conditions. P-glycoprotein was significantly decreased in diseased animals (TG)

compared to non-diseased (NT) rats in SPF conditions. There was no significant
difference between P-glycoprotein expression rats in germ-free conditions.
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Figure 5.4: Graphs showing mdrla (left) and P-glycoprotein expression (right) in caecum, proximal
colon and rectal sections (top to bottom of the page). TG rats in SPF conditions had significantly
lower mdrla and P-glycoprotein expression in caecal, proximal colon and rectum compared to NT rats

in the same environment (***p<0.001, **p<0.01, *p<0.05 respectively). P-glycoprotein expression
was lower in NT rats in GF compared to SPF conditions and this reduction was significant in caecum

(#p<0.05).

* comparison between TGSPF versus NTSPF or NTGF versus TGGF
# comparison between TGSPF versus TGGF or NTSPF versus NTGF
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5.3.5 GR mRNA and protein expression in the caecum,

proximal colon and rectum

5.3.5.1 Caecum

Figure 5.5 shows GR mRNA expression increased significantly when TG and NT rats

were housed in GF compared to SPF conditions (p<0.01, p<0.05 respectively).
Protein expression was also increased when rats were housed in GF conditions, and
this increase was significant in the TG rat groups.

GR mRNA expression increased in rats housed in GF compared to SPF conditions,
and this increase was significant in the NT rat group (p<0.05) (figure 5.5). This
contrasts to GR protein expression, as rats in GF environments had significantly
lower GR protein expression than NT rats in SPF conditions (p<0.001). Diseased rats

(TGSPF) had significantly lower GR expression than NT rats (non-diseased) in the
same environment (NTSPF; p<0.001). There was no difference between the groups

in GF conditions.

5.3.5.3 Rectum

Figure 5.5 shows no difference in GR mRNA expression between NT and TG rats

with/out bacteria. GR protein expression was similar to expression in the proximal

colon, where NT rats in SPF conditions (non-diseased) had significantly increased
GR expression compared to GF conditions and also TG rats in the SPF environment

(diseased rats) (p<0.001). There was no difference between NT and TG rats in GF
conditions.

5.3.5.2 Proximal Colon
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Figure 5.5: GR mRNA (left) and protein (right) expression in caecum, proximal colon and rectum (top
to bottom of the page). GR mRNA levels were significantly increased in GF compared to SPF
conditions in TG caecal, NT proximal colonic sections (p<0.05, p<0.01 respectively). Caecal GR
protein levels were increased (p<0.05) in TG animals housed. However in the proximal colon and
rectum, animals housed in GF conditions had decreased GR protein expression compared to non-
diseased animals in SPF conditions (NTSPF). Diseased rats also had reduced GR protein levels
compared to non-diseased rats (NTSPF). No differences were found between groups in GF
environments in any colonic section.
* Comparison between TGSPF versus NTSPF or NTGF versus TGGF
# Comparison between TGSPF versus TGGF or NTSPF versus NTGF

(*p<0.001, #p<0.05, ##p<0.01, ###p<0.001)
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5.4 DISCUSSION

The emergence of animal models of intestinal inflammation has provided vital
information on the role of bacteria involved in initiating disease. It is increasingly

accepted that P-glycoprotein may be involved in the protection of the epithelium from

potentially toxic substances, and absence of this pump in mice induces disease

(Panwala et al. 1998). It is also well documented that the glucocorticoid receptor is
involved in the anti-inflammatory process (Barnes 1998), and a non-functional

glucocorticoid receptor (GR-P) has been implicated in steroid resistant disease

(Honda et al. 2000). The expression of these genes, however, has not previously been
studied in HLA-B27 transgenic rat models of colitis, and in this chapter the effect of
inflammation and disease on expression of mdrla/P-glycoprotein and GR was

investigated.

5.4.1 Colonic expression of mdr1a/P-gp and GR in

transgenic and non-transgenic animals

5.4.1.1 mdrla and P-glycoprotein

Studies described in the previous chapter involving healthy Wistar rats concluded that
mdrla and P-glycoprotein expression was increased in proximal compared to distal

colon, and this conclusion is mirrored by data presented in this chapter. Colons from

healthy Fischer rats, regardless of the presence/absence of bacteria, were also
characterised by a gradient of expression, with increased expression seen in caecum

and proximal colon compared to rectum. In the previous chapter it was hypothesised
that the gradient of mdrla/P-gp expression may mirror the density of bacterial

colonisation, allowing the transport of xenobiotic substances and the protection of the
intestinal epithelium. However, data presented in this chapter suggest that this

gradient may be specific phenomenon noted in rat, as previous studies in healthy FVB
mice have shown increased P-gp expression in distal compared to proximal colon

(Stephens et al. 2002): no data are yet available in man.

In diseased rats (TG in SPF conditions), no expression gradient was noted, and it
seems likely that disease is associated with reduced mdrla and P-gp expression. To
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further investigate the effect of disease and bacteria on the expression of mdrla/P-gp,

expression of mdrla/P-gp in caecum, proximal colon and rectum was studied and

compared between TG and NT animals housed in GF and SPF conditions.

5.4.1.2 Glucocorticoid Receptor

Consistent with findings described in the previous chapter, healthy Fischer rats (NT)
housed in an environment with bacteria present had increased GR protein expression
in distal compared to proximal colon, although no differences were noted in mRNA

expression along the colon. The differences between mRNA and protein expression

may be a result of post-translational modifications, RNA stability or the difference in
the rates of turnover of mRNA/protein.

When NT rats were housed in the absence of bacteria, the gradient was absent

suggesting bacterial flora may regulate GR expression in the colon. As with the

findings of mdrla/P-gp expression, diseased rats (TG rats in SPF conditions) did not

have a GR protein gradient and suggests the effect of disease down-regulated GR

expression. To further clarify the effect of bacteria and disease, the expression of GR
in NT and TG rats housed in SPF or GF conditions were compared individually for
each colonic region (caecum, proximal colon and rectum).

5.4.2 Effect of bacteria and disease on colonic mdr1a/P-gp
and GR expression

5.4.2.1 mdr1a/P-glycoprotein expression

Data presented in this chapter have shown for the first time that mdrla and P-

glycoprotein expression was reduced in the inflamed colon from HLA-B27 transgenic
rats. Previous studies in mice, where colitis had been induced by DSS and turpentine,
have also shown inflammation to reduce P-glycoprotein expression in the large
intestine and liver respectively (Sukhai et al. 2000). Moreover, recent data in man

have noted that patients with UC have reduced colonic MDR1 mRNA expression
than healthy controls (Langmann et al. 2004). Collectively, these observations imply
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inflammation may down-regulate mdrla/P-glycoprotein expression in both humans
and animals.

The mechanism underlying the down-regulation of mdrla/P-glyocoprotein has not

been fully established. Experiments in vitro have shown IL-6 and IL-1 (3 decreased P-

glycoprotein expression in rat hepatocytes, and inflammation induced by turpentine in
mice also resulted in reduced hepatic mdrla expression (Hartmann et al. 2001;
Sukhai & Piqutte-Miller 2000). Endotoxin-treated rats have also been shown to have
reduced levels of mdrla in the small intestine (Kalitsky-Szirtes et al. 2004).
Therefore the decrease in P-glycoprotein noted in HLA-B27 transgenic rats housed in
SPF conditions (where inflammation is present) may be due to the release of pro¬

inflammatory cytokines from the intestinal mucosa, which down-regulates P-

glycoprotein expression.

Inflammation in mice, induced by endotoxin and IL-6, has been shown to decrease
the expression of the hepatic Pregnane X Receptor (PXR). In this model, the
decrease was involved in the down-regulation PXR-mediated genes including the

drug metabolising enzyme cytochrome P450 (Teng & Piqutte-Miller 2004). This

receptor and enzyme is involved in the mucosal defence system. PXR recognises

foreign substances (xenobiotics) and activates metabolising enzymes, including

cytochrome P450, which breakdown xenobiotics into less harmful substances

(Dietrich et al. 2003). P-glycoprotein is involved in the transport of these substances
into the lumen to be excreted by the body. Recent studies have implied PXR may be
involved in regulating P-glycoprotein expression (Langmann et al. 2004; Teng &

Piqutte-Miller 2004). Therefore inflammatory cytokines produced during disease in
these transgenic rats may be down-regulating PXR expression which subsequently
reduces mdrla/P-gp levels.

Another possible reason for this down-regulation could be due to the release of
corticosterone in a stressed/diseased state (de Kloet et al. 1998). In vitro and in vivo

studies have implied mdrla may also be regulated by corticosterone (Murakami et al.

2002), and a trend towards increased mdrla mRNA expression after adrenalectomy

compared to Sham-operated animals in chapter 3 implies a role for endogenous GCs
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in the regulation of mdrla. Therefore an increase in endogenous corticosterone from
the adrenal glands may be involved in the down-regulation of mdrla and P-

glycoprotein in these diseased animals.

We hypothesised a priori that bacteria may influence mdrla/P-glycoprotein

expression as a means to protect the intestinal epithelium from potentially toxic
xenobiotics produced by bacteria. Work presented previously in this chapter still
shows an mdrla/Pgp gradient from proximal to distal colon in germ-free conditions,
and finding apparently at odds with our prior hypothesis. Nonetheless, when sections
from the caecum, proximal colon and rectum from all the different bacterial
conditions were analysed separately, a significant decrease was noted in germ-free

compared to healthy non-transgenic animals housed in specific-pathogen free
conditions (figure 5.4). This implies that in caecum (where bacterial density is

highest) but not proximal colon or rectum, bacteria increase P-glycoprotein levels and

support our initial hypothesis which implicated bacteria in the regulation of mdrla/P-

glycoprotein.

However the reason as to why this significant decrease was only noted in the caecum

remains to be eluded. A possible explanation could be due to specific subsets of
bacteria regulating mdrla/P-gp expression where these bacteria are localised in the
caecum. A recent study has shown the therapeutic activities of different antibiotics in

treating rodent intestinal inflammation are site-specific; with caecal and colonic
inflammation resolved using ciprofloxacin and metronidazole respectively (Hoentjen
et al. 2003). It is interesting to note that transgenic animals housed in SPF conditions

develop intestinal inflammation, with the most aggressive site noted in the caecum.

This may be due to increased bacterial flora in this region, or as discussed, the

presence of specific bacteria which are involved in the development of disease (Sartor

2004a). These data highlight the differences in the composition of bacterial flora
within the large intestine, which may not only play a role in regulating mdrla/P-gp,
but also in the initiation of disease.
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5.4.2.2 Glucocorticoid Receptor

In contrast to mdrla and P-glycoprotein expression, GR mRNA and protein

expression did not correlate. There are a number of possible explanations underlying
differences between mRNA and protein expression, including the effect of post-

translational modification or even the stability/degradation of both mRNA and

protein. Notwithstanding these differences, we are the first to show that in HLA-B27

transgenic rats with disease, GR expression was significantly reduced in the inflamed
intestine. GR expression has been shown previously to be decreased in response to

inflammation, however this was in hepatic T-lymphocytes and also in mononuclear
cells of patients with Crohn's disease (Hori et al. 2002; Tjandra et al. 2003). In this

chapter, the inflammation-induced reduction in GR was only present in proximal
colon and rectum, but not the caecum of the colon. The reason for the site-specific
reduction is unknown. As discussed previously, GR expression levels in the caecum

of healthy NT rats housed in an environment containing bacteria (SPF) are lower than
elsewhere in the colon. Therefore GR expression levels in both healthy and diseased
rats are similar because of the low expression in the caecum. The lack of GR protein

expression in caecum could be due the presence/lack of specific subsets of bacteria
which drive GR expression (Hoentjen et al. 2003; Rath et al. 2001; Sartor 2004b).
This would account for the differences noted in specific areas of the colon between
diseased and non-diseased animals in SPF conditions.

The glucocorticoid receptor is under 'auto-regulation' by the HPA axis, and
corticosterone is known to down-regulate GR expression (Meyer & Schmidit 1994).
As discussed earlier, inflammation in diseased animal models increases corticosterone

levels (Murakami et al. 2002). As corticosterone activates GR, the negative feedback
control of this gene would down-regulate GR in order to prevent over-activation, and
therefore this could be a reason for the decreased expression noted in diseased
animals.

Data presented in this chapter imply bacteria regulate GR expression within the
colon. This was shown by the decrease in GR expression in germ-free NT animals

compared to healthy NT animals in SPF conditions. As described above, this
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decrease was localised to proximal and distal colon and the reason for this may be
due to the presence of specific bacteria which drive GR expression being localised to

different areas of the colon. These observations contradict work in the previous

chapter where antibiotic treatment increased GR expression in distal colon. These

discrepancies could be due to inherent genetically determined differences in GR

regulation in rodent models; the composition of bacterial flora in Fischer compared to

Wistar rats; or even an effect of antibiotics on directly regulating GR.

The explanation for the decreased GR expression in GF animals remains uncertain.
Ffowever a possible explanation may be that animals in GF environments have a

relatively underdeveloped immune system; a delayed hypersensitivity to T-cell

responses as well as under developed Peyer's patches, mesenteric lymph nodes

(MLN) and mononuclear cell population have been shown to be present in GF
animals (Sartor 2004b). Bacteria may be required to 'prime' the immune system and
activate GR expression in the mucosa. Therefore, as the mucosa of these animals
have never been in the presence of bacteria, GR is lowly expressed. To clarify this

theory, the colon of healthy rats in a conventional environment should be cleared of

micro-organisms in order to study whether mucosal GR expression is changed when
the immune system has been previously activated in these animals.

Interestingly, T-cells have been shown to express GR where it functions as an inducer
of apoptosis in these cells; increased expression sends these cells into apoptosis

(Geley et al. 1996). If the signal is the same in epithelial cells, this may provide a

reason as to why in the mucosa of diseased animals have elongated crypts, as GR

expression in these animals are reduced and therefore cells do not have an apoptotic

signal, so cells continue to grow and crypts become elongated.

In summary, data in this chapter show mdrl a/P-glycoprotein and GR protein

expression varies in a gradient from proximal to distal colon in healthy Fischer 344

rats, as previously shown in Wistar rats. Disease and the presence of bacterial flora

regulate both mdrla/P-gp and GR protein expression, with disease down-regulating
both mdrla/P-gp and GR protein expression, whereas the flora influence expression
in a site-specific manner. To further clarify the role of bacteria in regulating
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expression of these genes, gnotobiotic studies should be undertaken to investigate the
effect of different types of bacteria on P-gp and GR expression in different regions of
the colon. This may provide information as to which bacteria are involved in both

initiating disease and altering P-gp and GR levels. Changes in expression of these

genes may be involved in inflammation.
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Chapter 6

Regulation of Intestinal P-glycoprotein and Glucocorticoid

Receptor Expression by Dexamethasone in the HLA-B27

Transgenic Rat Model of Colitis
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6.1 INTRODUCTION

Animal models of intestinal inflammation have provided vital insights into the

pathogenesis of intestinal disease, from investigating the involvement of specific
bacteria in the initiation of inflammation through to the investigation of immune-

regulatory pathways and efficacy of possible therapeutic agents (Sartor 2004a). As
discussed in chapter 5, HLA-B27 transgenic rats develop colitis under specific

pathogen-free (SPF), but not germ-free conditions. Inflammation is fully developed

by 12 weeks of age in an SPF environment, however if a transgenic adult (8-12

weeks) rat is re-housed from a GF to an SPF environment, an aggressive caecal colitis

develops within 2-4 weeks after bacterial colonisation (Rath 2003; Sartor 2004a).
This suggests the onset of disease is age-dependent, and could possibly be due to the
maturation of the intestinal epithelium.

There have been a substantial number of studies undertaken in these animals

regarding the role of bacteria in disease, including the effect of antibiotic treatment on

intestinal inflammation (Sartor 2004a; Sartor 2004b). However the effect of

glucocorticoids, such as dexamethasone, has not been studied in this model. This is

interesting as corticosteroids remain a mainstay of treatment for patients with IBD

(Arnott et al. 2003), and the inflammation seen in this animal model resembles that
noted in patients with active IBD.

P-glycoprotein, a transporter pump present in the intestinal epithelium, is thought to

be involved in the detoxification process and is known to transport various drugs,

including dexamethasone, and other potentially toxic molecules out of cells and into
the intestinal lumen (Ho et al. 2003). Moreover, inflammation has also been shown
to be associated with a reduction in MDR1 mRNA and mdrla/P-glycoprotein

expression in patients with IBD and animal models respectively (Langmann et al.

2004; Lizasa et al. 2003). This reduction in expression and consequent increase in
the intracellular concentration of dexamethasone, may affect the severity of
inflammation and therefore alter P-gp expression in these rats.

Data presented in the previous chapter have shown, in these animals, inflammation is
associated with a reduction in GR expression. Dexamethasone initiates its effects
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after binding to GR in the cytoplasm where it translocates to the nucleus and
increases the transcription of anti-inflammatory molecules, as well as directly

interacting with pro-inflammatory transcription factors (Barnes 1998). Therefore a

decrease in intestinal GR expression may reduce the sensitivity of the intestinal

epithelium to steroids, and render these animals steroid insensitive.

The work described in this chapter has investigated a) the effect of dexamethasone
treatment on the expression of mdrla/P-glycoprotein and GR expression in healthy
HLA-B27 null rats b) the effect of steroid treatment on the expression of these genes

in diseased HLA-B27 transgenic rats.
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6.2 METHODS

6.2.1 Animals

As in chapter 5, TG and NT Fischer animal tissues were a gift from Professor R.B.

Sartor, Chapel Hill University, North Carolina, USA. Transgenic and non-transgenic
rats were subcutaneously injected with dexamethasone dissolved in ethanol/saline

(et/OH) (125pg/kg/day) or vehicle (et/OH) for 1 week. On day 8, rats were sacrificed
and caecal, proximal colon and rectal sections frozen in OCT medium for use in situ

hybridisation, and adjacent sections snap frozen on dry ice for use in Western

blotting. All sections were shipped on dry-ice and stored at minus 80°C.

6.2.2 In situ Hybridisation

Caecal, proximal colon and rectal sections were mounted on saline-coated slides.
35

Transcribed antisense S-UTP riboprobes for GR and mdrla were used to determine
mRNA expression as described in section 2.6. Expression was quantified by

analysing the autoradiograph films where the optical density (units were given

arbitrarily) was measured for whole tissue (GR) or epithelial areas (mdrla).

GR protein and P-glycoprotein levels were measured by Western blotting. All
sections were homogenised and loaded onto polyacrylamide gels as described in
section 2.6. Homogenates from 3 animals from each of the 4 groups (DT-DEX
treated transgenic, ST-saline treated transgenic, DN-DEX treated non-transgenic, SN-
saline treated non-transgenic animals) from the same intestinal section were ran on

one gel. All 3 gels containing either caecal, proximal colon or rectal sections were

blotted and analysed together and this was repeated so all 6 animals per group were

analysed.

6.2.3 Western Blotting
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GR and P-glycoprotein levels were analysed using the same antibody preparations as

shown in table 4.1. Loading discrepancies were assessed by measuring tubulin

expression for each sample, using the same antibodies and dilutions as described in
section 4.2.3. All bands were analysed by densitometry using the MCID-M4 Image

Analysis programs and results normalised against tubulin.

6.2.4 Statistics

All values are shown as the mean ± S.E.M. Differences between values were

compared using ANOVA with Tukeys post-hoc comparisons. P values of less than
0.05 were considered significant.
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6.3 RESULTS

6.3.1 The effect of dexamethasone on inflammation in

diseased animals

3 of the 6 diseased animals (transgenic) treated with dexamethasone had reduced

inflammation associated with arthritis. Inflammation was seen to reduce and mobility
increased in these animals. Figure 6.1 shows histological pictures taken from
dexamethasone- and saline treated transgenic rats.

Rats with intestinal inflammation (transgenic rats) had significantly reduced mdrla
and P-glycoprotein compared to non-transgenic rats in all parts of the colon (figure

6.2). Dexamethasone did not significantly alter mdrla or P-glycoprotein expression
in the caecum, proximal colon or rectum.

Dexamethasone treatment did not affect GR mRNA expression in the caecum,

proximal colon or rectum of either transgenic or HLA-B27 null mice (figure 6.3).
Dexamethasone increased GR protein levels in the caecum of healthy NT rats

(p<0.001) compared to saline-treated NT rats. In the proximal colon ofNT rats, DEX
treatment slightly reduced GR protein levels compared to saline-treated NT rats,

whereas in the rectum dexamethasone did not alter GR protein expression. In the

transgenic diseased rats, DEX treatment did not alter GR protein expression in

caecum, although in the proximal colon and rectum, TG rats treated with DEX had
increased GR protein levels compared to saline-treated TG rats, and this increase was

significant in the rectum (p<0.05).

6.3.2 The effect of dexamethasone on mdrla and P-

glycoprotein expression

6.3.3 The effect of dexamethasone on Glucocorticoid

Receptor mRNA and protein expression
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a)

Figure 6.1: Haematoxylin and eosin staining of the caecum from transgenic rats with intestinal
inflammation treated with saline (a) and dexamethasone for 1 week (b). Crypts are elongated and have
infiltration of mononuclear cells (stained dark purple) in the mucosal layer compared to non-transgenic
animals in SPF conditions (see page 130). Dexamethasone treatment does not seem to have reduced
infiltration and crypts remain elongated.
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mdrla Expression P-qlvcoprotein Expression

DT ST DN SN DT ST DN SN

Rectal Section Rectal Section

Figure 6.2: mdrla (left) and P-glycoprotein (right) expression in caecum, proximal colon and rectum,
mdrla levels were significantly increased in healthy non-transgenic rats treated with/out
dexamethasone (DN, SN) compared to transgenic diseased rats treated with/out dexamethasone (DT,
ST, p<0.01, p<0.001) in caecum and proximal colon sections. There was no difference in mdrla
expression between the groups in the rectal sections. P-glycoprotein levels in all colonic sections were
reduced in the transgenic diseased rats and this reduction was significant in the caecum and proximal
colon (p<0.05). Dexamethasone treatment did not affect P-glycoprotein expression in either the TG or
NT rats in any section.

* comparison between ST versus SN or DT versus DN
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GR mRNA Expression GR Protein Expression
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0.2
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Figure 6.3: GR mRNA (left) and protein (right) expression in caecum, proximal colon and rectum.
GR mRNA expression was unaltered by dexamethasone treatment in the TG or NT groups (DT, DN
respectively). In the caecum, DEX treatment significantly increased GR protein levels in healthy NT
rats (DN) (**p<0.01) when compared to saline-treated NT animals (SN). No difference was noted
between DEX-treated and saline-treated diseased TG rats (DT, ST respectively). In proximal colon
GR protein levels slightly decreased after DEX treatment in NT rats however in the rectum of the same
rats, DEX treatment did not change GR protein expression. TG diseased rats treated with
dexamethasone had an increase in GR protein levels in the proximal colon and rectum, which was
significant in the rectal sections (*p<0.05).

* comparison between SN versus DN or ST versus DT
# comparison between SN versus ST
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6.4 DISCUSSION

Glucocorticoid therapy is effective at reducing inflammation in both IBD and other

inflammatory disorders including asthma (Faubion et al. 2001; Wikstrom 2003).
Steroid-resistance and steroid-dependence are common problems in clinical practice.
Alterations in the expression of P-glycoprotein and the glucocorticoid receptor have
been implicated in explaining inter-individual responsiveness in efficacy (Farrell et

al. 2000; Langmann et al. 2004; Rogler et al. 1999). In the previous chapter
inflammation was shown to reduce both P-gp and GR expression, and these changes

maybe involved in the initiation or perpetuation of disease. In this chapter we have

investigated the effect of dexamethasone-treatment on expression of these genes

during inflammation.

6.4.1 Effect of dexamethasone on intestinal inflammation

In these experiments dexamethasone was seen to decrease the symptoms of arthritis
however inflammation noted in the colon, particularly the histology of elongated

crypts with an infiltration of mononuclear cells, was seen to be unaltered after

therapy. Previous studies have shown that the dose of dexamethasone administered
decreased inflammation in joints and intestinal mucosa in Lewis rats where
inflammation had been previously induced by dextran sodium sulphate (Herfarth et

al. 1998). The differences may be explained by the induction method of
inflammation or even differences in steroid sensitivity between Lewis and Fischer
rats.

6.4.2 Effect of dexamethasone on mdria/P-glycoprotein
expression in inflamed and non-inflamed colon

As noted previously, inflammation significantly decreased mdrla and P-gp

expression in all areas of the rat colon. However dexamethasone treatment had no

effect on expression of these genes in either the healthy or diseased colon. This is of
note as dexamethasone treatment was seen to decrease mdrla mRNA expression in
the healthy Wistar rat colon, whereas a recent in vivo study has shown DEX treatment

did not alter mdrla expression in the rat colon (Mei et al. 2004). Mei and colleagues
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showed oral dexamethasone treatment of lmg/kg/day and 20mg/kg/day for 3 days,
increased mdrla and P-gp expression in the small intestine but not colon, suggesting

tissue-specific mdrla/P-glycoprotein regulation.

Discrepancies between the effect of dexamethasone on mdrla/P-gp expression in the

healthy rat colon in these studies could be due to differences in steroid regulation and

sensitivity in specific stains of rats, or even due to the differences in treatment

administration-oral versus subcutaneous injection. In chapter 3, Wistar rats were

treated with 200pg/kg/day whereas in the present chapter rats were treated with

125pg/kg/day, therefore a possible explanation behind the lack of effect of
dexamethasone on mdrla/P-gp expression may be due to the dose of dexamethasone,
where the dose was effective at reducing the symptoms of inflammation, but not at an

effective dose to alter mdrla/P-gp expression.

The lack of effect of dexamethasone on mdrla/P-gp expression in the healthy Fischer
rat colon may alternatively be due to differences in steroid regulation of these genes

between the strains or even steroid sensitivity. Fischer 344 rats are known to be more

sensitive to the endogenous steroid oestrogen (Putz et al. 2001), however the

sensitivity to exogenous glucocorticoids have not been studied. If we presume these
rats have a heightened sensitivity for all steroids, the reduced dose of dexamethasone

given to Fischer 344 rats may have been of the same efficacy as the increased dose

given to Wistar rats, where dexamethasone decreased mdrla expression.

In the diseased colon, dexamethasone treatment also did not alter mdrla/P-gp

expression in any section of the colon. Again the lack of effect could be due to the
reasons cited above; because the dose given is at a therapeutic level to decrease

symptoms associated with inflammation (joint inflammation) but not alter gene

expression; or because the inflammation present was altering the efficacy of steroids

by down-regulating GR expression (see next section).

- 154-



Chapter 6 - Effect ofDEX on intestinal P-gp and GR expression in health & disease

6.4.3 Effect of dexamethasone on GR expression in the inflamed
and non-inflamed rat colon

In chapter 3, dexamethasone was seen to reduce GR mRNA expression in proximal
and distal colon, however in these healthy Fischer 344 rats, steroid treatment did not

alter colonic GR mRNA expression but differentially regulated GR protein expression
in a site-specific manner. Differences in mRNA expression between the rat strains

may be due to differences in steroid regulation of GR in these animals, whereas

discrepancies between mRNA and protein expression may be explained by post-

translational modifications or even the stability of the mRNA/protein.

Interestingly, dexamethasone was seen to differentially regulate colonic GR protein

expression in healthy Fischer 344 rats: GR increased in the caecum, slightly
decreased in proximal colon and was unaltered in the rectum. This novel finding
indicates the complexity of steroid regulation in the rat colon. Previous work has
shown dexamethasone treatment did not alter GR mRNA in distal colon (Escoubet et

al. 1996) in Sprague-Dawley rats and further supports the diversity of steroid

regulation noted in specific rat stains and also work presented in this chapter. Site-

specific changes in GR expression in response to steroids may alter the sensitivity of
these areas of the colon to steroid treatment, and this may be important when treating
colonic inflammation.

In the inflamed rat colon, GR levels were seen to increase to 'healthy' levels in the
rectum by dexamethasone, but not in any other area studied. The lack of effect of
DEX in caecum and proximal colon may be due to the severity of inflammation noted
in the caecum and proximal colon. It is known that the most severe inflammation is
noted in caecum compared to rectum, and GR levels are reduced in the inflamed
colon (see chapter 5) and therefore the efficacy of dexamethasone in the diseased
colon may be reduced. As inflammation in rectum compared to the other colonic
areas is less severe, the efficacy of dexamethasone in this area may be sufficient to

resolve inflammation and therefore returning GR protein expression to 'healthy'
levels. This observation may be important when using dexamethasone as a treatment

for colonic inflammation, as steroids may not be as effective in treating caecal or

proximal colonic disease.
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Work presented in this chapter shows differences in the regulation of colonic genes

determining steroid sensitivity in health and disease, and the diversity of steroidal-

gene regulation between rodent strains. The site-specific differences in GR regulation

by dexamethasone in inflamed and non-inflamed colon may be important in

determining the effectiveness of steroid treatment in colitis, and possible reasons

behind steroid-insensitivity in inflammatory disease.
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Chapter 7

Intestinal Epithelial Cells: The Regulation of P-glycoprotein
and Glucocorticoid Receptor by Dexamethasone
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7.1 INTRODUCTION

In order to investigate further the mechanisms underlying our previous work, in
which we observed that dexamethasone decreased both GR and mdrla mRNA in rat

colonic epithelial cells in vivo (chapter 3), we have studied the effects of
dexamethasone in vitro using the cell line-IEC-6. This is a rat jejunum non-

transformed cell line. This cell line was used as previous studies have shown IEC-6

express both functional GR and P-glycoprotein (Goke et al. 2002; Li et al. 1999), and
also because there is not a non-transformed rat colonic cell line.

As discussed in chapter 1, dexamethasone elicits its anti-inflammatory response by

increasing transcription of anti-inflammatory cytokines and decreasing transcription
of pro-inflammatory cytokines as a result of a direst interaction with pro¬

inflammatory transcription factors AP-1 and NF-kB. It also increases the

transcription of IkB, which inhibits NF-kB by sequestering it in the cytoplasm (Jobin
& Sartor 2000; Neurath et al. 1998).

There have been conflicting studies reported regarding the involvement of these two

transcription factors in the regulation of the mdrla gene. In mouse hepatocellular
carcinoma AP-1 was seen to function as a negative regulator of mdrla; however in
the hamster, AP-1 functions as a positive regulator (Ikeguchi et al. 1991; Teeter et al.

1991). AP-1 has been shown to be up-regulated in human breast cancer cells that

over-express P-gp (Ratnasinghe et al. 2001). NF-kB has also been shown to increase

P-gp and protect kidney tubules from apoptosis (Thevenod et al. 2000), as well as

increasing P-glycoprotein in colon cancer cells (Bentires et al. 2003). However the
involvement of these transcription factors in the regulation of rodent intestinal P-gp
has not been documented.

Moreover, the effect of dexamethasone on GR and P-glycoprotein expression within
IEC-6 cells has not been studied. Previous work has shown dexamethasone regulates

P-gp in a tissue- and disease-specific manner. Dexamethasone treatment of rat

hepatocytes decreased P-gp levels (Fardel et al. 1993), whereas in mouse non-

hepatoma cells mdrla was unchanged by DEX . However in mouse hepatoma cells,
dexamethasone increased mdrla levels (Zhao et al. 1993). In vivo studies has shown
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DEX increases P-gp in liver, lung and intestine, but decreases expression in the

kidney (Demeule et al. 1999; Murakami et al. 2002). There are also limited data on

GR levels in response to dexamethasone in IEC-6 cells, although DEX has been
shown to induce morphological and proliferation changes in these cells (Goke et al.

2002; Quaroni et al. 1999).

Therefore this study aimed to determine (a) whether the dexamethasone-mediated
effects on P-glycoprotein and GR expression in vitro correlate with results seen in

vivo, (b) if these effects are mirrored by changes in NF-kB/AP-1 levels and (c)

whether alterations in transcription factor protein levels correlate with nuclear
activation.
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7.2 METHODS

7.2.1 Cell Lines

IEC-6 cells were cultured and plated as described in section 2.3.2. Cells were grown

to 90% confluency prior to treatment. Total cell lysates were collected as described
in section 2.7.1.

For all experiments dexamethasone and RU486 (see below) were dissolved in 100%

ethanol, filter sterilised, and diluted 2 xlOO in stripped serum.

To investigate the effect of dexamethasone on P-gp and GR expression over a 24hr

period, dexamethasone (lpM) was added 24hr, 8hr, 4hr and 2hr prior to harvesting.
Total cellular NF-kB and AP-1 expression in these samples were also measured. A
maximum time point of 24hr was used to prevent cell overgrowth, as this may have
interfered with cellular response to dexamethasone.

To study whether dexamethasone was acting through the glucocorticoid receptor

rather than other steroid receptors, for example MR, RU486 was used. This is a

competitive GR antagonist, and works by preferentially binding to GR when present

at a higher concentration than dexamethasone, and therefore prevents dexamethasone

binding to GR and initiating its effects. RU486 was added at lOOpM (a concentration
x 100 of dexamethasone) 4hr prior to addition of dexamethasone/vehicle to encourage

binding to GR before adding dexamethasone. Thereafter, fresh stripped serum

containing RU486 (lOOpM) with/out dexamethasone (1 pM) was added 24hr before

harvesting.

To investigate whether changes in NF-kB expression noted after 24hr
dexamethasone-treatment occurred in the nucleus or cytosol, cells were treated

with/out DEX (lpM) for 24hr, and nuclear and cytosolic fractions were collected as

described in section 2.7.1. To study whether NF-kB was sequestered in the

7.2.2 Treatments
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cytoplasm through binding to its inhibitor protein IicB-a, levels of this protein in
these samples were also measured.

7.2.3 Western Blotting

Western Blotting was performed on the protein samples as described in section 2.7.2.
Protein samples from each experiment were run together on individual gels, and each

experiment performed in triplicate. All 3 gels were analysed together to prevent

differences between the density of films.

To analyse the effect of dexamethasone and RU486 at various time points, antibodies

against P-glycoprotein (ID labs, Canada), GR (Santa Cruz, CA), AP-1 (Santa Cruz,

CA) and NF-kB (Santa Cruz, CA) were used in combination with a horseradish-

peroxidase linked-secondary antibody (see table 2.3) as described in section 2.7.3.
For each blot discrepancies in loading was controlled by analysing tubulin expression.
Blots were stripped and a primary anti-mouse monoclonal tubulin antibody (1:5000

dilution), followed by an HRP-linked anti-mouse secondary antibody (1:1000

dilution) added. Protein was detected by ECL as previously described in section

2.7.4, and the density of bands analysed and loading corrected against the density of
tubulin for each sample. When analysing cytosolic and nuclear fractions, loading was

controlled by staining the membrane with 0.4% pyronin, and measuring the density of
a non-specific protein band.

7.3.4 Statistics

All data are expressed ± S.E.M. All experiments were performed in triplicate. One¬

way ANOVA with post-hoc Turkey comparisons was used to compare differences
between groups. P values of less than 0.05 were considered significant.
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Experiment Primary Antibody & Dilution Secondary Antibody
& Dilution

Time Course Monoclonal-C219 P-glycoprotein Anti-mouse

1:200 1:1000

Polyclonal - Glucocorticoid Receptor Anti-rabbit

1:400 1:1000

Monoclonal -AP-1 Anti-mouse

1:300 1:1000

Monoclonal-NF-KB (p65) Anti-mouse

1:300 1:1000

RU486 Monoclonal-C219 P-glycoprotein Anti-mouse

1:200 1:1000

Polyclonal- Glucocorticoid Receptor Anti-rabbit

1:400 1:1000

Cytosolic and Polyclonal-NF-KB (p65) Anti-rabbit

Nuclear 1:200 1:1000

Extracts Monoclonal- IicB-a Anti-mouse

1:200 1:1000

Table 7.1: Primary and secondary antibody combinations and dilutions for each

experiment.
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7.3 RESULTS

7.3.1 Effects of dexamethasone on P-glycoprotein and GR
protein expression over 24 hours

Dexamethasone treatment significantly increased P-glycoprotein expression after
24hr (p<0.001). Trends towards increased P-gp expression after 2, 4 or 8hr treatment

(figure 7.1) were also seen, but not statistically significant. In contrast, GR protein

expression was significantly decreased after 2hr (p<0.05), 4hr (p<0.01) and 8hr DEX
treatment (p<0.01), with lowest expression noted after 24hr dexamethasone-treatment

(p<0.01) (figure 7.2).

7.3.2 GR antagonist (RU486) inhibits the dexamethasone
mediated effects on P-glycoprotein and GR protein
expression

Figure 7.3 shows dexamethasone significantly increased P-glycoprotein expression

(p<0.01) after 24hr treatment, and this increase was inhibited by RU486. The

significant reduction (p<0.01) of GR protein by DEX after 24hr was also inhibited by
RU486 (figure 7.4). RU486 alone did not have an effect on expression of either P-

glycoprotein or GR.
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(a)

Ohr 2hr 4hr 8hr 24hr

Ohr 2hr 4hr 8hr 24hr

Figure 7.1: (a) Western blot showing expression of P-glycoprotein in IEC-6 cells whole-cell lysates
after dexamethasone treatment (lpM) over 24hr. (b) Graph illustrating dexamethasone increased P-

glycoprotein expression significantly after 24hr (p<0.001).
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Figure 7.2: (a) A typical Western blot showing GR expression in whole cell lysates from IEC-6 cells
after 0, 2, 4, 8 and 24hr dexamethasone treatment (lpM). (b) Graph illustrating dexamethasone
decreased GR levels in time-dependent manner (*p<0.05, **p<0.01).
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Figure 7.3: (a) A typical Western blot representing whole cell lysate P-glycoprotein expression in
IEC-6 cells after dexamethasone (1 uM) treatment. The dexamethasone-mediate effects are inhibited by
the GR antagonist RU486 (lOOpM). (b) Graph showing 24hr dexamethasone treatment increased P-

glycoprotein levels (*p<0.01), and this increase was inhibited when GR was blocked using RU486.
RU486 did not have an effect on P-glycoprotein expression.
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Figure 7.4: (a) Western blot showing whole cell lysate GR protein expression in IEC-6 cells. GR

protein levels were decreased in IEC-6 cells by 60% (*p<0.01) after 24hr dexamethasone treatment

(1 uM). This decrease was inhibited by the GR antagonist RU486 (lOOpM) (b).
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7.3.3 AP-1 and NF-kB protein expression after
dexamethasone treatment

Whole cell lysate AP-1 protein levels were unaffected by 2hr, 4hr, 8hr and 24hr
dexamethasone treatment (figure 7.5). However figure 7.6 shows DEX significantly
increased total NF-kB expression by 50% and 45% after 8hr and 24hr respectively

(p<0.05).

7.3.4 Nuclear and Cytosolic NF-kB & kB-a protein
expression after dexamethasone treatment

Dexamethasone treatment significantly altered both P-gp and NF-kB expression only
after 24 hour treatment. To investigate the compartmentalisation and activity of
increased NF-kB after dexamethasone treatment (NF-kB is sequestered in the cytosol

by binding to IkB) and suggest a role for NF-kB in the regulation of P-gp in

intestinal epithelial cells, NF-kB expression in cytosolic and nuclear fractions were

studied, as well as levels of kB-a . In untreated IEC-6 cells, NF-kB expression was

similar in cytosolic and nuclear fractions. NF-kB expression was also similar in

cytosolic extracts regardless of treatment. After cells were stimulated with
dexamethasone for 24hr, figure 7.7 shows nuclear NF-kB increased by approximately

75% compared to the cytosolic fractions. In the same samples kB-a levels were also

analysed. kB-a was found in abundance in the cytosolic extracts, and
dexamethasone treatment did not alter levels. Nuclear fractions had approximately
85% less kB-a compared to cytosolic preparations (figure 7.8).
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Figure 7.5: a) A typical Western blot showing whole-cell lysate AP-1 protein expression in IEC-6
cells, b) AP-1 expression was unaltered after 2hr, 4hr, 8hr and 24hr dexamethasone treatment

(P>0.05).
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(a)

Figure 7.6: (a) Western film showing NF-kB protein expression in IEC-6 cells after 0, 2, 4, 8 and 24hr
dexamethasone treatment, (b) NF-kB expression in whole cell lysates significantly increased after 8
and 24hr dexamethasone treatment (p<0.03, p<0.04 respectively).
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Figure 7.7: (a) A representative Western blot showing NF-kB protein expression in cytosolic (Cyto)
and nuclear (Nuc) IEC-6 cell fractions treated +/- dexamethasone (lpM) for 24hr. (b) Similar protein

expression was noted in cytosolic fractions treated with/out dexamethasone (Cyto-DEX, Cyto+DEX).
There was no difference in NF-kB expression noted in nuclear and cytosolic extracts without DEX

(Nuc-DEX and Cyto-DEX, respectively). However after dexamethasone treatment, there was a trend
towards increased NF-kB protein expression in nuclear extracts (Nuc+DEX) compared to DEX-treated

cytosolic fractions (Cyto+DEX) (p=0.1).
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Figure 7.8: A representative Western film showing cytosolic and nuclear ItcB-a protein expression.
IkB-cc expression was predominantly in the cytosol (Cyto), with nuclear (Nuc) extracts having

approximately 85% less than cytosolic fractions. 24hr dexamethasone treatment (lpM) (+DEX) did
not alter expression in either fraction.
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7.4 DISCUSSION

Chapter 3 provided data on the effects of dexamethasone on rodent colonic epithelial
cell expression ofmdrla and GR in vivo. However, before investigating the effects of
altered epithelial cell expression of P-glycoprotein and GR on steroid sensitivity in
health and disease, we have addressed the mechanisms by which steroids regulate
these genes. This chapter presents novel data on the regulation of P-gp and GR in the
rat intestinal epithelium, and also contains data concerning the possible

transcriptional mechanisms underlying glucocorticoid action in epithelial cells.

7.4.1 Effects of dexamethasone on P-glycoprotein and GR
expression in vitro

These data presented in this chapter demonstrate that P-glycoprotein expression was

increased in IEC-6 cells after 24hr dexamethasone treatment, an effect inhibited by
the glucocorticoid receptor antagonist. The effect of dexamethasone on IEC-6 P-gp

expression, is consistent with previous in vitro studies using both rat and mouse

hepatoma cells in which dexamethasone increased P-glycoprotein expression in the

hepatoma cells (Fardel et al. 2001; Zhao et al. 1993), but contradicts work in non-

hepatoma cells where dexamethasone treatment did not alter P-gp expression (Zhao et

al. 1993). These discrepancies may possibly be due to differences in the mechanism
of action of dexamethasone in specific tissues or disease states.

Recent in vivo work has shown oral dexamethasone (1 and 20 mg/kg/day), given for 3

days, increased mdrla and P-gp in the rat small intestine (Mei et al. 2004). These
data may be contrasted with work presented in chapter 3 where a decrease in colonic

epithelial cell mdrla mRNA after dexamethasone treatment was noted. Therefore a

possible explanation for differences between mdrla/P-gp expression in vitro and our

in vivo data may be due to the differential regulation of mdrla/P-gp by
dexamethasone in the rat intestine (small intestine versus colon). Another reason for
these discrepancies could involve cell-cell interactions. In vivo, intestinal epithelial
cells are in close contact with cells of the lamina propria, and these cells could

produce mediators which signal to the epithelial cell lining. This in turn may alter the

regulation of these genes in response to dexamethasone.
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The GR antagonist-RU486 is a competitive antagonist which will bind GR and

prevent GR agonists, such as dexamethasone, from binding to the receptor and

initiating its effects. Data present in this chapter illustrate that dexamethasone elicits
its effects on P-glycoprotein expression by binding to GR, as the addition of the
inhibitor RU486 prevented the increase in P-gp expression in these cells. Previous
work supports these findings, where studies in rat hepatoma cells showed RU486
blocked dexamethasone activation of the mdrlb transcript (Schuetz et al. 1995). A

possible explanation for the lack of effect on P-gp expression by dexamethasone prior
to 24hr may be the result of de novo protein synthesis. GR bound dexamethasone

may initiate the transcription and subsequent translation of a protein, and this 'second

messenger' may then bind mdrla. If GR was binding directly to mdrla, changes in

P-gp expression would be expected to have occurred prior to 24hr as noted with GR,
where 2hr dexamethasone-treatment decreased GR expression (see below).

The regulation of GR by dexamethasone has been studied in a number of rodent

tissues, including the hippocampus, liver and colon as noted in chapter 3 (Ghosh et al.

2000; Meyer & Schmidit 1994). These data suggest that GR may be under 'auto-

regulatory' control; removing GCs by ADX increases GR levels, and reintroducing
dexamethasone induces a subsequent decrease in the expression of GR (Holmes et al.

1995; Meyer & Schmidit 1994). The effect of dexamethasone on GR expression in
IEC-6 cells has not previously been documented, although previous studies in IEC-6
cells have shown the KD of GR (the concentration of ligand required to occupy half of
the receptors in the cell) to be InM (Quaroni et al. 1999). Thus we can conclude that

during these experiments our dose of DEX (lpM) saturated GR and therefore

produced maximal effects.

In this chapter our data suggest that the same 'auto-regulatory' mechanism for control
of GR in IEC-6 cells as previously postulated for rat hippocampal and colonic tissue-
dexamethasone significantly decreased GR protein levels in a time dependent
manner. This is consistent with data derived from studies with human ovarian

carcinoma cells line (Pedersen & Vedeckis 2003) and also with rat NHI 3T3 cells

(Hoeck et al. 1989), in which dexamethasone treatment reduced GR protein levels to

around 20% of untreated cells. Furthermore, our work in vitro mirrors our previous
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work in vivo (see chapter 3), where dexamethasone significantly decreased GR
mRNA and reduced protein levels after 7 and 3 days DEX treatment respectively.

The data presented in this chapter showing an inhibitory effect of RU486 on GR

expression further support our conclusions that GR is under 'auto-regulatory' control.
As discussed in section 1, dexamethasone binds GR in the cytoplasm and causes the

complex to translocate to the nucleus, where it binds GREs. This binding activates a

negative-feedback loop which down-regulates GR. RU486 will compete with DEX
to bind the glucocorticoid receptor. When RU486 binds GR, it prevents the
translocation from cytoplasm to nucleus, binding to the GRE on the GR gene, and
therefore prevents the negative feedback loop. Thus prevents a reduction in GR
levels. This regulatory system controls cellular sensitivity to GC hormones and also
steroidal drugs.

7.4.2 Effect of dexamethasone on transcription factors-AP-1
and NF-kB

There have been detailed investigations into the transcriptional regulation of human
MDR and mouse mdrla and mdrlb genes (Labialle et al. 2002; Sukhai & Piqutte-
Miller 2000) but to date, such detailed studies have not been carried out in detail for

the rodent mdrla and lb genes. Binding sites in the promoter region for NF-kB and
AP-1 have been found in human MDR1 and murine mdrla and lb genes (Sukhai &

Piqutte-Miller 2000) hence we decided to investigate whether changes in P-

glycoprotein expression by dexamethasone were correlated with an alteration in the

expression and activation of these transcription factors. In the resting cell, NF-kB is

sequestered in the cytoplasm by its inhibitor IkB (Neurath et al. 1998). After the cell

is stimulated by an activator of NF-kB, IkB is degraded and allows NF-kB to

translocate to the nucleus and induce transcription (Schmid & Adler 2000).

Data presented in this chapter shows a significant increase in total NF-kB after 24hr
dexamethasone treatment mirroring an increase in P-glycoprotein expression. As the
increase in NF-kB levels was in the nuclear opposed to cytosolic fraction, it implies
NF-kB is in its active state and therefore could potentially induce mdrla gene

transcription. The increase in nuclear NF-kB by dexamethasone was perhaps
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unexpected as it a potent anti-inflammatory drug, shown to reduce inflammation by

inducing the transcription of the inhibitor protein IkB-oc, and directly binding to NF-

kB in the cytoplasm and thus preventing the transcription of pro-inflammatory genes

(de Bosscher et al. 2003). Dexamethasone does not increase the transcription of NF-

kB directly as there no GRE sequences are present in the promoter region, which

suggests dexamethasone must induce the transcription and subsequent translation of a

protein which increases the transcription ofNF-kB.

Consideration of the time course involved is pertinent in understanding the relevance

between NF-kB activation and IkB-cc degradation. Previous work in Caco-2 cells

have shown IL-1 (3 stimulation caused IicB-a to be degraded after lOmin with a

maximum peak in nuclear NF-kB DNA binding activity 15min after stimulation

(Russo et al. 2004) therefore showing direct regulation of NF-kB by IL-1 [3. Another

study involving human myeloid U937 cells showed a decrease in hcB-oc, and an

increase in nuclear NF-kB protein, 60min after activation by pervanadate

(Mukhopadhyay et al. 2000). In our study, if dexamethasone had been regulating

NF-kB directly, an increase in NF-kB protein expression would have been expected

prior to 24hr. The synthesis of this 'second message' would account for the time

delay between adding dexamethasone and the change in expression.

Another indicator of NF-kB activity is the level of IkB. IkB proteins included a, |3, y

or s (see chapter 1). IkB-oc is known to bind the p65 subunit ofNF-kB and sequester

NF-kB in the cytoplasm (Neurath et al. 1998) . Upon activation, hcB-a is degraded

and a reduction in protein levels is an indicator ofNF-kB translocating to the nucleus.

As expected, data in this chapter showed low levels of expression in the nucleus: IkB-

a is a cytosolic protein, and this observation supports the conclusion that nuclear NF-

kB is in its active state. As an increase in nuclear NF-kB expression was noted, one

may have expected a decrease in cytosolic hcB-a to account for translocation from

cytosol to nucleus, if this finding is of functional relevance. Once again the time
course is critical, as previous studies have shown that although hcB-a is degraded

within lOmin after NF-kB stimulation, there is a subsequent increase in IkB-cc

expression to 'basal' levels within 90-180min. This is probably due to de novo

protein synthesis generated by the 'negative feedback loop' from activated NF-kB
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(Mukhopadhyay et al. 2000; Russo et al. 2004). We found similar levels of IkB-cc in

cytosolic fractions regardless of treatment, and we suggest that the most plausible

explanation for this is the time point measured. It is known that dexamethasone and

NF-kB directly increase the transcription of hcB-a. Therefore if IicB-a had been

degraded, the dexamethasone-mediated de novo protein synthesis of IkB-oc and the

'negative feedback loop' generated by an increase in NF-kB expression, would have

returned IkB-cc to resting levels 90-180min after stimulation. A decrease in

expression at 24hr is of uncertain significance. Using a shorter time point, or a

protein synthesis inhibitor (cycloheximide), may have revealed a decrease in IkB-oc

expression correlating with an increase in nuclear NF-kB activation.

To further investigate the role of these transcription factors in the regulation of these

genes in IEC-6 cells, there is a need for more in depth experiments. The use of a

protein synthesis inhibitor such as cycloheximide would clarify whether the increase
in P-gp was indeed due to de novo protein synthesis, and would elucidate whether GR
is directly or indirectly regulating P-glycoprotein expression. Also the direct

inhibition of NF-kB activation using an adenoviral vector, where the protein inhibits

a part in the activation pathway of NF-kB such as phosphorylation of IkB-ci, would

show whether preventing NF-kB nuclear translocation prevents increased P-

glycoprotein expression. Although no difference in total NF-kB expression was seen

after 2hr dexamethasone treatment, alterations in the cellular localisation (nuclear
versus cytosolic) may be noted and warrants further studies.

In conclusion, dexamethasone decreased GR protein levels in the rat jejenal IEC-6
cells in a time dependent manner and complements previous work in vivo. P-

glycoprotein expression was increased by dexamethasone treatment contrasting

previous in vivo work in the colon. The inhibition of the dexamethasone-mediated
effects by the GR antagonist RU486 shows DEX is mediating its effects through

binding GR. Intriguingly, there was a significant increase in total and nuclear NF-kB,

but not AP-1, mirroring an increase in P-glycoprotein expression at 24hr but not at an

earlier time-point. The NF-kB inhibitor IkB-oc was lowly expressed in the nucleus.
This data implies de novo protein synthesis by dexamethasone increased and

subsequently activated NF-kB. It is possible that elevated levels of in NF-kB induced
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P-glycoprotein expression in these cells however, but future studies are required to

address the critical question: whether transcription ofmdrla is regulated by NF-kB.
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Chapter 8

Implications
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The main aim of this thesis was to study the molecular mechanisms involved in the

regulation of key genes determining corticosteroid access to cells and actions in the
rat colon, particularly P-glycoprotein and GR. The effect of steroids in vivo and in

vitro, as well as the role of bacteria, on the regulation of these genes in the healthy
and diseased rat colon was investigated. Alterations in expression of intestinal GR
and P-glycoprotein may have implications for initiating disease and steroid resistance
in human IBD.

8.1 The regional distribution of genes determining steroid sensitivity
and effect of steroid treatment on gene expression in the

healthy rat colon

In the healthy adult Wistar rat, P-glycoprotein and GR were shown to be differentially

expressed along the length of the colon, with increased P-gp expression in proximal

compared to distal colon. A reverse gradient was noted for GR protein expression.

Systemic dexamethasone treatment in these healthy Wistar rats decreased intestinal

expression of both mdrla and GR mRNA compared to untreated animals.
Corticosterone was shown to regulate these genes, and thereby these data support a

role for endogenous steroids in regulating tissue sensitivity to steroids.

Increased expression of P-glycoprotein in proximal compared to distal colon may

protect the proximal intestinal sections from potentially toxic ingested or bacterially

produced xenobiotics, as P-gp is thought to be involved in the active transport of

foreign substances out of cells. If a similar P-gp expression gradient is present in
human colon it may explain the fact that ulcerative colitis almost always involved the
distal colon, as an increase in xenobiotic concentrations may be involved in the
initiation of inflammation.

Also worthy of note is the increased expression of GR protein, which is known to be
involved in the inhibition of pro-inflammatory cytokines as well as the production of

anti-inflammatory proteins (Barnes 1998), in distal colon. The decreased P-gp and
increased GR expression may provide a balance between pro-inflammatory and anti¬

inflammatory mediators, where increased GR prevents an inflammatory reaction in
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response to increased xenobiotic concentration in the distal colon, and therefore

explain the lack of inflammation in the colon of healthy rats and humans.

Moreover, if this differential distribution of GR and P-gp is mirrored in humans,
steroid sensitivity will vary along the colon. Increased P-gp (which excludes steroids

including dexamethasone) and decreased GR expression (known to initiate the anti¬

inflammatory effects of steroids) in proximal compared to distal colon, would reduce
the sensitivity of proximal colon to steroids. This may have implications for steroid

treatment, as certain areas of the colon may be insensitive to steroids and would
therefore be an ineffective at treating inflammation. Furthermore we noted decreased

expression of mdrla and GR mRNA in the healthy rat colon in response to

dexamethasone treatment. If this were to occur in response to steroid treatment in

humans, the decrease in GR expression may reduce the efficacy of steroids while a

reduction in mdrla expression may amplify the inflammatory reaction in response to

pro-inflammatory molecules, both factors thereby contributing to 'steroid-

insensitivity'.

To clarify the relevance of our data in man, the expression of these genes along the
human colon needs to be studied. Furthermore, if expression were also studied in the
small bowel, these data may provide vital information concerning small bowel steroid

sensitivity. These investigations may have implications for the possible therapeutic
steroid treatment regimes in intestinal disease, depending on the expression of these

genes and therefore sensitivity of specific intestinal areas.

Other genes involved in tissue steroid sensitivity were also studied. 11 -Beta

Hydroxysteroid Dehydrogenase type-2 mRNA (11P-HSD2) was also shown to be

differentially expressed along the colon, whereas MR was ubiquitously expressed.
Removal of endogenous glucocorticoids increase expression of both these genes,

however glucocorticoid replacement returned levels to base-line. The proteins
encoded by these genes are involved in the water and electrolyte homeostasis in the
intestinal epithelium, where 11P-HSD2 inactivates active glucocorticoids and
therefore ensures aldosterone (which circulates at a much lower concentration than

glucocorticoids) can bind MR and initiates its effects (Whorwood et al. 1994). If a

similar distribution of expression is noted in human colon, the increased expression of
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11[3-HSD2 in distal colon may ensure aldosterone-selective control of absorption of
sodium (and water) before excretion from the body and the lack of effect of steroid
treatment on expression of these genes would prevent a disruption in water and

electrolyte homeostasis. It would be interesting to investigate whether a gradient was

noted in the small bowel, in both humans and rodents, and study whether other parts

of the bowel are critical in this process.

8.2 The effect of bacteria and disease on expression of P-

glycoprotein and GR in healthy and diseased colon

The presence of micro-flora initiates disease in animal models of inflammation. The
effect of bacteria on expression of P-gp and GR was investigated in both healthy
Wistar rats and in the HLA-B27 non-transgenic and transgenic rat model of
inflammation. Reducing intestinal bacterial load in healthy adult Wistar rats using
the antibiotics ciprofloxacin and metronidazole, suggested a role for bacteria in the

regulation and expression of these genes, as a trend towards increased GR but
decreased P-glycoprotein expression in distal colon was noted. However the intestine
was not completely clear from bacteria and therefore no absolute conclusions could
be drawn from this experiment. To further clarify the role of bacteria in these

animals, Wistar rats in germ-free conditions (an environment unavailable at the time
of investigation) should be studied, and this would show the direct effect of the

presence ofbacteria on GR and P-gp expression in these animals.

To further clarify the role of bacteria and disease on expression of P-gp and GR,
HLA-B27 transgenic and non-transgenic rats were studied. The presence of colonic
inflammation in HLA-B27 transgenic rats was associated with decreased P-

glycoprotein and mdrla expression in all areas of the colon, consistent with recent

data from other animal models and UC (Langmann et al. 2004; Lizasa et al. 2003).
GR expression was decreased in the proximal colon and the rectum but not caecum.

Germ-free conditions were associated with a significant reduction of P-gp expression
in the caecum, but not proximal colon or rectum, whereas GR levels were reduced in

proximal colon and rectum, but not caecum. These data emphasise the complex

gene-bacterial interactions within the colon in health and disease.

- 182-



Chapter 8 - Implications
The reduction in P-gp and GR protein expression in the presence of inflammation in
both humans and rodents shows disease alters the expression of both P-glycoprotein
and GR protein in the intestine. The key question is to determine whether the
reduction in P-gp and GR protein expression is a primary or secondary consequence

of inflammation. This may be investigated by treating transgenic animals with a

transcriptional inducer of mdrla and GR expression before and after inflammation is
established. The decrease in P-gp expression may be involved in the perpetuation of
inflammation due to an increase concentration of pro-inflammatory cytokines within
the epithelium. Moreover if the reduction in GR expression in the proximal and distal

colon, as well as the low levels of GR in caecum, was also seen the human disease,

this would further reduce the efficacy of steroids and therefore may have implications
in the type to treatment required to resolve established inflammation. Further

investigations needs to be carried out to determine intestinal expression of these genes

in human disease. Inflammation may be associated with decreased expression in

specific areas of the intestine and thus steroid efficacy may be differentially altered.

Worthy of note are the differences in steroid sensitivity between healthy rodent

species-Wistar and Fischer rats. This has interesting parallels with man, where
alterations in the genetic phenotype of MDR1 may determine extent of disease (Ho et

al. 2005). This shows the complexity of genetic variation in rodents and more

importantly in man, which may determine inter-individual responsiveness to steroids.

These studies also revealed the bacterial flora regulated colonic expression of these

genes. Specific bacteria maybe involved in regulating expression, however the
mechanisms behind this remain unknown. The increased expression of GR in

proximal and distal colon and P-gp in caecum when bacteria are present in the gut

suggests a site- and bacteria-specific regulation of these genes. Studying the effect of
bacteria on expression of these genes in humans as opposed to rodents is restrictive;
however the composition of bacterial flora may be important in the prevention or

resolution of intestinal inflammation, as has been elegantly shown by Sartor and

colleagues (Sartor 2004b). In IBD the composition of the flora has been shown to be
altered as some species, especially anaerobic bacteria, have been known to be
increased/decreased in these patients, and treatment with antibiotics and probiotics
have been shown to aid in remission of disease in some patients (Sartor 2004b;
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Shanahan 2004). Studying the composition of bacterial flora in healthy and IBD

patients may aid in the development of treatments which would return the flora to that
noted in healthy/non-diseased patients. Bacteria known to increase the expression of

P-gp and GR may be given to IBD patients, or even specific antibiotic regimes could

target bacteria known to decrease expression of these genes. These treatments would
aid in returning expression levels of P-gp and GR to those noted in healthy patients,
and this may aid in the resolution of inflammation.

8.3 Effect of steroid treatment on expression of P-gp and GR in

healthy and diseased rat colon

Dexamethasone administered to HLA-B27 transgenic and non-transgenic animals

(rats with/out intestinal inflammation respectively) differentially regulated GR

expression in a site-specific manner. In the healthy colon, dexamethasone treatment

increased GR expression in caecum; decreased levels in proximal colon; and was

ineffective in rectum. In the inflamed colon dexamethasone treatment increased GR

expression in rectum only. Colonic P-glycoprotein expression was also seen to be

regulated differently by dexamethasone in these animals opposed to Wistar rats, and
steroid treatment did not alter P-gp expression in the inflamed colons from transgenic
animals. This may be due to a sub-optimal dose given, or this may just be another

example of differences in steroid sensitivity between species, as also noted between
humans.

The lack of effect of dexamethasone on the histology shown between non-inflamed
and inflamed colon is worthy of discussion. Previous studies in the PG-APS Lewis
animal model did show the dosing regimen that we used was a therapeutic dose at

reducing histology scores in the caecum of rats 16 days after the single injection of
PG-APS (Herfarth et al. 1998). This suggests differential steroid sensitivity between
rodent models, and again supports that complex genetic variations may determine
individual responsiveness to steroids. It would be interesting to explore expression of
GR and P-gp once a therapeutic dose of dexamethasone is reached, and study whether

resolving inflammation returns expression levels to those seen in 'healthy' animals.
In the rectum of diseased but not healthy animals, dexamethasone did increase GR
levels to 'healthy' levels. Alterations in expression of GR may be involved in
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initiating and resolving disease. There is a need to investigate whether the present

animal data may be extrapolated to man. Knowing the expression levels of GR in the
inflamed human colon may be an indicator of steroid responsiveness and would

enable physicians to treat patients with other therapies. The glucocorticoid-beta
isoform may also determine responsiveness to steroids. Honda et al. suggested this
isoform was increased in lymphocytes from CD patients who were insensitive to

steroids, however no further studies have supported this theory, and as rodents do not

express this gene, the molecular mechanisms behind its regulation in response to

steroids has not been undertaken in vivo.

Interestingly, healthy Fischer rats showed differential regulation of GR in response to

dexamethasone and these data suggests steroid sensitivity may be altered along the
colon in response to dexamethasone treatment. Investigating the expression of GR in
the colonic mucosa in humans in response to dexamethasone may provide further
information on the regulation of this gene along the colon and mucosal steroid

sensitivity, which may in turn determine the efficacy of steroids in the treatment of
colonic inflammation. Prescribing steroids for other inflammatory disorders may

decrease the expression of GR in the colon and as a reduction in GR may be involved
in disease initiation, it may make this area susceptible to inflammation in some

patients. Therefore a preventative treatment may also be given to stop the onset of
colonic inflammation.

Collectively these data show the complexity of the intestinal regulation of these genes

in the inflamed and non-inflamed colon, corticosteroid treatment may have selective

efficacy in different regions of the colon. The data provide possible explanations

governing the efficacy of steroids during inflammation in rodents and warrants

further studies in man. As mentioned previously, preventing/reversing the decrease
in P-gp and GR protein expression by treating both animals and humans with

inducing agents of both mdrla and GR transcription may aid in the resolution of
inflammation by increasing expression of these genes to 'healthy' levels as well as

increasing intestinal steroid sensitivity. Combined treatments may therefore be used
to treat inflammation.
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8.4 In vitro regulation of GR and P-gp in IEC-6 cells

To investigate the mechanisms involved in the regulation of GR and P-gp in vitro
studies using the rat small intestinal cell line-IEC-6 was undertaken. In the light of

previous data which have implicated the pro-inflammatory transcription factors NF-

kB (Nuclear Factor-Kappa B) and AP-1 (Activating Protein-1) as regulators of

transcription of the multidrug-resistance gene (Bentires et al. 2003; Ikeguchi et al.

1991; Teeter et al. 1991; Thevenod et al. 2000), the effect of dexamethasone on

expression of NF-kB, AP-1, P-gp and GR levels was investigated. Dexamethasone
was seen to increase P-gp and decrease GR expression, an effect initiated via the

glucocorticoid receptor, as well as increase the levels of cytoplasmic NF-kB.

However, the increase in P-gp expression in response to dexamethasone opposed to

the in vivo effects as noted in Wistar rats. This lack of correlation needs further

investigation, but may be another example of differential regulation of this gene

between species or specific areas of the intestine.

Nonetheless, these data certainly raise the possibility that NF-kB may be involved in
the regulation of P-glycoprotein, although causality has not been shown. Further in

depth investigations must be undertaken to study the direct effects of altering

expression/activity of NF-kB on P-gp expression. This may be achieved by using
adenoviral vectors which inhibit the activation pathway of this transcription factor
and study expression levels of P-gp. Moreover, primary cultures of intestinal

epithelial cells from both human and rats could be used to investigate expression of

both NT-kB and P-gp in healthy and diseased colon, and study whether addition of

pro-inflammatory cytokines alter expression of these gene products. Studying

expression in both human and rodent cultures would clarify if data can be

extrapolated between man and rodent investigations. If a link between NF-kB and P-

glycoprotein was noted it may provide another pathway of treatment for patients with
IBD: direct inhibition of NF-kB may not only inhibit the inflammatory response but

may alter P-gp expression and aid in the resolution of inflammation.

A number of the observations made in this thesis are entirely novel, and collectively
these carry potentially important implications in the study of the pathogenesis and
steroid efficacy in inflammatory bowel disease. Novel data include the regional
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distribution and effect of dexamethasone treatment on genes determining steroid

sensitivity in the healthy rodent intestinal epithelium as well as the finding that
intestinal inflammation altered expression of P-gp and GR in an animal model of
inflammation. Intestinal flora and corticosterone treatment was shown to modulate

expression of these genes in the HLA-B27 transgenic rat models of inflammation in a

site-specific manner. In addition, the complex interactions between P-gp and GR

expression in response to bacteria have implications for potential mechanisms, by
which inflammation develops in the colon of both rodents and man.
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