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ABSTRACT 

The strength and behaviour of a reinforced concrete floor-spandrel 

beam assembly was investigated experimentally and analytically. Tests 

were carried out on a total of eighteen specimens simulating a typical 

floor-spandrel beam assembly which are divided into five groups, to 

evaluate the ultimate flexural, torsional and deformation capacities 

under the effect of various parameters. 	The main parameters 

examined were - loading arrangement, the amounts of longitudinal 

and transverse steel in the spandrel beams and the concrete strength. 

The stress block parameters were evaluated at the inelastic 

stage for a section under flexural compression. 	The approach 

adopted was extended to include the effect of the confinement provided 

by the lateral reinforcement in the section. 

Analytical and empirical approaches were adopted to establish 

a procedure to evaluate the cracking and ultimate torsional strength 

of the reinforced concrete spandrel beams. 

The influence of test variables on the deformation response 

of test specimens was discussed and evaluated. 	The experimental 

results are compared with the computed values obtained on the basis 

of a direct analysis of the sections. 

The torsional stiffness was defined and evaluated for two stages, 

prior to cracking and after cracking as well as the corresponding 

angles of twist. 	Some other aspects of the problem were discussed 

and some suggestions have also been made for further research. 
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NOTATIONS 

ad 	 depth of compressive reinforcement from compressive 

face of the section = d' 

A 	 concrete cross sectional area = b.h 

A 	 effective area of concrete 
C 

A5' 	 area of compression steel 

Ai 	 area of longitudinal steel provided to resist 

torsion 

area of top and bottom steel bars in tension only 

A5t 	 area of tension reinforcement 

A ,  A ,  A w 	
area of one leg of a stirrup 

b 	 width of beam section 

b 1 	 smaller dimension of the closed stirrup 

b- f b 	 width of floor and spandrel beam 

C 	 ratio of modulus of rupture to tensile strength of 

concrete = 

C, C 	 compressive force in concrete 

Cu total compressive force in concrete at ultimate 

CCs compressive force in steel in compression 

vii 



d effective depth of beam section 

d 	' d effective depth of floor and spandrel beam section 

E  initial modulus of elasticity of concrete 

E0  second modulus of elasticity at strain, E 0  = f0/ 0  

E5  modulus of elasticity of steel 

Et modulus of elasticity of concrete in unaxial tension 

f stress at any fibre 

1av average stress in compressive block 

average stress in compressive block for bound concrete 

fc cylinder strength of concrete 

fc cylinder strength of bound concrete analogus to fc 

cu characteristic cube strength of concrete 

stress in tension steel 

f5 ' stress in compression steel 

specified yield strength of main reinforcement 

f5 ' specified yield strength of compression reinforcement 

stress in the steel at ultimate 

tensile strength of concrete related to modulus 

of rupture tests 

viii 



f 
WY 

yield stress of a stirrup 

f. maximum compressive strength of concrete prism 

expressed by the cylinder strength = fc 

distance from extreme compressive fibre to the 

resultant of the compressive force 

G shear modulus of elasticity 

GK torsional rigidity 

h overall depth beam section 

h 1  larger dimension of closed stirrup 

hf 	h.s overall 	depth of floor and spandrel beam section 

I second moment of area 

K torsional constant 

a coefficient (with appropriate subscripts) 

Lf 9 L 5  length of floor and spandrel beam 

L spread of peak curvature or plastic length over which 

plastic rotation occurs with constant curvature 

ni modular ratio ES/EC 

M applied moment 

ix 

McrI M. Mu 	cracking, yield and ultimate moment 



flexural resistance of concrete section prior to 

cracking 

Mbl pure flexural strength in positive bending 

Mb2 pure flexural strength in lateral bending 

M  pure flexural strength in negative bending 

P, 	Q applied load 

P reinforcement ratio (with appropriate subscripts) 

tensile reinforcement ratio = A5 t/bd 

P' compressive reinforcing ratio = A'/bd 

P" binding ratio defined in section 4.4. 

Pb 	 balanced tensile reinforcement ratio 

total volume of reinforcement including longitudinal 

steel and stirrups expressed as a percent of concrete 

volume 

web reinforcement ratio = (0.85 A/bd) (b 1 /s) 

q 	 mechanical percentage of reinforcement = 

qU 	 parameter referring to the effectiveness of the 

transverse reinforcement 

R 	 ratio E/Eo 

R 	 ratio Mb3/Mb] 

x 



xi 

R 	 ratio of forces in bottom and top steel = Af/A cif  5' 

r 	 ratio of reinforcement defined in equation 5.52 

S 	 torsional stiffness (with appropriate subscripts) 

s 	 spacing of stirrups 

T 	 total tensile force in main reinforcement in a beam 

section 

T 	 torque (with appropriate subscripts) 

Tc T 5 	 torque resisted by concrete and steel 

Tcr  T u 	cracking and ultimate torque of reinforced concrete 

beam 

T 
el  T 
	 elastic and plastic torque 

Teq 	 equivalent torque necessary to produce the same 

shearing stress as that produced by the flexural 

shear at the critical section 

ultimate torsional strength of unreinforced concrete 

section in pure torsion 

Tun 	
ultimate torsional strength in bending and torsion 

TUS 	
failure torque in shear compression mode 

V 	 shear force 

VcrI V 	
cracking and ultimate shear force 



xii 

v , V. 
	 shear stress resisted by concrete and steel 

C 	S 

V, V 	 shear force resisted by concrete and steel 

shear resistance of the concrete where I = 0, 

MO 

V 	 ultimate force transferred from the floor beam to 

spandrel beam 

v 0 	 ultimate shear stress defined in section 5.2 

u 	 ductility index = 

xd 	 distance of neutral axis from compression face 

xd 	 distance of neutral axis from compression face at 

ultimate 

yd 	 distance of centre of compressive block from neutral 

axis 

Z 	 distance between section of maximum moment and an 

adjacent section of zero moment 

a 	 ratio h/b 

a 	 ratio 

a 	 ratio of principal stress in orthogonal direction 

to principle stress in direction considered 

a, , A 	 constants depend on ratio h/b 



xiii 

, 0 	 cracking angles 

c 	 strain in concrete (with appropriate subscripts) 

c strain 	in concrete at maximum stress f - 
0 0 

strain in concrete at ultimate failure 

strain in steel 

esy 
strain 	in steel at yield 

C strain in steel at ultimate 
su 

et  
strain 	in concrete in tension 

o rotation of beam (with appropriate subscripts) 

o angle of twist (with appropriate subscripts) 

deflection (with appropriate subscripts) 

Poisson's ratio 

T 	 torsional shearing stress 

ultimate torsional shearing stress defined in 

section 5.2 

ratio M/T 

ratio V/T 

slope of T vs b 1  h 1  A w fwy curve 
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1.1 General Introduction 

The floor-spandrel beam assembly is an important and' critical 

part of the overall structure. 	The strength and behaviour of the 

spandrel beam is often governed by the floor beam. 	Figure 2.1 

shows how a floor-spandrel beam assebmly forms part of the structural 

frame. 

A knowledge of the internal forces and deformations of each 

individual member will enable a more efficient design. 	In the actual 

structure however the interaction between the floor and spandrel beam 

makes the situation more complicated and quite different. 	The 

behaviour and strength of floor and spandrel beams are very much 

correlated in determining the final mode of failure. 

Three possible types of failure can be recognised, namely: 

Floor beam failure. 

Spandrel beam failure. 

Joint failure. 

The joint should be designed to be stronger than the members framing 

into it as well as exhibiting a certain degree of ductility. 	The 

joint region is subjected to a complex stress distribution due to the 

effect of multi-directional forces such as axial load, bending, torsion, 

and shear which are transferred from the beam members as a result of 

the applied design load. 

Spandrel beams are often employed along the external edge of the 

structure to transfer load into the columns. 	In transferring load 

from the slab to the supporting edge column, the spandrel beams are 

subjected to a combination of torsion, bending moment and shear. 

1 



2 

The nature of the failure of a reinforced concrete spandrel beam 

under combined stresses is also complex and the essential conditions 

resulting in such failures are not fully understood. 

This is not the case with the floor beams since the behaviour 

of flexural members is well understood. 

Figure 1.1 shows the most common types of spandrel beams which 

are used in practice. 

The present study is limited to the strength and behaviour of 

a floor-spandrel beam assembly as shown in Figure 2.1 where the 

effect of the slab is not included. 

1.2 Review of Literature 

A considerable amount of information is available on the behaviour 

and strength of individual members under pure torsion or bending. 

However very little is available on the behaviour of the floor-spandrel 

beam assembly as a part of reinforced concrete frame. 

Although it is not intended to review the large amount of information 

available regarding torsion or flexure, some more relevant papers will 

be reviewed and discussed if necessary. 

1.2.1 Spandrel Beam 

Until the late 1960's, the development of a recommended design 

process for reinforced concrete beams subjected to torsion in addition 

to bending and shear had been very slow. 	The American Concrete 

Institute "Building Code Requirements for Reinforced Concrete" [l 

current during this period, stated that torsional stresses should be 
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Figure 1.1 Spandrel Beams 



considered in the design but gave no provision for allowable stresses 

nor did it include a procedure for the determination of torsional 

stresses in indeterminate structures. 	The first guide to designers 

became available in 1969 [2]. 	The ACI Committee 438, recommended 

that torsion should be neglected if the ultimate shear stress due to 

torsion was less than 0.11 vT'. 	The justification was that this 

stress corresponded to about 25 percent of the pure torsion strength 

of a member without web reinforcement, and that it had been shown in 

a beam without stirrups that a torsional moment equal to 30 percent 

of the pure torsional strength caused no reduction in the flexural 

strength and only a 5-15 percent reduction in the shear strength. 

In a beam with stirrups, the stress of 0.11 VT7 would correspond 

to a torsional moment less than 25 percent of the pure strength, 

which would again reduce the flexural strength by only a few percent, 

and the shear strength by less than 15 percent. 	For a section where 

was greater than 0.11 	the strength of the concrete was to be 

shared between the needs of torsion and shear, the contribution to 

each being given by tca  and  Vca  respectively, 

tc  
where 	'ca = 

'i + (3 V u/t u )Z  

V 

v ca 	

( -r/3  v) 2  

and v = ultimate flexural shear stress. 	Stirrups were to be designed 

as the sum of those required to resist the remaining torque and those 

necessary to resist the remaining shear, and were to be the closed 

type of stirrups since diagonal cracks due to torsion would appear on 

3 
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all faces. 	In addition further longitudinal steel reinforcement 

equal in volume to that of the closed stirrups was to be distributed 

around the beam. 	No reference was made to stiffness requirements. 

The recommendations of the ACI Committee 438 were incorporated 

into the ACI Code of 1971 [3] and the value of T was given by 

Tu = 3 Tjb2 h. 	The recommendations could only be readily applied 

if the torsional moment (1) was known. 	Marshall [4] discussed the 

problem of torsion in concrete with reference to the British CP110-1972. 

Goode [5] compared the two codes of practice, ACI 318-71 and B.S. 

CP11O-72. 

When discussing the design of reinforced concrete beams to resist 

torsional loads, two different types of torsion must be dinstinguished: 

Equilibrium torsion: A torsion necessary to maintain 

equilibrium in a structure. 

Compatibility torsion: The twist required to maintain 

compatibility in a structure. 	A given load will produce 

a compatibility torsion in an indeterminate structure if 

the torsion can be eliminated by releasing redundant 

restraints. 	Statically determinate structures are 

subject only to equilibrium torsion. 	In this case 

the torsion moment must be fully designed for and sufficient 

reinforcement is to be provided as required by statics. 

The ACI Code of 1971 and CP110-72 have adequate design rules based 

on a large amount of research which enabled engineers to suitably 

proportion the reinforcement for this case. 

The spandrel beam being a part of a monolithic building frame is 



subject to both types of torsion, i.e. the compatibility condition 

is required as well as statics in order to determine the torsional 

requirements. 	What is now required from the members is a twist 

and not torque since the magnitude of the torsion is dependent on 

the value of torsional stiffness of the member. 	For this case the 

solution given by the codes of practice is that the torsional moment 

in the spandrel beam is obtained by elastic analysis and the calculation 

of torsional stiffness is based on the uncracked section [6]. 

This philosophy was highly questionable as it was known after 

cracking that the torsional stiffness of reinforced concrete decreases 

significantly [7]. 	Using the code approach, an unrealistic high 

torsion would result and if under a given load the member did not 

crack, the torsional reinforcement would be virtually unstressed. 

On the other hand, after cracking the torsional stiffness would be 

reduced drastically, resulting in a redistribution of forces which 

would lead to a reduction in the torsion in the member. 	The required 

amount of torsional reinforcement would therefore be reduced. 

There have been relatively few studies on post-cracking torsional 

stiffness. 	Lampert [8] derived an expression to calculate the post- 

cracking torsional rigidity of rectangular cross-sections. 	The 

torsional rigidity was given as a function of the percentage of 

steel. 	A new concept of post-cracking shear modulus was used and 

the theory is applicable to any arbitrary cross-section including 

rectangular and circular sections. 	Giving the post-cracking rigidity 

as a function of the amount of steel provided large values can be 

expected when using the conventional elastic method. 

The concept of post-cracking shear modulus was employed by Hsu [9] 



to derive a method of determining the post-cracking torsional rigidity 

of reinforced concrete sections. 	However the method is more efficient 

when it is applied to members under pure torsion. 	The effect of 

combined torsion, bending and shear must be studied before the method 

can be applied. 

Ramakrishnan and Rarigan [10] derived an equation to predict the 

torsional rigidity at any stage as a function of the initial torsional 

rigidity of the uncracked beam under pure torsion. 	Pandit and 

Warwaruk [11] introduced the effect of bending moment on the initial 

torsional stiffness of reinforced concrete rectangular beams under 

combined loading of torsion and bending. 	Secant and tangential 

stiffness can also be predicted in terms of the initial torsional 

stiffness based on the assumption that  the relationship between torque 

and twist is a curve and not.a straight line [12]. 

Pandit [13] considered the effect of combined torsion, bending 

and shear on the torsional stiffness, and suggested expressions by 

which the torsional stiffness can be predicted at the pre-cracking and 

post-cracking stage. 	The proposed expressions are given in terms of 

the initial torsional stiffness of uncracked beams under pure torsion. 

In fact those expressions are very simple to use and the corresponding 

angles of twist can be easily calculated. 	By definition the torsional 

stiffness is the torque required to produce a unit angle of twist per 

unit length. 

Hsu [7] proposed an empirical equation to calculate the cracking 

angle of twist for reinforced concrete beams under pure torsion. The 

effect of reinforcement was taken into account and the cracking angle 

of twist was given as a function of the angle of twist at failure of 

M. 



a plain concrete member. 	Hsu also proposed another empirical equation 

to calculate the angle of twist at ultimate torque of a reinforced 

concrete member. 	The proposed equation was given as a function of the 

total percentage of reinforcement, ratio of height to width of the 

cross-section and the width of the cross-section. 

Information and methods are available to predict the torsional 

strength at cracking and at ultimate. 	A large number of beams have 

been tested under different conditions by various investigators. 

Zia [14,151 reviewed the available torsion theories for concrete 

members and the problems associated with; most theories can be 

categorised as under: 

Elastic theory. 

Plastic theory. 

Semi-plastic theory. 

However Hsu [16] employed a new failure criteria to explain the 

experimental excessive strength unaccounted by the elastic theory. 

Hsu, using motion picture equipment, was able to observe the failure 

process of unreinforced concrete beams under pure torsion. 	Crack 

propogation and final mode of failure were observed very clearly. 

Skew bending theory has been employed by many investigators to 

predict the ultimate torsional strength of reinforced concrete beams. 

This theory was first developed by Collins [17]. 	Rangan and Hall [18] 

further modified and applied the theory todetermine the strength of 

rectangular prestressed concrete beams subjected to combined torsion, 

bending and shear. 

Three modes of failure are defined by the Skew bending theory 



depending on the location of the compression zone. 	In mode 1 the 

compression zone lies at the top of the beam cross-section. 	In 

modes 2 and 3 the compression zone lies at the side and the bottom 

of the cross-section respectively. 	The type of failure, whether 

it is mode 1, 2 or 3 is directly dependent on the ratio of bending 

moment to twisting moment or the ratio of shear force to twisting 

moment and the geometry of the section.. 	For. beams under pure torsion, 

modes 1, 2 and 3 are not defined by the torsion vector and the beams 

fail about an axis for which the bending strength is least. 

Collins [17] also defined a fourth mode of failure to allow for 

the effect of shear forces. 	The experimental results of Mukherjee and 

Warwaruk [19] and Henry and Zia [20] were used by Rangan and Hall [18] 

to test the validity of the approach used by Collins to define the 

strength in a shear compression mode. 

Rangan et al [21] subsequently modified the Skew bending theory 

and the modified theory can be used to predict the complete behaviour 

of reinforced concrete beams subjected to pure torsion as well as 

beams under combined torsion and bending. 	The theory can also predict 

the type of failure of over-reinforced or under-reinforced beams. The 

balanced steel ratio, below which the reinforcement will not yield can 

be determined with reasonable accuracy. 	Therefore steel quantities 

can be determined to ensure the ductility of beams under load. 	Rangari 

et al also proposed a simplified version of the theory for design purposes. 

The Skew bending theory is further discussed in Chapter 5. 

1.2.2 Floor Beam 

Prediction of the ultimate flexural strength requires the evaluation 



of the stress block parameters for a section under flexure. 	For 

this purpose many idealized stress distributions have been proposed. 

A trapezoidal stress distribution was proposed by Jensen [22], a 

rectangular stress distribution was proposed by Whitney [23] and a 

universally accepted rectangular idealized stress distribution was 

proposed by Hognestad [24] who also reviewed many proposed idealizations. 

An ultimate strength theory based on an equivalent rectangular 

stress distribution was further suggested by Mattock et al [25]. How-

ever a more exact design theory can be developed by employing the 

actual stress-strain relationship for the concrete in the analysis. 

The behaviour and load-deformation characteristics of flexural 

members are well defined and established. 

The load-deformation behaviour of reinforced concrete floor beams 

under pure flexure has a great influence on the ductility requirements. 

For this purpose analytical investigations have been carried out on 

the moment force deformation of reinforced concrete frames and the 

individual members, which are directly related to this study to provide 

information on ductility behaviour and hence on analytical approach. 

Roy and Sozen [26] studied the effect of square ties on the load-

deformation characteristics of members subjected to axial loads. 

Szulczynski and Sozen [27], Bresler and Gilbert [28] and Pfisher [29] 

also studied experimentally the effect of ties in 	reinforced concrete 

members subjected to different types of loading. 	The conclusion that 

can be drawn in this respect is that ties provide a significant 

improvement in the deformation capaáities of concrete though the 

carrying capacity may not be increased. 

The moment-curvature characteristics of reinforced concrete members 
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were studied by Mattock [30]. 	Tests were carried out to study the 

rotational capacity of hinging regions, and the equations derived 

were based on the concept of compatibility of strains and equilibrium 

of forces to evaluate the rotational capacity of the hinging regions 

of reinforced concrete members. 	The influence of the amount of 

steel and concrete on moment and rotation capacity was considered by 

these equations. 

Corley [31] , using his own test results and employing the same 

compatibility and equilibirum principles as Mattock, derived expressions 

to predict the inelastic rotation and spread of plasticity. 	Size of 

beam and the confinement of the concrete in compression were considered 

as the main parameters. 	It was found that the spread of inelastic de- 

formations along the beam beyond a distance d/2 from the point of 

maximum moment is a function of the geometry of the member. 	Size of 

the beam was found to be of no significant influence on the magnitude 

of the maximum concrete compression strain. 	Corley's work may be 

considered as an extension to Mattock's work. 

Experimental and analytical investigations were carried out by 

Chan [32] to study the ultimate strength and deformation of plastic 

hinges in reinforced concrete frames. 	He compared the assumption of 

plastic hinges concentrated at a point and the actual spread of plasticity 

and found that larger plastic rotations are developed in under-reinforced 

sections. 	The stress-strain capacity of concrete is increased by the 

lateral binding. 

Pfrang, Siess and Sozen [33] presented an anlytical study and 

a simplified method to relate axial load, moment and curvature for 

reinforced concrete cross-sections. In this method simplified 
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assumptions for the stress-strain relationships for concrete and 

reinforcement were adopted. 	The axial forces were calculated from 

the normal stresses and the curvature from the stress distribution. 

Roy and Sozen [34] discussed the effect of rectangular ties on 

the load-deformation characteristics of concrete. 	Ductility was 

also studied as a factor governing the rotation capacity of the 

section and then moment distribution in a structure. 	Similarly the 

effect of the reinforcement on the ductility of the concrete was 

studied by Shah and Rangan [35]. 

An important contribution to the analysis of reinforced concrete 

members is provided by Cohn and Ghosh [36]. 	They presented an 

analytical analysis on the ductility of the reinforced concrete 

sections. 	Ductility and the factors which have a great influence on 

ductility for a. wide range of goemetrical, material and loading 

variables were well defined and investigated. 

1.2.3 Floor-Spandrel Beam Joint 

The resistance of the joint depends on the capacity of the concrete 

to withstand the torsion and shear forces, also on the yield strength 

of the tension and web reinforcement. 	In general the joint should 

satisfy the following requirements [37]: 

The joint should be able to resist at least the failure 

moment of the floor beam. 	It is preferable for the 

flexural failure to occur outside the joint. 

The joint should have sufficient ductility to allow 

redistribution of the forces in the frame as well as 
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avoiding any brittle failure. 

The joint should be sufficiently reinforced to transmit 

the load from the floor beam to the spandrel beam and 

to resist any shear in addition to that taken by concrete. 

The joint should provide sufficient anchorage for the 

flexural steel in the floor beam. 

The joint should be simply reinforced and easy to fabricate. 

Extra stirrups should be avoided. 

It is important to consider the joint properties in designing 

a joint in a frame. 	The joint should be over-designed so that plastic 

hinge formation will occur outside the joint with 'the joint having 

a specific yield capacity. 

The following five differente modes of joint failure have been 

reported in literature [38]: 

The most common failure is by diag - onal tension cracks in 

the joint itself when reinforcement can no longer resist 

the tensile stresses caused by the applied moment. 

Splitting crack failure due to high tensile stresses occuring 

perpendicular to the direction of the reinforcing bar. This 

kind of failure is possible in all joints with inclined 

reinforcing bars. 

Failure may primarily be caused by yielding of the reinforcement 

in the joint. 	A secondarydiagonal tension crack occurs. 
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Anchorage failure occurs when the necessary interaction 

between concrete and reinforcement fails or when the 

reinforcement crushes the concrete by local crushing 

at bends in the reinforcement. 

The fifth reported failure is due to crushing of the 

concrete in the joint. 

The points mentioned above are related to concrete joints in 

general. 	The floor-spandrel beam joint has not yet been investigated 

thoroughly. 	However for design considerations, Collins and Lampert [39] 

designed the floor-spandrel beam joints using Leonhardt 1 s recommendations 

by placing closely spaced stirrups to ensure full transmission of the 

reaction from the floor beam to the spandrel beam. 

Hsu and Burton [40] tested specimens designed to fail in the joint 

by not providing shear or torsional reinforcement in the spandrel 

beam. 	In this way it was possible to see the failure surface at the 

joint. 	They concluded that in order to prevent joint failure it is 

necessary to provide stirrups within the failure surface. The total 

number of stirrups provided should carry the reaction from the floor 

beam. 

From the investigations reviewed, the following points can be 

concluded: 

Most of the investigations carried out to date on the 

strength and behaviour of the spandrel beam and floor beam 

have been based upon 	individual beams. 

With reference to 1 above, some modifications are required 



to make the analysis applicable to reinforced concrete 

frames. 

3. 	The main factors affecting the strength and behaviour 

of reinforced concrete individual members and therefore 

frames, are: the applied load, concrete strength, amount 

of tension and lateral reinforcement, spacing of stirrups, 

confinement of the joint and the detailing of the reinforce-

ment. 

1.2.4 Floor-Spandrel Beam Assembly 

Very little theoretical and experimental information is available 

regarding the behaviour and strength of a reinforced concrete floor-

spandrel beam assembly. 

Saether and Prachand [41] presented a theoretical approach to 

establish the interaction between the torsional deformation of the 

spandrel beam and the flexural bending in the adjoining slab and the 

supporting columns. 	The approach is based on the analysis of a 

simplified structure consisting of closely spaced independent beams 

monolithically framed into the spandrel beams which in turn are 

monolithically cast with the supporting columns. 	Charts were produced 

to determine the torsional moments in the spandrel beams. 

Collins and Lampert [39] experimentally investigated the behaviour 

and strength of spandrel beams. 
	The work carried out by Collins and 

Lampert can be divided into parts. 	Firstly the examined the design 

procedure of the ACI Code of 1971, in which they concluded that if 

14 

gross stiffness values were used then an over estimation of reinforcement 
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would result. 	Also accurate values of torques could be predicted 

if cracked values were used, though this led to a cumbersome trial 

and error design method. 	Secondly they suggested that as the 

torsional stiffness of the beam decreases significantly after cracking, 

and because compatibility is involved in the analysis, zero torsional 

stiffness can be assumed. 	However minimum torsional steel in the 

form of stirrups should be provided to ensure ductility and limit 

crack propogation. 

Onsongo and Collins [42], studied the behaviour of longitudinally 

restrained reinforced concrete beams under torsion. 	The results of 

two series of tests were reported. 	The first series of tests were 

carried out on beams tested in puretorsion while longitudinally 

restrained and the second series were carried out on a floor-spandrel 

beam assembly with the spandrel beams fully restrained longitudinally. 

Specimens of both-series were designed by assuming zero torsional 

stiffness for the spandrel beam. 	They concluded that longitudinal 

restraint for beams subjected to torsion can be considered as being 

equivalent to additional longitudinal reinforcement. 	Using this concept 

the truss analogy formulae can be used to give a satisfactory prediction 

of the post-cracked stiffness values and ultimate torque. 	The restrained 

specimens behaved in a very similar way to the unrestrained specimens 

reported by Collins and Lampert [39] indicating that longitudinal 

restraint is a secondary effect. 

The major contribution to the analysis of reinforced concrete 

spandreal beams was provided by Hsu and Burton [40]. 	A total of 

10 specimens were tested under two types of loading, viz concentrated 

and uniformly distributed. 	Hsu and Burton also examined the ACI-1971 



method and concluded as Collins and Lampert; that the ACI code 

method of design is safe but uneconomical. 	They examined the limit 

design concept and assigned a torsional moment to the spandrel beam 

by means of a specified shear stress due to torsion (Tu = 0.33 

It was assumed that the spandrel beam would resist twist infinitely 

under the assigned torque until flexural failure occured at the 

midspan of the floor beam. 	They also examined the failure surface 

at the joint. 	Finally they concluded that using the limit design 

concept and assuming (r u = 0.33 vT') would result in safe and economic 

design. 	This method was incorporated by the ACI 318-77 code later. 

Phillai and Bhargaran [43] noted that the pre-cracking stiffness 

is not significantly affected by a variation in the reinforcement and 

they assumed that the post-cracking torsional stiffness is negligible 

in relation to the pre-cracking stiffness. 	From their experimental 

results they concluded that the method of limit analysis may be 

extended to the analysis of indeterminate structures having members 

subjected to torsion. 	The cracking torque was calculated on the basis 

of the plastic theory and reinforcement should be provided so that 

members have adequate twisting capacity. 	Finally they proposed that 

the maximum torque developed in the torsional member will be limited 

to the cracking torque, and from the strength considerations it is 

sufficient to provide reinforcement only to resist a maximum torque 

equal to the cracking torque. 

Hsu and Hwang [44] employed 	limit design in designing spandrel 

beams. 	They examined the ACI Code recommendations (ACI 318-71 and 

ACI 318-77). 	Their alternate approach was originally suggested by 

Collins and Lampert in that the torsional stiffness of the spandrel 

16 
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beams was assumed zero. 	However an expression was proposed to 

calculate the minimum torsional web reinforcement to be provided to 

ensure ductility. 

As a result of the research work undertaken and subsequently 

published,the ACI Building Code was amended in 1977 [45] with a 

new design procedure based on the work of Hsu and Burton [40], that 

is, critical sections were required to resist a specified torsional 

shear stress of 	= 0.33 

Mansur and Rangan [46] carried out a comparative study in which 

five methods of design were compared; viz the •conventional elastic 

method, three limit design methods and the method put forward by Hsu 

and Hwang [44]. 	They concluded that the new ACI procedure [45] proposed 

by Hsu and Burton [40] using the concept of limit design is satisfactory 

and desirable as it provides an economic design. 	Also this method may 

be applied to statically indeterminate reinforced concrete structures 

in which a reduction in torsion can occur due to distribution of internal 

forces after cracking. 

As a result of Mansur and RangarYs experimental investigation Hsu 

and Hwang put forward another expression to calculate the minimum amount 

of torsional steel in the form of longitudinal steel [47]. 

1.3 Scope of the Investigation 

The main objective of this study is to carry out an experimental 

investigation on the strength and behaviour of a reinforced concrete 

floor-spandrel beam assembly. 

The strength of the spandrel beam is to be evaluated under two 

types of loading arrangements using two different lengths. 	Also the 



strength and behaviour of the assembly is to be evaluated using two 

different scales, viz full scale specimens and one-third scale models. 

The influence of the amount of tension and lateral reinforcement and 

spacing of the stirrups is to be studied. 	The effect of the test 

variables on the failure mechanism and deformation behaviour is also 

investigated. 

It is also intended to establish an analytical approach for the 

evaluation ,-.of the ultimate flexural and torsional strength of the floor 

and spandrel beam respectively and to define a moment-curvature 

relationship for the floor beam and a torque-twist relationship for 

the spandrel beam. 

The study is limited to the structural behaviour of a cast in-situ 

reinforced concrete floor-spandrel beam assembly under static loading. 

Reinforcement detailing is not considered as a variable and the effects 

of shrinkage, creep and temperature changes are excluded from this 

investigation. 

1.4 Outline of the Investigation 

Tests were carried out on a total of eighteen specimens which 

can be divided into two main series: 

Eight full scale specimens. 

Ten one-third scale models. 

The main variables were: 

1. 	Two types of loading arrangement: 

(a) One concentrated load at midspan of the floor beam. 

lu 



(b) In addition to (a) another concentrated load at 

the joint. 

2. 	Length of the spandrel beams: 

Length of the spandrel beam equal to the length of 

the floor beam. 

Length of the spandrel half the length of the floor 

beam. 

3. 	Two different beam, depths were used. 	However in all 

cases the depth of the floor beam is equal to the depth 

of the spandrel beam. 

4. 	Longitudinal steel: 

Spandrel beams provided with longitudinal steel due 

to torsion. 

Spandrel beams provided with no longitudinal steel 

due to torsion. 

5. 	Type of concrete - three grades of concrete were used,viz 

30, 35 and 40 N/rn2 . 

The measuring technique was kept the same in each test. 	Further 

details of the test specimens are shown in Table 2.1. 

The investigation consisted of both experimental and analytical 

phases. 	Detailed particulars of the design specimens, properties 

of material, testing procedure and instrumentation are reported in 

Chapter 2. 	Chapter 3 describes the general behaviour of the test 

specimens, failure mechanism, and possible modes of failure. 

A generalized stress-strain relationship for concrete under 
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compression is analytically established and simplified on the basis 

of the test results in Chapter 4. 

The simplified relationship is adopted as a representation of 

inelastic stress distribution and computations are made for the stress 

block parameters for a confined section on the basis of certain basic 

relationships suggested by other investigators. 	The simplified 

relationship is also adopted in the skew bending theory in Chapter 5. 

In Chapter 5 an analytical approach is adopted to determine the 

torsional strength of reinforced concrete beams prior to cracking as 

well as the ultimate torsional strength. Chapter 6 and 7 describe 

the moment-curvature and torque-twist characteristics. 	Expressions 

are proposed to predict the cracking and ultimate angle of twist. 

Comparison is made between computed and measured results. 	The 

deformation response of the test specimens and then rotation capacity 

are also discussed. 

The influence of various parameters on various aspects of the 

specimen's behaviour are discussed in Chapter 8. 	The general 

conclusion drawn from this study are also summarised in Chapter 8, 

and some suggestions are made for further research in the field. 
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2.1 Introduction 

The main object of the test programme was to study the behaviour 

and the failure mechanism of a floor-spandrel-beam assembly under two 

different loading arrangements and different design parameters. 

Indeed, it would be extremely difficult and costly to test 

three-dimensional frames in order to study the behaviour of the floor-

spandrel beam system, shown in Figure 2.1. 	Alternatively therefore 

T-shaped in plan specimens are tested. 	In this chapter the design 

of the test specimens, material properties, a description of the test 

programme, test arrangement, instrumentation and the procedure are 

all discussed. 	The following parameters were kept constant in 

conducting the test programme: type of steel, the detailing of the 

reinforcement and the section properties in the full scale specimens. 

2.2 Design Analysis 

Figure 2.2 shows the bending moment diagram for the floor-spandrel-

beam assembly when the floor beam is loaded by the load (P) at some 

point. 	At each of the points of the inflection (I.P.), the bending 

moment is equal to zero. 	It is possible then to use the T-shape 

(in plan) structure between the three- points of inflection as a 

test specimen; provided that the existing conditions at the cut 

sections are simulated by appropriate hinges and restraints when the 

specimen is being tested. 

The ends of the spandrel beam are torsionally fixed. 	This 

condition of total torsional fixity may not be an exact simulation of 

the framed structure but it is adopted for the purposes of testing 

to greatly simplify the analysis and the test procedure. 



Figure 2.1 Spandrel Beam Within a Structural Frame 



..I.P. = Inflection Point 

Figure 2.2 Bending Moment Diagram for the Floor-Spandrel Beam 

Assembly Under Load, P. 

Applied load, 

- 	 Torsionally restrained 

Flexurally unrestrained 

I 
Simple 
support 

Figure 2.3 The Structural Frame Being Investigated 
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The structural model in Figure 2.3 is statically indeterminate 

to one degree. 	Arestraining moment (= 2  T)  at the joint will be 

produced due to the floor beam loading and because of symmetry will 

be transmitted equally into the two parts of the spandrel beam. 

Therefore, the torsional moment in the spandrel beam is equal to 

If the value of the torsional moment (T 1) is known, the 

frame is thus reduced to a statically determinate one; bending 

moments and shear forces can then be found by statics as shown in 

Figure 2.4. 

The design of the test specimens, was carried out using different 

design methods under the provision of the ACI Code of 1971 and CP110-

1972 where necessary. 

2.2.1 Proportioning of Test Specimens 

The dimensions and details of the test specimens are shown in 

Table 2.1. 	The dimensions of the spandrel beams and floor beams 

which are commonly used in reinforced concrete building frames, provide 

guidance for selecting the dimensions of the test specimens. 	For 

this purpose a brief survey was carried out which revealed that the 

beam span in reinforced concrete multi-storey frames varies between 2.0 to 

20 metres, 	in general. 	Slender beams were avoided in order not 	to 

further complicate the behaviour of the beam and its failure mechanism. 

The actual length of the test specimens were increased by (150 mm) 

to provide an adequate support at each of the three cut-off points. 

2.2.2 Design of the Test Specimens 

Collins and Lampert (1971) and Mansur and Rangan (1978), studied 
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(c) Shear Force Diagram 

Figure 2.4 Distribution of Torsional and Flexural Moments 



* Lf  = L 5  = 2700 mm 

**h=h= 300 mm 

df =d 5 = 280 mm 

bf=bs = 150 mm 

GR1 
	

4, 

Bl 	
L 
- 

/  'I 
B2 

B3 

B4 

Table 2.1 Details of Test Specimens 

Group 
No. 

No. of 
Specimens 

Details 

GR2 

GR3 

- No longitudinal steel for torsion was 
provided in the spandrel beams. 

- Floor beams were equally reinforced. 

4, n = 0.5 

B5 Lf  = 2 L5  = 2700 mm 

B6 hf=hs =300mm 

B7 df =d 5 =2BOmrn 

B8 bf =b 5 =l5Omm 

- No longitudinal steel due to torsion 
was provided in the spandrel beam. 

- Floor beams were equally reinforced, 
identical to GR1 - floor beams. 

Q = 	(1 	+ n) 	P 

n = 0.5 

L  = L 5  = 800 mm 

h f  = h 	= 200 mm 

df  = d 5  = 180 mm 

b f  = b 5  = 75 mm 

continued!... 

4, 

Al 

A2 

A3 

A4 

Q 



Table 2.1 (continued) 

Group 
No. 

No. of 
Specimens 

Details 

GR4 4. Q 	 Q=(l+n)P 

BI n = 0.5 

B2 Lf=Ls  =800mm 

83 hf = h 	= 150 mm 

B4 df = d 	= 130 mm 

bf  = b 5  = 	75 mm 

Q 
GR5 2 - Similar to GR3. 

I1 -  No stirrups were 
provided in the 

/ g 
C2 • 	spandrel beams. 

* Lf  = length of the floor beam 

L 5  = length of the floor spandrel 

h  = overall depth of the section of the F.B. 

h5  = overall depth of the section of the S.B. 

b  = breadth of F.B. section 

b 5  = breadth of S.B. section 

d  = depth of the F.B. section 

d 5  = depth of the S.B. section 

**sand f are subscripts for the spandrel and floor beams respectively. 
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conclusively spandrel beams designed by a conventional elastic 

method using uncracked stiffness values. 	Although this method 

was not employed in the test programme, a brief discussion is 

relevant. 

By equating the flexural end rotation of the floor beam to 

the torsional rotation at the centre of the spandrel barn, the 

restraining moment, (2 T)  can be calculated using the following 

equation: 

2 T = 

PLf[3 

	(Ls)' 1 	Elfi 

ETj 

EI 	 1 

[16 + () 	f + 12 	
L

5 ( 
El 
 )j 

(2.1) 

where: El = Flexural stiffness of the beam 

L = Length of the beam 

GK = Torsional stiffness of the beam 

s, and f 	= are subscripts for the spandrel and floor beams respectively. 

It can be seen from equation 2.1 that the restraining moment is 

extremely sensitive to changes in the stiffness of the spandrel beam. 

If it is infinitely stiff, i.e. EI S =  CO'  GK = , the restraining 
3 PL  

moment is equal to 16 
 viz the value for a propped cantilever. If, 

on the other hand, the spandrel beam has zero torsional stiffness (EI S  = 0), 

the restraining moment is equal to zero. 	When the beams crack the 

tortional stiffness decreases drastically. 	Consequently the restraining 

moment and thus the torsional moment in the spandrel beam will decrease 

also. 	It is obvious then that the reinforcement provided to resist 
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torsion will be unnecessarily high. 	The conclusion that is therefore 

made is that the method produces an adequate design from an ultimate 

load point of view but it can be considered too uneconomical. 

A more reasonable approach can be made by using the post-cracking 

stiffness values; the following expression is given by Lampert (1971): 

GKcr = E

5  (b0  d0 ) 2  Ah 
'b + d ) 

S 	+ m) 	 (2.2) 
o 	0 

where: A  = cross-sectional area of the hoop bar, 

b 0 , d0  = dimensions between the corner bars of the hoop, 

s = spacing of the hoops, 

m = ratio of the volume of longitudinal steel to the volume 

of hoop steel. 

The stiffness calculated by equation 2.2 is a function of the 

transverse steel and accordingly larger values can be expected using 

the conventional elastic method. 	Also regions of low tensile stress 

remain virtually uncracked accounting for additional stiffness in the 

spandrel. 	Nevertheless the expression gives fairly good predictions. 

Collins and Lampert (1971) showed that an accurate indication of 

torque could be obtained using cracked stiffness, but before the 

cracked stiffness can be calculated, the reinforcement must already be 

designed. 	In order to do that, the magnitude of the torque must be 

known. 	This demands the use of cracked stiffness properties, resulting 

in a lengthy trial and error design procedure. 

The effect of the torsional moment on the web steel of the spandrel 

beam is significantly great and therefore must be fully design for. 

However the longitudinal steel in the spandrel beam due to torsion was 
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considered as a'. variable. For the spandrel beams of groups CR1 

and CR2, no provision was made for longitudinal steel whereas 

beams of groups CR3 and GR4 longitudinal steel due to torsion was 

provided as shown in Table 2.2. 

Spandrel beams in all groups were designed according to labelled 

methods A, B and C with assumed torsional stresses of 0.44 

0.33 	and 0.25 /T' respectively. 	The fourth design method 

labelled D originally was that proposed by Collins and Lampert (1971) 

using zero torsional moment. 	They also proposed that the joint should 

be provided with closely spaced stirrups to provide 100% hang up of 

the load transferred from the floor beam. 	Hwang and Hsu (1977) used 

the same method (T = 0) and proposed an equation for the minimim 

torsional steel to be provided in the spandrel beam as web steel. 

To design a spandrel beam using method (D) with zero torsional 

stiffness and torsional moment, none of the previously mentioned 

recommendations can be satisfied practically and the design is too 

conservative. 	Therefore it is suggested that the spandrel beams 

designed by method (D) should be provided with nominal stirrups based 

on the ACI 318-71 recommendations with maximum stirrup spacing not 

greater than (d/2). 	The design torisonal moments are shown in 

Table 2.3. 

The spacing of the stirrups which was determined by the shear 

stresses due to shear and torsion expected in the beams and the shear 

resisted by the concrete, were computed according to ACI-ASCE committee 

352 recommendations. 	The corresponding spacing of the stirrups given 

by CP110 are smaller. 	However the design torsional stresses are 

within the recommended values for ultimate torsion shear. 



Table 2.2 Effect of Torsion on the Longitudinal Steel of the 

Spandrel Beam 

Bottom long, steel when 
Required bottom long, torsional moment is not 
steel when torsional considered 

Specimen moment is considered _________________  
(mm2) 

Required (mm 2 ) Provided (mm 2 

GR1 	- Bl 526 339 339 

- 82 448 353 364 

- B3 411 324 339 

- B4 252 252 287.5 

GR2 - B5 500 319 339 

- B6 451 317 339 

- B7 420 315 339 

- B8 310 310 339 



Table 2.3 Details of the Design Methods 

Design 
Method Specimen (rn2)  Torsional Moment Notes 

GR1-Bi 30 

GR2-B5 40 
A T = 0.44 T- Limit design 

GR3-Al 30 

GR4-Bl 40 

GR1-B2 40 
Limit design, 

GR2 - B6 30 b2h 
ACI method, 

B T = 0.33 iç'-_--. proposed by 
GR3 - A2 40 Hsu and Hwang 

(1974) 
GR4-B2 40 

GR1-B3 30 

GR2-B7 30 
C T = 0.25 Limit design 

GR3-A3 40 

.GR4-B3 40 

GR1 - B4 35 Zero torsional 
stiffness, 

GR2 - B8 40 using the un- 
cracked stiff- 

GR3 - A4 40 ness values, 
D T = 0 originally 

GR4 - B4 40 proposed by 
Collins and 

GR5 - Cl 40 Lampert (1971). 
Also proposed 

GR5 - C2 40 by Hwang and 
Hsu 	(1977) 	as 
limit design 
with provision 
of minimum 
torsional 
reinforcement. 
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The floor beams in the test specimens are designed by the same 

method using the following equation: 

Mu 	- 

bd2 	
- q (1 - 0.59 q) 

1. 	f5  
where q = A5 

Ba' = Ps  çr 

According to the ACI 318-71 recommendations, beam reinforcement 

200 
should not be less than

5 min 
	and not more than 0.75Pb'  where 

Pb is the balanced reinforcement ratio for balanced conditions at 

ultimate failure and is given by: 

	

0.85 k1 	 87,000
+ f. 	) 

	

sy 	
87,ppo 	f5) 

where f 	= concrete cylinder strength (psi), 

f, = yield stress of main steel (psi), 

k 1  = 0.85, constant depending on f', 

'rnax = 0. 05, and 
P5.
min = 0.005 

The limit of the beam reinforcement ratio given by CPllO is 

between 0.25% and 4%. 

Since it is desirable to have a plastic hinge in the floor beam 

rather than in the joint, the negative steel provided was determined 

by the design negative moment (2 T)  and was kept constant in each 

group of the test specimens. 

The anchorage of the floor beam reinforcement into the spandrel 

beam was provided to satisfy the requirement of ACI 318-71 and CP110. 

Recommendations made by Somerville, Taylor and others are applicable 

for detailing the inside of the joint. 	The anchorage length required 
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by the bond stress limitations was provided by a horizontal extension 

of the floor beam bars into the spandrel beam through the joint, with 

a 900  bend of (5 x ) radius  ( is the diameter of the bar) and then 

vertical extension. 	Furthermore, the longitudinal bars of the floor 

beams were placed on top of the longitudinal bars of the spandrel beam 

at the joint. 

In order to avoid local failure close to the clamping heads of 

the torsional arms due to stress concentration, a length of 300 mm each 

end of the spandrel beams was reinforced with additional stirrups. 

This detailing of reinforcing bars was found to be quite efficient 

in transferring loads from the floor beam into the spandrel beam. 

Figure 2.5 shows the basic layout of the reinforcement in a test 

specimen. 	Tables 2.3 and 2.4 show full details of the design methods 

and a summary of the calculations for the design moments and shear 

forces respectively. 	The reinforcement and other details of the test 

specimens are given in Table 2.5. 

2.3 Material and Fabrication 

To obtain the required strength of the concrete within an 

acceptable time, trail mix designs were carried out having a constant 

cement : sand : gravel ratio with water/cement ratio varying between 

0.6 to 0.7. 	The other factor which was considered was workability. 

The same concrete mix was used in all test specimens using 

Ordinary Portland cement, 10 mm maximum size gravel and BS 882 grading 

zone 4 type sand. 	The concrete mix used and the concrete strength 

measured by testing cylinders on the day of testing, are shown in 

Table 2.6. 	Nine cylinders were cast from the same batch of concrete 
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Figure 2.5 Typical Reinforcing Details (Spandrel Beam Shaded) 



Table 2.4 Design Shears and Moments 

Design Shear (kN) Design Moment (kN.m) 

Specimen 
Design 
Method 

Design 
Load 
(P 	) 
(ku) 

Design 
Torque 
(Tu)
(kN.m) 

S. Beam Floor Beam Spandrel Beam FF.Beam 

T 
_ 

U 	(2 fl + 	1) 	+ 
T 

P 	2TULf 
+ Ve 	- Ve 	2 T 

P 
( 	(2 n + 1) + 

T u 	
L5 

 
r--] -r 

GR1-81 A 70 5.42 0.0 39.0 19.5 41.8 10.84 26.32 

-B2 B 70 4.7 0 38.48 19.24 42.55 9.4 25.97 

-83 C 70 3.1 0 37.3 18.6 44.15 6.2 25.1 

-B4 D 70 0.0 0 35.0 17.5 47.25 0.0 23.62 

GR2-85 A 70 5.42 0.5 39.0 37.0 41.8 10.84 25.0 

-B6 B 70 4.07 0.5 38.0 36.5 43.18 8.14 24.6 

-B7 C 70 3.1 0.5 37.28 36.14 44.17 6.2 24.4 

-88 D 70 0.0 0.5 35.0 35.0 47.25 0.0 23.6 

GR3-A1 A 45 0.904 0.5 24.75 23.63 8.10 1.81 9.45 

-A2 B 45 0.783 0.5 24.46 23.48 8.22 1.57 9.39 

-A3 C 45 0.595 0.5 23.99 23.24 8.52 1.19 9.30 

-A4 D 45 0 0.5 22.50 22.50 9.0 0.00 9.0 

GR4-B1 A 25 0.783 0.5 14.46 13.48 4.22 1.57 5.39 

-B2 B 25 0.587 0.5 13.97 13.23 4.41 1.17 5.29 

-83 C 25 0.445 0.5 13.61 13.06 4.56 0.89 5.22 

-B4 0 25 0.0 0.5 12.5 12.5 5.0 0.0 5.0 

GR5-C1 0 25 0.0 0.5 12.5 12.5 5.0 0.0 5.0 

-C2 D 25 0.0 0.5 12.5 12.5 5.0 0.0 5.0 



Table 2.5 Reinforcing Details of Test Specimens 

FLOOR BEAM SPANDREL BEAM 

Pan. Neg. Top 
Specimen 

2 
Long. Long. Transverse Long. Transverse 

N/sin Steel Steel Steel Pos. Long. Steel Steel Steel 

P . S pis P . S 

No. and No. and Die, and No. and Dia. of No. and Dia. and Spacing 
Din, of Ola. of Spacing of Bars Die, of of Stirrups 
Bars Bars Stirrups Bars 

GRI-81 30 5; 12 me 1.345 2; 8 inn 0.24 6.3 nan; 140 me 3; 12 me 0.807 2; 8 nan 0.24 6.3 ann; 	80 sin 

-82 40 5; 	12 ann 1.345 2; 8 me 0.24 6.3 Inn; 	140 ann 4; 10 ann + 1; 8 nan 0.866 2; 8 me 0.24 6.3 ann; 	100 nan 

-33 30 5; 12 me 1.345 2; 8 mm 0.24 6.3 nan; 	140 sin 3; 12 nan 0.807 2; 8 mm 0.24 4 nan; 100 nan 

-B4 35 5; 	12 ann 1.345 2; 8 min 0.24 6.3 ann; 140 me 3; 10 nan + 1; 8 me 0.68 2; 8 nan 0.24 4 nan; 120 nan 

GR2-85 30 5; 12 mn 1.345 2; 8 nan 0.24 6.3 ann; 	140 ann 3; 	12 han 0,807 2; 8 nsa 0.24 6.3 nan; 	75 nan 

-B6 30 5; 12 me 1.345 2; 8 me 0.24 6.3 nan; 	140 nan 3; 12 me 0.807 2; 8 inn 0.24 6.3 nan; 90 nnn 

-87 30 5; 12 mm 1.345 2; 8 me 0.24 6.3 inn; 	140 ann 3; 	12 	inn 0.807 2; 8 me 0.24 6.3 nan; 	115 nan 

-88 30 5; 	12 ann 1.345 2; 8 me 0.24 6.3 mi; 140 nan 3; 12 me 0.807 2; 8 me 0.24 6.3 nan; 	140 nan 

GR3-A1 30 2; 10 me 1.2 2; 6 ann 0.43 5 nan; 75 nan 2; 12 me 1.72 2; 6 nan 0.43 5 nan; 45 ann 

-A2 40 2; 10 nan 1.2 2; 6 me 0.43 5 me; 75 ann 2; 12 me 1.72 2; 6 me 0.43 5 nan; 55 an 

-A3 40 2; 	10 ann 1.2 2; 6 me 0.43 5 me; 75 nan 2; 12 me 1.72 2; 6 nan 0.43 5 nan; 65 	inn 

-A4 40 2; 	10 ma; 1.2 2; 6 me 0.43 5 me; 75 me 2; 12 me 1.72 2; 6 me 0.43 5 me; 75 nan 

GR4-81 40 2; 8 nan 1.1 2; 6 me 0.43 3 nsa; 	70 nan 2; 10 me 1.2 2; 6 mm 0.43 3 nan; 30 nsa 

-82 40 2; 8 ma 1.1 2; 6 me 0.43 3 me; 75 me 2; 10 me 1.2 2; 6 me 0.43 3 me; 40 nan 

-83 40 2; 8 me 1.1 2; 6 me 0.43 3 me; 75 nan 2; 10 me 1.2 2; 6 nan 0.43 3 me; 50 nan 

-34 40 2; 10 me 1.2 2; 6 me 0.43 3 me; 75 ann 2; 10 me 1.2 2; 6 nan 0.43 3 nan; 75 an 

GRS-C1 40 2; 10 me 1.2 2; 6 me 0.43 3 me; 75 ann 2; 10 me 1.2 2; 6 me 0.43 No shear or 
torsional 

-C2 40 2; 10 me 1.2 2; 6 m 0.43 3 nan; 75 me 2; 10 nan 1.2 2; 6 nan 0.43 Stirrups 
provided 



Table 2.6 Concrete Properties 

Age at 
Mean Average 

Specimen Conc. mix Ratio testing 
cylinder 
strenath 

modulus of 
elasticity* 

(days) (N/mm 2 ) (kN/mm2) 

GR1 	- Bi 1 	: 	2 	: 	3 0.625 14 30.0 30.0 

- B2 18 40.0 35.0 

- B3 14 30.0 30.0 

- B4 16 35.0 32.0 

GR2 - B5 0.625 14 30.0 30.0 

- B6 It 14 30.1 II 

- B7 30. 1 Is 

- B8 U If 30.2 II 

GR3 - Al 0.625 14 30.0 30.0 

- A2 20 40.0 35.0 

- A3 It U 40.5 35.0 

- A4 H  41.0 

GR4 - Bl 21 39.5 U 

- B2 41.5 35.2 

- B3 It II 41.0 U 

- B4 I' H  40.0 35.0 

GR5 - Cl " 18 40.2 35.0 

- C2 It U If 40.1 35.0 

* Measured at (0.5 x 10- 
3  ) strain. 



a) 
5- 

4-) 

as that prepared for casting a specimen. 	Six cylinders were stripped 

the following day and kept beside the specimen covered with a poly- 

thene sheet. 	They were tested on the same day as the testing of 

the specimen. 	The other three cylinders were cured in water and 

tested at 28 days. 

Plain, mild steel bars of different sizes were used for the main 

bars and stirrups in the test programme. 	In order to establish the 

main properties of the steel bars, tests were carried out in accordance 

with B.S. 18 and B.S. 4449. 	The measured yield stresses and other 

properties'of the reinforcing bars used in the test are given in 

Table 2.7. 	A typical stress-strain curve of a reinforcing bar is 

shown in Figure 2.6. 	The yield strain, strain hardening and the 

ultimate stage are denoted on the curve by letters, Y, Sh and U 

respectively. 

strain 

Figure 2.6 Typical Stress-Strain Curve of a Reinforcing Bar 



Table 2.7(a) Steel Properties (GR1 and GR2) 

Actual Actual Yield Strain at Ultimate Modulus of Nominal 
Bar Dia. 

Bar Cross- Stress yield Strength Elasticity 

(mm) 
Dia. 
(mm) 

sectiona' 
area (mm l) 2 

e 5 	x 10 U2 
E 5 	l05 (N/rn 2  

(N/mm ) (mm/mm)  

4 4.8 18.08 332 1.65 664 2.01 

6 5.945 27.74 324 1.62 495 2.00 

6.3 6.03 28.54 322 1.6 578 2.01 

10 10.02 78.81 305 1.5 498 2.03 

12 11.89 110.97 284 1.4 451 2.03 

(b) Steel Properties (GR3, GR4 and GR5) 

3 3.18 7.94 530 2.6 601 2.03 

5 4.7 17.35 370 1.85 604 2.0 

6 5.92 27.53 563 2.8 627 2.01 

8 8.20 52.81 349 1.74 595 2.00 

10 9 • 95 77.76 346 1.73 600 2.0 

12 11.99 112.91 405 2.00 650 2.02 

Results are based on an average of 3 specimens of each bar. 
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The reinforcing cages of the floor and spandrel beams, were 

placed into the mould on top of steel chairs provided for the 

concrete cover. 	The heavy steel mould used was coated with 

lubricating oil prior to any casting operation. 	The entire specimen 

was cast in one continuous operation allowing only a short time for 

the concrete to consolidate and using a vibrator. 	After casting, 

the specimen was covered with a polythene sheet. The following day, 

the sides of the mould were removed and again covered with the poly-

thene sheet. The specimen was finally removed on the day of testing 

and placed in the rig. 

2.4 Test Set Up and Instrumentation 

2.4.1 Simulation of Conditions at Cut-Off Points 

It was intended that the cut-off points for the beams should 

concide with the points of inflection (I.P.). 	This can be simulated 

using a hinge with ball bearing and when the test specimen is loaded, 

the hinges allow the ends of the spandrel beam to bend or to bend and 

twist. 	Under each of the ball bearings, a compression load cell is 

located to measure the reactions at the support at all loading stages. 

The ends of the spandrel beam in the test specimen are torsionally 

fixed, although this is not exactly the same situation in a framed 

structure. 	Nevertheless this enables the test procedure to be made 

easier and the analysis to be considerably simplified. 	The torsional 

fixity of the spandrel beam is achieved by fixing an arm to the ends 

àf the beam by means of plates and bolts as shown in Figure 2.7 and 

Plate 2.1. 	A load was applied to this torsion arm using a hydraulic 
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jack which was operated manually in order to keep the arm horizontal 

throughout the duration of the test. 	Compression load cells were 

placed between the jack and the arm to measure the load required to 

maintain the arm horizontal. 	The product of this load and the length 

of the arm is equal to the torsional moment in the spandrel beam. In 

the specimens of group GR1, a second arm was attached to each end of 

the spandrel beam with a dial gauge placed underneath the extreme end. 

Due to the applied load the ends of the spandrel beams tend to rotate 

torsionally; this rotation can be detected on the dial gauge. 	By 

operating the hydraulic jacks the reading on the dial gauges can be 

maintained constant, which means that the arm is being held in its 

horizontal position. 	For specimens in the other groups, the dial 

gauges were placed directly onto the torsional arams. 	As an additional 

check, a sensitive spirit level was located on each of the torsional arms. 

2.4.2 Loading Arrangements 

In Order to simplify the test set up the effect of the floor slab 

was not considered and so the test specimens were subjected to concen-

trated loads only, even though distributed loads may not present any 

difficulty in the analysis. 

In group GR1, the load was applied at the midspan of the floor 

beam using a manually operated hydraulic jack. 	The jack was attached 

to a steel cross beam bolted to two steel channels which were bolted 

to the floor. 	The method of applying the load can be seen in Plate 2.2. 

A load cell was placed on the beam at midspan directly beneath the 

jack to measure the applied load. 

In the other groups two concentrated loads were applied, one at 
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midspan of the floor beam, the other at the joint. 	For this purpose 

a distributor beam with rollers was used. 	The load was applied at 

a distance of 2/3 of the distributer beam length from the joint and 

1/3 from the floor beam centre so that the load transferred to the 

joint was half the load at the floor beam midspan. 	Two load cells 

were placed under the distributor beam at the centre of the floor beam 

and another one at the joint as shown in Plate 2.3(a),(b) to measure 

the applied load at any stage. 	For the specimens in groups GR3, GR4 

and GR5 one load cell was used, placed on the distributor beam under 

the jack due to inadequate space. 

All the load cells were connected to a digital voltmeter and 

data logger so that a complete record of the applied loads and reactions 

was available at each load stage. 

2.4.3 Measurements of Deflections and Rotations 

The deflections at the midspan of both the floor beam and the 

spandrel beam were measured using dial gauges. 

The torsional rotation of the spandrel beam was measured by the 

rotational arms fixed at the centre of the spandrel beam with a dial 

gauge underneath the extreme end. Additional inclinometers were 

placed at the end of the spandrel beam and the floor beam to measure 

the flexural rotation; one. inclinometer was placed at the joint. 	A 

record of deflections and rotations was made by reading the dial 

gauges and the related loads at each stage. 

The rotational arms measured the torsional rotations at half 

length of the spandrel beam. 	The dial gauges underneath those arms 

thus recorded the vertical movement of the arms as the beam twisted 
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under torsional load. 	However, the spandrel beam also deflected 

downwards at the same time. 	The angle of twist. can therefore be 

calculated from these movements. 

2.4.4 Strain in the Steel Bars and Concrete 

The strains in the reinforcement bars were measured using 

electrical resistance strain gauges. 	Within all specimens there 

were two gauges on the floor beam bottom steel at the centre, two 

on the floor beam stirrups near the joint, two on the floor beam 

top steel in the area of negative moment, two on the spandrel beam 

bottom steel at the joint and not less than four gauges on the stirrups 

of the spandrel beam; any additional gauges were also located on the 

spandrel beam stirrups. 	The type of strain gauge used was dependent 

on the bar diameter. 	Gauges of type (FLA-2-11), 2 m in length were 

used for the stirrups and gauges of type (PL-10-11), 10 mm in length 

were used for the main, bars. 

The strai.n gauges were fixed on the steel bars and stirrups in 

predetermined positions and protected by Araldite glue. 	Water- 

proofing of the gauges embedded in the concrete and protecting them 

at the time of casting is necessary otherwise the strain readings in 

the data logger fluctuate over a wide range and it becomes very 

difficult to assess the actual strain reading. 	Care was taken when 

leading the connecting wires out of the specimens as contact with 

the bars would result in a loss of bond. 

In order to eliminate the effect of thermal drift caused by 

differential heating and to couple the half circuit of the Wheatstone 

bridge, dummy models with the same strain gauge arrangements were used. 
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Although in theory dummy should be identical to the test specimen, 

due to the size of the specimen three small rectangular reinforced 

concrete beams representing the specimen members were used. 	The 

use of the dummy gauges was observed to stabilize the Wheatstone 

bridge so that more accurate results were obtained. 

A continuous print out of the strain gauge measurements were 

obtained from the data printer Teletype driven by power supply unit 

as shown in Plate 2.3(a),(b). 

Demec points were used to measure the strain in the concrete and 

the crack widths. 	These were located at the critical sections of the 

specimen. 	Demec points were fixed along the depth of the floor beam 

under the load at six levels and on the outside face of the spandrel 

beam at the centre of six levels. 	Demec points were also fixed on 

the inside face of the spandrel beam where the shear and torsional 

stresses are additive. 	On the floor beam additional Demec points 

were located in the area of negative movement near the joint. 

2.5 Test Procedure 

The specimen was first placed in the test rig then the relevant 
were 

instrumentations and strain gauge connections,Amade. 	The data logger 

was calibrated for zero strain gauge readings and the initial readings 

of the load cells, strain gauges, Demec gauges, dial gauges and 

inclinometers readings were recorded for the no load condition. 	The 

test procedure itself was essentially the same for all specimens. Using 

the hydraulic jack the load was applied and once the desired value was 

reached, the torsional arms attached to the ends of the spandrel beam 

were returnted to the horizontal position by operating the hydraulic 



34 

pumps attached to the jacks. 	All readings from the load cells, strain 

gauges, inclinometers and dial gauges 	 were then recorded. 

The beam was closely inspected for cracks and if any were found, their 

propogation was marked using a black ink pen. 	Finally all the strain 

gauge, load cell and inclinometer readings were recorded again in order 

to reduce the effect of drift within the electrical equipment. 	The 

load was then increased to the next predetermined load level and the 

process repeated. 	The specimen was assumed to have reached failure 

when the applied load was observed to have decreased considerably with 

high deflections or twist, indicating that no further load could be 

sustained by the beam. 	Pumping of the jacks continued in order to 

trace further development of the cracks. 	Since simultaneous failure 

of the floor and the spandrel beams was not observed, it was found 

necessary to pump the jack further to fail the spandrel beam in twist 

in groups GR1, GR3 and GR4 and to fail the floor beam in flexure in 

group GR2. 

Tests results are shown in Table 2.8. 



Table 2.8 Test Results 

Ultimate load, Ultimate torque 
P, kN kN.m 

Specimen 
________ _______ Test 

UTgn 
 Test 

Design 
Moment 
Torque (test) 

Mode of 
Failure 

Design Test Design Test 

GR1-Bl 70 50 0.71 5.42 2.85 * 6.42 A 

-82 70 80 1.14 4.7 375 * 7.69 A 

-83 70 80 1.14 3.13 3.96 1.26* 7.3 A 

-B4 70 80 1.14 0.0 4.25 - 6.85 A 

GR2-B5 70 80 1.14 5.42 7.0 1.29* 2.22 A 

-B6 70 80 1.14 4.07 7.4 1.8 2.07 A 

-87 70 85 1.21 3.08 6.2 2.01 2.56 A 

-B8 70 85 1.21 0.0 5.0 - 3.1 A 

GR3-Al 45 70 1.55 0.904 1.7 1.88* 4.6 A 

-A2 45 70 1.55 0.783 2.59 3.3 * 3.2 A 

-A3 45 75 1.66 0.595 2.37 3.9 * 3•49 A 

-A4 45 60 1.33 0.0 2.54 - 2.86 A 

GR4-Bl 25 35 1.4 0.783 1.47 1.87* 2.88 A 

-82 25 40 1.6 0.587 1.95 3.32* 2.55 A 

-B3 25 40 1.6 0.445 2.24 5•03* 2.28 A 

-B4 25 50 2.0 0.0 2.38 - 2.6 A 

* Maximum value recorded when the floor beam failed. 

A: hinge in spandrel beam and hinge in floor beam. 
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3.1 Introduction 

It is necessary to have a sufficient understanding of the general 

behaviour and mechanism of failure of the test specimens before 

developing any analytical approach for assessing the floor-spandrel 

beam assembly performance. 	This chapter provides a description of 

the general behaviour and modes of failure. 

A total of eighteen specimens representing the spandrel-floor-beam 

assembly were tested. 	The specimens can be grouped as follows: 

Group 1 (GR1) = four full scale beams (Bl, B2, B3 and B4) 

Group 2 (GR2) = four full scale beams (B5, B6, B7 and B8) 

Group 3 (GR3) = four one third scale models (Al, A2, A3 and A4) 

Group 4 (GR4) = four one third scale modesl (Bl, B2, B3 and B4) 

Group 5 (GR5) = two one third scale models (Cl and C2) 

Details of each group with load arrangements are shown in Table 2.1. 

3.2 General Behaviour of Test Specimens 

The general behaviour of the specimens is best described by 

referring to the load-deflection curves, Figures 3.1(a), (b), (c) and 

(d), load-torque curves, Figures 3.2(a), (b), and torque-angle of 

twist curves, Figure 3.3(a), (b). 	It is evident that the behaviour 

of the test specimens was greatly influenced by the different test 

parameters. 	It is, therefore proposed to describe the specimens by 

their floor and spandrel beam behaviour. 
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3.2.1 Floor Beams (F.B.) 

The sequence of load application is described in the test programme. 
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All floor beams in all groups had a point load at the midspan. The 

observed behaviour can be illustrated by referring to Figure 3.4 which 

shows a typical idealized load-deformation curve for the flexural 

section. 

The first visible cracks were developed under the applied load 

at midspan. 	This stage is marked by (1) on the diagram. 	Concrete 

between 0-1 is uncracked and hence the section behaves elastically. 

Once, the cracks developed, point (1) was passed. 	The cracking load 

varies between 33% to 50% of the ultimate load except beam GR1-Bl which 

cracked at 80% of the ultimate load, as shown in Table 3.1. 	With 

increasing load, the cracks widened and extended into the beam section. 

Concrete and steel at this stage, defined by 1-2 on the diagram, still 

behaved elastically with the concrete lossing a considerable amount. 

of its tensile strength. 	In fact, the transition between the region 

of 0-1 and 1-2 is not instantaneous. 	It is very much dependent on the 

amount of steel provided in the section which controls the cracking 

rate towards the neutral axis (cracking rate tends to be slow with 

higher steel percentages). 

Some of the cracks also developed away from the centre of the 

beam but tended to propagate towards the centre. 	At point (2), the 

steel starts to yield. 	This was confirmed in the test by having 

electrical strain gauges fixed on 	the longitudinal bottom steel. 

The crack propagation was traced using a magic marker and also using 

Demec points, which were fixed along the depth of the section at six 

levels. The crack developments could therefore be measured. 

When the load was further increased, the concrete lost its 

tensile strength with the neutral axis moving upwards. 	The yield 

of the steel was inevitable. 	At this stage, represented by the 
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Table 3.1 	Ratio of the Cracking Load to the Ultimate Load 

Flexural cracking Flexural cracking Torsional cracking 
Speciman load 	in F.B. load 	in S.B. load 

ultimate load, P ultimate load, P ultimate load, P 

GR1-B1 0.8 1 1 

B2 0.5 0.5 0.625 

B3 0.5 0.5 0.5 

B4 0.5 0.5 0.5 

GR2-B5 0.38 0.5 0.56 

B6 0.44 0.5 0.687 

B7 0.41 0.41 0.65 

B8 0.35 0.35 0.59 

GR3-A1 0.46 0.33 0.6 

A2 0.33 0.46 0.47 

A3 0.33 0.66 0.66 

A4 0.4 0.46 0.6 

GR4-B1 0.38 0.38 0.624 

B2 0.5 0.62 0.75 

B3 0.5 0.5 0.62 

B4 0.4 0.6 0.6 
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region 2-3 on the diagram, the non-linearity characteristics of 

concrete and steel affected the behaviour of the beam. 	The increase 

in the compressive strain of the concrete at the top of the beam 

was observed using Demec readings with further widening of the cracks 

at the bottom. 	The beam deflection also increased. 	Failure occured 

by crushing of the concrete after yielding of the steel with uncontrol-

able deflections forming a hinge underneath the load, except for beam 

GR3-A4 in which the hinge was shifted away from the centre. 	This is 

represented by point (3) on the diagram. FigUres 3.1(a) and (b) show 

load-deflection curves. 

3.2.2 Spandrel Beams (S.B.) 

The flexural behaviour of the spandrel beam was different from 

that already discussed for the floor beam. 	Spandrel beams were 

subjected to a combination of flexural and torsional loading applied 

at the same time. 	However the final cause of failure was not due 

to flexure. 	Smaller deflections were observed with the cracks developed 

at the centre of the beam. 	As the load was increased cracks tended 

to propagate vertically upwards and then bend away from the centre. 

The observed cracking loads of the spandrel beams were slightly higher 

than those of the floor beams i.e. between 35% to 60% of the ultimate 

load. 	Load-deflection curves of spandrel beams are shown in Figures 

3.1(c) and(d). 

As far as the torsional behaviour is concerned, two types of 

spandrel beams were recognized. 	The first type, was defined by the 

beamsnot reaching tbe4t-ultimate torsional capacity, beams in GR1, GR3, 

GR4 and GR2-B5 are of this type. 	In the second type, the beams 



reached their ultimate torsional capacity. 	Beams GR2-B6, GR2-B7 

and GR2-B8 are of this type. 	After flexural cracking of the spandrel 

beam was detected, smaller torsional cracks 	on the inside face, 

started to develop at higher load levels of 50% to 75% of the ultimate 

load. 	They propagated vertically for a short distance and then bent 

towards the joint. 	At this stage i.e. after crack formation, the 

torsional stiffness decreased drastically. 	Also no sign of the 

stirrups yielding was observed in any of the specimens. 	With reference to 

Figures 3.2(a) and (b), the torque in the spandrel beam increased as 

the load was increased resulting in more cracks developing along with 

widening of the existing ones. 	The torque then remained nearly constant 

with increasing load. 	This allowed a redistribution of torsional moments 

from the spandrel beams to the floor beams. 	As the load was further 

increased, the first type of spandrel beams carried more torsion but 

the full torsional capacity was not reached due to flexural failure 

of the floor beams. 	The formation of the plastic hinge in the floor 

beam indeed accelerated the twisting of the spandrel beam and consequent 

failure. 	In other words spandrel beams of the first type failed due 

to twist. 

The second type of spandrel beams carried more torsional moment 

till they reached their ultimate torsional capacity. 	At this stage 

yielding of the stirrups was observed from the strain measurements. 

Widening of the cracks was inevitable which at higher loads spiralled 

around the section. 	A torsional plastic hinge was formed followed by 

definite failure of the spandrel beam. The load was then further 

increased to fail the floor beam. 	This was achieved by forming a 

flexural plastic hinge under the load. Figures 3.3(a) and (b) show 

the torque-angle of twist curves for the spandrel beams. 
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The torsional behaviour can be described by referring to 

Figure 3.5, an idealized torque-twist diagram with points 0, A, B, 

and C corresponding to points 0, 1, 2, and 3 in Figure 3.4 respectively. 

0-A on the diagram represents the elastic uncracked behaviour. 	A-B 

represents the elastic cracked behaviour. 	B-C represents the non- 

linearity characteristics of concrete and steel, which affect the 

behaviour of the beam. 	C-E represents the descending part after 

failure. 	Point (C) is the failure point. 	At point (A) cracking 

takes place; beyond this point yielding of the steel may be noticed. 

Strains in the stirrups and longitudinal steel were measured by 

electrical strain gauges. 	To assess the cracks in the spandrel beams, 

Demec points were fixed on the surface at the concrete on the inner 

face where the torsional and shear stresses are additive. 	The crack 

widths at mid-depth were considered to indicate the effect of torsion. 

Demec points were also fixed at midspan along the depth of the beam 

at six levels to trace the flexural cracks on the spandrel beam. 

The design and behaviour of beams in group 5, however were 

different from the rest of the test specimens. 

Two beams GR5-Cl and GR5-C2 were both designed by method (D) to 

carry zero torsional moment. 	No web reinforcement was provided to 

resist the torsional and shear stresses. 	This was to fail the specimens 

at the joint. 	Hence it was necessary to find the failure surface or 

the critical section within which stirrups could be provided to resist 

the torsional and shear stresses. 	The behaviour of the two specimens 

and failure surface were remarkably similar though beam GR5-C2 had two 

extra 6 m steel bars placed with the negative steel in the floor 

beam in the joint, each one extending in one direction into the spandrel 

beam. 	A crack first occurred between the floor beam and spandrel beam 
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due to the negative moment at the end of the floor beam. 	The 

cracks then extended up to load of Q = 44 kN which caused sudden 

failure. 	Failure also caused spalling of the bottom layer of concrete 

along the longitudinal steel. 

3.3 Modes of Failure 

Failure of the floor-spandrel-beam assembly may occur in one 

of the following ways: 

A hinge forms in the floor beam under the applied load; 

point (1), Figure 3.6. 

A hinge forms in the floor beam in the negative area; 

point (2). 

A hinge forms in the joint; failure occurs before the 

beams reach their ultimate capacities; point (3). 

A hinge forms in the spandrel beam, point (4). 

Figure 3.6 Location of Possible Hinges 



The formation of any two hinges may result in the whole 

structure or part of it forming a mechanism with resultant collapse; 

possible modes of failure consist of: 

Two flexural hinges 1 and 2. 

Flexural hinge 1 and hinge at the ,joint 3. 

Flexural hinge 1 and torsional hinges 4. 

Torsional hinges4 and hinge at the joint 3. 

The formation of the hinges is very much dependent on the amount 

of steel provided. For example, hinge 2 may move to 3 when,Aadequate 

percentage of negative steel is provided. 

Two types of failures were observed: 

Floor beam failure. 

Spandrel beam failure. 

3.3.1 Floor Beam Failure 

This is a flexural type of failure, with the formation of tensile 

plastic hinges. 	Those hinges obviously developed due to tension in 

bending causing the bottom reinforcing steel to yield sufficiently. 

The neutral axis was still within the section. 	Yielding of the 

bottom reinforcing steel was the main cause of the hinge rotation, 

since sections were under-reinforced. 	Failure occured by crushing 

of the concrete of the compressive face. 

Rotation of the flexural plastic hinge accelerated the twisting 

of the spandrel beam. 
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3.3.2 Spandrel Beam Failure 

The nature of reinforced concrete failure under combined stresses 

is indeed complex and the essential conditions resulting in such 

failures are not fully understood, though the behaviour of a reinforced 

concrete beam under pure bending and pure torsion is well understood 

and established. 	Flexural failure has already been considered. Beams 

subjected to torsion must be sufficiently reinforced to avoid torsional 

failure which tends to be violent, destructive and usually without 

warning. 	Torsional cracking at failure is cleavage fracture caused 

by the principal tensile stress due to torsional shear exceeding the 

tensile strength of the concrete. 

The final mode of failure is dependent on the applied bending and 

twisting moments. 	For beams subjectato high ratios of bending to 

torsion, failure results by crushing of the concrete on the compressive 

face. 	With the presence of torsion, the diagonal compression due to 

torsional shear stress tends to increase the direct compression caused 

by bending; accordingly the flexural strength is reduced; the amount 

of reduction depends on the amount of applied torsion. 	On the other 

hand, the compressive stress caused by bending reduces the principal 

tension due to torsional shear and then the torsional capacity of the 

beam is increased. 	However test data show that, high increase in the 

ratio of bending moment to twisting moment does not produce an increase 

in the torsional strength. 

Where the torsional shear stress is large enough to produce a 

critical principal tensile strain for the cleavage fracture, is a 
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stage before crushing of the concrete in compression and cleavage 

fracture in tension are reached. 	After the torsional cracks developed 



the torsional stiffness decreased drastically, also the concrete 

lost most of its tensile strength and steel started to yield with 

considerable increase of the compressive strain; then a torsional 

plastic hinge was formed. 

It is interesting to note that the spandrel beams exhibited 

inelastic deformations and as the load was increased, the torsional 

rotation was increased substantially compared to its value in pure 

torsion. 

Cracks develop when the tensile stress in the tension area is 

greater than the tensile strength of concrete 	Therefore the 

parameter (t 
 must be involved in any relationship which may be 

proposed to predict cracking. 

In the past the tensile strength of concrete was neglected in 

most theories and codes of practice. 	This is due to the fact that 

it is small in value compared to the compressive strength. 	However, 

in a sectional analysis the tensile strength must be determined. The 

most common control tests which determine the tensile strength are 

flexural and splitting tests. 	It is generally believed that the 

modulus of rupture for concrete can be expressed as a function of its 

cylinder strength. 	Indeed the flexural test (or modulus of rupture 

test) is used in this study in preference to the 	direct tensile 

strength. 	It is a useful test; practically speaking flexural tension 

is more common than direct test and can be accurately measured. 

The experimental results produced by Beeby [48] indicate a 

considerable scatter, nevertheless a number of relationships have been 

proposed to express the tensile strength of concrete in terms of the 

cylinder strength. 
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The tensile strength given by theAC1 [49] is: 

ft 
 = 0.627 vlçr 	.... N/mm2 	 (3.1) 

where 	= cylinder strength of concrete. 

(f) given by the CEB [50] is: 

ft 
 = 0.272 	

2/3 	2 
.... N/mm 	 (3.2) 

The following relationship was suggested at the University of Illinois 

by Warwaruck [51]: 

21 
84 	

N/mm2 
3+r 

(3.3) 

The tensile strength given by the Building Research Station [52] is: 
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.... 	K = 	6.2 	- 	10.4 

average 	ft =  0.7 v7fc r .... 	N/mm2  (3.4) 

Figure 3.7 shows the test results reported by Beeby [48] and the 

other investigators. The values of the tensile strength of concrete 

obtained from different formulae are shown in Table 3.2. 

It can be seen from Table 3.2 that the values of 	given by 

B.R.S. and C.E.B. are less reasonable than those given by ACI. However, 

the following relationship is proposed to express the tensile strength 

of concrete as a function of the compressive strength: 
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Table 3.2 Tensile Strength of Concrete (Expressed as Modulus of Rupture) 

N/mm 2  

Tensile strength ft , N/m2  

ACI 
eq. 	3.1 

CEB 
eq..3.2 

Warwaruck 
eq.. 	3.3 

B.R.S. 
eq. 	3.4 

Proposed 
eq. 	3.5 

20 2.8 2.0 2.9 3.13 2.68 

25 3.14 2.3 3.3 3.5 3.0 

30 3.43 2.63 3.62 3.83 3.28 

35 3.7 2.9 3.88 4.14 3.55 

40 3.96 3.18 4.12 4.43 3.79 

45 4.2 3.44 4.3 4.7 4.02 
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ft 
 = 0.6 icr 	 (3.5) 

The above relationship -has been proposed in the light of the test 

results which are based on flexural tests, representing the modulus 

of rupture of concrete. 

3.4 The Observed Effect of the Variables on the Failure Mechanism 

of the Test Specimens 

Full details of the test specimens are shown in Table 2.1. 	The 

design variables affect the distribution of internal forces in the beams 

which determines the failure mechanism of a particular specimen. 	The 

main variables considered in this study are: 

3.4.1 Load Application 

In group GR1 a point load was applied at the midspan of the floor 

beam only. 	For groups GR2, GR3, GR4 and GR5 two point loads were 

applied one at midspan of the floor beam, the other at the joint. This 

was to increase the shear effect on the spandrel beam. 	Since the 

spandrel beams of GR2 were shorter than those of group GR1, they were 

subjected to higher shear stresses due to torsion and shear. 	This 

may simulate an edge region of a continuous spandrel beam. 	Less 

severe shear stresses were expected in the spandrel beams of groups 

GR3 and GR4 since the length of the spandrel beams was equal. 

The existence of high shear in spandrel beams led to wider cracks. 

Increasing the load and then the applied moment in the spandrel beams, 

increased the torsional rotation capacity as discussed earlier, this 

can be seen in Figures 3.8(a) and (b). 
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3.4.2 Longitudinal Steel 

Spandrel beams in groups GR1 and GR2 were not provided with 

longitudinal steel due to torsion. 	On the other hand longitudinal 

steel was provided in the spandrel beams of groups GR3 and GR4. The 

function of the longitudinal steel is easily understood in bending, 

however, the observed behaviour indicated the small contribution of 

the longitudinal steel in the spandrel beams. 	No effect was 

observed on the ultimate torsional capacity. 	Specimens in groups 

GR1 failed in flexure in the floor beams. 	It was suggested that 

the effect may be revealed in spandrel beams of group GR2 where torsion 

and shear were high, also the torsional rotations were greater than 

those of beams in group GR1. 	The effect was not significant due to 

the fact that that beams reached their ultimate torsional capacity even 

where there was no provision for longitudinal steel due to torsion. 

The spandrel beams in groups GR3 and GR4 were provided with 

longitudinal steel due to torsion; once again the effect was not 

pronounced since the floor beams failed long before the ultimate 

torsional capacity was reached. 

However, the effect of the longitudinal steel was observed in 

controlling the crack width and counteracting the tendency of widening 

spiral cracks as well as anchoring the stirrups especially at the corners 

allowing them to develop their yield strength. 

It has been suggested that the only way in which the longitudinal 

steel can contribute in resisting the external torsional and shear 

stresses is by dowel action. 	This is discussed in Chapter 5. 



3.4.3 Transverse Steel 

In order to prevent the sudden and explosive type of failure 

caused by torsion and shear, the spandrel beam should be sufficiently 

reinforced to exhibit adequate ductility. 	The amount and spacing 

of the transverse steel in the section are governed by two consider-

ations: 

To resist any torsional and shear stresses excessive to 

that resisted by concrete. 

To provide adequate anchor} for the longitudinal steel and 

reduce the unsupported length to prevent spalling of the 

bottom layer of concrete along the longitudinal steel. 

The amount of web reinforcement provided in each specimen was 

determined by the method of design, hence the torsional moment. 

Accordingly specimens designed by method (A) had more stirrups than 

those designed by method (D). 	Stirrups in spandrel beams designed 

by method (0) were nominally spaced (s = d/2). 	Stirrups in the 

spandrel beams of groups GR1, GR3 and GR4 did not reach their yield 

point at failure, however stirrups in beams of groups GR2, did reach 

the yielding point before or at failure. 	This can be seen in 

Figures 3.9(a) and(b). 

Test measurements show that the web steel was practically free 

from stress prior to crack formation and of insignificant or noticeable 

effect on the behaviour or strength of the spandrel beams. 	After 

crack formation, the stirrups had a significant effect in resisting 

the shear forces due to shear and torsion, restricting the growth 

of the diagonal cracks and reducing their propagation into the 
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compressive zone. 	Moreover stirrups are spaced to tie the longitudinal 

steel into the main bulk of the concrete and provide a restraint 

against the splitting of concrete along the longitudinal steel. 

The effect of stirrup spacing in the spandrel beams was observed 

by the occurrence of cracks. 	Cracking on the inner-side of the 

spandrel beam tended to move closer to the joint as the spacing of 

the stirrups was increased without effecting the joint integrity as 

shown in Plate 3.1. 

To reach the ultimate torsional capacity stirrups must be so 

spaced to make sure that any failure surface will intersect a 

Sufficient number of stirrups. 	However the ultimate torsional 

capacity may not be reached if a flexural failure in the floor beam 

takes place. 	The spandrel beam will then fail due to twist allowing 

the stirrups to yield sufficiently. 	This was true for beams under 

high shear and torsion. 

Another significant effect of the confinement 'of beams sections 

under flexure, will be discussed in Chapter 4. 

3.4.4 Length of the Spandrel Beam 

The length of the spandrel beams in group GR2 was shorter than those 

in group GR1 (i.e. L 5  = Lf12). 

This may simulate an edge spandrel beam in which shear and torsion 

are expected to be high. 	The test measurements confirm that cracks 

in beams of GR2 were wider than those of GR1, also spandrel beams of 

group GR2 deflected less than those in group GR1, as shown in Figure 3.1(c). 

Figures 3.8(a) and(b) show the load-angle of twist curves; 

evidently the angle of twist for the beams in GR2 was greater than those 



 

ii 

p.  

I 	

ojl 

P1 ate 3.1 (1  li ) 	Spandrel Beams of Group GR2 

--- 

Lae  
Plate 3.1(b) Floor Beams of Group GR2 



in GR1.. 	In other words the angle of twist is larger when the ratio 
L 

is large i.e. angle of twist increases as the spandrel beam length 
S 

is shortened. 

3.4.5 Concrete Strength 

The concrete strength varied from 30 N/mm 2  to 40 N/mm2  in the 

test specimens. 	It was observed that the concrete strength has a 

significant effect on the crack development. 	The tensile strength of 

concrete is very much related to the concrete strength, hence the 

cracking load. 	The ultimate strength of the beams whether in flexure 

or torsion is effected too. 	This will be discussed later. 

3.4.6 Joint Detailing 

In order to investigate the detailing of the reinforcing bars at 

the joint, two beams GR5-Cl and C2 were designed to fail' at the joint. 

No stirrups were provided to resist torsional and shear stresses. The 

aim was to find the failure surface or the critical section within 

which stirrups could be provided to resist shear and torsional stresses, 

as was studied by Hsu and Burton [40]. 

Specimens GR5-Ci and C2 were designed by method (0) (T u  = 0), 

with the floor beam longitudinal steel placed on top of the spandrel 

beam longitudinal steel at the joint. 	The general behaviour of the 

test specimens is already discussed in Chapter 3; the failure surface 

can be seen in Plate 3.2. 

After taking the necessary measurements, it was found that the 

failure surface consisted of a horizontal plane and two inclined planes. 

The total horizontal projection at the level of the bottom longitudinal 

steel was (= b  + 2 d 5 ) as shown in Figure 3.10. 



Plate 3.2 Specimens of Group GR5 (back view) 
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Figure 3.10 Failure Surface 
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V = V + V  + 

V = shear in compression area 

v  = aggregate interlock 

v  = dowel action 

V = reaction at A 

1 = half of the horizontal projection of the failure surface 

L 5  = length of the spandrel beam 

Figure 3.11 Free Force Diagram of the Failure Surface 
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Specimen GR5-C2 was designed in the same manner as Cl to 

determine whether extra negative steel at the joint would affect 

the behaviour of the joint and hence the failure surface. 	Two 

extra 6 mm steel bars were provided as negative steel in the 

floor beam at the joint, each extending in one direction into the 

spandrel beam. 

The failure surface and behaviour were the same as Cl, as shown 
the 

in Plate 3.2. 	To avoid}type of failure observed in GR5-Cl and C2, 

stirrups must be provided near the joint within the distance of (d 5 ) 

from both sides of the joint. 	The number of stirrups required should 

be sufficient to carry the reaction from the floor beam and so prevent 

this type of failure, i.e.: 

b +2d 	V 
f 	S_ 	U 	 (3.6) 

5 	2A . fwy 

where bf  = width of the floor beam section 

d5  = depth of the spandrel beam section 

V = the ultimate force transferred from the floor beam to 

spandrel beam 

AV = area of one leg of one stirrup 

fWY = yield strength of a stirrup 

s = spacing of stirrups. 

A series of calculations were carried out to predict the length 

of the horizontal projection of the failure surface. 	Different 

values were taken from literature for various values of shear in the 

compression area, the dowel action and aggregate interlock for this 

purpose as shown in Figure 3.11. 	It was found that in all cases, 
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the length of the horizontal projection of the failure surface was 

not less than 2 d 5  + d  which justifies the experimental results. 

It is interesting to mention here that the joint failure reported 

by Collins and Lampert [39] is not a joint failure in this sense. The 

specimens which were reported to have failed at the joint were designed 

according to Leonhardt's recommendations, i.e. placing as closely 

spaced stirrups as possible to ensure full transmission of the reaction 

from the floor beam. 	A closer examination of the specimen photographs 

in the report revealed that the specimen failed by shear near the joint. 

The joint suffered spalling of concrete because of the number of 

reinforcing bars used at the joint without adequate provision for bond. 

Joint failure was not observed in any of the beams tested with 

special reference to beams GR1-B4, GR2-B8, GR3-A4 and GR4-B4 in which 

stirrups were nominally spaced. 

At this stage a safe detailing arrangement for the reinforcing 

bars at the joint can be made by: 

Placing the floor beam longitudinal steel on top of the 

spandrel beam longitudinal steel. 

Satisfying equation 3.6. 

%ap/ 
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4.1 Introduction 

In this chapter the flexural strength of the floor beam is 

analysed and based on the assumptions that the contribution of 

concrete in the tension zone is not significant and the Bernoulli_ 

Navier 	hypothesis that a plane section remains plane after bending 

and thus strain is linearly proportional to its distance from the 

neutral axis. 	The stress-strain curve for the tensile reinforcement 

is considered sufficient for the analysis for the zone section in 

tension. 

4.2 Section Under Flexural Compression 

In the analysis of a reinforced concrete section, an evaluation 

of the stress block parameters and hence the ultimate strength of the 

concrete section under flexural compression is required. Therefore 

the following factors must be considered: 

Stress-strain relationship of concrete. 

Modulus of elasticity. 

Strain at maximum stress. 

Ultimate strain at failure. 

To evaluate the above factors experimentally, a series of tests 

were carried out on (100 x 100 x 500 mm) concrete prisms. 	The prisms 

were cast from the same batch of concrete as that already prepared 

for the beams, and were tested at different ages to achieve a specific 

strength. 	The concrete strength was assessed by testing six cylinders 

for each type of concrete. 

The true strain of the concrete can be measured only over the 
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regions of uniform strain. 	The concept of strain measurement which 

assumes that the material composition is homogeneous can not be fully 

satisfied due to the fact that concrete is a multiphase material. 

Particle size influences its homogeneity and therefore the strain 

measurement. 	However Hanson and Kurvits [53] recommended that the 

strain gauge length should not be less than 3 times the maximum particle 

size. 	Thus for 10 mm maximum particle size, the minimum gauge 

length should be 30 mm. For this purpose electrical strain gauges, 

type FLA-30-11 and 30 mm in length, were fixed on two adjacent sides 

of the section. Demec points were also fixed on the other two sides 

to give an additional check on the measured strains. 	Loading and 

strain measurement were carefully controlled so that a continuous 

record of loads and strains was obtained up to ultimate failure using 

a data logger. 

The maximum compressive strength of a concrete prism is represented 

by the cylinder strength (f 0  = f
C 1 

' '. 

4.2.1 Stress-Strain Relationship for Concrete 

The definition of the concrete stress-strain relationship is a 

basic requirement for the sectional analysis. 	The stress-strain 

relationship of concrete is influenced by a number of factors thus it 

may not be possible to define the relationship by one approach. 	Since 

early investigations several different hypotheses and approaches have 

been employed in this area, and as a result various relationships have 

been proposed. 	Some of them differ only in detail, otherssignificantly 

depending mainly on how the factors affecting the stress-strain 

relationship of concrete can be controlled. 
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In the last three decades, most theories have taken into 

consideration the inelasticity of concrete and many expressions 

and curves have been proposed to define the relationship in terms 

of both the elastic and inelastic behaviour of 'concrete. 

Attempts were also made to simplify the relationship and approximate 

the stress-strain curve to employ it in a sectional analysis. 	The 

shapes of the curve has varied between a triangle, rectangle and 

trapezoid and some been widely adopted by codes of practice for many 

countries. 

The shape of the stress-strain curve is highly affected by the 

duration of load and rate of straining, and is associated with the 

mechanism of internal progressive microcracking. 	For stress in the 

region up to 30 percent of f c' 
 the existing cracks in concrete remain 

nearly unchanged. 	The internal energy is less than the energy required 

to create new microcrack surfaces. 	A stress level of about 30% has 

been proposed as the limit of elasticity [54]. 	At stress levels 

between 0.3 fc - 0.5 	the stress concentration around the crack 

tips makes the bond cracks start to extend. 	At this stage the' internal 

energy is nearly balanced by the required crack release energy. Crack 

lengths reach their final values and crack propagation may be considered 

stable as long as the applied stress is constant. At stress levels 

between 0.5 f 	- 0.75 	, bond cracks continue to grow slowly and cracks 

at aggregate surface start to bridge in the form of mortar cracks. At 

this stage, while keeping the load constant the cracks continue to propagate 

at a decreasing rate up to their final lengths. 	Beyond a stress level 

of 0•75' the critical crack lengths are reached. 	The required 

crack-release energy is now less than the internal energy resulting in 

an increase in the crack propagation which at this stage can be considered 
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unstable. 

	

The progressive failure of concrete at 	is caused by micro- 

cracks in the mortar, joining up with bond microcracks at the 

surfacesnear to the aggregate and causing internal damage. 	Damage 

to material continues with increasing compressive strain. 	This 

represents the descending portion of the stress-strain curve [55]. 

This theory of internal crack propagation provides no more than a 

general description of stress-strain relationship. 	However this has 

led to a better understanding of the behaviour of the structural concrete 

section. 

The ultimate moment capacity of a reinforced concrete section is 

not highly affected by the exact shape of the stress-strain curve, 

but the stress-strain behaviour must be accurately defined in the 

compatibility criteria associated with any design procedure. 

The numerical approximation and the empirical formulae that have 

been proposed have limits of validity and acceptable degree of accuracy. 

Hence their application is restricted. 

Hognestad [24] proposed the following stress-strain relationship for 

concrete under flexural compression which is still widely used by many 

investigators, Figure 4.1: 

2 
-2( 

0 	
0 - (-a; ) 	

for E 	 (4.1a) 
T_ 	C ,  

f 	Cu_O•85Co_OlSC 

CUCO 	
forC>c 0 	(4.1b) 

Sahlin [56] and Smith and Young [57] proposed the following 

exponential expression to represent the stress-strain relationship 
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Figure 4.1 Stress-Strain Diagram in Flexure 

(Hognestad) [24] 

of concrete under flexural compression: 

(1 ---) 
f 	C

Co 
= () 	e 	 (4.2) 

Sahlin used a value of 0.002 for c 0 , Smith and Young assumed that 

f =fc  I  o 	
and 	= 0.0017 to 0.002. 

In more recent investigations into the concrete strength and 

deformation properties, a complete and general stress-strain relation- 
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ship has been emphasized. 	Also, the development of new testing 

machines has helped to obtain a complete set of stress-strain curves 

for a wide range of strain rates and sustained loadings. 

Strain controlled and electrically programmed testing equipment 

was used by R3sch [58] to obtain a complete stress-strain curve and 

to investigate the strength and deformationproperties of concrete. It 

was proposed that by using the stress-strain curves of concentrically 

loaded concrete prisms, the stress distribution in the compressive zone 

in flexure can be determined. 

A simple and practical stress-strain relationship was proposed 

and adopted by CEB [59]: 

2 

= 2 
0 	0 

f = f  

for c < E 	 (4.3a) 

for E 0 < E < E 	 (4.3b) 

where E 0  = 0.02, f0 = f' and E u  = 0.0035. 

Another recognizable expression for the concrete stress-strain 

relationship is in the form of a polynomial equation, i.e.: 

	

= A (-s 	
2 

-) + B (--) + C (---) 3 + 0 (-
C  

) 4 

	

C 0 	C 	 C0 	o 

where A, B, C and D are constants, 

f = compressive stress at any strain, 

f0  = maximum stress in concrete, 

C = strain in concrete, 

C o  = strain at maximum stress, f 0 . 

(4.4) 



In these polynomial forms, the maximum value of (i-) occurs at 

= 1.1 and since the stress.block parameters are determined by 
Co  

integration, this may not be significant when the assumed function is 

compared with the experimental results. 	Kabaila [60] has shown that 

the polynomial of equation 4.4 gives a satisfactory fitting to the stress-

strain curve up to a strain range of three times, c 0 . 

A concrete stress-strain relationship of polynomial form for 

different types of concrete can be obtained by evaluating the coefficients 

A, B, C and D in equation 4.4 from experimental results to get the best 

fit. 	The following stress-strain relationship can be proposed as an 

example: 

2 	 3 	 4 
2.28 	1.76 

( = 	(i-)- 	C 
C 	-s-) + 0.5 (-s-) - 0.04 (._) 	(4.5) 
0 	 0 	 0 

A simple form to represent the concrete stress-strain relationship 

was introduced by Desayi and Krishnan [61] in the following equation: 

Ec 
f= 	

C 	 (4.6) 
l+(-) 

0 

where E= 2 - and f0 = 
Co  

To use equation 4.6 the value of c and the corresponding stress 

must be known. 	They assumed a value of Cu = 0.003 and a corresponding 

stress equal to (7/8 	Equation 4.6 gives a good agreement with 

the test results only up to a concrete strength of 40 N/mm 2 . 	The 

problems involved in the formulation of concrete stress-strain 

relationship were described by Saenz [62]. 	Two expressions were given; 

one which represents reasonably well the ascending portion of the curve; 
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the other to predict the descending portion as well. 	To combine the 

two expressions the following equation was proposed: 

f= 	
C 
	

(4.7) 
A +.B e + C e + D 

coefficients A, B, C and 0 were to be determined by satisfying the basic 

conditions of the stress-strain curve. Tulin and Gerstle [63], using 

their own experimental results, proposed the following equation for the 

concrete stress-strain relationship: 

E'C 	 where E' = (a + 1) -s 	(4.8) 
a+(-)b 	 Co 

0 

The coefficients a and b are to be adjusted to obtain the best fit of 

the experimental results. 	In their case it was found that a = 2 and 

b = 3. 

In any mathematical model to represent the stress-strain curve of 

concrete under compression, the following conditions must be satisfied: 

f = 0 at E = 0 (point of origin). 

=Ec at 

	

	= 0 (slope of the stress-strain curve at the 

origin equals, by definition the modulus 

of elasticity). 

df0  
f = f0  at c = Cc (point of maximum stress, 	- - 0). 

As far as the descending portion is concerned the analytical 

curve must satisfy the experimental results and at least one 

experimental point must fall on the curve. 



In order to propose a concrete stress-strain relationship to 

be used in this study, equation 4.6 may be represented by the following 

general form: 

f= 	
_c 	 (4.9) 

A+ Be 

Satisfying the basic conditions for the stress-strain curve, the 

cofficients A, B and n can be determined where 

A =.- , B = 0nlE and n =.R.!I.T 

E 	
(secant modulus) where R = 	, E =  

Thus equation 4.9 becomes: 

R -- 
- 	

n 
C - 1 + (R-l) () 

(4.10) 

Equation 4.10 is less complicated and more suitable for practical use 

due to the fact that failure strain is not defined in the equation. 

However the ultimate strain at failure (regarding the descending portion 

of the curve), and the strain at maximum stress, c, are defined by some 

empirical relationships based on the experimental results. 

The following equation can be derived s.irntto.r*j— 	by satisfying 

the basic conditions of a stress-strain curve in the same manner as 

equation 4.10: 

n 

fo 	
+ (1-R) () 	 (4.11) 
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Equations 4.3(a) and 4.3(b) are special cases of equation 4.11 

where R = 2. 

4.2.2 Initial Modulus of Elasticity, ic 

A considerable amount of work has been carried out on the modulus 

of elasticity of concrete and a number of relationships have been 

proposed. 	Modulus of elasticity is highly dependent on the various 

following factors; type of aggregate, water/cement ratio, aggregate/ 

cement ratio, curing, age and rate of loading. 	Similarly, those factors 

qffect 'the compressive strength of the concrete, thus it is convenient 

to express the concrete properties as a function of the compressive 

strength. 

The most commonly used relationships are shown below and will be 

compared with the one to be adopted in this study. 

The value of E,  suggested by ACI [49] is: 

E = 	c' 	
(4.12) 

where w = density of concrete in (lb/ft 3 ) 

= cylinder strength of concrete (psi) 

E = in (psi) 

For normal weight 	concrete equation 4.12 becomes: 

E = 57,000 j-r 	 (4.12a) 

and in terms of the cube strength of concrete equation 4.12 becomes: 
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Ec = 50,000 /T 
	

(4.12b) 

where fcu  = cube compressive strength of concrete in (psi). 	However 

equation 4.12b can be approximately represented as: 

E = 4.78 vlrr 
	

(4.12c) 

where E  	
f' are in kN/mm2  and N/mm2  respectively. 

The CEB [50] suggest the following value: 

E = 70,000 VT_— E, in (psi) cu 	C 

= characteristic strength of concrete in (psi), Ec = in (psi). 

This relationship can be. represented in the following form with 

E  in kN/mm2 , 	in N/mm2 ; the value of f cu  is substituted by fc 1 

= 0.78 fcu): 

E = 6.58 vT' 
c 	 c 

(4.13) 

Saenz [62] used another expression for E  which can be represented 

by the following equation: 

8.3 

Ec 
= 1 + 0.07 

where E c and f c lare in kN/mm2  and N/nim2  respectively. 

The value of E 
C 

given in CP110, 1972 is 

E  = 4.5 iç 	in kN/mm2 

(4.14) 
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when f' > 2300 kg/m3and 

Ec = 0.85 P 2 	x 10 6  

when (density P) is between 1400 - 2300 kg/rn 3 . 

Some of the test results were produced by Beeby [48] and show a 

considerable scatter as shown in Figure 4.2. Also the relationship 

represented by equations 4.12, 4.13 and 4.14 are plotted in Figure 4.2. 

It is clear therefore that the values of E c given by CP110 and 

CEB are less reasonable than those given by ACI. 	On the other hand, 

Saenz's equation gives higher values for concrete of low strengths 

leading to a highervalue of R = E 
C 	The following equation gives a 
0 

reasonable presentation of the test results and as such will be adopted 

in this study: 

Ec = 5.5 ,/r - r 	 (4.15) 

The values of Ec  are compared in Table 4.1. 

4.2.3 Strain at Maximum Stress, c, 

The position of the peak point in the stress-strain curve is 

highly affected by the compressive strength, loading rates and strain 

gradient. 	However by keeping the strain rate and duration of load 

constant the peak point may be considered stable and its coordinates 

can be defined in terms of the concrete strength. 

Various relationships have been proposed to express the strain, 

60 9 at maximum stress, f 0 . 	These were reviewed by Popovics [64] as 
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Table 4.1 Modulus Of Elasticity, E 

f i  
C 2  

N/mm 

E, kN/mm2 

ACI CEB Saenz CP110, Proposed 
Eq. 	(4.12c) Eq. 	(.4.13) Eq. 	(4.14) 1972 Eq. 	(4.15) 

20 21.4 29.4 28.3 20.12 24.60 

25 23.9 32.9 30.7 22.5 27.5 

30 26.2 36.0 32.9 24.65 30.12 

35 28.3 38.6 34.7 26.6 32.53 

40 30.2 41.6 36.4 28.5 34.78 

45 32.06 44.14 37.88 30.2 36.89 
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illustrated in Figure 4.3. 	The value of E is expressed by the 

following relationship in terms of concrete compressive strength: 

I 
= 0.875 x 10. (f0 ) 	 ( 4.16) 

= f 	) where f0 	c ' (N/mm  

The values of c obtained by equation 4.16 are compared with 

experimental values in Table 4.2 and with other relationships suggested 

by other investigators in Figure 4.3. 

4.2.4 Ultimate Strain at Failure c 

Only in 1942, 	complete stress-strain curves for concrete were 

reported by Whitney [23]. 	Tests were carried out on concrete cylinders; 

it was concluded that the flexibility, of testing machines was the main 

cause of concrete brittle failure. 

The difficulty of measuring the strain at failure experimentally 

has led some investigators to assume certain values for 

Using the testing machines available, the descending portion of 

stress-strain curve is indeed difficult to obtain. 	That is why it 

was necessary to test six prisms and six cylinders with continuous 

record of stress and strain readings during the test beyond the maximum 

stress until failure. 	The number of specimens tested may not be enough 

to cover the factors involved in the problem, nevertheless, they do 

serve the purpose. 

The value of ultimate strain at failure may be obtained by the 

following relationship: 

7.8 x 
E = ( 4.17) 

(f0)4 
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Table 4.2 Stress-Strain Parameters 

N/rum 

= x 10 Cu = x io 
6 u 

Eq. 	(4.18) 

£ 	= 
o 

kN/mm 

Ec 
Eq. 	(4.15) 

kN/mm 

E 
R = rc  

*Experimental Eq. 	(4.16) *Experimental Eq. 	(4.17) 

20 1.85 1.85 3.6 3.68 1.99 10.81 24.59 2.27 

25 1.95 1.96 3.4 3.48 1.78 12.71 27.5 2.15 

30 2.05 2.05 3.3 3.33 1.62 14.63 30.12 2.05 

35 2.10 2.13 3.2 3.2 1.5 16.43 32.54 1.98 

40 2.20 2.20 3.1 3.10 1.4 18.18 34.78 1.91 

* Average of six prism tests 
	 average R = 2.0 

= secant modulus 

Cu = ultimate strain at failure 
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From equations4.16 and 4.17: 

- 8.9 

-

(4.18) 
(f0 )  

fo = 
	

' (N/mm2) 

The value of C obtained by equation 4.17 are compared with the 

experimental values in Table 4.2. 	Stress-strain curves are shown in 

Figure 4.4. 

4.2.5 Comparison of Various Stress-Strain Relationships 

In section 4.2.1, various concrete stress-strain relationships are 

reported with their application and limitation as well as the factors 

that affect the shape of the stress-strain curve. 

The stress-strain experimental results based on testing six concrete 

prisms and six cylinders for each type of concrete, are in Tables 4.2, 

4.3 and Figure 4.4. Also the stress-strain values obtained from equation 

4.10 are shown in Table 4.4. 

The stress-strain curves represented by equations 4.5 and 4.10 are 

compared with the test results in Figure 4.5. 	The curve- represented by 

equation 4.5 ; does 	agree-well with experimental results especially 

the ascending portion; in fact this is due to the difficulty of finding 

a polynomial equation that would fit c\l rh€ curves, as it is very 

easy to fit a particular curve19raparticu1ar type of concrete. 

It is obvious now, that the curve represented by equation 4.10 

is in good agreement with the test results; therefore the stress 

distribution in concrete under flexural compression can be represented 

by adopting equation 4.10. 
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Table 4.3 *Experimental Stress-Strain Relationships 

f0  = 20 N/rn2  - 	 f0  = 25 N/mm2  f0  = 30 N/rn2  f0  = 35 N/mm2  f0  = 40 N/mm2  

f N/mm2 C x 10 f N/mm2  c x 10 f N/mm2 E x 10- 
3 

 f N/mm2  c x 10 f N/mm2 E x 10- 3 

9.0 0.40 13,6 0.5 15.0 0.5 18.0 0.55 17.4 0.5 

12.0 0.55 17.5 0.75 20.0 0.75 23.5 0.77 24.0 0.71 

16.0 0.85 22.0 1.20 23.0 0.95 31.5 1.35 32.0 1.07 

18.0 1.10 25.0 1.95 28.5 1.55 35.0 2.10 38.0 1.65, 

20.0 1.85 24.0 2.75 30.0 2.05 34.5 2.90 40.0 2.20 

17.5 2.7 22.0 3.0 29.0 2.85 33.0 3.2 39.5 2.85 

15.0 3.2 21.0 3.4 26.5 3,3 38.0 3.10 

14.0 3.6 

* Average of six concrete prism tests. 



Table 4.4 Proposed Stress-Strain Relationship Equation4.10 

N/ 2  f0 = 20 rn f0  = 25 N/rn 2  f0 = 3 	N/mm2  - f0  = 35 N/rn 2  rn = 	N/ 2  

: 

0.25 10.26 12.25 14.34 16.34 18.2 

0.5 16.6 20.42 24.18 27.89 31.48 

0.75 19.34 24.12 28.8 33.56 38.24 

1.0 20.0 25.0 30.0 35.0 40.0 

1.25 19.6 24.45 29.31 34.12 38.88 

1.5 18.8 23.25 27.81 32.2 36.56 

1.75 17.8 22.0. 26.1 30.03 33.84 

2.0 16.8 20.65 24.3 27.86 31.16 

E 
C 

= ç) 
 co 

0 

where 

E 

= 

Co = 0.875xl0 3 (f0 ) 

Ec = 5.5 iç kN/mm2  

fo = c in N/mm2 
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To bring a further simplification to equation 4.10, within 
E 

the acceptable limits, R (= 	is taken as an average of R = 2 for 

all types of concrete as shown in Tabk  4.2. 	Equation 4.10 becomes: 

2 -- 
f 

- 	Co  
(4.19) 

which is of the same form as reported by Desayi and Krishnan [61] and 

Saenz [62] where R = 2. Furthermore good agreement was observed when 

compared with results obtained by the exponential expression of Smith 

and Young [57]. 

In Figures 4.6(a), (b), (c) and (d), the stress-strain curves of 

various types of concrete expressed by equation 4.10 and equation 4.5 are 

compared with experimental results. 

From the reported and proposed relationships equation 4.19 is to 

be adopted in this study for the sectional analysis. 

4.3 Stress Block Parameters for a Section Under Flexure 

- 	 Jensen [22] , in 1943, proposed a trapezoidal idealized stress 

distribution and derived the properties of this trapezoid as a function 

of the cylinder strength. 	The analysis was based on the ultimate 

strength of reinforced concrete beams. 	Whitney [23] approached the 

ultimate analysis by suggesting a rectangular stress distribution. 

Hognestad [24] reviewed many proposed idealizations for the stress 

distribution and then proposed a rectangular idealized stress distribution. 

Mattock et al [25] presented an ultimate strength design theory based on 

an equivalent rectangular stress distribution in the concrete compressive 

zone. 	This theory has been widely used for the ultimate analysis and 
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design of structural concrete members, and has been adopted by the 

ACI building code. 	However the following analysis to compute the 

theoretical ultimate moment capacity of the floor beams is more 

accurate and applicable to the types of floor beams tested in this 

study. 

The section parameters, stress block and the strain distribution 

at ultimate stage are illustrated in FigUre 4.7. 

By taking moments, of the stress block shown in Figure 4.7(b) 

about the neutral axis: 

x  

(Yd )Cu=f  y.f.b.dy 	 (4.20) 

where f = concrete stress at a distance y above the neutral axis, 

2-- 

f=f 	
0 

+ ° 1 
	(e)2 

Co  

(4.19) 

xd = depth of the neutral axis from extreme compressive fibre, i.e. 

depth of concrete in compression, 

Yd = distance of the centre of the compression block from the neutral 

axis, 

Cu = total compressive force. 

The following relationship is obtained from Figure 4.7(c): 

y = 	I (Xud) 
	

(4.21) 

x  
and 	dy = 	. dC 	 (4.22) 

CU 



w 
= I w  0  

+ 
I- 

0 
w 	0.75 

MI 

4bk 

C 
U 

+ 	4u 

N.A. 

(a) Section 	 (b) Stress Block 	
(c) Strain 

Diagram 

Figure 4.7 Stress Block and Strain Distribution of Reinforced 

Concrete Section at Ultimate 

vl ^ nn 	 (1 (( 	-Fri, 	t, v, r, M /mm 

20 	25 	30 	35 	40 	45 

f0 = f, N/mm2 

Figure 4.8 a verses f 0  



Thus equation 4.20 becomes: 

xd 2-s- 

	

(id) (Cu) = I 	x d 	______ 	
x d 

) (f  ) b . 	. de 

	

Cu 	U' 	+ (. _ ) Z 	0 

0 

	

2 f 0  b (xd) 	
x 

2 
U 
d 	

2  
.dC 

Cu .00 	0 	C 0  

M. 

(4.23) 

After integrating and applying the end conditions equation 4.23 becomes: 

(7d) C = 2 f b (x d)2 
C0 2 Cu 

- tan 	-a) 	(4.24) 0  
( j ) (; 	

Co 

The total compressive force in concrete is given by the total area 

of the stress block, i.e.: 

x d 

f=f . b . dy 
	 (4.25) 

Substituting the values of f, and dy from equation 4.22 then integrating, 

equation 4.25 becomes: 

C = b (x 1d) f0  () 1  (1 + (_!) 2 )  
E  

(4.26) 

Introducing favl  the average stress in the compressive block, to 

equation 4.26 then, 

Cu = '1av . b . xd 	 (4.27) 

where 	f= f 	-i in (1 + (_)2) 	 (4.28) av 	c Eu 	 Co 

or 	'av 	f 
I 	 (4.29) 



where 	ci. = . 2. in (1 + (u)2) 	 (4.30) 
0 

or 	 = 	 (4.31) 

With reference to Figure 4.8 the decrease in (ct) for higher strength 

concretes is related to the fact that such concretes are more brittle 

and show sharp stress-strain curves with small strains. 	It is worth 

mentioning here, that introducing (f av and (ct) as given by equations 

4.28 and 4.31, is an important step as they are to be used in the 

evaluation of the flexural and compressive strength of concrete sections;. 

The average stress of the compressive block 	av  and the parameter (ct) 

are also used in comparing the stress-strain relationship for confined 

and unconfined sections, evaluating the relationship of the moment- 

curvature of floor beams and to represent the failure criteria of concrete 

under a complex state of stress. 	This is discussed in the following 

sections. 

The values of c o and 	in equations 4.24, 4.26 and 4.28 are given 

by equations 4.16 and 4.17, fo = f' as previously assumed. 

Two types of failure are possible here, viz, tensile failure and 

compressive failure; in order to find the depth of the neutral axis 

from the extreme compressive fibre, both failures are envolved, thus: 

For tensile failure (Figure 4.7(b)). 

1av . b . xd = A5 t 
	 (equilibrium condition) 

A5 t 

av 

or 	 x =P 

	

U 	5 (f ) 	 (4.32) 
av 



For compressive failure, E < 

E 5  

xu = Ps 	 (4.33) 

where A5t = area of tensile reinforcing steel, 
At 

tensile reinforcement ratio ( = 

Es = strain in steel 

esy 
= yield strain in reinforcing steel, 

f, = yield stress of the tensile reinforcing steel. 

The values of f, and e sy
can be obtained from experimental results, 

as shown in Table 2.7. 

With reference to Figure 4.7(b), the ultimate moment capacity of 

flexural sections is given by: 

Mu  = Cu (d - Xud + d) 

= C (d - Id) 

= av 	x (1 - ) bd2 
	

(4.34) 

where Mu  = the ultimate moment capacity of flexural section, 

Id = the distance from extreme compressive fibre to the resultant 

of the compressive force. 

In Table 4.5 the various stress block parameters of a balanced 

section for different types of concretes are shown; Table 4.6 shows 

the stress block parameters for some specimens. 

In Figure 4.9 some other parameters are shown. 	Figure 4.9(a) 

70 

expresses (x)  as a function of concrete strength; Figure 4.9(b) compares 



Table 4.5 Stress Block Parameters of Balanced Section 

Cu av 
f 

C 6 
x  7d *Pb 

20 1.99 0.724 d 0.558 x d 
U 

0.442 x d 
U 

0.805 0.582 f 	'If C Sy 

25 1.78 0.713 d 0.566 x d 0434xd 080 057 f'/f sy 

30 1.62 0.704 d 0.574 x d 
U 

0.426 x d 
u• 

0.795 0.56 f 	'/f c sy 

35 1.5 0.695 d 0.581 x d 0.419 x d 
U 

0.785 0.545 f 	'/f 
C Sy U 

40 1.4 0.688 d 0.587 xd  0.413 xd 0.775 0.533 

* p = balanced tensile reinforcing ratio 



Table 4.6 Stress Block Parameters for Some Specimens 

f i  c av A5t M 2 
N/mm N/mm2 

p5  = xd 
- gd Ma _  proposed 

*Hognestad et al 

20 16.1 0.0134 0.236 d 0.104 d 0.17 fc bd2  0.168 f'  bd 

25 20.0 0.0134 0.190 d 0.082 d 0.139 f bd2  0.138 f bd 

30 23.85 0.0134 0.159 d 0.067 d 0.118 f bd2  0.116 fc I bd2  

0.0115 0.166 d 0.071 d 0.123 fc I bd2  0.121 f bd2  

35 27.47 0.0134 0.138 d 0.057 d 0.102 f bd2  0.101 f bd2  

40 31.0 0.0134 0.123 d 0.050 d 0.090 fC ' bd2  0.089 f bd2  

0.0115 0.128 d 0.053 d 0.094 fc 
bd2  0.098 f bd2  

*Mu =bd2 fc l (q-0.59q 2  

where q = 	= mechanical percentage of reinforcement; M u  = ultimate moment capacity of flexural sections. 
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the values of () obtained from previous analysis with those obtained 

by Hognestad [25] and Jensen [22] using different stress blocks. 

() is expressed as a function of concrete strength (f). 

The values of (MU)  obtained from equation 4.34 are compared 

with Hognestad et al [25] obtained from the following equation: 

M 
U 

= bd 2  f' q (1 - 0.5 q) 	 (4.35) 

where q = 

In fact equation 4.35 was used to."design the floor beams in the 

first place. 

4.4 Flexural Strength of Confined Section 

It is evident now that the laterl confinement has a beneficial 

effect on the strength and deformation characteristics of reinforced 

concrete sections. 	It was believed that 'the main function of the 

transverse steel is to avoid buckling of the longitudinal reinforcement. 

Despite that the effect of confinement was studied by many investigators 

in the early days, but for instance most codes of practice [1] contain 

clauses to limit the size and spacing of ties only and in most 

recommendations, the effect of lateral reinforcement was ignored. 

Richart and Brown [65] concentrated their research on spirally 

reinforced columns. 	Various experimental investigations, by King [66] 

Chan [32], Roy and Sozen (261, Szulczynski and Sózen [27], Bresler and 

Gilbert [28] and Pfister [29], were carried out to study the influence 

of confinement for structural concrete members subjected to different 

types of loading. 
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It may be concluded that the shape of the concrete stress-strain 

curve of a confined section varies with the confinement stress. The 

lateral reinforcement provides a confinement to the core as a result 

of its lateral expansion due to longitudinal deformations; this is 

due to Poisson's effect. The initial modulus of elasticity is not 

effected by the lateral reinforcement. 

Though the ductility of the confined concrete is improved, it 

was found [27] that the increase in ;strength was not significant when 

the calculation is based on the initial gross area. 

A concrete section that is laterally reinforced consists of two 

parts, namely core and cover. 	The behaviour of the cover is essentially 

different from that of the confined core, though they both suffer the 

same deformations under applied loads. 	Therefore it is difficult to 

define the cover and core by a unique approach. 	Logically the behaviour 

of a laterally confined section is based on the behaviour of both core 

and cover. 	The stress paths of the .core and cover are different and 

unevenly distributed along the depth of the section. 

The various stress-block parameters were studied by Kent and 

Park [67]. Expression to represent the stress and strain at different 

stages were derived. 	Soliman and Yu [68] criticised Chan's expression 

to evaluate the effect of transverse reinforcement on the behaviour of 

bound concrete under eccentric compression for being inadequate in 

evaluating the effect of the transverse reinforcement on the ultimate 

strain of which the plastic deformation of the member is a function. 

However, the influence of the spacing, size and type of transverse 

reinforcement as well as the shape of the concrete cross-section were 

thoroughly examined in a concrete section confined by rectangular ties 

under flexure. 	It was suggested that size and spacing of binder have 
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significant influence on the confinement. 	On the other hand, type 

of binders and shape of concrete cross-section have a little effect, 

as shown in equation 4.36. 	Most importantly it was observed that 

the ascending part of the stress-strain curve can be approximately 

considered the same as for unbound concrete. 

The following expressions were proposed for the maximum 

compressive stress and average stress of the compressive block for 

a confined section: 

= 0.9 c  (1 + 0.05 q") 	 (4.36) 

f av
II = 0.72 fc o [1 + 0.14 (q")] 	 (4.37) 

where 	= maximum confined concrete compressive stress, 

= average stress of the compressive block of bound concrete 

analogous to for unbound concrete given by equation
av  

4.28, 

q" = a parameter referring to the effectiveness of the transverse 

reinforcement 

A 	 A 	(S - S) 
= 1.4 ( - 0.45) _sv 0 	V 

Asv S, + 0.0028 B S, 

In which, Ab = area of bound concrete under compression (= b'x') ... 

smaller dimension of a stirrup, 

Ac  = total area of concrete under compression (= bx) ... b = 

breadth of section, 

Asv = cross-sectional area of one leg of a link, 

S, = spacing of the transverse reinforcement, 
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S0  = longitudinal spacing at which the transverse rein-

forcement was not effective in confining the concrete, 

B = 0.7 x or b whichever is greater, 

x = depth of the neutral axis from the extreme compressive 

fibre, 

XI = depth of the neutral axis from the level of the compressive 

steel.  
1 

Chan [32] studied members which had failed due to compression of 

the concrete, having different amounts of confinement, and produced 

an expression for the ultimate properties of bound concrete. 	However, 

Chan's work was extended by Burns and Siess [69] , who introduced a 

parameter called binding ratio (Pa) to include the effect of longitudinal 

reinforcement which was ignored by Chan as a variable. 	P 11 can be 

defined as: 

P 11 =  volume of stirrups 	+ 
volume of bound concrete 	

0.1 

where 0 = diameter of the compression steel, 

S = spacing of the closed rectangular stirrups. 

Based on Chan's tests, the following over-simplified linear 

expressions were suggested [32] to represent the ultimate strain in 

the concrete at the level of the compression steel and the average 
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compressive steel of bound concrete respectively in terms of the 

binding ratio: 

CCU 
= 0.011 + 0.2 P' . 	 (4.38) 

f H = f I  
av 	

(1.0 + 10 P") 	 (4.39) 

It may be concluded now, that confinement has an effect on the 

average stress of the compressive stress block of bound concrete and 

increases the ductility of concrete in a reinforced concrete section. 

The various parameters of the stress block can be evaluated in terms 

of the average stress of the compressive block. 

The following expressions based on unbound concrete are suggested 

to compute the strength of a confined section: 

CU  = fav " . b . xd 	 (4.40) 

f 
xP - 	

sy 

- 	av 

	

and MU  = f II  
av x (1 - ) bd 	 (4.41) 

The ratio of the depth of the resultant compressive force from 

the extreme compressive fibre to the neutral axis depth, can be 

computed by the following expression given by Soliman and Vu [68] 

- 0.84 + 0.5 q" 

J- 	2+q" 
(4.42) 

From equations 4.36 and 4.42 the stress block parameters for bound 
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concrete can be evaluated. 	The effect of stirrup spacing on the 

stress block parameters is evident in equation 4.37 and 4.42. 

The effect of the confinement in the floor beams was not 

investigated as a variable. 	The stirrups in all the floor beams 

tested were equally spaced. 	Nevertheless the suggested expressions 

represented by equations 4.40 and 4.41 are to be adopted. 

4.5 Biaxial Stress-Strain Relationship for Concrete 

Early investigations were focussed on the concrete strength. Recently, 

a large amount of research has been done on the mechanical properties 

of concrete in biaxial loading. 	Data is now available concerning the 

strength, deformations and microcracking behaviour of concrete and 

biaxial stresses; A typical stress-strain curve for concrete under 

biaxial compression was shown by Kupferet al [70]., 	The descending 

portion of the stress-strain curve in biaxial loading was achieved by 

Nelissen [71]. 

The maximum compressive strength, ductility and volumetric changes 

for concrete are highly affected by biaxial loading. 	It was found 

that the maximum strength envelope is largely independent of load 

path [71]. 	Despite the fact that extensive research has been carried 

out no general theory is yet available on the failure criteria and the 

concrete strength under combined loading. 	The concrete failure in 

this case is influenced by many factors such as, mix proportions, 

water/cement ratio, method of testing and rate of sequence of applying 

the stresses. 	A simplified failure criterion may be adopted to develop 

a stress-strain relationship and to evaluate the stress block parameters 

of concrete under biaxial stresses. 
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In order to develop a biaxial stress-strain relationship, 

the same approach discussed earlier to obtain equation 4.9 can be 

employed and the stress-strain curve conditions are applied. 

The following proposed equation expresses the biaxial stress-

strain relationship: 

E 
f = (4.43) n' 

(1 - 1.lcL) (A' + B' c 	) 

where f = stress in direction considered, 

= strain in direction of (f), 

ci. = ratio of the principal stress in the orthogonal direction 

to the principal stress in direction considered, 

ji = Poisson's ratio. 

To find the coefficients A', B' and n', the stress-strain curve 

conditions must be satisfied, i.e. conditions at zero stress, strain 

and maximum strain (ce ), then: 

A' = 
B' = R - (1 - ucL) 

C o 	(1 - pa) E  

n' = 	
R 

 R - (1 - paT 

E 
and R = 

0 

After substituting the values of the coefficient A', B' and n'; 

equation 4.43 becomes: 

c 
f = n' 	

(4.44) 
(1 - pa) + [R - (1 - 



R -- 

	

f - 	 Co  
and 	 - 	 nI 	 (4.45) 

(1 - pci) + [R - (1 - itici.)] (p-) 
0 

Equation 4.10 for 	uniaxial compression is a special case of 

eqaution 4.45, where a = 0. To Simplify the use of equation 4.45 the 

values of f0 , e and E c  may be obtained from relations established 

earlier. Liu [72] pointed out that the value of for uniaxial 

compression may be different for biaxial compression. 

Poisson's ratio for concrete under biaxial loading varies at 

different stages of loading and is influenced by many factors. The 

ratio (ii) remains constant until approximately 80 percent of its 

ultimate compressive strength. 	However it may be taken as equal to 

(0.2) in general. 

Further experimental tests and further detailed study of the 

parameters involved in the problem are required to improve equation 

4.45 and to represent the biaxial stress-strain curve of concrete more 

accurately. 	This, however is outwith the scope of the present study. 

4.6 Flexural Resistance Prior to Cracking 

The resistance of a reinforced concrete section in pure bending 

prior to cracking is dependent on the tensile strength of the concrete, 

therefore at this stage resistance of the concrete section depends on 

the nature of the stress-strain relationship in tension. 	The effect 

of reinforcement is neglected. 

The theory of microcracking still can be used for the tensional 

states of stress. 	For stress levels less than 60 percent of the 

ultimate tensile strength 	the microcracks are negligible and 

this stage defines the limit of elasticity. 	Beyond this level of 
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stress, bond microcracks join up and start to extend. 	At a stress 

level of about 75 percent of 	crack propagation will be unstable 

[73]. 	The direction of crack propagation is transverse to the 

direction of stress. 	Growth of the cracks reduces the load-carrying 

area and also causes an increase in the stresses at the crack tips. 

Failure finally occurs due to bridging of cracks. 	The Modulus of 

Elasticity under uniaxial tension is higher than it is in compression 

[74], but for simplicity the values of Modulus of Elasticity is taken 

to be the same, i.e. Et = E. 

For the purpose of analysis the effect of the reinforcement is 

ignored and a semi-plastic stress distribution is adopted similar to 

that proposed by Cowan [75]. 

The following relationships can be obtained from Figure 4.10 to 

determine the depth of the neutral axis: 

- E  Cc - 2 	
(4.46) 

fc 	
h x-  x 	

(4.47) 

' p 

tc - 

4 	x) t 

(b) Stress 	(c) Strain (d) Stress-strain 
relationship 

(a) Section 

Figure 4.10 Concrete Stress-Strain Relationship in Tension 



From equilibrium: 

(h - x) b = 	f b . x 

x = 0.472 h 	 (4.48) 

With reference to Figure 4.10 the value of the lever arm (Z) can 

now be determined: 

Z = h - 4 - 	( h - x) 	 (4.49) 

Substituting the value of x in equation 4.48 into equation 4.49, then: 

Z = 0.645 Ii 
	

(4.50) 

The resistance of a concrete section under pure bending prior to 

cracking is given by the following equation: 

Mu' = 4 f . b . (0.528 h) (0.645 h) 

bh 2  
or 	

' 	- 
	 (4.51) 

Mu ' = Mcr when ft (= 0.6 v'ç) is the ultimate tensile strength of 

concrete given by equation 3.5. 

Equation 4.51 shows that the moment of resistance in pure bending 

is also a function of the geometrical properties of the section. 
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5.1 Torsional Strength Prior to Cracking 

The reinforcement has a negligible influence prior to - cracking 

and hence may be ignored. 	Concrete characteristics onlyare considered 

at this stage. 

5.1.1 Strength of a Concrete Section in Pure Torsion 

Most of the early investigators adopted the use of the elastic 

torsion theory for computing the torsional stresses which has been 

developed by St. Venant. 	Timoshenko and Goodier [76] illustrated 

Prandtl's membrane theory. 	The original form of those theories is 

too complicated for any practical use. However simplifications can 

only be achieved by assuming a specified stress distribution over the 

sides of the section and rewriting the original expressions in terms 

of the maximum stresses. The maximum stresses are assumed to occur 

at the mid-points of the sides. 	For example to simplify St. Venant's 

equations, Seely [77] assumed a parabolic distribution with maximum 

stress at the mid-point of the longest side of the section. 	Therefore 

the torsion moment is given as: 

/C1 \ 
Te = k h b2 . Tmax  

where k is a function of h/b; Cowan suggested an approximation to the 

value of k, given by: 

k - 	1 2.6 	
(5.2) 

-  

0.45 + 



From the membrane theory, Timoshenkô derived the following formula 

similar to equation 5.1: 

TC = k 1  • h . b2 • tmax 

where k 1  is also a function of h/b. 

Concrete in torsion exhibits plasticity, Turner and Davies [78] 

drew attention to this fact in 1934. 	This plasticity leads to a 

redistribution of the stresses as the load approaches its ultimate 

value. 	Turner and Davies suggested that this effect might be 

allowed for in calculating the ultimate torque, by multiplying the 

elastic torque by a factor of (1.2 	where A = cross-sectional area, 

P = periphery of cross-section, and b = the shorter side of the section. 

Marshall [79] and the Nylander [80] both suggested that by treating 

concrete as an ideal plastic material, more consistent results are 

obtained. 	At failure the torsional shear stress would then be constant 

over the whole section and equal to the ultimate tensile strength of 

the concrete. 

Forarectangular beam, the torsional strength is given by: 

T 	k h . b2'max 	
(5.3) 

where Tmax = maximum torsional stress. 

k = 	(1 - 	
(5.4) 

Examination of equations 5.2 and 5.4 reveals that for a wide range of 



depth to breadth ratios for rectangular sections, the value of (k 
P )

is 1.66 ± 0.06 times greater than (k). 	This means for practical 

rectangular beams the ultimate torque calculated by the plastic 

theory is 1.66 ± 0.06 times the ultimate torque calculated by the 

elastic theory. 

The plastic theory was further developed by Nadai [81] using a 

sand heap analogy whereby the torsional resistance of a cross-section 

is considered to be proportional to the volume of a sand heap over the 

section of constant maximum slope given by a value equal to twice the 

constant shear stress. 	The torsional resistance is then given as 

twice the volume confined by the surface or: 

I = 	
b2(h 	

b 
Y 	-S)Tmax (5.5) 

Equation 5.5 is basically similar to equation 5.3. 	The practical 

application is to express the torsional resistance in terms of the 

maximum stress occuring at some specified location in the rectangular 

section. 	This is the concept of plastic behaviour. 

It is universally accepted that when the magnitude of the principal 

tensile stress reaches the tensile strength of the concrete, the member 

cracks. 	The principal tensile stress can be determined if the shear 

stress caused by torsion is known, this is given by: 

(5.6) 

where S = the torsional section modulus. 	For a rectatiuiar solid 

section, 5, can be determined by the classical method of elasticity, thus: 
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S = k b2  . h 	 (5.7) 

where k = is a function of h/b as mentioned earlier. 

If concrete is assumed to be perfectly plastic material, S, can 

be determined by plastic theory thus: 

S = k b 2 h 
	

(5.8) 

where k = is a function of h/b but has different values from k. 

The torsional stress in a solid rectangular section calculated by 

the elastic and plastic theories are compared in Figure 5.1. 	The 

values given by the relevant codes of practice are also shown. 

Figure 5.1 reveals that the value of torsional stress depends upon 

the particular theory followed. 

The principal tensile stress depends on the normal stress (a) 

and the shear stress (T). 	Where the normal stress (a) equals zero then 

the principal stress is equal to the shear stress. 	Cracking occurs 

when at = 	
as shown in Figure 5.2. 	The torsional stress causing 

cracking can therefore be obtained by rewriting equations 5.1 and 5.5 

in terms of the tensile strength of the concrete 	rather than the 

maximum torsional stress, Tmax 

T  = k b2  h . 	
(5.9) 

= 	. b2  (h - b/3) 	 (5.10) 

It can be seen that the cracking torsional strength (Tcr) depends 
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not only on the concrete properties but also on the geometry of the 

section and the method of loading. 	Figure 5.3 shows an ideal cracking 

stress distribution based on elastic theory for a variety of shapes 

and types of loading. 

The theories that deal with the torsional strength of a plain 

concrete rectangular beam may be categorised into: 

Elastic Theory: the procedure is to adopt St. Venant's 

distribution of stresses and assume concrete to be a 

linearly elastic material. 

Plastic Theory: concrete is considered to be a plastic 

material. 	This theory can be expressed in two forms: 

A limited distribution of stresses is allowed for 

concrete in compression because of the plastic 

behaviour. 

The sand heap analogy; which assumes concrete to have 

infinite plasticity. 

More details of these theories are summarised by Zia [14]. 

Basically these theories differ in their assumption of the concrete 

behaviour, although they all express the predicted failure torque of a 

rectangular beam in terms of the tensile stress. 	When the predicted 

torsional strengths of a rectangular beam calculated by those theories 

are compared with the experimental results available, the elastic 

theory always underestimates the torsional strength. 	The limited 

distribution of stresses allowed by the plastic theory is not enough 

to take into account the observed excessive strength. 	The sand heap 

analogy on the other hand takes into account the excessive strength, 
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but is theoretically unsound due to the fact that concrete shows little 

plastic behaviour especially in tension and the size effect is not 

considered. 	In general the plastic theory overestimates the torsional 

strength. 

St. Venant theory has been confirmed by many investigators who 

adopt the view that plain concrete members fail in a spiral form. It 

is difficult to visualise a failure surface intersecting all four 

sides of a rectangular cross-section in a continuous spiral form. 

The mechanism of torsion failure reported by Hsu [16] has been 

adopted in this study in which the failure surface for a member of a 

rectangular section is bounded by its four sides as shown in Figure 5.4. 

Hsu, using motion picture equipment, observed the failure process 

very clearly. 	The movie showed that the first crack appeared on the 

front face at an angle of 45 degrees to the axis of the beam. 	The 

crack then widened and extended to the top of the section. 	Finally 

the concrete crushed on the back face. 	The failure process described 

is similar to that of a plain concrete flexural beam. 	The film also 

revealed a bending type of failure, i.e. concrete subjected to torsion 

fails mainly by bending. 	This bending mechanism of torsional failure 

is used to develop an equation for predicting the ultimate torsional 

strength of a rectangular beam. 

With reference to Figure 5.5, the applied torque (Ta')  can be 

analysed into two components acting on the failure surface i.e. the 

bending component (Tb)' and the twisting component (Tt). The bending 

type of failure is therefore due to Tb• 	
Using classical bending 

theory: 

T b = T u l cos 	 (5.11) 
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Tb = b2h f  COS,C c 	 (5.12) 

where T  = the bending component of torque 

T' = ultimate torsional strength 

= cracking angle on the wider face, between the tensile 

crack and the axis of the beam 

f = modulus of rupture of concrete 
r 

b = the shorter side of the cross-section 

h = the longer side of the cross-section 

From 5.11 and 5.12: 

T 	= 6 
bh fr (sec 	cosc ) 	 (5.13) 

u  

Differentiating equation 5.13 and equating to zero: 

dT, - b 2  h 
d 	- -r-  r 	[Sec 	cosc } = 0 	 (5.14) 

Equation 5.14 gives the minimum torsional resistance at an angle of 

= 45 degrees. 	This is in agreement with St. Venant stress distribution. 

The angle 	coincides with the maximum principal tensile stress. 

The failure torque due to the bending component of the applied 

torque can be expressed by: 

2 _bh 
- 3 	r 

(5.15) 

Element A in Figure 5.5 is taken from the wider face of the beam 

and subjected to a compressive stress (a c  
i) caused by the twisting 



component 	of the applied torque, as well as the tensile stress 

is normal to a t . 	The compression will reduce the tensile 

strength of the concrete. 	Using the straight line simplification of 

Mohr's theory [82], this reduction can be obtained as: 

f i f 
f t  (reduced) = 

1 c + 

where 	= uniaxial compressive strength of the concrete 

= uniaxial tension strength of the concrete 

f. (reduced) = tensile strength of concrete with perpendicular 

compression of equal magnitude. 

The value of f t  (reduced) reported by Hsu is 0.92 ft whereas McHenry 

and Karni [83] reported this reduction factor as 0.85 ft , The value 

of the reduced tensile strength for the type of concrete used in this 

study varies between 0.9 to 0.91 	However the value of ft (reduced) 

is taken conservatively as (0.85 	Bending failure, in plain 

concrete, is due to tension so the modulus of rupture (yr)  is reduced 

by the perpendicular compression in the same proportion and equation 

5.15 becomes: 

2 
= 	(0.85 r) 
	

(5.i6) 

Equations 5.13 and 5.16 are expressed in terms of the tensile 

strength of the concrete 	and the modulus of rupture (r)• 	It 

is therefore advantageous to establish a relationship between 

and 

Equation 5.16 can be written as: 



Mle 

= 0. 85 b  2  h . C . f. 	 (5.17) 

f 
Where C = 

I t 
C, is a function of many factors which affect 	Most 

important are the size of the specimen used and the tensile strength 

of the concrete. 'The ratio, - C, therefore is a function of 

[(C1 . 	
. (C' 2 . h) 	or: 

	

fr = [(C. 1 	(C2 	h)] f 	 (5.18) 

In order to determine (C 1 	and(C 2  h) the results of Wright's [841 

and Hsu's tests are used. 

Figure 5.6 shows the 
f 

strength. 	The ratio 
t 

In order to separate 

f
ir 

ratio C = - 	as a function of the tensile 
I t 

represents the product of [C 1 f x C 2  h] 

the two, the type of concrete and the tensile 

strength must be known. 	Point A on the curve is assumed to represent 

the type of concrete used in this study. 	This may be used as a 

reference by taking C 2  h = 1.25. 	The curve in Figure 5.6 can be 

expressed by the following empirical equation: 

- 1.6 

- 3vT 
(1.25) 	 (5.19) 

1.6 
in which C f = ___ 

Wright studied the effect of the depth of the flexural beam on 

the modulus of rupture experimentally. 	Using these results and those 
f 

of Hsu the effect of the flexural beam depth on 	can be seen in 

Figure 5.7. 
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For a beam with b > 100 mm, the curve can be represented by: 

C2h=l+ 2 
h x 

7 
 10-3 

For the concrete tested by Hsu C' 1  f is assumed = 1.0 

The ultimate torque can now be calculated by substituting the 

value of C' I 	and C2  h in equation 5.18: 

C = fr = 	
(1 + 2 	

(5.20) 
T--  hxlO 

Substituting the value of C in equation 5.17, then: 

T -' = 0.85 b2h  (1.6 ) (1 + 
U 	3 	 h2xlO3t 

or 	T' = 0.45 b2h 	
+ h2  

is given by the following equation: 

= 0.6 /f--r 
	

(3.5) 

therefore: 

T ' = 0.32 b 
2 
 h 	 (5.21) 

U 	 x 1 	C 

Similarly beams with b < 100 mm: 

T 	
= 0.85 b  2  h 	() 

all 
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or 	T' 
	

(5.22) 

Equations 5.21 and 5.22 give the ultimate torsional strength of 

a rectangular beam under pure torsion. 	It is evident that the ultimate 

torsional strength of a rectangular beam is dependent on the concrete 

strength and section geometry. 

5.1.2 Strength of a Concrete Section Subjected to Bending and Torsion 

Practically speaking, reinforced concrete beams are rarely subjected 

to torsion only. 	The combined influence of bending and torsion occurs 

however due to asymmetrical loading and the monolithic nature of rein- 

forced concrete frames. 	The influence of combined bending and torsion 

occurs simultaneously and this has a considerable effect on the strength 

of the beam. 	However final failure of the beam results from exceeding 

either the tensile or the compressive strength of the concrete depending 

on the ratio of bending to torsion. 	The exact conditions required to 

produce such failure are not fully understood. 	Nevertheless the 

failure criterion used to establish equation 5.21 and 5.22 is the one 

employed to predict the strength of a concrete rectangular section 

under the combined influence of bending and torsion. 	Figure 5.8 shows 

the assumed failure surface with an applied bending moment (Ni) and an 

applied torsion (1). 	The bending moment has a component acting about 

the tensile crack as shown in Figure 5.8. 	Also (M) is additive with 

(T 
b
)of equation 5.12. 

Referring to Figure 5.8 and considering the equilibrium of the 

internal and external moments about the assumed failure plane, thus: 



"'re plane 

1 
Figure 5.8 Assumed Failure Surface 

Table 5.1 Values of c#. and X as a function of h/b. 

h/b A 

1.0 0.208 0.141 

1.2 0.219 0.166 

1.5 0.231 0.195 

2.0 0.246 0.229 

2.5 0.258 0.249 

3.0 0.267 0.264 

4.0 0.282 0.277 

5.0 0.291 0.291 

CO 0.33 0.33 
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b 
2 
 h 

 
M cos 	+ T sin 	= -s-- ( 	B 	

(5.23) 

0.85 
T 	(i cos B + sin B) 
Un 	 Cos 

where ip = Mun = ultimate applied bending moment 
ultimate applied torsion 

un 

or T 
	0.85 b  2  h fr 
	

1 
[ cos B ( cos 	+ sin B)] 	

(5.24) 

Minimizing T 	 by differentiation to obtain the angle B, thus
un  

dlun - 0.85 b  2  h f d 1 
cos B ( 	cos B + sin 6)]= 

0 
- dB 3 r 

. 

cos B ( cos B + sin 	= 0 

For spandrel beams where p = 2, B = 
45 0 

+ 	
in equation 5.24 is considered as The term [2 cos 	( 

i  

as modifying factor to include the effect of bending moment. 

The membrane analogy of Prandtl is true for both elastic conditions 

and beyond yield since the membrane represents stress distribution over 

the elastic region and the stress over the plastic area is given by a 

surface of constant maximum slope corresponding to the yield stress [85]. 

Therefore Prandtl theory can be applied, not only when the section 

is under torsion within the elastic limit but also when the concrete 

exhibits some degree of plasticity. 	The following proposed empirical 

approach is based on the experimental results of the spandrel beams 

tested in this project, to predict the cracking torque of reinforced 

concrete rectangular spandrel beams subjected to bending and torsion on 
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the assumption that the torsional strength is not dependent on the 

amount of steel provided prior to cracking. 

T 	= a b2   T 	 (5.25) 

where a = a numerical factor obtained from Table 5.1 

= the maximum torsional shearing stress shown in Figure 

5.9(a) and 5.9(b). 	The curves can be expressed by: 

T = 0.12 3 1(;7) for b > 100 mm 

T = 0.24 /(f) 	
for b < 100 mm 

where 	= the compressive strength of concrete. 

5.25 becomes: 

= 0.12 a . b 2  . h 3/(f 1)2 for b > 100 mm 

and T 	0.24 a . b2  . h 34 1) 2 for b < 100 mm 
Cr 

Therefore equation 

(5.26) 

(5.27) 

5.1.3 Comparison with Test Results 

Hsu's expressions to calculate the ultimate torsional strength of 

rectangular unreinforced concrete beams under pure torsion are: 

T' = 6 (b2  + 10) h
3VT —r .... psi .... b >4 in 	(5.28) 

and Tu' = 14.3 	. h . 3 	.... psi,.2 in < b < 4 in 	(5.29) 

The values of ultimate torsional strength of rectangular unreinforced 



I cr 
T= 	,a=O.246 for h/b=2 

abh 
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Figure 5.9 The Torsional Shearing Stress 
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concrete beams under pure torsion calculated by the elastic theory - 

equation 5.1, Hsu's expressions - equations 5.28 and 5.29 are compared 

in Table 5.2 for different values of (b2h). 	In Table 5.3, the values 

of (Ta')  calculated by the various expressions are compared for varying 

types of concrete with the same ci-ass-section. 

It can be seen that TU'  calculated by the proposed expression - 

equations5.21 and 5.22 is between 30 to 55 percent greater than the 

value of (Te)  based on the elastic theory. 	This may explain the 
for 

experimental excessive strength unaccountedby the elastic theory. 

Some consideration must be given to the effect of the reinforcement 

in equation 5.24. 	Where the beam is subjected to combined bending and 

torsion, Hsu suggested that the cracking torque of a reinforced 

rectangular beam is 1.0 to 1.3 times the failure torque of a corresponding 

plain concrete beam, depending on the amount of steel provided. 	The 

following equation was suggested: 

Tcr = (1 + 0.04 Pt) Tu' 	 (5.30) 

whereTcr = cracking torque of a reinforced concrete beam 

= the total volume of a reinforcement including longitudinal 

steel and stirrups expressed as percent of concrete volume. 

Thus equation 5.24 becomes: 

r085 b2h 
	

1 
Tcr = (1+ 0.04 	L 	2 cos 	( cos 	+ sin 	(5.31) 

It can be seen from equation 5.31 that the cracking torque of beams 

under combined bending and torsion is dependent on the ratio of 

bending to twisting moment, concrete strength and section geometry. 



Table 5.2 Ultimate Torsional Strength Calculated by Different 

Expressions for f 	= 40 N/mm2  

6 b h 3lO  m 
T 	(elastic)  

kN.m 
T' 	(Hsu) 

kN.m 

I' 	(proposed) 

kN.m 
T'(proposed) 

T e 	('") 

2.0 1.7 2.43 2.56 1.5 

4.0 3.0 3.44 4.3 1.43 

6.75 5.88 6.7 7.9 1.3 

10.0 7.58 8.6 11.2 1.47 

12.0 9.09 10.36 13.96 1.53 

14.0 11.14 12.09 16.10 1.45 

Table 5.3 Ultimate Torsional Strength Calculated by Different 

Expressions for b x h = 100 x 200 mm  

f ' N/mm2 
C 

T 	(elastic) 

kN.m 
I' 	(Hsu) 

kN.m 
T' 	(proposed)  

kN.m 
T'(proposed) 
Ts+) 

30 1.5 2.2 2.3 1.53 

35 1.59 2.32 2.46 1.54 

40 1.7 2.43 2.56 1.50 

45 1.8 2.52 2.68 1.48 

b x h = 150 x 300 mm  

30 5.10 6.1 7.2 1.4 

35 5.5 6.4 7.6 1.38 

40 5.88 6.7 7.9 1.34 

45 6.24 6.97 8.26 1.32 
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The experimental values of the cracking torque were obtained 

from the cracking loads i.e. the load at which the first torsional 

crack appeared. 	During the test, beams were loaded by 5 kN or 

10 kN load increments, so that cracks could be propagated while 

applying the load. 	For this reason, some of the measured cracking 

torques may be higher than the actual values. 

In Table 5.4, the cracking torques calculated by equations 5.31, 

5.26 or 5.27 are compared with the experimental results. 	Test results 

of other investigators are also shown. 

The factor (1 + 0.4 	given by Hsu in equation 5.30 is very 

high for small beams of minimum dimension less than 100 m. 	Also the 

values of cracking torque calculated by equation 5.31 are low since 

the reduction factor is taken conservatively as (0.85). 

It can be seen that equations 5.26 and 5.27 give reasonable 

values and so have been adopted in this study. 

5.2 Ultimate Torsional Strength of Rectangular Beams with Longitudinal 

and Transverse Steel 

on 
Tests concerning the combined effect of shear and bending,Aconcrete 

were reported by Hsu [86]. 	At the PCA laboratories, Hsu developed an 

equation to predict the torsional strength of reinforced concrete beams 

under pure torsion [87]. 	The failure surface was assumed to be a 

plane perpendicular to the wider face and inclined at an angle of 

45 degrees to the axis of the beam. 	The expression for computing 

torque is independent of the location of the axis of twist though 

the equations were based on summing moments about the axis of twist. 

In the case of spandrel beams, this is still valid due to the fact 



Table 5.4 	Comparison Between Measured and Calculated TcrkN.) 

Tcr (meas.) Tcr Tcr (meas.) 
T T 

Beam cr cr Tcr (eq. (eq. 	5.26 1 	(eq. 	5.26 
(measured) (eq. 	5.31) 5.31) or 5.27) or 5.27) 

GR1-Bl 1.92 1.88 1.02 1.92 1.0 

-B2 2.25 2.17 1.03 2.25 1.0 

-B3 2.0 1.88 1.06 1.92 1.04 

-B4 2.17 2.00 1.08 2.13 1.01 

GR2-B5 2.30 1.88 1.2 1.92 1.19 

-B6 2.25 1.88 1.19 1.92 1.17 

-B7 2.2 1.88 1.17 1.92 1.14 

-B8 2.2 1.88 1.17 1.92 1.14 

GR3-A1 0.74 0.68 1.08 0.706 1.05 

-A2 0.81 0.79 1.02 0.77 1.05 

-A3 0.80 0.79 1.01 0.77 1.03 

-A4 0.79 0.79 1.0 0.77 1.02 

GR4-Bl 0.70 0.59 	1.18 	 0.62 	1.12 

_D) 

 

0 .68      0 . 59 	1.15 	 'S • 	 1.09  

-B3 0.67 0.59 	1.13 	 0.62 	1.09 

-B4 0.69 0.59 	1.16 	 0.62 	1.1 

Average 	1.10 	 1.01 



Al 2.8 

A2 2.15 

Bi 3.0 

B2 2.48 

83 2.30 

2.02 1.38 2.13 

1.61 1.33 1.85 

2.43 1.23 2.47 

1.93 1.28 2.45 

1.90 1.2 2.25 

1.3 

1.16 

1.2 

1.01 

1.02 

Table 5.4 (continued) 

Beam 	Tcr 

(measured) 

Tcr (meas.) I Tcr 	I 	(meas.) 

Tcr 	Tcr  (eq. 	(eq. 5.26 I Tcr  (eq. 5.26. 
(eq. 5.31) 	5.31) 	or 5.27) 	or 5.27) 

Hsu and Burton 1974 [40] 

Average 
	

1.28 
	

1.13 

Mansur and Rangan 1978 [46] 

SAl 3.5 2.7 

SA2 3.0 2.6 

SB1 4.75 3.5 

SB2 5.0 3.6 

SB3 3.5 3.89 

SB4 4.0 3.89 

SB6 	I 4.5 2.62 

Average 

	

1.29 
	

3.1 
	

1.12 

	

1.15 
	

2.9 
	

1.03 

	

1.35 
	

3.58 
	

1.3 

	

1.38 
	

4.0 
	

1.25 

	

0.9 
	

3.5 
	

1.0 

	

1.02 
	

3.54 
	

1.09 

	

1.24 
	

3.5 
	

1.28 

	

1.36 
	

1.15 



that the axis of twist does not coincide with the centroid of the 

cross-section. 

The expression for predicting the ultimate torsional strength 

can be divided into two terms namely: 

= T + T 
	

(5.32) 

where I = the torsional capacity of plain concrete also the 
c 	 bhAf 

intercept of the (TI)  vs. ( 	SW WY)  curve, Figure 5.10. 

For a rectangular section TC  may be expressed practically in 

terms of the concrete strength and the geometry of the cross-section, 

as discussed earlier. 	Hsu proposed the following equation: 

Tc  = 	. b . h vT' .... (lb.in ) 	 (5.33) 
VIE 	

C 

where b = smaller dimension of the cross-section of a rectangular 

beam 

h = larger dimension of the cross-section of a rectangular beam 

= compressive strength of concrete (psi). 

The second term (T5 ) of equation 5.32 is the additional torsional 

moment due to the lateral steel: 

I s  
= 	b1hiA.f 	

(5.34) c. 

where b 1  = smaller dimension of the closed stirrup 

h 1  = larger dimension of the closed stirrup 



lu 

bihiJf 

Figure 5.10 T Versus bihiAf/s 

tP 

T 

bjhiAf wy 

Figure 5.11 Values of c2 Compared 
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Aw  = area of one leg of a stirrup 

f WY = yield stress of the web reinforcement 

S = stirrup spacing 
b 1 h 1 A f 

= the slope of the T  vs. 	WY curve shown in Figure 5.10. 

2 varies with the volumetric ratio (m) of the longitudinal steel 

to the stirrups and the h 1 /b 1  ratio of the stirrup. 	c may be 

calculated as follows: 

= 0.66 m + 0.33 h
1 	

(5.35) 

c varies from a value of (1.0) for beams with square stirrups 
h 

to a value of (1.5) for beams having stirrups with a ratio of , = 2.6. 

	

h, 	 1 
The torsional strength of narrow beams i.e. 	> 2.6 is more accurately 

h, 	 1 
predicted by setting - = 2.6 in the calculation of Q. 

1.1 1 
The predicted ultimate torsional strength (T i) of an under-

reinforced concrete beam under pure torsion is given by the following 

simplified design equation: 

h 1 	h1b1Af y  
(lb.in ) 2.4 b

2  . h 	+ (0.66 m + 0.33 B 	( 	5 Tu  = 

(5.36) 

Equation 5.36 is similar to the equation used by the German and 

Australian Codes. According to the Australian and German Codes the 

ultimate torsional capacity may be expressed as follows: 

h b1Af wy 
1 =1 + 
	1 

u 	0 	 S 
(5.37) 

In the Australian Code (T 0 ) is taken as the elastic failure torque 

Of an unreinforced concrete beam according to the maximum tensile stress 



assumption. 	In the German Code (TO ) is taken as zero. 	Both 

Codes assume c to be constant; 

= 1.6 for the Australian Code 

= 2.0 for the German Code, as shown in Figure 5.11. 

To allow for the effect of shear and flexure on the torsional 

strength Hsu suggested that the first term should be multiplied by 

a factor given as: 

3 	
1 

v
0 

21 

+  TO J 
where v0  = V0/bd (i.e. ultimateshear stress) and 	= 3 T/bh (i.e. 

ultimate torsional stress - 	
b2  h 

= K -i- . vT').  To  

This factor is included in the ACI proposed torsion specification 

to take into account the combined effect of torsion and shear since 

the calculation of (V 0 ) involves bending, i.e. the effect is considered 

indirectly. 	Thus equation 532 becomes: 

Tu  
T  

A + ( 3 v0/T0 ) 2  

+ 1 
S 	

(5.38) 

All terms have been defined previously. 

Most researchers agree that the ultimate strength can be divided 

into two terms as in equation 5.32. 	However the terms 	and (T 5 ) 

are interpreted differently. 	Cowan [88] defined the terms as follows: 

Tc  = 	. b2  	 (5.39) 

where f = tensile strength of concrete 

a = a function of h/b. 



For 1- and L-shaped sections, equation 5.39 becomes: 

f  
T = .- 	b 

3 
 h 

where b = width of the web 

= a function of h/b. 

The torsional moment due to lateral steel (T 5 ) is given by: 

1.6 A w  f 
	 .
WY  Is 

= 	 5 
	 (5.40) 

In order to develop the strength of the transverse steel (A.,), 

Cowan suggested that an equal volume of longitudinal torsional steel 

is required and this is given by: 

b +h 
Ai = 2 A _1 
	1 )  (5.41) 

Those expressions were based on the classical St. Venant theory 

assuming that the stresses are maximum at the centre of the rectangular 

and zero at the corners. 

ACI committee 438 [2], produced expressions to determine the 

..1.....1., 
	capacity ,..4 = 	 ft 	 .c4r. (A\ 

UIL.IIIIQL. 	t..UIIUlIQI 	QpQ'..Iy Vt U IJUUIII. 	r I UJUtIItJII IU.'JI 	k fJJ 

introduced but it is proposed not to include 	for the time being in 

order to obtain a more acceptable value for the torsional strength. 

A torsional shear stress (t0 - Tca) is created by the torsional rein-

forcement which resists the applied torque (T a ): 

b2 h 
T  = (T0 - Tca) 2 	(lb.in ) 	 (5.42) 
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3T 
where t = 
	0 = nominal ultimate shear stress due to torsion o 727 b  

2 
T = total ultimate torsional moment = K 

T  ca 
= 	 = shear stress due to torsion 

1 + (3 V 0/T 0 ) 

Tc = shear stress due to torsion carried by the concrete 

when the beam is subjected to pure torsion and is 

taken as 2.4 fc ,  - 

V 
v0  = 	= nominal ultimate shear stress due to shear. BU 

The required torsional reinforcement is given by: 

T = 	
hibiA.,f WY  

a   (5.43) 

where c2= 0.66 +0.33 	- for m = 1, --- = 1. 	Substituting for T0  
sy 

and Tca  equating the two equations 5.42 and 5.43 and rearranging, 

the ultimate torsional strength (Tu)  of a beam subjected to torsion 

and shear is given by: 

2.4 	b2h 	 h 	11w wy 	(544) 1 =  _______ 
U 

1 
Iz 

 + (3 V 0/T 0 ) 

The effect of bending is included indirectly in the computation of 

(v0 ), (ACI 318-63). 

It is evident that longitudinal and transverse steel increase the 

torsional strength of a beam. 	An intensive study of the behaviour of 

reinforced concrete beams subjected to the combined influence of bending 

and torsion has already been carried out. 
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Three main modes of failure have been observed in each of which 

the steel yields [89]: 

The first mode of failure occurs when the applied bending 

moment is greater than the twisting moment. 	Cracks form 

on the sides and the bottom of the beam. 	The cracks then 

widen until the reinforcement yields. The crackscontinue 

to widen and propagate until the two sections of the beam 

start to rotate about an axis near the upper surface of the 

beam where failure finally occurs due to crushing of the 
1h 

concrete. 	The axis is inclined t0longitudina1 axis of 

the beam. 	The angle of inclination depends on several 

factors but most importantyon the ratio of bending moment 

to twisting moment. 	This mode of failure is represented 

in Figure 5.12. 

The second mode of failure occurs when the twisting moment 

is greater than the bending moment or when considerable 

shear forces are present. 	In this case the inclined torsion 

cracks are predominant on one side of the beam where tensile 

stresses arising from the twisting moment and the direct 

shear forces are additive. 	After yielding of the steel 

the two sections rotate about an inclined hinge located 

on the side of the beam as shown in Figure 5.13. 

The third mode of failure was first reported by Collins et 

al [89]. 	This type of failure may occur when beams contain 

less top compression (longitudinal) steel than bottom tension 

steel. 	Beams which fail in this mode are thosesubjected to 
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F 5  = the force in top and bottom longitudinal bars in tension only. 

Figure 5.13 Mode 2 

I 
Figure 5.14 Mode 3 
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high ratios of twisting moment to bending moment. 	The 

tension cracks first appear in the top face of the beam 

and then widen. 	Failure occurs when rotating of the 

beam about a hinge located at the bottom face takes 

place, as shown in Figure 5.14. 

5.2.1 Analysis 

The skew bending theory proposed by Collins et al [89]; was 

subsequently modified by Rangan, Staleyand Hall [21]. 	This 

modified skew bending theory has been adopted in this analysis to 

predict the torsional strength of spandrel beams containing longitudinal 

and transverse steel. 

The concrete stress-strain relationships 4.10 and 4.11 

proposed in section 4.2.1 are still valid. 	If the value of (R) 

taken from Table 4.2 is assumed (= 2) then equation 4.11 becomes: 

2 	
2 

C 	1 C 
çr= 	cç ) (5.45) 

where co  = concrete strain at f 

E c  = concrete strain at f c  

= stress in the concrete 

= compressive strength of the concrete. 

The average stress coefficient can be calculated by integration 

of the --  - -s-, curves shown in Figure 4.6. 	Integrating equation 5.45 
0 c0 

gives: 

k. = (_i) (1 - 
I

(5.46) 
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where k 1  = the average stress coefficient. 	Also the depth of the 

resultant coefficient 
() 

can be calculated by: 

C 

(8-3) 

(5.47) 

12 - 4 
Co  

The steel stress-strain relationship is shown in Figure 2.6 and 

the idealized stress-strain curve is shown in Figure 6.4 in which the 

relation is assumed linear up to the yield stress followed by constant 

stress for further increase in strain. 

Mode 1 

Satisfying the equilibrium conditions and resolving forces normal 

to the plane in compression, i.e. the 0-plane shown in Figure 5.12 gives: 

C = F s cos 0 + Fwh Slfl 0 
	

(5.48) 

where Fs = A5t. f 

Fwh = the force in the bottom stirrup legs intersected by the 

tension crack and is given by: 

Fwh = A 	

0.85 b 1 tan 
	 (5.49) 

tan 0 
From Figure 5.12 tan 	= T_+__2 	

(5.50) 

in which a = 

The coefficient (0.85) in equation 5.49 takes into account the 

fact that the horizontal web steel does not contribute to (Fwh)  over 
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the whole stirrup width (b 1 ) because of the radii at the corners of 

a stirrup. 	Therefore the effective width of a stirrup is taken 

conservatively as (0.85 b 1 ). 

The compressive force can be expressed as: 

C = k rc'  (xd) b sec 8 
	

(5.51) 

in which k 1  = the average stress coefficient given by equation 5.46 

xd = the depth of the compression zone. 

Substituting the value of C and F  	in equation 5.48 then, 

Psfs 
 1 + T

—+ 2 cc 
r 	tan2o] 

x= k 1  sece 	
(5.52) 

A5t 	0.85 A 
where 	= 	 { bd WI (_! 	WW 

	

r= -) and 	0  

fs = tensile stress of the tension steel 

fw = tensile stress of the web steel. 

Taking moments about a horizontal line A-A which lies in the 

compression zone in the 8-plane and passes through the compressive 

force (C), and assuming, that the contribution of the force in the 

vertical legs of the stirrup, F wvIcan  be neglected due to the fact 

that their lever arms are small, also that the bottom legs of the 

stirrups are at the same level as the longitudinal tensile steel, gives: 

M cos 0 + T sin 0 = (Es  cos 0 + Fwh sin 0) (1 - x)d 	(5.53) 

Dividing equation 5.53 by cos 8, then: 
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P 	[1 + 	
r 	tan 20] (1 - x) bd2  = 	

(5.54) 
+ tan 0 

where IL)  = 

Differentiating equation 5.54 and equating to zero, the angle (0) 

can be obtained to define the mode 1 type of failure. 	Therefore, 

tanO 42
~ 1 +2_ 

r 
(5.55) 

In differentiating equation 5.54, the coefficient of the lever arm 

(1 - 
x) does not affect the value of (0) significantly and thus can 

be neglected. 	Substituting the value of (tan 0) from equation 5.55 

into equation 5.54, the torque (T1) in mode 1 behaviour can be 

expressed by the following expression: 

11 = 2 Af5  (1 - 	

r x) d.(1 + 2 ) 

(42 + 
1 r 	

(5.56) 

or 

r 	(42 ~ 1 +2a 
= 2 (Mbi) 	l + 2 c'. 	 r 	iL)) 	 (5.57) 

where Mbl = pure flexural strength in positive bending and is given 

by 

Mbl = A 5 1 (1 - x) d 
	

(5.58) 

Mode 2 

In this case the applied twisting moment is greater than the 
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bending moment. 	The compression zone lies along one side of the 

beam cross-section. 	Basically the analysis and the assumptions 

made in mode 1 are the same. 	In mode 2 the external bending moment 

has no component about the axis parallel to the neutral axis, however 

the shear force exerts a moment about this axis. 	Equating the 

external and internal moments, differentiating, and substituting 

for the value of tan 0, the following expression for the failure torque 

for mode 2 is obtained: 

- 

2 Pf5 	
'a + 

2 (1 - gx) b' 2  . h 	 - 

	

T2  = 	 (5.59) 1 

[1 + 6 (.. - 	x) b' 

where 6 = 

or 

/1 ct r 

1  

2 A55 f5  (1 - x) b'[ ct + 2 	 (5.60) 

	

2 = 
	[1 + 6 ( - x) b' 

where A55 	area of top and bottom steel bars in tension only. 

Equation 5.60 can be written in the following form: 

ar 
2 (M ) / 

	

T2 = 
	b2) 	 (5.61) 

[1 + 6 	- yx) bt] 

where Mb2 = pure flexural strength in lateral bendinb given by the 

following equation: 

Mb2 = A5f5 (1 - )() b' 
	

(5.62) 

Mode 3 

In this mode the compression zone lies along the bottom face of 
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the beam. 	The bending moment alone causes tension. 	This mode of 

failure is likely to occur in nearly square sections where the area 

Of top longitudinal steel is less than the area of bottom longitudinal 

steel. 	The analysis and assumptions are similar to that for mode 1. 

However the bending moment in this case opposes the rotation which 

occurs during failure. 	Therefore in deriving the equation for the 

failure torque, (M) should be taken as (- M). 	The failure torque 

for mode 3 is given by the following expression: 

r 	)(/ p+( 1+2 
13  = 2 A5,c(l - jc)  d 	+ 2 c 	 r 	) R + ) (5.63) 

M 
where R = 0 

bl 

Mbl = pure flexural strength in positive bending 

Mb3 = pure flexural strength in negative bending 

Mbl = A5tf(l - x) d 

area of bottom longitudinal bars 

M 	
f5. ( 1 - x) d 

(5.58) 

(5.64) 

A5i= area of top longitudinal bars. 

Equation 5.63 can be written in the following form: 

_ 	 +Zct 
T3  = 2 (Mbl) i ____ 

r 	(/i + R(1 r 
	+ 	

(5.65) 



5.2.2 Deformation Conditions and Failure Criteria 

Figure 5.15(a) shows an element of concrete (A) at depth (d). 

The strains experineced by this element are shown in Figure 5.15(b). 

Using Mohr's circle the terms e s  , Ew
l and angle of cracking () 

can be expressed by: 

+C 	C 	C s 	w 	s 	w 	1 
C2 = 	2 	- 	2 	cos 2 	

(5.66) 

Equation 5.66 can be simplified by assuming E2 
 to be zero. Using 

the trigonometric relations, equation 5.66 can then be expressed in 

terms of e s
and ew , thus: 

= C tan 
	

(5.67) 

Substituting the expression for tan a in equation 5.50 into 

equation 5.67 gives: 

tan 2e Ew = 5 
(1 + 2 )2 

(5.68) 

In order to evaluate the value of (x) in Figure 5.12(b), the 

strains normal to the 0-plane are assumed to vary linearly with depth, 

therefore: 

C 
x- 

Cc +C 

	 (5.69) 

10 

where C = the concrete compressive strain at the top of the beam 

Cc' = the tensile strain at depth d. 
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cc  and 	= are measured normal to the 0-plane. 

From Mohr's circle shown in Figure 5.15(c) 

	

yW 
= 2 c cot a 	 (5.70) 

Combining equation 5.70 with equation 5.67 then, 

1w 
= 2,f 	 or 	 (5.71) 

Acting at an angle 0 from the longitudinal direction, the strain 	can 

be expressed as: 

2 	 2 	11w 
=s 

cos 0 +w  sin 0 + 2 
(-a--) 

sin 0 COS 0 	(5.72) 

Substituting the value of 	from equation 5.71, equation 5.72 

becomes: 

=S cos 2  0 +w  sin  0 + (v'c c) sin 2 0 	 (5.73) 

then combining equation 5.73 with equation 5.68 gives: 

2 	tan  
= 	

cos 0 (1 
+ 1 + 2 	

(5.74) 

Substituting c' from equation 5.74 into 5.69: 

	

2 0 (1 	
tan 	

2 
x 	 _________ 

= 	Cs C05 	
~ 1 + 2 cL 	

(5.75) 

The concrete was assumed to fail at a compressive strain, C = 0.002, 

ignoring the influence of the shear stresses and strains caused by the in-

plane force H shown in Figure 5.12, in the skew compression zone, on the 
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value of c. 	It is'-believed that the value óf.c  is significantly 

affected by the existing shear and •strans. [21], and the ultimate 

failure strain must be evaluated taking into account those strains. 

The normal and shear strains in the skew compression zone 

converted using Mohr's circle, into a compressive principal c 1 , and 

a tensile principal strain C21 then: 

Ec =El + (- c) 

or 

62 = C1 - Ec 
	 (5.76) 

From Mohr's circle: 

Cc = C1 COS2 + (- c) sin 2 c 	 (5.77) 

where 	= the angle between the 0-plane and the plane on which E l  acts. 

Combining equation 5.76 with equation 5.77 gives: 

Cc = C1 (1 - tan 2 ) 
	

(5.78) 

It is shown by Kupfer et al [70] that the failure strains of 

concrete under biaxial compression-tension are smaller than those under, 

uniaxial loading. 	The following failure criteria for the concrete 

strain can be used for simplicity: 

C 	C 
+ L = 1 	 (5.79) 

C u 	Ctu  

where Cu = concrete failure strain in uniaxial compression 

Ctu = concrete failure strain in uniaxial tension. 



The Modulus of Elasticity in uniaxial tension is higher than 

it is in compression [74]; for simplicity the value of Modulus 

of Elasticity is taken to be the same i.e. Et = E. 	Accordingly 

Eu 

- -- 	
12 	 (5.80) 

Equation 5.79 becomes: 

E l 	E 
- + 12 	= 1 	 (5.81) 
Eu 	Cu 

Substituting the values of E l  and E 2 in terms of E c  from equation 

5.76, tan 	from equation 5.78, and denoting the particular value of 

given by the failure criteria as (cc)uit  equation 5.81, becomes: 

(E c ) u lt = Cu •1 - tan  

1 + 12 tan 2  

(5.82) 

where (Ec)lt = a particular value of 	at which the failure of a 

beam in combined torsion and bending is assumed to 

occur 

Cu = concrete ultimate strain at failure and can be 

obtained by equation 4.17. 

It is assumed that the orientation of principal planes at the top 

surface are the same as at the bottom surface of the beam. Thus from 

Figure 5.15: 

tan 	= tan (0 - ) 	 (5.83) 

111 
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Substituting equation 5.50 in which 0 and a are related, into 

equation 5.83 gives: 

tan 	
2 c tan 0 

q: = 	 __ 
2 c#. + sec 2e 

(5.84) 

The advantage of the modified theory is that the ultimate torsional 

strength of under-reinforced, partially or over-reinforced rectangular 

beams can be calculated and the balanced steel ratio (i.e. where the 

concrete crushes simultaneously with yielding of the transverse and 

longitudinal steel) can be derived as follows: 

If the strain in the web steel ew is assumed equal to 	the
WY 

yield value and similarly the strain in the tension steel cs =sy then 

from equation 5.68: 

C 	 2 
tan' 0 = _L (1 + 2 c) 

Csy  
(5.85) 

For this value of (tan 0), equation 5.55 gives the value of rb,  the 

particular value of (r) to produce a balanced failure: 

- 	1+2cL 
rb _ tan  	(tan0+2i) 

(5.86) 

Equation 5.86 can be further simplified by assuming ewy = Csys then 

tan 0 = 1 + 2 ct, thus 

1 
r  = 1 + 2 a + TT 

(5.87) 

By taking the value of Cc = 	uult and e s  =csy and substituting 

the values of tan 0, rb,  x, and k 1  into equation 5.52, the balanced 
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tensile steel ratio Psb 
 can be obtained as: 

f.'.k x sec (tan 0 + 2 	
(5.88) 

5  sb 	2f(+ tan 6) 

where P sb 
 = the balanced tensile steel ratio, 

k 1  can be calculated from equation 5.46 

x can be calculated from equation 5.52. 

and tan 0 = (1 + 2 ct) 

In a similar manner, an alternative expression for calculating 

1'sb can be obtained for modes 2 and 3. 

Since r - -P--f— , the balanced web steel ratio 1'wb  can be calculated 

when the values of r   and "sb 
 are known from equation 5.87 and 5.88 i.e. 

1'wb = rb Psb WY 
	 (5.89) 

5.2.3 Simplified Method for Predicting the Ultimate Torsional Strength 

A simplified method for predicting the type of failure and then 

the ultimate torsional strength of reinforced concrete beams can now be 

proposed where the balanced steel ratios are known. 	The method given 

below uses a mode 1 type of failure as an example: 

1. The section is under-reinforced when PS < P sb and P w < 

The torsional capacity can be calculated by equation 5.56. 

The lever arm coefficient (1 - x) can be taken approximately 

as (0.9), f5 = f, and r = W wy"s 'sy 
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The section is over-reinforced when P s >sb and 'w > 

The excessive reinforcement is ignored and the torsional 

strength still can be calculated by equation 5.56 taking 

' s  s = sb sy' 1'wb w = 1'wb wy and (1 - x) 	0.9. 

The section is partially over-reinforced when 1S > P sb and 

< Pwb or vice-versa. 	The excessive reinforcement is 

ignored and equation 5.56 can be used to calculate the 

torsional strength. 

The method is similar for modes 2 and 3 and the torsional strength 

of the beam is taken as the least of the three calculated values for 

the three modes of failure. 

5.2.4 Strength in Shear Compression Mode 

It is universally accepted that high shear stresses may reduce 

the flexural strength predicted by the bending theory, due to the fact 

that the shear stresses are additive to the direct compressive stresses 

in the concrete in the compression zone and precipitate concrete 

distress prior to the steel yielding. 	A similar situation can be 

anticipated in the case of skew bending with the presence of torsion 

where the shear and torsional stresses are additive. 

The three modes of failure discussed earlier all have flexural 

types of failure, although the shear force (V) is present in mode 2 

but its influence is in creating a moment about the skew neutral axis. 

The following approach for predicting the reduced torsional strength 

was originally proposed by Collins [17. 	Remarkable agreement was 

obtained when Rangan and Hall [18] used the same approach and compared 



the predicted torsional strength with the experimental results of 

Mukherjee and Warwaruk [19] , and Henry and Zia [201. 

The stirrups are assumed to yield before the longitudinal steel 

bars. The ultimate torsional strength at failure can be expressed 

by the following equation: 

T5 = Tc + Is 	 (5.90) 

where T = torque carried by concrete 

Ts = torque carried by stirrups 

Tus = reduced torsional strength 

The concrete must resist both. shear force (V) and torsion moment 

(I), therefore to estimate IC'  the influence of both shear and torsion 

are considered. Figure 5.16 shows a linear interaction of shear 

and torsion. 	Assuming that the cracking values are equal to those 

for plain concrete, then 

	

I 	V 
(5.91) 

where Tc = torsional resistance of concrete 

V = shear resistance of concrete 

T' = resistance of the concrete in pure torsion where V = M = 0 

= shear resistance of the concrete where I = 0, M 0 

	

T0. 	b 2  h (1 + 2 	3) 3iç' ... b > 100 mm 	(5.21) 

	

U 	 h xlO 

4.8 b2 h 3  or 	T 	= 	 v'ç' ... b < 100 mm 	 (5.22) 

	

U 	
VIF 
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The value of 	in the ACI (318-71) can be expressed as: 

Mcr  
= 0.6 bd 	+ 	... (lb) 	 (5.92)c 	W11 

or by definition: 

Vul = shear force causing a principal tensile stress of 

ft  (= 0.6 	in an uncracked beam in flexure. 

1.0 

0.8 

0.6 

T cr 
1—i- 

U 

0.4 

0.2 

 

0.2 	0.4 	0.6 	0.8 	1.0 

Vcr  

U 

Figure 5.16 Torsion-Shear Interaction 
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The values of 	used in Figure 5.16 are calculated according 

to CP110-1972 i.e.: 

V u S  = 0.75 	bd 	4.75 bd 	 (5.93) 

bd2 	f 
where Mcr = the flexural cracking moment given by Mcr = 	44 

The ratio of applied shear to applied torsion is known; and 

this ratio is assumed to be the same ratio of shear to torsion resisted 

by the stirrups i.e.: 

V 	Vs 	V 
	

(5.94) 

The linear interaction of equation 5.91 can now be represented 

by the following equation (V = 6 . 

T = T ' ( 
1 

C 	U 
1 + 6 

(5.95) 

The stirrup area (one leg) required to resist shear is given by 

the following equation as taken from ACI (318-71): 

I, 

v s  
AV 

= 2 f, . d/s 

where AV = area of one leg of the stirrup 

S = spacing 

f 
WY 

= yield stress of the stirrup 

V = shear resisted by the stirrups 

Vs  = 6 . T 5  

(5.96) 



The stirrup area to resist torsion is given by the following 

expression which is similar to equation 5.40 given by Cowan: 

A 	
T5 

ws - 	b1 h 1  

WY 5 

(5.97) 

where Aws  = area of one leg of the stirrup to resist torsion only 

Ts  = torsion resisted by the stirrup only 

= the value of this factor varies between 1 and 2 as 

discussed in section 5.2. 	Therefore taking an average 

value of 1.5, equation 5.97 becomes: 

T5  

= 	b1 h 1  
1.5 

(5.98) 

The total area of stirrups required to resist shear and torsion 

is then: 

A w =  A V
+  A5 
	 (5.99) 

Since V s
and T5  are related by equation 5.94, T 5  can be expressed by 

the following expression after substituting the values of A,  and  A5 

into equation 5.99: 

2d 	
b1h1 

Ts = 2 d + 1.5 b1h1 . 	
(1.5 A 	 ) 	 (5.100) 

The term in the first bracket in equation 5.100 is considered as 

a reduction factor since it is less than unity, and taken into account 

the effect of (V5). 



119 

Substituting the value of I given by equation 5.95 and 

given by equation 5.100 into equation 5.90, the value of torque (T5) 

for failure in the shear compression mode is given by: 

1 	 2d 	 bh 
= T' ( 	Tu') + 2 d + 1.5 b1h1 	 , ) (1.5 	f 	

1S1 	
(5.101) 

1 + S 

Equation 5.101 predicts the torsional strength of a reinforced concrete 

beam when a combination of shear and torsion leads to a premature shear 

compression type of failure. 

Shear was not critical in any case of loading in the spandrel 

beams tested in this project 

was thought to be critical. 

equation5.101 can be expect 

mentally since the effect of 

to bending is not included. 

even for beams in group GR2 where shear 

Therefore values of Tus  obtained from 

d to be higher than those obtained experi-

shear stress in the compression zone due 

5.2.5Discussion 

In considering the ultimate torsional strength of a concrete beam 

prior to cracking, the mode of failure is dependent upon certain 

variables such as: ratio of the bending moment to twisting moment and 

concrete strength under combined stresses as discussed in deriving 

equation 5.31. 	The distribution of the longitudinal bars also has 

an effect. 	In a beam without top longitudinal steel the propogating 

cracks will lead to a sudden failure; on the other hand, the presence 

of both top and bottom longitudinal steel will lead to a s-shaped crack 

with the formation of a failure hinge about which the beam rotates 

either on top or one one side of the beam. 
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The effect of the amount of reinforcement provided is included 

in equation 5.31 through a factor proposed by Hsu. 

The proposed equation 5.26 and 5.27 are based on the assumption 

that torsional strength is not dependent on the amount of steel 

provided prior to cracking. 	This assumption was justified by 

Pandit [90] and by the result obtained experimentally. 	The strain 

in the reinforcement was negligible up to the cracking torque. 	There- 

fore the ultimate strength prior to cracking is not increased significantly 

by the reinforcement. 

The empirical approach proposed to derive equations 5.26 and 5.27 

is based on the fact that concrete exhibits some degree of plasticity 

and is based on a principal tensile stress criteria of failure. Since 

concrete is assumed to have plastic behaviour the shearing stress can 

be assumed to be constant over the cross-section. 

In view of the experimental results shown in Figure 5.17 in which 

the ratio of cracking torque to ultimate torque calculated by equations 

5.21 or 5.22 is plotted against the ratio of cracking moment to ultimate 

bending moment determined by equation 4.51, an empirical interaction 

curve relating bending moment to twisting moment is not possible. However 

an approximation can be made leading to conservative design by using 

the following criteria: 

(5.102) 

or by employing the criteria of the cracking torque given by equations 

5.26 and 5.27. 

The ACI proposal given by equation 5.44 is in fact a simplified 

version of Hsu's general expression given by equation 5.38. A reduction 
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in strength for beams subjected to torsion and shear was made by 

replacing i.. in the first term of equation 5.36 by . 	The volumetric 
VIE 

ratio (m) was assumed (= 1). 	This simplifies the calculation of the 

shape factor (c) in the second term of equation 5.36 and leads to 

identical yield stresses for the longitudinal and web steel. 

The ultimate torsional resistance of a concrete section determined 

by equation 5.38 of Hs4 and equation 5.39 of Cowan, are compared with 

the experimental values in Table 5.5. 	Once again equations 5.26 

and 5.27 predict the torsional strength of concrete more reasonably 

than both equation 5.38 and 5.39. 

The high values of T c given by Cowan are due to the fact that 

equation 5.39 considers the effect of pure torsion only. Equation 

5.36 of Hsu also only considers the effect Of pure torsion, so that 

similar values can be expected. 

Hsu's modified expression, given by equation 5.38 takes into 

account the effect of flexure in an indirect way to predict the 

torsional strength. 	The applied moment is involved in the calculation 

of the flexural shear stress, and this in turn will influence the 

torsional shear stress. 	Thus instead of defining the torsion-shear 

interaction it was proposed that a beam should be designed separately 

to carry torsion and bending so that the reinforcement required is 

the total of the steel required to resist torsion and that to resist 

bending. 	This will lead to a conservative design. 	In any case, 

shear and bending when added to torsion would decrease the torsional 

capacity of a beam predicted by each of the expressions. 

Collins 071 considered the effect of shear and bending on the 

torsional capacity of reinforced concrete beam separately. 	The 

modes of failure reported were directly affected by the magnitude of 



Table 5.5 	Comparison Between Calculated and Measured Tc  

T 	(exp.) TkN.m T 	(exp)  T(kN.m T(exp) 
Beam kN.m) Cowan Hsu Eq. 	5.33 T c Eq. 	5.33 T 	Eq.5..39 c 

Eq. 	5.39 

GR1-Bl 1.92 3.93 0.49 2.12 0.9 

-B2 2.25 4.52 0.49 2.56 0.88 

-B3 2.0 3.95 0.50 2.12 0.94 

-B4 2.17 4.25 0.57 2.72 0.80 

GR2-B5 2.30 3.93 0.585 1.90 1.2 

-B6 2.25 3.93 0.57 1.90 1.18 

-B7 2.2 3.93 0.56 1.90 1.15 

-B8 2.2 3.93 0.56 1.90 1.15 

GR3-A1 0.74 0.85 0.87 0.73 1.01 

-A2 0.81 1.22 0.66 0.82. 0.98 

-A3 0.80 1.22 0.65 0.82 0.97 

-A4 0.79 1.22 0.647 0.82 0.96 

GR4-Bl 0.70 0.81 0.86 0.62 1.12 

-B2 0.68 0.81 0.84 0.62 1.09 

-83 0.67 0.81 0.83 0.62 1.08 

-B4 0.69 0.81 0.84 0.62 1.11 
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the applied shear and bending moment acting on the section and the 

geometry of the section. 	The assumed failure surface was defined 

by a continuous tensile crack which formed a rectangular helix on 

three sides of the beam and a compression zone on the fourth face 

which joined the two ends of the helix. 	Failure was defined by 

the surface on which the compression hinge formed. 	Collins also 

considered another possible mode of failure which occurs under large 

direct shear forces. 	This however is not critical in this study 

as discussed in section 5.2.4. 

In considering the modified skew bending theory discussed earlier 

in section 5.2.1, the mode of failure observed in testing the spandrel 

beams is mode 1. The applied bending moment is alwaysgreater than 

the applied twisting moment as shown in Figure 2.4. 	Cracks formed 

on the sides at the bottom of the beam. 	The cracks further propqgated 

and widened then the reinforcement started to yield. 	The cracks then 

opened up and the two parts of the beam rotated about a skew axis 

near the top. 	The inclination of this axis depends on many factors 

such as: the ratio of the bending moment to twisting moment, distri-

buting the reinforcement,dowel forces acting between the steel and the 

concrete, and the concrete strength under combined stresses. 

It is interesting to note that when mode 3 of failure is likely 

to occur any increase in the bending moment would lead to a definite 

increase in the torsional capacity as shown in the following interaction 

equation: 

2 
M 

(i!_) - 	= R 	 (5.103) 
u 

A
sts where R = Af' = ratio of the forces in the bottom and top steel 
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T '  Mu  = pure torsional and flexural capacity of the beam. 

On the other hand the interaction equation for mode 1 of failure 

is given by: 

2 

(,_) + 
	

(5.104) 

which shows that increasing the bending moment decreases the torsional 

capacity. 

The transition between the two interaction equations occur at: 

Ml 
	

(5.105) 

The flexural resistance of a reinforced concrete may be reduced 

considerably in mode 2 type of failure due to the reduction of the 

lever arm. 

It has been proposed that the shear-torsion interaction can be 

satisfactorily represented by an empirical interaction relation given 

by equation 5.91 - for unreinforced concrete beams: 

T u 	V 

	

1 	 (5.91) 

Collins [17] showed that a linear interaction between shear and 

torsion for reinforced concrete beams represented by the following 

equation gives values close to experimental results: 

V 	1.6T 

	

+ b V ' = 	
(5.106) 

U 
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in which an equivalent shear force is substituted instead of T'  as 

given in equation 5.91, i.e.: 

+ 1.6 1 =V 	 (5.107) 
u 

or 	 T(5+J_.) = V ' 	 (5.108) 

After cracking the equilibrium mechanism in a reinforced concrete 

beam changes and the torsion which was initially carried by the concrete 

is then transferred to the steel which explains the sudden increase in 

the stresses and strains in the steel stirrups recorded experimentally as 

shown in Figure 3.9. 

Gesund and Boston [91] tested concrete beams containing longitudinal 

steel only under the combined influence of bending and torsion. 	It was 

concluded that the dowel action between steel and concrete may produce 

a considerable torsional resistance after cracking if the cracks are 

of the flexural type. 	The contribution of the dowel action of the 

longitudinal bars to the torsional strength of beams under pure torsion 

may be as high as 40% [92]. 

To include the effect of shear stress due to bending in equation 

5.101, the following equation is proposed to represent moment=shear 

interaction for a concrete beam, as shown in Figure 5.18: 

Vcr 
M 	

0.142 	+ 0.25 
cr  (5.109) 

cr 

where Mu '
,  Vu' = concrete flexural and shear resistance 

M, V = ultimate applied bending moment and shear force 

Mcr 	= cracking bending moment 



In the absence of more information the ultimate shear capacity 

as given by the ACI is taken (for reinforced concrete beams) i.e.: 

2 A f 	d  

V= 2 bdv'T '+ 	 8 b 	... (lb) 	(5.110) 
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CHAPTER 6 	Moment Curvature Characteristics of Flexural Sections 

	

6.1 	Introduction 

	

6.2 	Moment Curvature Relationship 

6.2.1 Analysis at Crcking Stage 

6.2.2 Analysis at. Yield Stage 

6.2.3 Analysis at Ultimate Stage 

	

6.3 	Moment Curvature Relationship for Confined Section 

	

6.4 	Experimental Evaluation of Curvature 



6.1 Introduction 

The evaluation of the moment-curvature relationship is an 

important step in the analysis of the deformation behaviour of the 

floor beams from which the load deformation or moment rotation 

characteristics are evaluated. 

Inthis chapter analytical expressions for the moment-curvature 

relationship of the floor beams are derived. 	The properties of the 

material and the compatibility relationship are involved in the 

approach adopted. 

6.2 Moment Curvature Relationship 

The behaviour of the test specimen has already been discussed in 

terms of three significant stages which define the load-deformation 

response of the floor beams. 	It is more convenient to employ moment 

rather than load at each of these stages in the analysis. 	Once the 

moments are determined, the loads are easily calculated by statics. 

With reference to Figure 6.1(a): 

	

0-1: 	is the elastic uncracked region which extends up to 

point (2) where cracks on the tension side in the area 

of maximum moment start to appear. 	This stage is defined 

as the cracking stage. 

	

1-2: 	the elastic region; yielding of the tensile steel 

commences in this stage and is defined as the yielding 

stage. 

	

2-3: 	defines the region of non-linearity which extends until 

the stage of failure. 
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Figure 6.1(b) An Idealized Moment-Curvature Diagram 
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Beeby [48] discussed the pre-cracking and post-cracking flexural 

rigidity which can be used in the analysis of moment-curvature relation-

ship as well as discussing some other proposed formula. 

Another approach adopted for the analysis of the moment-curvature 

relationship, is based on a sectional analysis in which the properties 

of the material and compatibility are involved [30]. 

Any method based on the idea that curvature depends only on the 

bending moment at a section, underestimates the ability of a beam to 

take large strains in critical regions of high bending moment. 	More- 

over prediction can not be made in a situation where the bending moment 

reaches a maximum value and then decreases as a function of the 

curvature. 

The moment-curvature curve is in a form similar to the stress-strain 

curve for concrete in compression; that is where three separate regions 

can be identified, namely the elastic region (uncracked, cracked), an 

inelastic region and finally the falling branch, as discussed before. 

The falling branch, of the moment-curvature curve, where the moment 

decreases with considerable increase of curvature, is very difficult 

to assess experimentally. The difficulties involved are similar to 

those encountered in finding the complete stress-strain curve. 	However 

the uncertainty of the meaning of this falling branch has resulted in 

its omission from reported research work [93]. 

Figure 6.1(b) shows an idealized diagram for the moment curvature 

relationship for an under-reinforced concrete section. 	It can be 

seen that the diagram follows the same sequence of load-deformation 

response in Figure 6.1(a). 	Point (1) indicates the cracking of concrete 

in the tension zone. 	The commencement of the tensile steel yielding 

in the floor beam is represented by point (2). 	Beyond this point the 
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concrete crushes in compression since all floor beams are under-

reinforced, cracking and yielding of the steel in the tension zone 

will always precede crushing of concrete. 
	Then failure of the beam 

at ultimate occurs. 

6.2.1 Analysis at Cracking Stage 

This is determined by the first significant break marked as (1) 

in the moment curvature diagram. 	Prior to cracking the section is 

uncracked and the beam behaves essentially e1asticaty. When the tensile 

stress in the tension zone at the critical section is equal to the 

tensile strength of concrete, the concrete cracks thus reducing the 

flexural stiffness of the section. 	The curvature (p) of an uncracked 

section may be expressed by: 

M 
- E I 

(6.1) 

where M = the applied moment, 

EC = concrete modulus of elasticity, 

I = moment of inertia of the gross section about its centroidal 

axis in the plane of bending. 

The modulus of elasticity for the concrete is taken from experimental 

results given in the test programme. 	A good approximation can be 

adopted by considering the gross moment of inertia rather than the 

moment of inertia of the transformed section in determining the flexural 

rigidity (E c I). 	Using the value of the uncracked flexural rigidity, 

the deflection at mid-span can also be determined at this stage prior 

to cracking. 	Cracking of concrete will result when the tensile stress 
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in the extreme fibre of the concrete in the tension zone produced by 

the applied moment, is equal to the tensile strength of the concrete 

expressed by the modulus of rupture This criteria is suitable 

for calculating the cracking moment, thus: 

ft(bh2 ) 
M 	= 	

Z = 
	

(4.51) cr   

where Z = section modulus, 

h = gross depth of beam section, 

ft 
 = tensile strength of concrete expressed as the modulus of 

rupture and can be determined using equation 3.5 viz: 

=0.6 

A comparison between the computed cracking moment and the measured 

cracking moment for the floor beams of the test specimens is shown in 

Table 6.1. 	The behaviour of the floor beams is not influenced by the 

development of the cracks at This stage. Though the results do not 

show a definite trend, in general the cracking moment of the floor 

beams varies between 30% to 55% of the maximum measured moment. 

6.2.2 Analysis at Yield Stage 

The second break in the moment-curvature diagram is also indicated 

(2). 	This stage is defined by yielding of the tension steel and a 

continuous increase in deflection at a point where the applied load 

becomes nearly constant. 	Yielding Of the tension steel is reached 

before the strain in the concrete is high enough to produce crushing 

as long as the section is under-reinforced. 	This region extends 

between (1) and (2) on the idealized moment-curvature diagram. 	The 



Table 6.1 Comparison Between Measured and Calculated M cr  

Cracking Moment (kN.m) M M 
max Mcr 

Specimen M 	(meas.) 
cr 

Measured 
- 	meas.) 
max 

Measured Calculated (kN 	. 	m) 

GR1-Bi 24.79 7.39 0.30 31.41 78.9 

-B2 23.87 8.54 0.35 44.25 54 

-B3 23.65 7.39 0.31 46.0 51.4 

-B4 23.95 8.0 0.33 49.75 48.1 

GR2-B5 17.05 7.39 0.43 47.0 36.2 

-B6 19.88 7.4 0.37 46.6 42.6 

-B7 19.62 7.4 0.38 51.12 38.3 

-B8 16.68 7.4 0.44 52.37 31.8 

GR3-Al 3.78 1.64 0.43 8.3 45.5 

-A2 2.23 1.9 0.85 7.41 30.0 

-A3 2.02 1.9 0.94 7.63 26.5 

-A4 2.48 1.9 0.766 7.5 33.06 

GR4-Bl 1.52 1.07 0.70 3.85 39.4 

-82 1.26 1.07 0.85 3.22 39.1 

-B3 1.75 1.07 0.61 3.46 50.0 

-B4 1.49 1.07 0.72 4.28 34.8 
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analysis of this stage requires the following assumptions: 

Linear distribution of strains over the depth of the 

section. 	This assumption has been proved experimentally 

to be reasonably accurate and universally accepted in 

most analyses of reinforced concrete sections; the average 

strains are measured on adequately long gauge lengths. 

Linear stress-strain relationship for concrete at the 

commencement of the tensile reinforcement yielding, i.e. 

zero at the neutral axis and maximum at the compressive 

face as shown in Figure 6.2. 

Concrete tensile strength is negligible. 

The stress-strain curve for the reinforcement obtained experi-

mentally and shown in Figure 2.6 can be approximated to the 

tn-linear form shown in Figure 6.4. 

I 	4 	_ 
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I I 
Al 
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Figure 6.2 Conditions of Yielding of Tension Reinforcement 
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The yield strain of the steel can be determined accurately from 

the stress-strain curve and since up to the yielding strain, E sy' 
 the 

stress is linearly proportional to the modulus of elasticity E; the 

yield curvature is thus: 

- esy  - 	 f y  

- d - xd - d Es  (1 - x) 

where xd = depth of the neutral axis from the extreme compressive fibre 

of the section. 

The beams are assumed to have compression steel as well as tension 

steel. 	Using the following general expression, the, ratio (x) can be 

obtained: 

x = -m (P5 ~ P') r1 /i + 2 (Pç + a P')l 

L 	m (P5 + P')2 j 	
(6.3) 

Asc ' 
where P5=- 

A 
st 
n-, 

, - bd 

d' 	
E5 

a = -- , m = modular ratio, .- 

ad = d': depth of the compression steel from the top fibre of the 

section under compression. 

Combining equations 6.2 and 6.3, the yield curvature becomes: 

f y  
= 	 (6.4) 

2 (Pç + a P') 
d E5  [i + m (P5 + P') (1 -/1 

+ m (P5 + P')2 
)j 

The internal moment at the critical section at the yield stage 
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can be computed by establishing the depth of the neutral axis and 

the magnitude and distribution of the strain over the section. 

The strain in the compression steel is: 

Csc =y (xd - ad) 
=y 

 d (x - a) 	 (6.5) 

when 	 the compressive force in the compression steel, C, is:
sc 

Csc =sc . E5 . A' 	 (6.6) 

when E > 	then:
sc 

Csc  = A5' . f5 ' 	 ( 6.7) 

where f5 ' = the stress in compression steel. 

By satisfying the equlibrium condition i.e. the compressive forces 

must equal the tensile force in the tension steel, at yield, in the 

section then: 

T = C 

A5t . f5  = C c 	Cs 
+ C 	 (6.8) 

or 	 cc = 	1sy - cs 	
(6.9) 

where C = is the compressive force in the concrete. 	The moment at 

the critical section at this stage is thus: 

M = C (d 	
xd 

 ) + C 	(d- ad) 	 (6.10) --- 	sc 
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By substituting for C and C5  in equation 6.10, M becomes: 

xd 
= (A5t 	sy - A5' . f) (d - -- ) + ASc  ' . f

S 
S  (d - ad) 	(6.11) 

The stress in the compression steel (f 5 ) can be determined from Figure 

6.2: 

'I-c 
I s - S • 	SC 

-Es 	( x - a\ 	 (6.12) 
- S • Sy 'I --x ' 

when the compression steel has also yielded: 

S 
= ASC  ' - fsy  ' 	 (6.13) 

where f y ' = yield strength of compressive reinforcement. 

For beams without compression steel, the depth of the neutral axis, 

the yield curvature and the yield moment can still be computed using 

more simplified expressions by reducing equations 6.3, 6.4 and 6.11 

respectively to: 

x  = (/(m 	+ 2 rnp5 - mq d 	 (6.14) 

f = 	 sy________ 	 (6.15) 

dE 5  (1+m -/(m 2 +2mp5  

xd 
and 	= (A5t . f 5 ) (d - -T- 	

(6.16) 
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The load-displacement response can be evaluated if the distribution 

and magnitude of the curvature can be computed. 	The factors that 

influence the theoretical prediction of the curvature at the yield 

stage therefore must be investigated; The assumed linear distribution 

of concrete may be different from the actual distribution. 	The error 

is negligible if the maximum stress at the top fibre of the beam is 

less than approximately half the ultimate compressive strength of 

concrete. 	Since the floor beams investigated in this programme are 

under-reinforced, this assumption is satisfied. 	The reinforcement 

ratios (P5) provided in the beams are well below the value of the 

balanced reinforcement ratio required to produce a balanced failure.by  

simultaneous crushing of the concrete and yielding of the tension steel. 

A better evaluation can be obtained by employing the actual stress-strain 

curve of the concrete in the beam. 

The curvature at yielding given by equation 6.2 is very sensitive 

to the yielding strain, e sy ll in the tensile steel. 	Computations on 

the basis of carefully measured values of E sy  are more preferable than 

adopting an assumed theoretical value. 

The depth of the neutral axis given by equation 6.3 is also 

involved and influences the magnitude of the curvature. 	The effect 

of the approximation in equation 6.3 may not be significant as long 

as the beams are under-reinforced as discussed earlier. 	The effect 

may disappear in equation 6.14. 

The value of the steel modulus of elasticity E 5 , is obtained from 

experimental results and the value of the concrete modulus of elasticity 

E, is also obtained from experimental results measured at 0.5 x.10- 3 

strain as shown in Table 2.6. 	Table 6.2 shows themornent_curvature 

values for the floor beams. 



Table 6.2 Moment-Curvature at Yield Stage 

Yield Moment(kN.m) M 	(meas.) 

Specimen PS 
I'' x 10 (comp.) 

" 1/m Computed Measured 

GR1-Bl 30 1.345 0.24 0.837 30.85 31.00 1.0 

-B2 40 It 0.832 30.86 33.52 1.09 

-B3 30 " 01 0.837 30.70 31.80 1.04 

-B4 35 I' If 0.833 30.85 32.00 1.03 

GR2-B5 30 11 0.837 30.85 34.00 1.1 

-B6 30 0.837 30.85 34.25 1.102 

-B7 30 0.837 30.85 34.3 1.11 

-B8 30 If 0.837 30.85 35.75 1.16 

GR3-Al 30 1.2 0.43 1.48 5.29 6.0 1.13 

-A2 40 1.249 5.31 5.5 1.04 

-A3 40 " 1.249 5.31 5.3 0.994 

-A4 40 1.249 5.31 5.35 1.0 

GR4-B1 40 1.1 1.598 2.59 2.8 1.08 

-B2 40 It 1.598 2.59 2.75 1.06 

-B3 40 It If 1.598 2.59 •2.75 1.06 

-B4 40 1.2 If 1.598 3.80 3.9 1.03 
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6.2.3. Analysis at Ultimate Stage 

This is the third significant break in the moment-curvature 

curve prior to failure. 	This region extends between 2-3 on the 

idealized diagram and is defined by yielding of the tensile steel, 

propagation of the cracks and crushing of the concrete in the 

compression zone. 

In order to analyse this stage, the following assumptions have to 

be made in addition to those referred to in the yield stage. 

1. The properties of the concrete stress block at maximum moment 

and the characteristics of the complete stress-strain curve 

are required. 	The inelastic stress distribution and the 

strain distribution over the section are shown in Figure 6.3. 

The shape of the stress block adopted is the stress-strain 

curve represen:t..ed by equation 4.19 as discussed in Chapter Four. 

2, Steel in the compression zone has yielded at ultimate stage. 

The stress-strain curve for the reinforceis idealized to a 

tn-linear form in order to consider any effect of strain 

hardening of the steel at this stage. 

The assumed stress distribution in the compression zone, the 

ultimate strain of the concrete in the compression zone, the 

average stress and other stress block parameters are computed 

on the basis of experimental results and represented by 

expressions adopted in Chapter Four. 

With reference to Figure 6.3 and due to the equilibrium condition 

of the internal forces, the following relationship is true: 
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T = C 

fS  . Ast 	U 	S 
= C + f ' ASc 	 (6.17) 

where Cu  is the ultiamte compressive force and given by the following 

equation in terms of the average stress of the compression zone: 

Cu = 	av (b) (xd) 
	

(4.27) 

Thus equation 6.17 becomes: 

	

A 	= av . b . xci + A5' 

A -A 	
f sy st 	sc 

or 	 Xu= 	lavbd 

Pf - P'f 
5 S 	sy 	 (6.18) or 	 Xu= 	

av 

Having locatedthe neutral axis using equation 6.18, the ultimate 

moment of the internal forces is given as: 

Mu  = C (d_xd+ Yd) +ASc 	S 
'f ' (d - ad) 

	

= b 	av • x (1 - 	 sy 
+ P' f 	(1 - a)J 	(6.19) 

where g• = xu - 

From Figure 6.3(c), the curvature at this stage is 

+ 
=(6.20) 
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xd ________ 
also 	a = 	+ 	

( 6.21) 

Substituting the value of x from equation 6.18 in equation 6.21 

gives: 

Ps fs  - P' f5' = 	C u  

av 	Cs+Eu 

1  

	

U + pi fsy I) 	 (6.22) 

Equation 6.22 defines the tensile stress in the tension steel and 

with the help of the idealized stress-strain curve in Figure 6.4, the 

strain in the steel at any stage can be evaluated according to the 

following three conditions: 

- 

f5  < f5 	then 	
fs 

- 

f5  = f5 , then 	-s 	sy 

f > 	
then C5  = C 	+ 

5  - f y  
s  

	

sy 	E' 

where E '= 
S 

It can be seen that the ultimate moment and the ultimate curvature 

are dependent on the condition of stress in the tension steel (f 5 ). 

For beams without compression steel equations 6.18 and 6.19 are reduced 

to: 

P.f 
x = S 	

S 	 (6.18a) 
av 
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and 	Mu = av . bd2 x  (1 
- 	

(6.19a) 

It may be noted that this equation is similar to the expression 

obtained in Chapter Four, equation 4.34. 	Furthermore the reinforced 

ratio (P) corresponding to a particular strain condition must be known 

to determine the stress in the tension steel at the ultimate stage. 

This can be done by applying the conditions of strain compatibility 

and forces equilibrium then: 

= 	= Cs + C 1 	av 

1 Cu 	av 
or 	

( 	 + 	) 

5 	5 	U 

In the case of balanced failure, i.e. yielding of the tensile steel and 

curshing of the concrete take place simultaneously, the balanced steel 

ratio Pb  is: 

Cu 	av = 	
+  E u 

(6.23) 

For the case of strain hardening commencement, i.e. Cs = Csh then 

steel ratio P sh  is 

PS 	
1 	Cu 	av 

hTc ~ C 
5 	sy 	U 

in this case f > f 
S 	5 

There are three possible conditions: 

1. When P> P b 
 then f5 

< 
f,, i.e..  the . stress in the tension -steel 

is below yielding stress. 
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When P b >  s >  "sh' then f
5  = f,, i.e. the stress in the 

tension steel is equal to the yielding stress. 

When Psh > 	
then fS  > f

5 
 at ultimate. 

The ultimate curvature is given by equation 6.20: 

Cs + 
d 

The value of c s
can be evaluated by considering the following three 

conditions: 

For the first condition where f 5  <•f y  

Cs = -ç 

For the second condition where f 5  = f,, 

= xd 
	 (6.24) 

PS f5 
where x = 	

y. 
u 	' av 

For the third condition where f5  > f5  

fS  - f5  
Cs = C5y+ 	E5' 

for beams without compression steel (f 5 ) can be obtained from equation 

6.22. 

The values of c0 , c u and fav  adopted in this section for the 

computation of the moment and the curvature at various stages are 
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obtained from the expressions given in Chapter Four viz: 

= 0.875 x lO 

• 	7.8 x 10-3 
 

CU =  

C 
f = f 

C o  
' - in (1 + + 

U 
2 

-) ) av 	C C 

Using the relationships developed in this section, the moment 

curvature characteristics and the load-deformation response can be 

evaluated by establishing the distribution of curvature along the 

member. 

Table 6.3 shows the moment curvature values for the floor beams. 

Figure 6.5 shows idealized distributions of moment and curvature at 

different stages. 

6.3 Moment Curvature Relationship for Confined Section 

The effect of confinement has been discussed in detail in Chapter 

Four. 	However the most significant effect of the confinement is on 

the strength and deformation characteristics of the specimens. 	The 

ultimate strain of the concrete is highly influenced by the confinement 

of the section. 	Chan [32] proposed the following expression to calculate 

the ultimate strain of a section confined by rectangular ties: 

1/3 

=Eu + 
	

;;? 44 	
( 6 25) 

where EU' = ultimate strain of bound concrete 



Table 6.3 Moment-Curvature at Ultimate Stage 

Ultimate Moment(kN.mm) M 
x 10 

(meas.) 
Specimen comp 

U 
Computed Measured 

GR1-Bl 5.0 41.6 31.41 0.75 

-B2 4.99 42.3 44.25 1.04 

-B3 4.99 41.98 46.0 1.1 

-B4 5.00 41.6 49.75 1.19 

GR2-B5 5.0 41.6 47.0 1.12 

-B6 5.0 41.6 46.6 1.12 

-B7 5.0 41.6 51.175 1.2 

-88 5.0 41.6 52.37 1.27 

GR3-Al 8.88 8.47 8.3 0.98 

-A2 8.57 8.6 7.41 0.86 

-A3 8.57 8.6 7.63 0.89 

-A4 8.57 8.6 7.5 0.88 

GR4-Bl 9.57 4.0 3.85 0.96 

-B2 9.57 4.0 3.22 0.8 

-B3 9.57 4.0 3.46 0.87 

-B4 9.57 4.0 4.28 1.07 
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Figure 6.5 Idealized Distribution of Moment and Curvature at 

Cracking, Yield and Crushing 
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Pie - volume of stirrups 	+ 0.1 0 
- volume of bound concrete 

D = diameter of the compression steel, 

s = spacing of the closed rectangular stirrups. 

Corley [31] included a parameter to define the size-effect and 

strength of the lateral reinforcement on the ultimate strain given 

by the following expression: 

P1 40

f 2 

	

= 0.003 + 0.02 	
+ 	WY. 	 (6.26) 

(  

where Z = distance between points of zero and maximum moments, 

f, = the yield stress of the lateral reinforcement expressed in 

N/mm2 , 

Pc" = ratio of volume of binding steel (one stirrup plus compression 

steel between stirrups) to volume of concrete bound (product 

of stirrup spacing and area enclosed by stirrup). 

It is evident that the ultimate strain of concrete depends on the 

following factors: 

The depth of the neutral axis at failure (xd). 

Volume of stirrups. 

Indeed equations 6.25 and 6.26 take into consideration only the 

second factor. 	Another approach proposed by Baker and Amarakone [94] 

to take into consideration the influence of the stirrups and the 

neutral axis depth at failure on, c 12  for bound concrete, and is given 

by the following empirical equation where Cu < 0.01 
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Cu' = 0.0015 [1.0 + 1.5 	 (0.7 - 0.1 	 (6.27) 

= volume of stirrups per unit length 
where 	 bd 

The results of Soliman and Vu's experimental investigations [68 

on the confined concrete stress-strain relationship to define the 

ultimate strain is given by the following expression: 

= 0.003 (, 1 + 0.8 q") 	 (6.28) 

The parameter q" is defined in section 4.4. 

It can be seen that the ultimate strain of a confined section is 

given by the total of the ultimate strain of the unconfined section 

plus a value due to confinement. 	Therefore it is more convenient 

to rewrite equations 6.26 and 6.28 in the following form since the 

ultimate strain of the unconfined concrete section is. dependent on 

the concrete strength and never constant: 

P " f 	2 

Cu' = Cu + 0.02 	+ 	
c 	wy 

140 	
(6.29) 

C u ' =u (1 + 0.8 q") 	 (6.30) 

The value of e u
is given by equation 4.17. 

The expressions derived earlier to comput the ultimate flexural 

strength of the unbound section can be modified to include the effect 

of confinement, so that equation 6.19 can be rewritten as: 

Mu = bd 2  rf av 
" U 

x (1 - ) + P .  f 
sy

'  (1 - a)] 	(6.31) 
1  
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= the average stress of the compressive block for the confined 

section 

Id = the distance of the centroid of the compressive block from the 

extreme compressive fibre. 

Both terms are defined in section 4.4. 	Equation 6.31 is also 

valid for beams without compression steel and becomes: 

Mu  = f av •x(l-I)bd2 

which is similar to equation 6.19(a) obtained earlier. 	Similarly the 

curvature of a confined section can be calculated by the following 

expression: 

L u ' 

1's sy 
where xd = 

av 

(6.32) 

Table 6.4 shows the values of the ultimate strain for the confined 

section proposed by Chan, Corley and Soliman and Vu. 	It is evident that 

the values computed by the expressions proposed by those investigators 

differ considerably and the values of the curvature of a confined 

concrete section differ accordingly since the ultimate strain (E
u 

 

is the main parameter for computing the curvature as given by equation 

6.32. 	This is illustrated in Table 6.5 where the values of curvature 

of specific specimens are compared. 	Undoubtedly, Chan's expression 

gives considerably higher values than the other two. 	The values of 

the other parameters involved in Tables 6.4 and 6.5 are computed by 

expressions given in Chapter Four. 



Table 6.4 Ultimate Strains of a Confined Section 

E u  

Chan 
Eq. 	6.25 

Corley 
Eq. 	6.26 

Soliman and Vu 
Eq. 	6.28 

Eu ' Eu .  E u ,  

0.00368 0.0126 0.0062 0.0047 

0.00348 0.0124 0.0060 0.0045 

0.00333 0.0123 0.0058 0.0043 

0.0032 0.0121 0.0057 0.0041 

0.00310 0.0120 0.0056 0.0040 

Table 6.5 Values of Curvature 

Specimen 

Chan Corley Solirnan and Vu 

x10 x io X-10- 4 

GR1-B1 2.76 1.3 0.962 

-82 3.131 1.47 1.06 

-B3 3.48 1.63 1.16 

-B4 2.76 1.3 0.962 

GR3-A1 4.11 1.94 1.44 

-A2 5.2 2.43 1.736 

GR4-B1 7.2 3.36 2.4 
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6.4 Experimental Evaluation of Curvature 

The strain measurements were recorded over the depth of the 

floor beam section at midspan i.e. at the critical section using 

Demec points. 	Demec points were fixed at six levels from the 

extreme compression side to the level of the tension reinforcement. 

Electrical resistance type strain gauges were also fixed on the bottom 

tensile steel in the beams. 	More details regarding instrumentation 

are discussed in the test programme. 

The assumption of a linear distribution of strain is not valid 

at higher loads, i.e. in the inelastic region and strains measured at 

the surface can no longer be regarded as a true measure of the internal 

behaviour of the concrete. 

At this stage the strain in the tension steel is considered more 

reliable assuming that the steel-concrete bond remains perfect which 

is not true for all loading stages. 



CHAPTER 7 : TORQUE-TWIST CHARACTERISTICS 

	

7.1 	Torsional Stiffness 

7.1.1 Precracking Stiffness 

7.1.2 Postcracking Stiffness 

7.1.3 Comparison and Discussion 

	

7.2 	Deformation Response 

7.2.1 Rotational Behaviour 

7.2.2 Ductility 
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7.1 Torsional Stiffness 

The behaviour of concrete members subjected to torsion is well 

understood and the torsional stiffness can be predicted reliably. 

When the applied torsion is increased until the principal tensile 

stresses at the critical section are equal to the tensile strength 

of the concrete, the concrete cracks. 	This reduces the stiffness 

of the section. 	Following formation of the first crack, crack 

propagation continues well into the member changing the section 

properties from uncracked stiffness to the lower stiffness drastically. 

The decrease in torsional stiffness after cracking is generally greater 

than the decrease in flexural stiffness. 	Accordingly two types of 

stiffness are recognized: 

Precracking stiffness. 

Postcracking stiffness. 

The torsional stiffness can be defined as the twisting moment 

required to produce a unit angle of twist per unit length, 

i.e. 	S= T • 
	 (7.1) 

where S = torsional stiffness, 

T = twisting moment, 

0 = angle of twist. 

7.1.1 Precracking Stiffness 

The torsional stiffness of a reinforced concrete beam prior to 

cracking is considered to be the same as the stiffness of a plain 
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concrete beam. 

Hsu [7,16] proposed the following equation to predict the cracking 

torque (Tcr)  of a reinforced concrete beam: 

Tcr = (1 + 0.04 	T' 
	

(5.30) 

By definition the torsional stiffness may be expressed as the ratio of 

torque/twist, where Tu'  in equation 5.30 is the failure torque of an 

unreinforced concrete beam. 	The failure rotation of an unreinforced 

beam or the cracking rotation (ecr)  is given by: 

0.43 x 10 (1 + 	.... rad/in 	 (7.2) 
0cr = 	 _ 

therefore according to Hsu's expressions the stiffness is given by: 

cr 

The value of the torsional stiffness (S) in equation 7.1 can be 

expressed as: 

S=K. G 
	

(7.3) 

where G = shear modulus of elasticity, 

K = a torsion constant dependent on the section geometry. 

K = G. 0 Jfdx dy 	 (7.4) 

= elastic stress function. 
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GK can be calculated using the classical method of elasticity 

by considering the material to be homogenous and ignoring the steel 

i.e.: 

GK = G . X . b3  . h 	 (7.5) 

where A = a function of b/h as given in Table 5.1. 

G = 2 	i) 	
(7.6) 

G in the ACI Code is taken as 0.5 E c 
 on the assumption that 

p = 0, and G in CP110-72 is taken as 0.4 E. 	Also in the British Code 

K is taken as 	(A b3  . h) to ensure that the stiffness is under- 

estimated. 

Equation 7.1 can not be applied to concrete because the stress-

strain relationship is non-linear hence the difficulty involved in 

measuring the value of G. 	The torque-twist relationship is therefore 

considered to be non-linear and represented by a curve rather than a 

straight line as shown in Figure 7.1. 	If the torsional stiffness is 

assumed analogous to the modulus of elasticity [13] the parameter (Si) ,  

secand (S 5 ) and tangent torsional stiffness (St) can be defined as 

shown in Figure 7.1. 	Pandit [13] showed that: 

- - - 1(1 + a I  ) 	 (7.7) 
Si T cr 

where Tcr = cracking torque in pure torsion, 

= a dimensionless constant taken as 2.3. 

From equation 7.7, the secand torsional stiffness may be expressed as: 



T c r 

ci) 

S.-
0 
I- 

./ 

0 cr 

Angle of twist 

Figure 7.1 Torque-Angle of Twist Characteristics 
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Ss - 
	

+ S i 	
(7.8) 

The reduction in the torsional stiffness given by the factor 

i + ,1-Y' is due to the reduction in the shear Modulus of Elasticity 
cr 

and micro-cracking of the concrete. 	The lower limit of equation 7.8 

validity is when I = 0, and the upper limit when T = T cr • 

For beams under combined torsion and bending, it was found [11] 

that the initial torsional stiffness is reduced by the factor (1 + IT -

due to the effect of bending therefore equation 7.7 becomes: 

0 =(1 + 	Tcr (1 + _) 	 (7.9) 

where M = flexural moment (applied), 

Mu = ultimate flexural resistance in pure bending. 

Equation 7.9 is valid when Tcr > T and M u > M. 

The presence of flexural shear tends to reduce the torsional 

capacity of the beam, as discussed earlier, because the shear stress 

due to torsion is additive to the flexural shear on one side of the 

beam's cross-section. 	Accordingly, the angle of twist in the presence 

of the flexural shear can be expected to be increased. 	Pandit suggested 

the following equation to include the effect of flexural shear: 

0 = - (1 + TL_) (1 + _) 	 (7.10) 

where W = /(1 	' eq 'Tcr ) 

Teq = equivalent torque necessary to produce the same shearing 

stress as that produced by the flexural shear at the 

critical section. 
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Equation 7.10 is again valid when T cr > 
T, Tcr > Teq and 

M u 
> M. 	The limiting case of combined bending and shear is for, 

Teq = 0 and 	= ; the limiting case of pur torsion is therefore 

Teq = M = 0. 

In order to calculate the angle of twist of the spandrel beams 

subjected to bending and torsion, equation 7.9 can be expressed in the 

following form: 

0 
	T 	 ' I 

y 
, 
	

(7.11) 

The upperlimiting values of T and M are Tcr  and  Mcr  respectively. 	T' 

is given by equation 5.21 or 5.22. The cracking angle of twist can 

be calculated by the following proposed expression as a special case 

of equation 7.11: 

T 	 I 	M 
cr 	cr 	cr 

Ocr  = - (1 + 	y-r) (1 + g-r) 	 (7.12) 

where a = is taken as 2.0. 

Tcr  Mcr = cracking torsion and bending respectively. 	The cracking 

angle of twist when shear and bending are acting in addition to torsion 

is given by the following expression: 

Tcr 	I 
TcrMcr 

Ocr  = ___ (1 + 	r_ 	(1 + çr) (7.13) 

where 	= 	( 	
+ 1  ceq )  

Tceq = torque necessary to produce the same shearing stress as 

that produced by the flexural shear in the concrete. 
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Tceq = c b
2  h v c 	

(7.14) 

ci. = is given in Table 5.1, 
V 

and v = 	= maximum shear stress resisted by the concrete. 

7.1.2 Postcracking Stiffness 

When the cracking stage is reached, the torsional stiffness is no 

longer a constant quantity and reduces at different levels of loading. 

In statically indeterminate structures a considerable reduction - 

in the stiffness occurs at the cracking stage resulting in a significant 

redistribution of internal forces. 	At this stage it may be difficult 

to estimate the torsional stiffness and therefore the torsional moment. 

Many methods of analysis and design have been suggested to deal 

with this problem. 	Collins and Lampert [39] have assumed zero torsional 

stiffness of the spandrel beam so that the conventional elastic method 

can be used for the analysis. 	Hsu and Burton [40], Pillai and Bharganan. 

[43] and Hsu and Hwang [44] suggested a limit design with assumed 

torsional stresses. 

Using the uncracked stiffness in the cracking stage proved to give 

unrealistic results and a high estimation of the postcracking torsion. 

The ratio of flexural stiffness to torsional stiffness increases when 

using the cracked stiffness, hence different values of moment distribution 

are obtained. 	In fact a more accurate prediction of the moment 

distribution can be obtained when using cracked stiffness than that 

based on gross stiffness as can be seen from equation 2.1. 

This has led investigators to use postcracking stiffness to obtain 

a more reasonable correlation. 	Hsu [7,16] proposed the following 
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equation to predict the cracking stiffness: 

S cr = (0.021 	Si 	(kip.in ) 	 (7.15) 

where Scr = cracking stiffness, 

S i  = initial stiffness, 

Pt = the total volume reinforcement percentage. 

The calculated ultimate rotation 	is a function of the cracking 

rotation (Ocr) and the reinforcement percentage 	given by: 

eu = (28 + 3.2 	0cr 	(rad) 
	

(7.16) 

where 0cr = is given in equation 7.2 

Lampert [8] derived the following expression for the postcracking 

torsional stiffness: 

E (b h) 2 A 

GK cr 	
0 0 	h(l+m) 

- 2 (b0 +h0 ) s 
(2.2) 

Hsu [9] derived the following equation for the cracking stiffness: 

T- 
(j 	L 	= 	

T0 	
T>T 	 (7.17) 

cr cr 	0 	 cr 

where 

Gr = 	U heff 	U  heff 	
(7.18) 

	

(4 AC P1 	APh 

4 A2 heff 
Ccr = 	

(7.19) 
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where Gcr = shear modulus of the concrete, 

Ccr = St. Venant torsional constant, 

heff = 1.4 (P1 + Ph)"b, 

= 0.57 + 2.86 	(for solid section r = 2), 

Ac = solid cross-sectional area within the outer perimeter of 

the concrete, 

A = cross-sectional area within the centre line of the stirrup, 

U = length of the centre line perimeter of a stirrup, 

h' p1 = volume of ratio of stirrup steel and longitudinal steel 

respectively with respect to the solid cross-section, A, 

T0  = contribution of the concrete to the ultimate strength in 

pure torsion = 	b2  . h . 
VF 	

c 

It can be seen that the stiffness calculated by equations 2.2 and 

7.17 is a function of the amount of transverse steel, accordingly large 

values of GKcr  can be expected using the conventional elastic method. 

Ramakrishnan and Rangan [10] proposed the following expression for 

the torsional rigidity at any stage in terms of initial torsional 

rigidity of the uncracked section: 

G. J. 
1 

= (1 + 
(7.20) 

where G J. = torsional rigidity of transformed uncracked section, 

T' = ultimate torsional moment in pure torsion, 

= constant. 

The angle of twist is given by the following expression: 

T 	 I 
0 = a [1 + (h)2] G 
	+ 	

T—r) 	 (7.21) 
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The values of ci. and a in equation 7.21 are obtained experimentally and 

tabulated in reference [10]. 

As mentioned earlier, the torsional stiffness is reduced due to 

the presence of the flexural moment [11] and the reduction factor given 

by Pandit, (1 +is still applicable, where Mb  in this case is the 
b 

ultimate flexural resistance of a reinforced concrete beam in pure bending. 

Shear modulus and modulus of elasticity of concrete are related by 

equation 7.6: 

E 

= 2 (1 + u) 	
(7.6) 

where i = Poisson's ratio = 0.2 as assumed in section 4.5. 

Therefore 

Gi 
 = 0.4 E 	 (7.22) 

E C 
can be calculated by equation 4.15, i.e.: 

Ec = 5.5 v'T -r 	 (4.15) 

then 	G 	2.2 	 (7.23) 

from equation 7.5 is equal to: 

Ki = X b3  . h 

A is a function of h/b and given in Table 5.1. 

= G i K 	 (7.3) 
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or 	 S i  = (2.2 /') A . b . h 	(kN.mm2 ) 	 (7.24) 

similar to equation 7.11 the following expression is proposed to 

predict the ultimate angle of twist: 

e=_(l ~ 'iT) (1 
	

Mb 
	 (7.25) 

- where T, M = the ultimate torsion and bending moment respectively, 

S. = is given by equation 7.24, 

= constant = 2.0, 

T = ultimate torsional resistance of a reinforcement concrete 

beam in pure torsion and can be calculated by the following 

equation: 

A 
W 	1wy 	

b1h1 
T = T ' + 1.5  

U 	U 	 S 
(7.26) 

T' 	= is given by equation 5.21 	or 5.22, 

Mb = the ultimate flexural resistance of a reinforced concrete 

beam in pure bending and can be calculated by equation 

4.34 or by the more simplified expression: 

Mb = 0.9 A5t,  f5 . d 	 (7.27) 

on the assumption that (1 - x) is taken as 0.9. 

The ultimate angle of twist of a reinforced rectangular beam 

subjected to shear, bending and torsion can be calculated by the 

following proposed expression similar to equation 7.13: 
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= * (1 + ' 	(1 + 	
(7.28) 

where 	= ( 1/c' +e2) 
Teq = torque necessary to produce the same shearing stress as that 

produced by the flexural shear at the critical section. 

Teq in this case can be expressed by: 

Teq  = Tceq + Tseq 	
(7.29) 

Tceq = a b 2  . h . Vc  

Tseq is calculated by equation 5.98 for an equivalent area of one 

leg of a stirrup required to resist a shear stress of (Vu - v) i.e.: 

bh 

Tseq = 1.5 A 	wy 	
(7.30) 

A 	
- V c 

 ) b.s 	
(5.96) 

2 f, 

where v = ultimate shear stress 

v = the ultimate shear stress resisted by concrete. 

- Vc = 	= shear stress resisted by stirrup steel. 

Substituting A 
V 

from equation 5.96 into equation 7.30, Tseq  becomes: 

Tseq = 0.75 (v u - V c 
 ) b . (b 1 h l ) 

or 	 Tseq = 0.75 v 5  . b . (b 1 h l ) 	 (7.31) 
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Substituting the values of Tceq 
 and 

 Tseq 
 into equation 7.29, 

Teq becomes: 

Teq  = a bh v  + 0.75 vs  b . (b 1 hi) 	 (7.32) 

7.1.3 Comparison and Discussion 

From the torque-twist curves shown in Figure 3.3 and since the 

flexural cracking took place before the torsional cracking, it would 

appear that spandrel beams maintain their initial torsional stiffness 

longer than their flexure stiffness. This may be illustrated by the 

initial part of the torque-twist curves; which may be considered as 

curve (12) as shown in Figure 7.1. 

Hsu's expression for the cracking torque, stiffness and angle of 

twist were derived to satisfy data obtained from tests carried out on 

isolated beams subjected to pure torsion. 	The spandrel beams, however 

are subjeJed to combined torsional moment and bending moment and may 

also be subjected to high shear forces. 	Therefore a direct comparison 

under these cirumstances can not be made. 

Applying equation 2.2 to spandrel beams may result in underestimated 

values for the cracked stiffness because spandrel beams do not uniformly 

crack. 	Extra stiffness is expected in the region of low tensile stresses 

and where the concrete is still uncracked. 

T 
The factors (/1/ + Ceq) in the case of uncracked stiffness and 

cr 

in the case of cracked stiffness have been proposed to include 

the effect of shear; however the increase in the value of () due to 

those factors is considered to be low. 	Indeed Lampert [8] proved that 
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the torsional stiffness can be regarded as being independent of the 

shear force. 	In addition the effect of the shear force on the 

deflection is not significant if a substantial amount of torsion is 

present. 

The measured angle of twist can be obtained either from the torque-

twist curves shown in Figure 3.3 or from the applied load at different 

stages, i.e. cracking or ultimate and then the corresponding measured 

value of angle of twist as shown in Figure 3.8. 

The calculated cracking angle5of twist are compared with the measured 

values in Figure 7.2. 	Equation 7.13 is used for beams in group GR2 

where shear is relatively high, and equation 7.12 for the remainder of 

the beams. 

Three beams in group GR2 reached their ultimate torsional strength. 

The calculated angle of twist with the measured values are compared in 

Figure 7.3. 	On Figure 7.3 four beams reported by Rangan [46] to have 

reached their ultimate strength, are also compared to show the validity 

of equations 7.25 and 7.28. 

It can be seen that the proposed equations 7.12 and 7.13 for the 

cracking angle of twist and equations 7.25 and 7.28 for the ultimate 

angle of twist, give good agreement with the test results. 

7.2 Deformation Response 

The evaluation of localized deformations of reinforced concrete 

members is necessary to ascertain the maximum moment distribution 	to 

ensure that the structure does not collapse prior to the formation of 

a mechanism. 	This requires the evaluation of the angles of rotations 

at individual sections as well as over plastic hinging regions. Reinforced 
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concrete structures can be designed in such a way that a member 

fails in a particular manner by ensuring that the member between 

selected hinges resists the bending moment without yielding of the 

steel or crushing of the concrete until the formation of the last 

hinge required to convert the structure into a mechanism [95]. 

The plastic hinges are assumed to form at points of maximum 

bending moment. 	The deformation however extends on the sides of the 

points where the plastic hinges are to develop. 

Mattock [30] observed that a more realistic evaluation of the 

moment-curvature relationship for a concrete section can be made by 

taking into account strain-hardening of the reinforcement. 	The depth 

of the neutral axis is highly influenced by the amount and distribution 

of longitudinal steel. 	An increase in the compression steel will 

reduce the depth of the neutral axis and therefore the curvature. 

The moment-curvature relationship at various stages has been 

discussed in detail in Chapter 6. 

7.2.1 Rotational Behaviour 

The rotational capacity of the hinging region is a function of 

the load-deformation response, which in turn can be represented by 

the moment-rotation behaviour. 	Rotation of the member can be obtained 

from the displacements, i.e. by measuring midspan deflection as shown 

in Figure 7.4 in which: 

At =  Ae +p 	
(7.33) 

where A = total deflection, 

= elastic deflection, 
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Ap = inelastic deflection. 

Ae 
 is taken as the deflection corresponding to the cracking load. 

is taken as 	-. 

Several parameters were investigated by Mattock [30] to show their 

influence on the spread of plasticity at the critical section in a 

flexural member. 	Parameters such as: concrete strength, yield stress 

of the reinforcement, beam effective depth, and amount of the reinforce- 

ment provided. 	It was found that a considerable quantity of inelastic 

deformation occurs beyond the distance d/2 on each side of the midspan 

where the maximum moment is expected. 	It was also concluded that the 

extent to which the plasticity spreads along the beam depends on the 

geometry of the member as expressed in terms of the effective depthds 

(d), the distance (Z) from the point of maximum moment to the point 

of zero moment, and on the amount of flexural reinforcement. 	Mattock 

expressed the spread of plasticity by the following equation in terms 

- 	et of the ratio 
p 

= 1 + (1.44- 1y 
 (1 - (q - q') 	) 	(7.34) 

op 	
q0 

where 6 t = total inelastic rotation at ultimate capacity occuring 

between a section of maximum moment and an adjacent section 

of zero moment, 

= inelastic rotation at ultimate capacity occuring with a 

length d/2 to one side of the section of maximum moment, 

ep =P . d/2 

Z = distance between the section of maximum moment and an 

adjacent section of zero moment, 
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Pf 
q = tension reinforcement index = , ' 

'c P' f 
sy  q' = compression reinforcement index = _____ 

q = tensi-on reinforcement index for balanced condition = 

b 1 sy 
fc  

With reference to Figure 7.5, the following relationship can be 

obtained: 

M 
Op 

= o - o 1 
U 	

(7.35) 

in which 
O  = 	

. d/2 

ey 
= 	

. d/2 

are the curvature at the ultimate and yield stage respectively. 

Corley [31] conducted extensive tests concerned with the prediction 

of the rotational capacity of a hinging region. 	The following expression 

was suggested to define the spread of yielding as a function of the 

geometry of the member. 

o p 
	1 
	

(7.36) 

The ACI-ASCE joint committee 428 recommended the calculation of 

the plastic hinge rotation, O, in the region of maximum moment in a 

flexural member, as the difference between the curvature 	at the 

ultimate design moment and 
y' 
 the curvature at yielding stage, 

i.e. 	O = (& - y ) L 	 (7.37) 
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where L = the spread of peak curvature or plastic length over which 

plastic rotation occurs with constant curvature. 

In the case of spandrel beams where bending exists in addition 

to torsion, Syamal, Mirza and Ray [96] noted that as the ratio of the 

applied bending moment to twisting moment was increased, the beams 

appeared to show a considerable improvement in ductility and as a result 

better redistribution of stresses at values of torque approaching ultimate 

due to large angles of twist.can be obtained. 

Very little research on the development of hinging regions in the 

case of combined bending and torsion has been carried out to date. 

Mattock, Corley and ACI-ASCE expressions to evaluate the rot 1cY 1  

capacity of hinging regions in reinforced concrete beams are only 

applicable to flexural members. 

Bishara et al [97]  introduced a reduction factor, r, and the 

flexural plastic hinge, 0tp' 
 under combined, bending and torsion may 

be obtained by the following equation: 

0tp = n 	op 	
(7.38) 

where 	O = (P.1  - &,) L 	 (7.37) 

= 	T 	M 	2 	
(7.39) 

1 

where T 	Mu = applied torque and moment respectively, 

T0 , M0 = pure torsional and flexural capacity. 

It was suggested that the rotational capacity of the hinging region 
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under combined bending and torsion is less than that under pure flexure. 

7.2.2 Ductility 

One of the main factors affecting the rotational capacity of 

hinging regions and therefore the redistribution of moments in a 

structure is ductility [34]. 	Ductility can be defined after Cohn and 

Ghosh [36] as follows: 

"Ductility is taken to be the ability to sustain deformation 

beyond the elastic range without a significant variaticiof the 

resistance capacity." 

The major factors affecting the ductility of a reinforced concrete 

section can be categorised as follows [36]: 

1. Material variables: 

Concrete quality 

Grades of tension and compression steel 

Grade of lateral steel 

Bond 

Tensile strength of concrete 

2. Geometrical variables: 

Shape and size of section 

Amount of tension steel 

Amount of compression steel 

Amount and spacing of lateral steel 

Cover thickness 
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3. Loading variables: 

Axial loading 

Duration of loading 

Prestressing 

Repetition of loading 

Loading reversal 

Ductility in flexural members is well understood, however very 

little attention has been drawn to the ductility of reinforced concrete 

members under combined bending and torsion. 	The behaviour of the 

spandrel beams has been discussed in detail in Chapter 3, and the 

sequence of the steel yielding also has been discussed with reference 

to Figure 3.9 which shows that the bottom longitudinal steel in the 

spandrel beam yielded before the stirrups. 

A measure of the ductility can be expressed by the Ductility Index, 

i.e. the ratio of beam deflection at ultimate load to the beam deflection 

at the stage of steel yielding, i.e.: 

U = 	 (7.40) 

y 

Au = maximum measured deflection, 

= deflection at stage of steel yielding. 

From Table 7.1 it can be seen that the ductility of the spandrel 

beams is less than that for the floor beams. This loss of ductility 

is due to torsion. 

Also in Table 7.1 the values of end rotation are comapred for 

yield and ultimate stage. 



Table 7.1 	Ductility Index and End Rotation 

Floor Beam Spandrel Beam 

Beam 
Ductility - 

End Rotation (Rad) Ductility 
End Rotation (Rad) 

Yield Stage Ultimate Stage YieldStage Ultimate Stage Index Index 

GR1-Bl 3.0 5.1 	x io 11.5 x 	lO 1.53 2.9 x 10 4.5 x lO 

-B2 3.9 4.0 19.4 2.09 2.3 6.0 

-B3 3.5 4.2 22.2 2.07 2.5 8.8 

-B4 3.8 4.5 23.6 2.01 2.5 7.7 

GR2-B5 4.1 3.4 29.6 2.8 2.2 9.9 

-B6 4.26 3.6 26.8 3.3 1.4 8.0 

-B7 4.4 3.6 30.0 3.3 1.83 7.4 

-B8 4.6 3.2 32.0 3.5 2.0 12.2 

GR3-Al 3.69 2.7 10.2 2.09 2.4 5.1 

-A2 2.97 2.4 6.7 2.5 1.4 3.0 

-A3 2.7 2.9 8.1 1.9 2.0 Co.  

-A4 2.3 4.0 12.7 2.1 1.0 5.4 

GR4-B1 2.9 	- 4.9 14.9 2.0 1.87 4.9 

-B2 2.7 3.3 15.0 2.5 1.85 6.0 

-B3 3.2 3.9 19.9 2.7 2.3 6.6 

-B4 3.0 4.7 20.0 2.30 3.4 7.0 
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8.1 Introduction 

The general behaviour and the observed effect of certain 

variables on the behaviour and failure mechanism of the specimens 

tested in this study have been described in Chapter 3. 	The various 

parameters discussed have a significant influence on the strength 

and the deformation response of the test specimens. 	The general 

conclusions drawn from this study are discussed in this chapter as 

well as the author's proposals for further investigation which would 

reveal some of the other factors that might affect the behaviour 

and stength of reinforced concrete spandrel beams or to substantiate 

some of the evidence produced by this study. 

8.2 Effect of Variables 

8.2.1 Longitudinal Steel 

The function of the longitudinal steel in bending is well 

understood. 	However the observed behaviour and test measurements 

of the spandrel beams tested indicated that the contribution of the 

longitudinal steel to the torsional strength is not significant. 

Three spandrel beams in group GR2 namely B6, B7 and B8 did 

reach their ultimate strength without provision for longitudinal 

steel due to torsion. 	Although the remaining beams in the other 

groups did not reach their ultimate strength, they all reached their 

design strength except for beams Bl and B2 of group GR1, where failure 

of the floor beams occured in flexure. 

Table 2.2 shows a comparison between the amount of longitudinal 

steel required for the spandrel beams when torsional moment is considered 
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and the amount of longitudinal steel provided when torsional moment 

is not considered. 	A large saving can therefore be achieved by 

not allowing for the effect of torsion in designing the longitudinal 

steel. 	Also the ductility index decreases by increasing the amount 

of longitudinal steel. 	The longitudinal steel was observed to be 

effective in controlling the crack width and counteracting the tendency 

for the spiral cracks to widen. 

In the author's opinion, a nominal amount of longitudinal steel 

must be provided not in addition to the bottom longitudinal steel, 

but at mid depth on both sides of the spandrel beam cross-section to 

avoid the type of failure observed in the beams of groups GR2, GR3 

and GR4, due to the large angle of twist, as shown in Plate 8.1 	The 

type of failure referred to can be recognised in .  Plate 8.1, by. the 

cracks at the far ends of the cracked zone and tended to propagate 

towards the joint i.e. a cleavage crack. 	The nominal amount of 

longitudinal steel to be provided for this purpose is proposed to 

be: 

A1  = 0.03 A c  (-) < 2 A 
	

(8.1) 

where: A c = the concrete cross-sectional area, 

A 1  = area of longitudinal steel to be provided at mid depth 

on both sides of the beam cross-section, 

As = the area of main longitudinal bar. 

The relative amounts of negative and positive longitudinal steel 

provided in the floor and spandrel beam due to negative and positive 

bending moment, is very effective in determining the final position and 

formation of the plastic hinges. Test measurements show that no 
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yield was recorded in the negative steel of the floor beams at 

failure because the floor beams were adequately reinforced in the 

area of the negative moment, and the reaction of the floor beam will 

produce an opposite moment of value equal to the reaction times the 

eccentricity of the reaction. 	The value of this eccentricity is 

equal to half the width of the spandrel beam as shown in Figure 1.1(e). 

This induced moment was not accounted for in the design process because 

the design is based on the assumption that the spandrel beam is a 

straight line of zero width. 

8.2.2 Transverse Steel 

Test data shows that the strength of the beam and its behaviour 

are greatly affected by the amount of stirrups provided. 

Transverse steel is very effective in resisting the shear stresses 

due to torsion and shear, and preventing the sudden and explosive type 

of failure caused by torsion. Sufficient transverse steel should 

be provided for the beam to exhibit adequate ductility. 	Test measure- 

ments show that the stirrups have no significant effect prior to 

cracking. 	It is therefore only after the formation of cracks that 

the stirrups are effective in carrying the applied torsion. Also 

transverse steel displays an effective role in resisting the growth 

of the diagonal cracks thereby reducing their propagation into the 

compression area. 

Test measurements in Figure 3.9 and Figure 8.1 show that at the 

failure stage of the floor beam, the stirrups did not develop their 

ultimate strength, however when the spandrel beam failed due to twist, 

the stirrups reached their yield stress. 
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Yield stress and spacing of the stirrups have a great influence 

on the location of the plastic hinges in the spandrel beams as shown 

in Plate 3.1. 	Therefore any parameter incorporating these two 

factors would affect the behaviour and strength of the spandrel beam. 

The effect of confinement is discussed fully in Chapters 4 and 6. 

The ductility of the beams is also influenced by the amount of .transverse 

steel provided. 

On the basis of the author's test results, it becomes obvious that 

designing the stirrups from a strength consideration is doubtful, since 

the behaviour of the spandrel beams reveals that the strength and 

efficiency of the test specimens are not greatly influenced by any 

variation in the transverse reinforcement as long as they are governed 

by the strength and rotation of the floor beam. 	Therefore design 

of the stirrups should be governed by limiting the angle of twist 

which is in turn dependent on the rotation of the floor beam. Neverthe- 

less stirrups should be provided to resist any torsional and shear 
in 

stresses which are,Aexcessive of those resisted by the concrete as well 

as to provide adequate anchorage for the longitudinal steel. 

The amount of transverse steel is determined either by the bar 

diameter or by the spacing of the stirrups. 	Practically speaking 

it is preferable and more effective to reduce the spacing between the 

stirrups to achieve abetter crack control so that any possible 

failure surface will intersect a sufficient number of stirrups. In 

addition it is more effective from ductility considerations. 

8.2.3 Concrete Strength 

Three grades of concrete were used for the test specimens (30, 



im 

35 and 40 N/mm2 ). 	The effect of concrete strength has been widely 

discussed elsewhere in this thesis. 	The behaviour and strength 

of the test specimen are significantly influenced by the concrete 

strength as demonstrated by the load-deformation relationships. 

Ductility, and spread of plasticity are also affected by concrete 

strength. 

8.2.4 The Joint 

The forces and deformations are transferred through the joint 

from the floor beam to the spandrel beam as well as any redistribution 

of forces from the spandrel beam to the floor beam or vise versa. 

The nature of the stresses in the joint is very complex, nevertheless 

two conditions must be satisfied in designing and detailing the 

reinforcement: 

The longitudinal steel in the floor beam must be placed 

on top of the spandrel beam longitudinal steel. 

Equation 3.6 must be satisfied. 	No joint failure was 

observed in any of the test specimens except in beams Cl 

and C2 of group GR5. 

8.2.5 Behaviour at Service Load 

In Table 8.1 the measured values of deflection and crack width 

at service load are shown. 	The service load is taken as the design 

load divided by 1.8. 	The allowable limit of deflection given by 

LL 
the ACI code is 	and by the Australian AS 1480-74 is 	, however 



Table 8.l  Deflection, Maximum Crack Width and Angle of Twist at 

Service Load' 

Deflection (mm) Max. crack width (mm)t  Angle of 
Specimen twist 

F.B. S.B. F.B. S.B. (b_i rad/m) 

GR1 	- Bi 6.5 3.5 0.05 0.02 4.8 

B2 5.2 3.0 0.04 0.035 3.0 

B3 5.3 3.1 0.05 0.035 4.0 

B4 6.0 3.1 0.08 0.06 3.8 

GR2 - B5 4.5 1.5 0.03 0.04 2.2 

B6 4.2 0.83 0.06 0.06 1.5 

B7 4.0 1.1 0.07 0.095 2.8 

B8 3.6 1.0 0.08 0.09 1.5 

GR3 - Al 0.65 0.69 - * 0.06 7.0 

A2 0.6 0.17 - 0.05 4.5 

A3 0.73 0.6 - 0.03 12.3 

A4 1.7 0.3 - 0.05 8.25 

GR4 - Bi 1.5 0.5 0.05 0.01 1.55 

B2 0.7 0.3 0.01 0.03 2.09 

B3 0.85 0.6 0.01 0.04 2.55 

B4 1.1 0.8 0.01 0.04 2.2 

Flexural cracks measured at mid span where max. B.M. 

* No visible cracks were observed. 

XX The service load is taken as the design load divided by (1.8). 

X The measured values of deflection and crack width at the service 

load are all within the allowable limits. 
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the tabulated values are all within the allowable limits given by the 

three codes of practice, Ad, AS 1480 and CP110. 	Similarly the 

flexural crack widths are all within the permissible limit of 0.3 mm. 

In Figures 8.2 the maximum torsional cracks measured at mid depth of 

the wider face of the critical sections are plotted against the angle 

of twist for beams of groups GR1 and GR2. 

8.3 Conclusions 

The floor-spandrel beam assembly is a very important part of the 

whole structure. A more acceptable design process will be achieved 

when the behaviour of the spandrel beam is better understood and thus 

more fully employed. The general conclusions drawn from this study 

may be summarized as follows: 

The concrete and steel stress-strain relationships have 

been defined and employed in designing the floor beams 

and the spandrel beams. 

The flexural resistance of a reinforced concrete floor beam 

can be determined using the expressions proposed by the author, 

where two stages are recognized: (i) prior to cracking and 

(ii) ultimate. 	The flexural resistance of a reinforced 

concrete floor beam prior to cracking is dependent on the 

section properties and the concrete stress-strain relationship 

in tension. 	The ultimate flexural resistance of a reinforced 

concrete beam is dependent on the concrete stress-strain 

relationship, the type of concrete, section parameters, steel 

stress-strain relationship, amount of steel and strain 
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distribution. 	Moment-curvature relationships at cracking, 

yield, and ultimate stage have been defined in Chapter 6. 

The torsional resistance of reinforced concrete members 

can be considered to consist of the concrete resistance 

and the steel resistance. 	Equations have been derived to 

determine the torsional strength of reinforced concrete 

beams prior to cracking and after cracking under pure 

torsion and are given in Chapter 5. 

Spandrel beams are subjected to combined loading and two 

stages can be recognised viz prior to cracking and ultimate. 

For both stages the torsional strength of spandrel beams 

subjected to bending moment and torsion can be determined 

by the proposed expressions given in Chapter 5. 	The 

torsional resistance prior to cracking is influenced by 

the ratio of bending moment to twisting moment, section 

geometry and the tensile strength of the concrete. 	The 

ultimate torsional strength based on the skew bending theory 

is dependent on the concrete and steel stress-strain relation-

ships, ratio of the bending moment to twisting moment, section 

properties and amount of steel provided. 	When shear is 

present the torsional strength in addition to the above factors 

is also affected by the ratio of shear to torsion. 

The skew bending theory has been employed to determine the 

ultimate torsional strength of the spandrel beam. Accordingly 

three modes of failure have been defined. 	A fourth mode of 

failure has been defined to include the effect of shear stress. 



The torsional stiffnesses of the spandrel beam prior to 

cracking and after cracking have been defined. 	Modified 

expressions have been derived to determine the torsional 

stiffnesses and the corresponding angles of twist. 	An 

initial torque-twist curve has been adopted to define the 

initial, secant and tangential stiffness. 	Precracking 

stiffness is influenced by the applied bending moment and 

shear forces, type of concrete and section properties. 

Post-cracking stiffness is also influenced by the applied 

bending moment and shear forces, as well as being influenced 

by the. type of concrete, section properties and the amount 

of steel provided. 	The angles of twist are similarly 

affected at different stages. 

The location of the torsional plastic hinge is determined 

by the amount of steel provided in the spandrel beam. 

The amount of tensile reinforcement provided in the beams 

and the concrete strength .have an effect on the inelastic 

deformation and spread of plasticity in the hinging regions. 

The longitudinal, steel is not significantly effective in 

resisting torsion. 	Therefore no provision for longitudinal 

steel to resist torsion is required in the spandrel beam. 

However a nominal amount of longitudinal steel should be 

provided at mid-depth of the spandrel beam section on both 

sides to avoid the type of failure caused by the large 

angle of twist. 

171 
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A spandrel beam should not be designed from a strength 

consideration - but by limiting the angle of twist which 

in turn is dependent on the rotation of the floor beam. 

Rotation of the floor beam is influenced by many factors 

including type of loading and construction. 

Joint failure should not occur before floor or spandrel 

beam failure. 

8.4 Suggestion for Further Research 

The scope of this study was limited to spandrel beams subjected 

to a static type of loading. 	A limited number of variables were 

investigated to provide information on the behaviour and stength of 

the floor-spandrel beam assembly. 	Information and data are not 

available for specimens subjected to dynamic and reversible loadings. 

Further investigations are also required to investigate the 

behaviour and strength of a floor-spandrel, beam assembly constructed 

using light weight concrete. 

The joint between the floor and spandrel beam is a very important 

element in the assembly. 	Further studies into the strength and 

behaviour of this joint would also provide substantial information 

that would be of relevance to the design process. 

Since only one type of joint detailing was used in this study, it 

is possible that the efficiency of the joint can be increased by varying 

the type of detailing under different types of loading. 

Furthermore, more realistic information would be obtained if the 

effect of the floor slab could be included in the study of the joint 

assembly. 
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Finally, the author is also of the opinion that a Finite Element 

Method can be utilised to provide an alternative theoretical approach 

up to some specified limit of accuracy. 
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APPENDIX : PHOTOGRAPHS 

This appendix contains photographs of the floor-spandrel beam 

specimens tested in this investigation as well as the testing rig 

and the equipments used for testing measurements. 	Crack propagation 

are marked with numbers. 	These numbers indicate the applied load 

in kN. 
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