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Abstract

Scientific data does not exist on the Web in the same way as the written

word; reviews, media, wikis, social networks, and blogs all contribute to

the interconnected nature of ordinary language on the Web. Network effects

create additional value from seemingly minor contributions to the Web. But

nothing such as this exists for scientific data. Simply put, within the Open

Web Platform, we cannot currently turn and apply similar mechanisms for

scientific work without great effort. Thus, the Web has not so far enabled

Science as well as it has enabled dissemination and interconnection for the

written word: to truly enable Science on the Web, we must endeavor to make

data and its semantics first-class Web constituents.

This thesis focuses on solving this problem by enabling scientific data to exist

on the Web in such a way that it can be processed both as viewable content

and consumed data. Starting from the principles on which the Web has so

far thrived, we propose solutions to enable complex data exchanges while

preserving the Web as it stands. We introduce the Partition Annotate Name

(PAN) methodology, which relies upon embracing the core architectural

principles of the Web: name things with URIs; process common data formats;

use common rules under a shared contract between publisher, developer, and

consumer.
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Chapter 1

Science and the Ordinary Web

1. Scientific data must exist in a usable form on the Ordinary Web to

enable, for scientific data, that which is already enabled for the written

word.

2. Web Architecture serves as our guide for a general solution.

The Ordinary Web is that which we, as people who are capable of operating

a Web browser, encounter every day; the typical Web pages, whether hand-

crafted or machine-generated from megalithic database stores through

complex data mappings; content organized by systems or on an ad-hoc basis;

resources hosted by Web servers or large-scale consumer services; and,

information, possibly discovered or disseminated by search engines and

social networks. Over time, using the Ordinary Web has become increasingly

easy. Tools and technologies have advanced to enable the ordinary person to

publish information in their blogs, as comments or reviews, or to build their

own Web sites with relative ease.
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As the Web has evolved, scripting has evolved into widgets as user interface

components, control or data processing semantics, and mashups as

combinations of different Web resources; these facilities allow authors and

publishers to create rich interactive content. As a consequence of these

enhancements, the Web has enabled the deployment of replacements for

desktop applications in the form of browser-hosted applications (e.g., e-mail

clients, spreadsheets, etc.). These developments have resulted in a rich

ecosystem of publishers, consumers, and data resources that is easy to

discover, navigate, use, and explore.

When one endeavors to make the transition from being a consumer to being a

publisher, the Ordinary Web extends to meet their needs. One can employ a

simple hosted service to publish information on their own, use administrative

interfaces to enable widgets, and embed scripts (third-party or ones of their

own making) to enable “outside of the box” features. As users and publishers

move from hosted services to their own servers and services, the need for

technological sophistication may increase, but probably only modestly.

Service providers and technology developers often tune their systems to make

installation and administration straightforward; the backing systems of the

Web scale up to the next level without massive efforts.

When the consumer-turned-publisher becomes wildly successful, the

Ordinary Web extends with more technological sophistication in the form

of clustering, load-balancing, and the consultants necessary to put them

together. More importantly, the required processes are well-known, so the

publisher can make sophisticated choices in the quality of the services they

wish to provide, all at a certain economy of scale.

The Web ecosystem thrives, not just because of the “heavy lifting” by talented

developers and businesses to provide the underlying technology. Those

aspects are necessary to create a stable environment, but are not sufficient

2



to induce a thriving ecosystem. Rather, it is the architecture of the Web that

makes this ecosystem possible and enables it to thrive. That is, a basic and

enabling principle of the Web is the fundamental ability to name and link

resources via URIs and to re-compose documents on the Web via the Web

browser, as a standards-based platform.

For the written word, ordinary people (i.e., non-technical) can create

information on the Ordinary Web that can be immensely useful. For example,

there are 4,247,911 entries as of June 4th, 2013 in the English version of

Wikipedia [1]; not only can anyone enhance or update Wikipedia, but they

can also link to Wikipedia as a reference. Referencing or embedding snippets

from Wikipedia enhances the information they are publishing.

The publisher's act of creating relationships between pages by linking declares

an informal relationship on the Web between the referrer and the linked page

(i.e., Wikipedia). A lot of information about the reference can be inferred from

the information contained within the newly authored page. At a minimum,

we can observe a simple referring relationship between or among pages,

typically in the context of the author's native language. Moreover, within the

actual markup that encodes the reference there may be more information

that explicitly defines the relationship with useful semantics that a receiving

application can process.

Search engines and other semantic inference machines derive knowledge

from the Web by understanding the relationships between the written words,

their context in the document's markup, and the linked structure of the Web.

These systems are able to apply pipelines of processing to extract meaning,

from the context of the markup and the native language, to build massive

Deep Web databases [2] employed by applications of search, relevance, or

mapping. By participating in the Web in a seemingly minor way, the ordinary

3



One Web, Three Labels

Ordinary 
Web

The Web

Deep 
Web

Semantic 
Web

The Ordinary Web is the collection of

resources we interact with through

browsers and originally implemented

as simple files. As services evolved,

databases were increasingly used to

publish resources on the Web. The

Deep Web is a further evolution where

information is harvested from the

resources on the Web and used to create

deep databases of information and

metadata that surfaces again on the

Web as resources. In among all of this

is the Semantic Web [16] that provides

annotations or other information

resources useful to both viewers and

consuming Deep Web services.

There is only one Web. All these

different kinds of resources participate

in the same Web that is linked together

by naming (URIs), protocols (HTTP),

and common formats (HTML).

user is creating value on the Web; that value is packaged into services that

also operate on the Ordinary Web.

How Deep Web services are

provided is hidden behind a complex

pipeline of massive annotation and

enrichment processes that can only

be orchestrated by sufficiently large

and well funded entities. That is,

these Deep Web services use

extensive infrastructure that is not

commonly available on the Ordinary

Web, nor provided to ordinary

individuals. Yet, although these Deep

Web services are not available to the

ordinary user, the information

artifacts they contain can be accessed

through the Ordinary Web via

“portals” (e.g., Google Maps).

In general, people have benefited

enormously from this combination of

the Ordinary Web and Deep Web

services. In fact, the amount of

knowledge of the written word,

crowd-sourced opinions, social

networks, and other human

generated data is enormous,

distributed, and well partitioned.

Deep Web services, such as mapping

services that expose mash-ups of the
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Web and GIS data, could not exist unless they were embedded in and

harvested from information that already exists on the Ordinary Web. That

is, there exists an enormous economy of scale in allowing people to publish

information in simple ways so that it can then be easily harvested by some set

of criteria that the publisher may not have even anticipated. The information

published on the Web is informal, often unreliable, possibly incorrect, but,

when taken as a whole, very valuable.

A large part of the value demonstrated by Deep Web services is derived from

architectural principles outlined in Architecture of the World Wide Web, Volume

One as published by the World Wide Web Consortium (W3C) [3]:

1. We name resources on the Web with URIs.

2. We interact with resources via URIs and over protocols such as HTTP.

3. We use common data representations such as HTML or XML.

4. We use metadata, from both the protocol and data representation, to

understand how to process representations.

5. We use annotations, encoded in markup and links, to discover new

information such as related resource locations on the Web.

The conventional view of Web architecture is a simple relationship shown

in Figure 1.1, Conventional Web Architecture, which illustrates the basics of

principles (1) through (3). We interact with resources on the Web via names, a

URI, that the publisher has assigned to them. Using protocol requests, such as

an HTTP GET, a common representation, such as HTML, is retrieved by the

Web browser. The metadata packaged within the transfer protocol provides

sufficient information for the Web browser to recognize the document as

something it can process.
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Figure 1.1 Conventional Web Architecture

HTTP GET URI

HTML

Web 
Browser

+ transfer 

metadata

The Web

What happens within the Web browser (or Web crawler, or any other user

agent) is a bit more complicated. By inspecting the transfer protocol metadata,

the receiving system is able to decode the entity body into the correct

sequence of bytes (and possibly the correct sequence of characters depending

on the media type received). The browser uses the metadata about the type

of content of a resource representation to determine its registered media

type, which then allows the browser to understand how to process it. Most

browsers support the well-known media types, such as HTML, SVG, and

various image and video formats. In the normal use case, the intended action

is to render the document for presentation to the user. Many other media

types may result in useful but degraded renderings, such as presenting a tree-

view of XML or displaying text.

We can consider the HTML vocabulary to be the intrinsic language of the Web

[4]; a specific processing model is applied that extends what we can do with

principles (3) through (5) as shown in Figure 1.2, The Intrinsic Web. When a

Web browser loads an HTML document, it applies the processing model for
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HTML to the markup received. The document is ultimately loaded into a local

structure called the DOM (Document Object Model) [5] where specific HTML-

oriented APIs are available, in addition to the regular DOM API.

Figure 1.2 The Intrinsic Web

Web Browser 
Platform

The Web

Additional 
resources

Exteral 
resources 

loaded

Model and API 
semantics 

applied

Scripts 
execute

HTML

During HTML document processing, certain markup causes different

resources, such as images, scripts, or stylesheets to be discovered and loaded

for further processing. Depending on the documented semantics of the

markup, these resources may cause embedded media objects to be displayed,

affect the general processing of the document, or affect the rendering of

the document. As each resource becomes available, and assuming that the

transfer rate is sufficient, the browser adjusts the rendering presented to the

user such that the user barely notices the change.

Scripts are among the resources that may be retrieved in the course of

processing an HTML document; scripts are executed in the order in which

they are encountered. That is, if the script is completely embedded within
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the document, it executes immediately. Otherwise, the scripts execute after

their representations are loaded from the Web, and generally in the order they

occur in the document.

These various processing actions within the Web browser operate together to

provide a shared model of a platform that users and developers have come

to rely upon. It is the common representation of principle (3) which allows

principle (4) and (5) to be extended by discovering additional metadata and

resources. Each link to an additional resource (e.g., a script or stylesheet)

is named by URI and associated with metadata from the markup within

the document. The role that the referenced resource plays is discovered by

traversing the document and inspecting known element names (e.g., script

or link elements) where the information within that sub-tree, at that context,

provides sufficient metadata or information to proceed (e.g., execution of an

embedded script or loading and executing an externally referenced script

resource).

Using the architectural principles of the Web and the processing models

of intrinsic vocabularies, the Web has extended from the written word

successfully into the world of commerce, mapping, and social networking.

While there are many innovations that have driven these adaptations, the

connections among the collections of written information remain the

fundamental underlying mechanism. Even so, the Web has failed to reach into

scientific data in the same way. The publication and use of scientific data over

the Web is the focus of our interest in this thesis.
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1.1 Specific Outcomes

The PAN Methodology presented in this thesis addresses the critical issue of

publishing scientific data as “Web-native” resources to satisfy the scientific

method's requirement for a traceable and computable record of the data used

in reportable scientific research and analysis. The Web is used as a both a

mechanism and representation of the various data artifacts produced during

the process of scientific endeavors. Subsequently, we demonstrate how this

technique is usable for both dissemination and computation at the same time.

The methodology addresses, enables, and results in specific outcomes that can

be summarized as:

• application of architectural principles of the Web that enables

dissemination, partitioning, naming of potentially large data sets;

• enhancement of interchange by novel application of annotations

within Web resources that enables local processing of information;

• computation and network effects over the Web by use of the browser

as a platform.

These outcomes combined enable the standard Web browser to become a

powerful computational tool in addition to its more traditional role of

browsing, navigating, and rendering information for human consumption.

1.2 An Exemplar of Science on the Web

As we have already observed, science on the Web has not yet penetrated

into the deep silos of data that are de rigueur in scientific analysis. Lacking

9



are reliable and robust mechanisms for naming, retrieving, analyzing, and

annotating data down to its individual data elements. Limited linking

capabilities and a lack of semantic relationships has hindered scientific

exploration and analysis on the Web.

Considering such scientific endeavors, we return to Wikipedia, where one can

discover a plethora of entries about scientific subjects. This seems only natural

for a free encyclopedia. As Wikipedia's reputation has evolved, science-

oriented organizations have considered using Wiki entries as a primary tool

for making databases of scientific information available to the general public.

For example, WikiProject RNA [6] is a successful project which uses the same

wiki infrastructure as Wikipedia to maintain a database of RNA families,

their categorization, and other related information about RNA structures. The

result is an open database of information which has been endorsed by a

number of scientists and organizations [7].

There is a problem with this approach as it is currently implemented. While

a human can access the information provided via a simple Web browser, a

data processing application can do little more than follow links from one page

to another. In fact, applications have trouble distinguishing between links to

RNA information and links to elsewhere on Wikipedia or the Web. Moreover,

what appears to be structured data within the entry pages is actually not

much more than regular text or images. Often, the result is that an individual

data element is not identifiable and so is not processable by an application;

there is no assumption of the context of a written native “scientific” language

that an application can use to process the entry and glean additional

information.

The domain of science has not benefited from the success of the Ordinary Web

to the same extent. While there are specific stories of successful Web-based

scientific endeavors, the amount of "heavy lifting" necessary to get the data
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out onto the Web, and usable by a broad range of individuals, is enormous

and rarely generalizable. That is, there is currently no economy of scale.

1.3 Web Principles and Scientific Data

We are led to ask: Are the architectural principles of the Web somehow wrong

for Science? Are we attempting to make the Web do something it cannot?

The answers to these questions come from understanding what principles (3)

through (5) actually mean.

A large part of the problem for Science on the Web is a lack of specificity. It

is customary in writing to make indirect and fuzzy references to information;

humans rely upon visual cues like adjacency of columns of data in a table

to infer relationships; it turns out that these cues can be sufficient for Deep

Web services to provide useful information later on. However, the job of

Scientists is to take known facts and new information, and to use insight

and the Scientific Method to produce new data, observations, and possibly

generate new facts. The scientific gathering and publishing of data needs to be

done in a repeatable way that is reasonable to replicate along with requisite

precise semantics; natural language text is rarely suitable for Science on the

Web.

From the perspective of the Web, the process of scientific endeavors produces

a trail of data artifacts and some of these data sets may be very large. For any

scientific process to be repeatable, those data artifacts must be available to be

browsed, navigated, and interrogated by automated systems. The collection

of the various aspects and information content of these kinds of data artifacts

is what is meant by scientific data.

11



These scientific data collections contain artifacts of the acts of the carrying out

the scientific method that are often collections of observations or experimental

data themselves. These sub-collections contains measurements of quantities,

details about how they were measured, and other annotations critical to

interpreting the data correctly. Further, they may also contain important

metadata that describes the subject, methodologies, and mechanisms

involved. Consequently, the data must maintain its context to be fully

processed correctly.

Yet, when scientific data is published on the Web, HTML alone, as the lingua

franca of the Web, is insufficient to provide a way to uniquely identify data,

and the terms used with the data, for human readers and applications. While

XML could be used to help solve this, it is not really an intrinsic language of

the Web in the same way as HTML because it lacks operational semantics in a

typical Web browser.

The processing model for XML, shown in Figure 1.3, XML on the Web, is quite

limited within the Web Browser. When an XML document is loaded by a

typical Web browser, there is little to rely on within the shared platform

between developer and user. The DOM is limited to generic markup

semantics; particular XML vocabularies are not specifically recognized. As

a result, scripts are not automatically executed, embedded objects are not

automatically loaded or rendered, and neither are links identified. Even

though there are standards for some of these semantics, they have not yet

been implemented across commonly deployed browser platforms [4].

As it stands, applications have a hard time processing XML representations

of resources. Failing to consider the XML resource representation’s semantics

and expected processing rules serves no purpose and obfuscates new

information by making it undiscoverable. In the end, XML alone represents a

poor choice for initiating a rich, shared experience over the Web.
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Figure 1.3 XML on the Web
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There are alternate representation choices, such as JSON [8], that suffer from

similar issues. When any semi-structured data is transferred to the Web

browser, it must have intrinsic semantics to operate upon. Even though the

chosen markup may be human readable with natural language labels, this

does not help the format become machine readable. As such, JSON suffers

from the same pitfalls as XML on the Web and within the Web browser, but

with much less standardization.

When we choose humans over applications, we can use current

methodologies on the Ordinary Web as demonstrated by WikiProject RNA.

We pass through principles (3) through (5) as the browser renders the HTML,

understands how to process it, and new locations are made available to the

reader within the rendered text. The user's experience is only limited by time

and their willingness to explore.
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If we want to alleviate limitations on time and make better connections for

people, while also enabling applications to discover and use scientific

information by applying the architectural principles of the Web, we need

something more. The information that is presented to the user needs more

underlying metadata and context so that local applications, embedded within

the browser, can enhance their experience. At the same time, for information

to be utilized locally, we need the same harvesting of information outcomes

that enable discovery and processing by Deep Web services that currently

exist on the Ordinary Web.

1.4 The Hypothesis

This leads us to a hypothesis:

The Web has not so far enabled Scientific Data as well as it has enabled

dissemination and interconnection for the written word: to truly enable

Science on the Web, we must make data and its semantics first-class Web

constituents.

Some may counter that there are "big science" activities on the Web (e.g., the

Human Genome Project, weather modeling/forecasting, planet hunting, etc.)

and that their data is available en masse. There are large biological databases,

large amounts of astronomical data, geospatial data sets, meteorological data

of all sorts, etc., that are all available for download, and offline processing.

Some of these data sets have scientifically useful derivatives on the Web, but

their data is not really on the Web as individual resources named with URIs.

Instead, the data is packaged in archives that are accessible via the Web and

intended for offline processing.
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The mere size of the data sets involved is daunting to an individual and

requires large databases or storage systems to hold and process. The data

is often encoded in uncommon formats, violating principle (3), and often

requires sophistication in both domain knowledge and technical skills,

violating principles (4) and (5). Moreover, software capable of processing the

data may be unavailable to the average user. In spite of these impediments,

there remains tremendous value in the ability to "paddle around in the data"

in the same way that one can explore the written word on the Web.

Professional and amateur scientists alike would benefit from exploring data

as easily as we can explore the written word today.

There is plenty of small-scale science that is enormously important. For

example, field biologists often traipse through the woods recording

observations of species along with annotations of climate, environment,

geospatial coordinates, etc. Their data sets are small and akin to those of a

person who publishes a blog entry or single Web page. Yet, this information

is not easily discoverable and used on the Web. If it was on the Web and at

scale, massive amounts of ecological information could be harvested from the

Web about their activities and observations.

We observe that Science often involves annotation of data and reproducibility.

Our goal is to enable semantically rich annotations in the Ordinary Web to

enable principles (3) through (5) for scientific data sets. Ideally, we would

do so with a clear path for scaling, from the miniscule to massive, by using

the distributed nature of the Web. The resulting data sets will be identifiable,

categorized by domain, processed by people and tools alike, and results can

be directly reproduced on the Web. This gives a direct benefit to both the

publisher and consumer in scientific domains, while enabling others to build

Deep Web services for more complex analysis.
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1.5 Existing Approaches to Data

When successful, current forays to find and use scientific data sources often

end at a website hosted by an affiliated organization where the original

producer of the data has deposited a file or archive for download. Others

have taken these artifacts, severing them from their original provenance, and

produced useful Web applications. In all cases, the data formats used are very

common within the specific scientific community but often predate the advent

of the Web. These formats are intended to be downloaded and processed by

more traditional desktop or server applications.

For example, the US Government created data.gov as a single portal for

sharing data with a distinct subcategory for geospatial data. There are 441,360

distinct catalog entries for geospatial data, as of May 8, 2012, with the earliest

published date of 1870, and with the number of data sets per year growing as

shown in Figure 1.4, Data Sets Published by Year. Each catalog entry describes

geospatial data collected by a government agency, much of which is map data

(vector or raster), and points to a repository, maintained by the responsible

agency, where you may be able to find the original data.

Figure 1.4 Data Sets Published by Year
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As an experiment, we downloaded the entire catalog of metadata for each

record. Each catalog entry contains some essential core metadata and each has

a link to another metadata document, encoded in XML using a proprietary

ESRI profile of ISO 19115 (Geographic information - Metadata) [9]. This

ancillary metadata has a geoform element that contains a loose

categorization of the data that is referenced by a URI contained in an onlink

element. The contents of the geoform element consists of free form text. A

summary of values found for the 441,360 catalog entries is shown in Figure 1.5,

Geospatial Data Formats. Of these values, the top two categories (vector digital

data and tabular digital data) represent 67% of the catalog entries followed by

27.2% for the various raster images, and 5.8% for other formats.

Figure 1.5 Geospatial Data Formats
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Geospatial vector image formats, such as the common ESRI Shapefile format

[10], often contain embedded tabular data (e.g., related dBase tables for shapes

in ESRI format). As such, there is overlap between the top category of “vector

digital data” and “tabular digital data”. What percentage of the data is purely

vector data (e.g., map boundaries, etc.) versus actual tabular data (e.g., data

pinned to a position on a map) is uncertain, but it is reasonable to assume that

some portion of the 52.4% of vector digital data also contains useful tabular

data. One can infer that there are “hidden treasures” of scientific tabular data
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within at least two thirds (i.e., tabular + vector data) of these resources, yet it

can be very difficult to find the actual data due to our inability to follow from

the catalog entry to an actual data resource.

Further complicating matters, when a data resource can be found, it is most

likely not available in a Web-compatible format. As a result, the casual user's

typical tool, the Web browser, cannot process the data format. This inhibits

exploratory data analysis by “paddling around in the data.” Instead, the user

must download a possibly unknown data format and then switch modes to

search for tools that read and display the data. Having broken the direct

usability of the data, the user may discontinue exploration.

In contrast to data.gov, the International Virtual Observatory Alliance

(IVOA) [11] develops standards to enable astronomers to exchange

information directly across the Web in standardized formats. The basic

method of exchange is the Simple Cone Search service that is designed to

operate on cones defined by a celestial coordinate and a radius (see Section

2.1.1, Simple Cone Search). An astronomer invokes the service by constructing

a URI consisting of a service base URI and query parameters that define the

cone. A simple retrieval request results in an XML document with tabular

data.

The design pattern used by IVOA has been successful in allowing tools to

exchange data over the Web. The invocation method is simple and well-

defined; the results are regular and encoded in a flexible Web-oriented format.

Yet, for the casual user of these services, the fact that the browser cannot

directly do much more than display a tree of rendered XML hinders

exploration. More importantly, the layered semantics of the table columns

cannot be used directly by this casual user.

The approach used by IVOA is worthy of further exploration and serves as an

inspiration for this thesis. Their various services and formats are discussed in
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Section 2.1, Astroinformatics and the IVOA Approach, where the VOTable format

has some interesting ideas in terms of annotation and exchange of tabular

data. Our view is that the approach used by IVOA needs to be generalized for

use outside of astronomy.

1.6 Existing Common Formats

In examining principle (3) of the Web, we see that there are a variety of

various formats for exchanging scientific data on the Web which fall roughly

into three categories:

1. Proprietary or custom formats produced by tools commonly used

within a specific domain.

2. Standardized formats utilizing syntax and encodings that are

uncommon on the Web.

3. Standardized formats whose basis is HTML, XML, or another

common syntax, along within encodings that are recognized by

common Web browsers.

Given these three categories, in Figure 1.6, Categorization of Common Formats,

we present a non-exhaustive list of formats common to scientific data

repositories [12]. The domains chosen are exemplars and not exhaustive; it

should be noted that “Geospatial” is more of a property of specific endeavors

than an area of study. Nevertheless, the table shows a number of different

attempts at data exchange and format definitions.

Formats that fall into Category 1 offer little hope of processing data on the

Web until there is some agreement to use a standardized format. Such formats
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proliferate within certain domains, such as Molecular Biology, often due to

the fast pace of software innovation. In contrast, there are other areas, such

as various uses of geospatial data, where proprietary formats, such as ESRI

Shapefiles, have been used as a primary method of data exchange for many

years. Formats that are proprietary are not necessarily publicly documented;

this limits access to those who license specialized software or are willing to

trust tools that have reverse-engineered the format.

Figure 1.6 Categorization of Common Formats

DomainDomain Category 1Category 1 Category 2Category 2 Category 3Category 3

Astronomy FITS, TIFF VOTable, PNG, JPeg, GIF

Biology Too many ... FASTA, ASN.1, et. al.

Chemistry CTab, SMILES CML, JCAMP

Geospatial ESRI Shapefiles GML, KML

Meteorology GRIB, BUFR

In domains where there is recognized need for standardized exchanges of

data, formats such as those in Category 2 are used. These formats are often

based on simple textual representations, but some are binary such as the FITS

format for image data [13]. While many of these formats are very successful

and widely used, the common Web browser will not recognize them as

formats that it can process.

Often there are also common alternatives for formats in Category 2. For

example, FITS image data can be exchanged using a variety of common pixel

image formats. Meanwhile, the metadata contained in the FITS image may

not have a common mapping. It is these mismatches between generic formats

and specific uses within a domain that drives the existence of formats within

Category 2.
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Also, it is often the case that formats in Category 2 have been designed for

packaging and transporting large amounts of data between systems. That is,

they represent whole data sets rather than specific partitions. As such, these

formats may be inappropriate for the Web because the resulting resource is

too large to be retrieved and processed by the Web browser.

Finally, there are formats in Category 3, which are distinguished by the fact

that a Web browser has some default interpretation of the data received. For

example, any XML format received by the browser has a default processing

model applied to it. By definition, such processing is generic. That is, it knows

nothing about the specific semantics of the domain vocabulary but it does

allow the receiver a minimal ability to browse the raw data. As such, Category

3 often fails principle (3) of the Web as our expectations of intrinsic behaviors

within Web browsers have changed.

It is in Category 3 where the use of browser-aware syntax can be applied

to bring in domain semantics. If a format that is already understood by the

browser is used, the same mechanisms used to bootstrap Web applications,

within the browser as a platform, can be leveraged to incorporate domain

semantics. These semantics can then enable domain specific processing and

rendering of the data held within the format.

Scripting is a common mechanism for associating behaviors with markup

constructs. Currently, browsers only provide scripting support in a limited

number of intrinsic vocabularies (e.g., HTML/XHTML and SVG). As

scripting is the main mechanism for bootstrapping Web applications within

the browser, the semantics that can be defined beyond simple rendering or

linking may be very limited. That is, there is much room for improvement in

how browsers understand that a specific use of markup actually represents a

specific kind of data with semantics that require loading and using additional

resources from the Web.
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1.7 Metadata and Assumptions

Turning to principle (4) of the Web Architecture, we observe that when a

document is received by the browser, inspecting the metadata, and using the

knowledge of the format discovered via the metadata, enables the browser

to understand how to process the data. Initially, the browser relies upon the

transport protocol to retrieve the Content-Type metadata of the document

with a value of a media type (e.g., text/xml). If the value is a recognized

media type, for which the browser has intrinsic knowledge of processing

semantics, the browser invokes a chain of processing that leads to an

anticipated set of behaviors.

Unfortunately, this is where formats in Category (3) often fall short. For

example, while the IVOA VOTable format is an XML format and receives

the media type text/xml or application/x-votable+xml, the browser

lacks embedded semantics to distinguish it from among different XML

dialects. The result is that the browser offers a generic treatment of XML

rather than a display of tabular data.

A publisher can partially fix this problem by providing a link to a CSS [14] or

XSLT [15] stylesheet. However, not all the capabilities inherent to rendering

and providing the behaviors of HTML are provided by CSS. Not only are

there limitations in rendering tables, but CSS lacks the ability to identify

simple links within documents. Although XSLT can be used to provide partial

solutions to these problems, it is a much less widely understood technology

and its future in the Web browser is uncertain.

Finally, Category 3 formats such as VOTable and KML contain embedded

tabular data. These table columns are labeled by identifiers that are authored

by the data producer; these labels attempt to convey the role and identity of

the column of information. Such labels (e.g., "Name" or "Location") are rarely

22



sufficient to serve as identifiers to be uniquely attributed to an owner on the

Web, as they are not URIs.

All of these issues lead to a violation of principle (4) in so much as a processing

application must make assumptions and process additional out-of-band

metadata to understand the received format. The extensibility mechanisms

of many of the formats do not use URI naming, in violation of principle

(1); so, finding additional information on the Web is nearly impossible. The

end result is that even when a common syntax is used, since the processing

semantics are specific to the format and producer, the data remains more-or-

less inaccessible to the ordinary Web user.

1.8 Implicit Linking

Once a segment of data has been received and processed to the best of the Web

browser’s ability, the browser (or layered application) finds more information

by locating links with particular roles. A typical Web document contains links

to many resources, each of which may play different roles. Some may be links

to scripts, stylesheets, etc., that help provide application semantics; others are

links to alternate representations. The remaining links are those that are often

presented to the user for navigation within the resource or to other resources,

or for some other use.

For example, in Category 3, the VOTable format contains a row for each

observation. Often there are multiple columns whose content is a link to

resources such as an image of the observation in various formats. The roles

of these links can only be deciphered by inspecting and understanding the

column header; this is not something intrinsically identified by the browser

via the default processing model for XML.
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When a link is identified by annotations rather than within markup as an

HTML link, the browser or other receiving application has no ability to detect

the links without specific knowledge of the VOTable format. This violates

principle (5) because the link is implicit to the format. Ultimately, the ability

to link to another resource needs to be a primitive of the syntax such that

the syntactic identification of a resource link is inherent rather than a layered

semantic.

1.9 Towards the Web

We have introduced the principles of Web Architecture; those principles will

give us what we need for science on the Web. In the chapters that follow, we

discuss current and historical attempts to use the Web for scientific endeavors.

We also explore the technology of the Web to provide a grounding for our

solution.

Based on the principles of the Web, we will be looking towards the Semantic

Web [16] to provide additional support for scientific data. The Semantic Web

uses the first principle of the Web (that we name things with URIs)

extensively. Naming turns out to be critical not only for identifying and

locating resources, but also for making assertions about them, and drawing

inferences from them. The Semantic Web provides us with standard

technologies for providing annotations and using them for inference.

The Semantic Web seeks to address the essential issue of knowledge

representation and encodes information using graphs, where subjects and

predicates are labeled with URIs. A subject is an abstraction of a resource

(e.g., an author) and nodes in the graph are various subjects or literal values

related by predicates (e.g., who authored a particular document). Recent
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advancements allow such knowledge graphs to be intermingled as

annotations within other representations on the Web as well as independent

Web resources.

Rather than merely endorsing the use of the Semantic Web, we will describe a

methodology for using semantic annotations in conjunction with the Ordinary

Web. This methodology provides a way to bridge between the deep

technologies of the Semantic Web as a processing platform and other

commonly used techniques on the Web. Crucially, we attempt to re-purpose

common formats for data and exploit the duality of data for viewing and

processing, all within the Web viewed as a platform.

1.10 Overview

The PAN Methodology for publishing scientific data is formally presented

in Chapter 5 and the intervening chapters provide the necessary background

and motivation for the methodology. The following chapters (Chapter 6, An

Exemplary Implementation for Evaluation and Chapter 7, Comparisons with

Alternatives) evaluate the methodology by first examining what the

methodology enables users of the Web to do within browsers with scientific

data. Subsequently, there is a comparison of the implementation of the same

interpolation process in two existing science work flow tools against doing so

within the browser.

The next chapter, Chapter 2, Existing Science on the Web, provides an

examination of various approaches previously used for publishing scientific

data in the areas of astronomy, ecology, and various geospatial data sources

from government agencies. These areas share the common property of often

having time-series spatial data and these lend themselves well to partitioning.
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As will be shown, partitioning data is a critical property of sharing data on

the Web. Other areas of scientific data, such as genomic databases, could have

been considered but do not necessarily have innate partitionable facets.

As this thesis is, in part, about the Web, we describe its development and

principles in Chapter 3, The Architecture of the Web. In this chapter, we pay

special attention to annotations formats and derive basic qualities of

identifiability, extensibility, flexibility, and durability. We return to these

qualities in Chapter 4, Foundations for Science on the Web where we apply them

to specific existing formats and propose using common formats of the existing

Web. The key insight is that we need annotations within these formats to

process the scientific data being represented.

When we present and evaluate the PAN Methodology, we imagine being in

two worlds; one of the professional scientist and one of the citizen scientist:

• Professional scientists, who often perform and act out the scientific

method in various fields of research, organize their research around

the collection, annotation, and analysis of experimental or

observational data. Due to the nature of their endeavors, their data

sets are often large, complex, and difficult to manage.

• Citizen scientists, often amateurs and non-professionals, often

participate in scientific endeavors that are their own or via

professional scientists. Individually, their view on data sets and the

data they generate is much smaller in nature but, taken as a whole

group, their data processing needs can also be large and complex to

orchestrate.

For the professional, accessing and re-using existing data is already a difficult

task that often requires special tools and skills; we wish to de-specialize the

processing of data. The citizen scientist is in an even worse position in that
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they many not have the resources to acquire the specialized tooling and they

may also lack the skills necessary to deploy them; we wish to enable them to

process data. The Web has proven itself successful in bridging such gaps for

other communities and we seek to show how this can be done for scientific

endeavors as well.

The final evaluation demonstrates that the Web browser is an effective tool

for both the professional and citizen scientist to perform complicated tasks

over data. An interpolation surface is shown to be computable in real-time

over large geospatial areas using a reasonably straightforward combination

of scripting in the Web browser. The result is the promise, for both the

professional and citizen scientist, that libraries of functionality can be built

and shared; much like how the Web, as a community, has done so in other

non-scientific areas.
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Chapter 2

Existing Science on the Web

3. For scientific data, annotation enhances or replaces the role that

natural language plays for the written word on the Web.

4. New representations for information create new interchange problems

for existing tools.

What are the roles that natural language plays for the consumer on the Web?

The human consumer visiting a Web page is able to read the text and gain

some information in that very specific context. For a computational agent,

individual passages of text can be processed using Natural Language

Processing (NLP) techniques to gain any number of specific records (e.g.,

named entities). For both consumers, the information is gained in a hypertext

context and links to other resources (i.e., media, other Web pages, or sites) can

be associated with both the information gained and the context.

Deep Web services leverage information gained in this way to associate vast

databases of knowledge with the link structure of the Web as a whole. This
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allows their services (i.e., search, maps, etc.) to surface newly synthesized

views of information with links back to original sources. Most would agree

that these services are useful to the average consumer on the Web.

While some scientific data sources can be found via this method, as mentioned

previously in Section 1.5, Existing Approaches to Data, their representations are

troublesome. The data themselves are rarely in Web-readable formats and so

negates the ability of the human consumer to casually browse the data to gain

any information. Further, applications discover very little information that

they can process, either in syntax or via natural language descriptions, and so

rarely traverse or process whatever data may be available.

Without replacing, or significantly augmenting, the role of language on the

Web for scientific data, this might remain the status quo. Deep Web services

are not able to differentiate between links to unidentified data from links to

scientific data sets. Further, the metadata necessary to understand what is

available at such links is not necessarily available to view or index.

There are numerous approaches for distributing data so that it can be

automatically processed to some degree; these generally sort into two distinct

categories:

1. The data resources themselves.

2. Metadata about data sets that includes information such as ownership,

descriptions, and links to entry points for data.

The metadata category is very important and helps consumers, the casual

interested individual, the professional scientist, or automated tool, to locate

and understand data sets of interest. The natural language titles, descriptions,

and other metadata provide the consumer with the ability to apply the same
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search techniques as for other Web searches. This is certainly the approach

that catalogs such as data.gov have provided.

Even though providing catalogs of information resources is a worthy

endeavor, the metadata they contain tends to go stale. As previously

discussed, entries in catalogs such as data.gov often have incorrect pointers

or descriptions of data sets, especially in those data sets that are being actively

maintained. It might be better that the metadata have provenance from the

actual data set representations rather than as separately maintained entries,

but the technical feats necessary to make this happen across government and

scientific organizations would seem to be beyond reach, in the early 21st

century.

Considering such issues, this thesis is more concerned with the data once

it has been found. That is, the focus is on the first category and how the

data resources are accessed and understood. There are enormous challenges

in making data sets available and effectively useable once one has found an

interesting description.

When a consumer visits a scientific data resource, the following is a minimal

set of information that is useful to be able to accurately and precisely

determine:

1. To which category/domain of science does this information belong? For

various reasons, the data resource may be visited without the context

that led the consumer to the resource. As such, it is very useful if the

data resource declares some basic metadata about itself. Specifically,

we would like to know in general terms (e.g., this is astronomical data)

and then more specific terms relevant to professionals within that field

(e.g., exoplanet data).
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2. What are the basic overall spatial, temporal, or other dimensions for the data?

Especially if the resource is a response to a query, the resource needs

to be self-contained enough to describe what subset of possible data

is represented. This gives applications heuristics as to what to process

for display, what to store for later, and whether any specific queries

have been completely satisfied.

3. What does each property of each record mean in “scientific terms”? Once

a set of records and their properties are available for processing, the

receiving application needs to know a variety of information about

how it is represented. At the basic level, it needs to know how the data

is encoded (e.g., an integer or date/time?). More specifically, the data

properties need to be grounded in scientific units and semantics. For

example, it is not sufficient to say a column of data is “temperature”.

Instead, it must be identified as “air temperature measured in Celsius

with an accuracy of a tenth of a degree”. That is, properties must be

annotated with a subject of the measurement combined with the unit

and other relevant information (e.g., statistical error).

As previously mentioned in Section 1.5, Existing Approaches to Data, and Section

1.6, Existing Common Formats, much of scientific data is represented in tabular

form, of which there are many existing formats. The first two categories

(non-standard and standardized/non-web) described are formats that are

uncommon on, or incompatible with, the Web. The third category

(standardized/web) uses technologies that can be easily used within the Web

browser. We shall consider two generally-used formats for tabular data

exchange from Category 3: VOTable for astronomical observations and KML

for geospatial data.
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2.1 Astroinformatics and the IVOA Approach

While astronomers had long been using the Internet to exchange data,

primarily through FTP services, the lack of common interchange formats

meant that systems had to deal with custom formats in addition to managing

provenance and updates. Around 1998, the Strasbourg Astronomical

Observatory developed the VizieR system [17] as an online database of

astronomical catalogs. In The VizieR database of astronomical catalogs [18], the

challenges of interoperable exchanges of information without a common

format were discussed with the primary observation being that, while most

data was tabular, the formats in which they were distributed varied widely.

Even when the data was available in FITS format, the usefulness of that

format outside of certain tools was limited. As conventions were developed

for documenting each format in “Readme files”, the increasing amount of data

available from automated systems made this approach unworkable.

The VizieR system developed a set of metadata divided into three categories:

descriptions of catalogs, descriptions of tabular data, and descriptions of

columns. This set of “meta tables” allowed the system to consume data from

various sources in an automated fashion and store it in a common format. The

result was made available over the Web in a common format that included

one of the first uses of XML for scientific data (i.e., at the time, XML had just

become a W3C Recommendation [19]).

In conjunction with the VizieR system, two important ideas were developed:

a proposal to standardize tabular data using XML and the concept of a

Universal Content Descriptor (UCD). An XML format called Astrores,

described in Using XML for Accessing Resource in Astronomy [20], is the direct

predecessor to IVOA's VOTable format. It shares the idea of describing

columns of data and then using a simple tabular format to encode the actual

data. In the original proposal, the data was encoded as “comma separated
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values” in a CSV element. The combination of the column definitions and

quasi-tabular data allowed tools to interpret columns based on basic metadata

such as units, data types, labels, and UCD labels.

Around the same time as the Astrores XML format development, the concept

of a UCD was developed in ESO/CDS Data-mining Tool Development Project

[21]. The idea was to have a controlled vocabulary of descriptors, in the form

of simple text strings composed of a single word or “token”, that systems

could use to label columns regardless of the descriptive names, units, or data

types used to encode the actual data. For example, two systems might label

a column with "POS_EQ_RA", yet in one system use decimal degrees for the

data and in the other use hours, minutes, and seconds. A receiving system

attempting to aggregate the two data sources can now map these values at a

higher level and then use encoding specifics to translate each datatype and

syntax used. Also, a UCD allows systems to use human-readable labels for

columns of data while providing machine-readable mappings.

Unfortunately, the problems inherent in developing and agreeing to a

common vocabulary proved to be too much for this approach. In UCD in

the IVOA Context [22], the idea of getting agreement upon a single, non-

extensible controlled vocabulary was described as “a nearly impossible task”.

This realization led to the development of the UCD1+ (called UCD2 in the

reference), which maintained the notion of a UCD, but turned it into a

mechanism for composing descriptors built from “atoms” and “words”

derived from a well-defined and controlled vocabulary. This approach

lessened the need for ultimate agreement and provided “some level between

the fuzziness of natural language and the accuracy of attributes of data

models” [22].

These varied efforts seemed to have led to the establishment of IVOA to

develop the myriad of standards and architectures for exchanging
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astronomical data that now exist. At their core is a simple Web-enabled

service (see Section 2.1.1, Simple Cone Search) that provides the ability for

applications or scientists to search for data by specifying properties of a

cone. The data returned is a standard tabular format defined by IVOA called

VOTable [23].

The architecture of the suite of standards that help define Simple Cone Search

is show in Figure 2.1, IVOA Architecture. These basic components are: a

registry of services, instances of actual services, and VOTable representations

of astronomical data. A typical exchange starts at the registry and ends with

retrieval and processing of VOTable XML documents.

Figure 2.1 IVOA Architecture
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When an astronomer wants a particular kind of data, they can go to well-

known portals (registries) and query for data sources. The tools they use

may also have programmatic access to these portals. Contained within the

registries are entries for services for specific kinds of data.
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Each entry contains pointers (URIs) to a service and other descriptions of the

service, including which specific protocol the service implements (typically

HTTP). A user or application can search to find endpoints for specific kinds of

astronomical data (e.g., observations, star charts, etc.). Once they have a set of

endpoints for services, they can query them for data based on specific input

parameters.

The registry contains different kinds of service information, many of which

return their results in the VOTable XML format. As mentioned previously,

some of these services are Simple Cone Search services while others return

information about images or spectral lines. The user of these services must be

knowledgeable of the service type and how the results are returned.

As a result, a user typically employs a tool to find data sources via the registry

and aggregate results from a variety of sources for a particular region of the

universe. The individual results come back in a similarly structured VOTable

syntax. This allows the tool to use common infrastructure to either present the

information to the user or otherwise process it locally.

Although tools have been built to integrate this registry model for finding

services, such as Astrogrid, which came online in May of 2005 [24], alternative

methods exist for finding and using IVOA services. Since many of the service

protocols rely on a simple HTTP GET request with query parameters, users

can directly access these services once they have a URI for the endpoint;

they can simply construct a URI from the rules specified in the relevant

specification.

Moreover, many providers of Simple Cone Search services provide their users

with direct Web interfaces to the data. They provide a simple format that

allows the user a more convenient way to input criteria via a Web browser

and then invoke the service for them. Often, the Web form offers a control

through which the user can specify the output desired, where, by default,
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some HTML rendition will be provided for the data. Irrespective of whether

the user requests the data in VOTable XML, the Web interfaces provide a

professional or citizen scientist with an easier way to access the data.

Unfortunately, there is a drawback to providing Web interfaces as forms: they

hide the data service from potential application data uses as the consumer

may only know of the form and not the backing service. In practice, the

Web form and the service are often hosted under different names or path

segments. Inspecting the form (i.e., using the infamous “view source”) does

not necessarily yield the raw URI of the data service. Instead, one is more

likely to discover the address of the resource that processes the form and talks

to the data service on one's behalf. As such, without first having found the

service in the registry, the Web form may obscure the service endpoint URI

from use.

2.1.1 Simple Cone Search

An application can access astronomical data over a Simple Cone Search [25]

service via a simple HTTP GET request. By formulating the right set of query

parameters, data can be retrieved for a specific area of the universe. These

request parameters describe an open cone as shown in Figure 2.2, Cone Query

Parameters, where the RA and DEC parameters (right ascension and

declination) are equatorial coordinates and the SR is the radius of the cone in

decimal degrees.

For example, the US Navy provides a number of star catalogs as IVOA Cone

Search services. The USNO-B1 catalog [26] contains over one billion stars.

The endpoint for the service is the URI http://www.nofs.navy.mil/

cgi-bin/vo_cone.cgi?CAT=USNO-B1 and the parameters RA, DEC, and

SR can be appended to retrieve specific data about stars contained with the

corresponding cone (e.g., http://www.nofs.navy.mil/cgi-bin/

vo_cone.cgi?CAT=USNO-B1&SR=0.25&RA=0&DEC=0 for a cone of radius
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Figure 2.2 Cone Query Parameters

RA

DEC

SR

0.25° centered at [0°,0°]). The result is an XML document in the VOTable

vocabulary.

Many services limit the radius to constrain both the size of the returned XML

result and the elapsed response time (i.e., to avoid long-lived connections).

For example, the USNO catalog is restricted to a one degree radius. As such,

retrieving data for larger areas will require multiple requests.

2.1.2 VOTable for Data

While the VOTable XML vocabulary is most often used in response to a

Simple Cone Search or other similar search service request, it can also be

used to represent whole data sets. For example, services such as Galaxy

Zoo provide their whole database as a downloadable set of VOTable XML

documents. We will examine this format against the three criteria outlined

at the beginning of the chapter (i.e., domain identification, dimensions,

semantics of properties).
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The VOTable format provides very little within the markup to identify itself

as belonging to Astronomy or any specific area of study. The VOTABLE

element may contain a single DESCRIPTION element that is string valued and

typically contains a natural language description; while one can assume the

subject is Astronomy by the mere fact that VOTable is in use, the specific

subject within astronomy is generally not available.

The VOTable format does provide the ability to encode the request

parameters in the response with a set of PARAM or INFO elements but there is

no guarantee the response will contain these elements. Each of these elements

has both name (name) and type (datatype, xtype, unit, ucd, utype, and

type) attributes that can be used to identify the dimensions of the results

and/or the query that invoked the response. These elements are not required

and there is quite a bit of flexibility in their representation but in common

usage they often provide the region of space in which the results were

observed.

Finally, VOTable has extensive support for defining what each column of data

represents, their underlying data types, domain usage, and grouping. Each

column has a FIELD element that defines the column's metadata; one of the

more interesting components is the UCD [27]. These UCD values provided

detailed domain-specific information about the kind of data contained in the

column.

The UCD is a sequence of “word tokens” separated by semicolons (;) and

made up of “atoms” separated by periods (.). For example, the value

“phys.temperature;instr” represents the temperature of an instrument

and is composed of the words “phys.temperature” and “instr” and the

atoms “phys”, “temperature” and “instr”. The sequence of words, taken

together, describe the data type and provide the ability for systems to create

new types from existing vocabularies.
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The list of standard words has been defined by IVOA [28] and covers many

areas of measurement, physical attributes, and statistical measures. For

example, the “maximum temperature of an instrument” can be described

using standard words as “phys.temperature;instr;stat.max”. The

words give a receiving application concrete information about the column of

data: a temperature measure, of an instrument, a maximum.

For example, in Figure 2.3, VOTable Example, taken from the VOTable

specification, the document lists 3 galaxies with their position, velocity and

error, and their estimated distance. Each column has a definition in the

header, each with the UCD, datatype, and unit information. Within the table

itself, only simple string values are contained within each table cell.

Figure 2.3 VOTable Example

<?xml version="1.0"?>
<VOTABLE version="1.3" xmlns="http://www.ivoa.net/xml/VOTable/v1.3">

<RESOURCE name="myFavouriteGalaxies">
<TABLE name="results">

<DESCRIPTION>Velocities and Distance estimations</DESCRIPTION>
<FIELD name="RA" ID="col1" ucd="pos.eq.ra;meta.main"

datatype="float" width="6" precision="2" unit="deg"/>
<FIELD name="Dec" ID="col2" ucd="pos.eq.dec;meta.main"

datatype="float" width="6" precision="2" unit="deg"/>
<FIELD name="Name" ID="col3" ucd="meta.id;meta.main"

datatype="char" arraysize="8*"/>
<FIELD name="RVel" ID="col4" ucd="spect.dopplerVeloc"

datatype="int" width="5" unit="km/s"/>
<FIELD name="e_RVel" ID="col5" ucd="stat.error;spect.dopplerVeloc"

datatype="int" width="3" unit="km/s"/>
<FIELD name="R" ID="col6" ucd="pos.distance;pos.heliocentric"

datatype="float" width="4" precision="1" unit="Mpc">
<DESCRIPTION>Distance of Galaxy, assuming H=75km/s/Mpc</DESCRIPTION>

</FIELD>
<DATA>

<TABLEDATA>
<TR>

<TD>010.68</TD><TD>+41.27</TD><TD>N 224</TD>
<TD>-297</TD><TD>5</TD><TD>0.7</TD>

</TR>
<TR>

<TD>287.43</TD><TD>-63.85</TD><TD>N 6744</TD>
<TD>839</TD><TD>6</TD><TD>10.4</TD>

</TR>
<TR>

<TD>023.48</TD><TD>+30.66</TD><TD>N 598</TD>
<TD>-182</TD><TD>3</TD><TD>0.7</TD>

</TR>
</TABLEDATA>

</DATA>
</TABLE>

</RESOURCE>
</VOTABLE>
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The field with identifier col5 has the UCD

“stat.error;spect.dopplerVeloc” and the column entries contain the

statistical error for col4. These two columns can be associated as a group

by the addition of the markup in Figure 2.4, VOTable Group Example. An

application can now read the association between the columns and thereby

infer information from the UCD labels provided (e.g., col5 is the statistical

error for col4).

Figure 2.4 VOTable Group Example

<GROUP name="Velocity">
<DESCRIPTION>Velocity and its error</DESCRIPTION>
<FIELDref ref="col4"/>
<FIELDref ref="col5"/>

</GROUP>

2.1.3 IVOA in Practice

IVOA maintains a “registry of registries” at http://rofr.ivoa.net which

provides a starting point for finding IVOA services. As of October 2013,

there were 20 registries, of which one was not found at the IVOA registry

of registries. In total, these registries described 1232 resources with 2352

capabilities. Of these resources, 370 were merely informational and did not

describe any Web-based capability.

A “capability” describes a Web-oriented service that is typically serviced by

an endpoint interface (a URI) upon which a particular protocol can be applied.

For example, a Simple Cone Search service is typed within the registry as

the capability {http://www.ivoa.net/xml/ConeSearch/v1.0}Cone

Search and typically uses the {http://www.ivoa.net/xml/VOData

Service/v1.0}ParamHTTP interface protocol (or newer versions) for the

endpoint. Other capabilities include Simple Image Access, registry services,

etc., and many are tied to specific IVOA standards.
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As shown in Figure 2.5, IVOA Resource Capabilities, 1428 (60%) of the resources

have untyped capabilities even though they have interfaces that are partially

described within the registry. These services are, presumably, unusable by

automated tools without further instruction by a knowledgeable user. For

example, many of these services use the "ParamHTTP" interface protocol, and

so, once the query parameters are known, the service may be very valuable to

a consuming scientist.

Figure 2.5 IVOA Resource Capabilities

Untyped
Cone Search
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Registry
Simple Spectral
Simple Time
Table25.4%

60.7%

Inspecting these capabilities at the next level down (the interface protocol)

reveals that the next largest grouping is Simple Cone Search services. Within

the registry, the description of each of these services contains a test query. An

automated process was used to test each of the 593 registered "ParamHTTP"

interfaces for each of the Cone Search capabilities with the results shown in

Figure 2.6, Service Availability, where the final number of available services

was limited to 218 (37%) of the 593 tested. It is worth noting that some of

the services returned only error information indicating that the Simple Cone
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Service was available via the protocol but unable to actually return any data

for various reasons.

Figure 2.6 Service Availability

Unavailable
Available
Errors

46.9%

16.4%

36.8%

Most importantly, for the services that returned data, a variety of versions of

VOTable XML markup was returned. As shown in Figure 2.7, VOTable Usage,

three different versions of VOTable are returned by the various services.

Unfortunately, each version has its own XML namespace; consequently,

services must contend with processing similarly structured markup with

different names.

In addition, the use of the more advanced UCD+ syntax was limited in that

a majority of the services provided a mix of UCD1 and UCD1+ annotations.

The consequence being that a receiving application must be able to recognize

each syntax and then, hopefully, be able to normalize to UCD1+ words.

Following criticisms from within the IVOA community related to the

shortcomings of UCD1, the lack of adoption of UCD1+ since 2005 (9 years

later) is unfortunate. We take this to mean that either consumers do not need
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Figure 2.7 VOTable Usage
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the concept of UCD annotations or they have found ways to work around and

use services that still use UCD1.

Further, the existence of successful Web-based projects such as Galaxy Zoo

demonstrate that there are astronomical data sources, some of which use the

VOTable format, but are not available via IVOA services, such as Simple Cone

Search. In fact, the Galaxy Zoo project provides their data as a downloadable

compressed archive of VOTable XML. Consequently, the reliance on common

registries is likely to limit users' access to data sources.

Meanwhile, as a custom XML format, the VOTable format is not recognized

by the browser as anything more specific than an XML document and the

browser, by default, provides minimal and uninteresting renderings of its

content. These XML results are intended to be processed by specialized tools

and not by a Web browser. Yet, many of the services that were encountered

attached an XSLT transformation intended to render the results for viewing

purposes. As the future of XSLT within the browser is uncertain, this

technique may become unavailable to users.

In the end analysis, the VOTable format, despite being aliased under a variety

of versions of namespaces, has provided durability for tool-oriented

consumers of astronomical data sets regardless of how it is provided directly
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on the Web to consumers. This has allowed many commonly used data sets

to be re-purposed into a variety of different projects. As we discuss later,

this durability stems partially from the proper use of markup languages for

encoding information.

2.2 Galaxy Zoo

With respect to astronomical data on the Web, Galaxy Zoo [29] is an often

cited example of a successful use of the Web as a platform for crowd-sourcing

the processing of scientific data. The Galaxy Zoo project used the opinions

of the casual layperson to help categorize the shapes of different galaxies.

The project developers applied statistical analysis to the user-generated

categorizations to either find consensus or to focus user attention on objects

that needed more opinions. The result was the categorization of more than

900,000 galaxies between July 2007 and February 2009 [30].

This project used data from the Sloan Digital Sky Survey [31],[32]. The input

contained 15.7TB of FITS image data, 26.8TB of other data, and 18TB of

catalogs. The output data set is available for download in compressed

archives, smaller in size, in a variety of tabular formats that includes VOTable

XML. The output data is not available via any search service.

The consequence of not being able to access the output data, even via a simple

cone search service, is that it severely limits the ability to casually browse

the data or use only portions of the data. Anyone attempting to build a

new Web-based derivative has the immense task of first downloading and

processing many terabytes of data. That is, they have to do all the “heavy

lifting” themselves because the originators of the data set have deferred all

processing to the consumer. The result is that different consumers will need

45



to perform similar processing over and over, duplicating each other's efforts,

and impeding any possible network effect.

The team that developed Galaxy Zoo has been extending the platform to

address the needs of other scientific endeavors with similar data processing

needs; this partially addresses the issue of duplication of efforts. They

developed the Zooniverse platform [33] to enable researchers to setup systems

similar to Galaxy Zoo. While there have been a handful of projects outside

of astronomy, only a few have published successful results as of mid-2014.

These projects also face the problem of not having a commonly accepted data

format, as astronomers do, with which they can disseminate their results.

2.3 Geospatial Data

A great variety of geospatial data is tied up in proprietary or custom formats.

As mentioned previously, many scientific or government agencies exchange

information using the ESRI Shapefile format. This format is both proprietary

and publicly undocumented. As such, there is a large opportunity for

standardization of the exchange of geospatial data.

The Open Geospatial Consortium (OGC) is a international standards

organization that has attempted to fill this void; it consists of “volunteer”

members with origins dating back to 1994. They have produced a number of

data formats for geospatial data that are beginning to be found in common

use for government, scientific, and other open data exchanges of geospatial

information. While they provide a comprehensive architecture, their

standards have had a varying degree of success.

The OGC provides over 30 standards relating to the exchange of geospatial

information, including the popular KML data format [34] and WMS (Web

46



Map Service) [35]. Their architectures are often a complex orchestration of

technologies, often Web-oriented, for use within map-oriented applications

such as publishing of government or scientific data sets. Some of these

standards (i.e., KML or GML) can be used as replacements for ESRI Shapefiles

for data exchange.

Many of the various specifications, including KML and GML, are feature

oriented. A feature is an abstraction of a real world object or phenomenon that

has some geometric aspect (e.g., a point, line, polygon, etc.). Such features

often have some number of additional properties that include rendering

information and metadata or other data.

2.3.1 GML

Geography Markup Language (GML) [36] is an OpenGIS / OGC standard

for expressing geographical features. The core model is based on ISO 19100

Geographic information/Geomatics and encoded in a set of XML Schemas [37].

The intent is that applications will embed or derive from the GML schemas to

provide application-specific uses.

GML has important base concepts for embedding scientific data in terms of

units of measure, measurements, quantities, and modeling of values. Within

the GML instance, units of measure can be defined relative to other previously

defined units. These units can be used within measurements, quantities, and

other composite values. While these might form the basis for encoding tabular

scientific data, the specification itself notes:

“This schema is primarily intended to serve for "simple" observations.

Schemas for scientific, technical and engineering observations and

measurements will typically require the development of a GML application

schema for such observations. See, for example, the Observations and

Measurements specification from the Open Geospatial Consortium. ”
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When following the above recommendation, the Observations and

Measurements XML Implementation v2.0 [38] results in markup that looks

similar to a table of data with a few bits of GML embedded. That makes the

choice of using GML to encode the tabular database suspect given the limited

amount of GML used. That said, this is the recommended model for using

GML: applications use custom schemas that embed or extend GML.

Because of the heavy use of schema extension mechanisms, and the focus

on delivering a core extensible model rather than an end-user model, GML

is hard to use directly. Instead, consumers must first become experts with a

variety of XML technologies (e.g., XML Schema), develop their own extended

data models, and can only then use, encode, and exchange data. The result is

something that is not suitable for the uninitiated and has directly limited the

use of GML by the average application developer.

2.3.2 KML

The OGC makes this statement about KML in many places:

“The OGC KML Standard is an XML grammar to encode and transport

representations of geographic data for display in an earth browser, such as a

3D virtual globe, 2D web browser application, or 2D mobile application. Put

simply: KML encodes what to show in an earth browser, and how to show it.

” [39]

The history of KML is a bit suspect in that it was originally called Keyhole

Markup Language and was developed by a company called Keyhole, Inc. that

was bought by Google in 2004 [40]. It was developed for use in the Keyhole

Earth Viewer visualization software that was later to become Google Earth.

In 2008, mostly because of the weight of Google behind KML, and the high-

profile use of it within Google Earth, the OGC approved KML 2.2 as an OGC

standard relatively unchanged [41].
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The primary use of KML is to describe geospatial features, often for

presentation within mapping tools such as Google Earth or within a Web-

based mapping application. While the markup is oriented towards describing

points, polygons, etc., some of the markup allows for “extended data” to be

embedded. As such, KML has been used to exchange scientific geospatial data

sets such as ecology data, sensor data, etc., by government repositories such

as data.gov.

Embedding data is only allowed on KML feature elements (i.e.,

NetworkLink, Placemark, GroundOverlay, PhotoOverlay,

ScreenOverlay, Document, and Folder) using an ExtendedData child

element; this element may contain any number of Data elements, each of

which represent a name/value pair.

KML supports describing a simple schema for embedded data. The typing

of data is restricted to typing values with simple data types. While there is

some flexibility in the location of the schema description, there is little within

the markup to identify ownership or domain semantics. As such, attempts at

inference over this data is purely by assumption.

Figure 2.8 KML Descriptions for Data

<Placemark>
<name>  Pell City 5.8 SSW, AL</name>
<Snippet maxLines="0">empty</Snippet>
<description><![CDATA[<table border="1" padding ="1">

<tr><td><B>STN ID</B></td><td><B> AL-SC-3</B></td></tr>
<tr><td><B>OBS DATE</B></td><td><B>2013-08-08</B></td></tr>
<tr><td><B>OBS TIME</B></td><td><B> 07:00 AM</B></td></tr>
<tr><td><B>TOT PRECIP AMT</B></td><td><B> 0.65</B></td></tr>
<tr><td><B>NEW SNOW DEPTH (IN)</B></td><td><B> NA</B></td></tr>
<tr><td><B>TOT SNOW DEPTH (IN)</B></td><td><B> NA</B></td></tr>

</table>
]]></description>

In practice, KML is more often used for displaying data rather than

exchanging data. The example in Figure 2.8, KML Descriptions for Data, is

from a NOAA data feed for snow observations. Rather than make use the

ExtendedData facilities, they have focused on making the display of the
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data within the place marker a priority. The table markup shown is actually

escaped as a string using a CDATA marked section, and so a receiving system

is required to parse the contents again to, hopefully, obtain the data.

While the VOTable format was developed to exchange tabular data, the KML

approach to data feels like an afterthought. Although users have successfully

employed KML to provide geospatial annotations, it is uncertain whether it is

capable of extending very well beyond the visual display of information. The

lack of anything further than basic data type annotations constrains its use for

scientific data considerably.

2.3.3 Non-OGC Alternatives

Given the complexity of GML and the trends towards JSON as a data

representation format, the Web developer community developed GeoJSON

[42] as a more palatable format. GeoJSON is also feature oriented with basic

constructs (i.e., points, lines, and polygons) that can be combined in various

ways to produce complex features. As a whole, a data exchange consists of a

collection of features.

Given that JSON objects are untyped, each object contains a single “type”

property with a string value containing a type label. The specification defines

a fixed set of “Geometry Objects” types for describing feature regions that

can be organized into collections of features. Each feature is essentially a

pair of two attributes: “geometry” whose value is a Geometry Object and

“properties” whose value is any JSON object.

The interesting characteristic for data exchange is the properties attribute,

where the value can be any JSON object. As such, any kind of data can be

associated with a feature as long as it is serialized as JSON. This gives the

application developer a great deal of flexibility and results in broad appeal to

the various Web developers using mapping technologies within the browser.
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Figure 2.9 GeoJSON Feature Example

var geojsonFeature = {
"type": "Feature",
"properties": {

"name": "AT&T Park",
"amenity": "Baseball Stadium",
"description": "This is where the SF Giants play!"

},
"geometry": {

"type": "Point",
"coordinates": [-122.389283, 37.778788 ]

}
};

For example, in Figure 2.9, GeoJSON Feature Example, the feature has the

geometry of a simple point. The properties describe the feature (a baseball

stadium) for a consuming application. Yet, it should be noted, that from

a GeoJSON perspective, “name”, “amenity”, and “description” are merely

properties on an object of unknown type. Typically, these properties are either

defined by the consuming mapping technology or given semantics by part of

the application developed using a mapping library.

From a tabular data perspective, GeoJSON has the same problem as other

feature oriented data formats. Iterating over the tabular data becomes a

process of iterating over the features and then inspecting the “properties”

attribute. Within that attribute must be a JSON object that contains a single

row of tabular data; this object has no standard representation that is defined

by GeoJSON.

There are many mapping toolkits (mostly JavaScript-based) that provide

direct use and rendering of GeoJSON data. Each toolkit has specific

definitions of what it will do automatically with the “properties” attribute.

Most of these toolkits provide straightforward ways to map custom attributes

into interaction features (e.g., map markers with pop-ups).

In terms of usage, GeoJSON is used in various business applications; the US

Geological Survey (USGS) provides their earthquake feed as GeoJSON with

well-defined properties for each feature (essentially an epicenter point) [43].
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There are two different feeds, where a summary feed provides the list of

events, and the detail feed gives the details for a specific event. This same data

is provided in a variety of other formats including KML and custom XML but

these two levels of detail are not separated for these formats.

2.3.4 Failures with Government Data

Information has a tendency to “hang around” in the format it is originally

published. For example, marine specimen data was collected from 1975 to

1981 by various U.S. agencies. This data is now archived by the National

Oceanic and Atmospheric Administration (NOAA), which makes it available

via data.gov. The format of these data resources is a flat-file text database

format called F025 (File Type 025 - MARINE MAMMAL SPECIMEN) and is

defined in NODC Standard Format Marine Mammals of Coastal Alaska Data

(1975-1981): Marine Mammal Specimens (F025) (NODC Accession 0014150) [44].

Any scientist seeking to analyze these historical records of marine populations

must first be able to process or decode this file type.

Further, while it is fortunate that the format definition has not been lost,

other records fail to exhibit essential properties for archives of information

on the Web. Consider the record Marine mammal specimen and other data from

the SURVEYOR and other platforms as part of the Outer Continental Shelf

Environmental Assessment Program (OCSEAP) from 20 March 1977 to 02

November 1977 (NODC Accession 7900319) [45]. The data recovered for this

data set contains very little information about the F025 format. It takes some

effort to find the correct specification syntax (NODC Accession 0014150) and

that distraction presents a direct barrier for the uninitiated.

Recognition of this problem led us to identify the desirable property of a

deterministically identifiable syntax (i.e., the “self-describing” Web [46]). While

text files are often very durable, the data shown in Figure 2.10, NODC 7900319

Sample, says very little about the syntax (NODC's F025) or semantics (e.g.,
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there's a geospatial region in the beginning) of the data, other than what might

be done by guessing. Markup languages, such as XML, provide the ability to

name properties and associate namespaces, thereby allowing at least the more

obvious properties to be discerned by inspection. However, such markup

does not completely solve the semantics problem of associating a specific facet

with particular structures.

Figure 2.10 NODC 7900319 Sample

025TR493910001          1600200N1412130W197710292400       0401
025TR493920001          29221030107012 NN   1  172001530 880          255
025TR493930001          3           24          544001410 1
025TR493950001          51213 331  721181 70  1
025TR493960001          6            12450 12400
025TR493970001         158755030101  8     1                        3
025TR493970001         1487910307    8     4                        3
025TR493970001         1387910306    8     1                        3
025TR493970001         116179180101  8                              2
025TR493970001         108840010201  8     1   100
025TR493970001          98791030701  8     1   100
025TR493970001         16883102      8     1                        3
025TR493970001          76179180101  8   296 12200
025TR493970001         128791030701  8     3                        2
025TR493970001          8            804

The NODC provides a KML version of these files, but inspection of a variety

of samples shows that they have only converted the locations into KML. As

such, the KML only contains a set of points that indicate where the data is

located, but the points are not associated with the actual data itself. At a

minimum, given the internal knowledge of the F025 format, an opportunity

was missed in not converting and embedding the remaining data into a more

modern syntax such as KML.

2.4 Crowd-Sourced Ecology Data

Similar to the Zooniverse projects, the iNaturalist site [47] uses crowds to

collect ecology data. Interested users typically employ a mobile or desktop

application to upload observations, typically in the form of a picture and
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metadata. The website then allows others to help categorize and enhance the

observation. That is, once an observation is posted, others can help identify or

verify the specific species and other facets of the entry.

As of June 11, 2013, there are 836 projects and 16,993 users on iNaturalist who

have generated 278,478 observations. A user may contribute observations to

a project from which the resulting data can be downloaded. A researcher

who chooses to download the data has the choice of Atom [48], KML, or

CSV formats. Each of these formats have issues in the way they have been

implemented.

In theory, both the Atom and KML formats have the possibility of providing

specific geospatial information. Unfortunately, the properties of the entries

are mostly encoded as HTML representations. As such, columns of data, such

as species or links to images, are obscured from being uniquely identified in

the markup.

For example, while there are geo-locations, taxa categorizations, descriptions,

etc., all available via the rich content of the Web site, the choices made by

iNaturalist to encode this information into the specific data formats of Atom

or KML did not translate this information into individual data elements. In

the case of KML, instead of using the ExtendedData element, the data is

encoded into an HTML description that is also escaped markup due to the fact

that KML descriptions are simple strings.

Similarly, in the Atom feed, instead of using some set of XML elements,

the data is again encoded into an HTML description. Even though Atom

allows XHTML content directly, the site again uses escaped HTML via Atom's

content element. This presents the same technical problems as KML

descriptions.
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Both of these unfortunate implementation choices leave the CSV format as the

only way to get all the data without making assumptions about processing.

While CSV is a common way to exchange tabular data, there are no column

semantics and browsers currently treat it as plain text. As such, it is not a

format that can be processed in a standard way on the Web without additional

“out-of-band” information.

2.5 Summary

In summary, we see that even widely available, more-or-less standardized,

spatially-organized data formats on the Web share a number of characteristics

which make them difficult or impossible to use by Web-based applications:

1. Lack of consensus or adoption of column labels / annotations.

2. Insufficient mechanisms for describing or annotating tabular data.

3. Escaped markup used for data.

4. Lack of discoverable semantics (links, columns, annotations).

5. Complexity is often an artifact of the format and results in simple data

being unnecessarily complex.

6. Insufficient investment in transforming data into usable formats for

data processing versus visualization.

The technologies of the Web, as a platform, and the principles upon which

the Web is based, provide the means to overcome these problems. Various

standards, techniques, and good practices can be woven together to provide a

general methodology for publishing data on the Web. Yet, before describing
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a methodology for doing so, a review of the basics of the Web and its

architectural principles is in order.
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Chapter 3

The Architecture of the Web

5. The Web has essential architectural principles upon which it is based.

6. The Semantic Web extends this architecture, thereby allowing data to

be annotated.

7. RDFa annotations enable algorithmically processable information in

context on the Web.

The Open Web Platform (OWP) [49] is a “platform for innovation, consolidation

and cost efficiencies” focused on those things that happen within, or intersect

with, the actions of the Web browser. This platform is defined by the shared

behavior expected by the publisher and users of content and services—a type

of social contract readable by developer and authors alike. The collection of

individual recommendations (standards documents), technologies, practical

algorithms, APIs, vocabularies, and their interactions make the OWP a

cohesive and motivating platform for publishers and consumers alike.
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Yet, the Web had much more humble beginnings as a proposal for

information management at CERN [50] by Sir Tim Berners-Lee who was then

a physicist. It was originally designed “to meet the demand for automatic

information-sharing between scientists in universities and institutes around

the world” [51] and then morphed into something much more pervasive. By

the early 1990's, the Web had become something of great interest to business,

governments, and academia, as witnessed by the establishment of the World

Wide Web Consortium (W3C) on October 1st, 1994.

The requirements cited in the original proposal still ring true today: remote

access, heterogeneity, non-centralization, access to existing data, “private”

links (one can create their own links), data analysis, and live links (resources

can change dynamically). These features may seem obvious in retrospect,

but in 1989, many hypertext systems were closed systems with pre-authored

content only accessible by the producer. The real innovation came about with

how these requirements were met.

By 1992, the original system [52] had coalesced into three important

innovations: a protocol called HyperText Transfer Protocol (HTTP), an

addressing scheme (eventually labeled a URI), and a document format called

HyperText Markup Language (HTML). What ties these all together is a browser

that understands how to turn an address into a protocol request to get a

representation (i.e., an HTML document). In 1993, a team in Joseph Hardin’s

lab at the University of Illinois at Urbana-Champaign released the Mosaic

browser on Windows, Mac and X-Windows. In later years, the browser

became the focus of innovation, but it is these underlying parts of the original

system that must operate together to make the browser work successfully.

More than a decade later, after the Web had proven itself enormously

successful, the W3C established the Technical Architecture Group (TAG) and

they attempted to document the design principles that had both governed and
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emerged from the standards development and innovation surrounding the

Web and the W3C. This process culminated in publication of the Architecture

of the World Wide Web, Volume One in late 2004 which re-codifies the three

architectural bases of the Web as:

1. Identification — URIs are used to identify resources.

2. Interaction — Web agents communicate using standardized protocols

that enable interaction.

3. Formats — Protocols use formats to exchange information which are

identified in the payload with metadata (e.g., the Content-Type

header).

While any kind of data could be transmitted via interactions, the abstract

“information space” that participants act upon is populated with items called

resources. Resources have representations that are transported over various

protocols, and browsers display these representations. These relationships

and their ultimate use by a browser are depicted in Figure 3.1, URI, Resource,

and Representation.

For identification, the Web demonstrates a fundamental principle of hypertext

systems: global naming leads to global network effects. The consequence of

that principle is that URI naming becomes incredibly important. To increase

the value of the Web and to allow more positive effects, publishers should

provide URIs as identifiers for resources. Also, distinct URIs should be used

for distinct resources to broaden the addressable space of resources.

In practice, URIs are associated with domain owners and some authority

which has the ability to construct (mint) new URIs. When the authority

assigns URIs to resources, they should ensure they are unique and avoid

arbitrarily aliasing the same resource with other URIs. That is, a careful
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Figure 3.1 URI, Resource, and Representation

Content-Type: application/xhtml+xml 

<html xmlns='...'> 

<head> <title>Weather Report</title> 

</head> <body> <h1>Weather for San Francisco</h1> 

...

San Francisco 
Weather Report

Represents

Resource

Representation

http://www.example.org/weather/ca/sf
URI

Identifies

Weather Report for San Francisco 

It will be foggy today just like 

yesterday and the day before ...

Agent Rendering

assignment of URIs to resources provides a greater benefit for the Web as a

global space of linkable URIs.

Finally, URIs are identifiers that often resolve to locations; they rely upon

URI schemes to identify the protocol for accessing the resource. Specifications

and authorities should re-use existing schemes (e.g., “http:”) rather than

construct new identifiers (e.g., the "ivoa:" scheme violates this good

practice). When possible, using resolvable locations such as “http:” URIs

generally has a preference today due to the fact that you can always attempt

to interrogate the URI to gather more information about it.
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When agents attempt to access a representation of the resource identified

by a URI, they “dereference” the URI. Typically this involves inspecting the

URI scheme and attempting the protocol or access method identified by the

scheme. If the URI scheme is unrecognized or otherwise not allowed, the

agent may simply refuse to access the resource.

Protocols such as HTTP provide many different ways to access a resource via

a URI and use different “methods” such as GET, HEAD, POST, etc. These

methods differ in their ability to send or retrieve information from the

resource. The simplest access methods retrieve a representation of the

resource.

When a request is made over a protocol such as HTTP, the URI is

deconstructed into a URI path (the portion that follows the domain name and

precedes the fragment identifier [#]) and a server address. Only the URI path

is sent via the protocol to the server along with whatever additional headers

the agent specifies. In the case of certain methods (e.g., POST and PUT), a

representation may be sent as well.

The response returns a representation whose type is determined via the

metadata returned. Specifically, the “Content-Type” header identifies the

data format as one of the Internet Media Types that are registered in the IANA

registry [53]. The exact response depends on the URI owner and what services

they provide. Even if the URI looks as if it might provide a resource of a

particular type (e.g., ends with a .xml extension so text/xml is expected),

the Content-Type header dictates the response, which may even be in the

form of an informational error message in a common format (e.g., HTML). In

general, good practice dictates that agents should never ignore the response

metadata without the consent of the user.

As a fundamental principle, agents incur no obligations by retrieving a

representation. This allows for safe interactions on the Web to be dictated by
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Representative State Transfer
(REST)

REST [100] is an abstraction of the

architecture of the Web in terms of

various more-or-less criterial properties

such as client-server articulation,

statelessness, cacheability, layering,

and supportive of uniform interfaces.

This abstraction is useful in designing

services on the Web as it encapsulates

many of the architectural principles of

the Web in a way that allows systems

to scale. Specifically, it relies on “good”

URI naming and stateless resources

which are properties extensively used

within the solutions provided in this

research.

the user via their agent. While the agent incurs no obligation, this does not

mean that the interaction is inherently safe. A simple retrieval request can

have possibly dire consequences as information is always sent in the URI path

and otherwise to a service outside of the control of either the user or their

agent.

Finally, as a good practice, a URI should have a consistently and predictably

available representation. This allows a user to access the representation to

gather more information. Yet, just because the representation is available it

does not mean that a user should be required to retrieve the representation.

That is, in principle, having a reference does not imply dereference.

When a representation is retrieved,

there are generally two classes of data

formats: binary and textual. A binary

format is a sequence of bytes of data

whose interpretation is guided by its

format specification. In contrast, a

textual format is one whose data is

encoded as a sequence of characters

and represented as a sequence of

bytes using some encoding of those

characters. These characters and their

encoding are affected by the protocol

and the metadata embedded within

the response.

Textual formats are often more

portable and interoperable, and they

tend to be more readable by humans.

The metadata associated with the format helps the receiving agent decode
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from a sequence of bytes into a sequence of characters via the encoding

used in transport. While many modern systems promote and use Unicode,

any character encoding and character set can be represented because, at the

protocol layer, the representation is sent as sequence of bytes.

In practice, data formats change over time as new versions are developed

to handle new requirements. A format should provide a mechanism for

identifying version information and extensibility. A good extensibility

mechanism does not interfere with the original intent of the specification

and also defines how a system should behave when faced with an unknown

extension.

Within a particular data format, there are a number of good practices:

1. Separation of content, presentation, and interaction.

2. Identification of links and their roles within the representation.

3. Allow Web-wide and hypertext linking (not just internal).

4. Allow the use of URIs without restrictions.

5. Allow the use of URI references (relative links) to enhance the

usability of the data format.

For XML-based formats, there are additional good practices:

1. All element names and global attribute names should be members of

a namespace.

2. As namespaces are identifiable by URIs, a namespace document

should be one resource format made available, and associated

somehow with the URI, that contains material intended for people to

read about the namespace, format, and its use.
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Hypertext Driven

Hypertext driven, as encapsulated by

Hypermedia as the Engine of

Application State (HATEOAS), is the

approach that adds an additional

constraint on REST architectures where

hypermedia (e.g., HTML) is the

interface through which the application

navigates or discovers additional

services. Specifically, data

representation formats can link to one

another and form a chain of

information upon which an application

can act. This allows applications to

inspect the instance and find useful

links to follow for more information or

interactions. A specific use of this

mechanism is described in Chapter 5,

The PAN Methodology.

It is important to note here that many of the XML-related media types (e.g.,

those that end with +xml) are not differentiated within the OWP and are often

treated as non-differentiated XML markup. Although it is theoretically and

practically possible for there to be different semantics within the processing

model for the specific XML markup, the OWP currently invokes the same

processing model. This effectively limits what an XML-based application can

do within the platform as there is little to bootstrap an application.

From a data exchange perspective,

the inherent limitations of XML may

be acceptable; from an application

perspective, where enabling an

extended data model and semantics

is helpful, this impoverished

processing presents limitations for

XML in the browser. The most

notable limitations are the inability to

recognize links (a fundamental good

practice; see Hypertext Driven [55],

[56]) or to automatically invoke

scripting (a practical reality). If

scripting were available for XML, it

would enable extensible semantics

that could be used to add in other

behaviors—including linking.
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What is RDF?

RDF is a framework for describing

resources. Resources can be anything

from abstract concepts, documents,

people, to physical objects [57]. Such

resources are named via URIs and

statements are made about them using

triples. A triple consists of a subject (the

resource), a predicate (a URI), and an

object value where the predicate

provides a relationship between the

subject and object value.

The object value may contain another

subject URI which allows RDF to

describe a graph of information. This

graph isn't typical found directly as a

single Web resource. Instead, RDF

triples are “harvested” from various

formats that contain annotations.

Sometimes, the formats are direct

serializations of the triples themselves.

Notably absent from the Web

Architecture document is any

mention of Resource Description

Framework (RDF) [54] or the

Semantic Web as a layered and

principled approach to data on the

Web. While the Web conceptually

supports any variety of formats, the

common intersection of formats

supported by the various

implementations of the OWP is

relatively small and this limits

interoperable interchange, thereby

reducing the common data formats to

those embeddable or linked via

HTML representation along with a

only a few intrinsic XML-based

formats.

RDF relies on the fundamental

principle of URI naming but extends

its use such that both RDF subjects

and RDF properties are named via URIs. The items within the information

space addressed by RDF are triples that contain a subject, a property, and an

object value. The object value can be either a literal or another URI, which can,

in turn, be the subject URI in another triple. The resulting connections build

RDF triples into a graph.

Conceptually, triples are graph constructs where all the subject URIs or object

values can be considered nodes and the edges between them are labeled with

property URIs. Given any collection of resources on the Web that somehow
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contain triples in their data format, a large graph of “knowledge” can be

harvested and processed by an inference engine.

Yet, this process rarely happens on the Web directly. The representation of

triples as its own XML data format has limited its adoption in other languages

up until recently. As the need for ways to further qualify and extend data

in representation formats such as HTML have become important, annotation

technologies have been developed to merge the concepts of the Semantic Web

into the Ordinary Web that users encounter every day.

3.1 RDFa Annotations

In attempts to re-use information already represented on the Web as regular

HTML, several different annotation systems have been proposed for HTML:

Microformats [58], RDFa [59], and Microdata [60]. While Microformats have

their origins starting around 2005, its popularity has come and gone. It relies

on the use of the single HTML class attribute to annotate and structure

information within an HTML document. It has had some success—especially

in the hCard (contacts) and hCalendar (calender entries) formats in various e-

mail client and calendaring tools.

In 2004, Mark Birbeck published a W3C Note [61] on a way to express RDF

triples in HTML. This note evolved into the RDFa 1.0 specification as

published by the W3C in 2008. It was subsequently revised in 2012 and an

improved version was published as RDFa 1.1 [62] that provides for more

general use within any markup language.

The fundamental mechanism of RDFa is a set of attributes, some of which

are already in HTML, that are used to annotate any element. This change

from RDFa 1.0 allows RDFa to be used in any context with an HTML or
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XML document as long as the vocabulary allows the attributes. In the case of

HTML, the open extensibility model encourages all browsers to allow RDFa

annotations without errors.

About the same time that RDFa 1.0 was published, Microdata was proposed

to be part of HTML as part of the HTML5 effort. Microdata also uses a

set of global attributes and, as a more controversial part of the HTML5

standardization efforts, it was moved to its own specification. As RDFa 1.1

was completed, the membership of the W3C indicated a strong preference

that there not be different specifications that accomplish essentially the same

goal. As a result, the Microdata specification has been orphaned, published as

a W3C Note (a lesser status), and currently has an indeterminate future with

the notable exception of support by several large search engine vendors.

In all of these different syntaxes there is a common theme of attempting to re-

use and annotate data in its published context within the HTML document.

The natural overlap between structured data and its markup representation

on a particular Web page is used to annotate and preserve the rich structure

of the data. In the case of RDFa, the data has a direct interpretation as RDF

triples, which allows all the Semantic Web technologies to be used once the

triples are harvested from the document.

This is not the case for either Microformats or Microdata as they are both

oriented towards items with properties. There is no guarantee of a URI name

for the subject of each item. As such, mapping these technologies into the

Semantic Web is either difficult or relies on deep assumptions.

RDFa has a rather simple syntax that fosters the ability to build complex

triples from data embedded in commonly used syntaxes such as HTML. This

technique provides a number of desirable qualities: identifiability, extensibility,

flexibility, and durability. We shall explore these qualities but first a primer on

the basic syntax of RDFa is necessary.
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3.1.1 RDFa Syntax

To address the needs of the community and bridge the gap between RDFa

and Microdata, the W3C produced a simple subset called RDFa Lite [63]. This

subset removes many of the superfluous features and focuses on three main

attributes: resource, typeof, and property; and two syntax attributes:

vocab and prefix. These attributes are global and so are available to be

placed on any element. Their interpretation through a top-down-first-to-last

tree traversal derives a set of subjects, properties, and object values associated

with identifiable locations within the document.

From a syntax perspective, the values of types and property names are

expected to be URIs, which can be lengthy to specify. The vocab attribute

provides a scoping mechanism for a default base URI against which values

can be resolved, while the prefix attribute allows specifying a set of prefix

mappings to URIs that can also be used when referencing URIs.

An example of RDFa using the schema.org vocabulary is shown in Figure

3.2, Example RDFa. At the very beginning, the default vocabulary is set to

http://schema.org/ for the whole element sub-tree. The subject is named

as the resource #alex which will resolve against the base URI of the

containing document.

Figure 3.2 Example RDFa

<p vocab="http://schema.org/" resource="#alex" typeof="Person">
My name is
<span property="name">Alex Miłowski</span>
and you can drop me an e-mail at
<span property="email">alex@milowski.com</span>.
<img property="image" src="http://www.milowski.com/images/alex.png" />

</p>

The type of this subject is identified as “Person” and this value will resolve

to http://schema.org/Person against the default vocabulary. For all the

contained property names, each will also resolve against this same default
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vocabulary to produce a URI. For example, the property “name” resolves to

the URI http://schema.org/name and so on.

Finally, a value for each property is constructed by examining the element.

In the case of simple inline elements, such as span, the content is taken from

the text descendants. For example, the “name” property has the value “Alex

Miłowski”. The result is the set of triples shown in Figure 3.3, Example RDFa

Triples, in Turtle syntax [64].

Figure 3.3 Example RDFa Triples

@prefix schema: <http://schema.org/> .
<#alex> a schema:Person;

schema:name "Alex Miłowski";
schema:email "alex@milowski.com;
schema:image <http://www.milowski.com/images/alex.png> .

It is also important to note that RDFa captures link relations within the

document. In the example, the image src attribute is used as the object

value for the http://schema.org/image property. In general, RDFa will

consider any src or href attribute within the document as an object link

value and also the start of a new subject for the element's descendants.

3.1.2 Identifiability

Identifying RDFa-based annotations of data benefit from a two-fold syntax.

Each application of RDFa has both a “host language” and the vocabulary

used within the RDFa annotations. As such, both represent opportunities for

deterministic identification of the kind of information being represented.

The first aspect of recognition is the “host language”, which is often HTML

but could be any markup. A specific host language may have desirable

properties such as ubiquitous processing and rendering by tools and

applications. As such, the data encoding shares all the benefits (and pitfalls)

of the host language.
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In the specific case of HTML, data can be structured such that it is always

viewable by a potential consumer because it is identified as HTML. This

aspect allows casual browsing of data that might otherwise be difficult for

the novice or uninitiated consumer. The value of a default rendering of data

cannot be overstated.

The second aspect of being identifiable is that the basic syntax of RDFa ensures

that to get the proper annotations either a default vocabulary is declared or

full URIs are used for types and names. This means that a simple inspection of

the document, even without fully processing the RDFa, can yield information

about the ontology and types used to annotate the data.

There is huge value in being able to look at the source, as viewable plain text,

to inspect the encoding and find links, namespaces, and other URIs. These

provide the future consumer with clues as to where to find the semantics for

unrecognized vocabularies. Since an active domain owner may likely exist,

the consumer can consult the owning entity for further information or just

visit their website. This benefit points towards a corollary: what a human can

see in the source of a Web resource is also what a data-oriented application,

which may know little or nothing about the host language, can exploit based

only on knowing the semantics of the annotation vocabulary. The vocabulary

used is at least, in part, accessible via the ability to dereference the URIs which

are used.

3.1.3 Extensibility

Once an application has started expressing its data using standardized RDFa

annotation and markup, it is likely that new requirements for the application

will tug at the standardization in unexpected ways. Being able to meet new

requirements in a timely fashion, identifying the extensions, and providing

fallbacks, is a necessary feature and easily handled with RDFa via several

different approaches, as we shall see.
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First, subjects can have multiple types. This form of “mixing” allows both

unions and derived types to be specified within the single typeof attribute.

The syntax of the typeof attribute allows a space delimited set of types to

be specified and each type name is considered independently. The subject

consequently has multiple types within the derived annotation graph.

It might seem a bit odd to allow unions and derived types within the same

syntax but the type triples are merely assertions involving the subject.

Whether two types are disjoint or one is a derivation of another is often

defined externally; perhaps available in an XML schema, stylesheet,

transformation, pipeline, or namespace representation by dereferencing the

vocabulary or namespace URI. In the document itself, the annotations merely

identify that the subject is asserted to be of both types.

This kind of flexibility allows extensions (whether unions or derivations)

to be identified directly by the syntax. A processing system can identify a

known type and understand that there is also other information encoded as

well. Thus, when additional properties are encountered, the application can

understand whether this is a possible error or part of an additional type.

For example, in Figure 3.4, RDFa Extension Example, the annotations use the

schema.org standard type http://schema.org/Person and the

extension http://example.org/Scientist. The subject <#marie> is

associated with both types. The property http://example.org/

discovered is readily distinguishable from the schema.org types by

inspection, signaling additional information. A consuming application can

decide whether the presence of a foreign type should halt processing or invite

further investigation; an RDF-aware application could decide to de-reference

the URI to seek further information about the foreign type.

In a larger context, the identification of extension with the overt types in the

document allows systems to know that new type definitions are required.
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Figure 3.4 RDFa Extension Example

<div resource="#marie" vocab="http://schema.org/"
prefix="my: http://example.org/"
typeof="my:Scientist Person">

<span property="name">Marie Curie</span>
<span property="my:discovered">polonium</span>
<span property="my:discovered">radium</span>

</div>

This requirement can surface to the managers of the knowledge repository

or to other parts of the system that are capable of finding and loading new

ontologies.

The key point is that extensibility is built into the syntax and tied directly

into being identifiable. New type URIs that are not already known represent

potentially new information structures. They can simultaneously be new

discoveries and safely ignored. Systems that choose to process only known

types can choose from a spectrum of processing models: from signaling an

error, to searching and retrieving new semantics, to ignoring the new type

and its associated triples. Such systems also directly know when they are

ignoring information that they do not recognize and this knowledge is critical

in determining data quality.

3.1.4 Flexibility

Because RDFa uses global attributes, annotations can be embedded anywhere

within a document. As data is expressed within markup for other purposes

(e.g., a table of data in HTML), annotations can also be associated with this

markup to further identify, structure, and otherwise enhance the quality of

the information contained. Where these annotations are applied is up to the

data provider and not dictated by the format (e.g., by HTML). However, the

host language provides some structure; it offers choices such as whether to

annotate table headers, a paragraph, or a text phrase.
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Figure 3.5 Same Data — Two Ways

First encoding:

<p vocab="http://schema.org/" resource="#alex" typeof="Person">
My name is
<span property="name">Alex Miłowski</span>
and you can drop me an e-mail at
<span property="email">alex@milowski.com</span>.

</p>

Second encoding:

<h1 vocab="http://schema.org/" resource="#alex" typeof="Person">
<span property="name">
<span property="email" content="alex@milowski.com">
<a href="mailto:alex@milowski.com">Alex Miłowski</a>
</span>
</span>
</h1>

Same triples:

@prefix schema: <http://schema.org/> .

<#alex> a schema:Person;
schema:name "Alex Miłowski";
schema:email "alex@milowski.com" .

As requirements for user interfaces change, the markup structures may

change. Yet, the information provided via the annotations may be exactly

the same. Because the RDFa annotations produce an annotation graph, their

exact locations within the document may not really matter to a consuming

application. As such, there is a great deal of flexibility in what markup is used

and how it is allowed to change and evolve.

By using RDFa annotations, applications can provide open extensibility

mechanisms for additional new behaviors. These mechanisms allow users to

innovate upon the platform without prior consensus on necessary changes

in data formats. That is, the use of RDFa builds in flexibility that allows

new information structures to be overlayed without requiring changes to

consuming applications.
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Finally, two different data producers may have different requirements for

how their information is displayed. When information is conveyed via

annotations, the same information can be structured in very different ways

but produce the same information graph. In Figure 3.5, Same Data — Two

Ways, the two different markup structures produce the same set of triples. The

example shows the resulting triples in Turtle format at the end.

3.1.5 Durability

HTML, the intrinsic markup language of the Ordinary Web, has built an

indelible record of durability. Documents that were published on the original

website provided at CERN (circa December 1990) are still browsable today.

Investments made in publishing information on the Ordinary Web have

proven themselves viable for over a decade. This is, in part, due to the

durability of the markup in general.

HTML's simple and default rendering models allow information expressed

within it, at minimum, to be viewable. While their specific information

content may be hard to determine programmatically, the human viewer can

often gain a lot of information. For information to remain durable, it must

remain consumable by humans without massive decoding efforts; the default

rendering model for HTML provides a basic level of durability.

RDFa provides the ability to annotate and qualify data contained within

regular Web pages and helps make such viewable pages also interpretable as

data. Even though portions of the data may be visually disjoint, the flexibility

in the annotations allows them to be directly linked. This lets one Web page

serve multiple purposes and prevents data from being separated from its

context.

As trends change, the same information encoded in the same annotations can

be presented in different ways. This allows the same information content to be
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gained from accessing and harvesting the triples. As such, consuming systems

accessing the data annotations may not need to change.

Finally, information expressed in regular Web pages can be backed by more

extensive information models. The data harvested from the Web page as

triples of information fit neatly back into this larger model. The same

information can transcend several sources and formats without being

impoverished. Thus, the representation on the Web can be as complete as the

“original data source” that was used to produce the Web page.

The result of achieving durability is that the Web page can be considered the

canonical source of the data for the consumer on the Web. References to the

“human readable” version are just as processable as data as other formats.

This lessens the need for alternate formats for many data sources and widens

access for more complex data sets.

3.2 Bridging the Gap

As the Semantic Web has evolved, the community has come to derive its

own set of principles, layered onto the Web, called Linked Data [65], and

their own platform, called the Linked Data Platform (LDP) [66]. While these

specifications provide interoperability within certain communities, outside

these communities and within the OWP platform they have little direct

support. Yet, their underlying principles are not so different:

1. Use URIs as names for things,

2. Use HTTP URIs so that people can look up those names,
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3. When someone looks up a URI, provide useful information, using

the standards (RDFRDF*, SPARQLSPARQL),

4. Include links to other URIs, so that they can discover more things.

The difference is that the LDP often expects that the returned resource

representation (data format) is RDF/XML or some other Semantic-Web-

oriented format. This divides the users between those who want a usable

format for direct display (HTML) versus those who are interested in the data

in the greater context of the Semantic Web. Again, this is where RDFa, as

an annotation technology, can help bridge the gap between these currently

distinct user communities.

There is simply a divide in thinking between user communities, where some

believe the point of accessing the Web is to harvest triples of information that

you then store in your larger graph of knowledge, and others believe that you

access the Web to directly display the representation you receive. As such, the

representation needs to be somewhat self-contained.

Obviously, neither is really true. No one can actually store a complete graph

of all the knowledge simply because it hasn't all been linked to each other,

let alone considering the time to access, download, and process it. At the

same time, a single instance of data, sized for retrieval over the Web, is often

insufficient for medium to large-scale problems within scientific domains.

What is true is that the Web persists as a middle ground between information

stores and consumers. As a middle ground, the durability of the data is

essential, and markup, especially HTML, has shown great durability. RDFa

annotations allow data to be encoded via simple markup to expose practical

semantics to consumers and processors.
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The approach used in this research uses the middle ground to enable the

Open Web Platform to process information. Rather than rely upon extensive

infrastructure to provide the browser just what it needs, we provide

annotations in common formats that enable the browser to compute locally

over data. This results in a new class of computations that utilize the Semantic

Web without fully operating on either just markup or just graphs of triples.

The use of RDFa annotations allows the browser to inspect the origins of

each triple. That is, the triples are expressed in particular locations within the

structure of the document and often upon an HTML element. Knowledge of

these locations can be useful to enable scripts to process information that is

only partially annotated (e.g., column headers of a table of data). In turn, this

lessens the burden on the script author to fully understand how to process the

whole knowledge graph.

There is an interesting space between these communities where annotation

technologies such as RDFa can help scale-up smaller-scale science and

provide access to data for non-professionals; these technologies fit within the

larger goals of the LDP community. As such, it is not a zero sum game as

markup is uniquely positioned to provide data structured for presentation

and annotated for automated consumption, all while providing an “on Web”

processing model for the Open Web Platform.
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Chapter 4

Foundations for Science on the Web

8. Four desirable qualities for science on the Web are: identifiability,

extensibility, flexibility, and durability.

9. Re-using existing representation formats along with annotations,

rather than creating new formats, enables the existing platform, the

Web browser, to be applied to scientific purposes.

To have science on the Web, the scientific data sets must be directly accessible

from within the OWP using the same standards that make up the existing

platform. Specifically for scientific data, we will consider the data formats

(HTML), augment them with annotation technologies (RDFa), and partition

them into Web-sized resources with proper names (URIs). The Web browser

is the most obvious starting point for this exploration. At this point, the

modern Web browser is more than just a page viewer. Instead, it is a platform

(OWP) for deploying applications and viewing content.

79



Within this platform we can observe certain qualities as manifested by HTML,

RDFa, and other formats. They already demonstrate essential desirable

qualities of identifiability, extensibility, flexibility, and durability for human-

readable content. Within particular domains, these formats can also be

applied to provide the same qualities for scientific data.

These qualities work in mutually supportive and sometimes co-dependent

ways, so that as the needs of users have changed, the OWP has had the

unique ability to adapt and evolve. New technologies can often co-exist with

older versions, allowing the OWP to preserve investments in technologies

and services deployed by businesses and other publishers. In many cases,

this coexistence was a conscious choice, by those who developed the new

standards, to include mechanisms to preserve backwards compatibility.

This ability to co-exist provides one of the important overarching benefits

of using the OWP: your content, application, and services are all based on

something that will have durability. While a desirable quality in itself,

durability does not manifest without the support of the other qualities and

without them it is never truly present. In this sense, durability may seem like

a derived quality, except that to achieve it one must carefully execute on the

delivery of the other qualities with durability in mind, and so crafting towards

durability is an overarching goal in itself.

The OWP is designed to be agnostic to the kind of device upon which it

is received. The relationships between the information and their semantics,

knitted together by a common declarative language (typically HTML),

provides the ability for content and applications to outlive their existing

devices. This idea of supporting heterogeneity has been there from the

beginning of the Web as a requirement for the platform.

Specifically, durability is derived from a number of technical properties

generally exhibited by the platform. First, content is identifiable in both name
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and syntax. Content is received over the Web by dereferencing names (URIs)

and the protocols (HTTP et. al.) have well-defined mechanisms for

determining the syntax. Representations (or formats) that work well within

the platform are those that the browser can uniquely identify via combinations

of protocol or syntax metadata and being formats that are intrinsically

supported by the platform (e.g., HTML, XML, various image formats).

Specifically, identifiability is built into mechanisms that layer to enhance the

ability of the application to decode transport formats and provide specific

support for different versions of information to invoke different processing

rules.

The ability of the OWP to allow different versions of technology to co-exist on

the Web is an example of extensibility. Such, extensibility operates on at least

two dimensions: versions within technology/standards and user or vendor

defined extensions within technology/standards. The platform demonstrates

this quality via successful strategies that enable browsers to both view very

old content while at the same time provides scripting to allow implementing

new features for new types of content.

Finally, formats such as XML, XHTML [67], HTML [68][69], or JSON provide

a degree of controlled flexibility within the representation through the use of

annotations of information. These formats provide publishers and application

developers the ability to represent specialized information and transport it

to applications hosted within the browser. These applications can use the

flexibility within the representation to transport data with specific semantics

within the bounds of the chosen syntax. This flexibility contributes to

supporting both the extensibility and durability of the OWP.

These qualities are all desirable for scientific endeavors. As a government or

non-profit endeavor, the continually increasing cost of science, often means

that economies at scale are very desirable. As a counter balance, ensuring
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the durability of information is equally important. Accessing and archiving

scientific data as the raw data and results, while preserving the ability to re-

purpose the same information over long periods of time, is just as important

to science as it is for other Web-based endeavors. As scientists participate on

the Web, their research and data can be preserved, accessed, and processed

well into the future. This will allow the existence of scientific Deep Web

services to harvest new discoveries from data and enable replication of

existing research by inspecting the data. In the end, other scientists can use

these services to find new information within their domain or related areas.

4.1 Applying RDFa to Existing Vocabularies

If the OWP platform and specific data formats and techniques can provide

desirable qualities, what happens when they are applied to existing

vocabularies? Are the four key qualities of identifiability, extensibility, flexibility,

and durability directly realized and any limitations removed? Let's consider

the two major examples discussed previously: IVOA VOTable and KML.

Both VOTable and KML are XML-based formats, so using RDFa for

annotation is a natural approach. As a set of attributes, RDFa can easily be

added to any markup vocabulary to provide annotations. Whether or not the

resulting markup is acceptable to various tools depends on how they process

the markup and what they do with unknown additional attributes; a feature

of processing markup with extensibility in mind.

IVOA could certainly revise VOTable XML to use RDFa directly and this

might give them more flexibility within the same markup constructs. By doing

so, the various semantics wrapped up within specific element constructs

could then be shared across various domains while, at the same time,
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vocabularies from outside IVOA could be directly usable. Specifically, the

annotation of columns via the FIELD element could be generalized as an

annotation vocabulary useful for other areas of astronomy or other scientific

domains.

The various collections of properties that make exchange actually work within

the IVOA framework could be reduced to a specific type and property

vocabulary. With an agreed core, ontology, and object values, these

annotations could be reused in other data contexts such as regular Web pages

encoded in HTML. This might allows similar semantics to VOTable XML for

data exchange without specialized vocabularies or tools.

Along the same lines, NASA developed a base ontology for quantities, units,

and dimensions called Quantities, Units, Dimensions and Data Types

Ontologies (QUDT) [70]. This ontology provides the basic types and

properties for specifying scientific observations as measurements along with

their units of measure. It also has the added benefit that it is grounded in SI

units (International System of Unit) with additional relation and conversion

information for different units of measure (e.g., Celsius and Fahrenheit map

to Kelvin).

This means that IVOA can take advantage of any general standardization

within the greater scientific community without having to develop everything

on their own. At the same time, their contributions for solving hard data

interchange problems could be re-used in other domains. This all comes as a

consequence of using an enabling, common annotation format, such as RDFa.

Within the VOTable vocabulary, the various datatype attributes (datatype,

xtype, unit, ucd, utype, and type) most likely reduce to a single semantic

label and a specification of a unit. While the markup becomes simpler, the

ontology most likely receives some of the complexity. The real benefit is
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that ontology structures and vocabularies can be shared from other scientific

endeavors.

Those using KML can also benefit from using RDFa. The data structures such

as ExtendedData seem to be rarely in use—possibly because they have little

effect on the user interface. Instead, data is embedded in descriptions attached

to features as escaped HTML. This data in descriptions can also be annotated

with RDFa without any change to KML.

The use of RDFa annotations within KML allows typing and mapping of

columns of data (e.g., snow fall shown in Figure 2.8, KML Descriptions for Data)

to known ontologies for units of measure. Instead of just having a table of

data to show within the map, the application can inspect the annotations to

understand that a particular column is a measurement, its unit of measure

(inches), and the subject that is being measured (snow fall, last hour). A very

simple example is shown in Figure 4.1, RDFa in KML, where it should be noted

that the description is no longer escaped HTML and, as such, it is no longer

valid KML under current schemas.

Figure 4.1 RDFa in KML

<Placemark>
<name>  Pell City 5.8 SSW, AL</name>
<Snippet maxLines="0">empty</Snippet>
<description>
<table vocab="http://weather.gov/" about="http://weather.gov/snow/AL-SC-3">

<tr><td>STN ID</td><td property="id">AL-SC-3</td></tr>
<tr><td>OBS DATE</td><td property="date">2013-08-08</td></tr>
<tr><td>OBS TIME</td><td property="time">07:00 AM</td></tr>
<tr><td>TOT PRECIP AMT</td><td property="totalPrecipitation">0.65</td></tr>
<tr><td>NEW SNOW DEPTH (IN)</td><td property="snowDepth">NA</td></tr>
<tr><td>TOT SNOW DEPTH (IN)</td><td property="totalSnowDepth">NA</td></tr>

</table>
</description>

</Placemark>

The consequence is that the application can perform intelligent operations

on the data being displayed. In the simple case of units of measure, the

application can display locale-specific variants (e.g., inches vs centimeters,
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Fahrenheit vs Celsius) of the quantity. More complicated operations might be

calculating average values for all data within the map view area.

Unfortunately, neither of these approaches are currently practical. Both the

VOTable and KML markup vocabularies are designed as closed vocabularies.

Their various XML Schema definitions are closed and do not allow annotation

markup in almost every instance. The only extension is the KML

ExtendedData element which does allow any markup construct. As such,

there is no way to use RDFa for extensibility as described because any

receiving tool that validates data will fail and reject the data received.

4.2 Using RDFa in HTML

While formats such as VOTable or KML are accessible within the OWP as

XML data formats, the OWP does not provide any automated intrinsic

semantics. As we have observed previously, XML languages have an

impoverished default processing model. As such, invoking scripts to process

annotations or render complex displays becomes much more difficult.

The alternative to augmenting a specific domain or scientific data format

is to use HTML, the working language of the Web, as a mechanism for

transmitting data. The benefit is that there is a default interpretation which

provides both rendering and operational semantics within the OWP. These

facilities can be used to bridge the gap between rendering for display and data

processing.

A lot of scientific data is organized in a tabular format as described in Section

1.5, Existing Approaches to Data, and there exists a well-used table construct

in HTML. With RDFa annotations, tabular data can be exchanged without

inventing a new markup language, as IVOA did with VOTable. Instead, a
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single HTML page can encode the context of the tabular data and use the

HTML table element in combination with RDFa annotations. The end result

is that the data is both viewable by casual browsing while, hidden from view,

deeper underpinnings are available that describe the domain, context, and

specifics of each column of data.

Yet, HTML alone does not provide other mechanisms for structuring,

annotating, naming, and partitioning complex data. By just adding in RDFa,

data can be contextualized to identify it and provide precise semantics.

But the use of annotations requires more planning with regards to the

resources that are provided on the Web. What is needed is a way to apply

HTML and RDFa to data sets that are potentially large and unending. Once

the data can be annotated, it must be carved up into a usable set of Web

resources that are accessible via URIs. A methodology that incorporates all of

these parts is what is needed and will be presented in the next chapter.

86



Chapter 5

The PAN Methodology

10. Data must to be partitioned into “Web-sized” representations to enable

interaction with data over the Web.

11. Rational and regular URI naming schemes must be applied to

partitions to enable interaction with data over the Web.

12. Quadrangles and sequence numbers are useful mechanisms for

partitioning and referencing geospatial data.

In Section 4.2, Using RDFa in HTML, we presented a technique for using

HTML tables with RDFa annotations for tabular data sets. Applying this

approach to potentially large data sets reduces to three basic problem areas:

1. The data sets are typically too large to be processed by the typical

OWP implementation as one large Web resource.

2. HTML table markup lacks the necessary constructs to convey all the

information encoded within typical tabular data sets.
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3. A naming strategy must be developed so that information is usable on

the Web, such that it can be both identified and easily retrievable by a

common mechanism (i.e., over HTTP GET requests).

In solving these problems, it is essential that we return to the principles

of the Web so that URI naming is used to access the data set, common

formats are used, and an appropriate-sized representation is returned when

the URI is accessed. We want to avoid the pitfalls encountered by prior

attempts to disseminate scientific data, where large packaged archives (e.g.,

compressed tar files) of data files in a variety of formats are distributed for

offline processing. Instead, we intend to expose this data in "Web sized"

portions that are usable within the OWP.

In this chapter, a new methodology, called PAN (Partition, Annotate, and

Name), is described; it provides both interactive (e.g., within the browser)

and offline processing of data sets. As the acronym's definition suggests,

the essential steps of the methodology are to partition data sets into small

portions that can be retrieved by regularly named resources whose

representations are of a reasonable size for the Web. Such resources must

be named by well-defined URIs and contain sufficient annotations to enable

semantic processing within the OWP. Each of these components of the

methodology serve essential roles in bridging the gaps between existing Web

formats or data processing techniques and the needs of scientific data

processing; they each contribute to extending our four key qualities of

identifiability, extensibility, flexibility, and durability to scientific data.

The basic tenets of the methodology are:

1. PPartition the data set along properties inherent in the data (e.g.,

subject, temporal, or geospatial coordinates, etc.) into reasonable sized

subsets suitable to Web applications.
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2. AAnnotate the data according to some identifiable ontology and encode

in a common syntax using RDFa.

3. NName each data partition with a unique URI using a consistent

naming scheme that can be traced back to your partitioning scheme

from (1).

As parts of the PAN methodology pertain to how data is represented, we

must provide some general abstract model against which we will operate.

In general, the terms “data”, “data set”, and “collection” can be used to

mean different concepts or can often refer to the same kind of information

object. For the purposes of this methodology, these terms will take on specific

meanings and their definitions are used throughout this section and following

chapters.

Figure 5.1 Abstract Data Collection Model

Data SetData Set

Data Collection

data 
(row)

Data Set

Our abstract model for data collections is shown in Figure 5.1, Abstract Data

Collection Model. In broad terms, a data collection is a set of related data sets as
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subject-oriented collections of data. These data sets may share some facets as

keys between themselves. For example, a data set containing weather reports

may reference station identifiers that are also used within another data set of

metadata about the stations themselves.

A data set contains a singular kind of composite data structured as necessary.

In relational terms, a data set maps to the concept of a data table (or tightly

related set of tables). In object terms, a data set maps to instances of a single

class and its instance variables. In terms of conceptual data, data sets map to

sets of related observations, such as a set of weather reports.

Data within the data set is often organized into common tabular structures

where columns of information share the same facet definition; a row (or tuple)

is used to represent the actual data (e.g., the weather report itself). Information

contained within these rows is often useful in navigating the data set (e.g.,

observation time, geospatial locations, etc.). As such, certain facets may be

used for partitioning the data.

In the abstract, data is encoded within records of information within the data

set. Some information may not necessarily be tabular data (e.g., images) and

so data within may simply be sequences of information whose facets are not

easily accessible. Meanwhile, records that do exhibit some kind of regular

structure can expose their facets as a tuple of information. This allows for a

broad concept of columns of data without necessarily tying the actual data to

a tabular model; this allows representations to be used that are not tables. The

result is that data is accessible by traversing record instances within the data

set and accessing the facets of these records, however they are structured.

When the size of a data set is too large to be consumed as a whole, data is

grouped into partitions. A partition is merely a grouping of data within a data

set as shown in Figure 5.2, Abstract Data Collection Partitioning. As each data set

within a data collection may have different properties, each data set is likely to
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have its own partitioning based on choices that are appropriate for the data it

contains. Partitions are choices made by the publisher and are not an inherent

property of the data.

Figure 5.2 Abstract Data Collection Partitioning

Data SetData Set

Data Collection

Data Set

Partition

Partitioning is based on the facets of the data (e.g., time or location of

observation) rather than arbitrary divisions (e.g., first 100 records). The facets

necessary for partitioning are called basic facets and are expected for each row

of data. Each basic facet is an atomic value which is typed such that it belongs

to a specific value space.

Finally, a partitioning is defined by a set of basic facet ranges, where each

individual range is associated with a specific value space partition. If the

ranges are regular, it may be the case that no data matches and the partition

is empty. Given that the basic facet ranges represent a choice of how the value
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space is divided, a data set may be subject to more than one partitioning based

on different choices (e.g., a time facet can be partitioned by different time

durations).

When a data set is multidimensional, it may be partitioned by multiple basic

facet ranges at the same time, as shown in Figure 5.3, PAN Methodology

Partitioning. Each partition is shown as blocks in the diagram and can be

addressed by a specific range for each of the partitioned basic facets. For

example, in the diagram, the basic facets are latitude, longitude, and

observation time, and each block has a specific range for each of them.

Figure 5.3 PAN Methodology Partitioning

Facet A 
(latitude)

Facet B 
(longitude)

Facet C 
(time)
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Data Set Partition with name

Annotated data 
contained within the 

partition and 
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resource.
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While any data set is likely to contain a finite amount of data, it should be

noted that the set of partitions can be open-ended (infinite). That is, particular

basic facets, such as observation time, whose value space is infinite, lend

themselves to a potentially infinite number of partitions. At any point in time,

the actual set of partitions that contain data is likely to be finite and the data

accessible for that particular partition is stable, but the addressable space of

partitions is infinite.

The actual data contained within a data set is accessed by accessing partitions.

Within each partition (blocks in the diagram) is the subset of data (rows) from

the data set that has facet values in the basic facet ranges. The result is a

resource for the partition contains an encoding of the subset of the data in

some common format (e.g., HTML with RDFa annotations).

A consuming application accesses that data partition by a fixed URI assigned

via publisher-chosen encoding rules that translate the basic facet ranges into

a URI. Accessing that URI returns a representation that contains a subset in

the choice of common syntax. If the data set remains unchanged, the data

returned remains stable for that URI, which allows for caching of partitions.

5.1 Partitioning Data Sets

The first step in the methodology is to choose a partitioning method for the

data set. The essential task is to reduce the data set into a number of smaller

partitions that can be used on the Web. Each resulting partition can then be

considered its own resource, available for consumption.

There are a number of reasons that this first step is necessary on the Web.

First, if the whole data set were to be represented by a single resource, as is

often currently done, the resulting resource will most likely be “very large”

93



for sufficiently rich data sets. While this may be reasonable for users who

wish to download and process the data set offline, for those who wish to

process the data within the OWP, the relatively large size presents a problem.

Most data on the OWP is processed by in-memory processors and stored as

data structures within the browser. As such, the actually representation size

in terms of bytes received often results in a multiple (roughly 3-5 times in

practice) in memory consumption. If the resource size is large, the memory

needed to hold the data is correspondingly larger and often outside of the

practical means of the browser.

Second, large resources take longer to transport. Systems that wait until the

final byte is transferred to hand over data to applications will necessarily wait

longer for large data representations. The consequence for the OWP is that

the browser will wait longer to receive and process resources. Smaller sized

resources reduce this wait and allow an application to inspect the resource

representation for interesting data to process or display.

Third, when data is used by live systems built on the OWP, small resource

representation sizes often increase the responsiveness of the using

application's user interface. That is, requests for data that result in small

resource representations are completed faster and increase the parallelism

of the application such that while data is being received, other previously

completed requests are being rendered. Also, other non-data requests can

be serviced. The consequence is that the user interface can be continuously

updated as data is being received.

Finally, while not a required feature of the OWP, but as a matter of designing

for stability, most browsers limit the number of concurrent connections to

the same host and the number of concurrent connections overall to prevent

overloading the network, host, or simply running out of resources within

the browser. As such, only a certain amount of parallelism is available. The
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architecture of the receiving application is often better served by allowing

different requests to be sequenced by the application without queuing behind

other long-lived requests due to the large size of the received resource

representation.

How all of these factors reduce to practical constraints is discussed and

demonstrated further in Chapter 6, An Exemplary Implementation for Evaluation,

and indicates a preference for partitioning data sets into “small enough” units

of information that are still useful to the receiving application. Often, data

sets, such as time-series data, have dimensions in which they continuously

expand (e.g., new observations are continuously received) and so choices

must be made to limit the response size. In that discussion, the tradeoffs

between size, time period duration, utility of the data received, and

application responsiveness are shown via an example. For any particular class

of receiving application, a particular optimal partition size can be determined.

Further, the choice of partitioning criteria should not be arbitrary (e.g., first

100 observations). An application using the data set needs the ability to set

criteria related to the interface controls, such as location, dates, time durations,

and other criteria to select the partitions to request. For example, if the

application is rendering data into a particular map view, the geospatial

boundaries of the map are essential criteria for choosing which partitions to

request. The partition size is dictated by the criteria used for dividing the data

and the size of representation of that data partition in some particular syntax.

The overall goal is a balance between a useful partition of the data and the size

and complexity of the representation that must be transported over the Web

and processed.

These partitions should not be considered dynamic queries used to satisfy

a particular application's need for data. Instead, each partition should have

some inherent aspect of the data set. That is, the choice of facets for
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partitioning data should be independent of application, regular, fairly static,

and useful for navigating the data set.

The stability of the choices of partitions results in a regular set of requests

that can easily be mapped onto resource representations. This allows the data

service to optimize the pathways for producing the representation and lowers

the overall elapsed time for receiving the data. This also leads to the ability

for applications to cache responses as necessary and allowed. Again, this all

leads to better responsiveness for the application, of which some is shown in

Chapter 6, An Exemplary Implementation for Evaluation.

More formally, a partitioning of a data set is a partitioning of data by basic

facets such that:

1. Each basic facet considered has a total ordering whose relation can be

used to define the partition.

2. Every partition can be uniquely identified by a set of basic facet

ranges.

3. Ideally, every data (row) instance within the data set belongs to one

and only one partition to prevent duplicate retrieval.

4. Any data (row) instance belongs to a partition when the normalized

value of its basic facets are within the defined ranges.

5. A partitioning may result in a possibly large or infinite number of

partitions, many of which may be empty.

The result of partitioning is a set of data set partition resources whose

representations contain the data (rows) matching the basic facet ranges. Each

resource representation should be such that the maximum size over all the

possible partitions is sufficiently below practical maximums for any
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consuming applications. As such, there is an interaction between the

partitioning and the representation choices.

As many data sets tend to be multidimensional (e.g., weather reports have

both geospatial coordinates and the date / time of the observation), the

choices of partitions for basic facets are not independent. If the goal is to create

data set partition resources whose maximum amount of data is below some

practical threshold, the partitioning of the basic facets must consider their

effects on this maximum together. As such, certain choices of partitioning may

only make sense when considered in the larger context.

Also, some data set partitions may end up being empty given sparse data

sets. This is a direct consequence of choosing fixed partitioning schemes.

While it makes addressing and identifying the partition easier, it also allows

applications to request data set partition resources that have no data in them.

Navigation metadata or partition summaries can be used to give applications

better choices for navigating the resources, and particular solutions are

discussed in both Section 5.3, Annotating Data Sets, and Section 5.2, Naming

Data Sets.

In practice, partitions are not typically realized (e.g., stored) as separate

resources. Instead, they are the results of queries against some database. As

such, the penalty for requesting an empty partition is the execution of a null

query and a minimal amount of processing. The cost is experienced more

within the receiving application that spent time and resources requesting

and subsequently processing an empty partition. While this may impact

performance, applications can avoid empty partitions by using navigation

aids as described in Section 5.3.3, Summaries.
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5.1.1 Value Partitioning

A totally ordered value space (e.g., integers with the > operator) is easily

partitioned along the ordering relation. Any method for segmenting the

possible values into subsets is sufficient as long as the result is universal

and should be non-overlapping. The use of non-overlapping partitions is a

useful quality as this guarantees that data will belong to a single partition.

Conceptually, such relations are typical expressed as range pairs involving

operations such as “greater than” and “less than or equal”.

A universal method for partitioning a totally ordered value space simply

means that, given any actual possible value, there is always a partition to

which the values belong. That is, the method cannot be limited to data values

on-hand but to the innate properties of the value space. This prevents

unexpected consequences when new data is observed outside of normal

ranges.

Also, some data sets may have multiple value spaces that can be partitioned

simultaneously. For example, spatial coordinates can be partitioned into

partially-closed subspaces, such as grids over two-dimensional coordinates

or other such tilings. A simple application of this is dividing geospatial

coordinates into quadrangles.

While partitioning data sets considers the set of value spaces together to

define a partition, a value space itself must first be properly partitioned. Each

value space partitioning should be sufficiently capable of being considered

on its own. A value space partitioning must also be independently verifiable

without considering another value space. For example, latitude and longitude

values can be partitioned independent of each other even though, when

partitioning a data set, they are usually considered together.
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Also, some values spaces map oddly to independent relations. For example,

spatial coordinates for locations on the surface of an ellipsoid can be measured

in a number of different systems but they all have the problem that rotations

eventually overlap (e.g., 370° is the same as 10°). A partitioning of the surface

of an ellipsoid can be universal only if the values are first normalized.

5.1.2 Date/Time Partitioning

Data sets that contain time-series data (e.g., observations over time) have

dates and times associated with each observation which may be very

important to the consuming application. For example, weather data is often

received as a sequence of discrete weather reports recorded at specific times.

A consuming application typically filters the weather data for the past hour,

past day, or past week. As such, navigating along date and time for certain

durations is important for the consuming application.

While allowing a client to specify a start and end time may be the most

generic approach, the resulting resource may be very large given a particular

choice by the client. The result of such large queries is that the response must

be broken into separate “pages” where the pagination control is specific to

the request. As such, the use of pagination for user-specific queries creates

a management problem for handling temporary resources that lack

permanence beyond the duration of the client's interaction.

By partitioning against fixed time durations (e.g., 30 minutes), the resource

size can be constrained by the service. As noted above, the duration time

will depend on data density within the time-series data, record size, and

other properties. Once the duration is fixed, clients can compute the specific

time period for the partition required and, depending on URI assignments,

the fixed duration will result in stable naming and caching. Employing fixed

durations results in better overall performance over the Web for both the

client and data service provider.
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Moreover, a client need not completely understand the fixed durations used

for partitioning. Instead, if a client application can request from a default

starting point (e.g., the latest time partition) or from a specific date/time the

server can map their request via a redirect to a correctly named resource

for that time period. Once the starting point is received, the application can

navigate back and forth along the time line by following links that should be

provided within the partition's data annotations.

More formally, each data set is partitioned via a date and time facet (e.g.,

observation date and time). The value space for the date and time is

partitioned into segments of time of a fixed time duration D (e.g., PT30M)

starting with a reference time R, typically given in a UTC time. Data belongs

to a partition if the date and time facet is after the starting time and before or

equal to the ending time. That is, the date and time dimension is divided into

segments of time duration D. This segmenting shown in Figure 5.4, Date and

Time Partitions.

Figure 5.4 Date and Time Partitions

5.1.3 Geospatial Partitioning

Quadrangles (rectangular regions mapped onto the reference ellipsoid) are

a common way to organize map-oriented data; they provide a familiar way

to partition geospatial data sets. A requesting application need only refer to

the correct quadrangle, via some reference mechanism, to retrieve data for a
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particular region. The data located within the extent of the quadrangle is then

returned to the application.

Such geospatially-oriented data sets can be easily partitioned by quadrangles

into resources; the result is a uniform covering of spatial coordinates. While

some quadrangle partitions may be empty, others contain varying amounts

of data. By reducing the size of the quadrangle, the size of the data within a

specific quadrangle can be reduced; the choice of quadrangle size is one factor

in controlling the resulting representation size.

Also, the set of non-empty quadrangles gives a simple overview of geospatial

coverage of the data set. Each quadrangle represents a specific set of

coordinate boundaries. The amount of data within those boundaries

combined with the set of quadrangles that have data is a very useful overview

of the data coverage of a specific data set.

Finally, using an appropriate fixed quadrangle size results in a uniform and

unique set of quadrangles. Each quadrangle can be identified with a unique

sequence number by a simple enumeration starting at the north pole and

working towards the south pole (see Figure 5.5, Quadrangles). This number

has the nice property that it is easily calculated, as detailed in Appendix A,

Sequence Numbers, from any given latitude and longitude coordinate. As a

result, locations are easily hashed into a sequence number.

Figure 5.5 Quadrangles
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The result of using a fixed quadrangle size is that the sequence number can

be used as part of the name of the partition. This can be used by client

applications to quickly calculate, from a given position, the sequence number

of the quadrangle that contains relevant data. Combining the sequence

number with other facets allows a client application to retrieve a specific

quadrangle data resource.

For example, given time-series geospatial data and assuming a quadrangle

size of 2.5°, there are 10,368 (360 / 2.5 * 180 / 2.5) quadrangles, and each

of which can further be divided by half-hour time durations. A client with

specific questions about a particular geospatial region over a specific time

period can calculate the data partition resources necessary to retrieve a

complete set of data covering the region. This calculation of the partitions

required for a geospatial region is shown in Figure 5.6, Quadrangle Coverings,

where each time partition requires a different data partition for each

quadrangle that covers the region.

Figure 5.6 Quadrangle Coverings
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Formally, a quadrangle partitioning is defined by two pairs of coordinates,

one for each of latitude and longitude. The range values are always defined as

a interval a b , where a b . The upper bound is not included in the range

except for longitude, where -90 must be in the last set of quadrangles. Any

coordinates must first be normalized before the quadrangle is assigned. This

partitioning is also used in the calculation of the sequence numbers as shown

in Appendix A, Sequence Numbers.

5.2 Naming Data Sets

Following one of the most important basic principles of the Web, all the

major constructs of the PAN ontology must be named. While data collections

and data sets are more easily named as they typically lack in number, their

partitions and summaries are plentiful. A carefully crafted naming scheme

must be developed that aligns with the partitioning choices made so that each

resource has a distinct and sensible URI.

The Architecture of the World Wide Web, Volume One enumerates a number of

different principles, “good practices”, and constraints for naming. The one

principle that applies to URIs directly is that of “Global naming leads to global

network effects”. That is, a URI that has global scope in terms of its usability

allows other applications and representations to point to that resource via the

URI.

When inspecting URIs, as a good practice, it is recommended that:

“Agents making use of URIs SHOULD NOT attempt to infer properties of

the referenced resource [from the URI itself].”
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Time has shown that, in practice, this is not necessarily how good systems

evolve or are used. Instead, how implementers and systems use metadata

in URIs is both inferred by consumers through inspection or via explicit

documentation. As consumers come to depend on certain URI structures

to access information (e.g., constructing a URI for weather for a particular

region), these structures are documented by service providers to enhance their

usability. The result is that both applications and users inspect URIs and

extract metadata to use in either the application or in the construction of new

URIs.

Along the way, the Technical Architecture Group (TAG) at the W3C revised

their position on the issue of metadata encoding in URIs and drafted a new

finding [71] that softens their view on opaque URIs. In general, there is a

difference between metadata used to inform the processing of a resource

versus metadata that is used in formulating URIs to new resources. In the case

of the correct processing, a receiving application should never depend on the

correctness of information that is inferred (e.g., assuming that a URI ending

with a particular extension [.xml] is of a particular media type [text/xml]).

While URIs should often be treated as opaque identifiers, there is an implicit

social contract in a well-formed URI that encodes useful metadata. For

example, if a user encounters a resource identified by

http://www.example.org/weather/San-Francisco they might infer

that the weather for other cities could be retrieved simply by changing "San-

Francisco" to "Montreal" or "Edinburgh." Whether or not the retrieval

succeeds and does return weather for the requested region is a matter of

social experimentation. The social contract between the naming authority

(the domain owner) and the consumer (a user who accessed that URI in

their browser) may or may not be broken depending on whether the user's

experiment delivers the desired result.
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The TAG's new position is codified into the following recommended good

practice:

URI assignment authorities and the Web servers deployed for them may

benefit from an orderly mapping from resource metadata into URIs.

In the previous example, this reduces to codifying whether there is a URI

template http://www.example.org/weather/{location} with the

variable location upon which both the system and user operate. This allows

explicit documentation of the social contract, via the URI, between the user

and the server. Such a URI template may be explicitly documented, inferred

from examples, or discovered by inspecting a Web form or other application

use.

The usefulness of embedding metadata into URIs does depend on the

implementation choices. For example, if a system exposes an internal

identifier using a non-descriptive mapping such as

http://www.example.com/node/3452 for the weather for San Francisco,

there is very little in the segments of the URI path that a user might recognize

to indicate either the location or that weather information is to be expected.

While the documentation might explicitly state that a code (e.g., “3452”) is to

be used to express weather for a particular location, the usability of the URI

suffers and the social contract is less effective.

Such descriptive and orderly mapping also allows the system to evolve over

time as URI structures that are no longer in use can be mapped to new

structures via redirection or other techniques. As the system evolves over

time, descriptive metadata has an advantage over other metadata because it is

easier to map. In contrast, if the internal identifiers change, the previous URIs

may become very hard to maintain or map; the system then tends to become

brittle and the durability of the system may be placed in jeopardy [72].
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While the choices for creating an “orderly mapping” might seem like more

of an art than a science, such decisions reduce to discovering an appropriate

set of metadata that can uniquely identify a resource without resorting to

arcane measures. Many domains of science have data with properties that

can describe portions of their data that make obvious choices for metadata to

encode into URI structures (e.g., coordinate systems, genus/species, regional

identifiers, etc.). Other choices may be more subtle and require use-case

scenarios to understand how a user might access the data and what

expectations for durability of the URI are needed.

We want to name data collections and data set partitions such that we

maximize their network effects on the Web. At its simplest, we want a data

partition to be able to be referenced and shared with a stable URI that returns

a reasonably stable representation of the data subset. In more complex

situations, we want a URI naming schema that maximizes our ability to

reference and share the important aspects of the data collection.

In crafting names, there are a number of good practices to consider. These

practices, taken together with expected behaviors within the OWP, result in a

set of guidelines for publishing data collections on the Web. Considering the

PAN Methodology, we want a set of guidelines that work specifically for the

methodology.

The following are specific good practices from Web Architecture:

1. Identify with URIs — To benefit from and increase the value of the

World Wide Web, agents should provide URIs as identifiers for

resources.

2. Reuse URI schemes — A specification SHOULD reuse an existing URI

scheme (rather than create a new one) when it provides the desired

properties of identifiers and their relation to resources.
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3. Ownership / Authority — The domain owner provides a default

authority over naming of resources. Systems should allow references

to URIs without dictating the authority or ownership.

4. Avoid Aliases — Avoid arbitrary URI aliases for the same resource.

That is, a single resource should have one and only one URI.

To these good practices we add:

5. Use URI path segments to encode basic facets and other metadata.

This practice is very useful for scientific data sets that are partitioned in

that certain parameters or choices of partitioning can be encoded with the

URI. When a reference is made to a partition, these path segments can be

preserved via the algorithms for resolving relative URI references. If metadata

is encoded in query parameters, they will not be preserved and an application

may need to understand how to reformulate the necessary query parameters.

As will be shown in Chapter 6, An Exemplary Implementation for Evaluation,

using path segments is helpful for enumerating data. In examples from that

chapter, the URI path encodes the information such as the choice of

quadrangle size (e.g., /data/q/2.5/ for 2.5° quadrangles). When a resource

path is made relative to that (e.g., ./n/2976/) it resolves to produce a full

path that still includes the choice of size (e.g., /data/q/2.5/n/2976/).

The property of subsumption has been applied in that the subsequent path

inherits the metadata of the parent path. In the case of geospatial data with

quadrangle partitions, this becomes very useful so that the choices of

quadrangle size are preserved along with the sequence number (e.g., 2.5°

quadrangles with sequence number 2976).

This brings us to the last added good practice:
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6. Metadata choices encoded in URIs should be preserved; URI naming

that uses subsumption can preserve some metadata for relative

references.

5.3 Annotating Data Sets

There are many possible choices for Web representations of data but in Section

4.2, Using RDFa in HTML, we made the argument that some combination of

HTML markup and RDFa annotations offers the right balance between casual

access and machine processing. We observe that annotated Web pages serve

a dual purpose: they can both be rendered for display and consumed as data

for processing. The question that remains is how this approach makes the data

displayed in tables consumable as data.

For example, a summary table of weather reports per quadrangle for a

weather-related site is shown in Figure 5.7, Quadrangle Summary Page, where

each entry displays a count that links to a page that contains the data set

partition of weather reports within that particular quadrangle. A thumbnail of

this page is shown for the quadrangle with sequence number 28 that contains

31 weather reports.

The summary page and the linked pages both contain tabular data,

annotations that label columns or rows for those tables, and information

about the page itself. The process of turning these pages into processable data

requires that both the context of the table of data and the table itself receive

annotations. We will start by looking at the markup behind the first summary

table shown in Figure 5.7, Quadrangle Summary Page.

The quadrangle summary page has a number of properties associated with

the resource that is typed and identified with a simple wrapper as shown in
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Figure 5.7 Quadrangle Summary Page

Figure 5.8, Partition Summary Markup. Within the various markup constructs,

we attached properties, via RDFa attributes, that define aspects of the

partition summary, such as the basic facet range that is being summarized.

This information was displayed to the user within the header (h1 element)

and there is no need to duplicate that information. Instead, the various pieces

of information are wrapped with span elements with the appropriate

property name.

Figure 5.8 Partition Summary Markup

<div typeof="PartitionSummary"
resource="http://www.mesonet.info/data/q/36/2013-11-27T20:30:00Z">

<h1>
<span property="range" typeof="FacetPartition">

Received from
<span property="start">2013-11-27T20:30:00Z</span> to
<span property="end">2013-11-27T21:00:00Z</span>
(<span property="length">PT30M</span>)

</span>
totaling
<span property="count">24421</span>
</h1>
...
</div>
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Graph Notation

<...> is a URI

start
is a property labeled with a

CURIE or URI

a
is a type property

_:x is a blank node label

Each object value is either a literal, a

URI, or a CURIE.

These RDFa attributes, the various

elements, and their contents result in

the graph shown in Figure 5.9,

Partition Summary Annotations with

the triples listed in Appendix D: Figure

D.1, Partition Summary Triples. Some

are simple value associations, such as

the total number of weather reports

within the time period (i.e., the

count property with value “24421”),

while others contain more complex

structures (i.e., the range property). In the case of the range property, the

value describes the basic facet range in terms of start, end, and length

(duration).

Figure 5.9 Partition Summary Annotations

</data/q/36/2013-11-27T20:30:00Z>

a_:1 FacetPartition

"2013-11-27T20:30:00Z"

"2013-11-27T21:00:00Z"

"PT30M"

start

end

length

PartitionSummary
count

a

"24421"
range

Within the partition summary shown in Figure 5.7, Quadrangle Summary Page,

is a table of data whose row and column labels are the North-West coordinate

of the quadrangle. This is an example of a labeled table, where the row and

column labels can be used to find data, and the entry typically contains a

single kind of data (e.g., weather report counts per quadrangle). For this kind

of table, at minimum we must describe the entry and the column and row

labels.
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To avoid excessive annotation, the annotations just describe what the entries

contain and not each of the entries themselves. This markup is shown in Figure

5.10, Labeled Table Markup, where the caption contains most of the complexity.

There are many possible properties but the minimum of the value type and

the row and column label types are shown.

Figure 5.10 Labeled Table Markup

<table typeof="LabeledTable">
<caption property="title"

<span property="entry" typeof="Entry">
Weather Report Count
<span property="valueType" resource="xsd:int">
by Quadrangle of size 36° by 36°
<span property="columnLabel"

resource="http://www.w3.org/2003/01/geo/wgs84_pos#lat"/>
<span property="rowLabel"

resource="http://www.w3.org/2003/01/geo/wgs84_pos#long"/>
</span>

</caption>
...
</table>

The markup uses a small set of annotations, shown in Figure 5.11, Labeled

Table Annotations, with the triples listed in Appendix D: Figure D.2, Labeled

Table Triples. The table subject (i.e., _:4) has a small number of properties and

the blank node for the entry property contains the necessary information

to understand the table cells. For this example, from the valueType,

columnLabel, and rowLabel an application can understand that an integer

value, longitude, and latitude can be found for each table cell. Other

properties can be used to allow applications to understand further

information contained within the table cells.

Finally, the labeled table is expected to have a single row of column labels and

a single table cell to label each row, as shown in Figure 5.12, Labeled Table Row

Markup, where the first row corresponds to the table header shown in Figure

5.7, Quadrangle Summary Page. Each subsequent row has a single row label

followed by each table cell entry that contains the link to the data set partition.

The value for the table cell entry is not marked up but instead obtained by

traversing the table.
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Figure 5.11 Labeled Table Annotations

_:4 a LabeledTable
"Weather Report Count by Quadrangle of size 36° by 36°"
_:5 a Entry

xsd:int

<http://www.w3.org/2003/01/geo/wgs84_pos#lat>

<http://www.w3.org/2003/01/geo/wgs84_pos#long>

valueType

columnLabel

rowLabel

title

entry

Figure 5.12 Labeled Table Row Markup

<tr>
<th>36° Long. / 36° Lat.</th>
<th property="label" typeof="ColumnLabel"><span property="value">-180</span>°</th>
<th property="label" typeof="ColumnLabel"><span property="value">-144</span>°</th>
<th property="label" typeof="ColumnLabel"><span property="value">-108</span>°</th>
...</tr>

<tr>
<th property="label" typeof="RowLabel"><span property="value">90</span>°</th>
<td><a href="n/6/2013-11-27T20:30:00Z">107</a></td>
<td><a href="n/7/2013-11-27T20:30:00Z">20</a></td>
<td><a href="n/8/2013-11-27T20:30:00Z">0</a></td>
...</tr>

The result of processing the table annotations is shown in Figure 5.13, Labeled

Table Row Annotations with the triples listed in Appendix D: Figure D.3, Labeled

Table Row Triples, where an additional property label is added to the table

subject (_:4) that enumerates the row and column label subjects. Each of these

subjects has a single property of the value of the label. Using a typed blank

node allows the client to lookup the specific row or column element by type

for processing within the client.

The table can now be traversed to find specific entries, either by enumerating

each table cell or by locating specific cells via the labels. The markup

corresponds to a matrix of entries whose values are typed as described by the

Entry node in the annotation graph. An application can process the table as

data to gain additional inferred triples or process the data directly; this is an

exemplar of a hybrid model of data processing, where both the annotations as

triples and the markup are used to process the data.
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Figure 5.13 Labeled Table Row Annotations

_:4 a LabeledTable
label

_:7 a ColumnLabel

"-180"
value

_:8 a ColumnLabel

"-144"
value

_:17 a RowLabel

"-90"
value

...

...

label

label

When an application accesses a particular quadrangle's data partition (shown

in Figure 5.14, Quadrangle Data Partition Page), a similar annotation scheme

is applied. Essential information about the quadrangle is shown to the user

along with a visualization and a table of data containing the weather reports.

Each page similar to this contains links to other partitions, allowing a user to

navigate to other partitions for nearby quadrangles or different time periods.

The partition starts as before, with the essential information about the

partition being described in the heading markup, as shown in Figure 5.15, Data

Partition Markup. The count and basic facets of the partition are described via

various properties. In this example, describing the basic facet labels allows an

application to understand the semantic label associated with the aspect of the

data used in partitioning. The fact that quadrangles are used for partitioning

is described as well.

The resulting annotation graph is shown in Figure 5.16, Data Partition

Annotations with the triples listed in Appendix D: Figure D.4, Data Partition

Triples, where the Partition typed resource has count and range

properties. The range properties can be used to determine the basic facet
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Figure 5.14 Quadrangle Data Partition Page

ranges of the partition by solely looking at the annotation graph. A quick

check of the count property reveals whether the partition is empty.

When the partition contains tabular data, a simple table construct is used to

encode the information, where the columns of data are annotated within the

header, as shown in Figure 5.17, Data Partition Table Markup. Each column

of data is described within the thead element and typed as a column. The

properties describe a title, semantic label, and value space. The value space
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Figure 5.15 Data Partition Markup

<div typeof="Partition"
resource="http://www.mesonet.info/data/q/36/n/28/2013-11-27T20:30:00Z">

<h1><span property="count">31</span> Weather Reports from
<span property="range" typeof="FacetPartition">

<span property="facet" resource="/data/#receivedTime"/>
<span property="valueType" resource="xsd:dateTime"/>
Received from
<span property="start">2013-11-27T20:30:00Z</span> to
<span property="end">2013-11-27T21:00:00Z</span>

(<span property="length">PT30M</span>)
</span>
within Quadrangle #28 [
<span property="range" typeof="FacetPartition">

<span property="facet" resource="/data/#latitude"></span>
<span property="facet" resource="/data/#longitude"></span>
<span property="shape" typeof="schema:GeoShape">

<span property="schema:box">18 -108 -18 -108 -18 -72 18 -72</span>
</span>

</span>]</h1>

Figure 5.16 Data Partition Annotations

</data/q/36/n/28/2013-11-27T20:30:00Z> a Partition

"31"

_:1 a FacetPartition

<http://www.mesonet.info/data/#receivedTime>
xsd:dateTime
"2013-11-27T20:30:00Z"

"2013-11-27T21:00:00Z"

"PT30M"

facet

valueType

start

end

length

_:2

_: a schema:GeoShape

"18 -108 -18 -108 -18 -72 18 -72"
box

a FacetPartition

<http://www.mesonet.info/data/#latitude>

<http://www.mesonet.info/data/#longitude>

facet

facet

shape

count

range

range

is further described to enumerate the quantity being measured and various

other aspects of the column's data.
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The data itself is contained in a sequence of table bodies (i.e., a tbody

element); one for each weather station in the example markup. The cells

in each column contain plain text values. An application can align the

information contained in the column header with the value found in the table

cell to understand how to interpret the text value.

Figure 5.17 Data Partition Table Markup

<table typeof="Table">
<thead>
<tr>

<th property="column" typeof="Column">
<span property="title"Station</span>
<span property="property" resource="w:id"/>
<span property="valueSpace" typeof="ValueDescription">

<span property="datatype" resource="xsd:string"/>
<span property="quantity" resource="dc:identifier"/>

</span>
</th>

...
<th property="column" typeof="Column">

<span property="title">Temperature</span>
<span property="property" resource="w:airTemperature"/>
<span property="valueSpace" typeof="ValueDescription">

(°<span property="symbol">C</span>)
<span property="datatype" resource="xsd:double"/>
<span property="quantity" resource="quantity:ThermodynamicTemperature"/>
<span property="unit" resource="unit:DegreeCelsius"/>

</span>
</th>
<th property="column" typeof="Column">

<span property="title">Humidity</span>
<span property="property" resource="w:airHumidity"/>
<span property="valueSpace" typeof="ValueDescription">

(<span property="symbol"%</span>)
<span property="datatype" resource="xsd:int"/>
<span property="quantity" resource="quantity:AbsoluteHumidity"/>
<span property="unit" resource="unit:Percent"/>

</span>
</th>

...
</tr>
</thead>
<tbody>

<tr>
<td>DW1029</td>

...
<td>22.2</td>
<td>71</td>

...
</tr>

</tbody>
...
</table>

The resulting annotation graph for the table is shown in Figure 5.18, Data

Partition Table Annotations, with the triples listed in Appendix D: Figure D.5,
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Data Partition Table Triples, where the table columns are enumerated on the

table subject (i.e., _:21) column property. Each table column is completely

defined with the triples but an application must track the location of the

column subject to be able to associate the column definition's triples with

the column in the markup. This is a straightforward process of locating the

th element by the Column type and examining the annotation graph for the

related subject.

Figure 5.18 Data Partition Table Annotations

_:21 a Table

_:27 a Column
"Station"
<http://mesonet.info/id>

title

property

valueSpace
_:28 a ValueDescription

datatype

quantity
xsd:string
dc:identifier

_:43 a Column
"Station"
<http://mesonet.info/id>

title

property

valueSpace
_:44 a ValueDescription

datatype

quantity

unit

symbol

xsd:double
<http://qudt.org/vocab/quantity#ThermodynamicTemperature>
<http://qudt.org/vocab/unit#DegreeCelsius>

"C"

_:45 a Column
"Station"
<http://mesonet.info/id>

title

property

valueSpace
_:46 a ValueDescription

datatype

quantity

unit

symbol

<http://qudt.org/vocab/quantity#AbsoluteHumidity>
<http://qudt.org/vocab/unit#Percent>

"%"

xsd:int

column

5.3.1 Partition Links

Each link from partition to partition needs to be typed and qualified so that

applications can distinguish the link from others and understand what the

resource may provide before retrieving the linked resource. For example, a
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rendered set of previous and next links, by time period, is shown in Figure

5.19, Rendered Partition Links, where the previous and next 30 minute

durations are accessible. If an application assumes the partition navigation is

by time, all that is needed is to look for the property next or previous in the

annotation graph (e.g., the first triple in Appendix D: Figure D.6, Partition Link

Triples).

Figure 5.19 Rendered Partition Links

There are some assumptions being made with this kind of link navigation:

• the target resource is another partition or partition summary,

• the basic facet being navigated is known and time related,

• the duration or start time of the linked partition is predetermined.

In general, we want the current partition to provide more information to

remove the need for these assumptions. As such, we want to provide

annotations that allow an application to inspect the current annotation graph

and understand whether a partition link is worth visiting in advance of

retrieval. This facilitates understanding whether the link traverses in the right

direction and when “enough data” has been received in comparison to some

application need.

For any link to a partition, we use the typeof attribute as shown at the very

beginning of Figure 5.20, Partition Link Markup, to indicate the resource type;

just as the partition resource would assert about itself if retrieved. This link

establishes a new subject node and any descendant element properties will be

associated with the link resolved from the href attribute. In this particular
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case, we will use this feature of RDFa to associate properties with the target

resource.

Figure 5.20 Partition Link Markup

<a rel="next" typeof="Partition"
href="http://www.mesonet.info/data/q/5/n/840/2013-09-04T05:00:00Z">
Next period
<span property="range" typeof="FacetPartition">

<span property="length">PT30M</span> @
<span property="start">2013-09-04T05:00:00Z</span>

</span>
</a>

The resulting annotations for the link example is shown in Figure 5.21,

Partition Link Annotations, with the triples listed in Appendix D: Figure D.6,

Partition Link Triples. The range property contains a node typed as

FacetPartition that contains a number of properties intended to help the

consumer understand the facet range of the partition. In the example, the start

time and length (duration) are defined via additional properties. Again, the

parent element in the markup (i.e., the spanwith the type FacetPartition)

defines a new subject (a blank node) and descendant elements assign property

values to the range's node.

In the annotation graph that contains the triples we can follow from the

current partition via the next property to the subject of the linked resource.

That resource has a range property that allows us to get information about

the facet partition. While the example shows the length and start

properties, there can also be facet and valueType properties for defining

the domain value and data type, respectively, of the partition range. This

allows an application to understand what basic facet the range is over (e.g.,

received observation time) and a particular encoding (e.g., time specified via

xsd:dateTime).
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Figure 5.21 Partition Link Annotations

<>

</data/q/5/n/840/2013-09-04T05:00:00Z>

_:1 a FacetPartition

"PT30M"
"2013-09-04T05:00:00Z"start

length

next

range

5.3.2 Ontology Overview

The previous sections used an ontology we developed for data sets that can

be easily used to annotate HTML structures with RDFa. An attempt was

made to keep the ontology as small as possible without including complexity

from related ontologies that may have been developed for other purposes.

The resulting class structure is shown in Figure 5.22, Pantabular Ontology Class

Structure.

In the ontology, there are classes for the basic structures: DataCollection,

DataSet, Partition, and DataView. At the very root, a data collection is

just a container that is typed as DataCollection. A data collection has a set

of dataset properties that holds the subject node (URI) of each contained

data set; each typed as DataSet. Both of these classes have an extensive set of

Dublin Core Metadata properties [73] that can be used to further describe the

data collection or data set.

A DataSet instance has a number of important properties. First, specific

partitions of the data set can be associated by the partition property. The

target object is a instance of Partition or one of its subclasses.
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Figure 5.22 Pantabular Ontology Class Structure

DataCollection

DataSet

Partition

PartitionSummary
Table IndexedTable

DataView

Entry IndexColumn

column [1..*] entry [1..1] index [1..*]

item [1..*]

summary [1..*]

partition [0..*]
dataset [1..*]

VoID

The VoID Vocabulary [74] is an existing

ontology that can be used to describe

data sets but not encode the data itself.

VoID addresses how the data set is

accessed. Many of the properties are

similar in functionality to what is

described in Appendix B, Resource

Schemes and Discovery but that is

considered out of scope. VoID does not

address how columns of information

within the data set are described and

so does not help with the exchange of

tabular data. As VoID helps in

describing a data set at a higher level,

it is compatible with the Pantabular

ontology and can compliment its

deployment.

The Partition instance has a set of

item properties which associates the

data set partition with the data

subset. Each item is currently limited

to tabular data (Table) or a labeled

table (LabeledTable) in the PAN

ontology but other item types are

possible and allowed.

Each Table item type is further

described by a set of column

descriptions. These descriptions

describe the subject, type, and other

facets of the data within the column.

The properties can be used to find

specific columns of data by units,

subject, or other facets, but the table

cell entries themselves are not

annotated.

The LabeledTable item type is a matrix representation with cells of data

and row and column indices. Each LabeledTable item type is described by
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a singular Entry instance that describes the entry contents and a set of Label

instances. The entry description can be used to understand what each table

cell represents. The indices can be used as coordinates for finding specific

entries within the matrix.

The choice of item type depends on what kind of data is being represented.

While there may be other factors, a basic set of rules is as follows:

• If the data set contains a sequence of records or tuples (e.g., weather

reports) and the resource represents a data set partition, the Table

type should be used for the item. This allows description of each type

column of data and a simple enumeration of the records.

• If the resource is a summarization of data partitions (e.g., counts of

records per quadrangle) over two basic facets (e.g., latitude and

longitude), a LabeledTable should be used where the column and

row indices are the two basic facets. This representation only works if

a matrix with a finite number of entries can be constructed.

• A LabeledTable can always be represented as a Table whose rows

are a set of tuples containing: the row label, column label, and table

cell value.

• If the data is not a finite matrix or set of tuples, a custom

representation outside of the PAN ontology must be used. For

example, each item could be a link to an image resource.

The LabeledTable representation is akin to a statistical marginal. Typically,

the table cell value has a single value. For example, that value might contain

the number of records or the average temperature per quadrangle.

While it is conceivable, with multidimensional data sets, that the marginal

would contain a tuple of data, such a use would be an extension of its
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RDF Data Cube

The RDF Data Cube Vocabulary [75] is

a late development in relation to this

research. The vocabulary takes the

approach of annotating every

observation (i.e., every table cell in

every table row). While the approach

used for describing observations could

be applied to describe the columns of

tabular data, the organization of

observations is different. Whether this

difference is significant is unclear at this

time.

Specifically, Data Cube uses slices,

which would partition a data set into

possibly large subsets based on fixed

ranges, rather than multiple facet

ranges defining many partitions of a

data set. It is unlikely that these

approaches are compatible. Even so,

partitions as described in this

methodology are not incompatible

overall with Data Cube as a

replacement for slices and could be

added to it in the future.

intended use. Originally, the LabeledTable was developed to allow a

simple overview of data density that maps well onto quadrangles (e.g.,

summary of record counts per quadrangle). Within such a context, the matrix

is labeled by location and the table cells contain a singular count of data

records.

The main complexity comes in

navigating between the data set and

its partitions. While there is a

property called partition on the

DataSet class that contains the

subject URI of a partition, it is

impractical to merely enumerate all

the partitions. Depending on kind or

size of data set, there could be a very

large or countably infinite number of

partitions.

Instead, partitions are discovered by

following links within their Web

representations. As links are

traversed and resources are

processed, new data set partitions are

discovered. An application can then

collect these links into their own

annotation graph for later processing.

The relationship between these

properties, classes, and actual Web

resources is shown in Figure 5.23,

Pantabular Resource Structure. A
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typical discovery process starts by examining the summary property of a data

set. This property is expected to be found on the DataSet instance when it is

processed.

Figure 5.23 Pantabular Resource Structure

next

previous

DataCollection

dataset

DataSet

"metadata"

PartitionSummary

dataset DataSet

nearby

summary

...

Partition

The result of examining the object value of the summary property and

processing the related resource is an instance of PartitionSummary, which

is a subclass of Partition. The typical item contained within this partition

is an instance of LabeledTable that provides a set of entries that summarize

and link to specific partitions.
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For example, a partition summary of a set of weather reports might contain a

set of counts of weather reports within the last hour with links to partitions

defined by specific quadrangles. This easily fits within the structure of a

matrix whose entries are the counts, and the indices are latitude or longitude

ranges. This information can be annotated with the LabeledTable class and

related properties.

Once an application navigates from the summary to a particular partition, the

partition can contain certain properties such as nearby, next, or previous.

These properties define related partitions by some adjacent basic facet range.

For example, "next" might be the following time period (future) while

"nearby" might be an adjacent quadrangle in the same time period.

By properly providing a starting summary and links within each partition,

a whole data set can be enumerated by just examining the annotation graph

and the links contained within it. The basic facet dimensions along which

the link extends should be available within the current partition to allow

applications to make decisions about whether a new partition resource should

be retrieved. By doing so, an application can satisfy a particular query by

determining the exact set of partition data resources that will satisfy a

particular basic facet range.

How an application discovers these links or understands how metadata is

encoded into URIs was considered but is not necessarily critical for the use

of data within applications. Yet, having some mechanism for describing the

link structure would tend to make using applications less brittle. An approach

to this beyond what is described here is discussed in Appendix B, Resource

Schemes and Discovery.
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5.3.3 Summaries

Partition summaries are typically encoded with labeled tables. The columns

and rows are labeled with annotations that allow a particular table cell to be

located by a particular pair of basic facet ranges. For example, the cell entry

can correspond to a geospatial quadrangle and so the column and row indices

relate to longitude and latitude ranges, respectively.

The structure of a PartitionSummary instance and how it maps to markup

and structure is shown in Figure 5.24, Partition Summaries via Labeled Tables.

The partition summary often contains a single item of type LabeledTable

which describes the summarization.

The LabeledTable class has two major properties of entry and label. The

singleton entry property describes the table cell entries as follows:

• valueType — the datatype of the table cell entry (e.g., an integer).

• columnLabel — the type of the column label value (e.g., longitude).

• rowLabel — the type of the row label value (e.g., latitude).

• summaryOf — a description of the object being summarized by the

entry (e.g., a quadrangle). In RDFa terms, this property is often a

typed blank node that has its own properties (e.g., typed as

http://schema.org/GeoShape to describe the quadrangle's box).

• linkType — the expected type of the subject referenced in a link within

each table cell.

Each column or row label is a label property of the LabeledTable

instance. A value property provides the label value. Indices must be typed

as ColumnLabel or RowLabel to allow applications to easily distinguish

between rows and columns. Each of these types is a subclass of Label.
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Figure 5.24 Partition Summaries via Labeled Tables
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Finally, the table cell contains a single value and link to a data set partition

resource. The value is a singular value such as "number of records" that

is useful for assessing whether the partition should be retrieved. The link

provides the actual Web resource that contains the data set partition.

A rendered example of this summary table was shown in Figure 5.7,

Quadrangle Summary Page, with the previous and next time period links. The

column and row indices are shown to the user, allowing them to navigate to

the appropriate entry. Each entry links to a data set partition for the same time

period; its URI is shown as an annotation in the figure.

The previous entry markup example (Figure 5.10, Labeled Table Markup) only

showed a few of the table entry descriptions; Figure 5.25, Summary Entry

Example, shows additional information such as a textual description of the
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entry value and the summaryOf property for describing the quadrangle. Also,

the target type of the partition link contained in each cell is also given.

Figure 5.25 Summary Entry Example

<table property="item" typeof="LabeledTable">
<caption>
<span property="entry" typeof="Entry">
<span property="description">Weather Report Count</span>
<span property="valueType" resource="xsd:int"/>
by
<span property="summaryOf" typeof="schema:GeoShape">

<span property="schema:description">Quadrangle</span>
of size
<span property="schema:box" content="0 0 36 0 36 36 0 36">36° by 36°</span>

</span>
<span property="linkType" resource="Partition"/>
<span property="columnLabel"

resource="http://www.w3.org/2003/01/geo/wgs84_pos#lat"/>
<span property="rowLabel"

resource="http://www.w3.org/2003/01/geo/wgs84_pos#long"/>
</span>
</caption>
...
</table>

Just as described in Section 5.3.1, Partition Links, the data set partition link in

the table cells can be further qualified with additional properties. In Figure

5.26, Summary Link Markup, a count property is associated with each partition

link subject. This allows a receiving application to get information directly

from the annotation graph shown in Figure 5.27, Summary Link Annotations

with the resulting triples listed in Appendix D: Figure D.7, Summary Link

Triples.

Figure 5.26 Summary Link Markup

<table property="item" typeof="LabeledTable">
...
<tr>
<th property="label" typeof="RowLabel"><span property="value">90</span>°</th>
<td><a href="n/6/2013-09-04T04:30:00Z" typeof="Partition">

<span property="count">165</span></a></td>
<td><a href="n/7/2013-09-04T04:30:00Z" typeof="Partition">

<span property="count">16</span></a></td>
...
</tr>
...
</table>

128



Figure 5.27 Summary Link Annotations

</data/q/36/n/6/2013-09-04T04:30:00Z> a Partition

"165"
count

</data/q/36/n/7/2013-09-04T04:30:00Z> a Partition

"16"
count

5.3.4 Tabular Data

Tabular data contained within data set partitions can be annotated with the

Table class properties. Rather than encode each cell of data as specific

properties, the column headers are annotated with descriptions that apply to

whole columns of data. The result is that a receiving application can process

the table cells as simple values or use the column definitions to construct

particular properties from the cell's value.

As shown in Figure 5.28, Table Annotations, a Table instance has a set of

column properties associated with each column header that are each of type

Column. This class has three properties: title, property, and

valueSpace that are used to describe the column. Of these properties, the

title property is just a human-readable label.

The other two properties, property and valueSpace, are intended for

application processing and give more specific meaning to the column's values.

The property named property contains a URI of an application-specific

property specific to the domain. This value is reserved for scientific domain

users to specify a domain specific label (e.g., "air temperature" or "star

magnitude") and takes a similar role to the UCD+ annotation in the VOTable

model.

The property named valueSpace contains a ValueDescription instance

that is typically a blank node that describes the datatype, quantity, and unit of
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Figure 5.28 Table Annotations

Column

title
property

valueSpace

thead

tbody

tbody

Table

column

ValueDescription

datatype
quantity

symbol
unit

repeated 
columns

measure encoded in the table column. The datatype property describes the

lexical encoding of the value that is expected for each table cell of data within

the column. The remaining properties describe the measured quantity.

The description of the value space has quantity and unit properties that

typically use QUDT vocabulary terms while the datatype property uses

XML Schema simple types. In the case of values such as latitude and

longitude, the commonly recognized Geo vocabulary from the W3C can be

used [76].

To improve interoperability, the quantity and unit properties are URIs

that qualify the specific observation (e.g., thermodynamic temperature) and

the unit of measurement (e.g., Celsius vs Fahrenheit). While the values can

be any URI, values from the QUDT vocabulary will provide maximum

interoperability at this time.
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Finally, for display purposes, title and symbol properties are provided.

These provide the ability for systems to read the data and display information.

In the case where the URI labels used for the quantity or unit properties

are not recognized, the symbol and labels provide a fallback mechanism in a

receiving application. While vocabularies such as QUDT provide symbols for

each unit of measurement, an application may wish to display unit symbols

without necessarily loading the vocabulary. Also, the symbol property

provides a way to supply alternate symbols (e.g., ℃ versus degC).

Figure 5.29 Table Columns

<table property="item" typeof="Table">>
<thead><tr>

<th property="column" typeof="Column">
<span property="title">Station</span>
<span property="property" resource="w:id"/>
<span property="valueSpace" typeof="ValueDescription">

<span property="datatype" resource="xsd:string"/>
<span property="quantity" resource="dc:identifier"/>

</span></th>
<th property="column" typeof="Column">

<span property="title">Latitude</span>
<span property="property" resource="w:lat"/>
<span property="valueSpace" typeof="ValueDescription">

<span property="datatype" resource="xsd:double"/>
<span property="quantity"

resource="http://www.w3.org/2003/01/geo/wgs84_pos#lat"/>
</span></th>

... longitude, receivedAt ...
<th property="column" typeof="Column">

<span property="title">Temperature</span>
<span property="property" resource="w:airTemperature"/>
<span property="valueSpace" typeof="ValueDescription">

(°<span property="symbol">C</span>)
<span property="datatype" resource="xsd:double"/>
<span property="quantity"

resource="quantity:ThermodynamicTemperature"/>
<span property="unit" resource="unit:DegreeCelsius"/>

</span></th>
...

</tr></thead>
<tbody>...</tbody>
</table>

When the table representation is processed, a row consists of a set of cells with

simple values. These values can be parsed into type instances by using the

datatype specified in the corresponding type headers. Similarly, the property

described by the column header can be associated with this value. This allows

more complex conversions into triples within an annotation graph as desired.
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Since some data sets repeat cell values within columns, certain table

representations can be sectioned into a set of table bodies. Within these table

bodies, missing cells can repeat table values. This allows simple compaction

of data sets with repeated values (e.g., identifiers or locations).

All these annotations can easily be represented by an HTML table with RDFa

annotations as show in both Figure 5.29, Table Columns, and Figure 5.30, Table

Bodies. A partial listing of table columns is listed in the example, where the

first two reference known URIs for terms for quantities. The last example

defines air temperature using QUDT quantities and units.

In the table body examples, the first row is typed as StaticColumns and

enumerates the fixed data showing the repeated identifier and location. In

subsequent rows, this information is not repeated and the cells remain empty.

The intent is that the repeated data will be assumed for the scope of the table

body.

Note how the identifier table column (the first column) also has additional

RDFa annotations. Further annotations of table cells may provide additional

information. In this case, a link is provided to a specific weather station's data

by identifier and time period. The table cell will still be interpreted as a simple

string value using the text content of the cell (i.e., the concatenation of the text

descendants).

5.4 Summary

In some respects, the PAN Methodology may seem simple: we provide

reasonably named, Web-size portions of data, in regular HTML tables, with

RDFa annotations to enrich the content. Yet, in this simplicity we can

recognize the principles that have made the Web successful. Providing simple
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Figure 5.30 Table Bodies

<table property="item" typeof="Table">
<thead>...</thead>
<tbody>

<tr typeof="StaticColumns">
<td><a rel="related"

href="/data/station/CW6499/2013-09-04T04:30:00Z"
typeof="Partition">

<span property="identifier">CW6499</span></a></td>
<td>34.47583</td>
<td>-120.2045</td>

</tr>
<tr>

<td/><td/><td/>
<td>2013-09-04T04:58:35Z</td>
<td>28.9</td>
<td>33</td>
...

</tr>
<tr>

<td/><td/><td/>
<td>2013-09-04T04:53:41Z</td>
<td>28.9</td>
<td>33</td>
...

</tr>
</tbody>
<tbody>...</tbody>
...

</table>

ways to access data enables a basic level of operation on the Web that is not

found in other methodologies currently used to get scientific data onto the

Web.

The PAN methodology allows small and large data sets to be exposed via a

rational mechanism using the Ordinary Web. It represents a middle ground

between unstructured and highly-structured, single purpose data. As a vast

majority of scientific data is not accessible directly within the OWP due to

representation problems, enabling data access means that operating within

this middle ground can have profound impact on many areas of science.

In the early 21st Century, mechanisms for publishing scientific data are

largely out of reach for both citizen and professional scientists due to cost,

scale, and complexity. We can bridge that gap by re-purposing existing

technologies so that we can employ existing tools in novel ways. It is in

this space where the PAN methodology fits well as it obviates the need for
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additional tools to understand anything more than existing HTML markup

structures and current mechanisms for adding behaviors.

PAN treats data sets as interactive resources with which you can navigate,

explore, and process. The use of facet-based partitions enables Web-sized

navigation through everyday facets understood by the consumer (e.g., date/

time, location, etc.). At the same time, doing so requires nothing more than

a browser, even though more sophisticated processing is certainly possible.

At the core of the methodology is the partitioning, annotation, and naming

mechanisms of the methodology.

We have arrived at the proposition that we can best realize the full potential

of the OWP by embracing its technologies and philosophies; we hope to

demonstrate how the PAN methodology exposes scientific data and enables

computation with common Web browser technology in Chapter 6, An

Exemplary Implementation for Evaluation. Moreover, we compare tools for

scientific workflows in Chapter 7, Comparisons with Alternatives and show how

the PAN Methodology is compatible within data services for such tools and

that the OWP platform excels at workflow tasks.
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Chapter 6

An Exemplary Implementation for
Evaluation

13. PAN enables simple methods for open access to open data.

14. PAN enhances the ability to compute over data within the OWP; it is

possible, practical, and useful.

15. Annotation provides a useful middle-ground between casual browsing

and use by programmatic consumers for computation.

16. PAN scales-down and enables smaller data sets to be published with

simple methods and so helps enable citizen science on the Web.

17. PAN scales-up by enabling harvesting of information with unique

source attribution.

We have claimed that the OWP and RDFa offer a path to achieving the four

necessary qualities of identifiability, extensibility, flexibility, and durability
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for scientific data on the Web. Following that path, the PAN Methodology

provides a roadmap for how data can be published on the Web. We now need

to test the methodology against a real data set and evaluate its use in a number

of different scenarios.

Experiments to evaluate the PAN methodology against these claims require a

sufficiently large scientific data set whose interpretation and use will not be

controversial. While there are many existing data sets, and some have their

own Web portals or services, finding data that is not Web-oriented and does

not have an existing acceptable use presents a bit of a conundrum; if it is not

on the Web, it is difficult to find. Fortunately, there exist automated sensor

networks, such as weather station networks, that produce data that can be

accessed via the Internet but are not well represented on the Web.

6.1 mesonet.info: Weather Data via PAN

We chose to conduct experiments with a data set of weather observations

from the Citizen Weather Observation Program (CWOP) [77], a loosely

associated network of automated weather stations hosted by citizens, local

governments, and businesses throughout the world. These weather stations

provide their data through a peer-to-peer network that communicates over

the APRS-IS protocol [78]. This line-oriented protocol can be received from

servers that aggregate the feeds of weather and position reports from all the

various weather stations; an example is shown in Figure 6.1, Example APRS

Feed.

Figure 6.1 Example APRS Feed

DW3904>APRS,TCPXX*,qAX,CWOP:@090158z5132.18N/00043.53W_061/000g001t030r000p000P000h87b10389L000.DsVP
CW1604>APRS,TCPXX*,qAX,CWOP:@090158z4444.70N/06531.17W_204/004g009t027r000p000P000h80b10204.DsVP
DW6741>APRS,TCPXX*,qAX,CWOP:@090158z3749.55N/08000.08W_296/005g...t036r...p...P008h74b10188.DsVP
DW6916>APRS,TCPXX*,qAX,CWOP:@090158z4310.23N/10818.40W_238/001g002t027r000p000P000h58b10189.DsVP
DW6011>APRS,TCPXX*,qAX,CWOP:@090158z4307.07N/08756.60W_261/002g006t028r000p000P000h55b10249.DsVP
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The APRS feed contains weather reports encoded according to the US

National Weather Service NWS APRS standard [79]; they may also contain

date, time, and location information. Complicating this however, some

weather stations report their positions independently as separate reports.

Also, mixed within this feed is other data output by various systems or

sensors connected to the CWOP network of servers.

To make the format easier to handle, we developed a program (server

daemon) to receive the APRS feed and transform it into the XML syntax

shown in Figure 6.2, Example APRS XML. The data in the XML attributes

represents the choices of the APRS specification and, in some cases, non-SI

units are used for measurements. Because we consider the time reported by

weather stations to be unreliable, we add a time-stamp to reflect the time at

which the data was received.

The program has been deployed on a server and receives more than 78,000

weather reports per hour from more than 14,000 weather stations. Data is

received in a continuous feed, chunked by the program into 5 minute

segments, and stored as a sequence of XML documents. The result is a time-

series data set that is represented by a sequence of XML documents, each of

which contains about 6500 weather report records.

Figure 6.2 Example APRS XML

<aprs xmlns="..." source="..." start="2013-03-...">
<report from="EW0938" type="weather"

latitude="39.55917" longitude="-84.1155"
received="2013-03-29T05:25:00Z" at="2013-03-29T05:39:00Z"
wind-dir="0" wind-speed="0" wind-gust="0" temperature="30"
rain-hour="0" rain-24hours="0" rain-midnight="0" humidity="86"
pressure="10244" />

<report from="IW4EMA-3" type="weather"
latitude="44.86133" longitude="11.6465"
received="2013-03-29T05:25:00Z" at="2013-03-29T05:38:00Z"

...

The CWOP APRS feed generates more than 13GB of XML data per month,

containing an average of over 100 million weather reports from throughout
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the world (although, unevenly distributed and highly concentrated in North

America and Europe). As a scientific data set, it has three distinct qualities:

geospatial orientation, measurement of observed phenomena, and time-series

data (observations over time). For the weather measurements, there are a

variety of different properties that are necessary to define a “record” in detail.

For example, “temperature” needs to convey “air temperature, over land,

measured at a particular elevation.” As such, the data set provides more

than sufficient examples of the complexity of exchanging data with precisely

defined semantics.

We built and deployed a multi-tiered system at mesonet.info that both

stores the data set and publishes it via the PAN Methodology. The

architecture of this system is shown in Figure 6.3, mesonet.info Architecture,

where on the left side of the diagram the APRS feed is received as chunked

XML and stored into a MarkLogic XML Database [80] via an XProc pipeline

[81]. The data is then indexed in various ways with special attention being

paid to geospatial indexing.

The data is then summarized and accessible via the PAN Methodology using

quadrangles of certain sizes. As the data set contains time-series geospatial

data, it is partitioned by time segments and by quadrangles. Internally, this

partitioning occurs at the same time, using various indices, within the XQuery

[82] executed by the MarkLogic server.

For the sake of experimentation, any size quadrangle or time duration is

allowed in the design of the mesonet.info system. There are certain rational

constraints on the quadrangle sizes (i.e., that it be an even divisor of 360°)

and time durations default to 30 minutes. Certain choices may result in poor

performance (e.g. too long of a duration) or inconsistent quadrangles (e.g.

uneven divisors) and the system does not reject such choices. A production

system would likely limit the choices to a small fixed set of quadrangle sizes
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and time durations based on both user feedback and ability to support the

resulting response sizes.

Figure 6.3 mesonet.info Architecture
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A typical interaction with the data starts by retrieving a representation of the

summary at the URI path /data/q/{size}/{period} where the variable

size is the quadrangle size in degrees and period is the starting point of the time

partition in XML Schema's dateTime format. As a convenience, the current

time period is accessible without the time period being specified in the URI.

For example, /data/q/5/ provides a summary of 5° quadrangles for the

current time period by redirecting the request to the appropriate URI with the

proper time period start time appended.

Once a choice of quadrangle size (e.g., 5°) is made, the summary (e.g., /data/

q/5/) contains counts of the number of weather reports received within the

quadrangle in the given time period (partition) as shown in Figure 6.4, Weather
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Reports Quadrangle Summary, where the markup behind a single row is shown

in Figure 6.5, Summary Row Markup. Each table cell contains an integer value

(the count) and a link to the particular quadrangle's data. De-referencing

that link returns another document that contains the weather reports for the

quadrangle for the given time period.

Figure 6.4 Weather Reports Quadrangle Summary

Figure 6.5 Summary Row Markup

<tr vocab="http://pantabular.org/">
<th property="label" typeof="RowLabel"><span property="value">40</span>°</th>
<td><a href="n/757/2013-10-29T21:00:00Z" typeof="Partition">

<span property="count">0</span></a></td>
<td><a href="n/758/2013-10-29T21:00:00Z" typeof="Partition">

<span property="count">0</span></a></td>
...
<td><a href="n/768/2013-10-29T21:00:00Z" typeof="Partition">

<span property="count">217</span></a></td>
<td><a href="n/769/2013-10-29T21:00:00Z" typeof="Partition">

<span property="count">80</span></a></td>
<td><a href="n/770/2013-10-29T21:00:00Z" typeof="Partition">

<span property="count">22</span></a></td>
...
</tr>

The annotation graph generated from the embedded RDFa describes each

link to each different quadrangle page as a separate data set partition typed

as Partition (as described in Section 5.3, Annotating Data Sets) which are
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shown in Figure 6.6, Summary Row Annotations with the triples listed in

Appendix D: Figure D.8, Summary Row Triples from mesonet.info. In relation

to each partition subject, there is only one property for the total count. The

position associated with the quadrangle summarized by the table cell can be

computed from the column and row indices.

In the example, only the count is a property of the partition subject, however

other properties could be embedded. If additional properties are needed, a

consuming application needs to do extra work. For example, if an application

needs the sequence number, it has four choices: it could have been provided

as an additional property (not available in this example); it can be calculated

from the row and column indices; it can be extracted from knowledge of the

metadata in the URI of the partition; it can be retrieved by processing the

partition resource identified in the link. If the application does not have the

knowledge locally, either directly from annotations or via extracted metadata,

the cost of retrieving must be incurred by de-referencing the resource link.

From the summary or independently, each quadrangle data partition is

accessible at a URI path of /data/q/{size}/n/{seq}/{period} where

the variable seq is the sequence number of the quadrangle and the other

variables are as before. If an application knows the particular quadrangle of

interest, this URI can be constructed directly and the summary document can

be bypassed. As was the case with the summary, as a convenience, the current

time period is accessible without the time period being specified in the URI

and a redirect will inform the application of the full URI.

The quadrangle data partition is more complicated because it contains and

describes each column of weather report data. First, the whole set of weather

reports for the quadrangle data partition is encoded as a single table. This

table is subsequently broken into a number of table bodies, one for each
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Figure 6.6 Summary Row Annotations

_:data

_:1 RowLabel

"40"

a
value

label

<n/757/2013-10-29T21:00:00Z> a Partition
"0"

count

<n/758/2013-10-29T21:00:00Z> a Partition
"0"

count

<n/768/2013-10-29T21:00:00Z> a Partition
"217"

count

<n/769/2013-10-29T21:00:00Z> a Partition
"80"

count

<n/770/2013-10-29T21:00:00Z> a Partition
"22"

count

...

weather station. These table bodies hold the individual weather reports of the

particular weather station for that time period, in chronological order.

The header of the table describes the measurements available within each

weather report row and is shown in Figure 6.7, Quadrangle Table Header, where

each column is described using the PAN ontology (see Section 5.3.4, Tabular

Data). Each column has a property named property with values in the

mesonet.info namespace and all the value space properties for quantities

employ QUDT vocabulary with the exception of the weather station identifier

and location. Each datatype property uses an XML Schema type label.

Within the table are a number of table bodies, one for each weather station, as

shown in Figure 6.8, Quadrangle Data. The first table row defines the repeated

data of the identifier, latitude, and longitude for each subsequent row. Each of

these rows contain the remaining data without these elements repeated.
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Figure 6.7 Quadrangle Table Header

<thead vocab="http://pantabular.org/">
<tr>
<th property="column" typeof="Column"><span property="title">Station</span>

<span property="property" resource="w:id"/>
<span property="valueSpace" typeof="ValueDescription">

<span property="datatype" resource="xsd:string"/>
<span property="quantity" resource="dc:identifier"/>

</span>
</th>
<th property="column" typeof="Column"><span property="title">Latitude</span>

<span property="property" resource="w:lat"/>
<span property="valueSpace" typeof="ValueDescription">

<span property="datatype" resource="xsd:double"/>
<span property="quantity"

resource="http://www.w3.org/2003/01/geo/wgs84_pos#lat"/>
</span>

</th>
...
<th property="column" typeof="Column"><span property="title">Temperature</span>

<span property="property" resource="w:airTemperature"/>
<span property="valueSpace" typeof="ValueDescription">

(°<span property="symbol">C</span>)
<span property="datatype" resource="xsd:double"/>
<span property="quantity" resource="quantity:ThermodynamicTemperature"/>
<span property="unit" resource="unit:DegreeCelsius"/>

</span>
</th>
...
</tr>
</thead>

Figure 6.8 Quadrangle Data

<tbody vocab="http://pantabular.org/">
<tr typeof="StaticColumns"><!-- First row with repeated data. -->
<td><a rel="related" href="/data/station/AA6AV-10/2013-10-30T04:00:00Z"

typeof="Partition">
<span property="identifier">AA6AV-10</span>

</a>
</td>
<td>38.32917</td>
<td>-122.319</td>
</tr>
<tr><!-- Second row with repeated data omitted. -->
<td/><td/><td/>
<td>2013-10-30T04:20:10Z</td>
<td>238</td>
<td>0</td>
<td/>
<td>49</td>
<td>9.4</td>
<td>74</td>
<td>101690</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td/>
<td/>
</tr>
...
</tbody>
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6.2 Evaluation Strategy

Having explored the design of the mesonet.info system, we continue by

considering the qualities it has attained as a result of applying the PAN

Methodology and how those qualities support scientific endeavors on the

Web. By examining the qualities mesonet.info has attained, we will

evaluate the PAN Methodology as a mechanism for disseminating scientific

data. That is, we will describe how certain qualities achieve desirable

outcomes for scientific data on the Web; validating our hypothesis (see Section

1.4, The Hypothesis) and demonstrating our outcomes (see Section 1.1, Specific

Outcomes).

Specifically, in the sections that follow, we walk through various aspects

of the mesonet.info system as provided within the PAN Methodology

and demonstrate how we intend the various system properties to be used.

The demonstration system provides building blocks upon which libraries

of functionality are directly built. Subsequently, the ability to overlay

visualization, computation, or translation of the data set demonstrates various

desirable qualities for scientific endeavors for professional or citizen scientists.

Each of these evaluations is described in the following sections and is

categorized as follows:

• Section 6.3, Data Access Methods and Algorithms — The necessary

algorithms for using PAN-enabled data within the OWP.

• Section 6.4, Open Access to Open Data — By re-using OWP technologies,

both old and new, data that should be openly accessible is enabled to

be so.
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• Section 6.5, Data Navigation via APIs — Information within resources,

encoded as markup with annotations, can be easily navigated via

APIs.

• Section 6.6, Scaling Down for Simple Methods — The mechanisms of the

PAN methodology allows scaling-down to simple acts of publishing,

receiving, and using data.

• Section 6.7, Summaries and Navigation — Summaries and links provide

the ability to navigate data sets for both human and machine

consumers.

• Section 6.8, Computing on the OWP — Computing over and within the

OWP is possible, practical, and useful.

• Section 6.9, Scaling Up via Compatibility — Data represented via the

PAN methodology is compatible with existing systems using

Semantic Web technologies and useful in a larger scope.

These sections serve as one set of evaluations of the PAN Methodology in

the context of the mesonet.info and CWOP data set whereas another

evaluation is the comparison in Chapter 7, Comparisons with Alternatives. The

intent of the following sections is to explore aspects of accessing and using

data within the OWP via services implementing the PAN Methodology. As

noted in the follow sections, implementation details can be found in the

appendices.
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6.3 Data Access Methods and Algorithms

The most common task performed with weather data is accessing reports

for a specific region and time period. Whether we are looking up reports

on yesterday’s snow fall or considering seasonal precipitation and flood

statistics, it almost always pertains to a given place over a certain period of

time. When such a task uses the CWOP data as provided by mesonet.info

via the PAN Methodology, the application starts with a geospatial region and

a time period and then must conceptually do the following:

1. Choose a reference quadrangle size.

2. Calculate the number of quadrangles needed for the task's geospatial

region.

3. Calculate the number of date and time partitions needed for the task's

total time period.

While determining the number of time period partitions necessary is a

straight-forward calculation, it might seem that computing the necessary

quadrangles could be complex. Fortunately, all that is required is an

enumeration of sequence numbers. The computation must first compute a

bounding box and then compute the sequence number for each corner of

the box; the corners give the extreme values for the sequence numbers. As

sequence numbers simply enumerate quadrangles over the whole reference

ellipsoid (i.e., the earth's surface), the quadrangles that cover the bounding

box can just be listed by counting from a given reference quadrangle in the

upper left and then the number of quadrangles that tile the circumference

(which is constant) can be used to move to the next row. An example of this

process is shown in Figure 6.9, Bounding Box Algorithm for Sequence Numbers,

where the region is outlined in black and the bounding box is shown in red.
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Figure 6.9 Bounding Box Algorithm for Sequence Numbers
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Given the naming choices implemented for mesonet.info, requesting the

data for a polygon reduces to generating a sequence of URIs from the

sequence numbers found using the bounding box algorithm. Each URI is

instantiated by substituting for the variables into the template /data/

q/{size}/n/{seq}/{period}, where the quadrangle size is generally

constant and decided upon in advance to control the resource size or response

time. From this URI sequence, the data can be retrieved, either in sequence

or in parallel, depending on the capabilities of the OWP platform

implementation.

We now have an efficient process for retrieving data over both a geospatial

region and time period via the Backtracking Algorithm (see Figure 6.10,

Backtracking Algorithm for a Region). Rather than computing the exact number

of time partitions and quadrangles necessary as a complete cross product, an

application can backtrack from the most recent time partition that contains the

end of the requested time period. Requests are made for just the quadrangle

data partitions for the end of that specific time period for each quadrangle

identified by the bounding box algorithm. From the annotation graph

extracted from within each retrieved quadrangle data partition, the previous

link is selected and, if the time period for that newly discovered partition

is within the desired range, the link is queued for retrieval. This process

continues until all the necessary partitions are visited.
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Figure 6.10 Backtracking Algorithm for a Region
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This Backtracking Algorithm can be stated as follows, where G is the region

and ts te

1. The set of quadrangles sequence numbers Q is determined by the

Bounding Box Algorithm.

2. For each quadrangle sequence number in Q, the data partition for the

time period partition containing te is requested.

3. For each subsequent response, the representation is processed as

needed and then the follow process is applied:

a. The previous link is located in the annotation graph.

b. From the range property value, locate the length and start

properties.
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c. The values from (b) determine the previous partition's time

period end date and time. Request the link if the end of the

time period of the partition is after ts.

It should be noted that the use of quadrangles over-retrieves data for irregular

polygons much the same way that an IVOA cone search query may require

overlapping cones to retrieve a wide region of space. A receiving application

must test locations on the boundary of the polygons to see whether particular

items are within the desired region. Depending on the sophistication of the

application and complexity of the polygon, membership may or may not be

simple to test.

The choice of quadrangle size and time period are intertwined with both the

size of the response and the amount of time to retrieve the response. In Figure

6.11, Time Duration vs Response Time / Size, the elapsed response time and size

of the response were tested on the mesonet.info infrastructure for various

time period partition sizes and for quadrangle sizes of 2.5° and 5°. The elapsed

response time remains relatively low for time partitions up to 30 minutes,

increases slightly for partitions of 1-2 hours, and then radically increases. As

the time period partition grows past a practical limit, the cost of retrieving the

content, transporting it to the browser, and then processing grows by many

factors. The data demonstrates that the typical Web application design pattern

of many smaller requests have better elapsed times in comparison to a few

large requests.

6.4 Open Access to Open Data

The implementation of PAN methodology on mesonet.info provides the

ability for any consumer to directly access and interact with addressable
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Figure 6.11 Time Duration vs Response Time / Size
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partitions of scientific data with a regular Web browser. This satisfies an

overarching goal of open access to scientific data, in contrast with many

tabular/spatial/temporal data formats that require special tools to view,

search and analyze the data. The Web browser opens access to data that

previously required specialized tools that a user might not have access to for

a variety of reasons.

For PAN-enabled data sets, the Web browser can play a variety of roles. The

browser can receive and render PAN encoded data tables for display to a user

through typical means without added effort by the publisher. This enables all

the accessibility cues within the browser and allows a variety of consumers

and devices to access partition data.

Moreover, if the PAN-enabled data partition is viewed within the browser

instead of merely being received as data via some request, all the usual

scripting and visualization facilities of the Web browser are available for use.

This means a sufficiently-enabled browser client can present a visualization

rather than a large set of table columns. On mesonet.info, this is

demonstrated on the particular quadrangle data partition pages where a

default visualization is automatically made available to a consumer as shown

in Figure 6.12, Visualization of Partitions on mesonet.info. The visualization is

built client-side with the data provided within the resource and then a

mapping service (via D3 [83], Leaflet [84], and Open Street Maps [85]) is used

to show temperature data on a map while a box plot with some basic statistics

for temperature is shown on the far left.

The example, as shown in Figure 6.12, Visualization of Partitions on mesonet.info,

demonstrates an inherent duality exposed by the PAN methodology. In one

case, a user agent can load a resource from the Web and treat it strictly

as a data format that contains markup whose semantics provide little more

than access to the structures they represent. When used in this context, the
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Figure 6.12 Visualization of Partitions on mesonet.info

quadrangle data partitions are simply HTML data with additional RDFa

annotation semantics.

When loaded as a viewable resource (e.g., in a browser tab or iframe), the

document executes with additional layered semantics. In this context, the

same document will be processed, the same HTML data and RDFa

annotations semantics will be applied, but additional scripting and embedded

media (e.g., images) processing will also occur. At minimum, this means

tabular data is rendered as a table. Yet, in Figure 6.12, Visualization of Partitions

on mesonet.info, scripts automatically execute within the OWP as they would

for any other typical Web page and so also provides an embedded

visualization. The result is that a data provider can publish Web resources

with embedded default semantics, have those semantics execute locally

within the Web browser, and provides the casual consumer with an enhanced

user experience. Furthermore, the same script with little or no modification

can be used to display any PAN-annotated geo-located data by taking

advantage of the column annotations.

Meanwhile, when that same resource is loaded by data access calls with the

OWP (e.g., XMLHttpRequest invocations), the scripts will not execute nor will

any embedded media be accessed. The data provider has not changed how
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the resource was produced to affect this outcome. Instead, the browser enacts

a slightly different processing model where standard APIs are applied so that

the same interfaces to tabular data are available to the application but the

browser will not go any further. For the receiving application, if the primary

use case is data dissemination, the cost to consume the dynamic visualizations

embedded by the provider is minimal as they are never invoked.

6.5 Data Navigation via APIs

As we noted in Section 5.3.4, Tabular Data, use of the PAN vocabulary via

RDFa does not annotate each table cell value. As such, the annotation graph

only contains explicit information about the columns. Information about

individual data cells is only available by inference, via the column (and row)

annotations. This results in a requirement that the receiving application

process the entire document, including the annotations, to access all the data.

Fortunately, there are APIs to help navigate both HTML and RDFa. First,

the DOM has defined interfaces to HTML elements [86] and defines specific

interfaces to HTML tables. Every table row and cell can easily be enumerated

via a matrix-like API (rows and cells properties). The advantage is that any

row or column spans, etc. are computed by the browser before the API is

presented to the consuming script.

More importantly, there is a document-oriented API for RDFa [87] that was

published as a W3C Note and defined by the same W3C Working Group

that published RDFa 1.1. This API provides the ability to access the RDFa

annotations directly from the document and to navigate back and forth

between the document and specific properties. The graph can be accessed and

processed directly or in parts as constructs are found within the document.
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We implemented a conforming RDFa 1.1 processor and the RDFa API, along

with some extensions, in Green Turtle [88] as an RDFa processor for browsers.

While browsers may provide native RDFa implementations within the OWP

in the future, existing Websites can enable RDFa by simply including the

Green Turtle script. Other processing environments may have similar

capabilities and also enable RDFa via Green Turtle or other implementations.

Figure 6.13 Accessing a Table

Partition

Table

item

1. getElementsByType()

2. data.getValues()

3. getElementsBySubject()

A typical application interaction starts with accessing a quadrangle data

partition's data using the API shown in Figure 6.13, Accessing a Table; the

corresponding script is presented in Figure 6.14, Accessing a Table via the API.

While more complex partitions may contain many items, the mesonet.info

implementation has only one; so finding the table of data within the Web page

is straightforward. In the example, the script navigates the document via the

graph, back into the annotation graph to find a subject, and then uses the

subject to navigate back within the document as follows:
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1. Find the container element via type annotations.

2. Use the element returned to get a list of subject URIs of the items.

3. Use the appropriate subject URI to find the table element (e.g., there is

only one in the example).

Figure 6.14 Accessing a Table via the API

// (1) Find the element that holds the partition
// Note: from the graph to the DOM via the RDFa API
var datasets = document.getElementsByType("pan:Partition");

// (2) Use the subject to find the partition's item subjects
// Note: from the DOM to the graph via the RDFa API
var items = document.data.getValues(datasets[0].data.id,"pan:item");

// (3) Access the first item (a table)
// Note: from the graph to the DOM via the RDFa API
var table = document.getElementsBySubject(items[0])[0];

Once the tabular data is located, an application has a direct reference to the

table element containing the data and can enumerate the table rows and cells.

To understand which columns contain the desired data, the script must first

locate the columns by their annotations. The process requires traversing using

the table's subject URI into the annotation graph to find the column definition

annotations. From these annotations, the particular column can be located by

examining further properties and then the column heading element can be

located by subject URI within the document.

For example, locating the first air temperature column is shown in Figure 6.15,

Finding a Column by Property. The assumption is that the table has already

been located and we just need to examine the property predicate to find

a column whose object value is air temperature (http://mesonet.info/

airTemperature). If a match is found, the subject URI used to retrieve this

property value can also be used to locate an element. If further qualification

is necessary, the value space of the property can be examined to inspect

properties such as unit of measurement (e.g., Celsius versus Fahrenheit).
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Figure 6.15 Finding a Column by Property

Table

Column

column

1. data.getValues(

3. getElementsBySubject()

Table Header

Table Bodies

Table

Column ...

"http://mesonet.info/airTemperature"

property

ValueDescription

valueSpace

"http://qudt.org/vocab/unit#DegreeCelsius"

2. data.getValues(

valueSpace = data.getValues( 

unit = data.getValues(valueSpace,"pan:unit")

Additional Steps to Check Unit:

unit

column[i], 
"pan:property")

table.data.id, 
"pan:column")

column[i], 
"pan:valueSpace")[0];

The result is that an application has a wide range of abilities to locate and

consume data within the table. From the column definition annotations, the

datatype and other properties of the value space can be extracted and

dynamic interpretation of the textual value can be applied. On the other end,

once a column is recognized by label, the table cell values can be used directly

as textual content without conversion into a specific datatype. This flexibility

provides the ability to scale up or down in terms of its complexity for the use

of table cell values.

6.6 Scaling Down for Simple Methods

There are two dimensions upon which to evaluate the PAN methodology in

terms of its ability to scale down:
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1. The ability to work with small Web-sized subsets of a large data set

via commonly available methods.

2. The ability to publish smaller data sets via existing methods (e.g.,

blogs posts, social networks, etc.).

6.6.1 Local Knowledge and In Situ Services

While the mesonet.info infrastructure provides access to a reasonably large

data set (13+ GB per month), the use of the data scales down due to the

quadrangle partitioning. A client application can fine tune the quadrangle size

to zoom in on a specific location; as the size of the quadrangle diminishes, so

too does the volume of data received and processed by the browser and the

application. As such, if the application requires specific data (e.g., temperature

closest to a location), the application can tune the quadrangle requests to the

minimal number and size to receive the required information.

For example, a typical feature of informational Web sites is to enable other

Web sites to embed their data. Using Cross-Origin Resource Sharing (CORS)

[89], data services such as those provided by mesonet.info can be directly

accessed by other Websites without causing security exceptions within the

browser. The data resources just need to declare that they are allowed to be

accessed by other sites by adding a few headers to the HTTP response when

the data partitions or other resources are retrieved.

Using CORS allows the browser to serve as the point of aggregation. Instead

of an intermediary service accessing the data and providing renderings of the

data, scripts can access the data directly and build the UI within the browser

on the receiving Web page. As a result, the data resources (e.g., a quadrangle's

weather reports) are directly re-purposed for use as data without any need to

change the underlying service.
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<div vocab="http://www.mesonet.info/" typeof="badge/summary">
<a property="source" href="http://www.mesonet.info/data/q/"

typeof="quadrangle">
<span property="quadrangle-size">2.5</span>° Quadrangles
<span property="template"

content="{base}{quadrangle-size}/n/{sequence}/"/>
</a>
for location
<span property="latitude">37.74292</span>,
<span property="longitude">-122.4632</span>

</div>

A simple example of this is shown in Figure 6.16, Weather Badge, where the

weather for a specific location is shown. This badge is created by declaring

the location within regular HTML markup via RDFa annotations as shown

on the right in Figure 6.16, Weather Badge, using the same technique described

in [90] where local services use local knowledge to enhance the document.

The badge is identified by type via RDFa annotations and all the related data

service information is expressed within the anchor markup. A local service

script only has to inspect the annotation graph, find elements of certain badge

types, and then access the data quadrangle.

Figure 6.16 Weather Badge

In the case of this particular weather badge, the location information encoded

in the badge declaration markup is used to compute the sequence number

(see Appendix A, Sequence Numbers) that will contain the weather data. The

sequence number is then used in the URI template (i.e., in the template

property value in the example) to construct a URI to the data set partition

that contains the weather reports for the desired locations. The rest of the

process requires computing the report nearest to the desired location and

generating the display. The typical expectation by the Web page author is that

the invocation (markup) and badge shown in Figure 6.16, Weather Badge, occur

in the same location in the Web page and only the badge is displayed to the

user.
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6.6.2 Publishing Small Data Sets

While the previous section dealt with enabling simple consumers of scientific

data, there is also the issue of enabling simple methods to publish small data

sets not of the same scale as CWOP or other large-scale endeavors. Ecology

data is an example where individual data sets are very small (i.e., observations

of species and environmental conditions over a constrained geospatial

region). As such, they fit well into modern Web publishing services, such

as blogs, where individuals employ easy-to-use authoring tools to publish

information, typically in the form of articles or journal entries. Certainly,

enabling them to publish their data sets within the same tools at the same time

is very desirable.

Current systems require uploading data files as archives, and other non-

Web oriented formats as attachments to the entry. This confounds the casual

browsing of data and discourages indexing by search engines. Instead, the

information can be directly published via the PAN methodology using the

following strategy:

1. If the geospatial region is sufficiently large, a LabeledTable typed

HTML table is authored that enumerates just the quadrangles that

cover the bounding box of the region. This index must contain the

counts of observations within each quadrangle.

2. For each quadrangle, a partition of the data is encoded in a typed

HTML table element (i.e., typeof="Table").

3. All the tables from (1) and (2) are composed in or “pasted” into the

authoring tool provided by the blogging system.

Since RDFa annotations are encoded in markup attributes, the blogging

system will not reject the extra markup. There is no requirement for additional
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scripts and, as such, the content is deemed benign and allowed through. The

result is the blog entry page is now also a data resource that can be processed

directly by other systems.

In this case, we rely on proper naming within the blogging system to give

a useful URI for the data set. Within the data set, the links between the

partitions are all local to the same document. A receiving system should

always take care to handle such local references as they may confuse systems

that assume that each URI is a distinct resource. In this case, they are likely

to be locations within the same resource and, while it doesn't matter to the

annotation graph, it does to the processing application in terms of

understanding when it needs to fetch a new resource.

6.7 Summaries and Navigation

Navigation aids are needed for time-series data sets, such as CWOP weather

data, that result in a large and open-ended number of partitions. The PAN

Methodology provides two mechanisms to satisfy those needs:

1. A resource akin to a statistical marginal provides the ability to

summarize the amount of data within regions such as quadrangles.

2. Links provide the ability for data partition resources to express

relations amongst partitions such as next, previous, and nearby.

For the mesonet.info implementation, summary resources are provided

as shown in Figure 6.4, Weather Reports Quadrangle Summary, as a table of

counts per quadrangle and time period. There are various links within this

document, of which the simplest are the links typed with the relationship

previous and next. A system could assume that these are different time
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partitions and just follow the links but they can also inspect the annotations to

understand which basic facet they are navigating.

In Figure 6.17, Previous & Next Link Annotations, the previous and next

relations are shown in relation to the partition subject and the full triples are

listed in Appendix D: Figure D.9, Previous & Next Link Annotation Triples. Each

of these properties have an object value that is the subject URI of the related

partition summary with an associated type. These related partition summaries

have additional annotations that describe the range of their facet partition. By

comparing those range values to the current, an application can understand

the facet being navigated via the relations. In this case, the value type is

xsd:dateTime and the semantic label is http://www.mesonet.info/

data/#receivedTime and so the relationship navigates the summaries in

terms of the received time of the weather reports.

Figure 6.17 Previous & Next Link Annotations

</data/q/36/2013-11-21T00:30:00Z> PartitionSummary

</data/q/36/2013-11-21T00:00:00Z>

</data/q/36/2013-11-21T01:00:00Z>

PartitionSummary

PartitionSummary

[ ]

a

a

a

a FacetPartition
xsd:dateTime

"2013-11-21T00:00:00Z"

"PT30M"

<http://www.mesonet.info/data/#receivedTime>

valueType

start

length

facet

previousnext

range

[ ] a FacetPartition
range

etc.

Within the LabeledTable instance itself are links to each particular data

partition from the table cell that corresponds to the quadrangle. As the table

161



is only partially annotated, the resulting annotations (see Figure 6.18,

LabeledTable Annotations with the triples listed in Appendix D: Figure D.10,

LabeledTable Annotation Triples) demonstrate how the partition links are

severed in the graph. Starting just after subject _:17 are a list of partitions that

are disconnected in the annotation graph but whose origin is a specific table

cell. Each quadrangle data partition link is typed as a partition and has a count

property. There is little to indicate to which table cell it belongs within the

annotations but an RDFa processor can trace the origin within the document.

An application could provide additional inferencing over the table and add

additional relationships to the graph. Fortunately, enhancements to the RDFa

API provide a simple way to find this information from a table cell. The

linkType property (see Figure 6.18, LabeledTable Annotations) for the entry

provides a URI that can be used to find the link element. A simple look up

via the API call getFirstElementByType() returns the link element and

the application can use the subject URI to find additional properties such as

the count of reports. In this case, count of reports is also available as the cell's

textual contents.

While summaries are useful for navigating data sets, they can also be useful

data resources in themselves. In Figure 6.19, Quadrangle Summary Visualization,

a map displays summary data over North America and part of Europe using

2.5° quadrangles color coded by data intensity. Each quadrangle shows the

data count and is a link that and leads to a visualization of the quadrangle

itself.

The visualization is computed by navigating the LabeledTable entries and

computing the bounds of the quadrangle for each entry via the indices. The

count and the link are located within the annotation graph and this

information is used to color and label the quadrangle regions within the map
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Figure 6.18 LabeledTable Annotations
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Partition

"257"

"7"

count
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with links to further information. The summary provides a quick way to

access this data and produce a summarization for visual inspection.

Finally, when quadrangle data partitions are accessed, their representation

contains links to other partitions. In addition to the next and previous

relations, there is a set of nearby relations that is partially shown in Figure

6.20, Nearby Link Annotations, and the full triples in Appendix D: Figure D.11,

Nearby Link Annotation Triples. These links provide access to adjacent
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Figure 6.19 Quadrangle Summary Visualization

quadrangles whose properties are described in the annotation graph. Each

link shares the same time period as the current partition but describes a

different quadrangle (a different box via the shape property). An application

can use this information to determine the geometry and other properties of

the linked partition; a necessary precursor to deciding whether to retrieve that

partition’s data by following the link.

6.8 Computing on the OWP

The browser, as the most common interface to the OWP, has become a

surprisingly solid platform for deploying applications with its myriad of

advanced features and capabilities. The idea of directly using the OWP and

computing against data is captivating. Data sets expressed using the PAN

methodology can be accessed, traversed, and operated upon within the OWP

using a combination of HTML and RDFa APIs. We are faced with the question
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Figure 6.20 Nearby Link Annotations
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of what can be accomplished with that ability before other methods become

more tractable?

Many data processing tasks require access to large subsets of data and there

are existing systems that provide the ability to map tasks over such subsets.

We will examine how a Map / Reduce [91] process can be replicated in

the browser and then what we can compute with that process. In that

examination, we will specifically look at visualization of data set subsets and

how the Web browser can be used as a computational tool in contrast to its

typical use as a user interface that renders pre-computed images.
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6.8.1 Map / Reduce

A Map / Reduce algorithm divides a larger problem into a number of sub-

problems (the map step) and then collects the answers of all the sub-problems

to produce a single answer (the reduce step). Given the structure inherent

in regularly partitioned data sets, it is straightforward to define a Map /

Reduce algorithm that operates on partitions. Within the PAN methodology,

computing over geospatial regions is facilitated by using quadrangles and

sequence numbers that are part of the partitioning of the data set. The process

then involves mapping user functions over Web resources (data partitions)

and then applying a reduction function to the collected results.

We start with the input of a geospatial region G, a time period ts te , and a set

of facet types F. The process produces an output O is as follows:

1. Let R .

2. Calculate the quadrangle sequence numbers S from the region G.

3. For each sequence number in S, generate a URI for the latest partition

which contains te and add the URI to the queue Q.

4. While Q is not empty:

a. Remove U from Q.

b. Request a representation W of U.

c. Locate and harvest the columns C F from W via the RDFa

annotations.

d. Convert C F into native data types defined by the column

descriptions in RDFa into an array of data D.
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e. Apply the user's map function: D MD.

f. Add MD to the result R.

g. Locate a link to the previous partition. If time period end for

the partition is after ts , add the URI to Q.

5. Apply the user's reduce function: R O.

We have implemented an example of a Map / Reduce process in about 410

lines of JavaScript [92] code (uncompressed); it relies upon an RDFa API in

the browser-based application. The implementation is limited to rectangular

regions to simplify generation of the starting quadrangle sequence numbers

and testing of membership of returned data locations. The user need only

provide the region, time period, columns they are interested in processing,

and their Map / Reduce functions. A simple example that calculates the

average temperature for a given region and time period is shown in Appendix

C: Figure C.4, Using Map / Reduce to Calculate Average Temperature.

6.8.2 Barnes Interpolation

Barnes Interpolation [93] is the calculation of a set of data points (interpolated

values) across a two-dimensional surface from a set of measurements; it was

originally developed specifically for weather forecasting. It can be used to

produce renderings of temperature, wind, barometric pressure, etc. that are

commonly expected from discrete measurements from weather stations (e.g.,

a colored gradient). As the interpolation is typically applied to a geospatial

region over time, this process is a good fit for the application of the Map /

Reduce implementation described in the previous section.
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The interpolation process starts with a weighted average and then calculates

a refinement using all the grid points:
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where:

• oi is the observed value,

• weight for each observed value is wi

di

L C
,

• di is the distance (km) from the grid point to observation point,

• L is a scalar value relative to the distances between observed

phenomena,

• C a convergence factor.

It should be noted that difference between oi and gi
n x y in the numerator

measures error for the grid cell that contains an observed value. This

difference causes the interpolated value for observed grid cells to converge

to the observed value after sufficient iterations. Using this observation, an
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algorithm can use this convergence as criteria to determine when to stop

iterating.

For weather data, certain values are useful in this computation: L is set to

111.3, the number of kilometers in a degree at the equator, and C varies

where 1 is used for the initial pass and 0.3 is used afterward [94]. Using these

values, three iterations are sufficient to get reasonable convergence for air

temperature. Other measured quantities may require more iterations.

Figure 6.21 Barnes Interpolation Process

Partitions

Grid Average

Interpolation

This interpolation process can be divided into a number of stages as shown

in Figure 6.21, Barnes Interpolation Process, where at the beginning (on the left)

we have a particular geospatial region and at the end (on the right) we have

a visualization of the interpolated grid. At the end of the process, each grid

cell contains an interpolated value that can be mapped onto a color gradient.
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These results can be used to display a typical rendering of temperature by a

colored surface over a map display.

Given a choice of time period and quadrangle size, combined with the

geospatial region, a particular set of data partition Web resources that cover

the requested inputs can be identified. The Map / Reduce process can be

used to process these data partitions into a sparse grid of observed values

where each populated cell contains the mean value of the observed values that

are located in that cell. Other statistical processes can be applied within this

process to filter out bad data values if they are present.

The sparse grid result is then input to the Barnes interpolation process, whose

implementation is described in Appendix F, Barnes Interpolation Implementation.

The penultimate result is a grid of numerical values that correspond to

rectangular regions within the input geospatial region. These regions and

numerical values can then be color coded to produce an output image or for

use in interpretations or visualizations. Thus, the OWP provides all the basics

elements for computing and visualizing an interpolation surface for weather

data.

As an experiment, an implementation of Barnes Interpolation was developed

as a script and is called as a post-process step after the sparse grid is calculated

via Map / Reduce. The invocation is shown in Appendix C: Figure C.5, Example

Barnes Interpolation Script, and the sparse grid computation is shown in

Appendix C: Figure C.6, Example Grid Average Script. The implementation takes

as input a rectangular geospatial region, a time period, and a quadrangle size.

The Map / Reduce process calculates and retrieves the necessary quadrangles

to produce the interpolation surface after first calculating an average

temperature for each station within the geospatial region.

An example visualization of the output of the process is shown in Figure

6.22, Polar Vortex - 2014-01-23T20:00:00Z - PT30M, for the region [50°, -125°,
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Figure 6.22 Polar Vortex - 2014-01-23T20:00:00Z - PT30M

25°, -65°] for 30 minutes of data on an 0.25° resolution interpolation grid. To

access the necessary data with 2.5° quadrangles and 30 minute durations, 240

data partitions were retrieved over the Web. On average, the process took 22

seconds to complete with 13.6 seconds needed for the data access on a modest

network connection (6Mbps) with a reasonably powerful laptop (2.6Ghz Intel

Core i7 MacBook Pro with 16G of memory).

Examining this implementation from a different perspective, an example of

interpolating a sequence of images for 24 hour period is shown in Figure

6.23, Interpolation Sequence, for the region [40°, -125°, 35°, -120°] over 1 hour

segments (twice the time period of the previous example) starting at

2014-01-23T00:00:00Z and which required 8 data partitions resources for 2.5°

quadrangles for each frame. The hours of the day for each frame are in the

UTC timezone and so, for the Pacific coast, the first frame starts in the late

afternoon (warmer) and then cools throughout the night. Each frame took

an average of 2.9 seconds to render with a standard deviation of 724ms of

which the interpolation was only 52ms on average. Smaller regions render in

reasonable enough times for the process to occur in almost real-time such that
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animations of data can be generated in response to a user's query. The only

real constraint is the transport times for the data.

Figure 6.23 Interpolation Sequence

00:00 01:00 02:00 03:00 04:00 05:00

06:00 07:00 08:00 09:00 10:00 11:00

12:00 13:00 14:00 15:00 16:00 17:00

18:00 19:00 20:00 21:00 22:00 23:00

6.9 Scaling Up via Compatibility

When a data set is published via the PAN methodology, there likely remains

a requirement to inter-operate with systems that use other data formats. As

the PAN methodology only partially annotates the data, a consuming system

must navigate the tabular data and apply some kind of transformation. Given

the orientation of PAN towards the Semantic Web, a consumer with an
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existing triple database and inferencing system needs to harvest all the data

by turning partitions into triples and storing the result for later processing.

PAN-annotated partitions offer a simple transformation of rows into subjects

where each column becomes a property of the subject, because each column

definition has a property defined as a URI. Ergo, the values in the table

cells become the object value in the triple. An example of this simple

transformation is diagrammed in Figure 6.24, Weather Report Graph, with an

extract of the full triples listed in Appendix D: Figure D.12, Weather Report

Triples.

As a nuance, the report happens to contain the same reported value using

different units (Fahrenheit vs Celsius) which adds some complexity to the

values. Instead of a single object value for w:airTemperature, the value is

an object collection of two blank nodes. Each of these blank nodes contains the

value and the unit used.

Figure 6.24 Weather Report Graph

_:weather a Weather

(_:1 ... _:2676)

(_:3218 ... _:4072)

reports

stations

_:1 a Report

( [ value 61; unit unit:DegreFarenheit]

id

lat

lon

receviedAt

windDirection

windSpeed

airTemperature

airHumidity

airPressure

_:3218 a Station

( _:1 ... )

id

reports
"AD6QC"

"AD6QC"
37.983
-122.59467
"2013-11-11T22:09:48Z"^^xsd:dateTime
"0"^^xsd:int
0

"80"^^xsd:int
"102010"^^xsd:int

[ value 16.1; unit unit:DegreeCelsius] )
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Just as with the Barnes Interpolation, the ability to convert data into triples on

mesonet.info was implemented via simple Map / Reduce process, where

the invocation is shown in Appendix C: Figure C.7, Harvester Implementation.

The process requires URI names for properties and types used; these are

passed into the process at initialization where the implementation uses these

names to label properties or for the value of subject types.

Once a set of reports are converted to triples, a receiving system needs

navigation information to help process the information. A consumer can start

from the designated subject _:weather and navigate weather reports either

the via the stations or all the weather reports, as shown at the top of Figure

6.24, Weather Report Graph. An extract of the triples for these navigation aids

are shown in Appendix D: Figure D.13, Navigation Triples.

Finally, as the individual properties of the weather report correspond to

specific columns, each property can be defined as well. The property URI

is used as the subject of a column definition and a variety of examples are

shown in Figure 6.25, Weather Column Definition Graph, with an extract of

the full triples shown in Appendix D: Figure D.14, Column Definition Triples.

Each definition has a title and a value space definition, where the latter

can be used to understand more about the encoding, quantity, and unit of

measurement used for value representations. The value space is defined by

datatype, quantity, unit, and symbol. These values are transferred from the

PAN column definitions to the resulting graph.

A complexity may arise when there are multiple columns for the same

observed value (e.g., temperature in different units). In this situation, a

w:multiple property contains an object collection with both column

definitions. Each column is defined exactly as it would be otherwise. The

result is that a consuming application must match the observed value in the
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weather report by unit of measurement or symbol, but must do so only when

the property has multiple values.

Figure 6.25 Weather Column Definition Graph

id a Column

[ datatype xsd:string; quantity dc:identifier ]

datatype xsd:double; 
quantity <http://www.w3.org/2003/01/geo/wgs84_pos#lat> ]

"Humidity"

"Latitude"

datatype xsd:double; 
quantity <http://www.w3.org/2003/01/geo/wgs84_pos#long> ]

"Longitude"

datatype xsd:int; quantity quantity:AbsoluteHumidity; 
symbol "%"; unit unit:Percent ]

"Temperature"( [ ] [ ] )
datatype xsd:double; 
quantity quantity:ThermodynamicTemperature; 
symbol "F"; unit unit:DegreeFahrenheit ]

datatype xsd:double; 
quantity quantity:ThermodynamicTemperature; 
symbol "C"; unit unit:DegreeCelsius ]

"Station"
title

valueSpace

lat a Column
title

valueSpace

lon a Column
title

valueSpace

airHumidity a Column
title

valueSpace

a Column
title

valueSpace

"Temperature"

a Column
title

valueSpace

multiple
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[

[

[

[

[

[

[

The whole conversion process, as just described, was run for a 20 minute

time period for the region [(40°,-125°) (35°,-120°)] using 2.5° quadrangles. The
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process retrieved a single partition for each of the nine sequence numbers

2975, 2976, 2977, 3119, 3120, 3121, 3263, 3264, 3265. Within these partitions

there were 536 reports for 321 stations. The result was 14,947 triples generated

for the same data.

While the number of triples may seem large, many production-scale triples

databases are quite capable of storing and querying billions of triples. Getting

from the PAN structures to these triples is demonstrably easy. The inferencing

necessary to generate triples for PAN-encoded data has been demonstrated to

be minimal and reduces to little more than enumerating table rows over a set

of Web resources (partitions). As such, harvesting information from a PAN-

encoded data set is a straightforward process.

6.10 Summary

The PAN Methodology, as implemented by mesonet.info, provides a

number of direct benefits to consumers of weather data:

• The data is encoded as regular Web pages, so it is directly browsable

with links to navigate from one partition to another, taking full

advantage of the abilities of the OWP to visualize the data and

enhance the user experience.

• Consumers intent on using the information directly can embed the

data by employing “widgets” developed for such purposes.

• Developers do not need special permission to use the data and create

their own widgets or visualizations.
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• Scientists can compute directly over the data set within the browser to

accomplish real tasks.

• Developers can use these constructs to deploy computations at a large

scale using the OWP as a computing platform (e.g., via “headless”

browsers).

• The data provided via PAN is compatible with the Semantic Web and

Linked Data Platform.

• The weather data provided by CWOP has now become directly

accessible to search engines and other agents on the Web.

To achieve these benefits, consumers and developers need not make an

expensive commitment to using the Semantic Web or the Linked Data

Platform. While RDFa annotations enable additional semantics and

computation, their effects can be considered locally. Real benefits accrue

without the burden of handling additional unneeded complexity.

At the same time, the approach is compatible with those systems that need

to harvest information as triples for later processing. The partitions are

annotated with RDFa to provide column semantics. The information about the

columns can be used to generate triples for every row of tabular data.

Finally, real work is possible directly within the OWP. The Barnes

Interpolation process demonstrates how information can be processed to

generate complex visualizations. The OWP provides the ability to process and

calculate upon data and the ability to display complex outputs. All of these

demonstrations show how the facilities of the OWP can be brought to bear

upon scientific problems by engaging the collective creativity of developers

and users of the Web.
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Chapter 7

Comparisons with Alternatives

18. Existing eScience workflow tools can process PAN-enabled data; they

are agnostic to data representations.

19. Partitioning enables an optimal way to organize data for efficient

access.

20. The OWP is as competent as eScience workflow tools.

In the previous chapter, we demonstrated how we compute over PAN-

enabled data within the OWP. This platform provides the requisite primitives

and processing power sufficient for performing scientific computations and

visualizations in situ. The result is that scientific applications can be developed

and deployed within the OWP as tools for scientists and end users.

Systems for processing scientific data and accomplishing tasks both predate

and co-exist with the modern OWP. Consequently, a comparison of other

approaches to processing scientific data is warranted. We will consider
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scientific workflows for processing data on the Web and tools that have been

developed to handle data whose provenance is a Web service.

7.1 Workflow and Tools for eScience

A workflow can be considered an abstract sequence of steps that are chained

together to perform some useful process. In computing, a workflow can be

used to record the steps in a computation that produces an artifact. Each of

these steps consume information, both in terms of “inputs” and “options to

control processing” that produce outputs; inputs, options, and outputs are

all data represented in some format. Chaining within the workflow matches

outputs to inputs and often results in the workflow being data-driven.

Workflows can be broadly categorized as control-flow oriented or data-flow

oriented. When control-flow oriented, each step in the workflow is

orchestrated by some control language or dependency semantics. Meanwhile,

for data-flow oriented, each step in the workflow is invoked when its inputs

“arrive” at the step. While either mechanism is viable for scientific workflows,

there seems to be a preference for data-flow oriented workflows for scientific

processes [95].

Finally, a typical workflow is accompanied by a visual description and tools

for building workflows. Tools allow the workflow author to diagram the

workflow by picking steps from a variety of predefined possibilities and

then configuring their use within the platform. A user draws an association

between steps to indicate connection of outputs to inputs of other steps.

While there have been a number of attempts to address data and workflow

within eScience, two notable tools are Taverna [96] and Kepler [97]. In both

tools, a user develops a scientific workflow through a visual tool and then can
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execute the workflow, either through the desktop tool or through command-

line variants. Each step has a number of options, distinct and separate from

the data inputs, that are used to control the step; these can be setup within the

visual editor.

While both Taverna and Kepler are data-flow oriented workflows, Kepler

differs from Taverna in that it uses the concept of a “director” to decide when

a step executes while Taverna steps generally execute when a sufficient set of

data is received on the step's inputs. When the Synchronous Data Flow (SDF)

director is used, the Kepler workflow executes in a similar fashion to Taverna.

In both tools, steps are selected from a pre-populated inventory of steps; a

user selects a step from the palette and drags it onto the workflow. Once

placed, the step can be connected to the appropriate place within the

workflow.

The steps provided primitives for executing scripts and accessing data. A

typical process might interact with a Web service or simple Web resource to

retrieve initial data and subsequent steps manipulate and process that data

in various ways. The workflow produces a number of outputs in various

formats.

Both Taverna and Kepler provide steps that allow a user to access data in

various Web-oriented formats, including XML, and process them with typical

XML tools (e.g., XSLT [98]). In addition, a user can write their own scripts

in the tool-specific choice of scripting language. The scripts allow the user

to extend the workflow tool without necessarily becoming an experienced

programmer that can produce and integrate a library into the tool's inventory

of steps.
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7.2 Workflows for Barnes Interpolation

The Barnes Interpolation example (see Section 6.8.2, Barnes Interpolation) seems

likely as a perfect candidate for comparing eScience workflow tools as we

have a working example within the OWP and data encoded via PAN in

mesonet.info. The interpolation process starts with a few input parameters

(i.e., a geospatial region and time period); the result is a visualization of the

interpolated grid. The steps within the process must interact with a data

source, typically on the Web, collect the observed values into an input grid,

and then run a local computation.

Both of the Taverna and Kepler tools should be able to accomplish this task

given their built-in components. They both have steps to access data from

Web resources, and steps for manipulating XML markup, and they each

accommodate scripting to implement the data gathering and interpolation

steps. As such, there should be no need to develop extensive libraries to

support the task. Instead, we can act as a typical user of the tool that is using

it as intended.

Neither Taverna nor Kepler have a stated preference for how data is accessed

or represented. They do provide steps for accessing data over SOAP [99]

or REST [100] services and so have a built-in preference via their inventory

of steps. Moreover, while their inventory of steps provide ways to directly

manipulate XML markup, it is not necessary that the data be represented in

any particular methodology or format. This brings into question whether the

CWOP data provided via mesonet.info via PAN is the right starting place.

In the particular case of using the CWOP data, finding the data from another

source is difficult as the CWOP data is only available directly via the APRS

feed over the APRS-IS protocol (a non-HTTP protocol). While the NOAA does

consume the CWOP data, their output only contains the subset of the data
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they consider valid. As a result, obtaining the CWOP data from the NOAA

would provide an inconsistent basis for comparison.

Since both Taverna and Kepler are agnostic as to where the data comes

from, the use of the PAN-enabled CWOP data should provide an interesting

comparison to computing within the OWP. As such, the comparison is not

between data representations but, instead, between systems that process the

PAN-enabled data. That is, a comparison between the OWP as platform for

scientific computing versus Taverna and Kepler.

As such, we implemented the Barnes Interpolation (see Section 6.8.2, Barnes

Interpolation) workflow for both Taverna and Kepler (see Appendix E, eScience

Workflows) that use the PAN-enabled CWOP data from mesonet.info to

accomplish the following tasks shown in Figure 7.1, Generic Barnes Workflow:

1. From the input region, time period, and quadrangle size, generate a

sequence of URIs for each of the data partition Web resources.

2. Fetch each data partition Web resource.

3. For each data partition Web resource received, extract single column

of data of observed values (e.g., temperature) via XSLT.

4. Collect observation data into a sparse grid of the mean value for the

observed values that occur within each grid cell.

5. Apply Barnes Interpolation to the grid to produce a full set of

interpolated values.

6. Render the interpolated values as an SVG image with appropriate

color coding.

There is very little difference between the Kepler and Taverna workflows

with regards to what they do conceptually. The implementation technology
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for scripting is different (Python vs. BeanShell) and the configuration of each

step is a bit different, but otherwise they both follow the same sequence of

operations shown in Figure 7.1, Generic Barnes Workflow. There are a few minor

differences, either between the two, or with PAN+OWP:

• Taverna can only pass strings between steps and so every step that

processes XML must parse each input and serialize each result. Kepler

does not have this restriction.

• Taverna requires a few extra steps to merge responses from iterating

over the list of URIs into a single XML document. For Kepler, it builds

a single large array of the Web request responses.

• The PAN+OWP implementation does not employ XSLT and performs

its extraction of data by accessing the RDFa annotations.

• The PAN+OWP implementation does not use a straight-through

pipeline and, instead, builds the grid incrementally by taking

advantage of the Map / Reduce process.

7.3 The User Experience

Both of Taverna and Kepler are visual tools, written in Java, and oriented

towards a user designing a workflow as an artifact (a file format) that can

then be run by a workflow engine as necessary. A user can run the workflow

directly within the tool. This provides the ability for the user to iteratively

develop the workflow by adding steps and testing the result.

As neither tool is aware of RDFa as a data representation format, it became

necessary to develop a simple XSLT library to process the RDFa data to
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Figure 7.1 Generic Barnes Workflow
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accomplish extraction of a single column of data (e.g., temperature). The

intent was to use a standard step to invoke the transformation and run the

data extraction from the data partition Web resource. The features necessary

to process the data efficiently required the use of XSLT 2.0 [101].
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Unfortunately, neither tool supported XSLT 2.0 directly and they both

installed a bug-ridden version of an XSLT 1.0 processor. To the novice, this

unexpected glitch might be an insurmountable obstacle. For an experienced

Java developer, the ability to replace the XSLT processor within the system is

known but requires some effort.

In spite of considerable effort to modify the installed software for both

Taverna and Kepler to include a new XSLT processor that implements XSLT

2.0, neither Taverna nor Kepler were able to successfully apply a standard

XSLT step properly. Instead, in both cases, a simple script was used to apply

the transform to the document. While this script was easily developed, the fact

that it was a possibility might not be obvious to a user.

The remaining steps, with an exception of fetching the Web resource via the

URI, were all custom scripts written in the scripting language preferred by

the tool. In both tools, to configure these steps, the script must be embedded

within the workflow. There is no provision for referencing an external file,

making it awkward to author scripts using typical developer tools.

The tools provided comparable user experiences for the visual editing of

the workflows, but executing and inspecting the results was superior within

Taverna. It provided the ability to examine the inputs and outputs of the

workflow and inspect intermediary results. This is one place where Taverna

excelled over all others—including the OWP.

Finally, the workflow file that the tools store is not intended to be accessed by

the user, in so much as is easily determined. The format is a serialization of

the representation of the workflow in an XML format that is not documented

for the user. Presumably, no user is expected to open the file format in another

tool and just edit the source. This design decision runs counter to the “view

source and modify” mantra of the open Web.
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Comparing this experience to the implementation of the same process within

OWP requires recognizing that we did not develop a visual workflow

authoring tool. While a developer may use the libraries to create their own

workflows, such a user has a different skill set. A developer for the OWP

is always writing JavaScript code, no matter how small of a task. While a

conscious choice, the intended user is expected to be Web savvy and the

resulting code and process are slightly different.

The OWP implementation is described in detail in Section 6.8.2, Barnes

Interpolation, where the process uses a Map / Reduce mechanism to produce

the sparse grid of observed values. The subsequent interpolation step is then a

single call to a library. This results in an in-memory grid of interpolated values

that can be visualized and displayed directly within the browser using any

number of techniques (including overlays on a map).

One last usability comparison is that, in each implementation, a set of scripts

were developed to accomplish each workflow step and the amount of code

is a simple measure of complexity. In Figure 7.2, Code Complexity, the total

line count for uncompressed code was computed for all inputs to each target

platform. Taverna had the most complexity, possibly due to the choice of Java

and BeanShell [102] as scripting technologies; Kepler was the most compact

by using JPython [103] for its scripting.

A conscious choice was made to use the tools as a typical user might and not

develop extensively complex solutions to problems encountered. This meant

implementing the steps using the scripting language provided by the tool

and any additional supporting features. In the case of Taverna/BeanShell,

additional Java libraries can easily be configured within the tool but such

option was not readily available for Kepler/JPython.

Of the choices of implementation technology, the determination of which

is “easier” to a particular audience of developers is subjective. The choice

187



of BeanShell is somewhat obscure (the JSR is dormant [104]) but not

objectionable to a seasoned Java developer. Python is widely used within

scientific communities, but JPython certainly has its issues (see Section 7.4,

Comparing Workflows to OWP+PAN). JavaScript is less used for scientific

computation but increasingly being used for data visualization.

It became clear that to attain the best performance from either Kepler or

Taverna, writing components in Java or a language that compiles to efficient

byte code is a winning strategy. In the case of the Taverna workflow, the

interpolation was written in Java and used as a library by the BeanShell script.

We shall see how this helps the performance of the interpolation step for

Taverna. Such an enhancement can be considered for the Kepler workflow,

except that the ability to configure supporting libraries is not easily

deciphered.

As a final note about workflow implementation, both the Kepler and Taverna

tools required quite a bit of “Java trickery” to properly configure an XSLT

implementation that was capable of doing the data extraction via RDFa. While

both tools shipped with the ability to perform some basic XSLT

transformations, the choice of implementation was of poor quality. To make

these workflows work, the XSLT implementation had to be replaced within

the install and that turned out to be a non-trivial task. For Taverna, further

configuration outside of the install was necessary to provide the supporting

tools it required (i.e., “graphviz” for generating the workflow diagrams), and

that installation process had some additional issues as well.

In comparison, the OWP platform does not require any special modifications.

Any reasonably standards-compliant browser should be able to run the

interpolation process. The speed at which it can do so is directly related to

the quality of the implementation and the performance characteristics of the

machine on which it is run.
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Figure 7.2 Code Complexity
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7.4 Comparing Workflows to OWP+PAN

Scientific workflows can also be codified by libraries and scripts that are

embedded within applications whose steps are not necessarily uniquely

identified. The previous examples of computing within the OWP are

somewhere in between, where the OWP implementation employs scripts that

are chained together, and orchestrated by browser events, to accomplish the

task. As such, there exists a broad spectrum from tightly integrated code

through to abstract workflow steps that pass data between themselves.

With this ambivalence to data sources in mind, we performed a comparison

of the ability of these eScience workflow tools to carry out the Barnes

Interpolation process over the PAN-enabled data services of mesonet.info.

Each workflow was to carry out the same interpolation process, retrieving

data partition resources for 2.5° quadrangles, over rectangular geospatial

regions of increasing sizes to result in retrieval of 1, 4, 16, and 64 separate

data partition Web resources. The result of the interpolation is an SVG image
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that can be compared to the results from the OWP implementation from

mesonet.info.

An overall performance comparison of the three implementations is shown in

Figure 7.3, Overall Interpolation Comparison, that was performed for the sample

time period (30 minutes starting at 2014-01-29T20:00:00Z ) with four different

regions ([40°,-122.5°,37.5°,-120°], [40°,-125°,35°,-120°], [40°,-125°,30°,-115°],

and [40°,-125°,20°,-105°]) using 2.5° quadrangles and a 0.1° resolution on

the interpolation grid. As is easily seen, the Kepler workflow dominates the

chart and performs very slowly on progressively larger regions. The Taverna

workflow roughly keeps within the same factor as the OWP implementation,

with the OWP being the fastest.

These numbers reflect the choice of implementation technologies. Both Kepler

and Taverna are Java-based tools and component steps in the workflows are

some combination of Java classes. In the case of Taverna, general scripting of

steps is accomplished by using BeanShell. In contrast, Kepler uses JPython for

scripting steps.

The surprising result is that the same Barnes Interpolation algorithm

implemented in Python for the Kepler workflow and run via JPython is

significantly slower and takes up a majority of the processing time (e.g.,

87% for 64 partitions). The algorithm has a similar structure to the Java-

based implementation used in the Taverna workflow (see Appendix F, Barnes

Interpolation Implementation). Researching this result reveals that JPython has

significant penalties for array processing compared with other Python

implementations.

The Kepler workflow also suffers from slower data access speeds (i.e., 1.9

times longer than Taverna and 7.2 times longer than the OWP). The relative

performance of the access methods is most likely a function of the quality

of implementation of the Web access (e.g., HTTP GET) along with the
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Figure 7.3 Overall Interpolation Comparison
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The table of data above corresponds to the graph and all the measurements

are in seconds.

implementation’s ability to run a sequence of data manipulation steps over

a sequence of inputs in parallel. For processing individual requests, the data

extraction uses the same Java-based XSLT implementation and

transformation used by Taverna and so should be similar, but the result

shows it is not.

Looking specifically at Taverna versus the OWP, we can see more detail

(see Figure 7.4, Taverna vs OWP - Overall Comparison). Both implementations
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have linear performance characteristics but the Taverna implementation is

increasingly slower as the number of data partitions increases. While the

response times are not as fast as the OWP, the overall time for Taverna is not

completely unreasonable for offline processing.

Figure 7.4 Taverna vs OWP - Overall Comparison
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Separating the Barnes Interpolation from the data access shows where a

majority of the cost is being incurred in Taverna. As the number of data

partitions increases, the cost of the data access processing increases (see Figure

7.5, Taverna vs OWP - Data Access) while the interpolation remains a relatively

constant factor of the OWP platform (see Figure 7.6, Taverna vs OWP -

Interpolation). Significant improvements in overall processing time can be

attained by either improving the data access methods within Taverna or the

step choices and configuration within the workflow.

As both Taverna and Kepler are Java-based workflow engines, it might be

expected that they can take advantage of the advanced threading support of

Java to allow data access to occur in parallel. JavaScript within the OWP does

not have this ability in that there is only one main thread and computation is
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Figure 7.5 Taverna vs OWP - Data Access
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Figure 7.6 Taverna vs OWP - Interpolation
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interleaved by the use of callbacks. Yet, the OWP platform implementation is

able to get some parallel request processing and neither workflow platform

seems to do well in comparison.
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To this end, Taverna supports iteration directly within the workflow and

allows for automatic iteration over a sequence of items. In this particular

workflow, the iteration feature makes it easy to specify and apply a portion

of the workflow to the sequence of data partition URIs to generate a complete

result (the sparse grid of observed values). Unfortunately, the iteration does

not seem to take advantage of the natural parallelism of these requests and

this adds significantly to the processing time for larger regions.

It is unlikely that Kepler will have such a feature as its workflow uses a

director to sequence when steps occur. In attempts to get parallel requests, the

director needed to know exactly how many items were to be in the sequence.

It also lacked the ability to collect the result (i.e., a meet in the workflow

lattice) which was necessary for this workflow. Nevertheless, the problems

with Kepler in interpolation workflow were not caused by lack of iteration

features.

7.5 Does Partitioning Help?

As data access is a significant portion of the computation time, the question

arises as to whether partitioning helps tools such as Taverna or scripts written

for the OWP. The data shown in Figure 7.7, Partitioning and Data Access, is

the timing of the data access for the largest region (20° by 20° rectangle)

used in the previous timing experiment. The partition size was varied from

2.5° to 30° and the amount of time necessary to produce the sparse grid of

observed values was measured for both Taverna and the OWP. The same data

is accessed via different sized partitions and the result of the computation is

always the same.
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Figure 7.7 Partitioning and Data Access
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While the OWP remains relatively constant at under 5 seconds through

partitions up to size 15°, there is a dramatic drop in processing time for

Taverna from 2.5° to 5°. For some undetermined reason, the smallest partition

size, which causes the largest number of partitions to be retrieved, causes a

problem for Taverna. Note that at 5°, data access and processing times for

both systems are similar in relative performance and increase in the amount

of time necessary to process larger and larger partitions. There is a notably

large spike at 18° partitions which is due to poor intersections between the

requested region and the necessary fixed quadrangles.

The access times for Taverna and OWP are remarkably similar but this should

not be a great surprise. Both systems incur the same latency between request

and response for accessing the same data partition resources via the same

URIs. Ergo, the difference in processing time is a combination of how

efficiently the post-response processes can be performed and how much

parallelism is available.
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While the OWP platform performs consistently better for smaller partition

sizes, both systems approach the same amount of time as the partition size

grows larger. The data seems to confirm that there is a range of partition sizes

that are optimal; outside of this range a system will experience more data

access and processing time. While there are other factors that may affect the

choice of partition size, the choice of size can be experimentally determined.

In the end, data density across geospatial regions matters in terms of picking

an optimal partition size. While the optimal value can be experimentally

determined, smaller tends to be better for both tools. In case of tools such as

Taverna, partition sizes that result in too many requests detrimentally affect

the overall processing time. The OWP platform seems to have less issues

with many small requests, most likely due to the fact that the OWP has been

optimized to handle this case particularly well.

7.6 Summary

In some respects, we took these workflow tools outside of their “comfort

zone”, so the comparison is a bit unfair. Despite this, in terms of runtime

performance, Taverna performed reasonably well and Kepler perhaps a bit

less well. That the difference is in favor of PAN+OWP was more pronounced

in the area of ease of development is less surprising, given the somewhat

awkward fit of the task to Taverna and Kepler's application orientation. A

reverse experiment that takes a workflow already implemented in one or both

of the workflow tools and implements them within the OWP would also be

a useful test for the OWP platform and the PAN Methodology in the future.

Such an experiment would require providing data accessible over the Web via

services.
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The PAN Methodology addresses how data is published and accessed; this

is something that workflow tools remain silent about. Workflow tools have

preferred methods for accessing data in terms of format and size. As such,

there is a hidden assumption that, within eScience workflows, the data will be

accessible in a form that is easily processed by the workflow.

The PAN approach provides a new perspective that allows the OWP to

succeed in accomplishing some of the same things as eScience workflow tools.

Not only is the OWP sufficient and performs well, but it also provides a

level of uniformity in processing expectations due to its standardization. This

allows components to be packaged and distributed for common operations,

such as Map / Reduce or libraries for interpolation and visualization.

At the same time, when data is published via PAN, the use of existing tools

is not prevented. The data is accessible on the Web via the same expected

mechanisms of REST-oriented services. While a small layer of processing is

required to handle the RDFa annotations, existing tools seem quite capable

of manipulating and extracting data for their purposes without extraordinary

efforts by the user. As such, the methodology provides a way to bridge the

gap between past efforts using eScience workflow tools and future efforts on

the Web using the OWP.
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Chapter 8

Summary, Future Work, and
Conclusion

Publishing and sharing scientific data on the Web remains challenging and

there is ever an increasing demand for successful mechanisms to do so. There

is an increasing amount of data being collected, often by automated systems,

that can easily overwhelm both the publisher and consumer. At the same

time, there is an ever increasing demand for open and easily accessible

scientific data.

We have shown that much of the data being produced by government-related

scientific agencies is represented in tabular form. At the same time, a plethora

of formats for data sets have been unleashed, some of which only exist within

the archives of such agencies. Access to this historical record of scientific data

is inhibited by a variety of problems; data is problematic due to formats that

are obscure or hard to process and understand.

In looking at existing efforts by the data.gov, IVOA, and OGC, we see

early adopters of the Web who heavily embraced XML and Web technologies.

While their efforts resulted in standards that systems can use to exchange

information, aspects of their approach lack direct support within the current
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OWP. Consequently, accessing data archives lacks ease of use and requires

quite a bit of background knowledge on advanced XML technologies.

Where the data formats were developed to exchange tabular data (VOTable),

the lack of adoption of further semantic vocabularies has limited innovation.

Further, for data formats where tabular data was possibly an afterthought

(KML), the limited ability to precisely define the tabular data or the

inconvenient division of the data makes the format less useable. Many of these

efforts are limited by being designed for specific use cases (e.g. tool-to-tool

exchange or visual display).

The result is we see archives like data.gov or applications like Galaxy Zoo

that attempt to use these standards but fail to generalize. In some cases, the

tabular data has limited conversion potential because of the visual-orientation

format and limited knowledge of the “right” visualization. In others, the

format either fails to generalize or is used outside its intended context (e.g.

large compressed archives of VOTable documents).

To address all of these issues, we identified four essential qualities for

scientific data on the Web: identifiability, extensibility, flexibility, and

durability. We suggested achieving these qualities by re-using the existing

OWP combined with RDFa annotations. The qualities are then derived by

exposing data using the technologies of the Web; specifically, naming, simple

retrieval, and HTML with RDFa annotations.

Finally, the PAN Methodology describes how to publish data sets onto the

Web. The concept of partitioning data into reasonable-sized Web resources is

essential for viewing and processing live data on the Web. At the same time,

naming becomes important for the ability to access data and to provide the

infrastructure for referencing and annotation.
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The application of the PAN Methodology to the CWOP data set and its

implementation at mesonet.info provides the ability to test the

methodology on a large and ever-expanding data set. As data services on

the Web, the same information can serve both the OWP and other tools such

as eScience workflow tools like Taverna and Kepler. Use of this system, as

determined by the fact that same workflow is possible in all three systems,

demonstrates the openness and practicality of the methodology.

Moreover, not only is the resulting data easily accessible but computation

within the OWP over the data it is possible in real-time. The facilities inherent

in the OWP provide a stable basis for developing both libraries and

applications for processing data. This demonstrates the key outcome of

enabling experimentation on the Web by unintended uses; in turn, this

enables a network-effect for scientific data.

8.1 Open Questions

With respect to the PAN Methodology, some questions remain open:

1. How would the approaches of the IVOA standards be different and

what is the likelihood of adoption?

2. Can the role of HTML be replaced by other markup or data formats?

3. What are the practical limitations of computing over the data?

4. How should non-public data be shared and accessed?

IVOA continues to improve existing specifications and develop new

application areas. Recently, they published Data Access Layer Interface [105]

that “defines resources, parameters, and responses common to all DAL
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services.” This specification explicitly endorses the use of RDFa annotated

HTML as an alternative to an IVOA custom XML vocabulary for describing

services. As such, there is a conceptual basis already present to use RDFa as

an alternative to encode information that might otherwise be conveyed with

custom markup.

Members within the IVOA community have expressed their desire for RDFa

annotations and possible applications within existing markup schemes. They

have not yet gone so far as to replace the VOTable format. This is most likely

due to the current investments in systems and tools that support the VOTable

syntax.

Certainly nothing within the PAN Methodology limits the format of a data set

partition resource to only HTML annotated with RDFa. While browsers may

intrinsically understand HTML and provide additional operational semantics

(e.g., executing of scripts), any markup can have RDFa annotations. The

problem is not within the browser but the existing receiving applications. As

was noted before, KML, VOTable, and other markup vocabularies are defined

as closed vocabularies, and so, not only are the RDFa attributes not allowed

but tools may find them objectionable and fail to process the received data.

Given sufficient adoption of the PAN Methodology by scientific data

publishers, with all this data available for processing, brings us back to the

question of practical limits and how far can we push the OWP to compute

with this data. The Barnes Interpolation example gives some insight; a vast

majority of the time is spent retrieving data rather than processing it. As such,

the limitations are directly related to the cost of retrieval both in terms of time

and network bandwidth.

Many grid and column stores overcome this problem by facilitating data

locality. That is, they bring the processing closer to the data, often caching

columns of information across a cluster of computing nodes. This allows
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a computation to be orchestrated such that when the process required to

perform the task and a portion of the data are co-located, everything operates

locally.

Data and processor co-locality is a desirable properly for processing large

amounts of data quickly and the PAN methodology is designed to leverage

this property. PAN provides a basis for retrieving partitioned data without

necessarily having to load and process the whole data set. That is, processes

can be designed to decide which partitions are needed and only those data set

partitions are retrieved and stored locally.

Meanwhile, the idea of computing over live data is still viable and very

compelling. The tradeoff between the cost and complexity of a large column

storage cluster versus the simplicity of aggregating within browser is a

tradeoff of speed versus cost. Enabling such cost tradeoffs also enables

computing for small-and-medium-sized science or interdisciplinary

applications, where cost and support may represent major barriers.

Finally, there are issues related to sharing data that is not available under

open access licensing terms. As the PAN Methodology relies upon the Web,

there are many layered applications for security and controlling access to

data. Specifically, The OAuth 2.0 Authorization Framework [106] provides the

ability to use access tokens and other security mechanism to control access

to data. This allows the same PAN Methodology to be accessed over secure

networks by designated users.

8.2 Future Work

There are a number of possible next steps that fall under several categories:
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1. Technology Enhancements — scaling or enhancing the infrastructure

further to provide new insights such as:

◦ Automatic extraction of data into triples, KML, and other

common data formats.

◦ Scale-up the implementation via clustering and caching as the

current system only holds three months of data (300+ million

weather reports).

◦ Implementation and use of service descriptions (i.e., Appendix

B, Resource Schemes and Discovery).

◦ How would improvements in data partition retrieval times

improve or hinder the ability to compute? What are the

limitations before the data retrieval overwhelms the

computation?

◦ How can a Map / Reduce system (e.g., Hadoop) utilize a PAN-

enabled archive of data?

◦ How could OAuth 2.0 be integrated to control access to data

sets?

2. Verification — verifying the methodology against further existing data

sets or new use cases such as:

◦ Do the naming choices used for mesonet.info represent a

best practice? How can we verify the “social contract” of the

URI?

◦ How much data can be automatically converted (e.g., KML

or F025 marine mammal ecology data) and what additional

metadata is necessary?
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◦ How well does the iNaturalist database or an IVOA Simple

Cone Search service translate into a PAN-enabled archive?

◦ How could the use of the QUDT vocabulary be extended or

used more effectively to achieve some interoperability goals

similar to what IVOA was attempting to do with UCD+ labels?

3. Extension — extend the methodology beyond systems with records

and coordinate systems such as:

◦ Digital humanities applications (i.e., The Pompeii

Bibliography and Mapping Resource [107]),

◦ Biological databases (e.g., genomic or protein databases),

◦ Non-scientific data such as community, government, census

data, etc.,

◦ Other non-tabular data sets.

4. Outreach — facilitate adoption by:

◦ Develop and promote a “PAN Starter Kit” for both publishers

and consumers.

◦ The CWOP archive is coordinated in part by the US NOAA's

National Weather Service yet the property labels used by

mesonet.info are specific to itself. A common set of

weather-related properties would be useful to all and there are

a number of standards organizations that could help produce

such a standard.

◦ Ecology is a great example where the data is already crowd-

sourced and often “low-tech” but having the results in an
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open digital archive would be enormously useful. What are the

characteristics of the work flow and data and how does that

affect the resulting archive?

◦ Many journals have attempted or are attempting to provide

the ability to archive data sets that are often referenced in

published papers (e.g., Scientific Data from Nature, May 2014).

How well does a partitioned data set fit within their model?

Would an interactive model such as PAN be socially

acceptable to their business model?

◦ Work with IVOA to apply the PAN methodology for partition

data as an alternative to VOTable.

8.3 Conclusion

The PAN Methodology was born from a desire to address the needs of both

the professional and citizen scientist while providing access to any interested

party. The use of the OWP as a basis allows the PAN methodology to scale

down to very small data sets and this enables both medium and small scale

science to operate on the Web at a lower cost with increased network effects.

Compatibility with the OWP is maintained by allowing applications to crawl

and harvest data via the annotations.

Some current trends advocate exposing government and scientific data on the

“Semantic Web” and for providing a complex stack of semantically-enabled

(triple-aware) technologies. These trends ignore the need to enable a user

to consume data without complexity. In this respect, the PAN methodology

provides a useful middle ground between complex data representations or

services and simple expressions of partitioned tabular data. By doing so, PAN

206



enables the OWP platform to be an active participant; all that is required for

real work to be accomplished is a Web browser.

Providing the CWOP data through mesonet.info has demonstrated the

practical application of the methodology to a large and regular data set.

All the evaluations were enacted through the OWP and enabled by the

representation of previously unavailable data. The generation of complex

resultants (e.g., a Barnes Interpolation image) in real-time demonstrates how

enabling data within the OWP allows for unexpected consequences;

computations previously done offline are now available within the OWP.

The PAN Methodology provides publishers a straightforward way to provide

data on the Web that is computable within the OWP. They can provide one

set of data that is able to be explored and viewed by consumers while still

preserving the ability for tools and technology to compute over the very

same resources. The ability for both the OWP and eScience workflow tools,

like Taverna, to easily compute over the PAN-enabled mesonet.info data

demonstrates the tractability of this approach.

Enabling data access and manipulation within the OWP makes possible the

network effect on the Web for scientific data. Data that was once delegated to

the “download and process” model can now be made interactive. Tools and

applications can easily be deployed on the Web for professionals and citizen

scientists and a new set of participants: Web developers. By doing so, a wider

range of individuals are enabled to participate in scientific endeavors. Their

contributions are yet unforeseen but history has shown that with the open

empowerment of individuals comes dramatic innovation.
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Appendix A

Sequence Numbers

Each quadrangle can be uniquely identified by a positive integer, called a

sequence number, by numbering from a preferred pole and continuing around

by longitude as shown in Figure 5.5, Quadrangles where A=B=20°. Given any

point of latitude and longitude , the sequence number s can be

calculated by first translating the coordinates into range values (between 0

and 180 for latitude and 0 and 360 for longitude) and then applying a specific

formula:

s
s s s

where s is the longitude dimension (A) and s is the latitude dimension (B) of

the quadrangle.

In reverse, the sequence number s also defines a unique position P, the upper

northwest corner, that is calculated as follows:

N
s

N
s

z s N N
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For example, for weather station DW8568 located in San Francisco at

coordinates (37.74283,-122.46283) and a choice of quadrangle size of A=B=2.5,

the sequence number of the quadrangle that contains the station is 2976. This

quadrangle covers almost all of San Francisco, a good portion of the Bay Area,

and inland towards Sacramento. The point P for sequence number 2976 is

calculated to be (40,-122.5). Using the values for A and B, the whole extent of

the quadrangle can be calculated to be [40, -122.5, 37.5, -120].

In summary, sequence numbers map to specific quadrangles of a given size

and any coordinate that belongs to one of these quadrangles can be associated

with the quadrangle's sequence number. This ability to go back a forth

between a sequence number and coordinate is an easy calculation and useful

for client applications. These properties make sequence numbers desirable to

use in addressing geospatial regions when requesting data over the Web.
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Appendix B

Resource Schemes and Discovery

While the PAN ontology provides specific properties for both starting points

(summary) and associating partitions with data sets (partition), it is not

always the case that these properties are directly observable. For example,

a set of partitions are only discovered by accessing a summary

(PartitionSummary typed resources) and then following the links to

partitions. Applications and other systems wishing to enumerate partitions

directly via metadata need more information about the choices and schemes

used to encoded basic facets into URIs.

To address this, a DataSet may describe a set of “resource schemes”

represented by ResourceScheme class instances that are essentially URI

templates (see Figure B.1, ResourceScheme Class). Each template has a set of

variables and parameters that can be substituted to create an actual URI

used for retrieving a starting point. This URI can then be used to retrieve a

representation that can be processed for annotations.

Figure B.1 ResourceScheme Class

DataSet

ResourceScheme

partitionedBy 
[1..*]

summarizedBy 
[1..*]

There are two general properties for resource schemes, summarizedBy and

partitionedBy, whose relationships are shown in context in Figure B.2,
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Resource Schemes and Partitions. The summarizedBy property is intended

to result in PartitionSummary instances and is used to retrieve

summarizations of sets of partitions.

Similarly, the partitionedBy property is an alternative way to understand

how to directly access a data set partition resource and results in a

Partition typed resource. In the case where an application just needs data

set partitions, they can enumerate directly over basic facet ranges and use

the URI template provided by this resource scheme to construct URIs for

the various data partition resources. As such, they can avoid retrieving and

traversing a summary of partitions resource for that same basic facet range.

Figure B.2 Resource Schemes and Partitions

"metadata"

PartitionSummary

DataSet

ResourceScheme

template

partitionedBysummarizedBy
summary

ResourceScheme

template

"http://...{param}..." "http://...{param}..."

Partition
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Instances of the ResourceScheme class describe a URI template that can

be used to construct the URI of a resource. The substitution variables are

described as facets that an application can map to known quantities. While

not necessarily completely automatic, these classes give more information to

tools which can result in hints to users for how they might access data.
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Appendix C

Scripting Details

An application can locate columns by navigating from the document into

the annotation graph and examining the column properties. Once a desired

column has been located, the column's subject URI can be used to navigate

back to the particular element in the document. This process (see Figure C.1,

Finding Air Temperature) demonstrates how an application uses this script to

determine the index of a particular column of data.

Figure C.1 Finding Air Temperature

var columns = document.data.getValues(table.data.id,"pan:column");
var column = null;  // A variable to hold the subject URI.

for (var i=0; !column && i<columns.length; i++) {
// Find the column labeled with the air temperature property
if (document.data.getValues(columns[i],"pan:property")

.indexOf("http://mesonet.info/airTemperature")>=0) {
column = columns[i];

}
}

// Find the index by finding the column element by subject URI.
var index = document.getElementsBySubject(column)[0].cellIndex;

As the API currently lacks more complex query capabilities, finding joint

values such as “air temperature whose unit is Celsius” is more complicated.

The PAN ontology attaches the unit to the valueSpace property's subject

and so the iteration must navigate an additional set of properties in the

annotation graph (see Figure C.2, Finding Air Temperature and Unit), and is only

slightly more complicated.

In both examples, the table column can be located in each row by using the

cellIndex property. This property provides the array index of the table
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Figure C.2 Finding Air Temperature and Unit

var columns = document.data.getValues(table.data.id,"pan:column");
var column = null; // A variable to hold the subject URI.

for (var i=0; !column && i<columns.length; i++) {
// Find the column labeled with the air temperature property
if (document.data.getValues(columns[i],"pan:property")

.indexOf("http://mesonet.info/airTemperature")>=0) {

// Find the subject URI (blank node) of the value space
var valueSpace = document.data.getValues(columns[i],"pan:valueSpace")[0];
if (document.data.getValues(valueSpace,"pan:unit")

.indexOf("http://qudt.org/vocab/unit#DegreeCelsius")>=0) {
column = columns[i];

}
}

}

// Find the index by finding the column element by subject URI.
var index = document.getElementsBySubject(column)[0].cellIndex;

cell within each rows property array value. An application can now simply

enumerate the table rows, skipping the column definitions, and pick out the

specific column of data by accessing the value (see Figure C.3, Enumerating a

Column).

Figure C.3 Enumerating a Column

for (var i=1; i<table.rows.length; i++) {
var cell = table.rows[i].cells[index];
...

}

The Map / Reduce library requires that the particular columns of interest

be identified before the process starts. An array of column descriptions (e.g.,

property URI, unit description, etc.) are constructed by the user (see Figure

C.4, Using Map / Reduce to Calculate Average Temperature). Afterwards, the user

must only supply the map and reduce functions and then apply the instance

to particular region and time period.

Each of these Map / Reduce functions are passed an array of data. In the case

of the map function, an array of rows of data is passed to the function. It is

expected to return a value that will be collected in the result. The process is
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similar for the reduce function except that it receives the an array of all the

return values from all the invocations of the map function.

Figure C.4 Using Map / Reduce to Calculate Average Temperature

// Calculate Average Temperature

var mr = new MapReduce();

// The date/time as of now.
var endDateTime = new Date();
// The date/time as of one hour ago.
var startDateTime = new Date(endDateTime.getTime()-60*60*1000);

mr.init("http://www.mesonet.info/");
mr.columns.push({ uri: "http://mesonet.info/airTemperature",

unit: "http://qudt.org/vocab/unit#DegreeFahrenheit" });

// Calculates the average per quadrangle data partition
mr.mapper = function(data) {

var total = 0;
var count = 0;
for (var i=0; i<data.length; i++) {

total += data[i][0];
count++;

}
return total / count;

}

// Calculates the average over all quadrangles
mr.reducer = function(data) {

var total = 0;
for (var i=0; i<data.length; i++) {

total += data[i];
}
return total / data.length;

}
mr.apply(

[38,-123,37,-122],         // geospatial region
startDateTime,endDateTime, // time period
2.5                        // quadrangle size

);

The process for producing a sparse grid of average values for a specific

property (e.g., air temperature) is shown in Figure C.5, Example Barnes

Interpolation Script and how that class uses the Map / Reduce library is shown

in Figure C.6, Example Grid Average Script. The grid average map process

finds values and places them into specific cells of the grid. Afterwards, the

reduction constructs a full grid and calculates a mean value for cells that have

observed values.
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Once the grid average Map / Reduce process finishes, the interpolation can

be run on the grid. The interpolation process needs the location of each grid

cell and that is precomputed in Figure C.5, Example Barnes Interpolation Script.

A simple invocation to that Barnes Interpolation implementation (listed in

Figure F.1, Barnes JavaScript Implementation) then populates the whole grid

with interpolated values.

Figure C.5 Example Barnes Interpolation Script

// Input Parameters
var duration = 60*60*1000;
var endDateTime = new Date();
var startDateTime = new Date(endDateTime.getTime()-duration); // one hour ago
var region = [40,-125,35,-120];

// Initialize grid average map/reduce
// Note: Uses MapReduce class internally.
var gridavg = new GridAverage("http://www.mesonet.info/data/");
gridavg.onComplete = function(grid) {

// Compute actual position of each grid cell
for (var i=0; i<grid.length; i++) {

for (var j=0; j<grid[i].length; j++) {
grid[i][j].position = [ app.region[0]-j*app.resolution,

app.region[1]+i*app.resolution];
}

}

// Interpolate over the grid
var interpolator = new BarnesInterpolation();
interpolator.interpolate(grid);

// display grid in browser ...
}

// Perform grid averaging map/reduce for quadrangles of size 2.5 degrees
gridavg.apply(region,startDateTime,endDateTime,2.5)

The triple harvester invocation uses the Map / Reduce library again (see

Figure C.7, Harvester Implementation). A set of mappings of roles to property

URIs are given in the initialization of the object instance. These property

URIs are used to map PAN ontology triples to the target vocabulary. In

this particular case, the resulting triples will only use properties in the

http://mesonet.info namespace.
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Figure C.6 Example Grid Average Script

// Input Parameters
var duration = 60*60*1000;
var endDateTime = new Date();
var startDateTime = new Date(endDateTime.getTime()-duration); // one hour ago
var region = [40,-125,35,-120];
var resolution = 2.5;

var dimLat = Math.ceil( Math.abs(region[0]-region[2]) / resolution);
var dimLon = Math.ceil(Math.abs(region[1]-region[3]) / resolution);

// Initialize MapReduce engine
var mr = new MapReduce();
mr.parallelMax = 4;
mr.init("http://www.mesonet.info/data/");

// Define columns from the mesonet data we need
mr.columns.push({ uri: "http://mesonet.info/id" });
mr.columns.push({ uri: "http://mesonet.info/lat" });
mr.columns.push({ uri: "http://mesonet.info/long" });
mr.columns.push({ uri: "http://mesonet.info/airTemperature",

unit: "http://qudt.org/vocab/unit#DegreeCelsius" });

// Setup the map, reduce, and completion tasks

// mapper produces grid cell entries by computing mean values
mr.mapper = function(data) {

var cells = {};

// Collect values for each observation into cells
for (var i=0; i<data.length; i++) {

if (data[i][3]===null || isNaN(data[i][3])) {
continue;

}
var latitude = data[i][1];
var longitude = data[i][2];
var latOffset = Math.abs(mr.context.quadrangle[0] - latitude);
var longOffset = Math.abs(mr.context.quadrangle[1] - longitude);
var position = [ Math.floor(latOffset / resolution),

Math.floor(longOffset / resolution) ];
if (dimLat==position[0]) {

position[0]--;
}
if (dimLon==position[1]) {

position[1]--;
}
var key = position[0]+","+position[1];

var cell = cells[key];
if (!cell) {

cell = {
position: position,
values: []

};
cells[key] = cell;

}

cell.values.push(data[i][3]);
}
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// Compute mean for values within a certain standard deviation
for (var key in cells) {

var cell = cells[key];

cell.mean = cell.values.reduce(
function(previous,current) { return previous+current}

) / cell.values.length;

var sdev = Math.sqrt(
cell.values.map(

function(current) {
var diff = current - cell.mean;
return diff*diff;

}
).reduce(

function(previous,current) { return previous+current; }
) / cell.values.length);

var tolerance = sdev<1 ? 3 : 3*sdev;
cell.accepted = [];
for (var i=0; i<cell.values.length; i++) {

if (Math.abs(cell.mean - cell.values[i])<tolerance) {
cell.accepted.push(cell.values[i]);

}
}
cell.finalMean = cell.accepted.length==0 ?

cell.mean :
cell.accepted.reduce(

function(previous,current) { return previous+current}
) / cell.accepted.length;

}
return cells;

}

// Reducer combines cell entries into a single grid
mr.reducer = function(data) {

var grid = [];
for (var i=0; i<dimLon; i++) {

var row = [];
grid.push(row);
for (var j=0; j<dimLat; j++) {

row[j] = { value: Number.NaN, means: [] };
}

}
for (var i=0; i<data.length; i++) {

for (var key in data[i]) {
var cell = data[i][key];
try {

var gridCell = grid[cell.position[1]][cell.position[0]];
gridCell.means.push(cell.finalMean);
gridCell.value = gridCell.means.reduce(

function(previous,current) { return previous+current}
) / gridCell.means.length;

} catch (ex) {
console.log("Cannot process grid cell "+key+" at position "+i);
throw ex;

}
}

}
return grid;

}

// Perform map/reduce for quadrangles of size 2.5 degrees
mr.apply(region,startDateTime,endDateTime,2.5)
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Figure C.7 Harvester Implementation

var mr = new MapReduce();
mr.init("http://www.mesonet.info/data/");
mr.columns.all = true;
harvester = new CombineHarvester(mr,

{
id: "http://mesonet.info/id",
rowType: "http://mesonet.info/Report",
groupType: "http://mesonet.info/Station",
collectionType: "http://mesonet.info/Weather",
columnType: "http://mesonet.info/Column",
groups: "http://mesonet.info/stations",
items: "http://mesonet.info/reports",
title: "http://mesonet.info/title",
datatype: "http://mesonet.info/datatype",
quantity: "http://mesonet.info/quantity",
multiple: "http://mesonet.info/multiple",
unit: "http://mesonet.info/unit",
symbol: "http://mesonet.info/symbol",
value: "http://mesonet.info/value",
valueSpace: "http://mesonet.info/valueSpace"

},
{

"w" : "http://mesonet.info/" ,
"unit" : "http://qudt.org/vocab/unit#",
"quantity" : "http://qudt.org/vocab/quantity#"

}
);
mr.mapper = harvester.getMapper();
mr.reducer = harvester.getReducer();
mr.apply(region,startDateTime,endDateTime,size);
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Appendix D

Annotation Triples

Note that all the classes and properties in the ontology used are in the

http://pantabular.org/ namespace but their property values may take

on structures from other ontologies (e.g., http://schema.org/GeoShape

or QUDT units). All ontology references in this appendix should be assumed

to belong to the PAN ontology unless prefixed and, when necessary for clarity

or syntax, the pan: prefix will be used for the PAN ontology.

Figure D.1 Partition Summary Triples

@prefix pan: <http://pantabular.org/> .
<http://www.mesonet.info/data/q/36/2013-11-27T20:30:00Z> a pan:PartitionSummary;
pan:range _:1;
pan:count "24421";

_:1 a pan:FacetPartition;
pan:start "2013-11-27T20:30:00Z";
pan:end "2013-11-27T21:00:00Z";
pan:length "PT30M" .

Figure D.2 Labeled Table Triples

@prefix pan: <http://pantabular.org/> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .
_:4 a pan:LabeledTable;
pan:title "Weather Report Count by Quadrangle of size 36° by 36°";
pan:entry _:5 .

_:5 a pan:Entry;
pan:valueType xsd:int;
pan:columnLabel <http://www.w3.org/2003/01/geo/wgs84_pos#lat>;
pan:rowLabel <http://www.w3.org/2003/01/geo/wgs84_pos#long> .

Figure D.6 Partition Link Triples

@prefix pan: <http://pantabular.org/> .

<> pan:next <http://www.mesonet.info/data/q/5/n/840/2013-09-04T05:00:00Z>
<http://www.mesonet.info/data/q/5/n/840/2013-09-04T05:00:00Z> a pan:Partition;

pan:range _:1 .
_:1 a pan:FacetPartition;

pan:length "PT30M";
pan:start "2013-09-04T05:00:00Z" .
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Figure D.3 Labeled Table Row Triples

@prefix pan: <http://pantabular.org/> .
_:4 pan:label _:7, _:8, _:9, ..., _:17, ... .
_:7 a pan:ColumnLabel;
pan:value "-180" .

_:8 a pan:ColumnLabel;
pan:value "-144" .

_:9 a pan:ColumnLabel;
pan:value "-108" .

...
_:17 a pan:RowLabel;
pan:value "90" .

Figure D.4 Data Partition Triples

@prefix pan: <http://pantabular.org/> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .
@prefix schema: <http://schema.org/> .

<http://www.mesonet.info/data/q/36/n/28/2013-11-27T20:30:00Z> a pan:Partition;
pan:count "31";
pan:range _:1, _:2 .

_:1 a pan:FacetPartition;
pan:facet <http://www.mesonet.info/data/#receivedTime>;
pan:valueType xsd:dateTime;
pan:start "2013-11-27T20:30:00Z";
pan:end "2013-11-27T21:00:00Z";
pan:length "PT30M" .

_:2 a pan:FacetPartition;
pan:facet <http://www.mesonet.info/data/#latitude>,

<http://www.mesonet.info/data/#longitude>;
pan:shape _:3 .

_:3 a schema:GeoShape;
schema:box "18 -108 -18 -108 -18 -72 18 -72" .
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Figure D.5 Data Partition Table Triples

@prefix pan: <http://pantabular.org/> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .
_:21 a pan:Table;
pan:column _:27, ..., _:43, _:45, ... .

_:27 a pan:Column;
pan:title "Station";
pan:property <http://mesonet.info/id>;
pan:valueSpace _:28 .

_:28 a pan:ValueDescription;
pan:datatype xsd:string;
pan:quantity dc:identifier .

_:43 a pan:Column;
pan:title "Temperature";
pan:property <http://mesonet.info/airTemperature>;
pan:valueSpace _:44 .

_:44 a pan:ValueDescription;
pan:symbol "C";
pan:datatype xsd:double;
pan:quantity <http://qudt.org/vocab/quantity#ThermodynamicTemperature>;
pan:unit <http://qudt.org/vocab/unit#DegreeCelsius> .

_:45 a pan:Column;
pan:title "Humidity";
pan:property <http://mesonet.info/airHumidity>;
pan:valueSpace _:46 .

_:46 a pan:ValueDescription;
pan:symbol "%";
pan:datatype xsd:int;
pan:quantity <http://qudt.org/vocab/quantity#AbsoluteHumidity>;
pan:unit <http://qudt.org/vocab/unit#Percent> .

Figure D.7 Summary Link Triples

@prefix pan: <http://pantabular.org/> .
<http://www.mesonet.info/data/q/36/n/6/2013-09-04T04:30:00Z> a pan:Partition;

pan:count "165" .
<http://www.mesonet.info/data/q/36/n/7/2013-09-04T04:30:00Z> a pan:Partition;

pan:count "16" .

Figure D.8 Summary Row Triples from mesonet.info

@prefix pan: <http://pantabular.org/>
<_:data> pan:label <_:1> .
<_:1> a pan:RowLabel ; pan:value "40" .
<n/757/2013-10-29T21:00:00Z> a pan:Partition;

pan:count "0" .
<n/758/2013-10-29T21:00:00Z> a pan:Partition;

pan:count "0" .
...
<n/768/2013-10-29T21:00:00Z> a pan:Partition;

pan:count "217" .
<n/769/2013-10-29T21:00:00Z> a pan:Partition;

pan:count "80" .
<n/770/2013-10-29T21:00:00Z> a pan:Partition;

pan:count "22" .
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Figure D.9 Previous & Next Link Annotation Triples

@prefix pan: <http://pantabular.org/> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

<http://www.mesonet.info/data/q/36/2013-11-21T00:30:00Z>
a pan:PartitionSummary;
pan:range _:1;
pan:count "12141";
pan:previous <http://www.mesonet.info/data/q/36/2013-11-21T00:00:00Z>;
pan:next <http://www.mesonet.info/data/q/36/2013-11-21T01:00:00Z>;
pan:item _:4 .

_:1 a pan:FacetPartition;
pan:facet <http://www.mesonet.info/data/#receivedTime>;
pan:valueType xsd:dateTime;
pan:start "2013-11-21T00:30:00Z";
pan:end "2013-11-21T01:00:00Z";
pan:length "PT30M" .

<http://www.mesonet.info/data/q/36/2013-11-21T00:00:00Z>
a pan:PartitionSummary;
pan:range _:2 .

_:2 a pan:FacetPartition;
pan:facet <http://www.mesonet.info/data/#receivedTime>;
pan:valueType xsd:dateTime;
pan:length "PT30M";
pan:start "2013-11-21T00:00:00Z" .

<http://www.mesonet.info/data/q/36/2013-11-21T01:00:00Z>
a pan:PartitionSummary;
pan:range _:3 .

_:3 a pan:FacetPartition;
pan:facet <http://www.mesonet.info/data/#receivedTime>;
pan:length "PT30M";
pan:start "2013-11-21T01:00:00Z" .
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Figure D.10 LabeledTable Annotation Triples

@prefix pan: <http://pantabular.org/> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .
@prefix schema: <http://schema.org/> .

_:4 a pan:LabeledTable;
pan:title """Weather Report Count

by
Quadrangle of size 36° by 36°""";
pan:entry _:5;
pan:label _:7, _:8, _:9, _:10, _:11, _:12, _:13, _:14, _:15,

_:16, _:17, _:18, _:19, _:20, _:21 .

_:5 a pan:Entry;
pan:description "Weather Report Count";
pan:valueType xsd:int;
pan:summaryOf _:6;
pan:linkType pan:Partition;
pan:columnLabel <http://www.w3.org/2003/01/geo/wgs84_pos#lat>;
pan:rowLabel <http://www.w3.org/2003/01/geo/wgs84_pos#long> .

_:6 a schema:GeoShape;
schema:description "Quadrangle";
schema:box "0 0 36 0 36 36 0 36" .

_:7 a pan:ColumnLabel;
pan:value "-180" .

_:8 a pan:ColumnLabel;
pan:value "-144" .

_:9 a pan:ColumnLabel;
pan:value "-108" .

_:10 a pan:ColumnLabel;
pan:value "-72" .

_:11 a pan:ColumnLabel;
pan:value "-36" .

_:12 a pan:ColumnLabel;
pan:value "0" .

...

_:17 a pan:RowLabel;
pan:value "90" .

<http://www.mesonet.info/data/q/36/n/6/2013-11-21T00:30:00Z>
a pan:Partition;
pan:count "55" .

<http://www.mesonet.info/data/q/36/n/7/2013-11-21T00:30:00Z>
a pan:Partition;
pan:count "12" .

<http://www.mesonet.info/data/q/36/n/8/2013-11-21T00:30:00Z>
a pan:Partition;
pan:count "0" .

<http://www.mesonet.info/data/q/36/n/9/2013-11-21T00:30:00Z>
a pan:Partition;
pan:count "4" .

<http://www.mesonet.info/data/q/36/n/10/2013-11-21T00:30:00Z>
a pan:Partition;
pan:count "72" .

<http://www.mesonet.info/data/q/36/n/1/2013-11-21T00:30:00Z>
a pan:Partition;
pan:count "257" .

...
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Figure D.11 Nearby Link Annotation Triples

@prefix pan: <http://pantabular.org/> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .
@prefix schema: <http://schema.org/> .

<http://www.mesonet.info/data/q/36/n/16/2013-11-21T01:00:00Z>
a pan:Partition;
pan:count "50";
pan:range _:timePeriod, _:1;
pan:previous <http://www.mesonet.info/data/q/36/n/16/2013-11-21T00:30:00Z>;
pan:nearby <http://www.mesonet.info/data/q/36/n/5/2013-11-21T01:00:00Z>,

<http://www.mesonet.info/data/q/36/n/6/2013-11-21T01:00:00Z>,
<http://www.mesonet.info/data/q/36/n/7/2013-11-21T01:00:00Z>,
<http://www.mesonet.info/data/q/36/n/15/2013-11-21T01:00:00Z>,
<http://www.mesonet.info/data/q/36/n/17/2013-11-21T01:00:00Z>,
<http://www.mesonet.info/data/q/36/n/25/2013-11-21T01:00:00Z>,
<http://www.mesonet.info/data/q/36/n/26/2013-11-21T01:00:00Z>,
<http://www.mesonet.info/data/q/36/n/27/2013-11-21T01:00:00Z>;

pan:next <http://www.mesonet.info/data/q/36/n/16/2013-11-21T01:30:00Z>;
pan:item _:21 .

<http://www.mesonet.info/data/#reports>
pan:partition <http://www.mesonet.info/data/q/36/n/16/2013-11-21T01:00:00Z> .

_:timePeriod a pan:FacetPartition;
pan:facet <http://www.mesonet.info/data/#receivedTime>;
pan:valueType xsd:dateTime;
pan:start "2013-11-21T01:00:00Z";
pan:end "2013-11-21T01:30:00Z";
pan:length "PT30M" .

_:1 a pan:FacetPartition;
pan:facet <http://www.mesonet.info/data/#latitude>,

<http://www.mesonet.info/data/#longitude>;
pan:shape _:2 .

_:2 a schema:GeoShape;
schema:box "54 180 18 180 18 -144 54 -144" .

<http://www.mesonet.info/data/q/36/n/5/2013-11-21T01:00:00Z> a pan:Partition;
pan:range _:4, _:timePeriod .

_:4 a pan:FacetPartiton;
pan:facet <http://www.mesonet.info/data/#latitude>,

<http://www.mesonet.info/data/#longitude>;
pan:shape _:5 .

_:5 a schema:GeoShape;
schema:box "90 144 54 144 54 -180 90 -180" .
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Figure D.12 Weather Report Triples

@prefix w: <http://mesonet.info/> .
@prefix unit: <http://qudt.org/vocab/unit#> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

_:1 a w:Report;
w:id "AD6QC"^^xsd:string;
w:lat 37.983;
w:long -122.59467;
w:receivedAt "2013-11-11T22:09:48.000Z"^^xsd:dateTime;
w:windDirection "0"^^xsd:int;
w:windSpeed 0;
w:airTemperature (_:2 _:3);
w:airHumidity "80"^^xsd:int;
w:airPressure "102010"^^xsd:int;
w:rainLastHour 0;
w:rainLastDay 0;
w:rainSinceMidnight 0 .

_:2 w:value 61;
w:unit unit:DegreeFahrenheit .

_:3 w:value 16.1;
w:unit unit:DegreeCelsius .

...

Figure D.13 Navigation Triples

@prefix w: <http://mesonet.info/> .

_:2681 a w:Weather;
w:reports (_:1 ... _:2676);
w:stations (_:3218 ... _:4072) .

_:3218 a w:Station;
w:id "AD6QC";
w:reports _:3219 (_:1 _:6 _:11) .

...

_:4072 a w:Station;
w:id "psychon";
w:reports ( _:2676);
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Figure D.14 Column Definition Triples

@prefix w: <http://mesonet.info/> .
@prefix unit: <http://qudt.org/vocab/unit#> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .
@prefix dc: <http://purl.org/dc/terms/> .
@prefix quantity: <http://qudt.org/vocab/quantity#> .

w:id a w:Column;
w:title "Station";
w:valueSpace _:4394 .

_:4394 w:datatype xsd:string;
w:quantity dc:identifier .

w:lat a w:Column;
w:title "Latitude";
w:valueSpace _:4395 .

_:4395 w:datatype xsd:double;
w:quantity <http://www.w3.org/2003/01/geo/wgs84_pos#lat> .

w:long a w:Column;
w:title "Longitude";
w:valueSpace _:4396 .

_:4396 w:datatype xsd:double;
w:quantity <http://www.w3.org/2003/01/geo/wgs84_pos#long> .

...

_:4401 a w:Column;
w:title "Temperature";
w:valueSpace _:4402 .

_:4402 w:datatype xsd:double;
w:quantity quantity:ThermodynamicTemperature;
w:symbol "F";
w:unit unit:DegreeFahrenheit .

_:4403 a w:Column;
w:title "Temperature";
w:valueSpace _:4404 .

_:4404 w:datatype xsd:double;
w:quantity quantity:ThermodynamicTemperature;
w:symbol "C";
w:unit unit:DegreeCelsius .

w:airTemperature w:multiple (_:4401 _:4403) .
w:airHumidity a w:Column;
w:title "Humidity";
w:valueSpace _:4407 .

_:4407 w:datatype xsd:int;
w:quantity quantity:AbsoluteHumidity;
w:symbol "%";
w:unit unit:Percent .
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Appendix E

eScience Workflows

The workflow for Taverna that implements this process is shown in Figure

E.1, Taverna Interpolation Workflow. Each of the steps, with the exception of

fetching the Web resources, are implemented in BeanShell and colored in

tan. The iteration of the sequence generated by the “Generate URIs” step is

implicit and not shown in the diagram. Taverna knows from annotations that

“Generate URIs” produces a list, applies the “Get_Web_Page_from_URL”

and “Extract” steps to the list, and then merges the result back into a single

string.

Since Taverna only passes strings between steps, the result is now a text string

that contains a sequence of elements. A document element is wrapped around

this string by concatenating a start and end tag and the resulting XML text is

input to “Calcgrid” step, where the sparse grid is computed via a BeanShell

script.

Finally, the Barnes Interpolation is computed via a BeanShell script using a

supporting Java library (see Figure F.2, Barnes Java Implementation) written to

support this workflow to produce the interpolated grid. The full set of values

are provided as an XML document serialized to text and passed to the last step

to render as an SVG document. Taverna has no ability to pass each document

produced as a non-serialized DOM object even though all steps run within the

same virtual machine environment.
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Figure E.1 Taverna Interpolation Workflow

The workflow diagram, generated by Taverna via graphviz, has some

rendering issues and arrows are misplaced.

The Kepler workflow is shown in Figure E.2, Kepler Interpolation Workflow, and

is divided into a similar number of steps, but the steps are allow to produce

non-string output. As such, a list of URIs is passed to the “fetch” step and

the “extract” step processes a set of retrieved Web Resources into a single

document. This workflow will use an increasing amount of memory as it does

not support iteration and processes all the data in each step.
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The output of the “Calc Grid” step is an in-memory document object that

holds an XML representation of the observed values as a sparse grid. No

serialization of this document is incurred when the “Barnes Interpolation”

step receives the data. The interpolation process (see Figure F.3, Barnes Python

Implementation) produces a grid of values (an array of arrays of numbers) that

is passed directly to be rendered into SVG.

Figure E.2 Kepler Interpolation Workflow
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Both workflows use the same XSLT 2.0 transform to extract the data from the

Web pages via their RDFa annotations. In Figure E.3, Extraction XSLT - Find the

Table, the table of data is found in the document by traversing the annotations.

Once the partition and table are found, certain facts are found out about the

partition being processed.

Afterwards, in Figure E.4, Extraction XSLT - Processing the Table, the table is

processed to extract the column of data. In this particular case, the set of

columns and the property label for temperature are fixed. Those particular

choices could easily be parametrized to make the extraction more generic.

Figure E.3 Extraction XSLT - Find the Table

<xsl:template match="/">
<xsl:apply-templates select="(//*[rdfa:is-type(.,'http://pantabular.org/Partition')])[1]"/>

</xsl:template>

<xsl:template match="*[rdfa:is-type(.,'http://pantabular.org/Partition')]">
<xsl:variable name="shape" select="

for $e in rdfa:element-with-property(.,'http://pantabular.org/range')
return rdfa:element-with-property($e,'http://pantabular.org/shape')

"/>
<xsl:variable name="timePeriod" select="

for $e in rdfa:element-with-property(.,'http://pantabular.org/range')
return if (rdfa:element-with-property($e,'http://pantabular.org/start')) then $e else ()

"/>
<xsl:variable name="table" select="rdfa:element-with-property(.,'http://pantabular.org/item')"/>
<xsl:variable name="box" select="

tokenize(rdfa:element-with-property($shape,'http://schema.org/box'),'\s+')
"/>

<xsl:variable name="quad" select="($box[1], $box[2], $box[3], $box[6])"/>
<xsl:variable name="start" select="

rdfa:element-property-value(
rdfa:element-with-property($timePeriod,'http://pantabular.org/start'))

"/>
<xsl:variable name="end" select="

rdfa:element-property-value(
rdfa:element-with-property($timePeriod,'http://pantabular.org/end'))

"/>
<data quad="{$quad}" start="{$start}" end="{$end}">

<xsl:apply-templates select="$table"/>
</data>

</xsl:template>

Finally, in both workflows, an SVG document is generated. The output is

fixed to 500 x 500 pixel image that is divided into rectangles based on the

input region. Each rectangle is color coded on a scale of -10° to 37° C by first

mapping to 350 to 750 nanometer wavelengths of light and then translating

that value into an RGB value. This produces the characteristic image of deep
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Figure E.4 Extraction XSLT - Processing the Table

<xsl:template match="h:table">
<xsl:variable name="indices" select="

for $c in rdfa:element-with-property(.,'http://pantabular.org/column')
return

if (rdfa:element-property-value(
rdfa:element-with-property($c,'http://pantabular.org/property')) =

'http://mesonet.info/id')
then concat('id=',count($c/preceding-sibling::*)+1,' ')
else if (rdfa:element-property-value(

rdfa:element-with-property($c,'http://pantabular.org/property')) =
'http://mesonet.info/lat')

then concat('lat=',count($c/preceding-sibling::*)+1,' ')
else if (rdfa:element-property-value(

rdfa:element-with-property($c,'http://pantabular.org/property')) =
'http://mesonet.info/long')

then concat('lon=',count($c/preceding-sibling::*)+1,' ')
else if (rdfa:element-property-value(

rdfa:element-with-property($c,'http://pantabular.org/property')) =
'http://mesonet.info/airTemperature')

then if (rdfa:element-property-value(
rdfa:element-with-property(
rdfa:element-with-property($c,'http://pantabular.org/valueSpace'),
'http://pantabular.org/unit'))='http://qudt.org/vocab/unit#DegreeCelsius')

then concat('T=',count($c/preceding-sibling::*)+1,' ')
else ()

else ()
"/>

<xsl:variable name="sindices" select="concat(string-join($indices,' '),' ')"/>
<xsl:variable name="idIndex"

select="number(substring-before(substring-after($sindices,'id='),' '))"/>
<xsl:variable name="latIndex"

select="number(substring-before(substring-after($sindices,'lat='),' '))"/>
<xsl:variable name="lonIndex"

select="number(substring-before(substring-after($sindices,'lon='),' '))"/>
<xsl:variable name="TIndex"

select="number(substring-before(substring-after(string-join($sindices,' '),'T='),' '))"/>
<xsl:apply-templates select="h:tbody">

<xsl:with-param name="idIndex" select="$idIndex" tunnel="yes"/>
<xsl:with-param name="latIndex" select="$latIndex" tunnel="yes"/>
<xsl:with-param name="lonIndex" select="$lonIndex" tunnel="yes"/>
<xsl:with-param name="TIndex" select="$TIndex" tunnel="yes"/>

</xsl:apply-templates>
</xsl:template>

<xsl:template match="h:tbody">
<xsl:param name="idIndex" tunnel="yes"/>
<xsl:param name="latIndex" tunnel="yes"/>
<xsl:param name="lonIndex" tunnel="yes"/>
<xsl:param name="TIndex" tunnel="yes"/>
<observations id="{h:tr[1]/h:td[$idIndex]}"

lat="{h:tr[1]/h:td[$latIndex]}" lon="{h:tr[1]/h:td[$lonIndex]}">
<xsl:value-of select="string-join(h:tr/h:td[$TIndex],' ')"/>

</observations>
</xsl:template>

blue/purple hues for cold areas and reds hues for hot areas. The rendering

process is quickly executed in both workflows via Python or BeanShell.
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Appendix F

Barnes Interpolation Implementation

The Barnes Interpolation algorithm was implemented in JavaScript (see Figure

F.1, Barnes JavaScript Implementation), Java (see Figure F.2, Barnes Java

Implementation), and Python (see Figure F.3, Barnes Python Implementation). The

algorithm is the same in all three implementations except for slight differences

in the choices of inputs. Both the Java and Python implementations take a list

of observed values while the JavaScript implementation requires a full grid

containing empty cells associated with NaN (not a number) values.

The process is divided into three sections:

1. Generate a grid, the same size as the output, whose values are the

distanced from the grid entry (0,0). This will be used to retrieve the

distance between any two grid cells. Distance calculations use the

Haversine formula for pairs of latitude and longitude coordinates with

radius of the earth of 6378.1 km.

2. A complete grid is populated with initial values where each weight is

computed relative to each observed value.

3. A preset number of additional computation passes are computed for

the interpolated value. If the grid cell for each observed value is within

a preset difference (error tolerance), the process will terminate early.
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Figure F.1 Barnes JavaScript Implementation

var clat = grid[0][0].position[0];
var clon = grid[0][0].position[1];
var observed = [];
var distances = [];
for (var i=0; i<grid.length; i++) {

for (var j=0; j<grid[i].length; j++) {
distances.push([]);
if (!isNaN(grid[i][j].value)) {

observed.push({ position: [ i, j], value: grid[i][j].value });
}
distances[i].push(this.D(clat,clon,grid[i][j].position[0],grid[i][j].position[1]));

}
}

// pass 0: initial weighted sum
for (var i=0; i<grid.length; i++) {

for (var j=0; j<grid[i].length; j++) {
var osum = 0;
var wsum = 0;
for (var o=0; o<observed.length; o++) {

var oi = observed[o].position[0];
var oj = observed[o].position[1]
var x = i<oi ? oi-i : i-oi;
var y = j<oj ? oj-j : j-oj;
var d = distances[x][y];
var w = Math.exp(-1*Math.pow(d/this.R,2)/this.C[0]);
osum += w*observed[o].value;
wsum += w;

}
grid[i][j].e = osum/wsum;

}
}
// pass 1 through N
var converged = false;
for (var pass=1; !converged && pass<this.limit; pass++) {

var cindex = pass>=this.C.length ? this.C.length-1 : pass;
// compute subsequent estimated values from errors from past value
for (var i=0; i<grid.length; i++) {

for (var j=0; j<grid[i].length; j++) {
var osum = 0;
var wsum = 0;
for (var o=0; o<observed.length; o++) {

var oi = observed[o].position[0];
var oj = observed[o].position[1]
var x = i<oi ? oi-i : i-oi;
var y = j<oj ? oj-j : j-oj;
var d = distances[x][y];
var w = Math.exp(-1*Math.pow(d/this.R,2)/this.C[cindex]);
osum += w*(observed[o].value - grid[i][j].e);
wsum += w;

}
grid[i][j].e = grid[i][j].e + osum/wsum;

}
}
// check for convergence of observed values within the tolerance
var nearenough = true;
for (var o=0; o<observed.length; o++) {

if (Math.abs(observed[o].value-grid[observed[o].position[0]][observed[o].position[1]].value) >
this.tolerance) {
nearenough = false;

}
}
converged = nearenough;

}
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Figure F.2 Barnes Java Implementation

double [][] grid = new double[gridDimX][gridDimY];
double [][] distances = new double[gridDimX][gridDimY];
for (int x=0; x<distances.length; x++) {

for (int y=0; y<distances[x].length; y++) {
double gx = gridPosX + x*gridSizeX;
double gy = gridPosY + y*gridSizeY;
double d = this.D(gridPosX,gridPosY,gx,gy);
distances[x][y] = d;

}
}

// pass 0: initial weighted sum
for (int i=0; i<grid.length; i++) {

for (int j=0; j<grid[i].length; j++) {
double osum = 0;
double wsum = 0;
for (int o=0; o<observations.length; o++) {

int [] pos = observations[o].getPosition();
int x = i<pos[0] ? pos[0]-i : i-pos[0];
int y = j<pos[1] ? pos[1]-j : j-pos[1];
double d = distances[x][y];
double w = Math.exp(-1*Math.pow(d/this.R,2)/this.C[0]);
osum += w*observations[o].getValue();
wsum += w;

}
grid[i][j] = osum/wsum;

}
}

// pass 1 through N
boolean converged = false;
for (int pass=1; !converged && pass<this.passLimit; pass++) {

int cindex = pass<this.C.length ? pass : this.C.length-1;
// compute subsequent estimated values from errors from past value
for (int i=0; i<grid.length; i++) {

for (int j=0; j<grid[i].length; j++) {
double osum = 0;
double wsum = 0;
for (int o=0; o<observations.length; o++) {

int [] pos = observations[o].getPosition();
int x = i<pos[0] ? pos[0]-i : i-pos[0];
int y = j<pos[1] ? pos[1]-j : j-pos[1];
double d = distances[x][y];
double w = Math.exp(-1*Math.pow(d/this.R,2)/this.C[cindex]);
osum += w*(observations[o].getValue() - grid[i][j]);
wsum += w;

}
grid[i][j] = grid[i][j] + osum/wsum;

}
}
// check for convergence of observed values within the tolerance
boolean nearenough = true;
for (int o=0; o<observations.length; o++) {

int [] pos = observations[o].getPosition();
if (Math.abs(observations[o].getValue()-grid[pos[0]][pos[1]])>this.tolerance) {

nearenough = false;
}

}
converged = nearenough;

}
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Figure F.3 Barnes Python Implementation

distances = []
for x in range(0,gridDimX):

distances.append([])
for y in range(0,gridDimY):

gx = gridPosX + x*gridSizeX
gy = gridPosY + y*gridSizeY
d = self.D(gridPosX,gridPosY,gx,gy)
distances[x].append(d)

# pass 0: initial weighted sum and create grid
grid = [];
for i in range(0,gridDimX):

grid.append([])
for j in range(0,gridDimY):

osum = 0.0
wsum = 0.0
for o in range(0,len(observations)):

pos = observations[o]["pos"]
x = pos[0]-i if i<pos[0] else i-pos[0]
y = pos[1]-j if j<pos[1] else j-pos[1]
d = distances[x][y]
w = math.exp(-1*math.pow(d/self.R,2)/self.C[0])
osum += w*observations[o]["value"]
wsum += w

grid[i].append(osum/wsum)

# pass 1 through N
for p in range(1,self.passLimit):

cindex = p if p<len(self.C) else len(self.C)-1

# compute subsequent estimated values from errors from past value
for i in range(0,gridDimX):

for j in range(0,gridDimY):
osum = 0.0
wsum = 0.0
for o in range(0,len(observations)):

pos = observations[o]["pos"]
x = pos[0]-i if i<pos[0] else i-pos[0]
y = pos[1]-j if j<pos[1] else j-pos[1]
d = distances[x][y]
w = math.exp(-1*math.pow(d/self.R,2)/self.C[cindex])
osum += w*(observations[o]["value"] - grid[i][j])
wsum += w

grid[i][j] = grid[i][j] + osum/wsum

# check for convergence of observed values within the tolerance
nearenough = True;
for o in range(0,len(observations)):

pos = observations[o]["pos"]
if math.fabs(observations[o]["value"]-grid[pos[0]][pos[1]])>self.tolerance:

nearenough = False
break

if nearenough:
break;
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Colophon

This dissertation was encoded in XML using Docbook 5 schemas as a single

book. Within the Docbook XML, MathML was used for any mathematics and

SVG was primarily used for diagrams.

Authoring was performed using the Oxygen XML Editor from Syncro Soft.

Original diagrams were created in the iDraw software from Indeeo.

Transformations were performed via the Calabash XProc implementation

written by Norman Walsh. The print output was produced by Prince XML.

The print production was performed by an XProc pipeline that transforms the

document in several stages. The Docbook markup is first transformed into

HTML that preserves some of the structure through a combination of HTML

elements and RDFa annotations. A subsequent transformation readies that

document for print. Finally, the Prince formatter is applied to produce PDF

output via a variety of CSS stylesheets.
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