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1 Introduction

In their seminal paper on Clifford modules Atiyah et al. [2] describe a far-reaching
interrelation between the representation theory of Clifford algebras and topological
K-theory. This point of view inspired Milnor’s exposition [11] of Bott’s proof of the
periodicity theorem for the homotopy groups of the orthogonal group. The unique
flavor of Milnor’s approach is that a very peculiar geometric structure (centrioles in
symmetric spaces) which is related to algebra (Clifford representations) leads to basic
results in topology, via Morse theory on path spaces.

In the paper at hand we rethink Milnor’s approach and investigate how far his meth-
ods can be extended. In fact, they allow dependence on arbitrary many extrinsic local
parameters. Thus we may replace the spheres in Milnor’s computation of homotopy
groups by sphere bundles over any finite CW-complex. Among others this leads to a
geometric perspective of Thom isomorphism theorems in topological K-theory.

This interplay of algebra, geometry and topology is characteristic for the mathe-
matical thinking of Manfredo do Carmo. We therefore believe that our work may be
a worthwhile contribution to his memory.

Recall that a Euclidean vector bundle E of rank p over a sphere S” can be described
by its clutching map ¢ : "' — SO p»- Infact, over the upper and lower hemisphere E
is the trivial bundle R”, and ¢ identifies the two fibers R” along the common boundary
S"~! as in the following picture.
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Milnor in his book on Morse theory [11] describes a deformation procedure that
can be used to simplify these clutching maps ¢. The main idea in [11] is viewing the
sphere as an iterated suspension and the map ¢ as an iterated path family in SO, with
prescribed end points, and then Morse theory for the energy functional on each path
space is applied. However in a strict sense, Morse theory is not applied but avoided: it is
shown that the non-minimal critical points (geodesics) have high index, so they do not
obstruct the deformation of the path space onto the set of minima (shortest geodesics)
via the negative gradient flow of the energy. Thus the full path space is deformed
onto the set of shortest geodesics whose midpoint set can be nicely described in terms
of certain totally geodesic submanifolds P; (“centrioles”). In fact there is a chain of
iterated centrioles SO, D P; D P> D --- such that the natural inclusion of P; into
the path space of P;_ is d-connected for some large d and for all j (that s, it induces

E
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an isomorphism in homotopy groups 7 for k < d and a surjection on my). This is
sufficient for Milnor’s purpose to understand the topology of the path spaces in order
to compute the stable homotopy groups of SO, (Bott periodicity).

In [8] we went one step further and deformed the whole map ¢ into a special form:
the restriction of a certain linear map ¢, : R” — RP*P. The latter defines a module
structure on R? for the Clifford algebra Cl,_;, which turns the given bundle E into
the Hopf bundle for this Clifford module. As shown in [8] this leads to a conceptual
proof of [2, Theorem (11.5)], expressing the coefficients of topological K-theory in
terms of Clifford representations, and thus gives a positive response to the remark in
[2, page 4]: “It is to be hoped that Theorem (11.5) can be given a more natural and
less computational proof™.

In the present paper we will put this deformation process into a family context,
aiming at a description of vector bundles over sphere bundles in terms of Clifford
representations. More specifically, let V. — X be a Euclidean vector bundle over a
finite CW-complex X and let V=S(R®V)—> X bethe sphere bundle of the direct
sum bundle R @ V. It is a sphere bundle with two distinguished antipodal sections
(%1, 0). Similar as before a vector bundle & — V can be constructed by a fiberwise
clutching function along the “equator spheres” S(V') in each fibre, and one may try to
bring this clutching function into a favorable shape by a fiberwise deformation process
similar as the one employed in [8].

We will realize this program if V is oriented and of rank divisible by four in order
to derive bundle theoretic versions of classical Bott-Thom isomorphism theorems
in topological K-theory. For example let tk V = 8m and assume that V — X is
equipped with a spin structure. Let . — V be the spinor Hopf bundle associated to the
chosen spin structure on V and the unique (ungraded) irreducible Clg,, -representation,
compare Definition 8.8. Then each vector bundle & — V is — after addition of trivial
line bundles and copies of . — isomorphic to a bundle of the form Ey & (E; ® .¥),
where Ey, E1 are vector bundles over X. Moreover the stable isomorphism types of
Eop and E| are determined by the stable isomorphism type of &, see Remark 9.3.
In K-theoretic language this amounts to the classical Thom isomorphism theorem in
orthogonal K-theory, compare part (a) of Theorem 10.7.

Atiyah in his book on K-theory [1, p. 64] proved an analogous statement for complex
vector bundles & — L where L — X is a Hermitian line bundle and [. = P(CoL) =
S(R@® L) — X is the complex projective bundle with fibre CP! = S?. Now the
clutching map of & is defined on the circle bundle S(L) and can be described fiberwise
by Fourier polynomials with values in Gl,(C). Then the higher Fourier modes are
removed by some deformation on Gl,(C) after enlarging p = rk(&’); only the first
(linear) Fourier mode remains. In our case of higher dimensional S"-bundles, Fourier
analysis is no longer available. However, using Milnor’s ideas, we still can linearize the
clutching map along every fibre. But linear maps from the sphere to SO, are nothing
else than Clifford representations (cf. Proposition 2.2).

Our paper is organized as follows. In Sect. 2 we recall some notions from the
theory of Clifford modules. Section 3 relates the theory of Clifford modules to iterated
centrioles in symmetric spaces. This setup, which implicitly underlies the argument
in [11], provides a convenient and conceptual frame for our later arguments.
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A reminder of the Morse theory of the energy functional on path spaces in symmetric
spaces is provided in Sect. 4 along the lines in [11]. This is accompanied by some
explicit index estimates for non-minimal geodesics in Sect. 5. Different from [11] we
avoid curvature computations using totally geodesic spheres instead.

After these preparations Sect. 6 develops a deformation theory for pointed mapping
spaces Map, (S¥, SO »), based on an iterative use of Morse theory on path spaces in
symmetric spaces. When R? is equipped with a Cl-representation, Map,, (Sk, so »)
contains the subspace of affine Hopf maps associated to Clifford sub-representations
on R? (compare Definitions 2.1, 7.9). Our Theorem 7.10 gives conditions under which
this inclusion is highly connected.

Section 8 recalls the construction of vector bundles over sphere bundles by clutching
data and provides some examples. The central part of our work is Sect. 9, where we
show that if V' — X is an oriented Euclidean vector bundle of rank divisible by four,
then vector bundles & — V are, after stabilization, sums of bundles which arise from
CI(V)-module bundles over X by the clutching construction and bundles pulled back
from X. We remark that up to this point our argument is not using topological K-theory.

The final Sect. 10 translates the results of Sect. 9 into a K-theoretic setting and
derives the CI(V)-linear Thom isomorphism theorem 10.3 in this language. This
recovers Karoubi’s Clifford—Thom isomorphism theorem [9, Theorem IV.5.11] in the
special case of oriented vector bundles V' — X of rank divisible by four. In this
respect we provide a geometric approach to this important result, which is proven in
[9] within the theory of Banach categories; see Discussion 10.10 at the end of our paper
for more details. Together with the representation theory of Clifford algebras it also
implies the classical Thom isomorphism theorem for orthogonal K-theory. Finally,
for completeness of the exposition we mention the analogous periodicity theorems for
unitary and symplectic K-theory, which are in part difficult to find in the literature.

2 Recollections on Clifford modules

Let (V, (, )) be a Euclidean vector space. Recall that the Clifford algebra C1(V) is the

R-algebra generated by all elements of V with the relations vw + wv = —2(v, w) - 1
for all v, w € V, or equivalently, for any orthonormal basis (ey, ..., e;) of V,
eiej +eje; =—251‘j. 2.1

For V = R”" with the standard Euclidean structure we write Cl,, := CI(R").
LetK € {R, C, H}. An (ungraded) C1(V)-representation is a K-module L together
with a homomorphism of R-algebras

p:CI(V) - Endg(L).
In other words, L is a C1(V) ® K-module. We also speak of real, complex, respectively
quaternionic C1(V)-representations.

Let (eq, ..., e,;) be an orthonormal basis of V and put J; = p(e;). Due to (2.1)
these are anticommuting K-linear complex structures on L, that is Jl-2 = —I and
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JiJk = —JiJ; for i # k. We also speak of a Clifford family (Jy, ..., J,). This
implies that all J; are orientation preserving (for K = C, H this already follows from
K-linearity).

In the following we restrict to real CI(V)-modules; for complex or quaternionic
CI(V)-modules similar remarks apply. We may choose an inner product on L such
that J; € SO(L); equivalently all J; are skew adjoint. In this case we also speak of an
orthogonal CI(V)-representation. With the inner product

(A, B) := tr(AT o B)

dim L

on End(L) this implies J; L Jr and J; L idy for 1 < i # k < n. In particular we
obtain an isometric linear map R @ V — End(L),

(t,v)—~t-idr + p(v).

By the previous remarks it sends the unit sphere S(R @ V) C R @ V into the special
orthogonal group SO(L) C End(L).

Definition 2.1 We call the restriction
nw:SRe V) — SO(L)
the Hopf map associated to the orthogonal Clifford representation p.

Isometric linear maps R @ V — End(L) are in one-to-one correspondence with
isometric embeddings S(R & V) — S(End(L)) onto great spheres. This leads to the
following geometric characterization of Clifford representations.

Proposition 2.2 Let L be a Euclidean vector space and let
w:SR®V)— S(End(L))
be an isometric embedding as a great sphere, which satisfies
pSR@ V) CSOL), w(l,0)=idg.

Then w is the Hopf map of an orthogonal Clifford representation C1(V) — End(L).

Proof By assumption u is the restriction of a linear map R & V — End(L). If
A, B € image(u) C SO(L), then A + B € R - SO(L) by assumption, hence

(A+B)" (A+B)=t-id
for some ¢ € R. Furthermore

A+BT - (A+B) =ATA+B"B+A"B+BTA=2.1+ATB+BTA,
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and hence
ATB+BTA=5-id

withs =1 — 2.

Taking the trace on both sides we have s = 2(A, B). If A = I and B L I, this
implies B+ BT = 0.For A, B L id we hence get the Clifford relation AB + BA =
—2(A, B) -id. O

The structure of the real representations of Cl,, is well known (cf. [10, p.28]).
They are direct sums of irreducible representations p,. These are unique and faithful
when n # 3 mod 4. Otherwise there are two such p,, which are both not faithful
and differ by an automorphism of Cl,,. The corresponding modules S,, and algebras
Cp := pn(Cl,) are as follows.

Theorem 2.3 (Periodicity theorem for Clifford modules)

n0123 4 5 6 7 8 8+k
S, RCHH H2 C* O O 0* 0O?*QS
s, 1244 8 8 8 8 16 16s¢

C, RCHHHE2) C4) R(8) R(8) R(16) R(16)®Cx

2.2)

where s, = dim S,,. Here K(p) denotes the algebra of (p x p)-matrices over K. For
n = 3 and n =7, the two different module structures on S,, = K for K = H, O are
generated by the left and the right multiplications, respectively, with elements of the
“imaginary” subspace R" = Im K = R+ c K.

The action of (x, £) € RT3 = R @ O on Siig = 0% ® Sy = (0 ® Sy)? is given
by

x —L(E)T>
x, &)=
Pr+8(x, &) (L(S) e
where L(§) = L(§) ®idg, denotes the left translation on O, and where x € R¥ ¢ Cli
actson S = 1 ® S by pk.

3 Poles and centrioles

Clifford modules bear a close relation to the geometry of symmetric spaces. Let P be
a Riemannian symmetric space: for any p € P there is an isometry s, of P which is
an involution having p as an isolated fixed point. Two points o, p € P will be called
polesifs, = s,. The notion was coined for the north and south pole of a round sphere,
but there are many other spaces with poles; e.g. P = SOy, witho =T and p = —1I,
or the Grassmannian P = G, (R?") with o = R” and p = (R")*. Of course, pairs of
poles are mapped onto pairs of poles by isometries of P.

A geodesic y connecting poles o = y(0) and p = y (1) is reflected into itself at o
and p and hence it is closed with period 2.
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p

Now we consider the midpoint set M between poles o and p,
M={m=y (%) : y shortest geodesic in P withy (0) = o, y (1) = p}.

For the sphere P = S" with north pole o, this set would be the equator. In general,
M need not be connected, but it is still the fixed point set of a reflection (order-two
isometry) r on P .I'Hence the connected components of M, called (minimal) centrioles
[6], are totally geodesic subspaces of P — otherwise short geodesic segments y in the
ambient space P with end points in a component of Fix(r) would not be unique:

Py

. r
) Fix(r) >

Each such midpointm = y (%) determines its geodesic y uniquely, and thus the set
of minimal geodesics can be replaced with M: if there is another geodesic y from o to
p through m, it can be made shorter by cutting the corner at m, thus it is not minimal:

Y
Y
0 Y m~__ P

There are chains of minimal centrioles (centrioles in centrioles):

PO>PIDP,D--- 3.1)

Peter Quast [14,15] classified all such chains starting from a compact simple Lie group
P = G with at least 3 steps. The result is (3.2) below. The chains 1,2,3 are introduced
in Milnor’s book [11].

No. G Py P P Py restr.
1 (S)O4n SO4p /Uy U2n/spn Gy (H™) Spm m = %
2 (SUz Gu(C™) U, Gu(C" Uy, m=35
3 Sp, Sp,/Ua U,/0, Gu@®") SO, m=3; (3.2)
4 Spin, ., Q. (S'xS"HhE 2 3 >3
5

E; E7/(S1E6) SlE6/F4 QP2 —

! There is acoveringw : P — P with n(p) = (o) where P= {sp:pePyClso(P),andr =y os,
where y is the deck transformation of 7 with y (o) = p.
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By G, (K") we denote the Grassmannian of m-dimensional subspaces in K" for K e
(R, C, H}. Further, Q,, denotes the complex quadric in CP"*!, which is isomorphic
to the real Grassmannian G;r (R"+2) of oriented 2-planes in R"*2, and OP? is the
octonionic projective plane F4/ Sping.

A chain is extendible beyond Py if and only if P contains poles again. E.g. among
the Grassmannians P3 = G, (K") only those of half dimensional subspaces (m = 75)
enjoy this property: Then (E, E™) is a pair of poles for any E € G, 2(K™), and the
corresponding midpoint set is the group Oy /2, Up/2, Sp,, 5 since its elements are the
graphs of orthogonal K-linear maps E — E-, see figure below.

€L

E ¥(1/2)

M+i

For compact connected matrix groups P = G containing —/, there is a linear
algebra interpretation for the iterated minimal centrioles P;. We only consider classical
groups.

Theorem 3.1 Let L = K” with K € {R, C, H} and G € {SO,, U,, Spp} with p even
in the real case. Then a chain of minimal centrioles

GOPID---DP

corresponds to a Cly-representation Jy, ..., Jy on L with J; € G, and each P;j is the
connected component through J; of the set

Pi={JeG:J =—1,JJ=—JJfori < j) (3.3)
Proof A geodesic y in G with y(0) = [ is a one-parameter subgroup, a Lie group

homomorphism? y : R — G. When y(1) = —I, then y(%) = J is a complex
structure, J> = —I. Thus the midpoint set Py is the set of complex structures in G.

2 Let y : R — G be a smooth group homomorphism. Its curvature vector field n = V., is y-invariant,
n(t) = y(t)«n(0). When n # 0, the neighbor curve y;(t) = expy(,)(sn(t)) is another y-orbit, ys(f) =
y (t)gs. Deforming in the curvature vector direction shortens a curve, thus yg is shorter than y on any finite

interval.

¥s

But on the other hand y; = R(gs)y has the same length as y since R(gy) is an isometry of G. Thus n = 0.
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By induction hypothesis, we have anticommuting complex structures J; € P; for
i < j,and P; is the connected component through J; of the set P; as in (3.3). Suppose
that also

~Jjep;. (3:4)

Consider a shortest geodesic y from J; to —J; in P;. Put J = y(%) € Pj. Thus
J anticommutes with J; for all i < j. It remains to show that J anticommutes with
Jj, too. Since P; is totally geodesic, y is a geodesic in G, hence y = y,J; where
¥, 18 a one-parameter group with y,(1) = —I which again implies that J, := yo(%)
is a complex structure. But also J € P; is a complex structure, J = —J, and
since J = y(%) = JoJj, this means J;J, = —J,J;. Thus both J, and J = J,J;
anticommute with J;, hence J € ﬁj+1 as defined in (3.3).

Vice versa, let J € P i+1, thatis J € G is a complex structure anticommuting with
Ji,...,Jj. Then J, :=JJ jfl € G is a complex structure which anticommutes with
J; and commutes with J;, i < j. Further, from J; ! = —J, and JT = J-! we obtain
JOT = —J,, thus J, € G Ng C Endg (L) where g denotes the Lie algebra of G (here
we use G = SO(L) N Endk (L)). Putting y,(¢) = exp(tmw J,) we define a geodesic y,
in G from y,(0) = I to y,(1) = —1 via y(%) = J,. In fact this is shortest in G, being
a great circle in the plane spanned by I and J,. Further, the geodesic y = y,J; from
Jj to —Jj is contained in P}, due to the subsequent Lemma 3.2 (applied to A = 7 J,),
and it is shortest in P; (even in the ambient space G). Thus J is contained in the
midpoint set of (P}, J;). a

Lemma3.2 Let A € g. Thenexp(tA)J; € P; forall t € R if and only if
A anticommutes with Jj and commutes with J; fori < j. 3.5)

Proof [11, p.137] For generic t € R we have: A anticommutes with J; <=
Jj_1 exp(tA)J; = exp(—tA) < exp(tA)J; = Jjexp(—tA) = —(exp(tA)Jj)_1
<= (A):exp(tA)J; is a complex structure.

Further, A commutes with J; <= J; commutes with exp(A)

<= (B): exp(tA)J; anticommutes with J; (withi < j).

(A)and (B) <= exp(tA)J; € P;. O

Remark 3.3 The proof of Theorem 3.1 shows that the induction step can be carried
through as long (3.4) holds. This condition limits the length & of the chain of minimal
centrioles.

4 Deformations of path spaces

Minimal centrioles in P are also important from a topological point of view: Since
they represent the set of shortest geodesics from o to p, they form tiny models of the
path space of P. This is shown using Morse theory of the energy function on the path
space [11].
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Definition 4.1 An inclusion A C B of topological spaces is called d-connected for
some d € N if for any k < d and any continuous map ¢ : (DX, 9D¥) — (B, A) there
is a continuous deformation ¢, : DF — B,0 <r < 1, with

do=¢, ¢1(D") C A, @y constantinz.

This implies the same property for (D, dDX) replaced by a finite CW-pair (X, ¥) with
dimY < dim X < d by induction over the dimension of the cells in X not contained
in Y and homotopy extension (see Corollary 1.4 in [5, Ch. VII]).

Let (P, 0) be a pointed symmetric space and p a pole of 0. Let Q := Q(P; 0, p)
be the space of all continuous paths w : [0, 1] — P with w(0) = o and w (1) = p (for
short we say w : 0 ~» p in P), equipped with the compact-open topology (uniform
convergence). Furthermore let QO(P; 0, p) C Q(P; o0, p) be the subspace of shortest
geodesics y : 0 ~» p. The following theorem is essentially due to Milnor [11].

Theorem 4.2 Let
Q. C Q(P;0,p)
be a connected component of 2(P; o, p) and
Q' c,

be the subspace of minimal geodesics y : 0 ~ p in Q. Let d + 1 be the smallest
index of all non-minimal geodesics 0 ~~ p in Q.
Then the inclusion Qg C Q4 is d-connected.

We recall the main steps of the proof. The basic idea is using the energy function

1
E(w) = / o' (1)|*dt. (4.1)
0

for each path w € Q, which is H'! (almost everywhere differentiable with square-
integable derivative). Applying the gradient flow of — E we may shorten all H'-paths
simultaneously to minimal geodesics.

Since the energy is not defined on all of ., we will apply this flow only on the
subspace of geodesic polygons 2, C 2, for large n € N (to be chosen later), where
each such polygon w € 2, hasits vertices at w (k/n),k = 0, ..., n, and the connecting
curves are shortest geodesics. For any » € N with n|r we have @, C ;. Furthermore
QY c Q, forall n.

Lemma4.3 For all k > 0 there exists an n such that the inclusion Q, C Q is
k-connected.

3 When w is reparametrized proportional to arc length (which does not increase energy), we have E(w) =
|w’|2 = L(a))z. Thus L is minimized when E is minimized.
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Proof Let ¢ : D¥ — Q* with ¢(3D*) C ,. We consider ¢ as a continuous map
D* x [0, 1] — P. This is equicontinuous by compactness of DX x [0, 1].

Let R be the convexity radius on P, which means that for any ¢ € P and any
q',q" € Bgr(q) the shortest geodesic between ¢’ and ¢” is unique and contained in
Br(q). By equicontinuity, when 7 is large enough and x € D* arbitrary, ¢ (x) maps
every interval [kn;l, ’%1] into Br (¢ (x, %)) C P,fork=1,...,n—1.

Let¢g : D* — ©,, such that ¢1(x) is the geodesic polygon with vertices at ¢ (x)(,%)
for k =0, ..., n. Using the unique shortest geodesic between ¢ (x)(s) and ¢ (x)(s)
for each s € [0, 1], we define a homotopy ¢, between ¢ and ¢; with ¢;(x) = ¢ (x)

when x € 9Dk, o
For w € , let wy = a)l[kn;l, S] fork = 1,...,n. Its length is L(wy) = %lw,’(|,
its energy E(wr) = %|w,’<|2 = n - L(wy)?. The distance between the vertices

a)(’%l), w(%) is the length of w; which is < /E(w)/n since E(w) > E(wy) =
n - L(wg)?.

Forc > 0let Q) = {w € Q, : E(w) < c}. We have Qg = Q. where ¢, is
the energy of a shortest geodesic. By continuity, £ o ¢; has bounded image, hence
¢1(X) C Qf for some ¢ > 0. When n is large enough, more precisely n > c/R?,
any two neighboring vertices of every @ € Qf lie in a common convex ball, hence the
joining shortest geodesic segments are unique and depend smoothly on the vertices.

Thus we may consider 2, as the closure of an open subsetof P x --- x P ((n —1)-
times) with its induced topology.

Lemma 4.4 The inclusion Q0 C Q, is d-connected for d as in Theorem 4.2.

Proof Let ¢ : D — Q¢, 0 < k < d, with $(dDF) c QU. The space Q¢ is finite
dimensional and contains all geodesics of length < +/c from o to p. It is a closed
subset of P x --- x P ((n — 1)-times), and its boundary points are the polygons in
2, whose energy takes its maximal value c. The gradient of —E on Q¢ is a smooth
vector field and its flow is smooth, too.

The index of any geodesic is the same in €2, and €2,, see [11, Lemma 15.4].
Hence the index of a non-minimal geodesic y in 2, (a “saddle” for E) is at least
d + 1, and ¢, (D) can avoid the domains of attraction for all these geodesics. The
energy decreases along the gradient lines starting on ¢, (D*), thus these curves avoid
the boundary of Q¢ and they end up on the minimum set of E, the set of minimal
geodesics. Hence we can use this flow to deform ¢ into some ¢ : DF — 522 without
changing ¢|px. O
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Proof of Theorem 4.2 Let ¢ : DX — Q.. k < d, with ¢(3D*) ¢ Q0. By Lemma 4.3
we may (after a deformation which is constant on dD¥) assume that ¢ (D¥) C Q¢ for
some large n. Now the claim follows from Lemma 4.4. O

5 A lower bound for the index

How large is d in Theorem 4.2? This has been computed in [11, §23,24] and [81.4
We slightly simplify Milnor’s arguments replacing curvature computations by totally
geodesic spheres. An easy example is the sphere itself, P = S". A non-minimal
geodesic y between poles o and p covers a great circle at least one and a half times
and can be shortened within any 2-sphere in which it lies (see figure below). There are
n — 1 such 2-spheres perpendicular to each other since the tangent vector y'(0) = ¢;
(say) is contained in n — 1 perpendicular planes in the tangent space, Span (ey, ¢;)
with i > 2. Thus the index is > n — 1, in fact > 2(n — 1) since any such geodesic
contains at least 2 conjugate points where it can be shortened by cutting the corner,
see figure.

0 p 0 p

For the groups P = G = SO, Up, Sp,, (p even) and their iterated centrioles
we have similar results. The Riemannian metric on G is induced from the inclusion
G C End(K?) with K = R, C, H respectively, where the inner product on K?*? =
End(K?) is

(A, B) = l Re trace (A*B) (5.1)
p

for any A, B € KP*P where A* := AT . In particular, (I, I) = 1.

Proposition 5.1 The index of any non-minimal geodesic from I to —I in SO, is at
least p — 2.

Proof A shortest geodesic from / to —/ in SO, is a product of p/2 half turns, planar
rotations by the angle 7 in p/2 perpendicular 2-planes in R”. A non-minimal geodesic
must make an additional full turn and thus a 3 -rotation in at least one of these planes,
say in the x1 x2-plane. We project y onto a geodesic yj in asubgroup SO4 C SO, sitting
in the coordinates x1, x2, Xx—1, Xk, for any even k € {4, ..., p}. Then y; consists of 3
half turns in the xx>-plane together with (at least) one half turn in the x;_x;-plane.

In the torus Lie algebra t of so4, which is R* = t = {(*/,,) :a,b € R} for
J = (,7"), wehave y1(t) = exprrv with v = (3/ ;) = (}) for short. Now we
use SO4 = L(SHR(S?) = (S? x $%)/+, where the two S*-factors correspond to
the vectors (1), (_!;) € t (the left and right multiplications by i € H on H = R*).
Decomposing v with respect to this basis we obtain v = 2 (1) + (! ). Thus the lift of

4 A different argument using root systems was given by Bott [4, 6.7] and in more detail by Mitchell [12,13].
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y1in S? x S3 has two components: one is striding across a full great circle, the other
across a half great circle. The first component passes the south pole of S* and takes
up index 2. Since there are (p — 2)/2 such coordinates x; the index of a non-minimal
geodesic in SO, is at least p — 2 (compare [11, Lemma 24.2]). |

For U, we have a different situation. To any path @ : I ~ —I we assign the
closed curve detw : [0, 1] — S'  C (assuming p to be even). Its winding number
(mapping degree) w(w) € Z is obviously constant on each connected components of
QWU I, =1).

Definition 5.2 We will call w(w) the winding number of w.

Any geodesic in U, from I to —1/ is conjugate to y (t) = exp(twi D) where D =
diag(ky, ..., k) with odd integers k;, and w(y) = % Zj kj.Letkj, k; be a pair of
entries with k; > kj, and consider the projection y;; of y onto Uy acting on Ce ; 4-Ce;,.
Leta = %(k; + ky) and b = 1(k; — k). Then

e—ﬂialyij (t) — diag(eﬂibl’ e—]‘[ibt) .

This is a geodesic in SU, = S? which takes the value &/ when ¢ is a multiple of 1/b.
For 0 < t < 1 there are b — 1 such t-values, and at any of these points y;; takes up
index 2. Thus

1
ind(y) =2 » (E(k., —kp) — 1). (5.2)

kj>kp

Proposition 5.3 Let y : I ~ —1I be a geodesic in U, with p — 2|w(y)| > 2d for
some d > 0. Then ind(y) > d unless y is minimal.

Proof Let k be the sum of the positive k; and —k_ the sum of the negative k;. Then
ky —k- =3 ;kj=2wandky +k_ > p. Thus 2k > p +2w > p — 2|w| and
2k_ > p — 2w > p — 2|w|, and the assumption p — 2|w| > 2d implies k+ > d. If
kj = 3 or k; < —3 forsome j, h, then by (5.2)

ind(y) > Z(3—kh — D =1+4+k_ >d
kp <0

or

ind(y) > Z(kj+3—2)=1+k+ >d.
k;j>0

At least one of these inequalities must hold, unless all k; € {1, —1}. In the latter
case y is minimal: it has length 7 which is the distance between / and —/ in U,
being the minimal norm (with respect to the inner product (5.1)) for elements of
(exp|t)’1(—1) = {midiag(ky, ..., kp) : ki,...,kpodd} C t where t is the Lie
algebra of the maximal torus of diagonal matrices in U),. O
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Next we will show that similar estimates hold for arbitrary iterated centrioles P, of
SO,. A geodesic y : Jy ~ —Jg in Py has the form

y@) ="y, telo,1], (5.3)

for some skew symmetric matrix A, which commutes with Ji, ..., Jy—; and anticom-
mutes with Jp, cf. (3.5). We split R” as a direct sum of subspaces,

RF=M @ - ©M, (5.4)
such that the subspaces M are invariant under Ji, ..., J; and A and minimal with
this property. Then A has only one pair of eigenvalues &ik; on every M ;; otherwise
we could split M further. Since exp(r A) = —1, the k; are odd integers which can
be chosen positive.

When all k; = 1, then y has minimal energy: E(y) = ly'|> = [T Ay|? (551) 2.
In general, J' := A/kj is a complex structure on M;, and Jey1 == Jg J’ is another
complex structure on M; which anticommutes with Ji, ..., Jy. Hence each M; is an

irreducible Cly4-module.

The two cases (a) £ # 4m — 2 and (b) £ = 4m — 2 have to be distinguished (cf.
[11, p. 144-148]); they are similar to the previous cases of SO, and U, respectively.
By (2.2), all M; are isomorphic as Cl;-modules when £ = 4m — 2 (Case (b)) and as
Clg41-modules when € # 4m — 2 (Case (a)).

Proposition 5.4 Suppose € # 4m — 2. Let s¢4+1 be the dimension of the irreducible
Clyy1-module Sy, see (2.2). Then s¢+1|p, and all non-minimal geodesics y : Jy ~»

—J¢ in Py have index > r — 1 withr = p/sg41.

Proof Choose any pair of submodules M ;, M}, with j # h in (5.4). We may isometri-
cally identify M; and M), as Cly1-modules, but first we modify the module structure
on M, by changing the sign of Jyy1. In this way we view M; + M, = M; © M;.

Thus
k;J’' al’ bJ’
A|Mj+Mh = ( / _khJ/) = ( aJ/) +< _bj/)

fora = 3(kj —kn), b = 5(kj +kn). Let v (1) jn := ¥ ()|, +p,- Then

twral’ tnbJ’
A e e Je
y(@)jn = " Jo)jn = ( emw> ( e—mbﬁ) ( JZ> (.5)

Put B = (1_1) on Mj + M, = M;j ® M; and B = 0 on the other modules
My for k # j,h. Then B and ¢“® commute with Ji, ..., J; for all u € R. Put
A, = ¢“BAe B Then all geodesics

vu(t) =Py e = T,
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are contained in Py by (3.5).

The point y (¢) is fixed under conjugation with the rotation matrix ¢"# = (¢/ =57)
on M; & M; with ¢ = cosu, s = sinu if and only if e ThI" = o=tmb) gee (5.5).
This happens precisely when ¢ is an integer multiple of 1/b. If kj, > 1, say kj > 3,
then b = %(kj 4+ kp) > 2and 1/b € (0, 1). All y, are geodesics in Py connecting Jy
to —J¢. Using “cutting the corner” it follows that y can no longer be locally shortest
beyond t =1/b , see figure below. If there is at least one eigenvalue k; > 1, there are
at least » — 1 index pairs (j, h) with %(kj + k) > 2, hence by (5.2), the index of

non-minimal geodesics is at least r — 1.5 O
Yy
Y Y
0 1~y 1
Now we consider the case £ =4m — 2. Then J, := Ji1Jo...Jy—1 is a complex
structure® which commutes with A and Ji, . . ., J;—; and anticommutes with J; (since

£—11isodd). Thus A can be viewed as a complex matrix, using J, as the multiplication
by i, and the eigenvalues of A have the form ik for odd integers k. As before, we split R”
into minimal subspaces M ; which are invariant under Ji, ..., Jyo and A. Let Ey, CMj
be a complex eigenspace of Aly; corresponding to an eigenvalue ik;. Then Ey; is
invariant under Ji, ..., Jy—1 (which commute with A and i), and also under J; (which
anticommutes with both A and i = J,). By minimality we have M; = Ej;, hence
A= kj Jo on Mj.

Again we consider two such modules M, Mj,. As Clg-modules they can be iden-
tified, M; + M, = M; ® M|, see (2.2). This time,

Alp;m, = diag(kji, kyi) = ail + diag(bi, —bi)
with a = 3 (k;j + ky) and b = §(k; — kp). Thus
]/(t) — entAJ[ — e?TIai diag(@nrbi, e_”tbi).]g. (56)

Consider the linear map B on R” whichis (, =) on M; + M = M; & M; and
B = 0 elsewhere, and the family of geodesics

yu(t) — euBy(t)efuB — e?‘[l‘Au ][’ Au — euBAefuB'

Since ¢*8 commutes with Ji, ..., J¢, the first equality implies y, in Py, see (3.5).
Now y (¢) is fixed under conjugation with the rotation matrix ¢*? = (gf _CSII ) with

5 Another way of saying: Jp, J' and BJ’ span a Clifford 2-sphere in SO(M j + M},) anticommuting with
Ji, ..., Jg—1 and containing y; which covers at least three half great circles.

6 Let Jiyens Jp be a Clifford family and put w, = Jy---J;. Then w,% = Ji--JdpJ1dn =
=)' 'w? 52 = (=1D)"w? . Thuswi = (=D)°I withs =n+ (@ —1)+--+1=In(+1).
When n — 1 or n — 2 are multiples of 4 then s is odd, hence w,% = —1. Further, when n is even (odd),
wy, anticommutes (commutes) with Jy, ..., J,. If the Clifford family extends to Jy, ..., J,41, then wy

commutes with J,, ;1 when n is even and anticommutes when n is odd.
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¢ = cosu, s = sinu if and only if ¢™*?" = ¢~7%" which happens precisely when 7 is

an integer multiple of 1/b. When b > 1, we obtain an energy-decreasing deformation
by cutting b— 1 corners, see figure above. Thus the index of a geodesic y as in (5.3)
is similar to (5.2):

1
ind(y) > > <§(kj —kp) — 1). (5.7)

kj>kp

As before we need a lower bound for this number when y is non-minimal.
Any J € Py defines a C-linear map J J[] = —J Jg since JJy commutes with all
Ji and hence with J,. This gives an embedding7

Po—Upp:d s JJ, ! (5.8)

Note that p is divisible by four due to the representation theory of Clifford algebras
(2.2), since for £ = 4m — 2 the space R” admits at least two anticommuting almost
complex structures.

Definition 5.5 For any w € Q := Q(Py; J¢, —J¢) we define its winding number w(w)
as the winding number of wJ[l, considered as a path in U,/ from [ to —1, see
Def. 5.2. In particular for a geodesic @ = y with y () = ¢™'4 as in (5.6) we have
w = 3 dimc(Se) Y k;.

Proposition 5.6 Let £ = 4m — 2. Let y : J; ~ —Jy be a geodesic in Py with winding
number w such that

p—4w|=4d - s (5.9

for some d > 0 where sy = dimp Sy, see (2.2). Then ind(y) > d unless y is minimal.

Proof Let r be the number of irreducible Cl;-representations in R”, thatis r = p/s,.
Let k4 be the sum of the positive k; and —k_ the sum of negative k;. Then k4 +k_ >
r=p/seandky —k_ = Zj kj =2w/dimc S¢ = 4w/s¢. Thus 2k > (p +4w)/se
and 2k_ > (p — 4w)/s¢, and our assumption (p & 4w) /sy > 4d implies k+ > 2d. If
kj > 3 or k, < —3 for some j, h, then by (5.7)

ind(y) > 21(3—k —2)—1(1+k )y >d
y) > 3 h =3 -

kp <0
or

d — . _ — — + >d.
: k>0 !
>

7 This embedding J +— JJ[] is equivariant: Let J = ngg_l for some g € SO preserving Py, then
JJ [l = g7(g)~! where 7 is the involution g > JegJd, Ultis totally geodesic, a fixed set component

of the isometry ¢ o T with 1(g) = g*l since z(r(gr(g)*l)) = (r(g)g*l)*l = gr(g)*l. In fact it is the
Cartan embedding of Py into the group Gy = {g € SOp : gPig~l =Py}
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One of these inequalities holds unless all k; € {1, —1} which means that y is minimal,
see the subsequent remark. O

Remark 5.7 Let still £ = 4m — 2. The geodesic y,(t) = e™'4 from I to —I is minimal
in Up 2 (with length ) if and only if A has only eigenvalues +£i. In this case, when
y = y,J¢ lies inside Py, the numbers k. of positive signs and k_ of negative signs
are determined by the above conditions k4 + k— = p/s¢ and ky — k_ = 4w/sy.
This corresponds to a (Jq, . .., J¢)-invariant orthogonal splitting (which in particular
is complex linear with respectto i = Jy - -+ Jy—_1),

RP=L_®L,, dimLy =spky, (5.10)
with A = +i on L. Then A2 = —1, and we obtain another complex structure
Jovy1 =AJ = y(%) anticommuting with Ji, ..., J; and defining a minimal centriole

Pgi1 C Pg. Note that
J€+l =:i:]1~-~JgOIlL:|:.

The property of Jy41 being determined (up to sign) by Ji, ..., Jy only appears for
£ =4m — 2.

For later use we formulate a necessary and sufficient condition when this Clyy1-
representation can be extended to a Cl,;-representation.

Proposition 5.8 Let y (1) = ¢™'4J; be a minimal geodesic in 2(Py; Jo, —J¢) with
mid-point Jy41 for £ = 4m — 2. Then the following assertions are equivalent.

(i) There exists a complex structure Joy anticommuting with Jy, ..., Jo41,
(ii) w(y) =0.
Proof With the notation from Remark 5.7 recall that Jg+1J[1 = e¢@/DA = Aisa

complex matrix with eigenvalue i on L4 and —i on L_.

When Jy4, exists, then JpyoJ [1 is another complex matrix which anticommutes
with Joy1J, e_l and thus interchanges the eigenspaces L and L_. Therefore k4 = k_,
thatis w = 0.

Vice versa, when k. = k_ =: k, then L, and L_ may be identified as Cl,-

modules, an utting Jyo 1= —%) . Jp we define a further complex structure
dul d by putting J.+ %) - Je we define a furth plex struct
anticommuting with Ji, ..., Je4+1. O

Remark 5.9 We do not need to consider the group G = Sp,, and its iterated centrioles
since Spp = P4(S0g)), cf. (3.2). For G = U),, the iterated centrioles are U, and
Gy /2(C?) (the complex Grassmannian) for all ¢ = p/2™. U, has been considered in
Proposition 5.3. In G, /2(C?) the index of non-minimal geodesics is high when ¢ is
large enough8 as can be seen from the real Grassmannian Gy 2(R?) = P3 (Spy)- In
fact, real and complex Grassmannians have a common maximal torus, therefore any

8 This example was omitted in [11].
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geodesic in the complex Grassmannian can be conjugated into the real Grassmannian.
Moreover, the distance between poles (i.e. the length of a minimal geodesic) agrees
for the complex Grassmannian and the real one. Hence the index of a non-minimal
geodesic in the complex Grassmannian is at least as big as in the real Grassmannian,
but the latter one is among the spaces considered in Proposition 5.4.

6 Deformations of mapping spaces

We consider a round sphere S = Sk, k > 1, with “north pole” N = ¢g € S, and its
equator S’ = SN N+ with “north pole” N = ¢ € S’ (or rather “west pole”, according

to the orientation (eg, e1)), where the standard basis of RK*+1 is denoted e, ..., e Let
u : [0, 1] — S be the meridian from N to —N through N" and m = ([0, 1]) C S.
€
u
e —e

Further let P be the group G € {SO,,Up, Sp,} or one of its iterated centrioles
(see Sect. 3). We fix some J € P and a shortest geodesic

yiJ o~ —=J

in P, which we consider asamap y : m — P.

Definition 6.1 Let Map, (S, P) be the space of CO-maps ¢ : S — P with ¢(N) = J,
equipped with the compact-open topology. We denote by Map,, (S, P) the subset of
maps ¢ with ¢|,, = v, equipped with the subspace topology.

Building on the results from Sect. 4 will will develop a deformation theory for these
mapping spaces Map,, (S, P). The main result, Theorem 7.10, says that stably it can
be approximated by the subspace of maps which are block sums of constant maps and
Hopf maps associated to Clifford representations (see Definition 2.1).

Lemma 6.2 The inclusion Map,, (S, P) C Map,(S, P) is a weak homotopy equiva-
lence.

Proof This can be seen directly by constructing a deformation of arbitrary maps ¢ €
Map, (S, P) into maps ¢ € Map,, (S, P). However, the proof becomes shorter if we
use some elementary homotopy theory, see [5, Ch. VII]. We consider the restriction
map

r : Map, (S, P) — Map,(m, P), ¢+ ¢ln,

with Map, (m, P) := {f : m — P : f(N) = J}. Clearly, r~!(y) = Map, (S, P).
This map is a fibration, according to Theorem 6.13 together with Corollary 6.16 in [5,
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Ch. VII], applied to Y = P and (X, A) = (S, m); the requirement that A C X is a
cofibration follows from Corollary 1.4 in [5, Ch. VII]. Since the base space is clearly
contractible, the inclusion of the fibre

Map,, (S, P) C Map, (S, P) (6.1)

is a weak homotopy equivalence, due to the homotopy sequence of this fibration. O

Let S’ = S¥=1 S be the equator sphere. We may parametrize S by S’ x I with
(v, ) = py(t) where py : [0, 1] — S is the meridian from N to —N through v € §'.
Using the assignment ¢ — (v — ¢ o ,) for any ¢ € Mapy (S,P)and v € §' we
obtain a canonical homeomorphism

Mapy(S, P) ~ Map, (S, ) (6.2)
where
Q=QP;J,—J)
is the space of continuous paths w : [0, 1] - P with w(0) = J and w(1) = —J, and
Map, (S, ) the space of mappings ¢ : " — Q with ¢(N') = y.
Let Q0 = QO(P; J,—J) C < be the subspace of minimal geodesics from J to
—J in P. Since every such minimal geodesic is determined by its midpoint, which

belongs to the midpoint set P’ C P whose components are the minimal centrioles
P’ C P (see Sect. 3), we furthermore have a canonical homeomorphism

Map, (S, Q°) ~ Map, (S, P'). (6.3)
The composition

% @ Map, (S, P') ~ Map, (S, Q°) c Map, (S, Q)
~ Map,, (S, P) C Map, (S, P) (6.4)

sends ¢’ € Map, (S, PHtog¢ e Map, (S, P) defined by
d(, 1) = yp @) forall (v,1) € S’ x [0, 1] (6.5)

where yg/(y) 1 J ~» —J is the shortest geodesic in P through ¢'(v).
Definition 6.3 The map X is called the geodesic suspension along J.

We will show that X is highly connected in many cases. At first we will deal with
the case k = dim S > 2.

Proposition 6.4 Let k > 2 and let d + dim(S') be smaller than the index of any non-
minimal geodesic in the connected component 2, C Q containing y. Then Xj is
d-connected.
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Proof By Lemma 6.2, the inclusion Map,, (S, P) — Map, (S, P) is a weak homotopy
equivalence. Therefore we only have to deal with the inclusion

Map, (S, Q%) c Map, (S, Q).

Let ¢ : D/ — Map, (S, Q), j < d, with (dD/) c Map, (S, Q°).
We consider ¥ as a map I/A/ : D/ xS — Q and observe, using k > 2, that the
image of this map lies in the connected component €2, C 2 determined by y.
Theorem 4.2 may now be applied to the (j +dim S")-dimensional CW-pair (compare
Definition 4.1)

(X,Y)= D' xS, 0D/ xS)U (@D’ x {N'})
where j +dim S’ < d+dim §'. This results in a deformation of I/Af to a map with image
contained in QQ by a deformation which is constant on (37 x §') U (D’ x {N'}).
Hence i may be deformed to a map with image contained in Map,, (S, Q°) by a

deformation which is constant on 9D/ . O

The following picture illustrates the deformation process employed in this proof where
¢ € Map,, (S, P) lies in the range of .

J J
S P P

(0] shorten

7 Iterated suspensions and Clifford representations

This process can be iterated. For the sake of exposition we will concentrate on the
case G = SO, in the following argument. Let k& > 1 and consider an orthogonal
Clg-representation

p : Clp — RPXP
determined by anticommuting complex structures Ji, ..., Jy € SO,. Let
SO, =PyDP1D---DF (7.1)
be the associated chain of minimal centrioles (compare Theorem 3.1).
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Leteo, ..., e denote the standard basis of R¥*! and Sk ¢ R¥*+! be the unit sphere.
Furthermore, for £ € {0, ..., k} let”

Ssk=t.—skn Span {eg, ..., ek}

be the great sphere in the subspace spanned by ey, ..., ex with “north pole” (base
point) e, and equator sphere S¥—¢~1.

Let Map, (S¥=¢, Py), £ =0, ..., k, be the space of maps S¥=¢ — P, sending e, to
Je for £ > 1 and sending ep to I € SO, for £ = 0. Putting X, := X, (the suspension
along J;) with Jy := I we consider the composition

X i
0 : Map, (S, Pr_1) == Map, (S%, Pc_2) =5 -+ =% Map, (S5, 50,).  (7.2)

Proposition 7.1 Foreachd thereisa po = po(d) such that 0 is d-connected whenever
D = po.

Proof Since the composition of d-connected maps is d-connected it suffices to show
that forall £ =0, ..., k — 2 the suspension

%, : Map, (S5, Poyy) — Map, (S5, Py)

in the composition 6 is d-connected once p > py.
This claim follows from Proposition 6.4, where the assumption on indices of non-
minimal geodesics holds for the following reasons:

(1) If £ 4 2 is not divisible by four it holds by Proposition 5.4.

(2) If £ + 2 is divisible by four it holds by Proposition 5.6. Indeed, let y : Jy ~
—J; be the minimal geodesic in P, running through Jyy;. Then w(y) = 0
by Proposition 5.8 since there is a complex structure J;4, anticommuting with
J1, ooy Jog (recall £4-2 < k). Hence w(y) = 0foreach non-minimal geodesic
y in the connected component 2, C Q = Q(Py; Jo, —J¢) containing y . O

It remains to investigate the space Map, (S!, Pr_1). We restrict to the case k =

4m — 1. Setting £ = k — 1 this means £ = 4m — 2, and P = P,. From equation (5.8)
we recall the canonical embedding

P Upp, J=JJ "

Assumption In the remainder of this section we will assume that the given Cli-
representation p satisfies

Je=+J1---J¢.

9 The reason for this unusual choice is that (7.1) is descendent and we would like to map ej onto J; € P
and ¢ onto J; € P; as in Theorem 3.1.
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Orthogonal Cli-representations of this kind and their Hopf maps will be called posi-
o 10
tive.
Furthermore we denote by

v iJe~ —Jy

the shortest geodesic in P, through Jyy = Ji. With the complex structure i = J, =
JiJa -+ Jy—1 on RP we then have

vy =e""l,
In particular w(y) = p/4.

Definition 7.2 For each @ € Map,(S', P;) with £ = k — 1 we define the winding
number n(w) € 7Z as the winding number of the composition

S = skt 2, Py — U,/ E)SI.

Here we identify (o, B) € S! C RZ witha - ex_1 + B - ex € SK=¢ < Span{er_1, ex).
Note that 7 is constant on path components of Map,,(S!, P;).
For n € Z let
Map, (S', P), C Map, (S, Pr)
denote the subspace of loops with winding number equal to . This is a union of path
components of Map,, (S, Pp).
By Proposition 7.1, for sufficiently large p, the map 6 in (7.2) induces a bijection

of path components. Hence, at least after taking a block sum with a constant map
sk — so  for some large p’, the previously defined winding number

n: Map*(S], P) — 7
induces a map
n': Map*(Sk, SO,) —» Z,

such that n® o 6 = n, which we call the stable winding number.

10" For k = 3 and 7 this is the representation of Cl; on K € {H, O} by left translations. In fact, on H we
have ijk = —1 (Hamilton’s equation). On QO there are further basis elements ¢, p = il, g = jl,r = k€,
and the corresponding left translations on @ will be denoted by the same symbols. Then i jk = —id on H.
Further, using anti-associativity of Cayley triples like (j€)r = —j(€r) we have £pgr = £(p((jO)r)) =
—e(p(j(tr))) = —L(p(j(LkL))) = —E(p(jk)) = —L((i£)i) = —€% = 1 and thus £pgr = id on H since
£pqr commutes with i, j, k. Moreover, both ijk and ¢ pgr anticommute with £, hence on ¢{H we have
ijk =id and £ pgr = —id. Together we see ijk{pgr = —id on Q.
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This is independent of the particular choice of p’, and hence well defined on
Map,, (Sk, SO,) for the original p. By definition it is constant on path components
and therefore may be regarded as a map

n* i (SOp; 1) — Z.
Since all positive Clg-representations on R” are isomorphic, this map is independent
from the chosen positive Cly-representation p.
Forn € Z let
Map, (S¥, SO,), € Map, (S, SO,)
denote the subspace with stable winding number equal to 7.

Example 7.3 Let i1 : S¥ — SO p be the Hopf map (see Definition 2.1) associated to
the given Clifford representation p. Then n®(u) = p/2. Indeed we have u = 0(w),
where  : S! — Py is givenby o - ex_1 + B - ex +— o - Jy—1 + B - Ji, such that with
i = JiJa--- Jy—1 the composition S' — P, — U, s is given by €™ > €™/ J; as
Je=4+J1---Je=1iJy.

Remark 7.4 The stable winding number is additive with respect to block sums of Cly-
representations. More precisely, let

pi : Cly — SOy,
be positive Cli-representations, i = 1, 2, with associated chains of minimal centrioles
S0, > P 5o PP,
The chain of minimal centrioles associated to the block sum action
p=p1®p2:Cly = SOy, xSOp, CSOp,+p,

then takes the form

SO,, x80,, > P" x PP 5...o5 PV x PP,
and each suspension in (7.2) is a product of corresponding suspensions for p; and p3.

Hence for ¢ = ¢1 & ¢» € Map,, (SK, SO p1+p,) of block sum form we obtain for the
stable winding numbers

n' (@) =n' (1) +n'(g2) .
Let Q = Q(Py; J¢, —J¢) be the space of paths in Py from J; to —J, and let
ﬁk =Q° C Q
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be the subspace of shortest geodesics, cf. (3.3). Consider the geodesic suspension
DI Map*(SO, ﬁk) — Map*(Sl, Py),

where Map,, (S°, 9) is the space of maps SO = {+er) - Q° sending e to y € Qo

Definition 7.5 For ¢ € Map,, (S, ) we denote by w(¢) € Z the winding number of
y = ¢(—er) € Q in the sense of Definition 5.5. Note that possibly w(y) # w(y),
since S is disconnected and hence 7 = ¢(—ey) and y = ¢ (ex) may lie in different
path components of €2.

For w € Z let

Map, (S°, ©),, € Map, (S°, ©2) and Map,(S°, 2°),, c Map, (S°, Q%)

be the subspaces of maps of winding number w.

Note that the concatenation map 7 + y 7! (first y, then 7 ~! where 7 ~1(r) :=

y (1 — t), which together form a loop starting and ending at J;_{) gives a canonical
identification

Map, (S°, ), = Map, (S', Pe)y=(p/4)-u
since w(y) = p/4.

After these preparations we obtain the following analogue of Proposition 6.4.

Proposition7.6 Let d > 0 and let w € Z satisfy p — 4lw| > 4s¢ - d. Then the
suspension Xy restricts to a d-connected map

% : Map,(S°, Q%) = Map,(S', Po)y=(p/4)—uw -
Proof Similar as in the proof of Proposition 6.4 we only have to deal with the inclusion
Map, (S, P)w C Map, (S, Q)
where we now have S’ = SY, cf. (6.4). This is equivalent to the inclusion
QU(Py; Jo. —J0)w C QP Jo. —To)w -

By Theorem 4.2 and Proposition 5.6 with our assumption on |w| this inclusion is
d-connected. O
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Each ¢ € Map, (SO, QO) is determined by its value on —e; € S°, a minimal
geodesics 7 (1) = 4" J, where A is a self adjoint complex (§ x £)-matrix with
eigenvalues £1 which commutes with Ji, ..., Jy. Furthermore w(y) = trace ¢ A.

As in Remark 5.7 the eigenspaces of A induce an orthogonal splitting

R =Ly® L,
into subspaces invariant under Jp, ..., Jy (hence underi = J; - - - Jy—_1) such that
) =y@)=e"JonLy, pt)=e""JyonLi.
Hence the geodesic y is of block diagonal form

Yy =y @ y1 :[0,1] - SO(Lg) x SO(Ly)

with midpoint (+Ji, —J;) and w(y) = %(dim(c Lo — dimc L1). The suspension
w:=X(¢) e Map*(Sl, Py) is equal to the concatenation

w=yx77 10,11 > P,.
Therefore w is also in block diagonal form
w=wy®wi:[0,1] - SO(Lg) x SO(Ly),
where
o =wryy s @) ="

The loop yp * yofl is homotopic relative to {0, 1} to the constant loop with value Jy.
This motivates the following definition.

Definition 7.7 We define the subspace
Map?(S!, Py) ¢ Map, (S, Py)
consisting of loops w € Map*(S1 , Pg) such that there is an orthogonal decomposition
RP =Lo® L,

into subspaces which are invariant under Jp, ..., J; and with respect to which w is in
block diagonal form

w=w)®w :S' - SO(Ly) x SO(L1)
such that wy is constant with value J; and w; : S! — SO(Ly) is given by
eZm't — eZnit‘Ie ;
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wherei = Jy--- Jy—1. For 0 < n < p/2 we denote by
Map?(S', Pp),; € Map?(S', Pp)
the subspace of loops with winding number n (equal to dim¢c L1 < p/2).
We have a canonical homeomorphism

h - Map?(St, Py) ~ Map, (S°, Q%) (7.3)

which replaces the constant map on L by the concatenation w = y sy ~!, restricted to

L. Since this is homotopic relative to {0, 1} to the constantloop with value I € SO(Ly)
by use of the explicit homotopy

ws=ys kY, . v i=yGst), 0<s,1<1,

we conclude that the composition

h I
Map’(S', Pp) ~ Map, (S°, Py) —> Map, (S', Pr)
is homotopic to the canonical inclusion
j : Map(S', P)) — Map, (S', P,).
Since homotopic maps induce the same maps on homotopy groups and amap A — B
is d-connected if and only if it induces a bijection on 7r; for0 < j < d — 1 and a
surjection on g, we hence obtain the following version of Proposition 7.1 together

with Proposition 7.6 where X, o h (cf. (7.3)) is replaced by ;.

Proposition7.8 Letd > 1 and p > po(d) as in Proposition7.1. Assume sg -d < n <
p/4. Then the composition

60 : Map’(S!, Py), —> Map, (S', Pp), — Map, (S*, SO,), (7.4)
is d-connected.
Proof Notice that for n < p/4 the winding number w = (p/4) — 7 is non-negative.
Hence p —4|w| = p — 4w = 4n > 4s; - d. The assertion now follows from Proposi-

tions 7.1 and 7.6. O

By construction, elements ¢ € Map, (Sk ,S0O,); in the image of 09 in (7.4) are
described as follows. There is an orthogonal splitting

RP =Lo® L
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into Clg-invariant subspaces with dim¢ L = n such that
¢ = (¢o, 1) : sk — SO(Lg) x SO(L1) C SO,

where ¢g = I and ¢, : SK = S(R @ R¥) — S(End(L)) is an isometric embedding
as a great sphere with image contained in SO(L ) which sends eq to I and ¢; to J;|r,
forl <i <k.

Proposition 2.2 then implies that the map ¢; is in fact equal to the Hopf map
associated to the positive Cli-representation p restricted to L.

Definition 7.9 We call maps ¢ of this kind (that is ¢ = (¢, ¢1) on Lo & L with

¢o = I and ¢, a positive Hopf map on L1) affine Hopf maps of stable winding
number n = dimg¢ L associated to p (a positive Clifford representation). Let

Hopf ,(S*, 80,), € Map, (S*, SO,),

be the subspace of affine Hopf maps of stable winding number 7.

Summarizing we obtain the following result on deformations of mapping spaces
(recall s = s¢ from (2.2)).

Theorem 7.10 Letd > landk = 4m—1. Thenforall p > po(d)andsy-d <n < p/4
and any positive Clifford representation p : Cly — RP*P the canonical inclusion

Hopf ,(S*, SO,),, C Map, (S, S0,), (7.5)

is d-connected.

Proof The theorem follows from Proposition 7.8 since Hopf o (Sk, so p)y is the image
of 80 in (7.4). o
8 Vector bundles over sphere bundles: clutching construction

The deformation theory for maps ¢ : S* — SO p can be applied to the classification
of oriented Euclidean vector bundles over n-spheres where from now on

n=k+1=4m.
Choose N = ¢y and § = —ep (“north and south poles”) in §" c R**! where
€o, - .., ey is the standard basis of R"T!, Let

f={veS": (v, e) >0},
S"!'={veS": (v,e) =0} =D" ND"
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(“hemispheres and equator”). Let & — S" be an oriented Euclidean vector bundle with
fibre R”. Since D is contractible, &'|py is a trivial bundle, isomorphic to DY x E
where

Ey =&, =R?,

pulled back to D', along the radial projections onto the midpoint. The bundle E is
obtained from these trivial bundles by identifying {v} x E to {v} x E_ via an oriented
orthogonal map, thus by a mapping ¢ : S*~! — SO(E,, E_) = SO, called clutching
function which is well defined by & up to homotopy. In this situation we write

&= (Ey, ¢, E-).
Example 8.1 Let p : Cl, — End(L) be an orthogonal Cl,-representation. Since n =
4m, the longest Clifford product w := ej - - - e, (the “volume element”) commutes
with all elements of CI (the subalgebra spanned by the products of even length) and
has order two, w? = 1.}1 The (il)-eigenspaces12 L* of p(w) are invariant under

CLt, and p(v) interchanges the eigenspaces for any v € S"=1. Using pu := Plgn—1 we
obtain a bundle .¥ — S",

L =L L)
This is called the Hopf bundle over S™ associated to the Clifford representation p.
Remark 8.2 This bundle is isomorphic to (L™, 4, L™), where
pg = ple) S SO(LT) = S0,

is the Hopf map 4 = p4|sx (k = n — 1) associated to the representation o : Cly =
ClF — SO(L),

o+ e — p(—ereir1), i=1,...,k. (8.1)
Note that p is positive,13 that means its Clifford family J; = p(e;),i =1, ..., k, on
L7 satisfies
Jk = Jl "'kal .

1112341234 =-11234234=234234=223434=-3434 =1, 12345678 =56781234.
12 Superscripts £ will always refer to a splitting induced by the volume element.
13 E.g. k=7: Putting p(e;) =: i we have

i (er) - pg(er) = (—1)712131415161718 = —12345678 = —id; + on L™
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In particular the stable winding number of w4 (see Definition 7.2) is given by
s [ + "
n(u+)=§dlmL =Zd1mL>O.

Compare Example 7.3. The positivity of this winding number will become important
later in the proof of Theorem 9.2.

We now replace the sphere S” by a sphere bundle with two antipodal sections over
a finite CW-complex X. More specifically, starting from an n-dimensional Euclidean
vector bundle V. — X we glue two copies D1 V of its disk bundle DV — X along the
common boundary, the unit sphere bundle SV, by the identity map. Thus we obtain
an S"-bundle V = SR V) > X,

V=D,V Usy D_V. (8.2)

We obtain two sections s+ : X — V of the bundle V — X , which we regard as north
and south poles, defined as the zero sections of D*V.
Let

A

E—V
be a Euclidean vector bundle over the total space of V — X.Let
Ei = Sig —- X

which we sometimes tacitly pull back to bundles £4 — D4V along the canonical
fiberwise projection maps D1V — s4(X).

Since there are — up to homotopy unique — bundle isometries &'|p, vy = E restrict-
ing to the identity over {s4 }, the bundle & is obtained from E_ by a clutching map o,
that is a section of the bundle

Map(SV,O(E+, E-)) — X,

which is uniquely determined up to fiberwise homotopy.

Hence, for any x € X we have a map o, : SVy — O((E4)y, (E-)y). Note that
we may equivalently consider the clutching map as a bundle isometry ¢ : E|sy —
E_|sy. In this situation we write

&= (Eq,0,E_).

@ Springer



156 Sao Paulo Journal of Mathematical Sciences (2021) 15:127-174

Vice versa, if E;+ — X are oriented Euclidean bundles and
o € 'Map(SV,O(E, E_)))

a clutching map, then we obtain a vector bundle & = (Ey, 0, E_) — 1% by gluing
the pull back bundles of E4+ — D1V along SV by o.

Example 8.3 A particularcaseis E4 = E_ =: FFand o (v) =idf, forallv € SV. We
write (F, id, F') for this triple. Since F;, can be identified with F;, forall v € D*v,
this bundle is trivial over every fibre \7x, x € X, hence it is isomorphic to a bundle
over X, pulled back to 1% by the projection 7 : V- X.

Vice versa, for any vector bundle F — X, the pull-back bundle 7* F is given by
the triple (F, id, F).

For a generalization of Example 8.1 to sphere bundles we recall the following
definition.

Definition 8.4 Let CI(V) — X be the Clifford algebra bundle associated to the
Euclidean bundle V with fibre CI(V), = CI(V,) over x € X.

A real C1(V)-Clifford module bundle is a vector bundle A — X such that each
fibre Ay, x € X, is a real CI(Vy) module. More precisely, we are given a bundle
homomorphism u : CI(V) — End(A) which restricts to an algebra homomorphism
in each fibre.

We may and will assume that A is equipped with a Euclidean structure such that
Clifford multiplication with elements in SV is orthogonal.

From now on we will in addition assume that V. — X is oriented. Any oriented
orthonormal frame'* of V|;; over U C X induces an orientation preserving orthogonal
trivialization

b:UxR'ZV]y.
Thus L := A, with some fixed x, € U becomes a Cl,,-module. Consider the bundle
Isocy, (L, Aly) —> U

whose fibre over x € U is the space of Cl,-linear isomorphisms ¢, : L — Ay. If
U is contractible it has a section ¢ which intertwines the Cl,,-module multiplications
(denoted by -)on L and Ay, x € U: forall§ € L and v € R" and x € U we have

14 A frame (basis) b = (by, ..., by) of Vy will be considered as a linear isomorphism b : R" — V,,
v bv =35 v;b;.
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Gx(v-&) = by (v) - P2 (§). (8.3)
In other words: We obtain Euclidean trivializations
Vig 22U x R", CiIM|y=EU xCl,, Aly=EUxL (8.4)

with a Cl,,-module L such that the CI(V)-module structure on A corresponds to the
Cl,,-multiplication on L. Notice that in particular the Cl,,-isomorphism type of L, the
typical fibre of A — X is uniquely determined over each path component of X.

Let n = 4m. Since V — X is oriented, the volume element w € Cl,, defines a
section (“volume section”) of CI(V) — X, and the £1-eigenspaces define the positive
and negative Clifford algebra bundles C1*(V) — X and subbundles A* — X of
A — X, which are invariant under CI™ (V) and such that for every v € V, the
endomorphism 1 (v) interchanges A} and A} . Correspondingly the typical fibre L
decomposes as L = L+ @ L~ such that the local trivializations (8.4) preserve positive
and negative summands.

Definition 8.5 For n = 4m the bundle ¥ — V defined by the triple
L=, u, A (8.5)

is called the Hopf bundle associated to the CI(V)-Clifford module bundle A — X.
Note thateach Z’|;, — Vy, x € X, is a Hopf bundle in the sense of Example 8.1 after
passing to local trivializations (8.4).

Example 8.6 As a particular example we consider the C1(V)-module bundle
A=Cl(V)—> X

with C1(V)-module structure p given by (left) Clifford multiplication on C1(V). Note
that AT = Cli(V) — X where C1T(V) (C17(V)) is generated as a vector bundle by
the Clifford products of even (odd) length.

We define the Clifford-Hopf bundle € — V as the triple

€ = (CIM(V), u, C1=(V)) (8.6)

where 11 : SV — SO(CI~(V), CIT(V)) is the (left) Clifford multiplication.

Example 8.7 Recall that a spin structure on V. — X is given by a two fold cover
Pspin (V) — Pso(V)

of the SO(n)-principal bundle of oriented orthonormal frames in V, which is equiv-
ariant with respect to the double cover Spin, — SO,,.

Consulting Theorem 2.3 we see that for n = 4m there is exactly one irreducible
Cl,-module S = S, and we obtain the spinor bundle

Y= PSpin(V) X Spin,, S.
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Since the Clifford algebra bundle can be written in the form
CI(V) = Pspin(V) X Spin,, Cl,

where Spin,, C Cl, acts on Cl,, by conjugation, X becomes a C1(V)-module bundle
by setting

[pﬂa] : [pva] == [P’aa]

for p € Pspin(V), @ € Cl, and o € S.

Definition 8.8 The Spinor Hopfbundle over V is the Euclidean vector bundle . — V
defined by the triple

=T, 1,7 8.7

where i : SV — SO(Z T, ¥ 7) is the restriction of the Clifford module multiplication.

Definition 8.9 Let A be a CI(V)-module bundle with Clifford multiplication ¢ and a
CI(V)-invariant orthogonal decomposition

A=A)®D A
into CI(V)-submodule bundles. This induces a triple
(A" 0, Ag @A), @=idys @ ply+ (8.8)
equal to the direct sum bundle
(Af id, AD ® (AT, 1, A)) = X

We call (AT, o, A(J)r @ A|) the affine Hopf bundle associated to the decomposition
A=AoD A — X.

In the next section we will prove that every vector bundle over V is—after suitable
stabilization—isomorphic to an affine Hopf bundle.
9 Vector bundles over sphere bundles and affine Hopf bundles

LetV — X beAan oriented Euclidean vector bundle of rank n = 4m with associated
sphere bundle V =S(Rd V) — X.

Definition 9.1 (1) Two Euclidean vector bundles E, E over X or V are called stably
isomorphic, written

E=E,

if E®RY = E & RY for some trivial vector bundle R? — X.
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(2) Two CI(V)-module bundles A, A — X are called stably isomorphic, written
A = A, if there is some CI(V)-linear isometric isomorphism

ABCHV) = A @CLV)?

for some q.
The following result is central in our paper.

Theorem 9.2 Let

A~

E—>V

be a Euclidean vector bundle. Then possibly after adding copies of € (the Clifford-
Hopf bundle, see Example 8.6) and trivial vector bundles R to & we have

EZE®YL ©.1)

for a Euclidean vector bundle E — X (pulled back to \7) and a Hopf bundle £ — 1%
associated to some C1(V)-module bundle A — X.

Let E, E — X be Euclidean vector bundles and & , Z SV Hopf bundles
corresponding to CI(V)-module bundles A, A — X. If

E®L=EdY 9.2)

then E =; Eand A =, A.

Remark 9.3 When V carries a spin structure, we will see in Proposition 10.4 (which
is self consistent) that A = E ® X when m is even, and A = E ®py X when m is odd,
where E is some Euclidean vector bundle over X and ¥ denotes the Spinor bundle
associated to Pspin(V), cf. Example 8.7. Therefore

o~ E ® . whenm iseven

T |E ®u . whenm is odd
where .# denotes the spinor-Hopf bundle (cf. Definition 8.8) and E a vector bundle
over X, pulled back to V. Further, the stable isomorphism type of A determines the
stable isomorphism type of E, see Lemma 10.5.

The proof of Theorem 9.2 will cover the remainder of this section. We represent &
by a triple (E 4, o, E_) for Euclidean vector bundles £+ — X, which we consider as
bundles over D V in the usual way.

Remark 9.4 Let & = (E4, o0, E_) and & = (E+, o, E_) be triples. Then an orthog-
onal vector bundle homomorphism

¢:E—> &
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consists of a pair (¢4, ¢_) of orthogonal bundle homomorphisms ¢+ : E+ — Ei
over DV such that the following diagram over SV commutes:

o+~
Eilsy —— E4lsy

ai lf, 9.3)

o~
E_|sy ——= E_|sy

If¢l : Ey — E.,t > 0, is a homotopy of bundle isomorphisms over DV with ¢, =
¢, we may replace ¢ by ¢’ = (¢, ¢_), replacing the clutching map & = ¢_o ¢ '
over SV by the homotopic clutching map &' = ¢, (d)fk)’1 which does not change
.

In the proof of Theorem 9.2 we can assume without loss of generality that X is path
connected. Let
VieE2UxR", Eilpy=2UxR?

be orthogonal trivializations over a connected open subset U C X, where the first
trivialization is assumed to be orientation preserving. (We are not assuming that the
the bundle £ — X is orientable). We obtain an induced trivialization

E_ly=UxRP

using the isomorphisms oy (e1) : (E4+)x — (E_), for x € U where e¢; € R" is the
first standard basis vector. With respect to theses trivializations o |y is given by a map

oly : U — Map,(S"',S0,). 9.4)

Here we recall that S*~! is connected since n > 4 by assumption so that the local
clutching function has indeed values in SO, rather than O ,. The stable winding num-
ber n°(oy) € Z (see Definition 7.2) is independent of the chosen trivializations and
constant over U. It is hence an invariant of the triple & = (E4, o, E_).

Set d = dim X. After adding trivial bundles and Clifford-Hopf bundles to & we
can assume that the stable mapping degree n = n°(o) satisfies the conditions

sk-d=n=p/4 9.5)
from Theorem 7.10 (with k := n — 1, recall s = sy for £ = k — 1), compare
Remarks 7.4 and 8.2. Furthermore, we can assume that p is divisible by si. In particular,
by Theorem 7.10, with these choices of p and 5 the canonical inclusion

Hopf ,(S¥, 80,), € Map, (S*, SO,),
is d-connected for any positive representation p : Cly — End(R”) (which is equiv-

alent to the (p/si)-fold direct sum of the positive Si). We will work under these
assumptions from now on.
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Next we note that we may add on both sides of (9.2) a bundle ' — X, pulled back
viar:V > X (which further increases p, but not the winding number 7, so that the
assumptions of Theorem 7.10 are preserved), that is we add 7*F = (F, id, F). Then
the original statement is obtained by embedding F into a trivial bundle over X and
adding a complement F- on both sides of (9.2).

We use this freedom to put £ into a special form. Since £ embeds into a trivial
bundle RN — X and each bundle over X of rank larger than dim(X) splits off a trivial
line bundle (its Euler class vanishes), £, embeds into any sufficiently large vector
bundle over X, in particular into A for some Cl(V)-module bundle A — X (e.g.
A =RY®CI(V) =CI(V)?). Then E, is a direct summand of A™.

After adding (F,id, F) to (E4+, 0, E_) with F = (E+)J‘ C AT we may hence
assume that

E,=A".

Note that this bundle is oriented. After these preparations Theorem 9.2 is proven by
induction over a cell decomposition of X. The decomposition (9.2) results from the
following fact. xxx

Proposition 9.5 There is an orthogonal decomposition of A into C1(V)-invariant sub-
bundles

A=Ao®A 9.6)
with the following property: the triple & = (E4, o, E_) is isomorphic to the triple
(Ag @A idep, A ®@AT) = (Af.id AD) @ (AT, i, A]) 9.7)

where i : SV x AT — Ay is the CI(V)-module multiplication on A;.

Furthermore this isomorphism can be chosen as the identity on the first bundle
E, = A™. Hence, by (9.3), it is given by an isomorphism of vector bundles over the
total space DV,

. E + J—
f=f1E.— Aj @A
such that over SV we have
foo=w:=1d & u.

Proof In the induction step let X = X’ U D be obtained by attaching a cell D to X’
and assume that the assertion holds for the restriction to X’ of the bundle

&= (E+, g, E,)
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We denote by V' — X’ the restriction of V. Hence we have the decomposition (9.6)
over X" and an isomorphism

[ E_lpy > (A§ @ AD)lpv (9.8)
such that over SV’,
foo=w=id®pueSOA; AT, A & A]) 9.9)

where 1(v) € SO(AT, A7) is the C1(V)-module multiplication (v € SV”).

We need to extend f to a similar isomorphism over X = X’ U D. In particular
we need to extend the bundle decomposition A = Ag @ A from X’ to X. This will
ultimately be achieved by applying Theorem 7.10 to the restriction of & — V to
Vip = D x S". In fact, trivializing E+ over D C X, the clutching map o of & will
become amap & : D x S"~! — SO(L*) where LT = R? is the standard fibre of E_ .
However, in order to apply Theorem 7.10, this map 6 : D — Map(S"~!, SO(L™))
needs

(i) taking values in Map, (S"~!, SO(L™)) = {¢ : S"~! — SO(L™") : ¢(er) = I}
(see Def. 6.1),
(ii) 6(3D) C Hopf, (S"~', SO(L™)), with p; : Cly — End(L) as in (8.1).

Requirement (ii) will be met (using the clutching maps o, w as trivializations) by
transforming f to f see (9.13), which will change (9.9) to (9.15). From (9.15) we
will see using Remark 8.2 that the clutching map fa dD — Map, (S"~ 1, sO(L))
takes values in Hopf , . (8", SO(L1)). In order to meet the requirement (i) we need
an extension F of f from 9D to all of D such that ﬁ(x, e;) = idg, forall x €
D, see the “Assertion” below. Then we can apply our deformation theorem 7.10 to
the clutching map 7 = Fé, thus obtaining a new clutching map t; with values in
Hopf , (S, SO(L™)),. It fits together with the given clutching map along X’ since
there was no change along 3D = X’ N D.

Now we explain these steps in detail. Choose a trivialization of V|p, that is an
oriented orthonormal frame over D. It induces trivializations of DV and C1(V). Also
we choose a compatible trivialization of A, compare Example 8.4:

DVip =D xD",  Cl(V)lp = (Cl)p. Alp=L)p (9.10)

for some Cl,-module L = L™ @ L~ (recall n = 4m) such that for any x € D
the C1(V,)-module multiplication V, x Ay — Ay is transferred to the Cl,,-module
multiplication R” x L — L.

Identifying SV|p with D x S"~!, we choose e € S” as a base point and put

o1(x) :=0(x,e1), wi(x) =wl,er). (9.11)
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We use these bundle isomorphisms as trivializations € and ¢ of the bundles E_|p and
(A(J)r @ A})lsp (which below will be pulled back to DV |p and DV [ p, respectively):

—1
: i -
€ : E_ — E4 =AT=L" overD, 9.12)

9 A B AT o Af @ AT =AT =L overdD.
Thus we can express the isomorphism f in (9.8), restricted to DV |5 p, as a map
f=0o0foe':9DxD"— SOLM). 9.13)
At the base point e; € S"~! we obtain for all x € 3 D:

fx,en) = 9(f(o1(x)))

O 5 (1(x))

9.12 _
29 10 0wy (x)

—idg-. 9.14)
Further, (9.9) is transformed over SV |yp = 9D x S" ! into
f6=&:0D xS > SOL™) (9.15)

where6 =€oo : D xS 1 - SOLT)andd =V ow: 9D x S" ! - SOL™)
are evaluated as follows:

6(x,v) =0o(x,e;) lo(x,v) forall x € D,
o(x,v) = w(x, e1) lw(x,v) forall x € dD.

(9.16)
Now we will extend f from 0D x D" to D x D". The extended map
F:DxD"— SO
restricted to D x S"~!, will be used to define another clutching map
T:=F6:D xS - SO(L") witht = f6 =donaD xS""'. (9.17)
O

Assertion The map f : 0D x D" — SO(L™) in (9.13) extends to a map
F:DxD"— SO(LT)
such that ﬁ(x, e1) =id;+ forall x € D.
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Proof of assertion By (9.14), f is equal to the identity on the fibre over D x {e;},
where as usual e; € S"~! ¢ D", Notice that {¢;} C D" is a strong deformation retract.
Letr, : D" — D", ¢t € [0, 1], be a deformation retraction with 7 = idpr and ro = e;:

D’

This gives a homotopy f, tidp+ f,
fi = fo(dsp,r): 9D x D" — SO(L™)

with f,(i, e;) =1id;+ forall X € dD and ¢ € [0, 1]. Considering D as the cone over
a D, this can be viewed as a map

F:DxD"— SO(LM),
F(x,v) = fiq@&, v) = f&, rix )

with X X = x/|x| when x # 0. Moreover, F(O v) = id;+ for all v € D" since ro = ¢
and f( e1) = idy +. This map restricts to f over D x D" and it is constant = id +
along the fibers over D x [0, 1]le; C D x D", thus finishing the proof of the assertion.

O

The new clutching map 7 = Fé6:D — Map(S"~!, SO(L1)) satisfies
7(3D) C Hopf, (S"~', SO(L™)),

by (9.17), (9.16), (9.9) (cf. definitions 7.9 and 8.1 ), where 7 is the stable winding
number of the original clutching map o in the sense of (9.4).

Since p > po(d) where d = dim X and s, -d < n < p/4, we can apply Theorem
7.10 to obtain a deformation (7;);¢[0,1] of T = 70 such that ; = v on 9D and

71(D) € Hopf, (S"~', SO(L™)),.

Thus the trivial bundle L™ decomposes over D into orthogonal Cl,,_;-invariant sub-
bundles,

LHp=L{®Lf and 1, =id® ., (9.18)

where i (926) wle) = py |sn—1 1s the Hopf map induced by the Cl,,_-module

structure on LT (compare Remark 8.2).
We have to connect these clutching data over D to the given ones over X'. In

(9.10) we have chosen a trivialization A™|p 3 (L™)p which over 3D transforms
the decomposition AT = A(J{ ® AT into a bundle decomposition (LT)yp = (Lg ®
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LT)|3 p . Now we extend the decomposition (9.6) of A™|yp to all of D by applying

the inverse of this trivialization to (9.18) obtaining a decomposition AT = A(J{ &) AI

on all of X. Similarly, we obtain subbundles A, = ,u,(V)Ag and A} = pu(V)A]
decomposing A™.
Now we can define a bundle isomorphism

F:E_—> Al ®A]
over SV, with F = f over SV |x’ and
—1 id
FE 25 By =AY 2 AT @ AT overSVp (9.19)

1

This is compatible over 3D = X' N D because over SV |3p we have f = woo ™" and

id ® u = w. It defines an isomorphism
¢ =(dp, . F): (E+.0,E-) > (AT, 0, AJ ® A]).

In fact, over X’ this is true by assumption, and over D we use (9.19) for the commu-
tativity of the diagram

E+;A+

al \Lid@/l,

E.—L Af @Ay
Hence the isomorphism f from Equation (9.8) extends to an isomorphism ¢ over X
between the given bundle £ and a bundle of the form (9.7). This finishes the proof of

Proposition 9.5 and the existence part of Theorem 9.2.
For the uniqueness statement of Theorem 9.2 we need the following lemma.

Lemma 9.6 Let & = (E4+, 0, E_) and &= (E+, o, E_) be triples with
Ef=E,=F
and
p=(pr.¢-): 6~ &

an orthogonal bundle isomorphism (see Remark 9.4). Let # = (F,id, F) = 7*(F).
Then there exists an orthogonal isomorphism

b EDF > EDTF
such that ¢ = id.
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Proof We consider the isomorphism ¢’ = (A, B) : & & F — F & & given by the
following commutative diagram:

EL®0F 2~FoE,

o*eaidl lid@&

E oF-2-FaE_

-1 —1
with A = ( p —¢4 ) and B = ( p —%4 ) . Note that A is a complex structure

+
on F @ F, that is A2 = —id. This can be deformed into id using the homotopy
A; = (cost)id + (sint)A with Ag = id and Aﬂ/z = A. By Remark 9.4, qs/ can be
deformed onto an isomorphism ¢’ : & & .F — .Z & & with ¢~>jr =id.

However, we have yet to interchange the two summands of .% & &. Hence we
apply the same construction once more, replacing ¢ : & — & by ¢” =id : E— &.
This gives us a bundle isomorphism ¢” = (A”,B") : & ® .F — .F & & such
that A” can be deformed into id, and by Remark 9.4 again ¢” can be deformed
into an 1som0rphlsm @” of these bundles with (¢”); = id. Then the composition
=@ ¢ :EDF - & F satisfies ¢ = id. O

Now, for the uniqueness part of Theorem 9.2, assume that E, E — X are Euclidean
vector bundles and .2, £ — V the Hopf bundles corresponding to CI(V)-module
bundles A, A — X. Furthermore, for & := E & Zand & = E @ £ (after pulling
back E and E to V) we assume

E=E. (9.20)

Put Ef = EO® Al* and Ei = E @ A1%. We claim that after adding certain
bundles F, F — X to E, E4 with F =; F we may in addition assume that

EL=AT=E, (9.21)
for some CI(V)-module bundle A — X. For proving this claim choose a C1(V)-

module bundle Ag — X such that E, E embed into A+ andput A = A @ A® A.
Put F = AT @ (Af © E)and F = A* @ (A{ © E). Then

FOANTOE=AT=F® AT ®E, (9.22)
but Al @ E = E, and At @ E = E, are isomorphic by (9.20) and thus F =, F
by (9.22), such that (9.21) can be assumed.

After this preparation we may hence assume that

—(A+—E@A+,w E®A),
=(AT=E®A], &, E®A)),
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and

&

b

= (by.¢-): &

is a vector bundle isomorphism, which we may assume to be orthogonal.

Due to (9.21) Lemma 9.6 implies that we can furthermore assume ¢ = id, at least
after adding some trivial bundle R? to & and & (chosen such that the bundle F in
Lemma 9.6 embeds as a subbundle of R?). In particular this implies

@=¢_ow:SV —>SOAt, EdA).

We have to show that

But the given data induce a triple &= (IA\Jr x [0, 1], 5, E,) over V x [0, 1] (the
total space of V x [0,1] — X x [0, 1]) by pulling back the triples & and & over
V x [0, 1/2], respectively V x [1/2, 1] and gluing them along V x {1/2} by means
of the isomorphism (id, ¢_). More precisely, this is done as follows. Recall

E_.=E®A, E_L=E®A .

We have the isomorphism ¢_ : E_ — E_over D_V with ¢ o w = & over SV.
Let s_ be the O-section of D_V and ¢, = ¢_|,_, which is an isomorphism between

E_ and E_ over X. Note that ¢, and ¢_ are homotopic.
We define a bundle E_ — X x [0, 1] as follows. We put

E_ = (E- x[0,1/21) Uy, (E— x [1/2,1])

using the isomorphism ¢, to identify E_ x {%} with E_ x {%}. This defines a vector
bundle £_ — X x [0, 1]. Further, we define a clutching map

6: AT x[0,1]1 > E_
over SV x [0, 1] as follows.

u@) for 0<t<1/2,
6(v,t) = ¢ ou(v) for1/2 <t <3/4,
a() for 3/4<t<1,

where ¢; : E_ — E_ is a homotopy of bundle isomorphisms over D_V for 1/2 <
t <3/4 with g2 = ¢, and ¢34 = ¢_.

Then & is well defined at t = 1/2 since for any & € [\x and v € SV, the element
n()é € (E_), is identified with ¢, (v)€ € (E_)x. Itis also well defined att = 3/4
because ¢ o u = [1, see (9.3) with ¢ = id.
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Thus we obtain a triple
&= (At x1[0,11,6,E_)

over V x [0, 1] which restricts to & on V x {0} and to &onV x {1}, as required.

We now apply the previous deformation process in the proof of Equation (9.7) in
Proposition 9.5 on X x [0, 1], but relative to X x {0, 1}, i.e. we start the induction
at X’ = X x {0, 1}. Now we have to assume d = dim X + 1 in Equation (9.5).
This implies that (stably) the vector bundle E U E - X x {0, 1} (called A9r in
Prop. 9.5) extends over X x [0, 1], and the analogous holds for the CI(V)-module
bundle A LA — X X {0, 1} (called A in Prop. 9.5).

Hence we obtain stable isomorphisms £ =; E and A ~ A, finishing the proof of
the uniqueness statement in Theorem 9.2.

10 Thom isomorphism theorems

Theorem 9.2 can be reformulated concisely in the language of topological K-theory.
Let X be a finite CW-complex and V — X an oriented Euclidean vector bundle of
rank n = 4m > 0 with associated Clifford algebra bundle CI1(V) — X.

Definition 10.1 We denote by K“'(V)(X) the topological Cl(V)-linear K-theory of X.
More precisely, elements in KE'(V) (X)) are represented by formal differences of iso-
morphism classes of C1(V)-module bundles (cf. Example 8.4), with addition induced
by the direct sum and neutral element the trivial C1(V)-module bundle with fibre 0.

Each CI(V)-module bundle A — X is isomorphic to a C1(V)-submodule bundle
of CI(V)? — X for some ¢. This holds in the special case X = {point}, since each
Cl,,-module is a direct sum of irreducible Cl,,-modules, each of which also occurs as
a summand in the Cl,-module Cl,,. 13

For more general X we use a partition of unity subordinate to a finite cover of X by
open trivializing subsets for the given C1(V)-module bundle, similar as for ordinary
vector bundles.

In particular, two CI(V)-module bundles A, A represent the same element in
KCV) (X)), if and only if they are stably isomorphic as Cl(V)-module bundles in
the sense of Definition 9.1(2).

Let KO(X) denote the orthogonal topological K-theory of X. If X is equipped with
a base point xq recall the definition of the reduced orthogonal K-theory

KO(X) = ker(K° (X)) % KO (x0)) c KO(X).

Let XV = f/ /s+ be the Thom space associated to V. — X with base point [s ] (recall
that s C V denotes the zero section of D V). The fibrewise projectionz : V — s
induces a group homomorphism

15 Recall that by Theorem 2.2 there is, up to isomorphism, just one irreducible Cl,-module for n = 4m.
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x :KO(V) = KOXY), [£]r [6]—n*[&]s,]. (10.1)
Definition 10.2 The group homomorphism
Wy KYV(X) > KO, [Al- x (L)),

where & = (AT, u, A7) — V is the Hopf bundle associated to A (see Example 8.4),
is called the Clifford—Thom homomorphism.

In this language Theorem 9.2 translates to the following result.
Theorem 10.3 The Clifford—Thom homomorphism WYy is an isomorphism.

We will now point out that Theorem 10.3 implies classical Thom isomorphism
theorems for orthogonal, unitary and symplectic K-theory (the orthogonal and unitary
cases are also treated in [9, Theorem IV.5.14]).

Assume that V. — X is equipped with a spin structure and let ¥ — X be the
spinor bundle associated to V — X, compare Example 8.7. In this case C1(V)-module
bundles are of a particular form.

Recall the notion of the tensor product over H (e.g. see [7, p. 18]): Let P a H-right
vector space and Q a H-left vector space. Then

P®y Q:=(P®Q)/R, where
R :=Span{pr®q—p®rg:pe P,qe Q,recH}

This is a vector space over R, not over H.

If m is odd then the right H-multiplication on S commutes with the left Cl,-action
(see Table (2.2)), and hence X is a bundle of right H-modules in a canonical way. We
equivalently regard S and ¥ as left H-modules by setting A - s := sA ™\,

Proposition 10.4 Let A be a C1(V)-module bundle. Then A is a twisted spinor bundle,
that is there exists a Euclidean vector bundle E — X over R or H when m is even or
odd, respectively, such that

A { E® XY whenmiseven (10.2)

E ®@u X when m is odd

If two such bundles A = E ®qy T and A = E @) T are isomorphic as CI(V)-
module bundles, then E = E.

Proof Following [3, p. 115], we put
E = HOIIlCl(V)(Z, A).
The isomorphism in (10.2) is given by

JIEQZ > A ¢®&E— ¢(§). (10.3)
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This is a C1(V)-linear bundle homomorphism: For all @ € C1(V),

Ja-@®8)=j@¢@-§))=¢@-§=a-¢¢)=a-j(@RF).

To check bijectivity we look at the fibers L of A and S of 2. Set C := Cl,,. The fibre
of E = Homcyv)(Z, A) is Hom¢(S, L) and the homomorphism j is fiberwise the
linear map

Jo :Homc(S,L)® S — L, (¢,5) — ¢(s).

Since S is the unique irreducible C-representation we have L = SP = R”? @ S
for some p, and Hom¢ (S, L) = Homc¢ (S, S)? = Endc(S)?. Applying j, to ¢ =
©,...,idg, ..., 0) with the identity at the k-th slotfork = 1, ..., p, we see that this

map is onto. When m is even we have C = Endpr (S), and whenm isodd, C = Endp(S)
(cf. Table (2.2)). Thus End¢(S) = R - idg when m is even and End¢(S) = H - idg
when m is odd. Note that in the second case an element A € H corresponds to A=
R,-1 € Endc(S) (right multiplication with A2~1on S, that is left multiplication with
A with respect to the left H-module structure defined before) in order to make the
identification a ring map.'®

In the first case, Hom¢ (S, L) = End¢(S)? ® S = R? ® § = S”. Thus j, is an
isomorphism whence j is an isomorphism.

In the second case we con51der Homc¢ (S, L) as a H-right vector space using pre-
composition ¢ > ¢ o %, where A = R,-1 € End¢c(S) = H. We hence compute

Jo( @A, €) = (poM)(E) =d(ELH) = (- &) = jo(p, 1 - &).

Thus j, descends to fo : Hom¢(L,S) ®u § — L. Since Hom¢(L, S) =
Hom¢(S?, S) = Endc(S)? = H” and H@y S = S viathe map A Q@ys = 1 QuAs —
s, we obtain that f(, maps Homc (S, L) @ug S = H?P @y S = (H®y S)? = S? iso-
morphically onto L = SP.

A CI(V)-linear isomorphism ¢ between two such bundles E @) T and E ® gy %
is fiberwise a C-linear isomorphism ¢, : S? — SP. This is an invertible (p x p)-
matrix A = (a;j,) with coefficients in End¢(S) = K where K = R when m is even
and K = H when m is odd. In the first case we have S” = R” ® S and j, = A ® ids.
In the second case we let S? = H” ®p S using the isomorphism se; — ¢; @y s for
allse Sandi =1,..., pwheree; =(1,0,...,0),...,¢, =(0,...,0,1). Then

bo(se;) = Zaijsej — Zej ®u a;js = Zejaij Ru s = Ae; Qm S
j J J

16 End¢(S) is an (associative) division algebra, thus isomorphic to H or C or R. In fact, kernel and image
of any A € Endc(S) are C-invariant subspaces of the irreducible C-module S, hence A is invertible or
0. When m is odd, C = Endp(S) and therefore End¢ (S) D H, hence End¢ (S) = H. When m is even,
C = EndR(S). Any A € End¢ (S) has areal or complex eigenvalue and hence an invariant line or plane in S.
Since it commutes with all endomorphisms on S, every line or plane is A-invariant since GL(S) C End(S)
acts transitively on the Grassmannians. Thus A is a real multiple of the identity. (See also Wedderburn’s
theorem).
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and hence ¢, = A ®p ids. ~

Therefore ¢ = f ® idy for some R-linear isomorphism f : E — E in the first
case, and ¢ = f ®p idy for some H-linear isomorphism f : E — E in the second
case. O

Lemma 10.5 Let A, A — X be CI(V)-module bundles. Then the following assertions
are equivalent.

() A and A are stably isomorphic as CI(V)-module bundles.
(i) Thereissome q > 0, suchthat A X1 = A X9 are isomorphic C1(V)-module
bundles

Proof This follows since ¥ — X is a CI(V)-submodule bundle of C1(V)? — X for
some g > 0, and vice versa CI(V) — X is a Cl(V)-submodule bundle of X9 — X
for some ¢. Again this is obvious if X is equal to a point and follows for general X by
a partition of unity argument. O

Together with Proposition 10.4 this implies

Proposition 10.6 Let V. — X be of rank 4m and equipped with a spin structure, and
let ¥ — X denote the associated spinor bundle.

(a) For even m the map
KO(X) > KM (X), [El~ [E®X],

is an isomorphism.
(b) For odd m the map

K5 (X) — KYY(X), [E]l+ [E®n 2],

is an isomorphism, where KSP denotes symplectic (quaternionic) K-theory based
on H-right vector bundles.

Proof The maps in (a) and (b) are well defined and one-to-one: Let E, E > X

be vector bundles. Then A = E ® ¥ is stably isomorphic to A = E ® % <10:5>

A®T! = (EdRY) QX (for some g € N given by 10.5) is isomorphic to A @ X9 =

(EORH® (10;1 E®RI = E®R! <« E =, E. Further, these maps are
onto by Proposition 10.4. O

Hence we obtain the classical Thom isomorphism by composing the isomorphisms
of 10.6 and 10.3 , using that the spinor Hopf bundle . (cf. 8.8) is the Hopf bundle
(cf. 8.1) associated to the spinor bundle X:

Theorem 10.7 Let V — X be equipped with a spin structure and let . — V denote
the spinor Hopf bundle associated to V. — X (see Definition 8.8).
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(a) For even m the map
KO(X) - RO(x"), [El x(E® S,

is an isomorphism.
(b) For odd m the map

K5 (X) - K°(XV), [El+ x(E ®u.2)),

is an isomorphism.

Hence x([.7]) € KO(XV) serves as the “KO-theoretic Thom class” of V.

There are analogues of the theorems 9.2 and 10.3 for complex and quaternionic
vector bundles over V. Detailed proofs of the following statements are left to the
reader.

Theorem 10.8 Let X be a finite CW-complex and V. — X an oriented Euclidean
vector bundle with associated Clifford algebra bundle C1(V) — X.

(a) Lettk V = 4m. Then there is a Clifford—Thom isomorphism
KCI(V)®H(X) ; KSp (XV)

(b) Lettk V = 2m. Then there is a Clifford—Thom isomorphism
KAW®C(x) = KY(x").

The analogues of Proposition 10.4 for complex and quaternionic Cl(V')-module
bundles are as follows.

Assume that V. — X is equipped with a spin structure. Recall from (2.2) that
the spinor bundle X associated to Pspin (V) is quaternionic when tk V. = n = 4m
with m odd and it is real when n = 4m with m even. If A is a (CI(V) ® H)-
module bundle (with left C1(V)-multiplication and right H-multiplication), we put
E = Homcyv)gu (X, A) for m odd and E = Homcyv) (2, A) if m is even; in both
cases precisely one of the bundles £ and X is (right) quaternionic, and we obtain an
isomorphism of (C1(V) ® H)-module bundles analogue to (10.3),

JTEGRE —> A, ¢®5 > ¢(8).
For (C1(V) ® C)-module bundles A with dimV = n = 2m we can apply [3,
Prop.3.34]: Let X be the complex spinor bundle associated to Pspinc (V) by means

of a Spin®-structure on V' (cf. [10, Appendix D]). Putting E = Homcy(v)gc(Z€, A)
we obtain that

JiE®CX—> A, ¢®cE > ¢(§)

is an isomorphism of (C1(V) ® C)-module bundles.

@ Springer



Sao Paulo Journal of Mathematical Sciences (2021) 15:127-174 173

Together with Theorem 10.8 we hence arrive at the following classical Thom iso-
morphism theorems, which complement Theorem 10.7.

Theorem 10.9 (a) LetV — X be a spin bundle of rankn = 4m. Then multiplication
with the spinor Hopf bundle . — V induces Thom isomorphisms

K3 (X) — KS°(XV) for even m,
K (X) — K(x") for odd m .

(b) Let V. — X be a Spin©-bundle of rank n = 2m. Then multiplication with the
complex spinor Hopf bundle .7 — V induces a Thom isomorphism

KY(x) - KY(x").

Discussion 10.10 We will point out some connections of the argument at the beginning
of this section to the classical monograph [9]. Let QO denote the given (positive definite)
quadratic form on the Euclidean bundle V' — X. Then the Clifford algebra bundle
CI(V) — X in the sense of Definition 8.4 is equal to the Clifford algebra bundle
C(V,—Q) — X inthe sense of [9,IV.4.11] '7 and K'V) (X) from Definition 10.1 is
equal to K(& V.=9) (X)), the Grothendieck group of the Banach category & V.=0)(x)
of C(V, —Q)-module bundles over X, compare [9, 11.1.7].

Since V is oriented and of rank divisible by four we have C(V, Q) = C(V, —Q)
as algebra bundles, induced by the map V — C(V, Q), v +— w - v, where w € CI(V)
denotes the volume section of C(V, —Q) (note that v> = —||v||> and 4 | rk V imply
(w - v)? = +]||v||?). Hence

K&V (x) = KE~2(X)) =KV (X) (10.4)

for the given V — X.

In the following we denote by C (V) — X the algebra bundle C(V, Q) — X and
¢ = &V (X) the Banach category of module bundles over C(V) — X.

As in [9, Section IV.5.1] let KV (X) = K(¢V) be the Grothendieck group of the
forgetful functor ¢’ : &VOR(X) — &V (X). Using C(R, Q) = R®R for the standard
quadratic form Q on R, compare [9, II1.3.4], we have C(V @ R) = C(V) @ R &
R) =C(V)@ C(V), see [9, Prop. I11.3.16.(1)] (note that C(V, Q) > 0, which means
®? = +1, holds since 4 | rk V).

Hence &VOR(X) = € x € and the forgetful functor ¢V can be identified with the
functor ¢ : € x € — %, sending a pair of C(V)-module bundles (E, F) to their
direct sum E @ F, compare [9, I11.4.9] for the cases ¢ = 0 and ¢ = 4. Since this
functor has a right inverse E — (E, 0) the first and last maps in the exact sequence

KL% x €) 25 K 1(%) - K@) — K(E x €) 2> K(%)

from [9, 11.3.22] are surjective. We hence obtain isomorphisms

17 Notice the sign convention for the construction of the Clifford algebras in [9, I11.3.1], which is different
from ours.
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K(¢") = ker (w* LK(%) ® K(%) “Pzatt K(%)) = {(a, —a) | a € K(€)} = K(¥)

showing that

10.4)
K'(X)=K@")=K®) = KIV(x).

Put differently: For the given V — X Karoubi’s theory KV (X) is the topological
K-theory based on Cl(V)-module bundles over X. We remark that this is not true in
general for bundles V — X of rank not divisible by four.

One can show that with respect to this identification the Clifford—Thom homomor-
phism in Definition 10.2 is identified with the map ¢ : KY(X) = K(B(V), S(V))
from [9, IV.5.10.]. Hence Theorem 10.3 recovers [9, Theorem IV.5.11] (whose full
proof is given in [9, IV.6.21]), for oriented V — X of rank divisible by four.
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