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“There are two ways of constructing a software design: one way is to make it so simple
that there are obviously no deficiencies, and the other way is to make it so complicated
that there are no obvious deficiencies. The first method is far more difficult.”

C.A.R. Hoare
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Abstract
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Doctor of Philosophy

Using formal logic to represent Sign Language phonetics in semi-automatic
annotation tasks

by Arturo Tlacaélel Curiel D́ıaz

This thesis presents a formal framework for the representation of Sign Languages (SLs), the
languages of Deaf communities, in semi-automatic recognition tasks. SLs are complex visio-
gestural communication systems; by using corporal gestures, signers achieve the same level of
expressiveness held by sound-based languages like English or French. However, unlike these,
SL morphemes correspond to complex sequences of highly specific body postures, interleaved
with postural changes: during signing, signers use several parts of their body simultaneously in
order to combinatorially build phonemes. This situation, paired with an extensive use of the
three-dimensional space, make them difficult to represent with tools already existent in Natural
Language Processing (NLP) of vocal languages.

The current work presents the development of a formal representation framework, intended
to transform SL video repositories (corpus) into an intermediate representation layer, where
automatic recognition algorithms can work under better conditions. The main idea is that
corpora can be described with a specialized Labeled Transition System (LTS), which can then be
annotated with logic formulae for its study.

A multi-modal logic was chosen as the basis of the formal language: the Propositional Dynamic
Logic (PDL). This logic was originally created to specify and prove properties on computer
programs. In particular, PDL uses the modal operators [a] and ¡a¿ to denote necessity and
possibility, respectively. For SLs, a particular variant based on the original formalism was
developed: the PDL for Sign Language (PDLSL).

Finally, the development of the formal framework led to the creation of a semi-automatic annotator

based on the presented theoretical principles. Broadly, the system receives an untreated corpus

video, converts it automatically into a valid LTS (by way of some predefined rules), and then

verifies human-created PDLSLformulae over the LTS. The final product, is an automatically

generated sub-lexical annotation, which can be later corrected by human annotators for their use

in other areas such as linguistics.
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Utilisation d’une logique formelle pour la représentation phonetique de la
Langue de Signes dans des taches d’annotation semi-automatiques

par Arturo Tlacaélel Curiel D́ıaz

Cet thèse présente le développement d’un framework formel pour la représentation des Langues
de Signes (LS), les langages des communautés Sourdes, dans le cadre de la construction d’un
système de reconnaissance automatique. Les LS sont de langues naturelles, qui utilisent des
gestes et l’espace autour du signeur pour transmettre de l’information. Cela veut dire que, à
différence des langues vocales, les morphèmes en LS ne correspondent pas aux séquences de
sons ; ils correspondent aux séquences de postures corporelles très spécifiques, séparés par des
changements tels que de mouvements. De plus, lors du discours les signeurs utilisent plusieurs
parties de leurs corps (articulateurs) simultanément, ce qui est difficile à capturer avec un système
de notation écrite. Cette situation difficulté leur représentation dans de taches de Traitement
Automatique du Langage Naturel (TALN).

Pour ces raisons, le travail présenté dans ce document a comme objectif la construction d’une
représentation abstraite de la LS ; plus précisément, le but est de pouvoir représenter des
collections de vidéo LS (corpus) de manière formelle. En générale, il s’agit de construire une
couche de représentation intermédiaire, permettant de faire de la reconnaissance automatique
indépendamment des technologies de suivi et des corpus utilisés pour la recherche. Cette couche
corresponde à un système de transition d’états (STE), spécialement crée pour représenter la
nature parallèle des LS. En plus, elle peut-être annoté avec de formules logiques pour son analyse,
à travers de la vérification de modèles.

Finalement, la création de cet outil à permit l’implémentation d’un système d’annotation semi-

automatique, basé sur les principes théoriques du formalisme. Globalement, le système reçoit

des vidéos LS et les transforme dans un STE valide. Ensuite, un module fait de la vérification

formelle sur le STE, en utilisant une base de données de formules crée par un expert en LS. Les

formules représentent des propriétés lexicales à chercher dans le STE. Le produit de ce processus,

est une annotation qui peut être corrigé par des utilisateurs humains, et qui est utilisable dans

des domaines d’études tels que la linguistique.
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Thanks to Bérengère MATHIEU, who helped me forget the grief of leaving my old life
behind by being a supportive and honest friend. Discuter avec toi est un énorme plaisir.
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sobre todo los asuntos jugosos — y por hacer de IT en la casa durante mi ausencia. La
verdad es que luego si me alegrabas los d́ıas.

Thanks to my parents, Arturo CURIEL and Graciela DIAZ, for giving me their uncondi-
tional support all these years, and for teaching me that hard work is more important
than intelligence. A ustedes mi más grande reconocimiento. No me quedan palabras
para describir lo mucho que aprecio su confianza, su apoyo. No merezco padres como
ustedes. Gracias.

Thanks to the monsters from my nightmares, who keep me from standing still. I’m sure
they’ll eventually catch me . . . until then, it is oddly reassuring to know they are there,
trying.

Last but not least, thanks to Sombra the cat for taking my place at home during these
long years. Now that my family loves her more than they love me, I have gained the
liberty I need to do research all around the world, without ever being missed.

To every other friend and family member who has ever supported me, I extend the rest
of my gratitude.



Contents viii



Contents

Abstract iii
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Chapter 1

Introduction

Sign Languages (SLs) are the visual-gestural languages of Deaf people. Broadly speaking,
signers achieve communication through the simultaneous use of their hands and several
other Non-Manual Features (NMFs), which work together to convey a message. Distinct
information can be transmitted by modifying both very notorious and subtle parameters
[Stokoe 1960, p. 16]; as such, changes on hand positions, shapes or movements are
just as important as less salient elements like head tilting, eye gaze or body orientation
[Bahan 1996,Engberg-Pedersen 2003].

This phenomenon where several body parts work simultaneously to achieve communi-
cation is called multimodality. Essentially, each modality corresponds to an individual
communication channel, which carries the information produced by a single body part
while signing. The signer parts involved on the articulation of SL utterances (hands, head,
elbows, mouth, etc.) are called articulators. Signers receive information by observing
how every articulator interacts with the others. This simultaneous nature of SL is further
enriched with complex linguistic phenomena like role shifting, where signers change their
point of view to “act the part” of another character during signing [Lillo-Martin 1995]. It
is by way of these complex interactions that signers are capable of generating discourse
with the same expressive power than vocal languages.

The use of space plays a crucial role in SL. It is through spatial relations that signers
are able to expressing complex nuances on their reasoning [Emmorey 2003]. Accord-
ingly, space has been observed to fulfill diverse linguistic roles, notably by providing
mappings between discrete spatial regions and discourse referents [Padden 2010a]. So,
for instance, a signer will commonly map a specific spatial location (e.g. by pointing)
to a person, a place or an object, and will continue referring to the same entity by
unambiguously acknowledging the assigned location. This phenomenon is commonly
known as spatialization.

1
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SLs arise naturally within Deaf communities [Senghas 2004], and provide the same
expressive power as do vocal speech [Sandler 2006]. Subsequently, they serve as standalone
communication systems, and exist independently from vocal languages. However, more
often than not they are influenced in their structure by socio-cultural aspects related to
the surrounding hearing culture [Battison 1978,Goldin-Meadow 1998].

There is no universal SL, just as there is no universal vocal language; SLs vary from
country to country and from region to region. Even geographically close communities can
develop independent SLs, with differing degrees of mutual intelligibility [Padden 2010b].
In addition, internal variations can be observed between signers of different generations
[Woodward 1976], social classes [Parks 2010], genders [Sutton-Spence 1999b, p. 23] and
ethnic origins [Solomon 2010].

It is also important to note that SLs lack of writing systems. The aforementioned
simultaneity of SL parameters and their reliance on space, complicates the creation
of a faithful written representation. Proposals like SignWriting [Sutton 2000], have
tried to provide a written form to SLs with some success. Still, several usability
considerations have undermined their utility outside of some very specific use cases,
notably in research [Antinoro Pizzuto 2010, p. 211].

A more thorough introduction to SL characteristics is presented in Chapter 2 (p. 21).

The rest of this chapter presents a brief description of SL research, specially its rela-
tionship with computer science. Furthermore, the text portrays — very succinctly —
the problematic at hand, and ponders about how existing tools from different domains
could be used to address complex problems in the field. Lastly, the final section lists
the contributions of this work, and intuitively spells out the core details of the proposed
solutions.

1.1 Sign Language Research

The interest in the study of SL linguistics, has contributed towards the development of
new research lines in several areas. A significant part of SL studies, are focused on deaf
education [Marschark 2001] and SL acquisition [Baker 2009b]. Moreover, researchers
have been able to interpret results in these fields through the lenses of neurobiology and
psychology, by observing short and long term effects of SL proficiency on the human
brain [Emmorey 2001].
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From the point of view of education, the main interest in the area has been to assess
and improve the quality of Deaf instruction. Research goes from the creation of re-
vised pedagogic strategies in schools [Johnson 1989], to their effects on Deaf children
development [Calderon 2000]. These efforts mainly strive to increase literacy rates
among the Deaf, as well as to improve their integration with the surrounding hearing
culture [Mayer 1996,Antia 2001].

Research in Deaf education has led to new studies on SL acquisition and its outcomes
both on hearing and Deaf individuals. Work in the field has been able to document
brain changes across different signing populations [Neville 1997,Nishimura 1999], which
has in turn contributed to a better understanding of the human brain. In this regard,
research has shown that SL learning has positive effects on the long term linguistic
development of signers [Daniels 1996,Goodwyn 2000] and on their overall neurological
evolution [Emmorey 2009].

This diversity of new SL studies, has called for further research on SLs themselves,
especially on how their linguistic characteristics differ from those of vocal languages.
For this reason, new lines have emerged on how to generate and compare meaningful
linguistic data [Baker 2009a], which has led in particular to the creation of SL corpora.

1.1.1 Corpus-linguistics and Sign Language

In corpus-linguistics, a corpus (plural corpora) is a collection of naturally occurring
language samples, intended to be representative of the language [Biber 1998]. In
order to be considered representative, corpora need not only be “large enough”, but
samples must be selected following specific criteria depending on the purpose of its
creation [Bowker 2002, p. 10]. For instance, to study use of space in SL, the collection
could be based on empirical observations of spatialization occurrences. Finally, it is
crucial for corpora to be representable as a digital resource, as corpus-linguistics relies
on the use of computers for language analysis [Biber 1998, p. 4].

Corpora are commonly annotated with linguistic information [Baker 2006, p. 6], which
allows researchers to derive conclusions from data. Annotations can go from the purely
symbolic, to even carry meta-data about the speakers. In that sense, they can be as
simple as labeling words with their syntactic function (i.e. verb, noun, etc), or as complex
as noting the socio-political role of the corpus participants [Warren 2004].

Aside from annotation, corpora analysis benefits from another technique called tran-
scription. Broadly speaking, a transcript intends to represent information from one
medium into another [Jenks 2011, pp. 2-6]. Contrary to annotation, transcripts try to
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give rigorous depictions of the original information, by applying a series of symbolic
conventions [Lapadat 1999, p. 68]. For example, phonetic transcription can be done by
using the International Phonetic Alphabet, so as to precisely convey the sounds produced
by vocal utterances. Finally, it is important to emphasize that transcription seeks to
create a literal representation of the source material and not to translate it, just as IPA
does with vocal language sounds.

Corpus-linguistics has become a valuable resource in linguistic studies, since it readily
uses new technology to discover otherwise difficult to find patterns. Current vocal corpora
are usually comprehensive enough to describe a wide array of linguistic phenomena over
vast amounts of information [Partington 1998, pp. 2-4]; difficulties arise, nonetheless,
when working with SLs corpora.

1.1.1.1 Sign Language Corpora

Similarly to vocal languages, a SL corpus is a digital compilation of language samples
documenting its use. However, because of their lack of a written representation, SL
corpora are bound to be kept as video collections, whereas their vocal counterparts can
usually be kept as textual records. This constraint alone is enough to complicate their
creation, since it imposes the development of specialized tools for their storage, capture
and analysis, among others [Johnston 2006, pp. 10–12]. These conditions hinder the
growth and availability of corpora, both because of technical and financial limitations.

Commonly, different capture technologies are adopted with each new SL corpus, which
has resulted on a very heterogeneous environment. Existing corpora have been created
with professional video cameras [Hanke 2010], 3D sensors [Stefanov 2013], motion capture
technology [Lu 2010] and even by collecting televised SL broadcasts [Forster 2014].
Moreover, each media carries its own distribution formats, which can lead to further
segmentation issues between different resources. Finally, the access to financial sources
such as research grants, can also have an impact on variability; for example, projects like
the Dicta-sign corpus [Matthes 2012], built by several research teams across Europe, was
able to produce 25 hours of high definition annotated data, which required spending on
technology which was not readily available for less-financed corpora.

Differences in capture, distribution and storage formats, complicate the task of amassing
big SL data repositories like the ones existing for vocal languages. For reference, the
British National Corpus, an English language corpus, holds more than 100 million
words [Leech 1992]. Likewise, the Leipzig Corpora Collection, which documents more
than 20 vocal languages, holds about 30 thousand sentences on its worst documented
language and as many as 30 million on the best documented [Biemann 2007]. However,
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with SLs, even large corpora pale in comparison with the sizes of written language
collections. A big SL corpus like the DGS Corpus Project has about 2.25 million
signs [Nishio 2010], while the majority of the documented corpora hold only a few
hundreds of sentences [Morrissey 2005,Bungerot 2008].

1.1.1.2 Transcription and Annotation of Sign Language Corpora

Transcription and annotation of SL corpora are highly specialized, time-consuming,
endeavors [Neidle 2001,Forster 2010]. Each new corpus invariably leads to the production
of machine-readable transcripts and annotations (see Subsection 1.1.1 p. 3). They
are mainly used for scientific research, thus they usually can’t be created by signers
with no linguistics training whatsoever [Chen Pichler 2010, p. 4]. Even with simple
notations tasks, SL experts are needed to prove that the produced documents are
exploitable [Börstell 2014]. For this reason, it is acknowledged in the literature that there
is a lack of experts capable of fulfilling the notation needs of the domain [Johnston 2006, p.
12]. Incidentally, notations are prone to human-error [Fanghella 2012, p. 59], as they
tend to be very detailed; hence, it is a common practice to double check notes in order
to avoid inconsistencies, which increases the quantity of work needed for the task.

Regardless of their significance, there is no clear consensus on which coding systems should
be used for transcripts and annotations [Pizzuto 2001,Miller 2001,van der Hulst 2010].
Furthermore, no standard notation guidelines exist [Schembri 2010,Johnston 2011]. This
situation results in variations between different notation teams, even over the same
corpus [Müller de Quadros 2014, p. 97].

Transcripts of SL corpora are created by way of symbolic representation systems [Hoit-
ing 2003], akin to those mentioned on page 2. Consequently, corpus transcription faces
the same kind of problems as the development of all-purpose SL writing systems; namely,
the difficulty to accurately convey every aspect of visual communication by way of a
written document. Furthermore, transcripts tend to be very complex, considering the
high quantity of parameters that must be represented [Johnston 2010, p. 19]. As a
result, their creation is usually reserved for the study of very specific linguistic phenom-
ena [Morgan 2003], making annotation the preferred method to represent SL information
in corpora.

Most of the existing corpus annotations are glosses [Pizzuto 2001]. Essentially, glossing
consists in adding a one or two word description, a gloss note, to a visually recognized
element in the corpus. Frequently, these notes are merely words from a vocal language;
however, in some cases, simple coding systems are created to better represent the elements
of interest [van der Hulst 2010, pp. 29–35]. The process ensures the creation of small,
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machine-readable notes, which are easier to create than transcripts, and can be used
alongside corpus multimedia as needed [Johnston 2010, p. 24].

Glosses are usually created with a specific purpose, and can be of different types. Hence,
a single corpus can spawn several kinds of glosses, being the most common the ones
produced by the observation of lexical signs (e.g. dictionary signs), non-lexical signs
(e.g. position and size classifiers), spatialization cues (e.g. pointing signs) and culturally
influenced gestures (e.g. proper names) [Chen Pichler 2010,Johnston 2010]. Glosses can
also be created individually for hands and NMF.

Nowadays, researchers use specialized multimodal annotation software like ELAN [Wit-
tenburg 2006]. These tools permit the creation of time-aligned glosses, over corpora
with more than one communication modalities such as speech, facial expression, hand
configuration and others. They let users select a relevant time-interval, for example when
a sign occurs, and mark it with a gloss note. Notes can be arranged into tracks, each
track representing a different gloss type. Figure 1.1 shows an snapshot of ELAN during
the creation process of a lexical gloss for a French Sign Language (LSF) corpus.

Figure 1.1: Time-aligned lexical gloss of FSL on ELAN annotation software. Gloss is
written in French. 1

More information about SL corpora and other annotation tools can be found in Section
3.3.3, Chapter 3 (p. 63).

1.1.2 Computer Science and Sign Language

The relationship between SL and Computer Science (CS) is wide, going from the
development of tools for theoretical linguistics to practical applications directed towards
Deaf integration. In particular, major efforts exist on the areas of SL synthesis and
recognition, both of which are involved on various projects of other areas. Also, research

1. Corpus and gloss data provided by the Dicta-Sign project [Matthes 2012].
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along these lines tend to overlap with linguistics on their need for corpora, which can
prove troublesome due to the low availability of big SL data repositories (see Subsection
1.1.1.1, p. 4).

1.1.2.1 Sign Language Synthesis

Synthesis centers around the creation of artificial SL utterances, performed by animated
human avatars [Bangham 2000, Filhol 2007, Kipp 2011]. The main objective is to
communicate relevant information to Deaf users, in situations where no SL translation
exists. Figure 1.2 shows the example of a signing avatar.

Figure 1.2: Example of an avatar used in SL synthesis. 2

Synthesis relies on signing examples to synthesize biologically inspired movements.
Research has shown that humans respond naturally to movement of biological origin
[Vercher 2006, pp. 6–8]. In this regard, a more organic synthesis can effectively enhance
the comprehensibility of artificial utterances [Rezzoug 2006, p. 1]. For this reason, the
creation of copora for synthesis is a common occurrence, since the development of more
realistic animations relies on these to learn from human signers to accurately render
signing motion [Lu 2010,Lefebvre-Albaret 2013].

Synthesis deals also with SL representation issues. The movements of the avatars are
usually controlled by way of technical notation languages like the Signing Gesture
Markup Language (SiGML) [Elliott 2004]. Formalisms like these produce very detailed
utterance descriptions, which serve as mechanical instructions for the avatar to follow.
The produced descriptions are closely related to SL transcription and its multiple issues
(see Subsection 1.1.1.2, p. 5). Indeed SiGML, for example, is based upon the Hamburg

2. Obtained from 3DSigner [WebSourd 2015], commercial SL synthesis technology.
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Notation System (HamNoSys) notation [Bangham 2000, pp. 4–5], only adapted to avoid
describing features that cannot be animated by the target system. Figure 3.13 (see p.
53) shows the example of a sign description created in SiGML.

Other representation languages used in synthesis have gone beyond the purely geometrical
into higher level descriptions. For instance, the classifier-predicates models by [Huen-
erfauth 2006], enables the representation of “invisible objects” around a signer. In the
same vein, the Zebedee representation formalism developed by [Filhol 2009] holds similar
capabilities, permitting the representation of SLs at higher levels rather than by giving
thorough geometric configurations.

As with corpus annotation, the representation languages used for SL synthesis tend
to be very heterogeneous due to the variety of the available resources. Additionally,
each description formalism must adapt to the limits imposed by its avatar’s synthesis
engine, which may encompass different constraints in terms of: space, expressivity of
the depicted articulators, and even synctactic rules. For example, variations on how
the signing space is modeled during generation, may lead to differing representation
capabilities [Braffort 2008]. Consider the case of entities located in space: the places where
an entity is positioned, the possible internal relationships and any semantic modifications
they may suffer, have to be expresible by the selected description formalism, which
adapts to the underlying representation of space by the engine.

For this reason, existing technical notations are designed around different principles:
detailed spatial representation [Marshall 2004]; accurate description of NMF [Niewiadom-
ski 2009]; synchronization between body movements [Filhol 2012a] or for the compositional
use of very low level movement descriptions [Jung 1994].

In some cases, these representations go beyond being purely mechanical. Some efforts
have been made to develop higher level representations, capable of describing grammatical
constructions rather than just geometrical animation recipes [Losson 1998,Marshall 2005].
However, work in the area is limited by a lack of consensus on how to interpret some SL
linguistic phenomena [Corina 1993,Meier 2002], which ultimately shows how intertwined
SL linguistics can be with areas like computer science.

Finally, a couple of all-purpose synthesis engines are readily available for commercial
use [Nelson 2009], as well as several research projects focused on exploring different use
cases of this technology. Among these, notable examples are the signing of recurrent
information like the weather [Verlinden 2002], the creation of educational materials
[Karpouzis 2007], on-the-fly translation of text to SL [Xu 1993, Boulares 2012], the
distribution of internet content [Kennaway 2007] and solutions enabling translation from
written language to SL [Zhao 2000].
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1.1.2.2 Sign Language Recognition

Research in SL recognition is focused on the development of technology related to the
automatic translation of SL into speech, written or else, and the automatic identification
of SL linguistic characteristics [Cooper 2011]. It involves the creation of tools for the
capture, representation and automatic analysis of SL utterances [Ong 2005].

Most of the existing work on the area is based on the use of SL corpora [Cooper 2011, p.
4]. Recognition research takes advantage of machine learning algorithms to find significant
patterns on SL data. Essentially, corpora are used as a source of training and test sets for
machine learning tasks; that is, corpus samples are selected to both teach an algorithm
what to classify, and to evaluate how effective the classification is [Wu 1999,Ong 2005].
The idea is that, once the algorithms are developed and tested, their use can be extended
to other corpora or to create practical applications.

Recognition covers a wide range of tasks going from the identification of complete
sentences [Starner 1998] to the detection of phonetic properties, those measurable by
electronic means. However, both technical and theoretical issues on the field have
impeded the development of SL recognition technology [Morrissey 2006]; Natural Lan-
guage Processing (NLP) techniques often rely on sizable amounts of data to work
with [Banko 2001,Brill 2003,Halevy 2009], which is difficult to obtain with SLs. More-
over, the problem is accentuated by the lack of a written representation (see Section
1, p. 2). Consequently, the reliance on corpora arises a series of technical problems
related to their format, low availability, lack of annotation and overall heterogeneity (see
Subsection 1.1.1.1, p. 4).

Even at the most basic level, SLs recognition is not straightforward. Ample knowledge
on the studied language and a solid linguistic theory are often needed to train recognition
algorithms [Cuxac 2007a, pp. 12–14]. However, the lack of consensus regarding some SL
linguistic characteristics [Corina 1993, Meier 2002] and the low availability of experts
are common occurrences in field (see Subsection 1.1.1.2, p. 5). For instance, lets take
the example of multimodality (see Section 1, p. 1). The interactions between the
signer’s body parts involved in communication are combinatorial in nature. As such,
a single change in one of them can modify the meaning of the information given by
the others [Brugman 2002, p. 177]. In addition, some of the combinations may be
completely devoid of meaning as is the case with co-articulations, the arbitrary movement
combinations signers execute when passing from one sign to another [Segouat 2009]. How
and when body movements synchronize to create meaning is a subject of discussion in SL
linguistics; however, adopting a synchronization model is fundamental even to recognize
individual signs [Brugman 2002,Filhol 2012a].
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The different physical characteristic of the modalities are also an issue for corpus-based
recognition. Each modality usually requires individualized classification techniques to
take in account the physical constraints of the signer’s body. A notorious example of
this are the differences between NMFs and manual features; the hands are usually very
prominent and have ample degrees of articulation [Rehg 1994], whereas NMFs tend to be
more difficult to follow and have to be treated with different techniques [Liu 2014, p. 673].
As a consequence, the quality of the information that can be automatically extracted
from corpora will necessarily be constrained by their technical characteristics, since
the technology used on their capture can favor the detection of certain features while
inhibiting others [Wu 1999, pp. 4–5]. These problems impair the portability of recognition
algorithms, as they imply that it won’t always be possible to ensure similar recognition
rates across corpora of different origins.

With this in mind, several tools have been developed with the purpose of enabling
feature recognition on both recent and older corpora, regardless of any existing technical
limitations [Dreuw 2008b]. For example, some projects have tried to do some analysis by
calculating position information of hands and head on existing 2D corpora [Gonzalez 2012].
Others have used 3D tracking algorithms to analyze signing more reliably, by exploiting
spatial information [Nickel 2003]. Motion caption approaches have also been developed,
where the combined use of wearable sensors and cameras enable recognition of complex
features alongside tracking [Mehdi 2002].

Regardless of the underlying technology, most research projects on SL recognition fall
into two main categories: isolated and continuous. Isolated recognition attempts to single
out sign appearances on corpora; that is, the system is trained with a specific set of signs,
and it automatically analyzes where in the corpus these signs appear [Grobel 1997]. In
contrast, continuous recognition tries to identify signs on a sequence; each signing video
is analyzed and segmented into possible signs, then the system attempts to determine
what sign corresponds to each segment [Liang 1998]. It is mainly continuous recognition
which has to deal with complex phenomena like co-articulations, as here the system
has to take in account synchronization issues to achieve segmentation [Gonzalez 2012].
In either case, the use of solid computational and linguistic models is necessary to
achieve good recognition rates, specially since the number of possible combinations
that could potentially convey meaning is intractable without prior language knowledge
[Vogler 2001, p. 358–359].

Most of the existing work on SL recognition has centered on the identification of lexical
signs [Ong 2005, p. 874], both in continuous or isolated sign recognition. Unfortunately,
there exist serious size limitations in the majority of cases [Wang 2002, p. 1]. Additionally,
the low scalability of corpora complicates the creation of rich sign-based recognition
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models [Bauer 2002a, p. 436], which indirectly forces the training vocabularies to be
small. This has lead to increased interest on raising the sizes of these vocabularies, which
has gained traction over the years [Ong 2005, pp. 886–887], although with somewhat
limited success.

This situation has pushed research towards sub-lexical feature recognition, launching ex-
ploratory studies on SLs morphological characteristics of signs such as motion and posture
analysis [Lefebvre-Albaret 2010]; sign segmentation [Gonzalez 2012]; the study of co-
articulations [Fang 2007,Segouat 2009]; hand configuration classification [Hamada 2004];
facial-movement analysis [Vogler 2007] and on the synchronization between manual and
non-manual features [Ma 2000,Vogler 2001]. Sub-lexical research has also benefited from
the introduction of new, cheaper, capture technology [Zafrulla 2011, p. 280], which has
increased the quantity of exploitable information on new recognition corpora.

Finally, research above the lexical level has mainly focused on the detection of complete
sentences [Starner 1998,Zahedi 2006], sign alignment between different SLs [Chiu 2007]
and recognition of some spatiotemporal features [Kelly 2009]. However, little-to-no work
has been directed towards SL discourse translation. This is because translation relies on
both lexical recognition and on correctly interpreting the complex physical interactions of
articulators (see Section 1, p. 1), non-trivial tasks themselves [Cuxac 2007a]. Nonetheless,
some discourse analysis models have been developed [Braffort 2006, Dalle 2006] in an
effort to at least determine which is the minimum level of automatic analysis needed, to
develop a discourse translator.

1.2 The Problem of Semi-Automatic Annotation

Annotation plays an important role in computer-aided SL research; it is by way of anno-
tation that automatic systems can discriminate relevant information from corpora, to be
used in research [Dreuw 2008a, p. 1]. By reading annotations, systems become capable of
removing noisy video-frames automatically, effectively creating ground truths for machine
learning algorithms [Moehrmann 2012]. However, the annotation process is very time
consuming and requires the participation of human experts, since only them are capable
of judging which features are relevant enough to be annotated. Nevertheless, regardless
of expert availability the task may appear endless, since new linguistic hypotheses may
diminish (or increase) the perceived importance of notable features, thus leading to
new annotation demands [Brugman 2002]. This implicitly points towards a constant
annotation cycle, were experts elaborate over previous iterations. Moreover, due to the
multimodal nature of SLs, needing different types of gloss is a common occurrence (see
Subsection 1.1.1.2, p. 5), increasing even more the dimensions of the task.
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Different research projects entail different annotation needs. In SL synthesis, for instance,
glosses can be used to manually indicate where the relevant movements to be learned
are [Arikan 2003,Chao 2004]. For example, a system trying to mimic natural eyebrow
movement, will most likely require a gloss marking every interval where the signer is
actively using his eyebrows in a meaningful manner.

SL recognition, more than synthesis, relies on annotated video-data. It is by way of
linguistic annotation data that an algorithm collects enough information to recognize
individual signs [Nickel 2003, Ding 2009], relevant facial features [Von Agris 2008, p.
3] and signing or non-signing segmentation patterns [Han 2009, Yang 2009]. In this
regard, annotations are used to make sense of data in automatic tasks and, as such,
serve as ground truths for evaluating how effective each task can be [Moehrmann 2013].
Additionally, recognition techniques can serve as support for many areas; in synthesis, for
example, recognition algorithms can be used to find grammatically significant movements
[Erdem 2002,Neidle 2009], which could later lead to better quality synthesis.

Despite of the importance of annotations for SL research, their availability is limited.
The ever present need for linguistic experts, the high specialization of annotation tasks
(see Subsection 1.1.1.2, p. 5) and the heterogeneity of corpora (see Subsection 1.1.1.1, p.
4), hampers the production of new, correct annotations. The problematic further deepens
if we consider that new linguistic knowledge can weight on the adequacy of previous and
future annotations [Schembri 2010, p. 3], which points to the need of constant annotation
cycles over the same corpus. This situation has prompted research on the automation of
at least part of the annotation process, in an effort to streamline the creation of new
annotations regardless of corpora [Neidle 2001,Braffort 2004,Dreuw 2008a].

Different automatic and semi-automatic annotation projects have emerged, with ap-
plications in SL research. Research on annotation of image datasets covers the de-
tection of relevant gestures in conversation [Wilson 1996], the identification of human
actions [Duchenne 2009] and annotation of body language [Chippendale 2006]. Other
efforts more directly related to SL come in the form of complete platforms with auto-
matic annotation algorithm integration [Neidle 2001, Braffort 2004], the development
of automation modules for already existing annotation tools [Dreuw 2008a] or the cre-
ation of corpus-specific software, aimed to ease annotation and transcription of distinct
corpora [Yang 2006,Pitsikalis 2011,Gonzalez 2012].

Unfortunately, automatic support for annotation relies on the same techniques used for SL
recognition. Consequently, researchers have to deal with the same kind of problems present
in the aforementioned area; namely the lack of homogeneous corpus data, shaky theoretical
linguistic frameworks and the absence of a written representation [Morrissey 2006].
Moreover, this relationship between the two areas implies that the development of new
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annotation algorithms depends on the existence of previous annotations from which to
learn from. Consequently, it’s not difficult to see that, being a recognition task in itself,
the creation of an automatic annotation algorithms will only be possible for existing
annotation schemes where enough data is available; annotations based on new linguistic
hypotheses, and cases with annotation few examples, will still be difficult to create.

In short, automatic annotation is limited by:

— The lack of a written representation, which contributes to the scarcity of large data
repositories, as the ones needed for the application of classical NLP techniques;

— the heterogeneity of corpus-data, which complicates the reutilization of automatic
analysis algorithms across different corpora;

— the changing nature of annotation tasks, very theory-dependent, which hampers
the development of standard annotation templates.

In this regard, the work presented in this thesis is geared towards the representation of
SL in semi-automatic annotation tasks, as introduced in the next section.

1.3 Contributions

This thesis, presents the application of formal methods for the description of SL in
computer-based research. Roughly, formal methods are mathematically-based techniques
used to rigorously describe (specify) complex systems and their properties. They provide
theoretical tools to build, develop and validate systems regardless of their complexity,
maximizing confidence and minimizing unexpected behaviors [Monin 2003]. To this end,
formal methods often rely on formal specification languages to specify system processes.
A description created with a specification language is called a formal specification, and
they serve as guidelines on how a system should work. One of their main advantages
is that they can be mathematically verified. That is, it is possible for an automatic
algorithm to determine whether the described system satisfies certain properties or not,
ensuring that the described process is error-free. The driving idea behind this document’s
contributions, is that the same techniques can be used to specify SL productions and
verify their characteristics, which in turn can provide some insight into the development
of automatic annotation systems.

Several industries rely on the use of formal methods for the implementation of their in-
dustrial processes. For instance, formal verification is commonly used in the development
of safety-critical systems [Bowen 1993], communication technology [Barbulescu 2004],
cloud computing [Boer 2012] and complex software systems [Woodcock 2009]. Finally,
formal methods are not limited to industrial uses; the same tools have applications
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for research in biology [Hartel 2005,Zambach 2010], group interaction [Hoek 2003] and
linguistics [Kamp 1993,Moss 2007].

This thesis presents the utilization of formal methods to transform corpora into an
intermediate representation layer, where automatic annotation algorithms can work in
better conditions than when working directly with video sequences. The main idea is
that corpora can be described with a formal specification language, instead of a classical
SL transcription language. Moreover, we prove that the proposed formal language is
more expressive than any of the existing SL notations, and that it can be adapted to use
the same symbolic conventions.

By describing each corpus with a single formal specification language, heterogeneity
becomes less of a problem. Incidentally, this can increase the sizes of the available
datasets. Moreover, any algorithm developed to work with these formal representations
of corpora can be reused on any new corpus, given that it can be described with the same
language. In essence, this method permits seeing each corpus as a standalone system
with well-defined rules. The added advantage is that annotations can be conceived
as observable properties of the system and, as such, can be found by way of formal
verification. A diagram depicting the process is presented in Figure 1.3.

Figure 1.3: Diagram depicting the proposed intermediate layer between corpora and
learning tasks. Each corpus can be specified into an homogeneous representation, that

can then be used to verify the existence of the required annotations.

More information on formal methods and their applications can be found on Section 3.4,
Chapter 3 (p. 67)
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1.3.1 The Propositional Dynamic Logic for Sign Language

A modal logic was chosen as a formal specification language based for corpora: the
Propositional Dynamic Logic (PDL). This logic was originally created to specify and
prove properties on computer programs [Fischer 1979]. PDL uses the modal operators [a]
and 〈a〉 to denote necessity and possibility, respectively. For instance, the expression [a]p
has the meaning that, after performing action a, p will necessarily hold. On the other
hand, the expression 〈a〉p describes the situation where, after executing action a, p may
possibly hold.

In general, PDL permits the encoding of change by way of formulae. For instance, the
formula f1 → [a]f2 can be read as “If f1 holds, then f2 will necessarily hold if action a is
executed”. When f1 is a proposition meaning “my bucket has water”, a is the action “I
empty my bucket” and f2 is the negation of f1, then the formula reads “if my bucket has
water, then necessarily my bucket won’t have water if I empty my bucket”. The same
idea can be applied to SL articulators, so as to model them in terms of their actions.
For example, if f1 is a proposition meaning “the right hand is touching the head”, action
a is the action “the right hand moves to the chest” and, once again, f2 is the negation of
f1, then the formula would read “if the right hand is touching the head, then it won’t be
touching the head if it moves to the chest”.

For SLs, a particular variant of the PDL was developed, the Propositional Dynamic Logic
for Sign Language (PDLSL). With the PDLSL, articulators are interpreted as independent
agents, where each articulator has its own set of valid actions and propositions, and
executes them without influence from the others. It is important to note that this does
not reflect the relationship between articulators in linguistics: in real life, articulators are
often dependent on each other, for various reasons. However, it is important for PDLSL

to be able to establish these kind of relationships explicitly rather than implicitly, as
this contributes to the flexibility of the language.

The simultaneous execution of different actions by several articulators yield distinct
situations, which can be modeled as graphs for formulae interpretation. In essence,
these graphs depict time intervals without change as vertices, while the edges are taken
to represent intervals where changes occurred. Returning to articulator independence,
it is the graph where any dependent articulatory actions clearly show, as they will
always occur simultaneously, on the same edges. A more detailed explanation of this
interpretation can be found on Chapter 4, p. 77.

The use of a formal logic as specification language brings flexibility to the task, since
it is possible to encode any information by formulae as long as it can be thought of as
a propositions (i.e. a true-false statements). This adaptability, alongside the existence
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of well established inference and verification methods, makes it a good choice to deal
with situations where incomplete or erroneous information is present; by using logic, it is
possible to prove automatically and without ambiguity whether a certain specification is
inconsistent and correct it. Additionally, the inherent compositionality of formulae makes
it possible to mix them, separate them and reuse them to create new expressions, which
comes useful to specify multimodality (see section 1 p. 1).

Finally, the use of logic not only benefits corpus specification, but enables the creation
of annotation templates. These are none other than PDLSL formulae describing the
desired properties to be found on corpora. So, for instance, if the formula f1 → [a]f2

seen above where to be verified on a corpus (with f1 being that the right hand touches
the head, f1 ≡ ¬f2 and a meaning that the right hand moves to the chest), the result
would be every state where the right hand started touching the head and ended over
the chest. This information can then be poured into an annotation tool, in order for a
human expert corroborate the results and correct the annotation if needed, simplifying
the overall process.

The complete definition of PDLSL is given on Chapter 4, p. 77.

1.3.2 Semi-automatic Annotation using PDLSL

The choice of PDLSL, led to the creation of a framework for the implementation of
semi-automatic annotators based on this logic. The framework was designed to follow the
architecture presented in Figure 1.4. The idea is that the system receives an untreated
corpus, converts it into a graph respecting the definitions given by the PDLSL and uses
it to generate an editable annotation file. Several modules along the way let the users
determine how the corpus will be analyzed, what kind of annotations will it generate
and how the graph will be created.

Figure 1.4: Block diagram of a semi-automatic SL annotator based on PDLSL.
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Roughly, the Division Module uses a feature tracker to follow the articulators of interest
and determine if there were any changes at any given time. The implementation developed
for this thesis, uses a head and hands tracking algorithm [Gonzalez 2011] over Dicta-
Sign corpus [Matthes 2012]. The tracker reports 2D positions of hands and head on a
frame-by-frame basis, which are used to segment each video into two types of intervals:
movement (change) intervals and static intervals. The Division Module generates an
independent interval sequence for each articulator as follows: each movement interval is
selected by determining if the speed of movement of the articulator of interest is above a
certain threshold [Gonzalez 2011]. Static intervals, as their name imply, are intervals
where the speed of the articulator of interest is essentially zero.

The set of interval sequences is passed to the Modeling Module, who is in charge of
pouring the tracker information into a formal specification. For this, it needs a group of
“Model rules”, which are just the set of PDLSL propositions and actions defined for the
selected corpus. Each of this propositions and actions is linked to a decision method; a
function used to decide if they are true or false at any given time. Broadly, the Modeling
module takes each of the static intervals generated by the Division Module, and uses
the decision procedures to determine which propositions happen to be true within the
interval limits. Each static interval will then be represented as a state, labeled with
all the found true-valued propositions. Once the states are calculated, each movement
interval separating two static intervals is converted into an edge connecting the two
corresponding states. The edges are labeled as-well, only this time the module tests
actions rather than propositions. The final result is a set of per-articulator Labeled
Transition System (LTS), which can be merged into a single graph with the procedure
presented in Section 4.3 (see p. 89).

The merged graph is passed to the Logic verification module, where an automatic algorithm
performs the annotation procedure. The module receives a “Formula Database”, which
contains a series of formulae created by a human annotator. Each formula encodes the
description of a desired annotation as a property, so that the module can use it as input
for a logic verification algorithm (see Subsection 3.4.1, p. 68). The verification procedure
is straightforward; for each state on the graph, the module will verify if each formula
on the database is satisfied. If it is, it will add it to the list of proposed annotations,
alongside the corresponding time-frame where the annotation was found. If a formula is
not satisfied, it is simply discarded.

Finally, the list with the proposed annotations is converted to the format of a multimodal
annotation tool. Here, an expert can change the automatic results to correct mistakes or
to add more information to the final gloss.
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A more detailed presentation of the annotation framework and the implemented algo-
rithms can be found in Chapter 5, p. 99.

1.3.3 Empirical Application of PDLSL to Sign Language Annotation

The final contribution of this work, consists on the analysis of the use of the proposed
annotation framework on real world data. For this, a set of properties were encoded
as PDLSL formulae and were later given to an automatic annotator, implemented with
the help of the annotation framework previously presented. The process was used to
find properties over videos from the Dicta-sign corpus [Matthes 2012]. An example of a
resulting gloss can be seen on figure 1.5. In the image, a user defined the property BOTH

as RIGHT ∧ LEFT; that is, the system has to find every time interval where both the right
and left hands are static (marked as KEYPOSTURE on the figure).

Figure 1.5: The resulting annotation of property BOTH on ELAN annotation tool. The
intervals where BOTH was found, are shown on the third annotation track from up to

bottom.

The obtained results and their qualitative analysis are detailed on Chapter 6, p. 129.

1.4 Conclusions

In brief, this thesis presents a series of problems related to the semi-automatic annotation
of SL corpora and a method of solving them by way of a formal logic:

— The lack of a written representation for SL corpora was addressed by the use of a
formal specification language, the PDLSL, which let annotation algorithms work
with an intermediate corpus-representation rather than directly with images;
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— the heterogeneity of corpus-data was acknowledged by the creation of an automatic
annotation framework, designed to create graph representations from any corpus
regardless of the technology used for its creation; and, finally,

— the changing nature of annotation tasks was faced by using PDLSL formulae as
annotation templates, which can be easily changed and reused to adapt to different
needs.

A more thorough analysis of this work’s results can be read in Chapter 7, p. 147.
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Chapter 2

Sign Language Overview

Sign Languages (SLs) are complete, complex standalone visual languages. They are
often independent from vocal communication systems [Emmorey 2001] and they are
not universal. In particular, they are as varied as vocal languages, have the same
expressive power than these, and possess their own particular grammars and vocabularies
[Wilbers 1987]. There do exist artificial SLs like the International Sign Language
(ISL) trying to improve global Deaf communication. In essence, ISL follows the same
philosophy than Esperanto [Tonkin 1997], in the sense that it tries to group common
grammatical structures and signs into a single language to facilitate learning [McKee 2002].
Nevertheless, even in artificial cases like this one, lexical and syntactical variations are
present, contributing to diversification [Beckner 2009, p. 15].

SLs can be found across most countries, in most cases with their own particular rules
and linguistic characteristics. As such, British Sign Language (BSL) and American Sign
Language (ASL) are completely different languages, even with low mutual intelligibility
[McKee 2000]. Here, it is important to stress that SLs are not visual forms of vocal
languages; as such, French Sign Language (LSF) and ASL, are completely different
languages from French or English [Emmorey 2001]. This doesn’t mean that SLs are not
influenced by vocal languages, but rather than their grammatical structures differ; they
are not versions of the same language [Sutton-Spence 1999a].

Even though SLs are complete languages, they differ from speech in some aspects. Mainly:

— They are visual: SLs are based on gestural expressions, characterized by move-
ment, rather than by sounds or written symbols.

— They have multimodal structures: they convey messages by way of complex
interactions between the hands and other parts of the body.

21
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It is important to note that there is a difference between multimodality as used
in SL linguistics, and how the term is understood elsewhere. In vocal linguistics,
multimodality refers to the use of different human communication channels at
multiple levels of abstraction, which together are able to modify the meaning
of a message [Gibbon 2009, p. 11]. As such, variations such as voice intonation
could modify or reinforce what an utterance ultimately represents. In contrast,
SL modalities contribute specific information to the task of building meaning;
in consequence, each of the different communication channels has a predefined
role, crucial from the start for the formation of even the smallest meaning units
[Cuxac 2007b, pp. 14–15].

— They make extensive use of space: spatial locations around the signers fill
several grammatical roles and are fundamental to build discourse.

— They depict iconicity: signers depict with their body different levels iconic rep-
resentation, going from mimicking characteristics of real-life objects, to assuming
the role of an external entity during discourse [Cuxac 2007b].

The characterization of SL corporal expressions, has been an object of study in linguistics
since the end of the XIX century; however, few linguistic studies exist, comparing the
properties of SLs with respect to vocal languages. Regardless, some well established theo-
ries have emerged in the last few decades, geared towards gaining a better understanding
of the underlying mechanisms ruling gestural communication.

In the following paragraphs, a brief cultural review is presented, outlining the evolution
of SL and their study in western cultures. Following this short outline, a more thorough
introduction to SL linguistics is presented, which extends until the end of this chapter.

2.1 Cultural Context

For the first decades of the XX century, SL research had been directed towards the
acceptance of SLs as full-fledged natural languages; only in the last two decades, they
have started gaining the same status as vocal languages around the world (e.g. as recently
as 2005 for the European Union [Timmermans 2005]). Before that, SLs were hardly ever
considered part of human language, and concepts such as regional denominations (like
LSF or ASL) were not even heard of [Slobin 2006]. This constant struggle towards SL
acceptance has had important effects, not only on how they are studied, but also on how
the language themselves evolve [Frishberg 1975].

The earliest recorded mention of the Deaf and the existence of gestural languages, comes
from Hellenic Greece. Both Plato and Aristotle made clear references of the use of
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SLs by their contemporaries [Cerney 2004]. However, the conception of the Deaf as a
community united by language, or even just the use of SL in education, would not become
a common practice until the XVI century [Baynton 1995]. Before that time, deafness
was understood by following the initial hypothesis of Galen (the Greek physician), who
thought that hearing was affected by speech and vice-versa. Therefore, integration
was centered around forcing the Deaf to speak, assuming that it would improve their
hearing [Eriksson 1998].

With time, religion played an important role on changing the views of the people on
Deafness, promoting new forms of integration for the Deaf into society. For instance,
the Deaf were allowed to participate ceremonies of the Hebrew tradition, even though it
prohibited most people with disabilities from entering the temple. On medieval times,
Christians worked with Deaf communities while trying to spread the Gospel among
them [Tebbe-Grossman 2008]. Finally, around the XV century, Deaf education in Europe
started to be completely overtook by catholic monks, in an effort to introduce them
into confession [Stokoe 1960]. As such, it was inside the monasteries that strong SL
communities started to blossom.

The modern linguistic study of SLs can be traced back to France in 1750 [Cerney 2004].
On that year, Abbe Charles-Michel de l’Épée undertook the teaching of two deaf-
mute sisters. From that moment on, and for nearly three decades, he directed an
education center based on SL, open for every child born Deaf in France. His observations
and theories where published on a study called “ L’institution des sourds et muets,
par la voie des signes methodiques” [L’Epée 1776], where he documents his personal
findings [Stokoe 1960]. The subsequent evolution of SLs both in France and the rest
of Europe, was taken over by generations of Deaf children who grew up on l’Épée’s
methods, only to become teachers themselves, to other Deaf children. However, much of
the original practices based on deafness misconceptions have remained until these days.

Despite the popularization of SL-based instruction, speech-based methods (also called
“oralism”) has kept on being a central part of Deaf education. Oralism consists on teaching
Deaf children to use finger-spelling, vocal speech and lip-reading to communicate, in
detriment of SL [Enerstvedt 1996]. More specifically, oralist methods teach students
how to spell vocal words with finger signs, forcing them to retain vocal language
syntax [Sperling 1986] and overlooking SLs in favor of speech therapy. This school of
thought is still prominent in several places around the world, since its supporters argue
that it encourages integration [Hogan 2008]. However, the use of speech-based learning
continues to be a contentious issue in Deaf education, to this day [Eriks-Brophy 2004].
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In the next section, a brief introduction to SL characteristics is given. Simultaneously,
some insight on how SLs linguistics are related to vocal language linguistics is presented,
alongside some general notions of SL use.

2.2 Sign Language Linguistics

Linguistic research of SLs has gained new dimensions beyond the search for legitimacy,
striving towards gaining knowledge about the languages themselves. To this end, linguists
have adopted the basic hierarchical structure commonly used in vocal language linguistics
[Akmajian 2010], dividing language studies into hierarchical levels of analysis such like:

1. Phonology.- Studies the smallest units of sound in a language, called phonemes,
and the implicit system of rules determining how these are produced by a speaker.
It is deeply related to phonetics, the science which studies how speech sounds are
produced, transmitted and perceived by a speaker [Hayes 2008]. Thus, unlike
phonology phonetics deals with real, measurable data.

2. Morphology.- Describes how the smallest units of meaning, morphemes, are
combined into lemmas 1, or lexical units. In essence, it describes how words are
formed [Lieber 2010].

3. Syntax.- Explores how the composition of lexical units form sentences.

Complementary levels and alternate classifications can be found in the literature, however
these three have long been of special interest for SL studies [Kegl 1976].

The aforementioned levels of description tend to build upwards from very small structures.
As such, for the rest of this document, aspects related to phonetics will be referred to
as “low level” whereas more abstract concepts such as morphology or syntax will be
identified as “higher” levels.

2.2.1 Phonology and Phonetics

As explained in previous paragraphs, phonology is mainly concerned about language
sounds and how they are combined by humans for communication. More generally, it
may be understood as the basis for linguistic study, since it aims to describe the smallest
language units well before the formation of meaning. However, when talking about SLs,
phonology is not properly related to sound, but rather to the movements and forms

1. Not to be confused with the term lemma as used in mathematics, where it is usually characterized
as a “helping” or “minor” theorem with respect to a more powerful result. Further appearances of the
term will refer to the mathematical convention, rather than the linguistics one.
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that human signers adopt while signing. In this manner, SL phonology rests on the
assumption that signs are constructed upon meaningless building blocks, akin to vocal
phonemes [Axelsson 2002, pp. 14–16].

By extension, SL phonetics centers around the physical elements intervening in the
formation of these soundless phonemes: this is, where classical phonetics cares about
productions of the vocal apparatus, its SL counterpart examines expression, posture,
and other measurable visual aspects during articulation.

In vocal linguistics, articulation refers to the act of generating language sounds by
affecting specific places of articulation 2 with speech organs such as lips, tongue or other.
Each of these, may have one or various places of articulation, which are areas such
like the teeth or palate. Speech organs, also called articulators, may act as a places of
articulation themselves and vice-versa, depending on their role during the formation of
a phoneme. In essence, when an articulator affects a place of articulation, it changes
the characteristics of the sound produced by the vocal cords. This enables speakers to
generate a range of different phonemes, which are the minimal language noises forming
utterances. Likewise, SL users articulate by affecting various places of articulation,
in order to display phonetic configurations; the main difference, is that — instead of
describing sounds — SL phonemes differ visually. As a result, it becomes apparent that
SL phonemes are not articulated with the same speech organs used to generate vocal
languages.

SLs are traditionally described as being mainly articulated by way of the hands, in
concert with a set of other, non-manual, articulators. These visual organs affect places
of articulation outside of the vocal tract, such as body and spatial regions distributed
around the signer’s upper body. In some cases, signers will even articulate on empty
spatial locations, over places not directly touching their bodies. These fairly radical
changes in language production, with respect to vocal languages, have lead to a tad of
different theories trying to determine which visual cues are relevant for the phoneme
formation process, and which are not [Axelsson 2002, pp. 14–16].

Phonemes, both in SL and vocal languages, are highly combinatoric in nature: the
same set of units can create distinct meanings when produced in a particular order.
Also, they differentiate from one another by changes on their phonetic features. It is
important to note that, in vocal languages, each phoneme may correspond not only to
a single sound, but to a set of different sounds; for instance, the sound related to the
English vowel [a] may change between native speakers from different regions, whom may
recognize the same phoneme even when spoken with different pronunciations. In this

2. Also points of articulation.
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example, even though the sounds are not the same, they are still identified as being the
same vowel. SL phonemes have been observed to follow the same principles, where each
phoneme may have different realizations [Valli 2000, pp. 256 –257], based on how several
visual phonetic features are modified. In later chapters, a more detailed overview of
how phonetic features of SL are represented, since the main contribution of this thesis is
devoted to provide new formal tools for SL phonetic representation. Nonetheless, a brief
introduction to SL phoneme formation is given in the following subsections, starting
with a brief description of the hands’ functions as SL articulators, and their capabilities
to display phonetic variations.

2.2.1.1 Hands

In SL, the hands are the most productive articulators. They are widely displayed during
signing, and their flexibility and movement range let them articulate a vast number of
different combinations. In essence, they roughly correspond to the definition of active
articulators in articulatory phonetics of vocal languages [Ladefoged 1996].

For their study, hands are distinguished as either dominant or non-dominant 3. The
dominant hand, is the hand that plays the active role during signing; this is, it is the one
preferred to perform motor tasks. In contrast, the non-dominant hand plays a passive
role during signing; in some cases, it will even remain static. Generally, the signer will
use his or her dominant hand to execute larger, more complex motions, whereas the non-
dominant hand will usually be relegated to perform less salient movements [Battison 1974].
The choice of right-dominant or left-dominant can vary from signer to signer; however,
the roles’ functions remain the same, regardless of which hand is playing which.

With respect to the use of the hands, signs can be classified into three categories:

— Single-hand signs.- These are signs where only one of the hands articulate,
either the dominant or the non-dominant hand.

— Two-hand signs.- In these, both hands articulate simultaneously.
— Buoys.- This is a special case where one of the hands articulate (usually the

dominant) while the other one remains fixed over some spatial location. The
static hand serves as a deictic marker [Lyons 1977], usually referring towards a
discourse entity or directly acting as the representation of one.

Hands can affect several articulation places around a signer’s body, with the head, neck,
torso and arms being the most common. Hands can also, and often do, serve as points
of articulation for two-handed signs. For instance, in Figure 2.1, the signer articulates

3. Can be also referred to as the weak hand.



Chapter 2. Sign Language Overview 27

the right hand over the left hand, which remains fixed during the entire production of
the sign.

Figure 2.1: In sign DATELSF the right hand affects the left hand. 4

It is important to note that this is not, by any means, an exhaustive list; each SL will
use its own distinct set of articulation places, which can differ in number and position
from all the others. Figure 2.2 shows a rough diagram with these and other possible
articulation places.

Figure 2.2: Common body articulation places. 5

The same phenomenon can be seen with vocal languages: they produce their own
distinct set of sounds, depending on how speakers affect specific articulation places.
Broadly, these would correspond to passive articulators in vocal languages articulatory
phonetics [Ladefoged 1996].

It is not necessary for the signer to have physical contact with the body for the hands to
articulate; they may hover around the approximate region, as long as the reference to a
point of articulation is clear, as is the case with deixis in vocal languages [Lyons 1977].

4. Images obtained from [Sématos 2013].
5. Corpus image obtained from Dicta-Sign project [Matthes 2012].
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As previously stated, there are also instances where the points of articulation are not
bound to body parts. Some articulations take place on the neutral space, an unmarked
physical space in front of the signer’s chest, where signs with no fixed body location are
produced. In these cases, the articulation place is not linked to the signer’s body but to
the space itself.

2.2.1.2 Other articulators

Besides the hands, other body parts can provide active articulation, such as the head
or the mouth [Crasborn 2008b]. It is common for some articulation places to change
between being active or passive during signing. For instance, the head is used as the
articulation place for signs like EATLSF or THINKLSF, as shown in Figure 2.3.

EATLSF THINKLSF

Figure 2.3: Signer articulating single-handed signs over head-located places of articu-
lation. 6

However, the head will sometimes serve as articulator. For instance, in the sign SLEEPLSF,
the signer articulates with his head by tilting it towards the open palm, as shown on
Figure 2.4.

In this sign, it is the palm who acts as the head’s point of articulation. Other body
parts such as the eyebrows, lips and cheeks hold similar characteristics, as they are also
capable of articulation [Frawley 2006].

2.2.1.3 Multimodality

The flexible nature of SL articulators, gives origin to the phenomenon of multimodality:
multiple articulators acting synchronously to build language units together [Sandler 1989].
As briefly explained at the beginning of this chapter, multimodality in the context of

6. These and subsequent sign images were obtained from [Sématos 2013].
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SLEEPLSF

Figure 2.4: Signer articulating the sign SLEEPLSF with his head, using the palm of the
dominant hand as place of articulation.

vocal languages has a different meaning than the one used to study SLs. In the former,
multimodal information seems to modulate speech by giving, for example, iconic cues
on different communication channels (voice, gesture, etc.), in order to better convey
the semantics of a message [Vigliocco 2014]. In SL, however, multimodal information is
crucial to understand any message, since very specific data is provided by each channel
during the sign formation process 7. In this sense, signers need to receive as much
information as possible from all modalities, in order to render utterances understandable.
In other words, at any given time, several body parts such as the hands, head, lips and
others, will articulate simultaneously in order to build a phoneme 8. Just as with vocal
languages, phonemes are rendered distinguishable by combining different articulation
parameters in a unique way.

Informally, SL modalities can be interpreted as communication channels carrying the
information generated by each articulator (manual or otherwise). Under this definition,
the “right hand modality” makes reference to the channel that holds information produced
by the right hand. 9 The information transmitted by each individual channel will be
necessarily unique, since articulators are morphologically different from each other and
play very specific roles in utterance production.

2.2.1.4 The Movement-Hold Model

Signers manage to arrange their articulations into well defined time-units. A time-unit, is
none other than the interval of time in which a phoneme takes place. The morphological

7. SL linguists like [Cuxac 2000], use a specific term for this phenomemon: multilinearity.
8. Some authors call the basic units of SLs cheremes, but this document will use the term phoneme

for clarity.
9. The terms channel and modality will be used interchangeably for simplicity; nevertheless, the reader

should be aware that the literature might define the same concepts under different names.
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information contained inside a time-unit is called a posture. Broadly speaking, time-units
are what constitutes phonemes in SLs; hence, their postures need to be unique enough
to make them distinguishable from other phonemes.

Similar to vocal languages, SL linguistics study how groups of phonemes build up to
create meaning. Current sign-formation theories, adhere to the idea that the sequential
structure of time-units is phonologically relevant; in this view, SL signs are formed by
well-defined configuration sequences, which together convey meaning.

The first description framework developed under these assumptions was the Movement-
Hold Model (MHM), proposed by [Liddell 1989]. The MHM interprets time-units as
utterance segments, and divides them into two distinct groups: Holds and Movements.
In essence, a Hold is a segment with a fixed posture; this is, its information won’t
change throughout the entire time-unit’s duration. On the other hand, Movements are
segments where changes do occur. Usually, Holds will be connected to Movements in the
phonological sequence. In a way, Movements can be seen as transition segments between
two postures, as shown in the diagram presented by Figure 2.5.

Hold (HA) Movement (MAB) Hold (HB)
Posture A Posture A Posture B Posture B

Figure 2.5: Representation of a H-M-H sequence in the MHM. Holds HA and HB

are characterized by postures A and B, respectively. The movement between holds is a
transition from postures A to B.

Signs formed by two Holds, separated by one Movement, are said to have a H-M-H
structure. As previously stated, each segment is characterized by its corresponding
posture (or postures, in the case of Movements). A more concrete example is shown on
Figure 2.6, where the H-M-H sign ROADLSF is phonetically decomposed.

H-M-H is not the only existing sequential structure; structures like M-H, M-H-M-H and
M-M-M-H are also common in languages close to ASL. However, these may vary between
SLs.

Recently, the authors have proposed a new model based on the MHM, known as the
Posture-Detention-Transition-Steady Shift (PDTSS) system [Johnson 2011]. The PDTSS
also treats signs as sequences of Holds and Movements of sorts, although with a more
refined segmental subdivision.

The main segment types in the PDTSS system are Postures and Detentions, broadly
defined as follows:

Postures (P) These are time intervals with associated hand configuration and location
features.
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Hold (HA) Movement (MAB) Hold (HB)
Right configuration BEAK − Right configuration BEAK
Left configuration BEAK − Left configuration BEAK

Right orientation OUTWARDS − Right orientation OUTWARDS
Left orientation OUTWARDS − Left orientation OUTWARDS

No NMFs − No NMFs
Right location FRONTFACE Move towards SIDEFACE 1 Right location SIDEFACE 1
Left location FRONTFACE Move towards SIDEFACE 2 Left location SIDEFACE 2

Figure 2.6: Information contained in each time-unit for the H-M-H sign ROADLSF .

Detentions (D) Correspond to Postures where hands have no movement.

Together, these classes are roughly equivalent to Holds in the MHM model. In a similar
fashion, Movements are also divided into two classes, as show below:

Transitions (T) These are time intervals attached to hand changes between two Pos-
tures, similar to the Movement shown in figure 2.6.

Steady Shifts (S) Roughly, they are like Transitions but executed in a slow, steady
movement.

Unlike their previous work, the authors’ new model does not allow the existence of two
contiguous Movements without a Hold separating them: sign structures are mapped to
strictly alternating sequences of P/D and T/S. However, this doesn’t ultimately change
the underlying concepts ruling segmental sign subdivision, which continues to be in the
mainstream of SL linguistic research.

2.2.1.5 Co-articulations

Co-articulation is the process of phonetic change where, after producing a phoneme, the
organs involved in articulation adjust to produce the next one. In the case of SLs, this
translates into the introduction of meaningless movements to the MHM sequence, as
shown by Figure 2.7.
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Sign Co-articulation Sign
HA MAB HB MBC HC MCD HD

Figure 2.7: The transition movement MBC , between HB and HC , is a co-articulation.

Movements MAB and MCD shown above, are integral parts of their respective signs. On
the contrary, MBC exists just to serve as a stepping stone towards the articulation of
HC , coming from HB.

Depending on the previous and next segments in the sequence, previously significant
Movements can be reduced to co-articulations and vice-versa. Figure 2.8 shows a
representation of this phenomenon.

Sign Co-articulation Sign
HA MAC HC MCD HD MDB HB

Figure 2.8: The transition movement MCD, before part of a sign, is now a co-
articulation.

In Figure 2.7, the sequence HC → MCD → HD forms a sign, which renders MCD

significant. However, the same sequence doesn’t form a sign in Figure 2.8, turning MCD

into a meaningless segment. This happens despite the fact that, in both cases, MCD

appeared in the same order with respect to HC and HD. This goes on to show that
the classification of Movements as co-articulations is not possible at the phonology, but
rather relies on rules existing at the morphology.

2.2.2 Morphology and Lexicon

Morphology is the sub-discipline of linguistics that studies how the smallest meaning
units, morphemes, combine to form lexemes, which are none other than words. It also
studies how lexemes themselves are modified (inflected) by morphemes, combinatorially
building semantic variations: for example, the lexeme walk can be inflected into the
forms walks, walked or walking [Booij 2005, pp. 8–9]. Together, lexemes form lexicons,
which are essentially indexes of conventionalized words in a language.

In SL, morphology deals with the internal structure of signs in two ways: it studies both
the multimodal nature of SL morphemes — arising from the use of different articulation
channels —, and the use of signs as grammatical affixes [Aronoff 2005]. More intuitively,
SL morphology studies both:

— how the alteration of direction, rhythm, or shape of a base sign, modifies its
grammatical features;
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— how sequentially concatenating signs (as prefixes or suffixes) to a base sign, affects
its meaning.

Essentially, this duality in SL morphology yields an informal classification of signs, which
divides them into easily identifiable groups for their study:

Lexical signs Also called dictionary signs, as these are the ones more likely to be found
in dictionaries. Lexical signs have well-known meanings, as they make reference
to specific concepts, objects and ideas. Roughly, these are the most closely related
to vocal lexemes.

Grammatical signs These are the ones used as affixes, to modify properties of lexical
signs. Broadly, they “insert” meaning to surrounding lexemes during discourse
[Contini-Morava 2000, pp. xii – xiv]. For instance, they can be used to mark
aspects such as pronouns, number, to differentiate arguments, etc. These kinds
of signs are difficult to define out of context, in part due to their grammatical
function.

Finger-spelled signs Refers to sequences of hand configurations and movements used
to represent single alphabet letters. These signs let the signer spell out mostly
nouns, with particular emphasis to loan words [Padden 2003, pp. 18–22].

Alternate classifications may exist in the literature, depending on the studied language;
regardless, the basic rules of inflection remain consistent across different SLs, thus
prompting further inquiries on the roles played by factors such as space, on different
morphological case studies.

2.2.2.1 Space

Space plays an important role in SLs. It is through spatial relations that signers are
capable of expressing complex reasoning [Emmorey 2003]. Accordingly, space has been
observed to fulfill diverse linguistic roles, notably deictic, by providing mappings towards
discourse entities and other syntactical functions [Padden 2010a]. Signers will commonly
map spatial locations to represent persons, places or objects, which activates the referred
space regions. This phenomenon is called spatialization, and serves to keep track of
discourse referents; once defined, space locations remain active as long as the signers
keep acknowledging their existence. This avoids the need of redefining a referent multiple
times over the same context. For example, Figure 2.9 shows a signer performing the
lexical sign FRIENDLSF and then pointing to the side, indicating that the space to his
right will represent a friend.
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FRIENDLSF Spatialization to the right Upper-view of active
locations

Figure 2.9: Spatialization of FRIENDLSF to the right of the signer.

Active space locations let signs agree with them, so as to add new information about the
referents. For instance, signs like CALLLSF, HELPLSF, TELLLSF or PAYLSF, agree with space
by signaling or moving towards active locations [Hong 2006], in order to indicate their
grammatical case (e.g. who receives the action, who executes it, etc). For example, if the
signer performs CALLLSF by moving his hand towards his right, as shown on Figure 2.10,
the utterance would be translated as “call a friend”. Signing CALLLSF from the right side
and moving towards himself, it would indicate “a friend calls me”.

CALLLSF Upper-view of agreement to
a location

Figure 2.10: Hand agrees with space location to produce “Call a friend”.

Similarly, new characteristics of the referred entity can be introduced by making reference
to the active spatial location. Following the same example, if the signer performs UGLYLSF

and points towards his right side, the utterance would translate as “friend is ugly”.

In addition to referent localization and agreement, space in the morphology fulfills
topographic functions, by permitting to specify how objects are physically located with
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respect to one another. For instance, in several SLs it is possible to express “a cat is over
the fence” by assigning a location for fence and then signing cat just above [Engberg-
Pedersen 1993,Meir 1998,MacLaughlin 2000].

2.2.3 Sign Language Semantics

Semantics deals with linguistic signs [Saussure 1916]; in particular, with how meaning is
established and conveyed by language. In SL, this process is deeply linked with form
and space since, contrary to vocal interlocutors, signers can use their bodies to provide
rich visual representations of existing objects, situations and people, which in turn can
produce complex discourse.

2.2.3.1 Iconicity

The term iconicity, refers to how the form of a sign, an icon, is directly linked to the
meaning of the sign itself. Contrary to vocal languages, SLs rely heavily on iconicity,
often as a central part of communication [Liddell 2003]; the same behavior can be seen
in vocal phenomena such as onomatopoeia, but it is less common than what it has been
observed in SL.

Iconic gestures in SL are seen in different discourse levels. The most basic one, directly
relates sign postures to real life objects by mimicking their characteristics. An example
can be seen on Figure 2.11.

TREELSF

Figure 2.11: TREELSF is an example of an iconic sign.

The sign TREELSF, depicted above, is executed by holding the dominant hand parallel
to the body. At the same time, the hand retains a completely open hand configuration.
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The form of the sign is clearly influenced by its meaning: the arm represents the trunk
of a tree, and the open hand its foliage.

Iconicity is present in a large number of SL lexical signs, but not always with direct
relation to physical objects; sometimes, the iconicity of a sign is related to a metaphor
rather than to the form of a real, physical, object. An example is given by sign PAUSELSF,
presented in Figure 2.12.

PAUSELSF

Figure 2.12: PAUSELSF uses iconicity in a metaphoric way, by representing a pause as
a physical “break”.

The sign PAUSELSF is performed by holding both hands together as if they were grasping
an object, and then separating them abruptly as if breaking said object. The form of
the sign relates then to the meaning of “break”, which is metaphorically linked to the
concept of “pause”, but doesn’t really involve the physical act of breaking something.

The iconic use of space is also a notorious characteristic of SLs [Padden 2010a]. For
instance, to describe that a recipient is big, the signer can execute the sign RECIPIENTLSF

with very exaggerated movements. Similarly, to express that an object is small, the
signer will perform the sign with very short movements, delimiting the surface of the
proposed object. In the same way, signers can outline the size of buildings, surfaces or
spatial points of reference, which most of the time will remain active in space, in the
position they were originally located. In this way, signers can describe the distribution
of an auditorium, of a neighborhood, or any other complex scene, where they can either
place themselves or other referents in order to establish complex relationships [Engberg-
Pedersen 1993]. In a way, this transforms spatial regions into objects, which can be
modified directly during discourse (similar to what happens in discourse deixis of vocal
languages [Lyons 1977]). For example, the signer can “take” the recipient he originally
placed in space (by mimicking the action of taking the object), and locate it elsewhere
(by mimicking the release of the object in a different place).
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Finally, the maximal expression of SL iconicity is shown by the role shifting phenomenon
[Cuxac 2000], where signers “act the part” of a discourse referent by taking their place
and assuming their actions as their own [Lillo-Martin 1995]. In this way, the signer can
directly show what a referent did or said from the referent’s perspective.

During a role shift, the signer completely steps out of his own persona in order to mimic
the behavior of the referent. In this situation the entire body expression becomes iconic,
as it is completely influenced by the characteristics of the role taken. Figure 2.13 shows
an example of role shifting, where the signer narrates a story about a fire and takes the
role of a firefighter breaking a door.

Figure 2.13: The signer shifts roles to narrate his story from the point of view of a
firefighter.

Putting everything together, it is easy to see that meaning in SL signs is deeply linked to
multimodality at every level of study: it depends heavily on how signers interpret different
forms — created by several articulators working simultaneously — over many layers of
abstraction. As such, it becomes important to determine what individual functions each
articulator may have, how they are modified to convey the images needed to build these
forms and how they manage to produce unambiguous messages, as explained in the next
section.

2.2.4 Parametric Sign Language Articulation

The information produced by utterances, can be modeled by way of discrete articulation
parameters. Depending on their physical characteristics, articulators provide a set of
different parameters in order to convey information. The hands will invariably produce
a great amount of the overall message, since they are very flexible and can change their
form easily. However, this is not to say that the information provided by Non-Manual
Features (NMFs) is any less important; research shows that native signers identify signs
faster if they have NMFs in them than if they don’t [Wilbur 2009].
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There are five classical parameters used in SL description 10, based on the seminal work
by [Stokoe 1960]. They are enumerated here as follows:

1. Hand configuration.- Refers to the shape of the hand while signing. Due to the
high flexibility of hands, the quantity of available configurations can be very high.
However, observations on various SLs have shown that only a relatively small
subset of the possible configurations is commonly used implying that, at least in
some cases, the quantity is not as big as it could be [Mann 2010]. Figure 2.14
shows some common hand configurations used in ASL.

Figure 2.14: Hand configurations used in ASL. 11

2. Hand orientation.- This parameter indicates the direction in which the hand is
“pointing”. This can be characterized more formally as the direction of a vector
perpendicular to the plane formed by the palm is pointing, as shown in Figure 2.15.
Orientation can be defined in terms of other hand sections, however the palm and
the back of the hand are the most common [Hong 2006].

Figure 2.15: Hand orientation vector with respect to the palm.

3. Articulation place.- It refers to the body or spatial region where the sign is
being executed. As previously stated, not all articulator places are located on the
signer’s body.

10. The list of parameters may be slightly different depending on the studied SL.
11. Image obtained from [Venkatagiri 2014].
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4. Hand movement.- Indicates the characteristics of hand motion. These can
be as simple as straight movements like the ones shown in Figure 2.16, or as
complex as irregular trajectories describing the physical form of an object. This
parameter also takes in account salient movement characteristics such as speed or
acceleration.

More complex phenomena such as repetition can also be described as part of this
parameter; that is, whether a particular motion is executed just once, or several
times as part of a single movement.

Figure 2.16: Subset of the possible movements a hand can execute during signing. 12

5. NMFs.- Refers to facial expression, head, shoulders and overall body motion,
occurring simultaneously with hand articulation.

As the existence of single-handed signs implies, not all articulators participate on the
production of all signs; in the majority of cases, only a subset of the possible parameters
is necessary to distinguish each. For this reason, some time-units may lack of movement,
NMFs or even hand interaction, at all. This doesn’t affect the underlying principle of
sign formation but may, however, complicate low-level observations, due to the sheer
amount of possible parameter combinations [Liddell 1989]. This phenomenon will be
apparent in the following chapters, where it will be explained how this combinatoric
nature affects distinguishability of individual postures, which in turn can become an
issue both for both representation and automatic recognition.

12. Image obtained from [Venkatagiri 2014].
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2.3 Chapter conclusion

This chapter has presented the main characteristics of SL linguistics, with special
emphasis on how SLs are most commonly described at the phonetic level. SLs are the
visual-gestural languages that members of the Deaf community use to communicate.
They differ from vocal languages in their production, as they are articulated in space
by way of corporal movements. The complexity of their articulation parameters and
phonological features, make them interesting subjects of study both in linguistics and
computer science. However, their very particular characteristics make them difficult to
transcribe by way of written notations, which can pose problems to automatic analysis
tools.

Similar to vocal languages, SLs are usually studied with the help of corpora: digital
compilations of language samples documenting their use, usually annotated with external
data for their processing. However, because of the difficulty to represent them otherwise,
SL corpora are forced to remain as video or motion capture collections, which have to be
treated with specialized computer-based tools for their processing.

Interest in the use of software tools for the study of SL has sparked new research
ventures, specially in areas such like SL recognition and SL synthesis. However, the
enormous quantities of possible posture combinations — and the physical characteristics
of articulators — pose a number of different problems that need to be solved before new
automatic solutions can be developed. This is specially true for phonetic representation,
which ultimately serves as the basis of language construction. For this reason, this thesis
is exclusively centered around representation issues on the phonetic level, and it proposes
a flexible phonetic description framework that can be used within computed-aided SL
research tasks.

With this in mind, the next chapter presents a review of current research in computer
science, aimed towards the study of SLs. Emphasis is put on how new projects tend to
work on problems related to the recognition and, specially, representation of segmental
features and signing parameters, with perspectives on building high level solutions from
these smaller projects in the future.
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State of the Art

As interest in the study of Sign Language (SL) has increased, the development of new
computer-based techniques for their analysis has become unavoidable. However, contrary
to what happens in vocal language research, SL projects have to deal with corpus
representation challenges from the very beginning. For example, discussions about
adequate corpora formats [Crasborn 2008c,Braffort 2010,Hanke 2010] and multimodal
annotation standards [Martell 2002,Dreuw 2008a,Schembri 2010] are recurrent issues in
the area, showing that the domain is still finding its footing. Thus, a lot of effort has
been put into studying SL representation across different domains, since it has become
apparent that it may be a crucial part of corpus-based SL research.

This chapter presents the existing state of the art for computer-based SL processing.
The first half introduces the current research efforts related to the domain, seen from
the point of view of SL research; the second half, presents some of the computer science
tools on which the contributions of this dissertation are based.

With this in mind, the next sections introduce some of the most common SL transcription
systems used in linguistic research. Moreover, Sections 3.2 and 3.3 give a brief introduction
to SL synthesis and SL recognition, respectively, showing how representation needs may
change between different research efforts. Finally, Section 3.4 gives a brief introduction
to formal methods, presenting how systems engineering deals with representation issues
in the development of industrial applications, always following well-established patterns
despite the fact that application domains may differ from one another.

41
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3.1 Sign Language Representation

SL representation research, consist in the development of formal notation systems for the
transcription of SL utterances. These notations can range from written SL systems, to
phonetic transcription languages. Currently, several representation notations exists for
different objectives, but neither of them can be considered as standard in their respective
domains of application. Nonetheless — and regardless of their intended use — most
of the existing SL representations share various common characteristics, reflecting the
importance of capturing the underlying articulation parameters (see Chapter 2, section
2.2, p. 24) as accurately as possible.

With respect to SL notations for linguistic research, interest has hovered around the
development of good transcription formalisms, in an effort to reduce reliance on video
materials. Also, this road have been explored as a way to potentially increase the
application of Natural Language Processing (NLP) algorithms to SLs corpora [Miller 2001,
van der Hulst 2010]. However, the existence of contradicting views in favor [Hoiting 2003]
and against [Johnston 2010] transcription, further shows the relative instability of the
area, blocking the adoption of transcription as a widespread method of analysis.

Despite opposition to thorough phonetic transcription, it is often necessary in research to
describe detailed SL sub-lexical information for recognition and synthesis. This proves
to be specially important for the latter (see Section 3.2 below), as the existing SL
synthesizers tend to use some form of notation to encode their inputs. This has led
to the development of very specialized description tools, which have been integrated
to corpus annotation software like [Hanke 2002], for example. As a consequence, sign
description systems like the Stokoe Notation or Hamburg Notation System (HamNoSys)
have gained popularity among researchers, as they have served as the basis of various SL
projects on different domains.

In the following sections, some of the existing notations used to represent SL in research
tasks are described. In addition, a small presentation of SignWriting — a written
SL system for common day-to-day use — is given, in an effort to contrast how SL
representation may change, depending of its intended use.

3.1.1 Stokoe Notation

Before the year 1960, it was usually assumed by linguists that SL signs were indivisible,
incapable of being represented by way of separable units like sounds in vocal language
words. However, with the publication of the paper by [Stokoe 1960], a new paradigm
in SL studies was born, where signs could be effectively “cut” into subunits for their
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description. This enabled the author to develop his own transcription system, the Stokoe
Notation, aiming to capture signing in a linear structure akin to written vocal language.

The author designed his notation to be employed as a tool for the linguistic study of
SLs. It provides a set of typewritten symbols, used to represent articulation place, hand
configuration and movement. Figure 3.1 shows a subset of these symbols.

Figure 3.1: Subset of Stokoe Notation symbols. 1

Broadly, sign transcriptions are written linearly and with a fixed character order. An
example is shown in Figure 3.2, where the Stokoe Notation was used to write the sign
SNAKEASL.

Figure 3.2: SNAKEASL in Stokoe Notation.

In the figure, the first character denotes location; the U-like symbol indicates that
articulation takes place over the lower part of the face. The second character describes
the hand configuration: a finger-spelled “V”. The three points above the “V” means that
the fingers are bent, and the inverted “a” denotes that the back of the hand is facing
upwards. Finally, the last group of characters denotes an outwards circular motion of
the hand.

Because of the technological limitations at the time of its creation, the Stokoe Notation is
limited to 55 Latin characters. For this reason, some symbols change meaning depending

1. Image obtained from [ASLFont 2013].
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on their place in the chain. The disadvantage of using such a limited set of characters is
that the resulting descriptions become highly encoded and barely iconic with respect
to the actual signs, which can impact readability. In addition, non-standard characters
are often needed to describe articulation parameters of SLs other than American Sign
Language (ASL), which can further complicate the comprehensibility of the notation.

Even with its disadvantages, the Stokoe Notation proved to be a practical way to
encode SL, a feat showcased by the author with the creation of a detailed ASL dictionary
[Stokoe 1976]. Later projects have tried to conserve this practicality by following the same
representation strategy, but taking advantage of new technologies to create specialized
symbols rather than just re-purposing Latin characters. In this manner, new notations
like HamNoSys improve the readability of their sign descriptions by using more iconic
symbol sets, closer to the actual visual form of the represented sign.

3.1.2 HamnoSys

HamNoSys is a phonetic SL transcription system. Like the Stokoe Notation before, it was
originally created for linguistic research; it was not intended to be used as a SL writing
system for daily life, but rather as a tool to represent research resources [Hanke 2004].
To this end, HamNoSys defines a greater amount of notation symbols; it holds around
200 characters, intended to represent a wide range of parametric postures in several SL.

The symbols defined by HamNoSys are more iconic than those by Stokoe. For instance,
the representation of hand configurations and places of articulation retain a visual relation
with the actual morphological characteristics of the human body. Figure 3.3 shows some
of the characters used by HamNoSys to represent common places of articulation and
hand configurations.

Like the Stokoe Notation, HamNoSys descriptions are written as chains of positional
characters. One of the differences between the two, however, is that in HamNoSys
symbols are highly specialized, so they’ll usually retain their meaning regardless of their
position on the chain. In this case, positioning serves rather to enable the automatic
processing of the transcribed data; computer systems are able to parse sign descriptions
without ambiguity, as the positional structure is known. This advantages have proven
useful for the creation of HamNoSys-based annotation software [Hanke 2001] and for the
development of avatar-based synthesis technology [Elliott 2004].
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Figure 3.3: Iconic places of articulation and hand configurations in HamNoSys. 2

Similarly, HamNoSys centers around hand configurations, places of articulation and
movements; however, it is more expressive than Stokoe notation, as it can express very
nuanced constructions by way of modification symbols. Figure 3.4 shows an example of
a German Sign Language (DSG) sign, HAMBURGDSG, represented in HamNoSys.

Figure 3.4: HAMBURGDSG in HamNoSys. 3

As with hand configurations and locations, HamNoSys’s movements are very iconic and
can have many variations. Figure 3.5 show an example of some of the symbols used to
depict movement in HamNoSys.

Even though HamNoSys tends to be more iconic than the Stokoe Notation, it still depicts
signs with a high level of abstraction. Furthermore, as it is intended to be used as a tool
for linguistic research, signs are usually described with great detail. This results in long
and complex chains of symbols, which in some cases can become difficult to read and
write without help of an expert.

2. Images obtained from [Prillwitz 1989].
3. Images obtained from [Prillwitz 1989].
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Figure 3.5: Movement and direction symbols in HamNoSys. 4

A slightly different approach to these kind of representation systems is depicted by the
SignWriting notation, which was developed to be used as a writing system for SLs rather
than for linguistic research. For this reason, SignWriting avoids describing symbols in a
sequential order in favor of highly iconic structures, in an effort to visually represent the
physical formation of signs.

3.1.3 SignWriting

SignWriting is a SL representation system inspired on a notation originally developed to
capture Ballet movements [Sutton 2000]. The main principle behind it, is for descriptions
to be both precise and easy to read. Contrary to HamNoSys and the Stokoe Notation,
SignWriting is effectively used by the ASL Deaf community as a written communication
system and not only as a tool to represent SL in research.

Similarly to the Stokoe Notation and HamNoSys, SignWriting describes phonetic pa-
rameters by way of a set of symbols, defined to represent hand configurations, places of
articulation and movements. However, SignWriting doesn’t describe signs as chains of
symbols but rather as very iconic glyphs, representing postures as they would be “seen”
from the point of view of the signer. An example of a glyph can be seen on Figure 3.6.

Figure 3.6: A SignWriting glyph describing a posture where the signer’s dominant
hand touches (∗) the head (◦), while holding a POINTING configuration. 5

4. Images obtained from [Prillwitz 1989].
5. Images obtained from [Sutton 2009].
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In the figure, the circle represents the back of the head, giving an spatial frame of
reference for the depicted signer. The white square means that the back of the hand is
oriented outwards, while the asterisk symbol (∗) represents a simple touch to the head.
Figure 3.7 shows other possible contact symbols.

Figure 3.7: SignWriting contact symbols to represent “touch”, “grasp”, “strike”,
“brush”, “rub” and “enter”.

SignWriting glyphs rely on the morphology of the human body to establish spatial points
of reference by drawing simple figures. The head, for example, is represented by a
big circle, usually featured prominently. From there, places of articulation such as the
shoulders, face or others are defined with respect to the head. This, in combination with
special modification symbols, serve to represent complex parameters such as Non-Manual
Feature (NMF) or body movement in a very intuitive way. An example of the expressive
capabilities of this method can be seen in Figure 3.8.

Figure 3.8: SignWriting places of articulation and their possible modificators. 6

As with locations, hand configurations in SignWriting are very iconic, even capturing the
position of the fingers in the configuration glyphs. Figure 3.9 shows some of the symbols
used to describe hand configurations.

6. Images obtained from [Sutton 2009].
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Figure 3.9: SignWriting hand configurations. 7

On the other hand, movement representation remains fairly similar to HamNoSys, using
distinct types of arrows to differentiate between types of movement. Figure 3.10 show
the difference between vertical and horizontal movements.

Figure 3.10: SignWriting vertical and horizontal movements. 8

Even though they are represented similarly, SignWriting is able to take advantage of
glyph structure to project movements directly unto their place of articulation on a single
image. For example, the Figure 3.11 shows the representation of sign ADDRESSLSF. The
glyph in the figure is able to show the articulation place, hand configuration and a
complex movement as a unit. In this case, both hands hold configuration THUMB and
execute a descending movement in parallel over the shoulders (represented by the black
bar under the head). The color modificators in the configuration (black and white),
indicate the orientation of the hands (palms perpendicular to the body, facing inwards).
The contact symbols indicate that hands “brush” the signer’s body while executing the
movement, and the double arrows indicate that the action is repeated twice.

7. Images obtained from [Sutton 2009].
8. Images obtained from [Sutton 2009].
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Figure 3.11: Sign ADDRESSLSF represented in SignWriting. 9

SignWriting has proven to be easier to read than other representation systems, which
has positively influenced on its adoption by Deaf communities [Flood 2002]. From the
point of view of technology, SignWriting glyph editors [Borgia 2015] and SignWriting-
based pedagogic software exist commercially since the late 90’s. However, despite its
advantages, this notation is not optimal to be exploited in research, in part because
of it’s unconventional, not trivial to parse, structure [Koller 2013]. For this reason,
research projects relying on SL representation tend to disregard very iconic notations
like SignWriting in favor of more technical ones like HamNoSys, something which rings
specially true in areas like SL synthesis, where very detailed sign descriptions are the
norm.

3.2 Sign Language Synthesis

As previously introduced, SL synthesis deals with the artificial generation of language
utterances by virtual signers (avatars) [Kipp 2011]. One of the main interests in the
area is to build avatars capable of mimicking the nuanced parametric changes made by
signers during discourse [Huenerfauth 2007]. This is because detailed parameters can be
crucial for the unambiguous identification of phonemes, due to their combinatoric nature
(see Chapter 2, Section 2.2.1, p. 25).

In an effort to confer a more expressive quality to avatars’ gestures, research in synthesis
has tended to move towards data-driven approaches [Rezzoug 2006]. For instance, the
work presented by [Cox 2002] proposed the development of a SL translation system,
aimed to improve interaction between Post Office clerks and Deaf users. Broadly, the
authors describe the construction of an automatic translator, used to transform a clerk’s
speech into synthetic British Sign Language (BSL) (produced by an avatar). In order to
enhance intelligibility, avatar’s productions are animated as accurately as possible by way

9. Signer image obtained from [Sématos 2013] and SignWriting description obtained from [Sutton 2010].
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of detailed human movement data. To this end, the researchers assembled a custom-made
motion capture rig from different body bound sensors, including a head-mounted camera
to capture NMFs. The rig served to build a small corpus, compiling data from multiple
human signers, which was then used to generate realistic signing from the avatar. The
quality of the animation was tested by synthesizing a set of 115 BSL phrases, which
were given to a group of native signers to decide whether they were comprehensible
or not. In their experiments, the researchers found that the average comprehensibility
was situated between 42% and 70%. However, most of the negatives were influenced by
linguistic variation rather than technical issues: in some cases, signers didn’t recognize
phrases because they were signed differently to what they were used to — not because
the animation was flawed — further underlining the importance of linguistic research in
the development of synthesis technology.

On the same vein, works like [Huenerfauth 2007,Lu 2010] present similar corpus capture
and evaluation methods, oriented towards the development a better suited corpora
for both synthesis and machine learning tasks. However, similar observations to those
of [Cox 2002], regarding comprehensibility and utility of the obtained data, are expressed
by the authors, pointing towards the lack of sufficient linguistic knowledge as one of the
main reasons behind poor results in these kind of systems.

In this sense, some synthesis research has centered around issues other than improving
data capture. This efforts go from the development of tools for the edition of existing
corpora [Lefebvre-Albaret 2013], to the development of new representation models
[Losson 1998] intended to enrich corpus information. For example, [Karpouzis 2007]
presents the creation of a synthesis system’s architecture for Greek Sign Language (GSL),
oriented towards education. For its development, a number of GSL resources were
collected through various projects. This lead to the creation of a grammatical model of
GSL, intended to be used in the production of phrases. Additionally, the project includes
a lexical representation database encoding individual signs with HamNoSys. Despite
their efforts, researchers point out that their approach is limited by both lack of enough
standard linguistic resources for GSL, difficulties with the technicality of the chosen
representation system, and problems linked to the production of co-articulations, which
lead to unintelligibility.

Finally, works like [Awad 2009,Duarte 2010], propose the analysis of corpus annotations
to improve the quality of virtual signer animations. In particular, the authors define
a custom annotation schema for their project, taking in account elements such as
grammatical markers from facial expressions; hand-movement descriptions; deictic uses
of space and, notably, the occurrence of co-articulations.
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The adoption of technology standards to encode their proposed schema — like the
Extensible Markup Language (XML) [Bray 1997] — enables great flexibility on studying
which changes depicted in the video are relevant and when: each human-identified sign
in corpora can be decomposed into the different aspects defined by the schema, making
possible not only the generation of motion profiles from data, but also the development
of rules to encode how signers synchronize their articulations depending on what’s being
signed. In this manner, synthesis can be greatly improved by linguistic knowledge of
sign morphology, by showing how they effectively form depending on the context of
communication. However, the disadvantage of this kind of studies, is that they are
heavily dependent on the existence of quality linguistic annotations; as previously said,
this is not necessarily a given for every corpus (see Chapter 1, Subsection 1.1.1, p. 3). In
addition, this also points out the limitations that notations such like HamNoSys have in
synthesis; they usually have to be modified into more technical representations capable
of this kind of schematic decomposition, as it is presented in the next section.

3.2.1 Sign Language Representation in Synthesis

SL representation notations in synthesis are usually built depending on their purpose
inside the system. In some instances, descriptions will serve as thoroughly geometrical
recipes, detailing how a sign has to be animated [Elliott 2004]. In others, representation
formalisms can serve as higher level models [Filhol 2012b], introducing linguistic infor-
mation to the process [Lejeune 2002]. In most cases, there will necessarily be an overlap
between the two, due to the importance of linguistic data for synthesis.

An example of the combination between linguistic and geometrical descriptions is given by
[Karpouzis 2007]. In their system, lexical sign representations are written in HamNoSys,
while avatar movement descriptions are defined in the Scripting Technology for Embodied
Persona (STEP) language [Huang 2004]. A STEP description is shown in Figure 3.12,
where the recipe of how to build a hand configuration is presented.

In general, their system parses HamNoSys descriptions into STEP instructions: each
HamNoSys symbol corresponds to a set of STEP scripts, indicating the avatar how to
render sequences of postures. In this manner, linguistic resources created with HamNoSys
can be synthesized directly without having to give geometrical descriptions to the system;
as there are already STEP-conversion rules in place to do it automatically. Despite this
advantage, the authors mention that their method could prove troublesome to extend
beyond manual parameters, as articulation from NMF tends to be more nuanced and,
thus, less adapted for a straightforward conversion.
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par([
turn(humanoid,r_thumb1,rotation(1.9,1,1.4,0.6),very_fast),
turn(humanoid,r_thumb2,rotation(1,0.4,2.2,0.8),very_fast),
turn(humanoid,r_thumb3,rotation(1.4,0,0.2,0.4),very_fast),
turn(humanoid,r_index1, rotation(0,0,0,0),very_fast),
turn(humanoid,r_index2,rotation(0,0,0,0),very_fast),
turn(humanoid,r_index3,rotation(0,0,0,0),very_fast),
turn(humanoid,r_middle1,rotation(0,0,1,1.5999),very_fast),
turn(humanoid,r_middle2,rotation(0,0,1,1.5999),very_fast),
turn(humanoid,r_middle3,rotation(0,0,1,1.5999),very_fast),
turn(humanoid,r_ring1,rotation(0,0,1,1.7999),very_fast),
turn(humanoid,r_ring2,rotation(0,0,1,1.5999),very_fast),
turn(humanoid,r_ring3,rotation(0,0,1,0.6000),very_fast),
turn(humanoid,r_pinky1,rotation(0,0,1,1.9998),very_fast),
turn(humanoid,r_pinky2,rotation(0,0,1,1.5999),very_fast),
turn(humanoid,r_pinky3,rotation(0,0,1,0.7998),very_fast)
])

Figure 3.12: STEP code for a given hand configuration.

3.2.1.1 Signing Gesture Markup Language

A similar approach is followed by the Signing Gesture Markup Language (SiGML)
[Elliott 2004], a representation formalism based on HamNoSys. The main difference
between them, is that SiGML is designed to work as a XML standard on its own. An
example of a SiGML description is shown on Figure 3.13.

As with previous representation efforts, SiGML is based on segmental phonology models,
such as the one presented by [Liddell 1989]. However, unlike other formalisms, with
SiGML the authors strive to combine sign parameters into morphological structures:
each parameter description can be either interpreted all by itself, as a phoneme of sorts,
or it can be grouped with others to be identified together as a lexeme. In practice, this
means that avatars may execute either an isolated parameter (single description file) or
complete signs (group of description files), by controlling the groupings of individual
parameters. Also, XML has the technical advantage of having a well-defined, nested,
structure; this simplifies the addition of new elements to the schema if needed, which
can further adapt the language to contain more information than HamNoSys.

This inherent adaptability has resulted into the creation of more flexible representations: it
has enabled the combination of multi-dimensional HamNoSys strings, representing higher
level linguistic functions [Elliott 2007]. In turn, this has opened the door to the exploration
of synthesis at higher levels where avatars may, for example, receive instructions in term
of linguistic functions (e.g. “make reference to”) rather than geometric instructions.
Nonetheless, some expressiveness problems may hamper efforts in this direction, due



Chapter 3. State of the Art 53

<?xml version="1.0" encoding="utf-8"?>
<sigml>

<hns_sign gloss="mug">
<hamnosys_nonmanual>
<hnm_mouthpicture picture="mVg"/>
</hamnosys_nonmanual>
<hamnosys_manual>
<hamfist/> <hamthumbacrossmod/>
<hamextfingerol/> <hampalml/>
<hamshoulders/>
<hamparbegin/> <hammoveu/> <hamarcu/>
<hamreplace/> <hamextfingerul/> <hampalmdl/>
<hamparend/>
</hamnosys_manual>
</hns_sign>

<hns_sign gloss="take">
<hamnosys_nonmanual>
<hnm_mouthpicture picture="te_Ik"/>
</hamnosys_nonmanual>
<hamnosys_manual>
<hamceeall/> <hamextfingerol/> <hampalml/>
<hamlrbeside/> <hamshoulders/> <hamarmextended/>
<hamreplace/> <hamextfingerl/> <hampalml/>
<hamchest/> <hamclose/>
</hamnosys_manual>
</hns_sign>

<hns_sign gloss="i">
<hamnosys_nonmanual>
<hnm_mouthpicture picture="a_I"/>
</hamnosys_nonmanual>
<hamnosys_manual>
<hamfinger2/> <hamthumbacrossmod/>
<hamextfingeril/> <hampalmr/>
<hamchest/> <hamtouch/>
</hamnosys_manual>
</hns_sign>

</sigml>

Figure 3.13: SiGML description of the sign SCOTLANDBSL in BSL.
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to the fact that HamNoSys was originally created for phonetic transcription; this is, by
design it lacks the necessary structures for syntactic representation, and thus it may
require multiple extensions to be able to support it.

3.2.1.2 Zebedee

A different approach to SL transcription for synthesis comes in the form of Zebedee
[Filhol 2009]. This formalism, is based on the phonetic model presented by [Johnson 2011]
(see Chapter 2, Subsection 2.2.1.4, p. 29).

For Zebedee, segment order comes above purely parametric descriptions, making special
emphasis on time constraints such as duration. In addition, sign descriptions in Zebedee
are dynamic: parameters don’t remain fixed over time, but are dependent of internal
changes that may change their values over time. By establishing dependency relations,
experts describing signs may center around modeling sign structure, rather than having to
thoroughly specify every possible parameter in the resulting synthesis; dependencies take
care automatically, without further intervention. The same mechanism, enables a signing
avatar deducing which movements perform, as dependencies make every one of them
deducible from descriptions. Figure 3.14 shows an example of a Zebedee description.

As shown in the figure, Zebedee enables the inclusion of typed variables, which can
provide specific information about independent articulators, places of articulation, and
dependency relationships between them. In addition, Zebedee makes use of space by
giving experts the possibility of mapping variables to spatial locations, which in turn
permits the definition of inflections under the same formal language. In this manner,
lexical signs given to the avatar may be directly modified during synthesis, incidentally
simplifying the system’s input. With this, and contrary to purely phonetic approaches,
sign descriptions can remain very succinct, while still being able to generate very
expressible output in practice.

3.2.1.3 Higher level representations

Most representation languages for synthesis have centered around phonetic transcrip-
tions, however some work exists towards the representation of higher level structures.
For instance, [Lebourque 1999] presents the development of a high-level specification,
permitting the representation of spatial locations and the avatar’s relation towards them.
The proposed formalism is powerful enough to represent simple phrases, however the
notation remains fairly low-level in terms of movement and synchronization.
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SEQUENCE "ballon"

<language=LSF>
<numvidlimsi="1014_tout.mov">
<refdico="aucune">
<described_by="Flora, ">

DEP loc = @ABST + <FWD | medium>
DEP size = medium
Alias %p0 -> [loc] + <UP | [size]>

KEY_POSTURE(0){
KEEP:
For $h=s,w
#all4_contact($h)
Orient NRM!palm($h) along <@PA($h), [loc]>
End

HERE:
Place @PA(s) at %p0
Place @H_BACK(w) at @I_KNi(s,1)
}

TRANSITION(10){
Accel 1
Arc @PA(s) : <LAT | [size]>
Arc @PA(w) : - <LAT | [size]>
}

KEY_POSTURE(0){
HERE:
Place @PA(s) at SYM %p0 wrt [loc]
Place @PA(w) at @L_KN(s,1)
}

End "ballon"

Figure 3.14: Zebedee description for BALLOONLSF.
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Works like the one presented by [Lejeune 2002] go into more abstract representations,
defining a set of linguistic operations and encoding contexts and verbs’ meanings into
formal structures. In this way, high-level linguistic phenomena such like iconicity could
be represented easily in synthesis tasks. However, the disadvantage of working with such
high-level representations is that it loses flexibility when confronted with existing synthesis
engines, as they tend to need very verbose instructions to work with [Huang 2004].

Finally, improvements on the original Zebedee language — previously introduced —
have resulted in the development of AZee [Filhol 2012a], a higher level representation
language intended better accommodate multimodality in synthesis transcriptions. AZee
permits the definition of synchronization rules inside descriptions, inducing an ordering
of the articulatory information on different channels (see Chapter 2, Subsection 2.2.1.3,
p. 28). This enables the system to synchronize multimodal information into single blocks
containing more than one posture, therefore enabling representation of more complex
linguistic phenomena such as spatialization, or the modeling of grammatical markers
such like questions.

3.3 Sign Language Recognition

Due to the particularities of their linguistics (see Chapter 2 Section 2.2, p. 24), SL
recognition tasks tend to be very complex to achieve; in order to recognize discourse,
an automatic system needs to know how to make individual sense of both phonetic and
morphologic SL characteristics, as well as more complex phenomena such as iconicity or
the different uses of space [Bauer 2000]. For this reason, most of the existing research
in the area has centered around the first two levels of linguistic study, in an effort to
approach the problem in a bottom-up fashion [Ong 2005]. As such, researchers tend to
subdivide their research efforts into hierarchical sub-disciplines, reflecting the different
levels used in linguistic research:

Sub-lexical recognition Work in this level consists on recognizing articulation pa-
rameters of SL articulators. This involves finding articulators on corpora and
determining their states; knowing where they are positioned, which configurations
they hold or whether they are active in discourse.

Individual sign recognition Classification of individual signs, both on isolated and
continuous recognition tasks. Research in this area also includes sign segmenta-
tion: finding time-intervals corresponding to meaningful productions on corpora,
regardless of the specific signs depicted by the material.
— Isolated sign classification: Identification of single signs — mostly lexical —

on idealized conditions.
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— Continuous sign classification: Recognition of signs during discourse, where
a lot of uncertainties and natural variations may present themselves during
production.

As implied, sign recognition relies on the correct identification of measurable parameters,
which can be a very specialized task. Because of this, emphasis is usually given to
techniques centered around SL phonetics, expecting to be able to build from there, in an
effort to search meaning from the bottom-up.

3.3.1 Sub-lexical recognition

Sub-lexical recognition is rich in methods to solve different kinds of problems, starting
from the identification of individual articulators on corpora. As previously stated, each
articulator has its own set of characteristics, and they can be very different from one
another. Accordingly, they contribute their own particular kind of linguistic information,
which can be different from the others both in terms of form and function. In addition
to these differences, corpus media itself may come with their own recognition-related
problematics; recall that corpora are compilations of video or motion capture information,
which may have an assorted list of shortcomings such like occlusions, irregular forms,
signal noise, etc. All these factors can impact on automatic articulation parameter
analysis and, in most cases, they are challenging enough to claim the research focus
themselves, individually [Ding 2009]. As a result, it is not uncommon for each articulator
to have its own set of specialized recognition techniques, without considering how these
may communicate in higher levels to actually apply NLP algorithms.

3.3.1.1 Individual articulators and single parameter recognition

One of the first challenges of SL recognition, is to robustly follow articulators under
changing conditions. An articulator tracker, is an algorithm that calculates the geo-
metrical position of one or various articulators over a given time interval. A lot of
the existing trackers are oriented towards the hands, in part because they are featured
prominently in corpora; because of their fairly independent nature, hands can be very
accurately tracked, as it’s easier to differentiate them in video from more nuanced ar-
ticulations [Vogler 2007]. In spite of this huge advantage, problems may arise on their
tracking depending on the specific conditions in which the algorithm is executed, which
are not always optimal [Gonzalez 2011].

High accuracy hand-tracking methods like [Gianni 2009, Gonzalez 2011], use particle
filters [Isard 1998] to classify signers’ hands and head with minimal supervision. Their
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respective algorithms are designed to work over generic video sequences, acknowledging
the that most existing resources are unannotated video corpora (see Chapter 1, Subsection
1.1.1, p. 3). In general, the authors use the skin tone to select the image regions (blobs)
that could most likely be the hands or head. Each blob is sampled into a “cloud” of
particles, where each particle has an associated weight corresponding to the probability
of it being part of the articulator of interest. The filter is dynamic; at each step, it
takes in account the previous, current and next observations to recalculate particle
weight. With enough executions, the algorithm will inductively converge towards the
desired model’s solution. This enables following hands and head with some robustness,
although it might be costly in terms of calculation time. Finally, both methods apply
different techniques to compensate occlusion with some success, one relying on using a
probability exclusion principle [Gianni 2009] and the other by calculating differences in
luminance [Gonzalez 2011]. Nevertheless, approaches relying on skin tone tend to fail
under poor illumination conditions, skin-toned clothing, cluttered backgrounds or other
sources of noise.

To avoid these potential pitfalls, some authors have approached the segmentation problem
by constraining the initial setup of corpora [Starner 1998]; that is, they force very
controlled conditions to minimize tracking errors. Other alternatives showcase the use
of special markers during the segmentation phase, in order to avoid the use of skin
tone; for instance, authors [Dorner 1994,Starner 1995,Grobel 1997] use unambiguously
colored gloves to improve results. Other popular techniques rely on the use of specialized
equipment such as wired data-gloves and accelerometers [Kadous 1996, Fang 2001],
sometimes also paired with cameras [Brashear 2003], which can obtain accurate tracking
data by design. Works like the one presented by [Lu 2010] use state-of-the-art motion
capture technology to obtain tracking information of hands, body, head and even eye
motion. Finally, some corpora have been created with 3D motion sensing devices like
the Kinect [Zafrulla 2011,Stefanov 2013], which can give enough information to find the
hands and head without markings.

Novell unmarked methods like [Buehler 2008], try to also avoid specialized equipment.
In their work, the authors use a geometrical model to determine where the hands and
head should be, based on the form of the human body. Broadly, a geometrical model of
the human body is overlaid into each frame. From there, an algorithm calculates the
probability of blobs of similar color of being part of any of six body parts defined by the
model (hand, arm, shoulder, etc.); blobs are determined by a measure of color proximity,
not linked to any particular tone. Based on this process blobs obtain a label, which
is checked dynamically against previous calculations to improve accuracy. A different
proximity measure is obtained between images, in order to optimize comparisons; in
very similar images, the algorithm will check only the subset of information that has
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changed. The continuous application of the algorithm, permits inferring position changes
with high accuracy. The main advantage of this method with respect to others is its
overall robustness, as it can be applied to treat videos created under very different
conditions [Buehler 2009].

Articulator classification and hand position tracking serve as the basis for more complex
treatment. It is at this point that the difficulty of the task increases, as it is necessary
to automatically find other less evident parameters. From these, the detection of hand-
configurations has gained traction over the years; however, it has proven to be one of the
most challenging. This is mostly due to the deformable nature of the hands [Vogler 2004],
which can complicate the task. In addition, variations between configurations can be
minimal, to the point of being nearly indistinguishable: for example, the configurations
shown in Figure 3.15 only differ on the flexion of the index finger and thumb, which is
enough to mark a difference between the two.

Figure 3.15: Two very close LSF hand configurations. 10

On video, configurations like these can prove to be difficult to differentiate, specially
with corpora captured under poor conditions. From the point of view of recognition,
this may result into very ineffective classification algorithms with a large number of very
closely related classes. This situation also comes with increased computation costs, as
the selected classificators have to be thoroughly trained to measure the high quantity of
possible small variations. The same situation can present itself with other parameters
presenting similar characteristics, such as NMFs [Vogler 2007].

Authors like [Erenshteyn 1996] have tried to address these problems by creating a
classification hierarchy for SL video-frames, prioritizing some classificators with respect
to the others. In this view, classes are subdivided into small groups of simple classificators.
Also, each classificator can be part of more than one classes. To determine its class,
each sample is tested by each classificator, and the results are combined into a single
score. Classificators are tested following their order of importance on the classification
hierarchy. After each pass, the score is compared against an optimality criterion, to
determine if further tests are required or if the sample can be classified within a certain
confidence interval. In this manner, only a subset of the possible classificators is always
tested, improving classification times overall.

10. Images obtained from [Companys 2004].
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On the same vein, efforts like the one presented by [Munib 2007] use neural networks
[Hagan 2002] to achieve classification over unmarked images. This method is based on
specializing sets of neurons to recognize minimal properties present on the parameters.
Thereafter, the topology of the network can be used to combine the results of individual
neurons, essentially following the same strategy as the previous example. However, in
both cases having reliable training data is essential, and the quality of the input images
can always become an issue. For this reason, similar to what happens with position
tracking, several research projects rely on sensors to improve the quality of data from
capture [Takahashi 1991,Kadous 1996,Liang 1998], which improves accuracy and reduces
calculation times.

3.3.1.2 Segmental feature recognition

Some research projects avoid the recognition of isolated parameters altogether, and treat
the problem from a morphologic perspective; this is, they classify entire postures, trying
to identify sign components instead of individual parametric variations. One of the
main advantages of these techniques, is that additional linguistic information can be
used to improve recognition conditions; for instance, it may be easier to discard noisy
video segments by catching meaningless postures [Gonzalez 2012], or to isolate important
gestures [Nam 1996] such as pointing [Nickel 2003]. It turn, this can also help to develop
higher level recognition tasks, which could also benefit from SL sequential characteristics
to improve accuracy [Vogler 1997].

A lot of the projects developed under these assumptions use Hidden Markov Models
(HMMs) [Stamp 2004] for their machine learning tasks; roughly, a HMM represents a
probability distribution over a sequence of independent observations of some process.
Usually, HMMs are represented as graphs, where each transition is labeled with the
independent probability of changing from one state to another. The model is based on
the assumption that there are states hidden from the observer, and these can be inferred
from observations so as to predict the future of the represented process. Due to their
flexibility, they are frequently used to model time series data such as video recognition,
computational biology, data compression and others.

Works based on classic HMMs and the like usually avoid tracking, as they intend to work
directly over unmarked corpus images. For example, the authors [Cooper 2007] encode
simultaneous parametric information into two independent classes: static features and
movements. The system then analyzes raw video data, and classifies frame sequences into
one of the two classes. Each found sequence is characterized by its own feature vector,
regardless of the class it was classified into. To prove the utility of their approach, a
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lexical sign database was created describing each sign’s formation; as with video sections,
each of the sign’s segments are characterized by a vector, enabling the development of
distance measures to determine how close detected postures are from predefined ones.
Finally, these measures can be used as input for morphologic Markov chain, enabling
sign recognition.

Despite its advantages, the usefulness of the aforementioned method is limited by the
quantity of training samples available (see Chapter 1, Subsection 1.1.2.2, p. 9). In
addition, linguistic variations and the need to introduce more or less parameters to the
model forces the creation of several HMMs for the same segment, limiting scalability.

A similar technique was used by [Brashear 2003], where the authors describe individual
signs by way of HMMs. In general, each signs’ internal structure is implicitly captured
by its corresponding HMM. This implies that longer signs will thus induce larger models.
Similarly as what happens with previous efforts, the lack of learning data limits both the
creation and evaluation of the resulting models, forcing researchers to test their results
over rather small sets of signs.

Works like [Vogler 2001, Vogler 2004] have tried to improve scalability by considering
modalities as independent channels, on their own variation of HMMs. As a result,
the system can do dynamic addition and removal of parameters to the model during
recognition, which both improves the framework’s flexibility and performance. In
some ways, their approach works as a mixture of posture-based and parameter-based
recognition, as this makes possible the definition of single parameter lexemes, among
others. The authors base their framework on the phonological model by [Liddell 1989];
in this sense, the use of knowledge on sign structure helps them reduce computation
times, by exploiting techniques reminiscent of hierarchical classification.

Approaches like the ones tried by [Ma 2000,Liu 2014], attempt to integrate NMFs to the
recognition process, as a way to make sense of data as a whole rather than concentrating
on individual parameters.

Other projects generalize the same principle, in an effort to obtain more information
about a posture’s intention; for example, [Green 2004] present an architecture to track
human body movements, for biometric analysis. In the article, the authors use both a
particle filter and HMM to reduce computation times and improve accuracy. Articles
like [Bauer 2002b], explore the idea considering variations on technology, and the general
problem of subdividing SLs signs in segments. Finally, projects like [Gonzalez 2012]
explore the use of low-level tracking-data to calculate automatically a proposed sign
segmentation, in an effort to remove co-articulations from video data in annotation tasks.
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3.3.2 Individual sign recognition

In this kind of recognition tasks, it is common to have two distinct classification phases:

1. sub-lexical recognition, either of individual parameters or segmental features;

2. sign classification.

Due to the bottom-up approach adopted by the domain, the hit and miss ratio of
sub-lexical feature recognition from the first phase will necessarily impact the accuracy
of sign classification as a whole [Waldron 1995,Brashear 2003,Cooper 2007].

The application of this type of hierarchical philosophy, inevitably limits the capabilities of
recognition tasks from a technological point of view: each level could theoretically impose
new restrictions on data, which in turn could reduce the amount of exploitable information.
For example, calculation-heavy parameter recognition based on particle filtering [Lefebvre-
Albaret 2010,Gonzalez 2011], may not escalate well for real-time processing, which would
immediately discard some of the existing data sources, developed to be treated under
this technique. In addition, this approach is also prone to suffer from cascading failures,
carrying erroneous data from lower to higher levels, and limiting usability. Both these
technological limits, and the existence of different research objectives, has separated the
field into two distinct areas: isolated and continuous sign recognition.

As its name implies, isolated sign recognition studies how to recognize individual ap-
parition of signs [Grobel 1997]; in general, research in the area centers around the
identification of single signs in very well-delimited contexts. This could be useful in
different situations such as Deaf machine interaction [Heloir 2015], the search of signs by
signing on visual data repositories [Elliott 2012], the creation of software solutions for
SL education [Stefanov 2013], and even to enable simple signing access to new technolo-
gies [Fotinea 2012]. Most of the aforementioned projects, rely on the study of specific
use-cases, where sign delimitation is almost always a given, and where the quantity of
possible signs to recognize is limited.

On the other hand, continuous recognition tries to identify sign apparitions over un-
bounded contexts. This can be useful for projects related to the identification of
phrases [Chai 2013], discourse analysis [Bauer 2002a,Nayak 2009], or for the recognition
of complex linguistic phenomena [Kelly 2009].

Contrary to what happens on isolation, continuous recognition has to work over very
unstable environments, where the system is obliged to independently find cues leading to
the segmental subdivision of the utterance [Bauer 2002b]. Notably, most of the existing
projects on the area work by chaining HMMs; that is, they first create smaller HMMs
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for individual sign identification, and the result serves as input for a morpheme-level
HMMs [Ong 2005]. However, these kind of approaches can be difficult to develop, because
of the lack of both enough training data or linguistic knowledge to create the models.
These limitations, alongside the hierarchical structure, end up translating into very
reduced sets of recognizable signs, as exemplified by Table 3.1.

Authors Type of
Recognition

Technique Qty. of Signs

[Waldron 1995] Isolated Neural networks 14 signs
[Vogler 2001] Continuous HMMs 22 signs
[Bauer 2002a] Continuous HMMs 97 signs

[Brashear 2003] Isolated HMMs 5 signs forming 72
phrases

[Cooper 2007] Isolated Markov chains 164 signs
[Kelly 2009] Continuous HMMs 8 signs, 100

co-articulations

Table 3.1: Quantity of recognizable signs by research project.

For comparison, projects in continuous speech recognition are capable of recognizing
sets of more than 1000 words using similar techniques [Roth 1993], even in very limited
conditions. This is of particular interest for the domain, as the existing data resources
are not only limited but very heterogeneous, as it will be explained in the next section.

3.3.3 Notable Sign Language Research Resources

Various corpora for research have been developed over the years, with special emphasis
on linguistics rather than computer-friendliness. One of the main characteristics of
these corpora, is that they try to capture as many different variants of the language
as possible. In general, this differs from the current approaches used by computer-
based SL research, where ideal “standardized” language samples have been preferred
[Morrissey 2010,Forster 2012]. This is because, as mentioned in previous sections, the
existence of variation can affect evaluation results on both synthesis and recognition tasks.
As such, classic linguistic corpora pose different challenges to researchers who wish to
use them as data sources, as they depict data in far from ideal conditions for automatic
processing. Regardless, they remain prominent data sources for computer-based research,
due to their relatively high availability.

For example, [Crasborn 2008c] present the authors’ efforts to record a corpus for the
Sign Language of the Netherlands (NGT). For their project, the research team collected
samples from 100 native signers, coming from different backgrounds and regions. The
participants were tasked with signing narratives, using popular culture bits as elicitation
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materials (cartoons, comic stories, TV videos, etc). Other tasks included discussions
around SL issues and even free conversation. From a technological point of view, the
corpus was captured using four High Definition cameras, located around the signers as
shown on Figure 3.16.

Figure 3.16: Recording setup for the NGT corpus [Crasborn 2008c].

The project resulted in around 80 hours of video data, available for its consultation over
the web. Some annotations and translations were made for some of the videos, however
budget and time limitations didn’t let researchers annotate everything nor give very
detailed glosses. In any case, the work resulted in the development of new software
for on-line collaboration [Brugman 2004], and on the integration of new annotation
capabilities to the ELAN platform [Crasborn 2008a].

It is common for long-term corpus projects to develop their own capture standards, which
can vary depending on the size and scope of the project. Because of this, corpora has been
built upon tools as diverse as professional video cameras [Hanke 2010,Schembri 2013],
motion capture equipment [Cox 2002,Lu 2010], televised SL transmissions [Buehler 2009],
or even with new emerging hardware technologies [Stefanov 2013]. Similarly, these
projects frequently develop their own annotation tools, which usually implement their
own standards. As such, big corpus projects have influenced the development of new
annotation formats, as it is common for their auxiliary tools to become available to the
research community. This availability has influenced the design principles of new, smaller
corpora; for instance, authors [Karpouzis 2007, p. 6] express their choice of HamNoSys
annotations, because of their compatibility with the ELAN platform.

One of the biggest SL linguistic data repositories to date is the DSG Corpus Project
[Hanke 2010]. For its creation, 300 signers from around 12 different regions were selected,
in an effort to capture as much linguistic variations as possible. Being a long-term project,
DSG managed to amass over 500 hours of video samples, showing approximately 3 million
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different signs. However, only a fraction of the materials are freely available [Nishio 2010],
and not all videos are annotated; only 18 sessions out of 3 regions have annotations.
An specialized software platform called iLex [Hanke 2002] was used for its annotation.
In particular, this tool permits the expression of annotations as either glosses or as
HamNoSys descriptions.

With respect to capture, the corpus was recorded by pairs of signers with the help of
three HD cameras: two to capture each signers’ frontal plane, and the last one recording
the complete scene. Figure 3.17 shows a shot of the camera setup.

Figure 3.17: Example of DSG and Dicta-Sign setup [Hanke 2010].

This same setup was used for the Dicta-Sign corpus, presented by [Matthes 2012]. This
project consisted in creating a compilation of annotated corpora from four different
European SLs (BSL, DSG, GSL and LSF). Data of the four languages was recorded
in parallel, using the same elicitation materials and a lexicon of more than 1000 signs.
Despite of the corpora being elicited to reflect common use of SLs, Dicta-Sign was created
with the intention of serving as input data to develop computer-based research. For this
reason, special emphasis was put on creating computer readable annotations, that could
be used to interpret data automatically.

Elicitation tasks for each corpus were performed by groups of 16 native signers, paired
together into sessions of around two hours [Hanke 2010, Fotinea 2012, Matthes 2012].
From the resulting raw video, at least 5 hours of lexical gloss annotations were created,
summing up to 25 hours of annotated corpus-data. Annotations were created with the
help of the iLex platform, following the same guidelines across the four corpora. Some
variations in annotation do exist, however, due to personal choices of the teams creating
each corpus.



Chapter 3. State of the Art 66

As with other projects of similar size, new software tools oriented towards annotation were
created as part of the project. Contrary to previously existing software, the approach
taken by Dicta-Sign relies on the integration of classic multimodal annotators with
specialized SL software modules, following the guidelines introduced by [Braffort 2004].
The main idea is that, by way of these modules, human annotators can collaborate
remotely [Collet 2010,Dubot 2012], or can introduce recognition capabilities that could
potentially simplify the annotation task [Gonzalez 2012].

Finally, the Dicta-Sign project resulted in the development of new corpus-based re-
search, showcased by the production of several proofs-of-concept in the areas of web
communication for the Deaf [Efthimiou 2012b], SL synthesis applied to human-computer
interfaces [Efthimiou 2012a] and isolated sign recognition on lexical databases [El-
liott 2012].

Similar long-term non-European efforts are represented by projects like the National
Center for Sign Language and Gesture Resources (NCSLGR) corpus of ASL [Neidle 2000].
For their work, the researchers captured a database of 1866 distinct signs, performed
by four native signers, summing up to 11,854 total sign occurrences on video. Capture
was achieved by way of four standard definition cameras (no HD), positioned to capture
orthogonal planes of the participants. An example is shown in figure 3.18.

Figure 3.18: Example of the different angles captured for the NCSLGR corpus
[Neidle 2000].

The corpus was annotated with SignStream, an specialized SL annotation tool designed
specially for the project [Neidle 2001]. Even though the corpus wasn’t originally intended
to be used in computer-based research, further annotation iterations have resulted in
the development of computer-friendly distribution formats; for instance, SignStream is
able to export annotations in both its own well-defined standard and as XML files. This
evolution has enabled the use of their corpus in several recognition tasks across more
than a decade [Zahedi 2005,Neidle 2009,Wang 2012].
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In a final note, smaller corpus projects are starting to take advantage of the byproducts
of larger ventures; researchers in linguistics begin to acknowledge the importance of
computer-based tools for corpus analysis, even in purely linguistic research [Leeson 2006].
Indeed, the literature shows that the vast majority of new linguistic SL corpora are
systematically subject to some kind of automatic treatment. By the same token, corpora
created exclusively for data-driven research have started delving deeper into linguis-
tics [Forster 2014], as linguistic knowledge is an important factor for the correctly
interpretation of data. For these reasons, the development of new, more integrated,
approaches towards corpus representation and annotation seem unavoidable, as it has
become more evident than ever that neither purely mechanical nor purely linguistic
aspects are sufficient on their own to understand SLs. Fortunately, computer science
already fosters a set of procedures designed to treat similar issues, as they were created
to match very technical problem descriptions with higher-level abstractions. In the
literature, these techniques are usually referred as formal methods.

3.4 Formal Methods

The term formal methods, encompasses a group of mathematical techniques used to
describe and test software or hardware systems, from conception to implementation
[Wing 1990]. These are usually subdivided into two complementary areas:

Formal Specification Contains a series of formal notations used to characterize systems
(specify), harnessing the power of several mathematical models.

Formal Verification It refers to the series of techniques that serve to test (verify)
formal specifications and their implementations, to assure that they conserve the
desired properties.

Specification and verification are considered important tools to avoid pitfalls in the
creation of complex systems; by introducing mathematical rigor, system designers can
build coherent and unambiguous descriptions, which are both easier to understand
and less likely to fail [Bowen 1993]. However, despite their benefits, their penetration
outside of the domain of critical systems remains lackluster at best, specially because
of hurdles related to the both the usability of formal notations and other pragmatical
issues [Knight 1997]. Regardless, some readily available solutions exists and have been
central to the development of complex industrial processes in areas such like transportation
[Hall 1996], micro-processor design [Bentley 2001] and energy production [Yoo 2008]. In
the next sections, some of the existing work in the area will be presented, in an interest
of showing the flexibility of formal notations and their applicability to various areas.
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3.4.1 Formal Verification

The process of formal verification entails the analysis of a system’s design, in order to
determine if it satisfies certain properties [Baier 2008]. This process can only take place
if the system is defined formally; that is, if there is no ambiguity on its definition, and if
there exist a well-defined set of consistent rules framing its inner workings. This makes
the use of formal notations specially suitable for verification, which usually serves as a
compelling argument to advocate for their use during system design [Holloway 1997].

There are two main techniques commonly used for verification: model-checking and
automated theorem proving. The choice of one instead of the other depends largely on
the specification formalism selected by the designer; however, mathematically speaking,
both methods are equivalent [Clarke 1986]. That said, model-checking is better adapted
to verify systems represented as Labeled Transition Systems (LTSs) [Keller 1976, p.
372], whereas theorem proving methods tend to be favored for the verification of more
symbolic representations [Chang 1997].

In general, model-checking algorithms are based on performing exhaustive searches for
every possible state of a LTS, in an effort to find all possible errors on the system’s
specification [Emerson 1997]. However, this methodology comes with the serious disad-
vantage that it has to deal with combinatorial explosion. Accordingly, model-checking
algorithms are limited by tractability issues; this introduces the problem of determining
if the verification of some description will be intractable, even before its creation. For
this reason, research in model-checking has been focused on finding the limits of ex-
haustive verification [Bauland 2009] and developing new stochastic methods to optimize
performance even in the worst cases [Kwiatkowska 2007].

On the other side of the spectrum, automated theorem provers try to tackle intractability
by avoiding the systematic search of every possible state. To this end, these tools make
use of different proof calculi to determine if a specification is valid, obtaining proofs by
the strategic application of a finite set of inference rules [Chang 1997]. Specifications
verified under this method, usually have to provide both a set of axioms modeling the
system’s invariants and a set of properties to prove; from there, the inference engine will
try to find a formal proof asserting to show that the system fulfills each property, in
order to determine the correctness of the specification.

Theorem proving is limited by decidability issues; for most formal systems, no algorithm
exist to prove that some statement is true or false in the system [Davis 1958]. For
this reason, some of the existent research on formal methods deals with proving the
decidability of description formalisms; in practice, this results in the creation of less
expressive descriptions, albeit automatically verifiable.
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3.4.2 Formal Specification

A formal specification is a mathematical description created to capture, unambiguously,
the inner workings of a system. They are written by way of very specialized notation
languages, emanated from within various disciplines of mathematics.

Traditionally, formal notations have been inspired on logic, graph theory or algebra,
depending on their intended use. In practice, the choice of one formalisms with respect
to the others corresponds to the description needs of the system’s designer; in this regard,
the choice of which formalism to use and how, becomes part of the specifier’s tasks, mostly
depending on the problem and the purpose of the specification. For instance, in software
development, designers can either use Z-notation [Woodcock 1996] to characterize the
interaction of an entire system, or they can go with Larch [Guttag 1993] to describe on
an abstract level how the most basic components work. As such, it is not uncommon for
specification languages to share similar expressive capabilities, since they have to show
some degree of flexibility in order to adjust to the different possible use-cases.

Formal specification notations have been traditionally grouped into classes, semantically
related to their underlying mathematical basis; the most relevant, for this scope of thesis,
are listed below:

— model-based;
— algebraic;
— process-oriented.

For the most part, this classification is fairly subjective, as some formalisms could fit in
more than one category. In the next sections, some examples of each listed type will be
analyzed, as well as their overall relevance in terms of this work.

3.4.2.1 Model-based specification

Model-based specifications are built upon concepts of set theory [Jones 1980]. As such,
notations in this category will let designers describe information in terms of sets and
relations between them; normally, operations are defined as mappings from one set
into another. System invariants or semantic rules linked to set definitions, are usually
described with predicates of first order logic. This enables the depiction of systems as
complex mathematical structures, like LTSs. An example of this can be seen in figure
Figure 3.19, built on Z-notation [Woodcock 1996] and taken from [Jacky 1996].
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STATE ::= patients | fields | setup | ready | beam on
EVENT ::= select patient | select field | enter | start | stop | ok | intlk
LTS == (STATE × EVENT) 7→ STATE

no change, transitions, control: LTS
control = no change ⊕ transitions
no change = { s: STATE; e: EVENT • (s, e) 7→ s }
transitions = {(patients, enter) 7→ fields,

(fields, select patient) 7→ patients, (fields, enter) 7→ setup,
(setup, select patient) 7→ patients, (setup, select field) 7→ fields, (setup, ok) 7→

ready,
(ready, select patient) 7→ patients, (ready, select field) 7→ fields, (ready, start) 7→

beam on, (ready, intlk) 7→ setup,
(beam on, stop) 7→ ready, (beam on, intlk) 7→ setup }

Figure 3.19: An schema in Z-notation representing a system for patient control in a
hospital.

The shown specification defines a set of states STATE = {patients, fields, setup, ready,
beam on}, a set of events EVENT and uses them to describe the system as the map LTS
: STATE × EVENT 7→ STATE, taking pairings of states and events into new states.
Thereafter, the description goes into detail, describing which pairs correspond to which
states in the actual system. This information can be represented graphically by the
diagram in Figure 3.20, showing the possible states of a medical therapy control system.

Figure 3.20: LTS representing a therapy control system.

This kind of description specifying system functions as maps between sets, can be useful
to verify implementations, independently of the technical details behind each state or
transition. A high level verification tool could, for example, check each operation by
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asserting that their results are members of the appropriate sets. In this way, it is possible
to isolate the model from its implementations, enabling verification for all of them.

Other popular formalism relying on the same principles is the Vienna Development
Method (VDM) [Jones 1990]. The VDM specification language uses types as primitives,
which are none other than sets over specific domains. Figure 3.21 shows a definition of
types on VDM.

types

Country = seq of char;
Relation = set of (Country * Country);
Colour = set of Country;
Colouring = set of Colour;

Figure 3.21: Type definitions in VDM specification language for a colored world map.

In the example, Country is defined as the set comprising any possible sequence of
characters, depicting the name of a country. A relation between countries is defined
as the set containing every possible pairing of sequences of characters in Country,
Relation = Country × Country. Also, like in Z-notation, sets can be combined into
more complex types to define operations. An example of a function’s definition is shown
in Figure 3.22.

functions

sameColour: Country * Country * Colouring -> bool
sameColour(cn1,cn2,cols) ==
exists col in set cols & cn1 in set col and cn2 in set col;

Figure 3.22: Function definitions in VDM specification language.

Both the Z-notation and VDM have been readily used in industrial applications with
success [Craigen 1993], and continue their evolution with respect to their use-cases in
industry; however, other less industry-friendly theoretic formalisms are abound, exploring
similar issues from a rather symbolic point of view. Such is the case of algebraic notations.

3.4.2.2 Algebraic specification

Algebraic specification notations represent systems in a more basic level than previously
reviewed formalisms; they represent the inner workings of a system as algebraic structures.
This is done by way of abstractions like the ones used by VDM, where every piece of
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data has an associated Abstract Data Type (ADT), defined only over a specific set of
values. However, unlike model-theoretic specification languages, algebraic notations are
designed to express systems in more general terms, semantically closer to mathematics
than to the actual implementation [Guttag 1978].

ADTs are composed of two main parts:

— The signature of each one of its operations, defined recursively in terms of the
given types.

— A set of axioms describing the semantics of these operators.

An example of an ADT is presented in Figures 3.23 and 3.24, where an algebraic
specification of a Set of integers is given.

EMPTY SET : → Set
INSERT : Set × Integer → Set

DELETE : Set × Integer → Set
MEMBER OF? : Set × Integer → Boolean

Figure 3.23: Definition of a Set of integers as abstract data types.

In general, just as with VDM, operators are defined in terms of maps between sets.
Figure 3.23 gives the signatures of an empty set (mapping {ε} to a Set), operators closed
under Set for insertions and deletions, and the signature of an operator which determines
if an integer is member of a Set. The axioms defining the semantics are given in Figure
3.24.

1. MEMBER OF? (EMPTY SET, i)=false
2. MEMBER OF? (INSERT(s, i), i′)=if?=?(i, i′)

then true
else MEMBER OF?(s, i′)

3. DELETE (EMPTY SET, i)=EMPTY SET
4. DELETE (INSERT(s, i), i′)=if?=?(i, i′)

then DELETE(s, i)
else INSERT(DELETE(s, i′), i)

Figure 3.24: Axioms for the definition of the Set of integers.

The axiomatic specification serves as high level abstraction of what it means, in terms of
set transformations, to insert, delete or be a member of Set.

The flexibility of ADTs and their symbolic description approach, has permitted the
creation of the Larch notation [Guttag 1993], which can be tailored to interface with
different programming languages and to specify very specialized behaviors, such as the
ones found in concurrent systems [Lamport 1989].
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3.4.2.3 Process-oriented specification

Process-oriented specifications are mainly focused on how a system reacts. As such,
these notations usually give the designers the means to create abstract descriptions of a
system’s evolution [Winstanley 1991]. Notably, the interpretation of process-oriented
descriptions is usually done over LTSs.

A lot of the process-oriented formalisms are used to specify concurrent systems; for this
reason, most of the existing notations have evolved to be able to represent characteristics
such as message-passing and parallelism [Pierce 1995]. It is also common for this kind
of tools to formalize concepts such as channels, and to define groups of indivisible
communication primitives that the processes can execute non-deterministically.

Notations like Calculus of Communicating Systems (CCS), developed by [Milner 1982],
captures the behavior of concurrent systems by combining processes recursively as defined
by the Backus Normal Form (BNF) shown below:

Definition 3.1 (Process in CCS).

P ::= ∅ | a.P1 | A | P1 + P2 | P1|P2 | P1[b/a] | P1\a

where:
— ∅ denotes the empty process.
— a.P1 indicates that a process executes action a and continues as P1

— A is an identifier representing a primitive process.
— P1 + P2 means that either P1 or P2 continues.
— P1|P2 indicates that processes P1 and P2 exist simultaneously.
— P1[b/a] denotes the process P1 where all actions a are renamed as b.
— P1\a Represents the process P1 without action a.

�

In this specification language, actions can represent any possible communication primitive
needed by the designer to describe the system, and are defined depending on the specific
use-case.

Communicating Sequential Processes (CSP) is another formalism working under similar
assumptions. Originally presented by [Hoare 1985], CSP follows the same basic model
than CCS: it describes primitive events and processes to represent the particulars of a
system’s functionalities. From there, the description of more complex functions is done
recursively, by way of a the group of logic operators presented below.
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Definition 3.2 (Algebraic operators of CSP).

P ::= a→ P | P�Q | P uQ | P |||Q | P ||{a}||Q | P\{a}

where:
— a→ P is the process which, after event a, behaves as P .
— P�Q denotes the process where either P or Q are executed.
— P uQ denotes the process where either P or Q are executed, non-deterministically.
— P |||Q is an interleaving process, where P and Q exist simultaneously.
— P ||{a}||Q is a synchronized interleaving, where a must occur in both P and Q

before parallel execution.
— P\{a} is a process resulting of removing event a from P .

�

Finally, the Propositional Dynamic Logic (PDL) captures similar process-oriented prop-
erties, centering around sequentiality rather than concurrence. PDL is a multimodal 11

logic [Chellas 1980], first defined by [Fischer 1979] to characterize computer programs.
Originally, it provided a formal framework for program description, allowing them to be
interpreted as modal operators. The syntax of PDL is given below:

Definition 3.3 (Syntax of PDL). Let α denote a program and ϕ a PDL formula.

α ::= π | α;α | α ∪ α | α∗ | ϕ?

ϕ ::= > | p | ¬ϕ | ϕ ∧ ϕ | [α]ϕ

where:
— π denotes an atomic program.
— p denotes an atomic proposition.
— α;α indicates the sequential execution of two programs.
— α ∪ α is the non-deterministic choice between two programs.
— α∗ means that program α is executed a finite, non-deterministic number of times.
— ϕ? is the program that fails if ϕ is false.
— [α]ϕ indicates that, after executing program α, the system necessarily enters into

a state where ϕ is true.
�

11. The term modality has different meanings in semiotics and formal logic. While in the former it has
been previously defined as akin to a communication channel (see p. 28), in the latter it refers to the
qualification of a statement in terms of “necessary” and “contingent” truths. In this regard, a logic is
multimodal if more than one qualifiers are available.
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In PDL, system properties are described as formulae and, as it’s common with other
modal logics, its semantics are interpreted by way of LTSs.

Several variations of the logic exist, with different repercussions over its decidability.
However, the basic version presented in Definition 3.3 features an optimal model-checking
algorithm [Lange 2006], and it has been proved decidable [Danecki 1985].

Other process-oriented formalisms are explored in detail on the literature [Winskel 1995],
where different tools have been developed to enable specification and automatic verifica-
tion of concurrent systems. In this regard, the area has provides a basis to attempt the
formalization of SL production rules as transition systems: it has developed specification
languages, capable of expressing simultaneous behaviors between independent agents
and their temporal properties. These are desirable characteristics for the modeling of
SL morphology, in particular when depicting how articulators act independently but,
nevertheless, synchronize to generate meaning. In addition, these notations are designed
around their expressiveness — their capacity to represent information — and, thus,
are broad enough to describe SL utterances in different situations. In this way, they
are capable of producing linguistic annotations which can be enhanced with technical
information about any given corpus, something that can be useful in the automatic
analysis of SL corpora, as presented in the next chapters.

3.5 Chapter conclusion

In this chapter, some of the most common SL representation formalisms were introduced,
alongside some of their applications in research. In addition, a brief overview on SL
synthesis and recognition was given, as well as a general introduction to formal methods.

As shown on the chapter, some of the most common problems in research and repre-
sentation, come from SLs multimodal nature. This not only increases the complexity
of synthesis and recognition tasks, but also affects the availability of copora due to the
variety of technologies used to deal with multimodality. This prompts for the search of
new representation methods that could help unify the current heterogeneous environ-
ment under a common meta-language, friendly not only for linguistics but also for very
technical tasks.

It is on this context, that this thesis presents its main contributions. The idea, was to
develop a flexible phonetic representation framework, capable of specifying articulation
parameters in a way similar to what SiGML and the Stokoe notation do. Additionally,
even though the proposed framework is strictly phonetic, it was built under the assumption
that it would eventually be extended to represent morphological SL properties. With
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this in mind, the framework provides a broad set of tools intended to go beyond phonetic
description in the future, akin to what Zebedee has done with AZee [Filhol 2012b]; the
main assumption being that a flexible phonetic basis, can lead to higher level descriptions.

In the next chapter, a new SL phonetic representation method is presented, based on
the principles of formal methods; even though specification notations have been heavily
influenced by industrial applications, the same principles can be applied to academic
research. For instance, linguistics have a rich history of developing formalisms for the
study of natural language [Chomsky 1957,Pullum 2005,Moss 2007], which has contributed
on the theoretical development of the area. In particular, the proposed formalism is
modeled on the PDL, also reviewed in the chapter, a logic created to represent change.



Chapter 4

Formal Specification of Sign
Language Utterances

The previous chapter presented a series of formal specification languages, striving to thor-
oughly describe complex systems (see Subsection 3.4, p. 67). By way of these notations,
system designers can build abstract representations of a system’s inner workings, so as
to better understand and test its limits. Sign Languages (SLs) lend themselves to the
same kind of formalization: they can be seen as complex transition-based systems (see
Subsection 2.2.1.4, p. 29), able to produce phonetic change by applying per-articulator
rules of change.

Recall from previous chapters that computer-based SL study is plagued by several
problems deterring the development of the domain:

— the fact that SL corpora are collections of non-textual data, forcing Natural
Language Processing (NLP) algorithms use uncommon data — such as video
images — as input;

— the variability of corpus-data, impeding the creation of vast language information
repositories such as the ones existing for the study of vocal languages; and,

— the difficulty to annotate these corpora, taking into account both that annotation
tasks are also very variable, and that there is a limited availability of SL experts
able to create and correct annotations.

In this regard, using formal specification techniques to convert corpora into abstract
representations may prove useful, as these abstractions may be used to tackle variability;
in addition, they provide a more computer-friendly representation of raw data, which can
contribute towards the development of automatic recognition and, crucially, annotation
algorithms.

77
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Previous formalization approaches to language study have been developed before [Chom-
sky 1957,Pullum 2005,Moss 2007], a practice which has also extended to SLs (see Section
3.1, p. 42). However, these efforts continue to be limited by spatial and multimodal
representation issues.

With this in mind, this chapter presents a formalism for SL utterance modeling inspired
on the Propositional Dynamic Logic (PDL) (see Section 3.4.2.3, p. 74). PDL is a process
oriented specification language, centered around sequential modalities. The idea was
to extend on this notion to express SL phonetics in similar terms, by linking logical
modalities to articulatory actions and depicting how these can foster change. This
resulted in the creation of the Propositional Dynamic Logic for Sign Language (PDLSL),
which provides a flexible representation of SL multimodality (see Subsection 2.2.1.3,
p. 28), paired with a formal notation to express properties over modeled utterances.
Together, these tools can help an automatic system to semi-automatically find phonetic
properties in a visual corpus, just by ensuring a minimal description of each video by way
of the formal structure provided by PDLSL. Globally, the quantity of information that
needs to be described is largely decided by the human annotator, who ends up fulfilling
the role akin to system designer in industrial applications.

The advantage of using PDLSL as a vehicle for the construction of an automatic system,
is that it can serve as an intermediate language between computer science and linguistics,
minimizing common pitfalls present in other representation languages which tend to
favor either one side or the other. For the same reason, this formalism intents to be
compatible with other SL phonological representation notations, in the sense that it aims
to be capable of capturing at least the same information as the others.

Because of this, PDLSL is defined in somewhat broad terms; its objective is not to represent
specific parametric configurations, but rather to give a flexible enough framework to
represent as many phonetic combinations as possible, in an effort to remain language and
corpus agnostic. Due to the combinatorial nature of SL phonemes, this has to be done
by defining everything in terms of sets, akin to the definition of types in model-theoretic
formalisms (see Subsection 3.4.2.1, p. 69). In particular, this can also help PDLSL to
supersede existing transcription notations in automatic tasks, as they are capable of
representing (at least) the same information. However, unlike model-theoretic tools,
PDLSL types are predefined by the formalism itself, as presented in the following pages.

In the next section, some basic model-theoretic definitions are given to the reader, in order
to establish the representation domain of the proposed formalism. Short after, in the
following section, the logic’s syntax is provided, mimicking the traditional logic-definition
mechanism in the literature. Finally, the last section presents the language semantics;
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that is, how formulae built with this logic are to be interpreted, related to an abstract
SL corpus representation.

4.1 Sign Language Primitives

Like previously mentioned, PDLSL enables the definition of type primitives in the same
fashion as model-theoretic formalisms, which is helpful to establish limits on what
information an annotator can specify; however, instead of forcing the experts to define
these types, PDLSL simplifies the task by introducing a series of semantically-motivated
set templates, which can be populated by the annotators with the information they deem
relevant. The objective of these templates is to provide PDLSL with a powerful enough
basis to be, at least, as expressive as other phonetic transcription notation (see Chapter
6, p. 129).

That being said, the set definitions introduced in the next paragraphs are based on
existing parametric descriptions of SL phonemes (see Section 3.1, p. 42). In particular,
the interest of PDLSL sets is to ascertain well defined concepts (like hand-shapes or
locations), as classes containing concrete objects. For this reason, set members will
correspond to observable characteristics; for example, the set of hand-shapes will contain
every meaningful morphological configuration of a hand. When combined into more
complex sets, these primitives serve to define atomic statements, which will in turn
operate as seeds of phonetic formal descriptions.

First of all, PDLSL works under the assumption that each articulator is an independent
agent, inducing individual information channels (see Subsection 2.2.1.3, p. 28) as the
ones proposed by [Vogler 2001]; for this reason, it is first necessary to define who these
agents are, in terms of the relevant body parts used in SL communication.

Definition 4.1 (Relevant body parts for SL). Let NAMES be the set containing all
possible chains of characters. The set of relevant body parts is defined as BODY = {b :
b denotes a body part visible during signing; b ∈ NAMES}. �

Intentionally, the set BODY has a very broad definition; the relative importance of
different body parts may change between SLs, for which it becomes useful to have a very
general characterization. As a result, annotators have enough liberty to specify whatever
they need, depending on the language properties they are describing. The same can be
done for SL articulators, as shown in definition 4.2.

Definition 4.2 (Articulators). Let ART denote the set of SL articulators, where
ART = {a : a ∈ BODY and a is capable of articulation}. �



Chapter 4. Formal Specification of Sign Language Utterances 80

As with BODY, the articulator set is defined in very general terms, in order to adapt
to any possible linguistic characterization that may affect the definition of articulators
themselves. This is, ART will contain anything that annotators consider an articulator.
Regardless, more often than not the hands will be in ART , an thus PDLSL assigns
specific symbols to denote them: R and L for the right and left hands, respectively.

In general, articulation is dependent on the morphological characteristics of articulators
themselves (see Subsection 2.2.1.1, p. 26). For this reason, PDLSL defines places of
articulation in terms of the individual articulators that can use them, as each will have
their own articulation capabilities. To this end, it is also useful to have a characterization
for the signing space, as sometimes space locations around the signer are used to articulate
(see Subsection 2.2.1.1, p. 27).

Definition 4.3 (Space coordinates). Let the set ΨSL ⊂ R× R× R contain all possible
three-dimensional euclidean coordinates taking the signer’s center of mass as origin, such
that for every p ∈ ΨSL:

— a signer can physically reach point p with any articulator a ∈ ART ;
— the space on p can become empty at any given time; that is, that no body part

named by b ∈ BODY locates in p.

�

Roughly, the set ΨSL contains the spatial region depicted on Figure 4.1, which can be
activated by signers on discourse. However, this definition is too general, as it also
contains regions lacking of linguistic meaning, not used on signing. Definition 4.4 solves
this issue, by defining places of articulation under articulatory restrictions.

Figure 4.1: Spatial region contained by the set ΨSL. 1

1. Image obtained from [Venkatagiri 2014].
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Definition 4.4 (Places of articulation). Let a ∈ ART denote any articulator, and
BODYa be the set naming any body-bound location where a can articulate during
signing, a 6∈ BODYa, thus BODYa ⊂ BODY.

Let C : 2ΨSL → NAMES be a function assigning labels to spatial coordinates, and
Ψa

SL ⊂ ΨSL be the set containing any spatial coordinate where a can articulate during
signing. The set LOCa, denoting places of articulation for a, is defined as follows:

LOCa = {λ : λ ∈ (BODYa ∪ C(Ψa
SL))}

Additionally, LOC is defined as the set containing all possible pairings of valid articulators
and articulation places LOC = {(a, λ) : a ∈ ART and λ ∈ LOCa}. �

In some cases, Non-Manual Features (NMFs) may change without referring to any
external location (see Subsection 2.2.1.2, p. 28). To this end, the proposed formalism
permits the definition of partial articulations in terms of configuration change. This is
done simply by leaving the location set of the pertinent articulator empty, indicating
that its changes will never refer to any location. So, for example, if a ∈ ART refers
to the eyebrows, then it is most likely the case that LOCa = ∅, as there are almost no
instances (if any) where the eyebrows refer to a place of articulation.

It is relevant to mention that these location-less partial articulations appear because of
the channel separation, induced by the definitions. Intuitively, the formalism models an
articulation as a composition of independent articulatory changes, each having the same
“value” as a complete articulation. For this reason, to maintain consistency articulation
places are described in terms of the articulators that may refer to them.

Similar to what happens with places of articulation, configurations will depend completely
on the characteristics of their corresponding articulator: for instance, hand shapes will be
exclusively held by the hands, while each NMF will have its own set of valid configurations
(i.e. raised/lowered eyebrows, open/closed eyes, etc). The definition of configurations
under this principle, is given below.

Definition 4.5 (Articulator configurations). Let CFGa be the set naming every possible
morphological configuration that the articulator denoted by a ∈ ART can hold. Notably
CFGa ⊂ NAMES and CFGa ∩ BODY = ∅.

Finally, the set CFG contains all valid pairings of articulators and configurations, such
that CFG = {(a, c) : a ∈ ART and c ∈ CFGa}. �

Location and configuration traits alone are not enough to characterize SL utterances;
in order to give a more complete depiction of language, concepts linked to spatial
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relationships such as position, movement and distance have to be taken in account. This
will be done mainly by way of direction vectors, which are defined below.

Definition 4.6 (Set of directions). Let ∆ ⊆ ΨSL ×ΨSL be the set containing every pair
of coordinates in ΨSL; for each pair (A,B) ∈ ∆, where A,B ∈ ΨSL, the symbol #    »

AB will
denote the vector going from coordinate A to B. �

By itself, the set ∆ holds no particular meaning whatsoever, as it is for the annotator to
determine the relevance of directions himself. In general, this can be done by classifying
vectors under more meaningful classes such like “LEFT” or “RIGHT”. To this end, it is
useful to introduce a labeling function taking groups of vectors to names, which will
serve to characterize spatial concepts over the coordinate system induced by ΨSL.

Definition 4.7 (Labeling function for ∆). Let DIRECT IONS ⊂ NAMES be the set
of direction names, such that DIRECT IONS ∩ BODY = ∅ and, for any a ∈ ART ,
DIRECT IONS ∩ CFGa = ∅. The mapping L∆ : 2∆ → DIRECT IONS denotes the
labeling function taking groups of vectors in ∆ to a name in DIRECT IONS; that is,
L∆ assigns a single name to a set of vectors defining a direction. �

The labeling function of Definition 4.7 can be used to populate yet another set, containing
information of linguistic interest for sets of vectors.

Definition 4.8 (Set of relevant directions for SL). The set of relevant directions for SL
is defined as follows:

∆SL = {v : v ∈ 2∆ and there is a name t ∈ L∆(v)}

Notably, v ∈ ∆SL denotes a vector family identified by a name in DIRECT IONS. �

Intuitively, the set in Definition 4.8 contains only the vector families defined over L∆,
the labeling function from Definition 4.7; in this way, if definitions for LEFT, RIGHT ∈
DIRECT IONS exist in L∆, the group of vectors giving meaning to these names will be
in ∆SL. This enables annotators to separate geometric information from spatial concepts,
thus permitting him to work with words like LEFT and RIGHT instead of defining groups
of vectors.

These initial definitions are but the building blocks of representation; they are intended
to be combined with each other, in order to describe more complex relationships. This
combination is achieved by way of the PDLSL grammar, which is presented in the next
section.
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4.2 Syntax

The previously defined primitives, serve the purpose of providing some semantic informa-
tion about posture parameters before characterizing postures themselves; to properly
represent these, it is necessary to give statements, declare information about them that
can be proven true or false. Roughly, the idea is that each statement will represent
individual information pieces about articulators, and postures will be none other than
the combination of several of these pieces. As such, it is useful to formally define these
statements as atomic propositions, like shown in Definition 4.9.

Definition 4.9 (Atomic Propositions for SL Body Articulators). Let a ∈ ART be an
articulator. The set Φa, containing the atomic propositions for articulator a, is defined
as follows:

Φa = {pa : pa asserts information about the articulator named by a ∈ ART }

Also, for every articulator a ∈ ART , there exists a proposition anya ∈ Φa denoting that
articulator a doesn’t move.

The set of all possible atomic propositions is defined as follows:

Φ =
⋃

a∈ART
Φa

�

The propositions defined in set Φ, are intended to characterize phonetic parameters; that
is, they strive to assert propositional information about Holds in the Movement-Hold
Model (MHM) phonological model (see Chapter 2, Subsection 2.2.1.4, 29). In a similar
fashion, Movements will be characterized independently, by a set denoting actions.

Definition 4.10 (Atomic Actions for SL Body Articulators). Let a ∈ ART be an
articulator. The set Πa of atomic actions for articulator a, is defined as:

Πa = {πa : πa asserts a change in articulator a ∈ ART }

In addition, for every articulator a ∈ ART , there exists an atomic action skipa ∈ Πa

denoting that articulator a performs any action.

Finally, the set of all possible atomic actions is defined as follows:

Π =
⋃

a∈ART
Πa
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�

It is important to underline that members of both sets, Φ and Π, are statements; that
is, each member can be labeled as true or false, as specified by PDLSL semantics (see
Section 4.3). This makes it possible to combine multiple statements into more complex
phonological structures, starting with actions.

Definition 4.11 (Action Language for SL Body Articulators ASL). The action language
for SL body articulators (ASL) is given by the following rule:

α ::= πa | α ∩ α | α ∪ α | α;α

where πa ∈ Π.

Intuitively:
— πa is an atomic action for some articulator a ∈ ART ;
— α ∩ α indicates the concurrent execution of two actions;
— α ∪ α is used to depict two non-deterministically occurring actions;
— α;α describes a sequence of two actions; and,

�

Definition 4.11, presents the PDLSL action language as a Backus Normal Form (BNF)
grammar; the operations depicted, intend to give the annotator the flexibility to combine
various atomic actions into a single Movement, to describe complex phonological changes.
For instance, it permits describing situations where two hands move simultaneously,
where a signer repeats an action an unbounded sequence of times or even if there might
be more than one valid changes in the same interval. The resulting formulae can further
be “glued” with Hold representations by way of the PDLSL language, defined below.

Definition 4.12 (Language PDLSL). The language PDLSL is generated by the following
rule:

ϕ ::= > | pa | ¬ϕ | ϕ ∧ ϕ | 〈α〉ϕ | 〈α ∧ ϕ〉ϕ | ϕ; 〈α〉ϕ

where pa ∈ Φ, α ∈ ASL.

Intuitively:
— > represents a logical true value;
— pa is an atomic proposition for articulator a ∈ ART ;
— ¬ϕ represents the negation of formula ϕ;
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— ϕ ∧ ϕ denotes conjunction;
— 〈α〉ϕ describes that, after execution of action α, ϕ holds;
— 〈α ∧ ϕ〉ϕ models situations where an action α and an static feature ϕ occur

simultaneously until converging into some other static feature; and,
— ϕ; 〈α〉ϕ denotes that, if some ϕ holds, then a modal formula holds afterwards.

�

Just as ASL enables the construction of more complex Movements, the language PDLSL

permits the integration of groups of atomic propositions into Holds. In addition, it
provides operations like 〈α〉ϕ to think in terms of sequences of Movements and Holds,
giving way to the description of phonological structures. In this regard, PDLSL differs
from PDL on the interpretation of modal operators, as PDLSL is essentially constrained by
the possible phonetic sequences occurring in the studied SL. As a result, PDLSL formulae
will be interpreted over a mathematical representation of SL utterances, designed to
capture the effects of multimodal articulation; the interpretation rules, and the proposed
utterance representation, are introduced in the next section.

4.3 Semantics

In the spirit of the possible worlds model introduced by [Hintikka 1962], formulae in the
PDLSL language are interpreted mostly over Labeled Transition Systems (LTSs); however,
concurrent operators will hold meaning only over more complex structures. In the case of
SLs, this representation will reflect the possible morphological states signers can assume,
depending on how they configure their articulation parameters during signing. But first,
to know which state changes are valid in a determined SL, it is necessary to define an
articulation model, corresponding to a LTS of Holds connected by possible Movements
with their outcomes. The formal definition is presented below.

Definition 4.13 (Sign Language Articulation Model ). Let a ∈ ART be an articulator,
the articulation model of a (Ma) is a tuple Ma = (S,R, J·KΦa , J·KΠa) where:

— S is a non-empty set of states
— R is a transition relation R ⊆ S × S where, for every s ∈ S, there exists a state

s′ ∈ S such that (s, s′) ∈ R. Furthermore, it can be the case that s = s′.
— J·KΦa : S → 2Φa , denotes the function mapping states to a set of atomic propo-

sitions giving information about articulator a. Notably, for states s, s′ ∈ S, if
JsKΦa ≡ Js′KΦa , then s ≡ s′.

— J·KΠa : R → 2Πa , denotes the function mapping binary relations to groups of
atomic actions for articulator a.
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�

It is implicit from the definition that each articulator has its own model, in order to
reflect changes in individual articulators rather than on entire postures. Parametric
information is provided by the labeling functions, J·KΦa and J·KΠa , which are designed
to restrain which information states and transitions may hold, respectively. It is by
way of these labellings that the data structure gains meaning, as they serve to relate
linguistic parameters to the model: states are labeled with information about Holds,
while transitions are tagged with data pertaining to Movements. Thus, a path in the
articulation model of a ∈ ART can be interpreted as a sequence of Holds and Movements
containing only information about a. A formal characterization of such a path, is given
by Definition 4.14.

Definition 4.14 (Articulation Sequence). Let Ma = (S,R, J·KΦa , J·KΠa) be an articula-
tion model for articulator a ∈ ART . An articulation sequence of Ma, is a finite ordered
list of transitions Sa = ((s0, s1), (s1, s2), . . . , (sn, sn+1)), such that:

— if (sk, sk+1) ∈ Sa, then (sk, sk+1) ∈ R;
— if transitions (si, si+1) and (sj , sj+1) are adjacent in Sa, then Jsi+1KΦa ≡ JsjKΦa .

It is said that Ma induces sequence Sa, or that the latter is induced by the former. �

Roughly, Sa describes a phoneme sequence where only a participates, expressed by way
of state changes over a LTS. Even though time duration is not expressed by the sequence,
there is a correspondence between phonemes as time-intervals and Sa, as depicted on
Figure 4.2.

Figure 4.2: Representation of articulation sequence Sa for changes in articulator
a ∈ ART .

The upper part of the diagram in Figure 4.2 corresponds to a chain of time intervals,
depicted as an interleaving of rectangles and arrows. In the figure, each rectangle
represents a Hold, while each arrow corresponds to a Movement. Below the interval
chain, the sequence Sa depicts the same information under a different representation;
here, each Movement is shown as two states connected by an arrow, implicitly equating
Holds to states. However, it is important to note that articulation sequences will most of
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the time represent partial phonemes, as they only take in account changes of a single
articulator.

Although Hold and Movement intervals have an implicit duration, articulation sequences
provide no way to account for time. This situation is addressed by Definition 4.15, where
a time-stamp operator is introduced to articulation sequences.

Definition 4.15 (Timed articulation sequence). Let Sa be an articulation sequence of
a ∈ ART , and let Ma = (S,R, J·KΦa , J·KΠa) be the articulation model inducing Sa. A
timed articulation sequence of a, is a tuple Ŝa = (Sa, T a), where T a : S ∪ R → N × N
is a labeling function, mapping model states and transitions appearing in Sa to time
intervals such that:

— for any pair of adjacent transitions (sk−1, sk), (sk, sk+1) ∈ Sa, with allotted time-
intervals T a((sk−1, sk)) = [ti, tj) and T a((sk, sk+1)) = [tm, tn), it holds that
1 < ti < tj , tm < tn and tj < tm;

— for each state sk common to each pair of adjacent transitions, the state’s allotted
time duration is T a(sk) = [tj , tm). In addition, if (sk−1, sk) ∈ Ŝa is the first
transition in the sequence, then state sk−1 has a duration of T a(sk−1) = [1, ti).

�

For simplicity, in the rest of this document ei ∈ Ŝa will denote element ei from articulation
sequence Sa ∈ Ŝa, unless indicated otherwise.

It is brought into attention that, for the rest of this thesis, intervals are defined in terms
of natural numbers (i.e. positive integers). This is, interval I = [m,n) is to be interpreted
as the set {m,m+ 1,m+ 2, . . . , n− 1}, m,n ∈ N and m < n where the square bracket
next to the m indicates that m ∈ I, while the parenthesis next to the n indicates that
n 6∈ I. Similarly, two intervals overlap if the sets have numbers in common. For example,
intervals [m, k) and [k, n) don’t overlap, whereas intervals [1, k] and [k, n) do (they have
k in common). Finally, interval [m,m] is defined, whereas [m,m) and (m,m] are not.

Intuitively, timed articulation sequences induce a chain of strictly ordered intervals,
which is proven below.

Lemma 4.1. Let Ŝa = (Sa, T a) be a timed articulation sequence; T a induces a strict
interval order over states and transitions represented by Sa.

Proof. By induction. Let (s0, s1) ∈ Sa be the first transition in the sequence. By Defini-
tion 4.15, T a labels state s0 and transition (s0, s1) as T a(s0) = [1, t) and T a((s0, s1)) =
[t, t′), respectively. Therefore, it holds for T a(s0) < T a((s0, s1)). Assume it holds for
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the interval sequence T a(s0) < T a((s0, s1)) < T a(s1) < . . . < T a((sk−1, sk)) < T a(sk).
For T a(sk, sk+1), we know by Definition 4.15 that the state sk, common to two adjacent
transitions, is labeled as follows: if T a(sk−1, sk) = [ti, tj) and T a(sk, sk+1) = [tm, tn),
then T a(sk) = [tj , tm). Thus, interval T a(sk, sk+1) necessarily starts at time tm, where
T a(sk) < tm, which implies that T a(sk) < T a(sk, sk+1). Then, for T a(sk, sk+1), it
holds.

In some cases, the parameters given by a single timed articulation sequence are enough to
model complete phonological sequences; for instance, when representing one handed signs,
the information of a single hand may be all that’s needed to characterize a sign. For this
reason, it is useful to give semantics of PDLSL formulae in terms of timed articulation
sequences, as shown in Definition 4.16.

Definition 4.16 (PDLSL formulae satisfaction over timed articulation sequences). Let
Ŝa be a timed articulation sequence and let Ma = (S,R, J·KΦa , J·KΠa) be the articulation
model inducing Sa ∈ Ŝa. Also, let ϕ and ψ be PDLSL formulae and pa ∈ Φa. The
semantics of the non-modal PDLSL operators on Definition 4.12, are given as follows:

Ma, sk |= > always holds;
Ma, sk |= pa iff pa ∈ JskKΦa ;
Ma, sk |= ¬ϕ iff Ma, sk 6|= ϕ;
Ma, sk |= ϕ ∧ ψ iff Ma, sk |= ϕ and Ma, sk |= ψ.

Let eij = ei, ei+1, . . . , ej ∈ Ŝa, i ≤ j be a chain of adjacent elements in the sequence
Ŝa, and let sk denote any state in any transition ei ∈ Ŝa. Also, note that πa ∈ Πa and
α, β ∈ ASL. Satisfaction over timed sequences is given as follows:

Ŝa, eij |= > i = j, ei = (sk, sk+1), and Ma, sk |= >;
Ŝa, eij |= pa iff i = j, ei = (sk, sk+1), and Ma, sk |= pa;
Ŝa, eij |= ¬ϕ iff i = j, ei = (sk, sk+1), and Ma, sk |= ¬ϕ;
Ŝa, eij |= ϕ ∧ ψ iff i = j, ei = (sk, sk+1), andMa, sk |= ϕ∧ψ;
Ŝa, eij |= 〈πa〉ϕ iff i = j, ei = (sk, sk+1), πa ∈ J(sk, sk+1)KΠa

and Ma, sk+1 |= ϕ;
Ŝa, eij |= 〈α;β〉ϕ iff Ŝa, eij |= 〈α〉〈β〉ϕ;
Ŝa, eij |= ψ; 〈α〉ϕ iff Ŝa, eik |= ψ and Ŝa, ekj |= 〈α〉ϕ, where

i ≤ k ≤ j.

�
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The missing PDLSL operators cannot be defined in terms of timed articulation sequences,
as their meaning is related to the interaction between two or more articulators, whereas
each Ŝa holds information about a single articulator. To address this situation, Definition
4.17 introduces a new data structure built upon sets of timed articulation sequences,
enabling the synchronization of multiple channels into phoneme chains.

Definition 4.17 (SL Utterance). A SL utterance is a tuple U = (P, TU , J·KU ,SEQ)
where:

— P is an arbitrarily long list of ordered phonemes p0, p1, . . . , pn;
— TU : P → N× N is a time-labeling function for phonemes;
— J·KU : P → 2Φ∪Π labels phonemes to a set of atomic propositions and actions (a

more thorough description is given in Definition 4.19);
— SEQ is a group of timed articulation sequences such that, for each a ∈ ART ,

there is exactly one sequence Ŝa = (Sa, T a) ∈ SEQ.

The list P is time-labeled recursively as follows:

1. For p0, let e0, e1, . . . , en = Ŝ◦ ∈ SEQ be the timed articulation sequence holding
the earliest occurring transition of all; this is, T ◦(e0) = [t, t′) has the smallest t of
every sequence in SEQ. The phoneme p0 represents the first occurring phoneme
in the utterance, and is time-labeled as TU (p0) = [1, t), 1 < t.

2. For any other pN , N > 0, such that TU(pN−1) = [ti, tj), pN is time-labeled as
TU (pN ) = [tj , tk), where tk is either the first instant after some transition ends, or
the first instance where a new transition starts, and ti < tj < tk.

�

In general, utterances synchronize information with respect to global articulatory changes;
intuitively, utterances strive to maintain a strict ordering across all sequences in SEQ,
dividing each sequence if necessary when concurrent articulations show changes. In this
sense, phonemes can be seen as “cuts” of time where articulation parameters remain
essentially static. Figure 4.3, shows the visual representation of a utterance U , for three
articulators.

In the figure, the bottom part shows the chain of states representing utterance phonemes,
aligned with the interval segments to which they correspond. Just above, a representation
of the individual sequences contained in SEQ is given for three articulators a1, a2, a3 ∈
ART ; furthermore, each state and transition represented in SEQ has marked the
phonemes in P to which they correspond.
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Figure 4.3: Representation of a case where a utterance object synchronizes three
articulation sequences.

Utterances make possible the combination of propositional information from different
channels, regardless of whether it corresponds to static or change parameters. For this
reason, it is important to ensure that articulators will retain consistent properties when
the information is combined into phonemes; notably, it is important to be certain that a
phoneme will not hold contradicting information about each articulator. In this respect,
utterances guarantee that articulation changes won’t occur inside phonemes, but rather
than they will be generated around them, as shown by the following lemmas.

Lemma 4.2. Let U = (P, TU , J·KU ,SEQ) be an utterance. For each phoneme pN ∈ P,
and any sequence Ŝa = (Sa, T a) ∈ SEQ, utterance interval TU(pN ) won’t overlap with
two adjacent intervals in the chain induced by T a.

Proof. By contradiction. Suppose that TU(pN ) = [ti, tj) overlaps with two adjacent
intervals T a(sk) and T a(sk+1). By Lemma 4.1, it is safe to assume that T a(sk) = [tx, ty)
and T a((sk, sk+1)) = [ty, tz). An overlapping exists if and only if ti ∈ [tx, ty) and there
exist some t′ ∈ [ti, tj), such that ti < ty ≤ t′ ≤ tz−1. Note that ty is the starting time
of a new transition in SEQ; by Definition 4.17, interval TU (pN ) can be only as long as
TU (pN ) = [ti, ty), which occurs when ty is the first transition change after ti. Implicitly,
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this means that every t′ will be delimited by ti < t′ < ty, thus implying that TU(pN )
doesn’t overlap with T a((sk, sk+1)) = [ty, tz)!

Lemma 4.3. Let U = (P, TU , J·KU ,SEQ) be an utterance. For each phoneme pN ∈ P,
and any sequence Ŝa = (Sa, T a) ∈ SEQ, utterance interval TU(pN ) won’t overlap with
two non-adjacent intervals in the chain induced by T a.

Proof. By contradiction, suppose that TU (pN ) = [ti, tj) overlaps with two non-adjacent
intervals T a((sk−1, sk)) and T a(sk, sk+1), separated by interval T a(sk). Note that

T a((sk−1, sk)) < T a(sk) < T a((sk, sk+1)),

with respective values T a((sk−1, sk)) = [tv, tw), T a(sk) = [tw, tx) and T a((sk, sk+1)) =
[tx, ty). An overlapping exists if and only if ti ∈ [tv, tw) and there is some t′ ∈ [ti, tj),
such that ti < tx ≤ t′ ≤ ty−1. However, by Lemma 4.2 we know that no such t′ exists as
it would imply that ti < tw < t′ ≤ tj−1! Thus, TU (pN ) doesn’t overlap with T a(sk, sk+1).

By the same reasoning, it follows that TU (pN ) won’t overlap with any farther non-adjacent
interval; let T a((sn, sn+1)) be any interval such that

T a((sk−1, sk)) < T a(sk) < T a((sk, sk+1)) < . . . < T a((sn, sn+1)),

Lemma 4.2 implies that t′ < tw and, since Ŝa is strictly ordered, it is not possible that
TU (pN ) and T a((sn, sn+1)) overlap.

Corollary 4.1. For utterance U = (P, TU , J·KU ,SEQ), each phoneme pN ∈ P overlaps
with a single interval of the chain induced by T a, where Ŝa = (Sa, T a) ∈ SEQ. �

Once proven that information won’t change inside phonemes, it is safe to define phonetic
parameters in terms of utterances; as presented in Definition 4.17, phonemes are labeled
by way of a mapping J·KU , the details of which are explained by the next two Definitions.

Definition 4.18 (Phoneme to sequence mapping). Let U = (P, TU , J·KU ,SEQ) be an
utterance and pN ∈ P be a phoneme labeled with time interval TU (pN ). Let Ŝa ∈ SEQ
be the timed articulation sequence in U corresponding to articulator a ∈ ART , while
Ma = (S,R, J·KΦa , J·KΠa) denotes the articulation model inducing Ŝa. Also, let T a be the
time-labeling function associated to Ŝa. Function Va : P → S ∪R, mapping phonemes
to transitions or states of the articulation model Ma, is defined as follows:
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Va(pN ) =



ek if TU (pN ) overlaps with T a(ek), where ek ∈ Ŝa;

sk
if TU (pN ) overlaps with T a(sk), where sk is a state common
to two adjacent transitions (sk−1, sk), (sk, sk+1) ∈ Ŝa.

Note that Corollary 4.1 guarantees that TU (pN ) overlaps with either a single transition,
or a single state. �

Definition 4.19 (Utterance phonetic parameters). Let U = (P, TU , J·KU ,SEQ) be an
utterance and pN ∈ P be a phoneme labeled with time interval TU (pN ). Let Ŝa ∈ SEQ
be the timed articulation sequence in U corresponding to articulator a ∈ ART , while
Ma = (S,R, J·KΦa , J·KΠa) denotes the articulation model inducing Ŝa. The mapping
J·KaU : P → 2Φa∪Πa , denoting the parametric information of articulator a ∈ ART at
interval TU (pN ), is defined as follows:

JpN KaU =


JVa(pN )KΠa if Va(pN ) ∈ R;

JVa(pN )KΦa if Va(pN ) ∈ S;

where Va is the mapping given on Definition 4.18.

The function giving the set of phonetic parameters of pN ∈ P is then defined as:

JpN KU =
⋃

a∈ART
JpN KaU

�

Finally, Theorem 4.4 shows that utterances take in account every articulatory change;
this is, that if some transition occurs between two parametric states, then it will be
contained in an utterance’s phoneme.

Theorem 4.4 (Utterance phoneme to transition correspondence). Let U = (P, TU , J·KU ,SEQ)
be an utterance and Ŝa denote a timed articulation sequence of a ∈ ART . For every
Ŝa = (Sa, T a) ∈ SEQ and for each transition (sk, sk+1) ∈ Ŝa, there exist a pN ∈ P in
the phoneme sequence such that J(sk, sk+1)KΠa ⊆ JpN KU .

Proof. By contradiction. Suppose that there exist a timed articulation sequence Ŝa

where some transition (sk, sk+1) ∈ Ŝa is not represented in P. If this is the case, we
know (sk, sk+1) was not the first transition in SEQ, or it would have been added as per
Definition 4.17.
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Since (sk, sk+1), time-stamped as T a((sk, sk+1)) = [ti, tj), is not represented in the
sequence, it means that there is a phoneme pN which was time-stamped as TU(pN ) =
[th, ti) and a phoneme pN+1 which was time-stamped as TU (pN+1) = [tj , tk). However,
if TU (pN ) = [th, ti) then, by the definition of U it is the case that TU (pN+1) must have
started at time ti, because we know that ti it is the beginning of transition (sk, sk+1)!
Also, note that if phoneme pN+1 starts at time ti, it will either end at time tj−1 or before.
Thus J(sk, sk+1)KΦa ⊆ JpN+1KU .

Corollary 4.2. For every Ŝa = (Sa, T a) ∈ SEQ and for each transition (sk, sk+1) ∈ Ŝa,
there exist a pN ∈ P in the phoneme sequence such that Jsk+1KΦa ⊆ JpN KU . �

Corollary 4.3. Phonemes in U induce a total order over transitions in SEQ. �

With these results, it becomes apparent that there will always be a consistent phoneme
in U for transition in SEQ; that is, phonemes will neither omit information nor contain
contradicting propositions, as long as articulation sequences themselves remain consistent.
Finally, Lemma 4.5 provides an idea of how many phonemes are needed to build U .

Lemma 4.5 (Number of states in U). Let n denote the total number of transitions in
all sequences of SEQ. Utterance U assigns, at most, 2n+ 1 phonemes to represent all
the information in SEQ.

Proof. Theorem 4.4 implies that, if transitions don’t overlap, each of them will induce
the time-stamping of, at least, one phoneme. Recall by Definition 4.17 that phonemes,
except from the first one, will always be time-stamped either when a transition’s interval
begins or ends. In addition, from the definition, if the start of a transition’s interval
induces the time-stamping of a phoneme, then said phoneme will have, at most, the
same length than the interval, at which moment a new phoneme will be issued. This
implies that every non-overlapping transition will necessarily induce the time-stamping 2
phonemes. Also, note that if k transitions overlap, k ≥ 2, then it can be the case that:

— they perfectly overlap, in which case a single phoneme contains the information
of all the transitions;

— they don’t perfectly overlap, in which case at most 2k phonemes will be created,
if none of their starting or ending points are aligned.

Finally, note by Corollary 4.3 that transitions are totally ordered, implying that they
will only be tagged once by U . Thus, in the worst case, U will time-stamp 2n phonemes,
two for each transition, plus the phoneme in the beginning, giving 2n+ 1.

Overall, these properties permit defining the semantics of concurrent PDLSL formulae
over utterances, in terms of phonological change; the proposed satisfaction rules are
presented in Definition 4.20.
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Definition 4.20 (PDLSL formulae satisfaction over utterances). Let U = (P, TU , J·KU ,SEQ)
be an utterance and pN ∈ P be a phoneme labeled with time interval TU(pN ). Let
Ŝa ∈ SEQ be the timed articulation sequence in U corresponding to articulator a ∈ ART ,
while Ma = (S,R, J·KΦa , J·KΠa) denotes the articulation model inducing Ŝa. Also, let ϕ
and ψ be PDLSL formulae and pa ∈ Φa.

Let pij = pi, pi+1, . . . , pj ∈ P, i ≤ j be a segment of phoneme list P starting in pi.
Similarly, let eij = ei, ei+1, . . . , ej ∈ Ŝa, i ≤ j be a chain of adjacent transitions in
the sequence Ŝa. For simplicity, if i = j then pij ≡ pi and eij ≡ ei. Satisfaction over
utterance phonemes is given as follows:

U , pij |= > iff i = j, always holds;
U , pij |= pa iff i = j, sk = Va(pi) ∈ S where em =

(sk, sk+1) ∈ Ŝa is the transition associated
to sk in Ŝa and Ŝa, em |= pa holds;

U , pij |= ¬ϕ iff i = j, and U , pi 6|= ϕ;
U , pij |= ϕ ∧ ψ iff i = j, where U , pi |= ϕ and U , pi |= ψ;
U , pij |= 〈πa〉ϕ iff em = Va(pi+1) ∈ Ŝa where em =

(sk, sk+1) such that Ŝa, em |= 〈πa〉>, and
for Va(pN ) ≡ sk+1, where i < N ≤ j, it
holds U , pNj |= ϕ;

U , pij |= 〈α;β〉ϕ iff U , pij |= 〈α〉〈β〉ϕ;
U , pij |= 〈α ∪ β〉ϕ iff U , pij |= 〈α〉ϕ or U , pij |= 〈β〉ϕ;
U , pij |= 〈α ∩ β〉ϕ iff U , piN |= 〈α〉>, where i < N ≤ j and

U , piM |= 〈β〉>, where i < M ≤ j such
that,

— if N < M then U , pN+1M |= ¬〈α〉>
and U , pMj |= ϕ;

— if M < N then U , pM+1N |= ¬〈β〉>
and U , pNj |= ϕ;

— if M = N then U , pNj |= ϕ;
U , pij |= 〈α ∧ ψ〉ϕ iff U , piN |= 〈α〉>, where i < N ≤ j such that

U , piN−1 |= ψ, and U , pNj |= ϕ;
U , pij |= ψ; 〈α〉ϕ iff U , piN |= ψ, where i ≤ N < j and

U , pNj |= 〈α〉ϕ.

where πa ∈ Π and α, β ∈ ASL. �

With these semantic rules, annotators can use formulae to determine if a property holds
over a sequence of phonemes or not. Furthermore, they permit to alter their phonological
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interpretation, depending on how the formula is build. For instance in the case where
articulator a moves and articulator b remains static, and formula ϕa, giving information
about articulator a exclusively, will see at least one Movement, whereas ϕb will see
a single Hold. This is because the semantic rules rely on the individual articulation
sequences to implicitly discard unused information; in this case, as formula ϕb only
needed information from b, the channel of articulator a was ignored and the formula was
satisfied directly on the individual articulation sequence Ŝb. This provides a mechanism
to verify both individual and concurrent properties over the same structure.

4.4 Chapter conclusion

This chapter presented the main theoretical notions of this work. In the first part, a
series of primitive sets where introduced, which serve as basis for the representation of
SL phonetic parameters as logical statements (see Table 4.1). Additionally, a group of
time-ordered data-structures was defined, in an effort to have a formal representation of
temporal change. Both primitive sets and data-structures where connected with each
other by way of a formal framework, based on the PDL, which was developed with the
intention of being inherently multimodal, to cope with the notion of parallel articulatory
changes.

Generally speaking, the main interest of the presented definitions is to establish a
correspondence between very abstract notions and real world data. It is for this reason
that primitive sets are introduced as templates to be filled by an expert, depicting fairly
broad descriptions. The same holds true for the data-structures themselves, as they
can correspond to different use cases depending on expert observations: for instance,
the utterance objects from Definition 4.17 can serve to represent one-handed signs,
two-handed signs, changes in NMFs and others.

The relationship between real-world observations and the formalism becomes clearer if
we consider that a video from a corpus, for example, can be represented as an utterance
object during an automatic recognition task; assuming that the proper technical tools
are available, it is possible to follow changes on individual articulators and combine them
on-the-fly, just as utterance objects do with timed articulation sequences. Furthermore,
the flexibility of this particular data structure permits the addition or removal of channels
as needed. In the real world, this can be useful for situations where a tracking system
can only follow changes over a limited number of articulators, thus not needing to model
any of the non-tracked information channels while still being interested on combining
those which are.
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Primitive Set Description

NAMES The set containing every chain of characters.

BODY Contains any body part visible during sign-
ing, BODY ⊂ NAMES.

ART Refers to all body parts capable of articula-
tion, ART ⊆ BODY.

ΨSL

Establishes a three-dimensional coordinate
system originating on the signer’s center of
mass, where ΨSL ⊂ R× R× R.

LOC

Holds pairs of articulators with their respec-
tive places of articulation, denoted as (a, λ),
where a ∈ ART and λ ⊂ NAMES (λ is the
name of a location).

CFG

Holds pairs of articulators with their possible
configurations, denoted as (a, c), where a ∈
ART and c ⊂ NAMES (c is the name of a
configuration).

∆ Contains pairs of coordinates describing a
vector in ΨSL, ∆ ⊆ ΨSL ×ΨSL.

L∆

Refers to a function assigning names to vec-
tors in ∆, permitting more abstract defini-
tions such as “Up” or “Down”.

DIRECT IONS
It is the set of names that can be used by
L∆ to label some vector, DIRECT IONS ⊂
NAMES.

∆SL

Contains sets of vectors identified by a indi-
vidual direction names in DIRECT IONS:
for instance, it contains every individual vec-
tor that can be labeled as going “Up”.

Π Contains every atomic action related to every
individual articulator in ART .

Φ Contains every atomic proposition related to
every individual articulator in ART .

Table 4.1: Summary of SL primitives and atoms for PDLSL
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Something similar occurs with PDLSL formulae: since they are intended to be interpreted
over an utterance, they can be used to analyze SL videos once they have been turned into
abstract representations. In particular, formulae can be used to ask question about the
video, for instance, so as to determine whether a sign appears or not over a determined
segment of video-frames. In this regard, the language is designed to be flexible enough
to add or discard information depending on the available data, therefore adaptable to
different types of corpora.

In order to give a better picture of how everything works in practice, the next chapter
provides a concrete example. On Chapter 5, the formal structures defined on this chapter
are used on a real-world recognition task, oriented towards the semi-automatic annotation
of a corpus. Essentially, the idea is to show, step by step, how humans and an automatic
system can interact to fill up the primitive sets (see Table 4.1), leading to the automatic
specification of a corpus and its partial annotation by way of PDLSL formulae.
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Chapter 5

Semi-automatic annotation using
logic

The previous chapter introduced the Propositional Dynamic Logic for Sign Language
(PDLSL), a formalism intended to represent Sign Language (SL) corpora in Natural
Language Processing (NLP) tasks. Overall, the PDLSL provides a set of basic rules
to capture different corpus features under the same formal language, regardless of the
technical characteristics of said corpus. For this reason, when confronted with real-world
data, it is the task of the annotator to narrow down or extend the language as required,
in order to suit his or her specific needs.

In this chapter, an example of the representation process is introduced with the implemen-
tation of a modular, PDLSL-based, semi-automatic annotation framework. In particular,
the system was designed to work over the Dicta-Sign corpus (see Chapter 3, Subsection
3.3.3, p. 65), a French Sign Language (LSF) corpus. Broadly, the system core consists
on both an implementation of utterances (see Definition 4.17, p. 89), and a PDLSL

interpreter. A series of processing modules were built around these basic components,
in order to automatically transform each corpus video into an instance of a utterance.
Utterances are none other than directed acyclic graphs, linked to per-articulator Labeled
Transition Systems (LTSs). In the final step, a series of PDLSL-described properties
are searched automatically in the graph, and the results are returned to the user as an
ELAN annotation file.

In the following section, a brief description of the framework’s architecture is presented,
including a bird’s-eye view of the overall process as intended in practice. Likewise,
this portion contains a module-by-module description, demystifying the procedure on
a step-by-step basis. Finally, the last couple of pages present the implementation of a
semi-annotation system, created by following the described framework’s guidelines.

99
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5.1 Framework Architecture

As already stated, the main objective of the framework is to be able to receive an
untreated SL video input, and return a set of possible annotations, calculated by way of
formal verification. Figure 5.1 shows a diagram describing the data workflow.

Figure 5.1: Block diagram of a generic PDLSL-based SL lexical structure recognition
system

In the Figure 5.1, circles represent information whereas squares depict individual process-
ing modules; each module receives a particular input and their results are sent to other
modules for further processing. Each module has its own specialized role, and together
they take untreated corpus data and calculate an annotation file that can be used for
linguistic research. In general, modules tasks can be broken as follows:

— Division Module Divides input data into time intervals.
— Modeling Module Encodes the information from time intervals into a graph.
— Logic Verification Module Uses the graph to verify a database of PDLSL

formulae, and generate an annotation.
— Annotation Tool Enables human experts to correct the results.

In the next sections, each of the modules depicted in the figure will be individually
described, explaining in detail how each of them contributes to the generation of an
automatic annotation.

5.1.1 Division Module

The Division Module, highlighted in Figure 5.2 is in charge of processing the raw corpus
data and transform it into an interval segmentation.
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Figure 5.2: Block diagram of a generic PDLSL-based SL lexical structure recognition
system

The raw corpus data corresponds to untreated visual or numeric information, captured
for the compilation of corpora. This can be anything from video-data, motion capture
information, 3D depth maps of signers or any other technology used for the creation of
a corpus. In the case of Dicta-Sign, raw data corresponds to 2D video files; that is, a
series of time-ordered image frames, as depicted by Figure 5.3.

Figure 5.3: Example of a Dicta-Sign raw video sequence.

On the other hand, an interval segmentation consist of a separation of the raw data
into time-segments, reflecting how signers’ positions change in the video. Roughly, the
module is in charge of finding contiguous frames where changes occur, obtaining an
interleaving of change and static intervals, reminiscent of the Holds and Movements
defined by the Movement-Hold Model (MHM); however, this segmentation may also
contain noise intervals (e.g. changes without communication intent, like putting down
the arms). Figure 5.4 shows an interval segmentation for the raw video.

Figure 5.4: Example of an interval segmentation for the right hand; the intervals
below the image denote which frames are contained in the segment.
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The segmentation shown in Figure 5.4, was built by looking for changes occurring over
an individual articulator, in this case, the right hand. For each other articulator of
interest the module will generate an individual segmentation. In this way, for the right
and left hand there will usually be a pair of chains of intervals just like the ones depicted
in Figure 5.5.

Figure 5.5: Example of two parallel per-articulator segmentations.

To treat videos from Dicta-Sign, the Division Module makes use of a tracking tool
developed by [Gonzalez 2011] to obtain the 2D spatial positions of the hands and head
of the signer. An example of the tracking results, overlaid over a video-frame, are shown
in Figure 5.6.

Figure 5.6: Calculated path of hands and head on a corpus video.

On the figure, the points over the signer’s hands and head represent the calculated
positions for each. In addition, the colored line represents the path that the left hand
followed when moving from one position to the other; the point where the line changes
color, represents the instant where the hand achieved maximum speed.

Interval segmentation based upon this tracking tool, rely on defining articulation changes
in terms of speed. In particular, the Division Module follows the observations made
by [Gonzalez 2012], and selects segments by looking at speed variations. For the module,
a frame is static if the speed of the observed articulator is below the noise threshold
of the tracker (approx. 1.08 pixels/frame). Moreover, a frame is considered a change
if its speed is above the threshold. On a similar note, static intervals are defined as
sequences containing only static frames, while change intervals are sequences containing
only change frames.
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Since the tracking tool is limited to detect only hands and head, it is not possible to create
a segmentation for any other articulators outside of these three. In addition, for Dicta-
Sign in particular, the average speed of the head during movement held approximately
the same value as the calculated noise threshold for the tested videos. A graphic showing
how speed measures compare, for the three articulators, is presented in Figure 5.7. In
the graph, speed changes below the noise threshold were set to zero, for clarity.

Figure 5.7: Example of an interval segmentation for the right hand; the intervals
below the image denote which frames are contained in the segment.

Figure 5.7, shows a plot of per-articulator speed changes, occurring from frame 2916 to
frame 2930 on a Dicta-Sign video. Observe that not only does the speed of the head
remains fairly unchanged, but is always below the noise threshold (even in frames where
both hands are moving). Under these conditions, the individual segmentation of the head
is unreliable, hence forcing the module to only generate interval sequences for the hands.
In addition, the detection of other change-inducing features, such as hand-configuration,
isn’t readily available. For this reason, segmentation has to be achieved by means of
speed change alone, as presented by the Algorithm 1 below.

Recall from Subsection 4.3 (see p. 87) that intervals in this document are defined over
the positive integers. Also, note that frames are enumerated over the same domain, thus
starting in 1. Procedure Segmentation receives the tracker’s noise threshold Tε and a
total number of frames N . By definition, any speed lower than or equal to Tε is assumed
to be static. Also, the speed of any of the hands in the first frame (v1) is 0, meaning that
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Algorithm 1 Interval segmentation for a single hand in one video
1: procedure Segmentation(Tε ≥ 0, N > 0)
2: v1 ← 0
3: I ← {1}
4: L← empty set of intervals
5: for each frame i ∈ {2, . . . , N + 1} do
6: vi ← instantaneous hand speed at frame i
7: if (vi > Tε & vi−1 ≤ Tε) or (vi ≤ Tε & vi−1 > Tε) then
8: L.add(I)
9: I ← {i}

10: else
11: I.add(i)
12: end if
13: end for
14: L.add(I)
15: return L
16: end procedure

the first frame is static by default. From there, for the hand of interest, at each frame
i > 1, the algorithm reads the hand’s speed vi and uses it to decide whether i is part of
an interval I or not; roughly, if i and i− 1 are both of the same type and i− 1 ∈ I, then
i ∈ I. Finally, the procedure stops in N + 1, to ensure that the sequence will always end
on a static interval (we assume that vN+1 = 0).

Theorem 5.1 (Interleaved segmentation). The result of the execution of Algorithm 1,
for any of the hands, is a list L either containing a series of interleaved static and change
intervals or a single static interval.

Proof. By induction over the length of L. Let I0 be the first interval in L. Let i be the
first frame where the hand changes, hence vi > Tε holds. If such i doesn’t exist, every
frame necessarily falls on the case of line 10, thus ensuring that they will all be added
to interval I, defined in line 3. Since no change frame exist, I is static. Furthermore,
because line 14 is always executed before returning, then I will be added to L, thus
ensuring that I = I0 and L 6= ∅.

If a change frame i does exist, we know from line 2 that i 6= 1. Also, note that for every
frame f ∈ [1, i− 1] it holds that vf ≤ Tε, warranting that each will enter the case in line
10 and thus I = [1, . . . , i− 1]. Since vi > Tε and vi−1 ≤ Tε, then i enters in the case of
line 7, thus it holds that L = [[1, . . . , i− 1]] and I ← [i]. In this scenario, it is always the
case that I = I1, since either it gets overridden again in line 9, after being added to L,
or I is never overridden again and is added by line 14. Thus, for I0 it holds.

For Ik, assume that L = [I0, . . . , Ik−1] is correct. Let Ik−1 = [m−M, . . . ,m− 2,m− 1];
interval Ik−1 could have only been added to L by line 8, meaning that for frame m
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it was the case that either (vm > Tε & vm−1 ≤ Tε) or (vm ≤ Tε & vm−1 > Tε). This
situation renders frames m− 1 and m of different types. In addition, we know that, by
entering the case of line 7, frame m became the first frame in I, after adding Ik−1 to L.
Finally, from here, it will always be the case that I = Ik since, once again, either I gets
overridden in line 9 after being added to L, or I is never overridden again and is added
by line 14. Thus, for Ik it holds.

Algorithm 1 generates a valid sequence of interleaved change and static intervals; however,
the changes inside the sequence aren’t completely accurate in terms of what movement
they are capturing. As observed by [Gonzalez 2012], it is often the case that signers chain
hand movements without passing through a static interval, as they conserve momentum.
An example can be seen in Figure 5.7 above: in frame 2926, the right hand ended some
movement without attaining speed 0 and, immediately after, started a new one. This
can be observed on the sudden drop of speed experienced by the hand, which is rapidly
gained on the next instant. However, these changes remain largely invisible for Algorithm
1, which would consider [2923, 2930] is a single change. To avoid this situation, change
intervals are further subdivided with respect to speed minimums, by the procedure
presented in Algorithm 2.

Algorithm 2 Change interval sub-segmentation for a single hand in one video
1: procedure SubSegmentation(Ik = a change interval [m,n])
2: if m = n or |Ik| < 3 then
3: Lc.add(Ik)
4: else
5: I ← {m}
6: Lc ← {}
7: for each frame i ∈ {m+ 1, . . . , n− 1} do
8: vi−1 ← instantaneous hand speed at frame i− 1
9: vi ← instantaneous hand speed at frame i

10: vi+1 ← instantaneous hand speed at frame i+ 1
11: if (vi−1 > vi & vi < vi+1) then
12: Lc.add(I)
13: Lc.add({i})
14: I ← {}
15: else
16: I.add(i)
17: end if
18: end for
19: I.add(n)
20: Lc.add(I)
21: end if
22: return Lc
23: end procedure
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Theorem 5.2 (Change interval subdivision). Executing Algorithm 2 over a change
interval Ik, produces an interval chain Lc where, either |Lc| = 1 and Ik ∈ Lc or |Lc| ≥ 3
and Lc is an interleaving sequence of minimum speed intervals and change intervals.

Proof. By induction, over the length if Ik.

If |Ik| < 3 then, by line 2 in the algorithm, it holds.

For |Ik| = 3, where Ik = [i− 1, i, i+ 1]. By line 5, there is a variable I such that
I = {i− 1}. The for of line 7 centers in i and compares the speeds of each frame denoted
by Ik; vi−1, vi and vi+1.

If vi−1 > vi < vi+1, then, by lines 12–14, we know that Lc = ({i − 1}, {i}) and I = ∅.
With |Ik| = 3, the for is executed only once, thus, the algorithm executes lines 19 and 20,
resulting in Lc = ({i− 1}, {i}, {i+ 1}), which is returned immediately after. Note that,
by the sake of the comparison in line 11, {i} denotes a minimum. Then, for |Ik| = 3, Lc
holds.

On the other hand, if vi−1 > vi < vi+1 is false, then I doesn’t change, thus I = {i− 1}.
By line 16, I = {i− 1, i}. Once again, the for is executed only once, thus, the algorithm
executes lines 19 and 20, giving I = {i− 1, i, i+ 1}, Lc = (I) and returning Lc. Since
I ≡ Ik, it holds.

For |Ik| = N > 3. Assume without loss of generality that Ik = {0, 1, . . . , N}. Also,
assume that, until N − 1, Lc is a correct interleaving. Recall that the for ranges from
1, . . . , N − 1. In the last execution, it must have compared speeds vN−2, vN−1 and vN .

If vN−2 > vN−1 < vN , then Lc = (. . . {. . . N −2}, {N −1}) where {. . . N −2} is a change
and {N − 1} is a minimum. Note that the comparison ensures that I = {. . . N − 2} will
always be a change, as in the previous for execution, line 11 tested vN−2 > vN−1 and
added N − 2 to I. Now, as {N − 1} was the last interval added to Lc, then I = {}. Also,
since N − 1 corresponds to the last test of the for, the algorithm executes lines 19 and
20 giving I = {N} and Lc = (. . . , {. . . N − 2}, {N − 1}, {N}) is returned. Since we know
that, vN−1 < vN , then N is not a minimum, therefore Lc holds.

If not vN−2 > vN−1 < vN , then by line 16 we have that I = {. . . , N−1}. Since this is the
last execution of the for, the algorithm executes lines 19 and 20 giving I = {. . . , N−1, N}
and Lc = (. . . , {. . . N − 1, N}) is returned. Note that, in this case, neither N − 1 nor
N can be minimums, since frame N + 1 is static and, hence, vN > vN+1 = 0. Thus Lc
holds.
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The previous theorem, shows that Algorithm 2 uses speed minimums to produce an
interleaving, depicting similar characteristics to those resulting from the first algorithm. In
turn, this similarity can be exploited to combined both results into a single interval chain:
the idea is to substitute all changes in the first sequence with their sub-segmentation,
if any. In general, this corresponds to forcing local minimums into static intervals, a
process presented in Algorithm 3.

Algorithm 3 Substitution of change intervals
1: procedure SegmentSubstitution(L = interval sequence)
2: if |L| == 1 then
3: Ls ← L
4: else
5: Ls ← {}
6: for each interval I ∈ L do
7: if I is a static interval then
8: Ls.add(I)
9: else

10: for each subinterval Is ∈ SubSegmentation(I) do
11: Ls.add(Is)
12: end for
13: end if
14: end for
15: end if
16: return Ls
17: end procedure

Theorem 5.3 (Change interval substitution). In the resulting interval list Ls, produced
by Algorithm 3, every “true” change interval will be surrounded by either two static
intervals, two minimum speed intervals or one of each.

Proof. Assuming that L is a correct interleaving, if |L| = 1 then there are no change
intervals, so it holds by vacuity. For |L| > 1, we know by Theorem 5.1 that every
change interval in L is surrounded by two static intervals; recall that L always ends on a
static interval. By Theorem 5.2 we know that SubSegmentation(I) in line 10 is an
interleaving of change and minimum speed intervals, where the first and last Is ∈ Sub-
Segmentation(I) are always “true” changes. Thus, for |SubSegmentation(I)| ≤ 3 it
holds: the first and last change intervals will be surrounded by one minimum speed and
one static interval, while any other will be surrounded by minimum speed intervals.

Even though, by definition, minimum speed intervals are not truly static, the system
makes no difference between the two; to avoid any potential pitfalls in this regard (at
least from the implementation point of view), each time a minimum frame is found the
module sets its speed to zero, so as to maintain consistency. An example of the entire
process, for the right hand, is given on Figure 5.8.
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Figure 5.8: Example of an interval segmentation for the right hand. The intervals
sequences below the graph denote the results produced by each algorithm. The graph

depicts the speed changes of the right hand, over a video segment.

In Figure 5.8, a speed graph for the right hand is presented, with its corresponding
interval segmentation; there, intervals are depicted as either boxes (static) or arrows
(change), depending on how they are interpreted by the module. Broadly, the first
segmentation presents the resulting sequence after executing Algorithm 1. The second,
presents how changes are affected when passed through Algorithm 2. Finally, the last
sequence presents the result of combining the two previous ones, by way of Algorithm 3;
this is the one that will be passed over to the next module, for further processing. Also,
note that the depicted sequences are just segments of a larger sequence, produced for
the entire video. It is for this reason that the first sequence ends on a change interval
and not on a static one (more intervals follow).

The choice of introducing artificial static intervals, was made to capture instants within
long movement chains where it is clear that more than one change occurred. Further
down the line, these reduced states serve as points of reference for the verification module,
to detect smaller changes within these movement chains. Also, note that these points
contain exactly one frame, as the comparisons in line 11 of Algorithm 2 are strict. This
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is to avoid, in the measure of possibility, breaking up changes that may be intentionally
slower.

The module executes Algorithm 3 for each hand and passes both results to the next
module, where they will be formally represented as explained in the next section.

5.1.2 Modeling Module

The Modeling Module, shown in Figure 5.9, is the one in charge of transforming the raw
video information into a formal data structure. More precisely, the module receives an
interval segmentation for every articulator, like the one shown in Figure 5.5, and uses
the available information to determine the truth value of a series of statements about
articulators.

Figure 5.9: Block diagram of a generic PDLSL-based SL lexical structure recognition
system

More specifically, this module implements the utterance objects presented in Definition
4.17, and executes an algorithm to tag utterances with information, depending on what
it can automatically infer from video images. For this reason, in order to generate the
graph, the module has to know how to make sense of visual information, and convert it
into a more abstract representation. This is achieved by giving concrete domains to the
PDLSL primitive sets of Section 4.1 (p. 79); once this information is in place, the module
becomes knowledgeable enough to determine which articulators are being described,
which statements are true on a given video-frame and, overall, the kind of data that has
to be modeled.

In the next section, primitive information is defined for the case of Dicta-Sign corpus,
when paired with the tracker presented by [Gonzalez 2011].
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5.1.2.1 Primitives for a 2D corpus

Recall from last chapter (see Chapter 4, Section 4.1 p. 79) that PDLSL defines a series
of set templates, intended to be used in the creation of atomic propositions and actions;
originally, these sets where defined very broadly, as they have to be general enough to
cover a vast number of use cases. In the case of the study of a specific corpus, as is
the case with Dicta-Sign, it is not necessary to have such broad definitions. In fact,
confronted with data, the opposite becomes true: it is necessary to have a very detailed
account of what is to be included in each of these sets. The existing templates are
explained briefly in Figure 5.10.

BODY = the set of relevant body parts (Definition 4.1, p.79)
ART = the set of SL articulators (Definition 4.2, p.79)

ΨSL = a set of euclidean coordinates used in SL (Definition 4.3,
p.80)

LOC = the set of places of articulation (Definition 4.4, p.81)
CFG = the set of articulator configurations (Definition 4.5, p.81)
∆SL = a set of directions used to model position and movement

(Definition 4.8, p.82)

Figure 5.10: Primitive set templates in PDLSL

Each of these sets have to be adapted to work over Dicta-Sign. First of all, from
Definition 4.1 recall that the set NAMES contains all possible chains of characters; for
implementation purposes, NAMES corresponds to any string representation on any
programming language. For Dicta-Sign, the set of relevant body parts BODY ⊆ NAMES
will be redefined as follows:

Definition 5.1 (Relevant body parts for 2D corpora).

BODY = {R,L, HEAD, UPPERBODY, LOWERBODY}

where R and L denote the right and left hand, respectively. �

The set BODY contains names for visible body parts in Dicta-Sign corpus; the parts were
selected from what is conceivably recognizable by exploiting the tracker by [Gonzalez 2011].
Also, recall that the set of articulators ART is a subset of BODY, thus giving the
following:

Definition 5.2 (Articulators for 2D corpora).

ART = {R,L}
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�

Recall that, because of the characteristics of the tracking algorithm, the Division Module
only obtains interval segmentations from the hands; in essence, this means that the only
articulation information passed to the Modeling Module comes from the hands, thus
limiting the contents of ART .

With respect to space, it has already been mentioned that Dicta-Sign is a 2D corpus;
for this reason, the coordinate system established by ΨSL is limited to two dimensions,
simply giving:

Definition 5.3 (Space coordinates for 2D corpora).

ΨSL = R× R× {0}

�

In general, ΨSL doesn’t change with respect to Definition 4.3; it is a given that the only
possible value in the third dimension in Dicta-Sign, reachable by any articulator, is zero.
Hence, the original definition is valid and compatible with Definition 5.3.

Once articulators and their spatial frame of reference is determined, it is possible to define
their places of articulation. From Definition 4.4, recall that each articulator a ∈ ART
will have its own set of places LOCa. In the case of the hands, both sets will almost be
identical, with the exception that they won’t contain themselves as locations.

Definition 5.4 (Places of articulation for 2D corpora). Recall that BODYa denotes the
containing body-bound locations where a can articulate. For articulators R,L ∈ ART ,
it is the case that:

BODYL = BODY/{L}

BODYR = BODY/{R}

Recall the labeling C : 2ΨSL → NAMES, mapping space regions to names, from Defi-
nition 4.4. The inverse function, C−1 : NAMES → 2ΨSL , takes members of NAMES
to space regions. Let the set REGIONS = {C−1(NEUTRAL), C−1(RIGHT HEADSIDE),
C−1(LEFT HEADSIDE)} denote a group of spatial regions. Articulation places are given as
follows:

LOCL = {λ : λ ∈ (BODYL ∪
⋃

r∈REGIONS
C(r))}

LOCR = {λ : λ ∈ (BODYR ∪
⋃

r∈REGIONS
C(r))}



Chapter 5. Semi-automatic annotation using logic 112

LOC remains the same as in Definition 4.4. �

The visual depiction of the defined places of articulation is shown in Figure 5.11; each
region can be as small or as large as desired, depending on the definition of C−1.

Figure 5.11: Possible places of articulation in LOC common to both hands.

Note that the defined regions may overlap. Because of this, in some video corpora there
might be ambiguity in region definitions, due to the lack of a third dimension: in Figure
5.11, the neutral space should denote the 3D spatial coordinates around the signer, which
is not possible to model in a 2D corpus. In this context, UPPERBODY and LOWERBODY

are inaccurately defined as sub-planes of NEUTRAL, because of this technical limitation.
Nevertheless, the advantage of holding the meaning of spatial locations into an external
function, in this case C−1, is that it can be easily adapted for the 3D case by changing
the function itself, while leaving the region names intact.

Definition 5.4 is largely based on function C; from the implementation point of view, this
corresponds to a data structure, mapping 2D image subsections to strings. For Dicta-Sign,
the human annotator can define regions as rectangles on the image’s coordinate system,
thus permitting to easily add or remove articulation places as needed; in this sense, it is
the internal representation itself who provides C rather than the user.

The last set defined on a per-articulator basis, is the one containing the possible config-
urations an articulator can assume. In this case, as the only articulators in ART are
the hands, the configuration set CFG will contain only hand-configurations. However, as
previously explained, the used tracking tool is unable to detect complex features such as
configuration change; because of this, the module isn’t capable of using CFG. Regardless,
it is useful to provide these definitions anyway, at least to exemplify how they fit in the
overall process. The proposed CFG is presented on Definition 5.5 below.
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Definition 5.5 (Articulator configurations for 2D corpora). For R,L ∈ ART , configu-
rations are given as follows:

CFGR = CFGL = {INDEX, PINCE, FIST, PALM, . . .}

CFG remains the same as in Definition 4.5. �

In general, the names included in CFG correspond each to a possible hand-configurations
in LSF, some of which are depicted in Figure 5.12. LSF hand-configurations where
chosen because the tests were based on the LSF portion of Dicta-Sign. Nevertheless, just
as with the other sets, the contents of the set largely depend on the annotator, and are
by no means limited by what is shown on the figure.

Figure 5.12: Some LSF hand configurations.

Finally, in order to give precisions about movement direction or other spatial relations,
the module fills the set of directions with 2D vectors as shown in Definition 5.6.

Definition 5.6 (Set of relevant directions for 2D corpora). Recall from Definition 4.7
the set of direction names DIRECT IONS ⊂ NAMES. Roughly, each member in
DIRECT IONS will be a string identifying a family of vectors, characterized by the
mapping L∆ : 2∆ → DIRECT IONS, where ∆ is a set of vectors in ΨSL. For simplicity,
for the 2D case the selected names are simply arrows representing the direction of the
movement:

DIRECT IONS = {↑,↗,→,↘, ↓,↙,←,↖}

The set of relevant directions is defined as follows:

∆SL =
⋃

t∈DIRECT IONS
L−1

∆ (t)
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where L−1
∆ (t) is defined for every t ∈ DIRECT IONS. �

Similar to what happens with the places of articulation, ∆SL is completely based on
how the function L∆ was defined. For its implementation, the definition comes rather
straightforward: for example, ← are all vectors with starting and ending coordinates
(start0, start1) and (end0, end1), respectively, such that start1 ≡ end1 and start0 < end0.
This is, they only change horizontally, towards the left side of the coordinate system. For
the rest of the names in DIRECT IONS, similar definitions were made in ∆SL. Note
that, by convention, directions are interpreted from the signer’s point of view; also, ΨSL

is centered on the signer’s body. An diagram exemplifying the selected point of view is
shown on Figure 5.13.

Figure 5.13: The signer’s point of view, used to define ΨSL.

With this last definition, the contents of the primitive sets (see Chapter 4, Section 4.1, p.
79) have been completely specified for the case of a 2D corpus. From here, it becomes
possible to define the sets of atomic propositions and actions, by using the members of
the sets above to give statements about video segments. This process is presented in the
next section.

5.1.2.2 Atomic propositions and actions for a 2D corpus

As presented in Chapter 4 (see Section 4.2 p. 83), atomic actions and propositions are
the basis of what is representable with PDLSL. In general, they correspond to statements
asserting information about the state of a signer during signing. However, even though
the Modeling Module knows how atoms combine, it can’t determine by itself which
assertions are meaningful for the studied corpus. For this reason, it corresponds to the
annotator to determine what should be claimed, depending on the available tools.

Remember from the previous section that, for the time being, only the hands are
considered articulators. The atomic propositions for hand a ∈ ART are defined below.
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Definition 5.7 (Atomic propositions for 2D corpora). The set Φa of atomic propositions
for articulator a ∈ ART is defined as:

Φa = {pos(a, δ, b), loc(a, λ), touch(a, b), cfg(a, c)}

where a, b ∈ ART , δ ∈ DIRECT IONS, λ ∈ LOCa and c ∈ CFGa.

Intuitively:

— pos(a, δ, b).- Recall the function L∆ from Definition 4.7. This atom asserts that
hand a is located on position δ with respect to b; this is, there exist a vector
#    »

BA ∈ L−1
∆ (δ) such that a is positioned in coordinate A and b is positioned in

coordinate B.
— loc(a, λ).- Indicates that hand a articulated in location λ.
— touch(a, b).- Is the same as loc(a, b), where b is a hand such that b ∈ LOCa and

b ∈ ART .
— cfg(a, c).- Hand a holds configuration c.

The set Φ is the same as in Definition 4.9. �

An example of how atomic propositions assert information about a video segment, is
presented in Figure 5.14.

Figure 5.14: The information about the signer’s posture above is captured by the
following atomic propositions, which are true for this image: pos(R,←,L), pos(L,→

,R), loc(R, HEAD), loc(L, HEAD), cfg(R, CLAMP), cfg(L, CLAMP), touch(R,L). . .

The atomic propositions in Definition 5.7, assert information occurring when the signer
holds his or her posture without moving, as presented in Figure 5.14. However, proposi-
tions alone are not enough to give information about change; this is done by way of the
set of atomic actions, provided by Definition 5.8.
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Definition 5.8 (Atomic actions for 2D corpora). The set Πa of atomic actions for
articulator a ∈ ART is defined as:

Πa = {δa,	a,�a,!a}

where δ ∈ DIRECT IONS and a ∈ ART .

Intuitively:
— δa.- Indicates that hand a moves in direction δ (i.e. →a asserts that hand moves

to the signer’s left).
— 	a.- Asserts that a executes a single clockwise-motion.
— �a.- Similarly, asserts that a executes a single counterclockwise-motion.
— !a.- The hand a does a trill motion: it moves rapidly and continuously without

changing its articulation place.
The set Π is the same as in Definition 4.10. �

Actions assert information about change. An example of this is presented in Figure
5.15, where atoms ←R and →L capture the changes occurring in the right and left hand,
respectively, during some interval of time.

Figure 5.15: Atomic actions ←R and →L are true in the above image.

In contrast to the members of set ∆SL, the movements 	a, �a and !a in Definition 5.8
are not thoroughly defined. This is because it is assumed that they can be approximated
by combining small chains of movements in ∆SL: for example, �a could be seen as
a sequence (↗,→,↘, ↓, . . .). In this regard, it is important to underline that atomic
actions happen over a single change interval: they are swift, uncut movements.

Finally, it is important to underline that the definitions of Φ and Π remain unchanged.
With this, the Modeling module can directly create and label utterance objects, by way
of a single algorithm. The details of this process are presented in the next section.
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5.1.2.3 Transforming interval segments into utterance objects

Recall that the Division Module results into a segmentation of change and static intervals,
as depicted in Figure 5.16.

Figure 5.16: Articulator segmentations for the right and left hands.

The Modeling Module, is in charge of transforming each of these segmentations into
timed articulation sequences Ŝa, the ones presented in Definition 4.15. Remember that a
timed articulation sequence is none other than a chain of transitions, induced by some
articulation model Ma = (S,R, J·KΦa , J·KΠa) (see Definition 4.13).

Intuitively, the articulation model of articulator a, encodes all possible significant postures
of a as a LTS. For instance, the articulation model of the right hand MR (in LSF), has
some state s0 where cfg(R, INDEX) is true (the right hand has the index finger extended).
If there are n possible configurations in CFGa, then there are at least n− 1 transitions
starting in s0, taking the hand from INDEX to any other valid configuration.

However, articulation models are not a given for the module; each interval in the input
segmentation is interpreted a valid state of some unknown model. Thus, the system
is incapable of asserting information about the validity of each Ma, but may infer its
states, induced by static intervals, and how they connect with each other. To this end,
the system needs a way to assert the propositional information on each state; a method
to find J·KΦa and J·KΠa . This is done by way of modeling rules, as defined below.

Definition 5.9 (Modeling rule). Let Φ and Π be the sets of atomic propositions and
actions. A modeling rule is a function R : (Φ∪Π)×(N×N)→ {>,⊥}, taking proposition
and time intervals to truth values. �

From the implementation point of view, modeling rules are functions that indicate
whether an atom holds over some video segment. Intuitively, they are the rules used to
determine the meaning of atomic actions and propositions with respect to real-world
data.

As with the labelings for regions, configurations and directions, these functions are not
directly implemented by the module, but are provided externally. For this particular
case, the existing rules are able to determine the truth values of simple statements over
2D images, using only hand tracking; this is, whether a hand is inside some region (for
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pos), if it is located in certain position with respect to the other (for touch), if there is
a clear direction of movement (for δa), etc. In turn, these rules enable the construction
of modelMa, sequence Ŝa and, ultimately, utterance object U (see Definition 4.17). The
process is detailed by Algorithm 4.

Algorithm 4 Transformation of interval segments into utterance objects
1: procedure UtteranceConstruction(L0, . . . , Ln, R)
2: SEQ ← {}
3: for each segmentation list La ∈ (L0, . . . , Ln) do
4: let Ma = (S,R, J·KΦa , J·KΠa) be an empty articulation model of a.
5: let Ŝa = (Sa, T a) be an empty timed articulation sequence of a.
6: for each change interval Ii ∈ L do
7: let Ii−1 and Ii+1 be the static intervals before and after Ii
8: create two states si−1 and si+1 in Ma

9: assert (si−1, si+1) ∈ R in Ma

10: for each atom proposition pa ∈ Φa do
11: if R(pa, Ii−1) then
12: assert pa ∈ Jsi−1KΦa

13: end if
14: if R(pa, Ii+1) then
15: assert pa ∈ Jsi+1KΦa

16: end if
17: end for
18: for each atom action πa ∈ Πa do
19: if R(πa, Ii) then
20: assert πa ∈ J(si−1, si+1)KΠa

21: end if
22: end for
23: append (si−1, si+1) to Ŝa
24: assert Ii ∈ T a((si−1, si+1)) in Ŝa
25: end for
26: SEQ.add(Ŝa)
27: end for
28: return utterance U created from SEQ
29: end procedure

Theorem 5.4 (Modeling Complexity). Creation of the U object takes O(n) time.

Proof. For the n detected change interval, from every articulator, the algorithm:
— adds two vertex to the graph Ma in O(1) time;
— adds an edge to the graph Ma in O(1) time;
— performs a constant number of comparisons, for the members of Π and Φ in O(1)

time;
— performs one insertion to a list Ŝa in O(1) time;
— performs one insertion to a lookup table T a in O(1) time;

thus the complexity is roughly O(n).
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Finally, from Lemma 4.5, utterance labeling takes up to O(2n+ 1) time, thus the overall
complexity remains bounded by O(n).

Algorithm 4, receives a set of interval sequences for n articulators, and a modeling rule R.
For each interval in each sequence, it infers the information on the model by using R to
test, one by one, each of the defined atoms. Simultaneously it builds the set SEQ, which
can be used to generate utterance U in line 28. Also, note that U is well-defined; from
Definition 4.17, it is clear that the set SEQ is the only external requirement to build U ,
thus no further procedures are needed. Figure 5.17 shows a visual representation of the
results.

Figure 5.17: Transformation of interval segments into utterance phonemes.

Figure 5.17 presents the induced utterance object for two interval segmentations. In
the two sequences, each of the intervals is marked with the propositional information
inferred by the given modeling rules. The end result, the utterance object U above,
is time-aligned with interval changes, as it was created from two timed articulation
sequences based on the given segmentation; in essence, the depicted graph corresponds
to the abstract representation of a video-segment, as shown on the bottom of the image.
A simplified representation of the results of both the Division and Modeling modules
together is shown in Figure 5.18.

Once the utterance construction is complete, the resulting graph is passed to the next
module, which will be in charge of analyzing the result by way of formal verification.
The process is explained in the next section.
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Figure 5.18: Example of the different layers processed by an automatic annotation
system

5.1.3 Logic Verification Module

The Logic Verification Module is the one in charge of taking the graph generated by
the Modeling module, in order to verify if a database of PDLSL formulae hold over it.
Broadly, each formula corresponds to the description of either a sign or a number of
phonetic level properties. A diagram showing the place of the module in the framework
is given in Figure 5.19.

Figure 5.19: Block diagram of a generic PDLSL-based SL lexical structure recognition
system

The input of the module is the utterance graph, generated during the modeling phase,
and a database of PDLSL formulae, which is introduced in the next section.

5.1.3.1 Formulae database

The formulae database consists on a list of all the properties that an annotator wants
to find on the video, encoded in PDLSL. From the implementation point of view, the
database is a simple text file, which is interpreted on-the-fly by an internal PDLSL parser.
As such, no specialized tools are needed for its creation, as a simple text editor is sufficient
to generate the file.
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Formulae in the database are assumed to be based on the same formalization primitives
used by the Modeling module (see Subsection 5.1.2.1, p. 110). However, it is noteworthy
to mention that this doesn’t impede the database to contain formulae built upon
other, undefined, primitives; this is a desirable characteristic in situations where future
improvement is expected from the point of view of signal processing. For example,
annotators may add formulae expressing changes in the Non-Manual Features (NMFs),
expecting that in the future there might be a reliable way to recognize these changes
automatically.

By relying on these modular phonetic descriptions, PDLSL can be used to design formulae
representing structures closer to the morphological level. For instance, consider the iconic
production shown in Figure 5.20.

Figure 5.20: An iconic depiction of a thin and long object, and its corresponding
utterance representation.

In the figure, a signer describes an undefined object, characterizing the object’s thickness
with his fingers and outlining its shape with hand movements. Roughly, the whole
utterance conveys the idea of a thin straight edge, representing the qualities of the
depicted entity: a thin long object. Even though the production is not a lexical sign,
it roughly holds a HMH structure in the MHM model (see Chapter 2, Section 2.2.1.4,
p. 29), where two static Holds (H) are separated by a simultaneous Movement (M) of
the hands. Hence, PDLSL can represent this interleaving with a formula of the type
H; 〈M〉H, where each H is also a formula (describing static parameters), and the M is
an action (capturing change parameters). The result is shown in Example 5.1.

Example 5.1 (ICONIC formula).

(pos(R,←,L) ∧ loc(R, HEAD) ∧ cfg(R, CLAMP) ∧ cfg(L, CLAMP) ∧ touch(R,L));

〈←R ∩ →L〉(pos(R,←,L) ∧ cfg(R, CLAMP) ∧ cfg(L, CLAMP) ∧ ¬touch(R,L))

�
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The formula in Example 5.1, called ICONIC for simplicity, was built using the atoms
presented by Definitions 5.7 and 5.8. In the top part, the formula establishes the
information contained in the first H: the hands hold a certain configuration, they are
positioned in front of the head and they are touching. The second line starts with an
action denoting that both hands move, simultaneously, in opposite directions. The final
section of the second line, introduces the result of the aforementioned movement over
the first H: the hands remain in the same relative position, with the same configuration,
but this time they are not touching. With respect to the latter, it is worth to mention
that the atom ¬touch(R,L) was explicitly asserted to avoid implementation ambiguities.
Strictly speaking, the formula could have omitted the aforementioned atom and it would
still be equivalent to the one presented.

The explicit declaration of the hands not touching, arises a peculiar characteristic of
ICONIC: even though it is clear for a human, that separating both hands in opposite
directions implies that they are no longer in contact, an automatic system will not
necessarily have the ability to infer the same information. From here, it is easy to see
that PDLSL is capable of expressing inconsistencies — e.g. the hands separate and then
touch — however this is not an issue, since it is not its role to avoid them. Rather,
formulae consistency must be checked by the human designer upon creation or, ideally,
tested automatically during verification.

Note that the presented formula is not unique: ICONIC could have been described
differently, with different propositions. Also, observe that atoms of different articulators
mix seamlessly within the formula, which is accepted by PDLSL satisfaction rules (see
Definition 4.20, p. 94).

Finally, formulae in the database may also correspond to either lexical signs or other
simpler structures, as long as they are representable in PDLSL. The idea is that, once the
module knows about their existence, it can execute its verification algorithm regardless
of the type of structure the formulae intend to describe. This results in a very flexible
annotation creation process, since it is only necessary to adapt the database, and not
the module itself, to produce different kinds of annotation. A more detailed description
of the final verification process is explained in the next section.

5.1.3.2 Verification Algorithm

The principle of the verification algorithm, is based on the correspondence between
formulae and utterance objects. For instance, let the formula from Example 5.1 be
represented by ICONIC. It is the case that, in utterance object U from Figure 5.20, the
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following equation holds:
U , p02 |= ICONIC (5.1)

where p02 = p0, p1, p2 ∈ U .

Therefore, by observing in which phoneme sequences each formula holds, it may be
possible to determine whether the described property exists over a video segment or not.
The complete verification algorithm is presented below.

Algorithm 5 Verifying PDLSL formulae in utterances
1: procedure UtteranceVerification(U , DB)
2: Gloss ← {}
3: for phoneme pi ∈ U do
4: for formula ϕ ∈ DB do
5: find the largest j such that i ≤ j and
6: if U , pij |= ϕ then
7: Gloss.add((ϕ, pij))
8: end if
9: end for

10: end for
11: return Gloss
12: end procedure

Theorem 5.5 (Verification Complexity). For n interval changes and m formulae in
DB, the algorithm takes O(m · n2) time.

Proof. Assuming line 7 takesO(1) time; the algorithm tests m formulae, in every phoneme
of the U . From Lemma 4.5, we know that 2n+ 1 phonemes are enough to capture all
information in SEQ, thus we have at most O(m ·2n+1). However, by line 5 we know that
the algorithm tries to obtain the largest j such that i ≤ j at every state. Since utterances
are capped to 2n+ 1 phonemes, it is safe to assume that the longest possible j decreases
in 1 on each iteration. Thus, the total number of comparisons can be O(m · (2n+1)(2n+2)

2 )
on the worst case. Simplified, this formula gives us O(m · (2n2 + 3n + 1)), which is
bounded by O(m · n2).

Algorithm 5 takes each phoneme pi ∈ U and tests it against each formulae ϕ ∈ DB,
where DB denotes the PDLSL database. For each pi, it tries to find the longest sequence
pij such that U , pij |= ϕ; this is, the longest video segment where a formula is satisfied
(line 6). If such a sequence exists, it adds it to the proposed gloss, regardless if any other
formula holds in the same sequence; the final proposal is not a unique annotation track,
but rather a series of individual tracks (one for each formula). Figure 5.21 shows an
example.



Chapter 5. Semi-automatic annotation using logic 124

Figure 5.21: Example of a resulting gloss.

In Figure 5.21, two PDLSL formulae describing the LSF signs “to recall” and “past”,
are satisfied in the utterance induced by the video segmentation; this is, equations
U , p02 |= TO RECALLLSF and U , p46 |= PASTLSF hold. Note that Algorithm 5 returns an
annotation track for each formula in DB.

The module generates an editable file, that the user can modify directly by way of an
annotation tool.

5.1.4 Annotation Tool

By thoroughly checking every state, the previously presented verification algorithm tries
to maximize the number of possible hits; however, this process is usually prone to error,
as several factors may mislead the module.

First of all, some of the existing phonemes may be co-articulations (see Chapter 2, Section
2.2.1.5, p. 31), which are indistinguishable from the others in the system. Since the
algorithm is thorough, it will try to find hits in co-articulation phonemes, which may
produce erroneous results. In addition, the noise introduced by tracking or segmentation
errors may also induce the creation of incorrect phonemes, further complicating the
problem. For this reason the final step of the process, shown by Figure 5.22, is simply
the interaction with a human expert, who can modify the generated multi-track file by
way of an annotation tool.
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Figure 5.22: Block diagram of a generic PDLSL-based SL lexical structure recognition
system

In general, the implemented Modeling module generates a file for the ELAN annotation
software. The idea is that the user can edit directly the resulting file in ELAN to obtain
a final gloss, as depicted by Figure 5.23.

Figure 5.23: Example of a resulting gloss.

5.2 Dynamic Architecture Details

The framework introduced in Figure 5.1 (see p. 100), establishes the main development
guidelines for any PDLSL-based semi-automatic annotation system: one interval segmen-
tation phase, one modeling phase and one verification phase. Furthermore, even though
the modules presented in the last section were developed to work over a specific corpus,
the underlying system architecture was designed to be a dynamic framework; this is,
a system able to adapt on-the-fly to different corpora and analysis tools. As such, the
system considers the situations where the modules implementing each phase need to be
swapped: for example, when the tracking technology changes, or if new segmentation
parameters are added. To this end, the system core implements the observer architecture
shown in Figure 5.24.



Chapter 5. Semi-automatic annotation using logic 126

Figure 5.24: Information and control flow in the SL annotation framework

The main idea behind this design, is for the framework to be able to:

— use several tracking tools, depending on the characteristics of the input corpus;
— generate consistent utterance models from any combination of different trackers.

This task is not as direct as it may seem; recall that the Division and Modeling modules,
presented earlier, are heavily dependent on the available tracking information. This
implies that different combinations of tools may result in differing interval segmentations
and, ultimately, utterance models. In addition, not every corpus can be analyzed with
the same automatic tools. As such, the framework has to coordinate the different possible
inputs, in order to ensure that every SL resource will be paired with compatible signal
processing software. This process is entirely done by way of event-triggering: each time
some significant action happens, in any part of the system, a system-wide announce is
sent. This mechanism enables communication between modules, allowing them to act
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appropriately depending on what events they receive. Furthermore, the architecture
provides basic software interfaces for each of the framework’s phases: roughly, it supplies
implementation templates, detailing the inputs and outputs of each phase. With this,
new modules developed to fulfill the tasks of any of the phases are forced to implement
an interface, guaranteeing their compatibility. In turn, this promotes the creation of
self-contained, interchangeable, modules, adapted to different research situations. For
example, during the development phase, a preliminary Kinect-based Division Module was
successfully hooked-up into the system, seamlessly introducing 3D movement information.
No further development of this, or other 3D modules, was pursued; however, the successful
substitution of one of the modules without breaking compatibility, goes on to show the
advantages of adopting this kind of architecture.

The execution process of the architecture is fairly straightforward. At the beginning, a
Start event is fired-up, prompting to load both a corpus resource and a processing tool.
This task corresponds to the Division Module of the framework (see Subsection 5.1.1, p.
100), who loads a video and matches the selection with a compatible tracker. The loading
process generates new events, indicating which selections were made, which can be used
by the Modeling Module (see Subsection 5.1.2, p. 109) to select the appropriate modeling
rules. Similarly, new events are generated so as to prompt the Logic Verification Module
(see Subsection 5.1.3, p. 120) to select or discard database formulae, depending on which
modeling rules are available.

Finally, even though the implementation details of the phases may change, the internal
PDLSL representation remains unchanged, as it is part of the system’s core. In this
regard, the verification process remains largely unchanged, as it is rather the contents of
utterance objects themselves that may affected by the module swapping, and not the
formalism’s rules.

5.3 Chapter conclusions

In this chapter, a PDLSL-based semi-automatic annotation framework was presented.
Broadly, the framework’s architecture is divided into three processing modules: the
Division Module, the Modeling Module, and the Logic Verification Module. Together, they
change a corpus resource into an abstract representation which can be semi-automatically
annotated. More specifically, this chapter presented a concrete implementation of the
system’s modules, designed to analyze the Dicta-Sign corpus with a 2D head-hands
position tracker.
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Briefly, the process works as follows: the Division Module receives an untreated video
from the corpus and obtains the hand tracking information. Afterwards, the module
uses the obtained data to separate each articulation channel into an interleaving chain of
static and change intervals, reflecting video segments where the articulator of interest
either changes or not. To this end, the module analyses the dynamic characteristics of
the hands. The resulting interval chains are passed to the Modeling Module, who uses
a series of predefined modeling rules to transform the chains into a utterance object
(roughly, a directed acyclic graph). Finally, the Logic Verification Module takes the
generated utterance and uses it to search properties in it; each property corresponds to a
PDLSL formula, built by a human annotator. The final result can be edited by humans
to correct the process as needed.

Even though the presented case is specific to Dicta-Sign, the underlying architecture
is designed to enable the implementation of different versions of each of the modules,
adapted to various types of corpora and tracking tools. This also helps to showcase the
power of the formalism behind the implementation, as the chapter presented in detail
how PDLSL primitive sets were restrained to adapt to a real world scenario. In this
regard, some insight was given into how the theoretical specification may differ from
practical application, as purely mechanical problems (mostly related to the quality and
format of the inputs) can easily affect the final results, depending on how each problem
is solved.

The next chapter continues to delve into the contrast between theory and practice, by
presenting some of the results obtained from using this implementation to search for
PDLSL-defined properties in video. In parallel, some of the formal language expressiveness
issues will be addressed, alongside some discussion about how this can affect future
computer-aided SL linguistic research.



Chapter 6

PDLSL in Sign Language
Research

This chapter presents some experimental results, obtained with the semi-automatic
Sign Language (SL) annotation framework introduced in the previous chapter. During
the experimentation phase, some technical adaptations to the original Propositional
Dynamic Logic for Sign Language (PDLSL) language were required, in order to ensure
the modularity of formulae; this is, the formalism was extended to provide each formula
with the capacity of being reused as part of some other formula. Also, some changes
were required to account for undefined atoms: this is, propositions and actions used
in the formulae database but not in the represented by the graph model. Finally, the
chapter closes with some discussion about the expressiveness of PDLSL, compared to
existing transcription languages.

Broadly, the next section presents some technical modifications to the PDLSL language, in
an effort to simplify its use in linguistic research; although these are effectively theoretical,
they result on, arguably, more comprehensible, reusable description formulae. Afterwards,
the following section presents some experiments performed with the modified logic, as
well as the obtained results. Finally, the chapter ends with a brief comparison between
PDLSL and other description formalisms, intended to provide an empirical insight on
representativity issues, without lingering on stronger properties such as logic decidability.

6.1 Extending PDLSL definitions

The original PDLSL language, as presented in Chapter 4 (see Section 4.2, p. 83), enables
experts to codify SL phoneme sequences by way of logic formulae; however, PDLSL

129
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provides no method to represent modularity. As a result, each time a PDLSL formula
is defined it has to be completely rewritten, even in cases when it shares multiple
sub-formulae with other database members. Additionally, there are instances where
it is useful to have the capacity of predetermining the truth value of a formula, by
modifying atoms’ valuation. This is useful in situations when an annotator is testing
different hypotheses on a corpus, as it enables him or her to assume something is either
true or false, and observe its effects; for instance, he or she may want to know what
happens when every hand configuration atom is valuated as true, in systems where hand
configurations are not recognizable. Regardless of the application, both cases can be
solved by adding an assignment operator to the language (=), that can be used to name
formulae and assign truth values. The extended syntax is presented in Definition 6.1.

Definition 6.1 (Extended PDLSL). Let Λ : Eϕ → PDLSL be a map taking Eϕ to PDLSL

formulae.

Eϕ ::= ϕ | ¬Eϕ | Eϕ ∧ Eϕ | Eϕ = > | Eϕ = ⊥ | η = Eϕ | η | λ η.(Eϕ)

where ϕ ∈ PDLSL and η ∈ NAMES. �

In addition to assignments, Definition 6.1 introduces lambda expressions [Barendsen 1994],
to enable variable binding of atomic proposition and action parameters; as such, lambdas
enable the description of groups of very similar formulae, for verification purposes.
Note that the satisfaction rules for Eϕ remain essentially unchanged: assignments are
interpreted as PDLSL formulae, as shown by Definition 6.2.

Definition 6.2 (Extended PDLSLsemantics). Recall the mapping Λ from Definition 6.1.
The extended PDLSL formulae are defined recursively by Λ as follows:

— Λ(ϕ) ≡ ϕ.
— Λ(¬Eϕ) ≡ ¬Λ(Eϕ).
— Λ(Eϕ ∧ Eϕ) ≡ Λ(Eϕ) ∧ Λ(Eϕ).
— Λ(Eϕ = >) ≡ Λ(Eϕ)>, denoting that every atom in Λ(Eϕ) is substituted by >.
— Λ(Eϕ = ⊥) ≡ Λ(Eϕ)⊥, denoting that every atom in Λ(Eϕ) is substituted by ⊥.
— for η Eϕ, if Λ(Eϕ) is defined, then Λ(η = Eϕ) ≡ Λ(Eϕ).
— if Λ(η = Eϕ) is defined, then Λ(η) ≡ Λ(η = Eϕ).
— For Λ(λ η.(Eϕ)), if Λ(Eϕ) ∈PDLSL is a formula where at least one of the atoms

receives η as a parameter, denoted as Λ(Eϕ)η, and every η parameter in Λ(Eϕ)η is
defined over the same domain D, then Λ(λ η.(Eϕ)) is equivalent to

∨
d∈D

Λ(Eϕ)d,
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where Λ(Eϕ)d is the formula Λ(Eϕ)η, with every occurrence of η substituted by a
member of the parameter’s domain. If a Λ(Eϕ)η doesn’t exist but Λ(Eϕ) is defined,
then Λ(λ η.(Eϕ)) ≡ Λ(Eϕ). Otherwise, it is not defined.

Finally, for some utterance U = (P, TU , J·KU ,SEQ) satisfaction is given below:

U , pij |= Eϕ ⇐⇒ Λ(Eϕ) is defined, and U , pij |= Λ(Eϕ)

�

The presented extensions, improve the annotators’ capacity to express succinct properties.
For a simple example, observe the sign comparison shown by Figure 6.1.

SCREENLSF DRIVELSF

COMMON STRUCTURE

Figure 6.1: Comparison of signs SCREENLSF and DRIVELSF sharing the same underlying
structure. 1

Figure 6.1 shows two French Sign Language (LSF) signs: SCREENLSF and DRIVELSF. Both
signs share the same underlying structure, characterized by both hands holding the same
morphological configuration, while being spatially positioned opposite from one another.
An annotator searching for every sign with the same underlying structure, where only
hand configurations differ, can use a lambda expression to build a formula like the one
presented in Example 6.1.

1. Corpus images obtained from Dicta-Sign project [Matthes 2012].
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Example 6.1 (opposition lambda expression).

opposition = λc.(pos(R,←,L) ∧ cfg(R, c) ∧ cfg(L, c))

where the domain of c is CFGR ∩ CFGL. �

The formula can be modularized by way of the assignment operator, which enable the
separation of opposition as depicted in Example 6.2.

Example 6.2 (modular opposition lambda expression).

hands config(c) = cfg(R, c) ∧ cfg(L, c) (6.1)

opposition = λc.(pos(R,←,L) ∧ hands config(c)) (6.2)

where the domain of c is CFGR ∩ CFGL. �

In Example 6.2, pos(R,←,L) indicates that R lies in direction ← with respect to L.
Also, note that cfg(R, c) and cfg(L, c) denote that articulators R and L, respectively,
hold some configuration c; however, observe that, if they appear by themselves, these
atoms are only defined if there exists a unique c ∈ CFGR ∩ CFGL. By way of the
lambda operator, c gains a different meaning; in formula 6.2, the expression implies that
c ≡ CFGR ∩ CFGL, thus indicating that opposition contains a sub-formula for every
possible configuration common to both hands.

From the implementation point of view, lambdas can provide “syntactic sugar” to simplify
formulae definitions. For example, by using opposition it may be possible to define
signs SCREENLSF and DRIVELSF like shown in Example 6.3.

Example 6.3 (opposition-derived signs).

SCREENLSF = opposition(L FORM)

DRIVELSF = opposition(FIST FORM)

where L FORM, FIST FORM ∈ CFGR ∩ CFGL. �

In the example, L FORM denotes the morphological configuration of the hand where the
thumb and the index fingers are held orthogonally (see Figure 6.1). Similarly, FIST FORM

denotes the configuration where the hand forms a fist. In general, opposition(L FORM)
and opposition(FIST FORM) are two new formulae, interpreted by the system as being
sub-formulae in opposition corresponding to configurations L FORM and FIST FORM,
respectively.



Chapter 6. PDLSL in Sign Language Research 133

Finally, assignments can help the system to better cope with situations where not every
atom is present on an automatically generated utterance. Observe the formulae in
Example 6.4, for the case where hand configurations are not recognizable.

Example 6.4 (opposition expression with a predefined valuation).

hands config(c) = λc.(cfg(R, c) ∧ cfg(L, c)) = > (6.3)

opposition = λc.(pos(R,←,L) ∧ hands config(c)) (6.4)

where the domain of c is CFGR ∩ CFGL. �

Since the value of hand configuration atoms is not calculated during the creation of the
utterance object, it is implicit by PDLSL satisfaction rules that, regardless the value
of pos(R,←,L), opposition will always be false, since hands config(c) is falsified
by default. However, if the value of hands config(c) is overridden to become true
(formula 6.3), then satisfaction of opposition will depend on the value of pos(R,←,L),
an outcome better adapted to the given situation. What’s more, the definition of
opposition itself didn’t changed, as the override was done in one if the sub-formulae.

6.2 Experimental Results

By adapting the semi-automatic annotation framework (see Chapter 3, p. 41) to interpret
the extended PDLSL, it was possible to obtain some results over a set of simple PDLSL

formulae. In particular, two specific cases were tested:

— Verification over purely static, or “True”, Hold intervals: in which utterance
segments are a strict interleaving of Holds and Movements (static and change
phonemes).

— Verification over non-purely static Hold intervals: in which every utterance
segment can either be interpreted as a Hold or as a Movement, depending on
which articulators the formula refers to (static and change information is mixed
in each phoneme).

The idea of this separation, was to observe how different interpretations of a utterance
affected the final gloss. For example, consider the first case, where Holds are purely
static phonemes. In this scenario, each “True” Hold corresponds to time intervals where
no change was detected in any of the articulation channels. An example is shown in
Figure 6.2.

In the figure, the only time intervals considered “True” Holds were the ones where
no articulator was moving or changing in any way; intervals where one of the hands
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Figure 6.2: First Case: Considering only “True” Holds.

was moving and the other was static, were considered as Movements. The natural
result of this classification, is that any interval between two purely static Holds will
always be a Movement, inducing the strict interleaving previously mentioned. With this
configuration, verification is prone to loose static data, since PDLSL formulae cannot
be tested for satisfaction starting from any Movement interval — in accordance to the
logic’s semantics (see Chapter 3, Section 4.3, p. 94) — even though they may overlap
with fixed articulators. For instance, in the figure, it is not possible to know anything
about the left hand during any of the Movement intervals: the verification process can
only test for static information on either a previous or subsequent “True” Hold, and it
can only test for change atoms in the Movement itself.

It is important to note that the minimums subdivision presented previously (see Chapter
5, Subsection 5.1.1, p. 105) may induce Holds in this model. Recall from the text that
the subdivision algorithm separates movement intervals with artificial Holds, which are
inserted whenever it finds a speed minimum. A “True” Hold may appear if all articulators
show simultaneous speed minimums, creating a static interval on every channel at that
specific moment and, thus, being considered as a Hold globally. Nonetheless, even in
this case, a strict interleaving of Holds and Movements is always respected, as implied
by Theorems 5.2 and 5.3.

Contrary to the first testing case, the second doesn’t display a strict interleaving of Holds
and Movements: it considers that a Hold from the right hand can occur simultaneously
with a Movement of the left, thus assuming that every phoneme can be of either type
or a mixture of both. In this sense, even phonemes where all articulators change
simultaneously — which in the first case would have been necessarily Movements — are
considered as potential Holds and, as such, may be used to check satisfaction of static
formulae. An example is shown in Figure 6.3.

In the figure, each utterance phoneme is considered as possibly having mixed information:
this is, there is no global Hold-Movement sequence, just a chain of intervals where
changes could exist or not. In this manner, every phoneme can be tested equally, and no
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Figure 6.3: Second Case: Considering Holds and Movements simultaneously.

information whatsoever should be lost by the verification algorithm. Strictly speaking,
individual articulation sequences remain the same as in the first case, the only difference
being that the system avoids deciding globally whether an interval is of one type or other.
As a result, the verification algorithm can decide on the fly if it considers a phoneme as
a Movement or a Hold, depending on the formula being tested.

One way to think about the difference between the two cases, is that the first case is
very coarse-grained, as it decides if a utterance phoneme is either a Hold or a Movement
by looking at the state of every articulator, globally, during its associated time-interval;
in contrast, the second case is more fine-grained, as it considers phonemes to be the
aggregation of varying quantities of individual articulatory information, which can be
used to change their type depending on formulae.

Either way, both cases were tested with the same set of formulae; a small PDLSL

description database, consisting of the three descriptions presented below:

head anchor. λs.(loc(s, HEAD); 〈moves〉(head active)). Either of the hands is in the
head region when some change occurs and, in the end, the head location remains
active. Note that skipa denotes any action in Πa, as indicated by Definition 4.10
(p. 83). The sub-formulae are defined below:
— moves = skipR ∪ skipL

— head active = loc(R, HEAD) ∨ loc(L, HEAD)

tap. λs.(λw.(no touch(s, w); 〈moves〉(touch(s, w); 〈moves〉(no touch(s, w)))). Either
of the hands moves until they touch and, from there, either of them moves until
they are not touching anymore. The no touch sub-formula is defined as follows:
— no touch(s, w) = ¬touch(s, w)

opposition. λc.(λs.(λw.(opposed hands(s, w) ∧ no touch(s, w) ∧ hands config(c)))).
Hands are opposite to each other, holding the same configuration. Note that
hands config(c) is the one defined in equation 6.3 and:
— opposed hands(s, w) = pos(s,←, w)
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The formulae use lambda expressions to denote all possible combinations of hand-related
atomic propositions. For instance, the formula for tap considers cases where either of
the hands articulated the contact or separation.

The tests where performed over a single Dicta-Sign video with the following characteristics:

— the video had a duration of 11409 frames at 25 fps (7 minutes 36 seconds);
— it was manually annotated with 244 lexical glosses, where 12 were marked as

“indecipherable” by the annotator;
— the task consisted of performing a LSF narration of a situation contrasting

“Expectation vs. Reality”.

To measure the hit ratio of the system, a human counted the number of apparitions in
the video of the properties described above. Table 6.1 shows the observed quantities.

ϕ oppos. tap h. anch.
Total 76 33 74

Table 6.1: Manually annotated apparitions of property formulae on one video.

The quantities of Table 6.1 were contrasted with the output of the Logic Verification
Module (see Chapter 5, Subsection 5.1.3, p. 120) for each verification case. The results
are analyzed in the next sections.

6.2.1 Verification over purely static Hold phonemes

For the case where only completely static time intervals are considered Holds, the
execution of the verification algorithm reported the results shown in Table 6.2.

ϕ oppos. tap h. anch.
Total 164 79 138

Table 6.2: Total reported hits over purely static phonemes on one video.

The table above, shows the total number of times each of the formulae were satisfied on
the utterance representing the video. When manually comparing these results, with the
human observations counted in Table 6.1, it was possible to generate the table presented
in Figure 6.3.

In Figure 6.3, in order to determine the quantity of hits and misses, each reported gloss
interval was compared with the human observations: if an overlap existed, it was counted
as a hit. The human observations that weren’t hit by the automatic gloss, were counted
as misses. Finally, the last column of the table corresponds to false positives, i.e reported
detections that didn’t overlap with any human observation.
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ϕ
Human Obs. False+Hit Miss

opposition 67 9 97
tap 25 8 54

h. anchor 44 30 94

Table 6.3: Per-formula summary of the total number of observations found, missed
and false positives for the first verification case.

Broadly, the results show a high recognition rate for opposition and tap (few in-
stances were missed), but also a high quantity of false positives. Some of the erroneous
opposition false positives were found in parts of the video where the signer had his arms
either crossed, or resting over his knees; this is, even though the hands were correctly
positioned to satisfy the formula, the video segment didn’t depict signing. In other
instances, it was observed that some of the false positives were due to tracking error or
erroneous interval separation: for instance, in some cases Movements were the product
of tracking noise which, when subdivided into minimums (see Algorithm 2, p. 105),
induced the creation of “empty” segments (meaningless utterance states). This situation
produced sequences of valid Holds, separated by sub-sequences of empty Holds and
Movements; corresponding to changes induced by tracking noise.

Finally, during the algorithm’s execution, a global articulation model (see Definition
4.13, p. 85) was inferred from the detected Holds and Movements. The result is shown
in Figure 6.4.

The graph in Figure 6.4 displays a total amount of 205 states, representing all the static
phonemes that were calculated during utterance creation. Overall, each state corresponds
to a Hold phoneme that the signer depicted throughout the video sequence. Holds are
connected between each other by 739 edges, representing all detected Movements in the
video, produced by any of the articulators. From the annotation results, it is safe to
assume that some of the depicted Movements were induced by tracking noise. Similarly,
some of the Holds necessarily correspond to meaningless postures (like when the signer
crossed his arms), or may be the product of small changes induced either by noise or by
the choice of segmentation thresholds. All the same, the diagram goes on to show that,
globally, the number of complex interactions is very high, thus producing a large number
of empty Holds. In this view, verification based on non-purely static Hold phonemes may
represent an advantage; in theory, it may provide a way to avoid verification over the
empty Holds, based on ignoring information that could had been induced by tracking or
thresholding noise.
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Figure 6.4: Depiction of the inferred articulation model from one video.

6.2.2 Verification over non-purely static Hold phonemes

The verification results for the case where any phoneme in the utterance can be considered
a Hold, are reported in Table 6.4.

ϕ oppos. tap h. anch.
Total 390 48 84

Table 6.4: Total reported hits over mixed phonemes on one video.

The most salient characteristic of these results with respect to the previous case, comes
from the quantity of glosses that the algorithm produced. The quantities in Table 6.4
show that, as the volume of possible Holds increased, the number of reported hits for
opposition exploded. This was to be expected, since opposition is verified in Holds
alone: in this case, as any phoneme can be considered a Hold, the quantity of testable
phonemes increased, explaining the larger number false positives. On the other hand, for
modal formulae, the overall number of reported positives decreased. In either case, the
overall quantity of good hits remained stable, as shown by Table 6.5.

The drastic reduction of false positives in formulae with modal properties may seem
counter-intuitive at first glance. However, a deeper analysis revealed that the algorithm
effectively managed to discriminate and ignore some of the empty Holds during the
verification process, something that was not possible on the first verification case.
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ϕ
Human Obs. False+Hit Miss

opposition 71 5 314
tap 31 2 15

h. anchor 38 36 10

Table 6.5: Per-formula summary of the total number of observations found, missed
and false positives for the second verification case.

For example, suppose that there are two Holds h0, h1, connected by a movement m0, such
that: U , h0,m0, h1 |= head anchor. More precisely, suppose that U , h0 |= loc(R, HEAD)
and that U , h0,m0, h1 |= 〈skipR〉(loc(R, HEAD)), meaning that the right hand was in the
head, moved, and ended up in the head again. If the left hand introduces tracking noise
(n0) between the two Holds then the sequence gets subdivided either as h0, n0, h

′
0,m0, h1

or h0,m0, h
′
0, n0, h1. For the first articulation case, h′0 is an empty state where U , h′0 |=

loc(R, HEAD), thus either U , h′0,m0, h1 |= head anchor or U , h0, n0, h
′
0 |= head anchor

are valid. If more noise is introduced between Holds, more false positives are detected.
However, on the second case, the same scenario would render a single result: by the
PDLSL semantics, the formulae would be verified over the articulation sequence of the
right hand, where no noise was introduced. Moreover, all h0, n0, m1 and h1 are mapped
to a single transition in the articulation sequence of R (see Definition 4.18, p. 4.18), thus
guaranteeing that every gloss produced from any of those phonemes is the same; hence,
the quantity of false positives is reduced. The comparison of the results from both cases,
is summarized in Table 6.6.

ϕ Human Obs. 1st Case 2nd Case
Hit Miss False+ Hit Miss False+

opposition 76 67 9 97 71 5 314
tap 33 25 8 54 31 2 15

h. anchor 74 44 30 94 38 36 10

Table 6.6: Global per-formula summary of the total number of the obtained results.

The table shows that, in terms of overall hits, there is no real advantage from one case
to the other; in fact, it suggests that some formulae could benefit from being verified
over purely static Hold sequences, whereas some others would be better off in non-purely
static sequences. However, due to the small size of the testing samples, it is not possible
to provide strong claims on the issue without further testing both over larger corpora
and with more pertinent databases. Regarding the latter, in the next section some final
reflections are given about PDLSL expressiveness, and on how property databases can be
created automatically from existing SL resources.
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6.3 PDLSL and other SL notations

The simple database presented in the previous section, the one used to test the semi-
automatic verification framework, was created manually; a human directly wrote PDLSL

formulae from corpus observations. However, for the most part, this is not a straight-
forward task. For users unfamiliar with formal logics, building formulae like the ones
proposed can be an issue, as they require a certain level of familiarity and experience.
In addition, as presented in previous chapters, several SL representation projects have
been developed over the years, permitting the creation of several annotation resources
that are still available to this day. For these reason, it might be important to establish
a correspondence between PDLSL and other existing representation formalisms as this
could:

— enable familiarization of the users towards PDLSL; and,
— provide information on how to convert one formalism into the others, permitting

the automatic creation of PDLSL databases from existing resources.

To this end, in this the next paragraphs some comparisons between existing representation
languages are given, providing a little insight on how they relate to PDLSL. However,
the reader should know that the information provided by this section is by no means
thorough; it is not intended to give construction recipes, but rather to measure informally
how such a recipe may be created for different formalisms.

6.3.1 Synthesis languages

As reviewed in Chapter 3, the domain of SL synthesis usually requires sign representation
formalisms (see Subsection 3.2.1, p. 51), in order to indicate their systems how to execute
a sign. As mentioned in the aforementioned Chapter, these notations tend to be very
geometric-oriented, as they have to be fairly specific about movement and articulator
positioning. Because of this, some especial considerations have to be taken in account
if one is to transform such descriptions into PDLSL formulae. In this subsection, some
of these considerations are addressed by analyzing one of these notations in particular:
ZeBeDee.

6.3.1.1 ZeBeDee

ZeBeDee is a SL representation notation, oriented towards language synthesis (see
Chapter 3, Subsection 3.2.1.2, p. 54). It was developed to describe SL lexical units
by way of geometric constraints and contextual dependencies: roughly, the language
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permits the representation of spatiotemporal relationships — between articulators or
with space locations — instead of parametric characterizations, resulting in highly
reusable descriptions that are neither over-specified nor under-specified. The temporal
context is established by way of time-interval sequences, inspired by the phonetic model
by [Johnson 2011]. It is usually used in conjunction with AZee, which provides stronger
expressive capabilities to the language, enabling higher level descriptions (see Chapter 3,
Subsection 3.2.1.3, p. 54).

Space in ZeBeDee is of the utmost importance. As such, the formalism defines a three
dimensional space around the signer, where geometrical descriptions can be provided in
terms of points and vectors. As such, it is by way of spatial locations that an annotator
can specify articulation places, not only on the space around the signer but also to
name corporal regions; for this, ZeBeDee provides the operation Place @P at K, which
assigns a name of articulation @P to a geometrical object K.

In contrast, PDLSL defines space coordinates implicitly, as they are never specifically
named in the language, but rather by the defined primitives. PDLSL also establishes
a three dimensional coordinate space (ΨSL), but it makes a clear separation between
its members and their meaning, limiting the introduction of the latter to formulae. As
an example, consider the set LOCa, which identifies locations for an articulator a as
members of NAMES and not coordinates; from Definition 4.4, the link between names
and location coordinates is given by the function C : 2ΨSL → NAMES, which is defined
for a name in NAMES only if there is a coordinate associated to it. With this in
mind, PDLSL can interpret Place @P at K as “define @P in C such that C(@P) = K and
K ∈ ΨSL”.

With respect to the name of corporal places, ZeBeDee takes as main reference both body
sites and parts of the signer’s skeleton. The first ones, surface body locations that the
signer can touch, are denoted by the symbol @, and provide regions such as the sternum
(@ST) and the like. In PDLSL, this abstraction corresponds directly to the members of
the set BODY, and thus @St can be read as “ST ∈ BODY”.

For the skeleton, ZeBeDee names every relevant bone (segment) individually, from the
points of the fingers to the torso. In addition, the language provides a nomenclature
for the right (r), left (r), dominant (s) and non-dominant (w) sides: for example, the
dominant arm can be denoted as !arm(s), where the character “!” indicates that arm is
part of the skeleton. Note that !arm(s) can be the same segment as !arm(r), depending
how the signer is considered. In addition, ZeBeDee links body sites with skeleton
segments; roughly, sites correspond to the surface of some segment.



Chapter 6. PDLSL in Sign Language Research 142

PDLSL do not give a direct representation for ZeBeDee’s skeleton as is, specially because
ZeBeDee does a semantic separation between the skeleton and the surface; however,
it does provide the basic notion, by way of the set ART . Recall from Definition 4.4
that the set LOC is created by pairing articulators in ART to both named geometrical
locations and members of BODY (even though ART ⊂ BODY). Then again, these
pairings are not defined by the language but by the designer, therefore as long as the
skeleton parts are in ART , the semantic separation can be implicitly established by
LOC.

ZeBeDee uses the previously explained definitions to create Holds and Movements (for the
authors key postures and transitions). In particular, Holds differentiate from Movements
by the nature of their respective parametric informations. For PDLSL, this corresponds
to the members of the sets Π and Φ; recall that Π contains information about change
(Movements) and Φ about static postures (Holds). In this regard, for both formalisms
would seem to be compatible, since both treat statements as predicates; Chapter 5
provides more information about PDLSL in this regard. Nonetheless, as what happens
with locations, PDLSL separates the semantics of the predicate from itself, and thus
relies on the implementation of modeling rules (see Definition 5.9, p. 117) to provide
meaning. For this reason, ultimately any symbol in either atom set can represent any
ZeBeDee statement, as long as there exist a modeling rule defined in terms of ART ,
BODY, LOC over the coordinate space ΨSL.

Regarding temporal structure, by design ZeBeDee can express sequences of Holds and
Movements by grouping parameters into two structures: Keypostures and Transitions,
respectively. These are built upon temporal notions such as time duration, which is not
directly built into PDLSL; the language is capable of expressing sequences (see Definition
4.12, p. 84), but it doesn’t consider duration. Recall that, to model corpora, it was
required to define time-stamping functions for articulation sequences (see Definition 4.15,
p. 87). Because of this, in order to introduce time to a formula, it is necessary to define
duration as a statement, expressible in terms of atoms: an atom duration can be added
to the sets Φ and Π, so as to assert inside formulae how much time a phoneme lasts.
However, the reader should be aware that this entails the creation of modeling rules to
define the meaning of time, just as it was done with space (see Definition 4.3, p. 80).

Finally, ZeBeDee provides a series of auxiliary tools like macros and loops, geared
towards improving the experience of using the language rather than SL itself. There is
no clear way to establish correspondence between these additional structures and PDLSL;
nonetheless, as long as their final results are expressible in ZeBeDee’s primitive types, it
should be possible to encode the same information as PDLSL formulae.
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To sum things up, a ZeBeDee description can be converted into a PDLSL formula by
following the pattern presented below:

1. for each Keyposture, transform the contained information into a non-modal PDLSL

formula;

2. for each Transition, transform the contained information into a ASL action formula
(see Definition 4.11, p, 84);

3. combine the results of this transformations into a modal PDLSL formula, respecting
the sequence defined by the ZeBeDee description.

From the previous paragraphs, it has been argued that there is a straightforward
correspondence between PDLSL terms, and the information described by Keypostures
and Transitions. In addition, ZeBeDee is already well adapted to be parsed by way of
a computer system: accordingly, the entire transformation process roughly consists of
“unfolding” ZeBeDee descriptions into PDLSL formulae, which can be done automatically.
The situation is slightly different of what would happen with SL transcription notations,
as these are less computer-friendly than ZeBeDee, and define parameters in a more
abstract manner, as explained in the next section.

6.3.2 Transcription languages

More directly related to linguistic research, other representation notations are less
concerned on geometrical accuracy, but rather on how to avoid information loss in SL
transcription (see Chapter 3, Section 3.1, p. 42). As such, these transcription-oriented
notations tend to be very symbolic, and rely on human interpretation to decode their
information. Here, one notation in particular is compared to PDLSL: the Hamburg
Notation System (HamNoSys).

6.3.2.1 HamNoSys

HamNoSys is a transcription notation developed to represent SL resources in written
form (see Chapter 3, Subsection 3.1.2 p. 44). In general, HamNoSys captures signs’
features by providing an initial parametric posture and a sequence of actions affecting
said posture. To this end, the language provides a series of symbols representing places
of articulation, hand configurations, orientation and Non-Manual Features (NMFs).

PDLSL and HamNoSys share the same basic principle; just as HamNoSys, the logic
permits establishing a departure posture and denoting modifications over it. However,
unlike HamNoSys, modal PDLSL formulae explicitly express how the resulting posture
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should look (posture; [action](result)), whereas HamNoSys actions’ results are left im-
plicit. Mainly, this is because the semantics of HamNoSys symbols are broader than
those defined in PDLSL: they contain more information than a PDLSL atom.

For example, observe the action ↓R∈ ΠR, defined for the study of 2D corpora. The
meaning of the action is linked to a phoneme in a utterance graph (see Definition 4.17),
where the y position of the right hand decreases monotonically while the x position
remains unchanged. Further information about the right hand has to be asserted
elsewhere, with other atoms. In contrast, the HamNoSys symbol implicitly accounts
for the hand’s location, position and, if a concatenation of symbols exist, even the path
it follows.

As a result, in order to be able to transform HamNoSys strings into PDLSL formulae,
a mechanism to calculate postures by the successive application of actions is required.
This hints to the development of a PDLSL calculus, based on morphological rules about
the movement of the human body. Otherwise, the alternative is to delve into the creation
of thorough articulation models in the spirit of the one presented on Figure 6.4; in this
case, the idea would be to interpret the initial HamNoSys posture, find it in a graph
representing an articulation model and, from there, determine the resulting state by the
application of the specified actions. Once the end state is found, the resulting posture
can be encoded as a PDLSL formula.

With respect to the remaining symbols, the transformation is pretty straightforward. As
with ZeBeDee, HamNoSys defines a coordinate system akin to ΨSL in PDLSL. From here,
the interpretation of language statements such as orientation or location, can be defined
by way of the PDLSL primitive mappings and model rules. Finally, the definition of the
members of sets BODY, ART and CFG is less strict than with ZeBeDee, permitting
the use of broader labels for their definition; as a matter of fact, the contents of these
sets could even be denoted directly by HamNoSys symbols, as they are considered in
NAMES by definition. In this regard, the only real issue comes from calculating the
expected effects of actions which, as indicated, is usually a task performed by humans.

6.4 Chapter conclusion

In this chapter, an extension to the PDLSL was presented, providing a way to work with
modular formulae during semi-automatic annotation tasks. The extension was used to
build a simple PDLSL database which, in turn, was used to generate some practical
results over the annotation framework from Chapter 5 (p. 99). In the final section, a
brief analysis comparing the expressiveness of PDLSL against two different SL written
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notations is given; the main objective, is to show how existing SL resources could be
turned into PDLSL representations, simplifying the work of building formulae databases.

Broadly, the results presented in this chapter highlight the possible pitfalls that PDLSL

may encounter when applied to semi-automatic annotation. First of all, the formal
language had to be extended for it to adapt to the chaotic conditions that formulae
might find in practice (namely, lack of data). This was paired with a comparison of
how two varying interpretations of formulae can render different results in practice, as
showcased by the two verification cases in Section 6.2. The insights gained from the
examples, have helped shaping the semantics of the formal language, and opened future
research possibilities based on the obtained results.



Chapter 6. PDLSL in Sign Language Research 146



Chapter 7

Conclusions and Perspectives

This present work has introduced a formal representation for Sign Language (SL) phonol-
ogy, oriented towards the development of semi-automatic annotation tasks. In particular,
the proposed formalism was developed to help solving some of the common problems
existing in computer-based SL research, notably:

— the lack of a standard written representation for SL corpora, which forces automatic
systems to work directly with raw data (such as video images);

— the heterogeneity of corpus-data, which impedes the creation of large, uniform,
language information repositories, thus curbing the effectiveness of machine-
learning algorithms and the like; and,

— the difficulty to systematically annotate video information, taking into account
the variability of annotation tasks and the limited availability of SL experts to
perform and correct them.

In the next paragraphs, a brief analysis is given on how the Propositional Dynamic Logic
for Sign Language (PDLSL), the proposed representation formalism, contributes to solve
the above issues, alongside some perspectives of future work.

7.1 On SL corpus representation

Regarding SL representation, PDLSL provides two basic abstractions to encode SL
information: logic formulae (to represent SL phonetic-phonological interactions) and
graph-based utterances (to symbolize corpora). Both of them are closely related to
previously existing transcription efforts, with the difference that they center on flexibility:
they permit the creation of new symbols as a core feature of the language, so as to adapt
to any use case in research.

147
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With respect to corpus representation, PDLSL contributes to reduce heterogeneity by
permitting the transformation of SL corpora into a well-defined graph utterances, as
shown in Chapter 5 (see p. 109). Once the aforementioned transformation is done,
further analysis can be executed directly over the resulting graph, without resorting to
further processing over the original data; this means that if several corpora, with different
technologies, are represented under the same PDLSL primitives, then any algorithm
designed to analyze one of them will also work on the others. As a result, the process
can potentially increase the quantity of exploitable data, regardless of the origin of each
corpus.

However, there are heterogeneity-related limitations to this process. For instance, the
process presented in Chapter 5, showcasing the formalization of a 2D corpus, still relies
on specialized tools to generate the graph (in this case, a two-dimensional hand position
tracker). If the corpus would have had motion capture data, the same process would have
been performed by a different algorithm, adapted to interpret information as needed.
Despite this, when applied to recognition tasks, PDLSL presents an advantage with
respect to other methods: heterogeneity is only an issue before any linguistic analysis
takes place. In contrast, existing sign recognition efforts have to deal with the problem
during the analysis (see Chapter 3, p. 56), limiting the application of their methods to
the specific corpus for which they were created.

The same situation goes to shows how PDLSL contributes to avoid a common problem,
linked to the lack of a standard written representation: recognition algorithms don’t need
to work on raw data, since utterance objects already represent the information contained
in the video. In addition, these graphs are more expressive than transcription languages
(see 6 p. 140), as they are unbounded on the quantity of information they contain.

On the other hand, unbounded information may also prove to be a disadvantage in
some cases; as explained in 6, the granularity of information may affect the results of
verification in recognition tasks, resulting in either too many false positives or no hits at
all. These problems, called underspecification and overspecification in classical formal
methods [Bergstra 1991], oblige annotators to develop adequate rules for their use case,
which is not always evident and may be subject to trial and error.

7.1.1 Perspectives

From a theoretical standpoint, the most natural path for future PDLSL research leads
towards the analysis of articulation models; this is, the underlying structures used to
produce SL utterances, as defined in Chapter 4 (see Definition 4.13 p. 85). Contrary to
utterance objects, which represent only specific instances of language use, articulation
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models hold generalizations about the SL of interest, which makes them useful in contexts
beyond annotation.

Broadly, articulation models are interesting in the sense that they may contain the basic
generation rules for any SL production. Recall from Chapter 2 that SLs from different
regions tend to be unique; this implies that each SL has different sets of valid parametric
postures, arranged by distinct combination patterns. This would indicate that, together,
all the articulation models of a single SL should be characteristic of said language or, at
least, of its linguistic family; however, PDLSL doesn’t yet define a way to unify these
models consistently. For this reason, it may be worthy to explore how various articulation
models fit together into a single structure, as it has potential applications in areas such
as SL synthesis or SL recognition. For example, it may provide more accurate generation
models (useful in synthesis), establish proximity measures between different SLs (useful
for low-resource Natural Language Processing (NLP)) and help in the identification of
patterns pertaining to linguistic phenomena (useful for recognition). They may also help
to develop a formal calculus for PDLSL, grounded on the specific properties derived from
a global articulation model.

Additionally, the current state of PDLSL provides a better starting point than before
for the exploration of articulation models: the implementation of the semi-automatic
annotation framework, has shown the potential that PDLSL-based systems have to infer
articulation models from data (see Figure 6.4, p. 138), opening the door to new measures
akin to those used to calculate phoneme frequencies in vocal languages.

7.2 On PDLSL-based semi-automatic annotation

From the point of view of corpus annotation, Chapter 5 presented the implementation
of a semi-automatic annotation framework, based on the principles introduced by the
PDLSL. The proposed system, provides a general architecture, representing the entire
process from transforming a raw corpus video into an abstract representation, to the
generation of a gloss proposal that can be edited by a human expert. In particular, the
described system was developed to annotate Dicta-Sign corpus, using not only video
data but also the results of a 2D head-hand tracker.

Notably, the annotation process is based on a database of PDLSL formulae, describing
which properties are to be searched for in the graph representation of each corpus video.
The proposed algorithm, enables the automation of the annotation process, since the
same database can be used seamlessly to treat different corpus videos, as long as their
graph representation remains consistent. In this way, annotators can simplify the overall
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process by defining a single database that they can use repeatedly for each new video.
Still, this process also shows some limitations.

The principal limitation, comes from the formulae contained in the database: they
are affected by similar overspecification issues like the ones mentioned in the previous
section. Recall from Chapter 4 that PDLSL formulae are designed to be broad; as a result,
PDLSL establishes no standards for annotation, leaving the work in the hands of human
annotators. The complication comes from the fact that each expert has the liberty to
describe properties following his or her own standards, which may greatly differ from
any others. This means that, theoretically, there could be at least as many individual
annotation templates as there are SL experts. In turn, this situation could end up
mimicking the already existing problematics in annotation, since the resulting databases
would only be usable on their original context, making difficult their reutilization over
different corpora.

Also, even if annotation formulae were uniform across corpora, this wouldn’t necessarily
guarantee that a database would always be reusable without hiccups; recall that the
modeling rules used to create graph representations from videos (see Chapter 5, Subsection
5.1.2, p. 109), depend on having the necessary tracking or recognition tools to determine
the truth values of atoms in a corpus resource. This means that not necessarily every
atom used in a formula will be detectable in every corpus, nor that they will always be
correctly valued (tracking tools are prone to error, video conditions could be suboptimal,
etc); both situations could influence the accuracy of the resulting annotation, regardless
of the quality of the database.

Finally, the given implementation displays less-than-optimal algorithmic complexity; for
the time being this is barely an issue, as the number of articulators is small enough
to not represent a serious performance hit. However, the obtained values show that
combinatorial explosion could rapidly become unmanageable without much effort, which
could hinder the system’s scalability.

7.2.1 Perspectives

The most pressing issue regarding the semi-automatic annotation system, is for broader
capabilities to be developed into each of the existing modules, so as to try the process
in other corpora. Crucially, the integration of modeling rules for the three-dimensional
case is becoming a necessity, in order to widen the scope of the system; as presented in
Chapter 3, various corpora are recorded with the help of motion capture devices or 3D
equipment. However, this poses a number of challenges to automatic corpus analysis,
starting with the interval segmentation from the Division Module.
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Recall from Chapter 5 (p. 104), that the Division Module selects video sequences based
solely on tracking information. Thus, it is safe to assume that the introduction of an
additional spatial dimension would, for better or worse, modify the results calculated
by the module. The same case can be made for any additional tracking or recognition
information like hand-configuration, Non-Manual Features (NMFs) or body posture: the
basis of the segmentation is the identification of changes, and new data may affect what
the module considers a change. In brief, this means that any segmentation based in raw
data requires a careful examination of the possible outcomes, suggesting the need for
new linguistic research regarding phoneme identification under varying conditions.

Similarly, adapting the framework to new corpora entails a reworking of the modeling
and verification algorithms, in terms of optimization; remember that the calculated
complexity in the Modeling (see 5.4, p. 118) and Verification (see Theorem 5.5, p. 123)
modules, is by no measure small. As such, the addition of new information prone to
introduce change intervals, can rapidly become unsustainable without any optimization.

On a final note, a better integration of the framework with some manual annotation
mechanism is desired, as it may improve the process robustness; that is, instead of
providing an output file to be edited elsewhere, it would be better for users to have
direct access to the annotation in real time, to enhance the verification process as it
happens. This may also help reduce the verification algorithm’s complexity, which could
benefit from external data to avoid systematically testing every possible state. Likewise,
introducing on-the-fly corrections may also enable the use of machine learning algorithms
to learn from these, dynamically improving both the modeling and verification processes.

7.3 On the empirical application of PDLSL in linguistics

Finally, something has to be said with respect to the multidisciplinary nature of this
work. The presented formalism is, first and foremost, a tool. As such, the context of its
intended use is to be taken in account for its development. Recall from Chapter 3, that
annotation tasks in linguistics are very variable, that they respond to different research
needs and they are, ideally, in constant iteration. In this regard, PDLSL formulae have
properties that can enrich the corpus annotation process, such as modularity; this is, the
ability to define formulas as groups of reusable blocks, as presented in Chapter 6.

In practice, modularity enables the rapid development of annotation iterations; by
changing the definition of a single module, an annotator may also change every formula
built with the same module, thus potentially accelerating the subsequent production of
new annotation batches. This also enables the constant testing of linguistic hypotheses
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by way of PDLSL databases, as it becomes relatively simple to override large groups of
formulae, execute the verification algorithm and compare results between executions.

Despite these advantages, cases like the ones mentioned above assume familiarity with
formal tools, a domain which is not necessarily well-known in linguistics. Moreover, the
complexity of specification formalisms in the spirit of PDLSL could be harrowing for the
non-initiated user, which could deter researchers from their adoption. Besides, differences
between research methodologies in linguistics and computer science, could give way to
confusion on the use of the formal language from either domain. For these reasons, the
burden of reconciling both lies on PDLSL itself, which is why special emphasis was given
on developing a flexible representation language. With this, resources already in use for
linguistic research (like previous annotations) can be represented as PDLSL formulae, and
used by the annotation framework as reference. This is in an effort to provide SL experts
with a transparent transition between their linguistic descriptions and the annotation
framework, instead of trying to force them into selecting a new contender to the SL
transcription arena. However, more work has to be done to achieve this goal.

7.3.1 Perspectives

Future work, from the point of view of multidisciplinary collaboration, is centered in
the development of the necessary tools for the automatic conversion of ZeBeDee or
HamNoSys descriptions, for example, into PDLSL formulae. Furthermore, it may also
be useful to conduct usability tests over the annotation framework, to detect potential
pitfalls induced by the system’s design and not necessarily by the formalism itself.

Likewise, the development of interactive tools for the creation of PDLSL formulae could
prove to be a viable alternative to the transformation from other descriptions. In this way,
users could define themselves the contents of the primitive sets by way of a visual interface,
and an automatic algorithm could use these definitions to calculate the appropriate
modeling rules. Similarly, such a system could be fitted with a SL synthesis engine, in
order to guide users into the edition of formulae: each formula could be transformed into
an utterance representation — following PDLSL semantic rules — the could, in turn,
be used to animate a signing avatar. With this, the expert could see in real-time how
the system interprets a given formula, without having to dwell on the details of the
formalism.
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Finally, more collaboration with SL experts could lead to improvements to the PDLSL

syntax and semantics, so as to represent properties beyond the phonetic-phonological
level; however, as for now, it might be more important to evaluate which features of the
formalism, as-is, are truly useful for linguistic research and which could be simplified to
better suit the work in the area.
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