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I. INTRODUCTION 

 

A. Historical background of the Trans-Atlantic Slave Trade 

A.1. Global consequences of the Trans-Atlantic Slave Trade 

The transatlantic slave trade was one of the most extraordinary movements of people in the 

world history, which persisted for nearly four centuries and resulted in the forced deportation 

of millions of Africans to the Americas and Caribbean colonies. This historical event ranks as 

one of the world's worst crimes against humanity. Between around 1500 and the 1860s about 

12.5 million African captives were taken from a slaving coast that stretched thousands of miles, 

from Senegal to Angola, and even round the Cape and on to Mozambique (Figure 1). That 

means around 30,000 captives a year over three and a half centuries. The captives were enslaved 

victims of debt, dehydration, and famine; however the largest single source of captives was 

violence, including warfare, state-sponsored raiding, and kidnapping. As the scale of the 

Atlantic slave trade grew, the circles of violence in Africa linked to transatlantic slavery 

intensified and widened. In some Atlantic nations slavery existed as a legal institution and 

socio-economic system.  

Enslaved Africans were loaded on to Atlantic slave vessels; of these, around 11 million 

survived the transatlantic Middle Passage to reach landfall in the Americas, and many more 

died in the early years of captivity. Yet until quite recently the full significance of this massive 

enforced displacement of humanity was largely overlooked by historians. Just a generation ago, 

the slave trade was considered to be of interest only to maritime historians, or to those studying 

the histories of Africa or the Americas (Walvin, 2011). 

The overriding motive that lay behind the uprooting, enslavement, and coerced long-distance 

transport of millions of sub-Saharan Africans was the ruthless desire for wealth of European 

colonizers, to find the cheapest workforce for the production and export of: precious metals, 

sugar, rum, rice, tobacco, cotton, coffee, indigo, and other luxury goods (Eltis & Richardson, 

2010). The magnitude of the slave trade conveys at least a hint of the magnitude of human 

suffering. By 1820, enslaved Africans constituted around 80% of all the people who had 

embarked for the Americas since 1500, and mortality on the slave ships averaged at least 15%. 

Besides, the numerous deaths that occurred as slaves were marched from the African interior to 

the coast and as they waited to sail, jammed into castle prisons or on board ships (Eltis & 

Richardson, 2013). 
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Figure 1: Overview of the transatlantic slave routes from African regions to American regions from 

1501 to 1866. Red ellipses point out three different regions in South America: Spanish Caribbean 

Mainland, Dutch Guiana and French Guiana, and Southeast Brazil (Eltis & Richardson, 2010). 

 

The transatlantic trade also represented one of the most important commercial and cultural 

ventures in the formation of the modern world and a fundamental element in the creation of a 

socioeconomic world system. In very different ways, the transatlantic trade had an extraordinary 

impact on the American, African, and European continent. In the Americas the most obvious 

consequence was demographic growth and economic transformation. Until 1830, between three 

and four Africans crossed the Atlantic Ocean for every European, making the Americas more a 

demographic extension of Africa than of Europe before the 19th century. Areas that had once 

been only lightly populated by indigenous peoples became effectively African, they were in 

fact African settlements on the far side of the Atlantic (Araujo, 2014).  

The transatlantic slave trade even affected the landscape in the Americas. For instance, the 

labour of enslaved Africans converted Caribbean islands into major agricultural-industrial 

regions, and their skylines dotted with windmills and factory chimneys, as raw sugar cane was 

transformed into crude sugar. These colonial settlements were connected to Africa and Europe 

by regular arrival and departure of growing numbers of ships criss-crossing the Atlantic. They 
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arrived in the Americas with Africans and materials for the plantations, and departed with slave-

grown produce (Walvin, 2013). 

In Europe the consequences were enormous, and indeed the wider world, the rapid 

development of towns and ports involved in slaving was one visible effect of the trade. Profits 

from both the ships and the plantations flowed back to Europe to be invested in docks, 

quaysides, port facilities, and related industries as well as rural retreats for those who prospered. 

For instance Liverpool, London, and Bristol in Britain; Nantes and Bordeaux in France; Lisbon 

in Portugal; and Texel in Netherlands, all were transformed by their involvement in the 

transatlantic slave trade (Walvin, 2011). In respect to European dwellers, the slave-produced 

sugar, tobacco, coffee, chocolate, and other luxury stimulants not only altered the European diet 

by the late 1700s, had also helped to shape a costumers mentality among European workers, 

especially in Britain. For instance, workers became more willing to accept factory discipline in 

order to afford luxury stimulants, and later factory-produced cotton clothing, made possible by 

the cotton gin and slave labour (Brion Davis, 1999).  

The slave trade was an exceptionally cruel and brutal system, both inhumane and immoral, 

and victims had always struggled against their fate. However, much of the European nations 

accepted slavery and the slave trade as legitimate and moral five centuries ago. Europeans also 

believed that enslaving Africans was legitimate because the institution of slavery already 

existed in Africa. The sense among Europeans and Americans that the slave system itself was 

morally flawed and irreligious (indeed that it was unchristian) was a very late development. 

Every European nation that had an Atlantic coastline (such as Spaniards, Portuguese, Dutch, 

British, French, Danes, and Swedes) participated in the transportation of slaves from Africa to 

the Americas during the slave-trade era. Furthermore, ideas of European racial superiority 

increased through the slave-trade era. For instance, in the 18th century the British Parliament 

passed dozens of Acts that defined Africans as a commodity (Walvin, 2013).  

The first enslaved Africans who arrived into the Americas, departed from Europe rather than 

directly from Africa, and not until the mid-1520s did the first slave ship sail directly from 

Africa. Besides, African captives may have arrived in the Americas on Columbus’s third voyage 

in 1498. The slave-trade era is generally considered to have begun un uninterrupted human 

traffic in 1501, when vessels crossing the Atlantic from Spain begun to carry some African 

captives for sale in the Greater Antilles (the largest islands of the West Indies); and ended in 

1867, when the last slave ship from Africa thought to have disembarked its captives in Cuba 

(also in Greater Antilles) (Eltis & Richardson, 2010).  
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Indeed, the first enslaved Africans to arrive were probably personal servants, however with 

the discovery of gold in Hispaniola and the collapse of the Amerindian population in West 

Indies, the Spanish began to bring slave labour primarily to maintain exports. For the first 

century of the transatlantic slave trade, the production of precious metals (such as gold and 

silver) dictated the involvement of the Western Hemisphere in the slave trade. Until the 1590s, 

the principal source of demand for African captives was precious metals rather than sugar. For 

the next two centuries, both the size and the range of the transatlantic slave trade expanded 

dramatically; it was mainly the sugar plantations that created the demand for slave labour. In 

fact, within the plantation sector, sugar plantations concentrated 80% of the African captives 

unloaded from the crowed slave ships (Eltis & Richardson, 2010). 

Sugar plantations spread widely in the three centuries after they were established in Brazil in 

the 1560s, and still many plans of sugar plantations have survived. For instance in Cayenne, an 

outpost of French sugarcane cultivation in French Guiana in the 18th century, sugar plantations 

required major investments in buildings and equipment as well as enslaved African labour 

(Figure 2). The enslaved Africans, who typically numbered 100–200 or even more, lived in 

rows of huts (Morgan, 2013). 

 
 

 

Figure 2: Plan of a Large Plantation in Cayenne (French Guiana) in 1763. Image titled; "Vue de 

l'habitation du Sr. de Préfontaine, située a Cayenne". The image consists of a detailed plan of the 

Préfontaine’s layout, a very large plantation, which comes with the chapel, storehouse, kitchen, hospital, 

and sugar mill. The rather sizeable slave village (called ‘cazes des negres) is in the upper right hand 

corner with its rectangular houses. © John Carter Brown Library at Brown University. 
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Sugar-growing required a large workforce, it was hard and heavy work. Local labour was 

scarce in the Americas because millions pre-Colombian indigenous people had died after the 

colonisation of their lands by Europeans. Many were killed in battle, trying to repel the invaders. 

Other were worked to death, especially in mines. Ultimately, European diseases, such as 

measles, influenza, cholera, and smallpox wiped out large numbers on indigenous inhabitants. 

For instance, between 1492 and 1550 the Amerindian population of the West Indies was 

reduced by 90% owing to massacres. Therefore, European colonist looked to the African 

continent for a new supply of cheap labour. This resulted in the largest forced migration in 

human history (Walvin, 2011). 

A breakdown of the slave-trade era into three time periods reflects the principal slave-trading 

nations’ entry into and departure from the trade. In the first period, the Spanish and the 

Portuguese established the first European empires in the Americas, with large assists from 

northern Italian capital and maritime expertise, they were pioneered the early slave trade. The 

Iberian powers dominated the trade, with Portugal and Spain being united in 1580-1640 and, in 

commercial terms, their separation taking place in 1641. By that time, the Portuguese flag, flew 

over much of the transatlantic slave trade until the mid-17th century (Eltis & Richardson, 2010). 

A second phase of the trade started around 1642, when the northern European nations 

established their own colonies in the Americas, and almost immediately began to engage in the 

trade, joined by traders from mainland North America. The Dutch, French, English, Danes, 

Swedes, and Brandenburgers (later Prussians), systematically sent vessels to Africa to obtain 

captives before 1700. By the early 18th century, the slave trade systems in the North and in the 

South Atlantic world were firmly established. The Portuguese flag no longer had much of a 

presence in the slave traffic to Spanish America and the Caribbean but had come to control the 

South Atlantic slave trade, which was conducted not from Portugal but from Brazil (Eltis & 

Richardson, 2010).  

The second phase ended in 1808, when British and U.S. anti-slave-trade laws of 1807-1808 

took effect and other northern European nations began disengaging from the trade. 

Disengagement ushered in the third period, which lasted through 1867, and during which 

abolition and suppression dramatically altered the pattern of participation in the slave trade. 

With the gradual withdrawal of the northern European powers, the slave trade came to be 

dominated once more by the Portuguese and the Spanish, operating largely from bases in Brazil 

and Cuba respectively, and against a background of growing abolitionist and suppression 

activities (Eltis & Richardson, 2010). 
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A.2. Abolition of the slave trade 

The abolition of slavery in the Atlantic world occurred during the 19th century. However, its 

origins are generally recognized to be the intellectual ferment of the 18th century Enlightenment, 

with the political turmoil of the “Age of Revolution” and the economic transformations 

associated with the development of modern industrial capitalism (Drescher, 2009). The 

abolition movement started with small groups of Europeans and North Americans, who began 

to turn against the entrenched and lucrative business of slave trading, and the maritime nations 

of Europe and North America, led by Danish and British governments, finally began legislating 

to ban the slave trade (Walvin, 2011). 

Although antislavery ideas circulated much more widely beginning in the 1760s, the first 

sustained effort to do something about slavery began in the 1780s, particularly with slave 

rebellions and the British campaign to end the slave trade. The Saint Domingue Revolution was 

a well-known slave rebellion in the French colony that broke out in 1791 and soon turned into 

a revolution; leading to the freedom of 500,000 enslaved Africans and to the creation of the 

Republic of Haiti in 1804. Consequently, the Saint Domingue Revolution closed down the 

biggest slave market in the Caribbean, and added a new sense of urgency to the issue in France, 

Great Britain, and the United States (or U.S.). As it did each of the increasingly troubling slave 

rebellions that erupted elsewhere in the region during this era, which dropped considerably the 

number of enslaved Africans (Brion Davis, 1999).  

The growing popular awareness of African resistance to their suffering, both on the ships and 

on the plantations, persuaded more people to support the campaign against the slave system. It 

was becoming important that Africans hated their bondage and wanted it ended. The abolition 

movements in Britain, and later in the U.S., employed two powerful political images reproduced 

everywhere to argue the end of slavery. On the one hand, the famous image of the kneeling 

slave asking “Am I not a man and a brother?”, or “Am I not a woman and a sister?” (Figure 

3A). This image was reproduced by abolitionists after 1787 in many different forms, such as 

cameos (called ‘Wedgwood cameo’), medallions, and brooches. On the other hand, the other 

image was of the Brookes slave ship. It was a plan and cross-sections of the slave ship, with 

enslaved Africans crammed (sardine-like) head to toe, to illustrate the horror of the slave ships 

(Figure 3B). Both images demonstrate the inhumanity of a system that kept Africans in chains 

and subjected to oceanic torment in ships; and both images have survived to this day as a graphic 

portrayal of the slave trade and the campaign against it (Walvin, 2013). 

American criticism of the slave trade became widespread in the last years of the 18th century, 

mainly because North America no longer needed new captives. The existing slave population 

was expanding quickly. The U.S. trade was mainly internal and overland, not transatlantic. 
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Other slave societies in the America, notably in Brazil and in the French and Spanish Caribbean, 

continued to demand slaves from Africa. South America still clung to plantations slavery, and 

expanded greatly the next century (Walvin, 2011).  

A: B:  

Figure 3: Representations of Wedgwood cameos (A) and Brooks slave ship diagram (B) published by 

the British Society for Effecting the Abolition of the Slave Trade in 1788. © British Museum. 

 

In the first decade of the 19th century, the British and the U.S. governments abolished the slave 

trade in 1807, and made efforts to suppress it throughout the Atlantic world. Although, the 

institutions of slavery itself lived in the British colonies until 1838 and in the United States until 

1865. Despite their efforts, over 2.5 million Africans were further transported across the 

Atlantic as slaves in the decades of the mid-19th century. Markedly, the British played a large 

role in suppression of human traffic, albeit the fight against the slave trade always had a strong 

international dimension, and many European nations took actions against the slave trade only 

after signing treaties agreeing to do so. Portugal was the last European nation to abolish the 

slave trade in 1836 (Walvin, 2011). 

Slowly thereafter, slavery would be outlawed in many of the new independent Latin American 

nations throughout the British Empire in 1833, and thirty years later in the Dutch colonies. In 

1820, the Spanish government ended the legal slave trade to Cuba. In 1848, slavery was 

abolished in the French colonies. Although the law was passed in 1794, the decree was never 

respected, not even after the French Revolution (1789-1799), and Napoleon Bonaparte restored 

the practice. Therefore, 54 years later, slavery became effectively illegal in metropolitan France 

and its colonies (Drescher, 2009).  

Slavery was also gradually abolished in the Northern United States, with all Northern states 

passing emancipation acts between 1777 and 1804. However, for the slave owners of the 

Southern United States emancipation was still unthinkable. This issue was one of the prime 

causes of the American Civil War (1861-1865). Not until the 1860s, slavery came to a halt in 

the entire United States, when the American Civil War ended with the defeat of the Confederate 

States, and the last 40,000 slaves were freed by the final ratification of the Thirteen Amendment 

to the Constitution in December 1865. Finally, Brazil took actions for its own traffic in 1831, 
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although an illegal trade continued two decades thereafter, until 1850 when Brazil suppressed 

its slave trade (Campbell, 2015; Davis, 2006). 

The end of the slave trade marked a dramatic turnabout, and the system, which had served the 

Europeans so well in their settlement and development of key areas of the Americas and brought 

them such material reward, was rejected. More than that, the West came to view slavery as a 

moral aberration. In the 19th century, because of the slave trade became illegal, slave vessels 

were subject to capture and condemnation. After passing their own acts of abolition, the British 

and the Americans embarked on a crusade to persuade, or force, everyone else to follow their 

example and outlaw the slave trade.  

Indeed, Europeans and Americans became fierce enemies of slavery and slave trading, 

concerned to destroy it wherever they encountered it in Africa, India, and East Asia. 

Unfortunately, the history of slavery continued to hold nowadays, it is a sobering thought that 

there are an estimated over 27 million slaves on Earth today (Bales et al., 2009). More than at 

any point in history, and more than were stolen from Africa during the four centuries of the 

transatlantic slave trade. 

 

A.3. Historic links between African coastal regions and the New World 

Information on the sources of African captives entering the Atlantic slave trading is 

considerably limited, as is information on the circumstances in which they were enslaved and 

forced to move to the coast for the voyage to the plantations and mines of the Americas. Many 

captives came from places much closer to the African coast, and some captives came from 

several hundred miles inland and took them months to reach the African coast. They were 

victims of dehydration and famine before arriving at the places of embarkation. However, there 

is an important lack of records about the African ethnicity of slaves arriving in the Americas. 

For instance, the largest historical databases, such as the Transatlantic Slave Trade Database 

(Eltis et al., 1999), details the departure port for the majority of slaves, but not their home town 

or ethnicity.  

Besides, political borders in the African continent were remarkably different during the slave 

trade era than the current political distribution of African countries. For instance, the explored 

West African regions by Europeans were called “Negroland” and “Guinea” (Figure 4). The 

extensive trade in ivory, gold, and slaves made these regions wealthy, with a considerable 

number of centralized African kingdoms developing in the 18th and the 19th century. Afterwards, 

European traders subdivided the region based on its main exports, such as the Slave Coast, the 

Gold Coast or the Grain Coast (Lovejoy, 2011).  
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Figure 4: Map of African continent in 1736, and in detail “Negroland” and “Guinea” regions 

established by European settlers. That is one of the finest maps of West Africa to appear in the mid-17th 

century. The coast is highly detailed with numerous notations in Latin regarding the peoples and tribes 

of the region. © http://www.geographicus.com/. 

 

http://www.geographicus.com/
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According to historical resources, from 1501 to 1867 enslaved Africans were embarked from 

eight major historical coastal regions in sub-Saharan Africa (see Figure 5): 5.7% of the captives 

were form Senegambia, 3.2% from Sierra Leone, 2.7% from Windward Coast, 9.6% from Gold 

Coast, 16.1% from Bight of Benin, 12.3% from Bight of Biafra, 46.3% from West Central 

Africa, and 4.1% from Southeast Africa (see Figure 6). Furthermore, the proportions of African 

captives arrived to the Americas differed remarkably among North, Central and specially South 

America (Figure 1) (Eltis & Richardson, 2010; Eltis & Richardson, 2013).  

The Table 1 shows the distribution of the estimated number of enslaved Africans embarked 

on slave vessels in different African coastal regions during the slave-trade era (Voyages 

Database, 2009). West Central Africa was always the largest regional point for captives 

throughout most of the slave trade era (Figure 6), and much of the trade there was focused on 

Angola. As the transatlantic slave trade expanded after 1641; Gold Coast, Bight of Benin, Bight 

of Biafra, and West Central Africa slaving regions became more prominent than they had been 

(Figure 6). Ten ports of trade that dotted the African seaboard were embarkation points that 

collectively supplied almost two-thirds of the captives. All these ports were located south to the 

Windward Coast included: Anomabu (on the Gold Coast); Ouidah (on the Bight of Benin); 

Bonny and Old Calabar (on the Bight of Biafra); Luanda, Benguela, Cabinda, Malembo, and 

Loango (on the West Central Africa); and Quilimane (on the Southeast Africa) (Eltis & 

Richardson, 2010). 

 

Table 1: Estimated number of enslaved Africans embarked on slave vessels, and leaving major African 

coastal regions from 1501 to 1866 (see Figure 6) (Voyages Database, 2009). 
 

Coastal 
Region 

Senegambia Sierra 
Leone 

Windward 
Coast 

Gold 
Coast 

Bight of 
Benin 

Bight of 
Biafra 

West 
Central 
Africa 

Southeast 
Africa 

Total 

Period 5.71% 3.17% 2.68% 9.63% 16.12% 12.31% 46.30% 4.10% 100.00% 
1501 - 1525 8,923 0 0 0 0 0 452 0 9,375 
1526 - 1550 31,117 0 0 0 0 1,463 2,953 0 35,534 
1551 - 1575 33,829 821 0 0 0 2,457 6,025 0 43,132 
1576 - 1600 29,251 168 1,737 0 0 2,092 77,996 0 111,244 
1601 - 1625 16,703 0 0 48 2,470 2,045 253,322 241 274,829 
1626 - 1650 23,961 1,118 0 2,040 4,969 26,014 194,773 0 252,876 
1651 - 1675 21,524 781 268 24,779 42,445 59,248 237,839 13,399 400,282 
1676 - 1700 44,458 3,937 904 60,178 168,256 48,976 257,244 10,737 594,689 
1701 - 1725 46,604 5,679 7,643 193,704 318,861 51,811 291,266 8,998 924,567 
1726 - 1750 71,134 13,799 31,252 193,458 301,906 145,939 484,571 2,263 1,244,321 
1751 - 1775 113,487 70,291 141,067 226,885 250,418 253,687 585,280 3,237 1,644,353 
1776 - 1800 74,624 84,335 66,001 253,088 235,369 293,461 753,852 35,899 1,796,627 
1801 - 1825 79,679 78,561 32,891 72,206 182,688 230,979 838,385 151,784 1,667,172 
1826 - 1850 15,726 75,081 5,603 4,532 187,639 199,601 838,688 187,527 1,514,396 
1851 - 1866 0 4,214 0 0 29,813 2 132,783 22,445 189,257 

Total 611,019 338,785 287,366 1,030,918 1,724,834 1,317,775 4,955,430 436,528 10,702,656 
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Figure 5: Historical African coastal regions from which slaves were carried during the slave trade. 

The map shows the limits of the eight major coastal regions in sub-Saharan Africa during the slave trade 

period and their alignment with modern African nations. ‘Upper Guinea’ is broken down into three sub-

regions: Senegambia, Sierra Leone, and Windward Coast (Eltis & Richardson, 2010).  

 

 

Figure 6: Estimated number of enslaved Africans disembarked on the Americas from 1501 to 1866 

(see Table 1), leaving African coastal regions (Voyages Database, 2009). 
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In the 18th century, slave traders competed intensely with each other on the African coastal 

regions (Figure 7). Certain European countries dominated particular regions for a time. The 

Portuguese flag was usually the one seen in the major ports of West Central Africa region 

(Luanda and Benguela), and on the southern rivers of the Senegambia region. The English were 

almost as successful in excluding other nations from the Bight of Biafra region, in what is now 

southeast Nigeria (Lovejoy, 2011). They managed to carry off 87% of the slaves taken from 

this region. The French dominated slaving ports just north of the Congo River prior to the 

outbreak of the Saint Domingue slave rebellion (1791-1804). The Dutch had enclave markets 

on the Gold Coast region and at Cap Lahou (now Grand Lahou, in Ivory Coast). Moreover, 

traders from countries on the Baltic Sea (Finland, Sweden, and Denmark) carried off most of 

the captives taken from the eastern Gold Coast, the area around Fort Christiansborg (now Osu 

Castle, in Ghana) (Eltis & Richardson, 2010). 

Senegambia, Sierra Leone, and Windward Coast slaving regions are commonly grouped into 

‘Upper Guinea’ region (Figure 5), together these regions represent around 11.6% of the 

embarked enslaved Africans (see Table 1). Upper Guinea was a large area that currently 

includes the modern countries of Senegal, Gambia, Guinea-Bissau, Sierra Leone, Liberia and 

part of Ivory Coast. Senegambia slaving region includes modern Senegal, Gambia, and part of 

Guinea-Bissau, as well as counting offshore islands. While Sierra Leone slaving region 

stretched from Guinea-Bissau to west of Cape Mount (in modern western Liberia). This region 

includes modern Guinea, part of Guinea-Bissau, Sierra Leone, and western Liberia. Lastly, 

Windward Coast slaving region (also called as the Grain Coast) stretched from east of Cape 

Mount to Grand Lahou (in modern Ivory Coast). This region includes modern Liberia and Ivory 

Coast (Eltis & Richardson, 2010).  

Upper Guinea was the first part of Africa to be pulled into the transatlantic slave trade, and 

enslaved Africans went initially to Europe. In the 16th century, the Portuguese gathered slaves 

from many parts of Upper Guinea to Cape Verde Islands. Uninhabited prior to 1460, the Cape 

Verde Islands were firstly settled by the Portuguese with the specific aim of establishing a 

staging post for slave ships travelling between Africa, Europe, and the Americas. The 

prominence of these islands lay in their strategic location at the crossroads of shipping routes. 

Enslaved Africans were used here as agricultural labour to produce food to sustain the small 

colony of European settlers and passing ships. Therefore, slavery lies at the very early origins 

of Cape Verde society (Lane & MacDonald, 2011). 
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Figure 7: Maps of slaves African 
coastal regions during the three 
phases of the slave trade:  

1st phase from 1501 to 1641;  
2nd phase from 1642 to 1807; 
3rd phase from 1808 to 1867.  
The blue line in the three maps 

represents the average of the 
midpoint latitudes of each African 
coastal region weighted according to 
the volume of slave departures from 
each region (Eltis & Richardson, 
2010). 
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The slave traffic from Upper Guinea grew after 1642 (Figure 7), largely because of the entry 

of English and French companies into the slave trade between 1660 and 1700. The English 

concentrated on the Gambia River, and the French on the Senegal River. Shipments of captives 

from Upper Guinea reached their historic peak in 1750-1780, when the Portuguese chartered 

companies to expand the area where enslaved Africans were transported to Brazil. Finally, the 

withdrawal of the British, the French, and the Dutch from slaving accelerated a general decline 

in transatlantic trafficking from Upper Guinea between the 1780s and the late 1820s, with the 

exception of Galinhas in Guinea-Bissau that continued to be a source of slaves until 1856 (Eltis 

& Richardson, 2010). 

During the slave trade period, Europeans built castles, forts, and trading factories on some 

parts of the African coast to facilitate trade and confront invasions. For instance, Saint-Louis, 

established by the French in 1659, was a fortified trading fort commanding the entrance to the 

Senegal River in Senegambia. Embarkations of enslaved Africans from the fort began in the 

1680s and continued through the 1820s. The French were the main carriers, and most African 

captives went to French America, in French Guiana and especially in St. Domingue (called 

Haiti after 1804) (Eltis & Richardson, 2010). 

The island of Gorée (Figure 8A), which lies 3.5 Km off the coast of Senegal opposite Dakar, 

was the largest slave-trading centre on the Senegambia from the 15th to the 19th century. Ruled 

in succession by the Portuguese, Dutch, English, and French; the island was used as a ‘slave 

warehouse’ consisting of over a dozen slave houses, and each house contained between 150 and 

200 enslaved Africans from different locations in Upper Guinea. For instance, the ‘House of 

Slaves’ (Figure 8B), which was built in 1776 by the Dutch, is currently the last surviving slave 

house in Gorée (Thiaw, 2010). Each cells of 2.60 square meters were reserved for different sex, 

and contained up to 15 or 20 people seated with their backs against the wall, and chained around 

the neck and arms. In the middle of that chain, there was a big iron ball that the captive had to 

carry between his two hands and two legs, which were released only once a day to satisfy their 

needs. The extremely poor hygienic conditions were so sickening that the first pest epidemic in 

the island was originated in that house in 1779 (Thiaw, 2011). Today, the island serves as a 

reminder of human exploitation, and as a sanctuary for reconciliation (Figure 8C).  

Both the Gold Coast and the Bight of Benin were key regions in West Africa for slave traffic 

in the late 17th and most of the 18th century (Figure 7). Both regions supplied more than 

2,750,000 of the enslaved Africans, which means more than 25.75% of the enslaved Africans 

embarked during the slave trade (Table 1). Ports such as Ouidah, Elmina Castle, Cape Coast, 

and later Lagos were among the very largest sources of captives anywhere on the West Africa 

coast (Eltis & Richardson, 2013).  
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Figure 8: The island of Gorée in Senegal. A: Historical museum of Gorée (‘Fort d’Estrées’), B: Cell 

in the Slave House (‘Maison des Esclaves’) with a tiny window, and C: Statue of freed slaves ('La statue 

de la libération de l'esclavage'). Today the whole island was recognized by UNESCO as World Heritage 

Sites in 1978. © 2014 Cesar A. Fortes Lima.  

 

The Gold Coast slaving region stretched along 400 miles (643.7 Km) coastline, from east of 

Axim (in Southwester Ghana) to the Volta River (Figure 5); and most of this region is in modern 

Ghana. European built most of their trading forts along this coastline, several of which remain 

today as important historic sites. For instance, Elmina Castle (Figure 9A), which was built in 

Ghana by the Portuguese in 1482 and captured by the Dutch in 1637, became the headquarters 

of Dutch trading activity on the Gold Coast. The principal destination of captives leaving 

Elmina shifted to Dutch Guiana and Dutch West Indies during the 18th century. Moreover, Cape 

Coast Castle (Figure 9B), which was built in what is now called Ghana, by the Swedes in 1653 

and was seized by the British in 1664, was the headquarters of English monopoly on slave 

trading in West Africa. Enslaved Africans taken from Cape Coast Castle often went to Barbados 

and Jamaica (Eltis & Richardson, 2010).  

 

 
Figure 9: Elmina Castle (A) and Cape Coast Castle (B) in Gold Coast region (modern Ghana) remain 

today as important historic sites, and are the Ghana’s major historic attractions for tourists. Both castles 
are used as an exceptional testimony to one of the greatest tragedies in the history of human societies, 

and were recognized by UNESCO as World Heritage Sites in 1979. © 2014 Cesar A. Fortes Lima. 

A 
B 

C 
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The Bight of Benin slaving region (also known as the Slave Coast) stretched along roughly 

500 miles (804.6 Km) across the Gulf of Guinea, from near the mouth of the Volta River (Cape 

Saint Paul) in eastward Ghana to the Nun River, an extension of Niger River in Nigeria (Figure 

5). Today this coastline is part of east Ghana, Togo, Benin, and western Nigeria. The Bight of 

Benin received its name from the centuries-old kingdom of Benin located in southern Nigeria 

(now Benin City). This is a rich region in culture and history (Law, 2004; Toyin & Childs, 

2004). Prior to European colonization, major African kingdoms existed in this area, including: 

the Asante (from 1750 to late 1800s) in modern Ghana; Fon (during 1700s) and Dahomey 

kingdoms (during 1800s) in modern Togo and Benin; and the Yoruba (from 1000s to 1800s) 

and Benin (from 1200s to 1897) kingdoms in what is now Benin and southern Nigeria (Law, 

2004; Lovejoy, 2013). 

Ouidah (or Whidah, in modern Benin) on the Bight of Benin was the largest single 

embarkation point for captives shipped from West Africa by the end of the 17th century. Its 

emergence as a slave port dates from the late 17th century. The Kingdom of Dahomey conquered 

it in 1725-1727, and ruled it until the late 19th century. For the vessels leaving Ouidah, the Dutch 

and British Caribbean were the chief destinations, as well as the Dutch Guiana (Law, 2004). 

This historic site (also known as Route de l'Esclave) was added to the UNESCO World Heritage 

Tentative List in 1996. 

The Bight of Biafra slaving region stretched around 370 miles (595.5 Km), from the Nun River 

to Cap Lopez, at the southern end of the Gulf of Guinea (Figure 5). Today this coastline belongs 

to modern eastern Nigeria, Cameroon, Equatorial Guinea, and northern Gabon. This slaving 

region also includes Bimbia Island (Cameroon) and the Gulf of Guinea islands: Príncipe, São 

Tomé, and Bioko. This slaving region emerged as other major source of slaves in the 1660s 

(Table 1). The slave traffic was largely centred on New Calabar, Bonny, and Old Calabar port 

(all of them in modern Nigeria). Together, those ports sent out more captives than the rest of 

this region combined. The majority of the captives were speakers of Igbo dialects from the 

multi-ethnic Niger Delta region. The gulf islands, São Tomé and Princes Islands, were also 

important; most of its slaves were obtained hundreds of miles south, in West Central Africa 

rather than the adjacent mainland. Cameroon was the smallest of the embarkation points in the 

Bight of Biafra, and the last to engage in the slave trade. Apart from a single voyage recorded 

in 1658, departures did not begin until the 1760s (Eltis & Richardson, 2010).  

The West Central Africa slaving region ranged from Cap Lopez to the southern tip of Angola, 

which does not match with the West-Central African geographic region. The southernmost 

slaving port in Atlantic Africa includes modern part of Gabon, the Republic of Congo, the 

Democratic Republic of Congo, and Angola (Figure 5). Almost all the slaves from West Central 
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Africa left from ports located in modern Angola and the Democratic Republic of the Congo. 

The first vessels sailing for the Americas left from the Congo River region, however a decade 

after the founding of Luanda (in modern Angola), the new settlement come to monopolize slave 

traffic from this region. Luanda was established by the Portuguese in 1575, and in most years 

after 1620 supplied more African captives to the Americas than any other location in sub-

Saharan Africa (Eltis & Richardson, 2010). Although Luanda was the principal slave port, 

Benguela (also in modern Angola) emerged as a major port south of the Congo River, and 

remained as a key embarkation point for captives from the 1720s; beating even Luanda in the 

1840s. Two-thirds of the captives that embarked in Benguela (that means around 491,000 

enslaved Africans) had been disembarked in Rio de Janeiro. The Portuguese, who had a 

continuous political presence in both Luanda and Benguela, drew many of their captives from 

marauding trading chiefs whose main source of enslaved Africans were Ovimbundu and 

Mbundu people. The Bantu-speaking Lunda Empire, in east of Luanda, was also participating 

to supply large number of enslaved Africans to major slaving ports in West Central Africa. 

Many enslaved Africans, who came from West Central Africa, were mostly called ‘Congos’ in 

the Americas; however they were in fact drawn from a wide range of ethnolinguistic groups 

(Eltis & Richardson, 2013).  

Lastly, the Southeast Africa slaving region was the slave-trading region farthest away from 

the Americas. Consequently, more captives died on large voyages from that region than from 

anywhere else. The Southeast Africa stretched along the East Africa’s coastline and included 

the islands of Madagascar and Zanzibar (Figure 5). This part of Africa provided enslaved 

Africans to the Indian Ocean and Arabian markets for many centuries. After 1781, slave 

departures to the Americas grew rapidly. The centre of the slave trade in this region was 

Mozambique, particularly in embarkation points such as Mozambique Island, Quilimane, and 

Lourenço Marques (now Maputo). By the 1830s, this region had become the largest supplier of 

slaves to the Americas after West Central Africa (Figure 7); probably owing to the expansion 

of plantations in Brazil and British-led efforts to suppress slaving activities north of the Ecuador. 

In this region, African captives were mostly Yao and Makua peoples (Eltis & Richardson, 

2013).  

Traditionally, historians have described the transatlantic slave traffic as dominated by males 

and adults. Adults were usually defined as those older than thirteen or fourteen years old or 

taller than four feet four inches (~1.33 m). Historians have attributed high ratios of males to 

females to the plantation owners’ demand for strong labourers (Eltis & Richardson, 2013). 

Today, it is possible to measure variations in the gender and age of distribution of enslaved 

Africans transported across the African coastal regions (Figure 10). Modern research shows 
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that, in comparison to other long-distance migrations before 1800, the numbers of females and 

children in the trade were extremely high, and that important differences among African regions 

cannot be explained by the demands of buyers in the Americas (Morgan, 2013).  
 

  

Figure 10: Map of gender and age of slaves carried from African regions to the New World from 1545 

to 1864 (Eltis & Richardson, 2010). 
 

Given the gender and age of slaves embarked on slave vessels in different African regions 

(Figure 10), three important patterns emerged: i) the male percentage of captives leaving the 

Bight of Biafra region was always lower than the female percentage of captives leaving other 

coastal regions; ii) adult-to-child ratios varied enormously across African coastal regions 

(approximately 26% of all slaves carried out to the Americas were children); and iii) over time, 

the proportion of males carried off from Africa increased as did the proportion of children, and 

strikingly appears across all African slaving regions at about the same time (Eltis & Richardson, 

2010). 
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A.4. Historic links between South America and African coastal regions  

The transatlantic slave trade changed dramatically the demography of Africa and also the New 

World. South America (43.1%) and the Caribbean (51.9%) accounted for 95% of the 

disembarked enslaved Africans in the Americas; and fewer than 4% disembarked in what 

became the United States (Figure 1). Only a very small percentage of slaves disembarked in 

Africa, after their ships were diverted because of slaves on-board rebelled. However, around 

two million enslaved Africans died during the Middle Passage (Eltis & Richardson, 2010). 

Indeed, the Middle Passage was one of the most dreadful and traumatic experience for African 

captives. They were herded naked onto small overcrowded vessels, and dispatched to far-off 

lands from which no return was possible (Eltis & Richardson, 2013).  

To highlight the extent of this movement, the Table 2 shows the estimated number of enslaved 

Africans arriving at the main Spanish, French, Dutch, and Portuguese colonies in South 

America in different numbers and at different periods of the slave trade. This historic data was 

obtained from 4,349 well-documented slave vessels, which embarked over 1,640,000 enslaved 

Africans from 1549 to 1856 (Voyages Database, 2009). In general, slave vessels that completed 

the longest passages experienced also the highest shipboard mortality. Hence, slave vessels 

arrived to Cartagena present the highest mortality percentage during voyage (23.1%), than 

vessels arrived to Guiana (16.3%) or Southeast Brazil (8.8%) (Table 2). The male percentage 

(71.2%) and the percentage of adults (94.4%) were higher in Rio de Janeiro than other regions 

in South America (Table 2). This fact points out the high demands of labour workers in 

plantations and mines in Brazilian. In the Spanish American mainland, the 85% of the enslaved 

Africans arrived from 1576 to 1650, which is remarkably earlier than in French and Dutch 

Guiana, and in Southeast Brazil. Because of the Spanish Crown had forbidden the enslavement 

of Amerindians at the beginning of the 17th century; and at that time the enslavement of Africans 

enabled a rapid develop of Cartagena (Navarrete, 2011). Later, the slave traffic with African 

regions ended up in Cartagena in 1788, which is also remarkably earlier than in other slave 

regions in South America (Table 2).  

From 1604 to 1815 about 400,000 enslaved Africans arrived to work in plantations in Guiana 

region, between Brazil and Venezuela, mainly ruled for Dutch settlers, but also for English, 

French and Portuguese, and Jewish settlers (Eltis & Richardson, 2010). On the one hand, 

Surinam (known now as the Republic of Suriname), was the foremost settlement for the Dutch 

in Guiana, and the centre of: i) the rapid growth of sugar cultivation before 1770, and ii) the 

inflows of African labour needed to sustain it. There are estimated around 295,000 captives that 

arrived in Surinam (Figure 11A), albeit there are only 221,430 documented disembarkations 

(Table 3). The principal sources of enslaved Africans were West Central Africa (30.4%), Gold 
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Coast (23.2%), and Bight of Benin (16.0%) (Figure 12A); and there are not any historic records 

from Southeast Africa (Voyages Database, 2009). Elmina Castel in Gold Coast was the main 

port with 11.4% of the captives (that means 25,147 enslaved Africans) (Table 3). On the other 

hand, French Guiana supported a modest and erratic inflow of African captives in its main port, 

Cayenne, now capital city. African captives arriving in Cayenne came from most African 

coastal regions, with the exception of Gold Coast (see Figure 11B) (Eltis & Richardson, 2010). 

Interestingly, the contribution of different African coastal regions was homogeneous and with 

similar periodicity, mainly with Senegambia (26.7%), Bight of Benin (22.5%), Bight of Biafra 

(19.2%), and West Central Africa (22.5%) (Figure 12B). Ouidah in Bight of Benin was the most 

prominent outfitting port with 13.2% of the captives, and Saint Louis in Senegambia was 

another important port with 9.4% of the captives (Table 3). 

 

Table 2: Estimated number of embarked (Emb.) and disembarked (Dis.) enslaved Africans arriving at 

main Spanish, Dutch, French, and Portuguese ports in South America from 1549 to 1866. There are also 

indicated: the total of voyages; the percentage of slaves embarked who died during the Middle Passage; 

the percentage of male and female enslaved Africans; and the percentage of children and adults (Voyages 

Database, 2009). 

Region Spanish America Dutch Guiana French Guiana Southeast Brazil 

Main port Cartagena Surinam Cayenne Rio de Janeiro 
Period Emb. Dis. Emb. Dis. Emb. Dis. Emb. Dis. 
1549 to 1550 224 166 - - - - - - 
1551 to 1575 756 594 - - - - - - 
1576 to 1600 44,646 32,058 - - - - 334 287 
1601 to 1625 56,820 40,364 - - - - - - 
1626 to 1650 25,546 18,212 - - - - - - 
1651 to 1675 5,470 4,276 8,398 6,546 1,327 1,000 382 331 
1676 to 1700 6,990 5,511 23,496 20,274 1,283 973 3,231 2,831 
1701 to 1725 7,969 6,104 23,467 19,738 1,634 1,286 29,537 26,090 
1726 to 1750 - - 58,059 49,420 2,651 2,365 96,229 84,440 
1751 to 1775 422 344 90,971 80,987 4,219 3,250 69,081 62,853 
1776 to 1800 379 284 26,582 23,031 5,997 5,268 136,439 125,429 
1801 to 1825 - - 23,893 21,434 5,495 4,828 547,828 493,470 
1826 to 1850 - - - - 2,014 1,706 332,635 303,818 
1851 to 1856 - - - - - - 1,217 1,021 
Total 149,222 107,913 254,866 221,430 24,620 20,676 1,216,913 1,100,570 

Total of voyages 598 765 100 2,886 
% died during voyage 23.10 14.30 18.20 8.80 
% male / female 66.70 33.30 60.60 39.40 51.00 49.00 71.20 28.80 
% children / adults 14.80 85.20 18.60 81.40 31.50 68.50 5.60 94.40 
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In the Portuguese colony of Brazil, the organization slave vessels’ voyages was initially 

cantered on Lisbon, however in the latter 16th century migrated to Brazil, which emerged as the 

principal centre in the Portuguese-speaking world for the dispatch of slaving voyages from 

Africa (Klein, 2002). African enslaved people increased and became the primary source of 

enforced labour, especially after the most severe outbreak of smallpox in Brazil (1665-1666) 

(Childs, 2007). As Brazil became Europe’s leading source of sugar in the late 17th century, also 

Recife, Salvador de Bahia, and Rio de Janeiro emerged as the leading markets in the Americas 

for slaves brought directly from Africa (Figure 13A). These centres generated large demands 

for slave labour within the hinterland of major ports such as Rio de Janeiro, and also generated 

some of the trade goods dispatched to Africa to purchase slaves. These three major ports were 

also transit points for captive labourers sold on to the gold producing regions of Minas Gerais 

and Goiás (Campbell, 2015). After 1760, transatlantic slave vessels were addressed to the 

Amazonian ports of Pará and Maranhão (Figure 13B), in response to the rapid growth of 

demand for cotton in North Brazil (Eltis & Richardson, 2010). 

 Rio de Janeiro was the most active and important slaving port in Southeast Brazil (Figure 14), 

and also was the home port for the slaves vessels that brought African captives to this region 

(Eltis & Richardson, 2010). West Central Africa was the major source of slaves for all the 

Americas, and in South America it was particularly dominant. In Rio de Janeiro, 83.7% of the 

disembarked enslaved Africans came from West Central Africa region (Figure 15 and 16). They 

were brought to Rio de Janeiro mainly originated from two important regions in Portuguese 

Angola: Luanda (42.3%) and Benguela (18.1%) (Table 4). Both major regions are populated by 

very distinct African ethnolinguistic groups, and are inhabited by speakers of languages 

belonging most of them to the Niger-Congo linguistic subphylum. This subphylum comprises 

the largest Bantu branch and includes about 500 languages, which are spoken in virtually all of 

Central, East, and South Africa, except for the areas occupied by the Khoisan-speaking groups 

(Paul et al., 2015). Therefore, African captives of Bantu origin from South of the Congo and 

Angola were overwhelmingly forced to move to Brazil during the slave era (see Figure 15). 
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B:  

Figure 11: Map of African coastal origins of slaves carried to Dutch Guiana (A) and French Guiana 

(B) from 1526 to 1867. The boundaries of historical African political units and ethnolinguistic groups 

are shown along the African coastal regions (Eltis & Richardson, 2010). 
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A:   

B:   

Figure 12: Estimated number of enslaved Africans disembarked on Surinam (A) and Cayenne (B), 

leaving African coastal regions from 1549 to 1856. There are no records of enslaved Africans arriving 

from Southeast Africa to Surinam, or form Gold Coast to Cayenne (Voyages Database, 2009). 

Table 3: Estimated number and percentage of: 221,430 enslaved Africans disembarked on the Dutch 

port of Surinam in Dutch Guiana; and 20,676 enslaved Africans disembarked on the French port of 

Cayenne in French Guiana, from major African ports from 1664 to 1825 (Voyages Database, 2009). 

Surinam Senegambia Gold Coast Bight of Benin Bight of Biafra West Central Africa 
Period / Port Saint-Louis Elmina Ouidah Bonny Calabar Malembo Loango 
1664 - 1675         243 391 1,457 
1676 - 1700         1,406 730 424 
1701 - 1725   1,032 11,720       455 
1726 - 1750   10,985       1,029 802 
1751 - 1775   5,495 690     9,275 589 
1776 - 1800 100 7,635   343 644   349 
1801 - 1825       1,462 2,385     

Total 100 25,147 12,410 1,805 4,678 11,425 4,076 
Percentage 0.05% 11.36% 5.60% 0.82% 2.11% 5.16% 1.84% 

 

Cayenne Senegambia Bight of Benin Bight of Biafra West Central Africa 
Period / Port Saint-Louis Ouidah Bonny Loango Portuguese port 
1676 - 1700 322 241       
1701 - 1725   436 125     
1726 - 1750   887     286 
1751 - 1775   233     816 
1776 - 1800 916 932 328   1,204 
1801 - 1825 708   540 580   

Total 1,946 2,729 993 580 2,306 
Percentage  9.41% 13.20% 4.80% 2.81% 11.15% 
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Furthermore, Rio de Janeiro, with over one million disembarked African captives (Figure 15), 

was the Atlantic Ocean’s largest single outfitting port for slave ships, as well as the single most 

important disembarkation point in the Americas. So slave trading played a vital role in the 

growth of the city’s wealth and population, allowing its merchants and city leaders to invest in 

the public spaces and buildings (Morgan, 2013). Most enslaved Africans entering the port were 

sold on to work in sugar, coffee, and, especially in the 18th century, gold production in Minas 

Figure 13: Maps of estimated 

number of enslaved Africans 

arriving in Brazil: from 1561 to 

1695 (A), and from 1696 to 1790 

(B) (Eltis & Richardson, 2010).  
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Gerais and other provinces. Some of them remained in Rio de Janeiro itself, providing labour 

for urban crafts, household, and other services (Morgan, 2013). Throughout the Americas, 

enslaved Africans were used not only to produce sugar, coffee, gold, tobacco, cotton, and other 

goods for market, also to work as servants of European colonizer to display their owners’ status, 

which means they were both, producers and symbols of their owners’ wealth (Araujo, 2015). 
 

 

Figure 14: Maps of estimated number of African enslaved arriving in Brazil from 1791 to 1856. In the 

19th century, more African captives arrived in Brazil than in any other colony or country to supply the 

labour needs of sugar and coffee plantations, especially in Rio de Janeiro (Eltis & Richardson, 2010).  
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Figure 15: Map of African coastal origins of slaves carried to Rio de Janeiro (in Southeast Brazil) 

during the third phase of the transatlantic slave trade from 1808 to 1856. In the 1830s, British suppression 

and anti-slave trade are represented in part on the map by the return loops of Africans liberated from 

slave vessels and taken to Sierra Leone and St. Helena. The boundaries of historical African political 

units and ethnolinguistic groups are shown along the African coastal regions (Eltis & Richardson, 2010). 

 

 
Figure 16: Estimated number of enslaved Africans disembarked on Rio de Janeiro from 1549 to 1856 

leaving historical African coastal regions. There are no records of enslaved Africans arriving from Sierra 

Leone and Windward Coast to Rio de Janeiro (Voyages Database, 2009). 
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Increasing demand for coffee and sugar beginning in the 18th century sustained the Brazilian 

slave trade close to peak levels until the mid-18th century. In the late 1820s, more enslaved 

Africans were imported into Rio de Janeiro than into any other port in the history of the slave 

trade (Eltis & Richardson, 2010). After 1820, slave vessels addressed to Rio de Janeiro obtained 

enslaved Africans from more remote parts of the West Central African coast, instead of the 

traditional centres of Luanda and Benguela, also drew heavily from Mozambique in Southeast 

Africa (Table 4). Therefore, Southeast Africa region became an important source of captives, 

where around 13.5% African captives were taken and forced to move to Rio de Janeiro (Figure 

16); so this region should be taken into consideration to trace the African origin of current 

African descendants from Rio de Janeiro. 

 

Table 4: Estimated number and percentage of 1,100,570 enslaved Africans disembarked on the 

Brazilian port of Rio de Janeiro in Brazil from major African ports from 1676 to 1856 (Voyages 

Database, 2009). 

Rio de Janeiro Bight of Benin Bight of Biafra West Central Africa Southeast Africa 
Period / Port Ouidah Bonny Benguela Luanda Mozambique Quilimane 
1597 - 1600             
1651 - 1675             
1676 - 1700     105 2,726     
1701 - 1725 926   105 19,846     
1726 - 1750     3,000 79,413     
1751 - 1775 1,070   7,711 49,459 431   
1776 - 1800 230   39,154 84,581 1,278 186 
1801 - 1825 139 734 106,640 165,996 45,675 26,699 
1826 - 1850 335   41,843 63,037 25,856 23,884 
1851 - 1856     563       

Total 2,700 734 199,121 465,058 73,240 50,769 
Percentage 0.25% 0.07% 18.09% 42.26% 6.65% 4.61% 

 

In the Spanish American mainland, after the conquest of the Azteca and Inca Empires in the 

16th century, the Spanish consolidated an empire that comprised most of the Latin America. 

Enslaved Africans entered this empire mainly through Cartagena in Colombia (with around 

196,000 captives), and through Veracruz in Mexico (with around 83,000 captives) (Figure 17). 

African slavery in Colombia began in the first decade of the 16th century, and by the 1520s, 

Africans captives were being imported steadily into Colombia to replace the rapidly declining 

Native American population. Cartagena was designated as an official port of the Spanish fleet 

system as early as 1537, and became by far the largest single slaving disembarkation port in the 

Spanish Americas (Almeida, 2008). Enslaved Africans arrived mainly from West Central 

Africa (45.2%) and Senegambia (38.9%) regions (Figure 18). In West Central Africa, Luanda 

was largely the first port were Africans were enslaved (around 25.4%), while Portuguese 

Guinea was the key port in Senegambia (18.3%) (Table 5). 
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They were forced to work in gold mines, sugar cane plantations, cattle ranches, and large 

haciendas (landed estates owned by colonists). Indeed, African labour was essential in different 

regions of Colombia, For instance, African workers were pioneered in the extracting of alluvial 

gold deposits and the growing of sugar cane in the states of Chocó, Antioquia, Cauca, Valle del 

Cauca, and Nariño in Western Colombia. However, with the arrival of numerous slaves to staff 

lowland mines and highland haciendas, the frequency of rebellions increased (Navarrete, 2012).  

 

 
Figure 17: Map of African coastal origins of slaves carried to Cartagena (in Colombia) during the 

Spanish transatlantic slave trade from 1501 to 1641 (Eltis & Richardson, 2010). 

 
Figure 18: Estimated number of enslaved Africans disembarked on Cartagena (from 1549 to 1856), 

leaving African coastal regions. There are no records of enslaved Africans arriving from Sierra Leone, 

Windward Coast, and Southeast Africa to Cartagena (Voyages Database, 2009). 
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Table 5: Estimated number and percentage of 107,913 enslaved Africans disembarked on the Spanish 

port of Cartagena in Colombia from major African ports from 1564 to 1788 (Voyages Database, 2009). 

Cartagena Senegambia Senegambia Bight of Benin Bight of Biafra West Central Africa 

Period / Port Portuguese 
Guinea Cape Verde Ouidah Bonny Luanda Portuguese 

unknown 
1564 - 1575  428         
1576 - 1600 8,607 5,554     6,752 1,632 
1601 - 1625 8,460 3,488     9,588 10,268 
1626 - 1650 2,669 743     11,037 1,400 
1651 - 1675         650 
1676 - 1700  313 944     251 
1701 - 1725   1,955     364 
1751 - 1775     344     
1776 - 1788     158     

Total 19,736 10,526 2,899 502 27,377 14,565 
Percentage 18.29% 9.75% 2.69% 0.47% 25.37% 13.50% 

 

 

B. Formation of the African-American communities 

The sociologist Orlando Patterson defines slavery as “the permanent, violent domination of 

natally alienated and generally dishonored persons” (Patterson, 1990). This definition is 

important both for what it includes and does not include as part of the cultural baggage of the 

enslaved. Patterson excludes all references to slaves as a form of ‘property’ because he 

considers that “to define slavery only as the treatment of human beings as property fails as a 

definition, since it does not really specify any distinct category of persons. Proprietary claims 

and powers are made with respect to many persons (such as wives or children in some cultures) 

who are clearly not slaves”. Patterson places much more emphasis on ‘natal alienation’ and 

argues that “slaves differed from other human beings in that they were not allowed freely to 

integrate the experience of their ancestors into their lives, to inform understanding of social 

reality with the inherited meanings of their forebears, or to anchor the living present in any 

conscious community of memory”. 

In fact, slavery was a degradation of human life and human values. Human beings were turned 

into working machines. The only way people could free themselves from that system was to be 

courageous and not to be afraid to sacrifice their lives, therefore wherever slavery flourished, 

so did resistance. For more than three centuries, in remote areas throughout the West Indies, 

Central America, South America, and North America, thousands of enslaved Africans managed 

to escape from the plantations of European colonizers, in search of freedom. These runaway 

slaves (generally called “Maroons”) formed independent African settlements of free people in 

South America and the Caribbean (such as Jamaica and Barbados), in a process known as 
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‘marronage’. In fact, the English word; Maroons came from the Latin-American Spanish word; 

“cimarrón”, which means: wild, fugitive or runaway, and today this word has strong 

connotations with ‘brave’, ‘fierceness’ or ‘unbroken spirit’. In plantations from different 

countries in Latin America, runaway enslaved Africans were also known as Palenques in the 

Spanish colonies, Quilombos or Mocambos in Brazil, and Cumbes in Venezuela. The initial 

Maroons in any New World colony hailed from a wide range of African societies in West and 

West Central Africa, and at the outset they shared major aspects of culture, including language 

(Agorsah, 1994). 

These Maroon communities have subsequently emerged as free and independent societies that 

have forced colonial governments to sign treaties and pacts to guarantee: their freedom, their 

land, and their own political autonomy (Price, 2002). After centuries of survival and adaptation 

in the Amazon rainforest, they have developed a unique identity and history. Indeed, marronage 

represented a major form of slave resistance, whether accomplished by lone individuals, by 

small groups, or in great collective rebellions. Throughout the Americas, Maroon communities 

stood out as a heroic challenge to European authority, as the living proof of the existence of a 

slave consciousness that refused to be limited by the European’ conception of the docile slave. 

It is no accident that throughout the Latin America, the historical Maroon has become today a 

touchstone of identity for the region’s writers, artists, and intellectuals; and the ultimate symbol 

of resistance and the fight for freedom. 

Today in South America, African descendants of some of the original Maroon communities 

still preserve a strong sense of their history, traditions, values, and identity; which are deeply 

rooted in their African past. For instance, the Noir Marron communities in French Guiana and 

Surinam, since their formation in the 18th century, have adapted to the Amazonian environment 

because of their cultural practices are inherited from African, Amerindian, and European 

cultural exchanges (Price, 1996).  

 

B.1. Historical, cultural, and social backgrounds of the Noir Marron communities 

The Noir Maroon from French Guiana and Surinam (formerly known as “Bush Negroes”, 

“Bushinenge”, or “Buschinengué”) have always been the largest Maroon population in South 

America. They are at once the most culturally, politically, and economically independent of all 

Maroon peoples in the Americas (Price & Price, 2001). They are the direct descendants of 

enslaved Africans who managed to flee from Dutch colonial oppression, and escaped from 

coastal plantations in the Dutch colony of Surinam (Figure 19A). They fled into the forested 

interior out of reach of both the planters and the colonial powers, where they regrouped into 
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small bands, and began forging a viable existence in this new and inhospitable environment 

(Price & Price, 2003).  

Marronage on a grand scale, with individual fugitives banding together to create free 

communities, struck directly at the foundations of the plantation system, presenting military and 

economic threats that often taxed the colonists to their limits. Maroon communities, hidden near 

the fringes of the plantations or deep in the forest, periodically raided plantations looking for 

firearms, tools, and women; often permitting families formed during the slavery to be reunited 

in freedom. This daunting challenge was made even more difficult by the government’s 

persistent and massive efforts to eliminate the threat they posed to the colony’s thriving 

plantations. Therefore, the Dutch colonists reserved special punishments and a variety of deaths 

by torture written into law for recaptured slaves, such as hamstringing, amputation of limbs, 

castration, suspension from a meat hook through the ribs, slow roasting to death (Figure 19B, 

19C, and 19D), whose punishments were designed "to serve as an example to others" (Stedman 

et al., 2010).  

The Dutch government also established military expeditions against the nascent group of 

Maroons known as Saramaka. During the late 17th and the early 18th century, numerous small-

scale military expeditions were mounted, sometimes at the personal expense of particular 

planters (Price, 1994). The organized pursuit of Maroons, and expeditions to destroy their 

settlements by the citizen’s militia, ended up with a progressively costly warfare. Indeed, a 

typical expedition costed more than 100,000 Dutch guilders and had to traverse mountains and 

creeks (Figure 19E) before reaching the Maroons’ hidden villages (Price, 1995).  

 

 

     

Figure 19: Representations of rebellions and punishments of African enslaved in the Dutch colony of 

Surinam in the 1770s: A: A rebel Marron man armed; B: Marron woman carrying a weight chained to 

her ankle; C: Flagellation of a Marron woman with deep lacerations; D: Marron man hung alive by the 

ribs to a gallows; and E: Through a swamp in pursuit of slaves (Stedman et al., 2010). 

A B C D E 
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The increasingly costly warfare culminated in a decision by the colonists, during the late 

1740s, to sue their former slaves for permanent peace. However, peace proved elusive, in 1754 

they decided to mount another massive expedition against the Saramaka consisting of 500 men. 

In the 1760s, peace treaties were at last successfully concluded with the two largest Maroon 

groups, the Saramaka and the Ndjuka. Consequently, new slave revolts and the large-scale war 

of subsequent decades, for which an army of mercenaries was imported from Europe, led to the 

formation of the Aluku, as well as the smaller Paramaka, Matawai, and Kwinti groups (Price, 

1995). 

These runaway enslaved Africans are poorly documented, since most records were written by 

European settlers, explorers, and government officials; who wrote partial and subjective views 

of events. The majority of Noir Marron history is transmitted by oral traditions, through songs 

and poems; so there is variation in the some of the historical facts, notably in dates and the 

names of important individuals involved (Price & Price, 2003; Price, 2008). Currently, the Noir 

Marrons are not one unique group; they are members of six distinct communities disperse in 

separated territories. They also present remarkable different features in their history, languages, 

culture, religion, and social organization (Price & Price, 2003). For instance, each Noir Maroon 

people has its own understandings of the cosmos and magic world (Price, 2008).  

The history of the Noir Marron began with the frequent marooning in Dutch Guiana during 

the 16th and the early 17th century. Slaves managed to escape during various occasions: during 

their dismemberment from the ships when a lack of control was exercised; during their transport 

to the plantations; and once on the farm. The dense equatorial forests in which the Dutch 

plantations were located, were ideal places to hide, especially as they held all the natural 

resources to ensure survival. Therefore, many slaves took refuge in the forest and small 

communities were slowly formed that were able to survive in this unknown environment. 

Individuals from the same plantation often regrouped (Price & Price, 2003).  

The first Noir Marron group to form was the Saramaka. Its size continued to increase until the 

1720s, with individuals coming mainly from the plantations controlled by Portuguese Jews, the 

first planters of Dutch Guiana. Posteriorly in 1710, the Ndjuka group was formed, located in 

the eastern region of Dutch Guiana. Currently, the Saramaka and Ndjuka groups are both the 

largest Noir Marron groups between Dutch and French Guiana. A third Noir Marron group 

known as Aluku was established from fugitive slaves in French Guiana in 1712, and was 

subjected to these partial collaborations between the Dutch and some Noir Marron groups. 

Located near the Cottica River, they constituted small communities led by Boni Okilifu, and 

they often attacked nearby plantations to obtain foods and weapons. The initial distribution of 

the fourth Noir Marron group, the Paramaka, was the Commewijne region in 1780. Finally, the 
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other Noir Marron communities, the Matawai and Kwinti, were established to the west of 

Saramaka territory. Today, the Matawai and Kwinti do not represent a major group in French 

Guiana (Price & Price, 2003). 

Before the slavery was abolished in the French colonies (1848) and in the Dutch colonies 

(1863). Six Noir Marron communities had been established in the interior of Surinam and close 

to the political border with French Guiana at the end of the 18th century. The greatest cultural 

differences were between the Maroons of central Surinam (that means: Saramaka, Matawai, 

and Kwinti), and those of eastern Surinam and western French Guiana (that means: the Ndjuka, 

Aluku, and Paramaka). Although these new societies were formed under broadly similar 

historical and ecological conditions, they vary in everything from language, diet, and dress to 

patterns of marriage, place of residence, and migratory wage labour. Each community’s legal 

territory is bounded by mountains, rivers, watersheds, and forests (Bilby, 2005). 

In 1900, the Noir Marron population size in French Guiana was composed of approximately: 

4,000 Ndjuka, 4,000 Saramaka, 600 Matawai, 400 Aluku, 400 Paramaka, and 200 Kwinti (Price 

& Price, 2003). By the end of the 1990s, an extensive anthropological fieldwork (INSEE, 2000) 

suggested that those figures required significant modifications, including more than doubling 

of the total population of Noir Marron. The new census indicated that between 36,500 and 

46,500 Noir Marrons were living in French Guiana at that moment. Table 6 summarizes the 

consensus data reported by Price (2002) for Noir Marron populations residing in Surinam 

(60.6%) and French Guiana (31.6%). It include out-migration from all Maroon villages all over 

the interior, toward Paramaribo, the coast of French Guiana, and Netherlands, which is 

considered the main destination of Maroon diaspora in Europe. In general, the major 

encouragements to Maroon rapid demographic expansion would seem to be because of 

economic stability, access to health care facilities, and controlled disease like AIDS and malaria 

(Price, 2002). The Noir Marron population in the Netherlands jumped as a result of the Surinam 

civil war (1986-1992), and many of those living there today are illegal immigrants (Price, 2002). 
 

Table 6: Demographic of the Noir Marron communities in Surinam, French Guiana (F.G.), 

and Netherlands by the end of the 1990s (Price, 2002). 

Noir Marron  Surinam 
interior Paramaribo F.G. 

interior F.G. coast Netherlands Total Percentage 

   Ndjuka 24,000 8,000 3,000 11,000 4,500 50,500 42.94% 
   Saramaka 25,000 7,000 - 14,500 4,000 50,500 42.94% 
   Aluku - - 3,900 2,000 100 6,000 5.10% 
   Paramaka 2,300 500 500 2,300 400 6,000 5.10% 
   Matawai 1,000 2,900 - - 100 4,000 3.40% 
   Kwinti 170 400 - - 30 600 0.51% 
Total 52,470 18,800 7,400 29,800 9,130 117,600 100,00% 
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Currently, Noir Marron communities present a remarkable African heritage in their culture, 

language, political organization, and religion; which cannot be easily associate with a unique 

African source. They are the result of mixed of diverse African groups, and this complex legacy 

has been maintained for several centuries until nowadays (Price & Price, 2003). Furthermore, 

they developed a new African identity in the process of creolisation according to their 

adaptation to a new environment and circumstances, and they integrated elements influenced 

by European and Native American culture. 

All six groups are running their own political and judicial affairs under the authority of 

paramount chiefs and village captains, which functioned as "states within a state". They are 

known for such interesting practices as polygyny, oracular divination, spirit possession, body 

scarification, and ancestor worship, as well as distinctive styles of music, dance, and plastic 

arts, and countless other aspects of daily life that reflected their uncompromised heritage of 

independence and their radical difference from the other populations of French Guiana and 

Surinam. Maroons’ dealings with the outside world were largely limited to the men’s wage-

labour trips, which provided the cash needed to buy soap, salt, tools, cloth, kerosene, 

kitchenware, and other necessities for life back in the villages of the rainforest. Maroons felt 

tremendous pride in the accomplishments of their heroic ancestors and, on the whole, remained 

masters of their forest realm (Price & Price, 2003). 

The period of the 1960s-1970s has undergone dramatic transformations and gradual 

modernization of the world of these people; such as out-board motors that facilitated mobility 

within and beyond the interior, the construction of airstrips in the interior, radios and tape 

recorders that allowed closer communication with the coast, gasoline-powered generators in 

some of the villages that brought electric lights and the occasional refrigerator, and an increase 

in the missionary schools that prepared boys and sometimes girls for contacts with Creoles and 

other non-Maroons. All of these changes were monitored by public consensus, and through 

community meetings (Price & Price, 2001). 

In the 1970s, there were even more intense transformations. Surinam moved away from its 

ties to Europe, becoming an independent republic. In French Guiana, Paris targeted it for rapid 

development in connection with the establishment of the European Space Center in Kourou. 

These shifts eventually had profound consequences for Maroons communities in terms of 

territorial sovereignty, political independence, cultural integrity, and economic opportunities 

such as basic issues of health and personal dignity (Price & Price, 2001). 

Since its independence in 1975, Surinam has been pursuing an increasingly militant and 

destructive policy against Maroons, stripping them of their rights to land and its potential riches 

and endangering their right to exist as distinctive people. In 1980, the army seized power in a 
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coup d'état, and the country began a downward spiral from which it has never recovered. For 

instance, at that time Surinam endured a plummeting economy, a massive brain drain, and a 

notable increase in poverty, drugs, and crime (Price, 1995). In 1986, civil war broke out between 

Maroons and the national Creole-run military, sending thousands of Maroons fleeing across the 

border into French Guiana. At least 10,000 Ndjukas, recognized as refugees, were confined to 

camps enclosed by barbed wire; and countless other Maroons (mainly Saramaka), as clandestine 

attempting to build a new life while remaining invisible to French authorities, charged with the 

expulsion of illegals. The fighting that raged from 1986 to 1992 pitted Maroons against the 

national army of Surinam, bringing back to life many of the horrors of their early ancestors’ 

struggles for freedom. African medicine bundles that had lain buried for 200 years were 

unearthed and carried into battle. Maroon men and boys, often armed with shotguns, confronted 

the army’s automatic weapons, tanks, and helicopter gunships dropping napalm. Whole 

villages, particularly in the Cottica Ndjuka region, were razed as soldiers killed hundreds of 

women and children with machetes and bullets (Price & Price, 2001). 

In 1992, the civil war was concluded, the refugee camps in French Guiana were shut down, 

and their occupants were either “regularized” or sent back to Surinam. As for the remaining 

“illegals”, who number in the thousands, the quality of life generally rises and falls with 

immigration policy decisions made in Paris. Meanwhile, those Maroons who are officially 

French citizens by virtue of having been born east of the Marowijne (Maroni) and Lawa Rivers, 

have been adapting to an aggressive program of “Francisation”. This assimilationist program 

disseminates the language and culture of the French state, provides generous welfare benefits, 

redefines the nature of Maroon political leadership and land ownership, encourages 

consumerism both in the stores of French Guiana and through European mail order catalogues, 

and redefines Maroon visual and performative arts as part of the cultural patrimony of overseas 

France (Bilby, 2005). 

In the Surinam post-civil war, Maroon life has been transformed, perhaps irreparably, with 

rampant poverty and malnutrition. The official restoration of peace in 1992 came at a price, as 

the Maroons were pushed into signing a treaty largely focused on rights to land, minerals, and 

other natural resources. The Surinam state has now embarked on a rigorous program aimed at 

the legal unification, uniformity, and ultimately the integration of Maroon minorities (Price & 

Price, 2001). However, the overall decline in Surinam’s prosperity during the past 20 years has 

had strong trickle-down effects on Maroon communities. The basic rights of Surinamese 

Maroons (such as to be free from discrimination, to own and enjoy their lands and natural 

resources, to participate in decision making, and to practice their cultures) are routinely violated 

in policy and laws; for instance issuing of logging and mining concessions without any 
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consultation, environmental degradation, dispossession, and by ignoring of legal agreements 

such as Maroon peace treaties (Kambel & MacKay, 1999). 

In neighbouring French Guiana, the economic and social situation contrasts sharply with that 

of Surinam, however the threats to the survival of Maroon cultures are equally distressing. 

French Guiana territory is distinguished strongly for its high diversity ethnic and linguistic than 

any other French department, particularly for both African American and Amerindian diversity. 

Nevertheless the presence of Marron communities in French territory represents an important 

governmental question in France (Belkacemi, 1999). After the slave trade period, French 

government disagree systematically with international convections or declarations to recognise 

specific rights to determinate ethnic groups in reason of their membership to minority groups 

(Gery et al., 2014). For instance, unlike Brazil and Colombia, France has never ratified the 

Indigenous and Tribal Peoples Convention N°169 (or ILO 169) concerning to:  

“Peoples in independent countries who are regarded as indigenous on account of their 

descent from the populations which inhabited the country, or a geographical region to which 

the country belongs, at the time of conquest or colonisation or the establishment of present state 

boundaries and who, irrespective of their legal status, retain some or all of their own social, 

economic, cultural, and political institutions.” Article 1b. Part I (ILO, 1989).  

ILO 169 is based on the principle that indigenous and tribal peoples should “enjoy as much 

control as possible over their own economic, social and cultural development”. It recognizes 

that indigenous and tribal peoples “have the right to decide their own priorities for the process 

of development as it affects their lives, beliefs, institutions and spiritual wellbeing and the lands 

they occupy or otherwise use, and to exercise control, to the extent possible, over their own 

economic, social and cultural development” (ILO, 1989). It also contains over six articles on 

indigenous and tribal land rights, basing these rights on traditional occupation and use of land 

and resources rather than on grants from the state, and a number of provisions relating to 

consultation and participation in decision making. 

The vast majority of American states have ratified international human rights treaties such as 

ILO 169 that obligate them to respect the rights of individuals and certain groups. While Maroon 

groups’ rights has been addressed in countries such as Colombia (1999), Ecuador (1997), and 

Surinam (1983, 1985). The position of French government is even against the European 

Parliament Resolution (in 1994, Strasbourg) that recognized indigenous peoples’ right (such as 

Noir Marron) to autonomous control over their territory, political status, and culture; and called 

on host governments (France) to secure indigenous land rights and develop specific measures 

to protect their rights (Anaya, 2004). 
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Besides, in Surinam (independent republic since 1975) the constitution of 1987 specifies that 

all non-titled land and resources belong to the State. The constitution also denies specifically 

the possibility that an indigenous or ‘Maroon people’ could have a juridical personality and 

therefore collective rights to property (or to anything else). For instance, during the 1990s the 

Saramaka suddenly found their territory invaded by Chinese and other multinational logging 

and mining companies, which were extracting resources with the explicit permission of the 

State. Hence, the Maroon communities in French Guiana and Surinam, the most resilient of all 

Maroon cultures in the Americas, endure ever into the 21st century. 

 

B.1.a. Formation of the Saramaka community 

The ancestors of the Saramaka (or Saamaka in their own pronunciation) were slaves on the 

plantations of Surinam between 1690 and 1760, who fought against their oppressors and freed 

themselves from the inhumane system of slavery. The white plantation owners (mainly Dutch, 

French, or Portuguese Jews) undertook many expeditions to try to recapture their enslaved 

Africans, however these expeditions were mainly unsuccessful. In 1762, they had to close 

reluctantly an agreement in which they recognized the Saramaka as “free negroes”, and the 

Saramaka could live in the interior in whatever way they pleased and that they would receive 

annual gifts by which the government; in effect, the government paid ‘protection money’ to 

forestall raids on the plantations (Price & Price, 2003). 

The Saramaka have a long history with French Guiana, since 1860 many Saramaka have 

resided temporarily or permanently in French Guiana, and for a long time, their numbers 

exceeded those of the other Noir Marron groups (Price & Price, 2003). At the early 18th century, 

the first Saramaka arrived in French Guiana during the period of the first gold rush and they 

established three centres in French Guiana. The first settlement was established in the small 

town of Mana alongside the Mana River in western French Guiana. They came to quickly 

monopolize river transport, and did so for about a hundred years (Figure 20). After several 

armed conflicts, they forced to the Dutch colons to sign their freedom and independence in 

1762. At that moment, they had already created their own culture, language, and social structure 

(Price, 1994).  
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Figure 20: Saramaka Maroon village in Suriname River, photo took in 1955. © 1955 Ted Hill. 

 

At the end of the 19th century, many Saramaka also settled on the Approuague River and later 

in Regina in Eastern French Guiana, then a centre for the exploitation of gold and rosewood. 

The Saramaka soon took over the river transport on that river and found employment in forestry 

activities. At its height, there were as many as 400 Saramaka men and the Saramaka maintained 

a considerable presence in the region until the 1950s. Saint-Georges-de-l’Oyapok was a third 

Saramaka centre in French Guiana. At round the 1900s, it became an important port of departure 

for gold searchers headed for the Carsewene region in Brazil. As in the other regions, the 

Saramaka quickly monopolized the river transport on the Oyapok, and later they also 

established their own village, Tampak, a few kilometres from Saint-Georges. Many Saramaka 

men and their French Guianese creole wives settled in that village, which at its height numbered 

over three hundred people and had the greatest Saramaka ancestor shrine (Price, 1994). 

The current geographic distribution of Saramaka in French Guiana is concentred mainly in 

major cities of Cayenne, Kourou, Saint-Georges, and Saint-Laurent-du-Maroni, as well as in its 

periphery between Iracoubo and Mana, and in the delta regions of Aprouague and Saint-

Georges-de-l’Oyapock. Moreover, there are a considerable proportion of Saramaka in Surinam, 

and numerous emigrants to Netherlands and United States (Renault-Lescure & Goury, 2009). 
 

B.1.b. Formation of the Ndjuka community 

The current geographic distribution of Ndjuka (also known as Ndyuka, Okanisi or Aukaners) 

in French Guiana is concentred in Gran-Santi around the Maroni in the region of Saint-Laurent 

and Mana (Renault-Lescure & Goury, 2009). The first runaways (called lowe nenge) found 

refuge close to Tapanahony in Surinam, and they were in permanent war with the Dutch 

government (Price, 1996). 
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In 1760, the Ndjuka, who lived in the east of Surinam, signed an accord with the plantation 

owners to recognize them as a free group, two years earlier than the Saramaka’s agreement with 

the colonial government. The Okanisi or Aukaners words came from the name ‘Auka’, which 

is the name of the plantation where Ndjuka and the Dutch signed this peace treaty. Although, it 

is still not clear the origin of the Ndjuka word (Price & Price, 2003). 

B.1.c. Formation of the Aluku community 

The Aluku (also known as Boni, which is the name of the founding hero of the Aluku, Boni 

Okilifu) were the first Noir Marron community permanently established in French Guiana. In a 

historical perspective, the Aluku were probably the greatest victims of colonial repression 

(Hoogbergen, 1990). During the first years of their formation, they lived on the forest in disperse 

clans of runways from Surinamese plantations, mainly from Cottica and Commewijne regions 

(Moomou, 2004). The names of each clan were the same than the name of each plantation of 

owner that they belonged previously. In 1760, the three major clans (rebels of Cottica, clan 

Kawina, and clan Dju) established one alliance of freedom, and started a common society. In 

1777, Aluku group were moved over the Marowijne into French Guiana after a year-long 

guerrilla war against the Dutch troops. In 1789, the Aluku again went to war against the 

Surinamese plantation owners until 1793, and carried out raids on the plantations. A 

considerable number were killed, including the leader’s Aluku, Kormantin Kodjo, who is still 

considered a symbol of rebellion and untamed soul. In 1793, only about 100 Aluku were left, 

of the 400 living in 1789. In the 1830s, the remaining Aluku settled on the French bank of the 

Lawa River, which forms the border between French Guiana and Surinam. All different bands 

and clans accorded to create an unique community, and at that moment they started the Aluku 

community (Hoogbergen, 1990; Price, 1996). 

The traditional Aluku territory is now divided between three major communes: Maripasoula, 

Grand-Santi-Papaïchton, and Apatou. Aluku society is divided into several named matrilineal 

clans, which means a woman’s children automatically belonged to her clan by birth. These 

clans, called lo, formed the basic unit of Aluku social organization. Most Aluku lo were 

concentrated in single villages founded by clan members, however some lo were divided 

between two or three villages. Each village had its clan chiefs, called kapiten, responsible for 

the members of their lo, as well as for any other villagers happening to live there. The kapiten, 

in turn, answered to the gaanman, the paramount chief, whose authority extended to the entire 

tribe (Price & Price, 2003). Daily social life, however, is regulated primarily at the village level, 

with the kapiten playing an important part in most public transactions (Price, 1996).  
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In 1989, French Guianese authorities launched in Cayenne the program entitled “Sur les traces 

de Boni” (or “On the trail of Boni”) in conjunction with the bicentennial of the French 

Revolution. The program officially recognized the liberation struggles of the Aluku ancestors, 

and aims to foster widespread appreciation of the Aluku cultural heritage (culture, art, dance, 

and music). Indeed, the Aluku had a rich repertoire of songs, dances, and drumming styles to 

accompany the major rites and crises of life (Price & Price, 2003). As other Noir Marron 

communities, the Aluku play the drum-based genre known as aleke, based on a three-drum 

ensemble with other percussion (Bilby, 2001). According with musicological analysis, there is 

a close resemblance between the interlocking rhythmic patterns played by drummers in Aluku 

ceremonies in French Guiana and Surinam, and those characteristic of certain drum ensemble 

genres still played in Akan-speaking groups from Gold Coast (Bilby, 1995, 2009). However, 

we lack historical documentation musical forms existed in the Guianas during the 17th, 18th or 

19th centuries, that could allow us to confirm that association through musicological analysis 

based on written notation. 

B.1.d. Formation of the Paramaka community 

The Paramaka (or Paamaka in their own pronunciation) is a small community originated after 

other major Marron groups. Originally, Paramaka distribution was the Commewijne region in 

1780, far away enough to avoid on the one hand European colonizers, and on the other hand the 

Ndjuka group. They moved slowly to the south, where they established new villages. Their 

presence in Maroni Islands such as Langatabiki dates back to 1863, year of the abolition of 

slave trade in Surinam. Through the 19th century, they created their final distribution between 

the Ndjuka community to the north and south, and the Saramaka community to the west. 

Currently, the Kwinti is direct descendent of Paramaka community (Price and Price, 2003). 

 

B.2. Formation of the Afro-Brazilian communities 

About 44% of all Africans forced into the slave trade ended their lives in Brazil (Figure 1). 

Currently, Brazil has the largest population of Africans outside of Africa, generally known as 

Quilombos (or Mocambos). Palmares is the most famous of all Quilombos. Indeed, Palmares 

is a federation of Maroon communities whose population was estimated to be 20,000 and even 

30,000 people (Schwartz, 1995). Its several constituent settlements were located on the Serra 

da Barriga, a mountain chain in the periphery of what was then the captaincy of Pernambuco, 

in the northeast of Brazil, an area that now belongs to the state of Alagoas. Palmares itself was 

originally created in the late 16th century by rebellious slaves from a large sugar plantation near 
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Porto Calvo, on the coast of Pernambuco. Fugitives usually killed or maltreated masters, 

overseers, and members of their families; burned fields; and stole arms, ammunition, and 

foodstuffs before escaping to the woods, swamps, or mountains (Schwartz, 1992).  

In the mid-17th century, the population of Palmares grew from both natural reproduction and 

the incorporation of such slaves who had been liberated from sugar plantations by Quilombo 

raiders. In the long run, Palmares became the prototype of the Quilombo in Brazilian historical 

narratives (Anderson, 1996; Schwartz, 1995). Besides, Quilombos were also founded in more 

remote regions of Brazil, located next to Minas Gerais, Goiás, and Mato Grosso. During the 

18th century gold rush, the mining region of Minas Gerais was the setting for the formation of 

dozens of Quilombos of between 100 and 300 inhabitants each. They were working for 

independent small-time miners, and merchants to buy their gold or exchange it for foodstuffs, 

firearms, ammunition, and other products (Schwartz, 1992). 

Conversely to Surinam, French Guiana, and Colombia, where Maroon communities forced 

treaties with colonial governments, became politically autonomous, and persist into nowadays; 

in Rio de Janeiro, slave flight did not always lead to the formation of Quilombos societies. 

Brazilian cities such as Rio de Janeiro, Recife, Salvador, Porto Alegre, and Vila Rica (present-

day Ouro Preto) were surrounded by small and large bands of fugitive slaves, whose mud 

houses, campsites, and subsistence grounds were periodically raided and destroyed by the 

police, only to reappear later on. Fugitives often escaped individually or in small groups and 

disguised themselves as freed blacks or mestizos, especially in larger urban settlements. They 

sometimes settled in remote areas, however unlikely in most cases were located near large urban 

centres or near plantation, ranching, and mining zones, from which they could extract part of 

their subsistence. Runaway enslaved Africans frequently dedicated themselves to subsistence 

agriculture; although they also sold their excess production in nearby local markets, or sold their 

labour to local planters, farmers, and miners (Gomes, 1995). 

Interestingly, in Brazil the formation of Quilombos did not always mean a complete 

withdrawal from captivity. Many rebel slaves organized themselves in Quilombos to negotiate 

from a position of force to obtain better terms of labour and living under slavery. For instance, 

Maroons from the Santana plantation in Bahia even produced a detailed “peace treaty”, as they 

called it, consisting of several demands relating to the work routine and to bargain for better 

terms of bondage (Anderson, 1996). 

In the year Brazil celebrated the centennial of the abolition of slavery, the Brazilian 

Constitution of 1988 for the first time recognized the right of descendants of slave-era, 

Quilombos, to receive lands from the state: “The definitive property rights of remnants of 

Quilombos that have been occupying the same lands are hereby recognized, and the state shall 
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grant them title to such lands.” (Art. 68). Further, the Brazilian Ministry of Culture established 

the Fundação Cultural Palmares (or FCP) dedicated to “promoting the cultural, social and 

economic values resulting from black influence in the formation of Brazilian society”. One of 

the FCP’s specific actions is to carry out research, studies, and surveys about Afro-Brazilian 

cultural legacies to preserve the Afro-Brazilian patrimony. The FCP also is in charge of 

protecting the legal rights of Quilombos and pulling together the documentation necessary to 

support their historical justification (Landers et al., 2015). 

In 1988, when these rights were finally recognised, Brazil was emerging from two decades of 

military rule. The new constitution was marked by a will to fully include the various minorities 

that until then had been excluded from citizenship. In fact, the recognition of Quilombo remnant 

communities formed part of this wish for a renewed vision of Brazilian society. As the country 

was celebrating the centennial of abolition, the aim was to rehabilitate the historical resistance 

of its black population. However, today only about thirty of remnant African communities have 

been recognized by the Ministry of Culture, of more than 700 that have been identified 

throughout Brazil, and just a small minority have received their land titles (Price, 1998). 

 

B.3. Formation of the Afro-Colombian communities 

The formation of an Afro-Colombian identity built upon a tradition of resistance can be 

attributed to a continuous history of slave rebellions and to the existence of independent Maroon 

communities called Palenques, formed by escaped enslaved Africans (Jordan, 2004). The term 

Palenque is translated literally in English as ‘stockade’. The strength of these free communities 

in Colombia was centred on their capacity: to increase in number; to maintain market relations 

with neighbouring communities; to exercise control and dominion over immediate agricultural, 

hunting, and fishing territories; to receive fugitive slaves from mines and haciendas; and to 

maintain autonomy against slave-owners and authorities wishing to reduce them to the status 

of illegal squatters and vagabonds (Navarrete, 2011). 

The discoveries of gold, silver, and later platinum attracted miners to the Chocó region, who 

brought large numbers of enslaved Africans to extract the precious metals. Gold-seeking raiders 

killed hundreds of natives, burned native villages, attempted to establish fortified settlements, 

and were repeatedly driven away. Therefore, enslaved Africans replaced the dramatic decline 

among the native populations (Landers et al., 2015). Nowadays, the Chocó region has the 

second largest population of African descendants in Colombia after Palenque de San Basilio 

community, a small town on the Colombian Caribbean coast. The almost exclusive African 

community in San Basilio de Palenque, generally known as Palenque(ro) or Palenque de San 
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Basilio, is located about 60 Km inland from the city of Cartagena de Indias. This Maroon 

community, established between 1655 and 1674, successfully managed to resist multiple attacks 

by Spanish militia. It was the first official Palenque in the Americas declared as a free village 

in 1713, after the King of Spain abandoned efforts to attack the walled village and to recapture 

slaves (Ferrari, 2012). Today, this former Maroon community speaks Spanish and their own 

unique language called Palenquero, a type of Spanish-derived Creole language that combines 

Spanish and Bantu languages from West-Central Africa such as Kikongo and its dialects 

(Schwegler, 2006, 2011).  

Many of the formerly enslaved in Quibdó purchased their freedom with gold mined on days 

off or stolen from their owners, and by the 18th century the Chocó department was home to a 

large free population of African descent. In the middle of the 18th century, gold mining in the 

Antioquia region reached greatest productivity. Enslaved Africans imports grew, and also did 

African creole populations. The acute demand for labourers allowed many enslaved Africans 

to rent themselves to someone other than their master on off days in exchange for cash. 

Ultimately, money accumulated was used to purchase their own freedom or that of family 

members. Indeed, hundreds of enslaved Africans in Colombia bought their freedom, and started 

migrating to places such as the Baudó Valley, where they formed largely black towns with 

cultural and social characteristics similar to the Palenque towns established by runaway 

enslaved Africans. (Landers et al., 2015; Navarrete, 2012).  

Finally, slavery was abolished in Colombia in 1851. According to the last census (DANE, 

2005), today in Colombia the percentage of people who self-identify as African descendant is 

around 11%, which includes people called: Afro-Colombian, African descendant, black, 

mulato(a), negro(a), Palenquero (or Afro-Colombian from San Basilio de Palenque), and 

Raizal (or Afro-Colombian from archipelago of San Andrés, Providencia, and Santa Catalina). 

It means that the current Afro-Colombian population is about 4,395,649 people of 41,468,384 

total inhabitants in Colombia. However, the distribution of African descendants in Colombia is 

very uneven. For instance, 95.32% was estimated in Quibdó, 56.98% in San Andrés, 36.47% in 

Cartagena, and 6.48% in Medellín, while 1.5% was estimated in Bogotá D.C. (DANE, 2005). 
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C. Linguistic influences in the formation of Marron Creole languages  

C.1. Africa’s linguistic diversity 

Africa populations not only have the highest levels of genetic diversity in the world, but also 

a considerable amount of linguistic diversity. Currently, about 2,138 living languages exist in 

Africa, representing about a third of the world’s languages (Paul et al., 2015). They are 

classified into four major linguistic families (Figure 21): i) Niger-Kordofanian spoken primarily 

by agriculturalist populations located in large contiguous regions of sub-Saharan Africa from 

western Africa to eastern and southern Africa, and Bantu language is the major linguistic 

subfamily within this phylum; ii) Nilo-Saharan spoken predominantly by pastoralist 

populations in central and eastern Africa; iii) Afroasiatic spoken predominantly by pastoralist 

and agro-pastoralists populations in northern and eastern Africa; and iv) Khoesan a language 

family that contains click consonants spoken by hunter-gatherer San populations in southern 

Africa as well as the Hadza and Sandawe hunter-gatherers in Tanzania (Campbell et al., 2014; 

Gomez et al., 2014; Scheinfeldt et al., 2010). Furthermore, there are other non-African 

languages such as Indo-European and Malayo-Polynesian that are resulting for ancient 

interactions with other non-African populations, such as European, Ottoman, Semitic, Arabian, 

and Polynesian groups (Figure 21). 

It is estimated that there are more than 600 Bantu languages spoken in sub-Saharan Africa, 

making this one of the largest and most widespread language group in the world (Paul et al., 

2015). Indeed, modern Bantu-speakers are numbering over 220 million people (that means 

~28% of Africans), who spread now over almost 9 million Km2. The Bantu languages are 

generally divided into three major groups: north western Bantu (with subgroup A, B, and C), 

eastern Bantu (with subgroup E, F, G, J, N, P, and S), and western Bantu (with subgroup H, K, 

L, R, D, and M) (Currie et al., 2013). 

The most outstanding migration event in Africa is considered the geographic expansion of 

Bantu-speakers across East and South Africa from their homeland in the Cross River Valley, 

near southeast Nigeria and western Cameroon border, where the Bantoid languages are most 

closely related to narrow Bantu (Hyman & Hombert, 1999). The expansion of Bantu-speakers 

took two main routes from its starting point: i) a western route, throughout the west coast of 

Africa, having arrived to Angola, South Africa and Botswana around 3.5 kya; and ii) an eastern 

route, towards the Great Lakes in Eastern Africa, reaching the region of Uganda about 2.5 kya, 

where they remained for a couple thousand years, expanding later into the south, reaching 

Mozambique by ~1.8 kya (Diamond & Bellwood, 2003; Salas et al., 2002).  
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Figure 21: Geographic distributions of major linguistic phylum in Africa. Geographic range occupied 

by Bantu speakers is shown. Putative centres of origin and initial expansion of language families are 

also shown: AA, Afroasiatic (14 kya, thousands years ago); NS, Nilo-Saharan; and NK, Niger-

Kordofanian (5 kya). Afroasiatic-speaking pastoralists were the first food-producing populations to 

migrate into East Africa circa 5 kya (X); followed by Nilo-Saharan-speaking pastoralists circa 3 kya 

(Y); and later Bantu-speaking agriculturalists after 2.5 kya (Z). Ultimately, after 2 kya initial expansion 

to southern Africa from East Africa of pastoralists (p) and later Bantu speaking agriculturalists (q). 

Image modified from Gomez et al. (2014). 

 

The spread of West African people across sub-Saharan Africa changed the demographic, 

linguistic, and genetic scenario for generations until today. Geneticist, archaeologists, and 

linguistics, all point to the extensive distribution of this language family being the result of a 

population dispersal that began around 3,000–5,000 years ago (Campbell et al., 2014; Currie et 

al., 2013; de Filippo et al., 2012; Ehret, 2001; Grollemund et al., 2015). However, there is less 

agreement about the routes taken by Bantu groups as they spread out over the rest of the 

continent (Barbieri et al., 2013a; Li et al., 2014; Marks et al., 2015; Russell et al., 2014). These 

debates have crucial implications regarding to the origin and spread of important cultural 

innovations, such as metallurgy, cattle-keeping, and farming (Holden, 2002; Pakendorf et al., 

2011). 

To understand this extremely high African cultural and linguistic diversity is a key point to 

shed new light on the African origin of the captives who embarked from one particular African 

region during the slave-trade era. However, it is very complex to distinguish between the 

geography of major linguistic families and of historic migration events took in Africa during 
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that period. For instance, in French and Dutch Guiana, historic slave trade records indicate the 

numerical dominance of: Bantu speakers (such as Kikongo from West Central Africa) and Gbe 

speakers in the late 17th century; only Gbe speakers in the early 18th century; Akan speakers in 

the 1720s and 1730s; and ‘Upper Guinea’ (and to a lesser extent Bantu) speakers thereafter 

(Huttar, 2010). Indeed, Smith (2002) showed that during 1675-1714, the formative period of 

Creole languages, about 50% of the enslaved Africans in the Guiana regions were originated 

from the Gold Coast and the Bight of Benin. Therefore, Gbe varieties from West Africa (such 

as Fongbe), which come from the Gold Coast and Bight of Benin, were the base language in 

the formation of Creoles languages spoken today in French Guiana and Surinam rather than 

Bantu or other linguistic groups (Essegbey et al., 2013a; Huttar, 2010; Lefebvre, 2013). 

   

C.2. English-based Creole’s linguistic diversity 

The English-based Creole languages known as Ndjuka, Saramaka, Paramaka, and Aluku 

(language name is the same as Noir Marron tribe that belonged) include lexical items from 

many distinct African and European sources (Huttar, 2012; Smith & Cardoso, 2004). The 

Saramaka established the first creole language in Surinam (Renault-Lescure & Goury, 2009), 

which is characterized for a high influence of Portuguese words (language of Portuguese Jewish 

masters) (see Table 7). The English language was introduced in Surinam between 1650 and 

1667, during the British colonization (Huttar, 2010). Currently, Noir Marron groups present a 

lot of characteristics in their culture and language (Price, 2001). For instance, the linguistic 

similitudes between Saramaka and Ndjuka languages are very close, as for the linguistic 

similitudes between Aluku, Paramaka, and Ndjuka languages (Huttar & Huttar, 1994; Leglise 

et al., 2013). Interestingly, none Noir Marron group spoke Taki-taki, which is the mother tongue 

of diverse ethnic groups in Surinam such as Afro-Surinam Creoles known as Sranan and Tongo 

(Price & Price, 2003). 

In the course of the past decade, an increasing number of historical linguists have used newly-

developed classification techniques, borrowed from biology techniques, in order to provide a 

classificatory tool, which helps uncover the evolutionary histories of Creole language types. 

Several attempts at classifying creoles languages based on shared features have been undertaken 

(Baker, 1999; Baker & Huber, 2001; Hancock, 1987). However, none have successfully 

achieved to present a clear picture of relationships between these languages, mainly because of 

the extremely complex sociohistorical conditions under which creole languages were 

developed.  
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Table 7: Origin of several words from Creoles languages spoken for Noir Marron and their influence 

from European (English (angl.), Duth (holl.), and Portuguese (port.)), Amerindian (amérind.) and 

African (afr.) languages (Price & Price, 2003). 

 

To unravel questions about evolutionary histories of Creole language types, Daval-Markussen 

& Bakker (2011) provided a classification of English-based creoles based on a selection of 

lexical and typological features encoded as binary pairs (“1” versus “0”). These data was used 

to provide a classification according to the estimated evolutionary scenario for the development 

of English-based creoles. This approach adopted the network-based method of split-

decomposition for computing phylogenies (Bandelt & Dress, 1992) and was applied with the 

software SplitsTree (Huson & Bryant, 2006), which has been developed to estimate 

evolutionary splits or phylogenetic network based on the degree of similarity between biological 

species. 
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Based on that approach, Daval-Markussen & Bakker (2011) studied the relationships between 

33 Atlantic English-based creoles: Saramaka (Sar), Boni or Aluku (Bon), Paramaka (Par), 

Ndjuka (Dju), Matawai (Mat), Kwinti (Kwi), Sranan (Sra), Guyana (Guy), Bahamas (Bah), Sea-

Islands Creole English or Gullah (Sea), Afro-Seminole (Afr), Providencia (Pro), Belize (Bel), 

Cayman (Cay), Jamaica (Jam), Saint-Thomas (StT), Saint-Eustatius (StE), Saba (Sab), Saint-

Kitts (StK), Antigua (Ant), Saint-Vincent (StV), Carriacou (Car), Grenada (Gre), Tobago (Tob), 

Barbados (Bar), Trinidad (Tri), Liberia (Lib), Cameroon (Cam), Nigeria (Nig), Krio (Kri), two 

Pacific varieties Norfolk (Nor), American Black English (Bla), and Hawaii (Haw). The 

geographical locations of these languages represent the most extensive database on English-

based creoles (Figure 22). 

 

 

Figure 22: Map of geographic distribution of Atlantic English-based creole languages in the Americas, 

except Lib, Cam, Nig, Kri, Nor, Bla, and Haw (Daval-Markussen & Bakker, 2011). 

 

In that study, they reported different phylogenetic networks to reflect the most likely 

evolutionary developments and affinities among English-based creoles (Figure 23 and 24). 

Interestingly, there are three main consistent clusters reflecting affinities among English-based 

creoles in the split network reported (Figure 23). The most distant and best differentiated group 
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is made up of the creoles of French Guiana and Surinam (clustered as Sar/Mat, Dju/Bon, 

Kwi/Par, and Sra; the latter branching off further away from the rest of the cluster). The 

languages in this group have been shown to be highly related historically (Price, 1996; Price & 

Price, 2003). The second group can be decomposed into four less obvious subgroups: the 

restructured vernaculars of West Africa (Kri/Cam/Nig), the North American varieties (Sea/Afr), 

the Eastern Caribbean cluster (StK/Tob and Ant/Guy), and the Western Caribbean cluster 

(Pro/Bel/Jam/StV and Bah). The third group is made up of five clusters: the Pacific cluster (with 

vernaculars Haw/Nor), two Eastern Caribbean clusters (Bar/Tri and Gre/Car), and two other 

clusters seemingly unrelated (Sab/Cay/StE and StT/Bla/Lib). This unrooted graph estimated the 

most feasible evolution of the different languages relatively to one another, and therefore better 

reflected the interactions that may have occurred in the course of their respective histories.  
 

 
Figure 23: Phylogenetic network for form and structure of principal creoles languages in the Americas. 

Image modified from Daval-Markussen & Bakker (2011). 
 

In that study, 122 linguistic features were used as dataset, which were classified and divided 

according to their formal properties (such as historical, phonetics/phonology, semantics, and 

specific forms) and structural properties (such as categories, morphology, nominal syntax, 

sentential syntax, tense, mood, and aspect). Those features were coded as binary oppositions 

(“1” versus “0”) (Daval-Markussen & Bakker, 2011). Furthermore, in order to root the network, 

English language (Eng) was included in the dataset as outgroup (Figure 24). As expected the 

most European Creoles varieties appeared near the root of the tree with English, and languages 

belonged to the Noir Marron communities appeared noteworthy far away from the root in a 

differentiated branch (Daval-Markussen & Bakker, 2011).  
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Figure 24: Rooted phylogenetic network for form and structure of principal creoles languages in the 

Americas. Image modified from Daval-Markussen & Bakker (2011). 

 

Therefore, Marron Creole languages spoken today in French Guiana and Surinam are the most 

widely accepted branching of the Atlantic English-based creoles, and retained more African 

identity than any other linguistic group (Bakker et al., 2011; Daval-Markussen & Bakker, 2011). 

This split can also be explained based on the sociohistorical background of these languages. 

While the speakers of Sranan are the descendants of the slaves brought in by the British, 

principally from Barbados, who firmly established in Surinam within the first sixteen years of 

the settlement of the colony and remained on the plantations (Arends, 1995); the ancestors of 

the speakers of the Noir Marron groups were runaway enslaved Africans who had escaped from 

plantations in the 17th and the 18th century (Price, 1996). 

The distribution of these languages in both phylogenetic networks implied that the pair 

Saramaka and Matawai (Sar/Mat) developed separately from the other subgroups, however 

using a similar original linguistic input, which is supported by the historical scenario (Smith, 

1987). The clusters Ndjuka and Boni (Dju/Bon) and Kwinti and Paramaka (Kwi/Par) suggested 

a parallel development from a common source, on a par with the last member of the group 

Sranan (Sra). Linguistically, the presence of these subgroups can be explained as reflecting the 

influence of Portuguese as well as the African elements in these languages (Smith, 1987). The 

chronology of this group is partially reflected in the phylogenetic networks. In the beginning of 

the 18th century, Saramaka, and its offshoot Matawai, separated from other Marron Creoles. 
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Developed in the late 18th century, remnant runaway enslaved Africans were re-joined by other 

fugitive bands, some of whom founded the Ndjuka group, Aluku, Paramaka, and Kwinti (Price, 

1996; Smith, 1987). 

Although Sranan was probably not the first Creole vernacular spoken in Surinam, it appears 

further from the other members of the group (Figure 23) and nearer the root (Figure 24). It is 

most likely that Sranan developed on the plantations in continued contact with English (Arends, 

2001). It resulted in a less abrupt creolization than its closest relatives, which were more rapidly 

cut-off from their lexifier (Bakker et al., 2011; Daval-Markussen & Bakker, 2011). 

 

 

D. Genetic systems to study ancestry and admixture in the New World 

Genetic ancestry profiles of human populations are a valuable tool to understand the dynamics 

of migration and colonisation events, as well as to determine admixture patterns of populations. 

Historically, some of the first studies of genetic admixture at the molecular level were those 

that analysed the frequencies of different blood group protein alleles in African Americans, 

comparing them to European Americans and Africans (Glass & Li, 1953; Glass, 1955). 

Nowadays, genetic data has proved to be a useful way of supplementing the inadequate 

historical documents regarding to the origin and ethnicity of enslaved Africans (Shriver & 

Kittles, 2004). Indeed, genetic data is increasingly being used to reconstruct ancestral origins 

and to identify familial ties, even when they extend back for hundreds of years (Novembre & 

Ramachandran, 2011; Underhill & Kivisild, 2007). Heritage is, however, too complex to be 

reduced to simple genetic sequences. With respect to the transatlantic African diaspora, genetic 

data are proving to be important complement to historical, linguistic, ethnographic, and 

archaeological data in family tree reconstructions (Royal et al., 2010; Stefflova et al., 2011). In 

conjunction with data from other disciplines, genetic data can give more robust information on: 

i) the African diaspora and African migrations; ii) evidence for gene flow between Africans 

groups and non-Africans groups; and iii) evidence for genetic drift and in some cases founder 

effects (Jobling et al., 2014).  

Historical records indicate that enslaved Africans came from various regions throughout 

coastal African regions, and with the advent of modern anthropological genetics techniques we 

have now the opportunity to determine their specific regional ancestries with more accuracy. 

Molecular genetic studies have been used to trace African regional origins of many of their 

descendants, and to reconstruct the proportions of ancestry derived from different coastal 

African regions, and within the African continent (Bryc et al., 2010a; Ely et al., 2006; Shriver 
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& Kittles, 2004). For this approach, genetics and molecular anthropologists employ the more 

varied types of genes and genetic systems to reconstruct the African ancestry of African 

descendants, which allow stronger regional associations with specific African groups. For 

instance, previous genetic studies tracing the genetic identity of the Noir Marron communities 

in French Guiana have shown that these African-American descendant communities still 

preserve a remarkably high conservation of the African gene pool in all their genetic systems: 

99% in their mtDNA, and similar high percentages in the Y chromosome, GM polymorphisms 

of immunoglobulins, and also in their human T-cell lymphotropic virus (HTLV) types (Brucato 

et al., 2009; Brucato et al., 2010). 

Nevertheless, there is still a significant lack of knowledge on the ancestry of African-

American populations in South America (see review in Fortes-Lima & Dugoujon (2015)), 

especially when the disparity of markers and sampling criteria that have been used in different 

publications is taken into consideration (Bortolini et al., 1995; Bortolini et al., 1999; Salzano & 

Bortolini, 2002). Additional studies, using larger random samples and new populations, can be 

very helpful in determining new aspects of the genetic history of African Americans, 

particularly for populations in South America. 

There are two pieces of the human genome that are quite useful in enlightening the human 

history: the mitochondrial DNA and the Y chromosome. These are the only two parts of the 

genome that are uniparental transferred to the descendants, and also they are not jumbled up by 

the evolutionary mechanisms that generate diversity with each generation. Instead, these 

elements are passed down intact (Kundu & Ghosh, 2015). So, by studying the genomic variation 

in these genetic systems among different population, and compare them with biparental 

markers, we can trace historic footprints of modern human populations, particularly human 

migration routes result of the transatlantic slave trade. 

 

D.1. Y chromosome genetic system 

The Y chromosome is one of the smallest chromosomes in the human genome (about 60 Mb) 

and represents around 2 or 3% of a haploid genome. Cytogenetic observations based on 

chromosome-banding studies allowed different three Y regions to be identified: the 

PseudoAutosomal Region (or PAR, divided into two regions: PAR1 and PAR2), the 

euchromatic region (~30 Mb), and heterochromatic region (~30 Mb) (Quintana-Murci & 

Fellous, 2001). 
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The PAR1 is located at the terminal region (~2.6 Mb) of the short arm (Yp), and the PAR2 

(~0.32 Mb) at the tip of the long arm (Yq). Both regions are located where the Y chromosome 

pairs exchange genetic material with the pseudoautosomal region of the X chromosome during 

male meiosis, particularly PAR1. The PAR derives from the ancient origin of the mammalian 

sex chromosomes as a pair of homologous autosomes some 300 million years ago. 

Consequently, genes located within the PAR are inherited in the same manner as autosomal 

genes in every male meiosis (Quintana-Murci & Fellous, 2001). While PAR1 and PAR2 

represent the 5% of the entire chromosome, the majority of the length of the Y chromosome 

(95%) is made by the so-called Non-Recombining portion of the Y chromosome (or NRY). The 

NRY includes the euchromatic and heterochromatic regions of the Y chromosome. The 

heterochromatic region is considered genetically inert, although the euchromatic region has 

numerous highly repeated sequences (Figure 25), and also contains some genes (such as gene 

SRY) coding for 27 proteins that are responsible of important biological functions.  

 

 

Figure 25: Idiogram of a G-banded Y chromosome shows the distribution of the variant positions 

across the MSY region. The region most densely populated by Y-SNPs (chrY: 2,880,000-20,900,000) 

is shown in red (Scozzari et al., 2014). Modified from UCSC Genome Browser on Human Feb. 2009 

(GRCh37/hg19) Assembly (http://genome-euro.ucsc.edu/index.html). 

 

The process of divergence of sex chromosomes started when the Y chromosome acquired a 

male sex-determination function (such as spermatogenesis) early in mammalian evolution, 

followed by a repression of recombination (and the inevitable disappearance of the Y 

chromosome itself) (Bachtrog, 2013). Since then, much of the common ancestral gene content 

has been lost in the Y chromosome, and remaining genes have been amplified into multiples 

copies. In contrast to the lack of genes, the Y chromosome is enriched for many different types 

of repeats, including long and short interspersed nuclear elements (or LINE and SINE, 

respectively), and highly diverse Short Tandem Repeats polymorphisms (or Y-STRs, also 

known as microsatellite polymorphisms) (Figure 26). Interestingly, the NRY retains a record of 

the mutational events that have occurred along male lineages throughout evolution, which has 

not only demonstrated to be extremely informative in disentangling the history of human 

populations but it also has essential biological roles that make this chromosome an important 

component of the human genome (Jobling et al., 2014; Quintana-Murci & Fellous, 2001).  

http://genome-euro.ucsc.edu/index.html
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Indeed, the Male-Specific portion of the NRY (or MSY) is enriched in intra- and inter-

chromosomal segmental duplications, and displays extensive structural rearrangements even in 

comparison with our closest living relatives, the great apes (Hughes et al., 2010). Additionally, 

the MSY is an invaluable tool to investigate many issues about population history (Francalacci 

et al., 2015; Jobling & Tyler-Smith, 2003) and forensic genetics (Ballantyne et al., 2012; 

Jobling, 2001). Both the lack of meiotic recombination and the uniparental inheritance imply 

that the MSY differentiation may only be generated by the sequential accumulation of new 

mutations along radiating male-borne lineages (Underhill & Kivisild, 2007). This process 

creates monophyletic and evolutionary stable entities known as haplogroups, defined by 

biallelic markers such as Single Nucleotide Polymorphisms (also known as SNPs). Y-SNPs 

markers (Figure 26) are sometimes referred to as Unique Event Polymorphisms (or UEPs; also 

known as Unique Mutation Events, or UMEs) because of they have a much lower rate of 

mutation than Y-STRs (~10-8 versus ~10-3 mutations per generation) (Ballantyne et al., 2014; 

de Knijff, 2000). Therefore, Y-SNPs are characterized for a low mutation rate (Wilson Sayres 

et al., 2014; Xue et al., 2009), which can be arranged in an unambiguous maximum parsimony 

phylogenetic tree (Karafet et al., 2008; van Oven et al., 2014).  

 

 

Figure 26: Molecular differences between Y Short Tandem Repeats (or Y-STRs) and Y Single 

Nucleotide Polymorphisms (or Y-SNPs). The number of repeats is variable among Y-STRs, while in Y-

SNPs is variable the type of nucleotide. 

 

The first biallelic marker found on the Y chromosome was an Alu insertion (DYS287), 

abbreviated YAP for Y chromosome Alu Polymorphism, which is associated with haplogroup 

E. YAP occurs in high frequencies within African populations and is rare in most non-African 

populations (Hammer, 1994). In 1992, Roewer & Epplen (1992) described the first polymorphic 

Y chromosome marker, Y-27H39, known now as the STR locus DYS19 (which means D; DNA, 

Y; Y chromosome, S; segment, and number of locus). In 1997, the European forensic 

community settled on a core set of Y-STR markers useful to identify males and male lineages, 

which was called “minimal haplotype” and includes DYS19, DYS389I/II, DYS390, DYS391, 
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DYS392, DYS393, and DYS385 a/b (Kayser et al., 1997). Haplotype was defined as a specific 

segment of DNA sequence that is inherited in blocks as a unit. Since the first discovery, 

hundreds of microsatellites have been identified from the reference sequence (GRCh37/hg19). 

The rapid growth in the discovery of new Y-STR markers is a direct result of the availability of 

DNA sequence information from the Human Genome Project and improved bioinformatics 

tools for searching DNA sequence databases. Besides, genome sequencing projects have led to 

the discovery of many thousands of Y-SNPs (Wei et al., 2013). Indeed, information on the 

paternally inherited Y-STRs and Y-SNPs has been extensively applied in population genetics 

and evolution studies to track male specific movements and admixture as well as mating 

behaviour, particularly between African populations (Ansari Pour et al., 2013; de Filippo et al., 

2011). 

A comprehensive description of genetic diversity of the MSY (Figure 27), through high-

coverage next-generation sequencing, has been proposed for thousands of worldwide Y 

chromosomes phylogeny (Hallast et al., 2015; Karmin et al., 2015; Poznik et al., 2013; 

Trombetta et al., 2015), and more specifically in the African continent (Cruciani et al., 2011; 

Scozzari et al., 2014). The major haplogroup A, B, and mainly E, are found across Africa, 

associated with ancient African populations. In European populations, the subhaplogroup R1 is 

highly represented, while in Native American populations the subhaplogroup Q is highly 

represented more than any other population (Battaglia et al., 2013). 

 
Figure 27: World map of Y chromosome haplogroups shows dominant haplogroups in pre-colonial 

populations with possible migrations routes (Dienekes' Anthropology blog, 2013). 
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Complex nomenclatures are used to describe Y chromosome haplogroups (Jobling & Tyler-

Smith, 2003). This complexity is required to maintain some order of changes to the phylogeny 

additional variant and haplogroups are discovered. Currently, the nomenclature is based on 

cladistic relationships of the haplogroups. Major clades are identified by single capital letters 

(for example, haplogroup E), sublineages within these clades are given numerical suffixes (for 

example, subhaplogroup E1), and this can continued using alternating lowercase letters and 

numbers until all lineages have been named (for example, E1b1a1a1c1a). An alternative 

adopted for Y haplogroups is to use the name of the derived variant furthest from the root (such 

as M191 for the last example). 

 

D.2. Mitochondrial DNA genetic system 

Human mitochondrial DNA (or mtDNA) is present in hundreds to thousands of copies in each 

cell, not within the nucleus, but within the cell’s energy-generating organelles, the 

mitochondria. MtDNA is a circular double-stranded molecule, 16,569 base pairs (bp) in length, 

which codes for 37 genes: 2 ribosomal RNAs (rRNAs), 13 subunits of the oxidative 

phosphorylation system, and 22 transfer RNAs (tRNAs) (see Figure 28). All these genes are 

tightly packed within the 16.5 Kb circular genome, encoding proteins involve in energy 

production and mitochondrial protein synthesis.  

 

 

Figure 28: Molecular structure of whole mitochondrial DNA. In detail, position of hypervariable 

segments (HV1, HV2, and HV3) in the control region. Image modified from Butler (2005). 
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The mitochondrial genome also presents a substantial stretch of noncoding sequence known 

as ‘control region’ or ‘D-loop’, which contains a replication origin. The control region contains 

also three hypervariable segments (known as HVS-I, HVS-II, and HVS-III) that are commonly 

assayed for their high variability. Compared to nuclear genes, mtDNA sequences do not have 

introns and much noncoding sequence around them, and are densely packed (93%) with coding 

regions. A large proportion of positions in these genes are known to be highly conserved across 

different species, implying strong purifying selection in large human cohorts, likely because of 

being fatally deleterious or associated with disease (see MITOMAP (Ruiz-Pesini et al., 2007)). 

Maternal inheritance (Hutchison et al., 1974), fast mutation rate (Brown et al., 1979), high 

copy number per cell (Piko & Matsumoto, 1976), and the lack of recombination (Hagstrom et 

al., 2014) were the features that brought mtDNA at the focus of evolutionary genetic studies in 

the 1980s and 1990s, when the human genome sequencing had not been completed yet and the 

idea of whole nuclear genome level population genetics was only a daydream for population 

geneticists (Pakendorf & Stoneking, 2005). Those features allowed the data from coding and 

noncoding regions of mtDNA to be combined into the shape of a phylogenetic tree (Cann et al., 

1987). The branches of this ever-growing tree were assigned with alphabetic indicatives that 

became to be known as mtDNA haplogroups.  

The nomenclature of mtDNA haplogroups was introduced in the mid-1990s with A-G labels 

assigned to variation observed in Asian and American lineages (Torroni et al., 1993), H-K to 

Europe (Torroni et al., 1994), while only a single letter, L, was assigned to describe the highest 

level of variation observed in Africa lineages. Curiously, the early study which defined African 

haplogroups L (L1 and L2) assumed Asian origins of human mtDNA variation and hence 

misplaced the root of the human phylogeny (Chen et al., 1995). Since then, diversity within 

mtDNA has been studied in approaching a million individuals by sequencing the most variable 

segments of the control region (i.e., HVS-I and HVS-II), often complemented by typing a 

number of informative SNPs from the coding region. Currently, the mtDNA nomenclature has 

a robust branch structure (see mtDNA tree, available online at http://www.phylotree.org/), 

which has been determined through the rigorous and detailed analyses of the whole mtDNA 

genomes (van Oven & Kayser, 2009; van Oven, 2010).  

The first full mitochondrial genome sequence was determined in 1981 from human placenta 

in the laboratory of Fred Sanger in Cambridge, UK, which belonged to haplogroup H2a2a and 

became known as the Cambridge Reference Sequence (or CRS) (Anderson et al., 1981). 

Subsequently, the nucleotide numbering of mtDNA sequences was based on a revised and 

corrected version of the CRS, and known as the revised CRS (or rCRS) (Andrews et al., 1999). 

Behar et al. (2012) have proposed to adopt a reconstructed ancestral sequence instead, which 

http://www.phylotree.org/
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was called the Reconstructed Sapiens Reference Sequence (RSRS). 

The topological details of the mtDNA phylogeny have been revealed step by step over the last 

two decades, thanks to the contributions of many groups in covering with data ever increasing 

numbers of populations across the world, and thanks to the advances in technology that 

eventually have led to the use of whole mtDNA sequencing as a routine approach in the field 

(Kivisild, 2015). In recent years, phylogeographic studies have produced detailed knowledge 

on the worldwide distribution of mtDNA variants, linking specific clades of the mtDNA 

phylogeny with certain geographic areas (van Oven et al., 2011). The first worldwide survey of 

mtDNA whole genome sequences showed, with a robust bootstrap support of the internal 

branches, that the root of the human mtDNA variation lies in Africa with TMRCA date of 

171,500 ± 50,000 years, and that the age of the youngest clade with African and non-African 

sequences was 52,000 ± 27,500 years (Ingman et al., 2000). Other whole mtDNA studies based 

on global sampling have generally agreed with these structural findings, and revealed more 

details of: the regional patterns of diversity (Mishmar et al., 2003), time scale of the 

accumulation of diversity (Behar et al., 2012), and the female effective population size changes 

over time (Lippold et al., 2014). 

As it has been repeatedly shown, the root of the mtDNA phylogeny and the most diverse 

branches are restricted to African populations (Figure 29). By using the maximum molecular 

resolution enabled by the analysis of whole mtDNA genomes, the first seven bifurcations in 

this tree define the distinction of strictly sub-Saharan African branches (from L0 to L6) from 

those that are shared by Africans and non-African populations (Kivisild, 2015).  

 
Figure 29: Map outlines the migratory history of the major mtDNA haplogroups. Image available 

online at http://www.mitomap.org/. 

http://www.mitomap.org/
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Analyses of whole mtDNA sequences of sub-Saharan Africans have revealed an old 

divergence (circa 90 to 150 ky) of the sublineages L0d and L0k that are specific to the Khoisan 

populations from South Africa. It has been estimated that during this time period at least six 

additional sublineages existed in Africa with living descendants (Barbieri et al., 2013b; Barbieri 

et al., 2014a). In contrast to the overall high basal clade diversity and geographic structure, 

some terminal branches from haplogroups L0a, L1c, L2a, and L3e show recent coalescent times 

and wide geographical distribution in Africa, likely because of the recent Bantu expansion 

(Barbieri et al., 2014b; Marks et al., 2015). Given the complexity of admixture of the Bantu-

speaking populations, the use of whole mtDNA sequences in these studies have been 

instrumental in revealing the distinct autochthonous sources and ancient substructure at the 

background of the overall high genetic homogeneity of the Bantu speakers (de Filippo et al., 

2012).  

Outside Africa, lineages L0 to L6 are extremely rare and restricted to geographic areas that 

have received historic gene flow from Africa, such as Mediterranean Europe, West Asia, and 

the Americas. On the basis of analyses of high resolution whole mtDNA sequences, it has been 

estimated that approximately two thirds of the rare African lineages L, which are found at 

combined frequency of less than 1% in Europe, were brought in Europe from Africa during 

Roman times, Arab conquests, and the transatlantic slave trade; while just one third are more 

likely to have been introduced in Europe earlier during pre-historic times (Cerezo et al., 2012). 

The fact that virtually every non-African mtDNA lineage derives from just one of the two 

subclades of the African haplogroup L3 has been interpreted as an evidence of a major 

bottleneck of mtDNA diversity at the onset of the out of Africa dispersal (Underhill & Kivisild, 

2007). The magnitude of this bottleneck has been estimated from the whole mtDNA sequence 

data yielding the estimates of the effective population size which range between several hundred 

(Macaulay et al., 2005) and only few tens of females (Lippold et al., 2014). The separation of 

these two subclades, M and N (Figure 29), from their African sister-clades in L3 can be dated 

back to 62 to 95 kya (Fu et al., 2013). While the internal coalescent time estimates of the M and 

N founders have been estimated in the range of 40 to 70 ky (Soares et al., 2013). This estimation 

suggests that the dispersal of the M and N founders occurred probably after rather than before 

the eruption of Mount Toba 74 kya in Indonesia, one of the Earth’s largest known volcanic 

events in human history (Smith et al., 2011). 

Even though haplogroups M and N are widely spread in Asia, Australia, Oceania and 

Americas, the geographic distribution of each of their subclades has more specific regional 

configuration (Figure 29). In Eurasia, haplogroups U, HV, I, JT, N, W and X are today common 

in Europe, Southwest Asia and North Africa (Soares et al., 2010); haplogroups R5-R8, M2-M6 
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and M4’67 are restricted to South Asia (Thangaraj et al., 2008); while haplogroups A-G, Z and 

M7-M9 are widespread in East Asia (Stoneking & Delfin, 2010). In Native Americans, mtDNA 

variation primarily falls to haplogroups A to D and X (Tamm et al., 2007). They originated, 

with the exclusion of X, form a subset of the East Asian diversity (Achilli et al., 2013). Despite 

the clear and distinct geographic spread patterns in extant populations, it is not simple and 

straightforward to make inferences about the origin of these patterns, and to associate the 

haplogroup labels with specific prehistoric events or time periods (Kivisild, 2015). 

Overall, mtDNA has offered the opportunity to explore genealogical relationships among 

individuals and to study the frequency differences of matrilineal clades among human 

populations at continental and regional scales. Consequently, mtDNA has been a widely used 

tool in human evolutionary and population genetic studies over the past three decades. 

Moreover in the era of whole nuclear genome sequencing, mitochondrial genomes are 

continuing to be informative as a unique tool for the assessment of female-specific aspects of 

the demographic history of human populations (Kivisild, 2015). 

 

D.3. Genome-wide SNP data diversity 

In the 1977, Sanger et al. (1977) and Maxam & Gilbert (1977) developed methods to sequence 

DNA by chain termination and fragmentation techniques, respectively. This transformed 

biology by providing the tools to decipher complete genes and, later, entire genomes. The 

technique developed by Sanger et al. (1977), commonly referred to as ‘Sanger sequencing’, 

required less handling of toxic chemicals and radioisotopes than Maxam and Gilbert’s method, 

and as a result it became the prevailing DNA sequencing method for the next 30 years. A 

growing demand for increased throughput led to laboratory automation and process 

parallelization, which eventually resulted in the establishment of factory-like outfits with 

hundreds of sequencing instruments. Thanks to these advances, the Sanger sequencing 

ultimately enabled the completion of the first human genome sequence in 2004 (International 

Human Genome Sequencing Consortium, 2004).  

Nevertheless, the Human Genome Project required vast amounts of time and resources; it was 

clear that faster, higher throughput, and cheaper technologies were required. For this reason, 

research institutes and companies developed and commercialized the Next-Generation 

Sequencing technologies (or NGS), as opposed to the previous methods. These new sequencing 

methods share three major improvements. First, instead of requiring bacterial cloning of DNA 

fragments they rely on the preparation of NGS libraries in a cell free system. Second, instead 

of hundreds, from thousands to many millions of sequencing reactions are produced in parallel. 
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Third, the sequencing output is directly detected without the need for electrophoresis; base 

interrogation is performed cyclically and in parallel (van Dijk et al., 2014). The enormous 

numbers of reads generated by NGS enabled the sequencing of entire genomes at an 

unprecedented speed.  

The first NGS technology to be released in 2005 was the pyrosequencing method by 454 Life 

Sciences (now Roche 454) (Margulies et al., 2005). The 454 Genome Sequencer generated 

about 200,000 reads (~20 Mb) of 110 base-pairs (bp). During the past decade, tremendous 

progress has been made in terms of speed, read length, and throughput, along with a sharp 

reduction in per-base cost. Today, NGS platforms such as Roche 454, SOLiD, and Illumina, 

provide cheaper and larger genome-wide SNP data, which has new extraordinary applications 

in research areas such as clinical diagnostics, agro-genomics, and forensic science (van Dijk et 

al., 2014). For instance, Illumina human whole-genome genotyping microarrays provide large 

datasets with a genomic coverage from around 250,000 SNP markers to the whole genome 

(Figure 30). Interestingly, after the whole genome sequencing, Illumina HumanOmni5 

microarray delivers the most comprehensive up-to-date coverage of the genome. 

 

 
Figure 30: Illumina Omni SNP microarrays can perform from thousands to millions of markers. 

Illumina HumanOmni5 SNP microarray (red square) delivers the most comprehensive coverage of the 

genome, with the exception of whole genome sequencing. © 2015 Illumina, Inc. 

 

Initially, with only a few hundred autosomal microsatellites, genome-wide polymorphism data 

have established differences in allele frequency among continental regions (Jakobsson et al., 

2008; Rosenberg et al., 2002). More recently, genome-wide SNP data derived from SNP arrays 

found evidence of appreciable fine-scale structure within continents, and even within countries. 

For instance, genome-wide SNP data have revealed strong statistical evidence for genetic 
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substructure within Europe (Lao et al., 2008; Novembre et al., 2008), the Near East (Li et al., 

2008), India (Reich et al., 2009), East Asia (Tian et al., 2008), the Americas (Risch et al., 2009), 

and Africa (Henn et al., 2011; Henn et al., 2012). Currently, these studies are based on Ancestry 

Informative Markers (or AIMs), which are genetic markers that show substantial differences in 

allele frequency across population groups. 

Generally, patterns of genetic substructure suggest that geographic barriers to gene flow play 

a key role. By using nearly 200,000 common SNPs, Novembre et al. (2008) reconstructed a 

‘genetic map’ of Europe by projecting the first two principal axes of genetic variation onto 

geographic coordinates. This phenomenon can clearly extend to variation within other 

continents or countries. For instance, it has been reported genetic evidence for fine-scale 

substructure within United Kingdom (Leslie et al., 2015), Finland (Jakkula et al., 2008), Mexico 

(Silva-Zolezzi et al., 2009), Puerto Rico (Tang et al., 2007), Ethiopia (Pagani et al., 2012), 

Madagascar (Pierron et al., 2014), and South Africa (de Wit et al., 2010; Schlebusch et al., 

2012). However, not all regions appear to have clearly differentiated populations. For instance, 

West Africa is striking for having very little fine-scale structure, at least at the level of resolution 

captured by common SNP data (Bryc et al., 2010a; Zakharia et al., 2009), even though these 

data included populations of Bantu and Non-Bantu Niger-Kordofanian, Afro-Asiatic and Nilo-

Saharan speakers spread out over broad geographic regions (Henn et al., 2010). 

Although many initial large-scale genetic association studies have focused primarily on 

homogeneous populations, increasingly studies are addressing samples in which individuals 

have more complex backgrounds, including admixed ancestry of African American (Bryc et al., 

2010a; Hinch et al., 2011; Perera et al., 2013; Wegmann et al., 2011). Such studies depend 

crucially on accurate and unbiased ancestry inference both at a genome-wide level as well as at 

each locus in the genome (Pasaniuc et al., 2013). Hence, inference of ancestry from genetic data 

is a critical aspect of genetic studies, with applications ranging from the inference of population 

history to the estimation of population structure (Novembre et al., 2008; Rosenberg et al., 2003). 

Recent methodological and technical advances in genomic technologies and computing 

resources have made possible the emergence of genome-wide studies, whose main advantage 

for demographic inference is allowing to identify and quantify admixture event among 

populations with different ancestries (Novembre & Ramachandran, 2011). Hence, we can apply 

genome-wide studies to accurately infer overall ancestry, as well as ancestry at a fine-scale 

across an individual’s genome. Ancestry estimation is a frequently encountered problem and 

has been used in a variety of applications such as tracing someone’s geographic origin in 

forensic investigations (Kayser & de Knijff, 2011), correcting for population stratification in 

genome-wide association studies (Bush & Moore, 2012), and developing personalized 
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approaches to treatment (Huser et al., 2014). Importantly, in genetic association studies, 

ancestry inference can be used to account for the effects of population stratification which is a 

serious confounding factor and can lead to elevated rates of false positives (Price et al., 2010). 

There are currently two different paradigms underlying ancestry inference: global ancestry 

estimation and local ancestry estimation. Global ancestry inference involves estimating the 

proportion of ancestry contributed by different populations averaged across the entire genome. 

Such methods have been applied to study population structure in humans (Lao et al., 2014; 

Pritchard et al., 2000; Rosenberg et al., 2002; Wollstein & Lao, 2015), and also other mammals 

such as chimpanzee populations (Becquet et al., 2007). In contrast, in local ancestry inference, 

we interpret each chromosome in an individual’s genome as a mosaic of segments that originate 

from different ancestral populations and the goal is to find the ancestral population of origin at 

each position (Tang et al., 2006).  

Local ancestry-based methods, such as LAMP (Sankararaman et al., 2008), HAPMIX (Price 

et al., 2009), RFMix (Maples et al., 2013), and PCAdmix (Brisbin et al., 2012), devolve ancestry 

at each locus in the genome and provide individual-level information about ancestry and 

admixture mapping. While these methods provide valuable insights into the recent history of 

populations, they have reduced power to detect older events. Local ancestry inference methods 

have been used mainly to study recently admixed populations such as African Americans (Bryc 

et al., 2010a; Kidd et al., 2012) and Hispanic populations (Bryc et al., 2010b; Johnson et al., 

2011; Moreno-Estrada et al., 2013). 

The most commonly used methods for studying global ancestry are the Principal Component 

Analysis (or PCA) (Patterson et al., 2006; Price et al., 2006), and model-based clustering 

methods such as STRUCTURE (Pritchard et al., 2000), FRAPPE (Tang et al., 2005), and 

ADMIXTURE (Alexander et al., 2009). They are also the most powerful tools for detecting 

population substructure. ADMIXTURE employs the same model as STRUCTURE but uses a 

maximum likelihood estimation procedure involving high-dimensional optimization 

algorithms. ADMIXTURE is over an order of magnitude faster than STRUCTURE and 

produces estimates of similar accuracy (Alexander et al., 2009). 

The PCA was firstly introduced to the study of genetic data almost thirty years ago by Menozzi 

et al. (1978), since then the PCA has become as a standard tool in genetics, especially to study 

scenarios of genetic geographic variation and population structure (Cavalli-Sforza et al., 1994; 

Cavalli-Sforza & Feldman, 2003). EIGENSTRAT (Patterson et al., 2006; Price et al., 2006) is 

a well-known program that implements PCA, which seeks to construct projections in lower 

dimensional space that capture a large fraction of the variation in the marker genotypes. The 

projections inferred by such approach tend to be highly correlated with the geographic locations 
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from where individuals were sampled (Novembre et al., 2008; Wang et al., 2012). For dense 

polymorphism datasets such as those obtained from sequencing, haplotype based analysis has 

the potential to leverage this information and provide improved ability to detect population 

substructure. ChromoPainter and fineSTRUCTURE are recently developed programs that aim 

to make use of haplotype structure for high quality PCA and population structure inference 

respectively (Lawson et al., 2012). 

 

D.4. Genetic landscape in the African populations 

Africa has been considered the cradle of mankind for a long time. Both, genetic data and fossil 

evidence suggest that anatomically modern humans originated in this continent (McDougall et 

al., 2005), spreading later all over the globe (Groucutt et al., 2015). Furthermore, Africa is a 

region of great linguistic, cultural, phenotypic, and genetic diversity. It contains more than 2,000 

distinct ethno-linguistic groups, practicing a wide range of subsistence patterns including 

agriculture, pastoralism, and hunting-gathering. The pattern of genetic variation in modern 

African populations is influenced by their demographic history (such as changes in population 

size, short- and long-range migration events, and admixture process) as well as locus-specific 

forces such as natural selection, recombination, and mutation. For instance, the Bantu expansion 

throughout sub-Saharan Africa and subsequent admixture with indigenous populations has had 

a major impact on patterns of variation in modern African populations (Campbell & Tishkoff, 

2008). 

Several studies have highlighted that Sub-Saharan African populations present the highest 

levels of genetic diversity (Rosenberg, 2011; Tishkoff & Verrelli, 2003). European populations 

show intermediate values, and East Asian populations show the lowest (Figure 31). This pattern 

has been confirmed with autosomal microsatellite variation (Rosenberg et al., 2002), and large-

scale SNP genotyping (Li et al., 2008). Such observations emphasize the importance of studying 

diversity within Africa. 

A study of ~800 microsatellites and ~400 insertion or deletion polymorphisms (or INDEL) 

genotyped in >2,500 African people indicated high levels of populations structure, which 

correlates with six ancestral population clusters (Figure 32). Most African populations have 

mixed ancestry from these different clusters, reflecting high levels of migration and admixture 

among ethnically diverse groups. In a Bayesian clustering analysis of those clusters, the most 

geographically widespread cluster extends from the Senegalese Mandenka group of West 

Africa through Central Africa to the Bantu-speaking group Xhosa of South Africa. This cluster 

corresponds closely to the distribution of the Niger-Kordofanian language family, and seems 
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compatible with the expansion of Bantu-speakers (Tishkoff et al., 2009). Hence, the West and 

West-Central populations shared common ancestry with Niger-Kordofanian speakers groups 

across African coastal regions. Therefore, it is a challenging task to infer the ancestral origin of 

the African Americans, who are descents of West and West-Central populations. 

Genetic studies of Y chromosome (Figure 33A) and mitochondrial DNA (Figure 33B) 

diversity across Africa have identified particular lineages associated with specific African 

regions (Figure 33C). Africa is notable for being the cradle of the deepest-rooting Y 

haplogroups (A and B) and mtDNA haplogroups (L0 to L6). Both, Y haplogroups A and B are 

present at only 13% overall in a sample of 3,255 chromosomes (Jobling et al., 2014). There is 

one predominant African lineage, haplogroup E1b1a1, which accounts for over 59% of the 

African chromosomes, and about 80% of the chromosomes in Bantu speakers from Cameroon 

and West Africa. Haplogroup E1b1a1 is also found at lower frequencies among Pygmy 

populations, who have retained their hunter-gatherer lifestyles but experienced some admixture 

from agriculturalists. Besides, mtDNA diversity highlights haplogroups L0a, L2a, L3b, and L3e 

as signature lineages of West and West-Central African populations. They are found also in 

high frequencies in modern Bantu-speaking populations (Jobling et al., 2014).

 

 
 

 
 

Figure 31: African and African-American 

populations present the highest levels of within-

population genetic diversity in comparison with 

non-African populations (Tishkoff & Verrelli, 

2003).  

 

 

 

 

 

Figure 32: Geographic distributions of six 

major clusters based on genome-wide SNP 

diversity within African populations. Each 

colour represents one of six clusters produced 

by using a Bayesian clustering analysis 

assuming no admixture. The yellow cluster 

corresponds well with the distribution of Niger-

Kordofanian languages (Tishkoff et al., 2009). 



66 
 
 

  
 

           
 

 

 

A: Y chromosome B: Mitochondrial DNA 

Figure 33: Geographic distributions of major Y-

chromosomal (A) and mtDNA (B) haplogroups in Africa. 

Pie charts show the frequencies of different haplogroups 

represented on the respective phylogenetic tree. The trees 

show the phylogenetic relationships of the haplogroups, 

with colour coding corresponding to the pie charts. For 

some regions, both Bantu-speaking (B) and non-Bantu-

speaking (NS and AA) populations are shown. Pygmy 

populations are indicated by yellow edging. Y 

chromosome data from Arredi et al. (2004) and de Filippo 

et al. (2011). MtDNA data from Rosa & Brehem (2011). 

Images modified from Jobling et al. (2014). 

Below, (C) current consensus distribution of major 

mtDNA and Y-chromosomal haplogroups in African 

regions: North, West, East, and South (Gomez et al., 2014). 

 

 

C 
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D.5. Genetic landscape in the African-American populations 

The admixture process in Latin America started after Christopher Columbus first disembarked 

at Hispaniola (1492), as soon as the 39 men that he left on the island had sexual intercourse 

with the local Native American women (Morner, 1967). Therefore, a maximum of roughly 21 

generations of admixing may be established, with some variance because of regional difference. 

Heyer et al. (1997) identified up to 19 generations of admixing based on pedigrees of descended 

from males who lived in the 17th century. Whereas_Wang et al. (2008), based on 13 mixed Latin 

American populations, estimated that the average time since the first admixture allowed for 6 

to 14 generations, however these low estimations excluded the Caribbean region.  

Genetics, as an independent source of data, can complement existing historical reports. For 

instance, among Afro-Brazilians in São Paulo (Brazil) was suggested that the African ancestral 

contributions are from West (43%), West-Central (45%), and Southeast Africa (12%) 

(Goncalves et al., 2008). This data is in good agreement with historical documents (Klein & 

Vinson, 2007). Hence, merging such valuable genetic data with non-genetic sources (such as 

historical, archaeological, and linguistic data) can yield important details and specificity to our 

reconstructions of the diverse events associated with the transatlantic African diaspora and its 

aftermath (Jackson & Borgelin, 2010). 

Historical records on the origin of African Americans in the United States have estimated that 

about 64% were from West Africa, 35% from West-Central Africa, and 1% from Southeast 

Africa (McMillin, 2012; Thomas, 1999). In agreement with these historical data, Salas et al. 

(2004) estimated the quantitative contribution of the different African regions to the formation 

of the New World mtDNA gene pool. According to their estimated admixture coefficients 

reported, 53.0% of shared mtDNA sequence types found in North America have a West African 

origin, and 34.5% a West-Central African contribution. These values are significantly different 

from those obtained for Central America (69.1% West and 21.2% West-Central Africa), and 

South America (32.1% West and 58.5% West-Central Africa). By using the same kind of 

approach, but with substantially more data (an African database of 4,860 mtDNA sequences, 

and a database of 1,148 mtDNA sequences for African Americans from the U.S. that also 

contained 1,053 mtDNA sequences for sub-Saharan ancestry), Salas et al. (2005a) estimated 

that >55% of the U.S. mtDNA lineages have a West African ancestry, with <41% coming from 

West Central or Southwest Africa.  

A recent study about the autosomal diversity of genetic ancestry of 5,269 self-described 

African Americans in the U.S. indicates that the highest levels of African ancestry are found in 

the South, especially South Carolina and Georgia, and the lowest proportions of African 

ancestry in the Northeast, the Midwest, the Pacific Northwest and California (Bryc et al., 2015), 
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consistent with previous studies (Parra et al., 2001; Zakharia et al., 2009). In that study, genome-

wide ancestry estimates of African Americans showed average proportions of 73.2% African, 

24.0% European, and 0.8% Native American ancestry (Bryc et al., 2015), which agrees with 

previous studies (Bryc et al., 2010a; Lind et al., 2007; Tishkoff et al., 2009). 

In Afro-Caribbean populations, several genetic studies have estimated they have around 65–

95% West African, 4–27% European, and 0–6% Native American ancestries (Deason et al., 

2012; Kidd et al., 2012; Murray et al., 2010; Simms et al., 2011; Simms et al., 2013). Although, 

pooled individuals from the Caribbean have a high proportion of African ancestry, fine-scale 

genetic structure has been observed within and between islands particularly in Dominica, 

Grenada, St. Kitts, St. Lucia, St. Thomas, St. Vincent, Jamaica, and Trinidad, because of 

regional differences in levels of African and European ancestries (Torres et al., 2013).  

Similarly, a study of genetic admixture within Puerto Ricans showed that levels of African 

ancestry varied geographically with the highest proportion occurring in the eastern part of the 

island where enslaved Africans and their descendants historically engaged in sugar production 

(Via et al., 2011). In addition, genome-wide SNP data have suggested that patterns of genetic 

ancestry in Cuba, Puerto Rico, and Hispaniola (the Greater Antilles) are consistent with a model 

of two pulses of African migration events from different regions of western Africa, implying 

that Afro-Caribbean populations have mixed African ancestry. The first pulse involved coastal 

West African regions in early stages of the transatlantic slave trade. The second pulse involved 

present-day West-Central African populations, supporting historical records of later 

transatlantic deportation (Moreno-Estrada et al., 2013). 

These results are also congruent with Y chromosome studies that found diverse haplotypes in 

Afro-Caribbean from the Bahamas, Haiti, and Jamaica that were inferred to originate from 

different ethnic groups within West and West-Central Africa (Simms et al., 2011; Simms et al., 

2012). Furthermore, isotope data from skeletal remains of enslaved Africans in Barbados 

suggested that first generation captives had different dietary histories likely because of 

differences in their geographic origins in Africa (Schroeder et al., 2009).  

Interestingly, various patterns of sex-biased gene flow were found in a number of ex-colonial 

populations throughout the Americas (Simms et al., 2013; Stefflova et al., 2009). The diverse 

socio-cultural histories of North, Central, and South America are reflected in sex-specific 

admixture. By using mtDNA, NRY, and AIMs, Stefflova et al. (2011) confirmed the presence 

of sex-specific admixture as well as the existence of remarkable differences across the Americas 

(Figure 34). That study pointed out that European males, rather than females, are predominantly 

responsible for the European genomic contribution to American populations of African 

descendants, and also both Native American females and European males provided a greater 
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contribution to South American populations (represented by Brazil) compared to the U.S. 

admixed populations. Consequently, the combination of the maternal (Figure 34a) and paternal 

(Figure 34b) admixture proportions were approximately reflected in the autosomal genome 

admixture proportions (Figure 34c). 

 

 
Figure 34: Pan-continental group ancestry of African descendants. MtDNA (a) and NRY (b) reflecting 

maternal and paternal admixture respectively, while AIMs (c) reflecting the autosomal genome. These 

genetic systems show the relative ratio of three continental populations that significantly contribute to 

the admixed populations of the United States (the entire U.S. and by a sample from Philadelphia, PHL), 

the Caribbean Islands (CAR), and Brazil (BRZ) (Stefflova et al., 2011).  

 

Overall, during the transatlantic slave trade, African-American communities have been an 

endpoint of migration for hundreds of years, resulting in diverse genetic patterns. Indeed, 

genetic studies pointed out that populations with African ancestry have a complex history 

resulting in genetic heterogeneity within African-American populations and within African 

populations. As a result of the complexity of past migration events, additional studies across a 

broader geographic range of the Americas are needed to fully understand the extent of genetic 

variability, and the different demographic processes that have contributed to it in African 

descendants particularly from South America.  
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E. Objectives of present study 

According to historical, linguistic, and genetic sources in African descendants, there are 

different ancestral contributions from large African regions from West, West-Central, South-

West, and Southeast Africa (Figure 5). Their proportions substantially differ between North, 

Central, and South America (Table 2). Moreover, the relative genetic homogeneity between 

West and West-Central African populations makes a challenge significant discrimination of 

populations that allows determinate African origin (Bryc et al., 2010a; Ely et al., 2006; 

Hunemeier et al., 2007; Jackson & Borgelin, 2010; Salas et al., 2005b; Tishkoff et al., 2009).  

Previous researches have shown that the Noir Marron communities have linguistic richness 

(Bakker et al., 2011; Huttar et al., 2007), as well as conserved considerable African genetic 

ancestry (Brucato et al., 2009). Both, linguistic and genetic studies suggest strong ancestral 

links of the Noir Marron communities with populations inhabiting the Bight of Benin, such as 

Fon and Yoruba (Brucato et al., 2010; Essegbey et al., 2013a; Migge & Winford, 2013). 

However, there is an important caveat about genetic variation within the Noir Marron 

communities, and also about original ancestry of runaway enslaved Africans that played an 

important role in the formation of each community. Furthermore, there is a significant lack of 

knowledge about genetic structure of historical African coastal regions that may identify the 

African ancestry of African Americans, as well as about the effect of admixture events in 

shaping the genetic diversity in the Americas. 

In the present study, we aim; 

i) First, to verify the distinctive African heritage of four Noir Marron communities from 

French Guiana and Surinam: Aluku, Paramaka, Ndjuka, and Saramaka.  

ii) Second, to explore the African genetic identity of other descendants with noteworthy 

African heritage from the Chocó department in northwest Colombia, and from Rio de 

Janeiro in southeaster Brazil. Additionally, in order to achieve a high contextualization of 

the genetic diversity in their African ancestors, we also study the genetic diversities of 

West African populations from Benin, Ivory Coast, and Mali; and from other studied 

African populations across the continent. 

iii) Third, to estimate likely sex-biases and to compare paternal and maternal genetic legacies 

among the African-American populations, a high resolution of the uniparental markers 

could be considered. 

iv) Fourth, to evaluate likely admixture patterns and gene flow with non-African populations 

that may add ancestral source of variation an extended analysis of the bi-parental markers 

could be considered to compare their African autosomal legacy.  
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v) Finally, to reconnect their African regional and ethnic roots based on phylogenetic 

reconstructions and multidimensional analysis, African ancestral contributions could be 

estimated for different historical slave regions across Africa that brought African captives 

to South America and to establish probable slave routes. 

In a nutshell, the inference of biogeographical ancestry of African American can provide 

useful information about the slave trade. This study could add new population data that could 

characterize the genetic ethnicity of African populations throughout the Atlantic world to 

further understand their demographic histories. We focus on enslaved African descendants in 

South America, and particularly in French Guiana and Surinam, as well as their likely West 

African ancestors. The new findings could shed new light on one of the darkest chapters of 

world human history. 
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II. MATERIAL AND METHODS 
 
 

A. Population samples and sampling procedures 

We performed a genetic analysis of African descendant populations from South America 

(Figure 35). We compared the results of this analysis with the results obtained for populations 

with West African ancestry (from Benin, Ivory Coast, and Mali). Biological samples were 

collected in French Guiana for this study, and other were collected previously in different 

countries in collaboration with different institutions.  

The present study complies with the Helsinki Declaration of Ethical Principles established by 

59th World Medical Association General Assembly in Seoul, October 2008 (World Medical 

Association, 2013). The informed consent was obtained from all participants prior to their 

participation in accordance with local ethical recommendations. This study was performed after 

authorization of the Commission Nationale de l’Informatique et des Libertés (CNIL), le Comité 

Consultatif de Protection des Personnes dans la Recherche Biomédicale Outre-Mer III (Hôpital 

Purpan in Toulouse, France), l’Agence Française de Sécurité Sanitaire des Produits de Santé 

(AFSSAPS). 

 
 

 

Figure 35: Geographic location of studied African American communities in South America. 

Locations of the Noir Marron communities of French Guiana and Surinam are according to Price (1996). 
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A.1. African-American populations 

In French Guiana, samples from four Noir Marron communities (Aluku, Ndjuka, Saramaka 

and Paramaka) were collected during previous collaborative studies in Saint-Laurent du Maroni 

(5°29'35.5"N, 54°01'36.1"W), Maripasoula (3°38'38.2"N, 54°01'54.1"W) and Papaichton 

(3°48'33.0"N, 54°09'00.0"W) across the Maroni river region in the border between French 

Guiana and Surinam, by Antoine Gessain (Department of Virology, Unit of Epidemiology and 

Physiopathology of Oncogenic Viruses, Institut Pasteur, Paris, France) (Plancoulaine et al., 

1998; Plancoulaine et al., 2000; Plancoulaine et al., 2006).  

A new sampling of the various Noir Marron communities was carried out in the border 

between French Guiana and Surinam in order to increase the sample size previously analysed 

by Brucato et al. (2009) and Brucato et al. (2010). The sampling strategy was designed to be as 

representative as possible of the four communities, and to include individuals with different 

geographical origins (see Table 8 and Figure 36). Participants were asked about the origins of 

their parents and grandparents, and their genetic relationships with other donors contributing to 

this study. Blood samples were taken from participants representing at least the third generation 

who were born in the same geographical region. 
 

Table 8: Geographic origin of Noir Marron people analysed in the present study. Each participant was 

carefully informed about the goals of this research project. 
 

Geographic origin Latitude Longitude Ndjuka Aluku Saramaka Paramaka 

Paramaribo 5°51'00.00"N 55°12'00.00"W   X  
Wia Wia 5°53'24.00"N 54°28'48.00"W X    
Moengo 5°36'36.00"N 54°23'60.00"W X    
St. Laurent du Maroni 5°30'00.00"N 54°01'48.00"W X X X X 
Apatou 5°09'00.00"N 54°21'24.00"W X X  X 
Brokopondo 5°01'31.70"N 54°59'34.20"W   X  
Nasson 4°51'36.00"N 54°28'12.00"W    X 
Stoelmans Eiland 4°21'01.66"N 54°24'31.76"W X    
Grand Santi 4°15'00.00"N 54°22'48.00"W X    
Abouna Sounga 4°02'60.00"N 54°21'00.00"W X    
Kajana 3°54'00.00"N 55°40'48.00"W   X  
Boniville 3°49'48.00"N 54°10'48.00"W  X   
Loka 3°49'48.00"N 54°12'00.00"W X X   
Papaichton 3°48'36.00"N 54°08'60.00"W X X   
Lawatabiki 3°40'48.00"N 54°05'24.00"W    X 
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Figure 36: Geographic origin of studied Noir Marron communities between French Guiana and 

Surinam. Image modified from Google Earth Pro (Google, Inc.). 

 

In Brazil, Maria Cátira Bortolini and her collaborators (Laboratório de Evolução Humana e 

Molecular, Departamento de Genética, Universidade Federal do Rio Grande do Sul, Brazil) 

recruited participants from the Afro-Brazilian population in Rio de Janeiro city (22°54'36.0"S, 

43°12'00.0"W), the capital of the state of Rio de Janeiro, southeaster Brazil. Ethical approval 

for the use of these samples in evolutionary and demographic studies was provided by the 

Research Ethics Committee of the Universidade Federal do Rio Grande do Sul (Resolution no. 

98002/1998). Afro-Brazilian samples were obtained from individuals who self-classified as 

‘black’ based on their physical appearance.  

In Colombia, Gabriel Bedoya and his collaborators (Laboratorio de Genética Molecular, 

Universidad de Antioquia, Medellin, Colombia) recruited participants from the Afro-

Colombian population based in Quibdó (5°41'44.0"N, 76°38'52.9"W) in the Chocó department 

and Medellin (6°15'16.2"N, 75°34'29.1"W) in the Antioquia department; both departments are 

located in northwest Colombia. Ethical approval for the use of these samples was provided by 

the Ethical committee of the Institute of Biology of the Universidad de Antioquia. 

A.2. West African populations 

Populations with West African ancestry were analysed from different locations in Benin: the 

Bariba population in North Benin (Parakou region; 9°21'00.0"N, 2°37'12.0"E), the Yoruba 

population in Central Benin (Ketou region; 7°21'49.1"N, 2°36'21.4"E), and the Fon population 

in South Benin (Gbeto, Whydah; 6°22'12.0"N, 2°04'48.0"E, and Cotonou; 6°22'00.2"N, 
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2°25'48.6"E). In Ivory Coast, we analysed the Ahizi population in the southeast (Nigui-Saff; 

5°15'00.0"N, 4°36'36.0"W), and the Yacouba population from western region (Danané, Glanlé; 

7°15'50.5"N, 8°09'25.0"W). In Mali, the Bwa population from Cercle de Tominian in the 

Southeast (Segou region; 13°15'00.0"N, 4°25'00.0"W) was collected by Gil Bellis and André 

Chaventré (Institut National d’Études Démographiques, INED, Paris, France). Geographic 

locations of these populations are shown in Figure 37.  
 

 
Figure 37: Geographic locations of studied West African populations. 

 

A.3. West European populations 

West European populations have played a significant role in South America during the 

transatlantic slave trade (Klein & Vinson, 2007), and their genetic identity might still be present 

in the African-American populations that were involved in Spanish and Portuguese 

colonisations. Hence, we extended the Y-chromosomal analysis to West European populations 

form the Iberian Peninsula (Figure 38A).  

In Spain, we analysed samples from: Galician population in northwest Spain collected by 

Antonio Salas (Unidade de Xenética, Instituto de Ciencias Forenses and Dept de Anatomía 

Patolóxica e Ciencias Forenses, University of Santiago de Compostela, Galicia, Spain); 

Catalan population from Barcelona in northeast Spain collected by Pedro Moral (Institut de 

Biodiversitat, Dept Biologia Animal-Antropologia, Facultat de Biologia, University of 

Barcelona, Barcelona, Spain); and Andalusian populations of Huelva and Granada in south 

Spain collected by Rosario Calderón (Departamento de Zoología y Antropología Física, 

Complutense University of Madrid, Madrid, Spain). 
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Portuguese samples from north and south Portugal were collected by Luisa Pereira (Institute 

of Molecular Pathology and Immunology, IPATIMUP, University of Porto, Porto, Portugal). 

A.4. Native American populations 

We also extended the Y-chromosomal analysis to three Amerindian groups in French Guiana 

(Figure 38B): Kalinya (or Kaliña), Palikur (or Palikour), and Oyampi (or Wayampi). These 

samples were collected by Georges Larrouy (Laboratoire d'Anthropologie Moléculaire et 

Imagerie de Synthèse, AMIS CNRS UMR-5288, University Paul Sabatier, Toulouse, France) 

and Stéphane Mazieres (Anthropologie Bioculturelle, Droit, Éthique et Santé, ADES 

UMR7268, University Aix-Marseille, Marseille, France). These populations spoke different 

languages: Cariban in the Kalinya population, Maipurean in the Palikur population, and Tupian 

in the Wayampi population (Paul et al., 2015). Each of them had different historical 

backgrounds. 

 

A:       B  

Figure 38: Geographic locations of studied West European populations from the Iberian Peninsula 

(A); and Native American populations from French Guiana (B). 

 

A.5. DNA extraction 

Peripheral blood samples were collected in tubes with the anticoagulant 

ethylenediaminetetraacetic acid (or EDTA). The genomic DNA of Noir Marron populations 

was extracted from 200 μl of blood samples by using the QIAmp Blood DNA Mini kit (made 

by Qiagen based in Courtaboeuf, France) according to the manufacturer instructions. This 

purification did not requires alcohol precipitation or phenol/chloroform methods, and is 

considerably faster.  
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Initially, DNA was diluted in QIAGEN Protease K buffer (free of DNase activity) to digest 

cell membranes and proteins; this dilution also helps to inactivate nucleases that might 

otherwise degrade the DNA during purification. Afterwards, four steps of purification 

procedures were carried out using QIAamp Mini spin columns in a standard microcentrifuge 

(Figure 39). The lysate buffering conditions were adjusted to allow optimal binding of the DNA 

to the silica-based membrane included in the columns. Wash conditions were performed using 

two different wash buffers, Buffer AW1 and Buffer AW2, to remove any residual contaminants 

without affecting DNA binding. Purified DNA was eluted from the QIAamp Mini spin column 

in standard 1.5 ml eppendorf tubes, and it was stored in a concentrated form with Tris-EDTA 

(TE) buffer at -25 C°.  

Genomic DNA of remaining populations was extracted previously using the standard 

phenol/chloroform method (Gill et al., 1985), and was stored in a concentrated form with Tris-

EDTA (TE) buffer at -25 C°.  

Extracted DNA was quantified by optical density absorption measurement using a NanoDrop 

Spectrophotometer 2000C (NanoDrop products, Wilmington, DE), and normalised to a 

concentration of 5 ng/µl for Y-STR typing, 50 ng/µl for Y-SNP and autosomal DNA typing, 

and 10 ng/µl for mtDNA sequencing. 

 

 

 
Figure 39: Genomic DNA was extracted using four microcentrifuge spins following the QIAamp Spin 

procedure. 

 

A.6. Datasets elaborated 

We analysed the African-American and West African samples by using three different genetic 

systems: Y chromosome (379 samples in total for Y-STR, and 346 samples in total for Y-SNP), 

whole mitochondrial DNA (273 samples in total), and autosomal DNA (229 samples in total) 

(see Table 9). 
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Table 9: Total population size analysed in the present study with Y chromosome (17 Y-STRs and 96 

Y-SNPs), whole mitochondrial DNA genome, and autosomal DNA (4.5 million SNP), for African-

American descendants and West African populations. 

Region Population Y-STRs Y-SNPs mtDNA Autosomal 

French Guiana 

Aluku 8 16 15 23 
Ndjuka 21 11 17 23 
Paramaka 5 1 8 19 
Saramaka 16 2 3 6 

Total Noir Marron communities 50 30 43 71 
Brazil Afro-Brazilian 24 28 39 16 
Colombia Afro-Colombian 19 20 30 20 
Total African Americans 93 78 112 107 

Benin 
Fon 78 63 36 19 
Yoruba 54 55 32 24 
Bariba 51 57 32 24 

Ivory Coast 
Ahizi 49 47 22 20 
Yacouba 41 32 16 17 

Mali Bwa 13 14 23 18 
Total West Africans 286 268 161 122 
TOTAL  379 346 273 229 

 

For Y-chromosomal analysis, we used a wide number of genetic markers for each individual 

(96 Y-SNPs and 17 Y-STRs). Paternal genetic markers having such a high resolution and 

specificity for each individual is not currently available in other publications. Therefore, to 

study possible admixtures and gene flow from European and Amerindian populations to African 

Americans, we analysed individuals with West European and Native American ancestry with 

the same set of genetic markers (see Table 10). 

In French Guiana, we compared the Noir Marron communities with Amerindian groups 

analysed in the present study. These Native American populations are descendants of original 

Native American groups who were present in French Guiana territories during the slave trade 

(Grenand & Grenand, 1985). Their geographical proximity made it very likely that there might 

be some evidence of gene flow between the Noir Marron communities and Native Americans 

during the slave trade, and even afterwards. If there is no gene flow, then this may further 

support the high genetic isolation hypothesis proposal in previous studies (Brucato et al., 2009; 

Brucato et al., 2010).  

Additionally, we included Native American descendants from South America to analyse 

signals of gene flow in the past with their African American neighbours in Colombia and Brazil. 
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Yfiler profiles (17 Y-STRs) were obtained for the Emberá-Chamí population from Antioquia 

in Colombia (as reported by Roewer et al. (2013)), and for Karitiana population in Brazil (as 

reported by Xu et al. (2015)) (see Table 10). The Karitiana population is often used as a 

reference population for Native American populations from South America (Li et al., 2008). 
 

Table 10: Summary of Y chromosome datasets for the African-American populations and assembled 

reference panels for West African, West European, and Native American ancestry. 

Population ID Pop Sample size Y-STR Y-SNP 

Noir Marron (F.G.) 1 GUF_NM 54 50 30 
Aluku  NM_A 19 8 16 
Ndjuka  NM_N 18 21 11 
Paramaka NM_P 5 5 1 
Saramaka NM_S 12 16 2 

Afro-Brazilian Af-BRA 35 24 28 
Afro-Colombian Af-COL 20 19 20 

Total African American AAM 109 93 78 

Benin  BEN 198 183 175 
Bariba 2  BEN_B 59 51 57 
Fon 1  BEN_F 79 78 63 
Yoruba 2  BEN_Y 60 54 55 

Ivory Coast CIV 90 90 79 
Ahizi 1  CIV_A 49 49 47 
Yacouba 1 CIV_Y 41 41 32 

Mali - Bwa   MLI_B 14 13 14 

Total West African AFR 302 286 268 
Kalinya (F.G.) 3 GUF_K 23 23 3 
Oyampi (F.G.) 3 GUF_O 29 25 3 
Palikour (F.G.) 3 GUF_P 43 41 7 
Emberá-Chamí (COL) 4 COL-EC 24 24 - 
Karitiana (BRA) 5 BRA-Ka 17 17 - 

Total Native American NAM 136 130 13 

Spain   ESP 101 101 80 
Galicia  ESP_Ga 30 21 21 
Barcelona ESP_Ba 21 30 26 
Granada 6 ESP_Gr 25 25 20 
Huelva 6 ESP_Hu 25 25 13 

Portugal  PRT 30 30 30 
North Portugal PRT_N 7 7 7 
South Portugal PRT_S 23 23 23 

Total West European EUR 131 131 110 

TOTAL Sample Size   678 640 469 

Note: Table competed with Yfiler profiles from 1 (Brucato et al., 2010), 2 (Fortes-Lima et al., 2015), 
3 (Mazieres et al., 2011), 4 (Roewer et al., 2013), 5 (Xu et al., 2015), and 6 (Ambrosio et al., 2012). 



80 
 
 

B. Y chromosome analysis 

B.1. Genotyping techniques for Y-STRs  

We analysed Y-chromosomal microsatellites for 469 samples from: African American, West 

African, West European, and Native American populations (see Table 10). We carried out the 

Polymerase Chain Reaction (or PCR) amplification in the Laboratory of Molecular 

Anthropology and Image Synthesis (AMIS CNRS-UMR 5288), University Paul Sabatier, 

Toulouse, France. Haplotypes were genotyped with the widely used Y chromosome markers 

included in the AmpFlSTR® Yfiler® PCR Amplification Kit (Life Technologies) (subsequently 

referred to as Yfiler kit), for genotyping 17 Y-STRs loci: DYS19, DYS389I, DYS389II, 

DYS390, DYS391, DYS392, DYS393, DYS385 a/b, DYS437, DYS438, DYS439, DYS448, 

DYS456, DYS458, DYS635, and GATA H4 (see Figure 40). 
 

 

The PCR amplification of Yfiler kit was performed in a reaction volume of 6.25µl containing: 

0.2µl of AmpliTaq Gold® DNA polymerase (Applied Biosystems), 2.3µl of Yfiler PCR reaction 

mix, 1.25µl of Yfiler primer set, and a maximum volume of 1µl of target DNA. The standard 

thermal cycling conditions in a Gene Amp® PCR System 2700 thermocycler (Applied 

Biosystems) consisted of enzyme activation at 95°C for 11 min, followed by 30 cycles of 

denaturation at 94°C for 1 min, annealing at 61°C for 1 min, and extension at 72°C for 1 min. 

A final extension was performed at 60°C for 80 min, with a 4°C temperature hold, if the PCR 

product was to remain in the thermal cycler. 

The Yfiler kit employs a five-dye set system consisting of 6-FAMTM, VIC®, NEDTM, PET®, 

and LIZ®, which makes it easier to analyse Y-STRs results in four colour’s groups (i.e., blue, 

green, yellow, and red). Y-STRs in this kit present different tetranucleotide repeats and mutation 

rates that occur at high frequencies (see Table 11). They are commonly applied to forensics and 

evolutionary studies (Diegoli, 2015; Roewer, 2009). 

Figure 40: Relative positions of Y 

chromosome microsatellites present in the 

Yfiler kit. The 17 Y-STRs are presented in 

the NRY (Butler et al., 2012).  
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Genotyping was carried out following the manufacturer’s recommendations by using Applied 

Biosystems 3130xl Genetic Analyser (Life Technologies), which is provided by the genotyping 

services of the Genomic and Transcriptome platform GeT-Genotoul, Toulouse, France. Data 

analysis was performed in our laboratory by using GeneMapper® IDSoftware v.4.0 (Applied 

Biosystems, Inc.). We identified high peaks for each loci in each Y-STR for each individual. 

Allele peaks were interpreted when they were greater than 50 relative fluorescence units 

(RFUs). Figure 41 shows results obtained using GeneMapper® for the allelic ladder and for one 

individual. The Y-STR alleles were designated according to the ISFG recommendations 

(Gusmao et al., 2006). Only complete Y-STR profiles were used for subsequent analyses. 

DYS389II alleles were encoded by the difference between the total number of repeats at 

DYS389II and the number of repeats at DYS389I (henceforth was labelled as DYS389II-I). 
 

Table 11: Summary of locus configuration of 17 Y-STRs typing using Yfiler kit. Bayesian median 

mutation rates were reported by Ballantyne et al. (2010).  

Label N° 
Alleles Mutation rate Repeat Structure GeneBank 

Accession N° Dye 

DYS389I 9 - 17 5.51 E-03 (TCTG)3(TCTA)6-14 AC004617 6-FAM 

DYS389II 24 - 34 3.83 E-03 (TCTG)4-5(TCTA)10-14N28 (TCTG)3 

(TCTA)6-14 
AC004617 6-FAM 

DYS390 17 - 28 1.52 E-03 (TCTG)8(TCTA)9-4(TCTG)1 (TCTG)4 AC011289 6-FAM 

DYS456 13 - 18 4.94 E-03 (AGAT)11-23 AC010106 6-FAM 

DYS19 10 - 19 4.37 E-03 (TAGA)3(TAGG)1(TAGA)6-16 AC017019 VIC 

DYS385 a 7 - 28 2.08 E-03 (AAGG)4N14(AAAG)3N12(AAAG)3 

N29(AAGG)6-7(GAAA)7-23 
AC022486 VIC 

DYS385 b 7 -28 4.14 E-03 (AAGG)4N14(AAAG)3N12 (AAAG)3 N29 

(AAGG)6-7(GAAA)7-23 
AC022486 VIC 

DYS458 13 - 20 8.36 E-03 (GAAA)11-24 AC010902 VIC 

DYS391 7 - 13 3.23 E-03 (TCTG)3(TCTA)6-15 AC011302 NED 

DYS392 6 - 17 9.70 E-04 (TAT)4-20 AC011745 NED 

DYS393 9 - 17 2.11 E-03 (AGAT)7-18 AC006152 NED 

DYS439 9 - 14 3.84 E-03 (GATA)3N32(GATA)5-19 AC002992 NED 

DYS635 20 - 26 3.85 E-03 (TCTA)4(TGTA)2(TCTA)2 (TGTA)2 

(TCTA)2 (TATG)0-2 (TCTA)4-17 
AC004772 NED 

DYS437 13 - 17 1.53 E-03 (TCTA)4-12(TCTG)2(TCTA)4 AC002992 PET 

DYS438 8 - 13 9.56 E-04 (TTTTC)7-16 AC002531 PET 

DYS448 20 - 26 3.94 E-04 (AGAGAT)11-13N42 (AGAGAT)8-9 AC025227 PET 

Y-GATA H4 8 - 13 3.22 E-03 (TAGA)3N12(TAGG)3(TAGA)8-15 

N22(TAGA)4 
AC011751 PET 
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Figure 41: Electropherograms show the entire allelic ladder for each loci of each Y-STR analysed (up), 

and profile of one individual (down) amplified with the Yfiler kit (see Table 11). Both were obtained 

using GeneMappers ID software v.4.0. The four rows correspond to 6-FAM, VIC, NED, and PET dye-

labeled peaks. The haplotype is showing with the allele number displayed underneath each peak. 
 

 
 

 



83 
 
 

B.2. Genotyping techniques for Y-SNPs  

We genotyped 96 Y-SNPs (see Table S1) for 446 samples from: African American, West 

African, West European, and Native American populations (see Table 10). For each Y-SNP, 

three primers were designed (per strand) by using Primer3 (Untergasser et al., 2012): allele 

specific 1 (AS1), allele specific 2 (AS2), and common reverse. Designs were checked for 

specificity by In-Silico PCR (http://genome.ucsc.edu/cgi-bin/hgPcr). The two tailed AS-PCR 

primers and the common reverse were ordered for synthesis to Integrated DNA Technologies, 

Inc. (Leuven, Belgium). 

We carried out the AS-PCR (Myakishev et al., 2001) by using the BioMark™ HD system 

(Fluidigm Corporation, USA) in a microfluidic multiplex array chip. This high-throughput 

genotyping system was previously applied for the Malagasy and Indonesian populations 

by_Kusuma et al. (2015). The system is developed for SNP genotyping assays and able to 

perform 9,216 Real-Time PCRs on a single chip (96 primers × 96 samples). The results were 

provided by the platform IntegraGen (Genopole Campus, Evry, France).  

The 96-plex was done for all individuals to avoid any analytical bias. A 14-cycle pre-

amplification reaction was performed for each sample in 5µl by pooling 96 common primer 

pairs, 1.25µl genomic DNA, and 2.5µl 2x QIAGEN Multiplex PCR Master Mix (QIAGEN). 

For each individual assay, 5µl 10X Assay Mix containing 100X Primers mix (final 

concentration 10X, composed of AS1, AS2 and common reverse), and 1X Assay Loading 

Reagent were loaded into one of the Assay Inlets on the chip.  

The following solution (5µl) was loaded in sample inlets: 1µl Preamplified sample previously 

diluted to 1:5 in low TE Buffer, 2.5µl 2X Fast probe QPCR master mix (Biotium), 0.25µl 20X 

Gene Expression Sample Loading Reagent (Fluidigm), 0.07µl 50X Rox Reference Dye, and 

0.11µl 50X Allele Specific Universal primer.  

The Biomark’s specific cycling program was used to amplify fragments: 

Hot start at 95°C for 5 min. 

PCR 6 Touch Down cycles; 95°C 15sec  72°C 45sec (-2°C/cycle)  72°C 15sec 

PCR 30 cycles ;                           95°C 15sec  60°C 45sec       72°C 15sec 
 

Finally, genotypes were obtained by clustering by using the Fluidigm SNP Genotyping 

Analysis v.4.1.3 based on the k-means clustering analysis method (Wang et al., 2009). Y-SNP 

haplogroups were designated according to the current indications of ISOGG Y-DNA 

Haplogroup Tree 2015 (Y Chromosome Consortium, 2002) (updated on January 2015, 

http://www.isogg.org/tree/). Table S1 includes the list of studied 96 Y-SNP markers, the 

mutation types of each SNP, its haplogroup affiliations, and further information about the 

http://genome.ucsc.edu/cgi-bin/hgPcr
http://www.isogg.org/tree/
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sequences amplified. 

We elaborated a comprehensive phylogenetic tree for Y haplogroups that can be identified 

with the 96 Y-SNPs genotyped (see Figure 42); special attention was given to Unique Event 

Polymorphism (or UEP) from African ancestry (Ansari Pour et al., 2013; Tishkoff et al., 2007). 

Y haplogroups and internal nodes following the latest classification proposed for ISOGG Y-

DNA Haplogroup Tree 2015 (updated on April 2015) (Y Chromosome Consortium, 2002), and 

were compared with the minimal reference phylogeny for the human Y chromosome (update 

version on November 2014) (van Oven et al., 2014).  

We analysed 446 samples by using the 96-plex genotyping described above. Additionally, the 

Y haplogroups affiliation was identified for 23 samples by using genome-wide SNP data 

described in section II.D.1. We used PLINK v.1.9 (Chang et al., 2015; Purcell et al., 2007) to 

extract the same set of Y-SNPs markers, which are localised in the same position of Y 

chromosome and present the same reference SNP ID number (or rs) (see Table S1). 

B.3. Statistical analysis of Y chromosome 

With the entire Y-SNP database obtained for 469 samples, we estimated Y haplogroup 

frequencies for each population and elaborated a Y chromosome tree. Molecular diversity 

indices were estimated for each population and each ancestry group by using Arlequin v.3.5.2.1 

software (Excoffier & Lischer, 2010). Haplotype diversity (HD) was calculated for each 

population sample by using the following equation: 

HD = (1 − ∑ 𝑞𝑖
2) (𝑛 𝑛 − 1) ⁄ , where n is the sample size and qi is the haplotype frequency.  

 

Gene diversity (h) is equivalent to HD but referred to a single locus; and h was also computed 

as an average over loci. The discriminatory capacity (DC) was determined by dividing the 

number of different haplotypes by the total number of samples in a given population (Kayser et 

al., 1997). We estimated intra- and inter-population molecular diversity index one for seventeen 

Yfiler markers set, another one for the set of tetra- and trimeric Y-STRs set constituting the 

‘minimal haplotype’ or minHt (i.e., DYS19, DYS389I, DYS389II, DYS390, DYS391, 

DYS392, and DYS393; without DYS385 a/b) (Kayser et al., 1997). 
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Figure 42: Phylogeny Y chromosome tree obtained with 96 Y-SNPs analysed, and based on ISOGG Y-

DNA Haplogroup Tree 2015. Genotyped Y-SNPs are indicated in blue. SNPs with phyloequivalent 

alternatives are shown in parentheses. Recurrent SNPs are indicated with a # suffix. E1b1 and K2b 

branches are shown in separated boxes. 
Y-MRCA Haplogroup designation

A00 AF6/L1086 (L1159)

A0'1'2'3'4 L1085 (L1130, L1155)

A0 CTS2809/L991 (V148=rs181335666, L896)

A0a L979 (L980, L987)

A0a1 V164=rs181016083 (L1070, L1075)

A0a1a P114 A0a1a-P114
A1'2'3'4

A1 P305=rs72625368 (V168=rs191505182, V171=rs2524861)

A1a M31=rs369315948 (P82, V4=rs187409543) A1a-M31

A1b P108 (V221=rs188292317)

A1b1 L419=rs111762602 (PF712)

A1b1a V50=rs189205028 (L602)

A1b1a1 M14=rs3905 (P3) A1b1a1-M14

A1b1b M32

A1b1b2 M190=rs2032603 (M144=rs2032619, P289=rs372246020) A1b1b2-M190*(xM51,M13)

A1b1b2a M51=rs34078768 A1b1b2a-M51

A1b1b2b M13=rs3904 (M202=rs2032649, V10=rs34555473) A1b1b2b-M13
A4=BCDEF

or B T M91=rs2032651 (P97, SRY10831.1#=rs2534636, M42=rs2032630, M94/PF1081) BT-P97,M91,SRY10831.1*

B M60=rs2032623 (M181=rs2032599) B-M60*

B2 M182=rs2032601

B2a M150=rs371646183 B2a-M150*

B2b M112=rs111725135 B2b-M112*

B2b1 M192=rs2032662 (50f2(P)=rs112236481)

B2b1a P7_1, P7_2, P7_3

B2b1a1 MSY2.1

B2b1a1a M169=rs2032594 B2b1a1a-M169

B2b1a1b M129 B2b1a1b-M129

B2b1a1c M211=rs2032663 B2b1a1c-M211

B2b1a2 P70 B2b1a2-P70

B2b1b P6=rs112194431 B2b1b-P6

C T M168=rs2032595

D E M145=rs3848982 (M203=rs2032653) DE-M203,M145*(xM96)

E M96=rs9306841 (M40=rs9786608, P29=rs60115999) E-P29,M96*

E1 P147=rs16980577

E1a M33=rs368762706 (M132=rs2032617) E1a-M33

E1b P177=rs16980473

E1b1 P2=rs9785756 (P179=rs16980621) Box E1b1

E2 M75=rs2032639 E2-M75*(xM41,M54)

E2a M41 E2a-M41

E2b M98

E2b1 M54 E2b1-M54

C F P143=rs4141886 (M3727)

C M130=rs35284970 (M216=rs2032666) C-M130,M216*(xM38,M217)

C1 F3393/Z1426

C1b2a M38=rs369611932 C1b2a-M38

C2 M217=rs2032668 C2-M217

F M89=rs2032652 (M213=rs2032665, P14=rs9786420) Continue below
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F M89=rs2032652 (M213=rs2032665, P14=rs9786420) F-M89,M213*

G H I J K F1329/M3658/PF2622

G M201=rs2032636 (P257=rs2740980) G-M201*(xP287)

G2 P287=rs4116820 G2-P287*(xP15)

G2a P15=rs370167410 G2a-P15

H I J K M578=rs73614810

H M3035=rs74378870 (L901)

H1 M69=rs2032673 (M370, L902) H-M69*(xM52)

H1a M52=rs376769460 H1a-M52*(xM82)

H1a1 M82=rs2032675 H1a1-M82

I J K M522=rs9786714 (M523=rs9786139)

I J M429=rs17306671 (P126=rs17250163)

I M170=rs2032597 (M258=rs9341301, U179=rs2319818)

I1 P203.2#=rs13447354 (M253=rs9341296, L80=rs35960273) I1-P203.2

J M304=rs13447352 (P209=rs17315835) J-P209,M304*(xM267,M172)

J1 M267=rs9341313 J1-M267*

J1a Z2215=rs376267849

J1a2 L136

J1a2b P58=rs34043621 J1a2b-P58

J2 M172=rs2032604 (L228=rs371968167) J2-M172*(xM410,M12)

J2a M410=rs371079691 J2a-M410*

J2a1 L26=rs34459399

J2a1b M67=rs2032628 J2a1b-M67

J2b M12=rs3903 J2b-M12*(xM241)

J2b2 M241=rs8179022 J2b2-M241*

KLT M9=rs3900 (P128/PF5504=rs17250121) KLT-M9,P128/PF5504*

L T (or K1) L298/P326=rs372687543 (L811)

L (or K1a) M20/PF5570=rs3911 L-M20/PF5570*

L1 M295 L1-M295*(xM76,M357)

L1a M2481

L1a1 M76=rs377001539 (M27=rs376303746) L1a1-M76

L1a2 M357=rs377156966 L1a2-M357

T (or K1b) M184=rs20320 (M272/PF5667=rs9341308) T-M184,M272/PF5667*

T1 M193=rs2032676 (L206)

T1a M70=rs2032672 T1a-M70*(xL131)

T1a2 L131=rs2215828 T1a2-L131

K2 M526=rs2033003 K -M526*

NO (or K2a) M214=rs2032674

O (or K2a2) P186=rs16981290 (M175=rs2032678) O-P186*

O1 MSY2.2

O1a M119=rs72613040 O1a-M119*(xP203,M50)

O1a1 P203.1#=rs13447354 O1a1-P203.1

O1a2 M50=rs2032632 (M103=rs2032609) O1a2-M50

O2 M268=rs13447443 (P31=rs200861659)

O2a PK4=rs367562925

O2a1 M95=rs2032650 O2a1-M95*(xM88)

O2a1a M88=rs2032645 (M111) O2a1a-M88

O3 M122=rs78149062 O3-M122*

O3a M324=rs13447361 (P197=rs17276358, P200=rs17316592)

O3a2 P201=rs2267801 O3a2-P201*

O3a2b M7=rs3898 O3a2b-M7

O3a2c P164=rs17316007

O3a2c1 M134=rs200634940 O3a2c1-M134

K2b M1221/P331/PF5911 Box K2b
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E1b1 P2=rs9785756 (P179=rs16980621) E1b1-P2*(xV38,M215)

E1b1a V38=rs768983 (L222.1#) E1b1a-V38*(xM2)

E1b1a1 M2=rs9785941 (P1=rs73626946, P189#=rs9786819, V95) E1b1a1-M2*

E1b1a1a1 M180=rs2032598

E1b1a1a1c L485=rs9786118

E1b1a1a1c1 L514=rs9786371

E1b1a1a1c1a M191=rs2032590 E1b1a1a1c1a-M191*(xU174)

E1b1a1a1c1a1 U174=rs16980586 E1b1a1a1c1a1-U174*(xP115,P116)

E1b1a1a1c1a1b P115 E1b1a1a1c1a1b-P115

E1b1a1a1c1a1c CTS8030/Z1704

E1b1a1a1c1a1c1a P116 E1b1a1a1c1a1c1a-P116

E1b1a1a1d U175=rs16980588 E1b1a1a1d-U175*(xU209)

E1b1a1a1d1 U209=rs16980502 E1b1a1a1d1-U209*(xU290,M154)

E1b1a1a1d1a U290=rs16980406 E1b1a1a1d1a-U290*(xU181)

E1b1a1a1d1a1 U181=rs16980589 E1b1a1a1d1a1-U181

E1b1a1a1d1c M154 E1b1a1a1d1c-M154

E1b1b M215=rs2032654 E1b1b-M215*(xM35.1)

E1b1b1 M35.1=rs375228668 E1b1b1-M35.1*

E1b1b1a V68=rs373648041

E1b1b1a1 M78=rs368977028 E1b1b1a1-M78

E1b1b1b Z827=rs367988033

E1b1b1b1 M310=rs13447357

E1b1b1b1a M81=rs2032640 E1b1b1b1a-M81

E1b1b1b2 Z830=rs369637510

E1b1b1b2a M123=rs371143248 E1b1b1b2a-M123*(xM34)

E1b1b1b2a1 M34=rs373666971 E1b1b1b2a1-M34

K2b M1221/P331/PF5911

K2b1 P397

M (or K2b1d) P256 (Page93=rs34486382) M-P256*(xM186)

M1 M186=rs2032681 (M4=rs3895, M5=rs3896, M106=rs2032611) M1-M186

P (or K2b2) P295/PF5866/S8

P1 M45=rs2032631 (M74=rs2032635) P1-M45*(xM207)

Q M242=rs8179021 Q-M242

R M207=rs2032658 R-M207*(xM173)

R1 M173=rs2032624 (M306=rs1558843) R1-M173*(xM434)

R1a M434 (M420=rs17250535) R1a-M434*

R1a1 SRY10831.2# (M459) R1a1-SRY10831.2

R1a1a M17=rs3908 (M198=rs2020857) R1a1a-M17*

R1a1a1 M417=rs17316771

R1a1a1b Z645/S224=rs111731595 (Z647/S441=rs112284571)

R1a1a1b1 Z283/S339=rs112309702

R1a1a1b1a1 M458=rs375323198 R1a1a1b1a1-M458

R1b M343=rs9786184

R1b1 M415=rs9786194 R1b1-M415*

R1b1a P297=rs9785702

R1b1a2 M269=rs9786153 R1b1a2-M269

R2 M479=rs372157627

R2a M124=rs372706460 R2a-M124
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Patterns of haplotype variations within the African-American populations with different 

continental ancestry were investigated applying the Median-joining (or MJ) Network method 

(Bandelt et al., 1999). Phylogenetic relationships of Y-STR haplotypes were elaborated using 

Network program v.4.6.1.3 (Fluxus Technology Ltd); the relationships were based on nine Y-

STRs (DYS19, DYS389I, DYS389II-I, DYS390, DYS391, DYS392, DYS393, and 

DYS385a/b). We assigned weights to each individual Y-STR locus as inversely proportional to 

the variance observed in our dataset (Berniell-Lee et al., 2009). Individuals that had STR 

missing values were excluded from the analysis.  

 

Pairwise FST and RST genetic distances between populations 

We estimated genetic differentiation between pairwise populations by using FST distances based 

on Y-SNPs frequencies. Although for microsatellite data is necessary statistics based on models 

that take into account features of microsatellite evolution. We therefore calculated RST distances 

between pairwise populations based on twelve Y-STRs. These distances are analogous to FST 

although based on mutational dynamics of microsatellites related to the stepwise model (Slatkin, 

1995), where the size of new mutant alleles depends on its progenitor (Di Rienzo et al., 1994). 

This measure allows more accurate calculations of population genetic parameters based on 

microsatellite data (Goodman, 1997; Rousset, 1996). Finally, we calculated a matrix of coancestry 

coefficients defined by Reynolds et al. (1983) as t/N= -ln (1-FST), based on twelve Y-STRs. Both 

genetic distances, FST and RST were calculated using Arlequin with 10,000 permutations (Excoffier 

et al., 1992). 

B.3.a. Admixture estimation of paternal ancestry 

We quantified genetic contributions of continental parental sources (African, European, and 

Native American) among the African Americans by using three admixture-model methods. 

First, we estimated genetic contributions based on Y haplogroup frequencies (mYSNP) using 

ADMIX program v.2.0 (Dupanloup & Bertorelle, 2001), which takes mutation and sampling 

error into account. This analysis employed the coalescent-based approach proposed by 

Bertorelle & Excoffier (1998). Time since admixture was set to 450 years, without taking into 

account molecular distances between Y haplogroups. The bootstrap procedure was set to 10,000 

repetitions. Mutation rate for Y-SNPs was set to 1.0x10-9/bp/year estimated from NGS analysis 

of MSY sequences in a deep-rooting pedigree (Xue et al., 2009). Input files for admixture 

software have been created using AdFiT v.1.7 software (Gourjon et al., 2014).  

Second, in the Lineage sharing (or LS) analysis (Trejaut et al., 2014) we analysed shared STR 

lineages between populations  based on a set of seven Y-STRs (i.e., DYS19, DYS389I, 
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DYS389II-I, DYS390, DYS391, DYS392, and DYS393). We used Arlequin software to 

calculate the number of shared haplotypes between each parental source and each African-

American population, and corrected for differences in sample size by dividing by the number 

of different haplotypes present in each parental population. These values were normalised to 

obtain the relative contribution of each parental population (Maca-Meyer et al., 2004). 

Finally, to compare estimations calculated with different methods, we evaluated admixture 

proportions based on twelve Y-STRs by using the STRUCTURE software v.2.3.4 (Pritchard et 

al., 2000). To estimate the ancestral membership proportions, a supervised analysis was 

performed by using prior information on the geographic origin of the reference samples from 

Africa, Europe, and South America. A tri-hybrid contribution was assumed for African, 

European, and Native American ancestries. The STRUCTURE runs comprised three replicates 

of 10,000 burning steps followed by 1,000 Markov Chain Monte Carlo (MCMC) iterations 

(Falush et al., 2003). This approach has been previously applied for autosomal microsatellites 

to study admixtures among the African Americans (Falush et al., 2003; Tishkoff et al., 2009), 

and also for comparison of Y haplotypes among Y haplogroups (Wang et al., 2015). 

 

B.3.b. Geographic patterns of Y chromosome in Africa 

To characterize subdivisions in populations with different continental ancestry, we carried out 

the Discriminant Analysis of Principal Components (or DAPC) (Jombart et al., 2010) based on 

seventeen Y-STRs. We analysed African-American populations and populations with different 

continental ancestry (Table 10). This method has been previously applied for worldwide 

populations to identify clusters between group structures and to unravel complex population 

structures (Jombart et al., 2010). We also represented relationships among African American 

and African coastal regions involved in the transatlantic slave trade by the PCA analysis based 

on Y haplogroup frequencies. We used the statistical software R (R Core Team, 2014) and the 

packages: ade4 (Dray & Dufour, 2007) for the PCA analysis; adegenet (Jombart, 2008) for the 

DAPC analysis; and ggplot2 (Wickham, 2009) for plotting both analyses. 

Finally, to determine the geographical origin of African descendant populations, we plotted 

contour maps for geographic patterns of Y haplogroups across African and African-American 

populations in South America. We analysed frequencies of three Y haplogroups highly 

represented in West and West-Central African populations (E1b1a1-M2*, E1b1a1a1c1a-M191, 

and E1b1a1a1d-U175). We applied the Kriging method (Chiles & Delfiner, 2008), and we used 

SURFER programme v.12 (Golden Software, Inc.). 
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C. Mitochondrial DNA analysis 

C.1. Sequencing techniques of mtDNA 

We analysed the whole mitochondrial genome for the following 273 samples: i) six African-

American populations: 43 Noir Marron individuals from Aluku, Ndjuka, Paramaka, and 

Saramaka communities, 30 Afro-Colombians, and 39 Afro-Brazilians; and ii) six West African 

populations: 22 Ahizi, 16 Yacouba, 23 Bwa, 36 Fon, 32 Bariba, 32 Yoruba (Table 9).  

Libraries of mtDNA were pooled and sequenced according to the manufacturer’s instructions 

for Single Read Multiplex sequencing (Maricic et al., 2010) by using a multiplex method 

developed for the Illumina Genome Analyzer IIx platform (Meyer & Kircher, 2010), with post 

processing step by using the Illumina software followed by the Improved Base Identification 

System (or IBIS, (Kircher et al., 2009)). IBIS considerably reduced the error rate and increased 

the output of millions of short sequencing reads generated in the Illumina Genome Analyzer. 

The run was processed with RTA v.1.5. (Illumina Inc.). The high-throughput sequencing was 

carried out at the Department of Evolutionary Genetics, Max Planck Institute for Evolutionary 

Anthropology, Leipzig, Germany, in collaboration with Prof. Mark Stoneking and Dr. Roland 

Schröder. We applied the criteria proposed by Li et al. (2010) to detect heteroplasmy, and to 

avoid false positives arising because of sequencing errors in complete human mtDNA genomes 

from the reads generated by the Illumina GAII technology. The Binary Alignment/Map files 

(or BAM files), containing the mapping information and reads, were processed by using 

MitoBam Annotator (Zhidkov et al., 2011) and SAMTOOLS v.1.0 (Li et al., 2009). Both 

software provide various tools for manipulating alignments, including sorting, merging, 

indexing, generating alignments, and creating a consensus sequence. Mitochondrial genomes 

were assembled separately for each library, corresponding to an individual tag. We estimated 

frequencies of heteroplasmic sites and structural variance of the mitochondrial genome by using 

MitoSeek v.1.3 (Guo et al., 2013). Furthermore, we used a custom Perl script to estimate the 

number of unpaired and paired reads, the length of the consensus mtDNA sequence, and the 

minimum, maximum, and average coverage per position. 

The reads for each samples were mapped to the rCRS (GenBank accession number 

NC012920.1; (Andrews et al., 1999)) by using the iterative mapping assembler MIA (Green et 

al., 2008). By convention, the nucleotide positions of each mtDNA genome were numbered 

from 1 to 16,569 according to the rCRS. Multiple sequence alignments of mtDNA genomes 

with rCRS were carried out using Clustal Omega tool (Sievers et al., 2011), which is available 

on the EMBL-EBI bioinformatics website (http://www.ebi.ac.uk/Tools/msa/clustalo/) (Li et al., 

2015). We classified the mtDNA polymorphisms present in each mtDNA genome by using the 

http://www.ebi.ac.uk/Tools/msa/clustalo/
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mtDNA GeneSyn computer tool (Pereira et al., 2009). This computer tool identifies the 

positions that are variable relative to the rCRS.  

Finally, sequences were assigned to the mtDNA haplogroup affiliation for the whole genome 

and the HVS-I and HVS-II segments according to Phylotree.org Build 16 ((van Oven & Kayser, 

2009); available online at http://www.phylotree.org/). We used the Haplogrep tool ((Kloss-

Brandstatter et al., 2011); available online at https://haplogrep.uibk.ac.at/) and a custom Perl 

script. Sequences were assigned to the closest matching haplogroup (with more than 85% 

haplogroup predicted score) for which all mutations that defined the haplogroup were observed 

in that sequence. We also considered private mutations present in some individuals, and 

expected but missing mutations for that haplogroup.  

 

C.2. Statistical analysis of mtDNA 

We used mtDNA GeneSyn software v.1.0 (Pereira et al., 2009) to convert sequences into 

haplotypes, and also to calculate the following: i) the number of non-synonymous and 

synonymous mutations in the protein-coding genes; and ii) the number of mutations in the r-

RNA genes, t-RNA genes, and noncoding regions. 

For mtDNA subhaplogroups and major clades, we estimated mtDNA frequencies for each 

population and we elaborated a comprehensive mtDNA tree with detected mtDNA haplogroups. 

Mitochondrial sequence diversity indices were estimated using Arlequin v.3.5.2.1 software 

(Excoffier & Lischer, 2010). We carried out the Tajima’s D test or Neutrality test. This test, 

described by Tajima (1993), compares two estimators of the population parameter θ: one is 

based on the number of segregating sites in the sample (or θ S), and the other is based on the 

mean number of pairwise differences between haplotypes (or θ Pi). This test is based on the 

infinite-site model without recombination; which is appropriate for mtDNA sequences. 

Significant P-values can be because of factors such as population expansion, bottlenecks, or 

heterogeneity of mutation rates, rather than selective effects (Tajima, 1996). 

 We estimated the frequencies of major mtDNA haplogroups L0-L3 based on segments HVS-

I+HVS-II for our dataset of African-American and West African populations, as well as other 

African populations across the continent and Near Eastern populations reported in previous 

studies (see Table S7). Moreover, we estimated mtDNA frequencies for the African-American 

populations from North America (AWS in USA) and the Caribbean (ACB in Barbados) by 

using mtDNA genomes reported by (1000 Genomes Project Consortium, 2015). 

 

 

http://www.phylotree.org/
https://haplogrep.uibk.ac.at/
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We computed genetic distances between pairs of populations (FST with 10,000 permutations) 

based on mtDNA haplogroup frequencies using Arlequin. The segments of the mtDNA control 

region considered corresponded to the same range previously used by mtDNA studies: the 

entire HVS-I (positions 16012–16400), and part of HVS-II (positions 73–263) (Bandelt et al., 

2006; Brucato et al., 2010). We represented relationships among the African-American and 

African populations residing in historic regions involved in the transatlantic slave trade by the 

PCA analysis based on mtDNA haplogroup frequencies. We used the statistical software R (R 

Core Team, 2014) and the packages: ade4 (Dray & Dufour, 2007) for the PCA analysis; and 

for plotting, we used ggplot2 (Wickham, 2009).  

 

C.2.a. Phylogenetic reconstruction of African mtDNA lineages 

In order to study the phylogeographic origins of the maternal lineages of the African-American 

populations belonging to the major African mtDNA haplogroups L, we compiled an exhaustive 

worldwide dataset containing 2,558 complete mtDNA genomes from the haplogroups L0 to L3. 

We assembled this dataset by using published mtDNA genomes in reference sequence 

databases, such as GenBank® (Benson et al., 2013), the 1000 Genomes Project (1000 Genomes 

Project Consortium, 2015), and unpublished mtDNA genomes from other studies in process. 

Additionally, we included 263 new whole mtDNA genomes belonging to the macrohaplogroup 

L0-L3 obtained for the African-American and West African populations. 

We built four comprehensive phylogeographic trees for each haplogroup L (e.g. L0, L1, L2, 

and L3) by using complete mtDNA genomes. The branching structure was established and 

based on the reduced median algorithm (Bandelt et al., 1995) by using the Network program 

v.4.6.1.3 (Fluxus Technology Ltd). Branching order was manually constructed using Excel 

(Microsoft, Inc.). This approach allowed us to create new subbranches in terminal parts of the 

tree that are not present in the Phylotree.org Build 16 (van Oven & Kayser, 2009). 

We estimated the splitting time of each nodes and clades in the phylogenetic tree by using 

three calibrations methods: i) rho statistic for complete mtDNA genome rate, ii) rho statistic for 

synonymous mutations rate, and iii) maximum likelihood (or ML) for complete mtDNA 

genome rate. The rho (or ρ) statistics estimates the average of mutational steps from a given 

ancestral node to the tips of the phylogeny purely based on a given mutation rate; it does not 

including any evolutionary model (Forster et al., 1996). We applied the rho statistic by using a 

mutation rate estimate for the complete mtDNA sequence of one substitution in every 3,624 

years, further corrected for purifying selection by using the mtDNA clock provided by Soares 

et al. (2009). We also applied the rho statistic by using a synonymous mutation rate of one 
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substitution in every 7,884 years (Soares et al., 2009). Finally, we estimated branch ages by ML 

using PAML v.3.13 (Yang, 2007), assuming the HKY85 mutation model with gamma-

distributed rates (approximated by a discrete distribution with 32 categories) and the same 

whole-mtDNA genome clock (Soares et al., 2009). For each calibration, we estimated standard 

errors with the Saillard method (Saillard et al., 2000). These calibration methods have recently 

been applied successfully to mtDNA trees of other mammalian species (Soares et al., 2013) and 

to evaluate the timing of the spread of the first humans in Africa (Fortes-Lima et al., 2014; Rito 

et al., 2013). 

C.2.b. Geographic patterns of mtDNA in Africa 

To determine the geographical origins of the African-American populations, we generated 

spatial frequency distribution maps of the major African haplogroups and subhaplogroups L 

(i.e., L0, L0a, L0a1b, L0b, L0d, L0f, L0k, L1, L1b, L1b2, L1c, L2, L2a, L2a1a3, L2b, L2b1, 

L2c, L2c1, L2d, L2e, L3, L3a, L3b, L3c, L3d, L3e, L3e1, L3e2, L3e2b, L3f, L3h, L3i, and 

L3x). The dataset elaborated is based on HVS-I and HVS-II data, and it included 17,687 

individuals distributed across 51 countries across Africa and the Near East; it also included six 

African-American populations from French Guiana, Brazil, and Colombia (see Figure 43 and 

Table S7). These frequencies provided the most comprehensive up-to-date picture of the genetic 

landscape in the African continent and African Diaspora. Each contour map was generated 

based on the Kriging method for interpolations in such maps (Chiles & Delfiner, 2008), which 

were graphically plotted using the SURFER software v.12 (Golden Software, Inc.). 

To obtain a better understanding of the geographic patterns of major clades and subclades 

across Africa, we combined the results obtained from the spatial distribution frequency analysis 

with the phylogenetic analysis. By using this approach, we shed new light about the African 

origin of the African-American populations in South America. 
 

   

Figure 43: Geographic location of African and 

Near Est countries analysed using mtDNA 

position HVS-I and HVS-II (see Table S7). 
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We quantified genetic contributions of continental African, European, and Native American 

maternal sources (mY mtDNA) among the African Americans based on mtDNA haplogroup 

frequencies using the ADMIX program v.2.0 (Dupanloup & Bertorelle, 2001). We analysed the 

African-American and West African populations indicated in the Table 9, in addition with West 

European and Native American frequencies were taken from Marques et al. (2015) and 

Mazieres et al. (2008), respectively. Likewise, we estimated ancestral contribution of historical 

African coastal regions (Figure 5). Each African region was determined by using an up-to-date 

database of African populations analysed with HVSI+HVSII (Table S8). Time since admixture 

was set to 450 years, without taking into account molecular distances between mtDNA 

haplogroups. The bootstrap procedure was set to 10,000 repetitions. Mutation rate for mtDNA 

was set to 2.14x10-8 /bp/year estimated for modern and ancient mtDNA genomes (Rieux et al., 

2014). Input files for admixture software have been created using AdFiT v.1.7 software 

(Gourjon et al., 2014). 

 

D. Genome-wide SNP data analysis 

The majority of previous studies addressing ancestry estimates among the African-American 

populations were based on uniparental markers (Benn Torres et al., 2007; Madrilejo et al., 2015; 

Simms et al., 2012). To evaluate admixture proportions among the African-American 

populations, we used autosomal markers because autosomes undergo recombination in every 

generation; they record the histories of both, male and female lineages. It is expected that the 

ancestry proportions captured correspond approximately to the average values indicated by 

mtDNA and Y chromosome markers. 

D.1. Genotyping techniques of genome-wide SNP data 

To estimate the continental ancestral contribution from African and non-African groups to 

African American communities, we analysed genome-wide SNP data for the following 229 

samples: i) six African-American populations; 71 Noir Marron people from people from Aluku, 

Ndjuka, Paramaka, and Saramaka, 20 Afro-Colombian, and 16 Afro-Brazilian; and ii) six West 

African populations; 20 Ahizi, 17 Yacouba, 18 Bwa, 19 Fon, 24 Bariba, and 24 Yoruba (Table 

9). We genotyped 4,301,332 SNP markers per sample (including autosomal DNA, sexual 

chromosomes, and mitochondrial DNA). This high-throughput SNP genotyping assay delivers 

robust high-quality genotyping data (Steemers et al., 2006) that allow to create a fine 

population-scale structure (Lachance & Tishkoff, 2013). 

We used Illumina HumanOmni5 Quad BeadChipsTM, which is consider as the most powerful 
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whole-genome array (with the exception of whole genome sequencing) (Figure 30). The 

genotyping was performed using the Illumina Infinium AssayTM (Gunderson et al., 2005) in the 

SNP&SEQ Technology platform at Uppsala University, Sweden. The results and genotyping 

quality were analysed by using GenomeStudioTM software v.2011.1 (Illumina, Inc). DNA strand 

positions were built according to the Genome Reference Consortium Human genome build 37 

(or GRCh37). Three individual were genotyped twice to quantify the reproducibility of this 

genotyping. 

D.2. Statistical analysis of genome-wide SNP data 

D.2.a. Quality control procedure and assembled datasets  

In order to select autosomal SNPs that are highly informative of continental ancestry, we 

performed genotyping quality control procedure (or QC) of genome-wide SNP data. The QC 

was carried out using PLINK v.1.9 (Chang et al., 2015; Purcell et al., 2007), according to the 

protocol published by Anderson et al. (2010). Initially, we removed SNPs with high genotype 

error (GENO > 1%), individuals with high missing genotype rates (MIND > 1%), and 

monomorphic alleles (MAF < 5%). We performed the Hardy-Weinberg test statistics for each 

SNP (Wigginton et al., 2005). Finally, we pruned SNPs that were in linkage disequilibrium (or 

LD) to generate a pruned subset of SNPs that were in approximate linkage equilibrium with one 

another. For the pruning process, we followed a series of PLINK command steps. First, we 

considered a window size of 50 SNPs; then, we calculated the LD between each pair of SNPs 

in the window. Subsequently, we removed one SNP from a pair of SNPs if the LD was greater 

than the threshold r 2= 0.2. Finally, we shifted the window 5 SNPs forward and repeated the 

procedure. This highly restrictive threshold removed SNP markers in LD, and also SNPs in 

splicing sites, SNPs in 5′ and 3′ untranslated regions of mRNAs (or UTR), and singleton SNPs 

(Ke et al., 2008). 

We applied the QC procedure using the following PLINK commands:  

plink1.9 --bfile --geno 0.01 --mind 0.01 --maf 0.05 --hwe 0.01 --indep-pairwise 50 5 0.2 --out 

 

To gain a better understanding on admixture patterns from hundreds of years ago, we analysed 

genome-wide SNP data variations in African-American populations by comparing them with 

reference populations included in different reference population datasets. We elaborated three 

genome-wide SNP datasets by using different reference populations.  

First, to detect presence of population structure and admixed individuals in African-American 

descendants from South America, we compared the new genome-wide SNP data of African-
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American and West African populations with populations included in the Human Genome 

Diversity Cell Line (or HGDP) panel (also known as the HGDP-CEPH panel) (Cann et al., 

2002; Cavalli-Sforza et al., 1991). 

The HGDP panel is the general reference dataset used in previous studies related to ancestry 

in human populations (Montinaro et al., 2015; Pugach & Stoneking, 2015). The HGDP panel 

includes a dataset of 650,000 SNPs determined with the Illumina Bead technology; this dataset 

has been genotyped for different populations from Africa, Europe, the Middle East, South and 

Central Asia, East Asia, Oceania, and the Americas. Therefore, this panel reveals a well-known 

geographical structure for human populations at the continental level, and allows a detailed 

characterization of worldwide genetic variations (Jakobsson et al., 2008; Li et al., 2008).  

We analysed 107 African Americans from South America (Table 9) and 149 individuals from 

17 reference populations for African (N= 60), European (N= 52), and Native American (N= 37) 

continental ancestry, which are included in the HGDP panel (see Table 12 and Figure 44); and 

122 new West African samples (Table 9) were also analysed. We merged the African-American 

populations with reference populations by using PLINK v.1.9 (Chang et al., 2015; Purcell et al., 

2007). After the QC procedure and genotyping pruning, we ended up with about 90,600 SNPs 

to carry out subsequently analysis. 

 

Second, we estimated continental ancestry by using a comprehensive up-to-date reference 

population for genome-wide analysis. Currently, whole genome sequences are becoming 

available to evaluate worldwide human genetic diversity. For instance, the 1000 Genomes 

Project Phase 3 version 5a (1000 Genomes Project Consortium et al., 2012; 1000 Genomes 

Project Consortium, 2015) sequenced whole genomes of large population samples originating 

from Africa, America, Europe, and Asia. This international project provides free genome-wide 

SNP data of populations with different continental ancestry and genetic backgrounds. Hence, 

to increase resolution and the number of SNP that are highly informative of ancestry, we used 

as a reference for continental ancestry only those populations that were included in the last 

released of 1000 Genomes Project Phase 3 (1000 Genomes Project Consortium, 2015).  
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Figure 44: Geographic location of populations from the HGDP Panel used as source population of 

African (MAN, YOR, and BAN), European (FRE, BAQ, ORC, TUS, and SAR), and Native American 

(PIM, MAY, COL, KAR, and SUR) ancestries. Pygmy populations (BIA and MBU) from Central Africa 

and San population (SAN) from South Africa were included in the TreeMix analysis. Populations are 

labelled according to Table 12. Image modified from Lopez Herraez et al. (2009).  

 

Table 12: List of populations from the HGDP panel and geographic origin used in the ADMIXTURE and 

PCA analysis. The HGDP panel is freely available online at http://www.cephb.fr/en/hgdp_panel.php. 
 

Geographic Origin Population samples Id Pop Coordinates N 

Sub-Saharan African     
   Senegal Mandenka  MAN 12N, 12W 21 
   Nigeria Yoruba  YOR 6-10N, 2-8E 21 
   Kenya (Bantu speakers) Bantu N.E. BAN 3S, 37E 10 

   S. Africa (Bantu speakers) Pedi (l), Sotho (1), Tswana (2), 
Zulu (1), Herero (2), Ovambo (1) BAN 29S, 30E 8 

West European      
   France French (various regions)  FRE 46N, 2E 28 
   France Basque BAQ 43N, 0E 24 
   Orkney Islands Orcadian ORC 59N, 3W 16 
   Italy Tuscan TUS 43N, 11E 8 
   Italy Sardinian SAR 40N, 9E 28 
Native American      
   Mexico Pima  PIM 29N, 108W 8 
   Mexico Maya  MAY 19N, 91W 21 
   Colombia Piapoco and Curripaco  COL 3N, 68W 5 
   Brazil Karitiana  KAR 10S, 63W 2 
   Brazil Surui  SUR 11S, 62W 1 

 

http://www.cephb.fr/en/hgdp_panel.php
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We downloaded whole genome sequences from this large dataset (last released available 

online in February 2015, at ftp://ftp-trace.ncbi.nih.gov/1000genomes/ftp/release/20130502/). 

Genomes were available in separate files for each chromosome, in variant call format (or VCF 

format) (Danecek et al., 2011). We selected only populations with African (including African 

American), Native American, European, and East Asian ancestries (Figure 45). After filtering, 

the VCF files for each chromosome were converted to PED/MAP files and merged using 

PLINK v.1.9 (Chang et al., 2015; Purcell et al., 2007). For each whole genome sequence, we 

extracted the same set of ~4.3 million SNPs present in the Illumina HumanOmni5 Quad 

BeadChipsTM by using PLINK.  

We merged genome-wide SNP data for African-American and West African populations 

(Table 9) with the reference populations selected in the 1000 Genomes Project (see Table 13). 

Additionally, we included one population of Bantu-speaking people residing in Soweto, South 

Africa, which has been recently genotyped with the same whole-genome array (May et al., 

2013). After merging, we had approximately four million SNPs for 2,042 individuals in 31 

worldwide populations. 

We performed the restrictive QC procedure described above by using PLINK v.1.9 (see all 

steps in Figure 47). At the end of the QC procedure, we had approximately 240,000 SNPs for 

2,038 individuals (see Table 13). This dataset was called ‘high-density’ SNP dataset (in short 

240K dataset). The 240K dataset was employed to analyse genetic ancestry and gene flow in 

African Americans from various parts of the Americas—North America (ASW in USA), the 

Caribbean (ACB in Barbados), and South America (in French Guiana, Colombia, and Brazil) 

by using different admixture-model approaches. 

Finally, to estimate fine-scale population structure within African populations, we built a 

dataset of African Americans and the biggest representation of African populations from 

different geographical locations across the continent, as well as with different historical, 

linguistic, and cultural backgrounds (see Figure 46). We analysed representative ethnolinguistic 

groups in North Africa (Henn et al., 2012), West Africa (Present study; (Bryc et al., 2010a)), 

West-Central Africa (Bryc et al., 2010a; Patin et al., 2014), East Africa (Pagani et al., 2012), 

and South Africa (May et al., 2013; Schlebusch et al., 2012). Additionally, we included African 

populations in the 1000 Genomes Project (1000 Genomes Project Consortium, 2015), and also 

populations with the highest European (IBS, TSI, GBR, and CEU), Native American (MXL and 

PEL), and East Asian (CHB and CHS) ancestries. Furthermore, we included one Qatari 

population from the Middle East (Hunter-Zinck et al., 2010).  

 

ftp://ftp-trace.ncbi.nih.gov/1000genomes/ftp/release/20130502/
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Figure 45: Geographic location of populations included in the 1000 Genomes Project Consortium 

Phased 3 (1000 Genomes Project Consortium, 2015) that were analysed in the present study. This new 

panel also included reference populations from International HapMap Project (International HapMap 

Consortium, 2005) and HapMap 3 (International HapMap 3 Consortium et al., 2010). Populations are 

labelled according to Table 13. 

 

 

Figure 46: Geographic location of 59 African populations included in ADMIXTURE analysis using 

thee low-density SNP dataset. Populations are labelled according to Table 13. 
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Figure 47: Flowchart of data genotyping and quality control procedure performed. It shows inclusions 

and exclusions of SNP/individual followed to obtain a high-density SNP dataset. References: 1 (1000 

Genomes Project Consortium, 2015), 2 (May et al., 2013), and 3 (Wigginton et al., 2005). 
 

After merging all these populations in one unique dataset, we carried out the same restrictive 

QC procedure described above. We ended up with around 50,000 SNPs dataset for 2,812 

individuals in 76 populations (see Table 13). This dataset was called ‘low-density’ SNP dataset 

(in short 50K dataset). We used the whole 50K datasets for all African regions to compare 

results obtained with the 240K dataset. Furthermore, we selected only African populations from 

historical African coastal regions involved in the transatlantic slave trade to analyse the African 

origin of the African-American populations from South America.
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Table 13: Populations analysed based on genome-wide SNP data using a high-density SNP (~240K 

SNPs) and a low-density SNP (~50K SNPs) dataset. The geographical locations are indicated in Figure 

45 and Figure 46. 

 

Code Continental ancestry Country Population ID 
Pop

Sample 
Size

High-
density 
(240K)

Low-
density 
(50K)

Number of SNPs Platform Ref *

North America USA, Southwest African American (ASW) 1 66 61 61 Whole genome 1000 GP Phase 3 1
The Caribbean Barbados African American (ACB) 2 96 96 96 Whole genome 1000 GP Phase 3 1
South America French Guiana Noir Marron, Aluku 3 23 23 23 4,300,000 Illumina HumanOmni5 2
South America French Guiana Noir Marron, Ndjuka 4 23 22 23 4,300,000 Illumina HumanOmni5 2
South America French Guiana Noir Marron, Paramaka 5 6 6 6 4,300,000 Illumina HumanOmni5 2
South America French Guiana Noir Marron, Saramaka 6 19 18 18 4,300,000 Illumina HumanOmni5 2
South America Colombia Afro-Colombian 7 20 20 20 4,300,000 Illumina HumanOmni5 2
South America Brazil Afro-Brazilian 8 16 16 16 4,300,000 Illumina HumanOmni5 2

269 262 263
Central America USA, California Mexican ancestry (MXL) 9 67 64 64 Whole genome 1000 GP Phase 3 1
Central America Puerto Rico Puerto Rican (PUR) 10 105 104 - Whole genome 1000 GP Phase 3 1
South America Colombia Colombian in Medellin (CLM) 11 95 94 - Whole genome 1000 GP Phase 3 1
South America Peru Peruvian in Lima (PEL) 12 86 85 85 Whole genome 1000 GP Phase 3 1

353 347 149
South Europe Spain Iberian (IBS) 13 107 107 107 Whole genome 1000 GP Phase 3 1
South Europe Italy Toscani in Italy (TSI) 14 108 107 107 Whole genome 1000 GP Phase 3 1
North Europe England and Scotland British (GBR) 15 92 91 91 Whole genome 1000 GP Phase 3 1
North Europe Finland Finnish (FIN) 16 100 99 - Whole genome 1000 GP Phase 3 1
North-West Europe USA Utah residents (CEU) 17 103 99 99 Whole genome 1000 GP Phase 3 1

510 503 404
MDE Middle East Qatar Qatari 18 168 - 140 500,000 Affymetrix 500K 3

Central Asia China Han Chinese in Bejing (CHB) 19 106 103 103 Whole genome 1000 GP Phase 3 1
Central Asia China Southern Han Chinese (CHS) 20 112 105 105 Whole genome 1000 GP Phase 3 1

386 208 348
North Africa Egypt Egyptian 21 19 - 19 730,000 Affymetrix 6.0 4
North Africa Libya Libyan 22 17 - 16 730,000 Affymetrix 6.0 4
North Africa Tunisia Tunisian Berber 23 18 - 16 730,000 Affymetrix 6.0 4
North Africa Algeria Algerian 24 19 - 15 730,000 Affymetrix 6.0 4
North Africa Morocco North Moroccan 25 18 - 16 730,000 Affymetrix 6.0 4
North Africa Morocco South Moroccan 26 16 - 14 730,000 Affymetrix 6.0 4
North Africa West Sahara Saharawi 27 18 - 14 730,000 Affymetrix 6.0 4

125 0 110
West Africa Gambia Gambian in W. Division (GWD) 28 113 113 113 Whole genome 1000 GP Phase 3 1
West Africa Sierra Leone Mende (MSL) 29 85 85 85 Whole genome 1000 GP Phase 3 1
West Africa Mali Bwa 30 18 17 17 4,300,000 Illumina HumanOmni5 2
West Africa Ivory Coast Yacouba 31 17 16 16 4,300,000 Illumina HumanOmni5 2
West Africa Ivory Coast Ahizi 32 20 20 20 4,300,000 Illumina HumanOmni5 2
West Africa Ghana Brong 33 8 - 4 500,000 Affymetrix 500K 5
West Africa Benin Bariba 34 24 24 24 4,300,000 Illumina HumanOmni5 2
West Africa Benin Yoruba_B 35 24 24 24 4,300,000 Illumina HumanOmni5 2
West Africa Benin Fon 36 19 19 19 4,300,000 Illumina HumanOmni5 2
West Africa Nigeria Yoruba_N (YRI) 37 116 108 108 Whole genome 1000 GP Phase 3 1
West Africa Nigeria Esan (ESN) 38 99 99 99 Whole genome 1000 GP Phase 3 1
West Africa Nigeria Igbo 39 17 - 7 500,000 Affymetrix 500K 5

560 525 536
West-Central Africa Cameroon Hausa 40 13 - 7 500,000 Affymetrix 500K 5
West-Central Africa Cameroon Mada 41 12 - 9 500,000 Affymetrix 500K 5
West-Central Africa Cameroon Fang 42 18 - 5 500,000 Affymetrix 500K 5
West-Central Africa Cameroon Bamoun 43 20 - 11 500,000 Affymetrix 500K 5
West-Central Africa Cameroon Nzime 44 53 - 53 930,000 Illumina HumanOmni1 6
West-Central Africa Cameroon Baka_Hunter-gatherer 45 58 - 57 930,000 Illumina HumanOmni1 6
West-Central Africa Gabon Baka_Hunter-gatherer 46 16 - 16 930,000 Illumina HumanOmni1 6
West-Central Africa Gabon Bongo East_Hunter-gatherer 47 22 - 22 930,000 Illumina HumanOmni1 6
West-Central Africa Gabon Bongo South_Hunter-gatherer 48 24 - 24 930,000 Illumina HumanOmni1 6
West-Central Africa Gabon Nzebi 49 20 - 20 930,000 Illumina HumanOmni1 6
West-Central Africa D.R.C. Kongo 50 9 - 4 500,000 Affymetrix 500K 5

265 0 228

Total African American populations (AFA)

Total Native American populations (NAM)

Total European populations (EUR)

Total Asian populations  (MDE and EAS)

Total North African populations (NAF)

AA

NAM

EUR

EAS

NAF

WAF

WCA

Total West-Central African populations (WCA)

Total West African populations (WAF)
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* References: 1 (1000 Genomes Project Consortium, 2015), 2 Present study, 3 (Hunter-Zinck et al., 2010), 
4 (Henn et al., 2012), 5 (Bryc et al., 2010a), 6 (Patin et al., 2014), 7 (Pagani et al., 2012), 8 (Schlebusch et 

al., 2012), and 9 (May et al., 2013). 

Note: Population gathered according to historical African coastal regions; 28 for Senegambia; 29 for 

Sierra Leone; 30 and 31 for Windward Coast; 33 for Gold Coast; 34-38 for Bight of Benin; 39-44 and 

49 Bight of Biafra; 50, 69, and 79 for West Central Africa; and 66 for Southeast Africa. 

 

D.2.b. Inbreeding coefficient and runs of homozygosity 

The inbreeding coefficient is the probability of homozygosity by descent having common 

ancestors, that is to say the probability that a zygote obtains copies of the same ancestral gene 

from both its parents (Frankham et al., 2010). For instance, if the parents of an individual are 

related, it is possible for the individual to receive at one locus two identical-by-descent (or IBD) 

alleles that are copies of a single allele carried by a common ancestor of the parents. The 

inbreeding coefficient measures the probability of this event and increases with increasing 

relatedness between the parents (Li & Horvitz, 1953; Wright, 1933). 

Code Continental ancestry Country Population ID 
Pop

Sample 
Size

High-
density 
(240K)

Low-
density 
(50K)

Number of SNPs Platform Ref *

Central Africa Nigeria Fulani_Mbororo 51 13 - 6 500,000 Affymetrix 500K 5
Central Africa Chad Kaba 52 16 - 8 500,000 Affymetrix 500K 5
Central Africa Chad Bulala 53 15 - 11 500,000 Affymetrix 500K 5

44 0 25
East Africa Sudan Sudanese_South 54 24 - 17 930,000 Illumina HumanOmni1 7
East Africa Ethiopia Afar 55 12 - 7 930,000 Illumina HumanOmni1 7
East Africa Ethiopia Amhara 56 26 - 19 930,000 Illumina HumanOmni1 7
East Africa Ethiopia Anuak 57 23 - 20 930,000 Illumina HumanOmni1 7
East Africa Ethiopia Ari_BlackSmith 58 17 - 14 930,000 Illumina HumanOmni1 7
East Africa Ethiopia Ari_Cultivator 59 24 - 19 930,000 Illumina HumanOmni1 7
East Africa Ethiopia Gumuz 60 19 - 7 930,000 Illumina HumanOmni1 7
East Africa Ethiopia Oromo 61 21 - 17 930,000 Illumina HumanOmni1 7
East Africa Ethiopia Tygray 62 21 - 17 930,000 Illumina HumanOmni1 7
East Africa Somalia Somali 63 23 - 13 930,000 Illumina HumanOmni1 7
East Africa Uganda Batwa_Hunter-gatherer 64 32 - 32 930,000 Illumina HumanOmni1 6
East Africa Uganda Bakiga 65 35 - 35 930,000 Illumina HumanOmni1 6
East Africa Kenya Luhya in Webuye (LWK) 66 101 99 99 Whole genome 1000 GP Phase 3 1
East Africa Kenya Maasai in Kinyawa (MKK) 67 133 - 133 Whole genome 1000 GP Phase 3 1

511 99 449
South Africa Namibia and S. Africa !Xun_San 68 19 - 19 2,400,000 Illumina Omni 2.5M 8
South Africa Namibia Herero_Bantu 69 12 - 12 2,400,000 Illumina Omni 2.5M 8
South Africa Namibia Ju/’hoansi_San 70 18 - 18 2,400,000 Illumina Omni 2.5M 8
South Africa Namibia Nama_Khoe 71 20 - 20 2,400,000 Illumina Omni 2.5M 8
South Africa Namibia and S. Africa Khwe_San 72 17 - 17 2,400,000 Illumina Omni 2.5M 8
South Africa Botswana /Gui and //Gana_San 73 15 - 15 2,400,000 Illumina Omni 2.5M 8
South Africa South Africa Karretjie_San 74 20 - 20 2,400,000 Illumina Omni 2.5M 8
South Africa South Africa Khomani_San 75 39 - 39 2,400,000 Illumina Omni 2.5M 8
South Africa South Africa Coloured_Colesberg 76 20 - 20 2,400,000 Illumina Omni 2.5M 8
South Africa South Africa Coloured_Wellington 77 20 - 20 2,400,000 Illumina Omni 2.5M 8
South Africa South Africa Bantu speakers groups 78 20 - 20 2,400,000 Illumina Omni 2.5M 8
South Africa South Africa Bantu speakers in Soweto 79 94 94 94 4,300,000 Illumina HumanOmni5 9

295 94 314
79 3,318 2,038 2,826TOTAL

CAF

EAF

SAF

Total Central African populations (CAF)

Total East African populations (EAF)

Total South African populations (SAF)
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Similarly, if individuals inherit the same ancestral mutations identically by descent, then they 

probably also share adjacent DNA segments on which the mutation first arose. For a recessive 

phenotype in affected inbred individuals, the homozygous risk locus probably resides in an 

unusually long homozygous region. Deleterious recessive variants can therefore be identified 

in affected inbred individuals by detecting long homozygous regions or runs of homozygosity 

(also known as ROH) (Broman & Weber, 1999; Clark, 1999). 

With the availability of genome-wide SNP data, it is possible to compute a genome-based 

inbreeding coefficient and to identify inbred individuals in a population from the observed 

patterns of homozygosity (Gazal et al., 2014). A commonly used measure to quantify IBD in 

an individual is the inbreeding coefficient (or F), a quantity that reflects not only consanguinity, 

but also other aspects of kinship in the population to which the individual belongs (Pemberton 

& Rosenberg, 2014).  

We examined the relationship between the genomic estimates of the inbreeding coefficient 

and the population patterns of genetic variations in eight African-American populations in the 

Americas. We analysed the dataset obtained after merging African-American populations from 

North America (in USA), the Caribbean (in Barbados), and South America (in French Guiana, 

Colombia, and Brazil). We analysed 262 African-American people in total.  

We used the PLINK software v.1.9 (Chang et al., 2015; Purcell et al., 2007) to estimate both 

F and ROH of African-American populations. F was based on the observed versus expected 

number of homozygous genotypes. 

We applied the following PLINK command to estimate F: 

plink1.9 --bfile --het --out 

Similarly, we applied the following PLINK command to estimate ROH: 

plink1.9 --bfile --homozyg-window-snp 50 --homozyg-snp 25 --homozyg-kb 500 --homozyg-

gap 100 --homozyg-window-missing 5 --homozyg-window-threshold 0.05 --homozyg-window-

het 1 --homozyg-density 50 --out 

 

D.2.c. Estimation of admixture events  

To test admixture models and demographic scenarios in African Americans from the 

Americas, we built three maximum likelihood trees based on the approach proposed by Pickrell 

& Pritchard (2012). This method can infer patterns of population splits and admixtures events 

of a set of populations. Hence, these trees largely recapitulate the relationships among 

population groups and identify aspects of ancestry and migratory events. Each tree was 
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elaborated for different SNP datasets (50K, 90K, and 240K) using the TreeMix software v.1.12 

(Pickrell & Pritchard, 2012). For increasing the confidence in each tree topology, we also 

applied the bootstrap method by generating a single bootstrap replicated by resampling blocks 

of 500 SNPs. 

First, we elaborated one maximum likelihood tree based on allele frequencies of 90K SNP 

dataset by using African-American populations from South America, West African populations, 

and other populations with different continental ancestries included in the HGDP panel. We 

selected the San population from South Africa as outgroup. These indigenous hunter-gatherer 

people, together with Khoe people, are the oldest known lineage of modern humans according 

to mtDNA (Chan et al., 2015; Morris et al., 2014), Y chromosome (Marks et al., 2015), and 

genome-wide studies (Kim et al., 2014; Pickrell et al., 2012; Schuster et al., 2010). We also 

included in this analysis Pygmy populations (Biaka and Mbuti) from Central Africa. 

Second, we elaborated another maximum likelihood tree based on the high-density SNP 

dataset by using African-American populations from South America, North America, and the 

Caribbean, and other populations with different continental ancestries included in the 1000 

Genomes Project (1000 Genomes Project Consortium, 2015). The 240K dataset enabled us to 

analyse the increased number of West African populations (with GWD, MSL, ESN, and YRI) 

with a higher resolution of SNPs. In this tree, we used Bantu speakers from South Africa (May 

et al., 2013) as outgroup. The Bantu-speakers population is the most geographically distant from 

West Africa. 

Finally, we elaborated another maximum likelihood tree based on low-density SNP dataset by 

using African-American populations and African populations across the entire continent; this 

was done to determine the genetic links of African Americans within African populations. In 

this tree, we used the Batwa Pygmy population from east-central Africa as outgroup because 

this rainforest hunter-gatherer population presented significantly higher |iHS| and FST values 

than any other rainforest hunter-gatherer populations in West or East Africa (Perry et al., 2014). 

Furthermore, we calculated allele frequency correlations among populations by using the f 3-

statistics, which allowed us to make inferences about the demographic history of populations 

(Moorjani et al., 2011; Reich et al., 2009). We carried out the three-population test by using the 

threepop application of the TreeMix software v.1.12 (Pickrell & Pritchard, 2012). The three-

population test is a formal test of admixture, which provides clear evidence of admixture, even 

if the gene flow events occurred hundreds of generations ago (Durand et al., 2011). This test is 

of the form f 3 (X;A,B), where a negative value of the f 3-statistic implies that the target 

population (population X) was the result of an admixture event between the two ancestral source 

populations (A and B populations) (Patterson et al., 2012). We used African-American 
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populations as a target population and two groups of source populations: one for African and 

European populations and another one for African and Native American populations. 

 

D.2.d. ADMIXTURE analysis 

To address admixture events that have occurred many generations ago, several clustering 

methods have been proposed (Libiger & Schork, 2012; Padhukasahasram, 2014). Clustering 

methods, such as ADMIXTURE (Alexander et al., 2009), STRUCTURE (Pritchard et al., 

2000), and FRAPPE (Tang et al., 2005), are model-based approaches for global ancestry 

inference in unrelated individuals. These clustering methods can take multi-locus genotypes of 

individuals from several populations, and apportion them into resolved clusters that are 

differentiated from one another. A number of model-based clustering methods have been 

devised that determine the cluster number, the frequency of any given allele in each cluster, and 

the proportion to which each individual’s genome owes ancestry to each cluster. With this 

approach each individual genome is considered to be a palimpsest of multi-layered history of 

successive periods of drift and admixture events in multiple ancestral populations (Jobling et 

al., 2014). 

We estimated individual African, European and Native American ancestry proportions in 

African-American populations by using the ADMIXTURE v.1.23 software (Alexander et al., 

2009). We carried out the unsupervised method and performed runs at K-groups values of 2, 3, 

4, and 5, where K is the number of unknown ancestral groups. This model-based method takes 

into account basic demographic assumptions, such as the presence of the Hardy-Weinberg 

equilibrium in the allelic frequencies of the K ‘ancestral’ population(s) (Alexander et al., 2009). 

The main advantage of ADMIXTURE is its model-based approach. The Expectation-

Maximization (or EM) algorithm (Zhou et al., 2011) is incorporated in ADMIXTURE, which 

runs faster and with greater accuracy than STRUCTURE (Pritchard et al., 2000) and 

EIGENSTRAT (Patterson et al., 2006; Price et al., 2006) programs. 

We analysed the African-American and West African populations (Table 9) with reference 

populations included in the HGDP panel (90K dataset). We also analysed the African-American 

and West African populations with reference populations included in the 1000 Genomes Project 

with both high- and low-density SNP datasets (240k and 50K datasets). 

The ADMIXTURE model assumes the Hardy-Weinberg equilibrium and linkage equilibrium 

among loci. Therefore, this model-based approach does not explicitly consider the LD between 

markers. It is especially relevant in recently admixed populations, such as African Americans, 

which have a high degree of ‘admixture LD’ (Alexander et al., 2009). The easiest way to avoid 
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the effects of LD between relatively close SNPs is by pruning SNPs in LD by using PLINK 

v.1.9 (Chang et al., 2015; Purcell et al., 2007). Hence, in the QC procedure of each dataset, we 

removed each SNP that had a correlation threshold value (or r 
2) greater than 0.2 with any other 

SNP within a 50-SNP sliding window, and advanced by five SNPs each time.  

The other fundamental question in clustering methods is to decide upon the most likely 

number of clusters of ancestral populations. We carried out the cross-validation (or CV) test 

(Alexander & Lange, 2011) to answer that question. We estimated the CV error running the 

ADMIXTURE software with the --cv flag for K values between 2 and 10 for 50K and 90K 

datasets, and for K values between 2 and 20 for 240K dataset.  

For the 50K dataset, we ran ten replicates using a random seed and kept the Q (ancestral cluster 

proportions) and P (inferred ancestral cluster allele frequencies) matrices from the run with the 

best log likelihood. We used the Q matrix from each K to estimate the most likely cluster 

proportions because of the high number of probable ancestral populations in the 50K dataset. 

We used the CLUMPAK (or Cluster Markov Packager Across K) software (Kopelman et al., 

2015) to selected the preferred value of K according to the methods of Pritchard et al. (2000).  

We elaborated ADMIXTURE plots for each dataset based on membership frequencies of each 

individual by using the R software (R Core Team, 2014). Additionally, we elaborated an 

ADMIXTURE plot by averaging admixture’s membership frequencies across individuals for 

each population. Likewise, we calculated the average membership frequencies across African 

populations that are representative of historical African coastal regions. 

We elaborated maps of admixture coefficients of the African-American and African 

populations across the continent by using the 50K SNP dataset. We analysed patterns of 

distributions of Q admixture coefficients for West-Central Africa and Bantu ancestry. We 

plotted these maps by using R functions based on the Kriging method proposed by Francois 

(2013). For mapping, we used Surfer v.12 (Golden Software, Inc.). This approach has been 

recently applied for African populations by Hodgson et al. (2014).  

 

D.2.e. Principal component analysis  

The PCA is a statistical method commonly used in population genetics to identify structure in 

the distribution of genetic variations across geographical locations and ethnic backgrounds 

(McVean, 2009). The PCA seeks to construct projections in the lower dimensional space that 

captures a large fraction of the variation in the marker genotypes. We carried out a Eigenstrat 

PCA analysis to study genetic variations of a worldwide dataset of 1,172 individuals from 

African-American and West African populations (Table 9); the reference populations were from 
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the HGDP panel with all geographical regions represented. We included 940 individuals from 

53 different populations from Africa, Europe, the Middle East, South and Central Asia, East 

Asia, Oceania and the Americas (see Table S10).  

To compare the results obtained in the ADMIXTURE analysis, we performed another 

Eigenstrat PCA based on African-American, African, European and Native American 

populations from the HGDP panel used in the 90K SNP dataset. We also performed an 

Eigenstrat PCA based on African-American populations from French Guiana and African 

populations from historical coastal regions. 

The PCA analyses were carried out using SMARTPCA in the EIGENSOFT package v.6.0.1 

(Patterson et al., 2006) and by plotting using the R packages ggplot2 (Wickham, 2009). The 

EIGENSOFT software implements PCA analysis for the purposes of detecting the population 

stratification in genome-wide association studies (or GWAS) (Price et al., 2006), and the 

population structure in genetic studies (Patterson et al., 2006). This analysis is based on 

eigenanalysis method proposed by Price et al. (2006) and Patterson et al. (2006) to project 

genetic data from individuals into a low-dimensional space formed from the eigenvectors of the 

genetic sample. Because of they do not assume a specific model for population evolution, they 

can be used in a variety of evolutionary scenarios, particularly two-population admixture 

scenarios (Shringarpure & Xing, 2014). 
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III. RESULTS 

We characterised three genetic systems in the Noir Marron communities and West African 

populations by using a high genetic resolution which were compared with other African-

American descendants in South America, the Caribbean and North America. We also compared 

the new results obtained with other African populations as well as populations with European 

and Native American continental ancestry, in order to infer the African origin and to shed new 

light on admixture patterns in African-American descendants. 

 

A. Y chromosome results 

A.1. Y-SNP diversity detected 

Through the Y-SNP genotyping, we obtained a large representation of Y lineages with 36 

haplogroups from clades A to R (Figure 48); most haplogroups were for clade E that is 

associated with sub-Saharan African populations (de Filippo et al., 2011). We built a complete 

Y chromosome tree with all terminal clades and their internal nodes obtained (see Figure 49). 

We estimated relative frequencies for each Y haplogroup in each population, and we also 

compared African American frequencies with frequencies obtained for reference populations 

with West African, West European, and Native American ancestry. 

African Y haplogroups from A to E1b1a were not detected in European or Native American 

populations (with the exception of one E1b1a1-M2 in Oyampi tribe). In sharp contrast to 

African-American populations, whose African haplogroups represented high values in Noir 

Marron (90.0%), and middle values in Afro-Colombians (50.0%) and Afro-Brazilians (53.6%). 

This set of African Y haplogroups represents between 94.7% and 100% in West African 

populations (see Figure 48). Hence, to belong to these haplogroups is a valuable indicator of 

West African ancestry, which is highly presented in the Noir Marron communities and is in 

good agreement with Brucato et al. (2010). The remaining African Y haplogroups belonged to 

the clades E1b1b1 and E2, which have widespread distribution in sub-Saharan Africa, North 

Africa, and even the Near East (de Filippo et al., 2011). 

Y chromosome diversity in West African populations indicated a large representation of 

African lineages in Benin and Ivory Coast, and less diversity in Mali because of its lower sample 

size (Figure 48). The degree of variation is substantially higher in the Bariba population (HD = 

0.833 +/-0.023; Figure 49) with seven African Y haplogroups observed (Fortes-Lima et al., 

2015). 
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Figure 48: Map of frequency distributions of Y-SNP haplogroups for African American, Native 

American, European and West African populations analysed. Y haplogroup nomenclature is according 

to ISOGG Y-DNA Haplogroup Tree 2015 (Y Chromosome Consortium, 2002). Results from Benin and 

Ivory Coast ethnic groups were reported by Fortes-Lima et al. (2015). Note: ‘E1b_’ means ‘E1b1a1a1’. 

 

The most frequent haplogroups belonged to the clade E1b1a1-M2* (see Figure 48), which is 

mainly associated with West African populations (de Filippo et al., 2011). The highest 

frequency (45.45%) was detected for the haplogroup E1b1a1a1c1a1-U174* in the Beninese 

Yoruba population (Fortes-Lima et al., 2015), in sharp contrast to the frequency reported for 

the same haplogroup (17.02%) in the Nigerian Yoruba population (de Filippo et al., 2011). The 

haplogroup E1b1a1a1d1a-U290* was detected at high frequencies in Bwa (57.14%), Ahizi 

(36.17%), and Yacouba (31.25%). This was in good agreement with values the previously 

reported in other West Africa populations, such as Asante (24.47%) and Ewe (27.27%) from 
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Ghana and Ekoi from Nigeria (27.66%), and the values reported in West-Central Africa 

populations, such as Bembe from Congo (28.44%) and Aghem from Cameroon (31.03%) 

(Ansari Pour et al., 2013). 

The haplogroup E2-M75*, common in Western and Eastern Bantu speakers (de Filippo et al., 

2011), was detected in Ahizi and Fon populations at low frequencies (2.13% and 1.59%, 

respectively). It might suggest some recent gene flow inherited from individuals of Bantu-

speaking groups. Similarly, the presence of B2a-M150 in the Yoruba population (9.09%) adds 

further support to a potential genetic input from Bantu-speakers in West African populations 

(Batini et al., 2011a).  

The presence of two Eurasian haplogroups in the Bariba ethnic group, such as R1b-M415* 

(3.51%) and T1a-M70*(xL131) (1.75%), suggested contacts with pastoralist populations from 

the Sahel region with populations in North Benin (Cerny et al., 2011). These haplogroups might 

also indicate migration routes from the Near East to sub-Saharan Africa (Mendez et al., 2011), 

or a back-migration from Asia to Africa (Cruciani et al., 2010).  

In addition, West European populations from Andalusia and Portugal evidence gene flow with 

African populations because of the presence of the haplogroup E1b1b1-M35.1 (10.0% Granada, 

23.1% Huelva, and 20.0% Portugal), most likely from North African populations. This 

haplogroup and its subhaplogroups arrived in the Iberian Peninsula through the Strait of 

Gibraltar associated with the Islamic expansion during the VIII century. This was previously 

stated by Ambrosio et al. (2010) and (2012) in both, Huelva and Granada. In Portugal, Beleza 

et al. (2006) and Santos et al. (2014) reached the same conclusions. Interestingly, its 

subhaplogroup E1b1b1a1-M78 was found in Afro-Brazilian (5.0%) and West European 

populations (Figure 49), and this might suggest that Iberian populations brought this North 

African subhaplogroup to South America during the slave trade.  

In Native American tribes from French Guiana (Kalinya, Oyampi, and Palikour), the 

haplogroup P1-M45* was detected in high frequency (85.7%); it most likely belonged to the 

haplogroup Q, which is virtually the only branch of the Y-phylogeny observed in modern-day 

Amerindians of Central and South America (Battaglia et al., 2013). However, none of the Y-

SNPs included in the 96-plex genotyping (Table S1) can be associated with the haplogroup Q. 

The haplogroup P1-M45* was not detected in the African-American populations, not even in 

the geographically close Noir Marron communities, and this might indicated a high genetic 

isolation between the Noir Marron communities and Native American tribes in French Guiana. 

Nevertheless, only in the Oyampi tribe very low gene flow was detected with African 

Americans (one individual belonged to the African haplogroup E1b1a1-M2*).  
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A.1.a. Y-SNP diversity in the Noir Marron communities 

Among African Americans, nine Y haplogroups were detected among the Noir Marron 

communities. Those Y chromosome markers revealed a high West and Central African 

component (50.0% of E1b1a1a1*)—even higher than in Afro-Brazilian (35.7%) and Afro-

Colombian populations (25.0%). In Noir Marron, the highest value (20.0%) was detected for 

subhaplogroup E1b1a1a1d1a-U290*, which was also highly frequent among the West African 

populations analysed (Figure 49). We estimated pairwise FST distances between the Noir 

Marron and other populations analysed (Table 14). Pairwise FST distances indicated 

considerable genetic similarity between the Noir Marron and the Beninese populations; Fon 

(0.012) and Bariba (0.019). 

 

Table 14: Comparison of pairwise FST genetic distances for Y haplogroup frequencies estimated for 

10,000 permutations. Populations are labelled according to Table 10. 
 

ID Pop N   1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

GUF_NM 30 1 0.000               
Af-COL 20 2 0.034 0.000              
Af-BRA 28 3 0.047 0.000 0.000             

NAM 13 4 0.369 0.368 0.366 0.000            

CIV_A 47 5 0.029 0.078 0.119 0.416 0.000           
CIV_Y 32 6 0.041 0.092 0.147 0.443 0.015 0.000          
MLI_B 14 7 0.107 0.143 0.175 0.569 0.039 0.160 0.000         
BEN_Y 55 8 0.065 0.123 0.086 0.419 0.079 0.151 0.133 0.000        
BEN_B 57 9 0.019 0.062 0.060 0.375 0.044 0.064 0.100 0.067 0.000       

BEN_F 63 10 0.012 0.082 0.059 0.385 0.039 0.076 0.105 0.020 0.007 0.000      

ESP_Ga 21 11 0.215 0.067 0.091 0.514 0.294 0.311 0.379 0.297 0.250 0.265 0.000     
ESP_Ba 26 12 0.334 0.178 0.185 0.642 0.399 0.426 0.518 0.398 0.352 0.364 0.027 0.000    
ESP_Gr 20 13 0.190 0.049 0.063 0.486 0.271 0.287 0.351 0.275 0.228 0.243 0.015 0.022 0.000   
ESP_Hu 13 14 0.155 0.034 0.050 0.484 0.244 0.259 0.326 0.249 0.199 0.215 0.008 0.086 0.024 0.000  

PRT 30 15 0.135 0.031 0.048 0.400 0.215 0.227 0.279 0.220 0.175 0.190 0.036 0.111 0.018 0.019 0.000 

 

A low European contribution (3.3%) was detected associated with the haplogroup R1b1a2-

M269. Moreover, low frequencies of haplogroups F-M213* and K2-M526* were detected 

(3.3% each), which have both a widespread distribution in Europe and Asia. This would be in 

good agreement with the low European contribution (2.4%) reported by Brucato et al. (2010). 

We did not detect a Native American contribution to the Noir Marron. However, we found 

low frequencies of the haplogroup K2-M526 in Noir Marron (3.3%) and Native American 

(7.1%) populations, which might suggest a low gene flow of Southeast Asian populations. The 

haplogroup K2-M526 is likely originated in Southeast Asia, and is monophyleticly related to 
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haplogroups R and Q (Karafet et al., 2015). Therefore, it might indicate slight gene flow from 

Southeast Asian populations to African Americans and Native Americans because of recent 

migrations of Chinese populations in French Guiana (Poston & Mei, 1990). 

 

A.1.b. Y-SNP diversity in the Afro-Brazilian population 

In the study of Y chromosome markers among Afro-Brazilian, 14 different Y haplogroups 

were detected (Figure 49). We found 53.6% of African Y haplogroups, which is even lower 

than the previous estimation (69.0%) in Afro-Brazilian, also from Rio de Janeiro (Hunemeier 

et al., 2007). Only 42.9% of them belonged to the major African haplogroup E1b1*(P2), with 

notably 39.3% of the subhaplogroup E1b1a1*(M2), which is more frequent in West Africa (de 

Filippo et al., 2011). Moreover, two African subhaplogroups E1b1a1a1c1a1*(U174) and 

E1b1a1a1d1*(U209), which are widely present across West and Central African (de Filippo et 

al., 2011), have high frequencies (17.9% and 14.3%, respectively). We detected 46.4% of the 

Eurasian haplogroups G, J, and R, most of them belonged to haplogroup R (35.7%). The highest 

European percentage was observed for R1b1a2-M269 (25.0%), which is widely present across 

Western European (Balaresque et al., 2010). There was also a noteworthy presence of 

haplogroups G2 (7.1%) among Afro-Brazilians; this haplogroup is largely spread in the Middle 

East and the Caucasus (Rootsi et al., 2012). We did not identify any Native American 

contribution. 

We detected the recurrent mutation SRY10831 (rs2534636) in two Afro-Brazilians that 

belonged to R1a1a-M17*. They presented positive signals for R1a1 associated with SNP 

SRY10831.2 (T). Interestingly, this mutation is also present in one individual from Benin, 

whose haplotype belongs to the haplogroup A1b1b2b-M13. As Hammer et al. (1998) 

demonstrated in the Y chromosome phylogeny, both an ancient T to C transition associated with 

the haplogroup BT (SRY10831.1), and a more recent C to T reversion associated with R1a1 

(SRY10831.2) occurred at the nucleotide position SRY10831. Therefore, the individual from 

Benin shows the ancestral SNP (T), while the two Afro-Brazilians present the recurrent 

mutation SRY10831, which derived SNP is also T. 

 

A.1.c. Y-SNP diversity in the Afro-Colombian population 

In Afro-Colombian, thirteen Y haplogroups were detected, of which notably 45.0% belonged 

to the major African clade E1b1a1, which is extraordinarily frequent in West Africa (de Filippo 

et al., 2011), while 5.0% belonged to African subhaplogroup E2b1-M54. Conversely, 45.0% 
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belonged to European and Eurasian haplogroups I, J and mainly R, and Amerindian contribution 

was not detected (Figure 49). We also found low frequency (5.0%) for European and Near 

Eastern subhaplogroup E1b1b1a1-M78.  

The African haplogroup E1b1a1a1d1a*(U290) has a high frequency (15.0%), which is also 

widely present across West-Central African (de Filippo et al., 2011). The highest percentages 

were observed for European subhaplogroup R1b1a2-M269 (25.0%), which is widely present 

across Western Europeans (Balaresque et al., 2010). Similar to the Afro-Brazilians, pairwise 

FST distances exhibited similar values between Afro-Colombian and West African populations, 

than between Afro-Colombian and West European populations (see Table 14). 

 

A.2. Y-STR diversity detected 

All populations presents a high-level of genetic diversity for 17 Y-STRs (HD = 1.00 to 0.90), 

with the exception of Native American populations of Oyampi (0.69) and Palikour (0.88). In 

Native American in general, diversity values were lower for both minimum and Yfiler 

haplotypes (particularly for the discrimination capacity; 0.315 and 0.454, respectively) (see 

Table 15). Among the Noir Marron communities, haplotype diversity was higher in Ndjuka 

(HD= 0.995 +/0.017, see Table 16) than in other Marron communities. 

Several Y-STRs present patterns of variation in repeats number associated with specific 

continental population (Figure 50). For instance, repeat 13 of DYS19 was mainly detected in 

Native American populations, while repeats 15, 16 and 17 of DYS19 were detected in high 

frequency in the African-American and African populations. Conversely, we detected other 

repeats present in high frequencies in European populations and admixed populations, such as 

repeat 11 of DYS391, repeat 15 of DYS437, and repeat 12 of DYS438. In the case of DYS385 

a/b, we detected a noticeable contrast between the frequency for 11,14 belonged mainly to 

European, Afro-Brazilian, and Afro-Colombian, with the frequency for 16,17 belonged mainly 

to African, Noir Marron, and Afro-Colombian (Figure 50). 

NETWORK analysis revealed phylogenetic relationships between microsatellite haplotypes 

belonging to West African and African-American populations (Figure 51). Determinate 

microsatellite haplotypes cluster in close correspondence to Y haplogroups identified (Figure 

49). For instance, haplotypes associated with E1b1a1a1d1a-U290 shows a ‘star-like’ structure 

indicative of expansion from one source, 19 haplotypes (3%) lie in its central node, and this 

node plus its single-step mutational neighbours together comprise 56 haplotypes (8.8%). As 

expected, in this cluster were detected West African and African-American populations. Other 

haplotypes associated with Y haplogroups E1b1a1-M2*, E1b1a1a1c1a1-U174, E1b1a1a1d1-
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U209 present strong phylogenetic affiliations for each Y haplogroup. While some haplotypes 

spread far away from those clusters. While remaining haplogroups are indicative of 

phylogenetic branches.  

Similarly, haplotypes associated with R1b1a2-M269 shows a ‘star-like’ structure (Balaresque 

et al., 2010), which 14 haplotypes (2.2%) lie in its central node, and this node plus its single-

step mutational neighbours together comprise 40 haplotypes (6.3%). In this cluster were 

detected a high representation of West European individuals, and also substantial number of 

Afro-Brazilian and Afro-Colombian individuals. Both African-American populations present 

clear evidence of admixture, because of their dual distribution within African and European 

clusters. 

Native American populations presents a different picture with multiple mutational steps 

between neighbour haplotypes, however haplotype substructure was not found. Native 

Americas haplotypes from French Guiana belonging to haplogroup P-M45* are close to 

haplotypes associate with subhaplogroup Q1. The haplogroup P-M45* is ancestor of that 

subhaplogroup; therefore, it is feasible to argument that those Native American groups are also 

relate to subhaplogroup Q1. Remarkable, Native Americas haplotypes are not closely relate to 

African American haplotypes, not even populations from the same country. Therefore, there is 

no evidence of sex-specific between those groups. 

To identify clusters between-group structure and to confirm population demographic patterns, 

we analysed the variation of among Y-STRs polymorphisms using DAPC (Jombart et al., 2010) 

and STRUCTURE analysis (Pritchard et al., 2000). DAPC plot shows three major clusters 

among populations with different continental ancestry (see Figure S1). The a-score was 0.749, 

which means that the probability of re-assignment of populations to true clusters is three times 

higher than to randomly permuted clusters (Jombart et al., 2010). The first discriminant function 

splits populations with Native American ancestry, while the second discriminant function splits 

populations with African and European ancestries. Both, Afro-Brazilian and Afro-Colombian 

populations present inertia ellipses around African and European populations. Therefore, Y-

STRs adds further support to admixture patterns occurred in descendants from Brazil and 

Colombia. Conversely, Noir Marron populations are within populations with African ancestry, 

with the exception the Paramaka that inertia ellipse is also associate with European populations. 

It may indicate gene flow between the Paramaka and European, however the sample size of this 

population is very low (N= 5) that it cannot be support. 
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Table 15: Intra and inter-population molecular diversity index for minHt. 
 

minHt (7 Y-STR) ID Pop N K DC θ Hom HD h MNPD 

Populations         

   Aluku NM_A 8 5 0.625 7.08 0.893 +/- 0.086 0.342 +/- 0.236 2.393 +/- 1.450 

   Ndjuka NM_N 21 16 0.762 39.19 0.976 +/- 0.020 0.521 +/- 0.307 3.648 +/- 1.924 

   Paramaka NM_P 5 3 0.600 3.17 0.800 +/- 0.164 0.571 +/- 0.401 4.000 +/- 2.399 

   Saramaka NM_S 16 8 0.500 4.64 0.850 +/- 0.075 0.342 +/- 0.219 2.392 +/- 1.372 

Total Noir Marron GUF_NM 50 26 0.520 21.82 0.959 +/- 0.013 0.477 +/- 0.276 3.340 +/- 1.743 

Afro-Colombian Af-COL 19 18 0.947 168.05 0.994 +/- 0.019 0.582 +/- 0.339 4.076 +/- 2.126 

Afro-Brazilian Af-BRA 24 21 0.875 89.09 0.989 +/- 0.015 0.609 +/- 0.349 4.264 +/- 2.190 

Ahizi CIV_A 49 31 0.633 36.40 0.975 +/- 0.009 0.479 +/- 0.277 3.350 +/- 1.748 

Yacouba CIV_Y 41 24 0.585 12.68 0.934 +/- 0.025 0.371 +/- 0.225 2.600 +/- 1.421 

Fon BEN_F 78 51 0.654 52.75 0.982 +/- 0.006 0.497 +/- 0.284 3.476 +/- 1.792 

Yoruba BEN_Y 54 30 0.556 32.99 0.972 +/- 0.009 0.463 +/- 0.269 3.240 +/- 1.697 

Bariba BEN_B 51 34 0.667 37.04 0.975 +/- 0.011 0.488 +/- 0.281 3.414 +/- 1.775 

Bwa MLI_B 13 4 0.308 1.43 0.654 +/- 0.106 0.286 +/- 0.193 2.000 +/- 1.204 

Galicia ESP_Ga 21 14 0.667 18.37 0.952 +/- 0.030 0.445 +/- 0.268 3.114 +/- 1.683 

Barcelona ESP_Ba 30 21 0.700 36.74 0.975 +/- 0.015 0.470 +/- 0.277 3.290 +/- 1.740 

Granada ESP_Gr 25 20 0.800 34.71 0.973 +/- 0.022 0.514 +/- 0.301 3.600 +/- 1.890 

Huelva ESP_Hu 25 20 0.800 47.16 0.980 +/- 0.018 0.563 +/- 0.325 3.940 +/- 2.042 

Portugal North PRT_N 7 6 0.857 18.37 0.952 +/- 0.096 0.619 +/- 0.399 4.333 +/- 2.436 

Portugal South PRT_S 23 20 0.870 60.38 0.984 +/- 0.019 0.589 +/- 0.340 4.126 +/- 2.132 

Kalinya (F.G.) GUF_K 23 12 0.522 11.58 0.929 +/- 0.032 0.519 +/- 0.305 3.636 +/- 1.912 

Oyampi (F.G.) GUF_O 25 7 0.280 0.71 0.487 +/- 0.121 0.269 +/- 0.177 1.880 +/- 1.111 

Palikour (F.G.) GUF_P 41 10 0.244 4.68 0.851 +/- 0.028 0.417 +/- 0.248 2.922 +/- 1.564 

Emberá-Chamí COL-EC 24 9 0.375 6.42 0.884 +/- 0.037 0.549 +/- 0.319 3.844 +/- 2.002 

Karitiana BRA-KA 17 6 0.353 3.05 0.794 +/- 0.063 0.299 +/- 0.197 2.096 +/- 1.230 

Groups         

African American AAM 93 57 0.613 54.95 0.983 +/- 0.005 0.550 +/- 0.309 3.850 +/- 1.952 

West African AFR 286 125 0.437 46.62 0.980 +/- 0.003 0.471 +/- 0.269 3.296 +/- 1.700 

West European EUR 131 78 0.595 36.26 0.974 +/- 0.007 0.530 +/- 0.298 3.708 +/- 1.886 

Native American NAM 130 41 0.315 16.00 0.946 +/- 0.010 0.538 +/- 0.302 3.768 +/- 1.912 

 

Note: N = Sample size, K = Number of different haplotypes, DC = Discrimination capacity,     

θ Hom = Theta (Hom), HD = Haplotype diversity, h = Gene diversity over loci, MNPD = Mean 

number of pairwise differences. 
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Table 16: Intra and inter-population molecular diversity index for Yfiler. 
 

Yfiler (17 Y-STR) ID Pop N K DC θ Hom HD h MNPD 

Populations         

   Aluku NM_A 8 6 0.750 11.53 0.929 +/- 0.084 0.456 +/- 0.271 7.750 +/- 4.042 

   Ndjuka NM_N 21 20 0.952 207.04 0.995 +/- 0.017 0.586 +/- 0.312 9.962 +/- 4.746 

   Paramaka NM_P 5 4 0.800 7.71 0.900 +/- 0.161 0.612 +/- 0.394 10.400 +/- 5.729 

   Saramaka NM_S 16 11 0.688 17.38 0.950 +/- 0.036 0.473 +/- 0.260 8.042 +/- 3.943 

Total Noir Marron GUF_NM 50 39 0.780 91.32 0.989 +/- 0.006 0.562 +/- 0.291 9.548 +/- 4.453 

Afro-Colombian Af-COL 19 19 1.000 - 1.000 +/- 0.000 0.648 +/- 0.345 11.023 +/- 5.242 

Afro-Brazilian Af-BRA 24 24 1.000 - 1.000 +/- 0.000 0.671 +/- 0.351 11.402 +/- 5.359 

Ahizi CIV_A 49 34 0.694 48.28 0.980 +/- 0.009 0.475 +/- 0.249 8.074 +/- 3.813 

Yacouba CIV_Y 41 34 0.829 79.10 0.988 +/- 0.010 0.436 +/- 0.231 7.413 +/- 3.538 

Fon BEN_F 78 74 0.949 747.76 0.999 +/- 0.002 0.549 +/- 0.282 9.329 +/- 4.332 

Yoruba BEN_Y 54 45 0.833 156.05 0.994 +/- 0.005 0.524 +/- 0.272 8.904 +/- 4.168 

Bariba BEN_B 51 44 0.863 138.72 0.993 +/- 0.006 0.498 +/- 0.260 8.461 +/- 3.979 

Bwa MLI_B 13 6 0.462 2.61 0.769 +/- 0.103 0.307 +/- 0.178 5.218 +/- 2.699 

Galicia ESP_Ga 21 19 0.905 102.08 0.991 +/- 0.018 0.566 +/- 0.302 9.619 +/- 4.593 

Barcelona ESP_Ba 30 27 0.900 142.05 0.993 +/- 0.011 0.534 +/- 0.281 9.083 +/- 4.300 

Granada ESP_Gr 25 25 1.000 - 1.000 +/- 0.000 0.612 +/- 0.322 10.403 +/- 4.909 

Huelva ESP_Hu 25 23 0.920 147.05 0.993 +/- 0.013 0.627 +/- 0.329 10.653 +/- 5.020 

Portugal North PRT_N 7 7 1.000 - 1.000 +/- 0.000 0.650 +/- 0.386 11.048 +/- 5.725 

Portugal South PRT_S 23 23 1.000 - 1.000 +/- 0.000 0.662 +/- 0.348 11.261 +/- 5.305 

Kalinya (F.G.) GUF_K 23 14 0.609 20.34 0.957 +/- 0.022 0.508 +/- 0.271 8.632 +/- 4.139 

Oyampi (F.G.) GUF_O 25 10 0.400 1.70 0.690 +/- 0.102 0.291 +/- 0.163 4.953 +/- 2.494 

Palikour (F.G.) GUF_P 41 12 0.293 6.26 0.882 +/- 0.026 0.438 +/- 0.232 7.449 +/- 3.553 

Emberá-Chamí COL-EC 24 13 0.542 10.70 0.924 +/- 0.032 0.542 +/- 0.288 9.214 +/- 4.390 

Karitiana BRA-KA 17 10 0.588 9.96 0.919 +/- 0.044 0.229 +/- 0.135 3.890 +/- 2.053 

Groups         

African American AAM 93 82 0.882 326.10 0.997 +/- 0.002 0.621 +/- 0.316 10.550 +/- 4.850 

West African AFR 286 235 0.822 519.52 0.998 +/- 0.001 0.512 +/- 0.262 8.703 +/- 4.030 

West European EUR 131 124 0.947 1,213.44 0.999 +/- 0.001 0.605 +/- 0.308 10.280 +/- 4.722 

Native American NAM 130 59 0.454 33.20 0.972 +/- 0.006 0.546 +/- 0.280 9.280 +/- 4.292 

 

Note: N = Sample size, K = Number of different haplotypes, DC = Discrimination capacity,     

θ Hom = Theta (Hom), HD = Haplotype diversity, h = Gene diversity over loci, MNPD = Mean 

number of pairwise differences. 

 



119 
 

Figure 50: Frequencies of 17 Y-STRs markers using in Yfiler. Population from African-American 

(Noir Marron, Afro-Colombian, and Afro-Brazilian), African (Yacouba, Ahizi, and Fon), European 

(Granada, Huelva, Barcelona, Galicia, and Portugal), and Native American (Kaliña, Palikur, and 

Oyampi) populations. 
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Figure 51: Median-joining Network of 640 Y microsatellite haplotypes between African-American, 

West African, West European, and Native American populations. Molecular relationships based on 9 

Y-STR haplotypes. Circles represent haplotypes with area proportional to frequency, and coloured 

according to population label. Lines between circles represent microsatellite mutational steps. 
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STRUCTURE analysis distinguished among populations with different continental ancestry 

(Figure S2). This Bayesian model-based clustering approach use microsatellite data to infer 

population structure and assign individuals to unknown populations (Pritchard et al., 2000). 

Individuals from the Noir Marron communities were highly assigned to West African 

populations (78%) (Table S3). Both, Afro-Brazilians and Afro-Colombians present African 

(~51%) and European (~43%) proportions that are consistent with previous results based on Y 

haplogroup frequencies (Figure 49). Interestingly, the Amerindian population of Emberá-

Chamí from Colombia shows a high Native American component (Roewer et al., 2013) and 

substantial proportion of European component (22.8%) that may reflect European paternal gene 

flow. However, some individuals were erroneously identify with different continental ancestry 

and may indeed suggest a bias. Despite this method can detect strong signals of population 

structure, individuals might not be accurately clustered. 

 

A.3. Spatial distribution of the African Y haplogroups 

We elaborated contour maps based on a comprehensive dataset of 23 African populations 

(Table S6) in order to gain a better understanding of African origin of major Y haplogroup 

(Figure 52). The haplogroup E1b1a1-M2* presented a West African distribution associated with 

Senegambia region based on the high-levels detected in Senegal and Guinea-Bissau populations 

(de Filippo et al., 2011). The haplogroup E1b1a1a1c1a1-M191 (including its subhaplogroup 

E1b1a1a1c1a1-U174) depicted mainly a Central African distribution associated with Bight of 

Biafra, with dominant focus in Cameroon, Gabon, C.A.R., and D.R.C. Both haplogroups 

present low frequencies among African Americans that are close to isoclines in other West 

African regions involved in the slave trade.  

Instead, the haplogroup E1b1a1a1d1-U175 presented a wide distribution from West to South 

Africa, with high-levels in Angola (62.7%) (Coelho et al., 2009; de Filippo et al., 2011) and 

Mali (58.3%). It is particularly observed along coastal African regions involved in the 

transatlantic slave trade, and therefore presents in high frequencies among Noir Marron, Afro-

Colombian, and Afro-Brazilian populations. Specially, frequencies observed in Windward 

Coast (51.3%), Gold Coast (37.0%), and Bight of Benin (39.4%) regions match closely with 

the Noir Marron communities (41.7%). 
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Figure 52: Patterns of geographic distributions of haplogroup E1b1a1-M2*, E1b1a1a1c1a-M191, and 

E1b1a1a1d-U175, in the African-American and African populations across the continent.  

 

A.4. Origin of African Y chromosome diversity among the African Americans 

We study the African origin of the African-American populations within the African continent 

from the Y chromosome perspective using both Y-STRs and Y-SNPs markers. We calculated 

the matrix of pairwise RST genetic distances (Slatkin, 1995) and coancestry coefficients 

(Reynolds et al., 1983) based on 17 Y-STRs. Both parameters indicated closed similarities 

among West African populations and African-American groups, especially with populations 

from Benin and Ivory Coast (Table 18). Conversely, African Americans presented the biggest 

dissimilarities with European and Native American groups, with the exception of European 

with the Afro-Brazilian and Afro-Colombian populations. Lastly, the biggest dissimilarities 

were detected among groups with different continental ancestry, which means African, 

European and Native American.  
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We determined the proportions of continental ancestry in African Americans based on both Y 

chromosome markers. Both admixture analysis based on seven Y-STR haplotypes and Y 

haplogroup frequencies indicated the highest African ancestry (>86%) in the Noir Marron 

communities. In contrast, both Afro-Brazilian and Afro-Colombian population showed high 

European ancestry, which is extraordinary elevate (67.9%) in Afro-Colombian according to Y-

STRs haplotypes. Native American contribution was very low or null among African 

Americans. 

Admixture estimates of African Americans calculated based on Y-STR haplotypes 

frequencies indicated high (89.1%) West African ancestry in the Noir Marron, while Afro-

Brazilians (41.4%) and Afro-Colombians (67.9%) showed high West European ancestry. 

Likewise, we obtained similar values in each population for mY SNP estimations (see Table 17). 

 

Table 17: Gene contribution estimates between populations based on variation in Y chromosome 

markers; Y-STR haplotypes frequencies obtained by using Lineage sharing (L.S.) analysis, and Y 

haplogroup frequencies (Figure 49). Admixture proportions (mY Y-SNP ± S.D.) were estimated by using 

ADMIX v.2.0. Populations analysed are indicated in Table 10.  

Y-STRs (L.S.) 
 West African West European Native American 
N 286 131 130 

Noir Marron 50 0.8911 0.0604 0.0486 
Afro-Brazilian 24 0.5494 0.4143 0.0363 
Afro-Colombian 19 0.3211 0.6789 0.0000 

     

Y-SNPs (mY Y-SNP) 
 West African West European Native American 

N 268 110 13 
Noir Marron 30 0.8603 ±0.0127 0.1288 ±0.0123 0.0109 ±0.0013 
Afro-Brazilian 28 0.5269 ±0.0206 0.4658 ±0.0211 0.0073 ±0.0013 
Afro-Colombian 20 0.5049 ±0.0214 0.4880 ±0.0220 0.0070 ±0.0012 
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The PCA analysis of the African-American and African populations residing in African 

coastal regions showed close genetic variation between Bight of Biafra and West Central Africa 

regions (Figure 53). The first principal component (or PC1) mainly split Senegambia and Sierra 

Leone regions from Bight of Biafra and West Central Africa regions. The second principal 

component (or PC2) split populations from remaining regions. 

We could not establish a unique genetic link with any specific African region. In this 

bidimensional space, the African-American populations are close to several West African 

regions, suggesting multiple African sources in genetic pool of African descendants. 

Populations from Senegambia region might not contribute in this parental variation. Only Afro-

Brazilian populations was slightly close to Southeast African region, in agreement with 

historical data (Eltis & Richardson, 2010). Interestingly, African Americans from Barbados 

(Table S5) are close to the Aluku, while African Americans from USA (Table S5) are close to 

Afro-Colombians. 

 

 
Figure 53: PCA analysis of the African-American and African populations from different historical 

coastal regions based on Y haplogroup frequencies. Populations are labelled according to Table S6. PC1 

(27.91%) and PC2 (14.31%) constitute 42.22% of the total variance. European and Native American 

proportions were removed in admixed African-American populations and recalculated their frequencies. 
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B. Mitochondrial DNA results 

The increasing availability of complete mtDNA genome sequences from humans has greatly 

refined the human mtDNA phylogenetic tree, and provided new insights into the 

phylogeography of particular mtDNA haplogroups (Torroni et al., 2006). Recently, new 

methods have been developed for high-throughput and low-cost sequencing of complete 

mtDNA genomes by using a parallel tagged sequencing approach and new sequencing 

platforms (Maricic et al., 2010). Here, we have applied this approach to obtain 273 complete 

mtDNA genome sequences for African-American and West African populations. A total of 

27,415,099 unpaired and 276,891,367 paired reads were obtained per each individual. Both 

unpaired and paired reads were mapped to the rCRS. The average coverage per position for the 

total mtDNA sequences in the final dataset was 1,931 (range 266–3,901), with an average 

minimum coverage of 508 (range 47–1,784) and an average maximum coverage of 2,765 (range 

437–5,515) (Figure 54). All positions were covered more than the minimum requirement of 

20X. 

 
Figure 54: Average coverage (blue dots), minimum (red dots), and maximum coverage (green dots) 

per position for the African-American and West African mtDNA genome sequences. 

B.1. Heteroplasmy calling detected 

Heteroplasmy refers to the existence of different types of mtDNA in the same individual. 

Typically, there are approximately 100 mitochondria in each mammalian cell, and each 

mitochondrion harbours 2–10 copies of mtDNA (Robin & Wong, 1988). Therefore, somatic 

mutation on mtDNA are relatively frequent in a cell containing a mixture of normal and mutant 

mtDNA copies (Irwin et al., 2009). It has been found that heteroplasmies are randomly 

occurring on the mitochondrial genome and relatively common in healthy individuals (Ramos 

et al., 2013). Moreover, the frequency of heteroplasmic variants varies considerably between 

different tissues in the same individual (He et al., 2010). In a study based on earlier sequencing 

technology, heteroplasmies (or heteroplasmic sites) as low as 5% were detectable (Li et al., 

2010). Later studies have shown that with a read depth of tens of thousands, mtDNA 

heteroplasmies as low as 1% could be detected (Guo et al., 2012). Therefore, to detect 
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heteroplasmies less than 1%, it is important to significantly increase the depth of coverage. 

We detected a high number of heteroplasmic sites in the mtDNA genomes analysed. However, 

these heteroplasmic sites were not in essential sites to obtain the haplogroup affiliation. Figure 

55 summarises heteroplasmic sites detected across the mtDNA genome over all samples. 

 
Figure 55: Heteroplasmic sites grouped according their loci on the mitochondrial genome over all 

samples. 

 

The level of heteroplasmy detectable in mtDNA is heavily dependent on the depth of coverage 

(Ye et al., 2014). These parameters are good indicators of the depth of coverage and lowered 

sequencing error rates that we obtained in this high- throughput sequencing. We calculated the 

average heteroplasmy count over all samples (103 ±50, range 9–331), and for each individual. 

The frequency of heteroplasmic sites for all samples was low (0.620 ±0.301%, range 0.054–

1.998%) because of the high coverage obtained with the high-throughput sequencing performed 

(Maricic et al., 2010). Besides, 27 of the 273 samples presented frequencies of heteroplasmic 

sites over 1.0%, and four of the 273 samples presented frequencies of heteroplasmic sites over 

1.5%.  
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B.2. Mitochondrial DNA diversity detected 

Sequence diversity indices indicated a high haplotype diversity in African Americans (range 

0.9770–0.9933) and West African populations (range 0.9249–0.9952). As expected, the 

estimations were higher for the control region than the whole mtDNA genome (see Table 19). 

The Tajima’s D statistics presented significant P-values for Afro-Brazilians and populations 

from Benin (see Table 19). The Tajima’s D values were significant in Afro-Brazilians and 

Beninese populations for the mtDNA genome analysis, however we did not obtained significant 

negative Tajima’s D values in any population for the control region analysis. In all analysed 

populations the nucleotide diversity (or π) and mean number of pairwise differences (or MNPD) 

were considerable higher for the mtDNA genome analysis than for the control region analysis 

because of its high number of loci under study (see Table 19). 

We calculated a number of recurrent sites of synonymous and nonsynonymous 

polymorphisms in coding regions of mtDNA genome for each populations (Table 20). As 

expected, we obtained more synonymous sites (6,419) than nonsynonymous sites for over 

samples (2,528). Noir Marron populations present a substantial number of synonymous sites 

(1,055) and nonsynonymous sites (433). The ratio of nonsynonymous polymorphisms per 

nonsynonymous site to synonymous polymorphisms per synonymous site (pN/pS) was higher 

in Noir Marron populations (0.410) than in Afro-Colombian and Afro-Brazilian populations 

(0.381 in both populations). It is noteworthy to consider these polymorphisms in the 

phylogenetic analysis of mtDNA genomes, because of the mtDNA phylogeny shows a higher 

proportion of synonymous mutations in ancient than in young branches; this trend is known as 

‘purifying selection’ (Elson et al., 2004). For instance, the youngest branches present a higher 

proportion of nonsynonymous mutations in protein-coding genes and substitutions in RNA 

genes; the purifying selection acts gradually over time on weakly deleterious characters. 

However, slightly deleterious mutations can persist for some time in the population (Kivisild et 

al., 2006; Soares et al., 2009). 
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Table 20: Number of recurrent Synonymous (or Syn) and Non-synonymous sites (or N-Syn) 

polymorphisms in the African-American and West African populations. 
 

 

Note: Ratio pN/pS: Noir Marron= 0.410, Afro-Colombian= 0.381, Afro-Brazilian= 0.381, 

Fon= 0.419, Yoruba= 0.409, Bariba= 0.412, Ahizi= 0.393, Yacouba= 0.440, and Bwa= 0.302. 

 

All mtDNA haplogroups were phylogenetically identified following the latest classification 

(van Oven & Kayser, 2009) (see Figure S3). We estimated relative frequency distributions for 

each haplogroup in each population and each region (Figure 56). In Noir Marron, all mtDNA 

haplogroups belonged to the major African haplogroup L, while it was detected in 94.8% of 

Afro-Brazilians and 83.3% of Afro-Colombians (Table 21). Furthermore, in Noir Marron the 

highest percentages were observed for L2c (25.6%) and L2a1 (18.60%), in contrast with the 

Afro-Brazilian and Afro-Colombian populations that present the highest percentages for L2a1 

(i.e., 26.67% and 20.51%, respectively).  

Syn sites N ATP6 ATP8 COX1 COX2 COX3 CYTB ND1 ND2 ND3 ND4L ND4 ND5 ND6 Total 

African Americans 

Noir Marron 43 32 17 156 63 83 94 102 74 26 23 168 177 40 1,055 

Afro-Col. 30 11 12 93 34 59 55 54 54 13 13 121 106 26 651 

Afro-Braz. 39 37 21 151 45 71 76 86 71 13 29 166 158 45 969 

West Africans 

Fon 36 15 16 117 42 71 73 65 66 18 13 134 127 29 786 

Yoruba 32 12 10 109 36 58 68 56 57 19 12 116 119 28 700 

Bariba 32 16 15 104 41 62 70 60 69 12 15 122 108 36 730 

Ahizi 22 16 15 90 25 36 50 48 36 10 10 81 90 27 534 

Yacouba 16 11 8 57 15 28 30 32 33 5 11 61 65 19 375 

Bwa 23 14 12 90 35 54 51 54 50 17 10 98 109 25 619 

Total 273 164 126 967 336 522 567 557 510 133 136 1,067 1,059 275 6,419 
                

N-Syn sites N ATP6 ATP8 COX1 COX2 COX3 CYTB ND1 ND2 ND3 ND4L ND4 ND5 ND6 Total 

African Americans 

Noir Marron 43 91 6 27 9 4 125 10 14 51 0 6 78 12 433 

Afro-Col. 30 67 3 10 3 4 76 13 16 26 0 6 19 5 248 

Afro-Braz. 39 94 7 28 5 5 97 13 15 41 0 5 47 12 369 

West Africans 

Fon 36 84 5 14 4 1 98 13 16 39 0 3 46 6 329 

Yoruba 32 78 3 14 4 1 89 3 14 36 0 1 36 7 286 

Bariba 32 80 3 15 1 2 85 10 15 34 0 3 47 6 301 

Ahizi 22 51 5 19 4 5 50 12 4 28 0 1 24 7 210 

Yacouba 16 37 2 14 3 1 43 8 8 21 0 1 22 5 165 

Bwa 23 53 4 11 1 3 55 6 11 23 0 0 18 2 187 

Total 273 635 38 152 34 26 718 88 113 299 0 26 337 62 2,528 
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In West African populations, L2a is highly present (Figure 56), with the highest percentages 

in the Bwa population from Mali (56.5%) and the Ahizi population from Ivory Coast (36.4%). 

The Fon population from Benin presented a wide representation of African diversity with 

fourteen subhaplogroups, including one subhaplogroup belonging to L4b1a, which is not 

present in other West African populations in the present study. However, the subhaplogroup 

L4b1a is also present in other West African population, such as in Burkina Faso (Barbieri et al., 

2012). In Ivory Coast, the Yacouba population presented more subhaplogroups than the Ahizi 

population (12 versus 7). Interestingly, both West African populations, the Fon and Yacouba 

presented the subhaplogroup U6a3, which is mainly associated with North African (Maca-

Meyer et al., 2003) and Mediterranean populations (Hernandez et al., 2014). This 

subhaplogroup might reflects the Maghreb expansion to West Africa, which occurred around 

15 or 20 kya (Secher et al., 2014). 

 

Table 21: Frequencies of major mtDNA haplogroups per population estimated with the whole mtDNA. 
 

Population 
African American West African 

F. Guiana Colombia Brazil Benin Ivory Coast Mali 
N. Marron Afro-Col. Afro-Bra. Fon Bariba Yoruba Ahizi Yacouba Bwa 

273 mtDNA 43 30 39 36 32 32 22 16 23 
L0a 0.047 0.100 0.051 0.056 0.063 0.031  0.063 0.130 
L0d   0.026       
L0f   0.026       
L1b 0.070 0.067 0.103 0.056 0.125 0.031 0.091 0.125 0.043 
L1c 0.163  0.128 0.056 0.031 0.063 0.182 0.125  
L2a1 0.186 0.267 0.205 0.194 0.188 0.281 0.364 0.188 0.565 
L2b 0.047 0.067 0.026 0.083 0.063 0.063 0.045  0.087 
L2c 0.256 0.033  0.056 0.063 0.031  0.063  
L2d  0.033        
L3b 0.047   0.111 0.031 0.125  0.063  
L3d   0.077 0.084 0.188 0.125  0.063 0.174 
L3e1 0.093 0.033 0.077 0.028    0.063  
L3e2 0.070 0.167 0.128 0.111 0.094 0.094 0.227 0.063  
L3e3   0.026 0.028 0.031 0.094  0.063  
L3e5     0.063  0.045   
L3f1b 0.023 0.033 0.077 0.083 0.063 0.063 0.045 0.063  
L3h1b  0.033        
L4b1a    0.028      
M2a1   0.026       
K1a1   0.026       
U6a3    0.028    0.063  
A2  0.033        
B2d  0.100        
C1d  0.033        
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Figure 56: Map of frequency distributions of mtDNA haplogroups for the African-American and West 

African populations from the present study. 

 

We estimated admixture proportions in African Americans based on mtDNA haplogroup 

frequencies (Table 22). In the Noir Marron communities, mYmtDNA was remarkably high (97.8%) 

for West African ancestry, and almost null for West European and Native American ancestry. 

Afro-Brazilians and Afro-Colombians also presented high (>83%) West African ancestries. 

However, evidence of West European ancestry (7.8%) was detected in Afro-Brazilians, and 

evidence of Native American ancestry (16.3%) was detected in Afro-Colombians. 
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Table 22: Gene contribution estimates between populations based on variation in mtDNA haplogroup 

frequencies (Figure 56). Admixture proportions (mY mtDNA ± S.D.) were estimated by using ADMIX 

v.2.0. 

mtDNA genome N West African West European Native American 
161 292 160 

Noir Marron 43 0.9780 ±0.0182 0.0110 ±0.0091 0.0110 ±0.0091 
Afro-Brazilian 30 0.9042 ±0.0167 0.0780 ±0.0103 0.0178 ±0.0077 
Afro-Colombian 39 0.8373 ±0.0169 0.0002 ±0.0062 0.1625 ±0.0134 

 

B.2.a. MtDNA diversity in the Noir Marron communities 

We estimated mtDNA haplogroup frequencies in all Noir Marron communities together based 

on new whole mtDNA genomes (N= 43) and for each Noir Marron community based on 

HVSI+HVSII segments (N= 183) by using both the new mtDNA data and the mtDNA data 

reported previously by Brucato et al. (2010) (Table 23). According to whole mtDNA genome 

data, the highest frequencies are for the three subhaplogroups: L2c (25.6%), L2a1 (18.6%), and 

L1c (16.3%). This pattern is noteworthy different from other African-American populations 

from South America; for instance, L2c is absent in Afro-Brazilian population (Figure 56).  

According to HVSI+HVSII segments, the highest frequencies were detected for L2a1 in 

Aluku, Ndjuka, and Saramaka communities (28.0%, 30.9%, and 31.0%, respectively). The 

clade L2a is geographically widespread and highly frequent throughout Africa (Figure 58) and 

accounts for more than 70% of all L2 branches (Rosa & Brehem, 2011; Salas et al., 2002). The 

subclade L2a1 is the most complex subclade within L2a. This subclade harbours sublineages 

from all African regions, as well as sublineages from other continents, including non-African 

branches, such as L2a1l2a, connected to the Ashkenazi Jewish Diaspora (Costa et al., 2013) and 

the exclusively European L2a1k (Malyarchuk et al., 2008). Hence, we cannot established a 

unique African origin for L2a1 for those communities, however phylogenetic reconstruction of 

complete mtDNA genomes could give a strong indication of its African origin and rule out the 

European and Jewish origins. 

In Paramaka, we detected the highest frequency for the subhaplogroup L2c (31.6%) that might 

suggest an African origin from Senegambia, because this subhaplogroup is rare in other African 

regions. The subhaplogroup L2c is also highly present in the Mandenka population from 

Senegal (37.1%) (Graven et al., 1995) and several populations from Guinea Bissau (range 15.0–

23.0%) (Rosa et al., 2004). 
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Table 23: mtDNA haplogroup frequencies detected in Noir Marron. All these subhaplogroups present 

sub-Saharan African distribution. 
 

mtDNA 
clade 

mtDNA genome HVSI + HVSII * 

All Noir Marron Aluku Ndjuka Paramaka Saramaka 
N 43 25 97 19 42 

L0a 2 0.047 0.080 0.010 0.000 0.119 
L1b 3 0.070 0.080 0.103 0.211 0.167 
L1c 7 0.163 0.080 0.144 0.000 0.071 
L2a1 8 0.186 0.280 0.309 0.211 0.310 
L2b 2 0.047 0.000 0.072 0.000 0.048 
L2c 11 0.256 0.160 0.113 0.316 0.048 
L3b 2 0.047 0.000 0.041 0.000 0.024 
L3d 0 0.000 0.000 0.010 0.000 0.095 
L3e* 0 0.000 0.040 0.010 0.000 0.048 
L3e1 4 0.093 0.160 0.062 0.053 0.024 
L3e2 3 0.070 0.080 0.072 0.211 0.048 
L3f1 1 0.023 0.040 0.052 0.000 0.000 
Total 43 1.000 1.000 1.000 1.000 1.000 

 

Note: HVSI+HVSII frequencies were obtained after merged mtDNA data from present study with 

mtDNA data reported by Brucato et al. (2010). 

 

B.2.b. MtDNA diversity in the Afro-Brazilian population 

In Afro-Brazilians were detected mtDNA haplogroups belonged mainly to the major African 

haplogroup L (94.9%). Besides low frequencies of Eurasian subhaplogroups (5.1% in total) 

were detected with the haplogroups K1a1a (found mainly in Europe and Central Asia) and M2a 

(found mainly in Europe and South Asia) (Table 21). As mentioned for Y chromosome 

haplogroups, the likely Amerindian contribution was not detected. The highest percentages 

were observed for clades L2a (20.5%) and L1c (12.8%), which are widely present in sub-

Saharan African populations. Their subhaplogroups L2a1 (20.5%) and L1c1 (7.7%) were found 

mainly in West African populations (Rosa & Brehem, 2011; Salas et al., 2002). This West 

African genetic link was also supported by the frequencies of the subhaplogroups: L1b (10.3%), 

L3e2 (12.8%), L3d (7.7%), and L3f1 (7.7%) (see Table 21). The high proportion of African 

mtDNA lineages in the population of Rio de Janeiro is in accordance with studies related to the 

state of Rio de Janeiro (Bernardo et al., 2014) and other Brazilian states (Alves-Silva et al., 

2000; Bortolini et al., 1997a; Bortolini et al., 1997b; Bortolini et al., 1999).  
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B.2.c. MtDNA diversity in the Afro-Colombian population 

In Afro-Colombians, mtDNA haplogroups belonged mainly to the major African 

macrohaplogroup L (83.3%), mainly for clade L2 (40.0%) (Table 21). These values are in sharp 

contrast to lower frequencies detected previously in Afro-Colombian populations in the Chocó 

department of northern Colombia (53.0%) (Rojas et al., 2010), and in the Cauca department of 

South Colombia (72.6%) (Salas et al., 2008). Interestingly, we detected an important presence 

(16.6%) of Native American haplogroups: A2, B2d, and C1d, which are also present in 

substantial high frequencies in the Emberá-Chamí population from Antioquia (Xavier et al., 

2015) suggesting gene flow. We did not detect any evidence of maternal European admixture, 

in contrast with Afro-Brazilian population. 
 

B.3. Spatial distribution of the African mtDNA haplogroups 

The patterns in the matrilineal variation within African ethnicgroups are remarkably complex 

(Rosa & Brehem, 2011; Salas et al., 2002). The increasing availability of complete mtDNA 

genome sequences has greatly refined the human mtDNA phylogenetic tree and provided new 

insights into the phylogeography of particular haplogroups. To shed new light about the African 

origins of mtDNA haplogroups detected in the African-American populations, we redefined the 

patterns of geographic distributions of mtDNA subhaplogroups L across the African continent. 

We elaborated a comprehensive mtDNA phylogenetic trees for the major clades L0, L1, L2, 

and L3 to obtain a better understanding of geographical association of major clades and their 

subclades in Africa and among African descendants. The mtDNA phylogenetic trees were based 

on 2,821 complete mtDNA genomes from haplogroup L0 to L3, which represent a large 

worldwide mtDNA diversity (Table 24). The mtDNA phylogeny drawn from the complete 

mtDNA genomes is remarkably more robust than using only variable segments of the control 

region; and new branches were identified in the tree. 

In each tree, we included the new mtDNA genomes obtained for the African-American and 

West African populations. We estimated the ages of divergence for each node by using three 

different methods (rho statistic for complete mtDNA genome rate, rho statistic for synonymous 

mutations rate, and maximum likelihood). The phylogenetic trees also showed the mutation(s) 

that identified each clade or subclades (Figure S3). These calibration methods have recently 

also been applied successfully to mtDNA trees of other mammalian species (Soares et al., 2013) 

and to evaluate the timing of spread of the first humans in Africa (Fortes-Lima et al., 2014; Rito 

et al., 2013). They are in very good agreement with the recent recalibrations that use ancient 

mtDNA samples (Fu et al., 2013; Rieux et al., 2014). 
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These trees are extraordinarily large and are not included in this manuscript. They are available 

on request to the principal author (email address: cesar@eurotast.eu) and after the acceptance 

of the standard confidentiality agreement. Figure 57 shows a simplification of elaborated 

phylogenetic trees for each major clade L0, L1, L2, and L3; with ages calculated for each node 

in the tree (Table S9). Phylogenetically, the most ancient mtDNA branch, that is L0, seems to 

have a southern Africa distribution, and (probable) origin. L0 is divided between L0d (with 

southern African distribution) and L0a'b'f'k, where L0k is more frequent in southern African 

and L0a'b'f has mainly an eastern African distribution (Rito et al., 2013). The other major branch 

of the human mtDNA tree has a much more complex genealogy and distribution, with subclades 

distributed throughout central, eastern, and western Africa; and more recently to North Africa 

and the rest of the world. This L1'6 clade is also much more frequent overall than L0 throughout 

Africa, even in most of southern Africa where L0 is found at its highest frequencies. L1'6 then 

splits into L1, mainly found in West-Central Africa, and L2'3'4'5'6 (or L2'6) (Figure 57). 

The latter then splits once again into L2'6 and further divides into L2 and L3 (or L3'4'6). Clade 

L2 is most likely originated from Central or West Africa and L3'6 from eastern Africa (Silva et 

al., 2015). Haplogroup L3 also includes major subclades that were most likely of eastern (L3a, 

L3c, L3h, L3i, and L3x), central (L3b), western (L3e2), and southern (L3e1) African origin. 

These geographical splits in the tree represented the most ancient dispersals taking place in the 

Middle Stone Age (or MSA) (Soares et al., 2012). 

 

Table 24: Worldwide distribution of individuals belonging to the macrohaplogroup L (from L0 to L3). 

Columns show population size and frequencies, and histograms show frequencies for each row. Table 

also includes our African Americans from Latin America and West African populations. West African 

frequencies noticeably match with the African-American populations from the U.S. and Latin America. 

 

mailto:cesar@eurotast.eu
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Phylogenetic tree analyses suggested that the geographical origin of all mtDNA genomes 

cannot be easily traced back to a single geographical region in Africa, although some 

geographical inferences can be made. Among individuals belonging to the clade L0, one Afro-

Brazilian (RJ_029) presented the haplogroup L0d1b2a1, which had only been found in Khoisan 

populations (Khoe, Tuu, and Kx'a) from Namibia and Botswana (Barbieri et al., 2013b); one 

Afro-Brazilian (RJ_080) belonged to the subhaplogroup L0a1b1a1, which matched with a 

specific subbranch of Khoisans from southern Africa (Behar et al., 2008). So, it might indicate 

connections with Khoisan groups. 

Interestingly, in Noir Marron, one Aluku (GUY_026) belonged to the subhaplogroup 

L0a2a2a1, which matched with a specific subbranch of other African Americans from the U.S. 

(ASW), and populations from Zambia (Barbieri et al., 2013a). In addition, one Aluku 

(GUY_027) belonged to the subhaplogroup L0a2a2a, which matched with several groups from 

southeaster Africa (such as Mozambique). Three Afro-Colombians (CO_093, CO_086, and 

CO_011) belonged to the subhaplogroup L0a1a2, which is widely presented in West African 

populations, such as Mali, Burkina Faso (Barbieri et al., 2012), Benin, and Nigeria (ESN). It 

might reflect connections with Bight of Benin and Bight of Biafra. 

In individuals belonging to clade L1, we detected more variations. Several subhaplogroups in 

African Americans (such as L1b1a4a, L1b1a7, and L1b2a) matched with terminal branches 

associated with West African populations from Benin, Ivory Coast, Burkina Faso (Barbieri et 

al., 2012), and Nigeria (YRI). 

Specifically, one Aluku (GUY_032) belonging to L1c5 matched with one mtDNA detected in 

the Fon population from Benin (BE_124). In addition, two Alukus (GUY_069 and GUY_014) 

belonging to the subbranch L1c1a, which has been only found in Pygmy groups from Gabon 

and Cameroon. Complete mtDNA sequences for L1c1a depicted this clade to be autochthonous 

to Central Africa, which its most recent branches shared exclusively between Pygmies and some 

farmers (Batini et al., 2011b; Quintana-Murci et al., 2008). We found the same association with 

one Saramaka who belonged to L1c1b. It might reveal connections with Bight of Biafra. 

Interestingly, one Ndjuka (GUY_012) belonging to L1c2a3 matched with mtDNA genomes 

found in the Dama population from South Africa (Behar et al., 2008). One Ndjuka (NM_02601) 

belonging to L1c3b2 matched with populations from Burkina Faso (Barbieri et al., 2012). 

Likewise, one Afro-Brazilian (RJ_083) belonging to L1c2a1 matched with southeaster 

African populations from Mozambique (Behar et al., 2008) and Kenya (Ingman et al., 2000). It 

might reflect connections of Afro-Brazilians with Southeast Africa.  

For mtDNA genomes associated with the clade L2, we detected a high genetic variations and 

geographic distributions, particularly for the subbranches: L2b, L2c, and L2a1. The latter is 
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highly present in the African-American populations analysed in the present study as well as in 

populations from North America (ASW) and the Caribbean (such as Haiti and Barbados). These 

subbranches are highly frequent in West and West-Central African populations, particularly in 

populations with different linguistic and cultural backgrounds (Silva et al., 2015). For instance, 

one mtDNA genome belonging to the subhaplogroup L2a1f was found in twelve individuals of 

different populations: one Ndjuka (NM_07401), one Afro-Brazilian (RJ_135), five African 

American from the U.S. (Just et al., 2008), one Gambian (GWD), one individual from Burkina 

Faso (Barbieri et al., 2012), one Yoruba from Nigeria (YRI), one individual from Botswana 

(Barbieri et al., 2014a), and one individual from South Africa (Mishmar et al., 2003). 

For mtDNA genomes associated with the clade L3, we also detected a high genetic variation 

and a wide geographical distribution in sub-Saharan populations. The subbranch L3e2 was the 

most present in African Americans from the Americas in general, as well as in West African 

populations. Interestingly, the subhaplogroup L3e1e, which is associated with south eastern 

African populations (Barbieri et al., 2013a), was found in one Afro-Brazilian (RJ_181), two 

Alukus (GUY_035 and GUY_063), two African Americans from Puerto Rico (PUR), and one 

from the U.S. (ASW). 

We also summarised the current data of about African mtDNA haplogroups based on their 

frequencies estimated using only the HVSI+HVSII segments. We calculated frequencies for 

major clades and its subclades for each West African population analysed; we grouped them 

according to their country affiliations. Furthermore, we calculated mtDNA haplogroup 

frequencies for each African country by using the published mtDNA data of African 

populations across the continent. We also included Near Eastern countries. We analysed 8,343 

people from 186 populations in 40 African countries, and 3,114 people in 10 Near Eastern 

countries (see Table S7). 

Figure 58 shows the different distributions of major mtDNA haplogroups in the African 

continent and the neighbouring Near Eastern countries. Substantially, frequency distributions 

of major African mtDNA haplogroups L based on HVSI+HVSII segments agree with 

geographic patterns obtained with whole mtDNA genomes explained above (Figure 57). These 

mtDNA data were used to analyse geographical patterns of major clades across Africa in order 

to established genetic links with the African-American populations from South America. First, 

we elaborated contour maps across African populations and from Near Eastern populations 

(Figure 57) to represent the genetic landscape of major African mtDNA lineages. Second, by 

using the same approach, we elaborated the same contour maps including the African-American 

populations, to track back their African origin.
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Figure 58: Frequency distributions of the major African mtDNA haplogroups L in sub-Saharan 

African and Near Eastern countries. Countries names according to ISO code (see Table S7). 

 

Distribution of haplogroup L0 in Africa and South America 

We extensively analysed the phylogeography of major African mtDNA macrohaplogroup L0 

and its subhaplogroup L0a (Figure 59). We observed patterns of geographical variations among 

South African populations associated with L0 and eastern Africa mainly associated with L0a. 

The African L0a lineage depicted a wide distribution associated with eastern, central, and 

southern African regions, despite the eastern origins of this subhaplogroup (Rito et al., 2013). 

The distribution of L0a, similar to L2, was earlier linked to Bantu movements (Atkinson et al., 

2009). However, recent evidence supports an earlier expansion of L0a to Central Africa during 

the Pleistocene/Holocene transition (Rito et al., 2013). We did not observed genetic links of 

lineage L0 with the African-American populations that we analysed, although some individuals 
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belonging to specific subhaplogroups were associated with specific African regions involved in 

the transatlantic slave trade. 
 
 

Distribution of haplogroup L1 in Africa and South America 

We analysed the phylogeography of major African mtDNA macrohaplogroup L1 and its 

subhaplogroups L1b, L1b2, and L1c (Figure 60). We observed that L1 is remarkably located in 

the West-Central African populations. In strong agreement with previous studies, the 

geographic distributions of the clade L1b and its subclade L1b2 are also common in West 

African populations, particularly along the coastal areas (Rosa & Brehem, 2011; Watson et al., 

1997). They peak in the Senegal and Sierra Leone (Jackson et al., 2005) and among the Fulani 

people in Burkina-Faso, Chad, and South Cameroon (Cerny et al., 2011). Clade L1c is frequent 

in Central and West populations, representing over 70% of the maternal legacy of many Pygmy 

groups (Destro-Bisol et al., 2004; Quintana-Murci et al., 2008). 

We analysed the spatial distributions of the clade L1b across the African-American 

populations, particularly in the Noir Marron communities. L1b2 is mainly frequent in the Upper 

Guinea coastal region and in Afro-Brazilian and Afro-Colombian communities. This might 

suggest a westward African connection during the slave trade. 
 

Distribution of haplogroup L2 in Africa and South America 

We widely analysed the phylogeography of major African mtDNA macrohaplogroup L2 and 

its subhaplogroups L2a, L2b, and L2c (Figure 61). Clade L2 originated in Western/Central 

Africa, but is nowadays spread across the entire continent. L2 movements were previously 

postulated to be related to the Bantu expansion (Pereira et al., 2001; Salas et al., 2002), but L2 

expansions eastwards probably occurred much earlier. Recently, Silva et al. (2015) have 

proposed three moments of expansion associated with L2 from a Central African source: i) a 

migration at 70–50 kya into eastern or southern Africa; ii) postglacial movements at 15–10 kya 

into Eastern Africa; and iii) the southward Bantu expansion in the last five kya. We observed 

the consequences of those splits in the geographic pattern of this clade and its subclades. 

Additionally, L2 was also reported in North Africa probably because of trans-Saharan slave 

trade occurring in the last few centuries (Harich et al., 2010). 

The subhaplogroup L2a spread into Central Africa. It is the most frequent and widespread 

mtDNA clade in sub-Saharan Africa (Figure 61), reaching over 40% among Tuareg from 

Niger/Nigeria and Mali (Salas et al., 2002; Veeramah et al., 2010; Watson et al., 1997), Fali 

from North Cameroon (Coia et al., 2005), Western Pygmies from Gabon (Quintana-Murci et 

al., 2008), and Bantu from Mozambique (Pereira et al., 2001). L2a is highly represented in Afro-
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Brazilian (20.5%) and Afro-Colombian (26.7%) populations; however, it is difficult to identify 

the likely geographic origins of African-American descendants. 

 

    
Figure 59: Spacial patterns of the African haplogroup L0 and its subhaplogroup L0a, within African, 

Near Eastern, and African-American populations. 

 

 

   

    

Figure 60: Spacial patterns of the African haplogroup L1 and its subhaplogroups: L1b, L1b2, and L1c, 

within African, Near Eastern, and African-American populations. 
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The subhaplogroups L2b and L2c spread into West Africa. However, both were present in low 

frequencies in the African-American and West African populations; with the exception of Noir 

Marron whose presented a high frequency (25.6%) of L2c, associated with the Paramaka 

community (31.6%). Therefore, the Paramaka community seems to be linked with the Upper 

Guinea region. 

 

    

    

Figure 61: Spacial patterns of the African haplogroup L2 and its subhaplogroups: L2a, L2b, and L2c, 

within African, Near Eastern, and African-American populations. 

 

Distribution of haplogroup L3 in Africa and South America 

We broadly analysed the phylogeography of major African mtDNA macrohaplogroup L3 and 

its subhaplogroups L3e, L3e1, L3e2b, and L3f (Figure 62). Clade L3 is also highly frequent and 

widespread across Africa. The subclade L3f is mainly present in eastern populations, while L3e 

and L3e types are mainly concentrated in Central and South Africa. As was previously 

highlighted by Soares et al. (2012), eastern Africa was the source of most of the ancient L3 

variation, although some subclades (L3b, L3d, and L3e) most probably emerged in Central 

Africa. In good agreement, we observed that a large set of African-American populations 

belonged to the haplogroup L3e and L3e types, which were primarily found in West and Central 
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Africa (Rosa et al., 2004; Salas et al., 2002; Soares et al., 2009; Watson et al., 1997). Therefore, 

the lineage L3e from different West and Central African sources contributed significantly to the 

genetic landscape of the African-American populations from South America. 

 

    

    

 

Figure 62: Spacial patterns of the African haplogroup L3 and its subhaplogroups: L3e, L3e1, L3e2b, 

and L3f, within African, Near Eastern, and African-American populations. 
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B.4. Origin of African mtDNA diversity among the African Americans 

In the PCA analysis based on mtDNA haplogroup frequencies of the African-American 

populations and African populations, we obtained a genetic differentiation of populations 

associated with different African coastal regions involved in the transatlantic slave trade (Figure 

63). The PC1 splits populations located in Senegambia, Sierra Leone, Windward Coast, Gold 

Coast, and Bight of Benin from populations located in West Central Africa and Southeast 

Africa. The PC2 mainly splits populations in Bight of Biafra from populations in other regions. 

In African Americans, Ndjuka, Saramaka, and Afro-Colombian were close to populations 

from Bight of Benin and Windward Coast, while Paramaka was close to the Mende population 

in Sierra Leone (Jackson et al., 2005). Interestingly, Aluku and Afro-Brazilian populations were 

close to populations in Bight of Biafra and West Central Africa. Only Afro-Brazilians fall in 

the left upper part of the PCA plot slightly close with populations from Southeast Africa, similar 

association was detected in the PCA plot of Y haplogroup frequencies (Figure 53). 

We observed different genetic links in other African-American populations from the New 

World. African Americans from Barbados were close to populations in Bight of Benin and 

Sierra Leone, while African Americans from the U.S. fall in the right upper part of the PCA 

plot far-off from populations from Senegambia, Bight of Benin, and Sierra Leone.  
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C. Genome-wide SNP data results 

C.1. Genotyping Quality of genome-wide SNP data 

The Illumina BeadArray technology used in this study provides a high quality of genome-

wide amplification (Gunderson et al., 2005). We quantified the genotyping quality obtained by 

measuring the following parameters: 

Total SNP call rates 

We calculated fraction of SNP markers with sample call rate classified as: i) High (or ≥ 98%), 

was estimated 98.945% (4,255,964 / 4,301,332); ii) Low (or ≥ 90%), was estimated 99.981% 

(4,300,506 / 4,301,332); and iii) Very low (or < 90%:), was estimated 0.019% (826 / 4,301,332). 

Individual SNP call rates 

We estimated average call rate per individual with call rate: 99.695%. Only one sample 

presented SNP markers with very low SNP call rate (YA_036; 84.75%), three samples 

presented SNP markers with low SNP call rate (NM_6002; 91.24%, MA_420; 91.53%, 

GUY_090; 97.26%), and 225 samples presented SNP markers with high SNP call rate (from 

98.88% to 99.94%). 

Population SNP call rates 

We estimated average SNP call rate of genotyped per population: 99.695% (see Table 25). 

We obtained a high SNP call rate for each population, which is a rewarding indicative of the 

remarkable quality of this important genotyping. Only the Yacouba population presented a SNP 

call rate in the edge of high threshold (98.997%), because of just one individual (YA_036) 

presented a very low SNP call rate (84.75%). 

Reproducibility  

We compared results for three individual genotyped twice. We calculated the followed 

parameters: i) Fraction of successful duplicate genotyping, which was estimated 99.991% (760 

conflicts in 8,584,922 duplicate tests); ii) Average fraction of duplicate genotyping per marker, 

which was estimated 0.91%; iii) N° duplicate tested SNP markers without errors, which was 

estimated 4,298,028; and iv) N° duplicate tested SNP markers with errors was 717. 

Identity test 

Genotype data for each sample was pairwise compared, and one pairwise sample (NM_6002 

vs YA_036) was identified similarity in genotype data (threshold ~80%). Both samples are from 

different populations, NM_6002 is a Noir Marron from French Guiana and YA_036 is from 

Yacouba population in Ivory Coast. However, both samples had a low SNP call rate (91.48% 

and 85.73%, respectively). It might indicate that the similarity between both genotype data 
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could be unreliable, and it is likely to have influenced for the low SNP call rate. 

 

Table 25: Table of sample size analysed for the African-American and African populations by using 

Illumina platform. Table also shows the number of females (F) and males (M), and the average SNP call 

rate obtained per population (%). 
 

Region Population N F M SNP call rate 

French 
Guiana 

Aluku 23 18 5 99.807 
Ndjuka 23 16 7 99.703 
Saramaka 19 15 4 99.408 
Paramaka 6 6 0 99.808 

Total Noir Marron populations 71 55 16 99.667 
Colombia Afro-Colombian 20 10 10 99.876 
Brazil Afro-Brazilian 16 4 12 99.866 
Total African American 107 69 38 99.803 
Benin Fon 19 9 10 99.813 

Yoruba 24 12 12 99.850 
Bariba 24 12 12 99.823 

Ivory Coast Ahizi 20 5 15 99.886 
Yacouba 17 2 15 98.997 

Mali Bwa 18 8 10 99.428 
Total West African 122 48 74 99.633 
TOTAL 229 117 112 99.695 

 

C.2. Inbreeding coefficient and runs of homozygosity test 

A commonly used measure to quantify IBD in an individual is the inbreeding coefficient. This 

coefficient reflects not only inbreeding or consanguinity, but also other aspects of kinship in the 

population to which the individual belongs (Pemberton & Rosenberg, 2014). We examined the 

relationship between genomic estimates of the inbreeding coefficient and population patterns 

of genetic variations in African-American populations. 

We observed the highest inbreeding coefficients in all Noir Marron communities (higher than 

0.05%), with a much larger variation in the Saramaka population (Figure 64A). In other African 

Americans, the inbreeding coefficients were considerable lower (less than 0.03%). The ROH 

reflected also inbreeding patterns. The ROH analysis showed the highest values in the Noir 

Marron communities, with the exception of the Paramaka population whose variation is similar 

to other African-American populations (Figure 64B). 
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These results highlighted an elevated long-term genetic isolation in the Noir Marron 

communities, in comparison with other African-American descendants (Figure 64). It might 

suggest that the Noir Marron communities still preserve a high African genetic identity, which 

has been maintained after the abolition of slave trade and formation of these communities. In 

sharp contrast, other African-American populations have less inbreeding coefficients and ROH 

because of they have elevate gene flow with African and non-African groups. 

 

A:      B:  

Figure 64: Inbreeding coefficients (A) and run of Homozygosity (B) estimated in the African-

American populations in the Americas. Vertical lines indicate the range for each population. 

 

C.3. Admixture models by using the TreeMix analysis 

We analysed patterns of population splits and admixtures in the African-American populations 

by using TreeMix analyses (Pickrell & Pritchard, 2012). First, we elaborated a maximum 

likelihood tree based on 90K SNPs by using the African-American and West African 

populations as well as reference populations included in the HGDP panel (Cann et al., 2002). 

We observed one arrow from the Native American branch that evidenced admixture between 

these populations with Afro-Colombian (Figure 65A). Conversely, we observed another arrow 

from the European branch that evidenced admixture events took place with Afro-Brazilian. In 

this admixture model, the details of the demographic histories of the populations are absorbed 

into the branch lengths of the tree and the arrow’s colour is indicative of intensive gene flow 

between different populations. Thus arrow’s colour highlights stronger gene flow among Afro-

Brazilians and European populations than between Afro-Colombians and Native Americans.  

Second, we elaborated a maximum likelihood tree based on high-density SNPs by using the 

African-American and West African populations analysed, as well as reference populations 

included in the 1000 Genomes Project (1000 Genomes Project Consortium, 2015) and the 

Bantu-speakers from South Africa (May et al., 2013). Here, we extended this analysis to African 
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Americans from North America (ASW in the U.S.) and the Caribbean (ACB in Barbados). We 

detected three admixture events with different intensities between European populations and 

Afro-Brazilians, as well as with ASW and ACB (Figure 65B). Notably, there is only one arrow 

that indicated admixture between Afro-Colombians and Native Americans (PEL). In both 

TreeMix analyses, we did not detect any evidence of admixture events between the Noir Marron 

communities and European or Native American populations. 

Finally, we elaborated a maximum likelihood tree based on low-density SNP dataset by using 

the African-American and West African populations as well as an extended representation of 

African populations across the continent, in order to establish the phylogenetic position of 

African Americans within the African tree. We identified the Noir Marron communities 

clustering together with West African populations (Figure 66). However, we could not identify 

a unique African source for each community in this large West African branch. We analysed 

the residual fit between each pair of populations, and the plot obtained indicated that West 

African populations presented the closest genetic affinities with Noir Marron populations 

(Figure S4). Other African-American populations were localised out of the West African 

branch. As expected, populations from Central Africa were not included within the West 

African branch. Furthermore, agriculturalist populations from Gabon and Cameroon were 

remarkably separated from their neighbours rainforest hunter-gatherers, as was previously 

reported by Patin et al. (2014). 

To confirm those gene flow and admixture events observed between African Americans and 

continental groups, we ran three-population tests based on high-density SNP dataset. This 

approach examines patterns of allele frequency correlations across populations, which can 

provide a robust evidence of admixture events (Patterson et al., 2012). The f 3-statistics and Z-

scores did not show admixture evidence between Noir Marrons and populations included in the 

1000 Genomes Project with the highest European (GRB, IBS, and TSI) and Native American 

(PEL) continental ancestries (Figure 67).  

In sharp contrast, other African-American populations in the Americas present negative f 3-

statistics values indicative of admixture patterns with reference populations (see Table S11 and 

Table S12). The highest peaks signalling admixtures with European populations were found in 

Afro-Brazilian and ASW populations (mean f 3-statistic= -0.0028 and -0.0026, respectively). 

Interestingly, the Afro-Colombian population had the highest peaks signalling an admixture 

with Native Americans (-0.0031). The lowest values for the Native American source was 

detected in ACB (-0.0009), which was basically close to zero. This emphasises the limited gene 

flow of the Native American population in African Americans from Barbados (Benn-Torres et 

al., 2008). 



152 
 

A:      

B:      

Figure 65: Maximum likelihood trees for the African-American and West African populations using 

two reference panel to represent populations with different continental ancestry. A: Populations include 

in HGDP panel (Cann et al., 2002). B: Populations included in 1000 Genomes Project (1000 Genomes 

Project Consortium, 2015) and Bantu speakers from South Africa (May et al., 2013).  
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Figure 66: TreeMix analysis of the African-American and West African populations. The Noir Marron 

communities and other African-American populations are detected among West and West-Central 

African populations, which are far-off other African groups with different backgrounds (see Table13). 
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A:   

B:   

Figure 67: Average f 3-statistic estimated in the African-American populations in the Americas. A: 

European and African populations used as a source (see Table S11). B: Native America and African 

populations were used as a source (see Table S12). 

 

C.4. Admixture models by using the ADMIXTURE analysis 

To obtain a finer characterization of the ancestry landscape of admixed African-American 

populations, we used the model-based approach to estimate global ancestry based on different 

datasets (50K, 90K, and 240K SNPs). 

First, we estimated continental ancestral contributions to the current African-American 

populations by using the new genome-wide SNP data obtained for African Americans and West 

African populations, and reference populations included in the HGDP panel (Cann et al., 2002) 

for African, European, and Native American ancestries. Pygmy populations (Biaka and Mbuti) 

from Central Africa and the San population from South Africa, which were included in the 

HGDP panel (Figure 44), were not included in the ADMIXTURE analysis. They are hunter-
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gatherer groups that frequently appeared as an ancient and external group in phylogenetic 

analysis (see Figure 65A and previous studies (Li et al., 2008; Pickrell & Pritchard, 2012)). 

Thus these small and isolated groups might not be a good representative of African populations 

involved in the slave trade, and they could altered the estimation of African ancestry. 

We used the unsupervised algorithm ADMIXTURE, which assumes a specified number of 

hypothetical populations and provides a maximum likelihood estimate of allele frequencies for 

each population and admixture proportion for each individual. We performed ADMIXTURE 

analysis for the 90K SNPs dataset from K-groups= 2 to 10. According to the cross-validation 

(CV) test (Alexander & Lange, 2011), three is the number of underlying ancestral groups that 

best fit with the degree of differentiation between the populations under study (Figure 68). 

 

 

Figure 68: Cross-validation error (CV) versus K-groups from 2 to 10 identified accurately; K-groups= 

3 as the number of underlying ancestral populations that best fit with the degree of differentiation 

between the populations under study because of presented the lowest CV error (CVK=3: 0.4692). 

 

As expected, ADMIXTURE plot at K= 2 showed close relatedness of African-American and 

African groups that clearly split up with non-African groups. It is also pointed out the presence 

of admixture of Afro-Brazilian and Afro-Colombian with non-African groups (Figure 69). 

We compared the continental ancestry contributions for unsupervised ADMIXTURE analysis 

at K-groups= 3 (Figure 69). In the Noir Marron, the ADMIXTURE analysis indicated the main 

ancestral origin primarily came from African ancestry (98.88%), and there was a very low 

admixture proportions for European (0.82%) and Native American (0.30%) ancestries. In Afro-

Brazilians, the ADMIXTURE analysis indicated a major component for African ancestry 

(72.4%), remarkable European proportions (21.6%), and low Native American ancestry (6.0%), 

suggesting that there is a major European admixture in the Afro-Brazilian population. 

Conversely, in Afro-Colombians showed a major component of African ancestry (77.2%), and 

similar proportions of European (10.3%) and Native American (12.5%) ancestries (Table S13). 
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K = 2, CV: 0.47495. 

 
 

K = 3, CV: 0.46916. 

 
 

K = 4, CV: 0.47179. 

 
 

K = 5, CV: 0.47513. 

 
 

Figure 69: ADMIXTURE plots performed from K-groups= 2 to 5 for African American, West 

African, and continental reference populations included in the HGDP panel. Ancestry proportions for 

African (red), Mandenka (dark red), Bantu (purple), Native American (green), and European (blue) 

ancestries were indicated in each plot. 
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In the unsupervised ADMIXTURE analysis at K-groups= 4, we detected an ancestral group 

associated with the Mandenka population in the Senegal. At K-groups= 5, we detected an 

ancestral group associated with the Bantu-speakers populations from Kenya and South Africa. 

Both African ancestral groups are also related to African Americans (Figure 69). Interestingly, 

Mandenka contribution is slightly high in Afro-Colombians (21.9%), and Bantu contribution is 

slightly high in Afro-Brazilians (24.0%), suggesting different African sources for these 

populations. However, in the Noir Marron communities, we detected high proportions of West 

African ancestry (see Table S13). 

Second, we ran ADMIXTURE analysis from K-groups= 3 to 7 using the new reference 

populations included in the last released of the 1000 Genomes Project Phase 3 (1000 Genomes 

Project Consortium, 2015). This unsupervised ADMIXTURE analysis based on a high-density 

SNP dataset (~240K SNPs) provides accurate continental ancestry estimations, and we can 

make comparison with other African-American populations. The CV test revealed that the CV 

error decreased with more K-groups, probably reflecting the high pairwise FST between 

populations (Figure 70A). ADMIXTURE plots confirmed previous findings and emphasized 

the highest African proportion detected in the Noir Marron (Figure 71). At K-groups= 3, the 

ADMIXTURE plot depicted a high African continental ancestry in the African-American 

populations. In this plot, Native American and East Asian populations appeared together 

because of these groups presented a much more recent common origin. This has been proved in 

several studies using linguistic data (Greenberg et al., 1986), craniofacial shape variations 

(Gonzalez-Jose et al., 2008), mtDNA data (Achilli et al., 2013), X chromosome (Bourgeois et 

al., 2009), and Y chromosome data (Bisso-Machado et al., 2011). In fact, recent genome-wide 

studies indicated that Native American groups descended from at least two streams of Asian 

gene flow (Raghavan et al., 2015; Reich et al., 2012; Skoglund et al., 2015).  

At K-groups= 4, the ADMIXTURE plot indicated different continental ancestry between the 

African-American populations in the Americas, so thereafter we only focus on continental 

admixture proportions obtained in this analysis. In African-American groups, the Noir Marron 

communities presented the highest African ancestry (ranging from 98.2% in Aluku and Ndjuka 

to 99.1% in Paramaka), and subsequently the lowest European (range from 0.6 to 1.3%), Native 

American (range from 0.1 to 1.0%), and East Asian (range from 0.06 to 0.2%) ancestries (see 

Table 26). These results add further support to the high preservation of African heritage of these 

communities, which have been isolated from non-African populations for centuries. 
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In the Afro-Brazilian and Afro-Colombian populations, we detected high African ancestry 

(range from 72.5 to 76.6%), remarkable European (range from 10.4 to 22.3%) and Native 

American (range from 4.9 to 12.2%) ancestry, and very low East Asian (range from 0.2 to 0.8%) 

ancestry (see Table 26). We noticed that among the African-American populations analysed in 

the Americas: i) Noir Marrons account for the highest African proportions (98.3%), ii) Afro-

Brazilians account for the highest European proportions (22.3%), iii) Afro-Colombians account 

for the highest Native American proportions (12.2%), and vi) ASW in the U.S. account for the 

highest East Asian proportions (1.1%). The ASW might indicate a recent gene flow between 

ASW and East Asian populations. 

 
Table 26: Mean individual ancestry proportions and standard deviation of African American, African, 

European, Native American, and East Asian ancestries estimated using ADMIXTURE analysis at K-

groups= 4 (Figure 71).  

Group Population N AFR EUR NAM EAS 

African 
American 

Aluku, French Guiana 23 98.182 ± 1.574 1.172 ± 1.195 0.455 ± 0.582 0.191 ± 0.386 
Ndjuka, French Guiana 22 98.291 ± 4.368 1.314 ± 4.194 0.322 ± 0.454 0.072 ± 0.124 
Saramaka, French Guiana 18 98.318 ± 2.169 0.627 ± 2.058 0.996 ± 0.670 0.059 ± 0.156 
Paramaka, French Guiana 6 99.142 ± 1.614 0.667 ± 1.279 0.124 ± 0.196 0.066 ± 0.159 
Total Noir Marron 69 98.340 ± 2.850 1.030 ± 2.680 0.530 ± 0.610 0.110 ± 0.250 
Afro-Brazilian, Brazil 16 72.534 ±17.946 22.333 ±15.546 4.915 ± 3.590 0.217 ± 0.298 
Afro-Colombian, Colombia 20 76.603 ±11.366 10.382 ± 6.265 12.208 ± 6.811 0.807 ± 1.693 
ASW, USA 61 75.893 ±15.708 19.295 ± 9.107 3.664 ±10.723 1.148 ± 1.524 
ACB, Barbados 96 88.005 ± 7.798 11.076 ± 7.310 0.336 ± 0.423 0.583 ± 1.659 

African 

GWD, Gambia 113 97.664 ± 1.288 1.904 ± 1.292 0.172 ± 0.255 0.260 ± 0.348 
MSL, Sierra Leone 85 99.730 ± 0.349 0.079 ± 0.223 0.083 ± 0.168 0.109 ± 0.207 
Bwa, Mali 17 99.788 ± 0.321 0.129 ± 0.270 0.060 ± 0.167 0.023 ± 0.049 
Ahizi, Ivory Coast 20 99.974 ± 0.083 0.001 ± 0.000 0.019 ± 0.080 0.006 ± 0.024 
Yacouba, Ivory Coast 16 99.997 ± 0.000 0.001 ± 0.000 0.001 ± 0.000 0.001 ± 0.000 
Fon, Benin 19 99.947 ± 0.140 0.031 ± 0.130 0.021 ± 0.065 0.001 ± 0.000 
Bariba, Benin 24 99.636 ± 0.520 0.203 ± 0.485 0.097 ± 0.181 0.064 ± 0.195 
Yoruba, Benin 24 99.938 ± 0.159 0.001 ± 0.000 0.005 ± 0.014 0.056 ± 0.160 
YRI, Nigeria 108 99.873 ± 0.260 0.031 ± 0.189 0.056 ± 0.134 0.040 ± 0.133 
ESN, Nigeria 99 99.907 ± 0.202 0.008 ± 0.069 0.053 ± 0.129 0.032 ± 0.117 
LWK, Kenya 99 94.517 ± 1.013 4.134 ± 0.979 0.091 ± 0.168 1.259 ± 0.587 
Bantu, South Africa 94 97.386 ± 2.923 1.792 ± 2.283 0.137 ± 0.245 0.684 ± 0.848 

European 

TSI, Italy 107 0.220 ± 0.296 99.091 ± 0.485 0.035 ± 0.108 0.654 ± 0.462 
IBS, Iberian Peninsula 107 1.372 ± 1.192 98.333 ± 1.255 0.091 ± 0.254 0.204 ± 0.314 
GBR, England and Scotland 91 0.001 ± 0.000 99.573 ± 0.400 0.408 ± 0.396 0.018 ± 0.071 
FIN, Finland 99 0.002 ± 0.007 91.960 ± 1.356 2.688 ± 0.618 5.349 ± 1.100 
CEU, Utah, USA  99 0.017 ± 0.113 99.434 ± 0.566 0.416 ± 0.425 0.132 ± 0.325 

American 

PUR, Puerto Rico 104 14.430 ± 9.813 70.809 ±10.255 14.355 ± 4.004 0.406 ± 0.484 
MXL, Mexico 64 3.960 ± 2.423 43.538 ±19.982 49.672 ±20.297 2.830 ± 1.636 
CLM, Colombia 94 8.241 ± 8.072 63.246 ±13.920 27.926 ±10.273 0.587 ± 0.606 
PEL, Peru 85 2.338 ± 5.989 15.430 ±13.009 81.242 ±16.126 0.990 ± 4.439 

East Asian 
CHB, China 103 0.001 ± 0.000 0.210 ± 0.574 0.610 ± 0.727 99.180 ± 1.091 
CHS, China 105 0.001 ± 0.000 0.001 ± 0.004 0.022 ± 0.153 99.976 ± 0.153 
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The ADMIXTURE plot indicated difference continental ancestry between Native American 

and East Asian populations. Remarkably, Native American populations in the 1000 Genomes 

Project (1000 Genomes Project Consortium, 2015) present different degrees of continental 

ancestry; this is indicative of diverse patterns of gene flow (see Table S13). For instance, Puerto 

Rican and Colombian populations included in this reference panel have a high European 

ancestry (74.18% and 69.47%, respectively) with a noteworthy admixture with Native 

American populations in the past, because of the homogeneous Amerindian proportions in these 

populations (11.61% and 22.63%, respectively). The highest African proportion in Native 

Americans was detected in Puerto Ricans (14.43%) and the lowest in Peruvians (2.34%). We 

obtained similar ancestry values in the Puerto Rican population (N= 104) as Via et al. (2011) 

obtained with the analysis of 93 AIMs in a large Puerto Rican sample size (N= 642). They 

reported 63.7% European, 15.2% Native American, and 21.2% African ancestry. Peruvian and 

Mexican populations presented the highest Native American ancestry (81.24% and 49.67%, 

respectively). Therefore, they were included as Native American reference populations in the 

ADMIXTURE analysis by using a low-density SNP dataset (~50K SNPs). 

Among European populations, we detected a low East Asian (5.35%) and Native American 

(2.69%) ancestries in Finns (FIN population). Both ancestral components are not present in 

other analysed European populations, and they are relatively homogeneous in that population 

(N= 99). It might indicate an ancient gene flow between Siberian populations with East Asian 

populations, and ancestral populations from Northeast Europe (Allentoft et al., 2015).  

In the ADMIXTURE analysis at K-groups= 5, we detected two within-Africa ancestry clusters 

associated with West African and Bantu populations; this seemed to gradually decrease across 

West African populations. At K-groups= 6, we detected two within-European ancestry clusters 

associated to South and North European populations, which might indicate a geography pattern 

in European populations (Novembre et al., 2008). 

Finally, we extended the ADMIXTURE analysis to a large representation of African 

populations by using a low-density SNP dataset (~50K SNPs) in order to associate admixture 

patterns with geographic ancestry and to identify the African origin of African-American 

populations. We used the CLUMPAK (or Cluster Markov Packager Across K) software 

(Kopelman et al., 2015) to select the preferred value of K according to the methods of Pritchard 

et al. (2000). We identified K-groups= 14 as the best number of clusters (or ancestral groups) 

to describe the membership coefficients of each individual (Figure 70B).  
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A:  B:  

Figure 70: Cross-validation test for the ADMIXTURE analysis for A: high-density SNP dataset, and 

B: low-density SNP dataset. In the latter, K-groups= 14 is the best number of clusters to describe the 

ancestral source of genetic diversity detected. 

 

We elaborated one ADMIXTURE plot for K-group= 14 using the membership frequencies of 

each individual based on low-density dataset (Figure 72A), and we gathered them according to 

their geographic locations. We identified the geographic origins of each populations that were 

associated with fourteen ancestral groups: North Africa, West Africa, West-Central Africa, 

Pygmies (except Batwa), Batwa from Uganda, Khoe-San from South Africa, Bantu, Masaai 

from Kenya, East Africa, Ari from Ethiopia, Middle Eastern from Qatar, European, East Asian 

from China, and Native American.  

We calculated pairwise FST between estimated ancestral groups based on Wright’s F-statistics 

method (Wright, 1965) (Table 27). In African groups, we observed substantial variation in 

pairwise FST among ancestral groups from different African regions, suggesting high genetic 

intra-continental heterogeneity. Nonetheless, notable genetic similarity (0.019) was detected 

between West African and West-Central African ancestry groups. 

We calculated the average membership frequencies of each population based on individual 

frequencies (Figure 72B). In the African-American populations, we identified the same 

admixture patterns described above, based on the high-density SNP dataset. Moreover, we 

detected a high Bantu component in Afro-Brazilians, which can be associated with West-

Central or South African populations. In Noir Marron communities, we detected the highest 

West-Central component, which matches with populations from Benin.  

In West African populations, we identified a noteworthy genetic gradient for those populations 

that strongly matched with their geographic distribution of populations from Gambia to Nigeria 

(Figure 72B). This genetic gradient was associated with a progressive decrease of the West 

African component. Likewise, this gradient was related to a progressive increase of the West-

Central African component.  
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K = 3, CV: 0.4839. 

 
K = 4, CV: 0.4801. 

 
K = 5, CV: 0.4793. 

 
K = 6, CV: 0.4790. 

 

Figure 71: ADMIXTURE plot performed from K-groups= 3 to 6 for African American and reference 

continental populations. Ancestral component of African (red), Bantu (purple), European (blue), 

Amerindian (green), and Asian (yellow) were indicated in each plot. 
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In the other African regions, other patterns of variation were detected, as reflected by the 

greatest level of regional substructure in Africa (Tishkoff et al., 2009). For instance, in West-

Central African populations we found substantial proportions of different ancestry proportions 

between agriculturalist and rainforest hunter-gatherer populations. This is in good agreement 

with previous outcomes (Patin et al., 2014; Perry et al., 2014). We also confirmed the substantial 

difference in ancestry proportions between the Ari population and other Ethiopian populations 

(Pagani et al., 2012; van Dorp et al., 2015). Among North African (Henn et al., 2012) 

populations were detected the highest amount of non-African composition, which accounts for 

both the uppermost European ancestry, suggesting a key role for the Mediterranean region in 

supporting gene flow into Africa (Botigue et al., 2013; Moorjani et al., 2011). Among Ethiopian 

populations (Pagani et al., 2012) were detected the highest amount of Middle East ancestry that 

pointed out historical sources of admixture and subsequent population movements (Hodgson et 

al., 2014; Quintana-Murci et al., 1999). While the Fulani population (Bryc et al., 2010a), 

nomadic pastoralists that speak a Niger-Kordofanian language, presented extraordinary 

diversity of ancestral groups from North, West, West-Central, and East Africa, because of the 

wide migration behaviour of this population across Africa (Cerny et al., 2006; Scheinfeldt et 

al., 2010). 

To better understand the genetic structure of African-American populations in South America 

and to determine their African ancestry, we calculated the average membership frequencies of 

African populations based on historical African coastal regions. Each African regions 

represented the genetic diversity of African populations that descended from African captives 

during the slave trade. Similarly, patterns of African substructure are still present in African-

American descendants. We used ancestral proportions estimated in the ADMIXTURE analysis 

for each historical region involved in the slave trade to discern differences in demographic 

history among African populations. We removed non-African components (European, Native 

American, Middle Eastern, and East Asian) in Afro-Brazilian and Afro-Colombian, and we 

recalculated the ancestral proportions for only African groups. We detected strong genetic links 

between all Noir Marron communities and the Bight of Benin region. Conversely, Afro-

Colombians indicated genetic links with Gold Coast, and Afro-Brazilians with West Central 

Africa region (Figure 73).  
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Table 27: Pairwise FST genetic distances between ancestry groups estimated in the ADMIXTURE 

analysis at K= 14. The F-statistic values quantify the genetic differentiation between populations 

included in each group. 
 

Ancestral group 1 2 3 4 5 6 7 8 9 10 11 12 13 14 
West Africa 1 0.000              
W.C. Africa 2 0.019 0.000             
Bantu 3 0.025 0.021 0.000            
Pygmies 4 0.052 0.048 0.052 0.000           
Batwa, HG 5 0.074 0.071 0.074 0.069 0.000          
East Africa 6 0.053 0.051 0.057 0.076 0.091 0.000         
Masaai 7 0.075 0.072 0.076 0.091 0.106 0.078 0.000        
Ari 8 0.082 0.081 0.083 0.094 0.106 0.080 0.084 0.000       
Khoe-San 9 0.103 0.101 0.103 0.081 0.103 0.121 0.131 0.125 0.000      
North Africa 10 0.120 0.119 0.123 0.142 0.152 0.122 0.110 0.114 0.177 0.000     
Middle East 11 0.137 0.137 0.140 0.157 0.166 0.138 0.120 0.124 0.190 0.056 0.000    
European 12 0.136 0.135 0.138 0.155 0.164 0.136 0.121 0.124 0.188 0.046 0.040 0.000   
East Asian 13 0.158 0.157 0.160 0.176 0.186 0.159 0.154 0.153 0.209 0.122 0.119 0.105 0.000  
Native American 14 0.191 0.190 0.193 0.208 0.219 0.192 0.187 0.186 0.241 0.151 0.147 0.128 0.103 0.000 

 

 

 
 

Figure 73: Average membership frequencies of the African-American and African populations that 

are representative of historical African coastal regions. We indicated genetic links detected in African 

Americans with different history African region associated to the slave trade. 
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C.5. Admixture models by using the PCA analysis 

We investigated patterns of the population structure by using multidimensional analysis based 

on the PCA implemented with EIGENSOFT. First, the Eigenstrat PCA analysis was applied to 

detect genetic variations in a large database of worldwide geographic regions (Figure 74). As 

expected, Eigenvector 1 distinguishes between African and Non-African regions, while 

Eigenvector 2 differentiates between the European and Asian regions. This is good agreement 

with previous studies (Gravel et al., 2013; Kidd et al., 2012). The Eigenstrat PCA plot showed: 

i) the Noir Marron were very close into African groups, ii) Afro-Brazilians were in African 

groups and marginally extended to European groups, and iii) Afro-Colombians were in African 

groups and marginally extended to Asian or Native American groups. We obtained analogous 

results in the simplified Eigenstrat PCA base on African-American populations and only one 

reference population for African, European, and Native American continental ancestries 

included in the HGDP panel (Cann et al., 2002) (Figure 75). 

 

 
Figure 74: Eigenstrat PCA based on worldwide geographic regions (Table S10) including the African-

American populations of the Noir Marron (noi), Afro-Brazilians (AfB), and Afro-Colombians (AfC). 

Eigenvector 1 (5.23%) and Eigenvector 2 (2.19%) constitute 7.42% of the total variance. 
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To investigate whether we could reliably identify ancestry among the Noir Marron 

communities and to find likely genetic links with different African regions in the Atlantic world. 

We carried out an Eigenstrat PCA analysis for the Noir Marron and historical African coastal 

regions involved in the slave trade. We confirmed that all Noir Marron communities were 

together in one cluster within the Bight of Benin cluster in the upper left (Figure 76). 

Interestingly, the Noir Marron cluster is genetically close to the Beninese populations (Yoruba, 

Bariba, and Fon) than Nigerian populations (ESN, YRI, and Igbo) within the Bight of Benin 

cluster. Other populations from different historical regions are notably split in the bidimensional 

space. Furthermore, we observed a genetic structure in all African regions that could be 

associated with the same geographic pattern across the African continent (for this we turned the 

Eigenstrat PCA plot by 90°). 

 

 

 

Figure 75: Eigenstrat PCA based on African-American populations and only one reference population 

for African (Yoruba from Nigeria), European (French from France), and Native American (Karitiana 

from Brazil) included in the HGDP panel (see Table 12). 
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IV. DISCUSSION 

The present study identifies a strong characterization of the genetic diversities in the four Noir 

Marron communities, which was compared with other African-American descendants in South 

America, the Caribbean, and North America. To establish their African origin, we also 

compared their genetic diversities with West African populations from Benin, Mali, and Ivory 

Coast as well as with other sub-Saharan African populations involved in the slave trade. 

 

A. Genetic history of the African-American populations in South America 

Recent findings further support the theory of West African origins of the Noir Marron 

communities in French Guiana associated with the Bight of Benin; and estimated admixture 

proportions are roughly in agreement with previous studies on the genetic identities of the Noir 

Marron by using different genetic systems (Brucato et al., 2009; Brucato et al., 2010). These 

communities still preserve remarkably high traces of African ancestry and an extremely low 

admixture with the non-African populations (Figure 77). This study provides new maternal and 

paternal genetic data to achieve a more complex picture of the genetic variations within the 

Noir Marron communities. We also analysed genome-wide SNP data in them and other 

African-American populations in Colombia and Brazil to attempt to shed new light on the slave 

trade history and its implications on the current genetic landscape in South America. 
 

A:        B:  

C:        D:  
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Figure 77: Admixture proportions estimated in African Americans based on different genetic system 

analysed: Y-STR haplotype frequencies (A), Y haplogroup frequencies (B), mtDNA haplogroup 

frequencies (C), and admixture coefficients of allele frequencies from 240K SNPs (D). Estimates are 

suitable for African (red), European (blue), and Native American (green) continental ancestries. For all 

genetic systems analysed, the Noir Marron communities presented elevated African proportions than 

Afro-Brazilians and Afro-Colombians (see further notes in section IV.A.1). Both Y chromosome 

markers, Y-STRs and Y-SNPs, presented notable European ancestry in Afro-Brazilians and Afro-

Colombians (see further notes in section IV.A.2). 

 

A.1. Genetic history of the Noir Marron communities 

The Noir Marron communities presented the highest African ancestry in all genetic systems 

analysed: 89.11% for Y-STRs, 86.03% for Y-SNPs, 97.80% for mtDNA, and 98.34% for 

genome-wide SNP data (Figure 77). These values are considerably higher than in other African-

American populations in the Americas when analysed them with the same high genetic 

resolution. Therefore, they still present a remarkably strong African identity preserved in the 

post-abolition period of the slave trade. Within the uniparental markers, the mtDNA genomes 

showed a higher African component than the Y chromosome markers, which was likely because 

of the Noir Marron communities presenting a matrilineal system of marriage behaviours (Price 

& Price, 2003).  

We carried out population cross-comparisons to analyses both, the maternal and paternal 

genetic diversities of the Noir Marron communities. The geographic distributions of the African 

Y haplogroups depicted close genetic affiliation of the Noir Marron communities to the West 

African populations (Figure 52). Similarly, the study detected similar genetic links in the 

geographic distributions of the African mtDNA lineages: L2 (Figure 61) and L3 (Figure 62); 

and also African Y chromosome lineages such as E1b1a1a1d-U175 (Figure 52). These findings 

are in good agreement with the genetic distribution analysis of paternal (Figure 78A) and 

maternal (Figure 78B) lineages as highlighted previously by Brucato et al. (2010). 

We found high inbreeding coefficient (Figure 64A) and ROH (Figure 64B) values for the Noir 

Marron communities, which were remarkably different from the other African-American 

populations in the Americas (with the exception of the ROH in the Paramaka). It is understood 

that the population history and cultural factors can affect the levels of inbreeding and 

homozygosity in individual genomes (Pemberton et al., 2012). In some populations, cultural 

practices that promote consanguineous marriages or endogamy can result in elevated inbreeding 

levels, and consequently, high levels of homozygosity even when the overall population size is 

large (Woods et al., 2006). However, according to historical and anthropological studies, the 
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Noir Marron communities do not promote consanguineous marriage (Price, 1996, 2001; Price 

& Price, 2003). Therefore, in these Noir Marron communities, even in the absence of overt 

endogamy, inbreeding and homozygosity can be high. This is attributed to historical bottlenecks 

or geographic isolations, which have led to high levels of relatedness among members of a 

population. It was similarly pointed out among the aborigines of Taiwan (Li et al., 2006), the 

isolated population of the Orkney Isles in northern Scotland (McQuillan et al., 2008), among 

religious Lebanese communities within which numerous consanguineous marriages occur 

(Jalkh et al., 2015), and the small endogamous Tunisian community of Douiret (Ben Halim et 

al., 2015).  

The high degree of variance in ROH among African Americans (Figure 64B) is an additional 

indicator of substructure among those populations and suggests a large variance in historical 

population sizes. Comparing the ROH patterns, the Noir Marron might be characterized by 

small effective population sizes under a model with a likely bottleneck, in agreement with the 

high ROH found in Native American groups within Mexico (Moreno-Estrada et al., 2014). 

These findings highlight interesting questions regarding the formation of these Creole 

communities and the survival of African cultures in the Amazonian rainforest. For instance, 

how could they avoid gene flow with non-African groups for around four centuries? Why was 

it so important for the Noir Marron communities conserve their African identities after the 

abolition of slave trade? 

 

  
Figure 78: Maps of FST genetic distances show the genetic distribution of paternal (A) and maternal 

(B) lineages in Noir Marron, other African Americans, and African populations. Maps reported by 

Brucato et al. (2010). 

 

 

A B 
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The three-population test estimated in African-American populations was in good agreement 

with inbreeding coefficients and ROH. The Noir Marron communities are apparently shut out 

to gene flow with European and Native American populations (Figure 67). In the same way, 

these communities present high values of inbreeding coefficients and ROH probably because 

of their genetic isolation. We therefore confirmed the high African diversity in Noir Marron 

that reveal non-altered inheritance from their enslaved ancestors as it was pointed out by 

Brucato et al. (2010), despite four centuries in the Americas, neighboured by European settlers 

and Amerindian ethnic groups with whom the Noir Marron made cultural exchanges. Large 

linguistic influences are detectable today in the Noir Marron communities: their languages are 

composed of English, Portuguese, and Amerindian words (Table 7), and the structure of their 

villages (Figure 20) are inherited from their knowledge of Amerindian culture (Price & Price, 

2003). In most African-American groups, cultural exchanges are generally followed by gene 

flow, however the Noir Marron have conserved a large African genetic inheritance. In same 

way, they are a unique African ethnic group living today in the Americas, which has preserved 

their African identity and genetic background after centuries of forced migration. Resistance is 

a phenomenon that cannot be separated from slavery or oppression, especially in these 

communities. These Noir Maroon communities conceptualized their freedom in the worst 

conditions, and they continue to maintain rituals inherited from West African groups 

particularly from Ghana, Senegal, and Nigeria (Price, 2008). 

 

A.2. Models of sex-biased gene flow in African Americans 

We detected different patterns of sex-biased gene flow in the Afro-Brazilian and Afro-

Colombian populations. Both populations presented high European parental heritage (50.0% 

and 46.4%, respectively). Conversely, low European maternal heritage was seen among the 

Afro-Brazilians (5.2%) while there was considerable Native American maternal heritage among 

the Afro-Colombians (16.6%). The distribution of genetic variations within a population may 

reflect underlying social practices regarding the choice of mates during and after the slave trade 

era, which could have contributed to the heterogeneity of the degree of admixtures. These 

patterns of sex-biased gene flow are indicative of different preferential marriage behaviours in 

the American colonies that are associated with their different colonial pasts (Portuguese and 

Spanish, respectively) as highlighted previously by historical data (Eltis & Richardson, 2008; 

Klein & Vinson, 2007). 

The maximum likelihood trees confirmed both gene flow from Europeans to Afro-Brazilians, 

and also from the Native Americans to the Afro-Colombians (Figures 65A and 65B). Further, 



172 
 

estimations of f 3-statistics provided additional support to the dissimilar admixture patterns in 

African-American populations, and the null admixture patterns among the Marron communities 

(Figures 67A and 67B). This was in sharp contrast to the other Marron communities in the 

Caribbean that presented considerable gender-specific admixture patterns (Benn Torres et al., 

2007; Simms et al., 2012). 

Among the Afro-Brazilians, the ADMIXTURE analysis indicated a major component 

representative of African ancestry (72.5%), remarkable European component (22.3%), and low 

traces of Native American component (4.6%), which pointed out the importance of the 

European admixture in the Afro-Brazilian population. This fact is in close agreement with the 

genetic frequencies of the African (49%), European (39%), and Native American (11%) 

ancestries estimated recently among the Brazilians with the self-perception of “black” ethnicity 

by Ruiz-Linares et al. (2014). This was done by using 30 AIMs. Likewise, these results were 

consistent with the ancestral membership proportions obtained for the self-declared Afro-

descendants residing in Rio de Janeiro by using 46 AIM-Indels. The use of 46 AIM-Indels here, 

revealed a similar African (51.6%), European (39.0%), and Native American (9.4%) ancestries 

(Manta et al., 2013). Conversely, in admixture proportions estimated in Brazilian populations 

from different regions by using AIMs, other studies detected considerable high European 

proportions (62.0–77.1%) (Lins et al., 2010; Rodrigues de Moura et al., 2015). 

Interestingly, the Afro-Brazilian population showed the lowest values (72.5%) for the African 

ancestry proportion among all African-Americans analysed (Table 26). Despite the fact that 

enslaved Africans came to Brazil during the last period of the slave trade, and at least 798,309 

enslaved Africans disembarked at Rio de Janeiro between 1801 and 1856 (Table 2). This meant 

that 72.54% of the total numbers of African captives disembarked in that region. Besides, Brazil 

was the last country in the Western world to abolish slavery in 1888. By that time, around four 

million slaves had been forced to move from Africa to Brazil and 40% of the total number of 

slaves had been brought to the Americas (Eltis & Richardson, 2010). 

The predominant initial migration of European men resulted in the union between European 

men and African women (Klein, 2002). The entrance of the Europeans and Africans into Brazil 

is historically well-documented and genetically well-supported by previous studies, which have 

used uniparental markers (Abe-Sandes et al., 2004; Alves-Silva et al., 2000; Bortolini et al., 

1999; Carvalho-Silva et al., 2001; Domingues et al., 2007; Hunemeier et al., 2007; Manta et al., 

2013; Santos et al., 2010). Both, the mtDNA and the Y chromosome showed strong evidence 

of asymmetric mating patterns involving predominantly, the European men and African women 

(Pena et al., 2009; Salzano, 2004). This is supported by historical data regarding the formation 

of the Brazilian population (Klein, 2002). Recently, an asymmetric mating pattern was also 
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observed between the African men and the Native American women in the Afro-Brazilian 

communities of Maranhão in the Brazilian Amazonia (Pereira et al., 2012).  

A high European ancestry (>55%) was also reported in autosomal studies for admixed 

Brazilian populations particularly in Rio de Janeiro (Manta et al., 2013) and Brazil in general 

(Callegari-Jacques et al., 2003; Lins et al., 2010; Parra et al., 2003; Pena et al., 2011). Recently, 

Kehdy et al. (2015) reported a higher mean proportion of European ancestry in South (Pelotas: 

76.0%) and Southeast Brazil (Bambuí: 77.0%), in comparison to Northeast Brazil (Salvador: 

43.0%) based on above 330K SNPs. Regarding to their African ancestry, the Pelotas, Bambuí, 

and Salvador communities presented mean proportions of 16.0, 16.0, and 50.0%, respectively, 

while the mean proportion of continental Native American ancestry were similar and low for 

all populations: 8.0, 7.0, and 7.0%, respectively. In general terms, European and African 

admixture proportions varied greatly among Brazilian populations. It was noteworthy at the 

level of the entire country. At the regional level, however, the European ancestry was found to 

be the major contributor to the genetic background of the Brazilians, even among those who 

were African descendants (Rodrigues de Moura et al., 2015). 

Among the Afro-Colombians, the ADMIXTURE analysis indicated a major component for 

African ancestry (76.6%), and notable proportions for European (10.4%) and Native American 

(12.2%) ancestries. These values are in close agreement with the genetic frequencies of African 

(69%), European (19%), and Native American (12%) ancestries estimated recently for the 

Colombians with self-perception of “black” ethnicity as studied by Ruiz-Linares et al. (2014) 

through the use of 30 AIMs. 

Colombian populations has been the focus of a large number of genetic studies (Carvajal-

Carmona et al., 2003; Rojas et al., 2010; Salas et al., 2005b). However, the first study of the 

Afro-Colombians in Chocó was focused on the polymorphisms of forensic interest based on the 

autosomal STR genetic variations (Bravo et al., 2001). One of the first attempts to unravel the 

issues of Afro-Colombian ancestry was performed by Rodas et al. (2003) through an analyses 

of the mtDNA variations. Low frequencies of lineages L in five different Afro-Colombian 

populations were reported with results ranging from 21.4% in Quibdó to 52.5% in Providencia.  

Focusing on a phylogeographic approach of the mtDNA, Salas et al. (2008) investigated the 

genetic ancestry of admixed Colombian groups including: “mestizos” (Colombian term to 

designate individuals of European and Native American co-ancestry), “mulatos” (Colombian 

term to designate individuals of African and European co-ancestry), and Afro-Colombians. 

Salas et al. (2008) reported that 72.6% of the lineages belonged to the macrohaplogroup L, 

which is still lower than what has been found in the present study (83.4%; Table 21).  
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In good concordance with the ADMIXTURE and TreeMix analyses, the analysed mtDNA 

genomes in Afro-Colombian indicated a noteworthy Native-American maternal heredity, which 

is associated with the mtDNA haplogroups: A, B, and C (16.6% in total; Table 21). Those 

Native American clades were present in Colombia during the pre-Colombian period before the 

European and African populations arrived to this region. It has been confirmed in the Colombian 

Amerindian populations using both, modern (Keyeux et al., 2002) and ancient mtDNA (Casas-

Vargas et al., 2011). Clade A and B were more frequent in northern Colombia, while the 

haplogroup C and D were more frequent in southern and South-western Colombia (Noguera-

Santamaria et al., 2015). Hence, the Afro-Colombian population presented evidence of maternal 

Native American admixtures mainly from the northern Colombian gene flow (13.3%) than from 

southern Colombia (3.3%). In contrast with the Afro-Brazilian population, Afro-Colombian did 

not show any evidence of maternal European admixture, which is in agreement with mY mtDNA 

values (Table 22). 

With regard to the Y chromosome markers, the Afro-Colombian population presented 67.9% 

of European ancestry associated with Y-STRs, and 48.8% of the European admixture 

proportions as associated with the Y haplogroup frequencies (Table 17). In the same way, within 

the Palenque population from San Basilio de Palenque (Bolivar department), Noguera et al. 

(2013) pointed out a high (38.5%) European male component in this population. This Palenque 

population, founded in the second half of the 17th century, is considered the best example of an 

African free community among the African descendants in Colombia (Schwegler, 2011), 

however this population presented higher European male component than the Noir Marron 

communities. Likewise, high frequencies of European Y haplogroups were detected in other 

admixed populations living in Bolivar (range 57.1–81.8%) (Noguera et al., 2013). This was in 

close agreement with the sum of European Y haplogroups (36.29%) reported in the Afro-

Colombians from the Cauca region located in South-West Colombia (Acosta et al., 2009). 

Among the Afro-Colombians from Chocó in North-West Colombia, a remarkable presence of 

European Y-lineages (52.4%) (Rojas et al., 2010) was also detected. These converging results 

were concordant with the European paternal lineages (50.0%) detected in the analysed Afro-

Colombian population from Chocó (Figure 49), and in disagreement with a genetic study of 

eight Alu insertion polymorphisms in other Afro-Colombian population residing in Antioquia 

that determined null contribution of the European component (Gomez-Perez et al., 2010). 

Overall, the present study adds further support to the asymmetric mating during the slave 

trade, and highlights differences between the African descendants with different colonial pasts. 

Only in Colombia, preferential marriages were detected between African men (belonging to the 

mtDNA macrohaplogroup L) and Native American women (belonging to mtDNA 
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subhaplogroups: A2, B2d, and C1d). A noteworthy tendency of preferential marriages was 

detected between the European men (belonging to the Y subhaplogroup R1b1a2-M269) and the 

African women (belonging to the mtDNA macrohaplogroup L) in both, Brazil and Colombia. 

Before the 19th century, the vast majority of European immigrants arriving in South America 

were masculine (Bryant et al., 2012; Klein & Vinson, 2007). Nevertheless, the high proportion 

of European male-biased asymmetric gene flow detected was atypical for colonial settings 

(Wilkins & Marlowe, 2006). This suggests that the admixture occurred during a period when 

African people were no longer enslaved. This is thoroughly consistent with historical 

information from Brazil and Colombia. Similar patterns of sex-biased gene flow were described 

in populations from other regions in South America, such as, Argentina (Corach et al., 2010), 

Chile (Cifuentes et al., 2004), Uruguay (Bravi et al., 1997), Brazil (Carvalho-Silva et al., 2001; 

Goncalves et al., 2008), and Costa Rica (Carvajal-Carmona et al., 2003). Indeed, it may prove 

a general characteristic of the Iberian colonization of the Latin American region, however, 

several studies on African-American populations founded by fugitive slaves have reported 

variable or null proportions of European ancestry (Bortolini et al., 1995; Bortolini et al., 1999; 

Cotrim et al., 2004; Da Silva et al., 1999; Sans et al., 2002). This is suggestive of partial isolation 

or variability in the marriage behaviours of those communities. 

 

B. Genetic African heritage of the slave trade in South America 

The transatlantic slave trade created a new distribution of African genetic diversity in the 

Americas, and generated new opportunities for gene flow through local interactions with non-

Africans. Interestingly, interactions among Africans from various regions were also 

contributory factors to this phenomenon. However, the Middle Passage was, in some way, a 

genetic bottleneck for enslaved Africans. It restricted the African genetic diversity, and enslaved 

Africans arriving in the New World represented a limited fraction of the African continent. 

Survivors of the Middle Passage were able to regenerate much of this original diversity 

primarily through the gene flow of the African populations in the New World. This was 

achieved through African tribal and regional restrictions on marriage that were not in force and 

secondly, because of the gene flow with non-African populations. 

Indeed, African-American descendant groups in the Americas still had strong genetic affinities 

with West, West Central, and Southeast Africans, despite four centuries of separation. These 

genetic links were underscored by new evidence from maternally inherited mtDNA, paternally 

inherited Y chromosome, and the autosomal DNA associated with African ancestry. We carried 

out population cross-comparisons for both, the maternal and the paternal genetic diversities of 
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African-American and African populations to trace back their African origins. First, we 

analysed patterns of geographic distributions of major African lineages across the African 

continent and the African-American populations. We used contour maps for both, the mtDNA 

(see section III.A.3) and the Y chromosome haplogroup frequencies (see section III.B.3). We 

also elaborated a comprehensive phylogenetic tree for the mtDNA genomic variation among 

the African and the African-American populations (see simplified tree in Figure 57). Second, 

we estimated paternal (mY Y-SNP) and maternal (mY mtDNA) ancestral contributions of historical 

African coastal regions among the African Americans (Table 28). In agreement with historic 

data (Eltis & Richardson, 2013; Morgan, 2013), those living in African regions of the Gold 

Coast, Bight of Benin, Bight of Biafra, and West Central Africa proved highly related to the 

African descendants from South America for both genetic systems.  

 

Table 28: Ancestral contribution of historical African regions, European, and Native American 

ancestries in African Americans. Ancestry proportions are based on Y haplogroup frequencies (mY Y-

SNP) and mtDNA haplogroup frequencies (mY mtDNA). 

mY Y-SNP N Noir Marron  
(N= 60) 

Afro-Brazilian 
(N= 24) 

Afro-Colombian 
(N= 19) 

Senegambia 252 0.0007 ±0.0004 0.0554 ±0.0075 0.0500 ±0.0066 
Sierra Leone 42 0.0855 ±0.0092 0.1731 ±0.0066 0.0057 ±0.0074 
Windward Coast 90 0.0011 ±0.0003 0.0534 ±0.0076 0.2078 ±0.0057 
Gold Coast 205 0.1815 ±0.0079 0.0749 ±0.0021 0.0294 ±0.0069 
Bight of Benin 296 0.2879 ±0.0050 0.0098 ±0.0008 0.1757 ±0.0097 
Bight of Biafra 805 0.1564 ±0.0063 0.1747 ±0.0098 0.2447 ±0.0114 
West Central Africa 280 0.2630 ±0.0057 0.2488 ±0.0051 0.1873 ±0.0094 
Southeast Africa 318 0.0029 ±0.0027 0.0507 ±0.0061 0.0388 ±0.0040 
Europe 110 0.0205 ±0.0045 0.1588 ±0.0017 0.0605 ±0.0012 
Native American 13 0.0005 ±0.0002 0.0004 ±0.0001 0.0001 ±0.0007 

     

mY mtDNA N Noir Marron 
(N= 183) 

Afro-Brazilian 
(N= 39) 

Afro-Colombian 
(N= 30) 

Senegambia 656 0.0241 ±0.0036 0.0176 ±0.0071 0.1253 ±0.0275 
Sierra Leone 362 0.0270 ±0.0054 0.0075 ±0.0007 0.0480 ±0.0066 
Windward Coast 192 0.0673 ±0.0086 0.0573 ±0.0074 0.0405 ±0.0076 
Gold Coast 429 0.2233 ±0.0066 0.1062 ±0.0057 0.1250 ±0.0021 
Bight of Benin 485 0.2551 ±0.0074 0.2776 ±0.0069 0.0320 ±0.0078 
Bight of Biafra 2,714 0.2570 ±0.0092 0.3128 ±0.0097 0.2346 ±0.0098 
West Central Africa 555 0.0990 ±0.0065 0.0105 ±0.0014 0.1756 ±0.0051 
Southeast Africa 404 0.0460 ±0.0031 0.1200 ±0.0094 0.0871 ±0.0061 
Europe 100 0.0007 ±0.0006 0.0735 ±0.0040 0.0003 ±0.0002 
Native American 100 0.0005 ±0.0003 0.0170 ±0.0013 0.1316 ±0.0241 
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In agreement with the PCA analysis of haplogroup frequencies (Figures 53 and 63), it may 

not be feasible to determine a unique source of African captives by using uniparental markers. 

According to mY Y-SNP, West Central Africa slaving region is associated with the Noir Marron 

and Afro-Colombian populations in sharp contrast to previous analyses (Figure 53). It may 

suggest close genetic backgrounds of sub-Saharan African populations because of the Bantu 

expansion (de Filippo et al., 2011), which increased the homogeneity of the haplogroup 

composition among the Africans and the African Americans by means of two African paternal 

markers such as E1b1a1a1c1a1-U174 and E1b1a1a1d-U175. 

 

B.1. Paternal genetic legacy of the African-American descendants 

Among the Noir Marron communities, we detected close genetic connections with populations 

from Benin residing in the historical region of the Bight of Benin. Despite the high European 

male lineage among the Afro-Brazilians we found close genetic connections with populations 

from Angola in West Central Africa region (Table 28). The Afro-Colombian presented close 

genetic connections with populations from West African regions. Likewise, the Palenque 

population presented a close genetic proximity with the population from Cape Verde as well as 

similar admixed proportions of European and African contributions (Noguera et al., 2013). The 

high European male frequencies detected within the African descendants in Brazil and 

Colombia (46.4% and 50.0%, respectively) were in sharp contrast with frequencies detected 

among African Americans residing in different geographic locations of the U.S. (~26.4%) 

(Hammer et al., 2006). In both, African-American populations from South America were also 

detected the highest frequencies for the subhaplogroup R1b1a2-M269 (25.0%). In Colombia, 

this European subhaplogroup could have come from founders, who predominantly arrived from 

the Iberian Peninsula (Bedoya et al., 2006; Carvajal-Carmona et al., 2000; Carvajal-Carmona 

et al., 2003). In Brazil though, this was most likely related to the Portuguese population (Beleza 

et al., 2006). Nevertheless, it is estimated that over 110 million European men belong to this 

subhaplogroup (Balaresque et al., 2010), which is carried by two thirds of Western European 

men (Sole-Morata et al., 2014). According to the MJ Network analysis, most Spanish and 

Portuguese haplotypes belonged to R1b1a2-M269, and shared the same or a very similar 

haplotype (Figure 51). Therefore, we cannot establish genetic differences between the Spanish 

and Portuguese haplotypes to infer the European source of parental ancestry among the African 

descendants based on the Y chromosome markers. 

The presence of the Y subhaplogroup R1a1a-M17 detected among the Afro-Brazilians and the 

Afro-Colombians is also noteworthy (7.1% and 5.0%, respectively). The spatial frequency 
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distributions of this subhaplogroup have been primarily found in Europe and confined to Central 

and South Asia (Underhill et al., 2010; Underhill et al., 2015). It might indicate European and 

Asian gene flow to African descendants after the abolition of slave trade. 

Taking into account the African Y haplogroups, the low presence (3.3%) of haplogroup B-

M60 was detected among the Noir Marron, which was in good agreement with the B-M60 

frequency (4.0%) reported recently among the Accompong Town Maroon community from 

western Jamaica (Madrilejo et al., 2015). This haplogroup belonged to one of the oldest Y-

lineages in sub-Saharan Africa (Batini et al., 2011a). This finding highlighted the fact that 

African-Americans could preserve the signatures of very early human Y chromosome lineages. 

Interestingly, Mendez et al. (2013) found the most ancient human lineage among the African 

Americans, called the haplogroup A00. This lineage A00 carried the ancestral state of all SNPs 

that were highly divergent from other known African lineages, and defined the basal portion of 

the Y chromosome phylogenetic tree. Therefore, today some African Americans present strong 

signatures of the most recent common ancestor (MRCA) for the Y tree. 

 

B.2. Maternal genetic legacy of the African-American descendants 

The most common specific mtDNA subhaplogroup among the analysed African Americans 

was L2a1 (range 18.6–26.7%). We detected numerous mtDNA haplogroups (see Table 21) and 

low frequencies of non-Africans mtDNA haplogroups (range 5.2–16.6%), suggestive of 

present-day African-American maternal lineages representing a large mixtures of the African 

mtDNA variants, in close correspondence with the values reported for the African Americans 

in the U.S. (Allard et al., 2005; Just et al., 2015), and in the Caribbean (Benn Torres et al., 2007; 

Deason et al., 2012). In the PCA analysis of mtDNA haplogroup frequencies, the African 

Americans from Colombia, Barbados, the U.S., and French Guiana (with the exception of the 

Aluku community) were found to be closely related to the populations from the West African 

regions (Figure 63). Conversely, the Aluku and Afro-Brazilians were close to the Bight of 

Biafra and West Central African regions. 

Indeed, the current Brazilian population is the most important representative of African 

mtDNA lineages outside Africa. It has been estimated that at least 90 million individuals in 

Brazil, independent of their physical appearances, have a sub-Saharan African origins 

according to their mtDNA (Pena et al., 2009). Within Brazil today, there is quite a bit of regional 

variation in the proportions of African descendants among the local population. For instance, 

in Rio Grande do Sul, around 16% of the individuals self-identified as “white” present African 

maternal origins (Marrero et al., 2005). 
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The phylogenetic analysis of mtDNA haplotypes indicated complex geographic associations 

among African Americans. In Afro-Brazilians, the detection of the mtDNA lineages from 

Angola and Mozambique were consistent with the historical records, since Brazil was one of 

the main destinations for African captives from Portuguese colonies (Araujo, 2015; Landers et 

al., 2015), and most of the Brazilian enslaved, who arrived in Rio de Janeiro were mainly from 

West Central Africa region (see Table 4). Among the Afro-Brazilians living in Rio de Janeiro 

and Porto Alegre, a previous study did indicate that their mtDNA variants were originated from 

West-Central and Southeast African regions (69% and 82%, respectively) (Hunemeier et al., 

2007). This was in close agreement with genetic links detected in the phylogenetic 

reconstructions of their mtDNA genomes.  

Surprisingly, in Tocaña, the isolated Afro-Bolivian community in the province of Nor (North) 

Yungas in La Paz department in Bolivia, was found to have maternal genetic links to the South-

eastern African populations and with the Near Eastern countries, such as Saudi Arabia, Yemen, 

and Oman (Heinz et al., 2015). Those results were explained by the Arab slave trade having 

initiated contacts between these regions. In the analysis of geographic patterns of major mtDNA 

clades L in the African and Near Eastern countries (Figure 59 to Figure 62) and phylogenetic 

reconstruction of African lineages L0–L3 by using mtDNA genomes, this study did not detect 

any evidence to support the fact that the Arab slave trade marked the genetic structures of the 

African-American populations of South America.  

 

B.3. Autosomal genetic legacy of the African-American descendants 

Model-based methods for estimating ancestry have traditionally focused on the relationships 

within and between populations while quantifying the admixture proportions in the admixed 

populations (Liu et al., 2013; Novembre & Ramachandran, 2011). The three main factors that 

determine the accuracy and precision of ancestry estimations are: i) number and resolution of 

markers used, ii) quality of the reference databases (both in geographical spread and number of 

samples included), and iii) levels of genetic differentiations between populations in the African 

regions being considered (Shriver & Kittles, 2004). We applied model-based methods by using 

different datasets for different continental reference populations (50K, 90K, and 240K SNPs 

datasets) to estimate ancestry proportions among the African Americans. Despite sharing an 

African ancestry, admixed African-American populations exhibited large variations in the 

admixture proportions associated with ancestral continental populations (Parra et al., 1998; Via 

et al., 2011). In all, the ADMIXTURE analyses evidenced that the highest African ancestry was 

detected within the Noir Marron communities. Different admixture patterns were determined 
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among the remaining African Americans (see Table 26). 

As of late, several relevant research efforts have focused on identifying a small set of AIMs 

that can be used to infer biogeographical ancestry and admixture proportions (Galanter et al., 

2012; Halder et al., 2008; Londin et al., 2010; Pardo-Seco et al., 2014). However, the majority 

of the AIM panels are designed to determine admixture proportions between only three source 

populations (African, European, and Native American). We estimated admixture proportions 

using three source populations based on the 90K SNPs dataset (Figure 69). In order to obtain 

more accurate estimations, we also used four source populations based on 240K SNPs (Figure 

71). Interestingly in both ADMIXTURE analyses, we detected population substructures within 

the African populations. We characterized the African structure by using a large representation 

of the African populations based on the 50K SNPs dataset (Figure 72). We also estimated 

genetic ancestry at different scales of complexity: at the individual level (Figure 72A), at the 

population level (Figure 72B), and at the regional level (Figure 73). 

We also represented West-Central Africa and Bantu ancestry proportions as obtained in the 

ADMIXTURE analysis. We used the same approach to analyse the Q proportion applied to the 

African populations by Hodgson et al. (2014). We observed a high West-Central African 

ancestry among the Noir Marron and Afro-Colombians (Figure 79). Conversely, the Afro-

Brazilians presented a high Bantu ancestry from D.R.C. to South Africa. This Bantu ancestry is 

likely associated with the populations from Angola or Mozambique, however there is not 

available genome-wide SNP data from Angola or Mozambique to confirm that genetic link. 

In order to discern differences in demographic history among the African-American 

populations in the Americas, we also analysed populations from the U.S. and Barbados. The 

continental ancestry proportions among the African Americans from Barbados (Table 26) were 

found to be in good agreement with the high African ancestry previously detected by Benn-

Torres et al. (2008) who used 28 AIMs. They reported 89.6% African, 10.2% European, and 

0.2% Native American ancestries for this population. This contrasted with those of African 

descent from Jamaica, which had the highest mean rank for Native American ancestry (3.2 to 

5.9%) (Benn-Torres et al., 2008). These differences in the Native American component were 

attributed to admixture patterns between indigenous communities and the Maroon population 

residing in Jamaica. In contrast, there was almost null admixture detected among the Maroon 

population in Barbados, because of they lived in regions of the island that were difficult to 

access (Benn-Torres et al., 2008). We found a similar lack of admixture in the Noir Marron 

communities living in the isolated regions of the Amazonian rainforest of French Guiana. 

We detected a very low East Asian component in African Americans from the U.S. (1.15%), 

which might indicate a very recent gene flow between these populations in North America. 
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Interestingly, this pattern was not observed in the Noir Marron communities, despite substantial 

recent migrations of the East Asian populations in French Guiana that originated in South China 

(Brucato et al., 2012; Tapp, 2005). 

 

 

Figure 79: Population structure for West-Central and Bantu ancestry of African American and Africa 

populations based on ancestry components obtained in ADMIXTURE analysis (Figure 72B).  

 

C. Genetic landscape of West African ancestry in African Americans 

Despite the patterns of sex-biases and admixtures identified in African Americans, studies of 

nuclear DNA diversity revealed that important African genetic identities have persisted among 

the African Americans derived from the indigenous groups in West and West-Central Africa. 

For instance, a high number of markers of nuclear genes with African ancestry are commonly 

found today among the African Americans, such as the Duffy null allele (Fy0) (Howes et al., 

2011), the sickle cell allele (and its various molecular forms) (Fong et al., 2013; Lemos Cardoso 

& Farias Guerreiro, 2006), and certain specific HLA polymorphisms (Hanchard et al., 2006). 
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Other genetic traits show similar patterns, including those related to body sizes and energy 

stores (Luke et al., 2001), hypertension susceptibilities (Rotimi et al., 1996), and the HLA-QA1 

allele (Zimmerman et al., 1995). These retained nuclear DNA polymorphisms suggest that, in 

conjunction with the mtDNA and Y chromosome evidence, the African-descendant groups are 

still strongly linked, genetically, to a western African heritage, even after four centuries of 

separation (around 15 generations). 

However, it is very complex to identify the African origins within the West and West-Central 

African populations (Shriver & Kittles, 2004). The genetic landscapes in West and West-

Central Africa is characterised by strong inter-individual differentiation but relatively low inter-

population differentiations (Tishkoff et al., 2009). Pairwise FST distances between African 

groups indicate the lowest values (0.019) for the West and West-Central African populations 

(Table 27). Several studies add a better understanding of genetic backgrounds of these 

populations by using the mtDNA (Montano et al., 2013; Salas et al., 2002) or Y chromosome 

markers (de Filippo et al., 2011; Scozzari et al., 2014). However, there is still scarce knowledge 

about genetic differences among the West and West-Central African populations based on bi-

parental markers that could shed new light on genetic identities of the African Americans.  

Recent studies evaluated nuclear ancestry in American admixed populations (Montinaro et al., 

2015) or geographic population origin (Elhaik et al., 2014) based on the same admixture-based 

methods. Nevertheless, those studies present large number of European reference populations 

and considerable low number of African reference populations, especially with West and West-

Central African ancestries (Figure 80). 

 

       

A B 
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Figure 80: Maps of European and African continental reference populations analysed in recent 

bioancestry studies. Images modified from A: Elhaik et al. (2014) and B: Montinaro et al. (2015). 

 

To obtain a relevant African genetic picture that could shed new light about African ancestry, 

we analysed a large representation of African populations by using an up-to-date dataset of 

African populations in addition to the new West African data (Figure 46). In the ADMIXTURE 

analysis, we identified a West African structure that matched a geographic distribution as a 

genetic gradient (Figure 72). Interestingly, all the Noir Marron communities presented identical 

ancestry proportions than the African populations residing in the Bight of Benin region (Figure 

73). This pointed out a strong contribution from the Bight of Benin despite enslaved Africans 

were imported in great number to French Guiana and Surinam from different slave regions 

(Figures 11 and 12). The Eigenstrat PCA analysis corroborated both the African genetic 

identities of the Noir Marron communities and also the West African structure within West 

African populations (Figure 76). All the Noir Marron communities clustered within the Bight 

of Benin especially with populations from Benin, and these were more distant from the Nigerian 

populations residing in the Bight of Benin region. Conversely, we detected maternal 

contributions from the Bight of Biafra and West Central Africa regions in the Aluku community 

(Figure 63). 

Otherwise, the ADMIXTURE analysis for the Afro-Colombians showed identical African 

ancestry from the population localized in the Gold Coast region, and the Afro-Brazilians with 

populations from West Central Africa region. Interestingly in Colombia, historic data witnessed 

a considerably low number of enslaved Africans from the Gold Coast region (Figure 18), in 

contrast with the high numbers of African captives who arrived from Senegambia (28.0%) and 

West Central Africa (38.9%) regions (Table 5). Besides, currently, only one population 

presented genome-wide SNP data available from the Gold Coast region, the Brong population 

from modern Ghana (Bryc et al., 2010a), and its sample size is considerably low (N= 4) to 

establish that genetic link. Therefore, the study does not clarify the fact that the African origins 

of the Afro-Colombians may be strongly associated with the Gold Coast region or that their 

African ancestry proportions could be a combination of separate African regions (Table 28). 

Both, the African-American populations from Colombia and Brazil are deeply admixed 

compared to the Noir Marron communities (Figure 77), and they do not present a clear 

association with one African region in the multidimensional space (PCA plot not included). 

Their sub-continental ancestry could be identified by using the PCA based on local ancestry 

methods, such as ancestry-specific PCA (or ASPCA) (Moreno-Estrada et al., 2013).  
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Currently, it is increasingly common for the descendants of the enslaved Africans to want to 

contextualize their ancestry, by understanding more about who their ancestors were, where they 

came from, what conditions initiated their movements within the African continent and their 

forced migrations to the Americas and what genetic events they may have experienced. Each 

of these inquiries is ultimately designed to deduce the health status, ancestral backgrounds, and 

potential disease susceptibilities of their contemporary descendants (Jackson & Borgelin, 

2010). 

The popularity of ancestry and genealogical research has grown rapidly over the past ten years. 

In the U.S., genealogical research has become the fastest growing hobby in many communities. 

The burgeoning number of genetics companies that now offer fee-for-service tests for genetic 

ancestry, such as Ancestry.com, Africanancestry.com, 23andMe.com or Oxfordancestors.com 

(see more details in http://www.isogg.org/wiki/Autosomal_DNA_testing_comparison_chart), 

indicates the desire of many African Americans to identify their ancestral origins (Shriver & 

Kittles, 2004). These companies have enjoyed profits by connecting regional groups of African 

Americans mainly from the U.S. with specific areas of Africa. However, they do not provide 

accurate estimations about one’s African roots for particular customers. Caution is warranted 

when testing companies tracing African ancestry using a small set of uniparental markers 

(Bandelt et al., 2008). Ancestry tests can give some clues about African genetic inheritance, 

however, they cannot be sure about West African ancestry, because of the important caveat that 

the modern reference populations might not be the same as the historical populations who lived 

in the same locations at the time of the Atlantic slave trade. For instance, Ancestry.com makes 

determinations of African affiliations based on six ethnicity regions of West African ancestry 

including: i) Senegal, ii) Mali, iii) Ivory Coast/Ghana, iv) Benin/Togo, v) Nigeria, and vi) 

Cameroon/Congo (Figure 81) (Granka, 2013).  
 

However, this division of the West Africa groups into modern countries disagrees with the 

historical information of African geographic distribution during the period when the slave trade 

flourished (Figures 5 and 7). The social implications of genetic ancestry tests highlight the need 

for a better picture of West African regions that correspond with the available historical 

information (Figure 82). 

 

 

 

 

 

http://www.isogg.org/wiki/Autosomal_DNA_testing_comparison_chart
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Figure 81: Finer-resolution genetic ethnicity estimate for individuals with West African ancestry 

(Ethnicity V1). This company analyse the likely African origin from six West African regions (Ethnicity 

V2) (Granka, 2013). © 2013 Ancestry.com™. 

 
Figure 82: Map of historic West African kingdoms located in the Bight of Benin region during the 

17th and the 18th century (Lovejoy, 2013). 
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Therefore, the most reliable method for inferring ancestry is to combine DNA evidence with 

other forms of historical and linguistic data. In the analysis of a large representation of African 

populations with different cultural and linguistic backgrounds, we compared the Noir Marron 

communities with African populations that were representative of historical African kingdoms 

during the period of the slave trade. For instance, in the Bight of Benin region, the most likely 

direct descendants of the African captives were include in the genetic analyses. Therefore, the 

West African populations residing in Benin and Nigeria were considered for the ADMIXTURE 

and Eigenstrat PCA analyses because of they are located in the same geographic region than 

their ancestors during the period of the slave trade (Figure 82), such as the Fon, the descendants 

for the Dahomey Kingdom; the Bariba, the descendants for the Borgu Kingdom; the Beninese 

Yoruba, the descendants for Ketu Kingdom; the Nigerian Yoruba, the descendants for the Oyo 

Kingdom; the Esan, the descendants for the Benin Kingdom; and the Igbo, the descendants for 

the Igbo Kingdom (Law, 1991, 2004; Lovejoy, 2013; Lovejoy, 2011). In some way, we explore 

the genetic links between the West African descendants and the African descendants living in 

French Guiana and Surinam today. 

Indeed, the Eigenstrat PCA analysis suggested a common ancestry for the Noir Marron 

communities and the populations having descended from the Dahomey, Borgu, and Ketu 

Kingdoms localized in modern Benin. In good agreement with linguistic studies, it was 

suggested close structural and functional similarities between the Saamaka (Creole spoke for 

Saramaka people) and Fongbe, the language spoken by the Fon population in modern Benin 

(Essegbey et al., 2013a; Essegbey et al., 2013b; Migge & Winford, 2013). These findings lend 

further support to the ethnic origins of enslaved African descendants deported to French Guiana 

and Surinam around four centuries ago. 
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V. CONCLUSIONS 

 
i. This study provides a strong characterization of the genetic diversities within African-

American populations residing in South America, particularly in four Noir Marron 

communities: Aluku, Paramaka, Ndjuka, and Saramaka. 
 

ii. The Noir Marron communities presented the highest African ancestry in all genetic 

systems analysed: 89.11% for Y-STRs, 86.03% for Y-SNPs, 97.80% for mtDNA, and 

98.34% for genome-wide SNP data. These values are considerably higher than in other 

African-American populations in the Americas. 
 

iii. Uniparental markers revealed a significant degree of sex-biases. According to Y 

chromosome, between Afro-Brazilian and Afro-Colombian women (macrohaplogroup L) 

and European men (haplogroup R1b1a2-M269). According to mtDNA, between Afro-

Colombian men (haplogroup E1b1a1) and Native American women (haplogroups: A2, B2d, 

and C1d). This fact highlighted asymmetric mating patterns involving predominantly 

European men and African women within populations with different colonial pasts (that 

means Spanish and Portuguese). 
 

iv. Genome-wide SNP data of African ancestry had outlined a new understanding of 

historical African coastal regions where Africans slaves were kidnaped several centuries ago. 

ADMIXTURE and PCA analyses allowed the reconstruction of genetic links in Noir Marron 

communities with historic populations residing today in Bight of Benin region. 
 

v. The new findings linked the African-American genetic diversities with historical 

African coastal regions, and suggested different slave trade routes in the Noir Marron 

associated with the Bight of Benin, in the Afro-Brazilians with the West Central Africa, and 

in the Afro-Colombians with the Gold Coast. These genetic links are in agreement with their 

colonial historic records, with the exception of the Afro-Colombian association. 
 

vi. Overall, the present study contributed to better understanding of unique African legacy 

among the Noir Marron communities, and highlighted that within an appropriate historical 

framework, genetic ancestry analyses add further understanding of ethnicity in African 

populations throughout the Atlantic world. 
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VII. ANNEXE 

 

A. Supplementary material of Y chromosome 

Table S1: Characteristics of 96 Y-SNP markers genotyped, and allelic frequencies obtained 

for each primer with different allele specific for all over the sequences. 

Table S2: Frequencies of Y-STRs markers obtained in African American (Noir Marron, 

Afro-Colombian and Afro-Brazilian), West African, West European, and Native 

American populations. 

Figure S1: DAPC of 17 Y-STRs of African American; Noir Marron (NM), Afro-Colombian 

(Af-COL) and Afro-Brazilian (Af-BRA) populations and continental populations 

with West African (CIVA, CIVY, MLI_B, BENB, BENY, and BENF), European 

(ESPBa, ESPGa, ESPGr, ESPHu, and PRT), and Native American (GUF_K, 

GUF_O, and GUF_P) ancestries. 

Figure S2: STRUCTURE of 17 Y-STRs haplotypes showed the percentage of African, 

European and Native American ancestry in African Americans. 

Table S3: Ancestry proportions of continental ancestry estimated for each population using 

STRUCTURE analysis based on 17 Y-STR. 

Table S4: Pairwise FST genetic distances based on Y haplogroup frequencies. 

Table S5: Table of Y-SNP frequencies of 18 populations included in 1000 Genome Project 

estimated by using the same Y-SNP set. 

Table S6: Table of populations analysed based on major Y haplogroup frequencies in 

African Americans and historic African regions. 
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Table S2: Frequencies of Y-STRs markers obtained in African American (Noir Marron, Afro-

Colombian and Afro-Brazilian), West African, West European, and Native American populations. 

 

 

 

 

 

Alleles DYS19 DYS389I DYS389II-I DYS390 DYS391 DYS392 DYS393 DYS385a DYS385b DYS438 DYS439 DYS437 DYS448 DYS456 DYS458 DYS635 YGATAH4
9

10 1.000 0.250
11 0.750 0.750 0.250 0.375
12 0.375 0.250 0.625 0.625
13 0.625 1.000 0.125
14 0.250 0.750 0.250
15 0.750 0.500 0.125 - 1.000 -
16 0.375 0.125 - -
17 0.500 0.125 0.625 0.250 0.375
18 0.500 0.125 0.375
19 0.250
20 0.375 0.375
21 0.750 0.625 0.375
22 0.250
23
24
25
26

Alleles DYS19 DYS389I DYS389II-I DYS390 DYS391 DYS392 DYS393 DYS385a DYS385b DYS438 DYS439 DYS437 DYS448 DYS456 DYS458 DYS635 YGATAH4
9 0.048

10 0.048 0.810 0.190 0.048 0.143
11 - 0.190 0.905 0.667 0.095 0.619
12 0.095 - 0.048 0.048 0.143 0.524 0.048 0.190
13 0.619 0.048 0.429 0.095 0.238 0.048 0.095
14 0.238 0.238 - 0.381 0.048 0.048 0.095 0.857 - 0.143
15 0.381 0.048 0.143 0.238 0.048 0.048 0.524 0.048
16 0.048 0.048 0.333 0.190 - 0.381 0.238
17 0.333 0.571 0.190 0.429 0.095 0.143
18 0.381 0.048 0.143 0.286
19 0.095 0.048 0.238
20 0.095 0.048 0.286 -
21 0.571 0.667 0.429
22 0.286 0.048 0.286
23 - -
24 0.048 0.048
25
26

Alleles DYS19 DYS389I DYS389II-I DYS390 DYS391 DYS392 DYS393 DYS385a DYS385b DYS438 DYS439 DYS437 DYS448 DYS456 DYS458 DYS635 YGATAH4
9

10 0.600
11 0.400 0.600 0.400 0.600 1.000
12 - - 0.400 0.800
13 1.000 0.400 0.400 - 0.200
14 0.400 0.600 - 0.400 0.600
15 0.200 0.200 - 0.400 0.200
16 - 0.400 0.200 0.200 0.200 0.400
17 0.400 0.400 0.200 0.200 0.600 0.600
18 0.200 0.200
19 0.400
20 0.200
21 0.600 0.400 0.200
22 - 0.200
23 0.400 0.400
24 0.200
25
26

Paramaka (n= 5)

Ndjuka (n= 21)

Aluku (n= 8)
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Alleles DYS19 DYS389I DYS389II-I DYS390 DYS391 DYS392 DYS393 DYS385a DYS385b DYS438 DYS439 DYS437 DYS448 DYS456 DYS458 DYS635 YGATAH4
9

10 0.938 0.125 0.063
11 0.063 1.000 0.875 0.125 0.438
12 0.188 0.750 0.438
13 0.313 0.750 0.125 0.125 0.063
14 0.500 0.500 0.063 0.188 0.750 0.125 0.125
15 0.125 0.188 0.063 0.188 - 0.625 0.250
16 0.188 0.063 0.625 0.063 - 0.250 0.438
17 0.188 0.875 0.125 0.188 0.125 0.063
18 0.063 0.500 0.125
19 0.063 0.125
20 0.625 0.063
21 0.875 0.313 0.500
22 0.125 0.063 0.188
23 0.125
24
25
26

Alleles DYS19 DYS389I DYS389II-I DYS390 DYS391 DYS392 DYS393 DYS385a DYS385b DYS438 DYS439 DYS437 DYS448 DYS456 DYS458 DYS635 YGATAH4
9 0.053

10 0.632 0.105 0.053
11 0.368 0.737 0.053 0.263 0.053 0.579 0.316 0.474
12 0.105 - 0.053 0.053 - 0.263 0.421 0.474
13 0.053 0.474 0.263 0.789 0.105 - 0.263
14 0.316 0.421 0.053 0.053 0.316 0.632 0.105 0.105
15 0.474 0.053 0.105 0.105 0.316 0.526 0.158
16 0.158 0.421 0.211 0.053 0.053 0.316 0.211
17 0.316 0.211 0.368 0.053 0.368
18 0.211 0.053 0.105 0.105
19 0.053 0.053 0.263 -
20 0.158 0.053
21 0.421 0.474 0.421
22 0.158 0.158
23 0.105 0.316
24 0.211 0.053
25 0.105 -
26 0.053

Alleles DYS19 DYS389I DYS389II-I DYS390 DYS391 DYS392 DYS393 DYS385a DYS385b DYS438 DYS439 DYS437 DYS448 DYS456 DYS458 DYS635 YGATAH4
9 0.042 0.083 0.042

10 0.542 0.125 0.083 0.042
11 0.417 0.708 0.167 0.542 0.417 0.292
12 0.167 0.042 0.125 0.125 0.250 0.375 0.458
13 0.042 0.708 0.167 0.583 0.208 0.042 0.125 0.042 0.167
14 0.250 0.125 0.083 0.208 0.042 0.250 0.708 0.083 0.042
15 0.417 0.042 0.083 0.042 0.125 0.208 0.542 0.292
16 0.167 0.375 0.250 0.125 0.083 0.208 0.125
17 0.125 0.417 0.167 0.167 0.125 0.250
18 0.167 0.250 0.042 0.250
19 0.042 0.292 0.042
20 0.125 0.042
21 0.375 0.417 0.417
22 0.042 0.125 0.042
23 0.083 0.333
24 0.417 0.167
25 0.083
26

Afro-Colombian (n= 19)

Afro-Brazilian (n= 24)

Saramaka (n= 16)
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Alleles DYS19 DYS389I DYS389II-I DYS390 DYS391 DYS392 DYS393 DYS385a DYS385b DYS438 DYS439 DYS437 DYS448 DYS456 DYS458 DYS635 YGATAH4
8
9 0.007 0.010

10 0.888 0.073 0.004 0.056 0.004 0.045
11 0.098 0.787 - 0.024 0.010 0.874 0.206 0.004 0.521
12 0.108 0.007 0.105 0.028 0.007 0.007 0.059 0.591 0.010 0.409
13 0.689 0.014 0.493 0.014 0.004 0.164 0.010 0.021 0.007 0.024
14 0.084 0.203 0.004 0.004 0.318 0.077 0.007 0.035 0.930 0.063 0.014
15 0.451 0.007 0.007 0.147 0.203 0.038 0.024 0.615 0.101
16 0.255 0.031 0.010 0.010 0.402 0.161 0.014 0.217 0.325
17 0.206 0.434 0.206 0.346 0.017 0.059 0.332 0.014
18 0.004 0.388 0.004 0.049 0.217 0.004 0.010 0.007 0.157 -
19 0.105 - - 0.143 0.031 0.004 0.049 0.024
20 0.007 0.031 - 0.035 0.203 0.014 0.070
21 0.021 0.843 0.010 - 0.706 0.612
22 0.004 0.077 0.007 0.014 0.049 0.133
23 0.014 0.017 0.108
24 0.028 0.038
25 0.004
26

Alleles DYS19 DYS389I DYS389II-I DYS390 DYS391 DYS392 DYS393 DYS385a DYS385b DYS438 DYS439 DYS437 DYS448 DYS456 DYS458 DYS635 YGATAH4
8 0.008
9 0.099 0.008 0.099 0.008

10 0.420 0.023 0.328 0.084 0.038
11 0.466 0.389 0.489 0.023 0.305 0.397
12 0.107 0.015 0.023 0.137 0.137 0.038 0.519 0.435 0.527
13 0.115 0.618 0.008 0.557 0.779 0.183 0.076 0.023 0.168 0.008 0.015 0.031
14 0.603 0.275 - 0.023 0.069 0.061 0.542 0.008 0.389 0.137 0.008
15 0.198 0.076 - 0.015 0.046 0.191 0.534 0.420 0.076
16 0.076 0.664 0.008 0.038 0.061 0.069 0.366 0.237
17 0.008 0.214 0.015 0.015 0.061 0.382
18 0.038 0.038 0.122 0.214
19 0.023 0.489 0.053 0.008
20 - 0.260 0.031 0.038
21 0.008 0.015 0.122 0.237
22 0.099 0.008 0.084
23 0.229 0.496
24 0.611 0.115
25 0.053 0.015
26 0.008

Alleles DYS19 DYS389I DYS389II-I DYS390 DYS391 DYS392 DYS393 DYS385a DYS385b DYS438 DYS439 DYS437 DYS448 DYS456 DYS458 DYS635 YGATAH4
8 0.008
9 0.008 0.008

10 0.892 - 0.331
11 0.092 0.008 0.008 0.008 0.562 0.346 0.523
12 0.131 0.123 - 0.185 0.031 0.085 0.515 0.423
13 0.738 0.400 0.277 0.415 0.338 0.054 0.023 0.115 0.008 0.008 0.054
14 0.123 0.469 0.531 0.392 0.562 0.038 0.023 0.869 0.100 0.077
15 - 0.008 0.038 0.131 0.031 0.162 0.115 0.400 0.454
16 - 0.223 0.054 0.015 0.108 0.008 0.277 0.269
17 0.008 0.515 0.008 0.385 0.008 0.223 0.185
18 0.215 0.254 - 0.008
19 0.008 0.015 0.554
20 - 0.331
21 0.085 0.100 0.008
22 - 0.008 0.854
23 0.485 0.131
24 0.369 0.008
25 0.046
26

West African (n= 286)

West European (n= 131)

Native American (n= 130)
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Figure S1: DAPC of 17 Y-STRs of African American; Noir Marron (NM), Afro-Colombians (Af-

COL), and Afro-Brazilians (Af-BRA) and continental populations with West African (CIVA, CIVY, 

MLI_B, BENB, BENY, and BENF), European (ESPBa, ESPGa, ESPGr, ESPHu, and PRT), and Native 

American (GUF_K, GUF_O, and GUF_P) ancestries. Inertia ellipses are shown by different colours, 

while dots represent individual strains. Inertia ellipses are proportional to the internal variance of the 

clusters. In the left bottom corner the DA eigenvalues for discriminant functions, and in the right bottom 

corner the PCA eigenvalues for principal components are reported, 10 DA and 45 PCA axes were 

retained. 

 

 

 
 

Figure S2: STRUCTURE of 17 Y-STRs haplotypes showed the percentage of African, European and 

Native American ancestry in African Americans. Mean value of r= 0.934 and mean value of alpha= 

0.428. 
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Table S3: Ancestry proportions of continental ancestry estimated for each population using 

STRUCTURE analysis based on 17 Y-STR. 
 

Group  Population ID Pop N African European Native Ame. 

African American 

Noir Marron GUF_NM 50 0.780 0.114 0.106 
    Aluku NM_A 8 0.843 0.006 0.151 
    Ndjuka NM_N 21 0.809 0.055 0.136 
    Paramaka NM_P 5 0.606 0.390 0.004 
    Saramaka NM_S 16 0.862 0.005 0.133 
Afro-Colombian Af-COL 19 0.511 0.433 0.056 
Afro-Brazilian Af-BRA 24 0.514 0.442 0.044 

West African 

Ahizi CIV_A 49 0.970 0.028 0.002 
Yacouba CIV_Y 41 0.954 0.014 0.033 
Fon BEN_F 78 0.892 0.075 0.033 
Yoruba BEN_Y 54 0.913 0.055 0.032 
Bariba BEN_B 51 0.965 0.014 0.021 
Bwa MLI_B 13 0.994 0.002 0.004 

West European 

Granada ESP_Gr 25 0.084 0.847 0.069 
Huelva ESP_Hu 25 0.087 0.800 0.113 
Barcelona ESP_Ba 30 0.005 0.977 0.018 
Galicia ESP_Ga 21 0.058 0.906 0.036 
Portugal North PRT_N 7 0.067 0.813 0.121 
Portugal South PRT_S 23 0.170 0.758 0.072 

Native American 

Kalinya GUF_K 23 0.062 0.005 0.933 
Oyampi GUF_O 25 0.003 0.050 0.947 
Palikour GUF_P 41 0.002 0.026 0.972 
Emberá-Chamí COL-EC 24 0.006 0.228 0.766 
Karitiana BRA-KA 17 0.004 0.004 0.992 
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B. Supplementary material of mitochondrial DNA 

Figure S3: Phylogeny of mtDNA trees L0 to L4 for mtDNA haplogroups detected in the 

African-American and West African populations based on the PhyloTree mtDNA 

tree Build 16 (19 February 2014) (van Oven & Kayser, 2009). 

Table S7: Estimated frequencies of major African mtDNA subhaplogroups L for our dataset 

of the African-American and African populations from West Africa and other 

African populations across the African continent and the Near East from previous 

studies. 

Table S8: African-American and African populations analysed in the PCA analysis based 

on mtDNA haplogroup frequencies, and grouped according historical African 

coastal regions. 

Table S9: Age estimated and confidence intervals for the mtDNA clades analysed in the 

phylogenetic tree and calculated by using three calibration methods. 

************************************* 

 

Figure S3: Phylogeny of mtDNA trees L0 to L4 for mtDNA haplogroups detected in the African-

American and West African populations based on the PhyloTree mtDNA tree Build 16 (19 February 

2014) (van Oven & Kayser, 2009). Nucleotide position numbers are consistent with both the rCRS 

and the RSRS. Mutations are given in forward evolutionary time direction in the format [ancestral 

base][position number][derived base]. In case of a transversion the derived allele is shown in lowercase 

instead of uppercase. Insertions are indicated by a dot following the respective position number, 

deletions by the letter "d" following the position number(s) involved. Mutations that are reversions to 

an ancestral state (back mutations) are indicated with an exclamation mark (!), two exclamation marks 

for a double back mutation (!!), etc. Coding-region mutations (np 577-16023) are shown in black; 

control-region mutations (np 16024-576) in blue. Mutations between brackets () are recurrent/unstable 

within the respective clade, or are yet uncertain based on current data. Mutation motifs in italic are 

preliminary and are likely to be further refined as additional sequences become available. The 

mutations 309.1C(C), 315.1C, AC indels at 515-522, 16182C, 16183C, 16193.1C(C) and 16519 were 

not considered for phylogenetic reconstruction and are therefore excluded from these trees. 
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Example mtDNA N. Marron Colombia Brazil Fon Yoruba Bariba Ahizi Yacouba Mali Total
genome 43 30 39 36 32 32 22 16 23 273

mt-MRCA

L0 G263A C1048T C3516a T5442C T6185C C9042T A9347G G10589A G12007A A12720G

L0a'b'fk A189G T4586C C9818T T16172C

L0a'b'f G73A G185A C195T A263G! A2245G C5603T A11641G C15136T G15431A

L0a'b A93G (A95c) T236C C8428T A8566G G9755A C16148T

L0a C146T G5231A G5460A G11176A T14308C C16188g T16278C C16320T

L0a1'4 C16168T

L0a1 T5096C

L0a1a (C64T) T3866C EU092665 L0a1a+200 3 3

A200G NA19311

L0a1a1 T2759C EU092714 L0a1a1 1 1

L0a1a2 C152T G2245c JX303911 L0a1a2 3 2 1 1 7

L0a1a3 A9181G JQ044943 L0a1a3 1 1

A16293G

L0a1b C5911T A14007G C16278T!

L0a1b1 C152T A8191G AF381988

L0a1b1a G12127A EU935434

L0a1b1a1 T961C EU092688 L0a1b1a1 1 1

L0a2 C64T A185G! G5147A A5711G G6257A 8281-8289d A8460G A11172G A16129G

L0a2a C11143T A14755G

L0a2a2 T204C G207A A9545G G9554A FJ157838

L0a2a2a C13116T EU092787 L0a2a2a 1 1 2

L0a2a2a1 G8701A G14905A JX303835 L0a2a2a1 1 1

L0f (G207A) C4964T T7148C T9581C C9620T A13470G C14109T C14620T T15852C C16169T C16327T T16368C

L0f1 C146T C151T A7364G T16187C C16354T EU092870 L0f1 1 1

L0d G1438A T4232C T6815C C8113a G8152A G8251A T12121C G15466A G15930A T15941C T16243C

L0d1'2 C498d A3756G G9755A T16278C

L0d1 G719A G2706A G3438A A6266G G13759A

L0d1b T3618C

L0d1b2 T7283C C14315T C14659T C16294T

L0d1b2a A6692G G8790A A14280G G14560A T15449C G16153A (G16474t)

L0d1b2a1 T9887C KC346152 L0d1b2a1 1 1

L1'2'3'4'5'6 C146T C182T T4312C T10664C C10915T A11914G G13276A G16230A

L1 G3666A A7055G T7389C T13789C T14178C G14560A

L1b

L1b1 A5036G G5046A T5655C C13880a A14203G DQ112737

L1b1a T5393C JN214480 L1b1a 1 1

L1b1a1'4 C16114a

L1b1a4 G8790A JQ045107 L1b1a4 1 1 2

L1b1a2 T7954C EU092672

A189G JN214471

L1b1a3 G13980A DQ304908 L1b1a3 1 1 2

L1b1a3a C7915T DQ304914 L1b1a3a 1 1

L1b1a3a1 T11254C DQ304906 L1b1a3a1 1 1

L1b1a9 G6446A EU092737 L1b1a9 1 1 1 3

L1b1a15 G15077A C15103T NA19462 L1b1a15 2 2

L1b1a7 T6378C EU092716 L1b1a7 2 1 1 4

L1b2'3 C195T

L1b2 A189G C12891T A13893G G14323A C16239T NA19909 L1b2 1 1

L1b2a T146C! A12171G C16111T T16264C! HM771162 L1b2a 1 1 1 1 4

L1c C151T C186a A189c G316A A2395d A5951G T6071C G8027A A9072G G10586A A12810G A13485G T14000a C14911T C16294T C16360T

L1c1'2'4'5'6 A297G

L1c1'2'4'6 C198T T10321C

L1c1 A3796t A3843G A14148G A16293G

L1c1a'b'd T11899C

L1c1a T198C! T4454a T8087C T14088C JQ705275 L1c1a+@198 1 1

L1c1a2 L1c1a2 2 2

L1c1b'd T16086C

L1c1b NA19917 L1c1b 1 1

L1c1d G5460A G11914A! G15301A C15626T A16038G NA19385 L1c1d 2 2

L1c1c T198C! A249d G6267A G8387A A8389G T9233C C11335T T12879C T16172C T16187C T16294C! EU092717 L1c1c 4 4

L1c2'4 5899.1C C12049T A13149G

L1c2

L1c2a T1420C 2156.1A C15016T T15784C

L1c2a1 G16145A G16213A

L1c2a1a T7744C G8251A C13212T T13281C C14812T C16071T C16234T AF346992 L1c2a1a 1 1

L1c2a3 T471C G6723A A11329G G14861A EU092848 L1c2a3 1 1

L1c5 JX303797 L1c5 1 1 2

L1c3 C195T T6221a G6917A G7055A! C11302T A15226G T15905C C15978T

L1c3a G6260A G7498A G7789A G9966A C12019T G12501A T16187C A16215G EU092703 L1c3a 1 1 2

L1c3a1 A3105G

L1c3a1a T2387C T12616C EU935458 L1c3a1a 1 1

L1c3a1b T8668C C16355T JX303871 L1c3a1b 2 2

L1c3b'c C2283T A16293G

L1c3b G8251A C13981T C14794T A16163G

L1c3b1 T629C C3210T A3434G T4755C C8417T A12400G C12542T T16017C HG01378

L1c3b1a A11317G G13708A T16209C HG01080 L1c3b1a 1 1

L1c3b1b A1686G T2083C JQ702600 L1c3b1b 1 1

L1c3b2 T2283C! T3096C T6297C A6353G G7805A A7844G A14128G G14831A A15244G A15924G T16086C NA19256 L1c3b2 1 1

L1c3c A93G T195C! A248G C458T  745.1T T3027C C3525T C3600T G4853A G11852A T11984C A12507G A14669G EU273493 L1c3c 1 1

L2'3'4'5'6 C152T A2758G C2885T G7146A T8468C

Total 12 5 13 6 4 7 6 5 4 167

G6150A T6253C A7076G G7337A A8784G T8877C A10792G C10793T 
A11654G A16265c C16286g C16527T

A291t G709A A5390G G7762A T8143C 8281-8289d T9899C G11150A A12425G G12630A G13359A G13368A 
T15449C G15553A T15941C (C16114a) C16261T T16294C!

G185t A357G G709A T710C G1438A T1738C T2352C A2768G T3308C G3693A C6548T T6827C A6989G C7867T A8248G T12519C 
A14769G T15115C T16126C A16129G C16264T C16270T (A16293G)

A93G A95c T151C! T236C A2755G T2863C C3513T A3927G A4506G 
A7202G T9647C A12768G G16274A

T1291C T4688C T5553C C8619T T9861C T10084C T12681C A14393G 
A16241G
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Example mtDNA N. Marron Colombia Brazil Fon Yoruba Bariba Ahizi Yacouba Mali Total
genome 43 30 39 36 32 32 22 16 23 273

L2'3'4'5'6 C152T A2758G C2885T G7146A T8468C

L2'3'4'6 C195T A247G A825t T8655C A10688G C10810T G13105A T13506C G15301A A16129G T16187C C16189T

L2 T146C! C150T T152C! T2416C G8206A A9221G T10115C G13590A C16311T G16390A

L2a'b'c'd T195C! T11944C

L2a T150C! T7175C

L2a1'2'3'4 C2789T C7274T A7771G G11914A! A13803G A14566G C16294T

L2a1 T182C! A12693G T15784C A16309G

L2a1a G3918A A5285G A15244G T15629C DQ304928 L2a1a 1 1 5 7

L2a1a1 T6152C C15391T T16368C NA19266 L2a1a1 1 1

L2a1a2 C16286T JN214449 L2a1a2 1 1 2

L2a1a2a T10454C DQ304975

L2a1a2a1 C15211T NA20287

L2a1a2a1a A15421G NA19117 L2a1a2a1a 1 1 2

L2a1a2c T5492C C8841T A13615G HQ425645 L2a1a2c 1 1

L2a1a3 G143A (T16093C) EU092711

L2a1a3a T9165C EU092890 L2a1a3a 1 1 2

L2a1a3c C9449T C16256T HM771168 L2a1a3c 1 1 1 3

T16189C! (C16192T) EU092806

L2a1f A5581G DQ304959 L2a1f 2 2 1 1 6

L2a1f1 A731G DQ304961 L2a1f1 1 1 2

L2a1f2 C11692T DQ112698 L2a1f2 1 1 2

L2a1f3 C198T KC533500 L2a1f3 1 1

G143A

L2a1c G3010A A6663G EU092733 L2a1c 1 1

T16086C JQ044973

L2a1c1 C198T G930A T3308C T8604C FJ460560 L2a1c1 1 1

L2a1c1a C6311T

L2a1c1a1 T3338C JQ705046 L2a1c1a1 1 1

L2a1c2 C10903T A15924G G16213A JQ045108

L2a1c2a G513A C16193T C16239T HM771169 L2a1c2a 1 1 1 1 4

L2a1c4 A12172G JN214432

L2a1c4a T12354C DQ304942 L2a1c4a 2 2

L2a1c4a1 G5252A DQ304951 L2a1c4a1 1 1 2

G16129A! JN858955

L2a1c5 T13260C NA18908 L2a1c5 1 1

G16309A!

L2a1h A3505G T4772C C12976T EU092676 L2a1h 2 1 3

L2a1e C3495a G8790A G12630A DQ304945 L2a1e 1 1 2

L2a1e1 A143G! G8541A A14599G DQ304930 L2a1e1 3 1 2 6

T16189C! (C16192T) FJ460527

G16309A! EU092793

L2a1i T15229C T16362C JQ044958 L2a1i 1 1 2

L2a1i1 C6164T C10920T JX303853 L2a1i1 1 1 1 3

L2a1l C534T L2a1l 1 1

L2a1l1 T12408C JQ044956 L2a1l1 2 2

L2a1l1a T5580C EU092807 L2a1l1a 1 1 3 5

L2a1m A13884G JQ045040 L2a1m 2 1 3

L2a1n A4317d G5147A DQ304941 L2a1n 1 1 2

L2b'c'd C2332T

L2b'c C198T G1442A T7624a G12236A G15110A G15217A

L2b

L2b1 C418T G6026A T10828C C13924T T16362C EU092747

L2b1a C146T!! C16355T JQ044854 L2b1a 1 1

L2b1a2 A7569G EU092722 L2b1a2 1 1 2

L2b1a3 G8856A DQ304978 L2b1a3 1 1 2

L2b1b A385G A6629G FJ228403 L2b1b 1 1

L2b2 T6614C A6806G T8503C EU092692 L2b2 2 2 4

L2b3 15944.1T L2b3 1 1

L2b3a C4185T G5744A A8925G G14544A A15236G G15326A JQ702626 L2b3a 2 1 3

L2b3b T2626C EU092734 L2b3b 1 1

L2c A93G C325T T680C G709A T3200a G13928c G13958c C15849T JQ044941 L2c 2 1 3

L2c1 A16318G JQ044858 L2c1 1 1 2

L2c2 T1040C C16264T NA19229 L2c2 4 1 1 6

L2c2a G15043A DQ304988 L2c2a 1 1

L2c2b A183G

L2c2b1 T8772C T15313C

L2c2b1b T8567C A9063G T10790C T16311C! KC533455 L2c2b1b 1 1

L2c3 G513A JQ705626 L2c3 3 1 4

L2c4 C13440T JQ044914 L2c4 1 1

L2d JQ045050 L2d+16129 1 1

L3'4'6 G4104A A7521G

L3'4 T182C! T3594C T7256C T13650C T16278C

L4 T195C! G5460A T16362C

L4a C198T G3357A G10373A T11253C A11344G T11485C T12414C T13174C T14302C C16260T

L4a1 C325T T6167C C7376T G7775A A11653G T14000a A16207t FJ460531

L4a1a (C150T) G7762A T8473C A8631G DQ341064 L4b1a 1 1

L3 A769G A1018G C16311T
Total 33 17 22 19 16 17 15 9 19 167

T204C C1706T A2358G A4158G T4370C A4767G C5027T C5331a T5814C C6713T C8080T 
G8387A A12948G A14059G C16114a G16129A! G16213A

C152T!! T182C! C456T C870T T2159C C3254a A3434G G3693A C6231T G9554A A9941G C10955T T11353C 
C14845T G15777c T16189C! T16223C A16300G C16354T A1699G
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mtDNA N. Marron Colombia Brazil Fon Yoruba Bariba Ahizi Yacouba Mali Total
Example genome 43 30 39 36 32 32 22 16 23 273

L3 A769G A1018G C16311T

L3b'f T15944d

L3b C3450T G5773A T6221C C9449T A10086G A13105G! C13914a A15311G A15824G T16124C C16278T! T16362C

L3b1 G10373A

L3b1a A11002G EU092726 L3b1a 1 1 2 1 5

L3b1a1 A11800G JQ705783

L3b1a1a G15883A DQ304995 L3b1a1a 1 1

L3b1a5 T5063C JQ044986 L3b1a5 1 1

L3b1a5a G5417A NA18865 L3b1a5a 1 1

T152C! JN655790

L3b1a6 A3385G C5255T G8155A EU092958 L3b1a6 1 1 2

C16124T! EU092768

L3b1a7 A3441G C5211T A5581G T15299C JX666328

L3b1a7a G9477A DQ341073 L3b1a7a 1 1

L3b1a8 C2332T G16145A NA19222 L3b1a8 1 1

L3f T3396C T4218C T15514C T16209C

L3f1 C5601T T9950C

L3f1b A189G (A200G) T1822C C7819a A8527G C8932T G11440A A14769G T16311C! L3f1b+16292 1 1 2
L3f1b+16292+150 1 1

C16292T DQ341077

L3f1b1 C16295T JQ044831 L3f1b1 1 1 2

L3f1b1a C8410T C10070T G16129A! DQ305036 L3f1b1a 1 2 1 4

L3f1b1a1 A272G JX303774 L3f1b1a1 1 1

C150T NA19172

L3f1b3 T711C A6806G A7158G EU092883 L3f1b3 1 1

L3f1b4 A3505G

L3f1b4a A13167G T16292C! EU092865 L3f1b4a 1 1

L3f1b4a1 A8799G EU092912 L3f1b4a1 1 1

L3f1b4c C16218T EU092704 L3f1b4c 1 1

L3c'd T152C! A13105G!

L3d G5147A A7424G T8618C T13886C C14284T T16124C DQ112884

L3d1'2'3,4,5,6 T921C EU092898 L3d1'2'3'4'5'6 1 1

L3d1 T6680C

L3d1a G4048A C7648T G11887A EU092796

L3d1a1'2 G16319A

L3d1a1 G1503A

L3d1a1a C150T A4203G G5471A T10640C T10915C! JN655800 L3d1a1a 1 1

L3d1a1b T146C! T195C! T5162C G9452A C10837T G12406A A13884G G15106A EU092876 L3d1a1b 1 1 2

L3d1a2 A15061G HM771228 L3d1a2 1 1

L3d1b G5046A JQ045112

L3d1b3 T146C! T14634C G15110A JQ045051 L3d1b3 1 1 1 3

L3d1b3a C16256T JX303821 L3d1b3a 1 1 1 1 4

L3d1c A3203G T9111C A11239G C12870T A13542G A16166G EU092762

L3d1c1 A5372G A9254G EU092830 L3d1c1 2 2 4

L3d1d A7765G A9151G (C16256T) (T16368C) AY195782 L3d1d 1 1

L3d2 C14272T T14584C C16111T

L3d2b T199C JQ705019 L3d2b 1 1

L3d3 G1719A T4688C A15061G

L3d3a C3498g G8251A A10899G A11404G (T16189C) (C16278T) (T16304C) (T16311C) DQ112716

L3d3a1 A15208G JX303864 L3d3a1 1 1

L3d5 A15799G T16362C JN214479

L3d5a A7158G T12311C G15930A NA19121 L3d5a 1 1 2

L3e'i'k'x C150T A10819G

L3e T2352C T14212C

L3e1 A189G A200G T6221C C6587T A14152G T15670C T15942C C16327T EU092827 L3e1 1 1 2

L3e1a C16185T L3e1a 1 1

L3e1e T10370C JQ045096 L3e1e 2 1 3

L3e1f 8281-8289d JQ704728 L3e1f 1 1 2

L3e1f1 T16189C! HM771135

L3e1f1a A4395G C16260T HM771172 L3e1f1a 1 1

L3e1g G1442A A4844G A5498G T5618C T8093C T10490C T11318C T12215C T16172C A16399G JQ044847 L3e1g 1 1

L3e2 T195C! G14905A C16320T

L3e2a T4823C A13105G! G14869A EU092769 L3e2a 1 1 1 3

L3e2a1 C198T

L3e2a1a A1737G C3852T C7196T A15924G DQ305026 L3e2a1a 1 1

L3e2a1b T6413C DQ305029 L3e2a1b 1 2 3

L3e2a1b1 A16399G DQ305031 L3e2a1b1 1 1 2 1 5

L3e2b T16172C T16189C! DQ341071 L3e2b 1 2 1 4
L3e2b+152 2 1 1 1 5

L3e2b1 A9377G DQ305022

L3e2b1a T2483C JQ703138

L3e2b1a1 T5580C DQ305021 L3e2b1a1 1 2 3

T152C! DQ304998

L3e2b3 A6932G DQ305008 L3e2b3 2 1 3

L3e2b4 T10861C DQ305000 L3e2b4 1 1

L3e2b5 G6261A NA19238 L3e2b5 1 1

L3e3'4'5 G750A

L3e3,4 G5262A

L3e3 T195C! C2000T T6524C G9554A T10667C A10816G A13101c A16265t

L3e3b G4655A A12248G C13197T A13651G G15812A DQ305011 L3e3b 1 3 1 1 6

L3e3b3 C16465T JQ044850 L3e3b3 1 1

L3e5 T398C G8392A A16041G KF358485 L3e5 1 1

L3e5a G13317A JN214452 L3e5a 2 2

L3h T7861C G9575A

L3h1 G1719A A4388G C5300T T9509C A11590G T16311C!

L3h1b A189c T195C! A10044G G14410A C16256a

L3h1b2 C151T T152C! T294C A606G T990C A8842G T9758C C12882T T13437C G16129A! T16362C EU092736 L3h1b2 1 1
Total 10 8 15 16 16 15 7 6 4 97
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Table S8: African-American and African populations analysed in the PCA analysis based on mtDNA 

haplogroup frequencies, and grouped according historical African coastal regions. 

ID Pop Pop Name ISO code N Country
Linguistic 
affiliation Ref*

African American 414
1 African American (ASW) ASW 66 USA, Southwest - [1]
2 African American (ACB) ACB 96 Barbados - [1]
3 Aluku GUF-A 25 French Guiana - [2, 3]
4 Ndjuka GUF-N 97 French Guiana - [2, 3]
5 Paramaka GUF-P 19 French Guiana - [2, 3]
6 Saramaka GUF-S 42 French Guiana - [2, 3]
7 Noir Marron GUF 183 French Guiana - [2, 3]
8 Afro-Brazilian BRA 39 Brazil - [2]
9 Afro-Colombian COL 30 Colombia - [2]

Senegambia 656
10 Mandenka MAN1 22 Senegal Mande [4]
11 Mandenka MAD2 78 Senegal Mande [5]
12 Serer SER 23 Senegal Atlantic [6]
13 Woloff WOL 48 Senegal Atlantic [6]
14 Gambian (GWD) GWD 113 Gambia West Africa [1]

15
Baiote-Djola-Banhu-
Cassanga-Beafada BDA 50 Guinea_Bissau Atlantic [7]

16 Bijago BJG 22 Guinea_Bissau Atlantic [7]
17 Balanta BLE 62 Guinea_Bissau Atlantic [7]
18 Papel-Manjaco-Mancanha PBO 77 Guinea_Bissau Atlantic [7]
19 Fulani FUL 77 Guinea_Bissau Atlantic [7]

20
Mandinga-Mansonca-
Landoma-Jancanca-Sussu MNK 58 Guinea_Bissau Atlantic [7]

21 Nalu NAJ 26 Guinea_Bissau Atlantic [7]
Sierra Leone 362

22 Limba LIM 68 Sierra_Leone Atlantic [8]
23 Loko LOK 32 Sierra_Leone Mande [8]
24 Mende (MSL) MSL 85 Sierra Leone West Africa [1]
25 Mende MEN 55 Sierra_Leone Mande [8]
26 Temne TEM 122 Sierra_Leone Atlantic [8]

Windward Coast 192
27 Yacouba YAC 63 Ivory Coast Mande [2, 3]
28 Ahizi AHI 129 Ivory Coast Kru [2, 3]

Gold Coast 429
29 Akan AKA 191 Ghana Kwa [9]
30 Enchi, AEW GHE 20 Ghana Kwa [10]
31 Enchi, FEWR GHF 59 Ghana Kwa [10]
32 Ho GHH 87 Ghana Kwa [10]
33 Kibi GHK 51 Ghana Kwa [10]
34 Sefwi-Wiawso GHS 21 Ghana Kwa [10]

Bight of Benin 485
35 Beninese BEN-Be 58 Benin Miscellaneous [2, 3]
36 Bariba BEN-Ba 32 Benin Gur [2]
37 Yoruba BEN-Y 32 Benin Defoid [2]
38 Fon FON 92 Benin Kwa [2, 3]
39 Yoruba YOR1 22 Nigeria Defoid [4]
40 Yoruba YOR2 34 Nigeria Defoid [11]
41 Yoruba_N (YRI) YRI 116 Nigeria Defoid [1]
42 Esan (ESN) ESN 99 Nigeria Edoid [1]
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ID Pop Pop Name ISO code N Country
Linguistic 
affiliation Ref*

Bight of Biafra 2,714
43 Afaha Obong ANA 37 Nigeria Obolo [10]
44 Ediene Abak ANE 26 Nigeria Obolo [10]
45 Ikot Obioma ANI 44 Nigeria Obolo [10]
46 Efut, Eniong EFE 49 Nigeria Obolo [10]
47 Efut, Ikot EFI 48 Nigeria Obolo [10]
48 Uwanse EFO 48 Nigeria Obolo [10]
49 Akampka EKA 17 Nigeria Ekoid [10]
50 Calabar EKC 28 Nigeria Ekoid [10]
51 Ikom EKI 38 Nigeria Ekoid [10]
52 Akampka EKN 50 Nigeria Ekoid [10]
53 Afaha Eket IAE 50 Nigeria Obolo [10]
54 Awa IBA 28 Nigeria Obolo [10]
55 Itam IBI 48 Nigeria Obolo [10]
56 Oku IBO 48 Nigeria Obolo [10]
57 Idoma IDO 37 Nigeria Idomoid [12]
58 Edienne Ikono IEI 49 Nigeria Obolo, Efik [10]
59 Igala IGA 41 Nigeria Defoid [12]
60 Calabar IGC 96 Nigeria Igbo [10]
61 Enugu IGE 54 Nigeria Igbo [10]
62 Nenwe IGN 50 Nigeria Igbo [10]
63 Ntan Ibiono INI 50 Nigeria Obolo [10]
64 Nnung Ndem INN 50 Nigeria Obolo [10]
65 Oku-Iboku IOI 50 Nigeria Obolo [10]
66 Obong Itam ITA 50 Nigeria Obolo [10]
67 Ukpom Ette IUE 50 Nigeria Obolo [10]
68 Western Nsit IWN 36 Nigeria Obolo [10]
69 Afaha Okpo OAO 28 Nigeria Obolo [10]
70 Afaha Ukwong OAU 70 Nigeria Obolo [10]
71 Tiv TIV 51 Nigeria Tivoid [12]
72 Bakaka BAK 50 Cameroon Narrow Bantu [13]
73 Bamileke BAM 48 Cameroon Narrow Grassfields [14]
74 Foumban CAF 107 Cameroon Narrow Grassfields [10]
75 Wum CAW 115 Cameroon Narrow Grassfields [10]
76 Bankim CBT 34 Cameroon Tikar [10]
77 Bassa BAS 47 Cameroon Narrow Bantu [13]
78 Ewondo EWO 53 Cameroon Narrow Bantu [14]
79 Fang FAC 39 Cameroon Narrow Bantu [15]
80 Tupuri TUP 26 Cameroon Adamawa [13]
81 Fang FAG 66 Gabon Narrow Bantu [15]
82 Benga BEN 50 Gabon Narrow Bantu [15]
83 Beti BET 48 Gabon Narrow Bantu [12]
84 Duma DUM 47 Gabon Narrow Bantu [15]
85 Ewondo EWD 25 Gabon Narrow Bantu [15]
86 Galoa GAL 51 Gabon Narrow Bantu [15]
87 Eshira GIS 40 Gabon Narrow Bantu [15]
88 Akele KEL 48 Gabon Narrow Bantu [15]
89 Kota KOT 56 Gabon Narrow Bantu [15]
90 Makina MAK1 45 Gabon Narrow Bantu [15]
91 Ngoumba NGO 44 Gabon Narrow Bantu [16]
92 Ngumba NGU1 88 Gabon Narrow Bantu [15]
93 Obamba OBA 47 Gabon Narrow Bantu [15]
94 Orungu ORU 20 Gabon Narrow Bantu [15]
95 Sanga SAN 30 Gabon Narrow Bantu [16]
96 Shake SHA1 51 Gabon Narrow Bantu [15]
97 Tali TAL 20 Gabon Adamawa [13]
98 Tsogo TSO 64 Gabon Narrow Bantu [15]
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Table S9: Age estimated and confidence intervals for the mtDNA clades analysed in the phylogenetic 

tree and calculated by using three calibration methods. 
 

 

Haplogroup N Rho  Total Rho  Synonymous Maximum Likelihood
L0a1a+200 3 12,484 [7,557;17,545] 8,651 [6,472;10,829] 13,041 [8,944;17,228]
L0a1a1 1 12,261 [5,789;18,968] 14,191 [2,222;26,161] 13,041 [3,670;22,904]
L0a1a2 7 8,137 [6,019;10,282] 8,063 [5,506;10,620] 8,680 [6,201;11,195]
L0a1a3 1 14,067 [7,095;21,302] 17,739 [4,926;30,552] 10,081 [5,352;14,940]
L0a1b1a1 1 5,012 [2,857;7,197] 5,761 [1,435;10,088] 6,270 [3,137;9,465]
L0a2a2a 2 5,715 [3,666;7,790] 4,928 [1,652;8,203] 5,971 [3,649;8,328]
L0a2a2a1 1 6,816 [2,074;11,699] 1,577 [0;4,667] 4,427 [1,899;6,997]
L0d1b2a1 1 5,101 [0;10,561] 1,714 [0;3,729] 3,896 [246;7,635]
L0f1 1 72,328 [52,818;92,601] 92,637 [60,085;125,189] 81,456 [60,987;102,654]
L1b1a 1 11,725 [8,821;14,674] 13,806 [9,415;18,197] 13,744 [10,973;16,555]
L1b1a15 2 10,219 [5,505;15,062] 12,389 [5,068;19,711] 8,574 [3,953;13,322]
L1b1a3 2 5,337 [2,932;7,779] 8,780 [2,238;15,322] 4,841 [3,282;6,416]
L1b1a3a 1 4,687 [1,926;7,497] 7,884 [821;14,947] 3,799 [2,132;5,485]
L1b1a3a1 1 3,021 [479;5,606] 1,314 [0;3,889] 2,583 [577;4,615]
L1b1a4 2 7,742 [4,907;10,626] 8,760 [3,196;14,324] 8,385 [5,092;11,742]
L1b1a7 4 7,892 [3,777;12,109] 4,852 [734;8,969] 8,511 [2,937;14,272]
L1b1a9 3 9,246 [6,074;12,477] 10,512 [4,472;16,552] 9,330 [5,776;12,958]
L1b2 1 18,061 [9,968;26,482] 8,760 [4,554;12,966] 19,457 [9,900;29,461]
L1b2a 4 7,667 [3,755;11,673] 6,570 [1,752;11,388] 9,900 [5,001;14,938]
L1c1a+@198 1 57,244 [40,081;75,154] 52,433 [29,015;75,852] 55,051 [43,148;67,320]
L1c1a2 2 14,966 [7,683;22,531] 27,312 [9,730;44,895] 16,416 [8,851;24,276]
L1c1b 1 28,257 [17,464;39,533] 39,420 [19,141;59,699] 30,296 [18,561;42,580]
L1c1c 4 40,950 [25,735;56,938] 44,676 [19,973;69,379] 38,286 [26,856;50,166]
L1c1d 2 34,110 [22,535;46,183] 49,056 [26,802;71,310] 46,126 [31,906;60,959]
L1c2a1a 1 2,893 [1,279;4,524] 0 [0;0] 3,922 [1,780;6,093]
L1c2a3 1 22,618 [10,628;35,276] 27,594 [3,780;51,408] 22,339 [13,658;31,366]
L1c3a 2 20,447 [15,063;25,968] 22,338 [15,403;29,273] 20,324 [14,891;25,895]
L1c3a1a 1 15,234 [8,983;21,689] 17,082 [7,107;27,057] 14,912 [7,775;22,320]
L1c3a1b 2 15,367 [9,176;21,759] 18,021 [7,206;28,835] 14,912 [9,254;20,739]
L1c3b1a 1 6,358 [2,965;9,822] 6,758 [1,350;12,165] 8,197 [3,826;12,682]
L1c3b1b 1 10,154 [5,577;14,852] 13,140 [4,218;22,062] 11,940 [6,861;17,163]
L1c3b2 1 13,371 [7,089;19,867] 11,826 [2,363;21,289] 15,108 [7,228;23,318]
L1c3c 1 6,549 [793;12,514] 3,942 [0;11,668] 8,448 [281;17,026]
L1c5 2 6,549 [1,390;11,875] 3,942 [0;9,405] 5,828 [0;15,173]
L2a1a 7 11,163 [7,774;14,616] 12,647 [8,045;17,249] 7,646 [5,484;9,836]
L2a1a1 1 6,063 [4,073;8,078] 7,167 [3,726;10,608] 5,805 [3,668;7,972]
L2a1a2 2 8,406 [5,558;11,303] 11,638 [5,342;17,935] 6,539 [4,866;8,229]
L2a1a2a1a 2 6,459 [3,233;9,750] 5,256 [1,687;8,825] 4,530 [666;8,491]
L2a1a2c 1 6,103 [1,558;10,780] 5,256 [0;12,540] 3,866 [1,290;6,485]
L2a1a3a 2 7,507 [2,811;12,339] 5,631 [695;10,568] 4,954 [732;9,292]
L2a1a3c 3 9,586 [3,205;16,208] 10,841 [3,360;18,321] 5,136 [1,838;8,504]
L2a1c 1 19,885 [13,936;26,002] 20,361 [14,098;26,625] 17,080 [12,304;21,970]
L2a1c1 1 11,043 [6,808;15,380] 18,258 [7,716;28,799] 10,193 [6,671;13,787]
L2a1c1a1 1 9,518 [4,811;14,355] 12,614 [2,841;22,388] 7,153 [2,988;11,425]
L2a1c2a 4 8,307 [5,421;11,243] 8,490 [3,175;13,806] 8,759 [4,791;12,822]
L2a1c4a 2 4,905 [2,677;7,164] 8,812 [3,135;14,488] 5,744 [3,020;8,516]
L2a1c4a1 2 4,159 [1,264;7,108] 7,884 [973;14,795] 3,444 [876;6,057]
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Haplogroup N Rho  Total Rho  Synonymous Maximum Likelihood
L2a1c5 1 3,895 [2,139;5,672] 2,816 [348;5,284] 4,046 [1,700;6,429]
L2a1e 2 15,404 [7,193;23,971] 24,010 [5,229;42,792] 11,135 [5,194;17,277]
L2a1e1 6 8,643 [5,275;12,078] 11,388 [4,850;17,926] 7,522 [3,113;12,051]
L2a1f 6 7,892 [5,434;10,386] 8,070 [5,678;10,461] 6,111 [4,324;7,917]
L2a1f1 2 8,714 [5,985;11,488] 13,026 [7,092;18,959] 5,805 [4,022;7,609]
L2a1f2 2 7,892 [2,899;13,037] 6,307 [126;12,488] 4,893 [0;10,331]
L2a1f3 1 1,719 [34;3,422] 0 [0;0] 588 [0;179,158]
L2a1h 3 15,608 [5,161;26,637] 25,229 [4,268;46,190] 13,606 [4,825;22,811]
L2a1i 2 8,680 [4,427;13,041] 9,527 [1,881;17,172] 10,507 [6,018;15,111]
L2a1i1 3 5,458 [1,574;9,439] 2,867 [57;5,676] 4,772 [0;9,838]
L2a1l 1 12,038 [7,699;16,482] 10,916 [3,167;18,665] 11,387 [8,083;14,752]
L2a1l1 2 11,067 [6,782;15,456] 9,198 [3,659;14,737] 10,319 [6,914;13,789]
L2a1l1a 5 6,549 [3,697;9,451] 5,068 [1,408;8,729] 7,646 [3,586;11,806]
L2a1m 2 7,219 [3,615;10,903] 12,483 [3,287;21,679] 8,884 [4,913;12,949]
L2a1m1a 1 6,281 [2,148;10,522] 7,884 [973;14,795] 6,050 [2,031;10,171]
L2a1n 2 7,555 [3,810;11,385] 2,957 [0;6,302] 6,968 [2,107;11,977]
L2b1a 1 12,780 [9,338;16,286] 15,433 [7,487;23,378] 17,210 [13,177;21,323]
L2b1a2 2 17,458 [11,794;23,282] 21,502 [11,974;31,030] 15,014 [10,657;19,469]
L2b1a3 2 4,015 [2,538;5,506] 2,867 [646;5,088] 4,530 [2,527;6,559]
L2b1b 1 11,395 [6,030;16,922] 11,263 [3,003;19,523] 14,372 [7,355;21,654]
L2b2 4 20,036 [13,684;26,581] 23,089 [12,218;33,960] 22,936 [15,358;30,774]
L2b3 1 - - -
L2b3a+207 3 8,383 [4,207;12,664] 5,017 [803;9,231] 8,387 [3,601;13,312]
L2b3b 1 11,709 [5,520;18,116] 6,307 [126;12,488] 16,367 [5,652;27,686]
L2c 4 17,254 [13,966;20,595] 15,837 [12,189;19,484] 20,549 [16,450;24,725]
L2c1 2 16,800 [10,300;23,514] 15,768 [4,509;27,027] 15,142 [9,801;20,633]
L2c2 5 13,623 [9,819;17,505] 17,440 [9,818;25,063] 14,500 [10,156;18,945]
L2c2a 1 11,434 [4,887;18,226] 6,307 [954;11,660] 9,693 [4,276;15,284]
L2c2b1b 1 6,995 [1,547;12,629] 5,256 [0;12,540] 3,986 [482;7,572]
L2c3 4 13,370 [9,189;17,646] 12,389 [5,767;19,012] 14,629 [8,936;20,493]
L2c4 1 10,953 [6,215;15,818] 18,725 [7,297;30,152] 19,824 [15,487;24,250]
L2d+16129 1 18,727 [10,830;26,931] 24,835 [7,960;41,709] 16,367 [9,152;23,851]
L3b1a 5 13,244 [10,897;15,621] 13,761 [9,838;17,685] 16,308 [12,735;19,947]
L3b1a1a 1 3,794 [730;6,921] 1,819 [0;3,878] 13,531 [8,205;19,011]
L3b1a5 1 11,709 [7,439;16,081] 14,191 [6,312;22,071] 14,404 [10,026;18,883]
L3b1a5a 1 6,103 [1,558;10,780] 2,628 [0;7,779] 9,228 [2,959;15,732]
L3b1a6 2 6,549 [2,357;10,851] 6,899 [1,104;12,693] 6,765 [3,245;10,363]
L3b1a7a 1 6,103 [1,558;10,780] 7,884 [0;16,806] 6,905 [2,181;11,769]
L3b1a8 1 9,699 [3,895;15,703] 10,512 [210;20,814] 11,295 [5,627;17,146]
L3d1-6 1 28,388 [22,594;34,317] 0 [0;0] 33,512 [26,771;40,420]
L3d1a1a 1 3,632 [1,348;5,952] 6,307 [954;11,660] 3,996 [1,197;6,846]
L3d1a1b 2 3,895 [770;7,085] 1,971 [0;5,834] 4,202 [83;8,433]
L3d1a2 1 15,233 [7,404;23,388] 13,140 [1,622;24,658] 19,199 [10,189;28,608]
L3d1b3 3 12,943 [5,783;20,388] 23,652 [8,199;39,105] 12,879 [0;33,546]
L3d1b3a 4 11,359 [4,957;17,995] 26,519 [8,365;44,673] 12,879 [6,612;19,363]
L3d1c1 4 6,549 [4,021;9,116] 5,913 [1,642;10,184] 8,945 [4,835;13,154]
L3d1d 1 11,526 [4,263;19,090] 13,140 [0;27,246] 18,528 [8,993;28,518]
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* L4b1a haplogroup ages estimated in Fernandes et al. (2015) .

Haplogroup N Rho Total Rho Synonymous Maximum Likelihood
L3d2 1 13,185 [9,000;17,466] 12,614 [6,099;19,130] 19,124 [12,224;26,256]
L3d3a1 1 4,015 [395;7,722] 1,433 [0;3,420] 4,477 [219;8,854]
L3d5a 2 11,002 [3,373;18,968] 13,515 [0;29,434] 10,579 [533;21,227]
L3e1 2 17,384 [13,317;21,534] 16,237 [10,308;22,167] 18,380 [13,485;23,392]
L3e1a 1 18,025 [9,786;26,603] 20,013 [8,008;32,018] 16,972 [11,266;22,842]
L3e1e 3 7,402 [3,198;11,714] 5,734 [0;12,016] 10,508 [4,460;16,768]
L3e1f 2 - - -
L3e1f1a 1 4,334 [528;8,236] 0 [0;0] 4,546 [0;11,438]
L3e1g 1 6,103 [1,558;10,780] 2,628 [0;7,779] 5,236 [562;10,052]
L3e2a 3 14,083 [8,498;19,835] 16,318 [6,722;25,914] 15,427 [10,465;20,517]
L3e2a1a 1 4,554 [1,167;8,017] 7,884 [158;15,610] 4,891 [1,016;8,863]
L3e2a1b 3 8,567 [4,086;13,169] 6,570 [3,043;10,097] 8,591 [2,746;14,643]
L3e2a1b1 5 6,740 [1,952;11,671] 4,505 [1,383;7,627] 6,138 [2,632;9,722]
L3e2b 4 10,519 [7,531;13,557] 12,264 [7,457;17,071] 12,662 [9,574;15,803]
L3e2b+152 5 5,942 [4,086;7,819] 9,795 [5,183;14,407] 7,255 [4,938;9,605]
L3e2b1a1 3 9,699 [4,377;15,189] 13,140 [0;26,328] 8,874 [5,308;12,515]
L3e2b3 3 4,838 [1,812;7,923] 4,505 [90;8,920] 5,305 [2,216;8,456]
L3e2b4 1 3,457 [0;7,713] 10,512 [0;23,129] 4,064 [80;8,154]
L3e2b5 1 10,610 [3,182;18,361] 7,884 [0;18,811] 6,068 [2,831;9,372]
L3e3b 6 7,339 [4,966;9,746] 7,278 [4,710;9,845] 8,098 [4,684;11,582]
L3e3b3 1 9,246 [3,112;15,603] 13,797 [2,208;25,386] 6,905 [3,114;10,785]
L3e5 1 11,352 [8,383;14,370] 10,441 [4,232;16,650] 12,662 [8,603;16,812]
L3e5a 2 9,617 [5,491;13,841] 5,734 [1,291;10,176] 9,938 [5,941;14,028]
L3f1b 2 13,408 [9,096;17,820] 13,744 [6,223;21,264] 14,112 [10,440;17,857]
L3f1b+150 1 13,989 [8,633;19,500] 14,016 [5,963;22,069] 13,024 [9,233;16,892]
L3f1b1 2 10,976 [3,491;18,785] 17,082 [0;34,708] 8,168 [3,944;12,501]
L3f1b1a 4 4,444 [2,613;6,298] 4,271 [1,949;6,592] 5,098 [2,945;7,280]
L3f1b1a1 1 857 [0;2,052] 1,314 [0;3,889] 1,073 [0;2,798]
L3f1b3 1 9,246 [4,001;14,654] 9,855 [0;20,076] 9,086 [4,973;13,299]
L3f1b4a 1 7,443 [3,283;11,709] 14,454 [3,835;25,073] 7,746 [3,667;11,927]
L3f1b4a1 1 4,334 [528;8,236] 5,256 [0;12,540] 5,029 [624;9,560]
L3f1b4c 1 2,585 [0;6,444] 0 [0;0] 4,271 [0;12,703]
L3h1b2 1 18,299 [11,780;25,027] 13,797 [4,737;22,857] 25,022 [15,041;35,440]
L4b1a * 1 17,114 [10,071;24,409] 24,928 [9,286;40,570] 16,914 [10,581;23,450]
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C. Supplementary material of genome-wide SNP data 

Table S10: List of populations from different worldwide geographical regions included in 

PCA analysis. 

Figure S4: Plot of residual fit between each pair of African-American and African 

populations analysed in the maximum likelihood tree (Figure 66). 

Table S11: Three-population test calculated for Noir Marron communities. The f 3-statistics 

and Z-score values show not admixture events with European and Native 

American populations from the 1000 Genomes Project (1000 Genomes Project 

Consortium, 2015). 

Table S12: Three-population test calculated for African American from the U.S. (ASW), 

Barbados (ACB), Colombia, and Brazil. The negative f 3-statistics and Z-score 

values show the robustness of the signal of admixture with European and Native 

American populations from the 1000 Genomes Project (1000 Genomes Project 

Consortium, 2015). 

Table S13: Mean individual ancestry proportions and standard deviation of African 

American (AAM), African (AFR), Native American (NAM), and European 

(EUR) ancestries estimated by using ADMIXTURE analysis at K-groups= 3 

(Figure 69). 

************************************* 
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Table S10: List of populations from different worldwide geographical regions included in PCA analysis. 
Order Id Population Continent Region Dataset Abbreviation N 

1 Noir Maroon America South America Present study noi 71 
2 AfroBrazilian America South America Present study AfB 16 
3 AfroColombian America South America Present study AfC 20 
4 Fon Africa West Africa Present study fon 19 
5 Bariba Africa West Africa Present study bar 25 
6 Yoruba_Benin Africa West Africa Present study yoB 24 
7 Ahizi Africa West Africa Present study ahz 20 
8 Yacouba Africa West Africa Present study yac 17 
9 Bwa Africa West Africa Present study bwa 20 

10 San Africa South Africa HGDP san 5 
11 Bantu_South Africa Africa South Africa HGDP bSA 8 
12 Mbuti_Pygmy Africa Central Africa HGDP mbP 13 
13 Biaka_Pygmy Africa Central Africa HGDP biP 21 
14 Mandenka Africa West Africa HGDP mdk 22 
15 Yoruba_Nigeria Africa West Africa HGDP yoA 21 
16 Bantu_Kenya Africa East Africa HGDP bKe 11 
17 Mozabite Africa North Africa HGDP moz 29 
18 Bedouin Asia Middle East HGDP bed 46 
19 Druze Asia Middle East HGDP drz 42 
20 Palestinian Asia Middle East HGDP pal 46 
21 North Italian Europe South Europe HGDP itN 12 
22 Tuscan Europe South Europe HGDP tus 8 
23 Sardinian Europe South Europe HGDP sar 28 
24 Basque Europe South Europe HGDP bas 24 
25 French Europe West Europe HGDP fre 28 
26 Orcadian Europe West Europe HGDP orc 15 
27 NW Russian Europe East Europe HGDP ruN 25 
28 Adygei Europe North Caucasus HGDP ady 17 
29 Uygur Asia Central Asia HGDP uyg 10 
30 Hazara Asia Central Asia HGDP haz 22 
31 Burusho Asia Central Asia HGDP bur 25 
32 Balochi Asia Central Asia HGDP bao 24 
33 Brahui Asia Central Asia HGDP bra 25 
34 Kalash Asia Central Asia HGDP kal 23 
35 Makrani Asia Central Asia HGDP mak 25 
36 Pathan Asia Central Asia HGDP pat 22 
37 Sindhi Asia Central Asia HGDP sin 24 
38 Cambodian Asia South East Asia HGDP cam 10 
39 Dai Asia East Asia HGDP dai 10 
40 Daur Asia East Asia HGDP dau 9 
41 Han Asia East Asia HGDP han 34 
42 Han-NChina Asia East Asia HGDP haC 10 
43 Hezhen Asia East Asia HGDP hez 8 
44 Lahu Asia East Asia HGDP lah 8 
45 Miao Asia East Asia HGDP mia 10 
46 Naxi Asia East Asia HGDP nax 8 
47 Oroqen Asia East Asia HGDP oro 9 
48 She Asia East Asia HGDP she 10 
49 Tu Asia East Asia HGDP tu 10 
50 Tujia Asia East Asia HGDP tuj 10 
51 Xibo Asia East Asia HGDP xib 9 
52 Yi Asia East Asia HGDP yi 10 
53 Japanese Asia East Asia HGDP jap 28 
54 Mongolians Asia East Asia HGDP mon 10 
55 Yakut Asia Siberia HGDP yak 25 
56 Maya America North America HGDP may 21 
57 Pima America North America HGDP pim 14 
58 Colombian America South America HGDP col 7 
59 Karitiana America South America HGDP kar 14 
60 Surui America South America HGDP sur 8 
61 Melanesian Oceania Oceania HGDP mel 10 
62 Papuan Oceania Oceania HGDP pap 17 
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Figure S4: Plot of residual fit between each pair of African-American and African populations 

analysed in the maximum likelihood tree (Figure 66). Each cell represents the residual 

covariance between each pair of populations the average standard error across all pairs this 

scaled residual. Colours are described in the palette covariance on the right. Residuals above 

zero represent populations that are more closely related to each other in the data than in the best-

fit tree, and are therefore candidates for admixture events. 
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Table S11: Three-population test calculated for Noir Marron communities. The f 3-statistics and Z-

score values show not admixture events with European and Native American populations from the 1000 

Genomes Project (1000 Genomes Project Consortium, 2015). 
 

 

European African f 3 Z-score f 3 Z-score f 3 Z-score f 3 Z-score
GBR GWD 0.0020 43.0363 0.0015 33.6832 0.0036 32.4423 0.0019 37.7926
GBR MSL 0.0015 33.3470 0.0010 23.0279 0.0031 28.2439 0.0014 29.9837
GBR Bwa 0.0016 30.0187 0.0010 18.7617 0.0031 26.5568 0.0014 25.4526
GBR Ahizi 0.0013 25.5767 0.0007 16.1918 0.0029 25.2714 0.0012 22.6978
GBR Yacouba 0.0014 26.3986 0.0008 16.4768 0.0028 24.0983 0.0012 23.4481
GBR Fon 0.0013 26.3592 0.0008 16.5222 0.0029 25.7610 0.0011 22.7496
GBR Bariba 0.0015 30.1333 0.0010 20.5551 0.0031 27.2259 0.0013 25.6474
GBR Yoruba_B 0.0014 27.4087 0.0008 17.5551 0.0030 26.4179 0.0012 24.5194
GBR YRI 0.0015 31.6947 0.0009 20.6992 0.0030 27.1190 0.0013 27.3598
GBR ESN 0.0015 31.9303 0.0009 22.0846 0.0030 27.6661 0.0013 27.4032
GBR LWK 0.0025 48.7209 0.0019 42.0746 0.0041 35.5139 0.0023 45.5454
GBR Bantu_S.Africa 0.0020 39.0348 0.0014 32.2427 0.0036 31.3523 0.0018 36.0526
IBS GWD 0.0021 43.7054 0.0015 34.4794 0.0036 32.9638 0.0020 38.5500
IBS MSL 0.0015 33.6593 0.0010 23.0400 0.0031 28.3927 0.0014 29.9914
IBS Bwa 0.0016 30.4270 0.0010 19.3158 0.0032 26.9374 0.0014 26.1069
IBS Ahizi 0.0013 25.3633 0.0007 16.1588 0.0029 25.3661 0.0012 22.5701
IBS Yacouba 0.0014 26.5870 0.0008 16.4431 0.0028 24.1493 0.0012 23.6610
IBS Fon 0.0014 26.6341 0.0008 16.6745 0.0029 25.8072 0.0011 22.5164
IBS Bariba 0.0016 30.4172 0.0010 20.8519 0.0031 27.5373 0.0013 25.6166
IBS Yoruba_B 0.0014 27.6587 0.0008 18.0113 0.0030 26.6993 0.0012 24.9550
IBS YRI 0.0015 31.9489 0.0009 21.1243 0.0030 27.3935 0.0013 27.8003
IBS ESN 0.0015 32.0102 0.0009 22.3827 0.0031 27.9191 0.0013 27.6524
IBS LWK 0.0025 49.2431 0.0020 42.8589 0.0041 35.7492 0.0023 46.4931
IBS Bantu_S.Africa 0.0020 39.2906 0.0014 32.2828 0.0036 31.4466 0.0018 36.2694
TSI GWD 0.0021 43.4532 0.0015 33.9018 0.0036 32.7917 0.0020 38.5456
TSI MSL 0.0015 33.7630 0.0010 22.9242 0.0031 28.2751 0.0014 30.2806
TSI Bwa 0.0016 30.6554 0.0010 18.8216 0.0031 26.7040 0.0014 25.6672
TSI Ahizi 0.0013 25.7413 0.0007 16.2179 0.0029 25.2887 0.0012 23.0907
TSI Yacouba 0.0014 27.0281 0.0008 16.3232 0.0028 24.0438 0.0012 23.7771
TSI Fon 0.0014 27.1337 0.0008 16.7036 0.0029 25.8030 0.0011 22.9518
TSI Bariba 0.0016 30.8209 0.0010 20.5192 0.0031 27.4753 0.0014 26.0445
TSI Yoruba_B 0.0014 27.6198 0.0008 17.6107 0.0030 26.4726 0.0012 24.6823
TSI YRI 0.0015 32.3367 0.0009 20.8518 0.0030 27.3217 0.0013 27.7749
TSI ESN 0.0015 32.2479 0.0009 22.0010 0.0030 27.8042 0.0013 27.6794
TSI LWK 0.0025 49.7086 0.0020 43.2052 0.0041 35.8416 0.0024 46.9537
TSI Bantu_S.Africa 0.0020 39.6610 0.0014 32.4624 0.0036 31.3355 0.0018 36.7265

Mean f 3 -stat ± S.D. 0.0016 ± 0.0003 0.0011 ± 0.0004 0.0032 ± 0.0004 0.0015 ± 0.0004

Native American African f 3 Z-score f 3 Z-score f 3 Z-score f 3 Z-score
PEL GWD 0.0019 37.2305 0.0014 30.7767 0.0035 32.0951 0.0017 31.5473
PEL MSL 0.0015 31.1465 0.0010 22.8814 0.0030 28.8127 0.0013 25.8156
PEL Bwa 0.0015 27.0681 0.0010 18.6648 0.0031 26.0908 0.0012 21.3349
PEL Ahizi 0.0013 22.3232 0.0008 15.4973 0.0029 25.2181 0.0011 18.4047
PEL Yacouba 0.0014 23.5881 0.0008 15.9526 0.0028 23.9612 0.0011 19.2866
PEL Fon 0.0014 23.6822 0.0008 16.6391 0.0029 25.5607 0.0010 18.2697
PEL Bariba 0.0015 27.4909 0.0010 19.9226 0.0030 27.3451 0.0012 21.5618
PEL Yoruba_B 0.0014 24.4941 0.0008 17.5663 0.0029 26.7770 0.0011 20.0760
PEL YRI 0.0015 28.7960 0.0009 21.6899 0.0030 27.7634 0.0011 23.7233
PEL ESN 0.0015 29.4817 0.0010 22.9935 0.0031 28.0332 0.0012 23.0666
PEL LWK 0.0023 41.5689 0.0017 38.4919 0.0038 34.0719 0.0020 36.8471
PEL Bantu_S.Africa 0.0019 34.9240 0.0014 29.3484 0.0035 31.2280 0.0016 29.7763

Mean f 3 -stat ± S.D. 0.0016 ± 0.0003 0.0010 ± 0.0003 0.0031 ± 0.0003 0.0013 ± 0.0003

Aluku

Saramaka

Saramakaf 3 -stat (AfrAme;European,African)

f 3 -stat (AfrAme;NativeAme,African)

Ndjuka Paramaka

Aluku Ndjuka Paramaka
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Table S12: Three-population test calculated for African American from the U.S. (ASW), Barbados 

(ACB), Colombia, and Brazil. The negative f 3-statistics and Z-score values show the robustness of the 

signal of admixture with European and Native American populations from the 1000 Genomes Project 

(1000 Genomes Project Consortium, 2015). 

European African f 3 Z-score f 3 Z-score f 3 Z-score f 3 Z-score
GBR GWD -0.0024 -101.2930 -0.0012 -52.0331 -0.0025 -57.3840 -0.0016 -39.7961
GBR MSL -0.0028 -123.0140 -0.0016 -80.3732 -0.0028 -68.8244 -0.0019 -52.8988
GBR Bwa -0.0027 -87.8769 -0.0016 -55.2751 -0.0028 -58.4726 -0.0019 -44.1308
GBR Ahizi -0.0028 -96.3049 -0.0017 -62.2022 -0.0029 -66.1339 -0.0021 -51.8970
GBR Yacouba -0.0028 -102.9420 -0.0017 -60.9063 -0.0029 -63.9994 -0.0021 -49.3526
GBR Fon -0.0028 -107.1220 -0.0018 -74.1389 -0.0030 -69.7506 -0.0021 -54.4996
GBR Bariba -0.0027 -101.5780 -0.0016 -65.4074 -0.0029 -69.8399 -0.0020 -49.2629
GBR Yoruba_B -0.0028 -109.6270 -0.0017 -74.4049 -0.0030 -72.1923 -0.0021 -53.0172
GBR YRI -0.0028 -133.3480 -0.0017 -96.2047 -0.0030 -77.1022 -0.0020 -56.0350
GBR ESN -0.0028 -131.3270 -0.0017 -94.2998 -0.0030 -79.0660 -0.0020 -54.9398
GBR LWK -0.0021 -88.7706 -0.0007 -31.7597 -0.0025 -59.9572 -0.0011 -27.9950
GBR Bantu_S.Africa -0.0024 -94.3819 -0.0011 -45.7313 -0.0029 -72.2002 -0.0015 -37.8224
IBS GWD -0.0023 -95.8825 -0.0011 -48.3291 -0.0024 -55.3191 -0.0014 -37.2928
IBS MSL -0.0026 -121.8930 -0.0016 -80.9161 -0.0027 -68.1282 -0.0019 -51.1155
IBS Bwa -0.0025 -85.2394 -0.0015 -54.5193 -0.0027 -57.3311 -0.0018 -41.8964
IBS Ahizi -0.0027 -96.0147 -0.0017 -61.3558 -0.0028 -65.4829 -0.0020 -50.9846
IBS Yacouba -0.0027 -101.0630 -0.0016 -60.8793 -0.0029 -62.6209 -0.0020 -47.6295
IBS Fon -0.0027 -103.9220 -0.0017 -71.0289 -0.0029 -69.0183 -0.0020 -52.1512
IBS Bariba -0.0025 -97.5835 -0.0015 -62.4013 -0.0028 -68.2725 -0.0019 -48.2241
IBS Yoruba_B -0.0027 -108.5380 -0.0017 -74.7802 -0.0029 -72.4312 -0.0020 -51.7145
IBS YRI -0.0027 -134.4440 -0.0017 -96.9901 -0.0029 -76.4063 -0.0019 -54.7289
IBS ESN -0.0027 -131.0720 -0.0017 -94.9818 -0.0029 -77.8095 -0.0019 -53.1647
IBS LWK -0.0019 -85.3005 -0.0006 -28.9490 -0.0024 -58.4878 -0.0010 -25.8531
IBS Bantu_S.Africa -0.0023 -93.7295 -0.0011 -44.3079 -0.0029 -71.5575 -0.0015 -36.5806
TSI GWD -0.0023 -95.4958 -0.0011 -48.1114 -0.0024 -55.3226 -0.0014 -36.9791
TSI MSL -0.0026 -123.3670 -0.0016 -80.8774 -0.0027 -67.3789 -0.0019 -50.7119
TSI Bwa -0.0025 -85.3769 -0.0015 -53.8069 -0.0028 -56.7490 -0.0018 -42.7177
TSI Ahizi -0.0026 -93.7285 -0.0017 -60.1206 -0.0028 -65.3311 -0.0020 -49.3873
TSI Yacouba -0.0027 -101.6540 -0.0016 -60.3181 -0.0029 -62.4999 -0.0020 -47.4195
TSI Fon -0.0026 -103.0530 -0.0017 -70.1490 -0.0029 -68.7815 -0.0020 -50.6465
TSI Bariba -0.0025 -97.9317 -0.0015 -62.0178 -0.0028 -66.8603 -0.0019 -47.4871
TSI Yoruba_B -0.0027 -107.8430 -0.0017 -73.1122 -0.0030 -71.6396 -0.0020 -50.6947
TSI YRI -0.0027 -135.2320 -0.0017 -95.5223 -0.0029 -75.3622 -0.0019 -54.0670
TSI ESN -0.0027 -132.0320 -0.0017 -93.2117 -0.0030 -77.2020 -0.0019 -52.4637
TSI LWK -0.0019 -80.4798 -0.0006 -26.9093 -0.0024 -56.8407 -0.0010 -24.3083
TSI Bantu_S.Africa -0.0023 -91.4596 -0.0011 -43.3425 -0.0029 -71.7031 -0.0014 -35.9604

Mean f 3 -stat ± S.D. -0.0026 ± 0.0002 -0.0015 ± 0.0003 -0.0028 ± 0.0002 -0.0018 ± 0.0003

Native American African f 3 Z-score f 3 Z-score f 3 Z-score f 3 Z-score
PEL GWD -0.0019 -82.3903 -0.0007 -30.9320 -0.0020 -39.5840 -0.0029 -59.2309
PEL MSL -0.0022 -91.4601 -0.0010 -48.2809 -0.0022 -44.6943 -0.0031 -65.9901
PEL Bwa -0.0021 -63.4344 -0.0010 -31.2226 -0.0023 -39.7153 -0.0032 -57.2767
PEL Ahizi -0.0022 -71.2173 -0.0011 -38.3628 -0.0024 -42.5206 -0.0033 -62.8414
PEL Yacouba -0.0022 -65.0234 -0.0011 -33.9567 -0.0024 -42.2862 -0.0033 -61.0965
PEL Fon -0.0022 -76.4036 -0.0011 -44.4963 -0.0024 -47.7313 -0.0033 -65.1103
PEL Bariba -0.0021 -75.1697 -0.0010 -39.1350 -0.0023 -45.8644 -0.0032 -63.7588
PEL Yoruba_B -0.0022 -77.8068 -0.0011 -43.3226 -0.0024 -46.6386 -0.0033 -62.9859
PEL YRI -0.0022 -100.0400 -0.0011 -64.9376 -0.0024 -49.3839 -0.0032 -66.9469
PEL ESN -0.0022 -97.7782 -0.0011 -60.2868 -0.0024 -50.1621 -0.0032 -66.4943
PEL LWK -0.0017 -68.2339 -0.0003 -14.1614 -0.0021 -43.1024 -0.0026 -50.6055
PEL Bantu_S.Africa -0.0019 -68.2601 -0.0006 -23.0962 -0.0025 -49.8939 -0.0028 -56.0340

Mean f 3 -stat ± S.D. -0.0021 ± 0.0002 -0.0009 ± 0.0003 -0.0023 ± 0.0001 -0.0031 ± 0.0002

Afro-Colombian

f 3 -stat (AfrAme;NativeAme,African) ASW ACB Afro-Brazilian Afro-Colombian

f 3 -stat (AfrAme;European,African) Afro-BrazilianASW ACB
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Table S13: Mean individual ancestry proportions and standard deviation of African American (AAM), 

African (AFR), Native American (NAM), and European (EUR) ancestries estimated by using 

ADMIXTURE analysis at K-groups= 3 (Figure 69).  

Population Country Dataset Origin N AFRICAN  EUROPEAN  NATIVE A.  

Aluku F. Guiana Present study AAM 19 0.989 ±0.013 0.007 ±0.011 0.004 ±0.006 
Ndjuka F. Guiana Present study AAM 21 0.987 ±0.042 0.011 ±0.041 0.002 ±0.005 
Paramaka F. Guiana Present study AAM 5 0.994 ±0.014 0.005 ±0.012 0.001 ±0.002 
Saramaka F. Guiana Present study AAM 17 0.990 ±0.024 0.006 ±0.023 0.004 ±0.005 
All Noir Marron F. Guiana Present study AAM 62 0.989 ±0.028 0.008 ±0.027 0.003 ±0.005 
Afro-Brazilian Brazil Present study AAM 16 0.724 ±0.177 0.216 ±0.151 0.060 ±0.040 
Afro-Colombian Colombia Present study AAM 20 0.772 ±0.115 0.103 ±0.060 0.125 ±0.070 
Ahizi Ivory Coast Present study AFR 16 1.000 ±0.000 0.000 ±0.000 0.000 ±0.000 
Yacouba Ivory Coast Present study AFR 16 1.000 ±0.000 0.000 ±0.000 0.000 ±0.000 
Bwa Mali Present study AFR 14 1.000 ±0.000 0.000 ±0.000 0.000 ±0.000 
Bariba Benin Present study AFR 24 0.999 ±0.003 0.000 ±0.002 0.000 ±0.002 
Fon Benin Present study AFR 19 1.000 ±0.000 0.000 ±0.000 0.000 ±0.000 
Yoruba_B Benin Present study AFR 23 1.000 ±0.000 0.000 ±0.000 0.000 ±0.000 
Mandenka Senegal HGDP AFR 21 0.974 ±0.011 0.014 ±0.010 0.012 ±0.007 
Yoruba_N Nigeria HGDP AFR 21 0.999 ±0.002 0.000 ±0.000 0.001 ±0.002 
Bantu_K Kenya HGDP AFR 10 0.959 ±0.013 0.024 ±0.011 0.018 ±0.007 
Bantu_S.A. S. Africa HGDP AFR 8 0.912 ±0.039 0.061 ±0.039 0.027 ±0.003 
Pima Mexico HGDP NAM 8 0.000 ±0.000 0.000 ±0.000 1.000 ±0.000 
Maya Mexico HGDP NAM 21 0.000 ±0.002 0.060 ±0.093 0.940 ±0.093 
Colombian Colombia HGDP NAM 5 0.003 ±0.006 0.015 ±0.034 0.982 ±0.039 
Karitiana Brazil HGDP NAM 2 0.000 ±0.000 0.000 ±0.000 1.000 ±0.000 
Surui Brazil HGDP NAM 1 0.000 ±0.000 0.000 ±0.000 1.000 ±0.000 
Basque France HGDP EUR 24 0.000 ±0.000 1.000 ±0.000 0.000 ±0.000 
French France HGDP EUR 28 0.000 ±0.000 0.965 ±0.010 0.035 ±0.010 
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ABSTRACT 

Background 

The transatlantic slave trade, from the 15th to the 19th centuries, changed dramatically the 

demography of the Americas. Thousands of enslaved Africans managed to escape from the 

plantations of European colonizers, and formed independent African settlements of free people 

(or ‘Marron’). Here, we study four Noir Marron communities from French Guiana and Surinam, 

as well as other populations with noteworthy African heritage in Brazil and Colombia, and West 

African populations in Benin, Ivory Coast, and Mali. To uncover different population histories, 

these populations were specifically characterized using different genetic markers based on 17 

Y-STRs, 96 Y-SNPs, whole mtDNA genome, and genome-wide SNP data (4.5 million 

autosomal SNP). 

Results 

Paternally and maternally inherited DNA highlighted different patterns of sex-biased gene 

flow in both Afro-Brazilian and Afro-Colombian populations that suggest different preferential 

marriage behaviours. In sharp contrast, the Noir Marron communities presented the highest 

African ancestry in all genetic systems analysed (above 98%). These communities have 

apparently a null gene flow with non-African groups, and also present elevated inbreeding 

coefficients. In good agreement with linguistic studies, the Noir Marron communities showed 

a biogeographical ancestry associated with historical West African Kingdoms that existed in 

modern Benin during the slave trade. Afro-Colombians indicated genetic ancestry linked with 

the Gold Coast region. While Afro-Brazilian genetic ancestry was linked with the West Central 

African region, also supported by historical research. 

Conclusions 

This study provides specific genetic information in African Americans and thereby helps us 

to reconstruct broken links with their African past. The Noir Marron communities revealed a 

remarkably high African identity, which is still linked to Bight of Benin region. The Afro-

Brazilian and Afro-Colombian populations present different demographic histories because of 

their different colonial pasts. Within an appropriate historical framework, genetic ancestry can 

add further understanding of ethnicity in African populations throughout the Atlantic world. 

 

Keywords: African American, Noir Marron, Afro-Colombian, Afro-Brazilian, West African, 

Y chromosome, mitochondrial DNA genome, genome-wide SNP data, admixture, global 

ancestry, population structure, transatlantic slave trade, African diaspora. 

 



 
 

RÉSUMÉ 

Introduction 

La traite transatlantique, du 15ième au 19ième siècle, a changé radicalement la démographie 

des Amériques. Des milliers d'esclaves africains ont réussi à échapper aux plantations des 

colonisateurs européens, et ont formé des colonies indépendantes de peuples libres (ou 

‘Marron’). Dans notre travail, nous étudions quatre communautés Noir Marron de la Guyane 

française et du Surinam, ainsi que d'autres populations ayant un héritage africain : Brésil et 

Colombie, ainsi que des populations d'Afrique de l'Ouest : Bénin, Côte-d'Ivoire et Mali. Afin 

de définir les différentes histoires démographiques, ces populations ont été caractérisées à l’aide 

de plusieurs marqueurs génétiques des lignées uniparentales: chromosome Y (17 Y-STR et 96 

Y-SNP), ADN mitochondrial (génomes complet), et de données pan-génomiques (4,5 millions 

de SNP). 

Résultats 

Les ADN paternels et maternels ont mis en évidence différents modèles de biais sexuels dans 

les populations afro-brésiliennes et afro-colombiennes, ce qui suggère des comportements de 

mariages préférentiels. À l'opposé, les communautés Noir Marron présentent l’origine africaine 

la plus élevée pour tous les systèmes génétiques analysés (supérieure à 98%). Dans ces 

communautés, on note l’absence de flux génique avec les groupes non-africains, et également 

des coefficients de consanguinité très élevés. En accord avec les études linguistiques, les 

communautés Noir Marron montrent une origine géographique africaine associée aux royaumes 

historiques de l’Afrique de l'Ouest qui existaient au Bénin durant la traite des esclaves. En 

accord avec les études historiques, l'origine des afro-colombiens montre des liens génétiques 

avec la région de la Côte de l’Or, et celle des afro-brésiliens avec la région de l’Afrique centrale. 

Conclusions 

Cette étude fournit une importante information génétique sur les afro-américains et nous 

permet de reconstruire les liens brisés avec leur passé africain. Les communautés Noir Marron 

montrent une identité africaine très élevée, reliée au Golfe du Bénin. Les populations afro-

brésiliennes et afro-colombiennes font apparaitre différentes histoires démographiques en 

raison de leur passé colonial différent. Confronté avec les études historiques, la génétique 

permet de mieux appréhender l'identité ethnique africaine sur les deux rives de l’Atlantique. 

Mots-clés: Afro-américain, Noir Marron, Afro-colombiens, Afro-brésiliens, Afrique de 

l'Ouest, chromosome Y, ADN mitochondrial, données pan-génomiques, métissage, ascendance 

globale, structure génétique des populations, traite transatlantique, diaspora africaine. 
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