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Introduction

Magnetic systems are becoming increasingly important in our daily lives. They
may be found in data storage devices, energy storage, medical imaging and more
recently in the Magnetic random access memories (MRAM’s). With the miniatur-
ization techniques, they are also expected to be of interest in quantum computing
for instance and many other technological fields. Spintronics based devices are
gaining popularity and are crucial in the conception of electronics of increasingly
smaller dimensions. From a fundamental point of view, magnetic systems always
motivate the interest of researchers as some of their properties are still unclear
although they are already being used in technological devices. This is the case
for instance in high critical temperature superconductors [1] or systems exhibiting
colossal magnetoresistance (CMR) [2, 3]. Magnetism found its origin in the quan-
tum behavior of the matter. As magnetic materials (or compounds) are highly
correlated systems [4], the understanding of their electronic structure and of the
collective effects present at the infinite scale is a rather difficult task for theoreti-
cians. Such insights are however necessary if one wants to elucidate unexplained
properties and to improve in a rational manner the existing systems and/or pro-
pose new systems with controlled properties.

Several strategies have been used to produce magnetic materials or compounds [5].
As ferromagnetic interactions are usually of weak magnitude, antiferromagnetic
couplings between spin units of different spins (resulting in a ferrimagnet) hap-
pened to be an interesting alternative. Another strategy consists in exploiting the
double exchange (DE) phenomenon. The DE mechanism rationalizes the appear-
ance of a high spin ground state in antiferromagnetic systems under doping [6, 7, 8].
It is also at the origin of the magnetoresistive effects observed in manganites [9]
and widely used in spintronics. The present work focuses on this mechanism. Sev-
eral objectives are pursued:

• The design of double exchange organic compounds resulting in high spin
conjugated organic system. While transition metal compounds may exhibit
double exchange interactions, the scarcity of transition metals pushes the
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scientific community to synthesize compounds having the same properties
but only made of carbon atoms which are much more abundant.

• The ab initio study of these systems and the extraction of the double ex-
change model interactions in order to compare them to those observed in
transition metal compounds. Such a study should also permit one to discuss
the topology of the systems appropriate for exhibiting a DE phenomenon.
The parameters extracted here will also aid in the conception of other organic
double exchange systems.

• A study of linear chain double exchange model with open boundary condi-
tions. The use of chains in magnetism is interesting by itself and can find
applications in low dimensional electronic systems. For instance, introducing
heavier elements at appropriate positions could lead to single chain magnets
behavior provided that the whole system shows shows a ground state of spin-
multiplicity of S = 1 and preferably higher. This study should allow us to
determine the range of DE interactions for which a high spin molecule can
be generated from a DE mechanism.

• From the study of increasing size chains, one hopes to be able to find some
size-independent characteristics which would enable us to understand prop-
erties observed in bulk double exchange materials. A first aim is to find the
number of spins which can be aligned by a single hole for physical values of
the DE parameters. The properties of the chains will also be analyzed as
functions of the number of holes (doping). Another objective is to quantify
the effect of a magnetic field on the delocalization of the holes. This can
be used as an indicator of the variation of electrical conductivity with mag-
netic field, of an infinite chain. Finally we will also seek to determine the
nature (electronic structure) of the states which may be responsible for the
magnetoresistive effects observed in double exchange materials.

The complexity of providing an accurate description of magnetic systems origi-
nates from the multireference character of the lowest spin states wavefunctions
combined with the large size (infinite for materials) of the systems. Two alterna-
tive approaches are currently used. The first one consists in a density functional
theory description (which is intrinsically single reference) but usually permits the
treatment of the whole system. It is applicable to large size systems and can
also be used with periodic boundary conditions for materials. Another approach
consists in a multiscale procedure. In a first place, the electronic structure of
the lowest spin states of fragments of the system is calculated using ab initio cal-
culations. From both the lowest spectrum and the corresponding wavefunctions,
simple models, working on a small model space, can be extracted. As these models
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may be used to study the properties of larger systems, systems of larger sizes can
then studied. This second part of the work allows us to introduce collective effects
which are important for highly correlated materials. The present work combines
both approaches. DFT calculations are performed on organic molecules and model
calculations are performed on model DE chains of different sizes and for various
dopings.

The thesis is organized as follows. In a first chapter, organic polyradicals are con-
ceived and studied using density functional theory. Their low-energy spectrum is
reconstructed from the energies of various broken symmetry solutions. Two dif-
ferent methods of extraction of the DE parameters are proposed and applied to
quantify the ability of these systems to exhibit a double exchange phenomenon. A
second chapter is devoted to the study of the spatial extent of the ferromagnetic
cloud in a doped linear chain of spins S = 1, i.e. one aims to answer the question:
how many spins can be aligned by the presence of a single hole? The dependence
of the results on the presence of a second hole is also studied for physical values
of double exchange parameters. Finally in the third chapter we will characterize
the property of chains of various sizes in presence of several holes. The electronic
structure of both the ground and the lowest excited states will be studied. As we
use an unusual tool to analyze the delocalization of the holes, the Total Position
Spread (TPS), the physical meaning of this object will first be analyzed and then
used to characterize the chains. Finally, the response to an applied magnetic field
will be presented.

At the end of the thesis, I have introduced a recently submitted article on a
mononuclear compound exhibiting a single molecule magnet behavior. As this
subject is quite far from the study of DE systems and for sake of homogeneity, I
have not commented my contribution to this work in the present manuscript. I
was in charge of the calculations of the magnetic couplings between the molecule
and the atoms of the surface on which it is deposited. I also have computed
the magnetic anisotropy parameters using the spin orbit state interaction method
implemented in MOLCAS.
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Chapter 1

Double Exchange in Organic
systems

1.1 Introduction

High-spin molecular systems have wide ranging applications, for e.g. the concep-
tion of single molecule magnets [10] and spintronic devices [11]. Nature makes
it difficult to synthesize high spin molecular systems because organic radicals are
facile. Conjugated organic radicals tend to exist as in closed shell states due to the
diffuse character of the frontier orbitals. Therefore, the traditional route towards
the synthesis of high-spin systems have relied on organometallic systems where
the organic radicals are linked to transition metal atoms which exist as high spin
centers. These organometallic molecules are difficult to synthesize, hard to ma-
nipulate and prohibitively expensive. Recently, progress has been made towards
the use of double exchange mechanism in the synthesis of high-spin molecules [5].
The use of double exchange based organic systems for spintronics has also been
achieved [7]. Keeping this is mind, our objective for this chapter is to propose
high-spin conjugated organic systems based on the double exchange mechanism.
We will also propose a methodology to study the origin of such properties, with
the goal of facilitating the conception of high-spin organic molecules based on the
double exchange mechanism.
The drastic difference between metal atom based systems and organic molecules
is the ease of obtaining high spin subunits with unpaired electrons such as metal
complexes and crystals composed of Ni or Mn which are formed of S = 1 up to
S = 5

2 spin subunits [12, 13, 14, 15, 16]. As the magnetic electrons are hosted by
the transition metals, the highest spin of the magnetic unit is restricted to S = 5

2
(or S = 7

2 for Lanthanides). One advantage of organic systems is the possibility
to build magnetic units of any spin. Numerous attempts by experimentalists have
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lead to the synthesis of giant spin organic molecules [17, 18, 19, 20, 21]. There have
also been attempts to synthesize two dimensional organic cavities which would have
a highly polyradical character [22, 23]. Theoretical studies on such systems have
also shown that it is now possible to have organic systems which are poly-radicals
and can show interesting magneto electric properties [24, 25]. Triangulenes, one
candidate high spin system which was first studied by Clar [26, 27] in the 1950’s,
have interesting polyradical characteristics [28] such as ferromagnetic behavior on
electron reduction [29]. At present, there is sufficient expertize, in the domain
of organic chemistry, in synthesis and characterization of complicated two dimen-
sional conjugated structures. This encourages us to study organic molecules which
may have interesting applications in the domain of spintronics.

As conjugated organic molecules are generally large, containing several carbon
atoms which contribute to the magnetization via the pi-conjugate cloud, it is not
easy to perform calculations for their analysis. One option that has gained suc-
cess in the study of conjugated organic systems is the Density Functional Theory
(DFT) which makes it possible to study large molecular systems. The errors intro-
duced in DFT due to the single reference character (among other problems) can be
corrected by various spin decontamination and post-treatment schemes. The first
of which was proposed by Yamaguchi [30], who demonstrated a simple method
using the 〈S2〉 values to decontaminate the spectrum. A more sophisticated post-
treatment based method proposed by C. Boilleau [31] (for metallic systems) aims
at obtaining accurate spectrum from DFT broken symmetry energies. The accu-
racy of various decontamination methods will eventually be system dependent and
would have to be adapted accordingly.

In this chapter we will show how one might conceive such molecules and also
present a methodology to study their properties. This section is organized as
follows. Firstly, we introduce the Double Exchange (DE) model. Secondly, we shall
introduce model organic molecules which are susceptible to show DE phenomenon.
Finally, we present our results and discussions followed by a proposal of one and
two dimensional organic lattices that could exhibit magneto-resistive effects.

1.2 Theory
The present chapter will only be concerned with two site systems containing two
magnetic orbitals each (similar to S = 1 Ni complexes).

Let us start with a simple analysis of two magnetic (S = 1) units interacting
through a bridge. The ionized system will be made up of two sites containing

6



Bridge

Site1 Site 2

Type 1

Type 2

Figure 1.1: Schema of a general two site DE system linked by a bridging unit.

four magnetic orbitals and three electrons, Fig: 1.1. The two magnetic orbitals,
will interact with each other via the paramagnetic bridging unit. The Type 1
orbitals are the ones that interact strongly with the bridge and the Type 2 orbitals
interact weakly. Depending on the strength of this interaction between the two
units (Fig: 1.2), we will either see a system with a quartet spin state or a closed
shell doublet state based on the following situations:

• Case 1: The Type 1 orbitals of the two units interact strongly via the bridge
giving rise to a large gap between the delocalized orbitals and the non-
interacting Type 2 orbitals as shown on the left in Fig: 1.2. This favors a
1-OS electronic configuration and the ground state becomes a 1-OS doublet
state. Note that in scenario I, the electronic configuration leads to maximal
kinetic energy for the electrons occupying the Type 1 molecular orbitals
(MO). Whereas, the unpaired electron occupies the localized Type 2 orbital.
This corresponds to a strong covalent interaction between the two magnetic
units.

• Case 2: The two units are weakly interacting. This maintains a small gap
between the Type 1 MO and the Type 2 MO leading to the stabilization of
the open shell configuration as shown in Fig: 1.2 on the right. The hole, in
the Type 1 orbital, is strongly delocalized. The quartet, which is stabilized
by hopping term among strong overlapping orbitals (t1), is the ground state.

• For the doublet states, there is a competition between the two configurations
with three open shells and with one open shell. The 3-OS configurations are
stabilized by the antiferromagnetic exchange J1 whereas the 1-OS determi-
nants are stabilized via the kinetic energy term t1.

• The DE phenomenon is observed in Case II, when the overlap
between the Type 1 orbitals of the two magnetic unit and the
bridge is sufficiently small (but not zero).

7



(a) Case I (b) Case II

Figure 1.2: A schematic of the two scenarios that of strong (left) and weak (right)
interaction with the bridge. There are four frontier molecular orbitals formed
primarily of the two magnetic orbitals of the two TMM’s each.

Therefore, for systems that follow DE mechanism, there are two types of electrons:
The electron occupying Type 1 orbital is responsible for the transport properties
while the electron occupying the Type 2 (localized) orbitals is responsible for the
magnetic properties. The determinants where the hole occupies the strongly over-
lapping orbitals (Type 1) will be referred to as Fam 1 and the determinants where
the hole occupies the weakly overlapping orbitals will be referred to as Fam 2.

The Double Exchange model is applicable to a three open-shell (3-OS) systems
for a well defined range of parameters. However, in some cases, the low energy
spectrum will also contain determinants made up of a single open-shell doublets
(1-OS doublets). The lowest energy states of transition metal double exchange
systems are almost always constituted of 3 open-shells determinants, because of
the large intra-site electron repulsion U , the 1 open shell determinants are higher
in energy. On the contrary, in organic molecules due to the diffuse character of
magnetic orbitals (spread out over several atoms), U is small the 1-OS doublet
states can be low in energy.

Generally, in the case of transition metal atoms, the two orbitals (usually dz2 ,dx2−y2)
are strongly localized on a single center (atom). Consequently, the on-site exchange
integral K is large. Things become more complicated in the case of magnetic or-
bitals made up of organic units. These organic orbitals are spread over multiple
centers (3 for the case of TMM and 19 for Triangulene for instance). This leads to
a decrease in the exchange integral K and the non-Hund states interact strongly
with the low energy spectrum.
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Concerning the 1-OS determinants, there are of two types depending on the elec-
tronic configuration. Firstly, the “Ionic” determinant are those where all three
electrons occupy the same site and for the case when the single unpaired electron
occupies a site different than the one with the electron pair, the determinant will
be referred to as the “pseudo-Ionic” determinant.

1.2.1 Double Exchange model
In original double exchange model proposed by Zener [32] the energy of the
non-Hund determinants was taken to be very large. Further refinements on the
model by the inclusion of the ionic determinants by Girerd and Papaefthymiou
(GP) [33, 34, 35] also assume the Hund term to be very large K >> |t| (t being
the kinetic energy integral.) Later, Anderson and Hasegawa (AH) have showed
that the inclusion of the local low spin states via K qualitatively changes the na-
ture of the ground states [36]. Since we study systems where K plays a significant
role, in this thesis we have used the combined effects of the anti-ferromagnetic
exchange interaction J1 (Zener, Girerd and Papaefthymiou) and the non-Hund
states (Anderson and Hasegawa) via K ≈ t1. This double exchange model has
been previously proposed by Guihéry et al [37, 38]. The model is shown schemat-
ically in Fig: 1.3. Since the overlap between the Type 2 orbitals is small, the J1 is
expected to be small and the kinetic energy term t1 is expected to be large due to
the large overlap between the Type 1 orbitals.

K

t1

a b

a2

a1

b2

b1

J1

Type 1

Type 2

Figure 1.3: A schema of the Hamiltonian, showing all the interactions taken into
account. The two types of orbitals of a single site are a1 and a2, the hole occupies
the strongly delocalized orbitals of type 1. Note that the hopping integral t1 is
much larger than t2.

Note that the Fam 1 does not interact with the second family if the hopping
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term (t3) between orbitals a1 and b2 is zero for symmetry reasons. The presence
of the intra-site exchange term K implies that there are two types of local states
taken into consideration, the triplet represented by T+, T0, T−1 corresponding to
the ms = 1,ms = 0 and ms = −1 and singlet S0 spin states. The local triplet
states (called the Hund states) are 2K below the local singlet states (i.e. the non-
Hund states).

The energy of the DE Hamiltonian for two sites (shown in Fig: 1.3) is know exactly.
The analytical expression for the energies of the quartet states is given by:

4E
(AH/GP )
∓,1 = ±t1 (1.2.1)

and that of the doublet states is given by:

2E
(AH/GP )
∓,1 = K −

√
K2 + t1(t1 ±K) + 3J1

2 (1.2.2)

where ± denotes the gerade or the ungerade combinations. Therefore, knowing
the energies of the quartet and doublet states, would be enough to extract the
parameters of the DE model, i.e. K and J1.

1.3 Model systems, Extraction and Results
Please refer to the articles that follow for details on the methodology used for
the design and analysis of the DE Organic systems. An updated version of the
present manuscript will contain a complete chapter with detailed explanations on
the various methods employed and the results obtained.
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ABSTRACT: The objective of this paper is to design a consistent
series of organic molecules that may present a double exchange
mechanism and study their low energy spectrum using spin
unrestricted Density Functional Theory. For this purpose, organic
tetra-methylene methane units having an S = 1 spin ground state
and diamagnetic organic bridges are taken as building blocks for
constructing molecules having two or more magnetic units. When
biunit systems are ionized, the ground state of the resulting
molecular ions may be either a quartet, if the spectrum is ruled by
a double exchange mechanism, or a doublet, if it obeys the logic of
a monoelectronic picture. A strategy based on the physical analysis
of the leading interactions is followed in order to energetically
favor a high-spin ground state. It is shown that the most promising compounds involve bridges that have both a large gap
between the highest occupied and the lowest unoccupied molecular orbitals and small coefficients on the atoms to which the
magnetic units are connected. While the followed strategy enables one to conceive organic compounds exhibiting a double
exchange phenomenon, it is shown that the electronic mechanism ruling the spectrum of such organic double exchange
compounds is different from that of their inorganic homologues. A new method to reconstruct the spectrum of low energy from
various spin unrestricted DFT solutions is proposed and applied. Finally monodimensional and bidimensional periodic lattices
based on the most promising organic architecture are suggested.

I. INTRODUCTION

Owing to the Hund’s rule, monometallic complexes having
several unpaired electrons exhibit a nonzero spin ground state.
Connecting these magnetic units through diamagnetic bridges
leads to fascinating inorganic materials presenting remarkable
properties such as ferro-, antiferro-, ferri-magnetism,1 spin
crossover,2 superconductivity,3 magnetoresistive effects,4 etc.
Recent interest in organic materials, including hydrocarbons, as
an intriguing alternative to silicon and transition metals used
currently in electronic devices, has grown considerably since
they are easier and cheaper to produce. While magnetic
properties in organic compounds are less commonly encoun-
tered, they have been the subject of a constant research.5

Organic chemists have synthesized and characterized organic
single radicals such as nitroxides6 or verdazyl7 and also
polyradicalar hydrocarbons such as assemblies of meta-
xylylene.8 Spectacular architectures with spin up to S = 80
were even obtained by Rajca et al., though in a context of
dendritic structures that cannot lead as such to periodic
lattices.9 Playing with the donor and acceptor character of some
molecules, it has also been possible to conceive conducting salts
and even superconductive materials.10

Recently, a family of organic polyradicalar units presenting a
nonzero spin ground state have been proposed.11 They are
based on fused poly benzenic hydrocarbons and may present a

high-spin ground state (S = 5/2 for instance) when certain
specific carbons are saturated. Connecting these units using
appropriate bridges can lead to ferro-, antiferro-, and
ferrimagnetic materials.12 In the present work, we study the
possibility to assemble such magnetic units in order to conceive
organic systems presenting double exchange phenomenon
under doping. The first double exchange model had been
proposed by Zener13 in order to rationalize the giant
magnetoresistive effects observed in manganites. The under-
lying mechanism involves two populations of unpaired
electrons: strongly localized electrons responsible for magnetic
properties and delocalized electrons inducing conduction. It
therefore represents interesting means to combine transport
and magnetic properties, which can hardly be encountered
simultaneously although their association is of prime interest in
spintronics.14 Finally, it also appears a very promising means to
prepare high-spin molecules.15 While the study of this
phenomenon in inorganic systems has received a lot of
attention from both chemists and physicists, examples of purely
organic double exchange compounds are extremely rare. One
should quote for instance a mixed-valence bis(semiquinone)
biradical anion resulting from an electron reduction of an
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antiferromagnetically coupled triradical, reported by Shultz and
co-workers.16

The double exchange mechanism happens in mixed valence
compounds involving magnetic units having more than one
unpaired electron. The mechanism implies three kinds of
interactions, the on-site exchange integral K between the local
magnetic orbitals of each magnetic unit, hopping integrals t of a
hole (or an extra electron) between the magnetic units and
intersite exchange interactions J between localized spin
momenta, as illustrated in Figure 1. While the magnetic

couplings J are usually antiferromagnetic, the hopping integrals
favor a ferromagnetic arrangement of all the spins. Since the
itinerant electron or hole is usually delocalized between the
most interacting orbitals of the units, the hopping integral
between these orbitals dominates the physics of low energy and
a high-spin ground state is obtained. In order to get organic
compounds with such a property, several conditions should be
fulfilled: (i) in the first place, the molecular frame should be
seen as involving spin S = 1 magnetic units (before doping, i.e.
ionization) such that two populations of electrons, itinerant and
localized, can be obtained under doping, (ii) the organic
bridges should not affect the magnetism of the units in the
resulting doped architecture, (iii) the interactions through the
bridges should be large enough in order to have a magnetic
ordering of the spins at room temperature but not too large in
order to keep a magnetic behavior, and (iv) finally, it is
desirable that the pattern formed by the unit and the bridge be
repeatable so that a periodic network can be formed.
The extraction of the double exchange interactions is

straightforward from wave function methods calculations of

the lowest energy states.17 Due to the multideterminantal
character of some of these states, it is much more complicate to
determine these interactions from spin unrestricted DFT
calculations. Recently, a procedure of extraction of double
exchange interactions has been proposed.18 It consists of
determining the interactions of a generalized Hubbard model
from various DFT solutions and then expressing the
interactions of the double exchange model as functions of the
Hubbard ones. Unfortunately, this procedure is not accurate
enough here due to the important covalence effects inherent to
organic compounds. A refined method is therefore proposed
that enables one to reconstruct the spectrum of the
multiconfigurational states and then to extract rigorously the
double exchange interactions.
This paper is organized as follows. The next section recalls

the theory of the double exchange model, the method of
reconstruction of all the states of low energy and the procedure
of extraction of the double exchange interactions from the
energies of various spin unrestricted DFT solutions. Section III
analyses and discusses the results obtained for a consistent
series of designed compounds. The possibility to design
promising hydrocarbons likely to present double exchange
interaction from the simple calculations of the molecular
orbitals diagrams at the Hückel level is presented in Supporting
Information. From the knowledge acquired during the analysis
of the studied compounds, new architectures likely to present
improved features are proposed in section IV. Mono- and
bidimensional periodic lattices based on the most promising
molecular architecture are designed.

II. THEORETICAL INFORMATION
II.1. Studied Molecular Compounds and Computa-

tional Information. A consistent series of organic molecules
likely to exhibit a double exchange phenomenon is represented
in Figure 2. These molecules may be seen as constituted of two
magnetic units, namely, the trimethylene methane (TMM)
molecules, which have a triplet ground state in the isolated state
and various diamagnetic bridges. The considered bridges have
different lengths and different shapes. It is possible to anticipate
the nature of the magnetic coupling between the two magnetic
units using the Ovchinnikov’s rule,19 which states that the spin
of the ground state is given by the Ms component of the most
alternant spin distribution of the π electrons. In all considered

Figure 1. Illustration of the leading electronic interactions in double
exchange phenomenon taking place between two magnetic units A and
B.

Figure 2. Schematic representation of the studied compounds.
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cases, the connection ensures an antiferromagnetic coupling. As
a consequence, before oxidation, the ground state of these
compounds is expected to be a singlet. In the cation, the spin of
the ground state is a result of the competition between the
various double exchange interactions and might be either a
doublet or a quartet.
The geometries of the designed compounds have been

optimized for various electronic solutions, namely Ms = 0 and
Ms = 1 for neutral molecules and Ms = 1/2 and Ms = 3/2 for
cationic molecules, using the B3LYP functional of the
GAUSSIAN package.20 To optimize the singlet state geometry
a recently proposed method21 of spin decontamination has
been used. 6-311G** basis sets have been used for all atoms.
Expectation values of S2 have been computed for all solutions
and are reported and discussed in the following.
II.2. Monoelectronic Picture versus Double Exchange

Mechanism: Theory. Let us consider an organic molecular
cation containing three unpaired electrons localized on two
magnetic units A and B connected through a diamagnetic
organic bridge. The local magnetic orbitals are called a1, a2 on
site A and b1, b2 on site B. For a sake of simplicity, we shall first
assume that the orbitals 1 and 2 belong to different irreducible
representations; hence, there is no interaction between orbitals
a1 (a2) and b2 (b1). For a symmetric cation (we will use the
irreducible representation of the D2h symmetry point group to
which the studied molecules belong), the hole is completely
delocalized between the units. One may expect that the
interaction will be larger between the orbitals a1 and b1 than
between the orbitals a2 and b2. From the resulting molecular
orbital diagram represented in Figure 3, one may also expect

that the ground state is a doublet state with a single open shell,
namely the bonding MO b3u built from a2 and b2. The first
excited doublet state would result from an excitation from this
MO to the corresponding antibonding MO b2g. In both states,
the hole is delocalized between the a2 and b2 orbitals. The
quartet state, which would be obtained from the excitation of
an electron from the b1g bonding MO between a1 and b1 to the
antibonding au MO and a spin change, usually lies much higher
in energy than the two previously mentioned doublet states.
This simple monoelectronic picture reproduces qualitatively
well the spectrum of most organic cations even though they are
constituted of units that are magnetic when considered
separately, such as the trimethylene methane TMM molecule,
which has a triplet ground state. In order to reach a magnetic
regime in which the spectrum of low energy would exhibit a

quartet ground state, these four MOs should be quasi
degenerate.
Another formulation of the problem is provided by the

double exchange mechanism. The simpler double exchange
model proposed by Zener13 is based on the idea that the
spectrum of the biunits can be reproduced by considering the
magnetic units in their atomic ground states. In the considered
case, the magnetic units have either a triplet or a doublet
ground state depending on the position of the hole. Two
families of states can be generated according to the symmetry
of the orbitals in which the hole is delocalized. The family
(called 1 here after) to which the high-spin ground state
belongs is such that the hole is delocalized between the most
interacting orbitals, a1 and b1, for instance. The dominant
electronic interaction is the corresponding hopping integral t1
of the hole between these orbitals. In double exchange systems,
this delocalization generates two quartet states Q+

1 and Q−
1 and

two doublet states D+
1 and D−

1 . As shown by Girerd and
Papaefthymiou,22 the interaction between the electrons
occupying the less interacting orbitals a2 and b2 is a magnetic
coupling J1 (contribution of Heisenberg type) that rules the
relative energies of the doublet spin states in comparison to the
quartet ones in family 1. Similar states, noted Q+

2, Q−
2 , D+

2, and
D−

2 constitute family 2, in which the hole is delocalized between
the orbitals a2 and b2 and the localized electrons occupy the a1
and b1 orbitals. In the particular case of a symmetric biunit
system, the eigenenergies of the usual double exchange model
(here noted the ZGP model in reference to Zener, Girerd, and
Papaefthymiou) are analytically known. Energies E(S, ± ) of
the different states of total spin S are given by the expression:

ε δ± = Δ − ±
+

+

− + − +

⎜ ⎟
⎛
⎝

⎞
⎠E S

t
S

S

J
S S S S

( , ) (1 )
1/2

1
2

2
( ( 1) ( 1))

i i
i

i

(ZGP)
2

max

max max (1)

where Smax is the highest total spin of the double exchange
model (here S = 3/2), δ is the Krönecker symbol, and the zero
of energy is taken as the energy centroid of the highest-spin
states of family 2, here the quartet states. The index i (1 or 2)
indicates the family of states. The energy difference between
the energy centroids of the two families of states is essentially
given by the energy difference Δε = ε(a1) − ε(a2) between the
orbitals a1 (b1) and a2 (b2). The first term of eq 1 is generally
dominant and accounts for the appearance of a high-spin
ground state, that is, a ferromagnetic order in family 1. Due to
the presence of a bridging ligand, the t1 integral is expected to
be dominated by the through-ligand contribution. The second
family of states (higher in energy) is generated by the
delocalization t2 of the hole in the less interacting orbitals a2
and b2 and a magnetic coupling J2 between the electrons
localized in the most interacting orbitals a1 and b1. The hopping
integral t2 between a2 and b2 may be very small while the
magnetic coupling J2, which is proportional to t1, is usually
antiferromagnetic and large, so that one usually observes that
the doublet states are lower in energy than the quartets in that
family.
When the local excited singlet state (called the non-Hund

state in inorganic compounds) of the units is low in energy, as
expected in organic compounds, it may affect the energy
spacing between the various states. The Anderson Hasegawa
model23 takes only into account the non-Hund states.

Figure 3. Molecular orbital diagrams obtained in case of strong (left)
and weak (right) interactions for D2h molecules such as 1, 2, 3, 4, and
5. A doublet ground state can be anticipated in the left diagram while a
quartet ground state is expected in the right diagram, that is, when the
MOs are quasi-degenerate.
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Combining both contributions leads to the more appropriate
following expressions:17

ε δ

ε δ

± = Δ − ±

≠ ±
= Δ − + − + ±

− + − +
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where AH stands for Anderson Hasegawa. In inorganic
compounds the non-Hund states are quite high in energy;
however, due to the delocalized character of magnetic orbitals
in organic compounds, one may expect that these states can be
quite low in energy and may be dominant in the wave function
of some of the doublet states.
Figure 4 represents schematically the two families of states

(including only the two lowest doublet states) as functions of

the various interactions in organic (or covalent systems). It
should be noticed that while t1 is the dominant interaction in
the first family of states, J2 is the most important interaction of
the second family. For covalent compounds such as organic
molecules, J2 can be so large that the lowest doublet of family 2
can be lower in energy than the quartet state of family 1. In
such a case, the double exchange model would predict the same
ground state as the simple monoelectronic picture, but in such
a case, one should be careful about the applicability of the
double exchange model for the analysis of the spectra.
II.3. Reconstruction of the Spectrum of Low Energy

and Extraction of the Double Exchange Interactions
from DFT Calculations. The real difficulty in getting the low
energy spectrum of double exchange compounds from spin
unrestricted DFT calculations comes from the determination of
accurate energies of the doublet states. Indeed, these doublet
states are usually multiconfigurational while the spin unre-
stricted calculated DFT solutions are single determinants and
quite certainly not eigenfunctions of S2. While techniques of
spin decontamination in the case of magnetic undoped systems
are fairly simple, the situation is highly complex for the case of
double exchange. For both the doublets with a single open shell
and the quartets, the deviations of the expectation value of S2

from the expected values, 3/4 and 15/4, respectively, are
relatively small. Nevertheless, it is no longer true for three-
open-shell Ms = 1/2 solutions. In order to get reliable estimates

of the energies of such doublet states, we will use a method that
slightly differs from the one proposed by some of the authors in
a previous work;18 this refined proposed method is more
rigorous and more appropriate for organic compounds. It
consists of determining the crucial interactions that are ruling
the spectrum of low energy and then reconstructing the
spectrum from these interactions. For this purpose, the various
DFT solutions that are needed to extract all the interactions of
a generalized Hubbard model are calculated. This Hamiltonian
differs from the usual Hubbard model, which only considers
intersite hopping integrals t1, t2 and on-site repulsion U1, U2, by
the introduction of the on-site exchange integral K = Ka1a2 =
Kb1b2. This model is then numerically solved to get the energies
of all doublet states, and the spectrum is reconstructed. The
interactions of the double exchange model are consequently
extracted from the reconstructed spectrum. This last extraction
only makes sense for the states, which are ruled by a double
exchange model, that is, the states of family 1 for systems for
which the quartet is the ground state.
All needed interactions can be calculated from the seven

DFT solutions represented in Figure 5.

Their Hubbard energies are given by the following
expressions:
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Solving this system of equations enables one to assess values
to the interactions, K, t1, t2, U1, and U2. Due to strong covalence
effects expected in organic compounds, it is not possible to get
reliable values of the exchange integrals of the double exchange
model from their perturbative expressions, as done in ref 18.
The procedure proposed by the authors consists in determining
variationally the energies of the doublet states. The neutral
doublet (N) functions of the double exchange model are
coupled with the ionic (I of energy U), the pseudo-ionic
(pseudo I, of energy 3K) and the non-Hund functions (NH of
energy 2K). Left-right combination of these functions furnishes
a symmetric basis of gerade and ungerade functions for the
doublet state of family 2:

Figure 4. Schematic representation of the spectrum of the two families
of states of a double exchange compound. The expression of the
energy differences between the energy centroids of the quartet and
doublet states is derived from perturbation expansion.

Figure 5. DFT solutions, which are used to extract the interactions of
the Hubbard model (D2h symmetry).
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The 4 × 4 matrix of the Hubbard Hamiltonian working in
this basis is
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Similar matrices can be calculated for the doublet states of
family 1 and for the second doublet state of family 2. The
following matrix describes the energy of the lowest doublet
state of family 1:
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(6)

Using the numerical values of all the interactions determined
from eqs 3, one may diagonalize all these matrices. The energy
of the four doublet states of interest is given by the lowest
eigenvalue of each matrix. Finally, when the system is ruled by a
double exchange mechanism one may extract values of the
effective magnetic couplings Jeff and local exchange Keff

interactions using the energies of the various states and the
expression given in eq 2. Effective interactions incorporate
correlation effects, which do not appear in the model space but
which are accounted for in the numerical DFT calculations.

III. RESULTS AND DISCUSSION
III.1. Analysis of the DFT Results and Extraction of the

Leading Interactions. The Singly Occupied Molecular
Orbitals (SOMOs) of an isolated TMM unit are represented
in Figure 6. It can be seen that connecting such a unit by two of

its carbon atoms will lead to a stronger interaction between the
bridge and the unit for orbital a1 than for orbital a2. The
opposite result would be obtained in the case of a connection
via a single carbon atom. As a consequence one may expect
larger values for t1 than for t2 in the studied compounds.
Both neutral and cationic molecules have been studied. Let

us first concentrate on the results obtained for the neutral
molecules. The energies and ⟨S2⟩ values of the Ms = 0 and Ms =
1 solutions computed for the optimized geometries of both the
triplet and the spin decontaminated singlet are reported in
Table 1. From the various solutions, vertical and adiabatic
energy differences between the lowest singlet (spin decontami-
nated) and triplet states of the five molecules have been
computed and are also reported in Table 1. The vertical energy
difference between the real singlet and the triplet is equal to the
effective exchange interaction of the Heisenberg Hamiltonian
when the system is magnetic.
The various spin unrestricted DFT solutions needed for the

reconstruction of the spectra of the cations have been
computed. The geometries of the lowest in energy Ms = 3/2
and Ms = 1/2 solutions have been optimized and the
corresponding values of their energies and of ⟨S2⟩ are reported
in Table 2. The energies of the Ms = 1/2 solutions having three
open shells at the geometries of the Ms = 3/2 solutions are also
reported in Table 2. Table 3 collects all the values of the
interactions of the Hubbard model for all systems and those of
the double exchange one when the spectrum is ruled by a
double exchange mechanism, that is, for family 1 of compounds
4 and 5. The spectra reconstructed using the method presented
in section II.3 are represented in Figure 7.
The t1 and t2 parameters, which have been extracted from the

cations energies would be slightly different for the neutral
molecules. One may, however, expect that the observed trends
for the extracted parameters in this consistent series of
molecules would be identical for both the neutral and cationic
systems, and their relative values will be used to rationalize the
observed trends in both neutral and cationic molecules.
The molecular orbitals have been optimized for the ground

state of the cations. These orbitals are very similar for both
neutral and cationic molecules. Those optimized for com-
pounds 1 and 4 are represented in Figures 8 and 9. All the
trends observed in the series can be correlated with the shape of
these four MOs. These orbitals can be seen as resulting from
bonding and antibonding combinations of the local orbitals (a1,
a2, b1, and b2) of the TMM units with delocalization tails on the
bridging ligand. The SOMO (b3u) shows large components on
the extracyclic carbons of both TMM. It can be seen as a

Figure 6. Magnetic orbitals of the TMM magnetic unit. Dotted lines
indicate the connection to the bridge.
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bonding combination between the outermost and hence less
interacting orbitals of the TMM (a2 and b2). The b1g MO,
which results from a bonding combination between the most
interacting orbitals of the TMM (a1 and b1, which have large
components on the cyclic carbons), is delocalized inside the
bridge, revealing a stronger covalence between the local orbitals
of the magnetic units and the orbitals of the bridge. These
observations are true for all compounds. However, comparing
the orbitals of compounds 1 and 4, one may easily see that the
covalence, evidenced by the importance of the tails inside the
bridge, decreases from compound 1 to compound 4.
Looking at the results obtained for the neutral molecules

several conclusions can be drawn:

(i) The spin multiplicity of the ground state of the five
molecules is a singlet confirming the antiferromagnetic
nature of the interactions between the two TMMs. As
expected the values of ΔEST decrease with the length of
the bridge.

(ii) The expectation value of S2 in the lowest Ms = 0 solution
shows that there is mainly a single open shell per TMM
units, revealing that these units cannot be considered as a

unit of spin S = 1 (for which ⟨S2⟩ = 3) in the neutral
compounds. As a consequence, the Ms = 2 solution
which of course involves four open-shells is very high in
energy (17138 cm−1 = 49 kcal·mol−1 higher than the Ms

= 0 solution in compound 1 and 22 kcal·mol−1 in
compound 5). Comparing the values of ⟨S2⟩, one may
notice that even if they always support a diradicalar
character in compounds 4 and 5 the values are slightly
larger than 1. The spin polarization due to the
contributions of four-open-shells determinants
|b1bb3̅ub̅2gau| and |b1̅bb3ub2gau̅| introduces quintet compo-
nents in the Ms = 0 solution resulting in ⟨S2⟩ values
larger than 1. Actually, since these contributions are
larger for systems for which the b1g and au orbitals are
close in energy, that is, for small values of t1, one may
easily correlate the increase of the ⟨S2⟩ values with the
decrease of t1 (Tables 1 and 3).

(iii) Another confirmation of the diradicalar character of these
compounds is brought by the comparison between the t2
hopping integrals and the energy difference between the
singlet and the triplet states in the series. The decrease of

Table 1. Neutral Moleculesa,b

⟨S2⟩ E (au or eV)

1 triplet (vert.) 2.03 −693.253712
triplet 2.03 −693.256048
BS Ms = 0 (“vert.”) 0.92 −693.265296
BS Ms = 0 0.80 −693.266979
ΔEST (vertical) 0.616
ΔEST (adiabatic) 0.532

2 triplet (vert.) 2.04 −1000.604739
triplet 2.04 −1000.608011
BS Ms = 0 (“vert.”) 0.88 −1000.617184
BS Ms = 0 0.71 −1000.619331
ΔEST (vertical) 0.614
ΔEST (adiabatic) 0.520

3 triplet (vert.) 2.05 −1076.854431
triplet 2.05 −1076.854547
BS Ms = 0 (“vert.”) 1.09 −1076.857159
BS Ms = 0 1.09 −1076.857267
ΔEST (vertical) 0.183
ΔEST (adiabatic) 0.167

4 triplet (vert.) 2.05 −1229.338761
triplet 2.04 −1229.339042
BS Ms = 0 (“vert.”) 1.27 −1229.343328
BS Ms = 0 (“vert.”) 1.27 −1229.343328
ΔEST (vertical)c 0.302
ΔEST (adiabatic)c 0.264

5 triplet (vert.) 2.07 −1460.451337
triplet 2.07 −1460.451356
BS Ms = 0 (“vert.”) 1.13 −1460.449958
BS Ms = 0 1.14 −1460.452359
ΔEST (vertical) 0.062
ΔEST (adiabatic) 0.061

aUDFT-calculated energies for 1 to 5, with corresponding singlet-
triplet energy differences after spin decontamination. vert (resp.
“vert”) refers to the geometry of the ground state (resp. excited state).
bThe spin-decontaminated values are obtained from the UDFT
energies and ⟨S2⟩ values, assuming an harmonic geometry dependency
of the energy and a linear geometry dependency of the spin
decontamination factor λ. cIn this case, the ⟨S2⟩ values for the Ms =
0 solution compel to use a spin-decontamination factor λ = 2.

Table 2. Cationic Moleculesa

⟨S2⟩ energy (au)

1 quartet (vert.) 3.81 −692.993238
quartet 3.81 −693.003177
BS Ms = 1/2 (“vert.”) 0.82 −693.027045
BS Ms = 1/2 0.81 −693.036818

2 quartet (vert.) 3.81 −1000.345431
quartet 3.82 −1000.354809
BS Ms = 1/2 (“vert.”) 0.85 −1000.385054
BS Ms = 1/2 0.83 −1000.394285

3 quartet (vert.) 3.84 −1076.620122
quartet 3.85 −1076.627585
BS Ms = 1/2 (“vert.”) 0.83 −1076.627146
BS Ms = 1/2 0.83 −1076.634478

4 BS Ms = 1/2 (“vert.”) 3 open-shell (ϕ5) 1.77 −1229.110294
BS Ms = 1/2 (“vert.”) 0.84 −1229.113133
BS Ms = 1/2 0.83 −1229.119439
quartet (vert.) 3.85 −1229.118140
quartet 3.85 −1229.123853

5 BS Ms = 1/2 (“vert.”) 3 open-shells (ϕ5) 1.78 −1460.229159
BS Ms = 1/2 (“vert.”) 0.85 −1460.225720
BS Ms = 1/2 0.85 −1460.231719
quartet (vert.) 3.86 −1460.232461
quartet 3.87 −1460.238495

aUDFT-calculated energies of the lowest Ms = 1/2 and Ms = 3/2
solution for 1 to 5. ⟨S2⟩ values are also reported. vert (resp. “vert”)
refers to the geometry of the ground state (resp. excited state).

Table 3. Values of the Interactions of the Hubbard and
Double Exchange Modelsa

t1 t2 u1 u2 (eV) K (eV) KDE J1

1 1.677 0.612 1.504 3.332 0.419 1.175
2 1.831 0.653 1.171 3.546 0.345 1.149
3 1.186 0.291 1.058 3.664 0.317 0.512
4 0.802 0.234 1.554 4.066 0.369 0.509 −0.092
5 0.793 0.082 1.031 4.159 0.254 0.272 −0.014

at1, t2, U1, U2, and K are the interactions of the Hubbard model while
Δε, t1, J1, and KDE are the interactions of the double exchange model
for family 1.

Journal of Chemical Theory and Computation Article

dx.doi.org/10.1021/ct4005855 | J. Chem. Theory Comput. 2013, 9, 4805−48154810



ΔEST (Table 1) is actually correlated with the decrease of
t2 integrals (Table 3). The single open shells localized on
the TMM are mainly the a2 and b2 orbitals while the b1g
MO obtained from the local a1 and b1 orbitals which
undergo strong covalent interactions via the bridge is
finally doubly occupied. This result is consistent with the
strong values of the t1 integrals in all compounds. One
may also notice that while compound 4 has the smallest
value of t1, its value of t2 is quite large rationalizing the
obtaining of a large ΔEST.

The comparison of the results obtained for the cations

deserves the following comments:

(i) Looking at the reconstructed spectra (Figure 7), one may
see that for compounds 1, 2, and 3 the ground state is
the lowest doublet of family 2. For compounds 4 and 5,
the ground state is the quartet state of family 1,
demonstrating that one may conceive hydrocarbons
exhibiting a double exchange phenomenon. This result
shows that while the magnetic units must be considered
as a spin S = 1/2 unit in the neutral molecules, it may
behave as a spin S = 1 in cationic molecules.

(ii) The analysis of the occupation numbers of the orbitals of
the ground state and of the ⟨S2⟩ values in compounds 1,
2, and 3 (table 2) reveals that the lowest Ms = 1/2 DFT
solution essentially has a single open shell, for both the
lowest doublet and quartet optimized geometries. This
result is in agreement with the occurrence of two open-
shells only in the lowest solutions of the corresponding
neutral molecules. The spectrum of these cations obeys
the logic of the monoelectronic picture, which predicts
that the ground state is the lowest doublet state of family
2. A simple building block logic consisting in bridging
magnetic unit by any diamagnetic bridge and then
ionizing the system does not necessary succeed to
generate a double exchange phenomenon.

(iii) In order to favor the occurrence of a high-spin ground
state, the b1g MO (Figure 3) should be destabilized; that
is, the value of the hopping integral t1 must be weak. The
here-followed logic consists in extending the π system in
order to decrease the energy differences between the
orbitals at the Fermi level. Comparing the energies of the

Figure 7. Reconstructed spectra of the cationic compounds 1, 2, 3, 4,
and 5 indicated in abscissa. Energy levels of quartet states are
represented with thick lines while that of the doublet state are
represented with thin lines. Family 1 appears in blue and family 2 in
red.

Figure 8. DFT molecular orbitals b1g (top left), au (top right), b3u
(bottom left) b2g (bottom right) optimized for the doublet ground
state (b1g

2 b3u
1 ) of compound 1.

Figure 9. DFT molecular orbitals optimized for the lowest Ms = 3/2
solution (b1g

1 b3u
1 b2g

1 ) of compound 5: from top to bottom b1g, au, b3u,
and b2g.
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lowest doublet of family 2 and of the lowest quartet of
family 1 (Table 2) in the series of compounds, one can
notice the correlation between the decrease of t1 and the
relative stability of the quartet state, showing the crucial
role of the magnitude of t1 (Table 3) in the occurrence of
a double exchange phenomenon. Looking more precisely
at the consistent series 1, 3, and 5 (which have similar
bridges that only differ by their length) shows the
correlation of the decrease of t1 with the length of the
bridge. Interestingly enough, comparing t1 in the full
series, that is, including compounds 2 and 4, which have
slightly different bridges, leads to the conclusion that the
t1 values also depend on the shape of the bridge and may
significantly decrease for some specific thickenings, as it
occurs in compound 4.

(iv) The correlation of the decrease of t1 with the stabilization
of the quartet state is meaningful for all compounds.
However, from this quantity only, one may not anticipate
the relative stability of the lowest quartet and doublet
states of family 1. Actually in compounds 1, 2, and 3 this
doublet is lower in energy than the quartet state, showing
that it may be not sufficient to focus on the value of t1 in
order to reach a double exchange regime. In order to get
more insight on the factors governing the relative
stability of this doublet state, we have analyzed the
physical content of its wave function, that is, of the
eigenstate of the 4*4 matrices (see eq 6). In the first
place, it is interesting to note that the weight of the non-
Hund state in this doublet is large but constant in the
series (for instance it is 0.15 in compound 1 and 0.13 in
compound 5). The main difference comes from the
weight of the pseudoionic and ionic functions, which are
respectively 0.13 and 0.06 for compound 1 and 0.05 and
0.01 in compound 5. While the values of U2 and K are
rather similar from one compound to another, the t2
values which determine the coupling between the neutral
Hund’s function and the pseudoionic and ionic functions
dramatically decrease in the series, rationalizing the
strong stabilizing contributions of these excited functions
in the doublet state wave functions of compound 1, 2,
and 3. As a conclusion, one may say that the relative
stability of the quartet and doublet states of family 1 is
essentially determined by the value of the hopping
integral t2 between the weakly interacting orbitals.

(v) The analysis of the wave functions of the doublet states
also reveals that the excited doublet states are slightly
dominated by the non-Hund function in family 1. For
instance, the relative weights of the Hund and non-Hund
functions are 0.62 and 0.38 in the second doublet state of
family 1 of compound 1. This result will always be true as
long as t1 > 2K.

(vi) Finally, the parameters KDE and J1 of the double
exchange model have been extracted for the family 1 of
compounds 4 and 5 (see Table 3). One may notice that
the values of KDE differ from the Hubbard K values. One
should recall that in eq 2, the Non-Hund functions are
treated variationally while the ionic and pseudo ionic
functions are treated perturbatively through the J
parameter. As a consequence, the exchange parameter
of the double exchange model described using eq 2
should be seen as an effective parameter and may be
slightly different from the ab initio calculated one
(expected to be very close to the Hubbard one). Finally

one may note that the intersite exchange integral J1
decreases between compounds 4 and 5 in agreement
with the decrease of t2.

As shown in Supporting Information, the extension of the π
system of the bridge cannot rationalize by itself the observed
trend: the shape of the bridge should be accounted for. Using
the topological Hückel method combined with the fragment
theory in terms of two TMM and the closed-shell bridge, one
may rationalize the magnitude of the hopping integrals in the
various studied compounds. It is interesting to note that such a
simple method enables one to anticipate and therefore conceive
molecular architectures susceptible to exhibit a double exchange
phenomenon.

IV. OTHER POSSIBLE ARCHITECTURES AND
LOW-DIMENSIONAL PERIODIC LATTICES LIKELY
TO PRESENT A DOUBLE EXCHANGE
PHENOMENON

One way to decrease the covalent interaction between the
bridge and the TMM, would be to connect the TMM through
only one of its carbon atoms. In such a case, the orbitals, which
would generate the most important interactions, would be the
a1 (b1) orbital. Saturating one of the orbitals of the bridge
should diminish the interactions through the bridge and
distinguish one of the carbon atoms of the TMM. Such a
molecule is represented in Figure 10 (compound 6). Another

possibility consists in considering a nonsymmetric compound
such as compound 7 also represented in Figure 10. In both
compounds, the dissymmetry introduced in the molecule
changes the nature of the most interacting orbital and one may
expect that the proposed compounds would have smaller
hopping integrals and therefore exhibits a double exchange
mechanism. Due to the lack of symmetry, the two families
interact and it is no more possible to make any extractions of
the parameters from DFT calculations. Table 4 shows the
energies of the Ms = 3/2 and Ms = 1/2 solutions having only

Figure 10. Schematic representation of compounds 6 and 7.

Table 4. UDFT-Calculated Energies of the Lowest Ms = 1/2
and Ms = 3/2 Solution for 6 and 7a

⟨S2⟩ energy (au)

6 BS Ms = 1/2 (“vert.”) 1.50 −617.914525
BS Ms = 1/2 1.35 −617.917603
quartet (vert.) 3.84 −617.922641
quartet 3.84 −617.926125

7 BS Ms = 1/2 (“vert.”) 1.59 −1000.361133
BS Ms = 1/2 1.50 −1000.362330
quartet (vert.) 3.85 −1000.366575
quartet 3.85 −1000.367770

a⟨S2⟩ values are also reported.

Journal of Chemical Theory and Computation Article

dx.doi.org/10.1021/ct4005855 | J. Chem. Theory Comput. 2013, 9, 4805−48154812



one unpaired electron. In both cases, the Ms = 3/2 solution is
the lowest solution, which is quite encouraging.
From one of the most promising architectures (compound

4), it is possible to conceive monodimensional and bidimen-
sional periodic lattices. Fragments of the two proposed low
dimensional lattices are represented in Figures 11 and 12.

V. CONCLUSION
Magnetism and double exchange phenomenon are more likely
to occur in inorganic compounds, for which the hopping
integrals between magnetic centers are often weak due to the
strong localization of the magnetic orbitals. The spectrum of
magnetic inorganic compounds hence usually obeys simple
physical models as the Heisenberg or double exchange ones. In
contrast, organic systems for which the magnetic orbitals are
delocalized over several centers are more sensitive to chemical
factors, such as the geometrical features of the bridge and the
strength of covalent interactions. As a consequence, their
spectrum of low energy may or may not be well reproduced by
simple physical models. This paper discusses the possible
occurrence of a double exchange phenomenon in a consistent
series of organic molecules. Both neutral and cationic molecules
have been studied. While for neutral magnetic systems well-
known spin decontamination techniques can be used to
determine the energy difference between the lowest magnetic
states, the determination of the energies of the doublet states of
double exchange compounds is more complicate. A method
that consists in determining the leading interactions of the
Hubbard model from series of UDFT calculations and then
uses the numerical values of these interactions in order to

reconstruct the spectra has been proposed and applied here.
The mains conclusions of this work are the following:

(i) While these molecules may be seen as involving TMM
units that have a triplet ground state (when isolated),
these units cannot be considered as S = 1 magnetic units
when they are bridged by the here-considered
diamagnetic bridges in the resulting neutral compounds.
The energy difference between the singlet and triplet
lowest states results from an antiferromagnetic coupling
between S = 1/2 momenta strongly localized on the
extracyclic carbon atoms.

(ii) In contrast, two of the corresponding cations exhibit a
quartet ground state showing that the TMM of such
molecules may behave as a S = 1 unit under doping.

(iii) The comparison of the spectra reveals that the real
challenge in order to get a double exchange phenomenon
is to control the factors governing the relative stability of
the quartet ground state of family 1 and the lowest
doublet state of family 2. We have shown that the main
factor is the hopping integral t1 between the most
interacting orbitals between the TMMs, the magnitude of
which is determined by the strength of the covalence
between the TMM and the bridge. The other leading
factor is the hopping integral t2 between the weakly
interacting orbitals which is decisive for the relative
stability of the lowest quartet and doublet states of a
same family.

(iv) While the magnitude of the t2 integral essentially
depends on the length of the bridge, t1 is also sensitive
to the shape of the bridge, in the studied compounds.
Both the relative stability of the magnetic orbitals and the
impact of the shape of the bridge on the leading
interactions can be easily anticipated using the Hückel
method (see Supporting Information). This simple
model combined with a deep analysis of the leading
interactions of the double exchange model can be a
predictive tool in order to anticipate organic systems
likely to present a double exchange phenomenon.

(v) Finally, it is interesting to note that the lowest local
excited state of the TMM, that is, the non-Hund state, is
particularly low in energy and plays an important role in
the physics of these systems. The weight of these local
states is important in the wave functions of the lowest
doublets states of both families and it is dominant in the
wave functions of the second doublets states. As a
consequence, the model of Girerd and Papaefthymiou22

cannot be used to describe the physics of the double
exchange mechanism in these organic compounds. Due
to the delocalized character of magnetic orbitals, one may
expect that the role of non-Hund states will generally be
more important in organic compounds than in inorganic
ones. In order to account for both the non-Hund and the
ionic and pseudo ionic functions which all may have a
large coefficient in the wave functions of the lowest
states, the relevant double exchange model should
account for both the Anderson−Hazegawa and Gir-
erd−Papaefthymiou contributions. Moreover, in order to
extract all the parameters of the model, it is necessary to
use also the expression describing the energy of the non-
Hund states (which are discarded in the usual model
since they are expected to be highly excited).

Figure 11. Example of 1D lattice constituted of compound 4 units.

Figure 12. Example of 2D lattice constituted of compound 4 units.
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Other architectures in which the interactions go through a
single carbon atom of the TMM have been proposed in section
IV. The comparison between the energies of the lowestMs = 3/
2 and Ms = 1/2 spin unrestricted DFT solutions indicate that
these molecules are likely to exhibit a double exchange
phenomenon. Unfortunately, due to the lack of symmetry,
the energies of the real doublets could not be determined using
the proposed method.
Finally, one- and two-dimensional periodic lattices have been

designed from the most promising compounds 4 and 5. One
may expect that under doping such lattices could present both
magnetic and conductive properties of potential interest in
spintronics. A forthcoming work will be devoted to the study of
spin polarized current in such systems.
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The double exchange is a well-known and technically important phenomenon in solid state physics.
Ionizing a system composed of two antiferromagnetically coupled high-spin units, the ground state
of which is a singlet state, may actually produce a high-spin ground state. This work illustrates the
possible occurrence of such a phenomenon in organic chemistry. The here-considered high-spin units
are triangulenes, the ground state of which is a triplet. Bridging two of them through a benzene ring
produces a molecular architecture of singlet ground state. A careful exploitation of a series of unre-
stricted density functional calculations enables one to avoid spin contamination in the treatment of
the doublet states and shows that under ionization the system becomes of quartet multiplicity in its
ground state. The possibility to align more than three spins from conjugated hydrocarbon polyrad-
icals is explored, considering partially hydrogenated triangulenes. A dramatic example shows that
ionization of a singlet ground state molecule may generate a decuplet. © 2014 AIP Publishing LLC.
[http://dx.doi.org/10.1063/1.4878498]

I. INTRODUCTION

The double exchange phenomenon attracted the atten-
tion of solid-state physicists from the early 1950s.1 One may
schematize it as the possibility to transform a low-spin sys-
tem into a high-spin system under ionization. A system in-
volving two magnetic units of spin larger than 1/2, with n
unpaired electrons in each unit, will have a singlet ground
state when the coupling between these units is antiferromag-
netic. The surprising phenomenon is the spin multiplicity of
the ionized state of such systems, which will be a (2n−1)-
uplet (a quartet if n = 2), while in closed-shell systems ion-
izing a singlet state only generates a doublet state. Several
rationalizations and modelizations of this phenomenon have
been proposed, the first one by Zener,2 a second one by An-
derson and Hazegawa.3 Girerd and Papaefthymiou4 have so-
phisticated the Zener’s model and the most refined model5

combines the mechanisms invoked in the two basic models.
Hereafter, the reconstruction of the low-energy spectrum will
be quite straightforward, but refers to the refined model.

The double exchange phenomenon is very important both
as a fundamental physical problem, and as a possible source
of technological applications. Let us recall, for instance,
that it is responsible for the so-called colossal magneto-
resistivity in manganites.6 Up to now the systems exhibit-
ing the phenomenon essentially involve magnetic transition-
metal ions, bearing several unpaired electrons in a high-spin
ground state, such as Ni2+ (d8), or Mn (d7). They can be
periodic metal-oxide lattices or coordination complexes, for
which experiments confirm the high spin multiplicity of the
ground state.7 It may be interesting to analyze the alterna-
tive possibility through the conception of organic molecu-
lar architectures exhibiting this property. A previous paper
has succeeded to show, from density functional theory (DFT)
calculations, that one might conceive branched polycyclic

aromatic systems which have a singlet ground state when neu-
tral, and which have a quartet ground state after ionization.8

This work has confirmed that in organic chemistry too a single
hole may align three spins.9, 10 The suggested systems, based
on Chichibabin type branched poly-aromatic chains, slightly
deviate from the double-exchange canonical models since in
their neutral ground state they only involve two unpaired elec-
trons. From a chemist point of view, they are essentially dirad-
icals. It is only after ionization that one may see them as in-
volving triplet state units (in this case, trimethylenemethane,
TMM). In some sense, obtaining three unpaired electrons of
parallel spins by ionizing a system with two unpaired elec-
trons is even more challenging than staying in the strict or-
thodoxy of double exchange, which goes from four to three
unpaired electrons. The price to pay is in the complexity of
the spectrum and of its modelization. In such a case, there is
competition and mixing between states with three unpaired
electrons and states with one unpaired electron only, while
the low-energy states of the typical double exchange systems
only involve states with three unpaired electrons.8

In this context, we found it useful to look for molecu-
lar organic systems which would remain closer to the ortho-
dox double-exchange situation, starting from magnetic units
which are doubtlessly of high-spin multiplicity. We have se-
lected fused polycyclic molecules since we have recently
shown that it is possible to conceive systems with several
delocalized unpaired electrons of parallel spins.11 Connect-
ing these high-spin units through conjugated bridges enables
one to conceive, in a rational and controlled manner, ferro- or
antiferromagnetic couplings.12 In the proposed molecular ar-
chitectures, the antiferromagnetic coupling, while producing
a singlet ground state, does not reduce the number of unpaired
electrons in each unit, and the system remains polyradicalar.
For instance, coupling two magnetic units of spin one main-
tains four unpaired electrons, analogously to the coupling of
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FIG. 1. The three open-shell dimer skeletons addressed in the present study.
Hydrogen labels of the perpendicular methylene groups are omitted for
clarity.

two Ni (d8) ions in coordination chemistry. They might there-
fore be good candidates as organic counterparts of the coordi-
nation chemistry complexes exhibiting double exchange.

The units chosen hereafter are among the simplest ones,
namely, triangulene molecules,13 the ground state of which
is a triplet. We first recall the properties of this molecule, its
triplet-singlet gap, and introduce the qualitative picture of the
unpaired singly occupied molecular orbitals (MOs) which is
relevant for the understanding of the coupling between two
such molecules. Provided that a spin decontamination tech-
nique is applied, the results of unrestricted density functional
(UDFT) calculations, performed with a B3LYP parametriza-
tion of the exchange correlation potential and a 6-311G**
basis set,11 are in good agreement with those of the corre-
lated wave-function based methods.14,15 We therefore shall
hereafter exploit the UDFT calculations, trying to reach the
energies of spin eigenfunctions from the available set of sin-
gle determinantal solutions. Introducing a simple p-benzene
symmetrical bridge between two triangulenes as in compound
1 (Figure 1) is enough to produce a strong antiferromag-
netic coupling between the two S = 1 units, and the physical
content of the ensuing singlet ground state is analyzed.

Going then to the ionized molecule, we show that the
ground state is a quartet state, indeed. The energy spacings
between the quartets are rationalized. While some of the low-
est doublet states have three unpaired electrons, as in the
canonical double exchange systems, the lowest doublet state
has only one unpaired electron. In three-openshell systems,
as the ms = 1/2 broken-symmetry UDFT (BS-UDFT) solu-
tions are not eigenfunctions of the S2 spin operator, a direct
mapping onto doublet states is in principle forbidden.16 How-
ever, exploiting the multiplicity of the BS-UDFT solutions
makes it possible to reach the energies of pure doublet states.
Several works have exploited these BS solutions to return to
a valence-bond picture of the wavefunction, or to build an
extended Hubbard Hamiltonian, with diagonalization of this
model Hamiltonian as a final step.8,17 In the present paper,
an alternative formalism is proposed to treat the interaction
between the 3-unpaired electron and the 1-unpaired electron

configurations, which happen to be in competition for the low
spin-multiplicity states.

Section IV explores dimers of higher spin multiplicity,
obtained from partially saturated triangulenes. Two types of
units with ground states S = 3/2 and S = 5/2 have been con-
sidered, with the same bridge as before, leading to compounds
2 and 3, respectively. They both have a singlet ground state,
with non-negligible excitation energy to the lowest triplet
state. Ionizing these compounds produces sextet and decuplet
ground states, respectively. These examples show that a sin-
gle hole may align up to nine spins in properly chosen organic
architectures.

II. RECALL: TRIANGULENES AND THEIR COUPLING

The triangulene molecule has been studied previously by
both wave-function based and UDFT methods.13 The ground
state is a triplet, the geometry of which is easily optimized
with UDFT. The vertical excitation energy to the singlet state
has been accurately estimated to be 0.59 eV in DFT, 0.76 eV
from a difference-dedicated configuration interaction calcula-
tion (DDCI). The two unpaired electrons are delocalized on
the π skeleton. As in all alternant hydrocarbons (free from
odd-membered rings), one may attach one of two colors to
each of the carbon atoms in such a manner that two adja-
cent atoms do not have the same color. In triangulene, 12
atoms have one color, ten the other one, and according to the
Ovchinnikov’s rule18 the ground state is a triplet, the unpaired
electrons occupying two non-bonding MOs. It is well known
that in the Hückel model the singly occupied molecular or-
bitals (SOMOs) present amplitudes on the carbons of “major
color,” and zeros on the “minor color” atoms. The wavefunc-
tion is invariant under rotations of the two non-bonding MOs,
but since the bridge considered hereafter will keep an axial
symmetry passing through an apex and through the central
atom of the opposite side, it is important to define these two
MOs according to this symmetry.

Figure 2 gives the amplitudes of the SOMOs in the
Hückel model, which may be obtained directly as rational
numbers, on the back of an envelope, applying the eigenequa-
tion (h − E)ϕ = 0 for E = 0. UDFT spin densities, which
roughly follow the sum of the square of the coefficients of
these two SOMOs, are also reported in this figure. The largest
spin density is on the central side atoms (0.24 in Hückel, 0.39
in UDFT, 0.27 in DDCI) followed by the other side atoms
(0.20 in Hückel, 0.34 in UDFT, 0.23 in DDCI). Of course,
the UDFT or extended CI calculations introduce some spin
polarization of both π and σ systems, and thus negative spin
densities on the atoms of minor color. As a crucial feature,
one will notice that the symmetrical SOMO, which we shall
label a, presents an important amplitude on the atom to which
the bridge will be attached, while the antisymmetric SOMO,
hereafter labeled b, has a zero amplitude on this atom. The a
orbital has zero amplitudes on the upper part of the triangu-
lene, while the b orbital has larger amplitudes in this region
(Figure 2).

We now suggest connecting the two triangulenes from
one of their central side-atom through a benzene ring in
para position. To avoid steric hindrance between hydrogen
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FIG. 2. The two SOMOs of triangulene, as obtained from HMO treatment,
and UDFT-calculated spin densities in the triplet ground-state.

atoms and to maintain the planarity of the molecule, we
have added four CH2 groups, forming 6-membered rings
(Figure 3). These saturated carbon atoms should not partic-
ipate significantly to the communication of the π electrons of
the magnetic units and of the bridge. From now on, the labels
1, 2, and 3 will refer to these “stapled” versions of our dimers.
Dimer 1 has been studied previously.12 The lowest optimized
UDFT solution is obtained for ms = 0, same number of α

and β spin electrons, which indicates a singlet ground state,
but the mean value of the S2 operator (〈S2〉 = 1.89) clearly
suggests that the ground state is of open-shell character, with

FIG. 4. Alternative configurations for the broken-symmetry ms = 0 solution
of compound 1.

the number of unpaired electrons close to 4. Each triangu-
lene bears 1.73 spin densities. The closed-shell restricted DFT
solution is much higher in energy. It is worth noticing that
a quinonization of the bridge may in principle suppress two
unpaired electrons, which would result in a diradicalar moi-
ety (Figure 4). In broken-symmetry approaches, this would
correspond to a 〈S2〉 = 1 value, which is much below the
calculated one. The optimized bond lengths in the bridge re-
main close to the ideal aromatic structure of the benzene ring
(1.44 Å for C–Ar, and 1.42 Å and 1.39 Å for C–C intra-
aromatic).19 One may definitely say that the system can be
seen as maintaining two unpaired electrons per triangulene.

FIG. 3. The three open-shell hydrocarbons actually studied in the present study. Hydrogen labels of the perpendicular methylene groups are omitted for clarity.
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FIG. 5. The four singly occupied orbitals of neutral dimer 1 in its quintet
ground state.

We have also calculated the ms = 1 and the ms = 2 UDFT
solutions. The last one is a quintet state, lying 3.9 kcal/mol
above the ms = 0 solution. A spin decontamination of the sin-
glet state using simple factor 3/2 suggests an adiabatic exci-
tation energy of �ESQ = 5.9 kcal/mol to the quintet, and thus
a value of J = 1/3�ESQ ≈ 2.0 kcal/mol for the magnetic-
coupling term. In the quintet, four open shells of different
symmetries are singly occupied. Assigning labels 1 and 2 to
the upper and lower triangulenes, respectively, the lowest en-
ergy MO, of symmetry b1u, results from an in-phase combi-
nation of the two a-type MOs,

ϕ1 = (a1 + a2)/
√

2 = b1u,

with important tails on the bridge. The corresponding out-of-
phase combination

ϕ4 = (a1 − a2)/
√

2 = b2g,

appears as the highest singly occupied MO, of b2g symmetry.
In between, two MOs, nearly degenerate in energy, are con-
structed from the in-phase and out-of-phase combinations of
the b-type orbitals

ϕ2 = (b1 + b2)/
√

2 = au,

ϕ3 = (b1 − b2)/
√

2 = b3g.

Since these last two orbitals have near-zero amplitudes on the
connecting carbons of the triangulenes, they have vanishingly
small interaction, which explains their near-degeneracy.20

These four orbitals are plotted in Figure 5.

III. THE IONIZED DIMER OF TRIANGULENES: A
RIGOROUS EXPLOITATION OF UDFT SOLUTIONS

A. Three-openshell solutions

In a qualitative picture, one may say that before ioniza-
tion the two spins of the unpaired electrons are parallel but
that they have opposite orientations on units A and B (anti-
ferromagnetic coupling between the units). After ionization,
an electron (or a hole) will be delocalized between the two
equivalent units

|ϕ1ϕ2ϕ3| = |ϕ1b1b2| = (|a1b1b2| + |a2b1b2|)/
√

2

and one sees that the delocalization of the ϕ1 MO provides
delocalization energy. Note that when the delocalized electron
is on site A (or B), the neutral site is in its triplet ground state.
One also understands that this would no longer be the case if
the delocalized electron had an opposite spin

|ϕ1ϕ2ϕ3| = |ϕ1b1b2| = (|a1b1b2| + |a2b1b2|)/
√

2.

One must also keep in mind that another type of doublet con-
figuration |ϕ1ϕ1ϕ2| may be rather low in energy. It ignores the
preference of the units for high spin multiplicity but takes full
benefit of the possible delocalization between the a-type or-
bitals. To simplify, the order of the low energy states is ruled
by a competition between the delocalization of the electrons
in the a-type orbitals and the triplet-singlet energy difference
of the magnetic units.

The results of various UDFT solutions relative to the
ion are reported in Table I. One may first discuss the ms

= 3/2 solutions. They definitely correspond to quartet states
with three unpaired electrons since the corresponding 〈S2〉
values range between 3.85 and 3.90, slightly above the ex-
pected value (3.75) for pure quartet states of this type. The
small deviation comes from the spin polarization of the closed
shells. All these solutions imply single occupancies of the
site-centered orbitals. The lowest solution is of 4B2g sym-
metry, the singly occupied MOs are the three lowest ones,
b1u b3g au, |ϕ1ϕ2ϕ3|. Changing the symmetry of the occu-
pied SOMOs one obtains 3 other quartet states. Two of them,
which occupy both the b1u and b2g MOs, and empty either the
b3g |ϕ1ϕ2ϕ4| = |a1a2(b1 + b2)/

√
2| or the au MO, |ϕ1ϕ3ϕ4|

= |a1a2(b1 − b2)/
√

2|, are nearly degenerate, at 13.3 and
14.0 kcal/mol above the lowest quartet. This near degeneracy
reflects that of these two MOs, built from b-type orbitals of
the triangulenes. Their weak splitting suggests that the hop-
ping integral between the orbitals b1 and b2 is very small
(0.4 kcal/mol). Finally, in the upper quartet, of 4B1u sym-
metry, the empty SOMO is the bonding b1u MO, |ϕ2ϕ3ϕ4|
= |b1b2(a1 − a2)/

√
2|. It lies 17.3 kcal/mol above the low-

est quartet, suggesting a large effective hopping integral
(8.6 kcal/mol) between the orbitals a1 and a2, through their
delocalization tails on the benzene ring.
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TABLE I. UDFT-calculated energies differences for 1 at the D2h geometry of 4B2g cation ground state.

Species Spin multiplicities States Spinorbital occupations 〈S2〉 Ising 〈S2〉calc. �E (kcal/mol)

Neutral Quintet 5Ag b1u b3g au b2g (α) 6.00 6.18

Cation Quartet 4B1u b3g au b2g (α) 3.75 3.87 17.3
Quartet 4B3g b1u au b2g (α) 3.75 3.85 14.0
Quartet 4Au b1u b3g b2g (α) 3.75 3.85 13.3
Quartet 4B2g b1u b3g au (α) 3.75 3.90 0

Doublet 2B1u b1u b2g (α) b2g (β) 0.75 0.78 44.4
Doublet 2B1u b1u au (α) au (β) 0.75 0.77 21.1
Doublet 2B1u b1u b3g (α) b3g (β) 0.75 0.77 19.4
“Doublet”a B1u b2g b3g (α) au (β) 1.75 1.77 37.3
“Doublet”a B1u b2g au (α) b3g (β) 1.75 1.77 37.1
“Doublet”a B1u b3g au (α) b2g (β) 1.75 1.83 22.6

Doublet 2Au b2g au (α) b2g (β) 0.75 0.78 45.4
Doublet 2Au b3g au (α) b3g (β) 0.75 0.78 32.7
Doublet 2Au b1u au (α) b1u (β) 0.75 0.78 11.4
“Doublet”a Au b3g b2g (α) b1u (β) 1.75 1.78 27.4
“Doublet”a Au b1u b3g (α) b2g (β) 1.75 1.78 27.3
“Doublet”a Au b1u b2g (α) b3g (β) 1.75 1.81 18.8

Doublet 2B3g b3g b2g (α) b2g (β) 0.75 0.78 44.8
Doublet 2B3g b3g au (α) au (β) 0.75 0.78 33.6
Doublet 2B3g b3g b1u (α) b1u (β) 0.75 0.79 10.5
“Doublet”a B3g b1u au (α) b2g (β) 1.75 1.78 28.1
“Doublet”a B3g au b2g (α) b1u (β) 1.75 1.78 27.9
“Doublet”a B3g b1u b2g (α) au (β) 1.75 1.81 19.5

Doublet 2B2g b2g au (α) au (β) 0.75 0.77 37.9
Doublet 2B2g b2g b3g (α) b3g (β) 0.75 0.77 36.5
Doublet 2B2g b1u b2g (α) b1u (β) 0.75 0.77 28.1
“Doublet”a B2g b1u au (α) b3g (β) 1.75 1.77 20.3
“Doublet”a B2g b1u b3g (α) au (β) 1.75 1.77 20.2
“Doublet”a B2g b3g au (α) b1u (β) 1.75 1.81 5.8

aThese determinants are combinations of doublet and quartet states.

Regarding the doublet states, the single-determinant so-
lutions provided by the ms = 1/2 UDFT calculations have
to be analyzed and carefully exploited. There are two types
of solutions. One set of solutions present three singly occu-
pied orbitals. The corresponding values of 〈S2〉 (1.81–1.83)
are close to the expected value for a 3-openshell determinant
(1.75). The other set exhibits a single open shell, as visible
from the 〈S2〉 values which are close to the expected value
for a pure doublet (0.75). For each space-symmetry, we have
three 3-openshell solutions and three 1-openshell solutions.
Notice immediately that all the ms = 1/2 UDFT solutions
have energies higher than the lowest quartet state, which sug-
gests that the spectrum is ruled by the double exchange phe-
nomenon, but this must be confirmed by a correct description
of the doublet states.

Such a description requires to take into account the inter-
actions between the six determinants of a given space sym-
metry and the same ms = 1/2 value. The analysis will proceed
by first considering the interaction taking place between the
3-openshell determinants, which have the same orbital occu-
pancy as in the corresponding quartet, then by considering the
interaction between the 1-openshell determinants, and last by
establishing the interactions between the two subclasses. We
shall concentrate first on the space-symmetry B2g of the low-
est quartet state. Notice that the lowest energy ms = 1/2 de-

terminant belongs to this symmetry, being only 5.8 kcal/mol
above the lowest quartet state.

In this |b1ub3gau| = |ϕ1ϕ2ϕ3| determinant, the down spin
occupies the ϕ1 = b1u orbital. However, this single determi-
nant is not a pure spin doublet, it has a component on the ms

= 1/2 quartet, and one must reconstruct the doublet state. To
do so, one calculates the energy of the two other spin distribu-
tions of the same space configuration, the energies of which
appear in Table I. Taking the energy of the corresponding
quartet as zero of energy, the CI matrix relative to this space
configuration is

|ϕ1ϕ2ϕ3| K12 + K13

|ϕ1ϕ2ϕ3| −K12 K12 + K23

|ϕ1ϕ2ϕ3| −K13 −K23 K13 + K23

.

Hereafter, these three determinants will be labeled �1, �2,
and �3.

From the knowledge of the energies of the single deter-
minants, the matrix elements of this matrix are known. Notice
that the energies of �1 = |ϕ1ϕ2ϕ3| and �2 = |ϕ1ϕ2ϕ3| are
practically the same, which implies that K12 = K13 = 2.9 kcal/
mol, and K23 = 17.9 kcal/mol, while �3 = |ϕ1ϕ2ϕ3| only in-
teracts with the combination (|ϕ1ϕ̄2ϕ3| + |ϕ1ϕ2ϕ̄3|)/√2. The
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lowest doublet eigenvector is

	D = (2|ϕ1ϕ2ϕ3| − |ϕ1ϕ2ϕ3| − |ϕ1ϕ2ϕ3|)/
√

6

= (2�1 − �2 − �3)/
√

6.

When expressed in terms of site-centered orbitals, this
doublet state is purely VB neutral. The other doublet state is
VB ionic and lies at much higher energy. It is easy to ratio-
nalize the difference between the values of the exchange in-
tegrals, returning to the physical content of the dimer MOs in
terms of singly occupied orbitals a and b of triangulenes

K12 = ((b1 + b2)(a1 + a2), (b1 + b2)(a1 + a2))/4 = Ka1b1/2.

The calculated value is slightly lower than the value
1/4�ETS (3.5 kcal/mol) of the isolated triangulene, the lower-
ing coming from a slight delocalization of the a-type orbitals
in the bridge. On the contrary, the K23 integral is large, since
a similar development gives

K23 = ((b1 + b2)(b1 − b2), (b1 + b2)(b1 − b2))/4

= (Jb1b1 − Jb1b2 )/2.

This is the difference between intra- and inter-dimer elec-
tron repulsions, which is of course large and positive. The
main point is that the 3-openshell doublet lies 8.7 kcal/mol
above the quartet state. This quartet ground state is therefore
well separated from the doublet states of the same space part,
as shown in the left part of Figure 6.

FIG. 6. Interaction scheme within B2g symmetry. Horizontal lines: blue:
quartet; black: doublets; dashed (left): doublet/quartet mixtures; 3-OS: three
openshell determinants; 1-OS: one openshell determinants; SD: single deter-
minants; int.: after their interaction.

B. One-openshell doublets

One may of course verify the position of the doublet
single determinants with a single open shell. The calculated
energies of these solutions are reported in Table I. The singly
occupied MO is the ϕ4 = b2g orbital, each of the three
other orbitals being doubly occupied in one of the three de-
terminants of this type. Double occupancy of molecular or-
bitals introduces double occupancies of the orbitals a or b.
The CI matrix between �4 = |ϕ1ϕ̄1ϕ4|, �5 = |ϕ2ϕ̄2ϕ4|, and
�6 = |ϕ3ϕ̄3ϕ4| is

|ϕ1ϕ̄1ϕ4| H44

|ϕ2ϕ̄2ϕ4| K12 H55

|ϕ3ϕ̄3ϕ4| K13 K23 H66

.

In the first determinant, there are two electrons in a-type
orbitals, which have half and half neutral and ionic VB con-
tent. The last two determinants have two electrons in b-type
orbitals, and their out-of-phase combination is now purely
neutral. Notice that the extradiagonal matrix elements of this
matrix are the same exchange integrals which appear in the in-
teraction between the 3-openshell determinants. The diagonal
matrix elements are given in the table, and the lowest energy
determinant is �4 in which the three active electrons occupy
a-type orbitals. As a result of these interactions, summarized
in the right part of Figure 6, the lowest doublet state generated
by 1-openshell determinants remains at 20 kcal/mol above the
quartet.

C. Interactions between 1- and 3-openshell doublets

One must now establish the interactions between the two
blocks of determinants. The two lowest determinants of this
type occupy twice the low energy ϕ1 MO and singly occupy
either the ϕ2 or ϕ3 MO. They are about 11 kcal/mol above
the lowest quartet, and split by a quantity 0.9 kcal/mol, close
to the energy difference between the 4B3g and 4Au states.
The single determinant of B2g symmetry is much higher, at
28 kcal/mol above the quartet state. It is possible to calculate
its interaction with the 3-openshell doublet of the same sym-
metry. Writing bielectronic integrals in terms of electronic
distributions as

(ϕ1ϕ2, ϕ3ϕ4) = 〈ϕ1(1)ϕ3(2)|r−1
12 |ϕ2(1)ϕ4(2)〉,

one finds

〈�1|H |�4〉 = 〈|ϕ1ϕ2ϕ3||H ||ϕ1ϕ1ϕ4|〉
= −(ϕ1ϕ2, ϕ3ϕ4) + (ϕ1ϕ3, ϕ2ϕ4),

〈�1|H |�5〉 = 〈|ϕ1ϕ2ϕ3||H ||ϕ2ϕ2ϕ4|〉 = −(ϕ1ϕ2, ϕ3ϕ4),

〈�1|H |�6〉 = 〈|ϕ1ϕ2ϕ3||H ||ϕ3ϕ3ϕ4|〉 = (ϕ1ϕ3, ϕ2ϕ4),

〈�2|H |�4〉 = 〈|ϕ1ϕ2ϕ3||H ||ϕ1ϕ1ϕ4|〉 = (ϕ1ϕ2, ϕ3ϕ4),

〈�2|H |�5〉 = 〈|ϕ1ϕ2ϕ3||H ||ϕ2ϕ2ϕ4|〉
= (ϕ1ϕ2, ϕ3ϕ4) − (ϕ1ϕ4, ϕ3ϕ2),

〈�2|H |�6〉 = 〈|ϕ1ϕ2ϕ3||H ||ϕ3ϕ3ϕ4|〉 = −(ϕ1ϕ4, ϕ3ϕ2),

〈�3|H |�4〉 = 〈|ϕ1ϕ2ϕ3||H ||ϕ1ϕ1ϕ4|〉 = −(ϕ1ϕ3, ϕ2ϕ4),

〈�3|H |�5〉 = 〈|ϕ1ϕ2ϕ3||H ||ϕ2ϕ2ϕ4|〉 = (ϕ1ϕ4, ϕ3ϕ2),

〈�3|H |�6〉 = 〈|ϕ1ϕ2ϕ3||H ||ϕ3ϕ3ϕ4|〉
= (ϕ1ϕ4, ϕ3ϕ2) − (ϕ1ϕ3, ϕ4ϕ2).
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The corresponding bielectronic integrals are easily evaluated
by expressing the MOs in terms of site-centered orbitals, and
keeping only on-site electronic distributions, which gives, for
instance,

(ϕ1ϕ2, ϕ3ϕ4) = ((a1 + a2)(b1 + b2), (b1 − b2)(a1 − a2))/4

= (Ka1b1 + Ka2b2 )/4 = Ka1b1/2.

All the integrals involving products of a-type (ϕ1, ϕ4) or-
bitals by b-type (ϕ2, ϕ3) orbitals are identical in this approxi-
mation and reduce to

(ϕ1ϕ2, ϕ3ϕ4) = (ϕ1ϕ3, ϕ2ϕ4) = K12 = K13 = K42

= K43 = Ka1b1/2 = 2.9 kcal/mol.

One may also evaluate the integral

(ϕ1ϕ4, ϕ2ϕ3) = ((a1 + a2)(a1 − a2), (b1 + b2), (b1 − b2))/4

= (Ja1b1 − Ja1b2 )/2.

Remembering that

(ϕ1ϕ4, ϕ1ϕ4)=K14 = ((a1+a2)(a1−a2), (a1+a2)(a1−a2))/4

= (Ja1a1 − Ja1a2 )/2,

and that Ja1a1 = Ja1b1 + 2Ka1b1 , neglecting the difference be-
tween Ja1a2 and Ja1b2 , one may write

(ϕ1ϕ4, ϕ2ϕ3) = K14 − Ka1b1 .

The value of K14 is easily obtained from the solutions of
other symmetries, for instance, B3g, as we did for K23. One
gets K14 = 11.3 kcal/mol, significantly less than K23. This
smaller value is due to the fact that the orbitals a1 and a2

are closer than the orbitals b1 and b2. Finally, (ϕ1ϕ4, ϕ2ϕ3)
= 5.1 kcal/mol.

D. Final spectrum

Knowing all the elements of the 6 × 6 CI matrix, its
diagonalization leads to the levels plotted in the middle of
Figure 6, the eigenenergy of the lowest doublet of B2g sym-
metry being

E(2B2g) − E(4B2g) = 6.8 kcal/mol.

The corresponding eigenvector is essentially spanned by the
three 3-openshell determinants, with coefficients close to
2/

√
6, −1/

√
6, −1/

√
6. The 1-openshell determinants only

act as weak perturbers, with weights below 5%. The low-
est doublet dominated by a 1-openshell determinant lies
21.8 kcal/mol above the lowest quartet.

Transposing to B3g symmetry the derivation performed
for B2g symmetry, the lowest ms = 1/2 UDFT solution has
now a single open shell (as evident from it 〈S2〉 value at 0.79).
It may be written |ϕ1ϕ1ϕ2| and lies at 10.5 kcal/mol above
the lowest quartet state. The 3-openshell determinants of the
same symmetry, the space part of which is ϕ1ϕ3ϕ4, are much
higher in energy, by 9–18 kcal/mol. The lowest doublet issued
from the 3-openshell configuration is 16.7 kcal/mol above the
lowest quartet state. As noticed, the |ϕ1ϕ1ϕ2| determinant is

half and half neutral and ionic,

|ϕ1ϕ1ϕ2| = |(a1a2 + a2a1 + a1a1 + a2a2)ϕ2|/2

but there is a strong interaction, through the integral K14,
(11.3 kcal/mol), between this determinant and the determinant
|ϕ4ϕ4ϕ2|, which lies 34.2 kcal/mole (i.e., 4t) above. This inter-
action, which reduces the weight of the ionic components, re-
sults in an energy lowering of 3.3 kcal/mol, so that the lowest
doublet state of B3g symmetry built from the 1-openshell de-
terminants is only 7.2 kcal/mol above the lowest quartet state.
One may then take into account the interaction between the
1-openshell and the 3-openshell determinants. The numerical
results give

E(2B3g) − E(4B2g) = 4.4 kcal/mol,

and the eigenvector is dominated by the |ϕ1ϕ1ϕ2| determinant,
the coefficient of which is 0.924. The second doublet state of
this symmetry is at 18.3 kcal/mol above the lowest quartet.
It is a strong mixture of 1-openshell and 3-openshell determi-
nants. Thus, the lowest doublet state of this symmetry belongs
to the second family of states; it possesses 2 electrons in the
a-type orbitals and 1 in the b-type orbitals, in contrast with
the lowest state, which is a quartet and puts only one electron
in the a-type orbitals and 2 in the b-type orbitals. This situa-
tion is similar to that observed in the diradicalar hydrocarbons
studied in Ref. 8. Figure 7 summarizes the relative energies of
these lowest states.

The physics of the Au states is quite similar to that of
the B3g symmetry. The lowest doublet, essentially of closed-
shell character, lies at 3.6 kcal/mol above the quartet ground
state, and the spacing between the two lowest doublet states
is approximately the same as that between the quartet states.

Going to the B1u symmetry, which the highest quartet
belongs to, the lowest doublet state is of 1-openshell char-
acter, with two leading determinants, |ϕ1ϕ2ϕ2| and |ϕ1ϕ3ϕ3|
in an out-of-phase combination with nearly equal and oppo-
site coefficients. The function can be read as well as (|ϕ1b2b1|
+ |ϕ1b1b2|)/

√
2. Its energy is the lowest one of all doublets,

at 2.1 kcal/mol above the lowest quartet state. This is finally
the lowest doublet state. The second doublet state is at a much
higher energy, at 26.1 kcal/mol above the lowest quartet state,
and it is an essentially 3-openshell state. All these relative en-
ergies are summarized in Table II and Figure 7.

E. Discussion

To summarize this section, one may say that:� the lowest eigenstate of the ionized molecule is a quar-
tet. Therefore, the neutral molecule, which results from
antiferromagnetic coupling between triplet diradicals
(S = 1 units), exhibits a double exchange phenomenon
under ionization;� we have proposed a model and a derivation which
works with space symmetry-adapted determinants
having either three open shells or one open shell, and
exploited their energies;� from the energies of these six determinants, it is pos-
sible to construct in a rational manner the CI matrix
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FIG. 7. Final estimates of vertical relative energies for low-lying states of cationic 1. Dashed lines correspond to doublet states with a single open shell.

between them, and to obtain eigenvectors which mix,
without prejudice, the 3-openshell and 1-openshell de-
terminants;� the present modelization contains the same physics as
the one proposed in the previous work,8 but it does not

TABLE II. Final estimates of the low-lying state energies for cationic
dimer 1.

Open shells �E (kcal/mol)

2B1u 3 26.1
2B3g 3 22.2
2B2g 1 21.8
2Au 3 18.3
4B1u 3 17.3
4B3g 3 14.1
4Au 3 13.3
2B2g 3 6.8
2B3g 1 4.4
2Au 1 3.6
2B1u 1 2.1
4B2g 3 0

introduce space symmetry-broken determinants nor an
intermediate Hubbard-type Hamiltonian;� the traditional modelizations of double exchange
systems work within the set of 3-openshell
determinants.2–5 It is shown here that the lowest
doublet may be of 1-openshell character, as al-
ready observed in a previous work.8 However, the
3-openshell doublet handled by the traditional model
here belongs to the low-lying states;� most of the usual modelizations of the double ex-
change spectrum assume that the lowest states can be
considered as essentially obeying the intra-site Hund’s
rule, or that the model space can be built from prod-
ucts of on-site triplet states.2, 4, 5, 8 The here-obtained
wavefunctions for the doublet states do not satisfy this
hypothesis. As a consequence, we have not tried to
produce an analytical effective Hamiltonian.

Finally, one may address the problem of the geometry
relaxation of the doublet state, since up to now all the re-
ported energies have been calculated at the equilibrium ge-
ometry of the lowest quartet state. The geometry of the low-
est 3-openshell ms = 1/2 solution, of B2g symmetry, has been
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optimized, first keeping D2h symmetry. The energy stabi-
lization is small (0.1 kcal/mol), but becomes more impor-
tant when removing this symmetry constraint. The lowest en-
ergy solution adopts a C2v symmetry, which weakly breaks
the symmetry between the two triangulene groups. The en-
ergy lowering is significant, and this determinant is now
2.6 kcal/mol above the lowest quartet state 4B2g. At this ge-
ometry, the energy of the quartet is almost unchanged (energy
loss of only 0.1 kcal/mol). One should remember that the spin
decontamination will increase the energy difference between
the quartet and the 3-openshell doublet by a factor 3/2, and
the lowest 2B2g doublet state should be at about 3.8 kcal/mol
above the lowest quartet state. We have also looked at the low-
est 1-openshell doublet determinant of 2B3g symmetry. The
energy relaxation is 1.5 kcal/mol, diminishing the energy dif-
ference to E(2B3g)−E(4B2g) = 2.9 kcal/mol.

This study confirms that the lowest eigenstate remains a
quartet state, even when looking at the adiabatic energy dif-
ferences between the lowest quartet and doublet states. The
geometry relaxation of the lowest doublet state of B1u sym-
metry is more difficult to perform since it is an equal mixture
of two determinants but its energy relaxation should remain
small.

IV. IONIZING ANTIFERROMAGNETICALLY COUPLED
UNITS OF SPINS HIGHER THAN 1

It may be interesting to consider systems of magnetic
units bearing spins larger than 1. Staying close to the previous
problem, one can replace plain triangulenes by hydrogenated
triangulenes, which have higher spin ground states,11 while
keeping unchanged the para-benzene bridge, thus maintain-
ing the D2h symmetry. In such systems, apex CH2 groups ac-
tually behave as steric-hindrance releaser or planarity helper,
as do bridging methylene groups introduced in Sec. II.

Saturating an apex carbon atom of the triangulene gen-
erates a molecule with a quartet ground state. In the build-
ing unit of 2, this carbon belongs to the longitudinal axis of
symmetry of the dimer (Figure 3). The ms = 3/2 quartet of
this monomer unit, the π skeleton of which is explicated in
Figure 8, middle, may be written from its three SOMOS a, a′,
and b, as |aa′b|. The a and a′ SOMOs, are symmetrical with
respect to the symmetry plane perpendicular to the molecular
plane, while b is antisymmetrical, as in the previous triangu-
lene case. The latter orbital has zero amplitude on the bridging
carbon atom, and it is possible to obtain the same property for
a′, by performing a rotation among a and a′. These two sym-
metrical SOMOs are illustrated in Figure 9.

Moving to dimer 2, let us assign, again, labels 1 and 2
to the upper and lower units, respectively. Since the orbitals
a′

1 and a′
2 have very small amplitudes on the bridging carbon

atom, they will not participate in the inter-site delocalization,
and will essentially behave as b1 and b2. The three SOMOs
will generate six MOs in the dimer, decomposing into three
couples:� The bonding b1u MO built from the a set:

ϕ1 = (a1 + a2)/
√

2,

FIG. 8. Constitutive units of dimers 1, 2, and 3, with corresponding π

frameworks.

with its corresponding b2g out-of-phase combination

ϕ6 = (a1 − a2)/
√

2.

These two orbitals have significant tails on the bridge,
and are well separated in energy.� A same b1u/b2g duo, built from the a′ set:

ϕ2 = (a′
1 + a′

2)/
√

2,

ϕ5 = (a′
1 − a′

2)/
√

2.

These orbitals have little contribution on the bridge,
and remain close in energy.� A b3g/au pair, built from the b set:

ϕ3 = (b1 + b2)/
√

2,

ϕ4 = (b1 + b2)/
√

2.

Again, these orbitals are close in energy. The full set of
the six SOMOs of dimer 2 is plotted in Figure 10, in the UDFT
ordering of the cation ground state. Notice that the orbital or-
dering, as it comes up from the UDFT calculations on neutral
or cationic species, is not as clear-cut as discussed above (see
Table III). In particular, bonding ϕ1(b1u) is lying above non-
bonding ϕ3(b3g), probably due to the significant involvement
in the former of π orbitals of the top CH2 groups, in anti-
bonding phase, as conspicuously appearing in the bottom of
Figure 10.

The high-spin state of neutral 2 is a 7B3u state. As in
the preceding case, the optimized lowest UDFT solution is
obtained for ms = 0, suggesting a singlet ground state with
clear open-shell character (〈S2〉 = 2.96), associated with a
singlet-septet gap of about 8 kcal/mol, after correction by the

FIG. 9. The two symmetrical SOMOs of single apex-saturated triangulene.
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FIG. 10. Singly occupied orbitals in dimer 2, in the ordering they arise in
cationic ground state. In this sextet state, the top orbital is therefore virtual.

decontamination factor of 4/3. In cationic 2, ϕ6 has been emp-
tied and the ms = 5/2 lowest sextet state is of 6B1u symmetry

|ϕ1ϕ2ϕ3ϕ4ϕ5| = |ϕ1a
′
1a

′
2b1b2|

= (|a1a
′
1a

′
2b1b2| + |a2a

′
1a

′
2b1b2|)/

√
2,

while other sextet determinants are higher in energy. Their
energy differences enable to evaluate the exchange integrals
between the singly occupied MOs. However, it is difficult to
converge on the second state of the same symmetry and we
shall not proceed here to the same explicit derivation of the
energies of the quartet states, which would be rather tedious.
We have simply optimized the energy of a ms = 3/2 deter-
minant, without imposing any constraint in the filling of the
MOs of various symmetries. In the geometry of the lowest
sextet state, we have obtained a solution which exhibits five
open shells (〈S2〉 = 4.81, close to the expected value of 4.75)
and may be read as

|ϕ1ϕ2ϕ3ϕ4ϕ5| = |ϕ1a
′
1a

′
2b1b2|

= (|a1a
′
1a

′
2b1b2| + |a2a

′
1a

′
2b1b2|)/

√
2

and which lies 7.5 kcal/mol above the lowest sextet state. Re-
laxing the geometry diminishes the energy of this determinant
to 7.3 kcal/mol in the D2h symmetry, while leaving any sym-
metry constraint one gets a C2v geometry and a significant
energy lowering. The minimum energy of this single determi-
nantal function is now 2.8 kcal/mol above the sextet state min-
imum, but the spin decontamination factor of 5/4 will push
the lowest 5-openshell quartet to 3.5 kcal/mol above the sex-
tet. The 3-openshell ms = 3/2 solutions, of B2g symmetry, are

TABLE III. Summary of UDFT-calculated energy differences for compounds 1–3.a

Species Spin multiplicities States Spinorbital occupations 〈S2〉Ising 〈S2〉calc. �E (kcal/mol)

1 Neutral Quintet 5Ag b1u b3g au b2g (α) 6.00 6.18

Cation Quartet 4B2g b1u b3g au (α) 3.75 3.90 0
Quartet (“vert.” C2v)b 4B1 b1 a2 a2 (α) 3.75 3.90 0.1

“Doublet” c (vert.) B2g b3g au (α) b1u (β) 1.75 1.81 5.8
“Doublet”c B2g b3g au (α) b1u (β) 1.75 1.81 5.7
“Doublet”c (C2v) B1 a2 a2 (α) b1 (β) 1.75 1.86 2.6

Doublet (vert.) 2B3g b1u b3g (α) b1u (β) 0.75 0.79 10.5
Doublet 2B3g b1u b3g (α) b1u (β) 0.75 0.79 9.0

2 Neutral Septet 7B3u b3g b1u au b2g b1u b2g (α) 12.00 12.25

Cation Sextet 6B1u b3g b1u au b1u b2g (α) 8.75 8.96 0.

“Quartet” d (vert.) B1u b3g au b1u b2g (α) b1u (β) 4.75 4.81 7.5
“Quartet”d B1u b3g au b1u b2g (α) b1u (β) 4.75 4.80 7.3
“Quartet”d (C2v) B1 a2 a2 b1 b1 (α) b1 (β) 4.75 4.89 2.8

Quartet (vert.) 4B2g b3g au b1u b1u (α) b1u (β) 3.75 3.88 16.8
Quartet 4B2g b3g au b1u b1u (α) b1u (β) 3.75 3.88 14.7

3 Neutral Undecuplet 11B3u au b3g b1u b2g b1u b1u b3g b2g au b2g (α) 30.00 30.33

Cation Decuplet 10B1u b1u au b3g b3g b2g b1u au b1u b2g (α) 24.75 25.09 0

Octuplet (vert.) 8B1u au b3g b1u b2g b3g b1u au b2g (α) b1u (β) 15.75 16.75 8.7
Octuplet 8B1u au b3g b1u b2g b3g b1u au b2g (α) b1u (β) 15.75 16.69 7.8

aAll species in D2h symmetry, unless otherwise specified; vert. understands as vertical from the high-spin cation geometry.
bHere, “vert.” refers to the optimized geometry of the doublet state.
cThese determinants are combinations of doublet and quartet states.
dThese determinants are combinations of quartet and sextet states.
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FIG. 11. The three symmetrical SOMOs of all apex-saturated triangulene.

much higher in energy (16.8 kcal/mol for vertical energy from
the sextet state minimum, 14.7 kcal/mol for the adiabatic en-
ergy difference). These energies are collected in Table III, and
the existence of a sextet ground state for this cation therefore
seems certain.

If one now considers triply apex-saturated triangulenes,
their ground state is a sextet. The excitation energy to the
quartet state has been calculated to be around 0.6 eV from
UDFT calculation, and around 0.5 eV from post-CAS CI
calculations.11 As documented in Ref. 11, among the five
singly occupied MOs, three of them may be seen as located
on peripheral pentadienyl entities, the two other ones having
the largest amplitudes on the four internal atoms forming a
TMM frame (see Figure 8, bottom right).

Like 1 and 2, dimer 3 possesses a plane of symmetry per-
pendicular to the plane of the molecule. Among the 5-SOMO
set of each hydrogenated triangulene building block, two of
them are antisymmetrical with respect to this plane. As such,
these orbitals have zero amplitudes on the connecting carbon
atom, and cannot partake to bridge interaction. The three re-
maining SOMOs are symmetrical with respect to this plane of
symmetry. Among them, returning again to the Hückel Hamil-
tonian and applying a proper rotation, it is possible to define
two SOMOs having a zero amplitude on the connecting car-
bon (a′ and a′′, see Figure 11), and one having a large coef-
ficient on this atom (a), identified as the strongly interacting
one. A significant hopping integral between these latter in up-
per and lower triangulenes, will insure the double exchange

FIG. 12. Subset of six singly occupied orbitals in dimer 3, built from the
three symmetrical SOMOS of each building block. Left: b1u in-phase combi-
nations; right: b2g out-of-phase combinations. Labelling reflects the ordering
of the ten SOMOS in cationic 3, where φ10 is therefore virtual.

mechanism to take place. As illustrated in Figure 12, six of
the ten SOMOs of 3 can be built as b1u in-phase and b2g out-
of-phase combinations of orbitals from this subset (a, a′, a′′).
With labels 1 and 2 still referring to the upper and lower units,
respectively, the extreme orbitals ϕ1 and ϕ10 are clearly con-
structed from a-type orbitals,

ϕ1 = (a1 + a2)/
√

2,

ϕ10 = (a1 − a2)/
√

2,

as are ϕ8 and ϕ9 from a′-type ones,

ϕ8 = (a′
1 + a′

2)/
√

2,

ϕ9 = (a′
1 − a′

2)/
√

2,

and – less conspicuously though – ϕ6 and ϕ5 from a′′-type
ones,

ϕ6 = (a′′
1 + a′′

2 )/
√

2,

ϕ5 = (a′′
1 − a′′

2 )/
√

2.

TABLE IV. UDFT-calculated low-lying states energies (�E, kcal/mol) and ionization energies (IE, eV) for neutral systems.

Species States 〈S2〉Ising 〈S2〉calc. �E (kcal/mol) a IE (eV)

1 Cation Quartet vert. 4B2g 3.75 3.90 5.19
Cation Quartet 4B2g 3.75 3.90 5.18

Neutral Quintet vert. 5Ag 6.00 6.18 5.4 8.1
Neutral Quintet 5Ag 6.00 6.18 3.9 5.9
Neutral “Singlet” BS Ms = 0 1A1 2.00 1.89 0 0

2 Cation Sextet vert. 6B1u 8.75 8.97 5.13
Cation Sextet 6B1u 8.75 8.96 5.12

Neutral Septet vert. 7B3u 12.00 12.25 6.0 8.0
Neutral Septet 7B3u 12.00 12.25 5.9 7.9
Neutral “Singlet” BS Ms = 0 1A1 3.00 2.96 0 0

3 Cation Decuplet vert. 10B1u 24.75 25.09 5.25
Cation Decuplet 10B1u 24.75 25.09 5.24

Neutral Undecuplet vert. 11B3u 30.00 30.34 7.1 8.6
Neutral Undecuplet 11B3u 30.00 30.34 5.9 7.1
Neutral “Singlet” BS Ms = 0 1A1 5.00 5.08 0 0

aThe second column applies the correcting factors of 3/2, 4/3, and 6/5 for 1, 2, and 3, respectively.
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The high-spin state of neutral 3 is a 11B3u state. Again,
the optimized lowest UDFT solution is obtained for ms = 0,
suggesting a singlet ground state with clear open-shell char-
acter (〈S2〉 = 5.08), associated with a singlet-undecuplet gap
around 8 kcal/mol, after correction by the decontamination
factor of 6/5. The low-spin/high-spin energy gaps for neutral
dimers 1, 2, and 3 are gathered in Table IV, together with their
ionization energies, calculated around 5.2 eV in all cases, at
this level of description. In cationic 3, ϕ10 has been emptied
and the ms = 9/2 lowest decuplet state is of 10B1u symme-
try. It is actually found to be the lowest state of the cation,
with an energy gap to the ms = 7/2 lowest energy 9-openshell
determinant of 8.7 kcal/mol for the vertical energy, and
7.8 kcal/mol for the adiabatic energy (see Table III). The spin
decontamination would only increase slightly these quanti-
ties. We did not find solutions with lower 〈S2〉 values, i.e.,
with 7 open shells.

V. CONCLUSION

The present work first confirms the possible occurrence
of double exchange phenomena in organic systems where two
high-spin multiplicity units are antiferromagnetically cou-
pled. If each unit bears n unpaired electrons, the dimer brings
2n unpaired electrons but the ground state of the neutral sys-
tem is a singlet state. In such systems, the ground state of the
cation is not a doublet but a state of 2n spin multiplicity. One
may say that the hole aligns the remaining 2n − 1 unpaired
electrons. The cations of compounds 1, 2, and 3 have, respec-
tively, 3, 5, and 9 unpaired electrons of parallel spins.

A previous work had evidenced the existence of quartet
ground state in the cation of diradicalar conjugated polycyclic
hydrocarbons.8 This result was somewhat unexpected since
the units were of low spin multiplicity, while canonical dou-
ble exchange is expected when the units are at least of triplet
spin multiplicity, as it is the case in the present series of com-
pounds. In Ref. 8, the lowest doublet states had only one open
shell, while canonical double exchange models assume them
to have the same number of unpaired electrons as the state of
highest spin multiplicity.

In the present work, we have proposed a procedure ex-
ploiting the large variety of UDFT solutions obtained by
changing the occupation number and spins of the magnetic or-
bitals. In the case of the interaction between two S = 1 units,
we have shown that one may treat in a rigorous manner the in-
teraction between 3-openshell and 1-openshell determinants.
The off-diagonal matrix elements of the corresponding CI-
type matrix can be deduced from the differences between the
diagonal matrix elements. One obtains spin-decontaminated
doublet functions. In the case of compound 1, four doublets
coexist, a few kcal/mol above the quartet ground state, one be-
ing dominated by a 3-openshell configuration, the other ones
being essentially supported by 1-openshell symmetry-adapted
determinants. The former is compatible with the usual mod-
elization of double-exchange systems, while the latter are not,
which do not respect intra-site Hund’s rule. Note that were
the lowest doublet state slightly below the quartet state, the
molecules could become spin-crossover systems – an inter-
esting property, quite as well.

Finally, we would like to stress on the potentialities of
such polybenzenic architectures. They actually combine mag-
netism and conductivity, delocalized and localized electrons,
the former ones insuring conductivity, the second one po-
tentially fixing the magnetic orientation. This combination
would here take place within a same molecular unit, but
most promising developments in this domain imply electronic
delocalization – i.e., conduction – between magnetic units,
frequently involving hetero-organic radicals.21–24 Both ap-
proaches certainly deserve attention in the context of spin-
tronic development.
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Chapter 2

Collective effects I

2.1 Introduction

Exotic properties observed in doped manganites like the colossal magneto resis-
tance (CMR) result from the critical nature of the interactions at work in such
doped transition metal oxides (TMO) and to collective effects. This leads to an
important sensitivity of the macroscopic properties to the amount of doping, the
temperature, the presence of a magnetic field and other external perturbations.
In doped transition metal oxides like manganites and nickelates, Double Exchange
(DE) and Super Exchange (SE) interactions compete giving rise to remarkable
electromagnetic properties.

The previous chapter dealt with the DE model with a minimal system of two
magnetic centers. In that case, since there was only a single electron occupying
the two delocalized orbitals, therefore there was no exchange term J between the
electrons occupying delocalized orbitals. The presence of three sites or more and
at least two electrons in the delocalized orbitals, introduces the effect of the inter-
site effective exchange term J . The parameters K and t favor a ferromagnetic
alignment, as shown in the previous chapter, whereas J favors antiferromagnetic
alignment. Thus there is a competition between the antiferromagnetic and fer-
romagnetic ground states. We believe that it is this competition that gives rise
to the anomalous properties of doped transition metal oxides. The following two
chapters consist of a study of this competition by numerically solving the Double
Exchange model for systems larger than two sites.

In this first chapter on collective effects, we will study the influence of a single hole.
Through this analysis, we will determine the number of spins aligned by a single
hole in the parameter range of interest, i.e. the values typically observed in TMO.
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Following this, we will study the influence of two and more holes on the number
of spins aligned. In the next chapter, we will analyze the electron delocalization
and the effect of a magnetic field.

2.2 Background and objectives
In the present section, we will review the various experimental and theoretical
studies on finite and crystalline high-spin systems showing DE phenomenon. Then
we will present our objectives and the position of the present work in the context
of the available literature.

2.2.1 Experimental results
2.2.1.1 Applications: Finite systems

Traditionally, high-spin clusters are based on ferromagnetic or ferrimagnetic inter-
actions. Recently, focus has been turned to the double exchange mechanism for the
design of high-spin metallic clusters. A large number of studies can now be seen,
that target high-spin systems based on the double exchange mechanism [5]. A very
nice and clear demonstration of a high-spin molecule based on the di-vanadium
(S = 5

2) complex originating from the DE mechanism have been developed and
studied by Belchars et al [6]. Large clusters based on mixed valence Iron (FeIIFeIII

7 )
centers that show DE phenomenon have also been synthesized quite recently (2014)
that show a high-spin ground state of up to S = 39

2 [8]. These advances on the syn-
thesis of finite clusters with high-spin centers shows great potential for applications
in spintronics. In fact there have already been a few studies on the application of
these clusters for electronic devices. Linear clusters of mixed valance Mn centers
showing controllable DE phenomenon have been successfully demonstrated [39].
Spin valves based on the DE mechanism have been proposed by Dul et al [7]
and Soncini et al [11]. The theoretical study of these systems mostly use Density
functional theory methods to characterize the energy gap for the low lying states.
Although these methods are useful for a qualitative analysis of the clusters, a more
accurate analysis is desirable. The objective of the present work is also to target
finite size systems. We would like to give predictions on the values of the DE
parameters J,K and t that would lead to high-spin linear chain clusters.

2.2.1.2 Applications: Bulk materials

There has been a renewed interest in the study of doped transition metal ox-
ides [40, 41] since the discovery of colossal magneto resistance (CMR) in man-
ganites [9]. The linear nickel oxide Y2BaNiO5 has been identified as being well
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modeled by a 1D S = 1 model system in the early 1990’s by Darriet et.al. [42, 43].
Doping Y2BaNiO5 with holes (Ca) would therefore correspond to a one dimen-
sional system with two valence orbitals on each site. A possible application of the
present study to bulk systems is the one dimensional doped transition metal oxide
of nickel Y2BaNiO5 and by extension, it can also be generalized towards an un-
derstanding of 2D bulk systems such as manganese La1−xCaxMnO3 Perovskites.
(YBCO). In the following few paragraphs, we present some experimental results
on YBCO in order to gain perspective on the numerical analysis that follows.

The electronic configuration of binuclear nickel oxide has previously been stud-
ied by ab initio methods [44]. Such studies show the presence of two localized
open shell d orbitals (dz2 and dx2−y2) on each nickel atom. As the NiO6 system
forms a distorted octahedron, the two valence electrons of the Ni atom reside
on the dz2 and dx2−y2 orbitals. The doped system composed of mixed valence
Ni(III)/Ni(II) sites, made up of two orbitals each with one or two electrons, as
shown in the Fig: 2.1, will give rise to double-exchange like interactions. The z axis
is oriented along the axis of the chain as shown in the Fig: 2.1. Therefore, the over-
lap between the dz2 orbitals is larger than the dx2−y2 orbitals. Consequently, the
holes preferentially reside on the dz2 orbitals as confirmed by experiment [45]. This
implies that there are primarily two kinds of electrons on each Ni center. Firstly,
the electron, residing on the dz2 orbital and delocalized along the neighbouring
atoms, is responsible for the transport properties. Secondly, the electron occupy-
ing the dx2−y2 is strongly localized and weakly couples with the other site (J2 ≈ 0).

Although 1D nickelates do not show CMR effects, an important change in resis-
tivity with magnetic field has been observed [46]. The experimental studies in 1D
nickelates and 2D manganites aim to understand the origin of these anomalous
dependence of the transport on the magnetic field. Experimental studies can be
classified by means of the methods used to probe the various properties. Optical
spectroscopy measurements by Tsutsui et al [47] show that the transport in one and
two dimensions are not the same due to the presence of the Zener polaron [48, 49]
in 2D manganites which introduces lattice distortions. Ito and Yamaguchi [45]
have also performed optical spectroscopy measurements, concluding that on dop-
ing, there is a general tendency of forming a ferromagnetic polaron surrounding
the holes which increases with the application of magnetic field. Another work us-
ing optical spectroscopy by Fagot-Revurat et al shows a significant decrease in the
Ni−O distance resulting in the increasing p character for the delocalized orbitals.
Their study shows the importance of the electron-phonon effects in such systems.
The X-Ray absorption spectroscopy studies on YBCO [50] essentially verify the
one dimensionality of the YBCO system. The transport and magnetic suscepti-
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Figure 2.1: A schematic representation of two sites showing the two orbitals on
each Ni site in YBCO and their orientation along the axis of the chain taken as
the z axis.

bility measurements on YBCO have been carried out by many groups [51, 52, 53].
An important experimental study of transport in 1D YBCO by Ito et al [45] shows
the variation of resistivity as a function of doping ratio. They conclude that for the
1D nickelates, the introduction of holes introduces only local distortions resulting
in a ferromagnetic region surrounding the hole. Neutron scattering measurements
show the presence of spin and charge stripes [54, 55] only for 2D nickelates. The 2D
nickelates show stripe ordering and spin incommensurability in the doping range
0.289 ≤ x ≤ 0.5, this is reminiscent of a similar stripe order observed in man-
ganites. Other studies on 2D nickelates by Mizokawa et al [56] report the charge
density waves (CDW) and spin density waves (SDW) and the extent of the domain
walls containing the stripes. They also postulate an effective coupling between the
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different domains separating the CDW and SDW regions. Moreover, work by Xu
et.al. [57] has shown the existence of spin incommensurabilities which arise when
the parent compound Y2BaNiO5 is doped with Ca holes confirming the presence
of local spin distortions. In conclusion, we find that the experimental results show
the following important points:

• Presence of local distortions (polarons) for 1D nickelates on doping with
holes.

• The size of the polarons increases with an increase in the strength of the
magnetic field.

• The doping ration for which we see an important modulation in conductivity
is between 0.3 to 0.5 for nickelates.

2.2.2 Theoretical studies
This section presents in brief, the progress in the understanding of the role of col-
lective effects of the DE Hamiltonian. There have been numerous studies on the
double exchange model in the context of doped transition metal oxides with meth-
ods ranging from full diagonalization and Monte Carlo techniques [58] to more
advanced methods like the density matrix renormalization group (DMRG) calcu-
lations and DMFT [59]. Since in the double exchange model even with only two
orbitals per site the configuration space grows very fast, numerical studies sim-
plify the DE model in order to treat larger systems. The studies can be grouped
into two general sections (i) effective one band models and (ii) effective two band
models.

The one band models [60, 59, 61, 62] are derived from the generalized Hubbard
Hamiltonian containing two orbitals (dz2 and dx2−y2) per site including all usual
parameters along with the Coulomb repulsion between the electrons (on-site U
and the inter site V ). Low energy spectrum of the dimer studied with this gen-
eralized Hamiltonian is used to extract the parameters of an effective one band
t−J Hamiltonian (Jeff and teff ) which reproduce the low energy spectrum. These
effective parameters are then used to model the collective properties for large 1D
chain of sites. Dagotto et al [3] have studied the influence of a single hole for the
one and two dimensional lattices, they used the one band t − J model Hamilto-
nian not including the local singlet S0 states. An important work by Malvezzi et
al [63] on collective effects of the DE model showed the presence of a ferromagnetic
polaron surrounding the hole that forms small “islands” immersed in an antifer-
romagnetic spin liquid and that the extension of such “islands” is affected neither
by U nor V repulsion. They do not perform a detailed study of the extension of
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this polaron with varying J and K. A recent study by Navarro et al [64] on a one-
band magnetic field dependent DE Hamiltonian (K → ∞) presents the effect of
the magnetic field on the mobility of the electrons via the magnetic susceptibility
curves. They were able to show that there is a dependence of the Curie constant
on the spin impurities near the Curie temperature.

The two orbital models [65, 66, 67] consider two antiferromagnetic t − J chains
ferromagnetically coupled by a very large Hund’s rule coupling (K ≥ 10|t|). D.
J. Garcia et al [68] have modeled the full two band t − J Hamiltonian while ne-
glecting the double occupancies (U → ∞) and taking very large values of Hund
interaction K = 20|t|. In this work, they found the existence of an “island phase”
which separates the ferromagnetic (metallic) phase (FM) from the antiferromag-
netic (AF) phase, it is in this phase that the competition between DE and super
exchange (SE) is at its peak. A study including the double occupancies and a
two band model was done by Malvezzi et al [69], they used DMRG to study the
effect of hole doping on the phase diagram of the Hubbard model. They reported
also that a sufficiently large hole doping will always lead to a ferromagnetic region
surrounding the holes due to the DE mechanism. Costamagna et al have studied
the J → 0 limit with one [70] and two impurities [71]. While they used a two
band model, their model is what is called the Ferromagnetic Kondo Lattice Model
(FKLM) in which the impurity is essentially fixed at the center of the chain. They
present a study of the spin-spin correlation of close to the hole and between two
holes. Their study is important in the sense that it gives a first idea of the exten-
sion of the correlation due to a single hole and between two holes. There also has
been an analytical study of the single hole doped DE Hamiltonian, using the se-
ries expansion method to the ninth order, which was carried out by Koga et al [72].

Summarizing the conclusions from all the above studies. The first case is when
J = 0, i.e. no antiferromagnetic coupling, and K > 0 the system is ferromag-
netic for a 1D open-chain with more than one hole, this exact result has been
demonstrated by Kubo [73]. Riera et al effectively verify Kubo’s analysis showing
that the result is valid also for periodic boundary conditions for an odd number
of holes. For the one hole case, Nagoka [74] and Tasaki [75] have shown that a
ferromagnetic phase would not be observed for a single hole case in a 1D open
chain system at the vanishing J limit. Switching on J one starts to observe ferro-
magnetic polarons surrounding the holes, these ferromagnetic polarons are coupled
antiferromagnetically. Most of the previous studies mentioned above have taken a
value of K ≈ 10|t| in the calculation of the various spin-spin correlations. There is
no explicit detailed study of the number of spins aligned by a single hole. Never-
theless, we can conclude from the works of Costamagna et al that the extension of
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the influence of the hole is between three to four sites and the interaction between
two holes survives from 15 to 20 sites. The size of the polarons depends on the
relative strength of the various parameters (K, J and t) and survive the inclusion
of the electron repulsion U and V . A possible mechanism of how the magnetic
field could induce a change in the transport properties is only hinted at by Batista
et al [67] without numerical results. Riera et al [76] have studied an effective two
band model formulated in terms of spin like operators for large values of Hund
term K using exact diagonalization (ED) and DMRG. They reported the presence
of a ferromagnetic region for the DE Hamiltonian for doped spin S = 1 chains
as well as spin S = 2 chains, it is not clear though how one would extrapolate
these results to understand the delocalization in the system. There have been no
detailed studies on the transport properties of the DE Hamiltonian specifically
taking into account the local exchange term K.

2.2.3 Our objectives
The present study concerns the Double Exchange in systems which have a small
value of the Hund term K < |t|, i.e. nickelates and Organic DE systems. The
objective of this work is to extend the understanding of the collective properties
of the DE model taking into account the low lying local non-Hund states (S = 0).
This would allow a more realistic understanding of the DE phenomenon in Organic
as well as TMO systems where K plays an important role in the low energy physics.
In summary, the aim of the present work is to tackle two problems:

• The problem of finite size high-spin systems, with the scope of application
in spintronics. Our methods can also be used to aid in the design of sin-
gle molecule magnets or open chain organometallic complexes composed of
several magnetic centers.

• The problem of the electromagnetic properties of doped transition metal
oxides, i.e. nickelates and manganites. The results of the present work may
be generalized to very large 1D and 2D systems.

We also aim to develop tools of analysis which help in a theoretical analysis of fi-
nite high-spin systems. In the context of TMO systems, we have aimed to develop
analytical methods that would facilitate the extrapolation to very large systems.
Therefore, as the title of this manuscript, we aim an understanding of microscopic
and macroscopic properties resulting from the collective effects of the DE mecha-
nism.
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2.3 Hamiltonian: Three sites
The DE Hamiltonian for two sites has been presented in the previous chapter. In
this section, we proceed with the analysis of the three site Hamiltonian. The aim
of this section is a detailed study of the Hamiltonian in order to understand the
effect of the various competing interactions on the low energy spectrum of a three
site system with a single hole.

The form of the Hamiltonian for three and more sites is:

ĤAH/GP =
N−1∑
i,σ

−t1P
(
ĉ†i,σ ĉi+1,σ + ĉ†i+1,σ ĉi,σ

)
PT

− 2K
N∑
i

(
Ŝi,1Ŝi,2 −

1
4

)
+ 2J

N−1∑
i

(
Ŝi,1Ŝi+1,1 −

1
4

)
(2.3.1)

where we have neglected the hopping between the localized orbitals t2 = 0 and the
antiferromagnetic exchange between localized orbitals has been taken to be zero
(J2 = 0). t1 = t and J concern the hopping and exchange term for the delocalized
orbitals respectively, whereas the K represents the intra site Hund term.

The two site system did not involve the antiferromagnetic (between the strongly
interacting orbitals) parameter J and thus the ground state was a quartet state.
Whereas, in the case of three or more sites, there is a competition between the
super-exchange effect (SE) due to J which favors an antiferromagnetic ordering
and the double exchange (DE) effect due to t and K which favors ferromagnetic
ordering. The low spin states are now stabilized by the presence of J , whereas the
high-spin states are unaffected by J . We have projected out those determinants
where the hole occupies the localized orbitals (dx2−y2) since they are very high in
energy.

In order to find the nature of the ground state, one needs to carry out an analytical
study of the Hamiltonian involving the three parameters t,K, J . As it is difficult
to do an analytic determination of the spectrum and wavefunction for matrices
larger than three, instead one needs to carry out numerical diagonalizations to
obtain the ground state for t,K, J values that are reasonable for the nickelates. In
this section we present a study of the Hamiltonian with three sites and one hole
in order to illustrate this.

We shall use the notation n 1h in order to denote a system with n sites and one
hole and n 2h for two holes throughout the following chapters.
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Figure 2.2: A schema showing all the interactions taken into account. The effective
exchange interaction and the hopping term between the non overlapping orbitals
(t2) is neglected.

The Fig: 2.2 shows the three dominant interactions t, K and J . The 3 1h Hilbert
space is made up of three sextets, twelve quartet states and fifteen doublet states.
Once the basis has been spin symmetrized using the appropriate Clebsch-Gordan
coefficients [77, 78] (CGC), the Hamiltonian matrix would therefore be of rank
30 and would have three blocks of sizes 3, 12 and 15. The analytic form of the
Hamiltonian matrices for the various spin-sub-spaces is shown in Tables 2.1, 2.2
and 2.3. From the above Hamiltonian matrices we see clearly that the influence
of the intra-site exchange term K is only on the diagonal. This is not surpris-
ing since K effects only the local triplet T+, T0, T− and the local singlet states S0
and does not contribute to interaction between sites. Although, once the full spin
sub-space is diagonalized, the ground states would of course contain contributions
from the local Hund T+, T0, T− configurations for the Sextets and local Hund and
non-Hund (S0) configurations for quartet and doublet states due to coupling by
t. The relative weights of the local singlet and triplet states would depend on K.
Looking at the three matrices individually, the three sextets are coupled only by t
and are not effected either by K or by J , this is because the energy of the sextets
has been taken as the energy origin. In other words the energy of the local triplet
states T+, T−, T0 has been taken as 0 and that of the local singlet states S0 as 2K.
The other two matrices depend on all the three parameters. The effect of the local
non-Hund states is to lower the energy of the states (dominated by Hund config-
urations) through interactions via t and J . Since the non-Hund states are at an
energy of 2K and 4K compared to the Hund, the strength of this interaction of the
non-Hund state depend on the relative value of K and t. It is interesting to note
that if we took an infinitely large K, i.e. ignoring the effect of the local non-Hund
states, the low energy spectrum would be dominated by the sextet states for the
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small J limit. This is clear once we look at the relative coupling terms for the sex-
tet (t), quartet (3t

4 ) and doublets ( t√
2) spin sub-spaces. Thus, the local non-Hund

configurations indirectly play a significant role in determining the ground state for
the small J regime. Finally, it is very difficult to predict the nature of the ground
state analytically. Since the dominant coupling terms within the various sextets,
quartets and doublets sub-spaces are t (which is of the same magnitude as K), a
perturbative treatment is not possible. Thus, in order to obtain the energies of the
doublet states of 3 1h system one needs to carry out numerical diagonalizations of
matrices of dimensions larger than three.

Ĥsext |S1〉 |S2〉 |S3〉
〈S1| 0 −t 0

〈S2| −t 0 −t

〈S3| 0 −t 0

Table 2.1: The sextet spin Hamiltonian matrix for the 3 1h system.
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2.4 Computational details

In the present study, the modified DE Hamiltonian has been studied for the pa-
rameter range corresponding to real TMO’s for which there is a strong competition
between the DE and the SE mechanisms. The phase which results from such a
competition has been called as the “island phase” by various authors [79, 68]. The
island phase separates the Ferromagnetic Phase (FM) resulting from the dominant
DE interaction from the AFM phase arising due to the SE interaction. There is
a critical interplay between the parameters of the model Hamiltonian which leads
to a dense low energy spectrum. Thus, one needs accurate methods like exact
diagonalization in order to get clear energy differences and “clean” states. In this
study we use sophisticated exact diagonalization (ED) techniques to overcome the
convergence problems due to the intricate nature of the low lying states.

2.4.1 Deterministic methods

The advantage of deterministic diagonalization methods is not only the high accu-
racy of the eigenvalues(10−9), but also the possibility of obtaining highly accurate
(10−4) coefficients for the ground state eigenvector. This accuracy in the eigenvec-
tors would make it possible to reliably obtain expectation values for any observable
which could be cumbersome or even impossible for other methods like the DMRG,
DMFT and QMC.

The first choice for solving an eigensystem equation is to use the heavily optimized
Mathematics Kernel Libraries (MKL) made accessible by Intel [80]. Although, we
have used directly these libraries for smaller systems like 7 1h and 6 2h, they can-
not be scaled for larger systems. The reason is the exponentially growing size of
the nonzero elements of the Hamiltonian and the eigenvectors. The MKL imple-
mentations depend on two basic algorithms to get the eigenvalues and eigenvectors
of the matrix. They first use the Householders tridiagonalization [81] to render the
symmetric matrix tridiagonal followed by the QL algorithm to get full eigenvalues
and eigenvectors [82]. These algorithms are adapted for obtaining the complete
eigensystem and require the storage of the intermediate vectors in memory. Thus
one would not only have to store the non-zero elements of the matrix but also
the eigenvector matrices which in our case are extremely dense. The other option
being writing the vectors on disc, which is prohibitively long. It is therefore not
practical to use these libraries for large systems.
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2.4.1.1 Exact diagonalization: low energy spectrum

The solution to the problem stated above of the storage of the vectors in the RAM
which would require N2 ∗ 8 bytes of memory, is to obtain only a few eigenvectors
corresponding to the low energy spectrum of the system. This is adequate for
our purpose because we are interested mainly in low temperature behavior of the
system. The first such algorithms was published by Nesbet [83] for the diagonal-
ization of large CI matrices in mid 1960’s. His algorithm was based on an iterative
procedure to correct the error made by a trial guess vector adding on each iteration
the component in the orthogonal direction to the trial vector. The basic idea is to
use the Rayleigh quotient as the closest estimate using the current trial vector. Al-
though Nesbet was successful in obtaining the lowest few eigenvalues, the method
suffered from showing a very slow convergence. In the mid 1970’s this idea of using
the Rayleigh quotient was extended by Shavitt et al [84] and then Davidson [85]
developing on the method of optimal-relaxations (MOR). The latter was able not
only to find multiple eigenvalues at once and accelerate convergence, but also to
reduce the amount of memory required to store the intermediate ∑ij AijCj, where
Aij represents the matrix and Cj the vectors. The algorithm proposed by Davidson
would give similar performance to that proposed by Lanczos [86, 87] in the 1950’s
which is still widely used in the resolutions of model Hamiltonians.The most ex-
pensive step in all the above methods is the matrix vector step which scales as N2

and requires the storage of at least two vectors of length N . Thus, the strength of
such methods will depend not only on the hardware available but also the exploita-
tion of the parallel architecture for speeding up the large matrix vector operations.

2.4.1.2 Krylov-Schür

Through experience, the method of choice seems to invariably involve some variant
of the Krylov space method. There are a number of methods which use the idea
of the orthogonal Krylov space like the Arnoldi algorithm [88] and the Lanczos
one. The main issues under consideration while selecting methods adapted for
application to specific problems can be stated as follows:

• The Hermiticity of the Hamiltonian matrix

• The type of hardware used and the amount of memory available

• The number of eigenstates required

Based on the above factors, the method of choice in our case is the so called Krylov-
Schür method. The Krylov-Schür algorithm was proposed by Stewart [89, 90] in
2001. Although the algorithm bears similarity to the implicitly restarted Arnoldi
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algorithm, the motivation for the Krylov-Schür decomposition is its invariance to-
wards the application of similarity and translational transformations which renders
the algorithm much more manageable and amenable towards a massively parallel
implementation. For these reasons we have used the Krylov-Schür method avail-
able in the massively parallel eigensolver SLEPc [91, 92, 93].

2.4.2 Large sparse diagonalization
All the above algorithms focus on the problem of reducing the memory require-
ments for the solution of large eigenvalue problems. Such methods make it pos-
sible to solve very large systems consisting of about a million determinants (N =
1, 000, 000). In order to be able to study larger systems and go beyond the billion
determinant mark, one needs to adapt the algorithms to state of the art archi-
tectures used in modern clusters. The largest diagonalization done up until the
writing of this manuscript was by the Japanese group of Yamada. S. et al [94] in
2005, they used the Earth Simulator and algorithms adapted for high flop compu-
tation to diagonalize a 159-billion dimensional Trapped-Fermion Hubbard model.
In the present work, we have similarly used algorithms and computer code adapted
for distributed memory low latency clusters. The EOS cluster located in the in-
tensive computation society of Midi-Pyrénées (CALMIP) was used. The program
was written in C++ and the template library provided by PETSc [95, 96, 97]
was used not only to set up the Hamiltonian but also to do the analysis. The
template library provided by PETSc has been optimized for usage in multi node
architecture and is adapted for a combined MPI and OpenMP parallelization. The
PETSc library not only makes it easy to write parallel code but also provides ob-
jects and tools which distribute memory across multiple CPU nodes and manage
the communication and exchange of memory objects. In order to gain efficiency, a
homemade code [98] code in Fortran used to efficiently generate matrix elements
was interfaced with the PETSc library and the final diagonalization was done us-
ing the Krylov-Schür algorithm available in the SLEPc library. The eigenvectors
for low lying states were obtained and stored on disk for the following analysis.
The analysis was done using a parallel homemade code [98]. It is important to
note that in some cases the analysis of the ground state eigenvectors takes more
CPU time than the actual diagonalization because of the complicated operators
involved e.g. the two body density matrix (dPQRS) and the S2

box operators.

2.4.3 Approximate methods
The problem with using exact methods is the exponential scaling of the Hilbert
space. This problem is overcome by using either renormalization group meth-
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ods (DMRG), mean field methods (DMFT) or stochastic methods like Quantum
Monte Carlo (QMC) which rely on an approximate resolution of the Hamiltonian.
Stochastic methods work under the assumption that the ground state of a large
correlated system is essentially described by a few (< 1%) determinants which
contain the physics of the model. This assumption appears to break down in our
modified DE Hamiltonian where for the given parameter range there appears to be
an increase of the spread of the ground state along a large number of determinants
(≈ 10%). Then there is the problem of statistical averaging which is amplified by
the presence of a large density of states.

2.4.3.1 DMRG

Previous studies based on the Density matrix renormalization group (DMRG) [66,
79, 99, 100, 101, 68] have revealed the existence of island phases which separate
the FM and AFM regions.The method of choice must satisfy the constraints of
working with a large density of states where there might be hundreds of states in
a few meV s of energy.

The density matrix renormalization group (DMRG) method is an approximate
method for the calculation of energies and observables which works well at the
least for finite one dimensional systems. The DMRG method is encompassed by
a broader more general methods to solve infinite one dimensional systems like the
matrix product states (MPS), projected entangled pare states (PEPS) and other
more general renormalization group theories [102]. Since the DMRG is not an ex-
act method, there are limits beyond which it fails. This is the case for our systems
where the low energy spectrum is dense and there are hundreds of states in a gap
of a few meV . Thus, in the region of interest for the parameters J , K and t, for
which we would observe the Island phase of the Hamiltonian, DMRG is insuffi-
cient. A few tests have been done using the DMRG program implemented in the
Algorithms and Libraries for Physics simulations [103] (ALPS) package Therefore,
although the DMRG method would be effective to provide tendencies and a qual-
itative description of the system, in order to understand the nuances one needs to
used exact methods wherever possible.

2.4.3.2 Stochastic methods

There have also been studies based on stochastic methods based on Quantum
Monte Carlo [104, 105, 106] (QMC) which suffer from numerical instabilities.
There have been studies where QMC is used along with more accurate meth-
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ods like ED [107, 108]. The variational MC version have also been used but only
to replace more exact methods like ED and DMRG which become too expensive
for large 1D and 2D systems [109].
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2.5 Single hole case
In this first part we undertake a detailed analysis of systems of various sizes con-
taining a single hole in order to study the extension of the polaron as a function
of J and K. The first problem is the characterization of the ground state spin
phase diagram for systems from 3 1h to 7 1h. The second part would concern the
study of the ferromagnetic polaron. Previous theoretical and experimental studies
concluded that there is a ferromagnetic polaron surrounding the holes as presented
in sec 2.2.1.2. Experimental evidence for 1D nickelates, although not conclusive,
stated the size of the polaron to be between seven to eight sites [45]. The accurate
knowledge of the size of the polaron will be crucial for the understanding of the
doping ratio observed in YBCO and LCMO transition metal oxides. These results
would also help us to understand the nature of the ground state in the presence
of two or more holes.

2.5.1 Twisted boundary conditions
We have carried out a preliminary comparison of results obtained using open as
well as twisted boundary conditions on small systems (3 1h to 6 1h). The results
show that the spectrum of small systems is greatly influenced by the presence of
4n and 4n+ 2 sites in the cyclic system, these effects are well known in the Hückel
model. This makes it difficult to separate DE physics from the topological effects
amplified by the small size of the system. Therefore, we have concentrated only
on 1D open chain systems.

In the following sections, a systematic analysis of the ground state of systems with
various number of sites and a single hole is presented. The open boundary condi-
tions (OBC) have been used throughout unless where mentioned otherwise. The
first section consists of an analysis of the spin phase diagram which is followed by
the polaron extension plots.

2.5.2 Phase diagrams
In all the following results, the numbers are given in units of t. Hence J and K
are represented in terms of t. As t ≈ 1eV in many real systems this would give
the following parameter range:

0.01eV ≤ J ≤ 0.15eV (2.5.1)
0.3eV ≤ K ≤ 1.8eV (2.5.2)
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t = 1eV (2.5.3)

Very large (0.15) and small (0.01) values of J have been considered. This will help
the generalization to the results of this paper to any real transition metal oxide
system, given the full extent of the parameter range chosen.

Phase diagrams for the 3 1h to 7 1h systems have been obtained for the full pa-
rameter range J and K. The procedure for the calculation of the diagrams is as
follows. About 200 points in the phase space constituted of 20 values of J and 10
values of K have been used. The Hamiltonian matrix was diagonalized and the full
spectrum obtained for all the 200 points for each of the systems. These energies
were used to form the surface of the spin subspace of a given system as a function
of J and K. The surface is formed of 200 data points, this alone is insufficient
to obtain good curves of intersection between the surfaces of the different states.
Thus, a C++ interpolation library [110] was used to get a bi-cubic spline function
for the surface. The interpolated surface was then used to obtain the curves of
intersection between the various spin states. The curves of intersection are used
to plot the regions corresponding to a different spin ground state as functions of
J and K.

2.5.2.1 Three sites

The simplest case is that of the 3 1h system presented in Sec 2.3. The system con-
sists of five electrons and one hole along three sites each containing two orbitals.
Since the hole motion is restricted only on the a1, b1 orbitals i.e. only on one type
of orbitals per site, there are only three positions for the hole on each of the three
sites. The configurations where the hole occupies the other type of or-
bitals a2, b2 occurs for unphysical large values of J and therefore have
not been considered in the CI space. Thus, the Hilbert space consists of(

3
1

)
·
(

5
3

)
= 30 determinants in the lowest Ms = 1

2 subspace.

The phase diagram is shown in Fig: 2.3, as can be seen from the figure there are
three zones constituted by the three different spin spaces. The orange square
represents physical values of J and K observed in transition metal ox-
ides. The dominant determinants (i.e. having the largest coefficient in the wave-
function) for the S = 1

2 and S = 5
2 states of lower energy are shown on the right

hand side. The following few points are worth mentioning for the 3 1h system:

• The characteristic ferromagnetic alignment of spins is obtained for low values
of J where the hole is located at the center (this configuration is optimal in
terms of kinetic energy.)
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Figure 2.3: Phase diagram of the 3 1h system for various values of J and K. The
nature of the ground state is shown by the determinants with the largest coefficient
in the ground state.

• Large values of J force the hole at the edges in order to gain antiferromagnetic
interaction J between adjacent sites.

• There is a large effect of the local Hund term K for all values of J . In fact
the asymptotic values for K → ∞ of the intersection of S = 5

2 and S = 3
2

state is for J > 0.17 which is too large. Therefore, at least for finite systems
one cannot neglect the influence of the low lying non-Hund states (i.e. small
value of K).

• Finally, we notice that for the 3 1h system, just by the spin ground state of
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the 3 1h system, one can easily find out the nature of the physics at play.
Although, as we shall see later, such a direct analysis is not possible for larger
systems.

• At least for the 3 1h system, for physical values of J and K, a single hole
has aligned the five spins (or three sites.)

An important conclusion from the analysis of the smallest system is the role of K.
The effect of K is to stabilize the local triplet states, but one must not forget that
in physical systems (for e.x. nickelates) the non-Hund states are low in energy and
do effect the low energy spectrum.

2.5.2.2 Four and more sites

In this section, we will study larger systems up to 7 1h in order to verify the above
analysis. We would like to point out that an analysis such as the present one would
also serve as a starting point for the synthesis of finite chain high-spin systems.

Let us continue with the next larger systems, i.e. 4 1h and 7 1h systems. The
phase diagrams of four to seven site system is shown in Fig: 2.4, 2.5, 2.5 and
Fig: 2.7 below. For four and five site systems, all the spin values can be obtained
as ground states whereas for the 6 1h and 7 1h system this is not the case. The
topology of the 6 1h and 7 1h system causes the S = 1

2 state to be favorable only
in the range of unphysical large values of J . It can be seen that some of the states
(e.g. the S = 7

2 state for the 5 1h system) are observed for a smaller range of
values of J and K than other this is due to the finite size of the system.
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Figure 2.4: Phase diagram of the 4 1h system
as a function of J and K. There are regions
which are not favorable due to the topology
of the system and occupy a very small portion
of the phase space.

Figure 2.5: The Phase diagraom for the 5 1h
system. The 5 1h system has five spin phases
in total from S = 1

2 to S = 9
2 , all the phases

show clearly in the plot.

We observe also that, as in the previous case, K plays an important role in deter-
mining the spin ground state for 4 1h to 7 1h systems. In fact we have also shown
the asymptotic values (K →∞) of intersection of states for the two systems 6 1h
and 7 1h with dashed red lines. These asymptotic values represent the intersection
at the K →∞ limit. Therefore, we conclude that at least for the systems studied
here, the role of K is crucial in the determination of the spin ground state.
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Figure 2.6: The phase diagram of six
sites, similar to the 4 1h system, shows
regions of space not favourable due to the
topology of the 6 1h system.

Figure 2.7: The diagram plot of seven
sites is shown. There are six spin phases,
two of which are very small.

Focusing at the physical values of J and K, i.e. inside the orange box. It is inter-
esting to note that for the parameter region of interest, the spin space varies for
all the four systems 4 1h to 7 1h systems and is not the Smax value as it was the
case for the previous system (3 1h). This is of course because the total spin would
depend on the size of the system although locally, the hole would individually align
a fixed number of spins. Therefore, contrary to the previous case, looking at the
spin of the ground state, or the determinant with the largest coefficient
will not conclusively give the number of spins aligned by a single hole.

S = 1S = 5
2S = 1

Figure 2.8: Expected spin configuration in the region inside the rectangle when
the hole aligns five spins around it for the 5 1h system.

The nature of the system in the region of interest can be analyzed for the four sys-
tems by a closer inspection of the wavefunction for the values inside the rectangle.
In the following we try to understand the nature of the ground state for 5 1h and
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7 1h system as an example.

• Case 5 1h: The dominant determinants consist of the hole in the middle
surrounded by five parallel spins (the ferromagnetic polaron), this situation
is shown in Fig: 2.8. The ferromagnetic polaron of S = 5

2 will interact with
the border S = 1 spins leading to a total 1

2 ≤ S ≤ 9
2 state. This is what we

see inside the rectangle for the 5 1h phase diagram.

• Case 7 1h: For the seven site system with a single hole, the phase diagram
(Fig: 2.7) does not show much variation in the spin of the ground state for
a large range of K and J . A study of the dominating determinants in the
parameter space in question, is shown in the Fig: 2.9 below. The figure shows
the determinant (ms = 5

2) with the largest coefficient for various values of
0.04 ≥ J ≥ 0.07 and the total spin at each value. From the figure it appears
that there is a drastic change in the size of the polaron surrounding the hole
with increasing J , although the total spin remains the same.

S = 5
2 S = 5

2 S = 5
2

J = 0.0667 J = 0.053 J = 0.043

Figure 2.9: The dominant determinants for three different values of J at K = 0.8 are shown
along with the total spin of the ground state.

Of course the value of the ground state spin multiplicity is not sufficient to de-
termine the extent of the spin polaron. More importantly, we realize that this is
not only due to topological effects (due to the OBC). Even for sufficiently large
systems, it would become practically impossible to predict the number of spins
aligned by a single hole by looking at the dominant determinant due to the sheer
number of determinants. Therefore, we conclude that one needs a more refined
and practical tool to quantify the size of the ferromagnetic polaron.

2.5.2.3 Conclusion for phase diagrams

The above study on finite size systems can be valuable in itself from the perspec-
tive of the conception of finite chains of high-spin multiplicities as mentioned in
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the introduction. One can use directly the values of J and K provided here in
order to conclude whether the finite sized chain will show a high-spin ground state
or not. In order to give some quantitative conclusions the nature of the spin po-
laron for larger systems, one needs to perform a different analysis. In the section
that follows, we will present a novel tool to quantify the size of the ferromagnetic
polaron.

2.5.3 Spin polaron
The spin polaron is a region of high-spin state Smax formed by the hole due to the
DE mechanism. What we require is a tool that would give an accurate value of
the spin in a small region surrounding the hole, using this we would then be able
to estimate the size of the polaron. In order to estimate the amount of spin in a
small region (box), we have calculated the spin density, using the truncated spin
density operator Ŝ2

box, inside a box, while fixing the hole at the center. The
Ŝ2
box operator, shown in Eq 2.5.4, calculated in this manner by fixing the hole, will

give a lower bound to the amount of spin aligned by the hole. The spin density
can then be used to calculate the effective spin inside the box (Sbox). We will give
precise definitions in the section that follows.

2.5.3.1 Sbox

The spins are aligned by the hole due to the DE mechanism. Therefore, these spins
are on the neighbouring and next-neighbouring sites of the hole, i.e. the sites sur-
rounding the hole. Thus, it appears logical to calculate the spin in a region with
the hole at the center if we want an estimate of the number of spins aligned by
a single hole. This is the idea behind the use of the Sbox operator which will be
defined and explained in this section.

SurrSurr Box

Figure 2.10: Seven sites with one hole and the Sbox region.

Consider the case of the 7 1h system with values of J and K for which a single
hole has aligned five spins Fig: 2.10. The system is composed of the polaron (box
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region) bordered by the antiferromagnetic surrounding (surr). The box region is
of course not in a pure state and would exist in general as a mixture of all possible
spins states S = 1

2 ,
3
2 and 5

2 . In fact what we would like to calculate is the weight
of each of the states for various box sizes and use it to get the size of the “real
box” region. In order to do that, we can proceed as follows. We know that the
wavefunction of the system can be written as:

|ψsys〉 =
∑
i

ci |ψbox,i〉 ⊗ |ψsurr,i〉

where the states of the box are represented by ψbox and the surrounding by ψsurr.
We are interested in the dominant ψbox states. With the above notation, the
density matrix of the states inside the box can be written as:

ρ̂sys = |ψsys〉 〈ψsys|
ρ̂box =

∑
i

ρi |ψbox,i〉 〈ψbox,i|

ρ̂box = Trsurr [ρsys]

where ρi = c2
i is the weight of the ith box state ψbox,i, this is what we need. In

order to estimate the weight of each of the spin states, we can use the Ŝ2
box operator

defined as:

Ŝ2
box = ρ̂box · Ŝ2 (2.5.4)

Once we know the form of the operator, we can calculate the expectation values
as follows:

〈
S2
box

〉
= 〈ψ| Ŝ2

box |ψ〉 = Tr
[
ρboxŜ

2
]

〈
S2
box

〉
= Sbox (Sbox + 1)〈

S2
box

〉
=
∑
i

ρiSi(Si + 1)

the Si represent the various spin states possible inside the box. Since the box with
three sites contains five spins, there will be a total of 10 states: 1 sextet (S = 5

2),
4 quartet (S = 3

2) and 5 doublet (S = 1
2) states. For example, when the ferro-

magnetic polaron will occupy three sites, the box will be dominated by the sextet
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state and consequently we will have an Sbox value close to 5
2 . Therefore, the Sbox

is expected to be a good measure of the size of the polaron.

[
Ĥsys, S

2
box

]
6= 0 (2.5.5)[

Ĥbox, S
2
box

]
= 0

Since the wavefunction of the box ψbox will in general be a mixture of all the
spin states, the resulting Sbox value will be a mixture of the three spins 5

2 ,
3
2 and 1

2 .
When the box wavefunction ψbox is made up of only a single spin state (e.g. S = 5

2),
only then the Sbox will be close to the 5

2 value and we can say that the hole has
aligned five spins. Note that this will always be true for the Smax states for all
systems always. The advantage of using Ŝ2

box operators is two fold. Firstly, we
can probe directly the size of the FM domain and secondly, it allows us to com-
pare two systems irrespective of finite size effects as we shall see below. Since the
wavefunction ψbox will be a mixture of all the states of the Hamiltonian of the box
system Ĥbox, the operator S2

box no longer commutes will the full Hamiltonian, as
shown in Eq: 2.5.5.

Finally, in order to simplify the analysis of Sbox, we have fixed the hole at
the center of the box in order to remove effects of additional mixing
due to hole motion. Once the Sbox value is calculated with the hole fixed, we
renormalise the Sbox in order to get comparable values. We state that, although
we fix the position of the hole at the center of the box, this does not effect dras-
tically the weight of Sbox. A numerical verification of the relevance of this
approximation will be presented in the sec: 2.6.1.

Figure 2.11: Topological dependence of the truncated spin density operator on the
size of the system. Odd numbered systems are adapted to calculate Sbox with odd
number of sites.

In the following sections, we will present the Sbox values for the various systems
shown in Fig: 2.11 below. Through this analysis we would be able to quantitatively
state the number of spins aligned by a single hole for physical values of J and K.
Due to topology, odd numbered systems are adapted to calculate Sbox values for
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odd number of sites in the box this is illustrated in Table: 2.11 and vice-versa. For
the symmetric cases i.e. for odd number of sites (5 1h and 7 1h), the hole will be
fixed at the center of the box, whereas for the 6 1h system, the hole will be fixed
at one of the two symmetric central positions. The size of the box is varied
(from 2 to 5) on all systems and for all values of J and K such that
we can accurately determine the size of the polaron for the full range
of parameters. The box size of 6 and more sites is not considered because we
have checked that for the parameter range of interest, the polaron extension never
exceeds six sites.

2.5.3.2 Sbox five sites

The spin plots (Sbox) vs J and K for a box with three and four sites in a 5 1h
system is shown in Fig: 2.12. The physical region of the parameter space is de-
lineated in all the plots with an orange rectangle just as for the phase diagrams.
The Sbox was calculated by fixing the box with three sites at the center of the 5 1h
system. The hole was also fixed at the center of the box and hence at the center
of the 5 1h system and the final expectation value was renormalized. Note that
although the Sbox calculations have been carried out by fixing the hole at the most
favorable position, the actual diagonalization considers the full space.

Nbox = 3
Nsites = 5

Sbox = 5
2

Sbox <
5
2

(a) Sbox values with three sites in the box.

Nbox = 4
Nsites = 5 Sbox >

5
2

Sbox <
5
2

(b) Sbox values with four sites in
the box.

Figure 2.12: The system 5 1h is adapted to calculate the spin alignment in a box
with three sites and one hole. The (a) shows the Sbox value for 5 1h system with 3
sites in the box. (b) shows the Sbox of the 5 1h system with four sites in the box.
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The Fig: 2.12a shows for which values of J and K, five spins (3 sites) have been
aligned and the Fig: 2.12b shows the values of Sbox with four sites in the box.
We see that for almost all the values in the rectangle, the Sbox remains close to
5
2 therefore for these values, the hole has aligned at least five spins (3 sites). The
hole starts to align seven spins for relatively small values of J ≈ 0.04 as shown in
Fig: 2.12b. Therefore, we conclude that for the 5 1h system, for physical values
of J and K a single hole aligns five spins (i.e. 3 sites.) Note that a box with four
sites would not be symmetrically placed in the system and would thus result in
unphysical topological artifacts.

2.5.3.3 Sbox six sites

Similar analysis has been carried out for the Sbox on a system of 6 1h with a box
of four sites as shown in Fig: 2.13. The choice of a box with four sites was made
in this case due to the topology of the system. In this case, there are two sym-
metrically equivalent positions for the hole inside the box, since the two positions
would give exactly the same value of Sbox due to symmetry reasons, the Sbox value
is reported for only one position.

The figure shows an Sbox value close to 5
2 . Comparing the phase diagram of 6 1h

system with the Sbox values of 5
2 , one can clearly rationalize the results. In the

phase diagram shown in Fig: 2.6, we see that the 6 1h system is in spin S = 3
2

state for the region considered here. The dominant spin configurations are shown
in Fig: 2.14 below.

In conclusion, we find that for a system with six sites and one hole, for physical
values of J and K a single hole aligns five spins. This is in complete agreement
with the 5 1h system.

2.5.3.4 Sbox seven sites

The Fig: 2.15 shows the plots of Sbox with the box containing five sites (Nbox = 5)
in a 7 1h system. The 7 1h system is symmetrically adapted for the calculation of
Sbox with Nbox = 3 and Nbox = 5.

The comparison of the phase plots for this case is much more complicated due to
the presence of a significant number of spin states inside the box with seven spins
(5 sites). Nevertheless, the Sbox values show the same trend. Almost for all values
of J , the Sbox value corresponds to the case where a single hole has aligned five
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Sbox

Nbox = 4
Nsites = 6

5
2 < Sbox <

7
2

Sbox = 3
2

Sbox = 5
2

Figure 2.13: The dark green shows a spin 5
2 < S < 7

2 indicating that a total of five
to seven spins have been aligned in a box of four sites containing the hole. The
system consists of six sites in total.

spins (3 sites).

In order to see the utility of the Sbox value, let us compare the phase diagram
of the 7 1h system Fig: 2.7 with the Sbox values, inside the orange rectangle, the
phase diagram shows no change in the nature of the ground state, whereas the spin
plots for the same system shown in Fig: 2.15 clearly show the changing nature of
the ground state for the same parameter space. A remarkable observation is the
similarity of the spin plots of 5 1h and 7 1h systems for the box with three and
five sites respectively. This tends to indicate that the extent of the ferromagnetic
polaron is independent of the size of the system and the size of the box (Nbox).
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S = 0S = 1 S = 5
2

Stotal = 3
2

Figure 2.14: The dominant configuration of 6 1h system for physical values of J
and K.

Nbox = 3
Nsites = 7

Sbox = 5
2

Sbox = 3
2

(a) Sbox values with three sites in
the box.

Nbox = 5
Nsites = 7

Sbox = 9
2

Sbox = 5
2

Sbox = 7
2

(b) Sbox values with five sites in the box.

Figure 2.15: The plot of the spin in a box of three (a) sites and five sites (b) is
plotted as a function of J and K. The system (7 1h) is made up of seven sites.

This observation will be analyzed in detail in the following sections.

2.5.3.5 Spins aligned: 1 hole

In order to avoid Friedel oscillations [111, 112, 113, 114] from interfering with the
results, we have carried out calculations with increasing system size. The Fig: 2.16
shows the values of J for which five, seven and nine spins have been aligned as a
function of the number of sites Nsites. The Friedel oscillations can be seen quite
clearly and the values of J converge with increasing system size.
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Figure 2.16: The values of J for which five, seven and nine spins have been aligned
as a function of system size Nsites.

As mentioned in previous sections, the parameter space concerned for nickel oxides
is shown in Table: 2.4. Thus, given the range of physical values of J and K, using
the above plots of Sbox, we can quantitatively find how many sites are aligned by
the hole for finite systems. In the Table: 2.4, we compile the range of values of
J and K for which three, four and five sites are aligned. Although this analysis
was done for a finite size 1D chain of spin S = 1 (and S = 1/2) sites, in the
following sections we attempt to demonstrate that these properties might carry
over to infinite systems or for larger dimensions for different doping ratios.
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J(eV ) Nspins(Nsites)

number of spins alignedmin max
6.0·10−2 12·10−2 5(3)
3.0·10−2 8·10−2 7(4)
1.0·10−2 6·10−2 9(5)

nickelates and manganites
0.8 ≤ |t| ≤ 1.2

5 ≤ Nspins ≤ 70.07 ≤ J ≤ 0.14
0.07 ≤ K ≤ 0.10

Table 2.4: This table shows the range of values of J for which different number
of spins are aligned for a given value of K = 0.8eV . The second part of the table
shows the physical values of t,J and K for nickelates and Manganites and the
resulting predicted Nspins aligned by a single hole.
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2.5.4 Dependence on finite size: Edge effects
In this section we show whether the finite size results on small systems can be
extrapolated to the very large 1D spin chains. Since the Double Exchange phe-
nomenon is essentially local, the edge effects should diminish as the size of the
system increases. The size of the polarons Sbox has been studied with varying sys-
tem size for a give fixed value of J , as shown in Fig: 2.17. Box with three, four and
five sites have been studied for systems ranging from three to thirteen sites. The
hole has been fixed at the central position. In order to avoid further topological
problems, the box with three and five sites have been studied only in systems with
an odd number of sites (3,5,7,9,11,13) and a box with four sites has been studied
in system with even sites (4,6,8,10,12). As shown in Sec: 2.5.3.5, the Friedel os-
cillations can also be seen here and occur purely due to topological reasons. The
Sbox values for three and four sites can already be seen to converge at 5

2 and 7
2 for

the respective values of J . One needs to carry out calculations on larger systems
in order to verify whether the Sbox with five sites converges, although we see no
reason it will not. In conclusion, for systems with a single hole, we have found
upper bounds of J (at K = 0.8) for aligning three (J ≈ 0.06), four(J ≈ 0.05) and
five spins (J ≈ 0.03).
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Figure 2.17: Sbox as a function of number of sites Nsites

for a box with three, four and five sites. J = 0.058 for
Nbox = 3, J = 0.5 for Nbox = 4 and J = 0.033 for Nbox =
5. The value of K = 0.8 for all the above calculations.
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2.6 Interaction: 2 or more holes

2.6.1 Sbox vs Exact weights
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(a) Sbox with three sites in the box for the
6 2h system.
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(b) Weight of the S = 5
2 state for the 6 2h

system.

Figure 2.18: A comparison of the Sbox values with that of the exact weight of the
S = 5

2 states. The vertical lines represent the change of state from S = 0 to S = 5
for the 6 2h system.

The aim of this section is to show the relevance of the Sbox as a tool for the analysis
of the polaron extension. The Sbox tool is used in order to simplify the analysis of
the nature of the wavefunction. Take the case of two holes in six sites, for values
of J ≈ 0.1 and K ≈ 0.8 for which a single hole aligns five spins. The wavefunction
will then be composed of a low spin state which is dominated by determinants
where each hole has aligned five spins. The wavefunction can then be written as a
combination of the spin states in each box S = 1

2 to 5
2 giving rise to the spin state

for the whole system (e.g. S = 1 spin state), Eq: 2.6.1.

(S = 1) ≡
(5

2 ⊗
5
2

)
︸ ︷︷ ︸
two 5

2 spins

⊕
(5

2 ⊗
3
2

)
︸ ︷︷ ︸

mixed spin term

⊕
(3

2 ⊗
3
2

)
︸ ︷︷ ︸
two 3

2 spins

⊕
(3

2 ⊗
1
2

)
︸ ︷︷ ︸

mixed spin term

⊕
(1

2 ⊗
1
2

)
︸ ︷︷ ︸
two 1

2 spins

(2.6.1)

where each 5
2 ,

3
2 · · · represent spin configurations due to the five spins in the box.

The wavefunction will be dominated by the above configurations for values of J,K
at which each hole aligns five spins.

Note that although only a single S = 3
2 state was shown in the above breakdown

of the wavefunction, there will be four S = 3
2 generated by the coupling of the five

electrons in the box and will simultaneously be contributing to the ground state of
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the wavefunction as shown in Eq: 2.6.2 below. The equations below show explicit
form of the wavefunction (ms = 0) in terms of the configurations originating from
the five spins of the box.

|Ψ〉g = ΣNtrou
jtrou

[
C

5
2 ,

5
2

5
2

(∣∣∣∣52 ,−5
2

〉
+
∣∣∣∣−5

2 ,
5
2

〉)]
+[

C
5
2 ,

5
2

3
2

(∣∣∣∣32 ,−3
2

〉
+
∣∣∣∣−3

2 ,
3
2

〉)
+ C

′ 52 ,
3
2

3
2

(∣∣∣∣32 ,−3
2

〉
+
∣∣∣∣−3

2 ,
3
2

〉)
+ · · ·

]
+[

C
5
2 ,

5
2

1
2

(∣∣∣∣12 ,−1
2

〉
+
∣∣∣∣−1

2 ,
1
2

〉)
+ C

′ 52 ,
3
2

1
2

(∣∣∣∣12 ,−1
2

〉
+
∣∣∣∣−1

2 ,
1
2

〉)
+ · · ·

]
(2.6.2)

The notation is as follows, consider C
5
2 ,

3
2

3
2

for example, the superscript 5
2 ,

3
2 repre-

sent the spin in each box and the subscript represents the ms component of the
spin states. The primed coefficients C ′ represents the contributions resulting from
the different S = 3

2 configurations present inside the box. This makes the decon-
tamination of the various contributions due to mixed S = 5

2 ,S = 3
2 and S = 1

2 in
the box difficult. We have used the Clebsch-Gordan Coefficients (CGC) in order to
find an analytic expression for the total contribution from the S = 5

2 determinant
inside the box. Knowledge of the CGC’s allows one to get the weight of the full
S = 5

2 simply from the weight of the ms = 5
2 configuration. The formulas for

the weight of the ms = 5
2 determinant in the CGC’s for the different spin states

are shown in Table: 2.5. These allow us to extract the full weight of the S = 5
2

configuration in the ground state wavefunction.

Spin state Weight(S = 5
2)

0 3 · C
5
2 ,

5
2

5
2
· C

5
2 ,

5
2

5
2

1 35
25 · C

5
2 ,

5
2

5
2
· C

5
2 ,

5
2

5
2

2 42
25 · C

5
2 ,

5
2

5
2
· C

5
2 ,

5
2

5
2

3 90
25 · C

5
2 ,

5
2

5
2
· C

5
2 ,

5
2

5
2

4 14 · C
5
2 ,

5
2

5
2
· C

5
2 ,

5
2

5
2

5 126 · C
5
2 ,

5
2

5
2
· C

5
2 ,

5
2

5
2

Table 2.5: The weights of the S = 5
2 for each state in terms of the weight of the

ms = 5
2 determinants.
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The values obtained for Sbox using the S2
box operator and the above method to get

the weight of the local S = 5
2 are shown in Fig: 2.18a and 2.18b. The fact that

the two plots show perfect agreement points to the fact that Sbox is adequate to
judge the nature of the lowest lying states.

Similar analysis has been carried out for the case of the coupling of three S = 5
2

spins. Contrary to the previous case where each state resulting from the coupling
of two spin S = 5

2 was unique, the coupling of three S = 5
2 spins would generate

state with multiplicities more than one. This is illustrated in Eq: 2.6.3.

(0⊕ 1⊕ 2⊕ 3⊕ 4⊕ 5)⊗ 5
2 =
15
2 ⊕

13
2︸︷︷︸
2

⊕ 11
2︸︷︷︸
3

⊕ 9
2︸︷︷︸
4

⊕ 7
2︸︷︷︸
5

⊕ 5
2︸︷︷︸
6

⊕ 3
2︸︷︷︸
4

⊕ 1
2︸︷︷︸
2

(2.6.3)

The coupling between three spins S = 5
2 would then give their corresponding CGC

which can then be used to get the weights of S = 5
2 states in the ground state.

Note that contrary to the previous case, there are no unique CGC, and they would
depend on the topology of the system. The second problem in the case of three
S = 5

2 is that all states with the exception of S = 15
2 , have a multiplicity greater

than one. Finally, we also find that contrary to the previous case, the coefficients
will not be the same for different spin states. Take for example the first excited
state S = 3

2 . This state will not show up in the ms = 5
2 subspace which contains

the three important ms = 5
2 determinants. Thus, the complexity of the problem

is significantly increased with respect to the previous case. We have used the S2
box

operator to simplify the analysis for 9 3h and larger systems.

2.6.2 6 sites vs 8 sites

In this section we will show a comparison of the Sbox values for 6 2h and 8 2h
systems. This is important in order to show that the value for which a single hole
aligns five spins is independent of the size of the system and also its dependence
on the presence of a second hole. The Fig: 2.19 and Fig: 2.20 compare the Sbox
values for the two systems.
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Figure 2.19: The 6 2h system as compared to
the 8 2h system, concerning the Sbox values.

Figure 2.20: The Sbox values for the 8 2h sys-
tem.

The figures show the Sbox values for a box with three sites in the two systems
(6 2h, 8 2h). The value of J for which a single hole aligns all five spins in the
box remains between 0.07 and 0.1. We argue the slight difference is due to the
difference in the topology of the two systems. The 6 2h system is more adapted
topologically for calculating the Sbox value with three sites in the box and the 8 2h
system is more adapted for calculating Sbox with four sites in the box. The above
analysis shows that the hole alignment is independent of the size of the system,
as we see that although the hole has four available sites, it aligns only five spins
(three sites) for given values of J . Therefore, the analysis done for small systems
would be appropriate for extrapolation to larger systems.

2.6.3 1hole vs 2holes

Another question that must be answered is the interaction of the holes between
each other. Does the presence of another hole affects the number of spins aligned ?
The present section tries to answer this question on comparing the Sbox value for
three sites and four sites in the box in a 10 1h and 10 2h system. If the two holes
do not interact, the value of J for which the hole/holes align five spins should be
the same. It is clear from the Fig: 2.21 that the two holes interact. Although the
interaction is quite small, it appears that two holes each will align five spins faster
than a single hole. As a consequence, the size of the polaron, for a given value of
the parameters increases with the doping.
Another manner to compare the influence of the second hole is to look at the two
systems with the same effective number of sites per hole. This can be done with a
comparison of the 5 1h and the 10 2h system. A plot of Sbox values with three sites
in the box is shown in Fig 2.22. In this case, there seems to be little influence of
the second hole and the value of J for which five spins (3 sites) have been aligned
seem to be almost the same J ≈ 0.06 for the two systems.
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Figure 2.21: The comparison of the number of spins aligned in a box with three
and five sites for various values of J for the one-hole 10 1h and two-hole 10 2h
system.
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Figure 2.22: The comparison of the Sbox values for the 5 1h and 10 2h systems.
We consider only three sites in the box for the two cases..

2.6.4 DE vs SE

The DE mechanism creates a ferromagnetic polaron surrounding the hole, as we
saw above. In this section we attempt to answer two questions. Firstly, does the
polaron persist when there is another hole. Secondly, we would like to find the
nature of the interaction, i.e. ferromagnetic or antiferromagnetic, between the two
polarons surrounding the holes. In Fig: 2.23 we show a comparison of the ground
state and Sbox values for four representative values of J and K. It appears that,
at least for small systems, there are two ferromagnetic polarons surrounding the
two holes. Thus, the ferromagnetic polaron survives and hole pairing is minimal
as expected. The coupling between the two ferromagnetic regions seems to be
antiferromagnetic in character resulting in a low spin state. Thus, even though
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each hole has aligned five spins around it, the ground state is a low spin state
resulting from an antiferromagnetic coupling between the two Sbox = 5

2 regions.
The Fig: 2.23 represents the basic idea of this thesis. Each hole has aligned five
spins due to the double exchange mechanism but it is the super exchange coupling
which leads to an antiferromagnetic coupling between the polarons and a low spin
ground state.

Figure 2.23: The interaction between two ferromagnetic polarons for four repre-
sentative values of J and K
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2.6.5 Effect of Doping ratio

Previous theoretical studies of the effect of doping ratio on the t− J Hamiltonian
have concluded that with an increase in hole concentration, the ferromagnetic
character of the system should increase [69]. The impurities locally favor a fer-
romagnetic ground state. Increase in the doping ratio would therefore make the
system more ferromagnetic. The question, however, concerns the interaction be-
tween the impurities, does it favor ferromagnetism also in the DE model? In order
to compare the spin alignment Sbox by a single hole in the presence of multiple
impurities, we present in Fig: 2.24 a comparison of the Sbox vs doping ratio. In
order to eliminate topological effects in the comparison we have kept the size of
the system constant (Nsites = 9) as well as the interaction parameters J and K
constant. It is clearly seen that there is an increase in the amount of spin aligned
by a single hole with an increase in the doping ratio. This seems to indicate that
although there is no explicit interaction between the holes, they communicate in-
directly via the hopping term t and the effective exchange term J . For very large
values of doping ratio, the ferromagnetic domains of holes overlap resulting in a FM
phase with mobile holes. Whereas, for low doping, the holes tend to stay localized
inside their own FM domains with an antiferromagnetic interaction between ad-
jacent FM polarons which facilitate the motion of the polaron in an AF spin chain.
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Figure 2.24: A comparison of Sbox for various doping ratios in a system where J and
K are kept constant at K = 0.8 and J = 0.1 for Nbox = 3.
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2.7 Conclusion
In this study we have used the truncated spin density operator to analyze quanti-
tatively the size of the ferromagnetic polaron surrounding a hole. Firstly, we have
shown that for values of J and K, t corresponding to real materials, a single hole
aligns three to four sites. The extent of this ferromagnetic cloud decreases with
increasing J , whereas increasing the value of K increases the size. We emphasize
that in usual calculations on the DE model, the value of the Hund interaction is
taken to be very large K ≈ 20|t|, whereas in the present study, we have shown that
K plays a crucial rule on the low energy physics of the DE system. Our important
contribution is the rationalization of role played by the Hund term K.

The approximations resulting from using a finite number of sites and open bound-
ary conditions were also tested by showing that the extension of the ferromagnetic
polaron does not qualitatively change with the size of the system. Lastly, we have
shown that on increasing the doping ratio, there is not much effect on the number
of spins aligned per hole although there is a slight preference to align more spins.
This shows that even in the absence any explicit interaction between the holes,
there is a natural tendency of the holes to communicate indirectly. The CMR ef-
fect in manganites is observed for doping rations between 25 to 30 percent [3]. In
our analysis, we find that for physical values of J and K, a single hole would align
from three to four sites. It is therefore postulated that the systems which show
CMR are governed by a similar physics. In the following chapter, we show how
the influence of magnetic field on the electronic delocalization can be rationalized
by the above picture.
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Chapter 3

Collective effects II

The objective of this chapter is to study the electronic delocalization in 1D sys-
tems and the effect of the magnetic field. Models containing two or more holes
are studied close to values of J and K for which each hole has aligned five or
seven spins. Finally, we will try to understand the nature of the conducting and
insulating states in the context of DE.

3.1 Electron delocalization

3.1.1 Literature review
The question of a measure of the metallic nature of a substance in the context of
quantum mechanics, was first tackled by Kohn in his seminal paper from 1964 [115].
There he introduced the notion of electron localization in the framework of quan-
tum mechanics. A more tangible description of the localization in a quantum
mechanical wavefunction was given by Resta and Sorella [116](RS). Their paper
introduces the notion of the localization spread of the electronic distribution in
the ground state wavefunction as a measure of the insulating or metallic character
of the state. Using the definitions of localization given by RS, the works of G.
Bendazzoli et al [117, 118, 119, 120, 121] have demonstrated the usefulness of a
Total Position Spread (TPS) tensor (Eq: 3.1.2) in the determination of the de-
localization present in the system. We have used this quantity in our analysis in
order to distinguish the conducting states from the localized ones. The fundamen-
tal problem that we must overcome is that the notion of current (and therefore
conduction) cannot be strictly defined for an open (non-cyclic) finite system.

3.1.2 Formalism
The formalism given by RS consists of the definition of a localization λ as follows:
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λ2 =
〈
x2
〉
− 〈x〉2 (3.1.1)

where 〈〉 denotes the usual expectation value. This quantity has been called the
Total Position Spread (TPS) by G. Bendazzoli et al as it also corresponds to the
second cumulant of the electron position (variance of the position.) Note that
this formulation makes the TPS invariant under translation (or rotation)
of the coordinate system. It is also important to note that the value of TPS
is independent of the Ms subspace used for the calculation and does not change
upon the change of the Ms for a given spin state. Since our Hamiltonian
does not involve doubly occupied determinants, an alternative definition of the
TPS (Eq: 3.1.3) can be given in terms of the motion of the hole. In this case, we
can say that the TPS also satisfies hole particle symmetry on the condition
of changing the original operator accordingly. This is not to say that the TPS is
independent of the spin correlation, of course the hole mobility is strongly affected
by the spin correlation in the system as will be shown in the following sections.

TPS =
〈
x2
〉
c

= 〈ψ|
∑
ij

x̂ix̂j |ψ〉 −
(
〈ψ|

∑
i

x̂i |ψ〉
)2

(3.1.2)

TPS =
〈
x2
hole

〉
c

= 〈ψ|
∑
ij

x̂i,holex̂j,hole |ψ〉 −
(
〈ψ|

∑
i

x̂i,hole |ψ〉
)2

(3.1.3)

where x̂i is the operator (xi · n̂i), n̂i being the occupation number operator and
xi, the position of the ith electron. Similarly, x̂i,hole is (xi,hole · (1− n̂i)), where
xi,hole gives the position of the ith hole. The summation carries over the number of
particles (electrons, holes). Let us take for instance the x̂i operators that give the
position of the ith electron from the origin. In the general case the two operators
x̂ and x̂2 would be written as:
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x̂ =
∑
i

x̂i

x̂2 =
∑
ij

x̂ix̂j

where; xi =
∑
j

〈i|x|j〉 a†iaj

therefore; x̂ =
∑
ij

〈i|x|j〉 a†iaj

x̂ =
∑
i

〈i|x|i〉 a†iai +
∑
i6=j
〈i|x|j〉 a†iaj

x̂2 =
∑
ij

〈i|x|i〉 〈j|x|j〉 a†ia
†
jajai +

∑
ij,kl

〈i|x|k〉 〈j|x|l〉 a†ia
†
jalak

where i, j are the atomic orbitals constituting the determinants. Since in our model
we have replaced atomic orbitals with delta functions (δi) which have the following
property:

〈δi|δj〉 =
{

1, if i = j

0, otherwise
and

〈δi|x|δj〉 =
{
xi, if i = j

0, otherwise
Therefore, only the diagonal terms of the two operators survive. Note that this
would not be so in ab initio calculations.

x̂ =
∑
i

(xi)n̂i + 0

x̂2 =
∑
ij

(xixj)n̂in̂j + 0

where n̂i is the occupation number operator for atomic orbital i.
Following the D∞h symmetry of the system, the origin in all our calculations has
been fixed at the center of the system as shown in Fig: 3.1. This leads to the
vanishing of the second term in Eq: 3.1.2, i.e. the average position of the electrons
〈x〉 . Therefore, in this case, we only need to calculate the 〈x2〉 value. In order to
demonstrate that 〈x〉 is strictly zero, one can proceed as follows. On integrating
over the spin coordinates, the wavefunction given by |ψ〉 = ∑n

j Cj |φj〉, where the
indices run over the determinants that differ only by the position of the electrons.
The one-body operator can be simplified as:
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Figure 3.1: Definition of the position for a system of 5 sites.

〈x〉 = 〈ψ|
nelec∑
i

x̂i |ψ〉

〈x〉 =
(
ndet∑
k

C†k 〈φk|
)
nelec∑
i

x̂i

ndet∑
j

Cj |φj〉


〈x〉 =

ndet∑
j

C†jCj

(
nelec∑
i

〈φj| x̂i |φj〉
)

〈x〉 =
ndet∑
j

XjC
2
j (3.1.4)

Here and in the equations that follow, N represents the number of sites. Since
the system is symmetric with respect to inversion of coordinate x due to the D∞h
point group symmetry, Cj will be equal to CN−j and Xj = −XN−j, where N − j
is the index of the symmetric counterpart of determinant j. Using this symmetry
one can see why the one-body term vanishes.

〈x〉 =
N/2∑
j

XjCj +
N/2∑
j

XN−jCN−j

Cj = CN−j ∀ (j)
Xj = −XN−j ∀ (j)
〈x〉 = 0 (3.1.5)

The only term left is the two body operator x̂2. There are two ways to simplify
the expression of the TPS. We can write the TPS in terms of the position of the
electrons or the holes. In terms of electron operators, the TPS can be separated
into contributions from α and β electrons as follows:
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TPS =
∑
i

C2
i (
∑
kl

〈ψi|x̂kx̂l|ψi〉)

TPS =
∑
i

C2
i (TPSi)

TPSi =
(
xα1 + xα2 + · · ·+ xβ1 + xβ2 + · · ·

)2

i
(3.1.6)

TPSi = TPSα,i + TPSβ,i + TPSαβ,i

where; TPSα,i = (xα1 + xα2 + · · · )2
i

TPSβ,i =
(
xβ1 + xβ2 + · · ·

)2

i

TPSαβ,i = 2(xα1 + xα2 + · · · )i(xβ1 + xβ2 + · · · )i

where xαi and xβk are the position of the ith and kth α and β electrons respectively.
Note that the sum

(
xα1 + xα2 + · · ·+ xβ1 + xβ2 + · · ·

)
can be related to the dipole

moment of the determinant. This simplified form of the TPS is applicable also in
the presence of doubly occupied determinants. The only problem with this form is
its dependence on the electron coordinates which makes the analysis difficult. An
alternative form of the TPS in terms of the position of the hole will be presented
below.

Taking now the TPS in terms of the hole operators. We remind the readers that
the indices of the wavefunction run over the determinants with different position of
the particles since we have integrated over the spin components. The two-electron
term can be separated into two parts. One consisting of purely a one-body term
and a second, the off diagonal term, as shown below. Here xi represents the
position of the holes. For the one-body part we have:

〈
x2
〉

= 〈ψ|
∑
i,j

x̂ix̂j |ψ〉∑
i,j

x̂ix̂j =
∑
i

x̂ix̂i +
∑
i6=j

x̂ix̂j

∑
i

x̂ix̂i |ψ〉 =
∑
j

(∑
i

x̂ix̂iCj |φj〉
)

∑
j

C†j 〈φj|
(∑

i

x̂ix̂i

)
Cj |φj〉 =

∑
j

YjC
2
j (3.1.7)

where Cj is the coefficients of the corresponding determinant φj and Yj is the
expectation value of the 〈x2〉 operator on φj. For the bi-electronic part we have:
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∑
i6=j

x̂ix̂j |ψ〉 =
∑
k

∑
i6=j

x̂ix̂jCk |φk〉


∑
i6=j

x̂ix̂j |ψ〉 =
∑
k

ZkCk |φk〉

〈ψ|

∑
i6=j

x̂ix̂j

 |ψ〉 =
∑
k

ZkC
2
k (3.1.8)

The two integrals Yk and Zk represent the mono and the bi-electronic integrals
corresponding to the mono and bi-electronic parts of the 〈x2〉 operator. In our case
since we model the atomic orbitals as delta functions, the integrals give directly the
distances of the atomic orbitals from the origin. The above expressions Eq: 3.1.7
and Eq: 3.1.8 can be further simplified for the one hole case as follows. Note that
in the one hole case, the indices would then indicate the position of the holes:

Yk =
∑
i

x̂ix̂i |φk〉

=
[
m(m+ 1)(2m+ 1)

3 − (m− k − 1)2
]

m =


(n− 1)

2 , if n is odd
n

2 , otherwise

Zk =
∑
i6=j

x̂ix̂j |φk〉

= −Yk + (m− k − 1)2

where k represents the position of the hole in φk. Thus, for the one hole case, we
have an analytic expression for the TPS in terms of the hole position k, as shown
in Eq: 3.1.9. Where we have taken the inter site distance to be of one units of
length, i.e. |xi − xi+1| = 1.

〈ψ| x̂2 |ψ〉 =
∑
k

(Yk + Zk)C2
k

=
∑
k

(m− k − 1)2 C2
k (3.1.9)

Thus, we can see that the TPS measures the delocalization in the system. Take
the example of the case of strong J where the ground state wavefunction (|ψ〉) is
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dominated only by two determinants, one consisting of the hole at site 1 and the
other at site n. In this case, the TPS would be:

C2
1 = C2

n = 1
2

Ck = 0 ∀(k 6= 1, k 6= n)

TPSSmin ≤
1
2

(
n− 1

2 − 2
)2

+ 1
2

(
n− 1

2 − n− 1
)2

TPSSmin ≤
1
8
[
(n− 5)2 + (n− 1)2

]
A complete analytic expression can be given for the maximal spin state Smax. The
ground state wave vector of the maximal spin state with one hole would be a
Hückel state, the analytic form of which is known. Thus, for the Smax state with
a single hole we have:

TPSSmax = 〈ψsmax| x̂2 |ψsmax〉 =
∑
j

(m− j − 1)2 C2
j

TPSSmax = n3 + 3n2 + O(n)
12(n+ 1) (3.1.10)

As we see from Eq: 3.1.10, the TPS diverges quadratically with the number of
sites n for the maximal spin state Smax. This would indicate that the Smax state is
more metallic in nature compared to the Smin ground state at the J → ∞ limit.
This is not surprising since the high spin states are the ones which allow for the
metallic character of the system.

Similarly, for the two-hole case, one can find analytic expressions for the TPS
as a function of the ground state coefficients. In this case the wavefunction, after
summing over the spin indices, will be represented in terms of two indices k, l
which represent the position of the two-holes

(∑
k,l Ck,lψk,l

)
. The expression for

the mono-electronic term Y is:

Yk,l = C2
k,l 〈φk,l|

∑
i

x̂ix̂i |φk,l〉

Yk,l =
[
n3 − n

12 − (m− k + 1)2 − (m− l + 1)2
]
· C2

k,l (3.1.11)

where k and l (k 6= l) are indices that run over all the positions for the two-holes
and characterize the determinant for which the holes are located at position k and
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l. The number of sites is taken as n. Similarly, for the bi-electronic term Z we
have:

Zk,l = C2
k,l 〈φk,l|

∑
i

∑
j

x̂ix̂j |φk,l〉

Zk,l =
[
−Yk,l + (m− k + 1)2 + 2 (m− k + 1) (m− l + 1) + (m− l + 1)2

]
· C2

k,l

Zk,l =
−Yk,l +

(
2(n+ 1)

2 − (k + l)
)2
 · C2

k,l (3.1.12)

therefore, the simplified form of the TPS for the two-hole case is:

TPSk,l =
∑
k 6=l

(Yk,l + Zk,l)

TPSk,l =
∑
k 6=l

[(n+ 1)− (k + l)]2 · C2
k,l

The above form of the TPS is much easier to manipulate than the previous one
(Eq: 3.1.6) in terms of electron positions. It is important to note that the mono-
electronic term Y is always positive whereas the bi-electronic term Z is almost
always negative. It is the interplay between the two terms (Y, Z) that gives rise
to the remarkable sensitivity to changes in electron distribution in the system, as
we shall see in the section that follows.

It can be noticed immediately that the TPS will be zero for all determinants which
are centrosymmetric. It would now be possible to derive similar formulae for three
and more holes. In fact such a formula of the TPS in terms of the position of the
holes turns out to be quite simply:

TPS =
〈
x2
holes

〉
c

TPS = 〈ψ|
∑
ij

x̂i,holex̂j,hole |ψ〉

TPS =
∑
i

(xi,hole + xj,hole + · · · )2C2
i

3.1.3 Physical meaning of the TPS
Firstly, let us begin by noticing that the electronic dipole moment of a molecular
system in state Φ0 is given by:
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dx ∝ 〈Φ0| x̂ |Φ0〉

and the x component of the quadrupole moment is given by:

Qxx ∝ 〈Φ0|
∑
i

x̂ix̂i |Φ0〉

Therefore, we can see that the dipole moment, the quadrupole moment and the
TPS are intricately related. Hence, it is not strange that TPS is able to distinguish
between metals and insulators.

In a relatively recent review article by Resta [122], it was shown that the TPS can
be written in terms of particle velocities (v̂i) as follows:

〈rirj〉c = 1
~2

∑
n6=0

〈ψ0| v̂i |ψn〉 〈ψn| v̂j |ψ0〉
(E0 − En)2

= 1
~2

∑
n6=0

〈ψ0| v̂i |ψn〉 〈ψn| v̂j |ψ0〉
ω2

0n
(3.1.13)

where ω0n = (E0 − En)/~. Meanwhile, the conductivity σ(ω) of a multi-electron
system in the presence of an electric field of frequency ω is given by the Kubo
formula and can also be written in terms of the velocities v̂i as follows:

σij(ω) = ie2

~L3 lim
η→0+

∑
n6=0

1
ω0n

(
〈ψ0| v̂i |ψn〉 〈ψn| v̂j |ψ0〉

ω − ω0n + iη
+ 〈ψ0| v̂j |ψn〉 〈ψn| v̂i |ψ0〉

ω + ω0n + iη

)
(3.1.14)

One may notice the similarity between the formula for the TPS Eq: 3.1.13 and the
Kubo conductivity Eq: 3.1.14. This expression for the conductivity given by Kubo
allows us to compare the Localization tensor as defined in Eq: 3.1.13. Finally,
looking the two equations Eq: 3.1.13 and Eq: 3.1.14, we have a direct relation
between the Localization tensor and the conductivity:

〈xixj〉 = ~L3

πe2N

∫ ∞
0

dω

ω
σ+
ij(ω) (3.1.15)

Therefore, although 〈xixj〉 is a ground state property, the RHS of Eq: 3.1.15 con-
cerns the response property of excited states. As stated by Resta himself:
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Indeed, both equations ... (Eq: 3.1.15) look like the zero-temperature
limit of a fluctuation dissipation theorem, several forms of which are
known in statistical physics : in the lhs we have a groundstate fluctua-
tion ... while the ingredient of the rhs is conductivity (dissipation).

Although, the analytical expressions presented above are adequate, it does not
help us to gain sufficient qualitative interpretation of the physics measured by the
TPS. In the following paragraphs, we will see how one can understand the TPS in
terms of more intuitive tools.

Ionic
+ -

Neutral
0 0

Figure 3.2: Definition of Ionic and Neutral determinants for the Double Exchange
determinant space.

Take the DE Hamiltonian, which acts on a space made up of purely singly occu-
pied determinants and holes. The “Ionic” determinants in this sense would then
become difficult to define. Nevertheless, for values of J for which each hole has
aligned a small ferromagnetic region while the ground state remains a low spin
state, see Fig: 3.2, we can define “Ionic” and “Neutral” determinants such that
two-holes occupy the same box, as shown above in Fig: 3.2.

Once we have classified the “Ionic” and “Neutral” determinants, we can then
proceed to an analysis of the TPS in terms of this definition. Let us take a
hypothetical wavefunction for the 8 2h system as follows:

|Φ〉 =
∑
k 6=l

Ck,lφk,l

where the indices k, l run over the various position of the two-holes (8 2h). Inte-
grating over the spin space, there are in total 28 different position for the two-holes.
Using now the formulae for TPS defined in the previous section, Eq: 3.1.11 and
Eq: 3.1.12, we can find the expression for the TPS of such a general wavefunction
as:
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Figure 3.3: The TPS values for individual determinants of the 8 2h system, labeled
by the position of holes only. The ionic and neutral determinants are labeled with
green and red color respectively. As can be seen all ionic determinants have larger
(or equal) TPS values compared to the neutral determinants.

TPS =
∑
k 6=l

(Yk,l + Zk,l)C2
k,l

=
∑
k 6=l

(
((n+ 1)− (k + l))2

)
C2
k,l

=
∑
k 6=l

(TPSk,l)C2
k,l

Therefore, we have for each determinant k, l a contribution to the TPS which is
given by the TPSk,l. An important question is whether the contribution to the
TPS (TPSk,l) is the same for “Ionic” and “Neutral” determinants. In Fig: 3.3, we
show this analysis, plotting the individual values of the TPS for the 28 determi-
nants of the 8 2h system. The two types classes of determinants are marked with
different colors, green for the “Ionic” and red for the “Neutral” determinants. It

87



can be seen clearly that the TPS is large for “Ionic” determinants and is small or
zero for “Neutral” ones. Thus it can be concluded that, quite simply, the
TPS is an indicator of the ionic nature of an electronic wavefunction. If
the wavefunction Φ is dominated by ionic determinants (metallic character), the
TPS will be large and vice versa. A more detailed comparison of the TPS and the
weight of “Ionic” and “Neutral” determinants will be presented later in order to
validate this idea.

In the following sections, we will show how the TPS allows one to draw rational
conclusions about the amount of delocalization in the system as a function of J
and K.
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3.1.4 Applications
3.1.4.1 One-hole case

The evolution of the TPS with J (at K = 0.8) for all the states for the 5 1h system
is reported in Fig: 3.4. The TPS of Smax state is constant whereas the TPS of
the Smin state decreases with J . We observe that the TPS increases with the spin
multiplicity of the states with Smax having the largest value. Therefore, when J
increases, the TPS of the ground state decreases as its spin multiplicity decreases.
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Figure 3.4: The TPS vs J for the 5 1h system for the fixed value of K = 0.8.

The variation of the TPS per site (TPS/N) with the size of the system for various
values of J is shown in Fig: 3.5. The TPS/N does not show a monotonic increase
for any values of J except for the J = 0.0 case, i.e. the Smax state (the black line),
for which TPS/N shows a linear increase with N . In the definition of the TPS,
Resta and Sorella demonstrated that the TPS per site (TPS/N) of a metallic
state would diverge whereas it would tend towards zero for insulators. From the
figure we see that only the Smax state or states close to Smax show divergence with
N . Therefore, for the one-hole case, we conclude that the metallic nature of the
system is dependent on J and the size of the system (N).
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Figure 3.5: The TPS per site vs number of sites and for different values of J . The
black line represents the analytic values obtained for the Smax state obtained from
Eq: 3.1.10.
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3.1.4.2 Two-hole case

The TPS plot for the 6 2h system is shown in Fig: 3.6. The TPS generally decreases
with an increase in J for all spin subspaces. It is interesting to note the behavior
at the limit (J → 0). For system with a single hole, it appears that the TPS
converges to the same value for all spin states, whereas for the two hole case,
different spin states seem to converge to different values. Specifically, the amount
of delocalization in the high spin states (S = 5, S = 4) is much larger
that that of a low spin states.

0.05 0.10 0.15

1.5

1.6

1.7

1.8

1.9

|J|/|t|

TP
S

S=5
S=4
S=3
S=2
S=1
S=0

Figure 3.6: The TPS is shown for all six states of the 6 2h system.

3.1.4.3 Dependence of delocalization on doping

The TPS has been calculated for the ground state of the system with 12 sites and
increasing number of holes in order to measure the effect of the delocalization on
hole doping ratio. The values of J = 0.1 and K = 0.8 have been fixed. There is also
an experimental work that shows the variation of the conductivity as a function
of the doping ratio [2]. They study the conductivity of the La1−xSrxMnO3 2D
manganite for various values of the doping ratio x. This is a two dimensional
doped double exchange system and therefore could be expected to follow similar
tendencies as the 1D system studied here. The Fig: 3.7 shows a comparison of
these experimental results with the TPS. Although the experimental work goes
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(a) Experimental results from Ref: [2], showing the conductivity
for different doping ratios for the La1−xSrxMnO3 system.
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(b) The TPS as a function of the doping ration
x for the 12 site system at J = 0.1 and K = 0.8.

Figure 3.7: The comparison of the experimental values of conductivity and the
TPS, calculated for the 1D chain, with the doping ratio for a 12 site system.

only up until a doping ratio of x = 0.4, similar tendencies as the TPS are observed
for the conductivity. The TPS increases up until a doping ratio of x ≈ 0.42 and
then decreases as the doping increases further and the experiment shows that the
conductivity increases up until x = 0.4. Therefore, we expect that the qualitative
physics represented by the TPS can be experimentally verified for specific systems.
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3.1.5 Discussion on TPS
In order to understand the variations in the TPS, we have performed a comparison
of the TPS for various systems with the Sbox values. In the following two sections,
we will demonstrate how the variations in the TPS can be used to predict critical
points in the system.

3.1.5.1 TPS as an indication of an ordered phase

The critical points identified by the TPS tensor correspond to a drastic change in
the electron distribution in the system. The TPS may be seen to be a response
to the change in the nature of the wavefunction. Therefore a uniform size of the
polaron would result in a constant TPS value whereas a change in the size of the
polaron would show up as fluctuations in the TPS. A quantitative understanding
of the type of change in the electron distribution is possible on a comparison of
the TPS curves with the corresponding Sbox values for a given system.

Firstly, we will compare the TPS and Sbox plots for the system with 1
3 doping.

Consider the TPS values for the 6 2h and the 9 3h system, shown in Fig: 3.8 and
Fig: 3.10. The changes in the TPS can be understood in the following manner:
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Figure 3.8: TPS as a function of J for the
6 2h system, the TPS is sensitive to critical
points in the parameter space.

Figure 3.9: The figure shows the Sbox values
for all the spin states for various values of J
for the 6 2h system. At about J = 0.1|t|, a
single hole has aligned five spins inside the
box.

• There is a maximum for both the systems at about J ≈ 0.12, this maximum
is explained in the next section 3.1.5.2.

• On further decreasing J , the configuration where each hole aligns five spins (3
sites) dominates. This increase in the extension of the polaron can be clearly
seen in the Sbox plots for 6 2h and 9 3h systems in Fig: 3.9 and Fig: 3.11
respectively.
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• At this point where each hole aligns five spins (3 sites) and is localized in its
own region, the TPS shows a very clear minimum. This minimum in the
TPS at about J ≈ 0.1 for both systems corresponds to an order in
the wavefunction where each hole has separately aligned five spins
(3 sites) and is localized in its polaron.

• Since the minimum occurs at almost the same point for both the systems
i.e. at about J ≈ 0.1, we can say that this ordered phase (five spin aligned)
is not affected strongly by the size of the system.
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Figure 3.10: The dependence of the TPS on J
for the 9 3h system shows two maximas cor-
responding to whether the hole has aligned
three or five spins.

Figure 3.11: Sbox for the 9 3h system where
the hole has been fixed at the center.

Therefore, in conclusion, we find that for the two systems, the minimum of the
TPS indicates an ordered phase. For the 6 2h and 9 3h system this order corre-
sponds to the value of J at which a single hole aligns five spins (3 sites).
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Figure 3.12: The TPS as a function of J for
the S = 0 state of the 8 2h system, dotted
line represents the value for the S = 7 state.

Figure 3.13: The Sbox is calculated as a func-
tion of J with three and four sites in the box
for the 8 2h system, all values correspond to
the S = 0 spin state .

In order to find the value of J for which each hole aligns seven spins (4 sites), we
have performed similar analysis for the 8 2h system. The TPS is plotted for the
lowest S = 0 spin state at each value of J . The TPS curve shown in Fig: 3.12
clearly shows a minimum at J ≈ 0.05 where S4

box (box with 4 sites) has a maximum
(Fig: 3.13). It is clear from the Sbox plot for this value, the S = 0 state that the
hole aligns seven spins (4 sites) at about J ≈ 0.05. The minimum of the TPS also
occurs very close to this value. Therefore, we conclude that similar to the 6 2h
and 9 3h system, the critical point of the TPS for the 8 2h system corresponds
to an ordered phase where a single hole aligns seven spins (4 sites). The above
analysis for the 8 2h system validates our affirmation that the minimum in the
TPS corresponds to an ordered phase of the system.

3.1.5.2 Double exchange vs Superexchange

The TPS plots for both the 6 2h and 9 3h systems show a maximum at about
J ≈ 0.11 for all states except the high spin states (e.g. S = 5 for the 6 2h). In
this section, we will try to understand this local maximum.
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Figure 3.14: The TPS of 6 2h for the full
range of J values.

Figure 3.15: The TPS of 9 3h system. The
dotted line is the TPS of the S = 7.5 state.

Take the 9 3h system as an example. For large values of J , the holes are located
at the center (and the edges) of the system and do not have enough kinetic energy
to align three spins (two sites). As we decrease the value of J by a small amount,
the single hole is now able to align three spins (two sites). Initially, each of the
polarons (of 2 sites) formed by the three holes will be aligned antiferromagneti-
cally with each other. For sufficiently small values of J , these polarons will then
be aligned parallel to each other in order to gain kinetic energy, this situation is
shown in Fig: 3.16 on the right. There is another determinant where each hole
has formed a polaron of five spins (3 sites) which are aligned antiferromagnetically
with each other, this determinant is stabilized by J (i.e. SE). The two determi-
nants are shown in the Fig: 3.16, these two are in competition with each other.

E ≈ 2J + (6t) E ≈ 3J + (4t)

Figure 3.16: The competition between aligning five spins (three sites) to three
(two sites).

The competition can be explained as follows. For larger values of J , the deter-
minant on the right (Fig: 3.16) dominates, i.e. the hole mobility is compromised
in order to gain superexchange J . As J decreases, the determinant on the left
of Fig: 3.16 dominates, where there is a loss of antiferromagnetic interaction J in
favor of more kinetic energy of the holes (DE dominates). This is a typical case of
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a competition between the DE mechanism which is trying to align as many spins
as possible and the SE mechanism which is counteracting this effect. Indications
of this competition can be clearly seen in the two TPS plots shown in Fig: 3.14
and Fig: 3.15. The small peak in the TPS value close to J = 0.12 for the 6 2h
system and J = 0.11 for the 9 3h system correspond to the increase in mobil-
ity brought about by the configuration where each hole has aligned three spins
which are aligned parallel to each other giving rise to a momentary increase in
the hole spread. The subsequent decrease near the critical point at about J = 0.1
represents the case when the hole has aligned five spins and the polarons are an-
tiferromagnetically aligned with each other, resulting in a decreased hole spread.

In summary, we state that the minima of the TPS correspond to the presence of an
ordered phase in the wavefunction and has been corroborated by the Sbox values.
These critical points also enable us to pin point the value of J for which the hole
has aligned five to seven spins. The ordered phases consequently have a reduced
overall electron delocalization. Finally, we have also explained the maximum ob-
served in the TPS just before this ordered phase. It is shown that the maximum
is due to a competition between the DE and SE phenomenon. In the following
section we will compare the entropy of the wavefunction with the TPS in order to
verify whether that ordered phase leads to a decrease in total entropy of the system.
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3.1.6 Density matrix analysis
In the paper by C. N. Yang [123] in the 60’s, it was shown that extra-diagonal
elements of the density matrices can be used to predict the critical properties (su-
perfluid to metal transition) of a model system. We have used a similar analysis
in order to extract information about the change in the nature of the states vs J
(at K = 0.8). As a remark, we remind the reader that W. Kohn was aware of this
work while writing his famous article on the “Theory of the Insulating State”, he
stated that although a density matrix analysis would serve as a distinction between
the superfluid and a normal metallic state, there is no way to distinguish metals
from insulators from this perspective.

In this section, we provide a comparison of the one-body and two-body density
matrices with the TPS. It is shown that there is a correspondence between the
TPS and the two-body reduced density matrix in terms of the critical points.
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Figure 3.17: The TPS for the 6 2h system vs
J .

Figure 3.18: The one-body entropy with J .
The one-body terms do not include the col-
lective motion of the holes and hence do not
represent correctly the TPS.

The one-body entropy is calculated for the whole system using the one body density
matrix D. It is a matrix of size Nelec times Nelec and is calculated as follows:

DP,Q = 〈ψ| a†PaQ |ψ〉 (3.1.16)

And has the following property.

TrD =
∑
p

〈ψ| N̂p |ψ〉 = 〈ψ| N̂p |ψ〉 = N (3.1.17)

The diagonal elements of the one body density matrix give the probability of the
holes occupying each site. In this sense, the one body density matrix does not
show the correlated motion of the holes. A comparison of the one body density
matrix with the TPS for the 6 1h system is shown in Fig: 3.18. Although, for

98



the one hole case, this would be sufficient, the two-hole case would require the
two-body density matrix.

The two-body density matrix can be written in the atomic orbital basis as follows.

dP,Q,R,S = 〈ψ| a†Pa
†
QaSaR |ψ〉 (3.1.18)

Note that we have integrated over the electrons occupying the orbitals of type
2 because they do not contribute to the delocalization. This form of the two-
body density matrix contains N2 rows and N2 columns and has the following
permutation symmetry for the atomic indices [124].

dP,Q,R,S = −dR,Q,P,S = −dP,S,R,Q = dR,S,P,Q (3.1.19)

This form of the density matrix can be simplified when limiting the indices to
P > Q,R > Q, this also reduces the size of the matrix to N ·(N−1)

2 elements.

T PQ,RS = 〈ψ| a†Pa
†
QaSaR |ψ〉 , P > Q,R > S (3.1.20)

T PQ,RS = dPQRS, P > Q,R > S (3.1.21)

This form makes it easy to compare with the one body density matrix where
the trace gives the total number of particles in the system. The two body den-
sity matrix T PQ,RS gives the total number of pairs of particles one can form i.e.
N ·(N−1)

2 . Take the example of the 6 2h system, there are six electrons in the type
1 orbitals which are mobile, the other six electrons occupying the type 2 orbitals
can be thought of as being fixed. Thus, we have for the one body density matrix
(TrDP,Q)6 2h = 4 and for the two-body density matrix (TrdPQ,RS)6 2h = 6.
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Figure 3.19: The TPS per spin state for the
6 2h system.

Figure 3.20: The two-body entropy with J .
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The diagonal elements of the two-body density matrix give the probability of
correlated position of the pair of holes. Note that in order to calculate the TPS,
one also requires the probability of pair positions of the holes. Therefore, although
there is of course no direct comparison of the TPS and the two-body density matrix,
the critical values of the TPS should be reflected by the two-body density matrix.
In order to compare the “entropy” is calculated from the two-body density matrix
as follows:

S2body = −Tr(ρ ln ρ)
S2body = −

∑
i

λi ln λi

where ρ is the two-body density matrix and λi are its eigenvalues. The two-body
entropy S2body is compared to the TPS in Fig: 3.20 for the 6 1h system. We can see
that the critical points for all spin states correspond well with the those of the TPS.
It appears that although the S2body has some information about the delocalization,
it is not sufficient to conclusively distinguish metallic and insulating nature since
the tendencies (at small J for e.g.) are not the same to that of the TPS for all
spin states.
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3.2 Magnetic field
The magnetic field is accounted for via the scalar Zeeman term of Eq: 3.2.1. The
effect of the magnetic field, therefore, changes the energetic order of the spin sub-
spaces according to their spin multiplicities. Although normally, the magnetic field
couples the various spin states with each other, in the present study, the wave-
function of the various states remains unaffected by the inclusion of the Zeeman
term, and it acts only on the diagonal of the Hamiltonian:

Ĥzee = µBohrgsŜ · B̂ (3.2.1)
µBohr ≈ 5.69 · 10−5eV T−1

gs ≈ 2.0(L = 0, J = S)

where B̂ is given by the z component of the magnetic field B.ẑ and S · B is then
the z component of the spin operator i.e. Ŝz. The Fig: 3.21, Fig 3.22 and Fig: 3.23
show the effect of the magnetic field on the TPS for the 6 2h, 9 3h and the 12 4h
systems respectively.
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3.2.1 Two holes

S = 4

S = 5

Figure 3.21: The effect of magnetic field on the 6 2h system at K = 0.8.

There are a total of six spin states in the 6 2h system, from S = 0 to the S = 5.
The ground state goes from S = 0 to S = 5 uniformly with increasing field B
strength. It appears that the first few states, from S = 0 to the S = 3, the TPS
remains small and it is the S = 4 and S = 5 states are the ones which show a
significant change in the TPS values. In other words, only the high spin states
close to Smax are the ones responsible for the conduction while the states close to
Smin are less metallic.
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3.2.2 Three holes

S = 11
2

S = 13
2

S = 15
2

Figure 3.22: The TPS vs magnetic field plot for the 9 3h system at K = 0.8 and
J = 0.094.

The three hole system (9 3h) shows similar behavior. Only three of the largest
spin states S = 11

2 , S = 13
2 and S = 15

2 appear to be conducting while the rest
of the states up to S = 9

2 have a relatively small value of the TPS. The change
in the TPS while going from S = 5

2 to the S = 15
2 state is larger by almost three

times compared to the 6 1h system. This is a consequence of the increase in the
size of the system. Since the TPS depends on the number of particles (holes or
electrons), the change in the magnitude would be dependent on the system size
and the number of holes.
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3.2.3 Four holes

S = 8

S = 9
S = 10

Figure 3.23: The 12 4h under the influence of a magnetic field at J = 0.1 and
K = 0.8 eV .

Finally, the four hole system also shows three of the largest spin states (S = 8, S =
9 and S = 10) with a conducting character. Extrapolating from these tendencies,
we can postulate that as the system size increases and for a given doping ratio,
the eventual transitions between the low and the high spin states would become
continuous. This would mean that one need not excite the system to the S = Smax
state to observe an increase in conduction, an excited spin state close to Smax
would be sufficient to show adequate change in electron delocalization compared
to the Smin states. The experimental values for the magnetic field strengths for
manganites has been observed to be about 5 Teslas [125] for the doping ration of
1
3 . Note that for all the three systems, the first transition into the conducting state
(i.e. S = 8 in this case) occurs at sufficiently small values of B close to 10 Teslas.
Therefore, it appears that, one only needs to compare the field strength for which
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a first major change in the delocalization occurs.

3.3 Discussion
In this section we will analyze the effect of the magnetic field on the ground state
physics of the system. The magnetic field changes the ground state from a low
spin to that of a high spin state. Therefore, the resulting change in the properties
of the system can be understood by looking at the physics governing the low spin
and high spin states.

3.3.1 Ground state physics: DE to Heisenberg

Jeff

Figure 3.24: Schematic representation of the transition from DE to Heisenberg
type Hamiltonian via the Jeff between S = 5

2 spins.

A recent experimental study on 2D manganites by Ramirez et al presents a de-
tailed analysis of the magnetic susceptibility [126]. In summary, they show that
the ferromagnetic character is observed only close to the Curie temperature and
that above this temperature, the magnetic susceptibility indicates an antiferro-
magnetic tendency for the system. Therefore, we make the hypothesis that the
low spin states present an anti-ferromagnetic character along with the presence of
a short range order.

A single hole aligns from five to seven spins for physical values of J and K as shown
in the previous chapter 2.5. It was also shown that for values of J and K for which
a single hole aligns five spins, the presence of a second hole does not decrease the
number of spins aligned per hole. The interaction between the two ferromagnetic
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Figure 3.25: comparison of DE and Heisenberg spectra for 6 2h system.

polarons was shown to be antiferromagnetic in character. Therefore, it appears
that the low spin states are dominated by an antiferromagnetic coupling between
the polarons made up of S = 5

2 spins. A comparison of the low energy spectrum
of the DE system with six sites and two-holes (6 2h) with that of the Heisenberg
model formed by two S = 5

2 spins is shown schematically in Fig: 3.25. The low
energy spectrum of 6 2h system shows surprising similarity to that of the Heisen-
berg system, although there is no a priori reason for this similarity. An analysis
of the wavefunction for J = 0.1 and K = 0.8 (i.e. value for which one hole aligns
five spins), is presented in Table: 3.1. The table also shows a comparison of the
low energy spectrum of the 6 2h system with that of the Heisenberg Hamiltonian
calculated using the effective exchange (Jeff ), the Jeff was obtained from the low-
est two spin states. As can be seen from the table, the ground state and lowest
excited states are dominated by the configurations where the holes have formed
their own FM clouds each aligning five spins (Fig: 3.24) (Sbox ≈ 2.5). The Sbox
value deviates as one looks at the higher spin states, for e.g. the S = 4 state has
an Sbox value of 2.30 whereas the S = 0 state has Sbox = 2.49. The spectrum also
significantly deviates from the Heisenberg one for the S = 4 and S = 5 states.
This shows that at least for the low lying states, for physical values of J and
K, the physics of the DE model can be understood by an effective Heisenberg
type AF interaction between S = 5

2 spin polarons created by the individual holes.
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6 2h
S Sbox t-J-K Heisenberg
0 2.49 0.00 0.00
1 2.47 0.17 0.17
2 2.44 0.54 0.52
3 2.39 1.09 1.04
4 2.30 1.85 1.74
5 2.50 4.53 2.60

Table 3.1: Comparison of DE and Heisenberg Energies in meV for the 6 2h system.
All values are at J = 0.1 and K = 0.8 eV . The Sbox values with three sites in the
box are also shown.

6 2h 9 3h 12 4h
Spin(S) t-J-K Heisenberg S t-J-K Heisenberg S t-J-K Heisenberg

0 0.00 0.00 2.5 0.00 0.00 0 0.000 0.000
1 0.17 0.17 1.5 0.21 0.21 1 0.003 0.003
2 0.54 0.52 3.5 0.36 0.29 2 0.009 0.009
3 1.09 1.04 0.5 0.33 0.41 3 0.020 0.020
4 1.85 1.74 2.5 0.37 0.41 3 0.030 0.032
5 4.53 2.60 1.5 0.37 0.54 2 0.033 0.041

Jeff (meV ) 0.174 0.083 0.006

Table 3.2: Comparison of DE and Heisenberg Energies in meV . All values are at
J = 0.1 and K = 0.8 eV . The spin(S) refers to the spin of the ground state.

Whereas, the high spin states, do not obey this physics. For the low spin states
(S = 0, S = 1), there is no mixing between the two FM domains and almost 90
percent of the wavefunction consists of the holes localized in their respective FM
regions. This would explain the low conductivity of the system just before the
Curie temperature.

The comparison of the low energy spectrum for all the three systems i.e. 6 2h,
9 3h and 12 4h is shown in Table: 3.2. Only values of J have been taken for which
each hole has aligned close to three spins which we have confirmed with the Sbox
values. The interaction between the S = 5

2 spins has been taken to be Jeff . The
Jeff values given in Table: 3.2 have been calculated in those cases using only the
ground state and the first excited state as a first approximation. From the com-
parison of the spectrum for the three systems, we conclude that only few low lying
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Figure 3.26: The variation of Jeff with J is shown for the 6 2h, 9 3h and the 12 4h
system for a fixed value of K = 0.8 eV .

spin states are adequately modeled by the Heisenberg picture. This is justified
since only the low energy physics is expected to follow Heisenberg behavior and
the high energy states will follow a different physics. Therefore, we cannot hope to
represent the full spectrum with the Heisenberg model. Note that the low energy
spectrum corresponds to that of the Heisenberg spectrum only for a small range
of values of J which decreases as the system size increases. The Jeff values for
the three systems have been calculated for various values of J and are reported in
Fig: 3.26. The region for which the 12 4h system shows Heisenberg behavior along
with the Sbox value of 5

2 is not as large as for the 6 2h and 9 3h systems. Therefore,
only a few points have been plotted for the 12 4h system. The Jeff value has a
maximum at about J ≈ 0.098 and then decreases on either direction. This is due
to the fact that for all the three systems, the Smin state is flanked on both direc-
tions of J by two different Smin+1 states. Therefore, along both directions aways
from J ≈ 0.098, the energy difference between Smin − Smin+1 decreases leading to
a decrease in Jeff . It is important to note that although on sufficiently increasing
the value of J , we will again have a Smin state as the ground state, it will not have
the proper Sbox value, i.e. the holes will not have aligned five spins.

In conclusion, we have established that the physics of the low spin states fol-
lows the Heisenberg picture. Consequently, they are insulating in character. We
have also calculated the Jeff (effective anti-ferromagnetic interaction) between the
ferromagnetic polarons and shown that it can be used to model the low energy
spectrum.
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3.3.2 Excited state physics: Charge gap

Let us proceed now to an analysis of delocalization in the excited states. A mea-
sure of the electric current in linear systems is not exactly defined due to the open
boundary conditions. The TPS is an approximate measure of the conductivity in
the system. If we look at the determinants near the value of J for which each hole
has aligned five spins (J = 0.1), we will have ferromagnetic regions each with one
hole each, as shown earlier. At this point we can define the “ionic” and “neutral”
determinants as shown in Figure below.

neutral
00 0

ionic
0+ -

Figure 3.27: The two families of determinants with “ionic” and “non-ionic” char-
acter.

The figure Fig: 3.27 shows the two families that we have used to classify the de-
terminants by the position of the hole. Looking at the weights of the two types of
determinants in the wavefunction would then give a good idea of the changing na-
ture of the state. The Fig: 3.28, 3.32 and 3.30 show such a study for the 6 2h, 9 3h
and 8 2h systems respectively, where we have calculated the weight of the “ionic”
type of determinants. The only problem is that the definition of the “Ionic” and
“neutral” which would depends on the size of the box. Therefore, one needs to keep
in mind that there is an inherent bias in this type of classification. Nonetheless,
in this case it seems to be justified due to the fact that the size of the box corre-
sponds with the physics of the system. Whereas for values of J > 0.1 for which
the hole has aligned less than five spins, this definition would no longer be accurate.
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Figure 3.28: The weight of the ionic determi-
nants for the 6 2h system. The inset shows
the definition of ionic and neutral determi-
nants.

Figure 3.29: The weight of the non-ionic de-
terminants for the 6 2h system.

This analysis would help to understand the nature of the conducting Smax and
Smax−1 states. The figures Fig: 3.28, 3.29 shows the comparison of the probability
and the TPS for the 6 2h system, similarly Fig 3.30, 3.31 and Fig: 3.32, 3.33 shows
this comparison for the 8 2h and 9 3h systems. In the inset of each figure we show
the definitions we have used in order to separate the “ionic” and “neutral” deter-
minants. In general the TPS shows a clear correspondence with the probability
of the “ionic” determinants for all values of J and for all systems. The critical
point at about J ≈ 0.1 for the 6 2h and 9 3h systems and at J ≈ 0.05 for 8 2h
system, can also be seen for both the TPS and the probability plots. At this value
there is a decrease in the weight of the ionic determinants in favor of the non-ionic
ones signifying the order present in the wavefunction as shown in sec: 3.1.5.1. This
leads to a decrease in the mobility of the holes and the net total charge (“ionic”
determinants). This is also clearly reflected in a direct decrease in the TPS. Once
the value of J permits a ferromagnetic coupling between the newly formed ferro-
magnetic regions (formed of five spins) each with a single hole, and the previous
order is lost, the weight of the ionic determinants increases again and so does the
TPS.
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Figure 3.30: The probability of ionic deter-
minants for the 8 2h system. The dotted line
represents the probability for the Smax = 7
state. The inset shows the definition used for
the ionic and neutral determinants.

Figure 3.31: TPS for the same system 8 2h.
The dotted line is the TPS for the S = 7 state.

The second important observation are the relative weights of the ionic determinants
for the five spin states. Similar to the TPS, at all values of J , the ionic character
of the wavefunction is larger for the larger spin states (i.e. S = 5, S = 4). This
accounts for an increase in the metallic nature of the states with an increase in
the spin. This analysis permits us to understand the contrasts in the characters
of the insulating (e.g. S = 0, S = 1, S = 3) state with that of the conducting (e.g.
S = 4, S = 5) states. It is postulated that the low lying states follow a Heisenberg
physics resulting in an insulating behavior, whereas the excited states allow for an
increased mobility of the charges leading to a metallic character.
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Figure 3.32: The probability of ionic deter-
minants for the 9 3h system. The dotted line
represents the probability for the Smax = 15

2
state. The inset shows the definition used for
ionic and neutral detrminants.

Figure 3.33: The TPS for the same system
(9 3h) for comparison. The dotted line corre-
sponds to the Smax = 15

2 state.

In conclusion, since there is a clear correspondence of the probability of the
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ionic determinants with the TPS, it appears that we have clearly identified the
physics measured by the TPS. From the three pairs of figures Fig: 3.28, 3.29, and
Fig: 3.30, 3.29 and Fig: 3.32, 3.33, we conclude that the increase in the delocaliza-
tion is due to an increase in the “ionic” type of determinants.

3.4 Conclusion
The ordered phase in the double exchange model has been studied using exact
diagonalization methods. The delocalization in the linear chain system was ex-
plained using the TPS value. Analytical derivation and numerical calculation was
used to explain the origin of the increase in the delocalization. The Sbox and the
Total position spread tensor was used to quantify the size of the ferromagnetic
“Islands”. It was shown that critical values of the TPS indicates an ordered phase
of the system. Using the Sbox and the TPS value we identified the point where a
single hole aligns three J ≈ 0.1 and four sites J ≈ 0.05.

In order to analyze the effect of magnetic field, the change in the TPS was studied
as a function of the magnetic field. It was shown that the low spin states follow a
Heisenberg physics. An effective Heisenberg type Hamiltonian has been shown to
be able to describe the low energy spectrum for a specific region of the parameter
space depending on the doping ration (1

4 to 1
3). The effective exchange interaction

Jeff has been extracted from the low energy spectrum showing the variation of
this ordered phase with J . The physics of the high spin states has also been
explained as a increase in the weight of the “ionic” type determinants which was
corroborated with the TPS.
The increase in the delocalization in the system in the presence of the magnetic
field was explained in the following manner:

• For systems in which the value of J is such that each hole has aligned a
precise number of spins and the polarons are aligned antiferromagnetically,
the ground state would have very low mobility due to the dominance of
neutral determinants.

• On the application of a magnetic field, one can then increase the delocaliza-
tion in the system by stabilizing the high spin states. The high spin states
have a large delocalization as their wavefunction if dominated by ionic type
determinants.

In this way we have a qualitative explanation of the mechanism of the change in
the metallic/insulating nature on the application of a magnetic field.
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Chapter 4

General conclusions

This work has been devoted to the study of double exchange systems from various
theoretical approaches. The main conclusions are the followings:

• Organic molecules showing a Double Exchange phenomenon can be designed.
The double exchange phenomenon is more difficult to produce in organic sys-
tems than in transition metal compounds. Despite the question of the sta-
bility of polyradical hydrocarbons which seems to be studied and controlled
by experimentalists [127, 18, 128], the most problematic feature concerns the
choice of the bridge. Due to the delocalized character of the magnetic orbitals
their overlap may lead to strong covalent interactions. As a consequence, the
pairing of the electrons belonging to the most overlapping orbitals prevents
from entering the double exchange regime. Nevertheless, long-length bridges
with appropriate connections to the magnetic units could be conceived on
the basis of a rational analysis of the DFT results. The resulting compounds
show a double exchange behavior with interactions of the same order of mag-
nitude as those observed in transition metal compounds. One should however
note that the local exchange integral K between the orbitals of the magnetic
units is much lower than in transition metal ions and that, as a consequence,
the Anderson Hasegawa model (which accounts explicitly for this integral)
must be used to describe the magnetic property of these organic systems [36].

• From these molecular units, two-dimensional networks can be designed in
which both magnetic and transport properties together with magnetoresis-
tive effects could be expected. Such materials would be interesting organic
alternatives in the domain of spintronics.

• Recent works have shown that when removing magnetic units from a graphene
sheet, the remaining 2D material may exhibit particular magnetic properties
such as ferro-, antiferro- and ferri-magnetism depending on the topology of
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the extracted molecules [24, 129]. As experimentalists are gaining expertise
with graphene [130, 131], an interesting perspective would be to conceive
such materials based on the knowledge of the present work. While we have
adopted a bottom-up approach, this would constitute a top-down counter-
part.

• From a theoretical chemistry point of view, two different methods of extrac-
tion of the double exchange model interactions have been proposed. Due to
the self-interaction error [132] Density Functional Theory broken symmetry
solutions with a localized hole cannot be obtained. As these methods do
not require the calculation of such solutions they are well-suited for DFT
studies of DE compounds and one may hope that they could be useful to the
quantum chemistry community.

• A second part of this work was devoted to a model study of finite size double
exchange chains. Firstly, we studied the question of the number of spins
aligned by a single hole. From a model study restricted to the most important
t, K and J interactions, the range of values of these parameters for which a
high-spin ground state occurs could be determined. This could be a guide
for generating high-spin molecules from a double exchange mechanism.

• The emphasis of the work was on the effect of the Hund term K on the
low energy spectrum. Contrary to traditional assumption of a large Hund
coupling K > 10|t| in usual model studies, it was shown that the K ≈ |t|
range plays a crucial role in determining the low energy physics of the system.

• As we were also interested in collective effects in DE chains, we have de-
veloped tools of analysis to grasp the transport and magnetic properties of
these systems. Indeed, we found that the spin multiplicity of the ground
state was not a conclusive observable for quantifying the size of the ferro-
magnetic cloud as soon as the size of the system becomes large. In a first
place the expectation value of the S2 operator (Sbox) in boxes of various sizes
enables us to conclude that for a physical range of the DE parameters, a hole
aligns the spins of three to four sites. We found that the amount of spins
aligned is not too large depending on the size of the system and happens to
be in good agreement with the observed DE properties of real doped (1

4 to 1
3)

materials. This shows that the size of the ferromagnetic cloud is essentially
governed by local interactions and not affected by collective effects. As well
the presence of a second hole does not qualitatively modify this result. A
slight preference for the alignment of the spins of the fourth site was found
for lower values of J in the presence of a second hole.
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• The study of systems with several holes shows that the electronic structure of
these chains is essentially governed by an antiferromagnetic arrangement of
the ferromagnetic clouds. This result could rationalize the observed antifer-
romagnetic trend of the magnetic susceptibility at low temperatures in real
compounds. It is worthwhile to notice that not only the ground state but
also the lowest excited states can be described using a Heisenberg Hamilto-
nian involving effective spins (those of the ferromagnetic cloud) and effective
magnetic couplings (Jeff ).

• While transport properties cannot really be quantified in open-boundary
compounds, the TPS was calculated for systems with one and more holes.
A deep analysis of its physical meaning based on analytical derivations and
numerical calculations shows that it quantifies the weight of the ionic com-
ponent in the wavefunctions. Such information can therefore be used as an
indicator of the delocalization of the holes.

• The behavior of the TPS as a function of J for physical values of K and t
shows interesting features. While, as expected, it increases with the decrease
of J (as we go to the Hückel limit), this behavior is not monotonous. An
analysis combining the TPS values, the Sbox values and the entropy shows
that the drops in the TPS for peculiar values of J corresponds to specific spin
orderings of the wavefunction. As J decreases, one observes successively that
a single hole aligns the spins of more and more sites. At the critical value
J ≈ 0.1|t|, the nature of the wavefunction changes from an alignment of the
spins of 2 sites to that of 3 sites, then at the values J ≈ 0.05 an alignment of
the spins of 4 sites is observed and so on. The TPS can therefore be used to
determine critical values of the parameters for which spin orderings occur.

• As magnetoresistive effects occur in DE compounds we have finally studied
the TPS as a function of an applied magnetic field for physical values of the
DE parameters. Two important results were obtained. The first one is that
one observes qualitative changes in the TPS for small values of the magnetic
field. These values are nevertheless strongly depending on the size of the
systems (as the spectrum is of course also strongly depending on the size of
the system). The second important conclusion concerns the nature of the
conducting state. As expected, the lowest states which obey a Heisenberg
behavior do not show any significant changes in the TPS under magnetic
field. Only the highest spin state (all spins are aligned) of this family of
states conducts but unfortunately it is very high in energy and would require
the application of too strong magnetic field. Conducting states of different
nature than the low spin states, lie at reasonable energies. Their electronic
structure show important ionic components (in terms of ionic boxes) which
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to some extent gives a qualitative picture of a Mött-Hubbard transition for
explaining the conduction in DE systems.

• Finally, this work has required the implementation of the DE model and
the use of various algorithms of exact diagonalizations of sparse and large
matrices. A massively parallel eigensolver was implemented for the double
exchange Hamiltonian using the PETSc library. This code written in C++
and Fortran is also capable of treating more complicated topologies with
different Hamiltonian models.

• Although much remains to be done in 1D systems, an interesting perspective
would be the study of 2D systems. As the growth of the size of DE model
matrix as a function of the size of the system is prohibitive, such a study
could not be conducted in the context of this thesis. Other approaches have
been used to study 2D systems. The advantages of exact diagonalizations
over the methods applied to these systems is twofold: on the one hand it gives
access to low-energy spectra i.e. ground state but also excited states, on the
other hand it provides accurate wavefunctions from which deep analysis of
the nature (electronic structure) of the various states can be performed.
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Abstract 

Engineering and controlling the magnetic response of a molecular device is of paramount importance in 

spintronic applications. Here we show the self-assembly, structural orientation and magnetic coupling of two 

transition metal complexes that were chemically bound to a ferrimagnetic surface. We show that through a 

small, tunable modification we can modulate the magnetic behavior of our system. The molecules display 

magnetic anisotropy. Surface anchoring induced, for the cobalt(II)-containing complex (CoPyipa2), blocking of 

its magnetization and hysteresis that was not observed in the isostructural nickel(II)-containing one (NiPyipa2). 
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Theoretical calculations unraveled the nature of the magnetic coupling, and quantified the magnitude of the 

exchange interaction between the molecules and the surface. We found that CoPyipa2 was strongly 

ferromagnetically coupled to the surface, while NiPyipa2 was weakly antiferromagnetically coupled. These 

results highlight the importance of the synergistic effect that the electronic structure of a metal ion in 

conjunction with the nature of the organic spacer has on the exchange interaction at the molecule/electrode 

interface. 

Introduction 

With the quest to make electronic devices ever smaller, molecules have gained a place in the realm of not only 

traditional electronics, but also in spintronics. Molecular spintronics is a multidisciplinary field of research that 

unites the exceptional properties of molecules with the requirements of spin-based technology.1,2 It has been 

shown that the magneto-resistance response of a molecular spintronic device hinges upon the interface between 

the ferromagnetic surface and the molecular layer.3 Mastering the quality and the nature of this interface is of 

paramount importance for the construction of devices with reproducible responses.3 A major challenge is to be 

able to control the structural orientation of the nanoscopic objects deposited on the ferromagnetic electrodes 

and to control the exchange coupling interaction between these objects and the electrode (the 

molecules/electrode interface).4 Single magnetic molecules with designed geometry, architecture and electronic 

structure allow scientist to attain this goal.5,6 

Recent endeavors towards molecular spintronics include (but are not limited to) the following examples. 

Mannini and co-workers demonstrated that the magnetic memory effect is retained at low temperature (< 1.0 K) 

when single molecule magnets (SMMs) are wired not only onto non-magnetic gold surfaces7,8 but also onto 

magnetic surfaces commonly used as ferromagnetic electrodes in spintronic devices, such as the oxide 

lanthanum strontium manganite (LSMO) and metallic cobalt.9 When ferromagnetic surfaces were employed, 

terbium(III) double-decker (TbPc2) molecules organized with different orientations (parallel or perpendicular) 

depending on the surface employed and did not show significant magnetic interaction between the molecules 

and the electrode.9 In alternative study, Rizzini et al. demonstrated that it is possible to induce exchange bias in 
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a small fraction of the TbPc2 molecules adsorbed onto a manganese surface.10 Another class of materials, 

paramagnetic porphyrin molecules (Mn-porphyrin and Fe-porphyrin) and phthalocyanine, are known to 

physically adsorb onto ferromagnetic Ni or Co surfaces and show surface induced magnetic ordering and 

hysteresis.5,11-14  

Although these systems are promising, additional interface engineering is necessary to fully control and 

comprehend the nature of the interaction between the molecular layer and the ferromagnetic surface. In this 

paper, we demonstrate that it is possible to modulate the magnetic response of our system with a molecule that 

is engineered to control the magnetic interaction via the interface. Through a small tunable modification we can 

regulate the behavior of the system. More specifically, we investigate the structural orientation and the 

magnetic coupling of two self-assembled metal-containing complexes. The molecules synthesized display 

magnetic anisotropy and can be chemically tethered onto epitaxial Fe3O4 (111). Surface anchoring induced, in 

the paramagnetic cobalt(II)-containing complex (CoPyipa2), a magnetic hysteresis at the Co-edge  evidenced by 

X-ray magnetic circular dichroism (XMCD) studies. We did not observe hysteresis at the Ni-edge for the 

isostructural nickel(II)-containing complex (NiPyipa2). First principle ab initio calculations indicated that 

CoPyipa2 is ferromagnetically coupled with the surface, while NiPyipa2 undergoes an antiferromagnetic 

exchange coupling with weaker magnitude. These results highlight the fundamental effect that the electronic 

structure of a metal ion in conjunction with the nature of the organic spacer has on the resulting 

molecule/electrode interaction. 

Results and Discussion 

When designing a versatile system that could be exploited in molecular spintronic applications such as spin 

filtering or spin transfer torque, we took into consideration two main factors. First, we wanted to construct a 

well-defined molecules/substrate interface by using anchoring groups as spacers that would graft reproducibly 

and in a controlled manner onto the oxide of choice to allow tuning of the molecule/electrode magnetic and 

electronic interactions. Second, these complexes must be air stable and more importantly thermodynamically 
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stable in solution in order to prevent possible reactions between the metal ion, belonging to the complex, and 

the surface.  

Many different anchoring groups are known to graft to oxide surfaces such as phosphonates, carboxylates and 

methyl silanes.15,16 Amongst them all, the phosphonic acid moiety was chosen because it is known to covalently 

tether to a variety of oxides (for example TiO2, Ta2O5, LSMO, ZnO and Fe3O4),17-19 is stable in a variety of 

solvents, in a large range of pH, and is insensitive to hydrolysis.20-22 

The organic ligand and the related complexes were designed with three criteria in mind: (i) maximum 

thermodynamic stability, (ii) facile adjustment of the nature of the magnetic ion, and (iii) optimal orientation of 

the phosphonic acid groups that play the role of spacer units between the magnetic ion and the surfaces. This 

last criterion enables the tuning of the electronic communication between the surface and the magnetic 

complexes, which directly impacts the nature and the magnitude of their exchange coupling. The one pot 

reaction between 2-(aminoethyl)phosphonic acid (2 equiv.), 2-pyridinecarboxaldehyde (2 equiv.) and the 

corresponding hydrated MII(CH3COO)2 salt (1 equiv.), using the metal ion MII (CoII or NiII) as a template, 

produced bisimine complexes Co- and NiPyipa2 as the uniquely observed products (Figure 1, see SI for full 

characterization of the complexes). Single crystal X-ray analysis revealed that Co- and NiPyipa2 are 

isostructural. In both complexes the metal center is bound to four nitrogen atoms and two oxygen atoms, 

leading to a distorted octahedral environment and molecular C2v symmetry (Figure 1). As per design, both 

phosphonic acid moieties are oriented in the same direction.  

The magnetic behavior of the complexes was studied by direct current (dc) magnetic susceptibility and 

magnetization measurements (Figures 1, S01, and S02) and by ab initio calculations that used the spin-orbit 

state interaction method (see SI for details).23-25 The calculations and the experimental data are in good 

agreement and indicate the presence of an easy plane of magnetization for CoPyipa2 and an easy axis for 

NiPyipa2 (Figure 1e). We extracted the orientation of the magnetization axis from the ab initio calculations, and 

we found that the hard and easy axis of magnetization were perpendicular to the C2 symmetry axis for 

CoPyipa2, and NiPyipa2, respectively. 
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Figure 1.  Complex Co- and NiPyipa2. X-ray crystal structure of CoPyipa2 (a) and NiPyipa2 (b): C, grey; N, 
lilac; O, red; P, orange; H, white; Co, blue; Ni, green. The red, green and blue axes represent the x, y, z 
direction of the anisotropy tensor, respectively. The magnetization as a function of field plots for CoPyipa2 (c) 
and NiPyipa2 (d): solid lines correspond to the best fits; see SI for the parameter values. (e) Table of the 
experimental and calculated magnetization parameters reported in cm-1: D, zero field splitting parameter; E, 
rhombic parameter f, Schematic representation of the synthesis of complex Co- and NiPyipa2 followed by 
surface anchoring.  
 

A monolayer of molecules (Co- or NiPyipa2) on epitaxial Fe3O4 (111) was obtained by self-assembly from 

solution. Surface coverage was monitored by atomic force microscopy (AFM), X-ray photoelectron 

spectroscopy (XPS) and time-of-flight secondary ion mass spectrometry (ToF-SIMS) (Figures 2, and SI). XPS 

spectra indicated the presence of the 2s and 2p peaks from phosphorus (Figure S03). AFM data revealed 

homogenous coverage of the substrates (Figure 2b and S04) with the surface profile indicating a height of the 
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objects that is consistent with the complexes being deposited onto the surface (~ 1 nm). Positive and negative 

ToF-SIMS spectra (Figure S05 and S06) showed a variety of fragments confirming that the phosphonic acid 

moiety binds to the iron oxide via the oxygen (Fe-O-P(OR)2). It is important to note that if the phosphonates 

were weakly bound to the iron oxide surface (i.e. hydrogen bonded), we would not expect complex fragments 

containing both iron and phosphonate to be present. Similar fragmentation was found in ToF-SIMS data of 

octadecylphosphoric acid on tantalum oxide surfaces.19 

Since organophosphorous moieties may have different binding modes to the surface (mono-, bi- and tridentate), 

the preferential orientation of the molecules was determined by numerical simulations.22 Determination of the 

equilibrium state and energy minimum of the system has been performed using density functional theory (DFT) 

molecular dynamics technique (FIREBALL).26-29 In our calculations, we set the molecule onto a surface of 

Fe3O4 oriented along the (111) direction formed by octahedral (Oh) and tetrahedral (Td) Fe ions bridged by oxo 

ligands.30 We initially positioned the molecule in three different configurations (a physisorbed and two 

chemisorbed ones, see SI for details). The orientation of the molecule was chosen such that the anchoring 

phosphonate moieties pointed towards the surface with the different possible binding modes.22 Since the 

physisorbed energy is not compatible with the experimental rinse cycles (the molecular layer is stable after this 

operation), we decided to directly simulate the anchoring of the molecule by substituting the surface oxygen 

atoms by the phosphonates one (this configuration is otherwise out of range of standard DFT optimization due 

to a strong potential barrier between the physisorbed and an anchored state). We proceeded to do a DFT 

molecular dynamic simulation at room temperature to reproduce the experimental conditions of molecular 

deposition on the surface, followed by a structural optimization at 0 K to determine the final configuration on 

the surface. This procedure gave a stable structure and the molecular adsorption energies of the three 

configurations (see SI).31 Further magnetic optimization was performed on these structures in order to obtain an 

accurate description of the magnetic state of each molecule. The most stable orientation corresponds to the 

condition where the C2 symmetry axis of the complexes is perpendicular to the surface as expected from the 

orientation of the oxygen phosphonate anchoring groups (Figure 2a); the two oxygen atoms belonging to the 
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two different phosphonates (phos) have replaced two oxygen atoms (bridging octahedral and tetrahedral Fe 

ions) belonging to the surface creating Fe–Ophos coordination bonds. This configuration leads to the molecules 

being linked to three Fe atoms, as highlighted in Figure 2a. For NiPyipa2, the easy axis of magnetization is 

parallel to the surface, while for CoPyipa2 the hard axis is parallel to the surface.  

 

Figure 2. Monolayer of CoPyipa2 on epitaxial Fe3O4. a, Schematic representation of the DFT minimized 
orientation of CoPyipa2 anchored onto epitaxial Fe3O4: C, grey; N, lilac; O, red or magenta when bound to a 
phosphonate; P, orange; H, white; Co, blue; Ni, green; Fe, gold or green when bound to the molecule. b, AFM 
image of a monolayer of CoPyipa2 anchored onto epitaxial Fe3O4. c, Surface profile of the monolayer of 
CoPyipa2.  
 

To attain the sensitivity required to probe a monolayer of molecules, element specific magnetic properties were 

investigated by recording the magnetic dichroic component of the X-ray absorption spectra (XAS) of the 

surface (Fe) and of the complexes (Co and Ni for Co- and NiPyipa2, respectively) at the L2,3 edges. Circular 

polarized X-rays were employed for two incidence angles (θ = 0° and 45°) between the sample normal and the 

X-ray propagation vector. All measurements were recorded at 2 K in the total yield electron mode with the 

magnetic field aligned parallel to the photon propagation vector.7,32 The XAS spectra, and the resulting XMCD 

spectra (σ--σ+), at the iron, cobalt and nickel L2,3 edges were acquired in the presence of a 6.5 T field 

employing the two circular polarizations (σ+; σ-). The XAS and XMCD spectra at the Fe L2,3 edges of the 
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epitaxial Fe3O4 surface before and after molecule grafting are similar (Figure S07, and S08), and are 

comparable to those published in the literature,33 demonstrating that the surface deposition method did not 

damage the substrates. The XAS and XMCD spectra at the Ni and the Co edges show a strong dichroic signal 

that is indicative of molecules deposited on the surface (Figure 3 and S09). The signals were compared with 

those recorded on a thick film of the same complexes deposited by drop casting. The spectra are similar, and 

confirmed that the electronic structure of the molecule is retained upon grafting (Figure S10). The shape of the 

XMCD signal at the Fe L3 edge (Figure S07) corresponds to the situation where the magnetic moments of the 

octahedral Fe sites are aligned with the magnetic field (negative XMCD signal) and are antiparallel to those of 

the tetrahedral sites (positive XMCD signal), which correspond to an antiferromagnetic coupling between 

octahedral and tetrahedral sites.33 The XMCD signal at the Co L3 edge is aligned with the magnetic field 

(negative XMCD), therefore, it is aligned with the octahedral Fe sites. The identical scenario is true for Ni. It is 

not possible at this stage to conclude on the nature of the coupling between the magnetic molecules and the 

substrate from the XMCD measurements at 6.5 T and 2 K. For this task, we had to rely on theoretical 

calculations that are described at the end of the manuscript.  

 A sum rule analysis34,35 was performed to extrapolate the values of the spin and orbital magnetic moments for 

Co and Ni and gave the following results. For CoII the number of hole was taken to be nh = 3, which results in 

an orbit magnetic moment ML = -µB⟨LZ⟩  = 0.29 ± 0.03 µB and a spin magnetic moment MS = -g0µB⟨SZ⟩  = 

0.83 ± 0.08 µB, corresponding to a total magnetic moment M = ML + MS = 1.12 ± 0.11 µB. For NiII the number 

of hole was taken to be nh = 2, which results in an orbit magnetic moment ML = -µB⟨LZ⟩  = 0.18 ± 0.02 µB and 

a spin magnetic moment MS = -g0µB⟨SZ⟩  = 1.20 ± 0.12 µB, corresponding to a total magnetic moment M = ML 

+ MS = 1.38 ± 0.14 µB (the error bars are estimated to 10 % and stem mainly from the normalization procedure 

and the background substraction). Interestingly the Co magnetic moment found corresponds to one third of the 

saturation magnetization of 3 µB for an isotropic S = 3/2 cobalt ion. This result confirms that the ground state of 

the CoII ion is mainly built from MS = ± 1/2 with very small contributions from higher MS (± 3/2) terms, exactly 
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what was found from the magnetization measurements analysis and confirmed by the ab initio calculations (see 

SI).	
  

 
Figure 3. XAS/XMCD spectra of a monolayer of Co- and NiPyipa2. a, Cobalt, and b, Nickel L2,3 edges XAS 
(black and grey line) and XMCD (red lines) spectra recorded at T = 2 K, and θ = 45° using left (σ+) and right 
hand (σ-) circularly polarized light in 6.5 T field. c, Schematic representation of the measurement geometry.  
 

To gain better insight on the nature of the interaction of Co- and NiPyipa2 with the epitaxial Fe3O4 surface, we 

measured element-specific XMCD-detected hysteresis loops. The field-dependence Fe, Co and Ni L3 XMCD 

intensity (multiplied by -1) at fixed photon energy and normalized are shown in Figure 4 for the geometry 

where the X-ray propagation vector is at 45° with the sample normal i.e. the substrate makes an angle of 45° 

with the applied magnetic field (Figure 3c). It was possible to see an opening of the hysteresis loop for 

CoPyipa2 (Figure 4a), while no opening occurs when the magnetic field is perpendicular to the substrate (Figure 

S11a). To investigate the magnetic behavior of CoPyipa2 isolated from the Fe3O4 surface, an ultrathin insulating 
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layer (1 nm of Al2O3) was deposited between the iron oxide surface and the molecules. No opening of the 

magnetization loop was seen for θ = 0 and 45°(Figure S12), which is the opposite situation in the absence of the 

non-magnetic, insulating layer. These data indicate that the magnetically isolated Co complexes have their hard 

magnetization axis parallel to the substrate as predicted from theoretical calculations (see above), and 

demonstrate that CoPyipa2 is magnetically coupled to the surface switching the easy plane of magnetization of 

the Co complexes to an easy axis parallel to the substrate. No opening of the magnetization loop was seen for 

NiPyipa2 (Figure 4b and S11b) highlighting the absence of (or the presence of very weak) magnetic coupling. 

We reasoned that the difference in coupling between NiPyipa2 (absence of hysteresis) and CoPyipa2 (presence 

of hysteresis) excludes dipole-dipole interactions between CoPyipa2 and substrate, as such interactions would 

have resulted in the same behavior for the two molecules. The magnetic coupling between CoPyipa2 and Fe3O4 

is thus due to exchange. 

 

Figure 4. Element-specific field dependence of the magnetization of the Co atoms of CoPyipa2, the Ni 
atoms of NiPyipa2 and of the corresponding ferrimagnetic surface (Fe). Hysteresis curves (multiplied by -
1) of the Co atoms (blue), Ni atoms (green) and Fe atoms (grey) obtained at the L2,3 edges XMCD maxima at T 
= 2 K, and θ = 45°. (Monochromatized X-rays are set at the energy of the maximum absolute value of the 
XMCD signal (i.e. hν = 777.5 eV for Co, hν = 851 eV for Ni, and hν = 707 eV for Fe) then the external 
magnetic field is switched step by step from +6.5 T down to -6.5 T and back to +6.5 T. At each step the 
magnetic field is switched from left to right circular polarization to yield the element specific magnetization 
curves.  
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calculations using the B3LYP functional of the GAUSSIAN 09 package (see SI for details).36 We employed the 

extended basis sets: Valence Triple Zeta plus Polarization (VTZP) for Fe, Ni, Co and for the ligand atoms.37-39 

We used the results of the DFT molecular dynamic simulation described above, and considered the system 

composed of the three coupled FeIII ions (S = 5/2) (FeIII
Oh—FeIII

Td–FeIII
Oh, we assume that the surface FeII 

atoms were oxidized to FeIII)40 surrounded by their coordinated oxygen atoms (from the surface) and the 

complexes either CoPyipa2 (CoII, S = 3/2) or NiPyipa2 (NiII, S = 1). The Heisenberg Hamiltonian 

)Ŝ.ŜŜ.Ŝ(J)Ŝ.Ŝ(J)Ŝ.ŜŜ.Ŝ(JĤ CBBA3MB2MCMA1 ++++=  describes the low energy spectrum of the four spin 

centers: M = NiII or CoII, 𝑆! = the spin operator of the central tetracoordinated III
BFe  ion, 𝑆! and 𝑆!  = the spin 

operators of its hexacoordinated neighbors III
AFe and III

CFe , respectively (Figure 5a). The analytical energies of 

the various computed solutions are given in Figure 5. The Hamiltonian was chosen so that when the exchange 

parameters (Ji) are positive the coupling is antiferromagnetic. 

First, we calculated the surface coupling in the absence of Co- or NiPyipa2 (J1 = J2 = 0). As expected for an 

epitaxial Fe3O4 (111) surface, we found that the surface FeIII have an antiferromagnetic coupling (J3 = 52 cm-1). 

The ferromagnetic solution was 1321 cm-1 higher in energy than the antiferromagnetic one. Second, we 

computed the energies in the presence of Co- or NiPyipa2. The four possible coupling solutions are depicted in 

Figure 5b. The geometries were optimized and were quasi-identical for both complexes for the different 

solutions (Figure 5c). 
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Figure 5. a, Interaction topology between the MPyipa2 (M = Ni or Co) and the surface Fe ions. Optimized 
geometry of the singly occupied magnetic orbitals for NiPyipa2 (b) and CoPyipa2 (c). Positive (red) and 
negative (green) isosurfaces for the high spin solution. C, grey; N, lilac; O, red; P, orange; Co, blue; Ni, green; 
Fe, dark orange; hydrogen atoms were omitted for clarity. The MO labels are in ascending energy levels. 
 
By computing the energies of the different solutions based on the coupling scheme depicted in Figure 5a, we 

find that the coupling between the NiII (or CoII) ions and the surface is independent from the nature 

(ferromagnetic or antiferromagnetic) of the exchange coupling within the substrate (see SI for details). From 

the energy differences between the various solutions we obtained J1 = 18 cm-1, J2 = –2 cm-1, J3 = –40 cm-1 for 

NiPyipa2, and J1 = –54 cm-1, J2 = –49 cm-1; J3 = –47 cm-1 for CoPyipa2. This translates into a weakly 

antiferromagnetic exchange coupling between the NiPyipa2 and the surface and a strongly ferromagnetic 

coupling for CoPyipa2.. 

The opposite nature of the exchange interaction can be explained by the difference in the molecular orbitals 

(MO) depicted in Figure 5. None of the singly occupied molecular orbitals (SOMOs) of CoPyipa2 have a strong 

overlap with the FeIII SOMOs through the bridging oxygen ligands (see MOs number 220, 224 and 225 in 

Figure 5). The most important physical factor contributing to the exchange coupling of CoPyipa2 with the 

surface is brought by the direct exchange integrals between all the magnetic SOMOs, which are always 
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ferromagnetic.41,42 On the contrary, one of the two SOMOs of NiPyipa2 (MO number 228, Figure 5) exhibits an 

extended delocalization tail on the oxygen atom bridging the complex to the surface through the phosphonic 

acid anchoring group. The overlap between this NiPyipa2 SOMO and the FeIII one brings a large kinetic 

contribution (antiferromagnetic) to the exchange coupling that compensates and overcomes the ferromagnetic 

contribution and leads to an overall antiferromagnetic interaction.41,42 The difference between the nature of the 

couplings is also corroborated by the shorter MII/spacer/surface distance for NiPyipa2 than for CoPyipa2, 

strengthening the antiferromagnetic superexchange mechanism. It is important to note that the absolute 

numerical values of Ji have to be considered with caution due to the approximations made in the calculations. 

The much stronger ferromagnetic coupling of the CoII center with the surface compared to the NiII center 

explains the opening (or lack there of) of the magnetic hysteresis for CoPyipa2 (or NiPyipa2) when deposited 

onto the ferrimagnetic surface. XMCD measurements at lower temperatures (XMCD below 1 K is not 

accessible on the DEIMOS line) would likely provide further indications on the nature of the magnetic coupling 

in the NiPyipa2 system. 7,8 

Conclusions 

In conclusion, we have shown that by molecular design, we can chemically anchor metal-containing molecules 

to a magnetic iron oxide electrode and we can finely control the molecule/electrode interface structure. The 

coupling between the magnetic molecules and Fe3O4 is due to exchange and not to dipole-dipole interactions. 

The electronic structure of the metal ion has a paramount importance on the nature of the coupling: CoPyipa2 

undergoes a strong ferromagnetic coupling with the substrate while the structurally analogous NiPyipa2 is 

weakly antiferromagnetically coupled. We can, therefore, envision that controlling the molecule/substrate 

exchange interaction would allow tuning the spin current (sign of the magnetoeresistance) at the interface and 

eventually lead to using such current to switch the magnetization of single anisotropic molecules in molecule-

based spintronic devices.  
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Methods 

This section describes general synthetic methods for Co- and NiPyipa2 synthesis and self-assembly on epitaxial 

Fe3O4 (111) only; a detailed experimental section is provided in the Supplementary Methods. 

(MPyipa2). A round bottom flask was charged with 2-aminoethylphosphonic acid (2 equiv.), 2-

pyridinecarboxaldehyde (2 equiv.), M(CH3COO)2·4 H2O (1 equiv.), MeOH (4 mL) and demineralized H2O (4 

mL). The reaction mixture was heated at reflux for 3 hours. The solvent was evaporated and a red product was 

obtained. The product was purified by vapor diffusion of Et2O into a MeOH solution of MPyipa2 (CoPyipa2: m 

= 109.5 mg; yield = 74%; NiPyipa2: m = 98.6 mg; yield = 67%). 

Monolayer preparation: The monolayers were prepared by immersion of the Fe3O4 substrates into 10 mL of a 

freshly filtered 0.5 mM solution of either CoPyipa2 or NiPyipa2 dissolved in the desired solvent. After 3 days of 

immersion the substrates were removed from the solution and rinsed thoroughly with neat solvent. All the 

functionalization experiments were carried out at room temperature. 
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Methods 

Epitaxial Fe3O4(111) thin films were grown by molecular beam epitaxy on α-Al2O3 (0001) according to 

literature procedures.1  

Unless otherwise stated, all reagents were purchased from Aldrich or TCI and used without further purification.	
  

Electrospray ionization mass spectrometry (ESI-MS) spectra were recorded on a Thermo Scientific 2009 mass 

spectrometer. IR spectra were recorded on a Bruker TENSOR-27 Fourier transform infrared (FT-IR) 
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spectrometer equipped with an attenuated total reflectance (ATR crystal diamond/ZnSe) sample holder in the 

4000 - 500 cm-1 range. Elemental analysis was taken on a Thermo Scientific Flash analyzer. 

Cobalt(II) bis-2-[(Pyridin-2-ylmetylene)amino]ethyl phosphonic acid (CoPyipa2). A round bottom flask 

was charged with 2-aminoethylphosphonic acid (77.8 mg, 0.622 mmol), 2-pyridinecarboxaldehyde (58 µL, 

0.610 mmol), Co(CH3COO)2·4 H2O (75 mg, 0.301 mmol), MeOH (4 mL) and demineralized H2O (4 mL). The 

reaction mixture was heated at reflux for 3 hours. The solvent was evaporated and a red product was obtained. 

The product was purified by vapor diffusion of Et2O into a MeOH solution of CoPyipa2 (m = 109.5 mg; yield = 

74%). IR (ν/cm-1): 3317 (br), 2946 (br), 2888 (br), 2529 (br), 2162 (s), 1981 (br), 1780 (m), 1660 (s), 1626 (m), 

1589 (m), 1571 (m), 1469 (br), 1446 (s), 1366 (br), 1352 (br), 1286 (s), 1226 (s), 1156 (s), 1104 (m), 1091 (m), 

1051 (m), 1033 (m), 1010 (s), 988 (s), 962 (m), 937 (s), 897 (s), 875 (s), 813 (m), 785 (m), 744 (m), 707 (br), 

662 (s), 634 (m). ESI-MS: m/z 486.03 ([CoPyipa2]+). Elem anal. Calcd for C16H24N4O8P2Co: C, 36.87; H, 4.64; 

N, 10.75. Found: C, 36.80; H, 4.82; N, 10.73. 

Nickel(II) bis-2-[(Pyridin-2-ylmetylene)amino]ethyl phosphonic acid (NiPyipa2). A round bottom flask was 

charged with 2-aminoethylphosphonic acid (85.0 mg, 0.680 mmol), 2-pyridinecarboxaldehyde (64 µL, 0.673 

mmol), Ni(CH3COO)2·4 H2O (80 mg, 0.321 mmol), MeOH (4 mL) and demineralized H2O (4 mL). The 

reaction mixture was heated at reflux for 3 hours. The solvent was evaporated and a red product was obtained. 

The product was purified by vapor diffusion of Et2O into a MeOH solution of NiPyipa2 (m = 98.6 mg; yield = 

67%). IR (ν/cm-1): 3317 (br), 2946 (br), 2888 (br), 2529 (br), 2162 (s), 1981 (br), 1780 (m), 1660 (s), 1626 (m), 

1589 (m), 1571 (m), 1469 (br), 1446 (s), 1366 (br), 1352 (br), 1286 (s), 1226 (s), 1156 (s), 1104 (m), 1091 (m), 

1051 (m), 1033 (m), 1010 (s), 988 (s), 962 (m), 937 (s), 897 (s), 875 (s), 813 (m), 785 (m), 744 (m), 707 (br), 

662 (s), 634 (m). ESI-MS: m/z 485.04 ([NiPyipa2]+). Elem anal. Calcd for C16H28N4O10P2Ni: C, 34.50; H, 5.07; 

N, 10.06. Found: C, 34.37; H, 4.54; N, 10.02. 

Single Crystal X-ray Diffraction Studies. X-ray diffraction data were collected by using a Kappa X8 APPEX 

II Bruker diffractometer with graphite-monochromated MoKa radiation (  = 0.71073 Å). Crystals were mounted 

on a CryoLoop (Hampton Research) with Paratone-N (Hampton Research) as cryoprotectant and then 
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flashfrozen in a nitrogen-gas stream at 100 K. The temperature of the crystal was maintained at the selected 

value (100K) by means of a 700 series Cryostream cooling device to within an accuracy of ±1 K. The data were 

corrected for Lorentz polarization, and absorption effects. The structures were solved by direct methods using 

SHELXS-972 and refined against F2 by full-matrix least-squares techniques using SHELXL-973 with 

anisotropic displacement parameters for all non-hydrogen atoms. Hydrogen atoms were located on a difference 

Fourier map and introduced into the calculations as a riding model with isotropic thermal parameters. All 

calculations were performed by using the Crystal Structure crystallographic software package WINGX.4 

CCDC-1049643 and CCDC-1049644 contain the supplementary crystallographic data for NiPyipa2 and 

CoPyipa2, respectively. These data can be obtained free of charge from the Cambridge Crystallographic Data 

Centre via www.ccdc.cam.ac.uk/data_request/cif. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table S1. Crystallographic data for complex CoPyipa2 and NiPyipa2. 
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Compound CoPyipa2 NiPyipa2 
Formula C16CoH20N4O6P2,  C16H20N4NiO6P2,  
fw 485.23 484.99 
Crystal size / mm3 0.11 x 0.07 x 0.04 0.24 x 0.06 x 0.01 
Crystal system monoclinic monoclinic 
Space group C 2/c C 2/c 
a, Å 26.3780(13) 25.9071(8) 
b, Å 9.0590(4) 9.1614(3) 
c, Å 16.5517(7) 16.4713(4) 
α, ° 90 90 
β, ° 102.2860(10) 100.9560(10) 
γ, ° 90 90 
Cell volume, Å3 3864.6(3) 3838.1(2) 
Z 8 8 
T, K 100(1) 100(1) 
F000 1992 2000 
µ / mm–1 1.097 1.221 
θ range / ° 1.58 – 30.51 1.60 – 30.51 
Refl. collected 29 403 29 473 
Refl. unique 5 844 5 540 
Rint 0.0616 0.0340 
GOF 1.031 1.036 
Refl. obs. (I>2σ(I)) 3 926 4 321 
Parameters 676 266 
wR2 (all data) 0.1299 

 
0.1401 

R value (I>2σ(I)) 0.0524 0.0540 
Largest diff. peak and 
hole (e-.Å-3) 

-0.967; 1.996 -1.268 ; 1.642 

 

Magnetic Measurements. The magnetic susceptibility measurements were obtained using a Quantum Design 

SQUID magnetometer MPMS-XL7 operating between 1.8 and 300 K for dc-applied fields ranging from -5 to 5 

T. Dc analysis was performed on polycrystalline samples of Co- and NiPyipa2 (17.61 mg and 17.31 mg, 

respectively) wrapped in eicosan under a field between 0.1 and 1 T and between 1.8 and 300 K. The χMT = f(T) 

curve for NiPyipa2 shows a Curie-law behavior between 300 and 50 K (ground state with no first order orbital 

momentum 3A2g) and then decreases indicating the presence of a zero-field splitting (ZFS) within the S = 1 

state (Figure S01). While, for CoPyipa2 a steady decrease is observed from room temperature down to 75 K and 

then more rapidly, in line with a ground state with a non completely quenched orbital momentum as expected 

for slightly distorted octahedral for CoII complexes.5 The data for Co- and NiPyipa2 were fitted by a full 
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diagonalization of the energy matrices considering many orientations of the magnetic field. The best fits lead to 

the following parameters: DNi = – 5.2 cm-1, ENi = 0, gNi = 2.22, R (agreement factor) = 2x10-5, DCo = + 30.2 cm-

1, ECo = 5.0 cm-1, gCo = 2.3, R = 5x10-4. D and E are the axial and the rhombic ZFS parameters, and g is the 

Lande factor of the spin Hamiltonian H = gµBH•S + D[Sz
2 – S(S+1)/3] + E (Sx

2 – Sy
2). These parameters are 

related to the D tensor matrix elements by 2E = |Dxx – Dyy| and D = 3Dzz/3. 

 
Figure S01. χMT = f(T) curve for CoPyipa2 (a) and NiPyipa2 (b). Solid line corresponds to the best fit.  

 

 
Figure S02. Reduced magnetization plots (M = f(µ0H/T) for CoPyipa2 (a) and NiPyipa2 (b). 

 

Ab initio calculations. Ab initio calculations using the spin-orbit state interaction (SOSI) method, which treats 

the spin-orbit coupling (SOC)6,7 in the wave function theory (WFT)- based framework (implemented in the 
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MOLCAS code8) permits the calculation of the ZFS parameters from first principles and the determination of 

the orientation of the main axes of the anisotropy tensor according to a well-established method, which is 

known to provide accurate results.9-15 The calculations, in very good agreement with experimental data, lead to 

DNi = -3.4 cm-1 and ENi = 0.7 cm-1, which corresponds to a weak separation between the ground MS = ±1 (not 

degenerate because E  ≠ 0 for a non Kramers sub-levels) and the excited MS = 0 of 3.4 cm-1. The easy axis of 

magnetization was found to be perpendicular to the C2 symmetry axis of the molecule and makes an angle of 

10° with the Namine-Ni-Namine direction. For CoPyipa2, the calculation gives DCo = + 32.3 cm-1 and ECo = 4.1 cm-

1, which corresponds to a large energy separation between the ground MS = ±1/2 and the excited MS = ± 3/2 

sub-levels of 64.6 cm-1 (= 2|D|). 

X-ray photoelectron spectroscopy was carried out using monochromatized Al K alpha1 X-rays (hν = 1486.6 

eV), a hemispherical analyzer, and a channel plate detector. The spectrometer was calibrated at the Au 4f core 

level at a binding energy of 84 eV. Spectra were recorded at a takeoff angle of 90°. The pass energy was set to 

160 eV for survey and 20 eV for core level, giving an energy resolution of 0.38 eV. 
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Figure S03. XPS of: top, CoPyipa2; bottom, NiPyipa2. 
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Atomic Force Microscopy:  

AFM images were recorded using a Pico-LE microscope (Molecular Imaging-Agilent Technologies) in contact 

mode. AFM tips were Si-coated with Pt/Ir alloy with a stiffness in between 0.1 N/m and 0.3 N/m. The tip radius 

was given at 20 nm. 

 
Figure S04. AFM images. a, Fe3O4; b, surface profile of Fe3O4 as indicated by the blue line; c monolayer of 
NiPyipa2; d, surface profile of NiPyipa2 as indicated by the blue line.  
 

Time-of-flight secondary ion mass spectrometry (Tof-SIMS): Time-of-flight secondary ion mass 

spectrometry data were acquired using a TOF.SIMS V spectrometer (ION-TOF GmbH, Muenster, Germany). 

The analysis chamber was maintained at less than 5 10-7 Pa under operational conditions. The total primary ion 

flux was less than 1012 ions cm-2 ensuring static conditions. A pulsed 25 keV Bi+ primary ion source at a 

current of 1.3 pA (high current bunched mode), rastered over a scan area of 100 mm 100 mm was used as the 

analysis beam. ToF-SIMS depth profiles were measured with the instrument working in the dual-beam mode. 

The sputtering was performed using a 0.5 keV (30nA) or 2 keV (80 nA) Cs+ ion beam, rastered over an area of 

300 mm 300 mm. Both ion beams were impinging the sample surface forming a 45° angle with the surface 

normal and were aligned in such a way that the analyzed ions were taken from the center of the sputtered crater. 

Data acquisition and processing analyses were performed using the commercial IonSpec program. The exact 
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mass values of at least five known species, from H-, C-, C-
2, C-

3, and Cl-, were used for calibration of the data 

acquired in the negative ion mode, in which the best information was obtained with regard to our oxidized 

systems. The mass resolution, M/ΔM, was >10 000 for the low mass range (<100). 

 

Figure S05. Tof-SIMS spectra of CoPyipa2 on epitaxial F3O4(111).  
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Figure S06. Tof-SIMS spectra of NiPyipa2 on epitaxial F3O4(111).  
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dynamic simulation at room temperature to reproduce the experimental conditions of molecular deposition on 

the surface, followed by a structural optimization at 0K to determine the final configuration on the surface. This 

well-established procedure19 gives us a stable structure in the three configurations, as well as the molecular 

adsorption energies: 

Physisorption: -2.51 eV/molecule 

Chemisorption (non equivalent O): -8.14 eV/molecule 

Chemisorption (equivalent O): -10.11 eV/molecule 

The latter configuration seems to be the most stable, defining the molecular orientation observed in the 

experiments and more importantly the site where the molecules are linked to the Fe surface atoms. 

XAS/ XMCD studies: The XAS/XMCD studies at the Fe, Co and Ni L2,3 edges were carried out at the 

DEIMOS beam line, SOLEIL Synchrotron (Gif-sur-Yvette, France).20,21 To ensure optimal detection 

sensitivity, the absorption spectra were measured in the Total Electron Yield mode. We used low density 

photons to avoid radiation damages to the samples. XMCD spectra were obtained from circularly polarized 

absorption spectra at 2 K under an applied magnetic filed of 6.5 T parallel to the X-ray propagation vector. The 

XMCD-detected hysteresis loops were obtained at 2 K with the magnetic field sweeping (-6.5 to 6.5 T) parallel 

to the X-ray propagation vector.  
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Figure S07. XAS/XMCD of epitaxial Fe3O4(111). Iron L2,3 edge XAS and XMCD spectra recorded at T = 2 
K, and θ = 45° using left (σ+) and right hand (σ-) circularly polarized light in 6.5 T field.  
 

 
Figure S08. XAS/XMCD of epitaxial F3O4(111). Iron L2,3 edge XAS and XMCD spectra recorded at T = 2 K, 
and θ = 45° using left (σ+) and right hand (σ-) circularly polarized light in 6.5 T field. a CoPyipa2 monolayer 
was deposited onto the Fe3O4; b NiPyipa2 monolayer was deposited onto the Fe3O4. 
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Figure S09. XAS/XMCD of CoPyipa2 and NiPyipa2. a, Cobalt L2,3 edge XAS and XMCD spectra recorded at 
T = 2 K, and θ = 0° using left (σ+) and right hand (σ-) circularly polarized light in 6.5 T field. b, Nickel L2,3 
edge XAS and XMCD spectra recorded at T = 2 K, and θ = 0° using left (σ+) and right hand (σ-) circularly 
polarized light in 6.5 T field. Note that the non-flat background for the XMCD in figure S09a comes from the 
XMCD signal of the Fe L2,3 edges and can be removed by recording the XMCD on a pure Fe3O4 surface in the 
energy range of the Co L2,3 edges. This is what has been done to obtain Figures S10. 
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Figure S10. XAS/XMCD of bulk CoPyipa2 and NiPyipa2. a, Cobalt L2,3 edge XAS and XMCD spectra 
recorded at T = 2 K, and θ = 45° using left (σ+) and right hand (σ-) circularly polarized light in 6.5 T field. b, 
Nickel L2,3 edge XAS and XMCD spectra recorded at T = 2 K, and θ = 45° using left (σ+) and right hand (σ-) 
circularly polarized light in 6.5 T field.  
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Figure S11. Element-specific field dependence of the magnetization of the Co atoms of CoPyipa2, the Ni 
atoms of NiPyipa2 and of the ferrimagnetic surface (Fe). Hysteresis curves (multiplied by -1) of the Co 
atoms (blue), Ni atoms (green) and Fe atoms (grey) obtained at the L2,3 edges XMCD maxima at T = 2 K, and θ 
= 0°. (Monochromatized X-rays are set at the energy of the maximum absolute value of the XMCD signal (i.e. 
hν = 777.5 eV for Co, hν = 851 eV for Ni, and hν = 707 eV for Fe) then the external magnetic field is switched 
step by step from +6.5 T down to -6.5 T and back to +6.5 T. At each step the magnetic field is switched from 
left to right circular polarization to yield the element specific magnetization curves. 
 
 
 

 
Figure S12. Element-specific field dependence of the magnetization of the Co atoms of CoPyipa2 on the 
ferrimagnetic surface (Fe) separated by an Al2O3 insulating layer. Hysteresis curves (multiplied by -1) of 
the Co atoms obtained at the L2,3 edges XMCD maxima at T = 2 K, θ = 45°. (Monochromatized X-rays are set 
at the energy of the maximum absolute value of the XMCD signal (i.e. hν = 777.5 eV for Co) then the external 
magnetic field is switched step by step from +6.5 T down to -6.5 T and back to +6.5 T. At each step the 
magnetic field is switched from left to right circular polarization to yield the element specific magnetization 
curves. 
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Density Functional Theory – calculation of the magnetic coupling between the molecules the surface: 

These calculations have been performed using the B3LYP functional of the GAUSSIAN 09 package.22,23 

First, the structure of each complex anchored to the surface was optimized. The effect of the surface onto the 

complex was modeled as follows: a piece containing three FeIII centers and the coordinated O atoms (see Figure 

5) was cut into the structure that was predetermined by the molecular dynamics technique. The external oxo 

anions were protonated. It is important to note that even if the surface model is approximated, it is exactly the 

same for both complexes. The structure of the model surface was frozen and the structure of the whole complex 

was optimized for the Ms = 18/2 (CoPyipa2) or Ms = 17/2 (NiPyipa2) solution corresponding to a ferromagnetic 

coupling between the three FeIII and the CoII or NiII metal centers. Very small spin contamination is observed: 

for CoPyipa2, S = 9.03, compared to an expected value of S = 9.00 without spin contamination; for NiPyipa2, S 

= 8.52 vs an expected value of S = 8.50. For both complexes, the spin density of the central the FeIII centers are 

almost the same and independent of the Ms values. A substantial spin density delocalization toward the O atoms 

bound to the Fe centers is observed in both cases (as usual in metal oxides).24-28 The CoII and NiII ions have spin 

densities of 1.33 and 0.86, respectively. A non-negligible delocalization of the spin density on the coordination 

sphere atoms was observed: -0.06 for CoII and +0.05 for NiII. Unexpectedly, the coordination sphere of 

NiPyipa2 is slightly smaller than that of CoPyipa2 as can be seen from the differences in bond distances: Ni-N 

distances are between 2.03Å and 2.15Å (average 2.10Å); Ni-O distances are 2.03Å and 2.08Å; Co-N distances 

are between 2.05Å and 2.19Å (average 2.14Å); Co-O distances are 2.09Å and 2.24Å. The distance from the 

metal center to the closest FeIII ion is shorter by 0.5 Å for Ni Pyipa2 than that of Co Pyipa2 (4.27Å vs. 4.77Å). 

Second, the solution corresponding to a ferromagnetic coupling between the FeIII centers and an 

antiferromagnetic coupling with the CoII and NiII ions was computed (Ms = 12/2 and Ms = 13/2 for Co- and 

NiPyipa2, respectively). As expected, the spin contamination of these solutions is larger but it remain small: S = 

6.28 (exp. 6.00) for CoPyipa2; S = 6.67 (exp. 6.50) for NiPyipa2. The spin densities on the iron centers are 

almost the same as in the high spin solution (variations of less than 0.02); that of CoII
 and NiII are -1.40 and -

0.87, respectively. The delocalization on the coordination sphere atoms is -0.24 for CoII and -0.21 for NiII. 
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Figure S13. DFT broken symmetry solutions and their analytical energies as functions of the magnetic 
exchange coupling parameters J1, J2 and J3. Solutions 1 and 2 correspond to the situation when the surface FeIII 
ions are ferromagnetically coupled and the MII ions are ferro- and antiferromagnetically coupled to them, 
respectively; solutions 3 and 4 correspond to the situation when the surface FeIII ions are antiferromagnetically 
coupled and the MII ions are ferro- and antiferromagnetically coupled to them, respectively. Although solutions 
1 and 2 (ferromagnetic coupling between Fe ions of the surface) are lower in energy than solutions 3 and 4 
(antiferromagnetic coupling between Fe ions of the surface), the coupling between the complexes and the 
substrate is independent from the nature of the coupling within the substrate because equations E1 – E2 and E3 – 
E4 are a function of J1 and J2 only 
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retical Chemistry Accounts 126, 231 (2009). 6

154



[32] C. Zener, Phys. Rev. 82, 403 (1951). 9

[33] J.-J. Girerd, The Journal of Chemical Physics 79, 1766 (1983). 9

[34] V. Papaefthymiou, J. J. Girerd, I. Moura, J. J. G. Moura, and E. Muenck,
J. Am. Chem. Soc. 109, 4703 (1987). 9

[35] K. K. S. J.-J. Girerd, V. Papaefthymiou and E. Munck, Pure Appl. Chem.
61, 805 (1989). 9

[36] P. W. Anderson and H. Hasegawa, Phys. Rev. 100, 675 (1955). 9, 113

[37] D. Taratiel and N. Guihéry, The Journal of Chemical Physics 121, 7127
(2004), 00009. 9
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Resumé en Français

Introduction

Les systèmes magnétiques connaissent une utilisation quotidienne croissante : stockage d’énergie,

imagerie médicale ou stockage d’information avec notamment les toutes nouvelles mémoires

MRAMs (Magnetic Random Access Memories). Ils offrent la possibilité d’une miniaturisation

extrême des composés électroniques et sont très prometteurs dans de nombreux domaines tech-

nologiques, leur conception étant cruciale notamment en spintronique et computation quantique.

D’un point de vue fondamental, les systèmes magnétiques aiguisent sans cesse la curiosité des

chercheurs dans la mesure où l’origine de nombreuses propriétés restent souvent floue malgré les

développements technologiques qu’ils ont permis. C’est le cas des systèmes supraconducteurs à

haute température critique [1] ou des systèmes à magnéto-résistance colossale CMR (Colossal

Magneto-Resistance) [2, 3].

Le magnétisme trouve ses origines dans le comportement quantique de la matière. Les molécules

ou matériaux magnétiques présentant des électrons intrinsèquement fortement corrélés [4], la

compréhension de leur structure électronique et des effets collectifs à grande échelle est un tra-

vail particulièrement difficile. Des études théoriques s’avèrent cependant nécessaires pour élucider

les propriétés de ces composées afin de les améliorer de façon rationnelle et/ou de proposer de

nouveaux systèmes aux propriétés originales.

La difficulté à obtenir théoriquement une description précise des systèmes magnétiques provient

non seulement du caractère intrinsèquement multidéterminental de la fonction d’onde des états

du bas du spectre mais encore de leur grande taille, a priori infinie pour un matériau. Une

première approche consiste à effectuer des calculs de type DFT (Density Functional Theory).

Ils sont intrinsèquement mono-déterminantaux mais peuvent malgré tout être effectués sur des

systèmes magnétiques au moyen de solutions à symétrie brisée BS (Broken Symmetry) et per-

mettent d’étudier des systèmes de grande taille voire, par un traitement périodique, d’aborder

des systèmes infinis. Une autre approche consiste en une procédure multi-échelle. Dans un pre-

mier temps, la structure électronique des états du bas du spectre de fragments, “découpés” dans

le matériau et contenant quelques sites magnétiques, est obtenue à partir de méthodes ab ini-

tio. On peut alors extraire un hamiltonien effectif qui reproduit ces états et de là en tirer les
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paramètres d’un hamiltonien modèle plus ou moins sophistiqué. Ce modèle, beaucoup moins

coûteux numériquement qu’un calcul ab initio, peut alors être appliqué à des systèmes contenant

de nombreux sites magnétiques.

Ce travail cherche à apporter un nouvel éclairage sur le mécanisme de double échange (DE). Il

comporte trois parties. Dans un premier chapitre, des molécules polyradicalaires purement or-

ganiques sont étudiées à partir de calculs DFT dont les solutions BS permettent de reconstruire

le spectre de basse énergie. Nous avons développé deux méthodes d’extraction des paramètres

de DE que nous avons appliquées à ces molécules. Nous avons mis en évidence l’importance des

mécanismes de DE qui conduit à une état fondamental à haut spin dans ces molécules judicieuse-

ment conçues.

Les deux chapitres suivants s’intéressent aux propriétés magnétiques de matériaux inorganiques

dopés. Pour cela, des calculs ont été effectués à partir d’un hamiltonien modèle reproduisant la

physique des systèmes à DE appliqué à des châınes linéaires de sites spin S = 1 de différentes

tailles et pour différents taux de dopage. Les points abordés sont les suivantes :

– évaluation de l’extension de l’ordre ferromagnétique induit par chaque trou ou, en d’autres

termes, combien de sites chacun aligne ferromagnétiquement. L’influence d’un autre trou

sur la capacité d’un trou à aligner des spins est aussi évaluée ;

– rationalisation de la conduction électrique et de l’effet de l’application d’un champ magnétique

observés dans ces matériaux.

Ces calculs ont été menés pour un large domaine de valeur des paramètres englobant les valeurs

observées habituellement dans les matériaux inorganiques. Nous avons utilisés (TPS) ou développés

(Sbox) des méthodes originales d’analyse de la fonction d’onde qui sont présentées en détail.

Systèmes organiques à haut spin.

Les molécules à haut spin sont importantes pour les applications qu’elles peuvent permettre dans

le domaine de la spintronique. Traditionnellement, les systèmes magnétiques à haut spin sont

obtenus à partir de métaux de transition (e.g. Fe, Mn) de spin non nul. Ces centres magnétiques

doivent ensuite être couplés magnétiquement entre eux. Malheureusement, ce couplage est dans la

plupart des cas antiferromagnétique et, quand il est ferromagnétique, il est faible et l’ordre qu’il

cherche à imposer n’est vainqueur de l’agitation thermique qu’à basse température. Plusieurs

solutions ont été trouvées pour obtenir malgré tout des systèmes pour lesquels un état de spin

non nul est nettement stabilisé par rapport aux autres états :

– par une alternance de sites à grand spin et de sites à spin plus faible couplés antiferro-

magnétiquement entre premiers voisins, on parle de ferrimagnétisme ;

– par un choix judicieux de la connexion des sites magnétiques entre eux. Pour une topologie

2



comme celle du triméthylène-méthane par exemple pour laquelle un site magnétique central

est lié antiferromagnétiquement à trois sites magnétiques (de même spin) non connectés

entre eux. Dans le cas de quatre spins S = 1
2 , l’état fondamental est triplet ;

– par le dopage en trous de systèmes magnétiques à plus d’un électron par site magnétique.

La délocalisation du trou (ou des électrons) ainsi produite donne lieu au mécanisme de

double échange qui est au cœur de cette thèse.

Le problème des systèmes inorganiques ou organométalliques provient des difficultés rencontrées

durant leur synthèse et leur coût. Bien que sans doute réactives, des molécules purement or-

ganiques à haut spin présenteraient donc de nombreux avantages par rapport aux complexes

organométalliques, facilité de synthèse et coût, mais aussi leur poids, la possibilité d’obtenir des

composés souples et/ou multifonctionnels. Le problème est qu’ils existent habituellement sous la

forme de systèmes à couches fermées et donc de spin S=0.

Dans la première partie de cette thèse, nous démontrons que des molécules organiques peuvent

avoir un état fondamental à haut spin nettement plus stable que les premiers états excités.

Nous étudierons des molécules issues du couplage de deux triméthylène-méthanes (TMM) ou de

deux triangulènes, entités diradicalaires (S = 1) dont l’état fondamental présente deux électrons

célibataires occupant des orbitales de représentations irréductibles différentes. Ces entités sont

reliées entre elles par un pont organique de façon à privilégier un couplage antiferromagnétique

entre briques (comme prévu par la règle de Ovchinnikov [5]). Alors que l’état fondamental de ces

molécules possède un spin nul, nous montrons que l’état haut spin de leur cation est fortement

stabilisé par un mécanisme de DE.

La topologie du pont (structure et point d’accroche aux briques) est cruciale sur la nature du

couplage entre les briques et nous montrons ici comment la choisir pour favoriser le phénomène

de DE. Dans le cas du couplage de deux TMM, deux carbones de chaque TMM sont reliés au

pont de façon à permettre la délocalisation vers le pont de l’une des deux OM magnétiques de

chaque TMM tout en limitant la délocalisation de l’autre. La plus forte interaction entre les deux

TMM se fera donc principalement via les deux OM magnétiques délocalisées sur le pont, cette

interaction étant attendue d’autant plus forte que le délocalisation est importante. Nous avons

modifié l’extension du pont de façon à moduler cette délocalisation, un pont plus long devant

l’affaiblir, pour en étudier la conséquence sur le spectre de basse énergie de la molécule entière

neutre ou cationique.

Les molécules étudiées sont représentées sur la figure 1. Pour simplifier l’étude, nous avons con-

sidéré des ponts qui respectent la symétrie D2h de la molécule complète afin non seulement de

permettre la localisation des OM magnétiques adaptées à la symétrie sur l’un ou l’autre des deux

TMM mais encore d’éviter toute interaction entre l’OM fortement interagissant et l’OM faible-

ment interagissant de l’autre. Les deux familles d’états où le trou se trouve dans les OM forte-
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Figure 1: Schéma des six systèmes étudiés.
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ment interagissant (famille 1) ou faiblement interagissant (famille 2) sont alors de représentation

irréductibles différentes et peuvent être étudiées séparément, permettant une analyse bien plus

simple des résultats. Les quatre orbitales magnétiques du dimère de TMM formé à partir du pont

le plus petit sont représentées sur la figure 2 et celles du dimère le plus grand sur la figure 3.

(a) b1g (b) au

(c) b2g (d) b3u

Figure 2: Les quatre orbitales magnétiques au niveau de Fermi pour le système 1.

Nos calculs ont montré que toutes les molécules neutres présentent un état fondamental singulet

du fait du couplage antiferromagnétique entre les deux TMM. Les écarts énergétiques entre l’état

fondamental et les premiers états excités sont reportés dans le tableau table 1. Dans le cas des

molécules cationiques, on peut voir (table 2) que les molécules dont le pont est le plus petit (1, 2

et 3) présentent un état fondamental doublet alors que celles dont le pont est plus grand ont un

état fondamental quartet. Les mécanismes de DE réussissent donc pour ces dernières à imposer

un couplage magnétique effectif ferromagnétique entre les deux entités TMM.

Des systèmes étendus de dimension 1 ou 2 peuvent être imaginés en prenant le système 5 comme

brique élémentaire. Deux exemples sont donnés dans la figure 4 où ces briques sont liées entre

elles par un pont diamagnétique purement organique. On peut s’attendre à ce que ces matériaux

une fois dopés présentent un état fondamental à haut spin et on peut espérer qu’ils deviennent

conducteurs, deux caractéristiques fondamentales pour des systèmes susceptibles d’intervenir en

spintronique.
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S2 E(a.u. or eV )

1 triplet (vert.) 2.03 -693.253712
triplet 2.03 -693.256048

BS Ms=0 (“vert.”) 0.92 -693.265296
BS Ms=0 0.8 -693.266979

∆EST (vertical) 0.616
∆EST (adiab.) 0.532

2 triplet (vert.) 2.04 -1000.604739
triplet 2.04 -1000.608011

BS Ms=0 (“vert.”) 0.88 -1000.617184
BS Ms=0 0.71 -1000.619331

∆EST (vertical) 0.614
∆EST (adiab.) 0.520

3 triplet (vert.) 2.05 -1076.854431
triplet 2.05 -1076.854547

BS Ms=0 (“vert.”) 1.09 -1076.857159
BS Ms=0 1.09 -1076.857267

∆EST (vertical) 0.183
∆EST (adiab.) 0.167

4 triplet (vert.) 2.05 -1229.338761
triplet 2.04 -1229.339042

BS Ms=0 (“vert.”) 1.27 -1229.343328
BS Ms=0 (“vert.”) 1.27 -1229.343328
∆EST (vertical)a 0.302
∆EST (adiab.)a 0.264

5 triplet (vert.) 2.07 -1460.451337
triplet 2.07 -1460.451356

BS Ms=0 (“vert.”) 1.13 -1460.449958
BS Ms=0 1.14 -1460.452359

∆EST (vertical)a 0.062
∆EST (adiab.)a 0.061

Table 1: Les énergies des molécules neutres pour les systèmes 1 à 5. Les différences d’énergie
singulet-triplet sont obtenues par un fit quadratique à partir des énergies des états triplet et les
déterminants BS en suivant l’approximation de Yamaguchi.
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S2 Energy(a.u. or eV )

1 quartet (vert.) 3.81 -692.993238
quartet 3.81 -693.003177

BS Ms=1/2 (“vert.”) 0.82 -693.027045
BS Ms=1/2 0.81 -693.036818

∆EDQ (vertical) 0.04358
∆EDQ (adiab.) 0.03364

2 quartet (vert.) 3.81 -1000.345431
quartet 3.82 -1000.354809

BS Ms=1/2 (“vert.”) 0.85 -1000.385054
BS Ms=1/2 0.83 -1000.394285

∆EDQ (vertical) 0.04885
∆EDQ (adiab.) 0.03948

3 quartet (vert.) 3.84 -1076.620122
quartet 3.85 -1076.627585

BS Ms=1/2 (“vert.”) 0.83 -1076.627146
BS Ms=1/2 0.83 -1076.634478

∆EDQ (vertical) 0.01436
∆EDQ (adiab.) 0.00689

4 BS Ms=1/2 (“vert.”) 3 open-shell (Φ5) 1.77 -1229.110294
BS Ms=1/2 (“vert.”) 0.84 -1229.113133

BS Ms=1/2 0.83 -1229.119439
quartet (vert.) 3.85 -1229.118140

quartet 3.85 -1229.123853
∆EDQ (vertical) -0.01072
∆EDQ (adiab.) -0.00441

5 BS Ms=1/2 (“vert.”) 3 open-shells (Φ5) 1.78 -1460.229159
BS Ms=1/2 (“vert.”) 0.85 -1460.225720

BS Ms=1/2 0.85 -1460.231719
quartet (vert.) 3.86 -1460.232461

quartet 3.87 -1460.238495
∆EDQ (vertical) -0.00934
∆EDQ (adiab.) -0.00678

Table 2: Énergies UDFT pour les molécules cationiques pour les systèmes 1 à 5.
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(a) b1g

(b) au

(c) b2g

(d) b3u

Figure 3: Les quatre orbitales magnétiques du système 5 obtenues pour l’état quartet le plus
bas en énergie.
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(a) Case 1D

(b) Case 2D

Figure 4: Le système 4 est utilisé pour bâtir des structures 1D et 2D montrent le phénomène
de DE.
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Propriétés collectives de systèmes à double échange

La deuxième partie de cette thèse (chapitres 2 et 3) s’intéresse aux effets collectifs induits par

les mécanismes de double échange dans des châınes dopées en trous de spin S=1 : étude de

l’extension de l’ordre ferromagnétique induit par le trou dans le premier chapitre et étude de

la conduction électrique et de l’effet de l’application d’un champ magnétique dans le second.

Pour cela, un hamiltonien modèle adapté à reproduire la physique sous-jacente au phénomène

de double échange a été considéré. Chaque site possède deux orbitales, l’une fortement localisé

sur son site, l’autre interagissant fortement avec ses voisines les plus proches. Le système possède

autant d’électrons que d’orbitales moins un certain nombre égal au nombre de trous choisi. Les

déterminants présentant une double occupation d’une orbitale ainsi que ceux dans lesquels chaque

orbitale fortement localisé ne contient pas un électron n’ont pas été pris en compte explicitement.

Les interactions considérées sont le transfert électronique t et le couplage magnétique J impli-

quant les électrons des orbitales plus proches voisines interagissant fortement entre elles et le

couplage magnétique K entre électrons d’un même site. t a été pris comme référence des énergies

(de l’ordre de 1eV dans des matériaux à DE de type nickelates ou manganites) et une large

gamme de valeur de K et J a été étudiée de façon à couvrir l’ensemble des valeurs expérimentales

observées. K, principalement dû à l’intégrale d’échange direct sur chaque site est fortement fer-

romagnétique alors que J est d’intensité nettement plus faible et antiferromagnétique.

La principale originalité de ce travail est de considérer des valeurs réalistes de K (0.4|t| ≤ K ≤ |t|
alors qu’il était jusque-là considéré comme très grand( K ≥ 10|t|). Nous mettons en évidence l’im-

portance des configurations non-Hund (issues d’un singulet local) sur les états de basse énergie.

Les résultats ont été obtenus par une diagonalisation complète des matrices représentatives des

systèmes contenant un ou plusieurs trous dans des châınes contenant jusqu’à treize sites (vingt-

six orbitales).

Propriétés collectives I : extension d’un trou

Les oxydes de métaux de transition qui présentent une magnéto-résistance colossale voient leur

résistivité électrique diminuer d’un ordre de grandeur lorsque qu’ils sont placés dans champ

magnétique pour une température proche de leur température de Curie. Cet effet a été ob-

servé notamment dans le cas de manganites pour un dopage en trous de 1/3 et pour un champ

magnétique de 5T [6].

Le Y2−xCaxBaNiO5 se présente sous forme de châınes de spin S = 1 dopées [7, 8]. Des études de

spectroscopie optique ont montré l’existence d’un nuage de spins alignés ferromagnétiquement

(polaron) autour des trous [9]. Il a de plus été montré que la taille de ces polarons est affectée

par l’application d’une champ magnétique.
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Figure 5: Diagramme de phase pour le système 3 1h pour différentes valeurs de J et K.

Un des buts des travaux présentés dans cette partie est d’évaluer la taille du polaron dû à un

trou à partir du modèle présenté ci-dessus et pour des valeurs réalistes de t, J et K. Des châınes

de trois à sept sites dopées par un seul trou ont été considérées et l’énergie de tous les états issus

du modèle calculées. Nous avons ainsi pu déterminer la multiplicité de spin de l’état fondamental

pour chaque valeur de K et J et tracer les domaines correspondants, reproduisant ainsi le dia-

gramme de phase du système. Le cas d’un système à trois sites est donné dans la figure 5 à titre

d’exemple. Comme attendu, on voit que la valeur de la multiplicité de spin de l’état fondamental

augmente quand J diminue et/ou K augmente. Pour des valeurs réalistes de J et K (rectangle

orange) le système est dans son état de multiplicité maximale, les cinq électrons des trois sites

ont été alignés ferromagnétiquement par le trou.
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J(eV )
Nspins(Nsites)

number of spins aligned
min max

6.0·10−2 12·10−2 5(3)
3.0·10−2 8·10−2 7(4)
1.0·10−2 6·10−2 9(5)

nickelates and manganites

0.8 ≤ |t| ≤ 1.2
5 ≤ Nspins ≤ 70.07 ≤ J ≤ 0.14

0.07 ≤ K ≤ 0.10

Table 3: Cette table donne les gammes des valeurs de J pour laquelle un trou a aligné 3,4 et
5 sites. Les valeurs physiques des paramètres observés pour des nickelates et manganites sont
également données.

Pour des systèmes de plus grande taille, nous avons montré que la connaissance de la valeur de la

multiplicité de spin l’état fondamental n’est pas suffisante pour connâıtre l’extension du polaron.

Nous avons donc été amenés à définir et utiliser un nouvel opérateur que nous avons baptisé

Ŝbox qui permet d’estimer Sbox, valeur moyenne de Ŝ2 dans une sous-partie de la châıne de spins

contenant le trou. Cette valeur donne accès au nombre d’électrons dont le spin est aligné par un

trou. Sbox a été calculé pour tous les états de chaque châıne pour toutes les valeurs de J et K et

pour différentes tailles de bôıte. Ceci nous a permis de déterminer pour quelles valeurs de J et

K les spins de trois, quatre ou cinq sites sont alignés par un trou. Les résultats sont rassemblés

dans la table 3 en comparaison des valeurs observées dans les nickelates et manganites.
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(a) Sbox with three sites in the box for the 6 2h
system.
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Figure 6: Comparaison de la valeur de Sbox avec les coefficients de Clebsch-Gordan pour le
système avec deux trous (6 2h).

Afin de vérifier la pertinence de notre opérateur, nous avons comparé ses prédictions au poids
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de l’état de spin maximum (obtenu à partir des coefficients de Clebsch-Gordon) d’une bôıte de

trois sites dans des châınes de six sites contenant deux trous. Ces comparaisons sont présentées

sur la figure 6. Nous pouvons en conclure que Sbox fourni effectivement une estimation correct

de la contribution de l’état haut spin d’une bôıte à la fonction d’onde du système complet.

L’utilisation des coefficients de Clebsch-Gordon est cependant beaucoup plus compliquée, voire

impossible, pour déterminer le poids des états Smax de chaque bôıte dans le cas de plus de

trois trous. C’est pourquoi dans ces cas nous avons uniquement utilisé la valeur de Sbox pour

déterminer l’extension du polaron.

Dans la mesure où le mécanisme de double échange est issu de l’interaction du trou avec ses

proches voisins, il est attendu que la taille du système n’affecte pas dramatiquement la taille

du polaron. C’est ce que nous avons vérifié à partir de la valeur de Sbox obtenue pour des

systèmes de taille croissante. Cette analyse est reportée sur la figure 7 où l’on peut voir que

pour une valeur donnée de J et K, la valeur de Sbox (et donc l’extension du polaron) ne change

pas quantitativement et converge avec la taille du système étudié. Pour des valeurs réalistes de

J et K, un trou tend à aligner les spins de trois à quatre sites, c’est-à-dire en cinq et sept électrons.
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S
bo
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● Nbox=3,J=0.058

Figure 7: Sbox en fonction du nombre de sites Nsites pour des bôıtes
de trois, quatre et cinq sites. J = 0, 058 pour Nbox = 3, J = 0, 5
pour Nbox = 4 et J = 0, 033 pour Nbox = 5. La valeur de K a été
fixée à 0,8.

Nous avons enfin étudié l’interaction entre deux trous et évalué son impact sur l’extension du

polaron créé par chacun et avons montré que la taille du polaron n’est que peu affectée par la

présence d’un autre trou. De plus, pour des valeurs réalistes des paramètres, pour un système

de deux trous et six sites, on observe que si J est suffisamment grand, la multiplicité de spin de

l’état fondamental est 0, résultat de la compétition entre les mécanismes de double échange (qui

créent le polaron) et le superéchange (qui couple antiferromagnétiquement les polarons).
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Propriétés collectives II : délocalisation et champ magnétique

La délocalisation des électrons sur le système est mesurée à l’aide du TPS (Total Position

Spread) [10, 11, 12, 13, 14] proposé par Resta et al. (Eq : 1) qui tend à diverger pour des

conducteurs et tend vers zéro pour des isolants. Il permet donc une certaine quantification de la

délocalisation des électrons dans le système considéré. Dans le cas d’un trou unique, l’expression

simplifiée du TPS est donnée ci-dessous :

〈ψ| x̂2 |ψ〉 =
∑
k

(m− k − 1)
2
C2

k (1)

où m = n
2 si n est pair et m = n−1

2 si n est impair, k précise la position du trou dans le

déterminant considéré. Dans cette expression, une sommation sur le degré de liberté de spin a

été effectuée pour chaque déterminant.

Dans le cas de plusieurs trous, le TPS s’exprime de la sorte :

TPS =
∑
i

(xi,hole + xj,hole + · · · )2C2
i (2)

où xi,hole indique la distance à l’origine du ième trou et l’indice des coefficients Ci parcourt toutes

les positions des trous. C’est cette expression qui nous permet d’évaluer la délocalisation dans

des systèmes de taille variable et contenant un nombre différent de trous.

Ionique

+ -

Neutre

0 0

Figure 8: Représentation des déterminants neutres et ioniques.

Afin de comprendre les phénomènes physiques mesurés par le TPS, nous avons défini des déterminants

”neutres” et ”ioniques” (figure 8). Pour un système contenant n trous et divisé en n bôıtes, sont

neutres les déterminants dans lesquels chaque bôıte contient un et un seul trou et ioniques les

autres. Comme le montre la figure 9, le TPS des déterminants ioniques est toujours plus grand

ou égal à celui des déterminants neutres. On peut ainsi dire que le TPS permet d’estimer le poids
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Figure 9: Le TPS pour des 28 déterminants qui ne diffèrent que par la position des trous. Les
déterminants ioniques sont représentés en vert et les neutres en rouge.

des déterminants ioniques dans la fonction d’onde d’un état donné.

L’évolution du TPS avec J a été étudiée pour des systèmes comportant un, deux et trois trous

pour des valeurs fixées de K. Les principales informations que nous pouvons en tirer sont :

– globalement, le TPS décroit quand J augmente, en accord avec l’augmentation de la ten-

dance à l’alignement antiferromagnétique, et donc à la localisation du trou, qui caractérise

l’augmentation de J ;

– le minimum local observé dans les courbes de TPS peut être relié à la présence d’un

ordre dans les châınes, comme le montre la comparaison avec l’évolution de Sbox avec J. Il

correspond au cas où chaque trou a réussi à aligner ferromagnétiquement un certain nombre

de spins, la valeur de Sbox permettant de connâıtre ce nombre de spins. Le repérage de ce

minimum permet d’identifier la valeur de J pour laquelle un nombre déterminé de spins

ont été alignés par un trou ;

– un maximum est aussi observé pour des valeurs de J un peu plus grandes que celles corre-

spondant au minimum. Il s’agit du moment où le nombre de sites dont les spins sont alignés

ferromagnétiquement passe de deux à trois (ou de trois à quatre). L’issue de la compétition
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entre phénomènes de double échange et de superéchange est alors la plus indécise et c’est

là que le système est le moins ordonné.

Nous avons ensuite étudié pour un dopage de 1/3 l’effet sur le TPS de l’application d’un champ

magnétique, introduit sous forme d’un terme Zeeman scalaire et dont l’effet est de stabiliser un

état d’autant plus que sa valeur de Ms est grande. Sur la figure 10 est reportée l’évolution du TPS

avec le champ magnétique dans le cas d’un système de douze sites et quatre trous qui montre des

augmentations brutales pour un champ supérieur à 10T, quand les états de S = 8, S = 9 puis

S = 10 deviennent l’état fondamental. Ces états de spin élevé présentent donc une délocalisation

des trous nettement plus importante que les états de multiplicité de spin moindre.

S = 8

S = 9

S = 10

Figure 10: TPS du système 12 4h sous l’influence d’un champ magnétique.

Nous avons alors cherché à comprendre la différence de nature physique entre ces états qui ex-

plique ces différences de propriétés. Le spectre de basse énergie (en champ magnétique nul) a

été comparé à celui obtenu par un hamiltonien de Heisenberg appliqué à un châıne de spins

S=5/2 couplés entre eux par un terme Jeff obtenu à partir de l’énergie d’excitation entre l’état
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fondamental et le premier état excité. Les résultats sont présentés dans la table 4 dans le cas de

la châıne de six à douze sites et deux à quatre trous. On peut y voir que les états les plus bas

respectent les écarts prévus par le modèle de Heisenberg. Leur nature physique est donc dominée

par le couplage antiferromagnétique de polarons étendus sur trois sites. Cet ordre magnétique

explique que ces états soient ceux dont la mobilité électronique est la plus faible.

Nous avons confirmé cette explication en montrant que le rapport des formes ioniques sur les

formes neutres est nettement plus important dans les états de spin élevé (et ne suivant par les

écarts Heisenberg) que pour les états de spin plus faible.

Ainsi, l’application d’un champ magnétique qui stabilise d’autant plus un état que son spin est

élevé favorise les états à plus forte mobilité électronique expliquant l’augmentation de la conduc-

tivité observée.

6 2h 9 3h 12 4h
Spin(S) t-J-K Heisenberg S t-J-K Heisenberg S t-J-K Heisenberg

0 0.00 0.00 2.5 0.00 0.00 0 0.000 0.000
1 0.17 0.17 1.5 0.21 0.21 1 0.003 0.003
2 0.54 0.52 3.5 0.36 0.29 2 0.009 0.009
3 1.09 1.04 0.5 0.33 0.41 3 0.020 0.020

Jeff (meV ) 0.174 0.083 0.006

Table 4: Comparaison des spectres DE et Heisenberg en meV . Toutes les valeurs sont calculées
pour J = 0, 1eV et K = 0, 8eV .

Conclusion

Les principales conclusions que l’on peut tirer de ce travail sont rassemblées ci-dessous :

– les mécanismes de double échange peuvent être mis à profit pour la conception de molécules

purement organiques à haut spin ;

– dans le cas de châınes de sites magnétiques de spin S=1, nous avons déterminé le nombre

de sites dont les spins sont alignés ferromagnétiquement selon la valeur de K et J, aidant

ainsi l’identification de systèmes dont l’état fondamental pourrait être à haut spin lors de

leur dopage ;

– il est fondamental de considérer les états non-Hund qui jouent un rôle important dans la

physique de basse énergie des systèmes à double échange ;

– l’opérateur Sbox que nous avons proposé permet une étude précise de l’extension des po-

larons ;
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– la délocalisation électronique, au sens mesurée par TPS, est directement reliée à la présence

de formes ioniques (comme définis dans la figure 8) ;

– le minimum du TPS correspond à un état dominé par un ordre de type Heisenberg de po-

larons couplés antiferromagnetiquement alors que le maximum s’observe quand la compétition

entre l’ordre voulu par le DE et celui favorisé par le superéchange est la plus grande ;

– on démontre que le champ magnétique augmente la délocalisation présent dans la système.

Cette augmentation est due à la différence de nature physique des états à bas spin et à

haut spin. Les états bas spin suivent une physique de type Heisenberg et par conséquence

les trous sont localisés. Au contraire les états à haut spin suivent une physique de type

Hückel et présentent donc un plus grand poids sur les déterminants de type ”ionique” qui

apportent une plus grande délocalisation.

Une extension intéressante de ce travail serait de travailler avec des système 2D. Cependant la

taille des matrices représentatives de ces systèmes rend extrêmement coûteux une telle étude par

les méthodes de diagonalisation exacte utilisées dans cette thèse.
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magnéto-électriques intéressantes liées au phénomène de double échange. 
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afin d’en comprendre l’origine, à la fois microscopique, par la détermination 
des interactions dominantes dans des composés moléculaires à deux centres 
magnétiques et macroscopique, par l’étude des effets collectifs dans des 
systèmes de plus grande taille. La première partie consiste en une étude par 
des méthodes ab initio de séries de systèmes organiques conjugués qui 
présentent un phénomène de double échange. Les énergies et fonctions d’onde du 
bas du spectre sont utilisées pour extraire les interactions du modèle de 
double échange. Par cette analyse nous montrons qu’il existe des systèmes 
organiques conjugués susceptibles de posséder des propriétés 
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fondamental. Enfin nous montrons comment le champ magnétique peut provoquer 
un 
changement drastique de la délocalisation électronique et par conséquent de la 
conductivité en fonction du dopage. 
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The materials like nickelates and manganites, show extraordinary 
magneto-electric properties originating from the double exchange (DE) 
phenomenon. In this work we try to understand the origin of these properties, 
not only at the microscopic level, by studying systems with two magnetic 
centers, but also at the macroscopic level, by studying collective effects in 
systems with varying sizes. The first part consists of an {it ab initio} study 
of a series of five conjugated organic systems, with two magnetic centers each, 
which are susceptible to exhibit DE phenomenon. The low lying eigenstates are 
used to extract the parameters of the DE Hamiltonian and substantiate the 
model. Thus, we show that there exist conjugated organic systems which could, 
in principle, possess magneto-electric properties similar to those observed in 
materials formed of transition metal oxides. The second part consists of 
a detailed study of the collective properties of the double exchange 
Hamiltonian in one dimensional systems of variable size. One dimensional chains 
made up of sites with two orbitals each and one or two electrons per site are 
studied with exact diagonalization methods. Novel tools have been developed to 
quantify the size of the ferromagnetic polaron and the amount of electron 
delocalization in the resulting ground state. Finally, we show how a magnetic 
field could bring about a drastic change in the electron delocalization in the 
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