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“Foresee is to projecting into the future what has been
perceived in the past"

Henri Bergson

1
Introduction

From air carrier point of view, air transportation generates a turnover really important,
but produces thin net margins. Thus the profitability is approaching zero which leads to
a highly competitive market where each Euro saved represents a little gain. Air-traffic
growth combined with high security standards is stressing out the current system of Air
Traffic Management (ATM). For these reasons, they launched together two vast research
programs. One in Europe, named Single European Sky ATM Research (SESAR) and one
in the United-States called Next Generation Air Transportation System (NextGen). Both
programs aim to use the most recent techniques to optimize and automate the air-traffic
management. This thesis work is led in that general framework.

The use of aircraft trajectories models to weight ensemble weather forecasts according
to observations delivered by air-traffic control radars and estimation techniques is an issue
at the interplay between three scientific domains. It is based on solid mechanics to study
and model aircraft systems, on atmospheric sciences to use and understand ensemble
weather forecasts and on applied mathematics to rigorously pose the estimation problem
and propose consistent algorithm to solve it. In this thesis, we focus on demonstrating the
contribution of estimation techniques to solve current issues on aircraft trajectory predic-
tion. Particularly, we put our interest on reducing the trajectory prediction uncertainty
induced by weather forecast errors.
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1.1 Key challenges

1.1.1 Air Traffic Control Context

Air transportation is a core component of the modern world and actively participates to
the globalization process. Most of locations on the Earth can be reached by less than one
day of journey. People and goods can travel long distances in a really short period of time
which creates and multiplies opportunities in commerce, science and leisure. All these
new possibilities impact the global economy. In 2001, aviation accounted for e220 billion
of added value, and 4 million jobs in Europe, as it has been highlighted in Argüelles et al.
(2001). These figures include the output of air carriers, airports, aerospace manufacturers
and air navigation service providers.

ATM aims to organize the air-traffic flow throughout the world to insure security and
efficiency. Its first goal being security, ATM wants to ensure that accidents remain at low
levels in spite of the increasing of air-traffic. In practical terms, this implies for aircraft
to avoid congested areas, hazardous weather conditions and other aircraft. Its second
purpose is to increase the airspace capacity without compromising safety. These objectives
have to be fulfilled in the most cost-effective way to minimize the cost per flight, in terms
of fuel consumption, delays and administration costs. Finally ATM needs to operate
under certain degree of predictability and flexibility, so that changes and interventions
can be made.

To meet the security demands while facing the air-traffic growth, ATM built air trans-
portation rules around a rigid structure made of way-points and airways. To give an
idea of the routing structure we give an illustration on Figure 1.1 of airways above Flight
Level (FL) 195 which are represented by blue lines. Nevertheless, most of these rules
were established decades ago, when aircraft had to follow strict paths over radar beacon
in order to enhance radar monitoring and assure air-traffic separation.

In order to facilitate the air-traffic control, this system is not centralized and admin-
istrated by different operators. This has led to the airspace fragmentation. The largest
regular division of airspace is the Flight Information Region (FIR). Any portion of the
atmosphere belongs to some specific FIR, even those above oceans. On Figure 1.2, the
European air-space fragmentation is illustrated. Then, depending on the altitude, if the
aircraft is landing or taking off, different Air-Traffic Control Centers (ATCC) are respon-
sible of the security. These units are the places where air-traffic controllers operate. They
have different tasks in charge: coordinating aircraft movements, ensuring separation be-
tween them, directing them between take-off, landing, and also in case of severe weather
conditions, and finally guaranteeing smooth air-traffic flow with minimal delays.

According to Eurocontrol, around 10 million flights take place inside the European
airspace every year. Developing economies in Asia, Africa and South America have already
a significant impact in the air-traffic growth. However, the increase in air-traffic is far
from being linear in time and uniform in space as it is related to the fuel prices and the
location of ground transportation infrastructures.

2



Figure 1.1: Airways (represented by blue lines) and way-points (intersecting points) over
France for the upper flight information region (above FL195). Credits: SIA

Figure 1.2: FIR over Europe depicted by blue lines. Credits: "Eurocontrol FIR and UIR
in the lower airspace - 12 March 2009" by Eurocontrol
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The Air Traffic Control (ATC) system has operated reliably in its present form for
many years. However, the increasing demand for air travel is stressing it to its limits,
Schaufele (2013); Eurocontrol (2013); ICAO (2013). The increase could lead to both
safety and performance degradation in the near future, and place an additional burden
on the already overloaded human operators. One of the most promising propositions to
solve this problem is increasing the level of automation. It is believed that by doing
this, the efficiency of ATC can be improved and the tasks of human operators simplified,
Ballin et al. (2002); Hu et al. (2002); Weber et al. (2007); Wollkind et al. (2004); Yang
and Kuchar (1997). A number of different approaches to increase the level of automation
in the ATC process have been proposed and one of them consists in the automation of
separation insurance. That is rely on Conflict Detection and Resolution (CDR) strategies.
They consist in predicting the trajectories of aircraft, analysing them to decide whether
there is a possible loss of separation and if there is issue advisories on how to resolve the
problem.

Many more functionalities of the Decision Support Tool (DST) directly rely on an
accurate Trajectory Prediction (TP): controller posting, workload estimation, arrival se-
quencing, to name the most important ones. Therefore accurate TP is the core component
of automated systems in ATC.

However, TP is also the weakness of the current automation ATC systems and a major
issue in the ATC research community, even more since the shift toward 4D trajectories
(SESAR EU (2007) and NextGen project FAA (2007)) has been made.

Indeed, large TP uncertainty forces ATC to use larger separations between aircraft,
thus reducing the total number of aircraft a given sector can handle. Moreover fear of
loss separation can decrease the fuel efficiency or affect the time of arrival of the aircraft
involved as manoeuvres used are based on either changes in direction, velocity or altitude.

The challenge is to reduce the uncertainty of the aircraft states prediction on a tem-
poral horizon of at least 20 minutes, which is the normal temporal horizon for predicting
trajectories and detecting conflicts. By doing this, TP accuracy will be enhanced. This
improvement will help ATC to handle the increasing air-traffic demand. To achieve this,
the information of the current state of the aircraft and its environment shall be reliable.

As a matter of fact, the Flight Management System (FMS), core component of modern
aircraft, has access to the measurements from the aircraft’s sensor and creates its own TP,
which is updated frequently. Therefore we should expect that is the most accurate one.
Thanks to Data Link, it should be possible for the ground control to receive data from
this on-board TP. Unfortunately, this promising technology is not implemented in every
aircraft. Moreover, a DST should efficiently generate scenarios and, today, it is unrealistic
to receive many trajectories from on-board systems and merge all the trajectories from
all aircraft in real time. Therefore the ground TP is still an essential component of the
future ATC system and we decide to adopt in this work the ground point of view to
predict aircraft trajectories.
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1.1.2 Trajectory prediction and uncertainties

To compute aircraft trajectories in advance, a TP tool needs different information. Some
concern the flight intent, others are directly related to the aircraft and finally some are
environmental parameters. A trajectory can roughly be separated in three phases: climb,
cruise, and descent. Each phase has its own particularities. In this thesis, we focus our
attention on trajectory prediction during cruise phase as it is the phase where the most
of fuel is burned and the most of time is spent.

Most influencing environmental parameters during cruise phase are wind and temper-
ature. For example, before departure, weather forecasts allow air-carriers and pilot to
choose the optimal route in terms of fuel consumption and flight time, to estimate the
time of arrival and the needed fuel quantity to make the journey. During the flight, the
knowledge of these quantities allow the pilot to follow the scheduled route and adjust
the air-speed. In order to understand the wind influence, one has to keep in mind that
wind is defined as the air-masses movement. As the aircraft is flying inside a moving air-
mass, from the ground point of view, its speed depends on its proper speed and the wind
speed. That explains why going from London to New-York takes more time than doing
the way back. Indeed the North Atlantic Jet-Stream flows in direction of Europe with
favourable high winds for aircraft travelling that direction. Furthermore, aircraft cruise
speed is given in Mach number which corresponds to the ratio between the airspeed of
the aircraft and the sound celerity in the air mass. However the sound celerity depends
on the temperature as it influences the density of the air mass. Thus, temperature is also
a crucial environmental parameter for trajectory prediction.

An important source of uncertainty in aircraft trajectory prediction concerns the me-
teorological parameters and more particularly the wind forecast error. In this work, we
will concentrate on the trajectory prediction error induced by wind forecast error. Indeed
as it was proved in Green and Vivona (1996); Jackson et al. (1999); Mondoloni et al.
(2002); Mondoloni (2006a,b); Chaloulos and Lygeros (2007), a part of the along track
error made to predict the aircraft trajectories is due to the wind forecast error. This can
be explained by two facts: the current FMS design and the way weather forecasts are
provided to ATC, air-carriers and pilot. FMS is a core-component of modern aircraft.
They are made to give control sequences to the auto-pilot in a way that every aircraft
follow its flight plan (in space) in an optimal way, but does not propose controls to com-
pensate along track deviations. Then, it participates to propagate errors from weather
forecast to trajectory prediction errors. In addition, weather forecasts used in aeronautics
have been normalized by the International Civil Aviation Organization (ICAO), Annex
3: Meteorological Services for International Air Navigation. This text provides standards
and recommended practices covering the following key areas: Meteorological Observing,
Meteorological Forecasts, Meteorological Warnings to aircraft, Aircraft Meteorological re-
ports, Communication and dissemination of Meteorological information. It follows from
this ICAO regulation, that weather forecasts are provided around the globe by two mete-
orological centres. The weather forecast grids, established decades ago, are currently old-
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fashioned compared to the actual and current meteorological services capabilities. They
do not reflect neither the numerical weather forecast state of the art. Pull it together,
this turns out to deteriorate the trajectory prediction accuracy.

To reduce trajectory prediction uncertainties due to wind forecast errors, several so-
lutions were proposed. In Delahaye et al. (2003), wind field estimation is performed
using Extended Kalman Filter (EKF) and a linearised aircraft dynamic model. Delahaye
demonstrates for constant wind and a number of turns (with known turn rate) the ac-
curacy of his method. Another solution, proposed and studied in Lymperopoulos et al.
(2006); Lymperopoulos and Lygeros (2008a,b, 2009, 2010), consists in using statistical
errors on weather forecast to get statistical errors on trajectory predictions. They formu-
late this problem as a high dimensional state estimation problem and use particle filtering
method to reduce TP inaccuracies related to wind forecast errors. Their work was in-
novative as the particle filter which was developed allow them to handle the non-linear
aircraft dynamics, and the results obtained demonstrate the capacity of such methods to
solve the TP inaccuracy issue. The use of particle filters in air-traffic applications traces
back to the tracking issue of flying objects, Blom and Bloem (2003); Gustafsson et al.
(2002); Karlsson (2002); Lin et al. (2002); Nordlund (2002); Blom and Bloem (2005);
Schön et al. (2005); Vermaak et al. (2005). Indeed these methods provide a convenient,
effective and powerful mean to estimate signals whose dynamics are non-linear with non-
Gaussian noises. However, in Lymperopoulos and Lygeros (2008a), the wind forecast
error is modelled as an isotropic random field. Then the wind field error depends on
the distance between two points but does not depend on the actual location neither on
the meteorological phenomenon being forecast. Nevertheless, as it has been highlighted
in Baehr and Huet (2011), weather forecasting error depends on the location and more
particularly on the meteorological phenomenon being forecast.

In this work, we aim to reduce the hypothesis formulated about the random field using
ensemble weather forecasts. Indeed ensemble weather forecasts give several atmospheric
evolution scenarios which reflect the lack of knowledge about the initial state of the
atmosphere. These scenarios enable to explore the uncertainties about the state of the
atmosphere, Epstein (1969). Then using these atmospheric scenarios as input parameters
for the trajectory predictors, we can evaluate the performance of each weather forecast
member regarding the performance of the trajectory predictor with respect to the radar
observations. Finally, we can give a score to each member of the ensemble weather forecast
reflecting its performance. The basic idea lying behind these considerations is that aircraft
experience the real wind field and that radar measurements encapsulate information about
the wind aircraft experienced: aircraft are used as local moving sensor of the wind field.

From the ground point of view, the lack of knowledge about aircraft parameters is
another uncertainty source. By aircraft parameters, one should understand aerodynamic
parameters coming into play in the flight dynamic equations developed in Chapter 3.
Their unavailability can have a negative effect on the trajectory prediction accuracy.
Then, we propose to consider all the unavailable coefficients to air traffic controllers as
random coefficients.

6



All these considerations, detailed in Chapter 3, turn the aircraft evolution processes
out to be a random process influenced by a random environment with possibly unknown
fixed parameters. Thus, to improve the accuracy of the trajectory prediction using radar
measurements of several aircraft, we propose to formulate the high dimensional state
estimation problem in distribution space. From there, we propose three novel particle
filtering algorithms, named Labeled island particle filter, Labeled Island particle MCMC
and patchwork labeled island particle filter, to solve it. The first one can handle indepen-
dent aircraft from which local wind field estimations can be obtain or can fuse all aircraft
measurements to give an overall estimation of homogeneous wind field. The second one
tackles the triple estimation problem concerning random processes evolving in a random
media with unknown fixed parameters. The third algorithm is able to estimate random
wind field decomposed in homogeneous domains using aircraft trajectory processes evolv-
ing inside them. The key innovation of the methods developed here is that no specific
hypothesis is needed on the wind field error underlying structure.

The performance of each algorithm is illustrated through simulation based studies.
They treat the case of multiple aircraft in cruise phase, with known airspeed and aerody-
namics parameters. Even if this case is utopia for ATC, as they do not have access to these
parameters on the ground, these numerical experiments aim to determine whether infor-
mation contained inside aircraft trajectories is sufficient to weight the ensemble weather
forecast and reduce TP inaccuracies. Results obtained using ground radar information
only, are promising. Proposed algorithms, each for its proper use, are able to retrieve
the wind member closer to the real wind conditions. Considering the weather condi-
tions which took place on the 22nd of May, the wind field can be decomposed in two
homogeneous sub-domains. On Figure 1.3 we represent the time evolution of the wind
members weight obtained using the patchwork labeled island particle filter for one sub-
domain. These weights represent the likelihood of the member of the ensemble weather
forecast with respect to the air-traffic observations on the sub-domain considered. As one
may observe at the beginning of the experiment all members have the same weight. As
times goes some members of the ensemble weather forecast have a weight less and less
important and others have a higher and higher weight. That means that regarding the
air-traffic prediction performance made using the ensemble weather forecast, some mem-
bers are less efficient than others comparing with the air-traffic observations, particularly
member 31,26 and 19.

1.2 State estimation for random processes evolving
in a random media

State estimation for random processes using their related observation process can be
formulated as the estimation of the conditional expectation of the process given its ob-
servations. It follows that, for linear systems with Gaussian noises, the conditional ex-
pectation can be optimally estimated using Kalman filters, Kalman (1960); Kalman and
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Weight evolution of wind members

Figure 1.3: Time evolution of the ensemble weather forecasts weights thanks to the patch-
work labeled island particle filter for the sub-domain 2. Time is represented on the x-
coordinate. On the y-coordinate, the weight value is represented. At the beginning of the
experiment, all the members of the ensemble weather forecasts are equidistributed, then
some scenarios have a higher weight as time goes

Bucy (1961), in the maximum likelihood sense. Except this specific case, the optimal
estimate can be approximated using particle simulation methods. These methods also
known as Sequential Monte-Carlo (SMC) methods have been first applied to state space
models in the series of work: Handschin and Mayne (1969); Handschin (1970); Akashi and
Kumamoto (1977). From there, several algorithms to enhance the estimation obtained
by particle filters were proposed, for example in Doucet (1998). Doucet proposes in his
work a solution to state estimation using sequential importance sampling with resam-
pling. Such filters also named interacting particle filters where studied for the first time
in Del Moral (1996a) and applied in various domains, see Doucet and Johansen (2009)
for a complete survey. Interacting particle filters are briefly presented in Chapter 2.

However, as we said previously, aircraft trajectories can be seen as a stochastic process
influenced by a random field. Thus, the estimation question turns out to be a double
estimation issue where the evolution kernel of the estimated random process depends
on a random quantity needed to be estimated. Then classical particle filters, such as
interacting particle filters are not sufficient. To solve the combined estimation problem,
when the random process model shows special substructure such as in a linear stochastic
state space model, the idea used consists in taking advantages of the underlying linearity
structure using Rao-Blackwellization techniques, as in Hendeby et al. (2010); Saha and
Gustafsson (2012). Such filters were introduced as mixture Kalman-filters in Chen and
Liu (2000), Rao-Blackwellized particle filters in Doucet et al. (2000) and as Interacting
Kalman Filters (IKF) in Del Moral (2004).
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For the application case we are concerned with, aircraft dynamics are highly non-
linear. Then these algorithms cannot be used without using linearisation techniques. In
Özkan et al. (2013); Lundquist et al. (2014), this difficulty is overcome using Marginalized
particle filter, for dynamical noises in the exponential family. Another solution proposed
in Del Moral (2004) is based on interacting particle systems, taking into account both
randomness sources. This idealized algorithm would be a SMC on the couple defined by
the environment and the conditional law of the process evolving in this environment given
the history of the environment. Nonetheless the computation of the previous conditional
law is not tractable. We propose to use in this work interacting systems of interacting
particles as they have been introduced in Johansen et al. (2012). There are two-level
interacting particle systems. The top level is made of an environment proposition and
an empirical measure approximating the law of the process evolving in the proposed
environment. The second level of interacting particle gives the empirical measure. The
derived algorithm is named by us as Labeled islands particle filters in reference to the
work of Vergé in Vergé et al. (2013). To qualify the ensuing estimator, we study the Lp

bounds error and give a first convergence result.

As we said, some aircraft parameters can be considered as fixed parameters. Then
fixed parameter estimation is added to the double state estimation problem. This issue
can be cast into the more general framework of joint parameter and state estimation.
To overcome this question, different methods were recently developed, see for example
Poyiadjis et al. (2005); Andrieu et al. (2010); Chopin et al. (2013); Crisan and Miguez
(2013). In Andrieu et al. (2010), the idea used to estimate both state and parameter
was to use the empirical measure obtained through particle filters inside a Markov Chain
Monte-Carlo (MCMC) method. Then we propose to adapt the method proposed by
Andrieu to the case of random process evolving in a random media. This gives rise to the
labeled islands particle MCMC method.

Another issue which is at stake when one wants to estimate a random field using ran-
dom process observations, is the punctuality of the random process from which we want
to retrieve information on the higher dimension random field. The estimation of the ran-
dom field is done along the random path of the random process, then the random process
has to be followed. This question was addressed in Baehr (2009, 2010) using acquisition
processes to estimate turbulence from 3D local wind measurements. Nevertheless, it is
believed that by fusing several observations from different aircraft the wind field error
estimation is enhanced. To fuse several observations made at different locations, the wind
field error has to be homogeneous. However as we have already mention, the wind forecast
error depends on the phenomenon being forecast and so is not homogeneous. Thus we
extend the work made in Baehr to random field decomposed in homogeneous domains and
propose an algorithm which can deal with several random processes evolving in a random
environment decomposed in homogeneous sub-domains. This algorithm is named by us
as Patchwork Labeled Island Particle filters.
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1.3 Document organization

To detail what we have briefly presented in the introduction, the thesis dissertation is
divided into three chapters. In Chapter 2, we develop the stochastic algorithms able
to solve the estimation problem we are concerned with: estimation of random punctual
processes evolving in a random medium decomposed in homogeneous sub-domains. To
this end, we briefly present in Section 2.1 interacting particle system for the sake of
state estimation. Then we introduce in Section 2.2, the Labeled island particle model
convenient to deal with random process evolving in a random environment. Theoretical
results to qualify the ensuing estimator are also detailed. In Section 2.4 we intend to build
a basic model which can deal with punctual random processes evolving in a random field
decomposed in homogeneous sub-domains. The subsequent algorithm is also detailed.
The trajectory prediction tool we develop and use for numerical experiments is presented
in Chapter 3. This chapter starts with the theoretical foundation of the aircraft dynamic
equations in Section 3.1 and ends with the stochastic version of the state equations in
Section 3.2. The deterministic model is transformed into a stochastic one in order to take
into account uncertainties about atmosphere, aircraft parameters and initial conditions.
Chapter 4 concerns the numerical part of the thesis work and gives illustrations for the
different algorithms we have developed. It ends with the first estimation results obtained
on a realistic simulated air-traffic and real weather ensemble forecasts. The conclusion
of this thesis dissertation, Chapter 5, gives the perspectives of this pioneering work for
ATM.
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“Define me first what you mean by God and I will tell you
if I believe”

Albert Einstein

2
Particle filters for random processes evolving

in a random environment

As we mention in the introduction, we want to reduce trajectory prediction inaccuracies
taking into account all the uncertainties sources. To this end, we intend to estimate
both aircraft parameters, e.g mass, but also the atmospheric parameters which influence
the aircraft dynamics based on observations of the aircraft process. This question can be
formulated as a filtering problem where the signal is evolving in a random media, the signal
being the aircraft trajectory and the random media the atmosphere. Estimating a process
whose evolution is influenced by a random media is an issue which is at stake in different
areas. For example, in the fields of economy, when one wants to estimate the option price
with an unknown volatility (see the model developed in Cont (2006)). Several area of
applied probabilities tries to deal with random motions in random media. One of them
is dedicated to the study of Random Walk in Random Environment, see Zeitouni (2004);
Révész (2005); Bogachev (2007) for a broad survey in the domain, and try to establish
under which conditions on the environment the process shows specific behaviour such as
transience and recurrence. However, in this area, the random processes considered take
always their value in discrete state space, e.g Z. In our case the state space is continuous
as aircraft does not evolve on a grid. Another domain where random environment are
considered is when one want to study wave propagation in an unknown material. In this
topic of applied mathematics, the main goal is to infer the medium properties from the
propagation of waves, see Fouque et al. (2007) and reference therein for an introduction
in the domain. As the aim of our study is to estimate the environment where aircraft are
evolving, the question cannot be formulated as a wave equation in a random media. We
choose to use Hidden Markov Model (HMM) or state space model to model our double
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estimation question. Indeed, they offer a convenient mean to study stochastic dynamical
systems and appear to be the most adapted framework for estimation questions.

In this chapter, we begin with the general non linear filtering theory and the particle
approximation of the filtering equations. Then we detail filtering techniques well adapted
for stochastic processes evolving in a random environment. Various filtering techniques
are presented but only in their discrete time form. The interested reader to continuous
filtering problems can refer to Mitter (1982).

2.1 Non-linear filtering techniques

Filtering problems consist in computing conditional distributions of a state signal given a
sequence of observations. Kalman filter, also known as linear quadratic estimator (LQE),
is an algorithm that uses a series of measurements observed over time, containing noise
(random variations) and other inaccuracies, and produces estimates of unknown variables
that tend to be more precise than those based on a single measurement alone. More
formally, the Kalman filter operates recursively on streams of noisy input data to produce
a statistically optimal estimate of the underlying system state. The filter is named after
Rudolf (Rudy) E. Kálmán, one of the first developers of this theory. When the dynamics
of the signal is linear and the observational noise Gaussian, the optimal solution to state
estimation is given by the previous filter, Kalman (1960); Kalman and Bucy (1961). When
the process takes discrete values, the estimation can be done using HMM filters, Baum and
Petrie (1966); Baum et al. (1970). However when the dynamics are non-linear, as it is for
aircraft dynamics (see Chapter 3), and the state space continuous another method should
be used. Over the last two decades particle simulation has been widely used to solve many
state estimation problems. These methods, also known as SMC methods have been first
applied to state space models by Handschin and Mayne (1969); Handschin (1970) and
Akashi and Kumamoto (1977). During the 1990s, several particle filters algorithm which
are belonging to SMC methods were proposed. Gordon et al. proposed in Gordon et al.
(1993) a new algorithm given by bootstrap filters. Independently, Kitagawa proposed in
Kitagawa (1996) another solution named Monte Carlo filters. In the meantime Doucet
et al. in Doucet (1998) gave a solution through sequential importance sampling with
resampling (SISR). Such filters also known as interacting particle filters have been first
studied by Del Moral in Del Moral (1996a) and applied in various domains, see Doucet
et al. (2001); Cappe et al. (2007); Doucet and Johansen (2009) for a complete survey. Del
Moral presents in Del Moral (2004) a more general framework in which filtering problems
can be cast but also convergence results of the particle approximation. In this section
we recall the Feynman-Kac formulation of the estimation problem, as well as its particle
approximation.
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2.1.1 Notations

First, let us define some notations used in the rest of the document. For (m,n) ∈ Z2 such
that m ≤ n we denote Jm,nK , {m,m + 1, . . . , n} ⊂ Z. We will use the vector notation
am:n , (am, . . . , an). Moreover, R+ and R∗+ denote the sets of non-negative and positive
real numbers respectively, and N∗ the set of positive integers.

N(µ,Σ) denotes a multivariate Gaussian distribution with mean µ and covariance
matrix Σ.

In the sequel we assume that all random variables are defined on a common proba-
bility space (Ω,F ,P). For some given measurable space (E, E) we denote by M(E) and
P(E) ⊂ M(E) the set of measures and probability measures on (E, E), respectively. In
addition, we denote by F(E) the set of real-valued measurable functions on (E, E) and by
Bb(E) ⊂ F(E) the set of bounded such functions for the uniform norm. For any ν ∈ M(E)
and f ∈ F(E) we denote by νf , ∫ f(x) ν(dx) the Lebesgue integral of f under ν whenever
this is well-defined. Now, given also some other (Y,Y) measurable space, an unnormalized
transition kernel K from (E, E) to (Y,Y) is a mapping from E × Y to R such that for
all A ∈ Y , x 7→ K(x,A) is a non-negative measurable function on E and for all x ∈ E,
A 7→ K(x,A) is a measure on (Y,Y). If K(x,Y) = 1 for all x ∈ E, then K is called
a transition kernel (or simply a kernel). The kernel K induces two integral operators,
one acting on functions and the other on measures. More specifically, let f ∈ F(E) and
ν ∈ M(E) and define the measurable function

Kf : E 3 x 7→
∫
f(y)K(x, dy)

and the measure
νK : Y 3 A 7→

∫
K(x,A) ν(dx)

whenever these quantities are well-defined. Finally, letK be as above and let L be another
unnormalized transition kernels from (Y,Y) to some third measurable space (Z,Z); then
we define the product of K and L as the unnormalized transition kernel

KL : E×Z 3 (x,A) 7→
∫
K(x, dy)L(y,A)

from (E, E) to (Z,Z) whenever this is well-defined.

2.1.2 Non-linear filtering problems

Suppose that at every time step, the state of the Markov chain Xn ∈ En is partially
observed by the process Yn ∈ Fn, where Xn is a Markov process with transition kernel
Mn and initial distribution η0 in a measurable space (E, E). The observation process Yn is
defined on (Fn,Fn) and we suppose that it is related to the process by the observation func-
tion hn such that Yn = hn(Xn, Vn) where Vn is a Markovian observation noise distributed
according to the probability measure qn. The filtering problem consists in computing the
conditional distributions of (X0, . . . , Xn) given the observations (Y0, . . . , Yn).
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Suppose that for every time step n, the laws hn(Xn, Vn) and Vn are absolutely contin-
uous and gn(xn, .) is the corresponding density, then we get the following formula for the
likelihood function:

P(Yn ∈ dyn|Xn = xn) = gn(xn, yn)qn(dyn)

From which, we deduce the updating filter:

P((X0, . . . , Xn) ∈ d(x0, . . . , xn)|Y0 = y0, . . . , Yn = yn) =

1
Ẑn


n∏
p=0

gp(xn, yn)

P((X0, . . . , Xn) ∈ d(x0, . . . , xn)) (2.1)

where the normalizing constant Ẑn is given by:

Ẑn ,
∫ 

n∏
p=0

gp(xn, yn)

P((X0, . . . , Xn) ∈ d(x0, . . . , xn)).

Using the fact thatXn is a Markov chain of transition kernelMn and initial distribution
η0, we have that:

P((X0, . . . , Xn) ∈ d(x0, . . . , xn)) = η0(dx0)M1(x0, dx1) . . .Mn(xn−1, dxn)

Then (2.1) can be rewritten as follows:

P ((X0, . . . , Xn) ∈ d(x0, . . . , xn)|Y0 = y0, . . . , Yn = yn) =

1
Ẑn


n∏
p=0

gp(xn, yn)

 η0(dx0)M1(x0, dx1) . . .Mn(xn−1, dxn) (2.2)

We can also define the prediction filter which allows the prediction of the future state
using the previous observations:

P ((X0, . . . , Xn+1) ∈ d(x0, . . . , xn+1)|Y0 = y0, . . . , Yn = yn) =

1
Zn+1


n∏
p=0

gp(xn, yn)

 η0(dx0)M1(x0, dx1) . . .Mn+1(xn, dxn+1) (2.3)

where Zn+1 ,
∫ 

n∏
p=0

gp(xn, yn)

P((X0, . . . , Xn+1) ∈ d(x0, . . . , xn+1))

The measure defined by (2.2) and (2.3), corresponds to Feynman-Kac path measures
denoted respectively by Q̂n and Qn+1 (Del Moral (2004)).

Let fix the observation sequence Y0 = y0, . . . , Yn = yn and set Gn(xn) , gn(xn, yn).
Define the nth-time marginals ηn and η̂n of the measures Qn and Q̂n for any bounded
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measurable functions fn ∈ Bb(En) by:

ηn(fn) = γn(fn)/γn(1) (2.4)

with γn(fn) , Eη0

[
fn(Xn)

n−1∏
p=0

Gp(Xp)
]
and

η̂n(fn) = γ̂n(fn)/γ̂n(1) (2.5)

where γ̂n(fn) , Eη0

[
fn(Xn)

n∏
p=0

Gp(Xp)
]
.

For every time step n ≥ 0 and fn ∈ Bb(En), (2.4) and (2.5) are related by the following
relation:

η̂n(fn) = ηn(Gnfn)/ηn(Gn) (2.6)

and
ηn+1 = η̂nMn+1 (2.7)

Equation (2.6) can be written as a Boltzmann-Gibbs transformation, Ψn, associated
to the potential function Gn, where the Boltzmann Gibbs measure, Ψn(η) is defined for
any η ∈ P(En) by:

Ψn(η)(dxn) = 1
η(Gn)Gn(xn)η(dxn) (2.8)

Using (2.8), we define the mapping Φn from P(En−1) to P(En) for any η ∈ P(En−1) by:

Φn(η) , Ψn−1(η)Mn (2.9)

Then we resume the updating-prediction filtering recursions by the following diagram:

ηn
updating−−−−−→ η̂n = Ψn(ηn) prediction−−−−−→ ηn+1 = η̂nMn+1 (2.10)

These processes cannot be computed except when the processes involved are linear
with Gaussian dynamic and observation noises, for which an explicit solution was given
by Kalman and Bucy, Kalman (1960); Kalman and Bucy (1961). Besides, Del Moral gives
in Del Moral (1996b) a solution to approximate theses quantities based upon interacting
particles for more general cases.

2.1.3 Particle filters

Particle filters are particle approximations of the conditional distributions ηn and η̂n

defined by (2.4) and (2.5) respectively. In order to present the particle approximation
based on Feynman-Kac flow measures, we introduce McKean models which are special
cases of Feynman-Kac dynamic well adapted to deal with filtering problem. As we have
seen, Feynman-Kac measures evolve sequentially in two steps, this recursion can be written
in the following form:

ηn+1 = Φn(ηn) (2.11)
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This last equation (2.11) can be rewritten:

ηn+1 = ηnKn+1,ηn (2.12)

where Kn+1,ηn is a non unique collection of Markov kernels from En to En+1 which satisfy
the compatibility condition, ηKn+1,η = Φn(η), with Φn defined by (2.9). The kernelKn+1,η

is called the McKean interpretation of the flow η, it is defined by:

Kn+1,η = Sn,ηMn+1

The McKean interpretation, Kn+1,η, is far from being unique and the kernel Sn,η can be
defined in several ways. For example, the compatibility condition is satisfied by both
following kernels:

• Sn,η(xn, .) = Ψn(η)(.)

• Sn,η(xn, .) = Gn(xn)δxn(.) + (1−Gn(xn))Ψn(η)(.)

Once one has chosen the selection kernel Sn,η,(2.10) can be rewritten in the following
form:

ηn
updating−−−−−→ η̂n = ηnSn,ηn

prediction−−−−−→ ηn+1 = η̂nMn+1 (2.13)

Del Moral et al. show in Del Moral et al. (2001) that the error variance is reduced and
that the algorithm is more stable using the second kernel. Other kernels exist giving
more precise estimation, however the computation cost being higher we choose to use the
second kernel for the rest of the study.

When the likelihood function Gn is strictly positive and bounded by one, the second
selection kernel can be interpreted as a random walk where the walker, the particle, re-
mains in the same site with probability Gn, otherwise it jumps to a new location according
to the Boltzmann Gibbs distribution Ψn(η). Then the selection kernel Sn,η favours re-
gions with hight potential. For filtering problems, recalling that Gn corresponds to the
likelihood function, that means that particles close to the current observation are more
likely to be kept.

Let N be some positive integer. A N -interacting particle system associated with the
sequence (Gn,Mn)n∈N and the initial distribution η0, is a sequence of non-homogeneous
Markov chain, denoted by ξn, taking value in the product space ENn ,

ξn , (ξin)Ni=1 = (ξ1
n, . . . , ξ

N
n ) ∈ ENn , En × . . .× En︸ ︷︷ ︸

N times

.

The initial state of the Markov chain ξ0 consists in N independent random variables with
common distribution η0. The interacting particle system (ξin)Ni=1 explores the state space
En and with the dynamic given to it, empirically samples the law ηn. Each particle i of
the system consists in a random variable ξin ∈ En. The ensuing empirical process denoted
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by ηNn is defined by:

ηNn ,
1
N

N∑
i=1

δξin . (2.14)

The elementary transition of the Markov chain ξn from ENn to ENn+1 is given for any
xn , (x1

n, . . . , x
N
n ) ∈ ENn by:

PNη0 (ξn+1 ∈ dxn+1 | ξn) ,
N∏
i=1

Φn+1(ηNn )(dxin+1)

=
N∏
i=1

Sn,ηNnMn+1(ξin, dxin+1)

where Sn,ηNn is given by:

Sn,ηNn (ξin, .) = Gn(ξin)δξin(.) + (1−Gn(ξin))Ψn(ηNn )(.)

with
Ψn(ηNn )(dx) ,

N∑
j=1

Gn(ξjn)
N∑
k=1

Gn(ξkn)
δξjn(dx)

In other words, the evolution of the particle swarm consists in two steps : a selection and a
mutation. In the selection step, the particles (ξin)Ni=1 are selected/rejected with probability
proportional to their potentials (Gn(ξin))Ni=1, rejected particles are then resample multi-
nomially among the particle swarm. Then the mutation step is performed independently
using the kernel Mn+1. The evolution scheme of the particles is illustrated on Figure 2.1
and detailed in Algorithm 1.

Algorithm 1 Interacting Particle Filter - IPF
Require: η0, (Mp)np=0 et (Sp)np=0
Ensure: Particle approximation of ηn

Begin
1. Initialization p = 0
Sample (ξi0)Ni=1

i.i.d∼ η0,
for p = 0, . . . , n do
3. Selection of particles
Particles are accepted/rejected with probability proportional to

(
Gp(ξip)

)N
i=1

:
For accepted particles: ξ̂ip = ξip
If rejected, particles are replaced by other particles chosen among all particles in the
following way:
Sample Ip = (I ip)Ni=1 according to a multinomial distribution with probability
∝
(
Gp(ξip)

)N
i=1

, then:

ξ̂ip = ξ
Iip
p

4. Mutation of Island
Sample independently ξip+1 according to Mp(ξ̂ip, .)

end for
End
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ξn ξ̂n ξn+1
Selection
Sn,ηNn

Mutation
Mn+1

Figure 2.1: Evolution scheme of the interacting particle system.

Using this algorithm one can empirically sample the measure ηn at each time step n
using the empirical measure ηNn . The Lp error estimates, the almost sure convergence and
the asymptotic behaviour of the estimation error are available to qualify the subsequent
estimator ηNn , see Del Moral (2004). We recall here one basic result which is going to be
extended in Section 2.2 for random processes in random environment.

Theorem 2.1.1 (Del Moral (2004), Theorem 7.4.4 page 246). For every n ≥ 0 and p ≥ 1,
there exist finite constants Cp

n such that:

∀fn ∈ Bb(En), Eη0

[
|ηNn (fn)− ηn(fn)|p

]1/p
≤ Cp

n√
N
‖fn‖ (2.15)

Moreover we have that for any fn ∈ Bb(En) and n ≥ 0,

ηNn (fn) a.s−→ ηn(fn) as N −→∞

This result was presented in Del Moral and Guionnet (2001), as well as the time
uniform Lp bound. From there, many other results to qualify the particle approximations
of Feynman-Kac measure are available in the literature, see Chapters 2-3 in Doucet et al.
(2001), Crisan and Doucet (2002) and for a full treatise Del Moral (2004). Recent works
on consistency and asymptotic normality for more general classes of algorithms can be
found in Chopin (2004); Künsch (2005); Douc and Moulines (2007) and Del Moral et al.
(2012).

2.2 Non-linear filtering for stochastic processes evolv-
ing in a random environment

The precedent section recalls general definitions about Feynman-Kac formalism and how
to use it in order to estimate signals using observations. The signal to estimate was
supposed to be a Markov chain with kernel transition Mn. Recalling the introduction,
our problem consists in a double estimation. One concerns the environment and the other
one the random process itself. Then, particle filters as presented in the precedent section
cannot be used.

To solve the combined problem of state and fixed parameter estimation, a wide variety
of methods have been studied. For linear dynamic systems, basic estimation techniques
are available, see Ljung (1998). For more general state space models, the classical method
used is based on extended Kalman filter. However it has been shown that this approach
may give biased and divergent estimations, Ljung (1979). Kitagawa in Kitagawa (1998)
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has first proposed the use of a particle filter to estimate simultaneously the states and
the parameters in a general non-linear non-Gaussian state space model. The idea was to
augment the state vector with unknown parameters and then perform particle filter esti-
mation on the augmented state space model. However, the main drawback of considering
the parameter as an auxiliary variable is that the number of particles needed to have
a rather acceptable estimation explodes with the dimension, see Liu and West (2001).
Therefore augmenting the state space dimension can be inefficient. Nevertheless Ching
et al. (2006) show in their paper comparative results between particle filters and extended
Kalman filters on several examples. It indicates that particle filters give better results
especially when non linearity cannot be neglected. Another recent solution was given
by Andrieu et al. (2010) and consists in using sequential Monte Carlo methods inside
Markov chain Monte Carlo methods. However this method is not recursive and cannot be
performed on-line. For recursive estimation, when models show special substructure such
as in linear stochastic state space model with unknown parameters, the idea is to take
advantage of the underlying linearity structure using Rao-Blackwellization techniques as
in Hendeby et al. (2010); Saha and Gustafsson (2012). Such filters have been introduced
as mixture Kalman filters in Chen and Liu (2000), Rao-Blackwellized particle filters in
Doucet et al. (2000); Li et al. (2004); Schön et al. (2005) and as interacting Kalman filters
(IKF) in Del Moral (2004); Zghal et al. (2014).

However when the dynamics are non-linear, as for aircraft dynamics, an analytic res-
olution is not possible without making further model simplifications. A method based on
interacting particle systems, which takes into account the randomness due to the environ-
ment and also the randomness coming from the process itself, was proposed by Del Moral
in Del Moral (2004). This idealized algorithm would be a sequential Monte Carlo (SMC)
algorithm on the couple defined by the random environment and the conditional law of
the process evolving in this random environment given the history of the environment.
Nonetheless, the calculation of the previous conditional law is not tractable in practice
when the dynamics are non-linear. Therefore another approximation level is necessary in
order to estimate this conditional law. In this section, we recall the Feynman-Kac formu-
lation of the filtering problem for random process in random media taken from Del Moral
(2004). Then we propose to use interacting systems of interacting particles as it has been
suggested by Johansen et al. (2012). These interacting systems can be seen as a two-
level interacting particle system. The top level particles are composed of an environment
proposition and an empirical measure which gives an approximation of the process law
evolving in the proposed environment. The empirical measure is obtained by the second
level of interacting particles. This nested structure was used in Montemerlo et al. (2002)
to estimate the pose of a mobile robot and positions of people surrounding it, in Baehr
(2010) for mean field processes and in Ichard et al. (2013) for air-traffic process in random
atmospheric environment.
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2.2.1 Filtering problem for a random process in a random envi-
ronment

Using the same notations as in Section 2.1.1, suppose that at every time step n ≥ 0,
the evolution kernel Mn of the Markov chain Xn depends on the realization of another
random process Θn. This section is devoted to the Feynman-Kac formulation of the
filtering problem for random processes in random media. In order to avoid any confusion,
all the quantities which refer to the random process Θn (respectivelyXn) may be identified
by the exponent Θ (respectively X).

Let (Θn, Xn) be an En , (EΘ
n ,EXn )-valued Markov chain which is partially observed by

the process Yn ∈ Fn. Suppose that the process Θn is a Markov process of transition kernel
MΘ

n and initial distribution ηΘ
0 which influences the evolution of the process Xn through

its evolution kernel. Then suppose that Xn is also a Markov process with transition kernel
MX

θn,n and initial distribution ηXθ0 .
The observation process Yn is defined on (Fn,Fn) and we suppose that it is re-

lated to the process by the observation function hn such that Yn = hn(Xn,Θn, Vn)
where Vn is a Markovian observation noise distributed according to the probability mea-
sure qn. The filtering problem consists in computing the conditional distributions of
((Θ0, X0), . . . , (Θn, Xn)) given the observations (Y0, . . . , Yn).

Suppose that for every time step n, the laws hn(Θn, Xn, Vn) and Vn are absolutely con-
tinuous and gn(θn, xn, .) is the corresponding density, then we have the following formula:

P(Yn ∈ dyn|Xn = xn,Θn = θn) = gn(θn, xn, yn)qn(dyn)

The modelling of the filtering problem corresponds to a classical Feynman-Kac formulation
in a random environment. In this section we recall some important definitions and results.
A complete overview can be found in Del Moral (2004).

Traditional Feynman-Kac path measure

In this section we consider both the evolution of the environment and the stochastic
process inside this environment, the traditional Feynman Kac path measure allow us to
model the filtering problem.

The stochastic process {Θn, Xn, Yn}n≥0 is a Markov chain taking value in En with
En , EΘ

n × EXn × Fn under Pn with respect to its natural filtration. Its transition kernel
Tn from En−1 to En is defined by:

Tn((θn−1, xn−1, yn−1), d(θn, xn, yn)) = gn(θn, xn, yn)MΘ
n (θn−1, dθn)MX

θn,n(xn−1, dxn)qn(dyn)
(2.16)

The initial distribution of this chain is denoted by η0 and given by:

η0 (d(θ0, x0, y0)) = ηΘ
0 (dθ0)ηXθ0(dx0)g0(θ0, x0, y0)q0(dy0) (2.17)

where ηΘ
0 ∈ P(EΘ

0 ) and ηXθ0 ∈ P(EX0 ).
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Now, we fix the sequence of observations Y = y and we define the functions Gn, for
n ≥ 0 by:

Gn(θn, xn) , gn(θn, xn, yn)

One can gets that the conditional probability of the sequence (Θ0:n, X0:n) given the se-
quence of observations Y0:n−1 = y0:n−1, is given by:

Pη0,n

(
(Θ0:n, X0:n) ∈ d(θ0:n, x0:n)

∣∣∣Y0:n−1 = y0:n−1
)

= 1
Zn


n−1∏
p=0

Gp(θp, xp)

 η0 (d(θ0, x0))

MΘ
1 (θ0, dθ1)MX

θ1,1(x0, dx1) . . .MΘ
n (θn−1, dθn)MX

θn,n(xn−1, dxn) (2.18)

with normalizing constant:

Zn = Eη0

n−1∏
p=0

Gp (Θp, Xp)
 > 0,

We denote by Qη0,n the quantity defined by (2.18) which corresponds to the traditional
Feynman-Kac path measure. We denote by Q̂η0,n the updated version of Qη0,n which is
given by:

Q̂η0,n(d((θ0, x0), . . . , (θn, xn)) = Pη0,n

(
(Θ0:n, X0:n) ∈ d(θ0:n, x0:n)

∣∣∣Y0:n = y0:n
)

= 1
Ẑn


n∏
p=0

Gp(θp, xp)

 η0 (d(θ0, x0))

MΘ
1 (θ0, dθ1)MX

θ1,1(x0, dx1) . . .MΘ
n (θn−1, dθn)MX

θn,n(xn−1, dxn)
(2.19)

where Ẑn , Eη0

[
n∏
p=0

Gp (Θp, Xp)
]

= Zn+1. As in the classical filtering problem we could

define a particle approximation of the marginal Feynman-Kac measure Qn and Q̂n. How-
ever as we mention in the introduction of this section, increase the dimension of the state
space makes the number of particles needed to obtain a rather good estimation explodes,
see Liu and West (2001). In addition, in the context of aircraft trajectory prediction,
the environment state space is quite large : approximately 105. Therefore we develop
another model which allows one to consider the law of the stochastic process Xn as a
stochastic process itself. To this end we introduce the quenched Feynman-Kac flow of
measure ηXθ0:n,n.
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Quenched process

Fix the environment sequence Θ0:n = θ0:n ∈
n∏
p=0

EΘ
p , one gets:

Pθ0:n,n (X0:n ∈ d(x0, . . . , xn)|Y0:n−1 = (y0, . . . , yn−1))

= 1
Zθ0:n,n


n−1∏
p=0

Gp,θp(xp)

 ηXθ0(dx0)MX
θ1,1(x0, dx1) . . .MX

θn,n(xn−1, dxn) (2.20)

with normalizing constant:

Zθ0:n,n = EηX
θ0

n−1∏
p=0

Gp,θp(Xp)
 > 0,

and random potential functions:

Gp,θp : xp ∈ EXp 7→ Gp,θp(xp) = Gp(θp, xp) (2.21)

The quantity defined by (2.20) is also denoted byQθ0:n,n and called the quenched Feynman-
Kac path measure. We denote the updated version as before by Q̂θ0:n,n given by:

Q̂θ0:n,n(d(x0, . . . , xn)) = Pθ0:n,n

(
X0:n ∈ d(x0, . . . , xn)

∣∣∣Y0:n = (y0, . . . , yn)
)

= 1
Ẑθ0:n,n


n∏
p=0

Gp,θp(xp)

 ηXθ0(dx0)

MX
θ1,1(x0, dx1) . . .MX

θn,n(xn−1, dxn)
(2.22)

where Ẑθ0:n,n , EηX
θ0

[
n∏
p=0

Gp,θp(Xp)
]
.

We can associate to it the quenched distribution flow denoted by ηXθ0:n,n which is defined
for all fn ∈ Bb(EXn ) as follow:

ηXθ0:n,n = γXθ0:n,n(fn)/γXθ0:n,n(1) (2.23)

where the unnormalized Feynman-Kac measure γXθ0:n,n is given for all fn ∈ Bb(EXn ) by:

γXθ0:n,n , EηX
θ0

fn(Xn)
n−1∏
p=0

Gθp,p(Xp)
 . (2.24)

We can notice that the normalized Feynman Kac measure as in the precedent section
corresponds to the prediction step in a Bayesian framework:

ηXθ0:n,n = Law(Xn|Y0:n−1 = (y0, . . . , yn−1),Θ0:n = (θ0, . . . , θn))

The updated version of this distribution denoted by η̂Xθ0:n,n which corresponds to the
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updating filter is given for all fn ∈ Bb(EXn ) by:

η̂Xθ0:n,n = γ̂Xθ0:n,n(fn)/γ̂Xθ0:n,n(1) (2.25)

where the unnormalized Feynman-Kac measure γ̂Xθ0:n,n is given for all fn ∈ Bb(EXn ) by:

γ̂Xθ0:n,n , EηX
θ0

fn(Xn)
n∏
p=0

Gθp,p(Xp)
 .

As it is the case for classical filtering problem, quantities defined by (2.23) and (2.25)
are related by the following operations :

η̂Xθ0:n,n(fn) = ηXθ0:n,n(Gθn,nfn)/ηXθ0:n,n(Gθn,n) (2.26)

and
ηXθ0:n+1,n+1 = η̂Xθ0:n,nM

X
θn+1,n+1 (2.27)

Equation (2.26) can be written as a Boltzmann-Gibbs transformation, ΨX
θn,n, associ-

ated to the potential function Gθn,n, where the Boltzmann Gibbs measure, ΨX
θn,n(ηXθ0:n,n)

is defined for any ηXθ0:n,n ∈ P(EXn ) by:

ΨX
θn,n(ηXθ0:n,n)(dxn) = 1

ηXθ0:n,n(Gθn,n)Gθn,n(xn)ηXθ0:n,n(dxn) (2.28)

Using (2.28), we define the mapping ΦX
n from P(EXn−1) to P(EXn ) for any

ηXθ0:n−1,n−1 ∈ P(EXn−1) by:

ΦX
n :

(
EΘ
n−1 × EΘ

n

)
× P(EXn−1) → P(EXn )(

(θn−1, θn), ηXθ0:n−1,n−1

)
7→ ΨX

θn−1,n−1(ηXθ0:n−1,n−1)MX
θn,n

(2.29)

Then we resume the updating-prediction filtering recursions by the following diagram:

ηXθ0:n−1,n−1
updating−−−−−→ η̂Xθ0:n−1,n−1 = ΨX

θn,n(ηXθ0:n−1,n−1) prediction−−−−−→ ηXθ0:n,n = η̂Xθ0:n−1,n−1M
X
θn,n

(2.30)
As it was done for the classical filtering problem, we write the McKean interpretation

of the quenched Feynman-Kac measure ηXθ0:n,n. The non linear recursion (2.29) can be
rewritten in the following recursive form:

ηXθ0:n,n = ηXθ0:n−1,n−1K
X
n,ηX

θ0:n−1,n−1
(2.31)

where KX
n,ηX

θ0:n−1,n−1
is a transition kernel defined by:

KX
n,ηX

θ0:n−1,n−1
= Sn−1,ηX

θ0:n−1,n−1
MX

θn,n (2.32)

with Sn−1,ηX
θ0:n−1,n−1

a selection kernel. The McKean interpretation being not unique,
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the selection kernel Sn−1,ηX
θ0:n−1,n−1

can be written in several ways. As for the classical
algorithm we choose the following kernel:

Sn−1,ηX
θ0:n−1,n−1

(xn−1, .) = Gn−1,θn−1(xn−1)δxn−1(.) + (1−Gn−1,θn−1(xn−1))ΨX
θn−1,n−1(ηXθ0:n−1,n−1)(.)

These processes cannot be computed except when the processes involved are linear with
Gaussian dynamic and observation noises, for which an explicit solution was given by
Kalman and Bucy Kalman (1960); Kalman and Bucy (1961). Besides, in Section 2.1.3
we introduce particle filters which is a solution to approximate these quantities based
upon interacting particles. The remaining problem here, is that we do not know the
environment realization. Then, the quenched Feynman-Kac flow cannot be used to model
our problem. Therefore, we have to consider the environment as a random process also.

Random distribution process

As we do not know the random environment where the stochastic process evolves, the
quenched Feynman-Kac measure cannot be used in order to model the law of the filtering
problem. So we have to use another quantity which is a third Feynman-Kac measure but
this time in distribution space, to this end we introduce the sequence Xn = (Θn, η

X
Θ0:n,n) ∈

En , EΘ
n × P(EXn ).

As it has been shown by Del Moral in Del Moral (2004), p. 85 , the pair process is a
Markov chain.

Proposition 2.2.1. The stochastic process Xn is a Markov chain under Pη0 with transi-
tion kernel Mn defined for all fn ∈ Bb(En) and (θn, ηXθ0:n,n) ∈ En by:

Mn((θn−1, η
X
θ0:n−1,n−1), d(θn, ηXθ0:n,n))(fn)

,
∫

EΘ
n

MΘ
n (θn−1, dθn)fn(θn,ΦX

n (θn−1, θn, η
X
θ0:n−1,n−1)) (2.33)

and initial distribution, denoted by η0 ∈ P(E0) given by:

η0(d(u, ν)) = ηΘ
0 (du)δηX

θ0
(dν)

Proof. ∀fn ∈ Bb(En):

Eη0 [fn(Xn) | σ(X0, . . . , Xn−1)] = Eη0 [fn(Θn, η
X
Θ0:n,n) | σ(X0, . . . , Xn−1)]

= Eη0 [fn(Θn,ΦX
n

(
(Θn−1,Θn), ηXΘ0:n−1,n−1

)
| σ(X0, . . . , Xn−1)].

As Xn−1 = (Θn−1, η
X
Θ0:n−1,n−1), we have :

Eη0 [fn(Xn) | σ(X0, . . . , Xn−1)] = Eη0 [fn(Θn,ΦX
n

(
(Θn−1,Θn), ηXΘ0:n−1,n−1

)
| σ(X0, . . . , Xn−1)]

=
∫

EΘ
n

fn(θn,ΦX
n ((Θn−1, θn), ηXΘ0:n−1,n−1))MΘ

n (Θn−1,dθn)
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Then we can define another Feynman Kac flow ηn and γn, denoting respectively the
normalized and unnormalized Feynman Kac distribution in distribution space. They are
defined for all fn ∈ Bb(En) by the following relations:

ηn(fn) , γn(fn)/γn(1) (2.34)

and

γn(fn) , Eη0

fn(Xn)
n−1∏
p=0

Gp(Xp)


where

Gp : (u, µ) ∈ Ep 7→ Gp(u, µ) =
∫

EXp
µ(dy)Gp(u, y) = µ(Gp(u, .)) (2.35)

From Del Moral (2004) (p. 86), we have that ηn satisfies a non linear recursive equation :

Proposition 2.2.2. For every n ≥ 1, ηn satisfies the following non linear recursive
equation :

ηn = Ψn−1(ηn−1)Mn = Φn(ηn−1),

where the application Ψn : P(En)→ P(En), is defined for every fn ∈ Bb(En) by :

Ψn(η)(fn) = η(Gnfn)/η(Gn),

and the operator Φn is defined by :

Φn : P(En−1) → P(En)
η 7→ Ψn−1(η)Mn.

(2.36)

In other words, defining η̂n , γ̂n(fn)/γ̂n(1) with γ̂n , Eη0

[
fn(Xn)

n∏
p=0

Gp(Xp)
]
, these

two quantities are related by the following relations:

η̂n(fn) = ηn(Gnfn)/ηn(Gn) (2.37)

and
ηn+1 = η̂nMn+1 (2.38)

By direct inspection, we have that ηn corresponds to the predicting filter and η̂n to the
updating filter. And we can resume these relations by the diagram:

ηn
updating−−−−−→ η̂n = Ψn(ηn) prediction−−−−−→ ηn+1 = η̂nMn+1 (2.39)

In the non linear case, equation (2.36) cannot be solved analytically. Therefore, in the
next section, we introduce an interacting particle system to approximate this sequence of
Feynman-Kac measures (ηn)n∈N.
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2.2.2 Particle filters for random process evolving in a random
environment

As we have seen, Feynman-Kac measures in distribution space also evolve sequentially
in two steps as mentioned in Proposition 2.2.2. This recursion can be written in the
following form:

ηn+1 = ηnKn+1,ηn

where Kn+1,ηn is a kernel defined by:

Kn+1,ηn = Sn,ηnMn+1

with Sn+1,ηn a selection kernel. The McKean interpretation far from being unique as
we mention already in this document still involves a selection kernel. As we mention
previously, we choose the kernel with a sampling/resampling scheme:

Sn,ηn(xn, .) = Gn(xn)δxn(.) + (1−Gn(xn))Ψn(ηn)(.)

This section is about the interacting particle model associated to the Feynman-Kac
distribution flow we are interested in : ηn associated to the Feynman-Kac measure defined
by (2.34). One considers the process Xn associated with the pair (Gn,Mn), where the
transition kernelMn is defined by (2.33) and the potential function Gn is defined in (2.35).

Idealized interacting particle model

Let N1 be some positive integer. A N1-interacting particle system associated with the
sequence ((Gn,Mn))n∈N and the initial distribution η0, is a sequence of non-homogeneous
Markov chain, denoted by X [N1]

n , taking value in the product space EN1
n ,

X
[N1]
n , (X i

n)N1
i=1 = (X1

n, . . . , X
N1
n ) ∈ EN1

n , En × . . .× En︸ ︷︷ ︸
N1 times

.

The initial state of the Markov chain X [N1]
0 consists in N1 independent random variables

with common distribution η0. The interacting particle system (X i
n)N1
i=1 explores the state

space En and with the dynamic given to it, empirically samples the law ηn. Each particle
i of the system consists in a random variable X i

n = (θin, ηXθi0:n,n
) ∈ En. Therefore, the

empirical process ηN1
n is defined by:

ηN1
n ,

1
N1

N1∑
i=1

δ
X
i
n
. (2.40)
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The elementary transition of the Markov chain X
[N1]
n from EN1

n to EN1
n+1 is given for any

x[N1]
n , (x1

n, . . . , x
N1
n ) ∈ EN1

n by:

PN1
η0

(
X

[N1]
n+1 ∈ dx[N1]

n+1 |X
[N1]
n

)
,

N1∏
i=1

Φn+1(ηN1
n )(dxin+1)

Thanks to (2.36), we have:

PN1
η0

(
X

[N1]
n+1 ∈ dx[N1]

n+1 |X
[N1]
n

)
=

N1∏
i=1

N1∑
j=1

Gn(Xj

n)∑N1
k=1Gn(Xk

n)
Mn+1(Xj

n, dxin+1).

Thus, the evolution of the particle swarm consists in two steps : a selection and a
mutation. In the selection step, the particles (X i

n)N1
i=1 are selected multinomially with

probability proportional to their potentials (Gn(X i

n))N1
i=1. Selected particles are identified

with a hat on Figure 2.2. Then the mutation step is performed independently using the
kernel Mn+1. The evolution scheme of the particles is illustrated on Figure 2.2. Using

X
[N1]
n =

(
(θin, ηXθi0:n,n

)
)N1

i=1

(
(θ̂in, ηXθ̂i0:n,n

)
)N1

i=1

(
(θin+1, η

X
θi0:n+1,n+1)

)N1

i=1

Selection
Ψn(ηN1

n )
Mutation
Mn+1

(
(θin+1, η

X
θ̂i0:n,n

)
)N1

i=1

MΘ
n+1 ΦXn+1((θ̂in, θin+1), ηX

θ̂i0:n,n
)

Figure 2.2: Evolution scheme of the interacting particle system for exact measures.

this algorithm one can empirically sample the measure ηn at each time step n. Several
results are available to qualify the subsequent estimator. However, as one may have
noticed, for each θin the measure ηXθi0:n,n

corresponds to the quenched distributions defined
in (2.23). That means that one should have the exact quenched measure associated with
the parameter realization θi0:n to use that standard particle algorithm. This can happen
in two special cases.

Firstly, one special case is when the transition kernel MX
θn,n is Gaussian and the initial

distribution ηXθ0 is Gaussian. Indeed, it turns out that this particle algorithm corresponds
to mixture Gaussian filters developed in Chen and Liu (2000), to Rao-Blackwellized par-
ticle filters developed in Doucet et al. (2000) and to the interacting Kalman filters (IKF)
(see Del Moral (2004), Zghal et al. (2014)). That is a N1-interacting particle model which
is composed of N1 particles where the measure value part are Gaussian distributions. In
other words, for each particle θin, one iterative step of the Kalman filter is run to update
the measure, i.e. one prediction step and one correction step. Those filters are then
competing through the selection step using the transformation Ψn defined in (2.35). For
example let us consider the case where Θn is a EΘ

n -process with initial distribution ηΘ
0 and

elementary transition kernel MΘ
n . For a realization θ0:n of Θ0:n, consider that (Xn, Yn)

is a Rp+q-Markov chain, for positive integers (p, q), defined through the linear Gaussian
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system :  Xn = Aθn,nXn−1 + aθn,n +Bθn,n ε
X
n , n ≥ 1

Yn = Cθn,nXn + cθn,n +Dθn,n ε
Y
n , n ≥ 0.

(Aθn,n, Bθn,n, Cθn,n, Dθn,n) and (aθn,n, cθn,n) are respectively matrices and deterministic vec-
tors of appropriate dimension which may depend on a parameter θn. The sequences εXn
and εYn are two independent white noises, independent from the initial condition X0.
There are Gaussian random variables whose mean and variance are given by

X0 ∼ N(mθ0,0,Σθ0,0), εXn ∼ N(0,ΣX
n ), and εYn ∼ N(0,ΣY

n ).

In this framework, ηXθ0:n,n corresponds to the conditional law of Xn given the observa-
tions Y0:n−1 = y0:n−1 and the history of the parameter θ0:n, also called optimal predictor.
One wants to estimate recursively the law of the couple (Θn, η

X
θ0:n,n) using observations

Y0:n−1 = y0:n−1. For that purpose, one needs to introduce the optimal filtering which is the
conditional law of Xn given the observations Y0:n = y0:n and the history of the parameter
θ0:n. It turns out that these previous distributions are Gaussian respectively denoted by
ηXθ0:n,n = N(mθn,n,Σθn,n) and N(m̂θn,n, Σ̂θn,n). Thus,

m̂θn,n = Eθ0:n [Xn | Y0:n]
Σ̂θn,n = Eθ0:n

[
(Xn − m̂θn,n)(Xn − m̂θn,n)T

]
mθn+1,n+1 = Eθ0:n+1 [Xn+1 | Y0:n]
Σθn+1,n+1 = Eθ0:n+1

[
(Xn+1 −mθn+1,n+1)(Xn+1 −mθn+1,n+1)T

]
.

Moreover, the mapping ΦX
n+1 defined in (2.29) which is used to update the measure valued

part ηXθ0:n,n corresponds to a complete step of the Kalman filter evolution between pre-
dictors. This means that ΦX

n+1((θn, θn+1),N(mθn,n,Σθn,n)) is also a Gaussian distribution
whose mean and covariance matrix are obtained recursively through two steps:

N(mθn,n,Σθn,n) Correction−−−−−−→ N(m̂θn,n, Σ̂θn,n) Prediction−−−−−→ N(mθn+1,n+1,Σθn,n).

The first one is a correction step which is given by m̂θn,n = mθn,n +Kθn,n(Yn − (Cθn,nmθn,n + cθn,n))
Σ̂θn,n = (I −Kθn,nCθn,n)Σθn,n

where I is the identity matrix and Kθn,n is the classical gain matrix

Kθn,n , Σθn,n(Cθn,n)T
(
Cθn,nΣθn,n(Cθn,n)T +Dθn,nΣY

n (Dθn,n)T
)−1

.
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The second step is the predicting step: mθn+1,n+1 = Aθn+1,n+1m̂θn,n + aθn+1,n+1

Σθn+1,n+1 = Aθn+1,n+1Σ̂θn,n(Aθn+1,n+1)T +Bθn+1,n+1ΣX
n+1(Bθn+1,n+1)T .

Then all the Kalman filters attached to each realization θin+1 for i ∈ J1, N1K interact
through their potential Ḡn+1(θin+1, η

X
θi0:n+1,n+1) defined in (2.35) by

Ḡn+1(θin+1, η
X
θi0:n+1,n+1) = ηXθi0:n+1,n+1(Gθin+1,n+1) = N(mθin+1,n+1,Σθin+1,n+1)(Gθin+1,n+1)

where Gθin+1,n+1 is the likelihood function defined for every xn+1 ∈ EXn+1 by

Gθin+1,n+1(xn+1) =
dN(Cθin+1,n+1xn+1,ΣY

n+1)
dN(0,ΣY

n+1) .

One finally ends up with the following expression:

Ḡn+1(θin+1, η
X
θi0:n+1,n+1)

=
dN(Cθin+1,n+1mθin+1,n+1, Cθin+1,n+1Σθin+1,n+1(Cθin+1,n+1)T + ΣY

n+1)
dN(0,ΣY

n+1) . (2.41)

See Del Moral (2004) for further details. The interacting Kalman filter for this general
example is given by Algorithm 2.
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Algorithm 2 Interacting Kalman Filter - IKF
Require: η0, (Mp)np=0, (Ψp)np=0, mθi0,0 and Σθi0,0

Ensure: Interacting Kalman approximation of ηn
Begin
1. Initialization p = 0
for i ∈ J1, N1K do
Sample X̃ i

0 = (θi0, ηXθi0,0) ∼ η̃0, i.e. θi0
i.i.d∼ ηΘ

0 and ηXθi0,0 = N(mθi0,0,Σθi0,0).
end for
2. Selection of Kalman filters
Sample Ip = (I ip)N1

i=1 according to a multinomial distribution with probability propor-

tional to
(
Ḡp(θkp , ηXθk0:p,p

)
)N1

k=1
given by (2.41).

for i ∈ J1, N1K do
3. Updating step for each Kalman filter
m̂
θ
Iip
p ,p

= m
θ
Iip
p ,p

+K
θ
Iip
p ,p

(Yn − C
θ
Iip
p ,p

m
θ
Iip
p ,p

)

Σ̂
θ
Iip
p ,p

=
(
I −K

θ
Iip
p ,p

C
θ
Iip
p ,p

)
Σ
θ
Iip
p ,p

4. Mutation of each island
Sample independently θip+1 according to MΘ

p+1(θI
i
p
p , .)

5. Prediction step for each Kalman filter
mθip+1,p+1 = Aθip+1,p+1m̂

θ
Iip
p ,p

+ aθip+1,p+1

Σθip+1,p+1 = Aθip+1,p+1Σ̂
θ
Iip
p ,p

(Aθip+1,p+1)T +Bθip+1,p+1ΣX
p+1(Bθip+1,p+1)T

end for
p←− p+ 1 go to step 2.
End

Secondly, when the non linear equation (2.29) can be solved analytically i.e. when one
has access to the exact measure ηXθ0:n,n, one can apply a simple interacting particle model
as described in Figure 2.2, where each particle corresponds to the pair: parameter and
exact measure. For example, in Özkan et al. (2013); Lundquist et al. (2014) they use the
idealized interacting particle model as the dynamical noises are in the exponential family.
However, in most cases, this equation cannot be solved analytically, so that an additional
approximation is needed in order to estimate the measure ηXθi0:n,n

for each i ∈ J1, N1K. The
next subsection is dedicated to the derivation of an algorithm to deal with this constraint.

Labeled island particle model

To tackle the case where ηXθi0:n,n
, i ∈ J1, N1K is not analytically known, the idea consists in

using a particle estimation of ηXθi0:n,n
inside the previous interacting particle model. The

ensuing algorithm will be called labeled island particle model in reference to the island
particle model developed in Vergé et al. (2013), even if in the present case, each island i
have a label θin whose evolution is given by the Markov kernel MΘ

n . The labeled island
particle model consists in associating to each term of the sequence (θin)N1

i=1 a sub N2-
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interacting particle system. We call sub N2-interacting particle system associated with
the sequence ((Gθin,n

,MX
θin,n

))n∈N and the initial distribution ηXθi0,0
, the sequence of non-

homogeneous Markov chain (ξi,jn )N2
j=1 taking value in the product space EX,N2

n , that is :

ξi,[N2]
n , (ξi,jn )N2

j=1 , (ξi,1n , . . . , ξi,N2
n ) ∈ EX,N2

n , EXn × . . .× EXn︸ ︷︷ ︸
N2 times

.

The initial state of the Markov chain (ξi,j0 )N2
j=1 consists in sampling N2 independent random

variables with common distribution ηXθi0,0.
The interacting particle system, denoted by (ξi,jn )N2

j=1, explore the state space EXn and with
the dynamic given to it, empirically sample the law ηXθi0:n,n

.
Denoting the empirical measure by:

ηX,N2
θi0:n,n

, 1
N2

N2∑
j=1

δξi,jn , (2.42)

the elementary transition of the process ξi,[N2]
n from EX,N2

n to EX,N2
n+1 is given for any

x[N2]
n = (x1

n, . . . , x
N2
n ) ∈ EX,N2

n by:

PN2
ηX
θ0

(
ξ
i,[N2]
n+1 ∈ dx[N2]

n+1 | ξi,[N2]
n

)
,

N2∏
j=1

ΦX
n+1

(
(θin, θin+1), ηX,N2

θi0:n,n

)
(dxjn+1)

=
N2∏
j=1

ΨX
θin,n

(ηX,N2
θi0:n,n

)MX
θin+1,n+1(ξi,jn , dx

j
n+1) using (2.29)

=
N2∏
j=1

N2∑
k=1

Gθin,n
(ξi,kn )∑N2

`=1Gθin,n
(ξi,`n )

MX
θin+1,n+1(ξi,kn , dxjn+1) by (2.28).

Define the mapping Φ̃X
n by:

Φ̃X
n : EΘ

n−1 × EΘ
n × P(EXn−1) → P(EXn )

((u, v), ν) 7→
N2∏
j=1

ΦX
n ((u, v), ν)(dxjn),

then
ηX,N2
θi0:n+1,n+1 = Φ̃X

n+1

(
(θin, θin+1), ηX,N2

θi0:n,n

)
. (2.43)

So, the evolution of the particle swarm ξi,[N2]
n consists in two steps: a selection and a

mutation. In the selection step, the particles are selected multinomially with probability
proportional to their potentials

(
Gθin,n

(ξi,jn )
)N2

j=1
. Then the mutation step is performed

independently using the kernel MX
θin+1,n+1. Hence, at each iteration n ∈ N, the empirical

measure ηX,N2
θi0:n,n

approximates ηXθi0:n,n
when N2 tends to ∞. Replacing ηXθi0:n,n

by ηX,N2
θi0:n,n

in-
side the first algorithm presented, one gets a nested particle model named labeled island
particle model.
In order to derive precisely this algorithm, first introduce the following sequence X̃n on
En = EΘ

n ×P(EXn ), defined by X̃n , (Θn, η
X,N2
Θ0:n,n), i.e. the couple environment and empir-
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ical measure of the process Xn conditionally on Θ0:n, where ηX,N2
Θ0:n,n ,

∑N2
j=1 δξjn/N2.

Proposition 2.2.3. X̃n is a En-Markov chain with transition kernel M̃n defined for every
function fn ∈ Bb(En) and (u, ν) ∈ En by

M̃n(fn)(u, ν) =
∫

EΘ
n

MΘ
n (u, dv)fn(v, Φ̃X

n ((u, v), ν)), (2.44)

where Φ̃X
n is defined in (2.43), and with initial distribution η̃0 ∈ P(E0) given by:

η̃0(d(u, ν)) , ηΘ
0 (du)δ

η
X,N2
θ0,0

(dν).

Proof. Let σ(X̃0, . . . , X̃n) stands for the σ-algebra generated by the random variables X̃p,
0 ≤ p ≤ n. For all fn ∈ Bb(En):

Eη̃0 [fn(X̃n) | σ(X̃0, . . . , X̃n−1)] = Eη̃0 [fn(Θn, η
X,N2
Θ0:n,n

) | σ(X̃0, . . . , X̃n−1)]

using (2.43)

= Eη̃0 [fn(Θn, Φ̃X
n ((Θn−1,Θn), ηX,N2

Θ0:n−1,n−1) | σ(X̃0, . . . , X̃n−1)].

Recalling that X̃n−1 = (Θn−1, η
X,N2
Θ0:n−1,n−1), one can conclude that

Eη̃0 [fn(X̃n) | σ(X̃0, . . . , X̃n−1)] = Eη̃0 [fn(X̃n) | X̃n−1]

=
∫

EΘ
n

fn(θn, Φ̃X
n ((Θn−1, θn), ηX,N2

Θ0:n−1,n−1)MΘ
n (Θn−1, dθn).

To the Markov chain X̃n, one may associate the Feynman-Kac distribution defined for
every fn ∈ Bb(En) by

η̃n(fn) , γ̃n(fn)/γ̃n(1), (2.45)

where γ̃n is defined such that

γ̃n(fn) , Eη̃0

fn(X̃n)
n−1∏
p=0

Gp(X̃p)
 ,

with Gp defined in (2.35).
In a similar way to ηn, the measure η̃n satisfies a recursive equation η̃n = Ψn−1(η̃n−1)M̃n,

with Ψn−1 the application defined in (2.36). This non linear equation can be rewritten as

η̃n = Φ̃n(η̃n−1), (2.46)
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X̃
[N1]
n =

(
(θin, η

X,N2
θi0:n,n

)
)N1

i=1

(
(θ̂in, η

X,N2

θ̂i0:n,n
)
)N1

i=1

(
(θin+1, η

X,N2
θi0:n+1,n+1)

)N1

i=1

Selection
Ψn(η̃N1

n )
Mutation
M̃n+1

(
(θin+1, η

X,N2

θ̂i0:n,n
)
)N1

i=1

MΘ
n+1 φ̃Xn+1((θ̂in, θin+1), ηX,N2

θ̂i0:n,n
)

Figure 2.3: Evolution scheme of the labeled island particle model.

where the mapping Φ̃n is defined as follows:

Φ̃n : P(En−1) → P(En)
η 7→ Ψn−1(η)M̃n.

(2.47)

As in Section 2.2.2, when this equation cannot be solved analytically one may use a particle
model to approximate the probability measure η̃n. In this case, the particles {X̃ i

n ,
(θin, η

X,N2
θi0:n,n

), i ∈ J1, N1K}, would be testing points on the state space En, for (N1, N2) ∈
(N∗)2. These particles explore the state space En and their dynamics empirically sample
the law η̃n when N1 gets large. An interacting particle system associated with the couple
(Gn, M̃n) and the initial distribution η̃0, is a sequence of non-homogeneous Markov chain,
X̃ [N1]
n , taking value in the product space EN1

n , defined by

X̃ [N1]
n , (X̃ i

n)N1
i=1 = (X̃1

n, . . . , X̃
N1
n ) ∈ EN1

n .

The initial state of the Markov chain X̃ [N1]
0 consists in N1 independent random variables

with common distribution η̃0. Denote by η̃N1
n the empirical measure at time n, which is

defined by

η̃N1
n ,

1
N1

N1∑
i=1

δX̃i
n
. (2.48)

The elementary probability transition, is given for any x[N1]
n+1 ∈ EN1

n+1 by

PN1
η̃0 (X̃ [N1]

n+1 ∈ dx[N1]
n+1 | X̃ [N1]

n ) =
N1∏
i=1

Ψn(η̃N1
n )M̃n+1(X̃ i

n, dxin+1).

The particle evolution is summarized in Figure 2.3 where by definitions (2.35) and (2.42),

Gn(X̃ i
n) = 1

N2

N2∑
j=1

Gn(θin, ξi,jn ) = 1
N2

N2∑
j=1

Gθin,n
(ξi,jn ).

The ensuing algorithm is described in Algorithm 3. This algorithm is the same as the one
presented in Montemerlo et al. (2002) to estimate the pose of the mobile robot meanwhile
tracking the position of surrounding people, and Johansen et al. (2012).

For every n ≥ 0, η̃N1
n is an estimator of η̃n, obtained through the labeled island particle
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Algorithm 3 Labeled island particle algorithm
Require: η̃0, (M̃p)np=0 and (Ψp)np=0
Ensure: Particle approximation of η̃n

Begin
1. Initialization p = 0
for i = 1, . . . , N1 do
Sample X̃ i

0 = (θi0, η
X,N2
θi0,0

) ∼ η̃0, that is

θi0
i.i.d∼ ηΘ

0 , ξ
i,j
0

i.i.d∼ ηXθi0,0
and ηX,N2

θi0,0
= 1

N2

N2∑
j=1

δξi,j0
.

end for
for p = 0, . . . , n do
2. Selection of islands
Sample Ip = (I ip)N1

i=1 according to a multinomial distribution with probability propor-

tional to
(

1
N2

N2∑
j=1

Gp(θip, ξi,jp )
)N1

i=1
for i = 1, . . . , N1 do
3. Selection of particles inside each island
Sample J ip = (J i,jp )N2

j=1 according to a multinomial distribution with probability

proportional to
(
Gp(θ

Iip
p , ξ

Iip,j
p )

)N2

j=1
4. Mutation of each island
Sample independently θip+1 according to MΘ

p+1(θI
i
p
p , .)

for j = 1, . . . , N2 do
5. Mutation of particles
Sample ξi,jp+1 according to MX

θip+1,p+1(ξI
i
p,J

i,j
p

p , .)
end for

end for
end for
End
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model, i.e. for every fn ∈ Bb(En),

η̃N1
n (fn) = 1

N1

N1∑
i=1

fn(θin, η
X,N2
θi0:n,n

)

converges to η̃n(fn) when N1 → +∞.
In a conjoint work with Vergé, we show in Ichard and Vergé (2015) some convergence

results for the presented algorithm. In particular we focus our attention on the Lp error
bound between the empirical measure η̃N1

n and ηn. Then we get a time uniform bound.
Finally we prove the almost sure convergence of the empirical measure towards towards
the target measure. We transcript here these theoretical results. The full version of the
submitted paper is attached in Section A.1.

2.2.3 Estimation error and Lp bounds

We are interested in this section in the Lp bounds of the difference between the estimator
η̃N1
n and the measure ηn. To get these bounds we will use several notations. We define
them before going further.

Notations

Let (E, E) be a measurable space. For a real-valued measurable function h ∈ Bb(E), we
denote the oscillator norm osc(h) , sup(x,x′)∈E2 |h(x)−h(x′)|, and Osc1(E) the convex set
of E-measurable functions with oscillations less than one. The sup norm of h is noted
‖h‖∞ , supx∈E |h(x)| and the Lp-norm ‖.‖p. B1(E) ⊂ Bb(E) refers to the set of functions
whose sup norm is less than one. For two probability measures (µ, η) ∈ P(E)2, the
Zolotarev semi-norm ‖.‖F attached to F a countable collection of bounded measurable
functions in B1(E) is defined by

‖µ− η‖F , sup
f∈F
|µ(f)− η(f)|.

To measure the size of a given class F, one considers the covering numbers
N (ε,F,Lp(µ)) defined as the minimal number of Lp(µ)-balls of radius ε > 0 needed to
cover F. Let N (ε,F) and I(F) denote respectively the uniform covering numbers and
entropy integral given by

N (ε,F) , sup
µ∈P(E)

N (ε,F,L2(µ)) (2.49)

I(F) ,
∫ 1

0

√
log(1 +N (ε,F))dε. (2.50)

Let ∧ denote the minimum operator and ∨ denote the maximum operator. For a kernel
M defined on E, the Dobrushin coefficient of M is

β(M) , sup
f∈Osc1(E)

osc(M(f)).
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Let (d(n))n≥0 be a sequence defined for every m ≥ 0 by
 d(2m)2m , (2m)m2−m

d(2m+ 1)2m+1 , (2m+1)m+1√
m+1/2

2−m+1/2,

where for any positive integers (p, q) ∈ (N∗)2, (q + p)p , (q + p)!/q!.
For n ∈ N, introduce the Feynman-Kac semi-groups Qn (resp. QX

θn−1:n,n) such that for all
(xn, xn+1) ∈ En × En+1 (resp. (xn, xn+1) ∈ EXn × EXn+1),

Qn+1(xn, dxn+1) , Gn(xn)Mn+1(xn, dxn+1),
(
resp.QX

θn:n+1,n+1(xn, dxn+1) , Gθn,n(xn)MX
θn+1,n+1(xn, dxn+1)

)
.

For every (p, n) ∈ (N)2 such that p < n, set

Qp,n , Qp+1 . . . Qn, and P p,n , Qp,n/Qp,n(1),
(
resp.QX

θp:n,p,n , QX
θp:p+1,p+1 . . . Q

X
θn−1:n,n andP

X
θp:n,p,n(fn) , QX

θp:n,p,n(fn)/QX
θp:n,p,n(1)

)
,

and set the normalizing constant

Gp,n , Qp,n(1), (resp.Gθp:n,p,n , QX
θp:n,p,n(1)).

Finally, set

gp,n , sup
(xp,yp)∈(Ep)2

Gp,n(xp)
Gp,n(yp)

,

resp. gθp:n,p,n , sup
(xp,yp)∈(EXp )2

Gθp:n,p,n(xp)
Gθp:n,p,n(yp)

 .
In order to study the difference between η̃N1

n and ηn, we use several results taken from
Del Moral (2004). Then, we will always assume that for all n ∈ N, the potential functions
Gθn,n defined in (2.21) satisfy the following condition (Gθ):
there exists a sequence of strictly positive number εn(Gθ) ∈ (0, 1] such that for any
(xn, yn) ∈ (EXn )2 :

Gθn,n(xn) ≥ εn(Gθ)Gθn,n(yn) > 0 (Gθ)

Therefore, for all n ∈ N, the potential functions Gn satisfy the following condition (G):
there exists a sequence of strictly positive number εn(G) ∈ (0, 1] such that for any
(xn, yn) ∈ (En)2 :

Gn(xn) ≥ εn(G)Gn(yn) > 0 (G)

Moreover we always assume that the collection of distributions
(
Mn+1(xn, .)

)
xn∈En

are
absolutely continuous with one another. That is for every n ≥ 0 and (xn, yn) ∈ (En)2, one
has

Mn+1(xn, .)�Mn+1(yn, .).

In addition, we assume that the collection of distributions
(
MX

θn+1,n+1(xn, .)
)
xn∈EXn

are
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absolutely continuous with one another. That is for every n ≥ 0, θn+1 ∈ EΘ
n+1 and

(xn, yn) ∈ (EXn )2, one has :

MX
θn+1,n+1(xn, .)�MX

θn+1,n+1(yn, .).

Note that for time homogeneous models on finite spaces condition those conditions are met
as soon as the Markov chain is aperiodic and irreducible. Some examples are illustrated
by typical examples in Del Moral (2004).

Lp bound

Consider that for all n ∈ N, the product space En = EΘ
n × P(EXn ) is equipped with the

norm ‖ · ‖En such that for all (u, v) ∈ (EΘ
n )2 and (ν, η) ∈ (P(EXn ))2,

‖(u, η)− (v, ν)‖En = |u− v|+ ‖η − ν‖Fn .

where Fn is a countable collection of functions in B1(EXn ).

Theorem 2.2.1. For any p ∈ N∗, n ∈ N, let fn ∈ Osc1(En) be a kn-Lipschitz func-
tion. Assume that for any θn ∈ EΘ

n , the kernel transition MX
θn,n can be written as

MX
θn,n(xn−1, dxn) = mX

θn,n(xn−1, xn)pθn,n(dxn) for some measurable functionmX
θn,n on EXn−1×

EXn and some probability measure pθn,n ∈ P(EXn ). Furthermore, assume that there exists a
collection of mappings αθn,n on EXn such that

supxn−1∈EXn−1
| logmX

θn,n(xn−1, xn)| ≤ αθn,n(xn)

with pθn,n(e3αθn,n) <∞.
Then, the Lp error is bounded by

‖η̃N1
n (fn)− ηn(fn)‖p ≤ kn

a(p)√
N2

(I(Fn) + b(n)) + 2 d(p)√
N1

n∑
q=0

gq,nβ(P q,n), (2.51)

where the sequence d(n) is defined in (2.51), I(Fn) is defined in (2.50), (b(n))n≥0 is defined
by

b(0) = 0 and b(n+ 1) ≤ gθn,npθn+1,n+1(e3αθn+1,n+1)
n∑
q=0

gθq:n,q,nβ(Pθq:n,q,n),

and a(n) is a sequence such that for all n ∈ N∗, a(n) ≤ c [n/2]! with c a universal constant.

Proof. Let fn ∈ Osc1(En) be a kn-Lipschitz function, and apply triangular inequality:

‖η̃N1
n (fn)− ηn(fn)‖p ≤ ‖η̃N1

n (fn)− ηN1
n (fn)‖p + ‖ηN1

n (fn)− ηn(fn)‖p,

where ηn is defined in (2.34). Then using Theorem 7.4.4 from Del Moral (2004), one can
bound the second term

‖ηN1
n (fn)− ηn(fn)‖p ≤ 2 d(p)√

N1

n∑
q=0

gq,nβ(P q,n).
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Therefore, in order to bound the first term, use the definitions of η̃N1
n and ηN1

n in (2.48)
and (2.40) respectively :

‖η̃N1
n (fn)− ηN1

n (fn)‖p = Eη0

[
|η̃N1
n (fn)− ηN1

n (fn)|p
]1/p

= Eη0

∣∣∣∣∣∣ 1
N1

N1∑
i=1

{
fn(θin, η

X,N2
θi0:n,n

)− fn(θin, ηXθi0:n,n
)
}∣∣∣∣∣∣
p1/p

≤ Eη0

 1
N1

N1∑
i=1
|fn(θin, η

X,N2
θi0:n,n

)− fn(θin, ηXθi0:n,n
)|
p1/p

As fn is kn-Lipschitz, it follows∣∣∣fn(θin, η
X,N2
θi0:n,n

)− fn(θin, ηXθi0:n,n
)
∣∣∣ ≤ kn

∥∥∥(θin, ηX,N2
θi0:n,n

)− (θin, ηXθi0:n,n
)
∥∥∥

En

≤ kn
∥∥∥ηX,N2

θi0:n,n
− ηXθi0:n,n

∥∥∥
Fn
.

where Fn is a countable collection of functions in B1(EXn ) Therefore one gets

‖η̃N1
n (fn)− ηN1

n (fn)‖p ≤ Eη0

 1
N1

N1∑
i=1

kn
∥∥∥ηX,N2

θi0:n,n
− ηXθi0:n,n

∥∥∥
Fn

p1/p

.

Denoting by θ∗ the value at which the maximum of the Zolotarev semi-norms for i ∈
J1, N1K is reached, yields to

‖η̃N1
n (fn)− ηN1

n (fn)‖p ≤ knEη0

[
‖ηX,N2

θ∗0:n,n
− ηXθ∗0:n,n

‖pFn
]1/p

.

But, according to [Del Moral (2004), Corollary 7.4.4] (p. 247),

Eη0

[
‖ηX,N2

θ∗0:n,n
− ηXθ∗0:n,n

‖pFn
]1/p
≤ a(p)√

N2
(I(Fn) + b(n)),

where I(Fn) is the entropy of Fn defined in (2.50). Finally one ends up with

‖η̃N1
n (fn)− ηN1

n (fn)‖p ≤ kn
a(p)√
N2

(I(Fn) + b(n)) + 2 d(p)√
N1

n∑
q=0

gq,nβ(P q,n).

Time uniform bound

Before stating the uniform estimate we define the following two additional conditions.
There exists some integer m ≥ 1 and some numbers εn(M) ∈ ]0, 1[ such that for n ∈ N
and (xn, yn) ∈ E2

n, one has :

Mn,n+m(xn, .) ,Mn+1 . . .Mn+m(xn, .) ≥ εn(M)Mn,n+m(yn, .) ((M)m)
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For all i ∈ J1, N1K, there exists some integer mi ≥ 1 and some numbers εn(MX
θi ) ∈ ]0, 1[

such that for n ∈ N, (xn, yn) ∈ (EXn )2, and θin+1:n+mi ∈ EΘ
n+1 × . . .× EΘ

n+m, one has :

MX
θin+1:n+mi

,n,n+mi(xn, .) ,MX
θin+1,n+1 . . .M

X
θin+mi

,n+mi(xn, .)

≥ εn(MX
θi )MX

θin+1:n+mi
,n,n+m(yn, .) ((MX

θi )mi)

Theorem 2.2.2. Suppose that conditions (G), ((M)m) are met for some integer m ≥
1 and some pair parameters (εn(G), εn(M)) and set ε(G) , ∧n≥0εn(G) and ε(M) ,
∧n≥0εn(M).
Moreover, assume that for all i ∈ J1, N1K conditions (Gθ) and ((MX

θi )mi) hold true for
some sequence of integer mi and some pair parameters (εn(Gθi), εn(MX

θi )) and set ε(Gθi) ,
∧n≥0εn(Gθi) and ε(MX

θi ) , ∧n≥0εn(MX
θi ). Set m , ∨imi.

Further assume that for all n ≥ 0 and θin ∈ EΘ
n the kernel transition MX

θin,n
has the

form MX
θin,n

(xn−1, dxn) = mX
θin,n

(xn−1, xn)pθin,n(dxn) for some measurable function mX
θin,n

on EXn−1 × EXn and some probability measure pθin,n ∈ P(EXn ).
Also assume that supxn−1∈EXn−1

| logmX
θin,n

(xn−1, xn)| ≤ αθin,n(xn) with pθin,n(e3α
θin,n) < ∞

for some collection of mappings αθin,n on EX
n , and set :

pθi(e3αθi ) , sup
n≥0

pθin,n(e3α
θin,n) <∞ and pθ(e3αθ) , ∨ipθi(e3αθi ).

Then for any p ∈ N∗, any kn-Lipschitz functions fn ∈ Osc1(En) one has :

sup
n≥0

sup
fn∈Osc1(En)

‖η̃N1
n (fn)−ηn(fn)‖p ≤

2d(p)m√
N1ε(M)3ε(G)2m−1 +k a(p)√

N2

(
I + mpθ(e3αθ)

ε(MX
θ )3ε(Gθ)2m

)

with

k = sup
n
kn, ε(MX

θ ) = ∧iε(MX
θi ) > 0, ε(Gθ) = ∧iε(Gθi) > 0, I , sup

n≥0
I(Fn) <∞.

Proof.

sup
n≥0

sup
fn∈Osc1(En)

‖η̃N1
n (fn)− ηn(fn)‖p

≤ sup
n≥0

sup
fn∈Osc1(En)

(
‖η̃N1

n (fn)− ηN1
n (fn)‖p + ‖ηN1

n (fn)− ηn(fn)‖p
)

≤ sup
n≥0

sup
fn∈Osc1(En)

‖η̃N1
n (fn)− ηN1

n (fn)‖p + sup
n≥0

sup
fn∈Osc1(En)

‖ηN1
n (fn)− ηn(fn)‖p

From [Del Moral (2004), Theorem 7.4.4] (p. 247), one has

sup
n≥0

sup
fn∈Osc1(En)

‖ηN1
n (fn)− ηn(fn)‖p ≤

2d(p)m√
N1ε(M)3ε(G)2m−1 ,

39



since conditions (G) and ((M)m) hold true. Then it follows that the only term one has
to work on is the following.

sup
n≥0

sup
fn∈Osc1(En)

‖η̃N1
n (fn)− ηN1

n (fn)‖p

= sup
n≥0

sup
fn∈Osc1(En)

∥∥∥∥∥∥ 1
N1

N1∑
i=1

{
fn(θin, η

X,N2
θi0:n,n

)− fn(θin, ηXθi0:n,n
)
}∥∥∥∥∥∥

p

≤ 1
N1

N1∑
i=1

sup
n≥0

sup
fn∈Osc1(En)

∥∥∥fn(θin, η
X,N2
θi0:n,n

)− fn(θin, ηXθi0:n,n
)
∥∥∥
p

As the function fn is kn-Lipschitz, for all i ∈ J1, N1K,

sup
n≥0

sup
fn∈Osc1(En)

∥∥∥fn(θin, η
X,N2
θi0:n,n

)− fn(θin, ηXθi0:n,n
)
∥∥∥
p

= sup
n≥0

sup
fn∈Osc1(En)

Eη0

[∣∣∣fn(θin, η
X,N2
θi0:n,n

)− fn(θin, ηXθi0:n,n
)
∣∣∣p]1/p

≤ sup
n≥0

Eη0

[
kpn
∥∥∥ηX,N2

θi0:n,n
− ηXθi0:n,n

∥∥∥p
Fn

]1/p

≤ sup
n≥0

knEη0

[∥∥∥ηX,N2
θi0:n,n

− ηXθi0:n,n

∥∥∥p
Fn

]1/p
.

Set k , supn kn, then

sup
n≥0

sup
fn∈Osc1(En)

∥∥∥fn(θin, η
X,N2
θi0:n,n

)− fn(θin, ηXθi0:n,n
)
∥∥∥
p
≤ k sup

n≥0
Eη0

[∥∥∥ηX,N2
θi0:n,n

− ηXθi0:n,n

∥∥∥p
Fn

]1/p

From [Del Moral (2004), Corollary 7.4.5] (p. 249), as one assumes that there existsmi ≥ 1
for
θin,n+mi ∈ EΘ

n × . . .× EΘ
n+mi ,

sup
n≥0

Eη0

[∥∥∥ηX,N2
θi0:n,n

− ηXθi0:n,n

∥∥∥p
Fn

]1/p
≤ a(p)√

N2

(
I + mipθi(e3αθi )

ε(MX
θi )3ε(Gθi)2mi

)
,

where I , sup
n≥0

I(Fn) <∞. One concludes easily.

2.2.4 Asymptotic analysis of the labeled island particle algo-
rithm

This section deals with the asymptotic behaviour of the labeled island particle algorithm.
Especially, we focus on the almost sure convergence.

Using Theorem 2.2.1 obtained in Section 2.2.3, one can easily get the almost sure
convergence of the double estimator η̃N1

n toward ηn under the same assumptions as in
Theorem 2.2.1.

Theorem 2.2.3. Under the same assumptions as in Theorem 2.2.1, for all n ≥ 0 and
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for every kn- Lipschitz function fn ∈ Osc1(En), one has

η̃N1
n (fn) a.s−→ ηn(fn), as N →∞,

with N = N1N2 such that N1 = Nα and N2 = N1−α for all α ∈ ]0, 1[.

Proof. Let fn ∈ Osc1(En) be a kn-Lipschitz function and ε > 0 a real constant. For all
p ∈ N∗, by Markov’s inequality, one has

P
(
|η̃N1
n (fn)− ηn(fn)| > ε

)
≤

Eη0

[
|η̃N1
n (fn)− ηn(fn)|p

]
εp

.

Then, applying Theorem 2.2.1, and noting

C(p, n) , kna(p)(I(Fn) + b(n)) and C̃(p, n) , 2d(p)∑n
q=0 gq,nβ(P q,n),

one has

‖η̃N1
n (fn)− ηn(fn)‖pp ≤

(
C(p, n)√
Nα

+ C̃(p, n)√
N1−α

)p

=
p∑

k=0

(
p

k

)
C(p, n)kC̃(p, n)p−k

N (α− 1
2 )k+ 1−α

2 p
.

The finite sequence (sα,p(k))pk=0 defined by sα,p(k) = (α− 1/2)k + (1− α)p/2 is bounded
from below by

mα,p ,
αp

2 10<α≤0.5 + (1− α)p
2 10.5<α<1,

so that

‖η̃N1
n (fn)− ηn(fn)‖pp ≤

(
C(p, n) + C̃(p, n)

)p
Nmα,p

.

Choose p a positive integer such that mα,p ≥ 2 i.e. satisfying
 p > 4

α
if 0 < α ≤ 0.5

p > 4
1−α if 0.5 < α < 1.

(2.52)

Hence,

‖η̃N1
n (fn)− ηn(fn)‖pp ≤

(
C(p, n) + C̃(p, n)

)p
N2 .

By comparison of series of non-negative general term with a convergent Riemann series,
one concludes that the series

∑
N≥0

P
(
|η̃N1
n (fn)− ηn(fn)| > ε

)
is convergent,

which implies by Borel-Cantelli’s lemma, that

η̃N1
n (fn) a.s−→ ηn(fn), as N →∞.
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Taking such kind of N means that for a total budget N of particles, one can consider
any decomposition (as a power of N) of the particles between islands and within each
island.

2.3 Parameter and state space estimation in a ran-
dom environment

Some aircraft parameters can be considered as fixed parameters, such as the lift or drag
coefficients. In order to estimate them, we consider that the random process influenced
by the environment depends on unknown fixed parameters. The parameters r are seen
as the realization of a random variable R whose density is λ. In the sequel, we bring our
attention on the triple estimation issue which consists in estimating the random process
Xn which depends on the surrounding environment Θn but also on fixed parameters r.

This problem can be cast into the more general issue of joint parameter and state
estimation which is at stake in different areas of applied mathematics, notably in financial
mathematics. To overcome this question, different methods were recently developed, see
for example Poyiadjis et al. (2005); Andrieu et al. (2010). In Andrieu et al. (2010), the idea
used to estimate the state and the parameter of a random process was to use the empirical
measure obtained through particle filters inside a Markov Chain Monte Carlo (MCMC)
method. The ensuing algorithm is named Particle Markov chain Monte Carlo (PMCMC).
This idea was developed and applied by Fernández-Villaverde and Rubio-Ramírez (2007);
An and Schorfheide (2007) to approximate dynamic stochastic general equilibrium models.
Andrieu et al. gave a formal proof of the algorithm convergence. Indeed particle filters
provide unbiased estimation of the probability density of the random process which can be
used inside MCMC methods to evaluate the likelihood ratio of the parameter proposition.

In this section, first we present MCMC methods. Then we recall the formalism of the
PMCMC methods developed by Andrieu et al. and finally we give an adapted version of
the PMCMC algorithm which can deal with the case where the random process evolves
in a random environment.

2.3.1 Introduction to Markov Chain Monte Carlo methods

Stochastic algorithms are random searching procedures of a state space. Formally they
can be modelled by an homogeneous (E, E)-Markov chain X = {Xn, n ≥ 0} with kernel
transitionK from E to E. Generally, as time goes the random searching procedure becomes
more and more sharp, in some sense. That is the distribution of the Markov chain denoted
by ηn tends to, what is called, a stationary distribution denoted by π. The invariant or
stationary distribution π of the Markov process Xn should verify:

π(A) =
∫

E
π(dx)K(x,A),∀A ∈ E
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The asymptotic behaviour of the distributions ηn when n tends to infinity is a major
problem in Markov chain theory. We do not intend here to give a full treatise on this
question. In this paragraph we present the question of choosing in a clever way the
kernel transition K and the Markov process in order to converge to the fixed stationary
distribution π. MCMC samplers are irreducible and aperiodic Markov chains that have
the target distribution as the invariant distribution. Several ways to construct such kernel
transitions exist, such as the Metropolis-Hastings transition and the Gibbs sampler. The
Metropolis-Hastings (MH) algorithm is the most popular MCMC method as it proposes
a simple way to construct such homogeneous kernels. We attach here our attention on
this algorithm.

A Metropolis Hasting transition of invariant distribution π consists in a two steps
evolution: a proposition and an acceptance/rejection step. For any measure η ∈ M(E),
symmetric Markovian transition kernel Q(x, dy) on E verify the following relation:

(η ×Q)(d(x, y))0 , η(dx)Q(x, dy) = η(dy)Q(y, dx) , (η ×Q)(d(x, y))1

The set of such transitions kernels are denoted by Q(η). For any Q ∈ Q(η), we define the
acceptance ratio a for all x, y ∈ E× E such that:

a(x, y) = 1 ∧ d(η ×Q)1

d(η ×Q)0
(x, y)

Then the two steps of the Metropolis-Hasting algorithm are given by two transitions
kernels M and S which are respectively defined from E to E× E and from E× E to E by:

M(x, d(y, y′)) , δx(dy)Q(y, dy′) (2.53)
S((y, y′), dz) , a(y, y′)δy′(dz) + (1− a(y, y′))δy(dz) (2.54)

where M corresponds to the proposition step and allow to explore the state space E and
S is the acceptance/rejection step. Then the kernel K of the MCMC algorithm is given
by:

K(x, dz) =
∫

E
M(x, d(y, y′))S((y, y′), dz)

=
∫

E×E
δx(dy)Q(y, dy′)(a(y, y′)δy′(dz) + (1− a(y, y′))δy(dz))

= a(x, z)Q(x, dz) +
(

1−
∫

E
a(x, y)Q(x, dy)

)
δx(dz)

The acceptance/rejection step allows to sometimes accept the moves and sometimes re-
main in place. Note that the acceptance ratio a indicates how probable the new proposed
sample is with respect to the current sample, according to the distribution η. If we at-
tempt to move to a point that is more probable than the existing point (i.e. a point in
a higher-density region of η), we will always accept the move. However, if we attempt
to move to a less probable point, we will sometimes reject the move, and the more the
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relative drop in probability, the more likely we are to reject the new point. Thus, we
will tend to stay in (and return large numbers of samples from) high-density regions of η,
while only occasionally visiting low-density regions. Intuitively, this is why this algorithm
works, and returns samples that follow the desired distribution π. This method can be
used to sample a draw from any distribution, in the next paragraph we will see how it is
used to sample from parameter posterior distributions in state space model.

2.3.2 Particle Markov Chain Monte Carlo methods for joint pa-
rameter state estimation

Let consider a filtering problem where the pair signal/observation has a fixed component
r. Suppose now that the parameter r, is a realization of a random variable R taking value
in the measurable space (S,S) with distribution λ. For each realization of r, we define the
following state space model. Suppose that at every time step, the state of a Markov chain
Xn ∈ En is partially observed by the process Yn ∈ Fn, where Xn is a Markov process with
transition kernel Mr,n and initial distribution ηr,0 in a measurable space (En, En). The ob-
servation process Yn is defined on (Fn,Fn) and we suppose that it is related to the process
by the observation function hn such that Yn = hn(Xn, Vn) where Vn is a Markovian obser-
vation noise distributed according to the probability measure qn. The filtering problem
consists in computing the conditional distributions of (X0, . . . , Xn) given the observations
(Y0, . . . , Yn) but also the parameter posterior distribution P(R ∈ dr|Y0:n = y0:n). Suppose
that for every time step n, the laws hn(r,Xn, Vn) and Vn are absolutely continuous and
gn,r(xn, .) is the corresponding density, then we get the following formula for the likelihood
function:

P(Yn ∈ dyn|Xn = xn, R = r) = gn,r(xn, yn)qn(dyn)

Fix the observation sequence such that Y0:n = y0:n and define Gn,r(xn) , gn,r(xn, yn). By
the Bayes rule we have:

Qr,n(d(x0, . . . , xn)) , Pηr,0(X0:n ∈ dx0:n|Y0:n−1 = y0:n−1, R = r)

= 1
Zr,n


n−1∏
p=0

Gn,r(xn)

 ηr,0(dx0)Mr,1(x0, dx1) . . .Mr,n(xn−1, dxn)

where the normalizing constant Zr,n is given by:

Zr,n , Eηr,0

n−1∏
p=0

Gn,r(xn)


The updated probability measure Q̂r,n can also be defined:

Q̂r,n(d(x0, . . . , xn)) = 1
Ẑr,n


n−1∏
p=0

Gn,r(xn)

 ηr,0(dx0)Mr,1(x0, dx1) . . .Mr,n(xn−1, dxn)
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where the normalizing constant Ẑr,n is given by:

Ẑr,n , Eηr,0

 n∏
p=0

Gn,r(xn)


Therefore, when R is given equal to r, traditional particle filtering technique can be used
to estimate the distribution of the signal. Let us introduce the marginal measure γr,n of
the path measure Qr,n defined for all fn ∈ Bb(En) by:

γr,n(fn) , Eηr,0

fn(Xn)
n−1∏
p=0

Gp,r(Xp)
 (2.55)

We can also define the probability measure ηr,n for all fn ∈ Bb(En) by:

ηr,n(fn) , γr,n(fn)
γr,n(1) (2.56)

The last quantity (2.56) corresponds to the prediction step of the filter.
We also define the updated measure γ̂r,n and the filtering probability measure η̂r,n for all
fn ∈ Bb(En) by:

γ̂r,n(fn) = γr,n(Gn,rfn) (2.57)

η̂r,n = γ̂r,n(fn)
γ̂r,n(1) (2.58)

Here we can notice that the normalizing constant Ẑr,n which is the likelihood of the
observations can be rewritten using the marginal measure:

Ẑr,n = γ̂r,n(1) = γr,n(Gn,r)

=
n∏
p=0

ηr,p(Gn,r)

Taking the logarithm of this quantity, we obtain the log-likelihood, but a problem arises as
the probability distributions ηr,p are unknown. Therefore if one wants to use Expectation
Maximization (EM) algorithm to retrieve the value of r, one has first to deal with the
approximation of these quantities. These technique was developed in Poyiadjis et al.
(2005) and use the particle approximation at each time step to evaluate the gradient of
the log-likelihood. Here we present the algorithm proposed by Andrieu et al. (2010) which
consists in using particle filters inside an MCMC method. To this end, going back to the
original problem of the parameter posterior distribution estimation using the Bayes rule
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we get:

πn(dr) , P(R ∈ dr|Y0:n = y0:n) = 1
Zn+1

Ẑr,nλ(dr)

= 1
Zn+1

n∏
p=0

ηr,p(Gp,r)︸ ︷︷ ︸
hp(r)

λ(dr)

where Zn+1 =
∫
S Ẑr,nλ(r)dr.

One can observe that this quantity is written as a Feynman-Kac measure where the hp(r)
are unknown. However, particle filters is a tool which allows their approximation. Then,
consider the particle filter associated to the pair potential kernel (Gr,n,Mr,n) introduced
in Section 2.1.3. We denote by ηNr,n the empirical measure which approximate the measure
ηr,n.
As the empirical unnormalized measure associated is unbiased, Andrieu et al. (2010) use
it to estimate the normalizing constant Ẑr,n. The approximation of this quantity denoted
by ẐNr,n is defined by:

ẐNr,n , γNr,p(Gr,n)

=
n∏
p=0

ηNr,p(Gr,p)

Using the unbiased property of the particle filter, we have that E
[
γNr,n(Gr,n)

]
= Ẑr,n.

As the particle approximation of the hp(r) functions, denoted by hNp (r), are going to be
used, we introduce several quantities.
Let consider the complete genealogical tree of the particles evolving thanks to the pair
potential/mutation (Gr,n,Mr,n). This tree is obtained when tracing back in time the
ancestral lineage of each particle. Denoting (ξi0,n, . . . , ξin,n) , ξin the ancestral lineage of
the ith-particle associated to the realization R = r, one can notice here that:

1
N

N∑
i=0

δ(ξi0,n,...,ξin,n) −−−−→
N→+∞

Qr,n

Considering now the complete genealogical tree Ξn , (ξp)np=0, defined such that:

Ξn = (Ξ0,n, . . . ,Ξn,n) = (ξ0, . . . , ξn) ∈
n∏
p=0

ENp

where
Ξp,n = (Ξi

p,n)Ni=1 = (ξip)1≤i≤N

with ξip = (ξi0,p, . . . , ξip,p).
We define the approximation of the normalizing constant Ẑr,n by:

ẐNr,n(Ξn) ,
n∏
p=0

hp(r, ξp)
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where hNp (r, ξp) , ηNr,p(Gp,r) = 1
N

N∑
i=0

Gp,r(ξip).

Let denote by Z̄Nr,n the following quantity:

Z̄Nr,n(Ξn) ,
ẐNr,n(Ξn)
Ẑr,n

and PNr,n be the genealogical tree distribution associated to the realization r of R, we have
that:

πNr,n(Ξn) = Z̄Nr,n(Ξn)PNr,n(Ξn)

Then

πNn (r,Ξn) = πNn (Ξn) 1
Ẑn
Ẑr,nλ(r)

= Z̄Nr,n(Ξn)PNr,n(Ξn) 1
Ẑn
Ẑr,nλ(r)

=
ẐNr,n(Ξn)
Ẑr,n

PNr,n(Ξn) 1
Ẑn
Ẑr,nλ(r)

=
ẐNr,n(Ξn)
Ẑn

PNr,n(Ξn)λ(r)

= 1
Ẑn


n∏
p=0

hNp (r, ξp)

PNr,n(Ξn)λ(r)

Marginalizing out with respect to the genealogical tree the distribution πNn (r,Ξn) we
obtain the empirical measure approximating πn(dr) which is the parameter posterior
distribution. Then, the idea consists in using MH algorithm to draw a sample from the
target distribution πNn (r,Ξn) with the proposition kernel given by:

K((r,Ξn), d(r′,Ξ′n)) = L(r, dr′)PNr′,n(Ξ′n)

where L is a reversible kernel with respect to λ and the acceptance/rejection ratio given
by:

a((r,Ξ), d(r′,Ξ′)) = 1 ∧ Ẑr
′,n(Ξ′)λ(r′)L(r′, dr)
Ẑr′,n(Ξ)λ(r)L(r, dr′)

We present in Algorithm 4 the pseudo-code form of the particle MCMC algorithm.

2.3.3 Adaptation of the PMCMC algorithm for parameter and
state estimation in a random environment

Going back to the problem we are concerned with, we have to consider also that the
random process Xn is influenced by the random media Θn. Therefore the PMCMC
algorithm developed by Andrieu et al. (2010) is not adapted. However, we present in this
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Algorithm 4 Particle MCMC - PMCMC
Require: ηr,0, (Mr,n)Tn=0, (Gn,r)Tn=0 and r0
Ensure: Particle approximation of P(R ∈ dr|Y0:T = y0:T ) and Pηr,0(X0:T ∈ dx0:T |Y0:T =
y0:T , R = r)
Begin
1. Parameter initialization p = 0
rp = r0
for p = 0, . . . , nsample do
2. Particle filtering for rp
2.1 Initialization n = 0
for i = 1, . . . , N do
Sample ξi0 ∼ ηr,0,

end for
for n = 0, . . . , T do
2.2 Selection of particles
Sample In = (I in)Ni=1 according to a multinomial distribution with probability ∝(
Gn,rp(ξin,T )

)N
i=1

Update the lineage vector ξ̂in = (ξI
i
n

0,n, . . . , ξ
Iin
n,n)

2.3. Mutation of particle
Sample independently ξin+1,T according to Mr,n(ξI

i
n
n,T , .)

Update the lineage vector ξin+1 = (ξi0,n+1, . . . , ξ
i
n+1,n+1)

end for
3. Likelihood evaluation
Evaluate ẐNrp,T (ΞT )
4. Mutation of the parameter rp
Sample r∗ using the kernel L(rp, .)
5. Particle filtering for r∗

Repeat step 2 using r∗ instead of rp
6. Likelihood evaluation
Evaluate ẐNr∗,T (Ξ∗T )
7. Acceptance rejection step{
rp+1 = r∗

Ξp+1
T = Ξ∗T

with probability a((rp,ΞT ), (r∗,Ξ∗T )).

end for
End
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paragraph an adaptation which uses the same idea as the PMCMC algorithm, that is
using the particle approximation inside a Metropolis Hasting algorithm. First we recall
all the notations taken from Section 2.2 and we adapt them to the additional problem
of parameter posterior distributions estimation. Then we present the adapted algorithm
which is named by us as labeled island particle MCMC method (liPMCMC).

Filtering and estimation problem

Using the same notations as in Section 2.2, we consider that the random process Xn

depends now on the parameter R, which is a random variable on (S,S) with distribution
λ. As before Yn stands for the partial observation process of (Θn, Xn). We want to
estimate the conditional distribution of the process (Θn, Xn) using the observations Yn
but also the distribution of R given the sequence of observations. To model this filtering
problem, one can use the model developed in Section 2.2. Nevertheless, all the quantities
such as the quenched process and the process evolving in the distribution space depend
on the parameter r. To make it clear in the notations, all the quantities which depends
on r are identified by the subscript r. The random process in distribution space denoted
by Xr,n, is now given by:

Xr,n = (Θn, η
X
θ0:n,r,n) ∈ En , EΘ

n × P(EXn )

It is still a Markov chain, with initial distribution ηr,0 and transition kernel M r,n. There-
fore we can still use a Feynman-Kac path measure but this time in distribution space to
denote the quantity we look for estimation. Let denote by Q̄ηr,0,r,n this quantity which is
defined by:

Q̄ηr,0,r,n(d((θ0, η
X
θ0,r), . . . , (θn, η

X
θ0:n,r,n))) = 1

Z̄r,n


n−1∏
p=0

Ḡp,r(xp)

 ηr,0(dx0)

M r,1(x0, dx1) . . .M r,n(xn−1, dxn) (2.59)

with the normalizing constant Z̄r,n given by:

Z̄r,n = Eηr,0

n−1∏
p=0

Ḡr,p(Xp)


where the potential functions are defined for all xp ∈ Ep such that:

Ḡp,r(xp) =
∫
Gp,θp,r(xp)ηXθ0:p,r,p(dxp)

The quantity defined by (2.59) corresponds to following conditional probability:

Pηr,0(X0:n ∈ dx0:n|Y0:n−1 = y0:n−1, R = r)
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Concerning the normalizing constant, we can observe that Z̄r,n corresponds to the likeli-
hood Pηr,0(Y0:n−1 ∈ dy0:n−1|R = r).
We denote by ˆ̄Qηr,0,r,n the updated version of the Feynman-Kac distribution Q̄ηr,0,r,n, it
corresponds to the conditional probability Pηr,0(X0:n ∈ d(x0, . . . , xn)|Y0:n = y0:n, R = r)
and is given by:

ˆ̄Qηr,0,r,n(d((θ0, η
X
θ0,r), . . . , (θn, η

X
θ0:n,r,n)) = 1

ˆ̄Zr,n


n∏
p=0

Gr,p(xp)

 ηr,0(dx0)

M r,1(x0, dx1) . . .M r,n(xn−1, dxn) (2.60)

with the normalizing constant ˆ̄Zr,n given by:

ˆ̄Zr,n = Eηr,0

 n∏
p=0

Ḡr,p(Xp)


Therefore, when R is given equal to r, labeled island particle filtering technique can be
used to estimate the distribution of the signal. Let us introduce the marginal measure
γr,n of the path measure Q̄r,n defined for all fn ∈ Bb(En) by:

γr,n(fn) , Eηr,0

fn(Xn)
n−1∏
p=0

Ḡp,r(Xp)
 (2.61)

We can also define the probability measure ηr,n for all fn ∈ Bb(En) by:

ηr,n(fn) , γr,n(fn)
γr,n(1) (2.62)

The last quantity (2.62) corresponds to the prediction step of the filter.
We also define the updated measure ˆ̄γr,n and the filtering probability measure ˆ̄ηr,n for all
fn ∈ Bb(En) by:

ˆ̄γr,n(fn) = γ̄r,n(Ḡn,rfn) (2.63)

ˆ̄ηr,n =
ˆ̄γr,n(fn)
ˆ̄γr,n(1)

(2.64)

We can note here that the normalizing constant ˆ̄Zr,n can be rewritten using the marginal
Feynman-Kac measure such that:

ˆ̄Zr,n = ˆ̄γr,n(1) = γr,n(Gr,n)

=
n∏
p=0

ηr,p(Gr,p)︸ ︷︷ ︸
hp(r)

Now all the notations are defined we come back to the original problem: joint estima-
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tion of state and parameter of the model. To do so, we use the Bayesian rule in order to
obtain the following equation:

πn(r) , P(R ∈ dr|Y0:n = y0:n) = P(Y0:n ∈ dy0:n|R = r)P(R ∈ dr)
P(Y0:n ∈ dy0:n) (2.65)

where,
P(Y0:n ∈ dy0:n|R = r) =

n∏
p=0

P(Yp ∈ dyp|Y0:p−1 = dy0:p−1, R = r)︸ ︷︷ ︸
hp(r)

.

The quantity defined by (2.65) is the invariant measure we want to approximate. It
can be rewritten as follow:

πn(r) = 1
ˆ̄Zn

n∏
p=0

hp(r)λ(r)

where the quantity ˆ̄Zn denotes
∫ ˆ̄Zr,nλ(r)dr.

The problem which arisen here is that we do not know the hp(r) functions as in the
state space model. The idea developed in Andrieu et al. (2010) consists in using particle
approximations of these functions as they are unbiased. However, in our case particle
approximation cannot be used as the random process considered is lying in a random
environment. To tackle this issue, we replace the particle filters by the labeled island
particle estimations developed in Section 2.2.

Parameter estimation using labeled island particle MCMC methods

Now the question of the triple estimation is given, we propose in this paragraph a particle
based solution to estimate the hp functions as well as the normalizing constants. This
solution is based on the Algorithm 3 develop in Section 2.2.2. Let us introduce X̃ i

n the
random vector in the product space E0 × . . .× En defined by:

X̃ i
n ,

(
X̃ i

0,n, . . . , X̃
i
n,n

)

where X̃ i
p,n =

(
θip,n, η

X,N2
θi0:p,n,r,p,n

)
and θip,n corresponds to the ancestor at time p of the ith-

island of time n and ηX,N2
θi0:p,n,r,p,n

is the empirical measure associated.
X̃ i
n represents the ancestral line associated with the ith current island and with the real-

ization r of the parameter R.
A {N1, N2}-particle approximation of Q̄r,n is given by the occupation measure:

1
N1

N1∑
i=1

δ(X̃i
0,n,...,X̃

i
n,n)(x0, . . . , xn)

Let denote by Ξn the complete genealogical tree which is defined as follows:

Ξn = (Ξ0,n, . . . ,Ξn,n) , (X̃ [N1]
0 , . . . , X̃ [N1]

n ) ∈
n∏
p=0

EN1
p
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with
Ξp,n =

(
Ξi
p,n

)
1≤i≤N1

=
(
X̃ i
p

)
1≤i≤N1

and
Ξi
p,n = X̃ i

p ,
(
X̃ i

0,p, . . . , X̃
i
p,p

)
We denote by ˆ̄ZN1,N2

r,n the approximation of ˆ̄Zr,n given by the complete genealogical tree
Ξn which is defined as follow:

ˆ̄ZN1,N2
r,n (Ξn) ,

n∏
p=0

hN1,N2
p (r, X̃ [N1]

p )

where

hN1,N2
p (r, X̃ [N1]

p ) = η̃N1
p,r(Gr,p)

= 1
N1

N1∑
i=1

1
N2

N2∑
j=1

Gr,p(θip,p, ξi,jp,p).

Then we define Z̄N1,N2
r,n the approximation of Z̄r,n given by the labeled island particle

algorithm

Z̄N1,N2
r,n (Ξn) ,

ˆ̄ZN1,N2
r,n (Ξn)
Ẑr,n

.

Therefore, denoting by PN1,N2
r,n the distribution of the genealogical tree Ξn associated with

the realization R = r, we get:

ΠN1,N2
r,n (Ξn) = Z̄N1,N2

r,n (Ξn)PN1,N2
r,n (Ξn).

Then

ΠN1,N2
n (r,Ξn) = 1

Ẑn


n∏
p=0

hN1,N2
p (r, X̃p,p)

PN1,N2
r,n (Ξn)λ(r).

Marginalizing out with respect to Ξn the distribution ΠN1,N2
n (r,Ξn), we obtain the em-

pirical measure of measure πn(r) denoted by ΠN1,N2
n (Ξn). So, using a MCMC algorithm,

we can sample with respect to the invariant measure ΠN1,N2
n (r,Ξn) with a coefficient of

acceptance/rejection for two different proposition (r,Ξn) and (r′,Ξ′n) given by:

a((r,Ξn), (r′,Ξ′n)) = min
1,

ˆ̄ZN1,N2
r,n (Ξ′n)

ˆ̄ZN1,N2
r,n (Ξn)


So in order to get the estimation of the parameter r, we can use the Algorithm 5 which is
called labeled island particle MCMC algorithm. This is an MCMC algorithm which use
a labeled island particle model to get the estimation of the likelihood quantities which
enter in the acceptance/rejection ratio computation.

Since we made this adaptation, Chopin et al. in Chopin et al. (2013) introduced a kind
of island particle models where each island is identified by a parameter proposition. They
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Algorithm 5 Labeled island Particle MCMC - lipMCMC
Require: ηr,0, (M̄r,n)Tn=0, (Ḡn,r)Tn=0 and r0

Ensure: Particle approximation of P(R ∈ dr|Y0:T = y0:T ) and P(X0:T ∈ dx0:T |Y0:T =
y0:T , R = r)
Begin
1. Parameter initialization p = 0
rp = r0
for p = 0, . . . , nsample do
2. Island particle filtering for rp
2.1 Initialization n = 0
for i = 1, . . . , N1 do
Sample X̃ i

0 = (θi0, η
X,N2
θi0,rp,0

) ∼ η̃rp,0, θi0
i.i.d∼ ηΘ

0 , and η
X,N2
θi0,r,0

= 1
N2

N2∑
j=1

ξi,j0 where ξi,j0
i.i.d∼

ηXθi0,rp,0
end for
for n = 0, . . . , T do
2.2 Selection of islands
Sample In = (I in)N1

i=1 according to a multinomial distribution with probability ∝(
1
N2

N2∑
j=1

Gn,rp(θin, ξi,jn )
)N1

i=1
for i = 1, . . . , N1 do
2.3 Selection of particles inside each island
Sample J in = (J i,jn )N2

j=1 according to a multinomial distribution with probability
∝
(
Gn,rp(θI

i
n , ξI

i
n,j
n )

)N2

j=1
end for
2.4. Mutation of Island
Sample independently θin+1 according to MΘ

n (θIinn , .)
for j = 1, . . . , N1 do
2.5 Mutation of particles
Sample ξi,jn+1 according to MX

θin,rp ,n,rp
(ξIin,Ji,jn , .)

end for
end for
3. Likelihood evaluation
Evaluate ˆ̄ZN1,N2

rp,T (ΞT )
4. Mutation of the parameter rp
rp  r∗

5. Island particle filtering for r∗

Repeat step 2 using r∗ instead of rp
6. Likelihood evaluation
Evaluate ˆ̄ZN1,N2

r∗,T (Ξ∗T )
7. Acceptance rejection step
p→ p+ 1{
rp+1 = r∗

ΞT = Ξ∗T
with probability a((rp,ΞT ), (r∗,Ξ∗T )).

end for
End
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proposed an algorithm called SMC2 which is a practical version of the idealized iterated
batch importance sampling (IBIS) algorithm introduced by Chopin in Chopin (2002)
for exploring a sequence of parameter posterior distributions. In the SMC2 algorithm,
islands of particles grow continuously with time as particles ancestral lines are required to
estimate the likelihood increments, and by their product to estimate the total likelihood.
The algorithm introduced by Crisan et al. in Crisan and Miguez (2013) is a different
version of the SMC2 which also allows the estimation of fixed parameters of a state-
space dynamic system using sequential Monte Carlo methods. However, unlike the SMC2

method, the proposed algorithm by Crisan et al. operates in a purely sequential and
recursive manner. In particular, the scheme for the rejuvenation of the particles in the
parameter space is simpler, given that it does not need the simulation of the auxiliary
particle filter from initial time to evaluate the likelihood. Further developments to adapt
Crisan work to our case constitutes a possible way to pursue the research about random
process evolving in a random environment with unknown parameters.

2.4 Non-linear filtering for random point process in
a decomposed random field

In this section, we are still interested in estimation techniques able to learn both a random
process which evolves inside a random environment and the environment itself. However
the nature of these processes was not detailed yet. Indeed when considering the application
we are concerned with, aircraft evolving in a random atmospheric environment, we are in
presence of a punctual random process which progresses in a higher dimension random
field. The filtering problem, we put our interest on, consists in estimating the random
atmospheric field along the random path of the aircraft. This question is also at hand in
geophysics. For example in Baehr (2010), the problem treated concerns the turbulence
estimation from 3D local wind measurements. In order to use these measurements, Baehr
developed a model to take into a account the fact that the atmospheric flow is captured
along a random path which can be modelled by a point process.

Hence we give in this section a brief presentation of the acquisition processes developed
by Baehr (2010). As a matter of fact, they give one an adapted framework to deal with
the estimation of the random atmospheric environment using aircraft processes. However,
the aim of this work is to consider air-traffic process, that is several aircraft processes.
So, we have to take into account several acquisition processes representing each aircraft
evolving in the same atmospheric field. We propose a way to combine them in order
to estimate the random atmospheric media on several domains instead of giving several
point estimation of it. We develop an adaptation of the discrete acquisition process in
an locally homogeneous random field proposed by Baehr to decomposed random field in
homogeneous sub-domains.
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2.4.1 Local estimation of random field using acquisition process

Estimating a random field using a quantity of lower dimension than the field makes appear
difficulties. Indeed to give a good estimation of the random medium, one may lack of
information. Before dealing with the filtering issue when using observations delivered
by a random process leaving in a random field, we recall the stochastic modelling first
introduced in Baehr (2009) in the context of atmospheric turbulent velocities estimation
using LIDAR observations. To this end, let us remind that Θn was previously considered
as a random environment. Now, take Θn,x as a multidimensional random field. That
is a set of random variable taking value in EΘ

n indexed by the time n and points x in
the configuration space E whose dimension is greater than one. Then let us introduce
a random process Zn ∈ E whose evolution is independent from the evolution of Θn,x.
Instead of studying the random field on the whole configuration space E, we attach our
attention on the value taken by the random field at Zn. Then it appears clearly that
estimating the random field on the whole space E using only the observations made along
Zn is not possible. However a local estimation is attainable. For that purpose, several
quantities have to be defined such as the acquisition process, developed in Baehr (2010).

Definitions

First let us define what we mean by Acquisition system.

Definition 2.4.1 (Acquisition system, Baehr (2010)). Let E ⊂ Rd, d ∈ N∗ be a metric
locally compact space of point called configuration space. E is endowed with the σ-algebra
E.
Let EΘ

n ⊂ Rd′, d′ ∈ N∗ be a multidimensional space called phase space endowed with the
σ-algebra E ′. Let (Ω,F , (Fn)n≥0,P) be a complete filtered probability space. Let N > 0 be
a positive integer and x ∈ E a point of the configuration space. Let Zn be the (E, E)-valued
random variable family on (Ω,F ,Fn) indexed by the time n ∈ J0, NK and Θn,x be the
(EΘ

n , E ′)-valued random variable on (Ω,F ,Fn) indexed by the time n ∈ J0, NK at the point
x ∈ E.
Then the pair of applications Fn-measurable, (Zn,Θn,x) is called the acquisition System
of the random vector field. The process Zn is called the Acquisition Path and the family
Θn,x is called the Acquisition Field.

Till now, this system does not relate the acquisition process Zn to the Acquisition field
Θn,x. So, let us introduce the Acquisition process which is the Acquisition of the field
along the acquisition path.

Definition 2.4.2 (Acquisition Process, Baehr (2010)). Let (Zn,Θn,x) be a (E, E)×(EΘ
n , E ′)-

valued Acquisition system on the probability space (Ω,F ,Fn,P). For any n ∈ J0, NK, the
Acquisition Process is defined by the (EΘ

n , E ′)-valued process on (Ω,F ,Fn) An with

An , Θn,Zn
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As one can see here, the Acquisition process An, located at Zn do not need the knowl-
edge of the vector field everywhere. In addition, the nature of the acquisition process An
is hardly linked to Zn. We give now an example of acquisition process in continuous time
which is fruitful for the air-traffic application.

Example 2.4.1 (Lagrangian acquisition process). Let Θn,x be an (EΘ
n , E ′)-valued random

bounded vector field C∞. Let z0 a point in E and for all 0 < t < T , letWt be a Ft-Brownian
motion on (Ω,F ,Ft,P). We define the stochastic flow (see Arous (1989)):

Zz0
t = z0 +

∫ t

0
Θs,Z

z0
s
◦ dWs

where ◦ signs the Stratonovich integral.
Then the Acquisition process is At = Θt,Z

z0
t
. By analogy with physics, we call this

process a Lagrangian acquisition.

We do not intend here to study the existence problem of the previous integral. The
interested reader may refer to Mikulevicius and Rozovskii (2004) for the existence proof
in the case of the 2D Stochastic Navier-Stockes equation. Now, recording the estimation
problem of the random field along the random path, we introduce the acquisition process
in locally homogeneous medium.

Definition 2.4.3 (Locally homogeneous Acquisition Process, Baehr (2010)). For all n ∈
N, let (Zn,Θn,x) be an (E×EΘ

n )-valued Acquisition System and An = Θn,Zn an Acquisition
Process. The Acquisition System is said to be locally homogeneous if:

• E is a metrizable locally convex space with a convex set covering A = ⋃
i∈I
Ai where I

is an index set.

• For all n ∈ N and any x ∈ E, there exists εn > 0 and i ∈ I such that:
B(x, εn) ⊂ Ai with B(x, εn) , {y ∈ E, |x−y| ≤ εn} and for all y ∈ B(x, εn) , Bε

n(x),
a ∈ EΘ

n , we have:

P(An ∈ da|Zn = x) = P(An ∈ da|Zn = y)

We denote by P(An|Zn ∈ Bε
n(x)), the conditional probability law of the acquisition process

An given that Zn belongs to the ball Bε
n(x)

Now all the concepts are well defined, we remind here the model developed by Baehr
(2010) to estimate the acquisition process given the acquisition path. In mathematical
terms, this quantity corresponds to the conditional expectation:

E [f(Zn, An)|Z0:n ∈ B0:n]

with B0:n the hull of the balls given by B0:n = ⋃
p∈J0,nK

Bε
p. Assume that the conditional

probability P(An ∈ da|Zn) is absolutely continuous with respect to the Lebesgue measure,
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and that its density denoted by pAn|Zn(a|z) is given by the joint density:

pAn|Zn(a|z) = pZn,An(z, a)∫
EΘ
n
pZn,An(z, a)da.

Then the quantity E [f(Zn, An)|Zn ∈ Bε
n] can be rewritten as follow:

E [f(Zn, An)|Zn ∈ Bε
n] =

∫
E×EΘ

n

f(z, a)pAn|Zn∈Bεn(a|z)dzda

=
∫

E×EΘ
n

f(z, a)p
Zn,An(z, a)1Bεn(z)∫
E 1Bεn(z)pZn(z)dzdzda =

E
[
f(Zn, An)1Bεn(Zn)

]
E
[
1Bεn(Zn)

]
Finally we have:

E [f(Zn, An)|Z0:n ∈ B0:n] =
E
[
f(Zn, An)

n∏
p=0

1Bεp(Zp)
]

E
[
n∏
p=0

1Bεp(Zp)
] . (2.66)

This quantity suggests an underlying Feynman-Kac structure. That is a two step evo-
lution, as for the filtering equation, one for the mutation of the process, the second one
being a selection defined thanks to the indicator function of the subset Bε

n.

Acquisition process for one aircraft evolving in a random atmosphere

Let consider the acquisition process induced by the aircraft path, we define the acquisition
system (Zn,Θn,x) composed of the aircraft position, denoted by Zn, and the random
atmospheric field taken at the position x, Θn,x. Let An be the Lagrangian acquisition
process Θn,Zn . Here we suppose that we have access to the global field Θn, that is one
can get the value of the random field at every point x ∈ E and the random field evolves
thanks to a global model. This assumption is convenient here, because if the random
atmospheric field had been described by a local model, then it would have been mandatory
to introduce a Lagrangian acquisition process to model the local fluid evolution as in Baehr
(2010). This remark being made, suppose that the acquisition system (Zn,Θn,x) is locally
homogeneous.

The estimation problem we are concerned with can be written as the conditional
expectation of the process (Xn, An) given the observations of Xn and Zn ∈ Bε

n, illustrated
by Figure 2.4. The random process Xn denotes the aircraft process which takes its value
in EXn , where EXn encapsulate the dynamics parameters but also the position of the aircraft
denoted by Zn. In other terms, we want to estimate the following quantity:

E [f(Xn, An)|Z0:n ∈ Bε
0:n, Y0:n = y0:n] .

As we have seen this conditional expectation can be written in the following form:
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Acquisition process

Figure 2.4: Acquisition process for one aircraft evolving in a random atmosphere

E [f(Xn, An)|Z0:n ∈ Bε
0:n, Y0:n = y0:n] =

E
[
f(Xn, An)

n∏
p=0

1Bεp(Zp)|Y0:n = y0:n

]

E
[
n∏
p=0

1Bεp(Zp)
] .

However, for every p ∈ J0, nK the ball Bε
p is built from the process Zn. Then the expecta-

tion E
[
n∏
p=0

1Bεp(Zp)
]
which corresponds to the probability for the path process (Zp)np=0 to

be in the hull defined by the sequence of balls (Bε
p)np=0, is equal to 1.

Finally we obtain:

E [f(Xn, An)|Z0:n ∈ Bε
0:n, Y0:n = y0:n] = E [f(Xn, An)|Y0:n = y0:n] .

To resume, the acquisition process we are interested in can be cast inside the class of
filtering problems for random processes evolving in a random environment developed in
Section 2.2.1. Indeed, if one considers that Xn corresponds to the Markovian stochastic
process which is influenced by the random environment Θn which is also Markov, but
now instead of considering Θn we consider the acquisition process Θn,Zn , we can use the
Interacting Kalman filter (Algorithm 2) or the labeled island particle filter (Algorithm 3),
depending on the evolution model of Xn, to estimate both the law of Xn and Θn,Zn . That
is to estimate (Θn,Zn , η

X
Θ0:n,Z0:n ,n

).

2.4.2 Acquisition processes for fields decomposed in homoge-
neous sub-domains

As we have seen in the precedent section, acquisition processes are convenient to express
the filtering problem we are interested in. Indeed we have seen that the estimation of the
random field Θn along the path of one aircraft can be represented as an acquisition process.
However, consider now that we have an air-traffic process, that is several aircraft evolving
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independent acquisition
processes

Figure 2.5: Aircrafts treated indepen-
dently

Inference of
atmospheric law is

possible at any point inside

Independent random
processes

Area of
homogeneous law

Figure 2.6: Integration of all aircrafts
using homogeneous hypothesis

in the same random atmospheric field. Then we have different acquisition processes, one
for each aircraft. If treated independently, we can estimate the random atmospheric field
along each random path given by each aircraft, see Figure 2.5. Nevertheless the aim of this
study is to use all the aircraft to give an overall estimation of the random field. Indeed,
the benefits are expected to be much greater if one can fuse measurements from multiple
aircraft at different time and location.

Then we have two choices. The first one consists in considering that the random field is
globally homogeneous and uses every aircraft process to give an estimation of the random
atmosphere, see Figure 2.6. Then we fall into the case of random processes evolving in a
random atmosphere, and the labeled island particle filter developed in Section 2.2.2 is well
adapted. The second choice is to consider that the random atmospheric field is composed
of homogeneous sub-domains for which a local estimation is possible using all the aircraft
evolving inside this homogeneous sub-domain, see Figure 2.7. As it is unrealistic to
consider the atmosphere as an homogeneous random field, except for special cases, we
choose the second option.

To this end we need to introduce the decomposition operation which allows one to
obtain a partition of the random field Θn and the Lagrangian acquisition processes, as it
is defined in Example 2.4.1, that gives one the opportunity to follow homogeneous sub-
domains in time. Further we couple the Lagrangian acquisition processes with several
aircraft acquisition processes to give extended local estimation of the random field. Finally
we present a novel particle filter able to deal with random environment decomposed in
homogeneous sub-domains.

Configuration space decomposition

This section is devoted to the configuration space decomposition, that is to the partition
of E in sub-domains such that the random field Θn is homogeneous on every sub-domains.
Consider that at initial time step, the deterministic operator Υ which acts on the power
set E × E ′ of E× EΘ

0 to E such that for any D ∈ E and field Θ0 ∈ E ′ we have:

Υ(D,Θ0) , {B0,l, l ∈ J1, kK} ∪ {f} (2.67)
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segmentation

t=0

Figure 2.7: Aircrafts evolving in an homogeneous partition of the configuration space
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where f stands for an auxiliary cemetery point outside D. In other words, the operator
Υ makes a partition of the set D. That means that the family of sets (B0,l)kl=1 covers D,
so

k⋃
l=1

B0,l = D. And the set-elements of the family are pairwise disjoint: for any l 6= l′,
B0,l ∩ B0,l′ = ∅.
Moreover, we assume that the partition operator Υ makes an homogeneous decomposition
of D, that is for any l ∈ J1, kK, the random field Θ0 is homogeneous on each B0,l. In other
words, for any x, y ∈ B0,l, we have:

P(Θ0,Z ∈ dθ0|Z = x) = P(Θ0,Z ∈ dθ0|Z = y)

where Θ0,Z is the random field Θ0 located at Z. We illustrate the initial time decompo-
sition in Figure 2.7.

We further assume that the characteristic time of the random process Zn is less than
the characteristic time of the environment. To understand what is meant by characteristic
time, let us first introduce the characteristic time of the environment. Depending on the
application one is concerned with, the environment evolution is described by different
physical phenomenons. For example, the environment evolution can be described by a
stochastic wave equation, see Millet and Sanz-Solé (1999); Peszat (2002), by stochastic
transport equations as in Pope (1985); Flandoli et al. (2010) or/and by a stochastic
diffusion equation. Another example is the Lagrangian description of the environment
given by the stochastic flow, defined in Example 2.4.1, transported by the randommedium.
The characteristic time corresponding to the Lagrangian description of the environment,
denoted by τL, is defined with respect to its natural filtration for every x0 ∈ E and B ∈ E
by:

τx0
L (B) , inf{t, x0 +

∫ t

0
Θs,X

x0
s
◦ dWs ∈ B}. (2.68)

Then, it follows that the characteristic time of the environment depends on all the phe-
nomenons influencing its evolution. We define the characteristic time of the environment,
denoted by τΘ, to be the maximum over all characteristic times defined for every physical
phenomenon which have an influence on the environment evolution. It is given for every
x0 ∈ E and B ⊂ E by:

τx0
Θ (B) , max

i∈I
τx0
i (B) (2.69)

where the set I ⊂ N signs for all the physical phenomenons involved into the environment
evolution. For the random process Zn, the characteristic time denoted by τx0

Z is defined
with respect to its natural filtration such that for every x0 ∈ E and B ∈ E we have:

τx0
Z (B) , inf{n, Zn ∈ B|Z0 = x0}. (2.70)

We suppose that both characteristic times are finite. Saying that the characteristic
time of Zn is less that the characteristic time of the environment means that the random
process Zn takes less time to join two points in space than the random medium. Then we

61



Figure 2.8: Configuration space decomposition after the evolution time lapse t originally
given by Figure 2.7

suppose that for all x0 ∈ E and B ∈ E we have:

τx0
Z (B)� τx0

Θ (B). (τ)

Now, let us introduce the continuous Lagrangian acquisition process Θ
t,B

B0,l
t,l

, where the

stochastic flow BB0,l
t,l is defined by:

BB0,l
t,l ,

{
Zx0
t ∈ E, Zx0

t = x0 +
∫ t

0
Θs,Z

x0
s
◦ dWs with x0 ∈ B0,l

}
(2.71)

where ◦ corresponds to the Stratonovich integral.
The stochastic flow BB0,l

t,l corresponds to the domain B0,l obtained after the evolution of
the random field Θs during the time lapse t. Hence, this process allows one to capture the
evolution of the homogeneous partition of D. The evolution is illustrated on Figure 2.8.

Going back to the discrete time acquisition process Θ
n,B

B0,l
n,l

we have that the pair

process (BB0,l
n,l ,Θn,B

B0,l
n,l

) corresponds to the Lagrangian description of the random homo-
geneous field state originally in B0,l. Here we consider that the kernel transition of the
random field Θn preserves the homogeneous condition for each sub-domains. That is BB0,l

n,l

is still an homogeneous sub-domain for the random field Θn, for every x, y ∈ BB0,l
n,l we

have:
P(Θn,X |X = x) = P(Θn,X |X = y). (C1)

Moreover we suppose that the kernel transition preserves the configuration space par-
tition, that is:

k⋃
l=1

BB0,l
n,l = D, (C2)

and for any l 6= l′, we have
BB0,l
n,l ∩ BB0,l′

n,l′ = ∅. (C3)

Then no homogeneous sub-domains can appear neither disappear with time.
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Acquisition processes for decomposed homogeneous medium

As we have seen in the previous section, the decomposition of the configuration space in
homogeneous sub-domains brings about an acquisition process. Thus we are in presence of
two acquisition processes, one to take into account the acquisition of the random field Θn

along the random path Zn, the other one to follow homogeneous sub-domains BB0,l
n,l . The

path given by Z0, . . . , Zn is assumed to be independent from the Lagrangian dynamic of
the acquisition process (BB0,l

n,l ,Θn,B
B0,l
n,l

). Moreover, we suppose that the process Zn evolves

in the whole space E, that is it can be in any sub-domain BB0,l
n,l but necessarily fall on into

one of them as they made a partition of the configuration space E. Further we assume
that the random field Θn evolves globally, then the evolution of Zn which depends on the
value of Θn at Zn is accessible at any point of the configuration space.

Now we have made all these remarks, we mix two acquisition processes in order to
estimate the random field on homogeneous sub-domains using the random path given
by Z0, . . . , Zn. The first one is the Lagrangian acquisition process (BB0,l

n,l ,Θn,B
B0,l
n,l

), and
the other one is the acquisition process along the path which is independent from the
sub-domains evolution denoted by (Zn,Θn,Zn). Using the homogeneity hypothesis of each
sub-domains, we propose to estimate the conditional expectation of the pair process:
random process Zn, random media on BB0,l

n,l , given that the position process Zn falls on
the homogeneous sub-domain BB0,l

n,l , defined for any fn ∈ Bb(E× EΘ
n ) by:

E
[
fn(Zn,Θ

n,B
B0,l
n,l

)|Z0:n ∈ BB0,l
0:n,l

]
. (2.72)

The couple (Zn,Θ
n,B

B0,l
n,l

) is supposed to be a Markovian process whose evolution is given
by the kernel transition Tn defined as follow:

Tn((z, θ), d(z′, θ′)) = P
(
Zn+1,Θ

n+1,B
B0,l
n+1,l
∈ d(z′, θ′)|(Zn,Θ

n,B
B0,l
n,l

) = (z, θ)
)
.

Using the same reasoning as for (2.66), we have that (2.72) can be written as:

E
[
fn(Zn,Θ

n,B
B0,l
n,l

)
n∏
p=0

1
B

B0,l
p,l

(Zn)
]

E
[
n∏
p=0

1
B

B0,l
p,l

(Zp)
] .

Recording that Zp is independent of the domain evolution BB0,l
p,l , the point process Zp can

fall on into BB0,l
p,l , but it can be every where else, that is in another sub-domain. Therefore

the joint probability that Zp is in BB0,l
p,l , for p ∈ J1, nK can nullify. In this case, the measure

defined by (2.72) does not make sense and the estimation problem cannot be solved.
To overcome this issue, instead of considering only one random point process Zn, we

consider that we have several independent ones grouped under the notation Zn = (Zi
n)Mi=1.

If there are enough random processes in E, then one can hope that at least one is present
in each BB0,l

p,l for p ∈ J1, nK and l ∈ J1, kK. If none of them are in the sub-domain BB0,l
n,l ,
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there is no estimation problem for this area of E. That is the reason why, we consider only
the estimation problem for the balls where at least one random point process Zi

n falls on.

To sum up, we estimate the quantity defined by (2.72) for the acquisition process BB0,l
n,l ,

where l ∈ J1, kK is such that at least one of the random point process Zi
n is in BB0,l

n,l . All the
others acquisition processes cannot be evaluated. The estimation concerns the following
quantities:

χ̂ln(fn) ,
E
[
fn(Zn,Θ

n,B
B0,l
n,l

)
n∏
p=0

G
B

B0,l
p,l

p (Zp)
]

E
[
n∏
p=0

G
B

B0,l
p,l

p (Zp)
] (2.73)

and

χln(fn) ,
E
[
fn(Zn,Θ

n,B
B0,l
n,l

)
n−1∏
p=0

G
B

B0,l
p,l

p (Zp)
]

E
[
n−1∏
p=0

G
B

B0,l
p,l

p (Zp)
] (2.74)

where the potential function GB
B0,l
p,l

p is defined as follow:

G
B

B0,l
p,l

p (Zp) , (1
B

B0,l
p,l

(Zi
p))Mi=1. (2.75)

As one may observe, the potential function GB
B0,l
p,l

p is equal to the sequence (0, . . . , 0)︸ ︷︷ ︸
M×

, when

no processes are present in the sub-domain BB0,l
n,l . However we made the assumption that

there are enough random processes evolving inside E, that is M � 1, so that at least one

falls inside BB0,l
p,l for each p ∈ J1, nK. It follows that GB

B0,l
p,l

p 6= 0.

Without changing the expression of (2.73), instead of considering the conditioning to
the sub-domain BB0,l

p,l , we consider it on the cylinder BB0,l
p,l ×EΘ

n and we define the potential

G̃
B

B0,l
l,p

p for the couple (Zp,Θ
p,B

B0,l
p,l

) which is defined by:

G̃
B

B0,l
p,l

p (Zp,Θ
p,B

B0,l
p,l

) , G
B

B0,l
p,l

p (Zp)× 1EΘ
n

(Θ
p,B

B0,l
p,l

). (2.76)

To this potential we associate the selection kernel SZ
p,χln

defined for any (zMp , θ) ∈ EMp ×EΘ
p

by:

SZ
p,χlp

((zMp , θ), .) = G̃
B

B0,l
p,l

p (zMp , θ)δ(zMp ,θ)(.) + (1− G̃B
B0,l
p,l

p (zMp , θ))δ{f}(.) (2.77)

where f corresponds to the auxiliary virtual cemetery point where the random point
process ends if it outside BB0,l

n,l . Recording that for each i ∈ J1,MK, we have supposed
that:

Tn((z, θ), d(z′, θ′)) = P
(
Zi
n+1,Θn+1,B

B0,l
n+1,l
∈ d(z′, θ′)|(Zi

n,Θn,B
B0,l
n,l

) = (z, θ)
)
.
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χln χ̂ln = χlnS
Z
n,χln

χln+1 = χ̂lnTn+1
Cutting

SZ
n,χln

Mutation
Tn+1

Figure 2.9: Evolution scheme of the coupled process.

We extend Tn, and set Tn(f, .) = 0. Then for the process Z, we have:

P(Zn+1,Θ
n+1,B

B0,l
n+1,l
∈ d(zMn+1, θ

′)|(Zn,Θ
n,B

B0,l
n,l

) = (zMn , θ))

=
M∏
i=1

P(Zi
n+1,Θn+1,B

B0,l
n+1,l
∈ d(zin+1, θ

′)|(Zi
n,Θn,B

B0,l
n,l

) = (zin, θ))

as aircrafts evolves independently. Then it follows that:

P
(
Zn+1,Θ

n+1,B
B0,l
n+1,l
∈ d(zMn+1, θ

′)|(Zn,Θ
n,B

B0,l
n,l

) = (zMn , θ)
)

=
M∏
i=1

Tn((zin+1, θ), d(zin, θ′))

, Tn((zmn , θ), d(zMn+1, θ
′)).
(2.78)

Then from the initial distribution of the acquisition process:

χ0(d(zM0 , θ0)) = P((Z0,Θ0,B0,l) ∈ d(zM0 , θ0)),

we have the time evolution scheme which is given by two step, a mutation given by Tn
and a cutting step given by SZ

n,χln
. We resume this by the following equation:

χln = χln−1S
Z
n−1,χln−1

Tn. (2.79)

Recording that χ̂ln−1 = χln−1S
Z
n−1,χln−1

, we represent the two steps evolution scheme of the
measure χln on Figure 2.9.

The coupling between the acquisition processes induced by the random point processes
and the Lagrangian acquisition system to follow the homogeneous balls BB0,l

n,l is a cutting
of the random point processes after the Lagrangian mutation. Random processes which
are outside the homogeneous sub-domain are ignored. The pair process is also a random
process evolving in the random environment, then the work developed in Section 2.2.1 can
also be used for this case. Except that now we have an additional step for the process Zn
given by the cutting step through the selection kernel SZ

n,χln
. That is for each sub-domain

we have a 3 steps algorithm: the first allows one to make evolute the environment and
the homogeneous sub-domains, the second consists in the dynamic evolution of the point
processes using the global environment, the third enables one to keep only the random
point processes which have fallen inside the homogeneous sub-domain after its evolution.
That is, if one considers the random environment to be Θ

n,B
B0,l
n,l

and the random process
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ηZΘ0:n,n cut to BB0,l
n,l then we fall again in the framework of random distribution processes,

except that after the evolution of Zn, the random processes are selected using SZ
n−1,χln−1

in order to consider only those which have fallen in BB0,l
n,l . Finally we try to estimate:

ηln , E
[
f(Θ

n,B
B0,l
n,l

, ηZΘ0:n,n)|Z0:n ∈ BB0,l
0:n,l

]
. (2.80)

In order to estimate (2.80), we develop a similar approximation procedure as for the
measure ηn given by Proposition 2.2.1. To this end, let us define the quenched acquisition
processes.

Quenched acquisition processes Fix the environment sequence Θ0:n = θ0:n ∈
n∏
p=0

EΘ
p ,

and for any l ∈ J1, kK set BB0,l
0:n,l = bb0,l

0:n,l, Suppose that the random process Zn = (Zi
n)Mi=1,

composed of independent Markov processes with M � 1, is a Markov chain of transition
kernel MZ

θn,n from EMn−1 to EMn given by:

MZ
θn,n(zMn−1, dzMn ) ,

M∏
i=1

MZ
θn,n(zin−1, dzin) (2.81)

where the transition kernel MZ
θn,n corresponds to the evolution of each random process

extended to D ∪ {f} by setting: MZ
θn,n(f, .) = 0. Its initial distribution is given by:

ηZθ0(dzM0 ) ,
M∏
i=1

ηZθ0(dzi0). (2.82)

One finally gets:

Pθ0:n,n

(
Z0:n ∈ d(zM0 , . . . , zMn )|Z0,n ∈ bb0,l

0:n,l)
)

= 1

Z
b

b0,l
0:n,l
θ0:n,n


n−1∏
p=0

G
b

b0,l
p,l

θp,p
(zMp )


ηZθ0(dzM0 )MZ

θ1,1(zM0 , dzM1 ) . . .MZ
θn,n(zMn−1, dzMn ) (2.83)

with normalizing constant:

Z
b

b0,l
0:n,l
θ0:n,n = EηX

θ0

n−1∏
p=0

G
b

b0,l
p,l

θp,p
(ZM

p )


which is strictly positive by construction (thanks to hypothesis M � 1 and condition
(τ)). The random potential functions are defined using (2.76) such that:

G
b

b0,l
p,l

θp,p
: zMp ∈ EMp 7→ G

b
b0,l
p,l

θp,p
(zMp ) = G̃

b
b0,l
p,l
p (θp, zMp ).

The quantity defined by (2.83) is also denoted byQb
b0,l
0:n,l
θ0:n,n and called the quenched Feynman-

Kac path measure cut to bb0,l
0:n,l. We denote the updated version as before by Q̂

b
b0,l
0:n,l
θ0:n,n given
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by:

Q̂
b

b0,l
0:n,l
θ0:n,n(d(zM0 , . . . , zMn )) = Pθ0:n,n

(
Z0:n ∈ d(zM0 , . . . , zMn )

∣∣∣Z0,n ∈ bb0,l
0:n,l

)
= 1

Ẑ
b

b0,l
0:n,l
θ0:n,n

{
n∏
p=0

G
b

b0,l
p,l

θp,p
(zMp )

}
ηZθ0(dx0)MZ

θ1,1(zM0 ,dzM1 ) . . .MZ
θn,n(zMn−1,dzMn )

(2.84)

where Ẑb
b0,l
0:n,l
θ0:n,n , EηZ

θ0

[
n∏
p=0

G
b

b0,l
p,l

θp,p
(Zp)

]
> 0.

We can associate to it the quenched distribution flow denoted by ηZ,lθ0:n,n which is defined
for all fn ∈ Bb(EMn ) as follow:

ηZ,lθ0:n,n(fn) = γZ,lθ0:n,n(fn)/γZ,lθ0:n,n(1) (2.85)

where the unnormalized Feynman-Kac measure γZ,lθ0:n,n is given for all fn ∈ Bb(EMn ) by:

γZ,lθ0:n,n(fn) , E

fn(Zn)
n−1∏
p=0

G
b

b0,l
p,l

θp,p
(Zp)

 . (2.86)

The denominators are well defined by construction as M � 1 and under the condition
(τ). We can notice that the normalized Feynman Kac measure as in the precedent section
corresponds to the prediction step in a Bayesian framework:

ηZ,lθ0:n,n = Law(Zn|Z0:n−1 ∈ bb0,l
0:n−1,Θ0,n = (θ0, . . . , θn)).

The updated version of this distribution denoted by η̂Z,lθ0:n,n which corresponds to the
cutting step is given for all fn ∈ Bb(EMn ) by:

η̂Z,lθ0:n,n(fn) = γ̂Z,lθ0:n,n(fn)/γ̂Z,lθ0:n,n(1) (2.87)

where the unnormalized Feynman-Kac measure γ̂Z,lθ0:n,n is given for all fn ∈ Bb(EMn ) by:

γ̂Z,lθ0:n,n(fn) , E

fn(Zn)
n∏
p=0

G
b

b0,l
p,l

θp,p
(Zp)

 .
As it is the case for classical filtering problem, quantities defined by (2.85) and (2.87)

are related by the following operations:

η̂Z,lθ0:n,n(fn) = η̂Z,lθ0:n,n(Gb
b0,l
n,l

θn,n
fn)/η̂Z,lθ0:n,n(Gb

b0,l
n,l

θn,n
) (2.88)

and
ηZ,lθ0:n+1,n+1 = η̂Z,lθ0:n,nM

Z
θn+1,n+1. (2.89)

Equation (2.88) can be written as a Boltzmann-Gibbs transformation, ΨZ,l
θn,n

, associ-
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ated to the potential function Gb
b0,l
n,l

θn,n
, where the Boltzmann Gibbs measure, ΨZ,l

θn,n
(ηZ,lθ0:n,n)

is defined for any ηZ,lθ0:n,n ∈ P(EMn ) by:

ΨZ,l
θn,n

(ηZ,lθ0:n,n)(dzMn ) = 1

ηZ,lθ0:n,n(Gb
b0,l
n,l

θn,n
)
G

b
b0,l
n,l

θn,n
(zMn )ηZ,lθ0:n,n(dzMn ). (2.90)

This update step allows one to take only random processes which fall into bb0,l
n,l . Thanks

to the assumption on first hitting times (τ) we have formulated, the Boltzmann-Gibbs
transformation is well-defined.

Using (2.90), we define the mapping ΦZ,l
n from P(EMn−1) to P(EMn ) for any

ηZ,lθ0:n−1,n−1 ∈ P(EMn−1) by:

ΦZ,l
n :

(
EMn−1 × EΘ

n

)
× P(EMn−1) → P(EMn )(

(θn−1, θn), ηZ,lθ0:n−1,n−1

)
7→ ΨZ,l

θn−1,n−1(ηZ,lθ0:n−1,n−1)MZ
θn,n

(2.91)

Then we resume the cutting-prediction filtering recursions by the following diagram:

ηZ,lθ0:n−1,n−1
cutting−−−−→ η̂Z,lθ0:n−1,n−1 = ΨZ,l

θn,n
(ηZ,lθ0:n−1,n−1) prediction−−−−−→ ηZ,lθ0:n,n = η̂Z,lθ0:n−1,n−1M

Z
θn,n (2.92)

As it was done for the classical filtering problem, we write the McKean interpretation
of the quenched Feynman-Kac measure ηZ,lθ0:n,n. The non linear recursion (2.91) can be
rewritten in the following recursive form:

ηZ,lθ0:n,n = ηZ,lθ0:n−1,n−1K
Z,l
n,ηZ,l

θ0:n−1,n−1
(2.93)

where KZ,l
n,ηZ,l

θ0:n−1,n−1
is a transition kernel defined by:

KZ,l
n,ηZ,l

θ0:n−1,n−1
= Sn−1,ηZ,l

θ0:n−1,n−1
MZ

θn,n (2.94)

with Sn−1,ηZ,l
θ0:n−1,n−1

the selection kernel associated to Gb
b0,l
n−1,l
θn−1,n−1

SZ
n−1,ηZ,l

θ0:n−1,n−1
((zMn−1, θ), .) = G

b
b0,l
n−1,l
θn−1,n−1(zMn−1)δ(zMn−1)(.)+(1−Gb

b0,l
n−1,l
θn−1,n−1(zMn−1)δ{f}(.) (2.95)

where f has been introduced to be an auxiliary cemetery point not in D. The remaining
problem here, is that we do not know the environment realization. Then, the quenched
Feynman-Kac flow cannot be used to model our problem. Therefore, we have to consider
the environment as a random process also.

Acquisition process in random distribution space As we do not know the random
environment where the stochastic process Zn evolves, the quenched Feynman-Kac measure
cannot be used in order to model the law of the filtering problem. So we have to use
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another quantity which is a second Feynman-Kac measure but this time in distribution
space, to this end we introduce the sequence X l

n = (Θ
n,B

B0,l
n,l

, ηZ,lθ0:n,n) ∈ En , EΘ
n × P(EMn ),

for l ∈ J1, kK. We recall here the condition (τ) formulated to ensure that homogeneous
sub-domains are not emptied in one time step from all random processes present for the
previous time step. As it was shown by Del Moral in Del Moral (2004), p. 85 , the pair
process is a Markov chain.

Proposition 2.4.1. The stochastic process X l
n is a Markov chain under Pχl0 with transi-

tion kernel M l

n defined for all fn ∈ Bb(En) and (θ
n,b

b0,l
n,l

, ηZ,lθ0:n,n) ∈ En by:

M
l

n((θ
n−1,b

b0,l
n−1
, ηZ,lθ0:n−1,n−1), d(θ

n,b
b0,l
n,l

, ηZ,lθ0:n,n))(fn)

,
∫

EΘ
n

MΘ
n (θ

n−1,b
b0,l
n−1
, dθ

n,b
b0,l
n

)fn(θ
n,b

b0,l
n
,ΦZ,l

n (θn−1, θn, η
Z,l
θ0:n−1,n−1)) (2.96)

and initial distribution, denoted by η0 ∈ P(E0) given by:

ηl0(d(u, ν)) = ηΘ
0,B0,l

(du)δηZ,l
θ0,0

(dν)

where ηΘ
0,B0,l

corresponds to the initial distribution of the random environment on B0,l.

Proof. ∀fn ∈ Bb(En):

Eη0 [fn(X l

n) | σ(X l

0, . . . , X
l

n−1)] = Eη0 [fn(Θ
n,B

B0,l
n,l

, ηZ,lθ0:n,n
) | σ(X l

0, . . . , X
l

n−1)]

= Eη0 [fn(Θ
n,B

B0,l
n,l

,ΦZ,l
n

(
(Θn−1,Θn), ηZ,lθ0:n−1,n−1

)
| σ(X l

0, . . . , X
l

n−1)].

As X l
n−1 = (Θ

n−1,B
B0,l
n−1,l

, ηZ,lθ0:n−1,n−1), we have:

Eη0 [fn(X l

n) | σ(X l

0, . . . , X
l

n−1)] = Eη0 [fn(Θ
n,B

B0,l
n,l

,ΦZ,l
n

(
(Θn−1,Θn), ηZ,lθ0:n−1,n−1

)
| σ(X l

0, . . . , X
l

n−1)]

=
∫

EΘ
n

fn(θ
n,b

b0,l
n,l

,ΦZ,l
n ((Θn−1, θn), ηZ,lθ0:n−1,n−1))MΘ

n (Θ
n−1,B

B0,l
n−1

,dθ
n,b

b0,l
n,l

)

As one may notice here, the assumption made on the fact that Θn evolves globally
takes its importance here as Zn needs a global knowledge of the random environment to
evolve. The Markov property is not affected as BB0,l

n,l depends only on the evolution of Θn

from its definition.
Then we can define another Feynman Kac flow ηln and γln, denoting respectively the

normalized and unnormalized Feynman Kac distribution in distribution space. They are
defined for all fn ∈ Bb(En) by the following relations:

ηln(fn) , γln(fn)/γln(1) (2.97)
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and

γln(fn) , Eχln

fn(X l

n)
n−1∏
p=0

G
l

p(X
l

p)


where

G
l

p : (u, µ) ∈ Ep 7→ G
l

p(u, µ) =
∫

EMp
µ(dy)G̃B

B0,l
p,l

p (u, y) = µ(G̃B
B0,l
p,l

p (u, .)). (2.98)

From Del Moral (2004) (p. 86), we have that ηln satisfies a non linear recursive equation:

Proposition 2.4.2. For every n ≥ 1, ηln satisfies the following non linear recursive
equation:

ηln = Ψl

n−1(ηln−1)M l

n = Φl

n(ηln−1),

where the application Ψl

n : P(En)→ P(En), is defined for every fn by:

Ψl

n(η)(fn) = η(Gl
nfn)/η(Gl

n),

and the operator Φl

n is defined by:

Φl

n : P(En−1) → P(En)
η 7→ Ψl

n−1(η)M l
n.

(2.99)

In other words, defining η̂ln , γ̂
l

n(fn)/γ̂ln(1) with γ̂ln , Eηl0

[
fn(X l

n)
n∏
p=0

G
l

p(X
l

p)
]
those

two quantities are related by the following relation:

η̂
l

n(fn) = ηln(Gl
nfn)/ηln(Gl

n) (2.100)

and
ηln+1 = η̂

l

nM
l
n+1. (2.101)

By direct inspection, we have that ηln corresponds to the predicting filter and η̂ln to the
updating filter. And we can resume these relations by the following diagram:

ηln
updating−−−−−→ η̂

l

n = Ψl

n(ηln) prediction−−−−−→ ηln+1 = η̂
l

nM
l

n+1 (2.102)

In the non linear case, equation (2.99) cannot be solved analytically. In the next
paragraph, we introduce an interacting particle system to approximate this sequence of
Feynman-Kac measures ((ηln)kl=1)n∈N.

Particle approximation and Patchwork Labeled Island Particle algorithm This
section deals with the interacting "patchwork" labeled island model associated to the
Feynman-Kac distribution flow: ηln for all l ∈ J1, kK, we have defined in the previous
paragraph.

As one may notice ηln, defined by (2.97), has the same shape as ηn, defined by (2.34).
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Then using the same reasoning as in Section 2.2.2, we define a two level interacting particle
systems. Nevertheless, here there is an additional step to make evolute the random process
X
l

n given by the cutting step.
A (N1, N2)- interacting particle system associated to the pair (Gl

n,M
l
n) defined by

(2.98) and (2.96) and the initial distribution ηl0, is a sequence of non-homogeneous Markov
chain, denoted by X l,[N1,N2]

n taking value in the product space EN1
n ,

X
l,[N1,N2]
n , (X l,i

n )N1
i=1 = (X l,1

n , . . . , X
l,N1
n )︸ ︷︷ ︸

N1times

, (θi
n,b

i,b0,l
n,l

, ηZ,l,N2
θi0:n,n

)N1
i=1

where ηZ,l,N2
θi0:n,n

= 1
N i,l,n

2

N i,l,n
2∑
j=1

δξi,jn such that N i,l,n
2 is given by the number of particles ξi,jn in

bi,b0,l
n,l . This figure being different from zero for at least one l as the number of random

process has been supposed to be large.
The initial state of the Markov chain X

l,[N1,N2]
0 consists in N1 independent random

variables with common distribution ηl0. To obtain the initial state, we proceed as follow:

• First sample θi0 ∼ ηΘ
0 for i = 1, . . . , N1.

• Using Υ, get for each θi0, the decomposition of D:

Υ(θi0,D) = {bi0,l, l = 1, . . . , k}.

• For each i = 1, . . . , N1, sample ξi,j0 ∼ ηZθ0 for j = 1, . . . , N2.

• For each i = 1, . . . , N1, keep ξi,j0 ∈ bi0,l.

Set ηl,N1
n the empirical measure at time n, defined by:

ηl,N1
n , 1

N1

N1∑
i=1

δ
X
l,i
n
, (2.103)

the elementary probability transition, is given for any xl,N1
n+1 ∈ E[N1]

n+1 by:

PN1
ηl0

(X l,N1
n+1 ∈ dxl,N1

n+1|X
l,N1
n ) =

N1∏
p=0

Φl

n(ηl,N1
n )(dxl,in+1). (2.104)

Finally the simple genetic model associated to the Feynman-Kac distribution flow ηln
consists in N1 particles where the measure valued part is the particle approximation of
the quenched quantities defined by ηZ,l,N2

θi0:n,n
for i ∈ J1, N1K.

We give an illustration of the evolution scheme followed by the particle in Figure 2.10.
The ensuing algorithm is described in Algorithm 6.
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(θi
n−1,b

i,bi0,l
n−1,l

, ηZ,l,N2
θi0:n−1,n−1)

Selection
(θ̂i
n−1,b

i,bi0,l
n−1,l

, ηZ,l,N2
θ̂i0:n−1,n−1)

Prediction

(θi
n,b

i,bi0,l
n,l

, ηZ,l,N2
θ̂i0:n−1,n−1)

(θi
n,b

i,bi0,l
n,l

, ηZ,l,N2
θi0:n,n

)

MΘ
n

ΦZ,l
n ((θ̂in−1, θ

i
n), ηZ,l,N2

θ̂i0:n−1,n−1
)

Figure 2.10: Evolution scheme of the Island particle model in a homogeneous random
environment

Algorithm 6 "Patchwork" Labeled Island particle algorithm - PIP

Require: ηl0, ((M l

p)kl=1)np=0, ((Ψl

p)kl=1)np=0 and Υ
Ensure: Particle approximation of ηln and η̂ln

Begin
1. Initialization p = 0
for i = 1, . . . , N1 do
Sample θi0 ∼ ηΘ

0
χ(D, θi0) = {bi0,l, l ∈ J1, kK}
for j = 1, . . . , N2 do
Sample ξi,j0 ∼ ηZθ0

end for
end for
for p = 0, . . . , n do
2. Selection of islands
for l = 1, . . . , k do
Sample Ip,l = (I ip,l)N1

i=1 according to a multinomial distribution with probability

∝
(

1
N2

N2∑
j=1

G̃
b

b0,l
p,l
p (θip, ξi,jp )

)N1

i=1
for i = 1, . . . , N1 do
3. Selection of particles inside each island
Sample J ip,l = (J i,jp,l )N2

j=1 according to a multinomial distribution with probability

∝
(
G̃

b
b0,l
p,l
p (θIip,l , ξI

i
p,l,j
p )

)N2

j=1
4. Mutation of Island
Sample independently θi

p+1,b
b0,l
p+1,l

according to MΘ
n (θI

i
n,l

n,l , .)
for j = 1, . . . , N2 do
5. Mutation of particles
Sample ξi,jp+1 according to MZ

θip+1,p+1(ξIip,l,J
i,j
p,l , .)

end for
end for

end for
end for
End
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Acquisition processes for aircraft evolving in a decomposed random atmo-
sphere

As we have seen in the precedent paragraph, the random media Θn can be decomposed in
homogeneous sub-domains BB0,l

n,l for l ∈ J1, kK. Let consider that the random atmospheric
field can be decomposed in such a way, and that the atmospheric evolution kernel verify
the conditions (C1), (C2), (C3) and (τ). These assumptions make sense in our case as the
time characteristic of the atmosphere phenomenon we are interested in is greater than
the aircraft ones. This remark being made, we define k Lagrangian acquisition processes
given by (BB0,l

n,l ,Θn,B
B0,l
n,l

)kl=1, where BB0,l
n,l corresponds to the initial atmospheric ball B0,l

transported after n time-steps using the global atmospheric evolution kernels (MΘ
p )np=0.

Then consider that we have an air-traffic process, that is several aircraft processes which
are supposed to be Markovian, denoted by Xn = (X i

n)Mi=1 ∈ EX,Mn , where the state space
EXn encapsulates the characteristics of the aircraft, including their kinetics parameters
but also their positions respectively denoted by Zn = (Zi

n)Mi=1 ∈ EM . The transition
kernel of each aircraft process is denoted by MX

θn,n As one may think here, the number
of aircraft in E may vary with time n. Indeed, aircraft can enter and leave the area E.
This problem is well known for target tracking problems. In this work, we do not treat
this problem for which a modelization is given in the target tracking literature, see Caron
et al. (2011a,b,c) for example. Thus we consider that the number of aircraft in E remains
the same, M is fixed during the whole horizon of time. However this hypothesis does not
represent a strong limitation as for the numerical application we are going to consider, the
configuration space E will be the European area. This remark being made, we consider
M acquisition processes given by (Zi

n,Θn,Zin
)Mi=1.

Then as suggested in the precedent paragraph, we put our interest on the estimation
of two measures: χln and χ̂ln, using the observations of the air-traffic process Xn, denoted
by Yn = (Y i

n)Mi=1. That is we want to estimate the following quantities defined for any
fn ∈ Bb(EX,Mn ,EΘ

n ) by:

χln(fn) , E
[
fn(Xn,Θ

n,B
B0,l
n,l

)|Z0:n−1 ∈ BB0,l
0:n−1,l,Y0:n−1 = y0:n−1

]
(2.105)

and
χ̂ln(fn) , E

[
fn(Xn,Θ

n,B
B0,l
n,l

)|Z0:n ∈ BB0,l
0:n,l,Y0:n = y0:n

]
. (2.106)

As one may see here, we have a double estimation problem. The first one concerns
the estimation of the air-traffic process Xn, the second one concern the estimation of the
random field where the aircraft are located. That is, we can estimate the random field
in every sub-domains where there are aircraft. In such cases, this filtering problem can
be cast into the class of a random process evolving in a random environment. Where
the random process is given by Xn, the environment Θ

n,B
B0,l
n,l

with l the domain indexes
for which aircraft are present. Now we have explained what is the quantity to estimate,
we present the Feynman-Kac formulation of this problem. Indeed using the same reason-
ing as in the computation (2.66), we have that χ̂ln and χln can be reformulated for any
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fn ∈ Bb(EX,Mn ,EΘ
n ) as follow:

χln(fn) =
E
[
fn(Xn,Θ

n,B
B0,l
n,l

)
n−1∏
p=0

1
B

B0,l
p,l

(Zp)|Y0:n−1 = y0:n−1

]

E
[
n−1∏
p=0

1
B

B0,l
p,l

(Zp)|Y0:n−1 = y0:n−1

]

=
E
[
fn(Xn,Θ

n,B
B0,l
n,l

)
n−1∏
p=0

1
B

B0,l
p,l

(Zp)
n−1∏
p=0

Gp(Θ
p,B

B0,l
p,l

,Xp)
]

E
[
n−1∏
p=0

1
B

B0,l
p,l

(Zp)
n−1∏
p=0

Gp(Θ
p,B

B0,l
p,l

,Xp)
] (2.107)

where Gp(Θ
p,B

B0,l
p,l

,Xp) corresponds to

Gp(Θ
p,B

B0,l
p,l

,Xp) ∝
M∏
i=1

Gp(Θ
p,B

B0,l
p,l

, X i
p)

and

χ̂ln(fn) =
E
[
fn(Xn,Θ

n,B
B0,l
n,l

)
n∏
p=0

1
B

B0,l
p,l

(Zp)|Y0:n = y0:n

]

E
[
n∏
p=0

1
B

B0,l
p,l

(Zp)|Y0:n = y0:n

]

=
E
[
fn(Xn,Θ

n,B
B0,l
n,l

)
n∏
p=0

1
B

B0,l
p,l

(Zp)
n∏
p=0

Gp(Θ
p,B

B0,l
p,l

,Xp)
]

E
[
n∏
p=0

1
B

B0,l
p,l

(Zp)
n∏
p=0

Gp(Θ
p,B

B0,l
p,l

,Xp)
] . (2.108)

Finally, we end up with a random process evolving in an area decomposed in homo-
geneous domains. Then the reasoning used in the precedent section can be applied here,
and Algorithm 6 can be used to solve the precedent estimation problem with a modified
potential to take into account the observations.

This chapter was devoted to the development of adapted tools in order to estimate the
atmospheric field along the path of aircraft processes. Depending on the atmospheric con-
dition, two particle-based algorithms were developed. The first one, given by Algorithm 3,
is able to tackle the estimation problem of an homogeneous atmospheric condition using
several aircraft or the estimation of the surrounding atmosphere of one aircraft. The sec-
ond one, given by Algorithm 6, can deals with random fields which can be decomposed in
homogeneous sub-domains. For the first one we have presented some convergence results.
The second algorithm still have to be studied.
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“I can calculate the motion of heavenly bodies but not the
madness of people.”

Isaac Newton

3
Aircraft Dynamics

So far we have developed a stochastic algorithm which ables one to estimate the random
atmospheric field but also the air-traffic process. However we did not detailed yet what
was the kernel transition used to make evolute the air-traffic process. This is the scope
of this chapter. We present a model that simulates the dynamics of commercial aircraft
from the point of view of an air-traffic controller during cruise phase.

Indeed flight can be separated into three phases, the first one is the climb phase.
This phase starts after the aircraft’s take-off and ends as soon as the aircraft meets the
cruise altitude. Then the aircraft enters in what is called the cruise phase. Cruise is
the level portion of aircraft travel where flight is most fuel efficient. It occurs between
climb and descent phases and is usually the majority of a journey. Technically, cruising
consists of heading (direction of flight) changes only at a constant airspeed and altitude.
It ends as the aircraft approaches the destination where the descent phase of flight begins
in preparation for landing. For most commercial passenger aircraft, the cruise phase of
flight consumes the majority of fuel. As this lightens the aircraft considerably, higher
altitudes are more efficient for additional fuel economy. However, for operational and air
traffic control reasons it is necessary to stay at the cleared flight level. On long haul
flights, the pilot may climb from one flight level to a higher one as clearance is requested
and given from air traffic control. This manoeuvre is called a step climb. Commercial or
passenger aircraft are usually designed for optimum performance at their cruise speed or
what is called green dot speed. For a given aircraft type, its optimum cruising altitude
depends on many parameters including payload weight, center of gravity of an aircraft,
air temperature, humidity, and speed. This altitude is usually where the higher ground
speeds, the increase in aerodynamic drag power, and the decrease in engine thrust and
efficiency at higher altitudes are balanced. Typical cruising air speed for long-distance
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commercial passenger flights is 475-500 knots (880-926 km.h−1). The third phase of a
flight corresponds to the descent phase. It corresponds to any portion of the flight where
the aircraft decreases its altitude. It is the opposite of a climb. Intentional descents
might be undertaken to land, avoid other air traffic or poor flight conditions (turbulence,
icing conditions, or bad weather), clouds (particularly under visual flight rules), to see
something lower, to enter warmer air (see adiabatic lapse rate), or to take advantage of
wind direction of a different altitude.

In this work we put our interest on the cruising phase as it is the phase where the most
fuel quantity is consumed and as it constitutes the longest part of a journey. Moreover,
air-traffic controller do not step in as much as in other phases. Then the model we develop
do not need to take air-traffic controller’s actions into account.

Aircraft dynamics have been well studied over the last four decades, some works can be
used as references in the domain : Boiffier (1998); Hull (2007); Peters and Konyak (2003).
The model developed in Boiffier (1998) is similar to our model but does not provide
control laws to close the dynamic system. In Peters and Konyak (2003), the model is a
full 6 degree of freedom model. Then it is a more complete model not fully adapted to
our simpler problem. In Hull (2007), the model corresponds to our model except that the
kinematics equations are not derived on a ellipsoidal Earth. Moreover, the control laws
developed to close the dynamical system are made such that the aircraft trajectories are
optimal, in some sense. In Glover and Lygeros (2004), a stochastic hybrid system has
been developed, but as we want to use ensemble weather forecast, the aircraft kinematics
has to be expressed in the ellipsoidal Earth. Further, we present the point mass model
that describes the motion of commercial aircraft. It is able to deal with several aircraft
at the same time, each one with a different flight plan. The dynamic model gives rise to
a continuous time model for which we present an integration scheme. The flight plan and
the logic variable embedded in the control part give rise to discrete variables. The weather
uncertainties are treated as a stochastic disturbance which has its own dynamics. Thus,
the model we developed is framed in the context of stochastic hybrid system, likewise in
Lymperopoulos (2010). All the model components as well as their relation are resumed
in Figure 3.1.

The model we develop in this chapter is used in Chapter 4 as the evolution kernel of
the air-traffic process inside the stochastic algorithms developed in ??.

3.1 Deterministic model for aircraft dynamics

This section is devoted to the development of a deterministic model able to predict the
future aircraft’s states (x) during cruise phase. The basic idea is to create an hybrid
system to generate trajectory. The model allows one to capture many flights taking place
at the same time. In the simulation, each flight is represented by an instance of the class
Aircraft. With each Aircraft, we associate the following model components:

• The flight plan.
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Figure 3.1: Block diagram of Multi Aircraft model components

• The aircraft dynamics.

• The controller.

The evolution of the aircraft state, x, is influenced by the surrounding atmosphere w.
Indeed the atmosphere impacts the aircraft dynamics through the controls u computed
to respect the flight plan but also inside the dynamic model itself. The relations between
the flight plan, the aircraft dynamics and the controller are summarized in Figure 3.1. In
the rest of this section, we provide some details of the model developed for each component
listed in Figure 3.1.

3.1.1 Flight Plan

As we have already mention, the flight plan consists in a sequence of way-points, {Oi}Mi=1

where for i = 1, . . . ,M we have Oi ∈ R3. To this sequence, a cruise speed is attached.
Therefore, aircraft are assumed to maintain a Calibrated Air Speed (CAS) or a Mach
number during the whole cruise phase. Typically this cruise speed corresponds to the
green dot speed we have mentioned. That is the optimum speed for the aircraft type
which is at stake. The sequence of way points defines a sequence of straight lines joining
each way point to the next. We refer to this sequence of straight lines as the reference
path. For each way-point, Oi, we also define the reference heading ψig as the angle that
the lines segment joining Oi to Oi+1 makes with the x̂i-axis of the frame in which the way
point coordinates are given, see Figure 3.2. Conclusion, the flight plan considered is a 3D
way-point model.

3.1.2 Dynamic model

In this section we derive the aircraft equations of motion that are used in the simulation
tool we develop. As a first step, we define reference frames in order to describe the
movement of the aircraft with respect to the Earth. Then, several assumptions are made
to end up with a point mass model and its associated state equation representation. This
section is not a complete review on aircraft dynamics, we recall some basics results and
try to make clear modelization choice we made. For a full treatise on the subject, several
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Figure 3.2: Top view of a typical flight plan showing way-points

books are available, see Boiffier (1998), Peters and Konyak (2003) or Hull (2007) for
example.

Frames

All frames used to derive mechanical equations for air-plane are three dimensional, or-
thogonal and right-handed. Denoting by Fi(Oi, x̂i, ŷi, ẑi), the frame Fi, unitary vectors
of each axis are marked as follow: x̂i, ŷi, ẑi. The origin of the frame Fi is Oi. To derive
the aircraft equations of motion, several reference frames are needed. First an inertial
reference frame (denoted with a i subscript) in order to apply mechanical equations, the
body fixed reference frame (denoted with a b subscript) more convenient to express exter-
nal efforts and the Air-path reference frame or the aerodynamic reference frame (denoted
by a a subscript) more convenient to express aerodynamic forces. Once these frames are
defined, we give the transformations matrix used to go from one frame to another defined
using Euler angles.

Reference frames definitions

• Inertial reference frame: The inertial reference frame is a geocentric inertial axis
system, for which we give an illustration on Figure 3.3. The origin of the frame,
Oi, is located at the center of the Earth. The axis ẑi is carried by the axis of the
Earth’s rotation, x̂i and ŷi keeping a fixed direction in space.

• The Normal Earth reference frame: The origin is an arbitrary point on the
Earth’s surface Oe. The x̂e axis points towards the true North direction (North
magnetic pole) and ŷe points towards the true East direction. ẑe points down and
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x̂i

ŷi

ẑi

Figure 3.3: The Inertial reference frame

Oe
Oi

x̂i

ŷi

ẑi

Figure 3.4: The Normal Earth fixed reference frame at Oe and inertial reference frame

is normal to the Earth’s surface see Figure 3.4. As this reference frame is supposed
to be tangent to the Earth surface The Earth’s shape is rather important. In this
document, the Earth is always assumed to be ellipsoidal, that is OiOe = Re, with
Re the Earth radius which is not constant. More details on the model choice for the
Earth is given in Section 3.1.3.

• Body-fixed reference frame: As the aircraft body is supposed to be rigid, it
can be modelled by its gravitational center (Hypothesis 1). Then, the aircraft body
frame’s origin is fixed at the aircraft’s center of gravity. The x̂b axis lies in the
symmetry plane of the aircraft and points forward the nose of the aircraft. The ẑb
axis lies also in the symmetry plane of the aircraft, is perpendicular to x̂b and points
downwards. The ŷb axis is obtained using the right-hand rule. Figure 3.5 shows the
body fixed reference frame.

• The Air reference frame: The Air reference frame origin is the same as the
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•
x̂b

ẑb

ŷb

Figure 3.5: Body fixed reference frame aligned with an aircraft

•
x̂b

ẑb

ŷb

•
x̂e

ẑe

ŷe

Figure 3.6: Relationship between body and Normal-Earth fixed reference frames

body-fixed reference frame, the axis x̂a is carried and oriented by the aerodynamic
velocity vector va. It characterizes the relationship of the aerodynamic angle of
attack, denoted by αa, and the side-slip angle βa, to the body frame velocity. These
aerodynamic angles are defined by means of coordinate rotations.

Angles between frames As we have now several frames defined, it is useful to know
their relative positions by means of angles. The relationship between the body-fixed
reference frame and the Normal Earth fixed reference frame is illustrated in Figure 3.6.
The orientation of the body-fixed frame with respect to the Normal Earth fixed reference
frame is usually described by an Euler angle sequence of rotations. The Figure 3.7 shows
the Euler sequence of rotations which is used to quantify the aircraft’s orientation. The
first rotation is through the azimuth angle or the heading, denoted by ψ, about the ẑe
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Figure 3.7: The angles Euler sequence of rotations used to quantify the aircraft’s orien-
tation

axis to an intermediate reference frame, say 1. The second rotation is through the angle
θ, the inclination angle or pitch, about the ŷ1 intermediate axis to another intermediate
frame, say 2. The final rotation is through the angle ϕ, the bank angle or roll angle, about
the x̂2 axis to the body-fixed frame.

Transformation matrices The conversion between the Normal Earth fixed frame and
the body frame of the aircraft is accomplished using transformation matrix denoted by
Te→b. To compute this matrix, we used the same decomposition as in the Euler angles:

Te→b =


1 0 0
0 cosϕ sinϕ
0 − sinϕ cosϕ




cos θ 0 − sin θ
0 1 0

sin θ 0 cos θ




cosψ sinψ 0
− sinψ cosψ 0

0 0 1



=


cos θ cosψ cos θ sinψ − sin θ

sinϕ sin θ cosψ − cosϕ sinψ sinϕ sin θ sinψ + cosϕ cosψ sinϕ cos θ
cosϕ sin θ cosψ + sinϕ sinψ cosϕ sin θ sinψ − sinϕ cosψ cosϕ cos θ

 .

We have also the matrix Tb→e which is the matrix allowing one to go from the body frame
to the Normal Earth fixed frame. Say it in other terms, it is the inverse transformation,
then Tb→e = T−1

e→b = TTe→b.
To get from the body fixed reference frame to the aerodynamic one, we define the

transformation matrix Tb→a.

Tb→a =


cosαa 0 sinαa

0 1 0
− sinαa 0 cosαa




cos βa sin βa 0
− sin βa cos βa 0

0 0 1



=


cos βa cosαa sin βa cos βa sinαa
− sin βa cosαa cos βa − sin βa sinαa
− sinαa cos βa − sinαa sin βa cosαa

 .

Moreover Ta→b = T−1
b→a = TTb→a.
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To go from the Normal Earth fixed reference frame to the Air reference frame, three
Euler angles are needed: the aerodynamic bank angle, the aerodynamic climb angle, and
the aerodynamic azimuth angle, denoted respectively by µa, γa and χa. When performing
the rotations described above to obtain the air reference frame from the Normal Earth
fixed frame, (µa, γa, χa) are analogous to (ϕ, θ, ψ), respectively. The azimuth angle χa
is the angle between the north and the horizontal component of the velocity vector va,
which describes which direction the aircraft is moving relative to cardinal directions. The
climb angle γa is the angle between horizontal and the velocity vector, which describes
whether the aircraft is climbing or descending. The bank angle µa represents a rotation
of the lift force around the velocity vector, which may indicate whether the air-plane is
turning. Then it is also possible to define the transformation matrix Te→a equals to:

Te→a =


cosχa − sinχa 0
sinχa cosχa 0

0 0 1




cos γa 0 sin γa
0 1 0

− sin γa 0 cos γa




1 0 0
0 cosµa − sinµa
0 sinµa cosµa



=


cosχa cos γa − sinχa cosµa + cosχa sin γa sinµa sinχa sinµa cosχa sin γa cosµa
sinχa cos γa cosχa cosµa + sinχa sin γa sinµa − cosχa sinµa + sinχa sin γa cosµa
− sin γa cos γa sinµa cos γa cosµa

.
(3.1)

Assumptions

Now we have defined all the reference frames which are convenient to express the dynamic
equations, we will state some basic and realistic assumptions which are used to simplify our
model. Indeed, in this document, we want to describe the flight dynamics with equations.
This is however a really complex system. Then, to simplify the model we assume that:

• the pilot maintains “coordinated flight”, that is the side-slip angle is always zero,
βa = 0 (Hypothesis 2),

• the flight is always assumed to be symmetrical, we are not in an approach phase:
αa � 1 (Hypothesis 3).

By direct inspection, the implication of a coordinated flight combined with a symmetrical
flight is that aerodynamic angles are equivalent to body angles. That is θ = γa, ψ = χa

and ϕ = µa.

Dynamic equations taking wind into account

Fundamental relationship of kinematics When taking derivatives where different
reference frames are involved, it is important to clearly state the reference frame used to
express the derivative and the reference frame that is used to express the coordinates of
a given vector.

Let’s examine some point P . This point is described by a vector rE in the reference
frame FE and by rb in the reference frame Fb. Also the origin of Fb (with respect to FE)
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is described by the vector rb→E. So, we have rE = rb→E + rb.
Now let us examine the time derivative of rE in FE, denoted by drE

dt

∣∣∣
E
:

drE
dt

∣∣∣∣∣
E

= drb→E
dt

∣∣∣∣∣
E

+ drb
dt

∣∣∣∣∣
E

= drb→E
dt

∣∣∣∣∣
E

+ drb
dt

∣∣∣∣∣
b

+ ΩbE ∧ rb

where ΩbE denotes the rotation vector of Fb with respect to FE.
This is quite an important relation, held for every vector. It will be useful to derive

the flight dynamics equations.

Newton’s second law Before deriving the equations of motion of an aircraft, we make
the hypothesis that the Earth is flat and fixed, thus the Normal Earth reference frame
is Galilean (Hypothesis 4). These assumptions are valid for flight with Mach number
below to 2 (see Boiffier (1998) for further details), which is an enough large speed value
to include all commercial aircraft. Therefore, the Newton’s second law can be used in the
Normal Earth fixed reference frame. By Newton’s second law, one has that:

∑
Fe = d

dt
(mvee)

∣∣∣∣∣
e

= m
dvee
dt

∣∣∣∣∣
e

(3.2)

where vee is the velocity of the aircraft center of gravity expressed in the Normal Earth ref-
erence frame. The sum of all external forces, ∑Fe, is also expressed in the Normal Earth
reference frame. The mass of the aircraft, m, is considered as a constant parameter as its
variation influence is negligible for small period of time (Hypothesis 5). However, as time
goes the mass of the aircraft evolves with the fuel consumption. Therefore an additional
equation is added to model the mass evolution with respect to time, see Section 3.1.4.

As we consider only cruise phase, one can consider that rotation rates are negligi-
ble and the effect of control surface deflections on aerodynamic forces can be neglected
(Hypothesis 6). Therefore the Newton’s second law is reduced to translational movement
(3.2). If we express now this equation in the Air reference frame coordinate, we obtain:

∑
Fa = dmvea

dt

∣∣∣∣∣
i

= m
dvea
dt

∣∣∣∣∣
i

= m
d(vaa + we

a)
dt

∣∣∣∣∣
i

= m

[
dvaa
dt

∣∣∣∣∣
a

+ Ωea ∧ vaa + dwe
a

dt

∣∣∣∣∣
i

]
, (3.3)
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where Ωea is the rotation vector of the Air reference frame with respect to the Normal
Earth reference frame. The time derivative, dwe

a

dt

∣∣∣
i
takes into account the acceleration

of the air mass, we
a being the wind vector seen from the Normal Earth reference frame

projected into the Air reference frame.
As we already say, the aircraft is reduced to a point, then all the external efforts are
applied at the center of gravity of the aircraft.

External efforts Three types of forces can act on an aircraft: the aerodynamics forces
denoted by Fa, the propulsive forces denoted by Fp and the gravitational force P.
Concerning the aerodynamic forces, we make the assumption that the side-slip βa can
be neglected, that means that the only forces which can be considered are the Lift (L)
and the Drag (D). In the Air reference frame, these forces are easily expressed by the
following vector:

Fa
a =


−D

0
−L

 .
Regarding the propulsive forces, the thrust is aligned with the body-fixed reference frame.
But as far as we make the assumption that the aerodynamic angle of attack (αa) can be
neglected, we have that in the Air reference frame, the propulsive force Fp

a is given by:

Fp
a = Tb→a


T

0
0



= I3


T

0
0

 , since αa, βa ≈ 0. (3.4)

Concerning the gravitational force P, we have in the Normal Earth reference frame that:

Pe =


0
0
mg

 .

Then using the transformation matrix Te→a and recording that Tb→a = I3 since αa =
βa = 0,Te→a = Te→bI3, we have that:

Pa = Te→a


0
0
mg



=


−mg sin θ

mg sinϕ cos θ
mg cosϕ cos θ

 . (3.5)

84



Finally we have expressed all the external efforts in the aerodynamic reference frame
which is more convenient to express them. Now we focus on the right hand side of (3.3).

Dynamic equations Before we make the force balance in the Air reference frame, we
have to express the rotation vector Ωea of the Air reference frame with respect to the
Earth reference frame. We know that the rotation vector in the Earth reference frame is
given by: (ϕ̇, θ̇, ψ̇). Then using the definition of each of these angles, we have that:

Ωea =


ϕ̇

0
0

+


1 0 0
0 cosϕ − sinϕ
0 sinϕ cosϕ




0
θ̇

0



+


1 0 0
0 cosϕ − sinϕ
0 sinϕ cosϕ




cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ




0
0
ψ̇



=


ϕ̇− ψ̇ sin θ

θ̇ cosϕ+ ψ̇ cos θ sinϕ
−θ̇ sinϕ+ ψ̇ cos θ cosϕ

 (3.6)

Now, we have to express the wind in the Air reference frame and also its derivative seen
from the Earth reference frame. In the Earth reference frame, the wind vector is easily
expressed by its North and East components (the vertical wind is neglected, Hypothesis 7):

we
e =


wn

we

0

 .

Then we express it in the Air reference frame, using the transformation matrix Te→a, we
obtain:

we
a = Te→awe

e

= Te→bTb→awe
e

= Te→bI3we
e

=


wn cos θ cosψ + we cos θ sinψ

wn(sinϕ sin θ cosψ − cosϕ sinψ) + we(sinϕ sin θ sinψ + cosϕ cosψ)
wn(cosϕ sin θ cosψ + sinϕ sinψ) + we(cosϕ sin θ sinψ − sinϕ cosψ)

 . (3.7)

Concerning the wind derivative, it is given in the Earth reference frame by:

dwe
e

dt

∣∣∣∣∣
e

=


ẇn

ẇe

0

 .
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Using the transformation matrix Te→a, we express it in the Air reference frame:

dwe
a

dt

∣∣∣∣∣
i

= Te→a
dwe

e

dt

∣∣∣∣∣
e

=


ẇn cos θ cosψ + ẇe cos θ sinψ

ẇn(sinϕ sin θ cosψ − cosϕ sinψ) + ẇe(sinϕ sin θ sinψ + cosϕ cosψ)
ẇn(cosϕ sin θ cosψ + sinϕ sinψ) + ẇe(cosϕ sin θ sinψ − sinϕ cosψ)


(3.8)

where ẇn and ẇe are the total derivatives of wind with respect to time. Assuming wind
is a function of time and location, we have: ẇn = ∂wn

∂x
ẋ+ ∂wn

∂y
ẏ + ∂wn

∂t

ẇe = ∂we
∂x
ẋ+ ∂we

∂y
ẏ + ∂we

∂t

We assume here that the time derivative is negligible. Then the previous system of
equation is transformed to:  ẇn = ∂wn

∂x
ẋ+ ∂wn

∂y
ẏ

ẇe = ∂we
∂x
ẋ+ ∂we

∂y
ẏ

We still need the expression of the velocity vector into the Air reference frame. We can
express it thanks to the quantity va denoting the true airspeed of the aircraft, i.e the
relative air to aircraft velocity:

va
a =


va

0
0

 . (3.9)

Substituting (3.4), (3.5), (3.6), (3.7), (3.8), and (3.9) into Eq. (3.3), gives us: T −D −mg sin θ
mg sinϕ cos θ

−L+mg cosϕ cos θ

 = m


 v̇a

0
0

+

 0
−va(ψ̇ cos θ cosϕ− θ̇ sinϕ)
va(θ̇ cosϕ+ ψ̇ cos θ sinϕ)


 ẇn cos θ cosψ + ẇe cos θ sinψ

ẇn(sinϕ sin θ cosψ − cosϕ sinψ) + ẇe(sinϕ sin θ sinψ + cosϕ cosψ)
ẇn(cosϕ sin θ cosψ + sinϕ sinψ) + ẇe(cosϕ sin θ sinψ − sinϕ cosψ)


 .

(3.10)
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Rearranging all the terms we obtain (see Section A.2 for computation details):


v̇a = T −D
m

− g sin θ − cos θ(ẇn cosψ + ẇe sinψ)

θ̇ = 1
va

[
L

m
cosϕ− g cos θ + sin θ [ẇn cosψ + ẇe sinψ]

]

ψ̇ = 1
va cos θ

[
L

m
sinϕ+ (ẇn sinψ − ẇe cosψ)

]
(3.11)

Finally, the aircraft dynamic equations are given by the system (3.11). They describe the
behaviour of the aircraft in terms of its motion as a function of time. It remains to study
the evolution of the aircraft position in the configuration space.

3.1.3 Aircraft kinematics

As wind was taken into account into the dynamics of the aircraft, the velocity of the
aircraft with respect to the inertial frame is given by:


ẋii
ẏii
żii

 =


va cos θ cosψ + wn

va cos θ sinψ + we

va sin θ

 (3.12)

Now we propagate the aircraft’s trajectories on the surface of the Earth. To do so, we need
to relate change in velocity to latitude/longitude change. That is developing kinematic
equations in latitude longitude coordinates. In order to get those equations, first we define
an additional frame which is commonly used to define latitude longitude coordinates.
Then we model the Earth as an Ellipsoid and finally we end up with kinematics equations
in latitude longitude coordinates. More details can be found in Peters and Konyak (2003).

Reference frames definitions

To derive the dynamic equations of the aircraft, we made the assumption that the Earth
was flat. That means that the Earth’s eccentricity was ignored in the force balance. To
propagate the trajectory on the Earth, we cannot assume a flat Earth any more. To take
into account the Earth eccentricity, we define two additional reference frames. They are
used to describe the latitude/longitude kinematics:

• the Earth centered Earth fixed (ECEF) (inertial) reference frame denoted by the
subscript "i",

• the North-East-Down (NED) reference frame defined as a surface tangent to the
Earth which moves along with the aircraft, denoted by the subscript "e".
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ŷi

ẑi

ŷint

ẑint

µ

µ

x̂int

ẑint

x̂e

ẑe

l

l

Figure 3.8: Latitude and longitude rotations given by latitude and longitude angles (re-
spectively denoted by µ and l).

ECEF reference frame The ECEF reference frame’s origin is fixed at the center of
the Earth. The x̂e-axis points out the North pole. The plane (ŷeOẑe) lies in the equator
plane with the reverse ẑe axis pointing at zero degrees longitude as it is illustrated in
Figure 3.3

The NED reference frame The NED reference frame is centred in an object prop-
agating along the Earth’s surface and tangent to it at this point, as it is illustrated in
Figure 3.4. The ẑe axis points downwards and is perpendicular to the surface of the Earth.
The longitude and latitude angle, respectively denoted by l and µ are used to describe
the rotation between these two frames. The NED frame is oriented in a way such that at
zero longitude and latitude the ECEF and NED frames coincide.

Rotation matrix with latitude and longitude To go from ECEF frame to NED
frame, the first rotation consist in a positive rotation of angle µ (latitude) about the
x̂i-axis to an intermediate reference frame denoted by int subscript. The second rotation
consist in a positive rotation of angle l (longitude) about the ŷint - axis to the reference
frame NED.

We illustrate these two rotations through Figure 3.8. The conversion between the
ECEF frame and the NED frame is accomplished using the transformation matrix denoted
by Ti→e, defined by:

Ti→e =


cos l 0 − sin l

0 1 0
sin l 0 cos l




1 0 0
0 cosµ sinµ
0 − sinµ cosµ



=


cos l sin l sinµ sin l cosµ

0 cosµ sinµ
sin l − cos l sinµ cos l cosµ

 (3.13)

The inverse matrix denoted by Te→i allowing us to transform from NED coordinates to
ECEF coordinates is given by:

Te→i = T−1
i→e = TTi→e.
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ẑi

x̂i

b

a
Re

Figure 3.9: Ellipsoidal Earth model

Now we define the reference frames convenient to describe the aircraft movement on the
Earth surface, it is left to describe how the Earth is modelled in our simulation setting.
Indeed we say that the NED reference frame is tangent to the Earth surface, but the
Earth form was not detailed yet. Then, we describe the Earth model used in the next
paragraph.

Elliptic Earth’s model

The real Earth is not a perfect sphere as the radius changes with the latitude. Therefore
we will use an ellipsoidal Earth model where the semi-axis lengths are given by the Earth
model WGS-84, Mularie (2000). This model is illustrated on Figure 3.9, with:

• the equatorial radius b equals to 2.092565× 107ft,

• the semi minor axis length a given by a = b(1 − f) where f stands for the Earth
flattening parameter sets to f = 1

298.257 .

As the Earth is modelled as an ellipsoid, the position vector which points out at a point
on the Earth surface does not have a constant norm. That is re = ‖Re‖ is not constant.
Moreover, it is not normal to the Earth surface as we can see on Figure 3.9.

As in this document we defined the NED frame to be normal to the Earth surface,
this vector cannot be used to derived the latitude. To tackle this issue, we introduce the
geodetic and geocentric latitude.

Geocentric and Geodetic latitude The geocentric latitude, λ, is defined as the angle
made by the position vector Re and the ŷi-axis. The geodetic latitude µ is the angle made
by the ŷi axis and the line which intersects the equatorial plane and which is normal to
the Earth surface. We illustrate the difference between these two angles on Figure 3.10.
As one may observe on Figure 3.10, the geodetic latitude is normal to the Earth surface,
but it is not related to the Earth center. Nevertheless we choose to derive the position in
terms of the geodetic latitude. Therefore we have to derive a relation between the geodetic
and geocentric latitude, illustrated on Figure 3.11. Using the notations of Figure 3.11,
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Figure 3.10: Geodetic and Geocentric latitude (respectively denoted by µ and λ)

ŷi
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µ

Figure 3.11: Relation between Geodetic and Geocentric latitude (respectively denoted by
µ and λ)
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the equation for the ellipse is given by:

x2

a2 + r2
l

b2 = 1

⇐⇒ b2x2 + a2r2
l

a2b2 = 1

⇐⇒ x =
√
a2b2 − a2r2

l

b2 , as x > 0.

Looking at Figure 3.11, one can find that:

tan λ = x

rl
and tanµ = x

L
. (3.14)

Taking the derivative of x with respect to rl to get the slope of the ellipse, we obtain:

dx

drl
= 1

�2

(
a2b2 − a2r2

l

b2

)− 1
2

×
(
− �2a2

b2 rl

)

=
−a2

b2
rl√

a2b2−a2r2
l

b2

=
−a2

b2
rl√

a2 − a2

b2
r2
l

.

The slope of the line normal to the ellipse is the opposite of the inverse of the slope of
the ellipse. That is:

d =

√
a2 − a2r2

l

b2

a2

b2
rl

= x
a2

b2
rl
.

Observing that L = a2

b2
rl, we can write µ as a function of d:

tanµ = x
a2

b2
rl
.

That is:
rl
a2

b2 tanµ = x

and finally we obtain the relation between µ and λ:

a2

b2 tanµ = tanλ.

Geocentric Earth surface As one can have observed, the position vector Re is not
aligned with any reference frame we have defined. Therefore we define a new reference
frame: the geocentric Earth surface frame denoted with a "c" subscript. This reference
frame is defined such that the opposite of the position vector Re is aligned with the ẑc-axis
and obtained thanks to a rotation of angle ε about the ŷe-axis. The transformation from
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ẑe
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ẑcε

x̂e

ẑe

Figure 3.12: Relation between Geocentric Earth surface frame and NED reference frame

the NED reference frame to the geocentric surface frame is illustrated on Figure 3.12.

The angle ε is defined by the following relation:

ε = µ− λ.

The rotation matrix from the reference frame "c" to "e", denoted Tc→e, is given by:

x̂e

ŷe

ẑe

 = Tc→e


x̂c

ŷc

ẑc



=


cos ε 0 − sin ε

0 1 0
sin ε 0 cos ε



x̂c

ŷc

ẑc

 .

Therefore the position vector Re can now be expressed in terms of the axis of the new
reference frame: Re = −reẑc, where re = ‖Re‖.

Aircraft kinematics for an ellipsoidal Earth

Now, we have defined the latitude, the longitude and the position vector Re, the position
of the aircraft with respect to the center of the Earth expressed in the NED reference
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frame, denoted by R, can be expressed by the following formula:

R = OeP = −reẑc − hẑe
= −re(− sin εx̂e + cos εẑe)− hẑe
= re sin εx̂e − (re cos ε+ h)ẑe.

Therefore the kinematics of the aircraft expressed in the Earth centered reference frame
can be derived taking the time derivative of the position vector in the Earth centered
reference frame. That is:

dR

dt

∣∣∣∣∣
i

= (ṙe sin ε+ reε̇ cos ε)x̂e + (reε̇ sin ε− ṙe cos ε+ ḣ)ẑe + Ωie ∧R

where Ωie the rotation vector of the NED reference frame with respect to the Earth. It is
given by:

Ωie = l̇x̂i + µ̇ŷe

= l̇ cosµx̂e + µ̇ŷe + l̇ sinµẑe.

Therefore:

Ωie ∧R = (l̇ cosµx̂e + µ̇ŷe + l̇ sinµẑe) ∧ (re sin εx̂e − (re cos ε+ h)ẑe)
= (−reµ̇ cos ε− hµ̇)x̂s + (l̇ sinµ re sin ε+ l̇ cosµ(re cos ε+ h))ŷe + µ̇re sin εẑe.

And finally we obtain:

dR

dt

∣∣∣∣∣
i

=


ṙe sin ε+ reε̇ cos ε− reµ̇ cos ε− hµ̇
l̇ sinµ re sin ε+ l̇ cosµ(re cos ε+ h)
reε̇ sin ε− ṙe cos ε+ µ̇re sin ε+ ḣ

 . (3.15)

The remaining problem is that we do not know the quantities: re, ṙe, ε and ε̇, then we
have to express them in terms of l, µ, l̇ and µ̇. Recording that the ellipse equation is
given by:

x2

a2 + r2
l

b2 = 1

and as one can observe on Figure 3.13, we have: rl = re cosλ
x = re sin λ

,
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Figure 3.13: Relation between derivatives

then we have:

r2
e cos2 λ

b2 + r2
e sin2 λ

a2 = 1

⇒ a2r2
e cos2 λ+ b2r2

e sin2 λ

a2b2 = 1

⇒ r2
e(a2 cos2 λ+ b2 sin2 λ) = a2b2

⇒ re =
√

a2b2

a2 cos2 λ+ b2 sin2 λ
.

As λ is a derived angle, we use the relation (3.14) to replace its expression in the previous
equation. Thanks to (3.14), we find that:

λ = arctan
(
a2

b2 tanµ
)
.

Then,

ε = µ− λ

= µ− arctan
(
a2

b2 tanµ
)
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Therefore using the chain rule, we have that ṙe is given by:

ṙe = dre
dt

= dre
dλ

dλ

dµ

dµ

dt
,

where:

dre
dλ

= 1
2

(
a2b2

a2 cos2 λ+ b2 sin2 λ

)− 1
2

×
(
−a2b2−2a2 cosλ sin λ+ 2b2 sin λ cosλ

(a2 cos2 λ+ b2 sin2 λ)2

)

= 1
�2

(a2 cos2 λ+ b2 sin2 λ) 1
2

��ab
×
(
−a�2b�2−�2(b2 − a2) cosλ sin λ

(a2 cos2 λ+ b2 sin2 λ)2

)

= − ab(b2 − a2) cosλ sin λ
(a2 cos2 λ+ b2 sin2 λ) 3

2

and

dλ

dµ
= a2

b2 ×
1

cos2 µ
× 1

1 + a4

b4
tan2 µ

.

Then, ṙe is given by:

ṙe = − ab(b2 − a2) cosλ sin λ
(a2 cos2 λ+ b2 sin2 λ) 3

2
× a2

b2 ×
1

cos2 µ
× 1

1 + a4

b4
tan2 µ

µ̇

= Kṙeµ̇ (3.16)

and ε̇ is given by:

ε̇ =
(

1− a2

b2 ×
1

cos2 µ
× 1

1 + a4

b4
tan2 µ

)
µ̇

= Kε̇µ̇. (3.17)

Then, recording the definition of ẋii, ẏii, assuming żii = 0, and using (3.15) we have that:

µ̇ = ẋii

Kṙe sin ε+ reKε̇ cos ε− (re cos ε+ h)
l̇ = ẏii

cosµ(re cos ε+ h) + re sin ε sinµ

(3.18)

We finally get the kinematic equations which describe the aircraft motion around the
Earth. However to represent the kinematics, and dynamics of the aircraft as a state-space
vector, we still have to deal with the mass variation of the aircraft.

3.1.4 Mass variation

As we have already mention, the mass of the aircraft is considered as a fixed quantity to
make the force balance. Indeed its influence is negligible for the short dynamics. However
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the mass evolves during the cruise phase as the fuel is consumed. The rate of change of
the aircraft’s mass is given by the quantity of fuel burned. Therefore, in order to take into
account its dynamic, another state equation is added. The usual modelization consists in
considering it as a linear function of thrust. That is:

ṁ = −ηT (3.19)

where η is a coefficient relating thrust to fuel consumption see (3.35) for more details on
this coefficient.

3.1.5 State space representation

In previous subsections, we derived all the quantities needed to obtain a state space
representation of the aircraft. Indeed state space representation represents a convenient
mean to model the aircraft dynamics. Indeed the state-variables are defined as a set of
variables such that the knowledge of the state vector at a particular time, and the control
vector after this time, completely defines the motion (state trajectory) from that time on.
In other words, the state variables shall be any set of variables that completely define
the state of the system at any time. As we are dealing mainly with commercial airliners,
we can simplify the model further by assuming that the aircraft always operates near
trimmed flight conditions and treat the flight path angle as an input instead of a state
(Hypothesis 8). That is θ is now a control variable. Let us define the state and control
vectors as:

ẋ = [µ̇, l̇, ḣ, v̇a, ψ̇, ṁ] (3.20)
u = [T, ϕ, θ] (3.21)

Gathering up all the computation we made so far, we end up with the state space repre-
sentation: 

µ̇ = va cos θ cosψ + wn
Kṙe sin ε+ reKε̇ cos ε− (re cos ε+ h)

l̇ = va cos θ sinψ + we
cosµ(re cos ε+ h) + re sin ε sinµ

ḣ = va sin θ

v̇a = T −D
m

− g sin θ − cos θ(ẇn cosψ + ẇe sinψ)

ψ̇ = 1
va cos θ

[
L

m
sinϕ+ (ẇn sinψ − ẇe cosψ)

]

ṁ = −ηT

(3.22)
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with initial conditions:

x0 = (µ0, l0, h0, va,0, ψ0,m0). (3.23)

To stay in the flight envelope the state and control parameters are subject to the following
constraints: 

h ∈ [0, hmax]
va ∈ [vmin, vmax]
m ∈ [mmin,mmax]
T ∈ [Tmin, Tmax]
|ϕ| < ϕmax

|θ| < θmax

(3.24)

The values of the state and control bounds and the values of the parameter CD, Sw can
be obtained from the BADA database, see Section Section 3.1.8 for more details.

3.1.6 Aerodynamic and propulsive forces

As it has been seen in Section 3.1.2, an air-plane flying through the atmosphere experi-
ments gravitational, aerodynamic and propulsive forces. These forces enter in the aircraft
dynamic equations. But we did not detailed yet how they are defined. The interested
reader can refer to Boiffier (1998) for a detailed presentation of the aerodynamic forces
acting on the aircraft.

To sum up, a fluid flowing past the surface of a body exerts a force on it. Lift, denoted
by L is the component of this force that is perpendicular to the oncoming flow direction.
It contrasts with the drag force, denoted by D, which is the component of the surface
force parallel to the flow direction. Summing up, the aerodynamic components L and D
can be modelled as a function of the aerodynamic coefficients CL and CD:

L = qSwCL (3.25)
D = qSwCD (3.26)

where Sw stands for the wing reference area, q for the dynamic pressure and CD, CL for
the drag and lift coefficient respectively.

The dynamic pressure q is the kinetic energy per unit volume of a fluid particle, this
quantity is defined by:

q = 1
2ρ(h)v2

a, (3.27)

where ρ(h) stands for the air density which depends on the pressure altitude h and va the
true airspeed of the aircraft. As one may note here, the dynamic pressure can be used to
determine the true airspeed of the aircraft knowing the air density (directly given by the
altitude) and q. Aircraft are equipped by a pitot-static tube (Prandtl tube) which can
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measure the dynamic pressure. Then the airspeed of an aircraft can be determined. This
remark being made, we still have to detail what are the aerodynamic coefficient CD and
CL. In first approximation, CD is modelled as a quadratic function of CL:

CD = (CD0 +KC2
L) (3.28)

where CD0 is the zero lift drag coefficient and K the induced drag coefficient. Equation
(3.28) is valid for all situations except for the approach and landing phase where others
relations are used. As we are only interesting in cruise phase we just need this relation.

By using Eq. (3.25), (3.26), (3.27) and (3.28), we can express the aerodynamic drag
force as a function of the airspeed and air density:

D = 1
2ρ(h)v2

aSw(CD0 +KC2
L). (3.29)

Finally concerning the propulsive force, T , it usually depends on the pressure altitude
h, the velocity of the aircraft and on thrust setting σ:

T = T (σ, h, va) (3.30)

3.1.7 ISA model

As we have seen in the previous section, the propulsive and aerodynamic forces depends
on different atmospheric parameters, such as the air density ρ which depends itself on the
pressure altitude h. Therefore a description of these atmospheric quantities is needed. As
we mention in the introduction of this chapter, the ISA model is used to describe these
quantities as well as their relations. The ISA is an atmospheric model of how the pressure,
temperature, density, and viscosity of the Earth’s atmosphere change over a wide range
of altitudes or elevations. It has been established to provide a common reference for
temperature and pressure and consists of tables of values at various altitudes, plus some
formulas by which those values were derived. The ISA model divides the atmosphere into
layers with linear temperature distributions. The other values are computed from basic
physical constants and relationships. Thus, let us define the conditions which occurs at
the Mean Sea Level (MSL).

Definitions

ISA conditions at MSL MSL atmosphere conditions are those which occur in the ISA
at the point where the pressure altitude h is zero. The temperature, pressure, density
and speed of sound respectively denoted by: T0, p0, ρ0 and a0 are given by:

• T0 = 288.15, in [K]

• p0 = 101325, in [Pa]
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• ρ0 = 1.225, in [kg.m−3]

• a0 = 340.294, in [m.s−1]

Non-ISA atmospheres and MSL However, it may happen that this value are not
the ones which actually occurs, therefore we introduce the non-ISA atmospheres. They
differ from ISA in the sense that at MSL either one or both following parameters is not
zero:

• ∆T temperature difference between temperature at MSL for the ISA atmosphere
and Non-ISA atmosphere.

• ∆p pressure difference between pressure at MSL for the ISA atmosphere and Non-
ISA atmosphere.

That is the temperature and pressure, respectively denoted by: T0,NI and p0,NI are given
by:

• T0,NI = T0 + ∆T

• p0,NI = p0 + ∆p

Expressions

These quantities being defined, we give the relationship between the atmospheric pressure
p, the temperature T , and the pressure altitude h for any ISA and non-ISA atmosphere.

Physical constants Before stating the different relationships, we need to define some
atmospheric constants which are involved in the relations.

• the adiabatic index of air, κ = 1.4

• the real gas constant for air, R = 287.05287 [m2.(K−1s−2)]

• the gravitational acceleration, g0 = 9.80665 [m.s−2]

• the ISA temperature gradient with altitude below the tropopause (also called lap-
srate), K = −0.0065 [K.m−1]

• the tropopause elevation, h11 = 11000 [m]

• the Earth’s mean radius, re = 6371 [m]

Temperature The temperature can be expressed as a function of pressure altitude:

T = f(h,∆T ) =

 T0 + ∆T +Kh, h < h11

T11, h ≥ h11
(3.31)

where T11 is the temperature at h11 which is equal to 216.5 [K].
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Pressure The air pressure is a function of temperature:

p = f(T,∆T ) =

 p0
(
T−∆T
T0

)− g0
KR , h ≤ h11

p11 exp
(
− g0
RT11

(h− h11)
)
, h > h11

with p11 = 22632[Pa]

Air density The air density, denoted by ρ, is calculated from the pressure p and the
temperature T at altitude h using the perfect gas law:

ρ = p

RT
. (3.32)

Pressure altitude Pressure altitude h has been introduced such that the hydrostatic
equation is given by:

dp = −ρg0dh

That is, we make the assumption that the gravitational acceleration does not vary with
altitude. Therefore,

dp = −ρg0dh

dp

p
= −ρg0

ρRT
dh, using (3.32)

= − g0

RT
dh.

For h ≤ h11 the hydrostatic equation becomes:

dp

p
= −g0

R

dh

T0 +Kh
, using (3.31).

Integrating yield us,
∫ p

p0

dp

p
= −g0

R

∫ h

0

dh

T0 +Kh

ln
(
p

p0

)
= − g0

RK
ln
(
T0 +Kh

T0

)

p

p0
=
(
T0 +Kh

T0

)− g0
KR

.

Solving now for h, gives us:

T0 +Kh

T0
=
(
p

p0

)−RK
g0

h = T0

K

( p
p0

)−RK
g0
− 1

 .
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Now if we have that h > h11, then:

dp

p
= −g0

R

dh

T11
, using (3.31).

Integrating yield us,
∫ p

p11

dp

p
= −g0

R

∫ h

h11

dh

T11

ln
(
p

p11

)
= − g0

RT11
(h− h11).

Solving now for h, gives us:

−RT11

g0
ln
(
p

p11

)
= h− h11

h = h11 −
RT11

g0
ln
(
p

p11

)
.

Wrapping it up, we have the following relation between pressure altitude and pressure:

h =


T0
K

[(
p
p0

)−RK
g0 − 1

]
, h ≤ h11

h11 − RT11
g0

ln
(
p
p11

)
, h > h11

(3.33)

Pressure altitude and geometrical altitude As we make the assumption that g does
not vary with altitude and that we are under ISA conditions we have that the geopotential
altitude is the same as the geometric altitude.

Air speed of sound The speed of sound is the speed at which the pressure waves travel
through a fluid and is given by the expression:

a =
√
κRT .

Finally we obtain all the relations relating the different atmospheric quantities which
are needed to set all the aerodynamic parameters entering in the aircraft equations of
motion. However, we did not detailed yet how the coefficients such as CL, CD, η are set.
These quantities depend on the aircraft type, the phase of the flight and also the aircraft
configuration. They can be obtained using the BADA database, see Nuic (2011). In this
work we choose to use this database to derive all the aerodynamic parameter values.

3.1.8 Using BADA

As we have already mentioned in this document, we are going to use the BADA database,
see Nuic (2011) for details on the database, to set all the aircraft parameters. The
purpose of this section is to explain how we use them. Indeed as we have said, the
aerodynamic parameters depend on the aircraft types, the phase of the flight and the
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configuration of the aircraft. Therefore we define variables which are going to be use
during the simulation to retrieve the value from the BADA database depending on the
aircraft, and its configuration.

Discrete parameters

As we want to simulate several type of aircraft trajectories in the same monitored area, we
attached to each Aircraft a discrete aircraft type, for example: Airbus 330, Boeing 747,
etc.... To this end, we use a discrete parameter Aircraft_type to store it. All the possible
values that the parameter Aircraft_type can take are listed in the BADA documentation.
This parameter is used in our simulator to retrieve values from the BADA database for
parameters such as drag coefficient and bounds.

BADA provides also for each Aircraft_type an engine type. This is used by the con-
troller to set the maximum climb thrust. In this document, to denote the engine type we
use a separate discrete parameter Engine_type which can take one of the three values:
Jet, Turboprop and Piston.

Aerodynamic parameters

The two aerodynamic coefficients CL and CD are set following the same procedure as in
the BADA documentation. That is CL is set to ensure that the vertical component of the
lift projected into the body reference frame exactly balances the weight of the aircraft:

CL = 2mg
ρ(h)v2

aSw cosϕ. (3.34)

The coefficient CD depends on the lift coefficient as we have already mention in Eq.
(3.28). The parameter CD0 and K depend on Aircraft_type and can be obtained from
the BADA database.

Fuel consumption

The parameter η represents the thrust specific fuel consumption, that is the rate at which
the fuel is consumed. This quantity depends on the Engine_type, the true airspeed
va, the flight mode of the aircraft and some other coefficients which depends on the
Aircraft_type. Concerning the cruise phase, the thrust specific fuel consumption is defined
by the following relation:

ηcr =


Cf1(1 + v2

a

Cf2
) if Engine_type=Jet

Cf1(1− v2
a

1000Cf2
) if Engine_type=Turboprop

Cf1 if Engine_type=Piston
(3.35)

where the coefficients Cf1 and Cf2 are obtained from the BADA database.
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Bounds

As we have already mention, the state and control variables are bounded. In this section
we explain how they are defined.

Mass The maximum and the minimum mass, respectively denoted by mmax and mmin

are given by aircraft performance reference data available in the BADA database.

Altitude The maximum altitude hmax(m), which is a function of the Aircraft’s mass
m, is expressed in terms of the following parameters:

• hMO which stands for the maximum operating altitude (in ft) above the mean sea
level is given by the BADA database.

• hm which stands for the maximum altitude (in ft) above mean sea level at maximum
take off weight under ISA conditions is given by the BADA database

• Gw mass gradient on hm which is positive

• Gt temperature gradient on hm which is negative

The maximum altitude for any given mass is:

hmax(m) = min{hMO, hm +Gt(∆T − CT,4) +Gw(mmax −m)}

where ∆T is the temperature deviation from ISA (in K) and m stands for the actual mass
(in kg),CT,4 is given by the BADA database . If ∆T−CT,4 < 0 then we set ∆T−CT,4 = 0.
We will prevent our model to overcome this value using an altitude less than that one.

Speed The maximum speed for an aircraft is given by the BADA database in terms of
CAS or Mach number, depending on the pressure altitude, respectively by VMO andMMO.

In cruise (clean) configuration, that is:

• in climb above the maximum pressure altitude above ground level of initial climb
Hmax,IC (2000ft),

• in descent above the maximum pressure altitude above ground level of approach
Hmax,AP (8000ft),

• or in descent below the maximum pressure altitude above ground level of approach
and va > vmin + 10
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As it is not convenient for pilot to fly at maximum speed as they have to report if this event
occurs, we will prevent the model to overcome not the maximum speed but maximum
speed minus 10 knots in case of CAS speed and minus 0.5 in case of Mach speed.

The minimum speed is given in function of aircraft stall speed Vstall (in CAS) which
depends on the configuration. For Engine_type ∈ {Turboprop, P iston},the minimum
speed is specified as follow:

vmin = CvminVstall (3.36)

where Cvmin is set to 1.3 for all the Aircraft_types.

For Engine_type = Jet, an other limit, the low speed buffeting limit vmin depending
on Mb and vmin,stall (where vmin,stall is given by Eq (3.36)) and expressed in terms of
Mach number is determined using the following equation vmin = max{vmin,stall,Mb} h ≥ 15000ft

vmin = vmin,stall h < 15000ft

with Mb the solution of the following equation:

kM3
b − CLbo(M=0)M

2
b + mg

0.583Swp

where k is a lift coefficient gradient, CLbo(M=0) the initial buffet onset lift coefficient for
M = 0, p the actual pressure (in Pa), M the Mach number, Sw the wing surface area m2

and m the actual mass (in kg). As the minimum speed will not be reached during cruise
phase, we use another minimum speed related to the green dot speed (most economical
speed during cruise phase).

Thrust Depending on the climbing mode, the Engine_type, the pressure altitude h (in
ft), the TAS va (in kt) and the temperature deviation from ISA atmosphere ∆T (in K),
the maximum thrust can be calculated.

When climbing, the maximum climb thrust denoted by Tmax,C is given by:

Tmax,C = Tmax,C,ISA(1− CT5∆Teff )

where ∆Teff = ∆T − CTC ,4 with the limits 0 ≤ CT5∆Teff ≤ 0.4 and CT5 ≥ 0.The
coefficient Tmax,C,ISA is given by:

Tmax,C,ISA =



CTc,1

(
1− h

CTC,2
+ CTC ,3h

2
)

Engine_type=Jet
CTc,1
va

(
1− h

CTC,2

)
+ CTC ,3 Engine_type=Turboprop

CTc,1

(
1− h

CTC,2

)
+ CTC,3

va
Engine_type=Piston
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where CTc,1, CTC ,2, CTC ,3 and CT5 are set using the BADA database. When descending,
the maximal descent trust, denoted by Tmax,D, is calculated as a ratio of the maximum
climb thrust with different correction factors used for high and low altitudes, that is:

Tmax,D =

 CT,D,HTmax,C h > Hp,D

CT,D,LTmax,C h ≤ Hp,D

where Hp,D is the the transition altitude for calculation of descent thrust. When cruising,
the maximum of thrust available Tmax,L is limited and its limitation is given in terms of
the maximum climb thrust:

Tmax,L = CT,LTmax,C

where CT,L is set to 0.95 for all the Aircraft_types.

Bank angle The maximum bank angle ϕmax is given for all the Aircraft_types and set
to the value of 25 deg.

Pitch angle The maximum pitch angle θmax is given for all the Aircraft_types and set
to the value of 3 deg.

3.1.9 Controller

So far we have developed the dynamic model able to simulate the dynamics of several
aircraft. However, as we said in the preamble of this chapter, aircraft have to follow their
flight plan. To this end, we need to develop a controller, in the automatic sense of the
word. The controller measures the state of the aircraft dynamics, and uses it together
with the flight plan to determine the values for the inputs T , ϕ and θ. The controller
is divided into two components, one controlling vertical motion through the thrust and
the flight path angle and the other controlling the horizontal motion through the bank
angle. The controls we have developed are inspired from the work developed in Verhoeven
et al. (2014); Prats et al. (2014) and adapted to the cruise phase. The thrust and the
flight path angle are used to set the Rate of Climb/Descent (ROCD). Following current
practice, the controller tries to track a desired speed, Vref , which is a function of altitude
and Aircraft_type and which is determined by the airline see Section 3.1.9.

Discrete State

The discrete states of the model describe the different flight modes. The discrete dynamics
are coming from the flight plan of the aircraft and the logic variables embedded in the
controller to retrieve values from the BADA database. The discrete states of the controller
are stored in 6 discrete variables: way-point index (WP), flight level (FL), climb mode
(CM), flight phase (FP), troposphere mode (TrM) and the speed hold mode (SHM).

These discrete quantities evolve depending on the values of the continuous state of
the aircraft. In the reverse angle, a different discrete state affects both the continuous
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dynamics and the outputs of the controller.

Way-point index The discrete variable representing the way point index takes integer
values:

WP ∈ {0, 1, . . . ,M}

IfWP = i, that means that the aircraft is on its way from the ith-way point locate at O(i)
and the (i+ 1)th-way point located at O(i+ 1). To determine WP , we use the horizontal
position of the aircraft given by (x, y). To determine when the variable switches from
one way point to the next one, we have to adopt a method for modeling how the aircraft
are performing turns. In practice, aircraft have two ways of executing turns: fly-by and
fly-over model.

• Fly-by: The aircraft starts turning before it reaches the next way point and "cuts
the corner". This appears to be the most commonly used method to execute turns
by modern aircraft.

• Fly-over: The aircraft reaches the next way-point before turning. It appears that it
was the most commonly used method before the Global Positioning System became
standard.

Therefore we adopt the fly-by method. Then, WP switches at the beginning of the turn.
That is when the aircraft crosses a vertical plane which location depends on the maximum
bank angle and the location of the way points. To determine when this happens, we have
to determine the equation of the vertical plane. This step will be described in details in
the next paragraph.

Flight Level The discrete variable representing the flight level (FL) takes on values
representing the following altitude discretization:

{250ft, 260ft, . . . 440ft, 450ft}

This discrete variable is used to set the desired speed, see Section 3.1.9.

Climb mode The climb mode reflects whether the aircraft is climbing, descending or
flying level:

CM ∈ {C,D,L}

The value is reset whenever the aircraft starts a new segment of the reference path. If
WP = i and Oi+1 = (x, y, z), the difference between the present altitude and z is used
to determine whether to climb (CM = C), descent (CM = D) or stay at the same level
(CM = L). The state returns to L when the aircraft reaches its desired altitude. A
tolerance of 1 m is introduced.
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Flight Phase From the point of view of the controller, the en-route portion of flight is
divided into two phases: cruise phase and level change phase. We use the variable FP to
store this information:

FP ∈ {C,LC}

The rules for changing the value of FP are as follow, if WP = i and Oi+1 = (x, y, z), the
difference between the present altitude and z is used to determine whether to change of
flight level (FP = LC) or stay at the same level (FP = C). The state returns to C when
the aircraft reaches its desired altitude,z. A tolerance of 1m is introduced.

Troposphere mode The troposphere mode represents whether the aircraft is above
or below tropopause, the boundary between the troposphere and the stratosphere. This
affects some variables in the atmosphere model such as air density. The troposphere mode
can take two values:

TrM ∈ {L,H}

To set its value, we use the altitude, z. If z < 11000ft, TrM = L else TrM = H.

Speed Hold Mode The speed hold mode represents whether the aircraft is holding
a CAS or holding a constant Mach number. The change takes place at the transition
altitude, which is the altitude where the True Air Speed (TAS) of the aircraft determined
by CAS is equal to the desired TAS determined by the Mach number, see Section 3.1.9
for more details.

SHM ∈ {C,M}

The value i then exclusively determined by the geopotential altitude of the aircraft.

VCAS, Mach and Va conversion

The reference speed is given by the BADA database and depends on the flight level, the
pressure altitude and also the Aircraft_type. Indeed depending on the pressure altitude,
the aircraft hold a constant CAS, VCAS, or a constant Mach number, M . The crossover
altitude denoted by htr between a given CAS, VCAS, and a Mach number, M , is defined
to be the pressure altitude at which VCAS and M represent the same TAS value. Given
va, we can obtain the CAS using the following relation:

VCAS =
 2p0

µρ0

1 + p

p0

(1 + µρ0v
2
a

2p

) 1
µ

− 1
µ − 1


1
2

(3.37)

where p and ρ are the ambient pressure and air density respectively, p0 the mean sea level
pressure, ρ0 the air density at the mean sea level and µ = κ−1

κ
with κ corresponding to

the adiabatic index of air. We also can obtain the Mach number corresponding to the
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TAS using the following relation:

M = 1√
κRT

va (3.38)

where R is the real gas constant for air and T the ambient temperature.

Now we can give the formula to calculate the crossover altitude depending on VCAS

and M :

htr = 1
0.3048K (T0(1− θtr)) (3.39)

where K is the lapse rate and the value 0.3048 is used to convert feet to meters and θtr
is the temperature ratio at the crossover altitude, that is:

θtr = δ
−KR

g0
tr

and δtr is the pressure ratio at the crossover altitude:

δtr =

(
1 + (κ−1)V 2

CAS

2a2
0

) κ
κ−1
− 1(

1 + (κ−1)M2

2

κ
κ−1
)
− 1

with the coefficient a0 corresponding to the speed of sound. Therefore depending at
which altitude we are, constant speed does not mean systematically that va is constant
but that eitherM or VCAS are remained constant. Then va is constant only if we are above
the crossover altitude or if the pressure is constant and that we are below the crossover
altitude.

Once we know the relation between these quantities, Vref is set based on the discrete
parameter Aircraft_type and on the discrete states FL, CM , and SHM . These data are
obtained from the BADA airline procedure model. Therefore the crossover altitude can
be deduced.

Working in the ground reference frame to control the state variable

We have to note that the body heading angle ψ cannot be an output of the state system
as it depends on the actual wind vector but also on the true airspeed. Therefore, we
define a new angle ψg standing for the ground heading angle (the track angle). This angle
will be used to control the horizontal movement of the aircraft.

We now define ua which is the projection of vaa in the horizontal plane that is ua =
(va cos θ, 0, 0).

We define a new reference frame called the trajectory frame, illustrated on Figure 3.14,
denoted by a g subscript, which is a rotation of angle ψg of the Earth reference frame
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Figure 3.14: Relation between the different aircraft speed vectors with presence of hori-
zontal wind

about the z-axis. We express in this reference frame the wind:

wi
g =


cosψg sinψg 0
− sinψg cosψg 0

0 0 1

wi
i

=


ws

wx

0

 =


wn cosψg + we sinψg
−wn sinψg + we cosψg

0

 . (3.40)

Therefore we get for ẇx:

ẇx = −(ẇn sinψg + wnψ̇g cosψg) + ẇe cosψg − weψ̇g sinψg. (3.41)

Then considering λ = ψg − ψ, the crab angle, we have the following relation:

sin λ = wx
ua

= vawx
va cos θ = wx

cos θ (3.42)

cosλ = ug − ws
ua

= va
√

cos2 θ − wx2

va cos θ =
√

cos2 θ − wx2

cos θ (3.43)

Indeed, by Pythagoras theorem, we have that:

‖ua‖2 = ‖ug −ws‖2 + ‖wx‖2

⇔ ‖ua‖2 − ‖wx‖2 = ‖ug −ws‖2

⇔ ‖ug −ws‖ =
√
‖ua‖2 − ‖wx‖2.
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Therefore:

ψ̇ = ψ̇g − λ̇

= ψ̇g −
d

dt

[
arcsin

[
wx

va cos θ

]]

= ψ̇g −

d

dt
{ wx
va cos θ}√

1−
(

wx
va cos θ

)2

= ψ̇g −
ẇxva cos θ − wx(v̇a cos θ − vaθ̇ sin θ)

v2
a cos2 θ cosλ . (3.44)

Indeed √
1−

(
wx

va cos θ

)2
=

√√√√v2
a cos2 θ − w2

x

v2
a cos2 θ

=
√

cos2 θ − wx2

cos θ
= cosλ.

Then replacing into (3.44) the expression of ψ̇ gives us:

1
va cos θ

[
L

m
sinϕ+ (ẇn sinψ − ẇe cosψ)

]
.

= ψ̇g −
1

v2
a cos2 θ cosλ [ẇxva cos θ − wx︸︷︷︸

va cos θ sinλ

(v̇a cos θ − vaθ̇ sin θ)︸ ︷︷ ︸
(a)

] . (3.45)

Decomposing (a) and replacing v̇a and θ̇ gives us:

v̇a cos θ − vaθ̇ sin θ =
(
T −D
m

− g sin θ
)

cos θ − cos2 θ(ẇn cosψ + ẇe sinψ)

− sin θ
[
L cosϕ
m

− g cos θ + sin θ (ẇn cosψ + ẇe sinψ)
]
.

That is:

v̇a cos θ − vaθ̇ sin θ = T −D
m

cos θ − L

m
cosϕ sin θ − (ẇn cosψ + ẇe sinψ)(cos2 θ + sin2 θ).

So,

v̇a cos θ − vaθ̇ sin θ = T −D
m

cos θ − L

m
cosϕ sin θ − (ẇn cosψ + ẇe sinψ)︸ ︷︷ ︸

(b)

.
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Now going back to equation (3.45), we have:

uaψ̇g −
1

����va cos θ cosλ (ẇx����va cos θ −����va cos θ sin λ(a)) = L

m
sinϕ+ ẇn sinψ − ẇe cosψ.

That is:

uaψ̇g cosλ− ẇx + sin λ(a) = L

m
sinϕ cosλ+ ẇn sinψ cosλ− ẇe cosψ cosλ︸ ︷︷ ︸

(d)

.

Developing sin λ(b) gives us:

sin λ(b) = −ẇn cosψ sin λ− ẇe sinψ sin λ
= −ẇn cos(ψg + λ) sinλ− ẇe sin(ψg + λ) sinλ
= −ẇn sin λ(cosλ cosψg + sin λ sinψg)− ẇe sin λ(cosλ sinψg − sin λ cosψg)
= −ẇn sin λ cosλ cosψg − ẇn sin2 λ sinψg − ẇe sin λ cosλ sinψg + ẇe sin2 λ cosψg

and now developing (d), gives us:

(d) = ẇn sinψ cosλ− ẇe cosψ cosλ
= ẇn sin(ψg + λ) cosλ− ẇe cos(ψg + λ) cosλ
= ẇn cosλ(cosλ sinψg − sin λ cosψg)− ẇe cosλ(cosψg cosλ+ sinψg sin λ)
= ẇn cos2 λ sinψg − ẇn cosλ sin λ cosψg − ẇe cos2 λ cosψg − ẇe cosλ sin λ sinψg.

Then subtracting from (d) sin λ(b) gives us:

(d)− sin λ(b) = ẇn sinψg(cos2 λ+ sin2 λ)− ẇe cosψg(cos2 λ+ sin2 λ)
= ẇn sinψg − ẇe cosψg.

Recording that ẇx is given by Eq (3.41), we have:

ua cosλψ̇g + (ẇn sinψg + wnψ̇g cosψg)− ẇe cosψg + weψ̇g sinψg

+ sinλ
(
T −D
m

cos θ − L

m
cosϕ sin θ

)
= L

m
sinϕ cosλ+ (d)− sin λ(b)),

which is equivalent to:

ψ̇g(ua cosλ+ wn cosψg + we sinψg︸ ︷︷ ︸
(f)

) = L

m
(sinϕ cosλ+cosϕ sin θ sin λ)− T −D

m
cos θ sin λ.
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Calculating (f) we have:

(f) = ua cosλ+ wn cosψg + we sinψg

= ua

(
ug − ws
ua

)
+ ws

= ug.

Then going back to Eq (3.45) gives us:

ugψ̇g = L

m
(sinϕ cosλ+ cosϕ sin θ sin λ)− T −D

m
cos θ sin λ. (3.46)

Therefore, we are now able to control the ground track angle as we obtain its expression.

Controlling the vertical movement

To control vertical movement, we decide to separate level change scenarios into two cat-
egories: positive level change (the aircraft has to climb) and negative level change (the
aircraft has to descent).

Indeed, when an aircraft has to climb during cruise phase, most of the time, it climbs
at constant throttle and constant Mach/CAS speed (see Section 3.1.9 for more details),
the ensuing flight path angle is then deducted.

While performing a descent, the Rate of Descent (ROD) is fixed and either the
Mach/CAS speed remains constant, from there we can deduce the flight path angle θ
and then the thrust.

The ROCD (Rate of Climb/Descent) is defined as the variation with time of the
aircraft pressure altitude h. That is:

ROCD = dh

dt
= ḣ. (3.47)

Thanks to ISA model, we have that h is given by (3.33). Therefore using chains rules,
the time derivative of h is given by the following relation:

ḣ = ∂h

∂p
ṗ

= ∂h

∂p

∂p

∂z
ż

as p only varies with altitude under ISA conditions. Moreover h is z, then we have that:

ḣ = ż.

When cruising at constant pressure altitude When cruising at constant pressure
altitude, the aircraft is achieving zero Rate of Climb/Descent (ROCD): ḣ = 0. Therefore,
to achieve a constant pressure altitude, we have to achieve a constant geometric altitude,
ż = 0. Then, as ż = va cos θ (3.12), we get θ = 0.
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Moreover we supposed that either Mach or CAS speed remains constant that is v̇a = 0
as ḣ is zero. Therefore, we have that:

T = D +m(ẇn cosψ + ẇe sinψ).

When climbing at a given throttle From (3.22), we have that:

v̇a = T −D
m

− g sin θ − cos θ(ẇn cosψ + ẇe sinψ).

Recording from section Section 3.1.9 that we have:

wx = −wn sinψg + we cosψg,
and ws = wn cosψg + we sinψg.

Let denote by wx = wx
va

and ws = ws
va
.

We denote by ẇv the wind derivative contribution to speed variation:

ẇv = cos θ(ẇn cosψ + ẇe sinψ).

Recording that:

sin λ = wx
ua

= wx
va cos θ = wx

cos θ ,

and cosλ = ug − ws
ua

=

√
cos2 θ − w2

x

cos θ .

We can rewrite ẇv as:

ẇv = ẇn cos θ cosψ + ẇe cos θ sinψ
= ẇn cos θ cos(ψg − λ) + ẇe cos θ sin(ψg − λ)
= ẇn cos θ(cosψg cosλ+ sinψg sin λ) + ẇe cos θ(sinψg cosλ− sin λ cosψg)

= ẇn���cos θ(cosψg

√
cos2 θ − w2

x

���cos θ + sinψg
wx

���cos θ )

+ ẇe���cos θ(sinψg

√
cos2 θ − w2

x

���cos θ − wx
���cos θ cosψg).

Then:

v̇a = T −D
m

− g sin θ − ẇn(cosψg
√

cos2 θ − w2
x + sinψgwx)

− ẇe(sinψg
√

cos2 θ − w2
x − wx cosψg)

= T −D
m

− wx(ẇn sinψg + ẇe cosψg)− g sin θ

−
√

cos2 θ − w2
x(ẇn cosψg + ẇe sinψg).
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In general, v̇a can be split into three terms:

v̇a = Av +Bv sin θ + Cv
√

cos2 θ − w2
x.

Case 1: wx 6= 0
If wx 6= 0, we define ε such that cos ε = wx

cos θ , then:

sin θ =
√

1− cos2 θ

=
√

1− w2
x

cos2 ε
, by def of ε

=
√

1− w2
x(1 + tan2 ε), as 1

cos2 ε
= 1 + tan2 ε

and

√
cos2 θ − wx =

√
w2
x

( 1
cos2 ε

− 1
)

= wx tan ε.

Using these expressions, we find:

v̇a = T −D
m

− wx(ẇn sinψg + ẇe cosψg)− g
√

1− w2
x(1 + tan2 ε)

wx tan ε(ẇn cosψg + ẇe sinψg)

and
v̇a = Av +Bv

√
1− w2

x(1 + tan2 ε) + Cvwx tan ε.

Subtracting those 2 equations, we have:
[
T −D
m

− wx(ẇn sinψg + ẇe cosψg)− Av
]
− wx (ẇn cosψg + ẇe sinψg + Cv) tan ε

− (g +Bv)
√

1− w2
x(1 + tan2 ε) = 0.

Denote now by A′, B′ and C ′ the following quantities:

A′ = T −D
m

− wx(ẇn sinψg + ẇe cosψg)− Av

B′ = g +Bv

C ′ = ẇn cosψg + ẇe sinψg + Cv

we have:
A′ − C ′ tan ε−B′

√
1− w2

x(1 + tan2 ε) = 0,

which is equivalent to:

A′ − C ′ tan ε = B′
√

1− w2
x(1 + tan2 ε).
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Taking the square on both side we have:

A
′2 − 2A′C ′ tan ε+ C

′2 tan2 ε = B
′2(1− w2

x(1 + tan2 ε)).

That is:
(C ′2 +B

′2w2
x) tan2 ε− 2A′C ′ tan ε+ A

′2 −B′2 +B
′2w2

x = 0.

Denoting by A, B, C the following quantities:

A = C
′2 +B

′2w2
x

B = −2A′C ′

C = A
′2 −B′2 +B

′2w2
x

we have:
A tan2 ε+B tan ε+ C = 0.

Solving this second degree equation in tan ε allows us to retrieve the value of θ.

Case 2: wx = 0
If wx = 0, we still have:

v̇a = Av +Bv sin θ + Cv
√

cos2 θ − w2
x

and
va = T −D

m
− cos θ(ẇn cosψg + ẇe sinψg).

Recalling that:

a sin x = b cosx =
√
a2 + b2 sin

(
x+ arctan b

a

)
,

then
T −D
m

− Av − (g +Bv) sin θ − (ẇn cosψg + ẇe sinψg + Cv) cos θ = 0

⇔ T −D
m

− Av = (g +Bv) sin θ − (ẇn cosψg + ẇe sinψg + Cv) cos θ

⇔ T −D
m

− Av =
√

(g +Bv)2 + (ẇn cosψg + ẇe sinψg + Cv)2

sin
(
θ + arctan

(
ẇn cosψg + ẇe sinψg + Cv

g +Bv

))
. (3.48)

Finally we have,

θ = arcsin
(

T−D
m −Av√

(g +Bv)2 + (ẇn cosψg + ẇe sinψg + Cv)2

)
− arctan

(
ẇn cosψg + ẇe sinψg + Cv

g +Bv

)
.
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At a given Mach
We have that:

va = M
√
κRT

⇒ v̇a = MκRKḣ

2
√
κrT

,

replacing ḣ by ż, we have:

v̇a = M2κRK sin θ
2 .

That is in this case, we have Av = 0, Bv = M2κRK
2 sin θ and Cv = 0. Then if wx 6= 0, we

solve the second degree equation:

A tan2 ε+B tan ε+ C = 0,

where
A = C

′2 +B
′2w2

x

B = −2A′C ′

C = A
′2 −B′2(1− w2

x)
and


A′ = T−D

m
− wx(ẇn sinψg + ẇe cosψg)

B′ = g + M2κRK
2

C ′ = wx(ẇn cosψg + ẇe sinψg)

If wx = 0, we have:

θ = arcsin
 T−D

m√
(g + M2κRK

2 )2 + (ẇn cosψg + ẇe sinψg)2

−arctan
(
ẇn cosψg + ẇe sinψg

g + M2κRK
2

)

At a given CAS As we assume a ISA atmosphere, we have that

va = f(vCAS, h),

as pressure depends only on the altitude. That implies

v̇a = ∂f

∂vCAS
v̇CAS + ∂f

∂h
ḣ.

As v̇CAS = 0, we have that:
v̇a = ∂f

∂h
ḣ := fhḣ.

That is:

va(h) =

√√√√ 2ρ
µρ0

[
p0

p
A+ 1

]µ
− 1
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with A =
[

1
2µv

2
CAS

(
ρ0
p0

+ 1
)] 1

µ − 1.
Then:

va(h) =
√

2p0

µρ0

√
θtr
[(
θ
g/KR
tr A+ 1

)µ
− 1

]
with θtr the temperature ratio (see Section Section 3.1.9).
Then

fh = 1
2

√
2p0

µρ0

d
dh

[
θtr
[(
θ
g/KR
tr A+ 1

)µ
− 1

]]
√
θtr
[(
θ
g/KR
tr A+ 1

)µ
− 1

]
= p0

µρ0va(h)
d

dh

[
θtr
[(
θ
g/KR
tr A+ 1

)µ
− 1

]]
= p0

µρ0va(h)

[
θtr

d

dh

[(
θ
g/KR
tr A+ 1

)µ
− 1

]
+ θh

[(
θ
g/KR
tr A+ 1

)µ
− 1

]]

with θh given by:

θh = d

dh
θh

= dT (h)
dhT0

= d

dh

T0 +Kh

T0

= K

T0
.

Then it follows that:

fh = p0

µρ0va(h)

[
θtr

d

dh

[(
θ
g/KR
tr A+ 1

)µ
− 1

]
+ K

T0

[(
θ
g/KR
tr A+ 1

)µ
− 1

]]
.

As d

dh

[(
θ
g/KR
tr A+ 1

)µ
− 1

]
= µ

(
θ
g/KR
tr A+ 1

)µ−1
A
d

dh

[
θ
g/KR
tr

]
, we have:

fh = p0

µρ0va(h)

[
θtrµ

(
θ
g/KR
tr A+ 1

)µ−1
A
d

dh

[
θ
g/KR
tr

]
+ K

T0

[(
θ
g/KR
tr A+ 1

)µ
− 1

]]

= ��p0

���muρ0va(h)

[
g����θtrµK

����KRT0
(θg/KRtr A+ 1)µ−1Aθ

g/KR−1
tr + KR

��T0µ
(θg/KRtr A+ 1)µ − KR

��T0µ

]

= 1
va(h)

[
g(θg/KRtr A+ 1)µ−1Aθ

g/KR
tr + KR

µ
(θg/KRtr A+ 1)µ − KR

µ

]
︸ ︷︷ ︸

F

= F

va(h) .

Then:

v̇a = F

va(h) ḣ = F sin θ.
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That is in this case, we have Av = 0, Bv = F and Cv = 0.
If wx 6= 0, A tan2 ε+B tan ε+ C = 0 with:


A = C

′2 +B
′2w2

x

B = −2A′C ′

C = A
′2 −B′2(1− w2

x)
and


A′ = T−D

m
− wx(ẇn cosψg + ẇe sinψg)

B′ = g + F

C ′ = wx(ẇn cosψg + ẇe sinψg)

If wx = 0,

θ = arcsin
 T−D

m√
(g + F )2 + (ẇn cosψg + ẇe sinψg)2

− arctan
(
ẇn cosψg + ẇe sinψg

g + F

)
.

Iterative algorithm As one may have noticed, to calculate θ, we need to know the
wind derivative: ẇn and ẇe. Indeed, recording their definition here: ẇn = ∂wn

∂x
ẋ+ ∂wn

∂y
ẏ

ẇe = ∂we
∂x
ẋ+ ∂we

∂y
ẏ

and knowing that:  ẋ = va cos θ cosψ
ẏ = va cos θ sinψ

means that θ is needed to compute the wind derivatives. Therefore, we propose here to
use an iterative algorithm to compute θ as it has to verify two equations using a tolerance
error θtol (see Algorithm 7).

Algorithm 7 Iterating algorithm calculating a feasible flight path angle θ
Require: θinit, θtol
Ensure: Computation of θ

Begin
i← 0
θerror ←∞
while θerror > θtol do
θguess ← θi
Compute Drag
Compute kinematics
Compute wind derivatives
i← i+ 1
Compute θi
θerror = |θi+1 − θi|

end while
End
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When descending at a given Mach with a given ROD Descending at a given
ROD means that: ḣp = α. Then we have θ = sin−1

(
α
va

)
. As

v̇a = M

2
√
κRT

κRKḣ

and

v̇a = T −D
m

− g sin θ − cos θ(ẇn cosψ + ẇe sinψ),

we have that:

M

2
√
κRT

κRKḣ = T −D
m

− g sin θ − cos θ(ẇn cosψ + ẇe sinψ)

⇒ T = mM

2
√
κRT

κRKḣ+mg sin θ +m cos θ(ẇn cosψ + ẇe sinψ) +D.

When descending at a given CAS with a given ROD Descending at a given ROD
means that: ḣp = α. Then we obtain θ = sin−1

(
α
va

)
. As

v̇a = F

va
ḣ

and

v̇a = T −D
m

− g sin θ − cos θ(ẇn cosψ + ẇe sinψ),

we have that:

F

va
ḣ = T −D

m
− g sin θ − cos θ(ẇn cosψ + ẇe sinψ)

⇒ T = mF

va
ḣ+mg sin θ +m cos θ(ẇn cosψ + ẇe sinψ) +D.

Controlling the ground track angle and the horizontal position

As we have already mention in this document we adopt the fly-by method to compute
turn trajectories. We assume here that ground trajectories are describing an arc of circle
tangent to tracks. It should be noted here that, in presence of wind, air trajectories
differ from ground trajectories and are not an arc of circle. Let us denoted by ∆ψig the
orientation change of the track between way-point Oi and Oi+1.

By definition of the fly-by method, aircraft start turning before reaching their next
way point such that their trajectory describe an arc of circle tangent to the ground tracks.
The distance at which the aircraft starts turning depends only on the radius of the turn
and on the track change angle ∆ψig. On Figure 3.15, this distance is denoted by di and
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•
Oi

•Oi+2

∆ψig

Ri

di

di•
Oi+1

Figure 3.15: Geometry of turn between two way points

we can see from this figure that:

di = Ri tan
(

∆ψig
2

)
. (3.49)

The distance from the way point Oi+1 to the point at which the aircraft is going to
intercept the following track is the same as the distance between the way point and the
point at which the aircraft is starting to turn. The aircraft starts to turn when the
distance between its along-track position and the way point is less than or equal to di.

The radius of the turn depends essentially on the bank angle and on the aircraft ground
speed. As we assume that the ground trajectory is an arc of circle, the radius as to be
kept constant. Therefore the bank angle have to be adjusted during the turn as long as
the ground speed changes.

When predicting the trajectory of the aircraft, as ground speed is a derived state
variable, the ground speed is not known beforehand. Therefore, the turn radius is not
known neither the starting point nor the ending point. In this work, we have decided to
use an iterative method to determine all the turn characteristics.

Turn dynamics Taking into account the wind, the ground turn dynamics can be writ-
ten as follow (see Section 3.1.9 for more details):

ugψ̇g = L

m
(sinϕ cosλ+ cosϕ sin θ sin λ)− T −D

m
cos θ sin λ. (3.50)

We make the assumption that during turn, θ remains 0, that is Eq. (3.50) can be rewritten
as follow:

ugψ̇g = L

m
sinϕ cosλ− T −D

m
sin λ
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with cosλ =
√

1− w2
x and sin λ = wx.

Instead of using L, we use the vertical load factor which is defined by the following relation:

nz = L

mg
. (3.51)

Using (3.51) into Eq. (3.50) we obtain:

ugψ̇g = gnz sinϕ cosλ− T −D
m

sin λ.

Using the forth equation of system (3.22) we have that:

T −D
m

= v̇a + (ẇn cosψ + ẇe sinψ).

Replacing T−D
m

by the previous expression, we obtain:

ugψ̇g = gnz sinϕ cosλ− (v̇a + ẇn cosψ + ẇe sinψ) sinλ

= gnz sinϕ cosλ− v̇a sinλ− (ẇn cosψ + ẇe sinψ) sinλ. (3.52)

As θ̇ = 0, we have by the second equation of the system (3.11) that:

0 = 1
va

[
L

m
cosϕ− g

]
.

Therefore we obtain for nz:

nz = 1
cosϕ. (3.53)

Furthermore, we assume that turns are executed at constant ground radius Ri, that
is:

ψ̇ig = ugκi (3.54)

where κi = 1
Ri

if the aircraft is turning right and − 1
Ri

if it is turning left.

Using Eqs. (3.54) and (3.53) into Eq. (3.52) we obtain:

u2
gκi = g

cosϕ sinϕ cosλ− v̇a sin λ− (ẇn cosψ + ẇe sinψ) sinλ

= tanϕ g cosλ− [v̇a + (ẇn cosψ + ẇe sinψ)] sinλ︸ ︷︷ ︸
(a)

. (3.55)

This equation can be used to compute the bank angle if the state variables and the
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curvature are known (Eq (3.56)):

ϕ = arctan
(
u2
gκi

(a)

)
. (3.56)

On the reverse angle, if the bank angle and all the state variables are known we can use
it to calculate the curvature:

κi = tanϕg cosλ− [v̇a + (ẇn cosψ + ẇe sinψ)] sinλ
u2
g

. (3.57)

We describe in the next section how to find a suitable radius of turn to not exceed the
maximum bank angle and also reach the next leg with the good track angle.

Iterative algorithm As we have seen, a maximum bank angle is specified for all Air-
craft_type. For each turning point, an initial bank angle (say ϕmax/2) is supposed.

With this initial guess, the curvature of the trajectory is computed using (3.55) at
each step of the integration scheme. Having the radius of the turn, the turn initiation
distance di is also computed using (3.49). Then we check if the distance to the next way
point is greater than or less than the initiation distance. In the former case the turn does
not start, and we make another integration step.

When the distance is less than or equal to the initiation distance computed with the
guess bank angle, the turn starts and we store the time index. From now on, the turn
radius is kept constant and using (3.56), we compute ϕ as long as ug changes for each
integration step and we store all the values of it. We also compute at this step the
instantaneous rate of turn ψ̇g at each integration step using (3.54).

When the turn ends, that is when the instantaneous turn radius reach ∆ψig, the set
of historic bank angle is examined and if ϕmax is not met neither ψ̇max, that means that
the initial ϕ was an acceptable guess and we stop the algorithm. If one of these bound is
reached then we start with a smaller initial bank angle. We resume this algorithm in the
Algorithm 8.

Once we have found the ϕ, we use equation 1 and 2 of the system (3.22) to compute
the horizontal position of the aircraft.

Finally, we derive all the control laws needed for the aircraft to follow the prescribed
flight plan. However we did not take into account any disturbances coming from the
environmental uncertainties yet. The next section is devoted to the development of a
stochastic model for the aircraft motion based on the deterministic tool we have just
developed.

3.2 Stochastic model

So far, we have developed a simulation tool based on numerical models for aerodynamics.
Predicted trajectories may not behave as they would if experimentally measured.
Reasons for this can be several :
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Algorithm 8 Iterating algorithm calculating a feasible bank angle
Require: ϕinit, ϕmax, ψ̇max, ∆ϕ
Ensure: Computation of turn characteristics

Begin
starting_turn = false
j ← j0
ϕj ← ϕinit
while starting_turn == false do
repeat
Make an integration step
j ← j + 1
Compute κi using ϕinit
Compute di using ϕinit

until di ≤ si − s(tj)
index_starting_turn← j
repeat
Make an integration step
j ← j + 1
Compute ϕj
Store ϕj in ϕhistory
Compute ψ̇g(tj)

until ψ̇g(tj) ≤ ∆ψig
if maxj{ϕhistory} > ϕmax then
j ← j0
ϕinit ← ϕinit −∆ϕ

else
starting_turn==true

end if
end while
End
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trajectory track uncertainty

Switching mode uncertainty

Figure 3.16: Pilot intents and trajectory uncertainties

• The model (3.22) is simplified in comparison with the reality,

• neither input parameters nor the initial states are fully known,

• measurements used for calibration are characterized by noise.

To take into account this lack of knowledge, we add uncertainty into the model. That is
we reformulate (3.22) as further described in this section.

For sake of convenience we rewrite the system (3.22) as :


ẋt = ft(xt(ut,pt),ut(xt,pt),pt(xt,ut)), t > t0

x0 = x(t0)
xt ∈ [xmin,xmax]
ut(xt,pt) ∈ [umin,umax]

where pt denotes the set of parameters and ut the controls used to integrate this equation
which depends on the state of the system.

3.2.1 Navigation deviation

We did not mention that the aircraft can derive from its initial flight plan. Indeed we
make different modelization choices for the aircraft to follow the flight plan. Actually,
the person who takes these decisions are the pilots of the aircraft. So a deviation can be
observed on the actual aircraft trajectory. We represent these uncertainties on Figure 3.16.
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In this work we choose to not model the pilots intents. Indeed, we take the decision
to assume that the pilot will always follow the flight plan. Nevertheless, to integrate the
uncertainties induced by the pilot intent, we presume that two modifications to the model
should be added. The first one is to integrate a Markov switching model to the model we
developed. Indeed, in our simulation tool we have different flight modes, for each mode
of the flight we have a different control law. The uncertainties are then concentrated on
the time the decision are going to be made. That is when the switch is made between
modes. The second pilot deviation from the flight plan is its willingness to actually follow
the straight lines between way-points. Therefore the ground tack angle, which have been
previously considered as a fixed parameter should be modelled as random variable to
account for these deviations.

3.2.2 Parameters, initial conditions and controls uncertainties

In this section three kinds of uncertainties are introduced to the state space equation
(3.22), one in the parameter, p(ωp), one in the initial condition x0(ωx) and one in the
control law u(ωu) which are used to integrate the state equations and derived the control
law of the system.

As we said, the uncertainties in the control vector ωu are neglected in the rest of the
document since we do not model aircraft trajectories deviation. Indeed we do not take
into into account the possibility for the pilot to do not respect the flight plan. This uncer-
tainty would be modelled by a probability whose density is concentrated on the ground
leg but spread around it. Moreover he has the possibility to turn before or after the
point we calculate, this uncertainty would be modelled by a probability whose density is
concentrated on the turning point and a double tail modelling its propensity to follow or
not the flight plan. We illustrate this on Figure 3.16.

Then, only parameter uncertainties remain. Concerning them, we distinguish whether
they are environment parameters such as wind, temperature and pressure whether there
are intrinsic to the aircraft model, i.e all the parameters which were fit thanks to BADA
database. We denote by Θ the atmospheric parameters and by p the aircraft parameters.
Therefore, parameter uncertainties are modelled as a (P, E)-valued random variable :
pt(ωpt ). The environment uncertainties are modelled as a (EΘ

t , E ′)- valued random variable
denoted by Θt(ωθt ,xt). The aircraft initial state uncertainty is a (EX0 , E)-valued random
variable, denoted by x0(ωx0 ).

Introducing these notations into (3.22), the deterministic model is transformed to :


dxt = ft
(
xt(ut, pt),ut(pt,xt,Θt), pt(ωpt ,xt,ut,Θt),Θt(ωθt ,xt,ut)

)
dt, t > t0,

x0(ωx0 ) = x(ωx0 , t0)
xt ∈ [xmin,xmax]
u(xt, pt, xθt ) ∈ [umin,umax]

(3.58)

125



Now it becomes clear that the aircraft process is a random process evolving in a random
media and justifies the developments made in Chapter 2. Nonetheless, we developed in
Chapter 2 techniques able to estimate both the random process and the random media
in discrete time. Then we propose in the next section the integration scheme which turns
the continuous dynamics of the aircraft into discrete ones.

3.3 Integration scheme

The multi Aircraft model we have developed so far requires the real time integration of
a series of non linear differential equations. Since they cannot be solved analytically, we
have to use a numerical integration method.

In our case the first order Euler method is adequate for the time step of 4 seconds
we are interested in. Using the state vector xk at time step tk, the next time step state
vector xk+1 is calculated using the following relation :

xk+1 = xk +∇f(xk)∆t

A study on the integration scheme error was not held in this work. But it would be neces-
sary to complete this work, a reference paper which gives details on the error introduced
by the Euler discretization scheme is Bally and Talay (1996).

This chapter was dedicated to the construction of an aircraft model able to track
an imposed flight plan, but also taking into account the atmospheric uncertainties. To
this end, we established the dynamic equations starting from the Newton second law
expressed in the aerodynamic reference frame. Then we express the kinematics equations
of the aircraft around the ellipsoidal Earth. Further we explain how the aerodynamic
parameters entering inside the model are set using the BADA database. Finally we
explain how we derive the control laws and turn the deterministic set of equations into
a stochastic hybrid systems. In the subsequent chapter, the deterministic model is used
inside the particle filters we developed in ??.
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“A pessimist is an optimist who has plenty of experience.”

André Bapst

4
Numerical experiments and applications

This chapter deals with the application of the algorithm we have developed in ?? in order
to enhance the trajectory prediction tool we have built in Chapter 3. As we mention
several times, aircraft parameters but also environmental ones are unknown. In order
to improve the accuracy of the trajectory prediction, one basic idea consists in using
observations delivers by civil radar equipments to learn these parameters. That is filtering
out the noise from the radar measurements and learn the aircraft and environmental
parameters using estimation techniques developed in ??. Here we proceed step by step
and we present several results obtained on different examples.

First, we present the results obtained on two pedagogical filtering problems using ei-
ther Algorithm 2 or Algorithm 3. Then, the theoretical results, presented in Section 2.2.3
and Section 2.2.4, to qualify the estimate given by Algorithm 3 are illustrated. Algo-
rithm 5 performance is also illustrated for a simple numerical experiment. After, results
obtained thanks to the labeled island particle filter (Algorithm 3) to estimate the air
traffic process when the aircraft model is simplified and the wind field synthetic are pre-
sented. From there, we gradually increase the complexity level of the model towards the
final application: a point mass model for the aircraft and actual weather forecast for the
wind field.

4.1 Application on toy models

In order to give an illustration of Algorithm 3, Algorithm 2 and of the theoretical results
obtained to qualify the subsequent estimator, we present two estimation problems on toy-
models. Then we present the results obtained thanks to Algorithm 5 on a simple filtering
problem.
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4.1.1 Applications of the labeled island particle filter

First let us introduce the example of a mobile whose evolution is influenced by an unknown
force. Noisy observations of this physical systems are available. We resume the dynamics
by the following system of equations :


Xn+1 = Xn + Vn

 cosα
sinα

∆t+ Θn+1∆t+BX
n

Vn+1 = Vn +BV
n

Yn = h(Xn, Vn) +BY
n

(4.1)

where Xn+1 denotes the position of the mobile in the plane, Vn the proper speed of
the mobile and Yn their noisy observations through the observation function h, with
BY
n ∼ N(0,ΣY ). The course track of the mobile α is constant over time. The vector Θn

is a random variable and denotes the unknown force acting on the position of the mobile.
Its equation of evolution is given by

Θn+1 =
 Θ1

n+1

Θ2
n+1

 =
 cos Θ1

n

sin Θ2
n

+BΘ
n

with BΘ
n ∼ N(0,ΣΘ). The initial condition of the system is given by X0 ∼ N(mX

θ0,0,Σ
X
θ0,0),

V0 ∼ N(mV
0 ,ΣV

0 ) and α = π/2. We are interested in the estimation of the position of
the mobile, which depends on the parameter Θn. We thus need to learn both the force,
the speed and the position of the mobile. The tricky part is that there is no observation
of the force. Here we will consider that the speed is a Poisson process, that is BV

n is a
Poisson process of intensity 0.03 where the jumps height is given by a standard normal
distribution of variance 3. Concerning BX

n , it is a Gaussian random variable such that
BX
n ∼ N(0,ΣX). We present now the results obtained for a simulating time of 125 minutes

with ∆t = 15s. The value of the different variances are set to

Σθ =
 1 0

0 1

 , ΣX = ΣX
θ0,0 =

 1.5 0
0 1.5

 , and ΣY =


0.5 0 0
0 0.5 0
0 0 1

 .

As one can notice, to estimate the law of the couple (Θn, η
X
Θ0:n,n) given the observations

Y0:n, one can use Interacting Kalman filters and labeled island particle filters (LIPFs),
detailed respectively in Algorithm 2 and Algorithm 3. We present comparative results
obtained thanks to both methods.
Concerning the labeled version, the potential of each particle is given by the density of
the observations, that is for all xn ∈ EXn and for all θn ∈ EΘ

n :

Gn(θn, xn) ∝ exp
(
−1

2(yn − h(xn, vn))T (ΣY )−1(yn − h(xn, vn))
)
.
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Figure 4.1: Temporal evolution (horizontal axis) of the reference mobile’s speed given in
m.s−1 (black line), its observed (blue dotted line) and filtered counterparts (red obtained
by the labeled island particle algorithm or green line obtained by IKF).In spite of the
strong perturbation on the observations, the estimation of the speed is quite efficient with
an absolute error smaller than 0.5 kt.

On all the figures the realization of the true signal is represented by the color black, the
observations Y are represented by the color blue, the filtered signal obtained thanks to
Algorithm 3 with N1 = 100 and N2 = 300 in red and results obtained using Algorithm 2
in green with N1 = 100. On Figure 4.1, one realization of the signal Vn, its observed and
its estimations counterparts are represented with respect to time. As one may observe,
the true signal is well estimated by the technique we develop. Indeed, here the Interacting
Kalman filter is not optimal as the noise sequence is not Gaussian. On Figure 4.3, we
represent the temporal evolution of the force strength estimation. One can notice that
even if no observation is available, we are able to find back the value of the true signal
thanks to Algorithm 3 whereas Algorithm 2 retrieves only a global trend. Figure 4.2 rep-
resents the temporal evolution of one realization of the force orientation and its estimated
counterparts. Results obtained thanks to Algorithm 3 give a better estimation of the true
signal than the results obtained thanks to the Algorithm 2. From this example we can
conclude that the labeled island particle filter is able to filter observations of the process
while estimating the environment where the process evolves. Moreover the comparison
with the Interacting Kalman filter algorithm shows that the labeled island particle filter
is more effective to treat this double level estimation problem.
Let us consider the 2-D filtering problem inspired from the growth model Kitagawa (1987).
This model, which is a standard benchmark example in the particle filtering literature, is
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Time

Force direction

Figure 4.2: Temporal evolution (horizontal
axis) of the reference force orientation (ver-
tical axis) in rad (black line) and its esti-
mated counterpart (red obtained by the la-
beled island particle algorithm or green line
obtained by IKF). The estimation obtained
thanks to IKF gives a mean trends whereas
the labeled island particle algorithm retrieves
the dynamics of the signal.

Figure 4.3: Temporal evolution (hor-
izontal axis) of the reference force
strength (vertical axis) in m.s−1 (black
line) and its estimated counterpart (red
obtained by the labeled island parti-
cle algorithm or green line obtained by
IKF). The estimation obtained thanks
to IKF gives an underestimate mean
trends whereas the labeled island par-
ticle algorithm retrieves the dynamics of
the signal.

given by the following system of equations :


Θn+1 = 8 cos(1.2(n+ 1)) +Bθ
n+1

Xn+1 = Xn

2 + 25 Xn

1 +X2
n

+ Θn+1 +BX
n+1

Yn = Xn +BY
n

where Θ0 ∼ N(0, σ2
θ), X0 ∼ N(0, σ2

X), Bθ
n+1 ∼ N(0, σ2

θ), BX
n+1 ∼ N(0, σ2

X) and BY
n ∼

N(0, σ2
Y ).

We use the labeled island particle model to estimate the law of the couple (Θn, η
X
Θ0:n,n)

given the observations Y0:n, where the potential functions Gn are given by the likelihood
of the observations, that is for all xn ∈ EXn and θn ∈ EΘ

n :

Gn(θn, xn) ∝ exp
(
−(Yn − xn)2

2σ2
Y

)
.

We present the results obtained for a simulating time of 1000 time steps. The different
variances are set to σ2

θ = 1, σ2
X = 1 and σ2

Y = 10. On all the figures the realization of
the reference signal (also called true) is represented in black color, the observations Y are
represented in blue, and the filtered signal obtained thanks to Algorithm 3 with N1 = 200
and N2 = 100 is represented in red. On Figure 4.4, one realization of the signal Θ and
its estimation obtained thanks to the labeled island particle algorithm are represented on
a small period of time. As one may observe, the true signal is well estimated even if no
observations are available. On Figure 4.5, one realization of the process X is represented,
its observed and its estimation counterparts. Even if the observations are really noisy,
one is able to filter out the noise to find back the value of the true signal.
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Figure 4.4: Temporal zoom (horizontal
axis) on one realization of the Θ process
(black line) and its estimated counter-
part (red dashed line). The filter sig-
nal obtained thanks to the labeled island
particle algorithm is really close to the
reference signal.
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Figure 4.5: Temporal zoom (horizon-
tal axis) on one realization of the X
process (black line), its observed (blue
dotted line) and estimated counterparts
(red dashed line). The estimated sig-
nal obtained thanks to the labeled island
particle algorithm retrieves the reference
value even if the observations where re-
ally noisy.
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Figure 4.6: Reference (black line), filtered (red line) and observed (blue line) power spec-
tral densities for one realization of the process X over 1000 time steps. The observed
spectral densities has the same shape as a white noise for high frequencies. The filtered
spectral density has the same shape as the reference signal and retrieves frequencies which
are not present in the observed signal.
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Figure 4.8: Evolution of the estimation’s
error (vertical axis, color-scale) for the
law of X for 100 realizations of the pro-
cess in function of N1 and N2. The error
decreases as N1 tends to infinity what-
ever the value of N2 is.

Indeed, as one may have noticed, on Figure 4.6, the filtered power spectral density (in
red) is closer to the black line, representing the “true” signal, than the observed power
spectral density which has the same shape as a white noise for the high frequencies.
Moreover, some frequencies are found even if there are not present in the observed signal.
These two observations illustrate the convergence of the estimator constructed by the
labeled island particle algorithm detailed in Algorithm 3.

Then we run 100 times the same experiment to get a sample of realizations for the
true signal and the filtered signal. In that way one can illustrate the theoretical results
obtained for the Lp error bound. On Figure 4.7 and Figure 4.8 are presented the L2 errors
between the estimated law and the true law at one time step respectively for Θ and X in
function of the number of islands N1 and the number of particles inside each island N2.
This error decreases both with the number of particles and the number of islands as it
was suggested by the Theorem 2.2.1. Concerning the variance of the error made between
the true law and the filtered one, on Figure 4.9 and Figure 4.10 for Θ and X respectively,
one can observe that the results obtained in Theorem 2.2.3 are confirmed. Moreover one
can notice that the variance is more influenced by the number of islands than the number
of particles inside each island. Indeed as in Figure 4.10, the variance obtained for a fixed
time step is varying with respect to the number of islands and number of particles inside
each islands. But if the number of islands influences the variance, we can observe that
the number of particles inside each island does not seem to be really influent for a given
number of islands.
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Figure 4.9: Evolution of the variance
estimation’s error (vertical axis, color-
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Figure 4.10: Evolution of the variance
estimation’s error (vertical axis, color-
scale) for the law of X for 100 realiza-
tions of the process in function of N1 and
N2. The variance decreases as N1 tends
to infinity whatever the value of N2 is.

4.1.2 Application of the labeled island MCMC method

In order to illustrate Algorithm 5, we go back to the following dynamical system:


Θn+1 =
 Θ1

n+1

Θ2
n+1

 =
 cos Θ1

n

sin Θ2
n

+BΘ
n

Xn+1 = Xn + Vn

 cosα
sinα

∆t+ Θn+1∆t+BX
n

Vn+1 = Vn +BV
n

Yn = h(Xn, Vn) +BY
n

(4.2)

where as before Xn+1 denotes the position of the mobile in the plane, Vn the proper speed
of the mobile and Yn their noisy observations through the observation function h, with
BY
n ∼ N(0,ΣY ). The vector Θn is a random variable and denotes the unknown force

acting on the position of the mobile, with BΘ
n ∼ N(0,ΣΘ). Then the simulation set up is

the same as in the first example used to illustrate the labeled island particle algorithm.
Nevertheless, this time α is not known. The initial condition of the system is given by
X0 ∼ N(mX

θ0,0,Σ
X
θ0,0) and V0 ∼ N(mV

0 ,ΣV
0 ). We are interested in the estimation of the

position of the mobile, which depends on the parameter Θn and α. We thus need to learn
both the force, the speed, the direction and the position of the mobile. The tricky part is
that there is no observation of the force. Here we will consider that the speed is a Poisson
process, that is BV

n is a Poisson process of intensity 0.3 where the jumps high is given by
a standard normal distribution of variance 0.2. Concerning BX

n , it is a Gaussian random
variable such that BX

n ∼ N(0,ΣX). We present now the results obtained for a simulating
time of 25 minutes with ∆t = 15s. The value of the different variances are set to

Σθ =
 0.6 0

0 0.6

 , ΣX = ΣX
θ0,0 =

 0.1 0
0 0.1

 , and ΣY =


0.5 0 0
0 0.5 0
0 0 0.3

 .
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Figure 4.11: Temporal evolution (horizontal axis) of the reference mobile speed (black
line), its observed (blue line) and filtered counterparts (red line) using Algorithm 5, given
in m.s−1 (vertical axis). The filtered signal obtained retrieves the Poissonian jumps even
if the observations were really noisy.

As one can notice, to estimate the law of the couple (Θn, η
X
Θ0:n,n) and α given the observa-

tions Y0:n, one can use Algorithm 5. We present here the results obtained thanks to this
method where the potential of each particle is given by the density of the observations.
That is for all α ∈ R, (xn, vn) ∈ EXn and for all θn ∈ EΘ

n :

Gn,α(θn, xn) ∝ exp
(
−1

2(yn − h(xn, vn))T (ΣY )−1(yn − h(xn, vn))
)
.

The MCMC iterations are obtained thanks to the Gaussian transition kernel. In other
terms, the new proposition is obtained thanks to the following recursion :

α∗ = αp−1 +Bα
p

where Bα
p = N(0, 1). The first proposition for α is set to 0.

On all the figures the realization of the true signal is represented by the color black,
the observations Y are represented by the color blue, the filtered signal obtained thanks to
Algorithm 5 with N1 = 100 and N2 = 200 and in red with the number of MCMC iterations
fixed to nsample = 1000. On Figure 4.11, one realization of the signal Vn, its observed and
its estimations counterparts are represented with respect to time. As one may observe, the
true signal is well estimated by the technique we develop. On Figure 4.13, we represent
the temporal evolution of the force strength estimation. One can notice that even if no
observations are available, we are able to find back the value of the true signal thanks
to Algorithm 5. Furthermore we see that with the MCMC iteration steps, the algorithm
gives an estimation of the parameter α even if on this graph the MCMC algorithm does
not converge yet towards the true value.
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Figure 4.12: Evolution of the mobile direction estimation (red line) and the reference one
(black line) given in rad (vertical axis) along the MCMC algorithm iteration (horizontal
axis). The evolution of the estimated parameter along the MCMC steps, shows that the
algorithm has not yet converged towards the true parameter value.
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Figure 4.13: Temporal evolution (horizontal axis) of the reference force orientation (black
line) and its estimated counterpart (red line) using lipMCMC in rad (vertical axis). Al-
though no observations on this process were available, the filtered signal obtained thanks
to the Algorithm 5 is quite close to the reference signal.
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Figure 4.14: Temporal evolution (horizontal axis) of the reference force strength (black
line) and its estimated counterpart (red line) using lipMCMC in m.s−1 (vertical axis).
Although no observations on this process were available, the filtered signal obtained thanks
to the Algorithm 5 is quite close to the reference signal

4.2 Learning a synthetic wind field with a simulated
air-traffic using simplified aircraft model

As we said we are going step by step towards the final aim of this work: estimating
the wind forecast error using observations delivered by aircraft along their trajectories.
So far we have illustrated the effectiveness of the algorithm developed in Chapter 2 on
toy-models. Now we apply the algorithm developed in Chapter 2 for random processes
evolving in a random field on two simple experiments. That is we are going to use the ac-
quisition processes formalism and their particle approximations introduced in Section 2.4
to estimate the air-traffic process and the wind field. By simple experiment, we mean that
the aircraft model is a much simpler model than the one we have developed in Chapter 3
and that the wind field is synthetic. In the first case it is uniform in space and constant
over time. In the second case it is decomposed in two uniform sub-domains which remain
constants over time.

A uniform wind field is a field where the wind value is the same at every point of the
configuration space. That means that each aircraft experiment the same wind. In this
case we present the estimation of the air-traffic process and the wind field.

In the second case, when the wind field can be decomposed in two uniform sub-
domains, we estimate the air-traffic but also the wind field on each uniform sub-domain.

Let us present the simplified model which is used in this section to simulate the air-
traffic process.

136



A

B'

B

Figure 4.15: Illustration of wind triangle at time t. The aircraft follows the trajectory
represented by red dots, oriented along ~AB with an air-speed vector oriented along ~AB′

which compensates the wind force ~Wt.

4.2.1 Simplified aircraft model

The simplified model considers only the kinematics of the aircraft model in Cartesian
coordinates and supposes that aircraft can only move along straight lines between two
points in R2, say A and B with the air-speed at time t denoted by V a

t .
Denote by −→W t the wind at time t. It is possible to determine which ground speed

the aircraft has along its prescribed ground trajectory. Let B′ denotes the point in the
air-mass that the aircraft should aim at to follow the prescribed ground trajectory. Define
also the ground velocity vector of the aircraft at time t, denoted by

−→
V g
t as follows:

−→
V g
t = αt

−→
AB

‖
−→
AB‖

, with αt > 0 (4.3)

where αt is the ground speed of the aircraft. Using the wind triangle illustrated on
Figure 4.15, we have:

−→
V g
t = V a

t

−−→
AB′t

‖
−−→
AB′t‖

+−→Wt. (4.4)

Combining (4.3) with (4.4), and using Al-Kashi relation we obtain:

(V a
t )2 = α2

t + ‖−→Wt‖2 − 2αt〈
−→
AB

‖
−→
AB‖

,
−→
Wt〉

where 〈., .〉 signs for the scalar product. Then the precedent equation is equivalent to:

α2
t − 2αt〈

−→
AB

‖
−→
AB‖

,
−→
Wt〉+ ‖−→Wt‖2 − (V a

t )2 = 0. (4.5)

Solving for αt, (4.5), we have:

αt = 〈
−→
AB

‖
−→
AB‖

,
−→
Wt〉 ±

√√√√√〈 −→AB
‖
−→
AB‖

,
−→
Wt〉2 −

(
‖
−→
Wt‖2 − (V a

t )2
)
. (4.6)

We retrieve the aircraft ground speed along the straight line joining point A and B in
presence of wind.
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The discrete time evolution of the dynamic system from time step n to time step n+1
formed by the aircraft position in the ground frame, Zn+1, and the air-speed V a

n+1, is given
by:  Zn+1 = Zn + αn∆t

−→
AB

‖
−→
AB‖

V a
n+1 = fn(V a

n , Bn)
(4.7)

where αn is obtained using (4.6) and fn is the evolution dynamic of V a which is
supposed to be given and dependent on a random process Bn.

4.2.2 Aircraft evolving in a random uniform environment

In this section we try to evaluate the uniform wind field denoted by Θn = −→W using three
independent aircraft processes, denoted by Xn = (Zi

n, V
a,i
n )3

i=1.
These processes evolve using (4.7) with f in defined for all i = 1, 2, 3 by:

V a,i
n+1 = V a,i

n +Bi
n

where Bi
n ∼ N(0, σV )×P(λ). The speed is a Poisson process, of intensity 0.03 where the

jumps height is given by a standard normal distribution of variance 1, for every i = 1, 2, 3.
The initial distribution of each aircraft position process Zi

0, denoted by ηZiΘ0,0 is given
by:

ηZ
i

0 (dz) = δAi(dz)

where A1 = (−100, 400), A2 = (0, 0) and A3 = (400, 400). The initial distribution of each
true air-speed process is given by:

ηV
i

0 (dv) = N(0, σV )× P(λ)(dv).

The aircraft are following the straight lines between their initial position and their
final destination given respectively by:

B1 = (0, 400), B2 = (−400, 400) and B3 = (−400,−200).

The uniform wind field used to simulate the air-traffic reference process is given by
the 2D-vector: −→W = (0, 75). That is, at each point of the configuration space E, the wind
is given by this value. From the reference air-traffic process, we generate the observation
process Yn , (Y i

n)3
i=1 thanks to the following equation:

Y i
n =

 Zi
n

V a,i
n

+BY
n

where BY
n ∼ N(0,ΣY ), and ΣY =


0.1 0 0
0 0.1 0
0 0 0.5

.
We use the labeled island particle model to estimate the law of the couple (Θn, η

X
θ0:n,n)
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given the observations Y0:n, where the potential functions Gn are given by the likelihood
of the observations, that is for all xn ∈ (EXn )3 and θn ∈ EΘ

n :

Gθn,n(Xn) ∝
3∏
i=1

exp
(
−(Y i

n − (Zi
n, V

a,i
n ))T (ΣY )−1(Y i

n − (Zi
n, V

a,i
n ))

2

)
.

We present the results obtained for a simulating time of 45 minutes, with ∆t = 4s.
Let the number of island N1 = 1000 and the particle inside each island given by N2 = 100.
The wind propositions (or islands) are obtained thanks to:

• the normal distribution for its strength ‖W i
n‖ around the true value: 75, that is

‖W i
n‖ ∼ N(75, 1), for i ∈ J1, 10K

• the uniform distribution for the direction βin between [π4 ,
3π
4 ], that is βin ∈ [π4 ,

3π
4 ], for

i ∈ J1, 100K.

Then we built θin = (‖W i
n‖, βin)1000

i=1 by pairing all the possibilities. On Figure 4.16, we
present the evolution of the direction proposal’s weight value (represented by the color
scale) obtained thanks to the labeled island particle algorithm. The island number is given
by the x-coordinate, and the time evolution on the y-coordinate. As one can observe, at
the beginning of the experiment all the weight seems to be uniformly distributed. As
time goes, one may observe that one island appears to have a highest value till it becomes
the only one with a positive potential. It turns out that this island corresponds to the
island for which the wind value is the closest to the wind used to create the reference
air-traffic process. On Figure 4.17 and Figure 4.18, one realization of the processes V a,1

n

and V a,2
n are respectively represented, its observed and its estimation counterparts. Even

if observations are really noisy, one is able to filter out the noise to find back the value of
the true signal.

Finally, we can say that the labeled island particle algorithm shows its ability to
overcome the double estimation problem.

4.2.3 Aircraft evolving in a random decomposed uniform envi-
ronment

We increase again the complexity of the simulation setting by using a synthetic wind field
which is decomposed into two uniform domains remaining constant over time. That is
we consider the situation where the wind is equal to one value on one side of the domain
and to another one on the other side. Therefore, there are two domains B0,1 and B0,2

where the wind field has to be estimated. We resume the wind field value by the following
equation:

−→
W x,y =

 (0, 75), for x < 100
45√

2 × (1, 1), for x ≥ 100

The wind situation is represented on Figure 4.19. Then using three aircraft whose evo-
lutions are given by the set of equations (4.7), we try to estimate the wind field and the
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Figure 4.16: Time evolution (vertical axis) of the wind direction proposals likelihood
(color-scale) with respect to the wind proposal number (horizontal axis). Using Algo-
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Figure 4.17: Time evolution (horizontal
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Figure 4.18: Time evolution (horizontal
axis) of the speed (vertical axis) refer-
ence process V a,2 (black line), its ob-
served (blue line) and estimated (red
line) counterparts in m.s−1. Estimated
aircraft true airspeed by labeled island
particle method. In spite of the strong
perturbation on the observations, the es-
timation of the TAS is quite efficient
with an absolute error smaller than 1
m.s−1.

air-traffic process using Algorithm 6. The reference process is obtained using the same
parameters setting: σV = 1, λ = 0.03 and the air-traffic process has to follow the same
flight plans as in the last section. The observations are obtained using the same scheme
as in the last section, with the standard deviation matrix given by:

ΣY =


0.1 0 0
0 0.1 0
0 0 0.5

 .

In order to estimate the air-traffic process law and the wind field in each homogeneous
domain, we use Algorithm 6. Then the parameters N1 and N2 are set as follow.

To estimate the wind field we use 55 proposals, or labeled islands. The proposals are
obtained using the same procedure as in the last section. That is, first a proposal is made
on the limit where the wind field value change. We assume here that we already know
how the limit is but we do not know where it is located. That means that we know that
it is vertical but we do not know at which x-coordinate the wind value switch takes place.
The limit proposals are obtained using a uniform distribution between [50, 150]. Then
a wind direction proposal is made using a uniform distribution on [π4 ,

7π
8 ]. For the wind

strength, a normal distribution centered on the true value with standard deviation 1 is
used. Concerning the second wind zone, direction proposals are uniformly distributed on
[0, π2 ] and strength proposals are obtained using a normal distribution centered on the
true value with standard deviation 1. Then combining all the proposals we have N1 = 55.
To estimate the air-traffic process, we set N2 = 100.
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Figure 4.19: Example of possible numerical experiment. Crossing a sector control, there
are a cold front and three En-Route aircraft moving with different speeds. The cold front
is a limit of two domains with different wind directions. The purpose of the experiment
is to estimate the likelihood of the weather and the aircraft airspeed using an ensemble
of weather forecasts and radar observations.

We use the patchwork labeled island particle model to estimate the law of the couple
(Θn,B0,l , η

X
θ0:n,n(1B0,l))2

l=1 given the observations Y0:n, where the potential functions (Gl
n)2
l=1

are given by the likelihood of the observations, that is for all xn ∈ EXn and θn ∈ EΘ
n :

Gl
θn,n(Xn) ∝

M∏
i=1

exp
(
−(Y i

n − (Zi
n, V

a,i
n ))T (ΣY )−1(Y i

n − (Zi
n, V

a,i
n ))

2

)
.

where M is given by the number of aircraft present at time n in the domain B0,l.
We present the results obtained for a simulating time of 45 minutes, with ∆t = 4s.
The numerical results are quite good both for the learning of the Met environment

and for the TAS of the aircraft. First we put our attention to the Met situation. As
regards the limit, as soon as an aircraft experiment the limit, the true limit is perfectly
determined. Figure 4.21 represents the likelihood evolution of the vertical limit proposals
over time. First all the limit proposals are equivalent as no aircraft experiment the limit
yet. Therefore the likelihood of all the proposal are the same. In the experiment only
one aircraft is crossing the limit from the right to the left. When the aircraft is crossing
a wrong proposal, the likelihood of the proposal decreases down to zero and gradually
all the wrong limits obtain a weak likelihood. At the end, the highest likelihood limit
proposal are concentrated on the left where the real limit is.
Once the limit between the two domains is known, we can put our interest on the meteoro-
logical parameters, for instance for the left area. First the likelihood of the wind direction
forecasts is examined. As it might be noticed on Figure 4.20, the weight evolution of the
direction proposals for the uniform domain on the left is concentrated over one propo-
sition. At the beginning of the experiment the direction weights are distributed. Then
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Figure 4.20: Likelihood evolution (in
color) over time (y-axis from top to bot-
tom) of direction proposals (x-axis) ob-
tained with Algorithm 6 for the left uni-
form area. Using the algorithm, the
maximum of weight is quickly concen-
trate over one direction giving the best
forecast regarding to the air-traffic radar
observations. In this example, the best
forecast corresponds to the real direc-
tion.

Figure 4.21: Time evolution (y-axis from
top to bottom) of weight (color scale) of
the different limit proposals (x-axis) be-
tween the two domain. The algorithm
gives gradually the maximum of likeli-
hood to the forecast which has the most
probable limit. The other limit are ex-
cluded as soon as an aircraft experiment
the border.

Time

Relative error of wind estimation

Figure 4.22: Evolution in time (x-axis)
of the relative error of the estimated
wind force using Algorithm 6 for one
area to the real wind force. During the
first third of the series, the error com-
puted with two aircraft is not very sta-
ble. When a new aircraft is entering into
the zone, the estimation is better and
more stable. The relative errors on the
wind force stay about 2%, i-e less than
1 kt.

Observation
Estimation
Reference

Time

Mobile airspeed
(kt)

Figure 4.23: Estimated aircraft true air-
speed by Algorithm 6. In spite of the
strong perturbation on the TAS observa-
tions, the estimation of the TAS is quite
efficient with an absolute error smaller
than 0.5 kt.
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using the Mode-S information, the weight starts to concentrate on only one direction till
the end of the experiment. This weight concentration on one direction corresponds to the
real direction which has been successfully learned.
The direction of the wind being learned, Figure 4.22 presents the wind force relative er-
rors. One can see that this relative error is about 2%. Concerning the wind force, it seems
to have two periods. The second period and the jump in the error values correspond to
the entry of the right aircraft in the left area. In the first one, the relative errors are quite
unstable showing the learning phase with two aircraft. While in the second period the
relative error is very stable showing the end of the learning process with the three aircraft
in the same domain.
While the environment parameters are learned by the patchwork labeled island particle
system, the aircraft parameters are also estimated. In our experiment we only have to
estimate the true airspeed of each aircraft about 400 kt. The airspeed estimation of one
of these aircraft is represented in Figure 4.23. On this graphic, the black line represents
the true airspeed which needs to be estimated (knots), the blue line the mode-S radar
observations and the red line the reconstructed signal by the labeled island particle algo-
rithm. Even if the perturbations of the TAS observation are strong, the estimation of the
TAS is efficient picking out the Poissonian jump.
In this numerical experiment, we have shown the capability of our method to estimate
the likelihood of an ensemble of Met forecasts while learning some aircraft parameters.
For further experiments, we intend to work with multiple areas and more realistic mete-
orological forecasts. These results were presented during the ISIATM conference held in
Toulouse in 2013 (see Ichard et al. (2013)), and in Stockholm for the 3rd Edition of the
Sesar Innovation Days (see Baehr and Ichard (2013)).

4.3 Estimating a synthetic wind field using a simu-
lated air-traffic using a 3DDL aircraft model

As we have said in the preamble of this section the difficulty of the numerical experiments
increases gradually. This paragraph is devoted to the results obtained using the aircraft
model we have developed in Chapter 3.

The principle of the aircraft model is illustrated in Figure 3.1 and the time evolution
of the aircraft state is resumed by the set of equations (3.22) with initial conditions given
by (3.23) and the constraints resumed in (3.24). Chapter 3 ended with a stochastic model
for the aircraft dynamics. Implementing the stochastic version needs stochastic controls
laws to be developed so that aircraft stay along their flight plans. This was out of the
scope of this thesis project. A project named IMET was launched to answer this question
in collaboration with the NLR and the UK MET office, Jacob et al. (2014). The core
component will be a probabilistic trajectory predictor able to deals with uncertain aircraft
parameters but also stochastic control laws.

This remark being made, it turns out that aircraft processes measures are reduced to
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Aircraft O1 O2 O3

1 Lat -39 40 50
Long -7 -2 10

2 Lat 52 45 45
Long 12 10 -5

3 Lat 52.6 46
Long 8.5 -7

4 Lat 42 42
Long -8 10

5 Lat 52.5 39
Long 1.5 1.5

6 Lat 42 53
Long 11 11

7 Lat 39 47 52
Long 12 -0.5 -6.5

Table 4.1: Flight plans of the seven aircraft given in degrees

Dirac measures. Nevertheless as we aim to estimate the wind field using the aircraft pro-
cesses, we use the labeled island particle algorithm (Algorithm 3) developed in Chapter 2.

In this section two numerical experiments are held. For both applications, the air-
traffic process are the same but the wind conditions differ. In the first case, the wind
is uniform on the configuration space. In the second case, we consider an homogeneous
wind field. We apply in both cases the labeled island particle algorithm (Algorithm 3) to
estimate the wind using seven independent aircraft processes, denoted by Xn = (X i

n)7
i=1

which encapsulates the aircraft position process Zn = (Zi
n)7
i=1.

The air-traffic process is composed of seven independent aircraft processes. These pro-
cesses evolve independently using (3.22) and the controls laws developed in Section 3.1.9.
All the aircraft are Airbus A320, we set the aerodynamics parameters using the BADA
database. The Mach speed is set for all the aircraft to 0.78. Aircraft are assumed to be
on the flight level FL350, the initial masses are set to 70% of the maximum pay-load.
The flight plans are given for each aircraft in Table 4.1 where Lat refers to latitudes and
Long to longitudes in degrees.

The initial distribution of each aircraft position process Zi
0, denoted by ηZiΘ0,0 is given

by:
ηZ

i

0 (dz) = δOi1(dz).

The air-traffic process observations Y = (Y i
n)7
i=1 are reduced to the aircraft 3D-

positions Zn = (Zi
n)7
i=1. They are obtained thanks to the following equation:

Y i
n = Zi

n +BY
n

where BY
n ∼ N(0,ΣY ), and ΣY = 1.5× 10−5


1 0 0
0 1 0
0 0 1

. The standard deviation of the

observation process was set using the radar specifications which deliver aircraft positions
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with an error of approximatively 200 meters.

4.3.1 Estimating a uniform wind field

In this section we try to evaluate the wind field denoted by Θn = −→W , illustrated on
Figure 4.24. We use Algorithm 3 to estimate the law of the couple (Θn, η

X
θ0:n,n) given the

observations Y0:n, where the potential functions Gn are given by the likelihood of the
observations, that is for all Xn ∈ (EXn )7 and θn ∈ EΘ

n :

Gθn,n(Xn) ∝
7∏
i=1

exp
(
−(Y i

n − Zi
n)T (ΣY )−1(Y i

n − (Zi
n, V

a,i
n )))

2

)
.

We present the results obtained for a simulating time of 20 minutes, with ∆t = 4s. Let
the number of wind proposals N1 = 200. The wind propositions (or islands) are obtained
thanks to:

• the normal distribution for its strength ‖W i
n‖ around the true value : 20.8, that is

‖W i
n‖ ∼ N(20.8, 3), for i ∈ J1, 20K

• the uniform distribution for the direction βin between [0, π4 ], that is βin ∼ U[0,π4 ], for
i ∈ J1, 10K.

Then we built θin = (‖W i
n‖, βin)200

i=1 by pairing all the possibilities. On Figure 4.25, we
present the evolution of the island’s weight value (represented by the z-coordinate) ob-
tained thanks to the labeled island particle algorithm. The island number is given by
the x-coordinate, and the time evolution on the y-coordinate. As one can observe, at the
beginning of the experiment all the weight seems to be uniformly distributed. As time
goes, one may observe on Figure 4.26 that there is a periodic pattern for the weight value.
We explain this periodicity by the redundancy in the wind proposals. Indeed we have
10 direction’s proposals repeated 20 times. On each segment of ten proposals, the wind
direction which appears to have the highest potential corresponds to the closest direction
of the wind field used to simulate the reference aircraft process. Regarding now over all
segments, it appears that the wind force which has the highest potential is given by the
strength’s proposals closest to the actual wind.

4.3.2 Estimating an homogeneous wind field

Since we have presented the results obtained for a uniform wind field, we propose to do
the same experiment but this time with a wind field varying along the space location. The
wind field shape is illustrated on Figure 4.27. The simulation setting is the same as in the
precedent section. Nevertheless the wind proposals are built in a different manner. We
assume here that the wind proposals are made knowing the field structure. That is how
it varies in function of the location. That is knowing the direction and the strength at
one point will able one to built the whole field. Then, the wind propositions (or islands)
are obtained as follows:
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Figure 4.24: Reference wind field where the reference air-traffic is evolving, arrows repre-
sents the wind direction and their length are proportional to the wind strength

• the normal distribution for its strength ‖W i
n‖ around the true value : 20.8, that is

‖W i
n‖ ∼ N(75, 1), for i ∈ J1, 10K

• the uniform distribution for the direction βin between [0, π], that is βin ∈ [π4 ,
3π
4 ], for

i ∈ J1, 10K.

Then we built θin = (‖W i
n‖, βin)200

i=1 by pairing all the possibilities. On Figure 4.29, we
present the evolution of the island’s weight value (represented by z-coordinate) obtained
thanks to the labeled island particle algorithm. The island number is given by the x-
coordinate, and the time evolution on the y-coordinate. As one can observe, at the
beginning of the experiment all the weight seems to be uniformly distributed. As time
goes, on may observe that the same pattern repeats every 10 proposals, as before we
introduce redundancy in the wind proposals by pairing all the possibilities for the strength
and direction proposals. Nevertheless, examining each group of ten proposals, we can
see that the weights are concentrated on the same wind direction which appears to be
the closest to the one used to generate the actual wind field. Then observing over all
the groups, one strength proposition has the highest potential which corresponds to the
closest strength value to the reference wind field. To put it in a nutshell, Algorithm 3
provide good estimation results for synthetic wind field.

4.4 Weighting ensemble wind forecast using a 3DDL
aircraft model and air-traffic observations

The aim of this study was to develop an adapted framework in order to estimate the wind
field where the aircraft are evolving: enhancing the accuracy level of the aircraft trajectory
prediction by reducing the wind uncertainty. So far, we have presented the results obtained
using the methods developed in Chapter 2 on simple experiments. We are now close to
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Figure 4.25: Time evolution (y axis) of the wind proposals weights (vertical axis, and
colorscale) with respect to the wind proposal number (x axis) obtained using Algorithm 3.
Weight repartition over all members is periodic with a period of 10 due to the redundancy
introduced inside the wind proposals. However, at the end of the time period, the wind
proposal which has the highest weight (identified with the label) corresponds to the wind
proposal with the closest direction and the closest strength to the reference wind.
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Figure 4.26: Time evolution (vertical axis) top view of the wind proposals weights (col-
orscale) with respect to the wind proposition number (horizontal axis) obtained using
Algorithm 3. Weight repartition over all members is periodic with a period of 10 due to
the redundancy introduced inside the wind proposals. However, at the end of the time
period, the wind proposal which has the highest weight (identified with the label) cor-
responds to the wind proposal with the closest direction and the closest strength to the
reference wind.
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Figure 4.27: Reference wind field where the seven aircraft processes evolve, arrows repre-
sents the wind direction and their length are proportional to the wind strength.

our main goal: estimating the wind field using aircraft trajectory predictions.

For synthetic wind field, we have seen that the island number was already really high
even if the atmosphere scenarios under consideration were really simple. In the case of
the atmosphere, the cost to proceed to a classical Monte-Carlo strategy is too important,
even prohibitive. To tackle this issue, we propose to use ensemble weather forecasts which
are multi-model forecasts containing N1 members which propose N1 realizations of the
atmosphere. Using ensemble weather forecasts enables one to have access to the wind
value at every point of the configuration space E, but it leads us to consider the filtering
problem in model space.

Then, we present the estimation results for the filtering problem of the air-traffic pro-
cess evolving in a small random environment using the labeled island particle algorithm
(described by Algorithm 3). Indeed, the random field under consideration in the exper-
iment is the weather forecasting error and as the configuration space being small, the
homogeneous hypothesis is reasonable.

In Section 2.4, we have developed the framework adapted to deal with environment
which can be decomposed in several homogeneous domains. We explain here one possible
method to get the configuration space decomposition, such that the weather forecasting
error is homogeneous in each sub-domain.

Finally we present the results obtained on realistic simulations (realistic for the wind
field and for the aircraft model) using Algorithm 6 .
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Figure 4.28: Time evolution (y axis) of the wind proposals weights (vertical axis, and
colorscale) with respect to the wind proposal number (x axis) using Algorithm 3. Weight
repartition over all members is periodic with a period of 10 due to the redundancy in-
troduced inside the wind proposals. However, at the end of the time period, the wind
proposal which has the highest weight (identified with the label) corresponds to the wind
proposal with the closest direction and the closest strength to the reference wind.
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Figure 4.29: Time evolution (vertical axis) top view of the wind proposals weights (col-
orscale) with respect to the wind proposition number (horizontal axis) using Algorithm 3.
Weight repartition over all members is periodic with a period of 10 due to the redundancy
introduced inside the wind proposals. However, at the end of the time period, the wind
proposal which has the highest weight (identified with the label) corresponds to the wind
proposal with the closest direction and the closest strength to the reference wind.
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4.4.1 Wind forecast and Monte Carlo methods

The atmosphere state takes its value in a high-dimensional space, dimension is 105 at
least. It turns out that Monte Carlo strategies are not adapted to effectively sample from
a distribution in a such high dimension space. To overcome this problem, we propose
in this work to use ensemble weather forecasts. There are produced by national weather
forecast centres and deliver several scenarios for the atmosphere evolution.

Using ensemble weather forecast Prévision d’Ensemble Arome (PE AROME)

Numerical weather prediction uses mathematical models of the atmosphere and oceans
to predict the weather based on current weather conditions. In 1963, Edward Lorenz
discovered the chaotic nature of the fluid dynamics equations involved in weather fore-
casting. Extremely small errors in temperature, winds, or other initial inputs given to
numerical models will amplify and double every five days, making it impossible for long-
range forecasts–those made more than two weeks in advance–to predict the state of the
atmosphere with any degree of forecast skill. Furthermore, existing observation networks
have poor coverage in some regions (for example, over large bodies of water such as the
Pacific Ocean), which introduces uncertainty into the true initial state of the atmosphere.
While a set of equations, known as the Liouville equations, exists to determine the initial
uncertainty in the model initialization, the equations are too complex to run in real-time,
even with the use of supercomputers. These uncertainties limit forecast model accuracy
to about five or six days into the future.

Edward Epstein recognized in 1969 that the atmosphere could not be completely de-
scribed with a single forecast run due to inherent uncertainties, and proposed a stochastic
dynamic model that produced means and variances for the state of the atmosphere, see
Epstein (1969). Although these Monte Carlo simulations showed skill, in 1974 Cecil Leith
revealed that they produced adequate forecasts only when the ensemble probability dis-
tribution was a representative sample of the probability distribution in the atmosphere,
Leith (1974).

Ensemble forecasting is a numerical prediction method that is used to attempt to gen-
erate a representative sample of the possible future states of a dynamical system. It is a
multiple numerical predictions conducted using slightly different initial conditions that are
all plausible given the past and current set of observations, or measurements. Sometimes
the ensemble of forecasts may use different forecast models for some different members,
or different formulations of a forecast model. The multiple simulations are conducted to
account for the two usual sources of uncertainty in forecast models: the errors introduced
by the use of imperfect initial conditions, amplified by the chaotic nature of the evolution
equations of the dynamical system, which is often referred to as sensitive dependence on
the initial conditions; and errors introduced because of imperfections in the model formu-
lation, such as the approximate mathematical methods to solve the equations. Ideally, the
verified future dynamical system state should fall within the predicted ensemble spread,
and the amount of spread should be related to the uncertainty (error) of the forecast.
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It was not until 1992 that ensemble forecasts began being prepared by the European
Centre for Medium-Range Weather Forecasts and the National Centres for Environmental
Prediction. The ECMWF model, the Ensemble Prediction System, uses singular vectors
to simulate the initial probability density, while the NCEP ensemble, the Global Ensemble
Forecasting System, uses a technique known as vector breeding, see Toth and Kalnay
(1997); Molteni et al. (1996)

On its side, Météo-France has implemented an ensemble prediction system known as
Prévision d’Ensemble ARPEGE (PEARP). This system is a global ensemble performing
forecasts up to 4/5 days. It uses the operational global numerical weather prediction model
Action de Recherche Petite Echelle Grande Echelle (ARPEGE) and benefits from variable
horizontal resolution, so that it is comparable to some limited-area mesoscale systems over
France. Perturbations to the initial conditions are computed by combining an ensemble
data assimilation system with singular vectors of the manifold. Model uncertainties are
represented through a “multiphysics” with ten different physical parametrization sets,
Descamps et al. (2014).

Since 2008, weather forecasters have at their disposition a high resolution regional
model named Applications de la Recherche à l’Opérationnel à Méso-Echelle (AROME).
It provides detailed weather forecasts over France with a range forecast from 3 hours to
36 hours. Since then, weather forecasters are better positioned to forecast small scale
meteorological phenomenon potentially hazardous such as thunderstorms and heavy rain-
fall. Another major advantage of this model is that it takes into account violent small
scale vertical movements associated to the cumulonimbus developments (thunderstorms
clouds). Hence it is able to simulate convective phenomenon and rainy-stormy systems.

Currently, a stochastic physics scheme is tested in the AROME short-range convection-
permitting ensemble prediction system, Bouttier et al. (2012), called PE AROME. It is an
adaptation of ECMWF’s stochastic perturbation of physics tendencies scheme. The main
improvement from PEARP lies in the ensemble reliability and the spread-skill consistency.

Hence in this work, we use the most recent ensemble weather forecast developed at
Météo-France as its high resolution suits the air-traffic application demands. The ensemble
forecast we used was made up of 34 members, that is 34 possible evolution scenarios for
the atmosphere built on the basis of 10 different physic models. Nevertheless, we would
like to highlight here that the work we are conducting does not depend on the ensemble
weather forecast we choose. We can also choose to use ensemble weather forecasts coming
from the UK Met Office or any other national centres as well as superEnsemble which are
currently under study for the SESAR project.

Working in the model space

In order to use the filtering techniques we have developed, a switch into the model space
for the random field Θn has to be made. By switch to the model space, we mean that
the the random field used to make the aircraft-trajectory predictions is given by ensemble
weather forecasts instead of realization of the random field Θn. As we said in the previous
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section, Météo-France provide ensemble weather forecasts. In this work, we consider that
members of the weather forecast ensemble are a sample of the random atmospheric field
projected into the model space. We denote the projected random atmospheric field in the
model space, EΘ,P

n , by ΘP
n . We decompose Θn, the random atmospheric field, in a sum

of two processes: the predicted process ΘP
n and the unpredicted process ΘU

n such that for
all n ∈ N:

Θn = ΘP
n + ΘU

n

where ΘP
n a (EΘ,P

n , E)-random variable and ΘU
n a (EΘ,U

n , E)-random variable, with EΘ,P
n ⊥EΘ,U

n

and EΘ
n = EΘ,P

n ⊕ EΘ,U
n .

Then in order to forecast the positions of aircraft, we use the predicted process ΘP
n

instead of Θn as it is not accessible. This predicted air-traffic process is then denoted
by XP

n = (XP,i
n )Mi=1, with M the number of aircraft. It is obtained by using the random

atmospheric field projected inside the model space through the flight mechanics model
developed in Chapter 3, resumed by (3.22). For notation simplicity, let denote by f the
evolution scheme of each aircraft state, then we have:

XP,i
n = f(ΘP

n , X
P,i
n−1)

As one can notice the function f (defined by (3.22)) is linear with respect to the wind
variable, then we can notice that the real air-traffic process evolution can be decomposed
into two terms: one consists in the evolution of the predicted traffic process XP

n and the
other one concerns the evolution of XU

n . We have for each aircraft :

X i
n = f(Θn, X

i
n−1)

= f(ΘP
n + ΘU

n , X
i
n−1)

= f(ΘP
n , X

i
n−1) + f(ΘU

n , X
i
n−1)

= f(ΘP
n , X

P,i
n−1 +XU,i

n−1) + f(ΘU
n , X

P,i
n−1 +XU,i

n−1)
= f(ΘP

n , X
P,i
n−1) + εn

where the term εn is an error term representing the error made by using weather forecasts
to predict the air-traffic process. However, the air-traffic observations, denoted by Yn =
(Y i

n)Mi=1, are observations of the real air-traffic process, in the sense that they are produced
by the real atmospheric random field Θn. For each aircraft, the observations are given by
the following equation:

Y i
n = h(X i

n,Θn)

Therefore, using air-traffic radar observations gives one information about the quality of
the weather forecast we use. Indeed the potential function Gn is defined as the likelihood

155



of the observations with respect to the environment and real air-traffic realization

Gn(Θn,Xn) ∝
M∏
i=1

Gn(Θn, X
i
n) (4.8)

Then it follows that we are in a Hidden Markov model where the hidden state is given by
(Θn,Xn) and we can access through it by Y0:n. .

4.4.2 Meteorological situation

The meteorological situation considered, was the one which took place the 22nd of May
in 2014 at midnight. The atmospheric conditions are represented on Figure 4.30. West-
ern Europe is under the influence of close Atlantic trough. In altitude, a minimum of
geopotential (a low) is located on the south of Ireland. A upper level jet stream is de-
veloped on the east part of the trough over France. And over the South of France many
thunderstorms arise below the east part of the outflow jet streak.

This situation leads in altitude to a fair southward to south-westward flux over France.
We can distinguish 2 main type of area over the domain of interest:

• An area with close and parallel isobaric lines where the wind is strong and structured
(from east of France to Norway, and close east of the low). It correspond to the
jet-stream and the stormy outflow part over the south of France.

• An area at the rear of the jet-stream, less organized and with weaker winds on the
Northwest of France, without significant meteorological phenomena.

From this interpretation, we justify that we split the domain in 2 areas in which the
wind has a different law of probability. In the jet, it will likely be high in mean, with a
small variance, especially in direction. Out of the jet, it will likely be lower with a larger
variance in both direction and speed.

Therefore, if the whole domain over France is considered, the patchwork labeled island
algorithm has to be used. In another case, we can consider only a reduced area and use
the labeled island particle algorithm.

4.4.3 Weighting ensemble weather forecasts members using la-
beled island particle algorithm

When considering a small area of the configuration space E, the meteorological forecast
error can be considered homogeneous. Hence the labeled island particle algorithm (Al-
gorithm 3) can be used to weight the ensemble weather forecast regarding the air-traffic
predictor performance.

As one can see on Figure 4.31, the random field reduced to the black frame is almost
spatially uniform. Then to weight the ensemble wind forecast, we propose to use the
labeled island particle algorithm. We hold two experiments for this weather situation.
The first one consists in weighting the member of the ensemble wind forecast when the
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Figure 4.30: Meteorological situation over France on the 22nd of May 2014
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Figure 4.31: Wind field given by member 10 of the ensemble weather forecast at FL350.
The black frame represents the area under consideration for the labeled island particle al-
gorithm application. Arrows represents the wind direction, their length are proportional
to the wind speed. The color represents also the wind speed
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Aircraft O1 O2 O3

1 Lat 48 48 50
Long -5 -2 0

2 Lat 50 49 49
Long -1 -2 -3

3 Lat 48 48
Long -5 0

4 Lat 48 49
Long -1 -1

5 Lat 50 49 48
Long -4 -1.5 -0.5

6 Lat 49 48
Long 0 6

7 Lat 48.5 50
Long -1.5 -1.5

Table 4.2: Flight plans of the seven aircraft given in degrees

reference air-traffic is generated with one of the member. The second one is weighting the
ensemble wind forecast when the reference air-traffic is simulated with the analysis.

As a first experiment on this meteorological situation, we generate an air-traffic com-
posed of 7 aircraft using the model developed in Chapter 3. We denote it by Xn = (X i

n)7
i=1

with their positions given by Zn = (Zi
n)7
i=1. Their flight plans are given in Table 4.2

where Lat refers to latitudes and Long to longitudes in degrees. We simulate 10 minutes
of air-traffic with a time step of 4 seconds. All the aircraft are Airbus A320, we set the
aerodynamics parameters using the BADA database. The Mach speed is set for all the
aircraft to 0.78. aircraft are assumed to be on the flight level FL350, the initial masses are
set to 70% of the maximum pay-load. In a first place, to simulate the reference air-traffic
process, we use the member number 10 of the ensemble weather forecast. It is the wind
field represented on Figure 4.31. The initial distribution of each aircraft position process
Zi

0, denoted by ηZiΘP0 ,0
is given by:

ηZ
i

0 (dz) = δOi1(dz).

The air-traffic process observations Y = (Y i
n)7
i=1 are reduced to the aircraft 3D-

positions Zn = (Zi
n)7
i=1. They are obtained thanks to the following equation:

Y i
n = Zi

n +BY
n

where BY
n ∼ N(0,ΣY ), and ΣY = 1.5 × 10−5


1 0 0
0 1 0
0 0 1

. The standard deviation was

set to fit the radar specifications. We use Algorithm 3 to estimate the law of the couple
(Θn, η

X
θ0:n,n) given the observations Y0:n, where the potential functions Gn are given by
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Figure 4.32: Time evolution (y coordinate) of the wind proposal weights (z-coordinate)
obtained thanks to the labeled island particle algorithm. At the beginning of the algorithm
all the weights are equidistributed, then member 10 (identified by a label) which has been
used to simulate the air-traffic reference process concentrates the highest weight. Member
32 has also a high weight. After analysis of the wind field proposal, members 10 and 32
proposed a really close scenario.

the likelihood of the observations, that is for all Xn ∈ (EXn )7 and θn ∈ EΘ
n :

Gθn,n(Xn) ∝
7∏
i=1

exp
(
−(Y i

n − Zi
n)T (ΣY )−1(Y i

n − (Zi
n, V

a,i
n )))

2

)
.

The wind proposals are given by the members of the ensemble weather forecast.

Figure 4.32 and Figure 4.33 represents the weight evolution of the wind proposals. On
the x-coordinate, the number of the ensemble is represented. The y-coordinate represents
the time evolution and the z-coordinate or the color represents the weight-value of the wind
proposal. As one may observe weights are the same at the beginning of the experiment
for each wind proposal. Then one member seems to be privileged as time goes. For this
experiment, the reference air-traffic was simulated with the member number 10, and with
no surprise, the labeled island particle algorithm tends to favour this member by giving
him a high weight. Nevertheless, two other members (as member 32), see Figure 4.32,
appears to have a comparable weight as the member 10. This can be explained by the fact
that the 34 members are constructed picking up upon 10 different physical models. Then
among 34 propositions almost 3/4 propositions have the same physics, that explains why
3 members have around the same weight. This numerical experiment demonstrate the
effectiveness of the labeled island particle algorithm on a realistic toy-model with expected
results achieved. Now, we present the results obtained when the reference air-traffic is
generated using the analysis.
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Figure 4.33: Time evolution (vertical axis) of the wind proposal weights (colorscale) with
respect to the wind proposal number (horizontal axis) obtained thanks to the labeled
island particle algorithm-Top view. At the beginning of the algorithm all the weights are
equidistributed, then member 10 which has been used to simulate the air-traffic reference
process concentrates the highest weight.

The analysis, in numerical weather forecast, corresponds to the best representation of
the atmosphere. It is obtained by making a compromise between the model output for a
time t and all the observations available at that time. In this work, we use the analysis
based on the AROME model. The wind field analysis at aircraft altitudes is represented
on Figure 4.34 The air-traffic situation is the same as in the previous experiment. In
Figure 4.35 the weight evolution of the different members of the ensemble with respect
to time is represented. As one can note, at the beginning of the experiment, all the
members have the same weight. Then as time goes, the weight start to concentrate over 4
members. As we have said in the previous experiment, the different members are obtained
using 10 different physics. Then over 34 members between 3 and 4 members will have
the same physics. That may explain why 4 members have a high weight at the end of the
experiment. Here, we want to make clear that the weight obtained through the labeled
island particle algorithm is not a performing score of the weather forecast member itself.
It is a performing score of the member through the air-traffic prediction system. Then we
cannot interpret this score as a parameter allowing one to evaluate the forecast accuracy
directly. The score corresponds to the error made by the wind forecast member through
the air-traffic prediction system respectively to the air-traffic observations.

To sum up, the labeled island particle algorithm capability to weight ensemble weather
forecast has been demonstrated on realistic experiments when the domain is small and
can be considered homogeneous.
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Figure 4.34: Wind field given by AROME analysis over Western Europe at FL350, color-
scale gives the wind strength scale, arrows materialize the direction of the wind force and
their length are proportional to the strength of the wind.
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Figure 4.35: Time evolution (y coordinate) of the wind proposal weights (z-coordinate)
obtained thanks to the patchwork labeled island particle algorithm. At the beginning of
the algorithm all the weights are equidistributed, then the weights concentrates over 4
members (e.g. member 11 and 31)
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4.4.4 Locally Weighting ensemble weather forecasts using the
patchwork labeled island algorithm

Now, we are touching the main goal of the whole study: weighting an ensemble weather
forecast using aircraft trajectories and air-traffic observations. The previous section was
devoted to the case where the environment, the wind field error, can be considered as an
homogeneous random field. However, errors on the weather forecasts are space dependent
and it is believed that the error structure depends on the phenomenon being forecast.
Then, we assume that the error forecast field can be decomposed in homogeneous sub-
domains. Each sub-domain is given by a different meteorological phenomenon.

In Section 2.4, we proposed a stochastic algorithm able to estimate random environ-
ment decomposed in an homogeneous cover as well as random processes influenced by
this environment. To this end, we suppose that the operator Υ, defined by (2.67), gives
us the decomposition of the configuration E in homogeneous sub-domains, (B0,l)kl=1. In
this numerical experiment, we choose to use cluster analysis method on PE AROME
wind forecasts to get such decompositions. This section is devoted to its presentation
and implementation. Finally we present the results obtained using the patchwork labeled
island particle filters on the segmented wind field to weight ensemble weather forecast
and reduce uncertainties on trajectory prediction due to weather forecast uncertainties.

Wind field decomposition using cluster analysis method

"Cluster analysis" regroups techniques used to classify objects into groups called clusters.
The purpose of cluster analysis is to create these groups without any prior information
about the groups or the hypothetical membership of an object to a group. Two points
in the same group will be similar, while two points in different groups will be dissimilar.
There are many different ways to do a cluster analysis. A good overview of this domain
is provided by Jain et al. (1999).

The first paragraph is a general introduction to cluster analysis where the vocabulary
and some useful definitions are stated. The second paragraph focuses on the specific
algorithm implemented.

Concepts and definitions Cluster analysis is a common tool of data mining. Grouping
the data makes it possible to extract useful information from the data set. It is applied in
various domains such as pattern recognition (find a specific shape), artificial intelligence
(find a relevant among fuzzy input), biology (group similar species), climatology (define
a climate), marketing (identify profiles of consumers).

The driven idea is to use cluster analysis to identify the sub-domains where the weather
forecast errors are homogeneous. Cluster analysis creates groups, each of them represent-
ing an homogeneous sub-domain. This requires homogeneous groups, well separated.

Cluster analysis is now introduced in a more technical way. The following definitions
will be used to describe the method with a relevant vocabulary in the next sections.
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Figure 4.36: Example of pattern space, with patterns, features and clusters detailed.

Definition 4.4.1 (Pattern, pattern space). A pattern P is a single data item, an object
that will be assigned into a cluster. It is a vector of d points.

P =


P1
...
Pd


A pattern is not modified by the cluster analysis.
All together, the patterns form a pattern set : P = {P1, . . . ,Pn}.
The space of dimension d where belong the patterns is called the pattern space, P.

Definition 4.4.2 (Feature). A feature is a single scalar component Pj of a pattern P.
It corresponds to one type of measurement. Each feature is a dimension of the pattern
space. Feature space is a synonym of pattern space.

In order to avoid confusion between feature indexes and pattern indexes, Pi indicates
the i-th pattern in the pattern set (which is a vector), and Pj indicates the j-th feature
of the pattern P (which is a scalar). So the j-th feature of the pattern Pi will be noted
P i
j (scalar).
A seed C is a special pattern that does not come from a data in the pattern set P . It

is the centroid of a cluster (created by the program).

Definition 4.4.3 (Cluster, centroid). A cluster C is a group of patterns close to each
other in the pattern space and according to the distance chosen. The clusters form a
partition of the pattern set : if we have K clusters, then

K⋃
k=1
Ck = P

The property ⋂Kk=1 Ck = ∅ is also true.
For each cluster C, we can define (by different manners) a centroid. A centroid of the

cluster C is any pattern C representative of the whole cluster. A synonym for centroid is
seed.
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The Figure 4.36 shows a pattern space with 3 features, where several patterns gathered
into clusters are drawn.

For this work, the centroid will be the pattern for which each feature is the average
feature of the patterns in the cluster.

Ck =


Ck

1
...
Ck
d

 , with Ck
j = 1

nk

∑
Pi∈Ck

P i
j , ∀j ∈ {1, . . . , d} (4.9)

where nk is the number of patterns (population) in the cluster Ck (1 6 k 6 K).
The distance dist(·, ·) used to qualify the proximity of the patterns can be any metric

defined on the pattern space. The most common distance is the Euclidean distance:

dist(Pj,Pi) = ‖Pj −Pi‖2 =

√√√√ d∑
l=1

(P j
l − P i

l )2

The distance is an important issue in cluster analysis, because it’s the metric of dissim-
ilarity that will assess the membership to a cluster. The exact relation between distance
and membership may vary in other cluster analysis method. Thus, the next definition is
specific to K-means algorithms.

Definition 4.4.4 (Membership). Let P = {P1, . . . ,Pn} denotes a pattern set, and Ck a
cluster where k ∈ K. The coefficient wk(Pi) is defined by:

wk(Pi) =

 1, if dist(Pi,Ck) = min
`=1...K

{dist(Pi,C`)}
0, else

(4.10)

signs the membership of the pattern Pi to the cluster Ck. The coefficients have to verify
∀i, ∑K

k=1wk(Pi) = 1. This property means that a pattern belongs to only one cluster.

The concept of membership allows a more rigorous expression for the centroid defini-
tion than in (4.9). Here is the formula to use :

Ck =


Ck

1
...
Ck
d

 , with Ck
j =

n∑
i=1

wk(Pi)P i
j

n∑
i=1

wk(Pi)
, ∀j ∈ {1, . . . , d}

Here, the objects that will be manipulated and the relevant vocabulary were presented.

Implementation of K-means algorithms This section will focus on the clustering
algorithm chosen: the K-means algorithm, and how it was implemented. The K-means
algorithm was chosen for this problem because of the simplicity of its implementation and
its robustness Jain et al. (1999). The K-means algorithm is a widely used method to
gather huge amounts of data into clusters.
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Each pattern Pi, ∀i ∈ {1, . . . , n} is a vector of d variables. In this example, d = 2 : wn
corresponding in Chapter 3 to the north component of the wind, and we corresponding

to the east component is the other, and the i-th pattern is the vector Pi =
wni
we

i

. In

the K-means algorithm, the number of clusters K is known a priori. For each cluster
k, k ∈ {1, ..., K}, there is one centroid. Clusters are formed around these centroids.

The flowchart of the implemented K-means is given in Figure 4.37. The input of the
program is a pattern set P , resulting from the ensemble weather forecast.

The first box, called "Initializations", define the number clusters, the domain of clus-
tering and the initial membership. In K-means, the number of clusters K is an input
parameter. The choice of K can be an issue. However, for this work, 2 clusters has been
validated as being the best choice. Indeed the point to point variance map, illustrated
on Figure 4.39 shows that the ensemble is highly spread where the jet-stream takes place
(see Figure 4.30). Then it follows that two sectors can be identified, the first being where
the jet-stream takes place and the other being the complementary set,

Number of clusters : K = 2

The initial membership is set randomly, along an uniform law. This is a way to avoid
sensitivity to initial conditions. After the initialization, the main loop is entered. It is
composed with 3 boxes, corresponding to the 3 steps iterative algorithm. These steps are
represented in Figure 4.38.

1. Define the seeds as the average point in the cluster.
This step creates a new pattern for each cluster which features are the average
feature of all the points in the clusters. If seeds already exists, the old ones are
replaced by the new. It corresponds to the "Step 3" in Figure 4.38.

2. Compute point-to-seed distances.
For each point Pi, the distances from Pi to every seed C1, . . . ,CK are calculated.
It corresponds to the "Step 1" in Figure 4.38.

3. Update membership.
Here the distances computed at the previous step are used to evaluate the member-
ship of each point. It corresponds to the "Step 2" in Figure 4.38. The formula to
calculate the membership from the distances is given on the previous section, with
the definition of membership.

4. Test of convergence.
The intra-cluster variance V is tested to check if it is of interest to stay in the main
loop. The lower is V , the more the clusters are homogeneous and well separated.
The criterion to go out of the loop is the trend of V : while it decreases, the loop
continues. But as soon as V increase, the loop is stopped. This ensure a local
minimum is reached, which is the best K-means can provide. The intra-cluster
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Figure 4.37: Flowchart of the K-means algorithm.
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Step 1 Step 2 Step 3

Figure 4.38: Schematic 3 steps in the main loop of the K-means algorithm.
It represents a 2D pattern space, with the patterns (empty circles) and 2 seeds (filled
squares). Step 1 shows the "Compute point-to-seed distances". Step 2 is "Update mem-
bership", we can see the patterns turning the same color as the closest seed. Step 3
shows the new seeds after the "Define seeds" step, and few point-to-seed distances likely
to change the membership at the next step.

Long.

Lat.

Figure 4.39: Representation of the point to point variance (color-scale from blue to red,
blue color corresponds to a low variance and red color to a high variance) of the wind
proposals given by the 34 members of the PE AROME forecast at 250Hpa for the 22nd of
May, midnight, with respect to the latitude (y-axis) and longitude coordinate(x-axis). The
forecast was launched 30 hours before. The variance is really high on the high-left corner
of the domain. This localization corresponds to the meteorological phenomenon located
at the south of Ireland. Then a long strip of higher variance value oriented from South-
West to North-East of Europe is present and correspond to the jet-stream localization,
see Figure 4.30.
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variance is the sum of squared errors:

V =
K∑
k=1

n∑
i=1

wk(Pi)dist(Pi,Ck)

Then, in the box 3, the clusters are formed and the homogeneous sub-domains defined by
them.

In summary, the K-means algorithm is an iterative algorithm to create clusters. The
cluster are created around centroids called seeds. The homogeneous sub domains are then
defined using the clusters. The flowchart can be summarized in the following list:

1. Select the useful features. Initialize clusters randomly (uniform law).

2. Enter the main loop (WHILE loop)

2.1 A seed is defined as the average pattern of a cluster.

2.2 We compute the distances from each point to each seed.

2.3 Each point is assigned to the closest cluster (we update the membership).

2.4 If the intra-cluster variance reaches a minimum, we stops. If it doesn’t, go to
step 2.1.

We presents the segmentation results obtained on wind forecast members 2 and 12 for
the 22nd of May at midnight. The forecast was launched 30 hours before. The cluster 1
seems to corresponds to the jet stream zone, as one can see comparing Figure 4.30 with
Figure 4.40 and Figure 4.41. Cluster 2 is the complementary set of cluster 1.

Results obtained thanks to the patchwork labeled island algorithm

Every ingredients needed to perform the ensemble weather forecast weighting are now
ready. The air-traffic scenario used is composed of 11 aircraft using the model developed
in Chapter 3. We denote it by Xn = (X i

n)11
i=1 with their positions given by Zn = (Zi

n)11
i=1.

Their flight plans are given in Table 4.3 where Lat refers to latitudes and Long to lon-
gitudes in degrees. We simulate 10 minutes of air-traffic with a time step of 4 seconds.
All the aircraft are Airbus A320, we set the aerodynamics parameters using the BADA
database. The Mach speed is set for all the aircraft to 0.78. aircraft are assumed to be on
the flight level FL350, the initial masses are set to 70% of the maximum pay-load. In a
first place, to simulate the reference air-traffic process, we use the analysis. It is the wind
field represented on Figure 4.34. The initial distribution of each aircraft position process
Zi

0, denoted by ηZiΘP0 ,0
is given by:

ηZ
i

0 (dz) = δOi1(dz).

The air-traffic process observations Y = (Y i
n)11
i=1 are reduced to the aircraft 3D-

169



Long.

Lat.

Figure 4.40: Representation of the seg-
mented wind field proposal given by
member 2, in blue is represented b1

0,1 and
in red b2

0,1. The x-axis represents the
longitude coordinates and the y-axis the
latitude coordinates. b1

0,l corresponds to
the jet-stream meteorological object. In-
deed its localization (see Figure 4.30)
is close to the one presented on Fig-
ure 4.30.

Long.

Lat.

Figure 4.41: Representation of the seg-
mented wind field proposal given by
member 12, in blue is represented b1

0,1
and in red b2

0,1. The x-axis represents the
longitude coordinates and the y-axis the
latitude coordinates. b1

0,l corresponds
to the jet-stream meteorological object.
Member 32 propose another realization
location for the jet-stream as the one
proposed by member 2, even if they are
close one to each other, the form differs.

Aircraft O1 O2

1 Lat 39.5 39.5
Long -1 -6.5

2 Lat 40 44.5
Long 1.5 1.5

3 Lat 41.5 45
Long -7 0

4 Lat 48 49
Long -1 -1

5 Lat 40 46.5
Long 9.5 2

6 Lat 47 47
Long 0.5 5.5

7 Lat 48.5 48.5
Long 3.5 10

8 Lat 52 49.5
Long 9.5 2

9 Lat 52.5 49.5
Long 1.5 1.5

10 Lat 52 48
Long -7 1.5

11 Lat 47 52.5
Long -1.5 -3

Table 4.3: Flight plans of the eleven aircraft in degrees
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Figure 4.42: Time evolution (y coordinate) of the wind proposal weights (z-coordinate) for
b1

0,1 obtained thanks to the patchwork labeled island particle algorithm. At the beginning
of the algorithm all the weights are equidistributed

positions Zn = (Zi
n)11
i=1. They are obtained thanks to the following equation:

Y i
n = Zi

n +BY
n

where BY
n ∼ N(0,ΣY ), and ΣY = 1.5 × 10−5


1 0 0
0 1 0
0 0 1

. The standard deviation was

set to fit the radar specifications. We use Algorithm 6 to estimate the law of the couple
(Θn, η

X
θ0:n,n) given the observations Y0:n, where the potential functions Gn are given by

the likelihood of the observations, that is for all Xn ∈ (EXn )11 and θn ∈ EΘ
n :

Gθn,n(Xn) ∝
11∏
i=1

exp
(
−(Y i

n − Zi
n)T (ΣY )−1(Y i

n − (Zi
n, V

a,i
n )))

2

)
.

The wind proposals are given by the members of the ensemble weather forecast. The refer-
ence air-traffic is generated using the wind field produced by the analysis, represented on
Figure 4.34. In Figure 4.42 and Figure 4.43 the weight evolution of the different members
of the ensemble with respect to time is represented for cluster 1 and 2 respectively. As
one can note, at the beginning of the experiment, all the members have the same weight.
Then as time goes, the weight start to concentrate over several members. It follows that
for cluster 1, that is b1

0,1, weights are concentrated over 8 members. Concerning the cluster
2, b2

0,l, the weights are less concentrated but discard 4 members. The obtained results are
not surprising, indeed as one can see on Figure 4.39 the point to point variance is low
which means that members do not propose really different scenarios. Hence the weights
which are not concentrated can be explained. To sum up, the numerical experiment led
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Figure 4.43: Time evolution (y coordinate) of the wind proposal weights (z-coordinate) for
b2

0,1 obtained thanks to the patchwork labeled island particle algorithm. At the beginning
of the algorithm all the weights are equidistributed

with the patchwork labeled island particle filter have shown its ability to locally weight
an ensemble weather forecast.

In this chapter we present all the numerical experiments we have conducted. They
have been the achievement of the novel filtering techniques we have developed. We have
seen their efficiency and their limits. That gives us the possibility to conclude and have
new prospectives for future works.
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“Begin at the beginning,” the King said, gravely, “and go
on till you come to an end; then stop.”

Lewis Carroll, Alice in Wonderland

5
Conclusion

The research work we have conducted in this thesis allows us to propose innovative so-
lutions for the ATM community concerning the study of aircraft trajectory prediction
uncertainties induced by weather forecast errors. Thanks to the novel methods, we are
able to deliver ensemble weather forecast assorted with performing scores. This scores are
obtained regarding the performance of each member of the ensemble through the trajec-
tory prediction system with respect to air-traffic observations. This stochastic engineering
work have also given us the opportunity to develop more general innovative mathematical
models to describe the estimation problem of random punctual processes evolving in a
random field decomposed in homogeneous sub-domains.

For two decades, particle filtering techniques have been widely studied in applied mathe-
matics and used in several application domains such as target tracking, robot positioning,
finance and ATM. The probability theory is well settled and particle filtering methods
are now used for real time systems to filter signals, to track targets or to estimate proba-
bility of rare-events. However, to filter signals evolving in a random field decomposed in
homogeneous sub-domains, no pre-existing filters were well-adapted. In this thesis work,
we have developed and studied methods which can deal with such processes and we have
given associated particle approximations.

In Chapter 2, first, we have presented the non-linear filtering problem for random
processes on which the development we have made are based. In order to be applied
to random processes evolving in a random environment we have extended the filtering
problem to distribution space and we have developed an adapted algorithm which propose
a way to give an approximation of the couple random environment, conditional law of the
random process given the environment. The proposed algorithm has been studied and
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first convergence results are provided for the ensuing estimator.
Finally, we have recalled the acquisition process formalism which provides a good

framework to model the estimation problem of a random field along a random path.
Then, this framework was has been extended to acquisition processes of random field
decomposed in homogeneous sub-domains along random paths. This model allows us to
couple the Lagrangian evolution of homogeneous sub-domains with the acquisition sys-
tems defined by the random paths. This coupling enables us to formulate the estimation
problem of the random field for each sub-domain using random processes evolving inside
the whole random field. Then weighting an ensemble weather forecast with respect to its
performance through the aircraft trajectory prediction system and air-traffic observations
is the application of this theoretical work.

We have tested with numerical experiments the efficiency of the developed algorithms
in Chapter 4. The numerical experiences are various. As concerns the algorithm devel-
oped to estimate random processes in random environment we have tried to highlight its
efficiency on simple toy-models and we have illustrated the theoretical results obtained.
Gradually, we have increased the level of complexity towards the final aim : weighting
ensemble weather forecast with respect to their performance according to air-traffic ob-
servations. To this end, we have developed a realistic aircraft model in Chapter 3. The
presented algorithm to estimate random field decomposed in homogeneous sub-domains
using observations of random processes evolving inside it able us to actually weight en-
semble weather forecasts through the performance of the aircraft trajectory prediction
systems according to air-traffic observations. In a toy-model experiment, the obtained
results are encouraging as the highest weight is affected to the member used to create the
reference air-traffic.

However to properly end the numerical work we have made, one should develop stochastic
controls for the trajectory predictor we have built in order to turn the deterministic
dynamic controlled system into a stochastic one. In this way, all the theoretical work we
have developed about estimation will take sense. Another improvement would be also to
take temperature as an uncertain parameter inside the dynamic model used to predict
aircraft trajectories. More practically, an optimization of the computer code should also
be performed in order to deal with the high dimensional data coming from the ensemble
weather forecasts, but also with the high number of aircraft present at the same time in
the same controlled area.

From there, another theoretical work can be led. Indeed weighting the ensemble
weather forecast gives to the ATM actors the opportunity to have a better clue of the
future evolution of the atmospheric conditions. To exploit this opportunity one may
think at developing an optimization tool to get optimized aircraft trajectories taking into
account the environment uncertainties. In Section A.3, we propose a way to model and
solve it.
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Estimation of stochastic processes evolving in a random environ-
ment is of crucial importance, notably to predict aircraft trajectories
evolving in an unknown atmosphere. For �xed parameter, interacting
particle systems are a convenient way to approximate such stochastic
process. But the second level of uncertainty provided by the environ-
ment parameters leads us to also consider interacting particles on the
parameter space. This novel algorithm is described in this paper. It
allows to approximate both a random environment and a stochas-
tic process evolving in this environment, given noisy observations of
the process. It is a sequential algorithm that generalizes island par-
ticle models including a parameter. We refer to it as labeled island
particle algorithm. We prove the convergence of the labeled island
particle algorithm and we establish Lp bound as well as time uni-
form Lp bound for the asymptotic error introduced by this double
level of approximation. Finally, we illustrate these results on a �lter-
ing problem where one learns a dynamical parameter through noisy
observations of a stochastic process in�uenced by the parameter.

Introduction. This paper deals with the estimation of stochastic processes whose evo-
lution is in�uenced by a random environment. This question is at stake in di�erent areas.
In the �elds of economy, when one wants to estimate the option price with an unknown
volatility using the Black-Scholes model, one can consider that the option price has its
evolution in�uenced by an unknown parameter, the market volatility (see Cont (2006)).
In biology, to estimate the number of bacteria with unknown environmental factors (see
Augustin and Carlier (2000)), the evolution of the bacteria number can be modeled as a
stochastic process whose evolution is in�uenced by unknown external factors. In air tra�c
management, this modelization can also be used in order to predict aircraft trajectories
evolving in an atmosphere whose state is uncertain. Indeed if pilots' intents and some air-
craft parameters are unidenti�ed, actual wind and temperature evolve locally and are not
perfectly known either. Those atmospheric parameters which appear in the dynamic equa-
tions of the aircraft have a great importance to predict the future position of the aircraft.
They are thus both uncertain. In order to improve the trajectory prediction, one has to
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2 C. ICHARD AND C.VERGÉ

learn aircraft parameters but also atmospheric ones, see Baehr and Ichard (2013). These
examples may be cast in the general framework of random motions in random media. An
example for continuous state space is given in Sznitman (1998) where a review for Brownian
motion among Poissonian obstacles is made. When the state space is discrete,e.g Zd, these
problems are treated as random walk in random environment. This recent area of applied
probabilities tries to establish conditions under which the random walk shows speci�c be-
havior such as transience and recurrence. Zeitouni (2004); Révész (2005); Bogachev (2007)
made a broad survey in the domain. However, the question in these works concerns the
in�uence of the environment on the random process, not their estimations.

The study of wave propagation in random media deals with the estimation of the random
media using time-reversals methods, see Fouque et al. (2007) and references therein. In
this topic, the aim is to infer the environment properties from the propagation of waves.
Nevertheless these methods does not deal with general random process in random media.
In Andreoletti, Loukianova and Matias (2015), the question is to estimate the environment
distribution using the observations of a random path evolving in the environment. To this
end, they considered this problem as a Hidden Markov Model (HMM). However this study
handle Markov chain on discrete state space. Here we put our interest in continuous cases.

Nonetheless, HMM or state space models o�er a convenient mean to study stochastic
dynamical systems. When the dynamics are linear with Gaussian densities, the optimal
solution to state estimation is given by Kalman �lter, Kalman (1960) and Kalman and
Bucy (1961). When the process can take discrete values, the estimation can be done using
HMM �lters, see Baum and Petrie (1966); Baum et al. (1970). When the dynamics are
nonlinear and the state space continuous another method has to be used. Over the last two
decades, particle simulation has been widely used to solve many state estimation problems.
These methods, also known as sequential Monte Carlo methods have been �rst applied to
state space models by Handschin and Mayne (1969), Handschin (1970) and Akashi and Ku-
mamoto (1977). During the 1990s, several particle �lters algorithm which are belonging to
sequential monte carlo methods were proposed. Gordon et al. proposed in Gordon, Salmond
and Smith (1993) a new algorithm given by bootstrap �lters. Independently, Kitagawa pro-
posed in Kitagawa (1996) another solution named Monte Carlo �lters. In the meantime
Doucet et al. in Doucet (1998) gave a solution through sequential importance sampling
with resampling (SISR). Such �lters also known as interacting particle �lters have been
�rst studied by Del Moral in Del Moral (1996) and applied in various domains, see Doucet,
de Freitas and Gordon (2001); Cappe, Godsill and Moulines (2007); Doucet and Johansen
(2009) for a complete survey.

In our problem, a double estimation has to be made. One concerns the environment and
the other one the random process itself. To solve the combined problem of state and �xed
parameter estimation, a wide variety of methods have been studied. For linear dynamic
systems basic estimation techniques are available, see Ljung (1998). For more general state
space models, the classical method used is based on extended Kalman �lter. However it has
been shown that this approach may give biased and divergent estimations, Ljung (1979).
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LABELED ISLAND PARTICLE MODELS AND THEIR ASYMPTOTIC PROPERTIES 3

Kitagawa in Kitagawa (1998) has �rst proposed the use of a particle �lter to estimate
simultaneously the states and the parameters in a general nonlinear non-Gaussian state
space model. The idea was to augment the state vector with unknown parameters and then
perform particle �lter estimation on the augmented state space model. However, the main
drawback of considering the parameter as an auxiliary variable is that the number of par-
ticles needed to have a rather acceptable estimation explodes with the dimension, see Liu
and West (2001). Therefore augmenting the state space dimension can be ine�cient. Nev-
ertheless Ching, Beck and Porter (2006) show in their paper comparative results between
particle �lters and extended Kalman �lters on several examples. It indicates that particle
�lters give better results especially when non linearity cannot be neglected. Another recent
solution was given by Andrieu, Doucet and Holenstein (2010) and consists in using sequen-
tial Monte Carlo methods inside Markov chain Monte Carlo methods. However this method
is not recursive and cannot be performed on-line. For recursive estimation, when models
show special substructure such as in linear stochastic state space model with unknown
parameters, the idea is to take advantage of the underlying linearity structure using Rao-

Blackwellization techniques. Such �lters have been introduced as mixture Kalman �lters in
Chen and Liu (2000), Rao-Blackwellized particle �lters in Doucet et al. (2000); Li, Goodall
and Kadirkamanathan (2004); Schön, Gustafsson and Nordlund (2005) and as interacting
Kalman �lters (IKF) in Del Moral (2004); Zghal, Mevel and Del Moral (2014).

However when the dynamics are non-linear, as for aircraft dynamics, an analytic reso-
lution is not possible without making further model simpli�cations. A method based on
interacting particle systems, which takes into account the randomness due to the environ-
ment and also the randomness coming from the process itself, was proposed by Del Moral
in Del Moral (2004). This idealized algorithm would be a sequential Monte Carlo (SMC)
algorithm on the couple de�ned by the random environment and the conditional law of
the process evolving in this random environment given the history of the environment.
Nonetheless, the calculation of the previous conditional law is not tractable in practice
when the dynamics are non-linear. Therefore another approximation level is necessary in
order to estimate this conditional law. We propose in this paper to use interacting systems
of interacting particles. These interacting systems can be seen as a two-level interacting
particle system. The top level particles are composed of an environment proposition and an
empirical measure which gives an approximation of the process law evolving in the proposed
environment. The empirical measure is obtained by the second level of interacting particles.
This nested structure was used in Montemerlo, Thrun and Whittaker (2002) to estimate
the pose of a mobile robot and positions of people surrounding it, in Baehr (2010) for mean
�eld processes and in Ichard and Baehr (2013) for air-tra�c process in random atmospheric
environment.

This algorithm can be seen as a generalization of interacting island particle models where
each island is associated with a random parameter. Those island particle models have been
introduced in Vergé et al. (2015) and their statistical properties studied in Vergé et al.
(2014), but without parameters. The �rst paper deals with the parallelization of interacting
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4 C. ICHARD AND C.VERGÉ

particle systems, the second one dwells on the asymptotic properties of the ensuing esti-
mator. Concerning �ltering problems, Chopin et al. in Chopin, Jacob and Papaspiliopoulos
(2013) introduced a kind of island particle models where each island is identi�ed by a
parameter proposition. They proposed an algorithm called SMC2 which is a practical ver-
sion of the idealized iterated batch importance sampling (IBIS) algorithm introduced by
Chopin in Chopin (2002) for exploring a sequence of parameter posterior distributions. The
considered parameter did not have any proper dynamic whereas in the present paper the
stochastic process evolution scheme depends on a dynamic parameter. Moreover, in the
SMC2 algorithm, islands of particles grow continuously with time as particles ancestral
lines are required to estimate the likelihood increments, and by their product to estimate
the total likelihood. The algorithm introduced by Crisan et al. in Crisan and Miguez (2013)
is a di�erent version of the SMC2 which also allows the estimation of �xed parameters of
a state-space dynamic system using sequential Monte Carlo methods. However, unlike the
SMC2 method, the proposed algorithm by Crisan et al. operates in a purely sequential and
recursive manner. In particular, the scheme for the rejuvenation of the particles in the pa-
rameter space is simpler, given that it does not need the simulation of the auxiliary particle
�lter from initial time to evaluate the likelihood. Therefore the algorithm we propose in
this paper is similar to the algorithm of Crisan and Miguez (2013) in the sense that it is
sequential in time and structured as a nested interacting particle �lters, but also di�erent
as it deals with dynamic parameters.

In this article, we present a novel algorithm to estimate both a random environment and a
process whose evolution depends on this environment, and study the asymptotic properties
of the ensuing estimators. This study is of great importance to justify the convergence of this
algorithm and also a challenging issue as it deals with error in distribution space. Therefore,
as a �rst step, we establish Lp bound for the asymptotic error introduced by this double
level of approximation at each time step. As a matter of fact, the shape of the bound was
suggested by Baehr (2010). Then we obtain a time uniform Lp bound for the error. From
there we deduce the almost sure convergence of the estimator towards the target measure.
Afterwards, we compare the labeled island particle algorithm and interacting Kalman �lters
(IKF) on a �ltering example dealing with the evolution of a mobile on a random media. More
particularly, it appears that the labeled island particle algorithm gives a better estimation
of the position and the speed of the mobile than IKF. Finally, the labeled island particle
algorithm is applied to another �ltering problem where one learns a dynamical parameter
through observations of a stochastic process in�uenced by the parameter. The theoretical
results of this paper are illustrated on this example.

Formalization of the problem through Feynman-Kac measures is given in Section 1, then
the labeled island particle algorithm is described in Section 2. Lp bounds of this algorithm
are established in Section 3. Finally, convergence of the labeled island particle algorithm
and some results proved in Section 4 are illustrated in Section 5 on two �ltering examples.
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LABELED ISLAND PARTICLE MODELS AND THEIR ASYMPTOTIC PROPERTIES 5

1. Feynman-Kac models in random media. In this section, we �rst present an
example which motivates our study. Then we introduce notations and models which have
been developed by Del Moral in Del Moral (2004) to model stochastic processes evolving
in random media.

1.1. Example of process evolution in random media. In this article, one always consider
stochastic processes whose evolution are in�uenced by their surrounding environment. When
the environment is unknown, one can be interested in estimating both the environment and
the law of the stochastic process itself using observations of the last one. Take a really
simple example : a mobile evolving in R2 whose dynamics is in�uenced by an unknown
exterior force. This problem can be modeled by the following system of equations





Xn+1 = Xn + Vn

(
cosα
sinα

)
∆t+ Θn+1∆t+BX

n

Vn+1 = Vn +BV
n ,

(1)

where Xn+1 denotes the position of the mobile, which depends on Θn+1, and B
X
n a Gaus-

sian noise. The proper speed Vn of the mobile, is known up to a Gaussian white noise BV
n .

The course track of the mobile is denoted by the parameter α. The vector Θn+1 is random
and represents the unknown force acting on the position of the mobile.
We are interested in the estimation of the state of the mobile, which depends on the param-
eter Θn+1. We thus need to learn both the force, the speed and the position of the mobile.
Consider now that noisy observations Yn of the mobile's state are available. One has to
estimate the quantity E [(X0, V0,Θ0), . . . , (Xn, Vn,Θn) | Y0, . . . , Yn] . Therefore, we need to
use a model able to tackle this issue. To this end, the formalism of Feynman-Kac models
in random media is well adapted. In Section 1.3, we recall the de�nitions attached to this
model and some important results. For a more detailed review see Del Moral (2004).

1.2. Notations. Let us de�ne some notations used in this paper. For (m,n) ∈ Z2 such
that m ≤ n we denote Jm,nK , {m,m + 1, . . . , n} ⊂ Z. We will use the vector notation
am:n , (am, . . . , an). Moreover, R+ and R∗+ denote the sets of nonnegative and positive real
numbers respectively, and N∗ the set of positive integers.

N(µ,Σ) denotes a multivariate Gaussian distribution with mean µ and covariance matrix
Σ.

In the sequel, we assume that all random variables are de�ned on a common probability
space (Ω,F ,P). For some given measurable space (E, E) we denote by M(E) and P(E) ⊂
M(E) the set of measures and probability measures on (E, E), respectively. In addition,
we denote by F(E) the set of real-valued measurable functions on (E, E) and by Bb(E) ⊂
F(E) the set of bounded such functions. For any ν ∈ M(E) and f ∈ F(E) we denote by
νf ,

∫
f(x) ν(dx) the Lebesgue integral of f under ν whenever this is well-de�ned. Now,

given also some other (Y,Y) measurable space, an unnormalized transition kernel K from
(E, E) to (Y,Y) is a mapping from E × Y to R such that for all A ∈ Y, x 7→ K(x,A)
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6 C. ICHARD AND C.VERGÉ

is a nonnegative measurable function on E and for all x ∈ E, A 7→ K(x,A) is a measure
on (Y,Y). If K(x,Y) = 1 for all x ∈ E, then K is called a transition kernel (or simply
a kernel). The kernel K induces two integral operators, one acting on functions and the
other on measures. More speci�cally, let f ∈ F(E) and ν ∈ M(E) and de�ne the measurable
function

Kf : E 3 x 7→
∫
f(y)K(x, dy),

and the measure

νK : Y 3 A 7→
∫
K(x,A) ν(dx),

whenever these quantities are well-de�ned. Finally, let K be as above and let L be another
unnormalized transition kernels from (Y,Y) to some third measurable space (Z,Z); then
we de�ne the product of K and L as the unnormalized transition kernel

KL : E×Z 3 (x,A) 7→
∫
K(x, dy)L(y,A),

from (E, E) to (Z,Z) whenever this is well-de�ned.

1.3. Introduction of Feynman-Kac models. Let Θn be a random process on EΘ
n which

in�uences the evolution of another random process Xn on EXn . In order to avoid any confu-
sion, all the quantities which refer to the random process Θn (resp. Xn) may be identi�ed
by the exponent Θ (resp. X). Let the couple (Θn, Xn)n∈N be a En , (EΘ

n ,E
X
n )- valued

Markov chain of elementary transition matrix Tn form En−1 to En de�ned by

Tn ((θn−1, xn−1),d(θn, xn)) ,MΘ
n (θn−1,dθn)MX

θn,n(xn−1,dxn),

where MΘ
n and MX

θn,n
are the transition kernels of the Θn and Xn processes from EΘ

n−1 to

EΘ
n and from EXn−1 to EXn respectively.

Its initial distribution is given by

η0(d(θ0, x0)) , ηΘ
0 (dθ0)ηXθ0(dx0),

with ηΘ
0 ∈ P(EΘ

0 ) and ηXθ0 ∈ P(EX0 ), denoting respectively the initial distributions of Θ0

and X0 given Θ0 = θ0.
Let (Gn)n∈N be a collection of bounded measurable functions from En to ]0,∞[. We de�ne
the Feynman-Kac measure associated to the couple (Gn, Tn) with initial distribution η0 by

(2) Qη0,n (d ((θ0, x0), . . . , (θn, xn)))

, 1

Zn




n−1∏

p=0

Gp(θp, xp)



PΘ

ηΘ
0 ,n

(d(θ0, . . . , θn))PXθ0:n,n (d(x0, . . . , xn)) ,
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LABELED ISLAND PARTICLE MODELS AND THEIR ASYMPTOTIC PROPERTIES 7

with the normalizing constant Zn, given by

Zn , Eη0



n−1∏

p=0

Gp(Θp, Xp)


 > 0,

and the two path probabilities

PΘ
ηΘ

0 ,n
(d(θ0, . . . , θn)) , ηΘ

0 (dθ0)MΘ
1 (θ0, dθ1) . . .MΘ

n (θn−1,dθn),

and
PXθ0:n,n (d(x0, . . . , xn)) , ηXθ0(dx0)MX

θ1,1(x0, dx1) . . .MX
θn,n(xn−1,dxn).

As one may have noticed, given Θ0:n = θ0:n, the sequence Xn is also a Markov chain of
transition kernels (MX

θn,n
)n∈N∗ and initial distribution ηXθ0 . Then one can associate to it

another Feynman-Kac path measure which is called quenched.

Definition 1.1. The quenched Feynman-Kac path measure associated to the realization

Θ0:n = θ0:n is de�ned by

QX
θ0:n,n (d(x0, . . . , xn)) , 1

ZXθ0:n,n




n−1∏

p=0

Gp(θp, xp)



PXθ0:n,n (d(x0, . . . , xn)) ,

where the quenched normalizing constant ZXθ0:n,n
is given by

ZXθ0:n,n , Eθ0:n



n−1∏

p=0

Gp(θp, Xp)


 > 0.

In the rest of the paper the quenched potential functions are denoted by Gθp,p and de�ned
as

(3) Gθp,p : xp ∈ EXp 7→ Gθp,p(xp) , Gp(θp, xp).

To get further into the dynamic, one can de�ne the time marginal of the quenched Feynman-
Kac measure also called the quenched Feynman-Kac distribution.

Definition 1.2. For every realization Θ0:n = θ0:n, the quenched Feynman-Kac distri-

bution �ow ηXθ0:n,n
on EXn is de�ned for every fn ∈ Bb(EXn ) by

ηXθ0:n,n(fn) , γXθ0:n,n(fn)/γXθ0:n,n(1)

with γXθ0:n,n
(fn) , Eθ0:n

[
fn(Xn)

∏n−1
p=0 Gθp,p(Xp)

]
.

imsart-aap ver. 2014/10/16 file: labeled_island.tex date: May 6, 2015



8 C. ICHARD AND C.VERGÉ

The distribution of Xn depends on the trajectory θ0:n which is emphasized by denoting
the unnormalized quenched Feynman-Kac distribution by γXθ0:n,n

. An important result taken
from [Del Moral (2004), Proposition 2.6.2] is recalled below.

Proposition 1.1. The quenched distribution sequence (ηXθ0:n,n
)n∈N satis�es the non

linear equation :

(4) ηXθ0:n+1,n+1 = ΨX
θn,n(ηXθ0:n,n)MX

θn+1,n+1,

where the mapping ΨX
θn,n

: P(EXn )→ P(EXn+1) is given by

(5) ΨX
θn,n(ηXθ0:n,n)(dxn) , 1

ηXθ0:n,n
(Gθn,n)

Gθn,n(xn)ηXθ0:n,n(dxn).

De�ning the mapping ΦX
n+1 by

ΦX
n+1 :

(
EΘ
n × EΘ

n+1

)
× P(EXn ) → P(EXn+1)(

(θn, θn+1), ηXθ0:n,n

)
7→ ΨX

θn,n
(ηXθ0:n,n

)MX
θn+1,n+1

(6)

The non linear recursion (4) can be reformulated as

(7) ηXθ0:n+1,n+1 = ΦX
n+1

(
(θn, θn+1), ηXθ0:n,n

)
.

Remind that, for a �xed value θ0:n of the random process Θ0:n, the probability measures
(ηXθ0:n,n

)n∈N can be approximated recursively thanks to an interacting particle system which
evolves successively according to selection step with potentials Gθn,n de�ned in (3) and
transition kernels MX

θn,n
. See Del Moral (2004) for further details. Now, consider that the

random environment Θ0:n, where the stochastic process Xn evolves, is not known. Then we
focus our interest on the estimation of the couple

(8) Xn , (Θn, η
X
Θ0:n,n) ∈ En , (EΘ

n × P(EXn )),

made up of the environment and the law of the process evolving in this environment. The
tricky part will be to deal with the probability measure space. First, notice that, as it has
been shown in Del Moral (2004), the pair process is a Markov chain.

Proposition 1.2 (Del Moral (2004), Proposition 2.6.3). Xn is a Markov chain with

transition kernel Mn de�ned for every function fn ∈ Bb(En) and (u, η) ∈ En by

Mn(fn)(u, η) ,
∫

EΘ
n

MΘ
n (u,dv)fn(v,ΦX

n ((u, v), η))

and with initial distribution η0 ∈ P(E0) de�ned by

η0(d(u, ν)) , ηΘ
0 (du)δηXθ0

(dν).
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LABELED ISLAND PARTICLE MODELS AND THEIR ASYMPTOTIC PROPERTIES 9

To this Markov chain, one may associate the Feynman-Kac distribution �ow ηn de�ned
for every fn ∈ Bb(En) by

ηn(fn) , γn(fn)/γn(1)(9)

where

γn(fn) , Eη0


fn(Xn)

n−1∏

p=0

Gp(Xp)


 ,

and the functions Gp are non negative functions de�ned as follows :

Gp : Ep → [0,∞[

(u, η) 7→ Gp(u, η) =
∫
EXp

Gp(u, x)η(dx) =
∫
EXp

Gu,p(x)η(dx) = η(Gu,p).
(10)

Proposition 1.3 (Del Moral (2004), p. 86). For all n ∈ N, the sequence ηn satis�es

the following non linear recursive equation :

(11) ηn+1 = Ψn(ηn)Mn+1 = Φn+1(ηn),

where for every µ ∈ P(En), the application Ψn : P(En)→ P(En), is de�ned by

(12) Ψn(µ)(fn) = µ(Gnfn)/µ(Gn), (∀fn ∈ Bb(En)),

and the operator Φn is de�ned by

Φn+1 : P(En) → P(En+1)

µ 7→ Ψn(µ)Mn+1.

In the non linear case, (11) cannot be solved analytically. Therefore, in the next section,
we introduce an interacting particle system to approximate recursively the sequence of
Feynman-Kac probability measures (ηn)n∈N.

2. Algorithm derivation. This section is about the algorithm associated with the
Feynman-Kac distribution �ow ηn de�ned in (9). One considers the process Xn associated
with the pair (Gn,Mn), where the transition kernel Mn is de�ned in Proposition 1.2 and
the potential function Gn is de�ned in (10).

2.1. Idealized interacting particle model. LetN1 be some positive integer. AN1-interacting
particle system associated with the sequence ((Gn,Mn))n∈N and the initial distribution η0,

is a sequence of non-homogeneous Markov chain, denoted by X
[N1]
n , taking value in the

product space E
N1

n ,

X
[N1]
n , (X

i
n)N1
i=1 = (X

1
n, . . . , X

N1

n ) ∈ E
N1

n , En × . . .× En︸ ︷︷ ︸
N1 times

.
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10 C. ICHARD AND C.VERGÉ

The initial state of the Markov chain X
[N1]
0 consists in N1 independent random variables

with common distribution η0. The interacting particle system (X
i
n)N1
i=1 explores the state

space En and with the dynamic given to it, empirically samples the law ηn. Each particle i

of the system consists in a random variable X
i
n = (θin, η

X
θi0:n,n

) ∈ En. Therefore, the empirical

process ηN1
n is de�ned by

(13) ηN1
n ,

1

N1

N1∑

i=1

δ
X
i
n
.

The elementary transition of the Markov chain X
[N1]
n from E

N1

n to E
N1

n+1 is given for any

x
[N1]
n , (x1

n, . . . , x
N1
n ) ∈ E

N1

n by

PN1
η0

(
X

[N1]
n+1 ∈ dx

[N1]
n+1 |X

[N1]
n

)
,

N1∏

i=1

Φn+1(ηN1
n )(dxin+1)

=

N1∏

i=1

N1∑

j=1

Gn(X
j
n)

∑N1
k=1Gn(X

k
n)
Mn+1(X

j
n, dx

i
n+1), thanks to (11).

Thus, the evolution of the particle swarm consists in two steps : a selection and a mutation.

In the selection step, the particles (X
i
n)N1
i=1 are selected multinomially with probability

proportional to their potentials (Gn(X
i
n))N1

i=1. Selected particles are identi�ed with a hat
on Figure 1. Then the mutation step is performed independently using the kernel Mn+1.
The evolution scheme of the particles is illustrated on Figure 1. Using this algorithm one

X
[N1]
n =

(
(θin, η

X
θi0:n,n

)
)N1

i=1

(
(θ̂in, η

X
θ̂i0:n,n

)
)N1

i=1

(
(θin+1, η

X
θi0:n+1,n+1

)
)N1

i=1

Selection

Ψn(ηN1
n )

Mutation

Mn+1

(
(θin+1, η

X
θ̂i0:n,n

)
)N1

i=1

MΘ
n+1 ΦXn+1((θ̂in, θ

i
n+1), ηX

θ̂i0:n,n
)

Fig 1: Evolution scheme of the interacting particle system for exact measures.

can empirically sample the measure ηn at each time step n. Several results are available
to qualify the subsequent estimator. However, as one may have noticed, for each θin the
measure ηX

θi0:n,n
corresponds to the quenched distributions de�ned in (1.2). That means that

one should have the exact quenched measure associated with the parameter realization θi0:n

to use that standard particle algorithm. This can happen in two special cases.

imsart-aap ver. 2014/10/16 file: labeled_island.tex date: May 6, 2015



LABELED ISLAND PARTICLE MODELS AND THEIR ASYMPTOTIC PROPERTIES 11

Firstly, one special case is when the transition kernel MX
θn,n

is Gaussian and the initial

distribution ηXθ0 is Gaussian. Indeed, it turns out that this particle algorithm corresponds
to the interacting Kalman �lters (IKF) (see Del Moral (2004), Zghal, Mevel and Del Moral
(2014)). That is a N1-interacting particle model which is composed of N1 particles where
the measure value part are Gaussian distributions. In other words, for each particle θin,
one iterative step of the Kalman �lter is run to update the measure, i.e. one prediction
step and one correction step. Those �lters are then competing through the selection step
using the transformation Ψn de�ned in (12). For example let us consider the case where
Θn is a EΘ

n -process with initial distribution ηΘ
0 and elementary transition kernel MΘ

n . For a
realization θ0:n of Θ0:n, consider that (Xn, Yn) is a Rp+q-Markov chain, for positive integers
(p, q), de�ned through the linear Gaussian system :

{
Xn = Aθn,nXn−1 + aθn,n +Bθn,n ε

X
n , n ≥ 1

Yn = Cθn,nXn + cθn,n +Dθn,n ε
Y
n , n ≥ 0.

(Aθn,n, Bθn,n, Cθn,n, Dθn,n) and (aθn,n, cθn,n) are respectively matrices and deterministic vec-
tors of appropriate dimension which may depend on a parameter θn. The sequences ε

X
n and

εYn are two independent white noises, independent from the initial condition X0. There are
Gaussian random variables whose mean and variance are given by

X0 ∼ N(mθ0,0,Σθ0,0), εXn ∼ N(0,ΣX
n ), and εYn ∼ N(0,ΣY

n ).

In this framework, ηXθ0:n,n
corresponds to the conditional law of Xn given the observations

Y0:n−1 = y0:n−1 and the history of the parameter θ0:n, also called optimal predictor. One
wants to estimate recursively the law of the couple (Θn, η

X
θ0:n,n

) using observations Y0:n−1 =
y0:n−1. For that purpose, one needs to introduce the optimal �ltering which is the conditional
law of Xn given the observations Y0:n = y0:n and the history of the parameter θ0:n. It
turns out that these previous distributions are Gaussian respectively denoted by ηXθ0:n,n

=

N(mθn,n,Σθn,n) and N(m̂θn,n, Σ̂θn,n). Thus,

m̂θn,n = Eθ0:n [Xn | Y0:n]

Σ̂θn,n = Eθ0:n

[
(Xn − m̂θn,n)(Xn − m̂θn,n)T

]

mθn+1,n+1 = Eθ0:n+1 [Xn+1 | Y0:n]

Σθn+1,n+1 = Eθ0:n+1

[
(Xn+1 −mθn+1,n+1)(Xn+1 −mθn+1,n+1)T

]
.

Moreover, the mapping ΦX
n+1 de�ned in (6) which is used to update the measure valued part

ηXθ0:n,n
corresponds to a complete step of the Kalman �lter evolution between predictors.

This means that ΦX
n+1((θn, θn+1),N(mθn,n,Σθn,n)) is also a Gaussian distribution whose

mean and covariance matrix are obtained recursively through two steps:

N(mθn,n,Σθn,n)
Correction−−−−−−→ N(m̂θn,n, Σ̂θn,n)

Prediction−−−−−−→ N(mθn+1,n+1,Σθn,n).
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12 C. ICHARD AND C.VERGÉ

The �rst one is a correction step which is given by

{
m̂θn,n = mθn,n +Kθn,n(Yn − (Cθn,nmθn,n + cθn,n))

Σ̂θn,n = (I −Kθn,nCθn,n)Σθn,n

where I is the identity matrix and Kθn,n is the classical gain matrix

Kθn,n , Σθn,n(Cθn,n)T
(
Cθn,nΣθn,n(Cθn,n)T +Dθn,nΣY

n (Dθn,n)T
)−1

.

The second step is the predicting step :

{
mθn+1,n+1 = Aθn+1,n+1m̂θn,n + aθn+1,n+1

Σθn+1,n+1 = Aθn+1,n+1Σ̂θn,n(Aθn+1,n+1)T +Bθn+1,n+1ΣX
n+1(Bθn+1,n+1)T .

Then all the Kalman �lters attached to each realization θin+1 for i ∈ J1, N1K interact through
their potential Ḡn+1(θin+1, η

X
θi0:n+1,n+1

) de�ned in (10) by

Ḡn+1(θin+1, η
X
θi0:n+1,n+1) = ηXθi0:n+1,n+1(Gθin+1,n+1)

= N(mθin+1,n+1,Σθin+1,n+1)(Gθin+1,n+1)

where Gθin+1,n+1 is the likelihood function de�ned for every xn+1 ∈ EXn+1 by

Gθin+1,n+1(xn+1) =
dN(Cθin+1,n+1xn+1,Σ

Y
n+1)

dN(0,ΣY
n+1)

.

One �nally ends up with the following expression:

(14) Ḡn+1(θin+1, η
X
θi0:n+1,n+1)

=
dN(Cθin+1,n+1mθin+1,n+1, Cθin+1,n+1Σθin+1,n+1(Cθin+1,n+1)T + ΣY

n+1)

dN(0,ΣY
n+1)

.

See Del Moral (2004) for further details. The interacting Kalman �lter for this general
example is given by Algorithm 1.
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LABELED ISLAND PARTICLE MODELS AND THEIR ASYMPTOTIC PROPERTIES 13

Data: η0, (Mp)
n
p=0, (Ψp)

n
p=0, mθi0,0

and Σθi0,0

Result: Interacting Kalman approximation of ηn
/* Initialization */

for i← 1 to N1 do

Sample X̃i
0 = (θi0, η

X
θi0,0

) ∼ η̃0, i.e. θ
i
0
i.i.d∼ ηΘ

0 and ηX
θi0,0

= N(mθi0,0
,Σθi0,0

) ;

end

for p← 0 to n− 1 do
/* Selection of Kalman filters */

Sample Ip = (Iip)
N1
i=1 according to a multinomial distribution with probability

proportional to

(
Ḡp(θ

k
p , η

X
θk0:p,p

)

)N1

k=1

given by (14) ;

for i← 1 to N1 do
/* Updating step for each Kalman filter */



m̂
θ
Iip
p ,p

= m
θ
Iip
p ,p

+K
θ
Iip
p ,p

(Yn − C
θ
Iip
p ,p

m
θ
Iip
p ,p

)

Σ̂
θ
Iip
p ,p

=

(
I −K

θ
Iip
p ,p

C
θ
Iip
p ,p

)
Σ
θ
Iip
p ,p

;

/* Mutation of each island */

Sample independently θip+1 according to MΘ
p+1(θ

Iip
p , .) ;

/* Prediction step for each Kalman filter */



mθip+1,p+1 = Aθip+1,p+1m̂
θ
Iip
p ,p

+ aθip+1,p+1

Σθip+1,p+1 = Aθip+1,p+1Σ̂
θ
Iip
p ,p

(Aθip+1,p+1)T +Bθip+1,p+1ΣX
p+1(Bθip+1,p+1)T

end

p←− p+ 1
end

Algorithm 1: Interacting Kalman Filter - IKF

Secondly, when the non linear Equation 6 can be solved analytically i.e. when one has
access to the exact measure ηXθ0:n,n

, one can apply a simple interacting particle model as
described in Figure 1, where each particle corresponds to the pair: parameter and exact
measure.
However, in most cases, this equation cannot be solved analytically, so that an additional
approximation is needed in order to estimate the measure ηX

θi0:n,n
for each i ∈ J1, N1K. The

next subsection is dedicated to the derivation of an algorithm to deal with this constraint.

2.2. Labeled island particle model. To tackle the case where ηX
θi0:n,n

, i ∈ J1, N1K is not

analytically known, the idea consists in using a particle estimation of ηX
θi0:n,n

inside the

previous interacting particle model. The ensuing algorithm will be called labeled island

particle model in reference to the island particle model developed in Vergé et al. (2015),
even if in the present case, each island i have a label θin whose evolution is given by the
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14 C. ICHARD AND C.VERGÉ

Markov kernel MΘ
n . The labeled island particle model consists in associating to each term

of the sequence (θin)N1
i=1 a sub N2-interacting particle system. We call sub N2-interacting

particle system associated with the sequence ((Gθin,n,M
X
θin,n

))n∈N and the initial distribution

ηX
θi0,0

, the sequence of non-homogeneous Markov chain (ξi,jn )N2
j=1 taking value in the product

space EX,N2
n , that is :

ξi,[N2]
n , (ξi,jn )N2

j=1 , (ξi,1n , . . . , ξi,N2
n ) ∈ EX,N2

n , EXn × . . .× EXn︸ ︷︷ ︸
N2 times

.

The initial state of the Markov chain (ξi,j0 )N2
j=1 consists in sampling N2 independent random

variables with common distribution ηX
θi0,0

.

The interacting particle system, denoted by (ξi,jn )N2
j=1, explore the state space EXn and with

the dynamic given to it, empirically sample the law ηX
θi0:n,n

.

Denoting the empirical measure

(15) ηX,N2

θi0:n,n
, 1

N2

N2∑

j=1

δ
ξi,jn
,

the elementary transition of the process ξ
i,[N2]
n from EX,N2

n to EX,N2
n+1 is given for any x

[N2]
n =

(x1
n, . . . , x

N2
n ) ∈ EX,N2

n by

PN2

ηXθ0

(
ξ
i,[N2]
n+1 ∈ dx

[N2]
n+1 | ξi,[N2]

n

)
,

N2∏

j=1

ΦX
n+1

(
(θin, θ

i
n+1), ηX,N2

θi0:n,n

)
(dxjn+1)

=

N2∏

j=1

ΨX
θin,n

(ηX,N2

θi0:n,n
)MX

θin+1,n+1(ξi,jn ,dx
j
n+1) using (6)

=

N2∏

j=1

N2∑

k=1

Gθin,n(ξi,kn )
∑N2

`=1Gθin,n(ξi,`n )
MX
θin+1,n+1(ξi,kn , dxjn+1) by (5).

De�ne the mapping Φ̃X
n by

Φ̃X
n : EΘ

n−1 × EΘ
n × P(EXn−1) → P(EXn )

((u, v), ν) 7→ ∏N2
j=1 ΦX

n ((u, v), ν)(dxjn),

then

(16) ηX,N2

θi0:n+1,n+1
= Φ̃X

n+1

(
(θin, θ

i
n+1), ηX,N2

θi0:n,n

)
.
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LABELED ISLAND PARTICLE MODELS AND THEIR ASYMPTOTIC PROPERTIES 15

So, the evolution of the particle swarm ξ
i,[N2]
n consists in two steps: a selection and a muta-

tion. In the selection step, the particles are selected multinomially with probability propor-

tional to their potentials
(
Gθin,n(ξi,jn )

)N2

j=1
. Then the mutation step is performed indepen-

dently using the kernel MX
θin+1,n+1

. Hence, at each iteration n ∈ N, the empirical measure

ηX,N2

θi0:n,n
approximates ηX

θi0:n,n
when N2 tends to ∞. Replacing ηX

θi0:n,n
by ηX,N2

θi0:n,n
inside the �rst

algorithm presented, one gets a nested particle model named labeled island particle model.
In order to derive precisely this algorithm, �rst introduce the following sequence X̃n on
En = EΘ

n ×P(EXn ), de�ned by X̃n , (Θn, η
X,N2

Θ0:n,n
), i.e. the couple environment and empirical

measure of the process Xn conditionally on Θ0:n, where η
X,N2

Θ0:n,n
,
∑N2

j=1 δξjn/N2.

Proposition 2.1. X̃n is a En-Markov chain with transition kernel M̃n de�ned for every

function fn ∈ Bb(En) and (u, ν) ∈ En by

(17) M̃n(fn)(u, ν) =

∫

EΘ
n

MΘ
n (u,dv)fn(v, Φ̃X

n ((u, v), ν)),

where Φ̃X
n is de�ned in (16), and with initial distribution η̃0 ∈ P(E0) given by

η̃0(d(u, ν)) , ηΘ
0 (du)δ

η
X,N2
θ0,0

(dν).

Proof. Let σ(X̃0, . . . , X̃n) stands for the σ-algebra generated by the random variables
X̃p, 0 ≤ p ≤ n. For all fn ∈ Bb(En):

Eη̃0 [fn(X̃n) | σ(X̃0, . . . , X̃n−1)]

= Eη̃0 [fn(Θn, η
X,N2

Θ0:n,n
) | σ(X̃0, . . . , X̃n−1)]

= Eη̃0 [fn(Θn, Φ̃
X
n ((Θn−1,Θn), ηX,N2

Θ0:n−1,n−1) | σ(X̃0, . . . , X̃n−1)] by (16).

Recalling that X̃n−1 = (Θn−1, η
X,N2

Θ0:n−1,n−1), one can conclude that

Eη̃0 [fn(X̃n) | σ(X̃0, . . . , X̃n−1)]

= Eη̃0 [fn(X̃n) | X̃n−1]

=

∫

EΘ
n

fn(θn, Φ̃
X
n ((Θn−1, θn), ηX,N2

Θ0:n−1,n−1)MΘ
n (Θn−1,dθn).

To the Markov chain X̃n, one may associate the Feynman-Kac distribution de�ned for
every fn ∈ Bb(En) by

(18) η̃n(fn) , γ̃n(fn)/γ̃n(1),
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16 C. ICHARD AND C.VERGÉ

where γ̃n is de�ned such that

γ̃n(fn) , Eη̃0


fn(X̃n)

n−1∏

p=0

Gp(X̃p)


 ,

with Gp de�ned in (10).
In a similar way to ηn, the measure η̃n satis�es a recursive equation η̃n = Ψn−1(η̃n−1)M̃n,
with Ψn−1 the application de�ned in Proposition 1.3. This non linear equation can be
rewritten as

(19) η̃n = Φ̃n(η̃n−1),

where the mapping Φ̃n is de�ned as follows :

Φ̃n : P(En−1) → P(En)

η 7→ Ψn−1(η)M̃n.
(20)

As in Section 2.1, when this equation cannot be solved analytically one may use a par-
ticle model to approximate the probability measure η̃n. In this case, the particles {X̃i

n ,
(θin, η

X,N2

θi0:n,n
), i ∈ J1, N1K}, would be testing points on the state space En, for (N1, N2) ∈ (N∗)2.

These particles explore the state space En and their dynamics empirically sample the law η̃n
when N1 gets large. An interacting particle system associated with the couple (Gn, M̃n) and

the initial distribution η̃0, is a sequence of non-homogeneous Markov chain, X̃
[N1]
n , taking

value in the product space E
N1

n , de�ned by

X̃ [N1]
n , (X̃i

n)N1
i=1 = (X̃1

n, . . . , X̃
N1
n ) ∈ E

N1

n .

The initial state of the Markov chain X̃
[N1]
0 consists in N1 independent random variables

with common distribution η̃0. Denote by η̃N1
n the empirical measure at time n, which is

de�ned by

(21) η̃N1
n ,

1

N1

N1∑

i=1

δX̃i
n
.

The elementary probability transition, is given for any x
[N1]
n+1 ∈ E

N1

n+1 by

PN1
η̃0

(X̃
[N1]
n+1 ∈ dx

[N1]
n+1 | X̃ [N1]

n ) =

N1∏

i=1

Ψn(η̃N1
n )M̃n+1(X̃i

n,dx
i
n+1).

The particle evolution is summarized in Figure 2 where by de�nitions (10) and (15),

Gn(X̃i
n) =

1

N2

N2∑

j=1

Gn(θin, ξ
i,j
n ) =

1

N2

N2∑

j=1

Gθin,n(ξi,jn ).

imsart-aap ver. 2014/10/16 file: labeled_island.tex date: May 6, 2015



LABELED ISLAND PARTICLE MODELS AND THEIR ASYMPTOTIC PROPERTIES 17

X̃
[N1]
n =

(
(θin, η

X,N2

θi0:n,n
)
)N1

i=1

(
(θ̂in, η

X,N2

θ̂i0:n,n
)
)N1

i=1

(
(θin+1, η

X,N2

θi0:n+1,n+1
)

)N1

i=1

Selection

Ψn(η̃N1
n )

Mutation

M̃n+1

(
(θin+1, η

X,N2

θ̂i0:n,n
)
)N1

i=1

MΘ
n+1

φ̃Xn+1((θ̂in, θ
i
n+1), ηX,N2

θ̂i0:n,n
)

Fig 2: Evolution scheme of the labeled island particle model.

The ensuing algorithm is described in Algorithm 2.
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18 C. ICHARD AND C.VERGÉ

Data: η̃0, (M̃p)
n
p=0 and (Ψp)

n
p=0

Result: Particle approximation of η̃n
/* Initialization */

for i← 1 to N1 do

Sample X̃i
0 = (θi0, η

X,N2

θi0,0
) ∼ η̃0, that is

θi0
i.i.d∼ ηΘ

0 , ξ
i,j
0

i.i.d∼ ηX
θi0,0

and ηX,N2

θi0,0
= 1

N2

N2∑
j=1

δ
ξi,j0

.

end

for p← 0 to n− 1 do
/* Selection of islands */

Sample Ip = (Iip)
N1
i=1 according to a multinomial distribution with probability

proportional to

(
1
N2

N2∑
j=1

Gp(θ
i
p, ξ

i,j
p )

)N1

i=1

;

for i← 1 to N1 do
/* Selection of particles inside each island */

Sample J ip = (J i,jp )N2
j=1 according to a multinomial distribution with probability

proportional to

(
Gp(θ

Iip
p , ξ

Iip,j
p )

)N2

j=1

;

/* Mutation of each island */

Sample independently θip+1 according to MΘ
p+1(θ

Iip
p , .) ;

for j ← 1 to N2 do
/* Mutation of particles */

Sample ξi,jp+1 according to MX
θip+1,p+1

(ξ
Iip,J

i,j
p

p , .) ;

end

end

p←− p+ 1
end

Algorithm 2: Labeled island particle algorithm

For every n ≥ 0, η̃N1
n is an estimator of η̃n, obtained through the labeled island particle

model, i.e. for every fn ∈ Bb(En),

η̃N1
n (fn) =

1

N1

N1∑

i=1

fn(θin, η
X,N2

θi0:n,n
)

converges to η̃n(fn) when N1 → +∞.

3. Lp bounds . We are interested in this section in the Lp bounds of the di�erence
between the estimator η̃N1

n and the measure ηn. To get these bounds we will use several
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LABELED ISLAND PARTICLE MODELS AND THEIR ASYMPTOTIC PROPERTIES 19

notations. We de�ne them before going further.

3.1. Notations. Let (E, E) be a measurable space. For a real-valued measurable function
h ∈ Bb(E), we denote the oscillator norm osc(h) , sup(x,x′)∈E2 |h(x) − h(x′)|, and Osc1(E)
the convex set of E-measurable functions with oscillations less than one. The sup norm of
h is noted ‖h‖∞ , supx∈E |h(x)| and the Lp-norm ‖.‖p. B1(E) ⊂ Bb(E) refers to the set of
functions whose sup norm is less than one. For two probability measures (µ, η) ∈ P(E)2,
the Zolotarev semi-norm ‖.‖F attached to F a countable collection of bounded measurable
functions in B1(E) is de�ned by

‖µ− η‖F , sup
f∈F
|µ(f)− η(f)|.

To measure the size of a given class F, one considers the covering numbers
N (ε,F,Lp(µ)) de�ned as the minimal number of Lp(µ)-balls of radius ε > 0 needed to cover
F. Let N (ε,F) and I(F) denote respectively the uniform covering numbers and entropy
integral given by

(22) N (ε,F) , sup
µ∈P(E)

N (ε,F,L2(µ))

(23) I(F) ,
∫ 1

0

√
log(1 +N (ε,F))dε.

Let ∧ denote the minimum operator and ∨ denote the maximum operator. For a kernel M
de�ned on E, the Dobrushin coe�cient of M is

β(M) , sup
f∈Osc1(E)

osc(M(f)).

Let (d(n))n≥0 be a sequence de�ned for every m ≥ 0 by

{
d(2m)2m , (2m)m2−m

d(2m+ 1)2m+1 , (2m+1)m+1√
m+1/2

2−m+1/2,

where for any positive integers (p, q) ∈ (N∗)2, (q + p)p , (q + p)!/q!.
For n ∈ N, introduce the Feynman-Kac semi-groups Qn (resp. QXθn−1:n,n

) such that for all

(xn, xn+1) ∈ En × En+1 (resp. (xn, xn+1) ∈ EXn × EXn+1),

Qn+1(xn,dxn+1) , Gn(xn)Mn+1(xn, dxn+1),

(
resp.QXθn:n+1,n+1(xn, dxn+1) , Gθn,n(xn)MX

θn+1,n+1(xn, dxn+1)
)
.
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20 C. ICHARD AND C.VERGÉ

For every (p, n) ∈ (N)2 such that p < n, set

Qp,n , Qp+1 . . . Qn, and P p,n , Qp,n/Qp,n(1),

(
resp.QXθp:n,p,n , Q

X
θp:p+1,p+1 . . . Q

X
θn−1:n,n

andPXθp:n,p,n(fn) , QXθp:n,p,n(fn)/QXθp:n,p,n(1)
)
,

and set the normalizing constant

Gp,n , Qp,n(1), (resp.Gθp:n,p,n , QXθp:n,p,n(1)).

Finally, set

gp,n , sup
(xp,yp)∈(Ep)2

Gp,n(xp)

Gp,n(yp)
,

(
resp. gθp:n,p,n , sup

(xp,yp)∈(EXp )2

Gθp:n,p,n(xp)

Gθp:n,p,n(yp)

)
.

In order to study the di�erence between η̃N1
n and ηn, we use several results taken from

Del Moral (2004). Then, we will always assume that for all n ∈ N, the potential functions
Gθn,n de�ned in (3) satisfy the following condition (Gθ):
there exists a sequence of strictly positive number εn(Gθ) ∈ (0, 1] such that for any
(xn, yn) ∈ (EXn )2 :

(Gθ) Gθn,n(xn) ≥ εn(Gθ)Gθn,n(yn) > 0

Therefore, for all n ∈ N, the potential functions Gn satisfy the following condition (G):
there exists a sequence of strictly positive number εn(G) ∈ (0, 1] such that for any (xn, yn) ∈
(En)2 :

(G) Gn(xn) ≥ εn(G)Gn(yn) > 0

Moreover we always assume that the collection of distributions
(
Mn+1(xn, .)

)
xn∈En are

absolutely continuous with one another. That is for every n ≥ 0 and (xn, yn) ∈ (En)2, one
has

Mn+1(xn, .)�Mn+1(yn, .).

In addition, we assume that the collection of distributions
(
MX
θn+1,n+1(xn, .)

)
xn∈EXn

are

absolutely continuous with one another. That is for every n ≥ 0, θn+1 ∈ EΘ
n+1 and (xn, yn) ∈

(EXn )2, one has :
MX
θn+1,n+1(xn, .)�MX

θn+1,n+1(yn, .).

Note that for time homogeneous models on �nite spaces condition those conditions are met
as soon as the Markov chain is aperiodic and irreducible. Some examples are illustrated by
typical examples in Del Moral (2004).
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3.2. Lp bound. Consider that for all n ∈ N, the product space En = EΘ
n × P(EXn ) is

equipped with the norm ‖ · ‖En such that for all (u, v) ∈ (EΘ
n )2 and (ν, η) ∈ (P(EXn ))2,

‖(u, η)− (v, ν)‖En = |u− v|+ ‖η − ν‖Fn .
where Fn is a countable collection of functions in B1(EXn ).

Theorem 3.1. For any p ∈ N∗, n ∈ N, let fn ∈ Osc1(En) be a kn-Lipschitz function.
Assume that for any θn ∈ EΘ

n , the kernel transitionM
X
θn,n

can be written asMX
θn,n

(xn−1,dxn) =

mX
θn,n

(xn−1, xn)pθn,n(dxn) for some measurable function mX
θn,n

on EXn−1 × EXn and some

probability measure pθn,n ∈ P(EXn ). Furthermore, assume that there exists a collection of

mappings αθn,n on EXn such that

supxn−1∈EXn−1
| logmX

θn,n
(xn−1, xn)| ≤ αθn,n(xn)

with pθn,n(e3αθn,n) <∞.

Then, the Lp error is bounded by

‖η̃N1
n (fn)− ηn(fn)‖p ≤ kn

a(p)√
N2

(I(Fn) + b(n)) + 2
d(p)√
N1

n∑

q=0

gq,nβ(P q,n),(24)

where the sequence d(n) is de�ned in (24), I(Fn) is de�ned in (23), (b(n))n≥0 is de�ned by

b(0) = 0 and b(n+ 1) ≤ gθn,npθn+1,n+1(e3αθn+1,n+1)
n∑
q=0

gθq:n,q,nβ(Pθq:n,q,n),

and a(n) is a sequence such that for all n ∈ N∗, a(n) ≤ c [n/2]! with c a universal constant.

Proof. Let fn ∈ Osc1(En) be a kn-Lipschitz function, and apply triangular inequality:

‖η̃N1
n (fn)− ηn(fn)‖p ≤ ‖η̃N1

n (fn)− ηN1
n (fn)‖p + ‖ηN1

n (fn)− ηn(fn)‖p,
where ηn is de�ned in (9). Then using Theorem 7.4.4 from Del Moral (2004), one can bound
the second term

‖ηN1
n (fn)− ηn(fn)‖p ≤ 2

d(p)√
N1

n∑

q=0

gq,nβ(P q,n).

Therefore, in order to bound the �rst term, use the de�nitions of η̃N1
n and ηN1

n in (21) and
(13) respectively :

‖η̃N1
n (fn)− ηN1

n (fn)‖p = Eη0

[
|η̃N1
n (fn)− ηN1

n (fn)|p
]1/p

= Eη0

[∣∣∣∣∣
1

N1

N1∑

i=1

{
fn(θin, η

X,N2

θi0:n,n
)− fn(θin, η

X
θi0:n,n

)
}∣∣∣∣∣

p]1/p

≤ Eη0

[(
1

N1

N1∑

i=1

|fn(θin, η
X,N2

θi0:n,n
)− fn(θin, η

X
θi0:n,n

)|
)p]1/p
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As fn is kn-Lipschitz, it follows

∣∣∣fn(θin, η
X,N2

θi0:n,n
)− fn(θin, η

X
θi0:n,n

)
∣∣∣ ≤ kn

∥∥∥(θin, η
X,N2

θi0:n,n
)− (θin, η

X
θi0:n,n

)
∥∥∥
En

≤ kn
∥∥∥ηX,N2

θi0:n,n
− ηXθi0:n,n

∥∥∥
Fn
.

where Fn is a countable collection of functions in B1(EXn ) Therefore one gets

‖η̃N1
n (fn)− ηN1

n (fn)‖p ≤ Eη0

[(
1

N1

N1∑

i=1

kn

∥∥∥ηX,N2

θi0:n,n
− ηXθi0:n,n

∥∥∥
Fn

)p]1/p

.

Denoting by θ∗ the value at which the maximum of the Zolotarev semi-norms for i ∈ J1, N1K
is reached, yields to

‖η̃N1
n (fn)− ηN1

n (fn)‖p ≤ knEη0

[
‖ηX,N2

θ∗0:n,n
− ηXθ∗0:n,n

‖pFn
]1/p

.

But, according to [Del Moral (2004), Corollary 7.4.4] (p. 247),

Eη0

[
‖ηX,N2

θ∗0:n,n
− ηXθ∗0:n,n

‖pFn
]1/p
≤ a(p)√

N2
(I(Fn) + b(n)),

where I(Fn) is the entropy of Fn de�ned in (23). Finally one ends up with

‖η̃N1
n (fn)− ηN1

n (fn)‖p ≤ kn
a(p)√
N2

(I(Fn) + b(n)) + 2
d(p)√
N1

n∑

q=0

gq,nβ(P q,n).

3.3. Time uniform bound. Before stating the uniform estimate we de�ne the following
two additional conditions.
There exists some integer m ≥ 1 and some numbers εn(M) ∈ ]0, 1[ such that for n ∈ N and

(xn, yn) ∈ E
2
n, one has :

((M)m) Mn,n+m(xn, .) ,Mn+1 . . .Mn+m(xn, .) ≥ εn(M)Mn,n+m(yn, .)

For all i ∈ J1, N1K, there exists some integer mi ≥ 1 and some numbers εn(MX
θi

) ∈ ]0, 1[
such that for n ∈ N, (xn, yn) ∈ (EXn )2, and θin+1:n+mi

∈ EΘ
n+1 × . . .× EΘ

n+m, one has :

((MX
θi

)mi) MX
θin+1:n+mi

,n,n+mi
(xn, .) ,MX

θin+1,n+1 . . .M
X
θin+mi

,n+mi
(xn, .)

≥ εn(MX
θi )MX

θin+1:n+mi
,n,n+m(yn, .)
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Theorem 3.2. Suppose that conditions (G), ((M)m) are met for some integer m ≥
1 and some pair parameters (εn(G), εn(M)) and set ε(G) , ∧n≥0εn(G) and ε(M) ,
∧n≥0εn(M).
Moreover, assume that for all i ∈ J1, N1K conditions (Gθ) and ((MX

θi
)mi) hold true for

some sequence of integer mi and some pair parameters (εn(Gθi), εn(MX
θi

)) and set ε(Gθi) ,
∧n≥0εn(Gθi) and ε(MX

θi
) , ∧n≥0εn(MX

θi
). Set m , ∨imi.

Further assume that for all n ≥ 0 and θin ∈ EΘ
n the kernel transition MX

θin,n
has the

form MX
θin,n

(xn−1,dxn) = mX
θin,n

(xn−1, xn)pθin,n(dxn) for some measurable function mX
θin,n

on EXn−1 × EXn and some probability measure pθin,n ∈ P(EXn ).

Also assume that supxn−1∈EXn−1
| logmX

θin,n
(xn−1, xn)| ≤ αθin,n(xn) with pθin,n(e

3α
θin,n) < ∞

for some collection of mappings αθin,n on EXn , and set :

pθi(e
3αθi ) , sup

n≥0
pθin,n(e

3α
θin,n) <∞ and pθ(e

3αθ) , ∨ipθi(e3αθi ).

Then for any p ∈ N∗, any kn-Lipschitz functions fn ∈ Osc1(En) one has :

sup
n≥0

sup
fn∈Osc1(En)

‖η̃N1
n (fn)−ηn(fn)‖p ≤

2d(p)m√
N1ε(M)3ε(G)2m−1

+
k a(p)√
N2

(
I +

mpθ(e
3αθ)

ε(MX
θ )3ε(Gθ)2m

)

with

k = sup
n
kn, ε(MX

θ ) = ∧iε(MX
θi ) > 0, ε(Gθ) = ∧iε(Gθi) > 0, I , sup

n≥0
I(Fn) <∞.

Proof.

sup
n≥0

sup
fn∈Osc1(En)

‖η̃N1
n (fn)− ηn(fn)‖p

≤ sup
n≥0

sup
fn∈Osc1(En)

(
‖η̃N1
n (fn)− ηN1

n (fn)‖p + ‖ηN1
n (fn)− ηn(fn)‖p

)

≤ sup
n≥0

sup
fn∈Osc1(En)

‖η̃N1
n (fn)− ηN1

n (fn)‖p + sup
n≥0

sup
fn∈Osc1(En)

‖ηN1
n (fn)− ηn(fn)‖p

From [Del Moral (2004), Theorem 7.4.4] (p. 247), one has

sup
n≥0

sup
fn∈Osc1(En)

‖ηN1
n (fn)− ηn(fn)‖p ≤

2d(p)m√
N1ε(M)3ε(G)2m−1

,
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since conditions (G) and ((M)m) hold true. Then it follows that the only term one has to
work on is the following.

sup
n≥0

sup
fn∈Osc1(En)

‖η̃N1
n (fn)− ηN1

n (fn)‖p

= sup
n≥0

sup
fn∈Osc1(En)

∥∥∥∥∥
1

N1

N1∑

i=1

{
fn(θin, η

X,N2

θi0:n,n
)− fn(θin, η

X
θi0:n,n

)
}∥∥∥∥∥

p

≤ 1

N1

N1∑

i=1

sup
n≥0

sup
fn∈Osc1(En)

∥∥∥fn(θin, η
X,N2

θi0:n,n
)− fn(θin, η

X
θi0:n,n

)
∥∥∥
p

As the function fn is kn-Lipschitz, for all i ∈ J1, N1K,

sup
n≥0

sup
fn∈Osc1(En)

∥∥∥fn(θin, η
X,N2

θi0:n,n
)− fn(θin, η

X
θi0:n,n

)
∥∥∥
p

= sup
n≥0

sup
fn∈Osc1(En)

Eη0

[∣∣∣fn(θin, η
X,N2

θi0:n,n
)− fn(θin, η

X
θi0:n,n

)
∣∣∣
p]1/p

≤ sup
n≥0

Eη0

[
kpn

∥∥∥ηX,N2

θi0:n,n
− ηXθi0:n,n

∥∥∥
p

Fn

]1/p

≤ sup
n≥0

knEη0

[∥∥∥ηX,N2

θi0:n,n
− ηXθi0:n,n

∥∥∥
p

Fn

]1/p

.

Set k , supn kn, then

sup
n≥0

sup
fn∈Osc1(En)

∥∥∥fn(θin, η
X,N2

θi0:n,n
)− fn(θin, η

X
θi0:n,n

)
∥∥∥
p
≤ k sup

n≥0
Eη0

[∥∥∥ηX,N2

θi0:n,n
− ηXθi0:n,n

∥∥∥
p

Fn

]1/p

From [Del Moral (2004), Corollary 7.4.5] (p. 249), as one assumes that there exists mi ≥ 1
for
θin,n+mi ∈ EΘ

n × . . .× EΘ
n+mi ,

sup
n≥0

Eη0

[∥∥∥ηX,N2

θi0:n,n
− ηXθi0:n,n

∥∥∥
p

Fn

]1/p

≤ a(p)√
N2

(
I +

mipθi(e
3αθi )

ε(MX
θi

)3ε(Gθi)
2mi

)
,

where I , sup
n≥0

I(Fn) <∞. One concludes easily.

4. Asymptotic analysis of the labeled island particle algorithm. This section
deals with the asymptotic behavior of the labeled island particle algorithm. Especially, we
focus on the almost sure convergence.

Using Theorem 3.1 obtained in Section 3, one can easily get the almost sure convergence
of the double estimator η̃N1

n toward ηn under the same assumptions as in Theorem 3.1.
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Theorem 4.1. Under the same assumptions as in Theorem 3.1, for all n ≥ 0 and for

every kn- Lipschitz function fn ∈ Osc1(En), one has

η̃N1
n (fn)

a.s−→ ηn(fn), as N →∞,

with N = N1N2 such that N1 = Nα and N2 = N1−α for all α ∈ ]0, 1[.

Proof. Let fn ∈ Osc1(En) be a kn-Lipschitz function and ε > 0 a real constant. For all
p ∈ N∗, by Markov's inequality, one has

P
(
|η̃N1
n (fn)− ηn(fn)| > ε

)
≤ Eη0

[
|η̃N1
n (fn)− ηn(fn)|p

]

εp
.

Then, applying Theorem 3.1, and noting

C(p, n) , kna(p)(I(Fn) + b(n)) and C̃(p, n) , 2d(p)
∑n

q=0 gq,nβ(P q,n),

one has

‖η̃N1
n (fn)− ηn(fn)‖pp ≤

(
C(p, n)√
Nα

+
C̃(p, n)√
N1−α

)p

=

p∑

k=0

(
p

k

)
C(p, n)kC̃(p, n)p−k

N (α− 1
2

)k+ 1−α
2
p

.

The �nite sequence (sα,p(k))pk=0 de�ned by sα,p(k) = (α − 1/2)k + (1 − α)p/2 is bounded
from below by

mα,p ,
αp

2
10<α≤0.5 +

(1− α)p

2
10.5<α<1,

so that

‖η̃N1
n (fn)− ηn(fn)‖pp ≤

(
C(p, n) + C̃(p, n)

)p

Nmα,p
.

Choose p a positive integer such that mα,p ≥ 2 i.e. satisfying
{
p > 4

α if 0 < α ≤ 0.5
p > 4

1−α if 0.5 < α < 1.
(25)

Hence,

‖η̃N1
n (fn)− ηn(fn)‖pp ≤

(
C(p, n) + C̃(p, n)

)p

N2
.

By comparison of series of non-negative general term with a convergent Riemann series,
one concludes that the series

∑

N≥0

P
(
|η̃N1
n (fn)− ηn(fn)| > ε

)
is convergent,
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which implies by Borel-Cantelli's lemma, that

η̃N1
n (fn)

a.s−→ ηn(fn), as N →∞.

Taking such kind of N means that for a total budget N of particles, one can consider any
decomposition (as a power of N) of the particles between islands and within each island.

5. Example of application. In order to give illustration of this algorithm and of the
previous theoretical results obtained, we present in this section two estimation problems.
First let us recall the example of a mobile whose evolution is in�uenced by an unknown force
which has been described in (1). Noisy observations of this physical systems are available.
We resume the dynamics by the following system of equations :





Xn+1 = Xn + Vn

(
cosα
sinα

)
∆t+ Θn+1∆t+BX

n

Vn+1 = Vn +BV
n

Yn = h(Xn, Vn) +BY
n

(26)

where Xn+1 denotes the position of the mobile in the plane, Vn the proper speed of the
mobile and Yn their noisy observations through the observation function h, with BY

n ∼
N(0,ΣY ). The course track of the mobile α is constant over time. The vector Θn is a
random variable and denotes the unknown force acting on the position of the mobile. Its
equation of evolution is given by

Θn+1 =

(
Θ1
n+1

Θ2
n+1

)
=

(
cos Θ1

n

sin Θ2
n

)
+BΘ

n

with BΘ
n ∼ N(0,ΣΘ). The initial condition of the system is given by X0 ∼ N(mX

θ0,0
,ΣX

θ0,0
),

V0 ∼ N(mV
0 ,Σ

V
0 ) and α = π/2. We are interested in the estimation of the position of the

mobile, which depends on the parameter Θn. We thus need to learn both the force, the
speed and the position of the mobile. The tricky part is that there is no observation of the
force. Here we will consider that the speed is a Poisson process, that is BV

n is a Poisson
process of intensity 0.03 where the jumps high is given by a standard normal distribution
of variance 3. Concerning BX

n , it is a Gaussian random variable such that BX
n ∼ N(0,ΣX).

We present now the results obtained for a simulating time of 125 minutes with ∆t = 15s.
The value of the di�erent variances are set to

Σθ =

(
1 0
0 1

)
, ΣX = ΣX

θ0,0 =

(
1.5 0
0 1.5

)
, and ΣY =




0.5 0 0
0 0.5 0
0 0 1


 .
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As one can notice, to estimate the law of the couple (Θn, η
X
Θ0:n,n

) given the observations Y0:n,
one can use Interacting Kalman �lters and labeled island particle �lters (LIPFs), detailed
respectively in Algorithms 1 and 2. We present comparative results obtained thanks to both
methods.
Concerning the labeled version, the potential of each particle is given by the density of the
observations, that is for all xn ∈ EXn and for all θn ∈ EΘ

n :

Gn(θn, xn) ∝ exp

(
−1

2
(yn − h(xn, vn))T (ΣY )−1(yn − h(xn, vn))

)
.

On all the �gures the realization of the true signal is represented by the color black, the
observations Y are represented by the color blue, the �ltered signal obtained thanks to
Algorithm 2 with N1 = 100 and N2 = 300 in red and results obtained using Algorithm 1
in green with N1 = 100. On Figure 3, one realization of the signal Vn, its observed and its
estimations counterparts are represented with respect to time. As one may observe, the true
signal is well estimated by the technique we develop. Indeed, here the Interacting Kalman
�lter is not optimal as the noise sequence is not Gaussian. On Figure 5, we represent
the temporal evolution of the force strength estimation. One can notice that even if no
observation is available, we are able to �nd back the value of the true signal thanks to
Algorithm 2 whereas Algorithm 1 retrieves only a global trend. Figure 4 represents the
temporal evolution of one realization of the force orientation and its estimated counterparts.
Results obtained thanks to Algorithm 2 give a better estimation of the true signal than the
results obtained thanks to the Algorithm 1. From this example we can conclude that the
labeled island particle �lter is able to �lter observations of the process while estimating
the environment where the process evolves. Moreover the comparison with the Interacting
Kalman �lter algorithm shows that the labeled island particle �lter is more e�ective to treat
this double level estimation problem.
Let us consider the 2-D �ltering problem inspired from the growth model Kitagawa (1987).
This model, which is a standard benchmark example in the particle �ltering literature, is
given by the following system of equations :





Θn+1 = 8 cos(1.2(n+ 1)) +Bθ
n+1

Xn+1 =
Xn

2
+ 25

Xn

1 +X2
n

+ Θn+1 +BX
n+1

Yn = Xn +BY
n

where Θ0 ∼ N(0, σ2
θ), X0 ∼ N(0, σ2

X), Bθ
n+1 ∼ N(0, σ2

θ), B
X
n+1 ∼ N(0, σ2

X) and BY
n ∼

N(0, σ2
Y ).

We use the labeled island particle model to estimate the law of the couple (Θn, η
X
Θ0:n,n

)
given the observations Y0:n, where the potential functions Gn are given by the likelihood of
the observations, that is for all xn ∈ EXn and θn ∈ EΘ

n :

Gn(θn, xn) ∝ exp

(
−(Yn − xn)2

2σ2
Y

)
.
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We present the results obtained for a simulating time of 1000 time steps. The di�erent
variances are set to σ2

θ = 1, σ2
X = 1 and σ2

Y = 10. On all the �gures the realization of
the true signal is represented in black color, the observations Y are represented in blue,
and the �ltered signal obtained thanks to Algorithm 2 with N1 = 200 and N2 = 100 is
represented in red. On Figure 6, one realization of the signal Θ and its estimation obtained
thanks to the labeled island particle algorithm are represented on a small period of time.
As one may observe, the true signal is well estimated even if no observations are available.
On Figure 7, one realization of the process X is represented, its observed and its estimation
counterparts. Even if the observations are really noisy, one is able to �lter out the noise to
�nd back the value of the true signal. Indeed, as one may have noticed, on Figure 8, the
�ltered power spectral density (in red) is closer to the black line, representing the �true�
signal, than the observed power spectral density which has the same shape as a white noise
for the high frequencies. Moreover, some frequencies are found even if there are not present
in the observed signal. These two observations illustrate the convergence of the estimator
constructed by the labeled island particle algorithm detailed in Algorithm 2.

Then we run 100 times the same experiment to get a sample of realizations for the
true signal and the �ltered signal. In that way one can illustrate the theoretical results
obtained for the Lp error bound. On �gures 9 and 10 are presented the L2 errors between
the estimated law and the true law at one time step respectively for Θ and X in function
of the number of islands N1 and the number of particles inside each island N2. This error
decreases both with the number of particles and the number of islands as it was suggested
by the Theorem 3.1. Concerning the variance of the error made between the true law and
the �ltered one, on �gures 11 and 12 for Θ and X respectively, one can observe that the
results obtained in Theorem 4.1 are con�rmed. Moreover one can notice that the variance
is more in�uenced by the number of islands than the number of particles inside each island.
Indeed as in Figure 12, the variance obtained for a �xed time step is varying with respect
to the number of islands and number of particles inside each islands. But if the number
of islands in�uences the variance, we can observe that the number of particles inside each
island does not seem to be really in�uent for a given number of islands.
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A.2 Flight dynamics

In Chapter 3, we use Newton second law to obtain the aircraft dynamics. In order to get
a state space representation, we have to rearrange (3.10) and isolate the state derivatives.



v̇a = T −D
m

− g sin θ − cos θ(ẇn cosψ + ẇe sinψ)

vaψ̇ cos θ cosϕ = −g sinϕ cos θ + vaθ sinϕ+ ẇn(sinϕ sin θ cosψ − cosϕ sinψ)
+ẇe(sinϕ sin θ sinψ + cosϕ cosψ)

−L+mg cosϕ cos θ = mva(θ̇ cosϕ+ ψ̇ cos θ sinϕ) +m [ẇn(cosϕ sin θ cosψ + sinϕ sinψ)
+ẇe(cosϕ sin θ sinψ − sinϕ cosψ)]

which is equivalent to :


v̇a = T −D
m

− g sin θ − cos θ(ẇn cosψ + ẇe sinψ)

ψ̇ = −g sinϕ
va cosϕ + θ̇ sinϕ

cos θ cosϕ + ẇn
va

(
sinϕ sin θ cosψ

cos θ cosϕ − sinψ
cos θ

)

+ẇe
va

(
sinϕ sin θ sinψ

cos θ cosϕ + cosψ
cos θ

)

−mvaθ̇ cosϕ = L−mg cosϕ cos θ +mvaψ̇ cos θ sinϕ+m [ẇn(cosϕ sin θ cosψ + sinϕ sinψ)
+ẇe(cosϕ sin θ sinψ − sinϕ cosψ)]

which is equivalent to


v̇a = T −D
m

− g sin θ − cos θ(ẇn cosψ + ẇe sinψ)

ψ̇ = −g sinϕ
va cosϕ + θ̇ sinϕ

cos θ cosϕ + ẇn
va

(
sinϕ sin θ cosψ

cos θ cosϕ − sinψ
cos θ

)

+ẇe
va

(
sinϕ sin θ sinψ

cos θ cosϕ + cosψ
cos θ

)

θ̇ = − 1
va cosϕ

[
L

m
− g cosϕ cos θ + vaψ̇ cos θ sinϕ+ ẇn(cosϕ sin θ cosψ + sinϕ sinψ)

+ẇe(cosϕ sin θ sinψ − sinϕ cosψ)]
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Using the expression of ψ̇ in the third equation, we have :

θ̇ = − 1
va cosϕ

[
L

m
− g cosϕ cos θ + va cos θ sinϕ

[
−g sinϕ
va cosϕ + θ̇

sinϕ
cos θ cosϕ + ẇn

va

[
sinϕ sin θ cosψ

cos θ cosϕ

− sinψ
cos θ

]
+ ẇe
va

[
sinϕ sin θ sinψ

cos θ cosϕ + cosψ
cos θ

]]
+ ẇn [cosϕ sin θ cosψ + sinϕ sinψ]

+ẇe [cosϕ sin θ sinψ − sinϕ cosψ]]

Moving all the θ̇ terms on the left-hand side, we have :

−θ̇ − va cos θ sin2 ϕ

va cos2 ϕ cos θ θ̇︸ ︷︷ ︸
− θ̇

(
1 + sin2 ϕ

cos2 ϕ

)
︸ ︷︷ ︸

−θ̇ 1
cos2 ϕ

= − 1
va cosϕ

[
L

m
− g cosϕ cos θ − gva cos θ sin2 ϕ

va cosϕ︸ ︷︷ ︸
−g cos θ(cos2 ϕ+ sin2 ϕ)

cosϕ︸ ︷︷ ︸
−g cos θ

cosϕ

+ẇn
(

sin2 ϕ sin θ cosψ
cosϕ −������sinψ sinϕ+ cosϕ sin θ cosψ +������sinϕ sinψ

)

+ ẇe

(
sin2 ϕ sin θ sinψ

cosϕ +������cosψ sinϕ+ cosϕ sin θ sinψ −������sinϕ cosψ
)]

Then we have :

θ̇ = cos�2ϕ

va���cosϕ

[
L

m
− g cos θ

cosϕ + ẇn

(
sin2 ϕ sin θ cosψ

cosϕ + cosϕ sin θ cosψ
)

+ ẇe

(
sin2 ϕ sin θ sinψ

cosϕ + cosϕ sin θ sinψ
)]

θ̇ = 1
va

[
L

m
cosϕ− g cos θ + sin θ (ẇn cosψ + ẇe sinψ)

]
Now we replace this expression of θ̇ into the equation of ψ̇, we obtain :

−ψ̇ = −g sinϕ
va cosϕ −

va sinϕ
cos θ cosϕ

[
L

m
cosϕ− g cos θ + sin θ (ẇn cosψ + ẇe sinψ)

]

+ẇn
va

(
sinϕ sin θ cosψ

cos θ cosϕ − sinψ
cos θ

)
+ ẇe
va

(
sinϕ sin θ sinψ

cos θ cosϕ + cosψ
cos θ

)

Developing

−ψ̇ = −
��

���
g

sinϕ
va cosϕ−

L sinϕ
mva cos θ+

�
�
�
��g sinϕ

va cosϕ+ẇn
va

[
����������
−sin θ sinϕ cosψ

cos θ cosϕ +
���������sinϕ sin θ cosψ

cos θ cosϕ − sinψ
cos θ

]

+ẇe
va

[
���������
−sin θ sinϕ sinψ

cos θ cosϕ +
��������sinϕ sin θ sinψ

cos θ cosϕ − cosψ
cos θ

]
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we have finally :

ψ̇ = 1
va cos θ [L sinϕ+ (ẇn sinψ − ẇe cosψ)]

Rearranging all the terms we obtain:


v̇a = T −D
m

− g sin θ − cos θ(ẇn cosψ + ẇe sinψ)

θ̇ = 1
va

[
L

m
cosϕ− g cos θ + sin θ [ẇn cosψ + ẇe sinψ]

]

ψ̇ = 1
va cos θ

[
L

m
sinϕ+ (ẇn sinψ − ẇe cosψ)

]
(A.1)

A.3 Towards aircraft trajectories optimization inside
a random atmospheric environment

In this section, we present the preliminary work we made in order to formulate the problem
of aircraft trajectory optimization as a first hitting time for the aircraft position process.
Indeed, we think that the aircraft trajectory optimization problem, in terms of time,
can be formulated as a first-hitting time process where the variable to optimize is the
first-hitting time with respect to the controls variable entering in the states equations
developed in Chapter 3. We insist, here, that it is a preliminary work which must be
pursued further to model the whole problem. The purpose is to give a way for forward
developments.

Recalling the notations used in Section 2.4, let denote the random wind field Θn.
Suppose that it is a Markov process taking value in EΘ

n . Its transition kernel is denoted
by MΘ

n and its initial distribution by ηΘ
0 . Let denote the aircraft process by Xn which

is an EXn -Markov process with transition kernel MX
θn,n and initial distribution ηXθ0 . The

aircraft process encapsulates the aircraft dynamics states but also the position process
Zn. Then we define the first-hitting time such that, for any B ⊂ E we have:

τ(B) , inf{n ≥ 0, Zn ∈ B} (A.2)

We put our interest only on the case where B is within the envelope of attainable points
by the process Zn. Thus, Pθ,ηX

θ0
(τ(B) <∞) = 1.

However, as one can presume, the first-hitting time τ depends on the random field
Θn. Then the same issue as for random processes evolving in a random environment is at
stake.

In this preliminary work, we investigate only the case where the the environment is
known. Then, it follows that the first hitting-time process is quenched first hitting time.
To this end, we denote the environment sequence (Θn)n≥0 = (θn)n≥0 by θ , (θn)n≥0.

Consider the following probability space ( ∏
n≥0

EXn ,F = {Fn}n≥0,PXθ ) where Fn is the
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natural filtration of the process Xn: Fn = σ(Xp, p < n) .

In order to considerate the stopped Markov process Sn = (n∧ τ(B), X0:n∧τ(B)) we have
to show first that the hitting time τ(B) is a stopping time with respect to the natural
filtration F , then we will check that Xn verify the strong Markov property with respect
to τ(B).

Concerning the first hitting time, we can easily check that for all n ∈ N:

{τ(B) = n} =
⋂
k<n

(Zk /∈ B)︸ ︷︷ ︸
∈Fk︸ ︷︷ ︸

∈Fn

⋂
Zn ∈ B︸ ︷︷ ︸
∈Fn

︸ ︷︷ ︸
∈Fn

(A.3)

Now we can check that Xn verify the strong Markov property with respect to τ(B). Let
define Fτ(B), the σ-field associated to τ(B), defined by:

Fτ(B) = {A ∈ F∞, A ∩ {τ(B) ≤ n} ∈ Fn, ∀n ≥ 0} (A.4)

Then, for all A ∈ Fτ(B), Cn ∈ Fn and all p ≥ 0, we have:

Pθ,ηX
θ0

(
A ∩

(
Xτ(B)+1 ∈ Cτ(B)+1, . . . , Xτ(B)+p ∈ Cτ(B)+p

))
=

= Pθ,ηX
θ0

⊔
n≥0

({τ(B) = n} ∩ A(Xn+1 ∈ Cn+1, . . . , Xn+p ∈ Cn+p))


=
∑
n≥0

Pθ,ηX
θ0

({τ(B) = n} ∩ A ∩ (Xn+1 ∈ Cn+1, . . . , Xn+p ∈ Cn+p))

=
∑
n≥0

Eθ,ηX
θ0

[
1{τ(B)=n}∩A1(Xn+1∈Cn+1,...,Xn+p∈Cn+p)

]

=
∑
n≥0

Eθ,ηX
θ0

 1A∩{τ(B)=n}︸ ︷︷ ︸
∈Fτ(B)⊥⊥∀p,Fτ(B)+p

Eθ,ηX
θ0

[
1Xn+1∈Cn+1,...,Xn+p∈Cn+p|Xn

]
︸ ︷︷ ︸

⊥⊥A∩{τ(B)=n}


Then focusing on the term Eθ,ηX

θ0

[
1Xn+1∈Cn+1,...,Xn+p∈Cn+p|Xn

]
, we can decompose it as

follow:

Eθ,ηX
θ0

[
1Xn+1∈Cn+1 . . .1Xn+p∈Cn+p|Xn

]
= Eθ,ηX

θ0

[
1Xn+1∈Cn+1Eθ,ηXθ0

[
. . .Eθ,ηX

θ0

[
1Xn+p∈Cn+p|Xn, . . . , Xn+p

]]]
However, using the Markov property of Xn, we have:

Eθ,ηX
θ0

[
1Xn+p|Xn, . . . , Xn+p

]
= Eθ,ηX

θ0

[
1Xn+p∈Cn+p|Xn+p−1

]
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Iterating over p, we find:

Eθ,ηX
θ0

[
1Xn+1∈Cn+1Eθ,ηXθ0

[
. . .Eθ,ηX

θ0

[
1Xn+p∈Cn+p|Xn, . . . , Xn+p

]]]
=
∑
n≥0

Eθ,ηX
θ0

[
1B∩{τ(B)=n}

∫
Cn+1×...×Cn+p

MX
θn+1,n+1(Xn, dx1) . . .MX

θn+p,n+p(xn+p−1, dxn+p)
]

= Eθ,ηX
θ0

[
1B

∫
Cτ(B)+1×...×Cτ(B)+p

MX
θτ(B)+1,τ(B)+1(Xτ(B), dx1) . . .MX

θτ(B)+p,τ(B)+p(xp−1, dxp)
]

Finally we have:

Pθ,ηX
θ0

(Xτ(B)+1 ∈ Cτ(B)+1, . . . , Xτ(B)+p ∈ Cτ(B)+p|Fτ(B))
=
∫
Cτ(B)+1×...×Cτ(B)+p

MX
θτ(B)+1,τ(B)+1(Xτ(B), dx1) . . .MX

θτ(B)+p,τ(B)+p(xp−1, dxp)
(A.5)

Now we ensure that Xn verify the strong Markov property for the stopping time τ(B).
Let consider the stopped Markov process Sn defined as follow :

Sn = (n ∧ τ(B), X0:n∧τ(B)) ∈ ESn =
n⋃
p=0

({p} × EX0:p)

Before writing the kernel transition of Sn, we decompose the chain in several events:
stopping before, after or at n. As regards the stochastic process X0:n∧τ(B), we decompose
it as follow :

X0:n∧τ(B) =
(
X0, . . . , Xn∧τ(B)

)
=

n−1∑
p=0

X0:p1τ(B)=p +X0:n1τ(B)≥n

Let do the same for the first-hitting time process n ∧ τ(B).

Consider the event {τ(B) ≥ n}, we have:

{τ(B) ≥ n} ∈ Fn−1

So there exists B0:n−1 ⊂ EX0:n−1 such that :

{τ(B) ≥ n} = {X0:n−1 ∈ B0:n−1}.

That is the path position process Z0:n−1 does not hit yet B. One can also notice that the
event {τ(B) ≥ n}, can also be written as:

{τ(B) ≥ n} = {τ(B) ∧ n = n}

Moreover, we have:

{τ(B) < n+ 1} = {τ(B) ≤ n} = {X0:n ∈ Bc
0:n}

227



Finally,we obtain:

{τ(B) = n} = {τ(B) ∧ n = n} ∩ {X0:n ∈ Bc
0:n}.

Hence we get for the stopped process

Sn+1 =
(
1τ(B)∧n<n + 1τ(B)∧n=n1Bc0:n

(X0:n)
)
Sn + 1τ(B)∧n=n1B0:n(X0:n)(n+ 1, X0:n+1).

(A.6)
Now we are ready to write the Markov kernel transition of Sn, denoted by MS

θ,n, and
defined for any p ≤ n and (x0, . . . xp) ∈ EX0:p such that:

MS
θ,n+1((p, (x0, . . . , xp)), d(p′, (x′0, . . . , x′p′)))

=
(
1p<n + 1p=n1Bc0:n

(x0, . . . , xn)
)
δ(p,(x0,...,xp))(d(p′, (x′0, . . . , x′p′)))

+ 1p=n1B0:n(x0, . . . , xn)δ(n+1,(x0,...,xn))(d(p′, (x′0, . . . , x′p′)))MX
θn+1,n+1(dx′n, dx′n+1)

This is the end of the work we have made on this subject. However, to give a clue
of what should be performed to continue, we suggest to add an appropriate potential
function which favours processes which are going faster towards B while satisfying the
constraints defined in Chapter 3. Then one can hope to obtain the optimal trajectory in
term of time for the stopped-Markov process Sn. Then a particle approximation could
be derived. From there, it will remain to study the consistence and the convergence of
the particle approximation with respect to the min and arg min operators. Ideas for such
works might be found in the splitting literature. Except that, this techniques are most
often used to estimate rare event probabilities.

Further demonstrate that the marginal quenched Feynman-Kac measure is a Markov
process itself. Then, study the pair: environment, stopped-Markov quenched measure
inside a random environment.

To pursue, one shall adapt this formulation to decomposed random field in homoge-
neous sub-domains. One should expect, at this point, to overcome the problem that the
path process can change of homogeneous sub-domain with time. An envisaged solution
to overcome this issue might be: first redefine the aircraft process conditioned to sub-
domains such that aircraft can enter inside it and leave from it, then define intermediate
hitting time for each homogeneous sub-domains to finally obtain the first-hitting time
into B. This work would need, a full study, but we believe that by doing this one can
have the estimation of the first-hitting time of the process Xn into B inside the random
field decomposed in homogeneous sub-domains and also gives the optimal trajectory Sn
taking into account the random environment.

Finally to apply this mathematical work to ATM, further numerical development
should be made.
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Résumé : L’erreur de prédiction d’une trajectoire avion peut être expliquée par différents
facteurs. Les incertitudes associées à la prévision météorologique sont l’un d’entre-eux.
Qui plus est, l’erreur de prévision de vent a un effet non négligeable sur l’erreur de pré-
diction de la position d’un avion. En regardant le problème sous un autre angle, il s’avère
que les avions peuvent être utilisés comme des capteurs locaux pour estimer l’erreur de
prévision de vent. Dans ce travail nous décrivons ce problème d’estimation à l’aide de
plusieurs processus d’acquisition d’un même champ aléatoire. Quand ce champ est ho-
mogène, nous montrons que le problème est équivalent à plusieurs processus aléatoires
évoluant dans un même environnement aléatoire pour lequel nous donnons un modèle de
Feynman-Kac. Nous en dérivons une approximation particulaire et fournissons pour les
estimateurs obtenus des résultats de convergence. Quand le champ n’est pas homogène
mais qu’une décomposition en sous-domaine homogène est possible, nous proposons un
modèle différent basé sur le couplage de plusieurs processus d’acquisition. Nous en dé-
duisons un modèle de Feynman-Kac et suggérons une approximation particulaire du flot
de mesure. Par ailleurs, pour pouvoir traiter un trafic aérien, nous développons un modèle
de prédiction de trajectoire avion. Finalement nous démontrons dans le cadre de simu-
lations que nos algorithmes peuvent estimer les erreurs de prévisions de vent en utilisant
les observations délivrées par les avions le long de leur trajectoire.
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