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Abstract: Transaminases have arisen as one of the main biocatalysts for amine production but
despite their many advantages, their stability is still a concern for widespread application. One
of the reasons for their instability is the need to use an excess of the amino donor when trying to
synthesise amines with unfavourable equilibria. To circumvent this, recycling systems for the amino
donor, such as amino acid dehydrogenases or aldolases, have proved useful to push the equilibria
while avoiding high amino donor concentrations. In this work, we report the use of a new alanine
dehydrogenase from the halotolerant bacteria Halomonas elongata which exhibits excellent stability to
different cosolvents, combined with the well characterised CbFDH as a recycling system of L-alanine
for the amination of three model substrates with unfavourable equilibria. In a step forward, the
amino donor recycling system has been co-immobilised and used in flow with success as well as
re-used as a dialysis enclosed system for the amination of an aromatic aldehyde.

Keywords: enzyme immobilization; transaminase; amino acid dehydrogenase; flow biocatalysis

1. Introduction

Amines are one of the most important building blocks in the synthesis of pharmaceu-
ticals, agrochemicals, and food additives. This ubiquity in commercial products, has led
to an increased interest in creating more cost-efficient and “greener” strategies for their
synthesis. In this sense, the use of enzymes as catalysts has provided significant advance
in the sustainable synthesis of amines [1–4] and transaminases are primarily employed.
Briefly, transaminases are a group of pyridoxal-5′-phosphate (PLP) dependant enzymes
capable of transferring an amino group from an amino donor molecule (i.e., an amino acid)
to an amino acceptor carbonyl group. This reaction is achieved through two half-reactions,
where the amino group is first transferred into the PLP initially bound to the enzyme to
form pyridoxamine-5′-phosphate (PMP), which then reacts with the amino acceptor to
form the final product and recover the coenzyme in its initial state, bound to the protein [5].

Although transaminases have already been implemented in the synthesis on large
scale of important molecules such as Sitagliptin [6], aminotetraline, and acetophenone [7],
their broad application is still hampered, specially, by their stability [8,9]. The loss of
stability over time is attributable to the loss of the aminated cofactor after the first half-
reaction is completed. This has two main plausible reasons: the binding affinity of the
cofactor to the enzyme [10] and the presence of an excess of amino donor [11], commonly
used to push the amination reaction for substrates with unfavourable equilibria.

To overcome the equilibrium limitation, several strategies have been proposed. The
use of isopropyl amine (IPA) as the amino donor produces acetone, which can be easily
removed by evaporation from the reaction bulk, forcing the reaction into the amination
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direction [12,13]. But IPA can significantly affect the stability of the enzyme [14], introduc-
ing a new challenge—the presence of high amount of organics—into the reaction design.
Similar problems arise when using S-methylbenzylamine (SMBA), o-xylylene diamine, or
2-(4-nitrophenyl)ethan-1-amine as the amino donors. Both shift the equilibria significantly,
SMBA by producing a product which is not normally accepted by the transaminase for the
reverse reaction and the other by effectively removing it from the system via polymerisation
to create a black precipitate [15] or via tautomerisation to create a red precipitate [16]. These
last two methods proved efficient for screening purposes but have not been exploited in
synthesis. As an alternative, terminal diamines such as cadaverine (1,4-diaminopentane) or
putrescine (1,4-diaminobutane) have also been used to push the equilibria. After deamina-
tion, in aqueous solutions, they cyclise forming an imine, pushing the equilibria [4]. With
these type of molecules though, most testedω-transaminase exhibit low activities [17,18].
At last, another strategy is the use of multi-enzymatic systems, that even if more complex,
can be advantageous due to their versatility. One of the most common strategies is the
use of amino acid dehydrogenases for the recycling of frequent amino donors such as
alanine [19–21]. Although they have promising results, amino acid dehydrogenases are
cofactor dependant, which normally impacts the cost-effectiveness of the reaction. This
can be solved by incorporating a recycling system for the cofactor [22,23]. Moreover, im-
mobilisation of the enzymes allows their reuse, further increasing the cost-effectiveness
of the reaction. In this sense, immobilisation of transaminases has been applied exten-
sively to allow the process intensification [24–26]. In these examples though, no recycling
system was applied to affect the equilibria and, when needed, an excess of amino donor
was used to achieve satisfactory conversions. On the other hand, another approach for
biocatalyst recycling consists in its confinement inside a membrane. In this case, instead
of covalently immobilising the enzyme, which normally causes a loss of activity due to
increased rigidification, the enzymatic cocktail is placed inside a dialysis membrane. This
allows the free flow of the substrate and product in and out of the membrane but avoids
the loss of enzyme to the reaction bulk, allowing its reuse in subsequent reactions, even in
continuous using membrane reactors [27,28].

In this work, the amination of substrates with unfavourable equilibria with two
transaminases, CvTA (Chromobacterium violaceum transaminase) [29] and HeWT (Halomonas
elongata ω-transaminase) [30], was targeted. A new alanine dehydrogenase from the halo-
tolerant bacteria H. elongata (HeAlaDH) was cloned and characterised to be incorporated
as a recycling system for alanine. The selection of H. elongata as a source for the AlaDH
could in fact provide a highly compatible recycling system when this is coupled with
HeWT. The new HeAlaDH was successfully coupled with both transaminases and NADH
recycling system (formate dehydrogenase from Candida boidinii—CbFDH) [31] with three
model substrates: cinnamaldehyde, vanillin, and cyclohexanone. To increase the reaction
productivity and sustainability, two strategies were tested: the use of immobilised enzymes
as packed bed reactors in continuous flow and as a soluble enzymatic cocktail enclosed in
dialysis membranes.

2. Results

A gene coding for an alanine dehydrogenase (helo_3819) was identified in the genome
of Halomonas elongata DSM 2581. This was cloned into a pRSETb vector, expressed in E.
coli BL21(DE3) and purified by IMAC as a hexamer (confirmed by size exclusion chro-
matography). The new enzyme exhibited a high specificity for pyruvate as the main
substrate, with very good resistance to organic solvents and basic pH (Figures S1–S4).
HeAlaDH retained at least 50% of the activity with all tested cosolvents at 10% (v/v) and
exhibited good resistance to 20% acetonitrile, methanol, and ethanol over 48 h. As for
the pH, only acidic (pH < 5) conditions seemed to have a negative effect on the enzyme
stability. Overall, these characteristics make it a promising candidate for the coupling with
transamination reactions.
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2.1. Batch Amination of Unfavourable Carbonyl Acceptors

To assess the suitability of HeAlaDH as an amino donor recycling system, coupled
reactions with two different transaminases, CvTA and HeWT [30], were tested in batch
with two aromatic aldehydes (cinnamyl aldehyde and vanillin) as well as a cyclic ketone
(cyclohexanone). Previous results with equimolar SMBA as the amino donor yielded ~30%
cyclohexylamine and 45% vanillyl amine, whereas cinnamaldehyde conversion was better
with a 60% conversion over 24 h. The modest obtained conversions were explained by
an unfavourable reaction equilibria [30], making them ideal substrates to test our system.
Moreover, it is important to note that these substrates required at least 10% dimethyl
sulfoxide (DMSO) as co-solvent to be completely solubilised even at the 10 mM scale,
highlighting the importance of the co-solvent resistance required by the recycling system.

As no data was available in the literature for the conversion of these substrates with
L-alanine as the amino donor, control reactions without any recycling system were also
tested (Figure 1). Vanillin was assayed with 50, 5, and 1 eq. of L-alanine as amino donor
(Figure S5). In the control, only ~50% of molar conversion was achieved over 24 h despite
the use of concentrations of L-Ala up to 500 mM, with no significant conversion after 2 h.
On the other hand, when the reaction was coupled with HeAlaDH and CbFDH, with
just 1 eq. of the amino donor and 0.1 eq. of the cofactor, HeWT was able to aminate all
vanillin at the 10 mM in only 2 h (Figure 1). For cinnamyl aldehyde, the reaction could be
enhanced even further. With 1 eq. of L-alanine, HeWT alone was only able to convert 10%
of the substrate while in the presence of the recycling system it reached completion within
2 h. The same conversion could be obtained even when reducing the L-Ala to just 0.1 eq.
The cyclohexanone/L-Ala pair was significantly worse than the cyclohexanone/SMBA,
yielding only 5% of the product in the control system even with 10 eq. of the amino donor.
However, the addition of the recycling system pushed the reaction to complete conversion
in 24 h. When 1 eq. of amino donor was tried with the recycling system, the conversion
was still significant, reaching >80% after one day.
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Figure 1. Conversions are expressed as % of molar conversion. The reaction performed with HeWT alone is indicated with
a “−“ while the presence of the recycling system (HeAlaDH and CbFDH) is indicated with a “ + ”. Reactions contained
2 mg/mL of HeWT, 0.5 mg/mL of HeAlaDH, 1 mg/mL of CbFDH with 10 mM of the corresponding aldehyde or ketone,
1 mM NAD+, 100 mM of ammonium formate, and the desired concentration of alanine in 100 mM phosphate buffer pH 8.
N.D. refers to not detected. (a) Vanillin (10 mM) conversion in batch with different amounts of alanine. (b) Cinnamaldehyde
amination with equimolar and sub-stoichiometric amount of the L-alanine as the amino donor. (c) Amination of 10 mM
cyclohexanone with 10 equivalents or 1 equivalent of L-alanine.
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To better understand the contribution of each of the components in the cascade, the
reaction rate of these biotransformations was further studied, with both HeWT and CvTA
and vanillin as the amino acceptor. The effect of the substrate concentration (at 10 and
50 mM) was examined (Figure 2 and Figure S6). Interestingly, the results indicate that
the contribution of HeAlaDH alone is negligible when using the equimolar amount of
alanine and cofactor. Only when the whole system was assembled, thus maintaining the
pool of reduced cofactor, significant increase in the reaction rate were achieved. As for the
effect of the substrate concentration, the reaction rate increased in both cases at the higher
scale. This fact could be attributed to an increased capacity of HeAlaDH for pyruvate
recycling into alanine and for the transaminase to accept the amino donor. Despite the
increased reaction rate, at the higher scale, the maximum molar conversion of the substrate
was reached after 72 h (70% for HeWT and 86% for CvTA). In addition, using 0.2 eq. of
alanine with 50 mM of the aldehyde substrate, slightly decreased the reaction rate. This
suggests a higher dependency of HeWT to the alanine concentration, as the reaction rate
was similar to the one at 10 mM scale. In contrast, for CvTA, the reaction rate was only
slightly decreased (0.83 ± 0.13 compared to 1.36 ± 0.39 mmols/min).
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Figure 2. Reaction rate for the amination of vanillin. In the graphs on the left (a), the comparison between the transaminase
alone (−), combined with the alanine dehydrogenase (+HeAlaDH) or the whole assembled system (+) are reported. On
the right (b), the comparison of the reaction rate at 10 and 50 mM scale with different equivalents of the amino donor is
depicted. Reactions were monitored for the first two hours. The reaction rate was estimated on the linear range. Reactions
were performed with 2 mg/mL of TA, 1 mg/mL of HeAlaDH, 1 mg/mL CbFDH with 10 or 50 mM of vanillin, 10 or 50 mM
of L-alanine, 100 mM ammonium formate, 0.1 eq. of NAD+ in 100 mM phosphate buffer pH 8 with 10% DMSO. N.D. refers
to not detected.

2.2. Enzyme Immobilisation

Once the system was characterised in a homogenous system, to increase the sus-
tainability and specially, the reusability of the biocatalysts involved, immobilisation onto
a solid support was tested. As HeWT, CvTA, and CbFDH had been previously immo-
bilised [25,32,33], the attention was brought to HeAlaDH. Taking advantage of the presence
of the His-tag in HeAlaDH, a previously described directed epoxy based covalent immobil-
isation technique was used [34].

Fixing the amount of immobilised enzyme to 0.5 mg/g, different supports for the
covalent immobilisation of HeAlaDH in epoxide groups was attempted (Table S1). From
the methacrylic supports, HFA403-S allowed up to a 32 ± 2% of recovered activity and
epoxy agarose, with similar pore size and higher hydrophilicity, increasing the recovered
activity to up to 42 ± 1%. Despite the good recovered activities, the stability of the catalyst
was poor, loosing up to 50% when reusing it 5 times. This is an unusual behaviour as many
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immobilised enzymes acquire a much higher operational stability, however HeAlaDH
is a hexamer and upon boiling the resin, it became obvious that not all the subunits
where covalently immobilised (Figure S7). For multimeric enzymes, the loss of subunits
has been seen before as one of the causes of poor reusability. To prevent this, several
post-immobilisation coating techniques have proven to be effective [35–37]. In the case
of HeAlaDH, glutaraldehyde (GA) seemed to have a negative effect, with almost a 15%
decrease in the recovered activity, probably due to the capacity of this small molecule
to permeate in the protein and potentially over-rigidifying the enzyme or even affecting
the active site. On the other hand, bigger polymers such as polyethyleneimine (PEI) and
dextran aldehyde seemed to have no impact on the recovered activity but allowed the
creation of a biocatalyst with stable activity for at least 10 cycles.

Once the immobilisation of HeAlaDH was optimised, the creation of a redox-neutral
recycling system was tested by co-immobilising CbFDH since both enzymes seemed to
be necessary to increase the amination rate and co-immobilisation can enhance enzyme
cooperativity [38]. In this case, HFA403-S, EC/HFA403-S, and Ep-Ag were selected due to
their compatibility with both enzymes and the immobilisation was tested with sequential
or simultaneous addition of the enzymes, followed by a PEI coating (Table S3).

Surprisingly, despite the lower recovered activities for CbFDH, the resin where the
two enzymes where co-immobilised simultaneously outperformed the other preparations
when tested in combination with soluble CvTA in the amination of vanillin (Figure 3).
As seen before with the soluble enzyme, maintaining NADH available for the alanine
dehydrogenase seems to be key to push the amination reaction.
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Figure 3. Reaction rate for the amination of vanillin. In all cases, the reaction consisted of 10 mM
vanillin, 1 eq. of alanine, 250 mM ammonium formate, 1 mM NAD+, 0.1 mM PLP with 2 mg/mL
of CvTA and 20 mg of the immobilised biocatalyst (S: simultaneous immobilisation; AF: HeAlaDH
followed by CbFDH and FA: CbFDH followed by HeAlaDH).

In conclusion, for the creation of a self-sufficient biocatalyst, the best performing
preparation was the simultaneous immobilisation of HeAlaDH and CbFDH (1 mg/g
support and 5 mg/g of support, respectively) with post-immobilisation coating with PEI
to avoid HeAlaDH subunit loss during operation.

2.3. Scale Up: Continuous Flow and Reusability in Batch

In a step forward, the process intensification was attempted using the immobilised
enzymes in a packed bed reactor using vanillin as substrate (Table 1). For the continuous
flow, HeWT rather than CvTA was used due to its higher stability in flow [25,32]. In this
case, 1 g of transaminase (the recovered activities are indicated in Table S4) was mixed with
2 g of co-immobilised HeAlaDH and CbFDH. With the methacrylic resins, although the
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conversion reached up to 50%, the product remained trapped in the column. Conversion
could be assessed by the remaining vanillin once the column was saturated. All efforts to
solve this issue were unsuccessful, either because the use of a segmented flow with the
addition of an immiscible organic solvent inactivated the cofactor recycling system, or
because the final yield was worsened when increasing the ionic strength in the buffer, or
with the addition of surfactants. In another attempt, the more hydrophilic resin (Ep-Ag)
was tested to circumvent high substrate/product affinity for the support. In this case,
recovery of the product was possible and while the transaminase alone only achieved
23% conversion independently of the retention time, the conversion doubled with the full
system at longer retention time.

Table 1. Molar conversion of vanillin using a packed bed reactor. Pump A reservoir contained
20 mM vanillin in phosphate buffer pH8 with 20% (v/v) DMSO. Pump B reservoir contained 20 mM
L-alanine, 200 mM ammonium formate, 2 mM NAD+ and 50 mM phosphate buffer pH8. The reaction
consisted of 10 mM vanillin, 10 mM L-alanine, 100 mM ammonium formate, 1 mM NAD+ in 50 mM
phosphate buffer pH8 with 10% DMSO. Conversions were assessed by HPLC.
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Despite the improved results, these were far from what could be obtained in the
batch reaction where in 2 h full conversion of both vanillin and cinnamaldehyde was
achieved. Taking advantage of the better performance of the enzymes in their soluble
form and to prevent the inactivation of HeFDH after immobilisation, another strategy was
adopted. Very recently, it has been reported that the enclosure of a laccase in a dialysis
bag retains the original activity of the enzyme and help its reusability, avoiding protein
immobilisation [39].

To test the dialysis membrane enclosed system, the enzyme cocktail (1 mg/mL CvTA,
1 mg/mL HeAlaDH, and 2 mg/mL CbFDH) was placed inside a dialysis bag which was
then put inside a reaction vessel containing up to 5 times the volume of the enzymatic mix.
In this case, the reaction achieved completion over 24 h (Figure 4a) and, the enzymatic
mix could be reused to some extent (Figure 4b) with both aromatic substrates, although
conversion dropped to almost half for cinnamaldehyde already in the second cycle.

To overcome this low reusability, especially with cinnamaldehyde, the stabilising
effect of different water-soluble polymers and small molecules was investigated. Previous
studies found that polyols, such as polyethylene glycol (PEG) or small alcohols (glycerol
and sugar moieties), can be used in the stabilisation of different biocatalysts [40]. On
the other hand, polyamines such as polyethyleneimine (PEI) have also been related to
increased stability of some proteins [41]. Based on these, 5 different molecules were tested:
PEI, PEG, glycerol, and sucralose (Table 2).
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Figure 4. Conversion of cinnamaldehyde and vanillin to their corresponding amines in the dialysis system. (a) Conversion
over time for the first cycle. (b) The reusability of the system is shown. The reaction mixture contained 10 mM of the
corresponding aldehyde, 10 mM L-alanine, 250 mM ammonium formate, 1 mM NAD+, 1mM PLP and the enzymatic
cocktail contained 1 mg/mL of CvTA, 1 mg/mL of HeAlaDH, and 2 mg/mL of CbFDH.

Table 2. Effect of different stabilising agents on the overall yield after 3 cycles of the dialysis assisted
scale up. Reactions consisted of 4 mL of 10 mM cinnamaldehyde, 1 eq. of L-alanine, 250 mM
ammonium formate, 1 mM NAD +, 0.1 mM PLP in 100 mM phosphate buffer pH8. The enzymatic
mix was 1 mg/mL of CvTA, 1 mg/mL of HeAlaDH, and 2 mg/mL of HeFDH in phosphate buffer
pH8 and a total volume of 0.5 mL. Each cycle was run for 24 h.

Additive Concentration
(mg/mL) Accumulated Yield (%) Relative Improvement

Control - 52 1

PEI25

2.5

53 1

PEI60 48 0.9

PEI270 61 1.2

PEI750 51 1.0

PEG

25 51 1.0

50 65 1.3

100 57 1.1

Glycerol

100 54 1.1

150 70 1.4

200 72 1.4

Sucralose

10 55 1.1

50 69 1.3

100 57 1.1

From the different range of concentrations and additives tested, 50 mg/mL PEG,
15 mg/mL and 20% glycerol, and 50 mg/mL sucralose seemed to improve the reaction up
to 1.4 times compared to the control, achieving around 70% accumulated conversion over
the 3 cycles. These conditions were shown to stabilise the enzymes, at least for 24 h, with
either no effect or increased activity after 24 h for all three enzymes. In the case of PEI, no
real improvement could be seen in any of the cases, probably due to decreased stability of
the transaminase and the formate dehydrogenase in those conditions. Interestingly though,
HeAlaDH was hyperactivated in those conditions with almost 3 times more activity after
24 h with PEI of 60 KDa and higher mass (Figure S8).
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3. Discussion

The production of amines, as building blocks for many nutraceutical molecules, is a
major focus not only in research but also at the industrial level. Thus, the application of
biocatalytic strategies to circumvent their instability in high concentration of amino donor is
of special interest to access amines with unfavourable equilibria. Here, HeAlaDH proved to
be a versatile enzyme due to its high resistance to organic solvents and different pH range to
be applied in combination of a transaminase to push the equilibria further. In addition, here
we observed that not only L-alanine recycling enhances the final yield, but the recycling of
the cofactor is of key importance to avoid the competition between the transaminase and
the alanine dehydrogenase for L-alanine as the substrate. Thus, in our case, the combination
with a cofactor recycling enzyme is key to affect the transamination equilibria. This strategy
has been used in two intensification processes: continuous flow and as dialysis enclosed
biocatalyst. In the first approach however, the use of CbFDH as the cofactor recycling
enzyme in its immobilized form lead to poorer performance, confirming previous reports
which indicated its sensitivity to covalent immobilisation [33]. Although the remaining
activity yielded decent conversion in our case, it poses a problem for its wider application
as a cofactor recycling system. Other enzymes, such as glucose dehydrogenases [28], could
be used for the recycling of the cofactor but complexity of the system is increased with
the added substrate and product generated. To surpass this limitation, the use of other
formate dehydrogenases, which pose the advantage of limited residues and excellent atom
economy, capable to better withstand covalent immobilisation could greatly benefit the
proposed system. On the other hand, when using methacrylate resins as support, their
hydrophilicity had major effect on the product recovery, but the presence of the cascade
allowed 2-fold higher concentrations in the same retention time. Nonetheless, the use of
agarose as the support for immobilisation allowed continuous recovery of both product
and substrate (with no retention on the column) with 40% conversions in 20 min retention
time. Compared to the methacrylic resin, with almost the same conversion, the direct
recovery of the product without any entrapment in the matrix poses a major advantage.

In the second approach, while the conversions matched with the ones with the free
enzyme in the first cycle, subsequent reactions showed decreasing conversions which
related to poor stability of the biocatalyst for long reaction times. To enhance their stability,
medium engineering through the addition of stabilising agents was attempted. Following
previous reports, polyethyleneimines and alcohol containing molecules were chosen for the
tests [40–42]. While most of these additives are common in protein storage buffers (specially
glycerol), we wanted to investigate if their effect would also translate in higher operational
stability. It is also important to note that the use of polymers with high molecular weight
(such as PEI or PEG) inside the dialysis membrane, which has a higher molecular weight
cut off (MWCO), also prevents their leak to the reaction bulk. In the best conditions, a
final yield of over 70% after 3 cycles could be obtained with glycerol at concentrations of at
least 150 mg/mL, followed by PEG and sucralose at 50 mg/mL which also had a beneficial
effect. These results, in combination with the stability assays performed with the same
additives, clearly indicate that for this enzymatic cocktail, alcohol containing molecules
are the best choice as they have a beneficial effect for all the enzymes involved. PEI on the
other hand, has a positive effect for HeAlaDH but results in reduced stability for both the
transaminase and the CbFDH. These results indicate that the choice of stabilising agents
highly depends on the enzymatic system used. It is important to note here, that while
the substrate concentration is the same as in the free enzyme biotransformations in each
reaction, bigger reaction volumes can be used without scaling up the amount of enzyme,
which multiplies the total turnover number of the enzyme.

4. Materials and Methods
4.1. Materials, Strains, Vectors, and Culture Conditions

All chemical reagents, unless stated otherwise, were purchased as analytical grade
from Sigma-Aldrich, Gillingham, U.K., Acros Organics or Thermo Fischer Scientific, Lough-
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borough, U.K. NAD+ was purchased from Apollo Scientific Ltd., Stockport, U.K. Sepabeads
and Relyzime supports for enzyme immobilisation were kindly provided by Residindion
S.L. Agarose 6 BCL was purchased from Agarose Bead Technologies (ABT), Madrid, Spain.

4.2. Protein Expression and Purification

For HeWT and CvTA, one single colony was inoculated directly in the flask with
either 50 or 300 mL of ZYP-5052 media supplemented with the ampicillin (100 µg/mL)
and allowed to grow for 20 h at 37 ◦C. For the other two proteins (HeAlaDH and CbFDH),
an overnight pre-inoculum of at least 10 mL was prepared the day before and 1/100 of
the final volume added to either 50 or 300 mL. HeAlaDH was expressed in Terrific Broth
media supplemented with ampicillin (100 µg/mL) and CbFDH in LB media supplemented
with kanamycin (30 µg/mL). When the OD600 of these last two reached 0.6–0.8, protein
expression was induced with the addition of 1 mM IPTG and the cultures were allowed
to grow for 20 h at 30 ◦C. After that, cell cultures were harvested at 4000 rpm for 20 min
at 4 ◦C in the appropriate centrifuge tubes and the cells separated from the medium. The
supernatant was carefully removed, and the cells resuspended in a minimum of 2 mL
of loading buffer/g of pellet. The cell lysis was performed in ice using the sonicator in
pulse mode (5 s on, 10 s off) for a minimum of 5 min. The lysate was then centrifuged at
14,500 rpm, for a minimum of 45 min at 4 ◦C. The collected supernatant was filtered with
0.45 µm Millex PVDF filters before loading onto the Ni2+ preloaded columns. The affinity
chromatography was performed using an AKTA Start system with the appropriate column.
The filtered crude extract was loaded and left washing until the non-specific proteins were
completely eluted. After that, an isocratic wash step with only 5–10% of elution buffer
was performed to elute the non-specific proteins still bound onto the column. Finally,
100% of elution buffer was passed through the column and protein elution monitored
by UV. Fractions were collected and those containing the desired protein pooled and
placed into dialysis tubing. The protein samples were dialysed at least for 20 h replacing
the buffer at least 2 times at 4 ◦C. All proteins were dialysed against 50 mM phosphate
buffer pH8 and 0.1 mM of PLP was added for HeWT. The pure proteins were stored
at 4 ◦C. Protein quantification was performed using a Take3 plate in an EPOCH2 by
measuring the absorbance at 280 nm. The molar extinction coefficient and molecular mass
are: 24,500 M−1 cm−1 and 42 KDa for HeAlaDH, 51,402 M−1 cm−1 and 42 KDa for CbFDH,
62,840 M−1 cm−1 and 54.4 KDa for HeWT, and 81,735 M−1 cm−1 and 55.2 kDa for CvTA.

4.3. Enzymatic Assay

For the soluble enzyme, the activity was measured in the oxidative deamination with
40 mM alanine and 1 mM NAD+ with the appropriate amount of enzyme in 100 mM
glycine buffer pH 10 or pH 8. For the reductive amination, 2.5 mM pyruvate, 250 mM
NH4+, and 0.5 mM of NADH with an appropriate amount of enzyme in 100 mM phosphate
buffer pH8. For CbFDH, the activity assay was performed with 100 mM of ammonium
formate and 1 mM NAD+ in phosphate buffer pH8. The formation or depletion of the
cofactor was followed by measuring the absorbance at 340 nm (ε = 6220 M−1 cm−1) and
for HeWT, the activity assay was performed with 2.5 mM pyruvate, 2.5 mM SMBA, and
0.1 mM PLP in phosphate buffer pH8 following the formation of acetophenone at 245 nm
(ε = 12,000 M−1 cm−1).

A unit defined as the µmols of either product formed or substrate depleted per minute.
For the immobilised enzyme, between 20 and 50 mg of resin were weighted, and the

reaction performed in a total volume of 5 mL measuring the desired absorbance every two
minutes for a total time of 10 min with the same reaction conditions as stated before. The
expressed activity (U/g) and recovered activity (%) were calculated as follows:

Expressed activity (%) =
UA/minx volume of reaction (mL)

ε(mM−1cm−1)x Pathlenght (cm)x g of imm.biocatalyst
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Recovered activity(%) =
U/mg (immobilised enzyme)

U/mg of enzyme (free)
x 100

4.4. SDS-PAGE

SDS-PAGE assay was performed following the original procedure [43]. The running
gel (12%: 1.95 mL of Tris HCl 1.5 M pH 8.8, 2.25 mL acrylamide 40%, 3.125 mL of dH2O,
75 µL SDS 10%, 75 µL ammonium persulfate 10% (w/v), and 7.5 µL TEMED) was prepared
and loaded in between the two glass pieces, adding a few drops of isopropanol on top to
avoid the formation of a meniscus. After the gel was polymerised, the stacking gel was
prepared and loaded (0.25 mL 1 M Tris pH 6.8, 0.33 mL acrylamide 40%, 1.4 mL dH2O,
20 µL SDS 10%, 20 µL ammonium persulfate 10% (w/v), and 3 µL TEMED). Before loading,
the samples were heated at 90 ◦C for at least 5 min after mixed with an equal volume
of the 2× loading buffer (0.18 M Tris-HCl buffer pH6, 3.8 mM β-mercaptoethanol, 7.2%
(w/v) SDS, 36% (w/v) glycerol, and 0.36 (w/v) bromophenol blue). The assay was run at
30 mA, 300 V for 70 min. The protein marker, unstained protein standard, broad range
(10–200 kDa) was loaded as a comparison. The gel was then removed from the mould
and either stained with Coomassie blue staining solution (2% Coomassie brilliant blue
R-250 in aqueous solution 50% methanol and 10% acetic acid) for 15–30 min following
distaining with the distaining solution (aqueous solution 7.5% methanol and 10% acetic
acid) overnight or with Instant Blue (Expedeon®) solution overnight.

4.5. Batch Reactions

Batch biotransformations with free enzyme were performed with the desired con-
centration of substrate, 1–2 mg/mL of enzyme in phosphate buffer pH8. Samples were
withdrawn at different times and the reaction was quenched by adding 450 µL of HCl 0.2%
and 450 µL of acetonitrile. The samples were analysed by HPLC (Dionex UltiMate 3000
(Thermo Fisher, Loughborough, UK), Waters X-Bridge C18 (Waters, Elstree, UK) (3.5 µm,
2.1 × 100 mm), 0.8 mL/min, measuring at 210, 250, and 265 nm) to assess the conversion.

4.6. Immobilisation of HeAlaDH into Epoxy Functionalised Supports

The support was prepared following previous indicated protocol [27]. For the protein
immobilisation, 2 mL/g resin with the desired amount of protein in 50 mM phosphate
buffer pH8 were mixed at RT for 4 or 16 h, when no further decrease in the activity could
be detected in the supernatant. The immobilisation yield was calculated as the percentage
of protein remaining in the supernatant after incubation with respect to the offered protein.

4.7. Preparation of Dextran-Aldehyde

To obtain the 50% oxidised dextran-aldehyde, 10 g of dextran (35–45 KDa) were
dissolved in 100 mL water and mixed with 1 g of periodate stirring at room temperature
for 2 h. After, it was dialysed against 50 times the volume of distilled water 4 times.

4.8. Post Immobilisation Coating of Immobilised HeAlaDH

After the immobilisation, 10 volumes of 5 mg/mL PEI in 100 mM carbonate buffer
pH10 were mixed with the resin for 1 h at RT. After that, the resin was filtered and washed
thoroughly with water and 50 mM phosphate buffer pH8 and stored at 4 ◦C in the 50 mM
phosphate buffer pH8. For glutaraldehyde, 10 volumes of 5 mg/mL glutaraldehyde
in 50 mM phosphate buffer pH8 were mixed with the resin for 1 h at RT. Sequentially,
1 mg/mL of sodium borohydride was added, and the mix shaken gently for 20 min. After
that, the resin was filtered and washed thoroughly with water and 50 mM phosphate buffer
pH8 and stored at 4 ◦C in the 50 mM phosphate buffer pH8. The coating method was
modified from previously reported protocols. To conclude, for dextran coating, 100 mg
of immobilised resin were resuspended in 500 µL of 50 mM phosphate buffer pH 8 along
with the appropriate amount of dextran poly-aldehyde and left stirring O/N. After that,
1 mg/mL of sodium borohydride was added along with 50 µL of 900 mM bicarbonate
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buffer pH10 and the mix was left stirring at 4 ◦C for 25 min before it the biocatalyst was
washed thoroughly with water and stored in 50 mM phosphate buffer pH 8.

4.9. Co-Immobilisation of HeAlaDH and CbFDH

To the previously activated support, either of 5 mg/g of resin of CbFDH or 1 mg/g
or resin of HeAlaDH were added and left mixing room temperature. After that, the
percentage of immobilised protein was assessed with both the remaining activity and the
protein concentration in the supernatant. Then, 1 mg/g of resin of HeAlaDH or 5 mg/g of
resin of CbFDH were added and left mixing with the support at room temperature. For
HeAlaDH, the mixing time was 4 h while for CbFDH, O/N incubation was needed to
achieve the maximum immobilisation yield. Desorption and blocking were performed as
detailed before for HeAlaDH with PEI.

4.10. Flow Reactions

Continuous flow biotransformations were performed using a R2 + /R4 flow reac-
tor commercially available from Vapourtec® equipped with an Omnifit ® glass column
(6.6 mm i.d. × 100 mm length) filled with an appropriate volume of immobilised enzyme.
When needed, two solutions or solvents were mixed using a T tube before entrance to
the column. The flow rate was varied and optimised for each reaction. The exiting flow
stream was collected, and the results analysed by HPLC. The samples were analysed by
HPLC (Dionex UltiMate 3000, Waters X-Bridge C18 (3.5 µm, 2.1 × 100 mm), 0.8 mL/min,
measuring at 210, 250, and 265 nm) to assess the conversion.

4.11. Dialysis Assisted Reaction

A mix of enzymes at the desired concentration were added inside a dialysis membrane
with a cut-off (MWCO) of 12 KDa (D9527-100FT from Sigma Aldrich, St. Louis, MO, USA).
The membrane secured in both sides and submerged into a glass vial containing 5 times
the volume of enzyme cocktail of reaction mixture. The glass vial was left stirring at 37 ◦C
for at least 24 h. At the desired timepoints, samples were taken from the reaction bulk and
analysed by HPLC.

4.12. HPLC Analysis

Typically, for compounds with detectable chromophores, samples were appropriately
diluted in a solution of 1:1 (v/v) 0.1% HCl and 450 µL of MeCN to stop the enzymatic
reaction. These samples were then analysed by HPLC (Dionex UltiMate 3000, Waters
X-Bridge C18 (3.5 µm, 2.1 × 100 mm), measuring at 210, 250, and 265 nm to assess the
conversion using a gradient method from 5:95 to 95:5 (H2O:MeCN 0.1%TFA) over 4 min
with a flow rate of 0.8 mL/min.

For compounds with an amine functionality with no detectable fluorophore, FMOC
derivatisation was used to enable their detection. Typically, 100 µL of a maximum of 10 mM
of the desired compound were mixed with 200 µL of 100 mM borate buffer pH 9. To the mix,
400 µL of 15 mM FMOC diluted in MeCN were added. The sample was properly mixed
and left for at least 10 min before mixing 200 µL of it with 400 µL of MeCN and 400 µL of
0.1% HCl. Samples were run using a gradient method from 40:60 to 95:5 (H2O:MeCN 0.1%
TFA) over 4 min with a flow rate of 0.8 mL/min.

The retention times for the different chemicals were: 3.09 min for vanillin, 4.14 min for
cinnamaldehyde, 3.12 min for cinnamyl amine, 1.58mins for alanine-FMOC, and 4.13 min
for cyclohexylamine-FMOC.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/catal11040520/s1. Figure S1. SDS-page analysis of HeAlaDH expression, Figure S2. Kinetic
characterisation of HeAlaDH in both the oxidative deamination and the reductive amination direction,
Figure S3. Cosolvent effect on the stability of HeAlaDH, Figure S4. pH effect on the stability of
HeAlaDH, Figure S5. Amination of vanillin at the 10 mM scale with different equivalents of alanine
and the presence (+) or absence (-) of the cascade for the amino donor recycling, Figure S6. Amination
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of vanillin at the 10- and 50-mM scale with 1 equivalent of alanine, Figure S7. A. SDS-PAGE analysis
of the immobilised biocatalysts, Figure S8. Stability of the different biocatalysts in the presence of the
different additives, Table S1: Results of the immobilisation of HeAlaDH in various supports, Table S3:
Co-immobilization of HeAlaDH (1 mg/g) and CbFDH (5 mg/g) in the three different tested resins,
Table S4. Recovered activities and specific activity of the biocatalysts of the three different enzymes.
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