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1

General Introduction

At the nanometric scale the physical and chemical properties of materials are fre-

quently very different from those in bulk. One can cite different examples, such as the

melting point depression in metallic nanoparticles, the band gap opening and associated

color change in quantum dots, superparamagnetic phenomena in ferromagnetic nanopar-

ticles and Coulomb blockade effects in nanosized junctions. Besides the size dependent

properties, merely the confinement and organization of matter at the nanoscale can give

access to new or enhanced properties. For example, the thermodynamical properties of

liquids confined in nanotubes are known to be strongly altered. These various nanoscale

phenomena provide a very appealing scope for fundamental research and technological in-

novations in different fields of science. Indeed in the past few decades tremendous efforts

have been devoted to the elaboration of nanosized materials and the investigation of size

reduction effects on their properties and functions. Of course an important driving force

of this research comes from the microelectronic industry, which produces devices with

continuously smaller and smaller sizes. Other fields, such as catalysis, biomedicine and

food industry are using also more and more nanomaterials. These different fundamental

and technological advances have been also associated with the continuous development

of novel characterization tools specific to this size range, such as electron and scanning

probe microscopies.

In this thesis we focus on Spin Crossover (SCO) nanomaterials. SCO compounds

are inorganic complexes which display phase change behavior in the bulk form between

the so-called high spin (HS) and low spin (LS) states. As in any material, the phase

stability and transformation kinetics are size dependent. In particular it was shown that

the spin transition temperature (or more generally speaking the phase diagram) and the

completeness of the transformation are strongly affected at the nanoscale. The experi-

mental and theoretical investigations of the underlying physical mechanisms are relatively

recent and demand further efforts. On the other hand, the outstanding properties of SCO

nanomaterials make them very interesting for several technological applications. Indeed

the spin state switching in SCO nanoobjects (nanoparticles, thin films, nanopatterns,

etc.) is accompanied by a spectacular change of various material properties, including

magnetic, optical, electrical and mechanical ones, providing scope for applications in na-
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noelectronic, spintronic, nanophotonic and nanomechanical devices. For example, they

have been proposed for diffractive gas sensors [1, 2], micro and nanoelectromechanical

actuators (MEMS, NEMS)[3, 4], thermocromic pigments [5], photonic waveguides [6],

switchable THz filters [7] and nanothermometers [8, 9].

Conventional experimental approaches used to characterize bulk SCO materials

(magnetometry, X-ray diffraction, calorimetry, Mössbauer, electronic and vibrational

spectroscopies), are often not well adapted to investigate nanoscale SCO objects, gen-

erally due to the low amount of matter, and new technics are needed to characterize

them. In particular, there is a need for high spatial resolution microscopy tools as well

as for high sensitivity methods able to detect molecular spin-state changes in very small

amounts of matter, ideally in a single, isolated nano-object. Beyond their high resolution

and/or high sensitivity, these new experimental approaches can provide also information

on material properties, which are either difficult to access by conventional methods or

not so relevant at other size ranges. Far-field optical microscopy techniques have already

been employed with success to monitor the spin state changes in a single nanometric ob-

ject. For example, single SCO nanoparticles were studied using fluorescence, Raman and

differential interference contrast microscopy. On the other hand, nanometric thin films

of SCO complexes were analyzed by different photonic methods (ellipsometry, surface

plasmon resonance, etc.). In order to surmount the rather limited spatial resolution of

far-field optical methods one may use electron or X-ray beams, which can provide struc-

tural and spectroscopic information with high spatial resolution. In the case of relatively

brittle molecular SCO materials care must be taken, however, due to the invasive nature

of these techniques: sample heating and radiation damage are in fact frequently encoun-

tered. These problems have been largely decreased in a very recent work, which used

aperture-based time-resolved electron microscopy to follow the spin transition in individ-

ual nanoparticles [10]. Another possible approach, which we explored in this thesis work,

is based on scanning probe microscopies (SPM). Although SPM has been already used to

study phase transition in different materials, SPM studies on spin crossover materials are

very scarce. Actually only scanning tunneling microscopy (STM) has been used in this

field, but STM is more relevant in the context of single molecule studies than nanomate-

rials which are the scope of our work. Indeed, the principal objective of this work is to

explore the possible use of SPM techniques to characterize and manipulate the spin state

of SCO complexes at the nano- and micrometric scales. We focused on two SPM methods:

near-field scanning optical microscopy (NSOM) and atomic force microscopy (AFM). This

latter was used either for imaging sample topography or mechanical properties.

The manuscript is organized as follows:

In chapter 1 a general introduction to the molecular spin crossover phenomenon

and scanning probe microscopy techniques is provided in order to introduce the reader

to both subjects. First a brief history of spin crossover research is presented, followed
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by basic ligand-field theoretical and thermodynamical aspects of the phenomenon. Then,

two current hot topics of the SCO field, research on the spatiotemporal dynamics and size

reduction effects, are overviewed. In fact, these two topics have provided the primary mo-

tivation for this thesis work. In the second section the different scanning probe microscopy

approaches are briefly reviewed and the principal notions of atomic force microscopy and

near-field scanning optical microscopy are described.

In chapter 2 we present our near-field scanning optical microscopy (NSOM) studies

on spin crossover thin films. First we provide details about our NSOM set-up and also

about an original methodology we developed for temperature dependant NSOM measure-

ments using metallic nanowire heaters. Then, using NSOM in luminescence mode, the

first successful subwavelength resolution imaging of the spin transition in thin films of the

SCO compound [Fe(hptrz)]3(OTs)2 doped with Rhodamine 110 is presented. In the next

section simultaneous far-field and near-field reflectivity studies of the same compound as

well as the complex [Fe(Htrz)2(trz)]BF4 are exposed. Finally the possibility of triggering

the spin transition with high spatial resolution using the NSOM tip is demonstrated.

A study of the mechanical properties of spin crossover materials using atomic force

microscopy (AFM) is presented in chapter 3. In the beginning of the chapter a state of the

art of the different AFM modes providing information about sample mechanical properties

is presented. This is followed by the discussion of preliminary tests on PMMA films which

were carried out in order to put in place the experimental set-up and explore different AFM

modes. In the following sections thermomechanical measurements on [Fe(hptrz)]3(OTs)2

films along the spin transition curve are presented and the spin-state dependance of the

viscoelastic properties of this sample is discussed. Finally, a comparison of different AFM

mechanical modes using this sample is presented.

Chapter 4 is dedicated to the investigation of the spatio-temporal dynamics of the

spin transition in single crystals of the complex [Fe(bapbpy)(NCS)2]. Following the general

description of the sample, nucleation and growth phenomena associated with the first-

order spin transition in this compound are put in evidence by conventional optical far-field

microscopy and Raman spectroscopy. The AFM investigation of the spin transition in this

system proved to be difficult due to severe thermal and possible electrostatic interactions

between the sample and the AFM probe. Nevertheless, changes in the topography of the

crystals due to spin transition were detected. On the other hand probe-sample interactions

were found useful to manipulate locally the nucleation and propagation of spin domains.

The manuscript ends with the general conclusions and some perspectives for future

work as well as annexes.
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5

Chapter 1

Introduction

1.1 Introduction to the Spin Crossover Phenomenon

In 1931 Cambi et al. observed for the first time an anomalous magnetic behavior

in a series of FeIII dithiocarbamate compounds [11]. This phenomenon would be later

known as spin crossover (SCO), also called spin conversion or spin transition. The first

spin transition with an FeII complex was observed by Baker and Bobonich [12] in 1964. In

the same year the notion of spin crossover was introduced by Ewald et al [13], where the

authors make use of ligand field theory to propose that the change of spin state is possible

when the ligand field energy is comparable to the average energy of electron pairing in

the orbitals d. Up to now this vision of the phenomenon has not been changed and

can be found in several articles and textbooks. This phenomenon has been observed in

compounds with metallic centers with electronic configuration 3d4-3d7 coordinated with

ligands in octahedral symmetry. Metallic centers which can present SCO are: FeIII [14–

17], CoII [18–21], CoIII [22–24], MnII [25, 26], MnIII [27, 28], CrII [29, 30] and FeII. This

latter ion presents the highest number of studies.

During the spin transition phenomena the physico-chemical properties of the ma-

terial change. The spin crossover is associated with a variation of the thermodynamic

quantities like the enthalpy ∆H and the entropy ∆S of the system which can be detected

by calorimetry. The change in the spin state modifies obviously the magnetic properties of

the material. Hence, the magnetic susceptibility (χ(T )) is a key property to characterize

the spin transition. The change of electronic configurations produces also a change in the

optical absorption properties of the material. Indeed in most cases the spin transition can

be detected with the naked eye, as a color change of the sample. The hyperfine interac-

tions between the electronic cloud and the nucleus are observed as a modifications of the

Mösbauer absorption spectrum. König and Madeja were the first to observe the change

of the Mössbauer absorption spectrum of [Fe(phen)2(NCS)2] due to a spin state change

[31]. Using this technique Köing and Ritter studied for the first time the evolution of the
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Lamb-Mössbauer factor during the spin transition [32]. Their study allowed to relate the

elastic properties of the material with its spin state, using Debye’s model [33]. Another

important effect of the spin transition is the increase of the molecular volume when going

from the low spin to the high spin state, which can be characterized by X-ray diffraction

methods [34].

Most conveniently the spin transition is triggered by a variation of the tempera-

ture. However, it has been shown that this phenomenon can be produced by several

other external stimuli as well [35]. The difference of volume between the two spin states

makes possible to trigger the spin transition by applying an external pressure. As the

pressure increases the low spin state is favored since it has a lower size, so the equilibrium

temperature moves to higher values. Several pressure studies on mononuclear, dinuclear

and polymeric spin crossover systems have been performed and this tendency has been

confirmed in most cases, even if remarkable exceptions have been found highlighting the

complexity of pressure effects [36]. Another way to trigger the spin transition is through

light irradiation. Mc Garvey and Lawthers observed for the first time the possibility to

convert the spin state of iron complexes in solution by light irradiation [37]. A little

later, Decurtins et al. detected the same effect in the solid state [38, 39], which they

called Light Induced Excited Spin State Trapping (LIESST). It consists in converting a

stable low spin state(LS) into a metastable high spin state (HS) at low temperatures

using light irradiation. Later on, Hauser reported the reverse-LIESST effect, where light

is used to convert the HS state into the LS state [40]. The LIESST technique allowed

also to investigate in a convenient manner the kinetics of the spin state interconversion.

Another external stimulus that can trigger spin transition is the application of a magnetic

field. This has been studied for the first time on [Fe(phen)2(NCS)2] by Gütlich et al.[41].

Afterwards Bousseksou et al studied the effect of a pulsed magnetic field on the same

compound [42].

In diluted systems (solutions, etc.) the thermal spin crossover is always gradual and

follows Boltzmann statistics. However, in bulk solids abrupt (discontinuous) transitions

can be also observed, with or without hysteresis. These first order phase transition phe-

nomena are explained by the intermolecular elastic interactions [43], which arise due to

the difference of volume between the two spin states. Slichter and Drickamer developed

a thermodynamic model that takes into account these interactions in a phenomenological

manner using a nonlinear term of the free enthalpy [44]. From the microscopic point of

view, the Ising model was adapted to simulate spin transitions with intermolecular inter-

actions. A more explicit theory of elastic interactions was proposed by Spiering [45] based

on continuum mechanics.

Up to now several hundreds of spin crossover complexes (either molecular or coor-

dination networks) have been synthesized and characterized. In the following sections we

will briefly summarize the most important theoretical concepts of SCO including crystal
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Figure 1.1: Influence of a spherical or octaedric environment on 3d orbitals.

field theory and thermodynamical aspects. Then, we will highlight two current hot topics

in the field: investigation of the spatio-temporal dynamics of SCO and the development

of nanoscale spin crossover objects.

1.1.1 Crystal field theory

Crystal field theory allows to explain in a simple way the SCO phenomenon. This

theory considers that the interaction between the metallic center and the ligand is purely

electrostatic. The metallic ion is positively charged meanwhile the the ligands have a

negative charge. This model describes the electron distribution in the d or f orbitals

of a metallic ion under different symmetries [46]. In the case of the free FeII ion, the

energy levels of the five 3d orbitals are degenerated. If the metallic ion is localized in a

spherical field the energy levels of the orbitals will be Esph = Efree + ∆E, where Efree is

the energy of the free FeII ion, see figure 1.1. In an octahedral environment, which has

a lower symmetry than the sphere, the five 3d orbitals suffer a lift of degeneracy, leading

to a low energy level t2g which contains the degenerated orbitals dxy,dxz,dyz and a higher

energy level eg with the degenerated orbitals dz2,dx2−y2. The energies of the high energy

and the low energy levels will be Eeg
= Esph + 3/5∆0 and Et2g

= Esph−2/5∆0
, where ∆0

is the energy difference between the two levels, i.e. the crystal field energy. ∆0 depends

both on the nature of the ligands and the metallic ion.

In a weak ligand field configuration, in other words when ∆0 is lower than the elec-

tron spin pairing energy (Π), the electrons in the complex follow Hund’s rule of maximum

multiplicity. In this case, the number of unpaired electrons is maximized and the elec-

trons fill also the high energy orbitals, see figure 1.2 right. In this case the total spin is

S = 2 for FeII. This paramagnetic state is called high spin state (HS), represented by
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Figure 1.2: Electronic configuration for the two possible ground states following crystal
field theory and simplified schematic representation of the configurational diagram of two
molecular spin states (HS and LS).

the spectroscopic term 5T2g.

On the other hand, in a strong ligand field configuration, when ∆0 is higher than Π,

the electrons do not follow Hund’s rule. The electrons occupy the lowest energy level (t2g),

maximizing the number of paired electrons. In this case the total spin for FeII is S = 0.

This diamagnetic state is called low spin state (LS), represented by the spectroscopic

term 1A1g.

The origin of these two stable states can be observed in the Tanabe-Sugano diagrams.

For example, the diagram in figure 1.3 gives the energy of the spectroscopic terms of d6

ions in an octahedral environment and shows the ground and excited states as function

of the ligand field strength. The free electron ground state is 5D. Under the influence

of a ligand field this state splits into two, the new ground state 5T2g (HS state) and an

excited state 5Eg. The state 5T2g remains the ground state until ∆0 ≈ Π. Let’s call this

value ∆crit. For higher values of ∆0, the 1A1g (LS state) becomes the new ground state.

One important aspect of the spin transition is the change in the metal-ligand distance

(∆rHL). In the HS state the metal-ligand distance (r
F eII−L

) is higher than in the LS

state due to the presence of two electrons in the anti-bonding eg orbitals that repel the

ligand electronic orbitals. In the case of FeII ∆rHL is typically 0.2 Å, which implies a

strong change of the ligand field strength, since this latter depends on the metal-ligand

distance as (∆ ≈ r−n, where n = 5 − 6) [46]. From a classical point of view, using the

approximation of a unique harmonic vibrational mode, it is possible to represent both

molecular states as a double potential well in a configurational coordinate diagram along

the metal-ligand distance [22]. The elongation of the metal-ligand distance in the HS

state leads to lower force constants, reflected by different concavity of the potential well,

and to lower vibrational frequencies, reflected by the higher density of vibrational states

(figure 1.2). From this diagram we can also infer that for triggering spin transition it

is necessary that the energy difference between the minima of the two potential wells
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Figure 1.3: Tanable-Sugano diagram for a transition metal ion with six d electrons [47].
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(∆E0
HL = E0

HS − E0
LS) is in the magnitude of the thermally accessible energies (i.e.

∆E0
HL ≈ kBT ).

1.1.1.1 Thermodynamical aspects of spin crossover

Spin transition can be described using a simple thermodynamical model as an equi-

librium between two phases, if we consider a system constituted by an assembly of isolated,

non-interacting SCO molecules. In normal experimental conditions the pressure and the

temperature of the sample can be external control parameters, so the pertinent thermo-

dynamical function is the Gibbs free energy, G. At constant pressure, the free enthalpy

difference between the HS and the LS state is written as:

∆G = GHS − GLS = ∆H − T∆S (1.1)

where ∆H and ∆S are the enthalpy difference (HHS − HLS) and the entropy difference

(SHS−SLS), respectively. As ∆H and ∆S are always positive, an equilibrium temperature

(T1/2) can be defined as the temperature when the proportion of HS molecules (NHS) is

equal to the proportion of LS molecules (NLS) [48]. In this case ∆G = 0, so T1/2 can be

written as:

T1/2 =
∆H

∆S
(1.2)

∆H can be divided into two contributions, an electronic part (∆Hel) and a vibra-

tional contribution (∆Hvib). Apart from a few specific cases (the so called equienergetic

situation [49]), for most SCO complexes the main contribution to ∆H is given by ∆Hef .

On the contrary the entropy variation ∆S has in most cases a main contribution

from the vibrational part(∆Svib). During the spin transition the electronic part (∆Sel) is

attributed to the change of total spin momentum S, and the change of the angular orbital

momentum L. These can be written as:

∆Sspin
el = NakBln

(

2SHS + 1
2SLS + 1

)

(1.3)

∆Sorb
el = NakBln

(

2LHS + 1
2LLS + 1

)

(1.4)

where Na is Avogadro’s number and kB is the Boltzmann constant. If the ligand field has

a perfect octahedral symmetry, then we need to consider both electronic contributions.

However, in most cases the symmetry of the ligand field is lower than Oh. As a consequence

there is no significant contribution from ∆Sorb
el , i.e. ∆Sel ≈ ∆Sspin

el . In the case of a

spin transition of FeII between the 1A1 and 5T2 states, ∆Sspin
el = 13.38 J·K−1·mol−1

[50]. However, heat capacity measurements in FeII based SCO complexes highlighted

that ∆S values are typically between 40 J·K−1·mol−1 and 80 J·K−1·mol−1 [51–53]. This
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important difference between ∆S and ∆Sel is attributed to the vibrational part of the

entropy difference. The intramolecular vibrational modes are considered to be the main

contributors to ∆Svib (∆Sintra
vib ) due to the difference in the metal-ligand distance between

the HS and LS states.

From equations 1.1 and 1.2 we can draw the following conclusions:

• T < T1/2 → ∆H > T∆S ↔ GLS < GHS The enthalpy is dominant and the stable

state is the LS state.

• T > T1/2 → ∆H < T∆S ↔ GLS > GHS The entropy becomes dominant and now

the stable state is the the more degenerated spin state, i.e. the HS state.

• T = T1/2 → ∆H = T∆S ↔ GLS = GHS The enthalpy and entropy are equivalent

and there is an equilibrium between the two phases.

1.1.1.2 Different spin transition behaviors

In a diluted SCO system, the intermolecular interactions can be neglected hence

the change of the spin state of the system can be described as a sum of the conversions

of isolated molecules. In this case the spin state change statistics follows Boltzmann

distribution. On the other hand, in the case of a bulk solid the intermolecular interactions

and the crystal packing of the material will play an important role. When a molecule

switches from the LS to the HS state there is an increase of volume of the molecule that

will change the energy of the other molecules in the solid due to elastic stress and strain.

In addition this increase in volume is associated with a decrease of the intermolecular

forces of the material that is translated in an increase of its compressibility. These elastic

mechanisms are denoted globally as the cooperativity of the SCO material.

By convention the thermal spin transition curve is obtained by plotting the high

spin fraction (nHS) as function of the temperature. In a SCO material composed by N

molecules, there are NHS molecules in the HS state and NLS = N − NHS molecules in

the LS state. Then, nHS is defined as:

nHS =
NHS

N
(1.5)

All spin crossover curves observed until 1960 where gradual [54, 55] like the one

shown in figure 1.4 panel a. These compounds have weak cooperativity. In this case we

call the phenomenon as spin equilibrium or spin conversion or spin crossover.

In 1964 the first abrupt spin transition was observed by Baker & Bobonich for

the compound [Fe(phen)2(NCS)2] [12], and confirmed in 1967 by König & Madeja [56].

This first order transition is represented in figure 1.4, b. The abrupt transition is a

consequence of the intermolecular interactions of elastic origin. This complex presents
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Figure 1.4: Principal types of thermal spin transitions, representing in a schematized way
the HS fraction as function of the temperature: (a) gradual spin transition, (b) abrupt
spin transition, (c) spin transition with hysteresis and (d) double step spin transition.

strong cooperativity and by convention we denote this phenomenon as spin transition,

though the general term "spin crossover" is also used by the community. For highly

cooperative systems the hysteresis associated with the first order spin transition becomes

more pronounced, as the one represented in figure 1.4 c. The temperatures T ↑

1/2 and T ↓

1/2

are the transition temperatures (nHS = 1/2) on warming and cooling, respectively. The

first observation of a hysteresis cycle was reported for the [Fe(4,7-(CH3)2-phen)2(NCS)2]

compound in 1976 by König & Ritter [57].

The spin transition can also take place in several steps, as it is shown by the figure

1.4 d. This phenomenon was observed for the first time in 1981 in a FeIII complex of

2-bromo-salicylaldehyde-thiosemicarbazone [58]. Such multi-step transition may appear

for different reasons. For example, it may occur when the metal ions occupy two or more

different lattice sites in the material [59]. In the second case the spin transition in one

metal atom may render the transition less favorable in a nearby metal ion. This type of

spin transition can be also observed in systems where all metal ions are equivalent. In

this case it is the preferential formation of HS-LS pairs (ordering) due to a competition

between short range and long range interactions in the progress of the transition that

produces the double step transition [60]. The first example of this situation was reported

in a binuclear system [61].
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1.1.1.3 Thermodynamical approach of the cooperativity in SCO solids

a) Non cooperative systems

Lets consider a spin transition material in contact with a pressure and thermal

reservoir, constituted by N molecules, where the intermolecular forces are negligible.

If we denote GHS and GLS as the free Gibbs energy in the HS and in the LS states

respectively, the Gibbs energy of this system can be written as:

G(T, P, N) = nHSGHS + (1 − nHS)GLS − TSmix (1.6)

where Smix is the mixing entropy representing the different distribution possibilities of

the HS and LS populations for N molecules in the material. In an isolated system where

the molecules are indistinguishable in the HS state and in the LS state, but the sites are

distinguishable then Smix can be written as:

Smix = kBln

(

N !
NHS!NLS!

)

(1.7)

Using the Stirling approximation (ln(N !) ≈ Nln(N) − N) we obtain that

Smix = −NkB[nHS ln(nHS) + (1 − nHS) ln(1 − nHS)] (1.8)

At a given P and T the thermodynamical equilibrium is achieved when
(

∂G
∂nHS

)

= 0.

∂G

∂nHS
= ∆H − T∆S + NkBT ln(

nHS

1 − nHS
) = 0 (1.9)

So we can write the temperature of the system as a function of the high spin fraction:

T =
∆H

∆S + NkBln(1−nHS

nHS
)

(1.10)

The transition temperature can be retrieved from equation 1.10 by substituting nHS = 0.5.

T1/2 =
∆H

∆S
(1.11)

b) Cooperative systems

As already stated in section 1.1.1.2, in the solid state intermolecular interactions

play an important role in the spin transition. The most widely used model that takes the

intermolecular interactions into account was introduced by Sclitchter and Dickramer [44].

They introduced a phenomenological nonlinear interaction term Gint = ΓnHS(1 − nHS)
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Figure 1.5: Plots of the temperature vs the high spin fraction for different values of
the cooperativity (Γ) calculated with equation 1.14. The dotted lines correspond to the
hysteresis phenomenon due to the presence of metastable states.

in equation 1.6. The free energy can be expressed as:

G = nHSGHS + (1 − nHS)GLS + ΓnHS(1 − nHS) − TSmix (1.12)

were Γ(P, T ) is an effective parameter, which describes the strengths of the intermolecular

interactions, i.e. the cooperativity. It represents the tendency for a molecule or an active

center in a given spin state to be surrounded by molecules or active centers with the same

spin state. This term generates a hysteresis without changing the Gibbs energy values.

As in the previous case, the temperature as function of the high spin fraction is calculated

by obtaining the partial derivative of the free enthalpy.

∂G

∂nHS

= ∆G + Γ(1 − 2nHS) + NkBT ln
(

nHS

1 − nHS

)

(1.13)

In thermal and pressure equilibrium ∂G/∂nHS |P,T = 0 then we can write T as

function of nHS:

T =
∆H + Γ(1 − 2nHS)

NkBln(1−nHS

nHS
)

(1.14)

For simplicity it is better to work in J·mol−1, hence NkB is substituted by R the

perfect gas constant.

We can distinguish three situations:

• Γ < 2RTeq Here dT
dnHS

> 0 and there is a gradual conversion without hysteresis

typical of weak molecular interactions.
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• Γ ≈ 2RTeq In this case dT
dnHS

> 0 but it is zero when nHS = 0.5, so there is a

discontinuity, i.e. a sharp transition without hysteresis. The materials that present

this kind of behavior are called cooperative.

• Γ > 2RTeq The curve presents a local minimum and a local maximum, so there is

a sharp transition with hysteresis, present when there are strong molecular interac-

tions.

The influence of the cooperativity on the spin transition curves is shown in figure

1.5.

1.1.2 Spatiotemporal dynamics

Up to now we have not considered the dynamics of the spin transition. The first time-

resolved measurements on SCO systems were carried out in solution [37, 62]. These stud-

ies addressed the intramolecular kinetics of spin crossover and were based in a first time

on temperature jump and ultrasonic perturbation techniques and later on laser photo-

perturbation methods. A further important step in the investigation of spin crossover

dynamics was the discovery of light-induced excited spin state trapping (LIESST) phe-

nomenon. Indeed the possibility to generate long-lived metastable spin states by light

irradiation allowed for a detailed investigation of the relaxation dynamics of these states,

as well as the study of different physico-chemical parameters (temperature, pressure, metal

substitution, etc.) on the dynamics [63, 64]. Thanks to these studies, in diluted systems

the spin state interconversion rates are today well understood.

In bulk materials the dynamics are further complicated by spatially heterogeneous

phenomena. Sorai and Seki were the first to suggest that first-order spin transitions should

consist in one or several nucleation points followed by a heterogeneous phase separation

and domain growth [51]. This behavior has been first evidenced by X-ray diffraction and

more recently observed by optical microscopy in some SCO crystals. Several theoretical

models have been also proposed to describe these spatio-temporal phenomena [65–69].

Nevertheless there are many open questions: How many nuclei form? What are the control

parameters for the growth of the new phase? How the nucleation and growth phenomena

depend on the morphology and structure of the sample? What is the minimum size of

the crystal where phase separation can still be observed? In a natural nucleation point

how many molecules should transit to trigger the transition of the whole crystal? What

is the size and the nature of the phase boundary? To answer some of these questions

the existing experimental methods are not sufficient and we need new techniques able to

detect the spin transition with high spatial resolution.

In this work we will go into this direction and investigate the spatio-temporal dy-

namics with submicrometric resolution. Therefore in the following section a state of the
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Figure 1.6: a) Thermally induced transition in the heating mode: Temperature depen-
dence of the (063) reflection in the x-ray diffraction pattern [70]. b)Dynamics of the spin
crossover for a single crystal of [Fe(btr)2(NCS)2H20] at T = 117.2 K. Each picture corre-
sponds to the instantaneous (at t = 0, 15, 30, 45, 60, 150 s) 2D diffraction profile of the
reflection (upper part) and intensity line profile (lower part) along the radial direction
[72].

art of the current experimental approaches to study the spatio-temporal dynamics on

SCO compounds is presented.

1.1.2.1 X-ray diffraction

The difference in the lattice parameters in the HS and LS phases enable the pos-

sibility to follow the spin transition by X-ray diffraction or neutron diffraction. The first

systematic studies were carried out by König on powder samples [34]. Later on these

results were extended to single crystals [70, 71]. The experimental resolution is related to

the coherence length (Lc) of the incident light, i.e. the propagation distance over which

a coherent wave maintains a specified degree of coherence (Lc ≈ λ/∆λ, where λ is the

wavelength of the incident light). The volume of the material that diffracts the beam in

a coherent manner is directly related to the coherent length.

In SCO materials that present a gradual spin transition, the volume and lattice

parameters of the material change in a continuous manner. This is observed in the

diffractograms as a gradual shift of the Bragg peaks in the reciprocal space and the

diffraction is independent of the illuminated volume.

In strongly cooperative materials, the nucleation of the new phase occurs in seeds

that grow to form domains. While the domains do not outgrow the coherence length,

Bragg peaks of both phases will be observed in the reciprocal space. This splitting of
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the Bragg peaks was reported in highly cooperative materials like [Fe(btr)2(NCS)2H20]

and [Fe(2-pic)3]Cl2EtOH [70–72]. An example of X-ray diffraction pattern in a highly

cooperative SCO compound is shown in the figure 1.6.

X-ray diffraction allowed to confirm the existence of a structural phase separation

and investigate the kinetics of nucleation and growth, but the lack of imaging capability

has strongly limited the information content of this technique. This problem was recently

solved using electron microscopy providing access to high spatial and temporal resolution

information both in the real (conventional transmission electron microscopy image) and

the reciprocal (electron diffraction) spaces [10].

1.1.2.2 Optical imaging

Optical microscopy is a non invasive method that is capable to give spatiotemporal

information on the spin transition phenomena. Even though the spatial resolution is

limited to the optical diffraction limit, it is a very interesting tool to study the dynamics

of the transition.

The optical imaging of the spin transition in single crystals was performed for the

first time by Jeftic in 1999 on the [Fe(ptz)6(BF4)2] compound [73]. One year later other

optical images were taken by Ogawa on crystals of the [Fe(2-pic)3Cl2EtOH] compound

during the photoswitching process [74]. In both papers the formation and growth of

domains with a clear phase separation was reported. Optical microscopy was fully rec-

ognized as a powerful quantitative approach to study spin transition materials after the

absorbance studies of Goujon in 2008 [75].

Optical microscopy using different imaging approaches (bright field, dark field, trans-

mission, reflection, crossed polarizers, etc.) allowed to obtain information about the de-

velopment in time of the spin fractions with micrometric resolution [66, 68, 74–87]. The

main results are consistent with the general expectation in that the spin transition in co-

operative systems occurs via heterogeneous nucleation and growth mechanism (figure 1.7),

while the spin crossover in weakly cooperative systems is a spatially rather homogeneous

transformation. Remarkably, in high quality, cooperative crystals a very reproducible

nucleation and growth of a single macroscopic domain with a well-defined "transition

front" was reported. The nucleation points were localized around structural defects in

the crystals (usually on the surface) and the domain growth was reported directional in

many cases. The specific orientation and movement of the phase boundary seems to be

governed by the minimization of the elastic energy between the HS and the LS structures

[67]. The speed of propagation of the new phase (HS or LS) was usually measured be-

tween 1-40 µm·s−1. This low value is probably related to the accumulation of mechanical

stress and/or latent heat during the boundary motion. Unfortunately, the mechanical ef-

fects accompanying the spin transition associated with the brittleness of the crystals have
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Figure 1.7: Optical images of five crystals of [Fe(btr)3(NCS)2]·H2O] at different temper-
atures in cooling mode. The sample is colorless in the HS and violet in the LS states.

led in several cases to irreversible damage of the crystals (formation of cracks and other

defects) over repeated cycling. The limited number of robust, high-quality single crys-

tals represents thus a major obstacle for the deeper investigation of the spatio-temporal

dynamics of the spin transition by microscopy techniques.

To obtain more detailed structural information optical microscopy imaging can be

extended towards microscopic imaging using vibrational spectroscopies (Raman or FTIR).

Microspectroscopy not only enables to study nucleation and growth mechanisms with

micrometric spatial resolution, but it allows also to detect local changes in the crystal

structure and elastic properties of the material. The first vibrational spectroscopic studies

that were focused on the coexistence of the two spin states in solid SCO materials were

carried out by Baker & Bobonich in 1964, but without imaging [12]. In highly cooperative

crystals the coexistence of HS and LS spectroscopic markers is observed around the

transition temperature, as shown in figure 1.8 (a) and (b). The imaging of spin domains

and their propagation was then achieved using Raman microspectroscopy on different

compounds [79, 88]. Nevertheless confocal Raman microscopy remains still limited by the

diffraction of light.

1.1.2.3 High resolution microscopy

In all previous techniques the highest resolution that can be obtained is limited by

the Abbe diffraction limit (d = λ/(2N.A.), where N.A. is the numerical aperture. This

limit is not much better than the micrometer for far-field optical microscopy. In order

to surmount the rather limited spatial resolution of optical microscopes, one may either

employ instruments using high energy photons, electrons or other particles, wherein one

does not overcome, but reduces the diffraction limit, such in the case of the electron

microscopy study of Van der Veen et al. [10]. The other alternative is the use of Scanning

Probe Microscopy (SPM). SPM refers to a family of surface analysis methods, which use

a nanometric probe in interaction with a sample surface and a scanner, which allows to
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Figure 1.8: Infrared spectra for different temperatures of [Fe(phen)2(NCS)2] in the region
of C-N stretching frequencies [51]. (b) Left: Raman spectra of the HS (300 K), inter-
mediate phase (IP ) (210 K) and LS (130 K) phases in the CN stretching (νCN) mode
region of [Fe(bapbpy)(NCS)2]. Right: the thermal spin transition curve of a single crystal
of [Fe(bapbpy)(NCS)2] (c) Point-by-point Raman spectral mapping of the spin fractions
in a region of 76 x 70 µm of the crystal at different temperatures in the cooling mode.
The red color is associated with the HS phase and blue with an intermediate phase [79].



20 Chapter 1 : Introduction

control with nanometric precision the position of the probe with respect to the surface,

both laterally and vertically. SPM techniques are today widely used in different fields of

science and technology for investigating sample surface properties from the micrometer

down to the atomic scale. Beyond their surface imaging capabilities they provide also

access to various material properties, such as surface charge and electro-magnetic field

distributions, elastic moduli, thermal conductivity, etc. SPM, and in particular AFM

(Atomic Force Microscopy), is extensively used for surface topography imaging of SCO

films and other nano-objects, but rarely to probe the molecular spin state changes. Until

now, most of the published results [89–91] have been obtained using Scanning Tunneling

Microscopy (STM), which probes the local electronic structure of a surface with atomic

resolution. While STM is an extraordinary tool to investigate the spin transition at the

molecular level it is inadequate for the investigation of the spatio-temporal dynamics of

an insulating crystal. In this respect, AFM studies on SCO compounds appear somewhat

more promising, though still very challenging, mainly for the need for using external

stimuli (temperature, pressure, etc.) to trigger the SCO. In addition, the interaction

between the tip and the sample may be difficult to analyze in a quantitative manner.

Chong et. al. made the first study on spin transition crystals at room temperature,

they studied the wetting properties of two different SCO crystals [92]. The first spin

transition curves and study in both phases using atomic force microscopy and Near-

field Scanning Optical Microscopy (NSOM) were performed by Lopes et al. in our team

[93]. We studied the change in the surface roughness and other topographic features of

Fe(pyrazine)[Pt(CN)4] crystals across the spin transition. We found that is possible to to

record thermal spin transition curves with high spatial resolution using these techniques,

showing details that were not visible in optical microscopy. Based on these first results

this thesis aims for investigating the potential of AFM and NSOM methods in the study

of spatio-temporal dynamics of SCO single crystals.

1.1.3 SCO nano-objects

Kahn was the first to evoke the interest in fabricating SCO materials at nanometric

scale, so that they could be used in high density information storage media [94]. The two

key properties that have to be controlled are the transition temperature and the hysteresis

width in SCO nanoparticles. Indeed, the phase stability and the transformation kinetics

are in general highly dependent on the object size. In spin crossover compounds, size

effects may lead to a loss of the hysteresis (bistability) properties, a shift of the transition

temperature or the occurrence of an incomplete transition, but also a reappearance of the

hysteresis at the extreme size reduction (1-4 nm). To investigate size reduction phenomena

in SCO materials, considerable efforts have been made in the last ten years to synthesize

and characterize spin transition materials at nanometric scale including nanoparticles
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Figure 1.9: (a) TEM image of [Fe(NH2-trz)3](Br)23H2O nanoparticles [98]. (b) Bright-
filed electron microscopy image of two SCO nanocrystals [10]. (c) Fabrication process for
arrays of SCO nanodots. [9].

and continuous or nanopatterned thin films [4, 62, 95]. Beyond the fundamental scientific

questions these switchable nano-objects are also interesting candidates for applications in

nano-optical, nano-electronic and/or nanomechanical devices [96].

Spin transition nanoparticles were prepared by the first time by the group of Jean-

François Létard (Bordeaux) using the reverse micelle technique [5, 97, 98]. Later several

other methods have been published for the synthesize of SCO nanoparticles [4]. It is

interesting to note that most of the spin transition nanoparticles reported up to now

consist of coordination networks, and only a few "genuine" molecular nanoparticles were

fabricated [99]. Spin crossover thin films were also deposited by different techniques: spin

coating [100, 101], layer by layer assembly [102], thermal evaporation [103, 104], etc.

Besides the synthesis the characterization of SCO materials at the nanoscale raises

also new problems. A large ensemble of nanoparticles can be studied using classic charac-

terization techniques, such as magnetic susceptibility measurements and Mössbauer spec-

troscopy. However, ensemble averaging in these methods leads for difficulties to achieve

proper size - property correlations. In addition particle - particle interactions might also

occur. To avoid these artifacts it would be desirable to investigate single, isolated SCO

objects. It is, however, delicate to detect the spin transition by standard techniques on

thin films or single nano-objects due to the small amount of probed material. In order to

overcome this problem new detection techniques have been developed, based on the change

of different physical properties of the material. Many of them are based on the change or

the optical properties [105]. For example the detection of spin transition in thin films has

been achieved using Surface Plasmon Resonance (SPR) [6, 106] and optical diffraction

[2]. Fluorescence techniques have also been implemented to study single objects [9]. As
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mentioned above electronic microscopy has been also used to detect the spin transition in

a single particle [10]. In this context SPM methods appear also advantageous. Although

SPM has been already used to study phase transitions in different materials [107–113],

it has not yet been used in the context of SCO nano-objects. Hence the second aim of

this theses is the development of SPM approaches to study spin transition at nanometric

scale.

1.2 Introduction to Scanning Probe Microscopy

Scanning Probe Microscopy (SPM) is a branch of microscopy that was created to

reach resolutions below the optical diffraction limit. It consists of a sharp tip that moves

accurately over the sample surface with nanometric or subnanometric precision. This may

be compared with the act of sensing with a finger over a surface, or like an old-fashioned

record player with a metallic needle on a vinyl record. With this technique it is possible

to obtain three-dimensional (3D) images of solid surfaces with atomic resolution.

This family of microscopy methods was founded with the scanning tunneling micro-

scope (STM), invented by Binnig and Rohrer in 1982 [114]. With the STM it became

possible to image single atoms on flat surfaces. In parallel the near-field scanning optical

microscope (NSOM) was invented, which allowed microscopy with light below the optical

resolution limit [115, 116]. STM can only be used to study conducting or semiconducting

surfaces. Based on the STM Binnig et al. developed the atomic force microscope (AFM)

in 1986 [117], to overcome the disadvantage of STM. AFM is able to measure very small

forces (less than 1 nN), between the tip and the sample on either conductive or insulating

surfaces. These microscopes have initiated a real revolution in the fields of surface and

colloid science and are commonly used to characterize micro and nanomaterials.

The capability to investigate surfaces with unprecedented resolution using this tech-

nology promoted the development of numerous related techniques, which use different

kinds of probes and observation modes resulting in different tip-sample interactions. The

resolution varies from one technique to the other, it spans from some tens of nanometers

to atomic resolution. This capability is mainly due to the ability of the piezoactuators to

execute motions with a precision and accuracy better than 1/10 of nanometer. The most

used scanning probe microscopy methods are:

• Atomic Force Microscopy (AFM): Besides topographical images, AFM is a mean

to study the mechanical properties of the sample such as the Young’s modulus,

adhesion forces [118, 119], as well as friction forces [120].

• Electrostatic Force Microscopy (EFM): Local charges on the tip or surface lead

to electrostatic forces between the tip and the sample, which allows to study the

distribution of charges in the sample [121].
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• Near-field Scanning Optical Microscopy (NSOM): NSOM is a method for nano-scale

optical imaging that achieves subwavelength resolution by detecting the evanescent

wave fields accessible in the near-zone of a scattering object. [107, 122].

• Magnetic Force Microscopy (MFM): If the tip is coated with a magnetic material

e.g. iron, that has been magnetized along the tip axis,the magnetic domains in

ferromagnetic materials can be studied [121, 123].

• Scanning tunneling microscopy (STM): An applied voltage difference between a con-

ducting tip and sample, which are brought very close together can allow electrons to

tunnel through the vacuum between them. With this technique the local electronic

structure can be obtained [124, 125].

• Chemical Force Microscopy (CFM): By modifying the AFM tip chemically it is

possible to probe various chemical properties (hydrophobicity, chemical or biological

affinities, etc.) of the sample [126, 127]

• Kelvin probe force microscopy (KPFM): In KPFM the contact potential difference

between the sample surface and the tip is measured with high spatial resolution.

The work function of a broad range of materials can be studied with this method

[128, 129].

• Conductive atomic force microscopy (C-AFM): The conductivity of a sample is

obtained by applying a voltage between the tip and the sample when they are in

contact [130].

• Piezoresponse microscopy (PFM): A sharp conductive probe is brought into contact

with a ferroelectric surface. By applying an alternating current bias to the probe

tip the ferroelectric domains can be imaged and manipulated [131].

This list is not exhaustive, for example we did not described the existing methods to

study the mechanical properties of the materials with high spatial resolution, since they

will be discussed in chapter 3.

Among these various SPM techniques two approaches seem particularly adequate

to study SCO compounds: (1) NSOM since the index of refraction of SCO materials

changes during the spin transition and (2) the different mechanical modes of AFM, since

the stiffness varies from one spin state to the other1. In the following sections we will

thus provide a brief introduction to Atomic Force Microscopy (section 1.2.1), and Near-

Field Scanning Optical Microscopy (section 1.2.2). AFM gives information about the

1MFM is not suitable to study SCO compounds. As already mention SCO compounds are paramag-
netic in the HS state and diamagnetic in the LS state. However the paramagnetization of the compound
is very weak. For this reason we believe that the MFM signals might be very small.
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Figure 1.10: a)Scheme of the tip interacting ideally with the sample surface through a
single atom at the apex. b) The first AFM set-up [117] where an STM is used to detect
the cantilever deflection. c) Actual AFM model using optical beam deflection system.

topography of the sample and its mechanical properties, such as elasticity, adhesion and

viscosity. On the other hand, NSOM gives us information about the optical properties of

the sample surface with subwavelength resolution.

1.2.1 Atomic Force Microscopy

The Atomic Force Microscope (AFM) was invented by Bining, Quate and Gerber

in 1986 [117] to overcome a basic drawback with Scanning Tunneling Microscope (STM).

In fact STM can only image conducting or semiconducting surfaces, while AFM can

image non conductive materials as well. Similar to STM, the AFM relies on a scanning

technique to produce a 3D image of the surface. High resolution is achieved by minimizing

the interaction volume between the probe and the object. For this reason the probe takes

the form of a sharp tip glued to a cantilever where only the very apex of the probe is

responsible for the interaction, see figure 1.10 a.

In the first AFM design, an STM probe was used to measure the normal force [117].

This force was maintained at a constant level with a feedback mechanism (see figure 1.10

b). One disadvantage of this first model was the complex alignment necessary to make

it work. In addition force measurements were much affected by thermal drift. In 1989

Gunther et al introduced the tuning fork into the field of scanning probe microscopy [132].

The idea is to place a tip in the end of a tuning fork which is forced to oscillate at its

resonant frequency. When the tip approaches to the surface the tuning fork will react to

the force that the sample applies on the tip and consequently the amplitude and the phase

of the oscillation will change. The topography of the sample is obtained by maintaining

the amplitude or phase constant through the scan. Today the tuning fork is still used
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in many devices, since it has proven to be a very stable system and it does not involve

the use of light for the detection of the probe position. However, only the dynamic (AC)

modes of AFM can be used with this set-up. In 1990 Meyer and Amer introduced an

optical beam deflection system [133], which is the most widely used nowadays. In this

system a laser beam is reflected from the back of the cantilever onto a position-sensitive

detector (photodiode). The backside of the cantilever is normally covered with a thin

metal layer to enhance its reflectivity. Depending on the mode chosen by the user the

system will measure the force between the tip and the sample, Fts (contact mode) or the

frequency / amplitude of an oscillating cantilever, ω/A (AC mode). Independently of the

AFM mode, the chosen property will be measured by monitoring the deflection of the

cantilever with a feedback loop. This later is used to control the tip-sample distance. In

this way the chosen property (Fts, ω or A), is kept constant.

1.2.1.1 Contact mode

In contact mode the force between the tip and the sample is kept constant by

controlling the deflection of the cantilever (Zc). As a consequence the tip is always in

contact with the sample. The tip is mounted on a soft cantilever with a spring constant

(kc) usually lower than 1 N/m. In this case one can assume that the probe will not

move the atoms on the surface. The forces between the surface and the tip (typically in

the order of piconewtons) cause the cantilever to bend in the vertical direction, which is

discerned by a detector. When the cantilever bends and the reflected light-beam moves

through an angle equal to twice the change of the endslope dZc/dX. The signal of the

detector is used to vertically adjust the tip position with respect to the sample surface, so

the deflection, i.e. the position of the laser in the detector is fixed in the same value. This

allows to record the height of the sample as function of the x and y position, and thus

the topography of the surface is built up into a three dimensional image with nanometric

or even with atomic resolution [117].

In this mode there is a direct control over the force applied to the sample. It is

therefore possible to plot the force applied by the tip vs the distance between the tip and

the sample at a given (x, y) position. Such force-distance curves give information about

the local elasticity, adhesion and deformation of the surface.

In figure 1.11 a force-distance curve is shown where the different interactions between

the tip and the sample are marked with numbers (1-4). When the tip is far from the

sample, there are no forces between the tip and the sample (1). As the cantilever comes

close to the surface van der Waals and capillary forces in air become significant compared

with the spring constant of the cantilever, the tip jumps into contact with the surface and

the cantilever is deflected downwards (2). When we continue the approach repulsive forces

arise between the tip and the sample and the cantilever is deflected upwards (3). When
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Figure 1.11: Force-Distance curve obtained with and AFM. The approach (red) and with-
draw (blue) curves are shown in the right. The deflection of the cantilever corresponding
to the different parts of the force-distance curve is shown on the left.

working in air there is usually adhesion from capillary forces between the tip and the

sample. For this reason when the cantilever is retracted from the surface the tip remains

in contact with the surface due to the adhesion forces and the cantilever is deflected

downwards, until the tip is suddenly released from the surface (4).

From this curve it is possible to obtain information about the adhesion, the Young’s

modulus, the sample deformation and dissipation (see section 3.1.2).

Contact mode imaging is carried out by simply keeping the setpoint (point 3 in figure

1.11) constant, while scanning the sample. This mode is reasonably easy to operate, but

contact mode has the inherent drawback that the lateral force exerted on the sample can

be considerably high. In many cases this can lead to a degradation of the sample or the

tip. As a solution to this problem the AC mode was invented.

1.2.1.2 AC mode

If the tip interacts with the sample for a very small time in each pixel of the scanned

image, high lateral forces observed in contact mode can be avoided while maintaining high

lateral resolution. In AC mode a stiff cantilever is forced to oscillate near its resonant fre-

quency with a free amplitude Af . This amplitude is typically some tens of nanometers, i.e.

very small compared to the cantilever length. When the tip is approached to the sample a

shift in the frequency, amplitude and phase of its oscillation is observed. Using a feedback

loop the system maintains constant either the frequency (FM, frequency modulation) or

the phase (PM, phase modulation) or the amplitude (AM, amplitude modulation) during
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the scan, but in most conventional systems the latter is implemented. The AC mode

reduces the damage to the sample by decreasing the lateral forces. It allows therefore

to analyze soft samples as well. The risk of contaminating the tip and the wear of the

tip decreases also in this mode [134, 135]. The tip-sample interactions in AC mode can

be classified in two regimes: non-contact mode and intermittent contact (tapping) mode

[136].

In non-contact mode, the amplitude of oscillation is a few or a few tens of nanometers

and the tip feels mainly the van der Waals forces. (The tip is approached up to 1nm or

10 nm above the surface.). In this case there is no degradation of the tip or the sample so

it is preferred for soft samples. In rigid samples the intermittent contact and non contact

mode images should look the same. However, if a thin monolayer of fluid is laying on the

sample the image may be quite different and it will become impossible to determine the

true dimension of the sample.

The intermittent contact mode (also known as tapping mode) uses a cantilever or a

tuning fork oscillating with an amplitude Af above ca. 60 nanometers. The tip registers

a combination of the van der Waals and the repulsive forces. In this case the tip exerts a

pressure on the sample, so it can pass through a thin layer of fluid. This mode is normally

used for hard and moderately soft samples. When working with soft samples there could

be an apparent decrease in height since the tip indents the sample.

Assuming that air damping is the dominant factor, the movement of the cantilever

can be described using the driven damped harmonic oscillator model [137, 138].

F (t) = me
∂2Zc

∂t2
+ b

∂Zc

∂t
+ kcZc (1.15)

where F (t) is the driving force, me is the effective mass of the cantilever (i.e. me =

0.2427mc + mt; where mc is the real mass of the cantilever and mt is the mass of the tip

[138]), Zc is the deflection of the cantilever and kc is the spring constant of the cantilever.

Considering that a periodic force F (t) = F0 sin(ωt) is applied on the cantilever and that

tan(φ) = bω/(kc − meω
2), equation 1.15 is solved in steady-state by:

Zc(t) = A0 sin(ωt − φ) (1.16)

where A0 is the free amplitude of the oscillation and is defined as:

A0(ω) =
F0

√

(kc − meω2)2 + b2ω2
=

F0

me

√

(ω2
0 − ω2)2 + (ωω0/Q)2

(1.17)

where Q = ω0/b is the quality factor and ω0 =
√

kc/me. The maximum amplitude
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Figure 1.12: a) Power spectral density as a function of the frequency for a cantilever
immersed in different media [138]. b) Scheme of the tip in AC mode and illustration of
the change of frequency, amplitude and phase when the oscillating tip approaches the
surface. c) Amplitude vs distance plot during approach (blue) and retract (red).

of oscillation (resonance) is reached when

ω =

√

kc

me

−
b

2me

(1.18)

The behavior of the tip will vary in different media. When the cantilever is sub-

merged in liquid the effective mass of the cantilever increases, because the cantilever drags

the surrounding liquid. On the other hand, in a gaseous media ω will be near the resonant

frequency because the damping coefficient is relatively low, as shown in figure 1.12 a.

As the tip approaches to the sample the interaction between the tip and the sample

becomes apparent, the cantilever is not free anymore. This interaction is translated

into a shift of the resonance frequency, amplitude and phase as shown in figure 1.12

b. When the force between the tip and the sample is mostly an attractive force, the

resonance frequency is reduced, on the other hand if the force is mostly a repulsive force

the resonance frequency increases. When the tip approaches to the sample it is possible to

measure the amplitude of oscillation as a function of the distance as shown in figure 1.12

c. This curve gives information of the reduction of the cantilever amplitude. Each point
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represents an average value of the tip-sample interactions, so there is no unambiguous

process to transform an amplitude-distance curve in a force-distance curve [138, 139].

Nevertheless, qualitative information about the mechanical properties of a sample can be

obtained.

Additionally forces can vary when going away from a steady-state situation. This

occur while scanning rough surfaces as the amplitude error at the sharp edges can cor-

respond to interaction forces one order of magnitude higher than that of steady-state.

Amplitude error incurred force is the leading cause of tip damage and such damage oc-

curs because the feedback is not directly controlling interaction forces. On samples with

high adhesion forces, a high tip amplitude has to be selected to ensure that the tip leaves

the sample surface before tapping on it again.

1.2.2 Near-field Scanning Optical Microscopy

Extending optical perception to increasingly finer scales permitted early scientists

to discover natural laws otherwise invisible. Over nearly 4 centuries the basic design

of a microscope did not really change conceptually. Then, a few decades ago a new

microscope, the Near-field Scanning Optical Microscopy (NSOM) was developed in an

effort to overcome the diffraction limit of optical imaging.

In 1883, Abbe and Rayleigh derived a criterion for the minimum distance (dmin)

between two point sources at which they can still be unambiguously distinguished as two

separated sources [140].

dmin =
λ

2n sin(θmax)
(1.19)

where λ is the wavelength of the incident light, n is the index of refraction of the sur-

rounding medium and θmax is the maximum collection angle of the optical system. The

denominator n sin(θmax) is called the numerical aperture (NA). The maximum value

that NA can reach is between 1.4 and 1.6. Hence, considering a green incident light with

λ ≈ 500 nm the maximum resolution that can be achieved is roughly 250 nm. In con-

trast, NSOM offers higher resolution (few tens of nanometers) for the same wavelength.

In addition NSOM provides simultaneous measurements of the topography and optical

properties.

In 1928 the first mention of near-field microscopy appeared in an article of Synge

[141]. Synge suggested that the diffraction limit could be overcome by reducing the illumi-

nating light source to a volume smaller than the wavelength. In his article he established

the bases of modern near field optics introducing the notions of superresolution, local

detection and evanescent waves detection. Near-fields are usually tightly confined in the

vicinity of matter so their detection is not easy and needs nanometer accuracy actuators

capable of moving a suitable sensor or light source a few nanometers from the sample.
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Therefore, the invention of the STM in 1982 was a significant instrumental progress for

near-field optics, since the probe rasters the sample a few nanometers above the surface.

The first evidence of the existence of near-fields was done by Newton who discovered

an anomaly in light behavior with his famous "Two prism experiment" carried out at the

end of the 17th century [122, 142]. In his experiment Newton studied the total reflection

of a light beam inside a glass prism. By fastening a second identical prism against the

first one, the light beam could be transmitted from the first to the second prism without

major perturbations, even before the two flat prism surfaces were in contact, i.e. before

the continuity of the material was ensured between the two glass surfaces.

Another evidence of the existence of near-fields is found when developing the electric

field of a linear electric dipole using the Hertz vectors or potential functions [143]. In this

case the electrical field of the dipole varies as function of the distance r as 1/r, 1/r2 and

1/r3, from its center. The fist term (r−1) is associated with a propagating field obeying

the energy conservation law. The other terms (r−2 and r−3) cannot be explained simply,

they carry no energy and therefore they do not propagate. However, they cannot be

neglected in near-field optics, since it is one of the basis of subwavelength resolution.

Near-field optics is based on two important concepts: one is the existence of evanes-

cent waves and the second is the notion of non-propagating fields.

1.2.2.1 Near-field optics insight

A source is called non-radiative if it does not produce any power flow across a close

surface of infinite radius, centered on a point in the source region. The dark zones of

an interference pattern are an example of a non-radiative source. The evanescent waves

studied in this thesis are partial non-radiative sources, since they propagate in the x and

y direction, but not in the z direction.

The description of the field in the vicinity of the sample is composed of both non-

propagating (evanescent) components and propagating ones [144]. This physical duality

of the field has the merit of being simple, but it conceals the fact that these components

cannot be dissociated, since the propagating field exists because the non-propagating

terms exist. Only the propagating components can be defined without ambiguity in the

far-field. In general we can say that the electric field of evanescent waves propagates in

the x, y plane, but is exponentially attenuated in the z direction.

There are three important phenomena where evanescent waves are formed: total

internal reflection, subwavelength diffraction and surface plasmon resonance. In the next

paragraphs these three examples will be presented briefly. More details can be found in

[122, 143, 145, 146]
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Figure 1.13: Total internal reflection scheme where an evanescent wave propagates parallel
to the interface.

a) Total internal reflection

Total internal reflection occurs in a medium 1 denser than medium 2, when the

incident angle (θi) exceeds the value of the critical angle (θc) defined as:

sin(θc) =
n2

n1
(1.20)

where ni is the refractive index in the medium i, and n1 > n2. From the Snell-

Descartes relation the transmitted angle sin(θt) = n1 sin(θi)
n2

. When θi reaches the critical

value θc the transmitted angle θt tends towards 90◦ and the light beam propagates along

the boundary surface.

From Maxwell’s equations it is possible to deduce the electric field. If vi is the

velocity of the electromagnetic wave in the medium i, we obtain:

E(x, z) = E0 exp −iω

(

t −
x sin θi

v1

)

exp −
ωz
v2

√

n2sin2θi

n1

− 1 (1.21)

In addition from Fresnel’s formulae we find that the total reflected components

equal to the incident components. This means that no energy is lost during the reflection

process. Hence, the field lying on the boundary between the two media does not propagate,

it oscillates harmonically without any energy flow and it vanishes rapidly in the z direction

over a distance of a few hundreds of nanometers. However, the energy conservation is

broken when some scattering centers are present at the interface.

The non-propagating character of the evanescent wave is somewhat disconcerting

because the only way to detect the evanescent field consist in converting this field into

a propagating one. Therefore, equation 1.21 is no longer fulfilled and the detector must

be taken into account in the electromagnetic interaction. Although in certain cases it is

possible to ignore the coupling between the collector/emitter and the sample.
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Figure 1.14: Interaction of a plane wave with a sub-wavelength structure. The field is
perturbed in the near-field zone, while in the far-field it is a plane wave similar to the
incident wave.

b) Sub-wavelength diffraction

We have seen that in the case of total internal reflection, it is possible to generate an

evanescent wave for angles above a critical angle. In a similar way in the case of diffraction

a non propagating field can be formed when the half angle of diffraction reaches 90◦.

A plane wave intercepted by a sub-wavelength structure will be strongly perturbed

in the vicinity of the structure, but the light beam after a few nanometers will be recon-

structed in such a way that the emerging wave will be a plane wave as shown in figure 1.14.

Any field distribution characterized by details smaller than the incident light wavelength

will be expanded into propagating and evanescent waves. The amount of evanescent waves

depends on the amount of details smaller than λ. The weight of the evanescent contri-

bution depends on the size (∆d) and the nature of the dispersive objects. The smaller

∆d/λ is the bigger the evanescent contribution is.

c) Surface Plasmon Resonance

A surface plasmon polariton (SPP)is an electro-magnetic wave propagating along

a metal-insulating surface. Optical excitation of the SPP can be achieved using the

Kretschmann configuration (figure 1.15), where p-polarised, collimated light beam un-

dergoes total internal reflection at a dielectric/metal/dielectric interface. The magnitude

of the wave vector of the SPP (kSP P ) is related to the dielectric constants of both the

medium 2 and the gold film. For non-absorbing media, the dielectric constant equals the

square of the refractive index, ǫ = n2, where ǫ is the dielectric constant and n is the

refractive index. Therefore, kSP P is defined as:

kSP P =
2π

λ

√

√

√

√

n2
2n

2
m

n2
2 + n2

m

(1.22)
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Figure 1.15: Kretschmann’s configuration for generating surface plasmons.

where n2 is the refractive index of medium 2 at the vicinity of the interface and nm is the

refractive index of the metal thin film.

When the surface plasmon is non radiative, the solutions of the Maxwell’s equations

are non-homogeneus. Then, the surface plasmon can be excited by the evanescent waves

and this phenomenon is called surface plasmon resonance (SPR). When a gold film with

suitable thickness is placed at the interface, the evanescent wave is enhanced, penetrating

the gold film and existing in the medium 2. The magnitude of the parallel wave vector of

the evanescent wave, kew, is expressed as:

kew =
2π

λ
n1 sin(θ) (1.23)

where n1 is the refractive index of the prism.The angle at which the resonance occurs

is obtained when kSP = kew and is extremely sensitive to any change in n2 when n1 and

nm are fixed. Therefore, the monitoring of the resonance peak angle θSP R can be used to

analyze any change in the refractive index of media 2.

Thanks to its high spatial resolution NSOM has become an interesting tool to study

the surface plasmon resonance of gold nanowires, nanopatterns, etc [147–150]

1.2.2.2 Main Near-field Microscope Configurations

The evanescent waves can not be detected by the objective of a classical microscope,

since they decay exponentially in the z direction. The variations of the field in the
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immediate vicinity of the object have to be collected to achieve subwavelength resolution.

The collection is achieved by transforming the evanescent waves into propagating ones.

Evanescent waves can be converted to propagating radiation by local scattering. The

smaller the scatterer is and the closer it is placed near the surface of an object the better

the conversion will be. This is why the invention of SPMs was essential in the development

of near-field optical microscopy.

According to Babinet’s principle [143], the diffraction pattern from an opaque body

is identical to that from a hole of the same size and shape. This means that the small

details of an object can be accessed by either scattering the evanescent fields created by

the object with a small scattering center or by illuminating the object with evanescent

fields created by a local source. Both process lead to similar results although they are

phenomenologically different.

In NSOM the optical interaction between probe and sample is confined in a small

(subwavelength) volume. Thanks to Babinet’s principle many experimental configurations

can be employed to obtain near-field information of the sample. The probe can be used

either as a source and/or as a detector of evanescent waves. NSOM set-ups are usually

divided in two categories:

• Apertureless NSOM: They use metal tips usually made of tungsten or gold. They

locally scatter the evanescent waves and the near-field information is discriminated

from the far-field signal using specific detection systems, such as lock-in amplifiers.

In some cases it is even possible to benefit from the enhancement of the electric

field created by plasmon resonance and/or antenna effects close to a sharp metal

tip under laser illumination.

• Apertured NSOM: They use optical fiber tips with an aperture whose diameter is

smaller than the used wavelength. A metal coating is used to prevent the light

to spread out of the fiber. These sources can be used as local scatterers or as

nanosources of evanescent waves. Their guiding properties allow to control polar-

ization which is helpful in the interpretation of data.

Since in this work we only used apertured tips, we will only discuss apertured NSOM

configurations. The most common ones are shown in figure 1.16.

It is possible to work in transmission (figure 1.16 a-c) or in reflection (figure 1.16

d-e), exciting with the tip and collecting in far-field (figure 1.16 a,d), illuminating from

far-field with standard optics and collecting light with the tip (figure 1.16 b, e), exciting

and detecting with the tip (figure 1.16 d) or using total internal reflection (figure 1.16 f).

It is important to remark that illuminating the object with evanescent waves created

by total internal reflection (TIR) drastically reduces the background far-field light. This

technique emphasizes the fact that a near-field probe frustrates the evanescent field.
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Figure 1.16: Different NSOM configurations in reflection (a-c) and transmission (d-f).
Exciting with the tip and collecting in far-field (a, d), illuminating from far-field with
standard optics and detecting with the tip (b,e), exciting and detecting with the tip c) or
using total internal reflection f)
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Chapter 2

Near-field Scanning Optical
Microscopy (NSOM)

As mentioned in section 1.1, the SCO phenomenon is accompanied with a change

of the optical properties of the material.

For example, the change of the electronic configuration of the SCO compounds

between the HS and the LS states leads to a change of the absorption spectra. In fact

the spin state changes can be followed by the metal-centered d-d (ligand -field) transitions

positioned in the visible and the near infrared or by the charge transfer bands usually

located in the ultra violet [46]. Nevertheless absorbance changes accompanying the SCO

can be hampered by the weak oscillator strengths of the electronic transitions [151]. One

way to enhance the optical contrast between the two spin states can be achieved through

luminescent doping. In this case, the luminophore must be selected in such a way that

its luminescence is selectively quenched in only a given spin state due to a radiative or

resonant energy transfer process [9].

SCO materials exhibit also an important change in the real part of the complex

refractive index (n∗ = n + ik) through the whole UV-vis-IR spectral ranges primarily

due to the mass density change accompanying the SCO phenomenon. The volume of the

octahedron defined by the six bonding nitrogen atoms around the iron(II) ion is typically

25-30% higher in the HS state leading to a unit cell expansion ∆VHL/V usually between 1

and 10%, depending on the nature of the compound. As a consequence of this significant

density change, one should expect a variation of the real part of the refractive index,

upon SCO, in the range between ∆nHL = 0.01 − 0.1. In addition to this material density

change, one shall consider the change of the electronic polarizability of the complex.

This effect will be particularly important for wavelengths in the vicinity of intense charge

transfer transitions [151]. The change of the refractive index during the SCO phenomenon

have already been analyzed using optical diffraction [2, 152], ellipsometry [2] and surface

plasmon resonance spectroscopy [6, 106]. However, the spatial resolution that can be
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achieved through these methods is limited by the wavelength of the light. To overcome

this problem, our team has explored the use of NSOM to detect the spin crossover with

sub-wavelength spatial resolution on singe crystals [93]. Here, we extended our efforts to

the SCO detection on thin films.

NSOM studies can be performed in transmission and in reflectivity configurations

(see section 1.2.2 for more details). The change in the real part of the refractive index

suggests that the reflection configurations might be very promising. On the other hand,

the observation of the spin transition phenomenon using transmission configurations could

be very challenging due to the low optical density of the material and thus limiting the

type of samples and experimental set-ups that can be used.

In the first part of this chapter we present the instrumentation we used and an

original methodology we developed for temperature dependent SPM measurements. Then,

fluorescence and reflectivity data obtained using NSOM on fluorescent SCO thin films at

different temperatures are analyzed.

2.1 Instrumentation

A Nanonics Multiview 2000T M system was used to perform simultaneous AFM to-

pography (AC mode) as well as near-field (NSOM) and far-field optical imaging thanks

to the excellent coupling between the AFM and the optics in this instrument. This sys-

tem includes two piezo scanners which allow to perform either sample scanning or tip

scanning, by moving either the sample or the probe in the x, y and z directions. This

gives flexibility for using a wide range of possible configurations. In our instrument, the

AFM is located inside an environmental chamber that allows to work under vacuum or

a controlled atmosphere. The temperature of the sample can be controlled either with a

thermoelectrical heating-cooling stage (temperature range from 253 K to 353 K) or with

a resistive heating stage (from room temperature to 473 K). Additionally, it is fully inte-

grated with an upright and an inverted (Olympus) optical microscopes. The ensemble of

the system is placed on an active vibrational isolation table and we have also fabricated

an acoustic enclosure around it using a specific phonic isolation foam (SE50 from the

company Solutions Elastomères). This enclosure serves also to isolate the system from

external light sources.

In the optical measurements (near-field or far-field) light is collected with a Mitutoyo

objective (either 20x magnification and numerical aperture N.A.=0.42 or 50x magnifica-

tion and N.A.=0.55) and it is sent to a high sensitivity CCD camera (Andor Technology

Clara) and/or a photomultiplier tube (MP900 from Perkin Elmer), which can be used

independently. Different filters and accessories can be easily integrated to the microscope

depending on the experiment. One thing that makes this microscope unique is that it is
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Figure 2.1: Nanonics Multiview 2000 atomic force microscope at the LCC-CNRS.

optically an open system. The tips are made of a bent fiber of glass or fused silica (see

figure 2.2). The architecture of this instrument is conceived in such a way that the optical

path from the sample to the detectors is not obstructed either by the probe or the SPM

detection system. As a consequence, the optical access to the sample remains excellent in

both transmission and reflection modes even when the tip is engaged.

This microscope uses a tuning fork instead of a beam deflection system. Hence, this

AFM works only in AC mode. The probe is mounted on a tuning fork which is excited

by an AC voltage near its resonant frequency; the oscillations are then sensed with a

electrical detection scheme [153]. Contrary to beam deflection systems, in tuning fork

systems there is no optical perturbation due to an additional laser signal, they present

higher amplitude and phase sensitivities and a higher mechanical quality factor Q, which

allows a better control of the system.

NSOM tips consist of a bent silica optical fiber (length ≈ 3 m) which is coated

with Cu and Au. Therefore, light can be transmitted to the aperture with the same

efficiencies and polarization properties as those of conventional, straight near-field optical

elements. In this work tips with an aperture of ≈ 200 nm were used, unless otherwise

mentioned. This relatively large aperture reduces the achievable optical resolution, but

allows to collect more signal. The quality factor of the probes we used varied between 400

and 1900, the frequency of resonance was ≈ 33 kHz, the length of the tip was between
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Figure 2.2: a) Photograph of a fiber tip glued to a tuning fork cantilever. b) Scanning
electron microscope image of the very apex of the tip, showing a circular hole of around
200 nm. c) Scheme of the fiber tip and its coating. d) Scheme of a fiber tip mounted on a
tuning fork. Optical images of e) an AFM tip engaged on a Si surface and f) and NSOM
tip engaged to a sample.

150 - 300 µm, the length of the fiber was ≈ 3 m, the angle of the bending was ca. 15-20

degrees.

A blue line (488 nm) of an argon laser (Melles Griot) was coupled to a multimode

fiber using an Olympus objective lens (20x magnification and N.A. = 0.4). At the end

of the multimode fiber a series of lenses (collimation package F810FC from Thorlabs)

helps to collimate the light and then it is injected to the tip fiber using an Olympus

objective lens (4x magnification, N.A.=0.1). The multimode fiber allows us to place

the laser on a separated table, reducing the propagation of mechanical vibrations to

the AFM table. In certain cases, the continuous (CW) laser beam was modulated by a

mechanical chopper (SR540, Stanford Research Systems) which allowed us to put in place

a synchronized detection using a lock-in amplifier (720 DSP, EG&G Instruments). This

detection scheme is used to improve the signal to noise ratio. The lock-in amplifier can be

also used to achieve synchronization with the oscillating tip in order to better separate the

near-field contribution from the far-field. Nevertheless, for our set-up this latter approach

gave rarely a satisfactory signal.

Before performing any AFM-NSOM experiments, it is important to calibrate the

piezos using a characterization grid, assure that the table is floating and reduce any source

of vibration like suspended cables or other instruments. Check that all the different parts

are well fixed (i.e. microscope, probe, probe holder, upper scanner, etc.). Each time a

new tip is mounted, it is necessary to check that a good connection is achieved between

the probe and the instrument (i.e. the measured quality factor should be near the one

given by the manufacturer) and verify the integrity of the tip using optical microscopy.
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The error signal before the tip engage should be between 0.2 and 0.3. If the engage is well

done, this value reduces to ≈0.01. In NSOM experiments the fiber should be placed in

such a way that it bends the less abruptly possible to avoid loose of power at the end of

the tip. The maximum laser power that can be used without melting the tip is 15 mW.

The laser aligment can be done using the CCD camera to determine the point when the

maximum light intensity exits the fiber1. It is important to remark that any vibration

of the fiber will certainly affect output power at the end of the NSOM tip due to losses

when the fiber is deformed. Thus, during an NSOM measurement, the whole body of the

fiber must be fixed to a surface in order to avoid artifacts in the detected signal.

2.2 Methodology

Up to now there is only one NSOM study that has been done on SCO compounds [93]

and generally speaking NSOM studies on phase change materials are scarce as well. While

a few qualitative investigations have been reported in the literature [154], quantitative

NSOM imaging across a phase transition remains a challenge. Of course it is essential to

avoid topography artifacts and separate the near-field from the far-field contribution as

much as possible (see appendix A). In our case, further complications arise since images are

acquired during the thermal cycling of the sample. In general, changing the temperature

leads to rotations and translations of the sample due to thermal expansion and even due

to the spin transition itself. In addition the properties of the probe (spring constant, size,

resonance frequency, etc.) evolve also with temperature (see section 4.3.1). Independently

of the temperature change, the mere fact that in most of our experiments we need to

perform several tens of successive scans in a quantitative manner is a considerable technical

challenge for most SPM modes because both the sample and the tip can suffer unwanted

degradation. For these reasons, the simultaneous detection of the spin crossover by other

means is necessary to determine whether the changes observed by SPM do not come

from other phenomena. As mentioned above, the SCO phenomenon involves a drastical

change of optical properties; hence, probably the most convenient way to follow the spin

transition during an SPM experiment is provided by far-field optical microscopy. The

AFM-optical coupling in the Nanonics system allows to capture near-field and far-field

signals at the same time with great flexibility. In this thesis we used several far-field

optical configurations such as luminescence microscopy and bright field microscopy (both

in reflection and transmission modes) to infer the spin state of the sample in-situ during

the SPM measurements.

Whenever it is necessary to compare several images in a quantitative manner while

1As the fiber is moved in front of the laser beam, it becomes brighter, this means that the laser is
entering in the border of the fiber and that the coupling is not well done.
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working with NSOM or any other SPM it is convenient to have a reference area in the scan

zone that is not expected to change. This reference area can give us information about

the tip wear or tip-sample interaction changes. This could allow us to correct the data in

a reliable manner and assure a better interpretation of our results. However, while using

conventional SPM heater or cooler devices it is almost impossible to achieve such reference

area since the entire image is affected by thermal effects. In order to overcome this

problem, we implemented an original strategy wherein we change the sample temperature

only in a small area. This was achieved by means of a Joule heated metallic nanowire. In

the next section we discuss in more details this nanoheater approach, which we developed

in collaboration with Christian Bergaud (LAAS-CNRS, Toulouse).

2.2.1 Nanowires for Heating Purposes

Metallic wires can be heated using an electrical current as it is described by Joule’s

laws of heating. In particular, nanowires can be heated using a low electrical current

flow due to their low dimensions and low heat capacitance. For the same reasons, the

temporal response of the nanowires can be very high. For example, in the case of the

nanowire devices used in this thesis, the steady-state temperature can be reached within

a few hundreds of nanoseconds (Figure 2.3). Fast heating is an interesting feature when

it is combined with an AFM, since it becomes possible to change the temperature (i.e.

applied current) in a controlled manner between two scan lines. A further interesting asset

of the nanowire heater is that the ∆T can be confined in a very small volume - using an

appropriate design. For instance, while using identical nanowires, the heated area is

much smaller on silicon than on glass substrates due to the significantly higher thermal

conductivity of silicon. Figure 2.3 b shows a finite elements simulation of a gold microwire

heater on a silicon substrate. It can be seen that the induced ∆T is tightly confined to

the wire and the temperature distribution is very homogeneous along its long axis. This

means that only a few micrometers away from the wire the sample temperature remains

unaffected and this sample area can be used as a reference zone in each scan. In addition,

contrary to the usual heating stages proposed by AFM manufacturers, such nanowire

heaters do not induce any discernible thermal drift of the sample and the properties of

the AFM tip can remain nearly unaffected by the sample temperature changes (depending

on the experimental details). Since the heated area is very small any convection effect

due to a difference of temperature between the heater and the probe or the probe holder

is minimized.

The thermal design of these heating elements is a critical step. The performance of

a heating platform is largely dependent not only on the size of the system, but also on

the materials used and the geometry of the different components.
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Figure 2.3: a) Electrical and optical transient heating response of a set of five gold
nanowire heaters (thickness = 50 nm, width= 500 nm, length 80 µm) covered with a
thin layer of Rhodamine B as function time. The response time of the nanowire is in the
order of a few hundred nanoseconds [155]. b) COMSOL finite element simulation that
shows the confinement of the heat of a nanowire (thickness = 50 nm, width = 1 µm and
length = 80 µm) [156].

2.2.1.1 Nanowire fabrication

Gold micro- and nanowires were fabricated by Carlos Quintero at LAAS-CNRS

on silicon and glass substrates either by stepper photolithography or by electron beam

lithography (EBL) with subsequent metal deposition and lift-off process. An additional

photolithography process is necessary to build micrometric electrodes that connect the

nanowires to an external circuit.

The substrates used for Au nanowire fabrication were 500 µm thick glass or <100>

p-type silicon wafers passivated with a SiO2 layer (200-500 nm thick). Si wafers were

cleaned using a Piranha solution that consists of a 1:3 mixture of H2O2 and H2SO4.

In the first method gold nanowires (length 40 µm, thickness 50 nm and width 0.5-1

µm) were fabricated by stepper photolithography with a subsequent metal deposition and

lift-off process. A photo sensitive negative resist (NLOF) was spin coated and selectively

exposed to UV radiation. Then, the sections that were not exposed to UV radiation are

removed while immersing the wafer in the MIF20CD developer solution during 30 seconds.

Here, the different designs of the wires are engraved into the resist in the form of cavities.

Then, a Ti/Au metallization with a respective thickness of 10 nm / 40 nm was performed

on the wafer. (The Ti layer works as an adhesive layer between the gold and SiO2.) Last,

a lift off in acetone medium is done in order to remove the remaining resist leaving only

the metal that was in touch with the surface, i.e. the nanowires.

In the second method, 50 nm thick, 80 µm long and 500 nm or 1 µm wide gold wires

were fabricated by means of electron beam lithography (EBL). A positive EBL resist layer

(PMMA, Polymethylmethacrylate) was spin coated and then it was selectively exposed

with a RAITH - 150 EBL writer. Here, a focused electron beam is used to pattern the

nanowires on the PMMA film. The irradiated zones become soluble in a 1:3 solution
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Figure 2.4: (a) Schematic steps of the fabrication process of the microwires and nanowires
by e-beam lithography (right) and photolithography (left). Scanning Electron Microscopy
image (b) and schematic drawing (c) of a 50nm x 1µm x 80 µm Au nanoheater device.

of MIBK (Methyl isobutyl ketone) and IPA (Isopropyl alcohol). After immersing the

wafer in this solution, cavities with the form of the nanowires are created in the layer.

Afterwards, a Ti/Au metallization with a respective thickness of 10 nm and 40 nm was

performed. Finally, by means of a lift off process in acetone the resist is removed from

the surface leaving only the metal that was in contact with the substrate.

In both cases the connecting gold pads and micrometric wires (thickness = 250 nm,

width = 1-4 µm, length = 1 mm) were fabricated using standard photolithography.

2.2.1.2 Nanowire calibration

The temperature calibration of the gold nanowires was performed by combining two

electrical measurements. First, the resistance of the wires was measured as a function

of the temperature using a heating stage. Second, the resistance was measured as a

function of the applied electrical current. Assuming that the resistance variation mainly

comes from the change of the temperature in the nanowire, it is possible to relate the two

measurements to obtain a calibration of the mean temperature of the wire as a function of

the applied current and find the quadratic relationship that relates both of them (Figure



Chapter 2 : Near-field Scanning Optical Microscopy (NSOM) 45

Figure 2.5: Characterization of a gold nanowire heater (thickness= 50 nm, width = 1 µ
m, length 40 µm), a)Resistance as function of the temperature obtained by heating the
substrate with a heating stage, b) Resistance as a function of the applied current, c) Mean
temperature of the nanowire as a function of the applied current. This plot is obtained
from a and b.

2.5).

2.2.2 Samples combining Spin Crossover and Luminescence

In the past few years, a few hybrid materials combining luminescence and spin

crossover (SCO) properties have been reported in the literature with the aim of achieving

luminescence signal modulation resulting from the spin state switching phenomenon [9].

Indeed, the SCO phenomenon involves very drastic changes in the electronic configuration

and the crystal structure of the material. Thus, if a luminescent probe is introduced

in the material, the changes accompanying the spin state switching can also affect the

luminescent properties of the probe.

Luminescence can be modulated by changes in the density of the lattice or in the

electronic configuration of the SCO material. In the first case, the mechanical coupling

between the luminophore and the host lattice can affect both the wavelength and the

intensity of the luminescence. A purely electronic coupling is also possible when there

is a close match between the energy levels of the luminophore and those of the SCO

compound in a given spin state. In other words, if the excitation or emission spectra of

the luminophore overlaps with either the LS or the HS absorption spectrum of the SCO

compound, a quenching of the luminescence occurs in that spin state [8].

While combining SCO with luminescence there are several important issues that

must be taken into account. For instance, if the SCO center is too close to the lu-

minophore the luminescence could be quenched in both spin states resulting in a non

radiative compound. Furthermore, the luminophore should not be sensible to the stimuli

which is used to trigger the spin transition. For example, in the case of thermal SCO

the luminophore should not present an important thermal quenching in the temperature

range of the SCO phenomenon. This way the changes in the luminescence can be related
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directly to the spin transition.

In the literature, there are basically two synthetic strategies: (i) combining the

luminophore and the SCO centers into a single entity or (ii) doping the SCO material

with luminescent entities.

The first case can be achieved either by generating luminescent ligands or counteri-

ons. However, changing the SCO molecule to include a luminescent moiety may lead to

the loss of one or both properties in an unpredictable manner. Another complication with

this kind of systems is the high concentration of fluorescent centers which may result in

self-quenching 2 and the loss of the luminescent signal in both states. Even though in an

ideal condition one should have one luminophore for each SCO molecule to monitor the

phenomenon, such situation could be detrimental for the overall luminescent response.

In the second case (doping), the luminophores are in uncertain positions of the

lattice, therefore the interaction between SCO centers and luminophores is more difficult

to elucidate. The luminophore is used as a structural probe, where only part of the

SCO material is probed by some luminescent entities. Hence, the luminescent signal may

not characterize the ensemble of the system. On the other hand, since the dopant is

present in low quantities, the probability of altering spin transition properties decreases.

Moreover, since each component is independent, the properties of one element can be

modified without altering the other one.

2.2.2.1 [FeII(hptrz)]3(OTs)2 doped with Rhodamine 110

This hybrid material has been developed in our team and used as a test sam-

ple in many cases. Thin films are prepared by spin coating a chloroform solution of

[FeII(hptrz)3](OTs)2 (hptrz=4-heptyl-1,2,4-triazole, OTs=tosylate) and Rhodamine 110

[9]. The resulting thin film is homogeneous (roughness, Ra ≈ 5 nm) and can be deposited

on any surface. As shown in figure 2.6. The spin transition occurs not far from room

temperature. For these reasons we identified this compound as a good candidate for SPM

studies.

a) Synthesis

The compound was synthesized as described by Quintero et al. [9]. The mother

solution of the complex was prepared by mixing two solutions; the 1st containing iron(II)

tosylate hexahydrate (30 mg, 0.06 mmol, 1 equiv.) and p-toluenesulphonic acid mono-

hydrate (4 mg, 0.02 mmol) in ethanol (150 µl) and the second containing 4-heptyl-1,2,4-

triazole (60-100 mg, 0.36 mmol, 2 equiv.) in CHCl3 (4 ml). For spin coating 50 µl of

2When the absorption and emission bands of the luminophore overlap there could be an energy transfer
between luminophores and travel long distances without emission, witch ends in a loss of the luminescent
signal.
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Figure 2.6: a)AFM image acquired around a scratch made on a thin film of
[FeII(hptrz)3](OTs)2. b) Height histogram corresponding to the AFM image.

Figure 2.7: Photographs of undoped [Fe(hptrz)3](OTs)2 in chloroform solution in the low
spin and high spin states.

the mother solution of the complex was mixed with 0.66 mM ethanol solution of rho-

damine 110 (0.2% mol of luminophore per iron atom). Thin films of this compound were

deposited on the substrates by spin coating the solution with the following parameters:

speed = 5000 rpm, acceleration = 4000 rpm2 and time = 30 s. Under these conditions the

spin coated films measured ca. 80 nm thickness with a roughness of ≈ 5 nm, as shown in

figure 2.6. Thicker films were obtained by increasing the amount of ligands in the mother

solution.

b) Characterization

Un-doped [Fe(hptrz)3](OTs)3 in chloroform forms very small particles (6.5+/-2 nm)

which remain stable for a few hours [151]. This solution is violet in the LS state and

transparent in the HS state as shown in figure 2.7. The spin transition occurs near room

temperature at T ↑

1/2 ≈ 315 K on heating and T ↓

1/2 ≈ 307 K on cooling, i.e. with a small

hysteresis.

Figure 2.8 (a) shows the absorption spectra of the solution in the high spin and low

spin states. In the LS state one can observe an absorption peak around 540 nm, which
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Figure 2.8: a) High spin and low spin absorption spectra of [FeII(hptrz)3](OTs)2 in the
visible range[9] displayed together with the excitation and emission spectra of Rhodamine
110. b) Normalized luminescence spectra at 293 K (LS) and 315 K (HS) of a chlorophorm
solution of [FeII(hptrz)3](OTs)2 doped with Rhodamine 110. (The sample was excited
with blue light (450 nm) selected with a band pass filter.)

corresponds to the 1A1 →1T1 transition. In the HS state the solution is completely

transparent in the visible range. We have chosen Rhodamine 110 as a luminescent probe

for two principal reasons. First, its emission peak overlaps perfectly with the LS absorp-

tion peak of [Fe(hptrz)3](OTs)3 (figure 2.8 a). Second, it does not present considerable

thermal quenching in the range of temperatures that we are interested in. Figure 2.8 (b)

displays the luminescence emission spectra recorded at 293 K (LS state) and at 315 K

(HS state) for a [Fe(hptrz)3](OTs)3 chloroform solution doped with Rhodamine 110. An

increase of the luminescence is observed when going from the LS to the HS state. The

lower luminescence intensity in the LS state can be rationalized by an energy transfer

from the excited luminophore to the LS complex.

Even though the optical density of these films is negligible in the visible range

[9], they provide a considerable modulation of the luminescence due to spin transition.

Figure 2.9 shows the thermal variation of the luminescence of this film monitored in

far-field using conventional fluorescence microscopy in air or under N2 atmosphere. The

samples were cycled several times at a rate of 2 K/min from room temperature to 350 K.

While going from the LS to the HS state, the fluorescence intensity increases in a rather

abrupt manner. This observation corresponds closely to the results obtained with the

sample in chloroform solution (Figure 2.9). Fluorescence is modulated as a function of

the temperature due to a change of the spin state of the compound. The spin transition

temperature shifts up to ten degrees depending on the atmosphere around the film. This

phenomenon is well known in the literature: the more hydrated is the sample (i.e. ambient

air), the higher is the transition temperature.



Chapter 2 : Near-field Scanning Optical Microscopy (NSOM) 49

Figure 2.9: Fluorescence intensity as a function of temperature of a [Fe(hptrz)3](OTs)2

thin film doped with Rhodamine 110 (excitation at 450 nm and detection at 550 nm)
recorded under N2 (a) or in air (b) atmospheres during two successive thermal cycles.
(Heating mode: open symbols, cooling mode: closed symbols.)

2.3 NSOM fluorescence

The first NSOM experiments on [FeII(hptrz)]3(OTs)2 were performed using fluores-

cent detection. The sample was irradiated with a blue line (488 nm) of an argon ion laser

(Melles Griot) coupled to the tip fiber as mentioned in section 2.1. When the tip is near

the sample, evanescent waves generated near the apex of the tip excite the fluorophores

in a very small volume. The light emitted and reflected by the sample is then collected

by a Mitutoyo objective (50x magnification, N.A.=0.55). Then, this light is filtered with

a dichroic mirror (Semrock FF510-Di02) that reflects the light below 510 nm and a band

pass filter centered at 550 nm (F1). The signal is then detected by a photomultiplier tube

(PMT). As a protection, a Notch filter centered at 488 nm (F2) was placed in front of

the photomultiplier tube (Figure 2.10). The laser intensity at the entrance of the NSOM

fiber was varied between 1 and 7 mW depending on the fluorescence signal of the sample.

NSOM scans were carried out while acquiring the AFM topography as well. The feedback

signal was provided by the phase channel of the AFM.

Before and after each near-field scan we have systematically recorded a far-field

fluorescence image of the sample as well. For far-field fluorescence measurements the

microscope was equipped with a charge coupled device (CCD) camera. In this case the

sample was excited using a halogen lamp and a band pass filter centered at 450 nm. The

emitted photons were collected with the same 50x Mitutoyo objective and fluorescence

was separated from the excitation light using the same filters as in NSOM.

Several factors that are not related to the spin transition can affect the luminescent

intensity of the sample. For example, photobleaching, wear and contamination of the tip,

etc. In thermal studies where several SPM scans have to be performed, a good reference

area can help to compare different scans.

In a first approach we made a narrow scratch on a thin film (≈ 150 nm) of



50 Chapter 2 : Near-field Scanning Optical Microscopy (NSOM)

Figure 2.10: Experimental set-ups for obtaining the fluorescent signal in a) NSOM and
b) far field. DM stands for dichroic mirror (510 nm), F1 for a band pass filter centered
at 550 nm and F2 for a notch filter centered at 488 nm.

FeII(hptrz)]3(OTs)2 spin coated on a silicon substrate. The absence of fluorescent mate-

rial in the scratch should be observed as a dark area in the NSOM image and it should

have the same intensity in all the NSOM maps. In figure 2.11, an image of the topography

of the thin layer obtained with an NSOM tip is presented. Each scan consists of 128 X 42

points acquired at a rate of 12 ms per point. Even though the tip aperture is relatively

large (≈ 200 nm) we can observe that the layer is constituted by grains which measure

some hundreds of nanometers. After dehydrating the sample at 353 K for 30 min under

nitrogen flux, successive scans were performed in nitrogen atmosphere at different temper-

atures. In panel c the average cross sections of the topography for different temperatures

(from 293 K to 343 K) are presented. The topography does not show any significant vari-

ation, i.e. the volume change related to the spin transition. This is not surprising since

the average unit cell parameter expansion in this compound is only around 1% [157]. As

it can be observed in this figure, the stability of the topography signal in temperature de-

pendent measurements is not enough to observe such small volume changes. Nevertheless

we can consider that the reproducibility of the scans is quite satisfactory.

The laser intensity during these scans was decreased as much as possible to avoid

laser induced destruction of the luminophores, i.e. to minimize the photobleaching. Nev-

ertheless, to obtain a good signal to noise ratio allowing the observation of details in the

sample, the intensity must be adjusted so as the PMT detects between 100 and 600 pho-

tons per second as shown in figure 2.11 b. In other words a compromise must be found
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Figure 2.11: Simultaneous AFM topography and NSOM scans around a scratch made in a
thin layer (≈ 150 nm) of [FeII(hptrz)]3(OTs)2 spin coated on silicon. (The scratch appears
as a black area in the images.) a) Topography, b) near-field fluorescence scan, c) cross
section of topography at different temperatures. Cross section of near-field fluorescence
signal at different temperatures while cooling (d) and heating (e).

between signal intensity and sample stability. Average cross sections of the NSOM maps

at different temperatures are presented in panels d and e of figure 2.11 upon cooling and

heating, respectively. As expected the fluorescence intensity increases at higher temper-

atures, which is the opposite phenomena of ordinary thermal quenching and thus we can

tentatively attribute it to the spin transition in the sample. However, the fluorescence

signal also changes in the scratched area. Assuming that the increase of fluorescence

in this area is due to the pollution of the tip, more realistic values can be obtained by

subtracting this "dark signal" from the signal of the sample at each temperature. The

resulting fluorescence intensity is plotted as function of the temperature in figure 2.12.

Figure 2.12 shows also a far-field image at room temperature. The red square

in this image indicates the zone scanned in near-field. In the NSOM map we observe

some grains, that can not be resolved in the far-field image. In panel b a comparison

of the fluorescence intensity between the near-field and far-field data as a function of

the temperature is presented. Far-field data is plotted for both, the scanned area and

another "virgin" area which was not scanned in near-field. While heating the sample

from room temperature to 343 K, the fluorescence intensity in far-field increases quite

monotonously, but the most important change seems to occur between 303 and 313 K.

On cooling, the signal remains constant down to 313 K, then it decreases to its initial

value at room temperature. A hysteresis between heating and cooling is observed. These

results compare reasonably well with those shown in figure 2.9 and can be thus attributed

to the spin transition of the sample. The difference between the far-field intensity in

and out of the scanned area remains small through the whole temperature cycle. This
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Figure 2.12: a) Fluorescence signal in far field and in near-field of a layer (≈ 150 nm) of
[FeII(hptrz)]3(OTs)2 spin coated on silicon. b) Fluorescence signal as function of temper-
ature of the same layer in far-field and in near-field. Far-field data is plotted both for the
scanned area (shown by the red rectangle in (a)) and another area which was not scanned
in near-field.

observation as well as the reversibility of the signal indicates that photobleaching effects

remain negligible in this experiment. There is also a fairly good correspondence between

the temperature dependence of the far-field and near-field fluorescence signal, in particular

at the beginning of the thermal cycle. At the end, the difference between near-field and

far-field data increases considerably. This difference can be most probably associated to

a change of the tip (wear, contamination, etc.). It should be noted that recording the

complete thermal cycle, including 20 far-field and 10 near-field images, took approximately

7 hours. Despite these severe experimental constraints we can conclude that the spin

transition is observable through the near-field fluorescence signal.

To further improve the measurement protocol, the use of a fluorescent reference area

can help to discriminate different artifacts such as photobleaching or the change of the

properties of the tip. In principle, the fluorescence signal intensity in the reference area

will decrease if the laser photobleaches the sample, but the changes related to tip wear

are less predictable. In any case the changes will be, at least partially, irreversible. As

mentioned before, under certain conditions a metallic nanowire can heat a very localized

area that can easily be surpassed in a single scan. Furthermore, the temperature of the

nanowire stabilizes in less than a microsecond. This allows to change the current applied

to the nanowire between two scan lines. In optimal conditions, i.e. if the substrate is well

fixed, only one or two scans are needed to determine if the spin transition can be detected

with a given experimental set-up.
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Figure 2.13: a) Temperature as function of the applied current of a gold microwire (thick-
ness=250 nm, width=8 µm, length=1 mm) on glass substrate. b) Temperature depen-
dence of the far-field fluorescence signal of a layer (≈ 60 nm) of [FeII(hptrz)]3(OTs)2 spin
coated on the microwire device. Heating and cooling modes are indicated by arrows.

To test these ideas, we have fabricated gold microwires on a glass substrate using

the method presented in section 2.2.1.2. The temperature vs current characteristic of the

device is shown in figure 2.13 (a). Then, a fresh solution of [Fe(hptrz)]3(OTs)2 doped with

Rhodamine 110 was spin coated on the device. The fluorescence signal of this sample as

a function of temperature (recorded in air) is shown in figure 2.13. Even though the SCO

property of the sample is clearly inferred from this figure, the transition temperature

differs somewhat from the one shown in figure 2.9. In this sample the spin transition

is detected at T↓

1/2 = 303 K upon cooling and at T↑

1/2 = 312 K upon heating. This

reproducibility problem with this sample is well known in the literature and it is probably

related to its high sensitivity to humidity. Nevertheless, this issue does not represent a

serious drawback for our experiments because we can continuously monitor the spin state

of the system by far-field measurements. From the graphs shown in figure 2.13 we can

determine that the current needed to trigger the complete spin transition is 42 mA.

The topography of the film of [FeII(hptrz)]3(OTs)2 spin coated on the microwire is

shown in figure 2.14 a. The microwire, colored in yellow, is not centered in the image in

order to be able to observe a large reference area within the scan. Similar to the previous

sample, we observe a granular film with an average grain size of 250 nm. In panel b,

the NSOM signal recorded at room temperature is presented. In NSOM configuration

the light that arrives to the detector has been dispersed by the tip and by features in

the topography of the sample. This artifact is particularly visible at the border of the

microwire. It is also important to notice that the distribution of the luminescent probes

in the sample is not uniform, since some areas are more luminescent than others and the
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topography indicates that there is nearly the same amount of material everywhere on the

wire.

In the next step we acquired AFM and NSOM images while applying different

currents (2 mA and 42 mA) to the wire. From figure 2.13 we can infer that the sample

is in the low spin (high spin) state at 2 (42) mA. The average cross sections of the

topography and the NSOM signal in the two spin states are presented in figure 2.14 c

and d, respectively. The topography is very well reproducible from one scan to the next

and no significant effect of the spin transition can be detected. The NSOM average cross

section shows some differences as shown in figure 2.14 d. We can make two important

observations here. First, the fluorescence intensity of the sample on the wire is significantly

higher in the high spin state in agreement with the far-field results. On the other hand,

the signal intensity changes also far from the wire (more than 30 µm away) where the

sample temperature and thus its spin state should be the same. We have therefore made

an image treatment with the hypothesis that far from the wire the signal intensity is the

same in each scan. Each cross section was thus divided by the average value obtained far

from the wire. The result, shown in figure 2.14 e, is not satisfactory because scans recorded

in the same conditions do not overlap. Different reasons, either related to the tip or to

the sample degradation, can explain this observation. In order to reduce these problems,

we decided to change the acquisition strategy and we changed the applied current during

a single scan.

Figure 2.15 displays this type of scan where the current applied to the wire was

successively switched between two values (2 mA and 42 mA) after 14 scan lines, which

corresponds to ca. 5 µm. As result, a NSOM map with dark areas (low spin state) and

bright areas (high spin state) was obtained (panel c). In panel d the cross section of

the different areas corresponding to the two different current values is shown. Cold and

neutral colors represent low current areas and warm colors represent high current areas.

There is a very obvious increase of the luminescence on and around the wire when the high

current is applied. Unfortunately, the inhomogeneity of the luminescence of the sample

does not allow to make a more quantitative analysis based only on this image. However,

by subtracting the NSOM image recorded in the LS state (figure 2.14 b) from the NSOM

image presented in figure 2.15 c, we obtain an image which contains information only

(or chiefly) about the effect of the current switching on the NSOM signal (figure 2.15

e). In panel f, the cross sections of the different areas corresponding to the two different

current values are shown for this figure. As it can be expected the substraction for the

zones with I = 2 mA (LS state) leads to values close to zero even if the error becomes

non-negligible in the highly fluorescent part of the sample. On the other hand, the cross

sections for the areas where I = 42 mA (HS state) reveal higher intensities on top and in

the proximity of the wire while the difference tends towards zero when the tip moves away

from the wire. This figure puts in evidence the spin transition in a repeatable manner
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Figure 2.14: Room temperature topography (a) and NSOM fluorescence images (b) of
a thin layer (≈ 60 nm) of [FeII(hptrz)]3(OTs)2 spin coated on a gold microwire (thick-
ness=250 nm, width=8 µm, length=1 mm, glass substrate). Images were recorded without
any applied bias on the wire. Average cross sections of c) topography, d) NSOM fluores-
cence signal and e) corrected NSOM signal for successive scans performed by applying
different currents (2 and 42 mA) on the wire.

in the area heated by the wire. It shows also that far form the wires there is no spin

transition. We can conclude therefore that NSOM fluorescence can be used to detect the

spin transition. On the other hand, it is practically impossible to transform the NSOM

fluorescence intensity image into a high spin fraction image for two reasons. First of all,

the intensities measured in different points of the sample can not be compared because the

NSOM signal is strongly influenced by different parameters such as sample topography,

the nature of the substrate, etc. This problem is particularly evident in our data when

comparing the sample deposited on gold (i.e. the wire) or on glass. The second problem

is photobleaching. When repeating several times the experiment shown in figure 2.15

the difference between the HS and LS signal intensity becomes smaller and smaller due

to photobleaching. The far-field fluorescence image recorded after this experiment(figure

2.16) shows clearly that NSOM scans (i.e. the dark areas) produce severe photobleaching.

As stated above, the laser intensity was kept in all cases at the minimum intensity

necessary to obtain an NSOM map. The use of other detection systems such as an

avalanche photodiode with higher quantum efficiency might help to reduce the intensity

of the laser and thus to reduce photobleaching. However, the signal to noise ratio is

smaller in an avalanche photodiode than in a PMT, hence the small variations in the

luminescence due to SCO phenomena could be more difficult to observe.
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Figure 2.15: AFM topography (a) and NSOM fluorescence images (c) of a thin layer (≈ 60
nm) of [FeII(hptrz)]3(OTs)2 spin coated on a gold microwire (thickness=250 nm, width=8
µm, length=1 mm, glass substrate). During image acquisition the current flowing in the
wire was successively switched between 2 mA and 42 mA as indicated in the images.
Cross sections of the scanned areas corresponding to the two different current values in
the topography image (b) and in the NSOM fluorescence image (d). e) Corrected NSOM
fluorescence image obtained by substracting the image in figure 2.14 b) from the NSOM
image presented in figure 2.15 c. f) Cross sections of the scanned areas corresponding to
the two different current values in the corrected NSOM image (e).
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Figure 2.16: Far-field fluorescence image recorded following a series of NSOM scans in
different parts of the sample around the gold wire. The black squares were produced by
photobleaching while scanning the surface with the NSOM tip.

2.4 NSOM reflectivity

Opposed to fluorescence measurements, NSOM reflectivity experiments provide sev-

eral advantages. First of all the higher photon counts are translated into a higher signal

to noise ratio. This allows us to place several beam-splitters before the NSOM detector in

order to carry out simultaneous far-field and near-field measurements as shown in figure

2.18. This is particularly important so as to control continuously the good focusing of

the sample. The second important advantage is that photobleaching can be neglected in

reflectivity measurements. The disadvantage is that the spin transition in thin films can

not be easily detected in the far-field without the contrast enhancement provided by the

luminescence.

In the case of nanometric thin films the change of the reflectivity signal due to the

spin crossover is primarily related to the change of the real part of the refractive index

(n). (I.e. the optical density of such thin films is negligible.) Figure 2.17 shows the

variation of the real part of the refractive index as a function of the wavelength for the

compound [Fe(hptrz)]3(OTs)2 as reported in [2]. The thermal variation of n (presented

in figure 2.17 b) is virtually linear far from the spin transition as expected for ordinary

thermal expansion. Around the spin transition n shows a discontinuity. The variation

of the real part of the refractive index between the low spin and high spin states for

[Fe(hptrz)]3(OTs)2) is ∆nHL = 0.015 (λ = 660 nm) [2]. We expect to observe a similar

behavior using near-field scanning optical microscopy and a hysteresis should be also

observed around 320 K. Since there are no singularities in the refractive index in the
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Figure 2.17: Spectroscopic ellipsometry results obtained on a thin layer (thickness = 80
nm) of [Fe(hptrz)]3(OTs)2): a) refractive index spectra recorded at 348 K (HS state) and
at 293 K (LS state) in air and b) temperature dependence of the real part of the refractive
index in the heating mode at different wavelengths [2].

visible wavelengths, any laser wavelength in the visible region can be used to excite the

sample and observe the spin transition. In particular, we can use the blue (λ = 488 nm)

argon laser line.

The set-up for NSOM reflectivity experiments (figure 2.18) is similar to the fluo-

rescence configuration. For far-field reflectivity detection the sample is illuminated with

blue light from a halogen lamp selected with a band pass filter (450 ± 22.5 nm). The

light reflected by the sample is then detected by a CCD camera. For near-field reflectivity

measurements, a blue line (488 nm) of an argon laser (Melles Griot) is coupled to the tip

fiber as mentioned in section 2.1. The evanescent waves produced at the end of the tip

are diffracted by the sample and collected by a Mitutoyo objective (20x magnification,

N.A.=0.4). A beam splitter (50/50) sends the collected light to a band pass filter (500 ±

25 nm) to filter out the light from the halogen lamp. Finally the reflected laser light is

detected by a PMT.

The reflectance of gold for wavelengths between 400 and 500 nm is below 40%,

therefore when illuminated with blue light it provides a dark contrast on glass substrates,

which was observed in both far-field and near-field configurations (figure 2.19 b and d,

respectively). The dispersion effect produced by the edges of the nanowire is considerably

diminished, which is important since we are interested in observing differences in intensity

between the film deposited on the wire and on the substrate.

Figure 2.20 displays the AFM topography and NSOM reflectivity images of a thin

layer (≈ 60 nm) of [FeII(hptrz)]3(OTs)2 spin coated on a gold microwire (thickness=250

nm, width=8 µm, length=1 mm). Similar to the strategy we used in NSOM fluorescence,

the current applied to the wire was switched several times between 2 and 42 mA during
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Figure 2.18: Experimental scheme of the NSOM reflectivity set-up with simultaneous
near-field (PMT) and far-field (CCD) detection. F1 and F2 are band pass filters with a
transmission window of 450±22.5 nm and 500 ±25 nm, respectively. BS stands for beam
splitter.
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Figure 2.19: (a,b) Far-field reflectivity images of a gold nanowire (thickness = 50 nm,
width = 1 µm length = 40 µm) on a glass substrate obtained using a) white light or b)blue
light. (c, d) AFM-NSOM scan of a gold nanowire on a glass substrate: c) Topography,
d) NSOM reflectivity (488 nm).
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Figure 2.20: AFM and NSOM images of a thin layer (≈ 60 nm) of [FeII(hptrz)]3(OTs)2

spin coated on a gold microwire (thickness=250 nm, width=8 µm, length=1 mm, glass
substrate): a) Topography and b) NSOM reflectivity. During image acquisition the cur-
rent flowing in the wire was successively switched between 2 mA and 42 mA as indicated
in the figure.

the scan . No obvious effect of the current intensity change was observed in these images.

The intensity difference between the reflectance of the glass and the gold is very high,

therefore any small variation in the reflectance due to the spin transition might be difficult

to detect. The contrast between the wire and the substrate can be reduced using a silicon

substrate. A close up of the topography and the reflectivity NSOM maps of a gold

microwire on silicon substrate is presented in figure 2.21. NSOM images were obtained

for two different applied currents (2 mA and 92 mA). In this case, some intensity difference

between the scans with high and low applied currents can be observed at the beginning,

but these changes are not reproducible. It is difficult to determine the origin of this

problem, but we believe that the sample properties change under laser illumination. We

did not continue working with this sample, because during the course of this work a new

SCO thin film was developed in the team by Iurii Suleymanov, which presented more

appealing properties for our NSOM reflectivity studies.

2.5 Reflectivity measurements on

[Fe(Htrz)2(trz)]BF4

[Fe(Htrz)2(trz)]BF4 (Htrz=1,2,4-triazole, trz=1,2,4 triazolato) nanoparticles (≈ 180

nm) were synthesized by Iurii Suleimanov in the team. This compound presents a LS-

HS spin transition at temperatures higher than ambient, with a wide thermal hysteresis

(≈ 40 K), shown in figure 2.22. In the first cycle the compound is hydrated, therefore

it presents a wider hysteresis, but from the second cycle it displays a reproducible spin

transition around T↑=393 K on heating and T↓=353 K on cooling. This compound is

violet in the low spin state and white in the high spin state. The change of color is very

abrupt and easy to follow by reflectivity measurements in far-field. The refractive index

and its change with the SCO has not yet been determined for this compound, but taking

into account the Gladston-Dale equation [158] the very important density change between

the two spin states (≈ 11.5 %) must lead also to a significant refractive index change of

ca. 0.1.
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Figure 2.21: AFM images of a thin layer (≈ 60 nm) of [FeII(hptrz)]3(OTs)2 compound
spin coated on a gold microwire (thickness=250 nm, width=8 µm, length=1 mm, silicon
substrate): a) Topography, b) NSOM reflectivity map for 2 mA current and c) NSOM
reflectivity map for 92 mA current. d) Average cross sections of the NSOM images for
successive experiments with different applied currents.

NSOM and far-field reflectivity measurements were performed with the same con-

figuration as the one presented in section 2.4. A solution of [Fe(Htrz)2(trz)]BF4 particles

(50 mg) in 2 ml ethanol was spin coated over the gold nanowires (speed=4500 rpm, ac-

celeration = 4000 rpm2, time = 30 s). The particles were distributed homogeneously on

the surface, as shown in figure 2.22. However, when the wire is too thick (>100 nm), the

particles were not deposited in its proximity.

Reflectivity tests in far-field were carried out by fixing the temperature of the sample

stage at 378 K. The transition from the low spin to the high spin state was induced by

Joule heating using a gold microwire heater. Figure 2.23 shows pictures of a [Fe(H-

trz)2(trz)]BF4 film on a gold wire taken before and after applying a 92 mA current pulse

to the wire. This current pulse induces a transient heating ∆t = 1 min in the film that

brings the complex to the HS state, which is evidenced by the increase of the reflectance.

When the heat is dissipated the complex remains in the high spin state because the

temperature of the sample stage (378 K) falls within the hysteresis region. Thanks to

the tight confinement of the ∆T induced by the heater, the particles on the Si substrate

remain in the LS state and only those on the wire change their spin state. To demonstrate

more clearly this change, the normalized reflectance difference is presented in figure 2.23

b. The reflectance difference between the two spin states is only 6 % on the gold wire and

0% on the Si substrate, as shown in the cross section of the difference image.

In addition to the far-field images, NSOM scans were also performed before and after
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Figure 2.22: a)Temperature dependence of χmT product (χm= molar magnetic suscepti-
bility and T = temperature) of the [Fe(Htrz)2(trz)]BF4 complex and AFM images of the
deposited particles on a silicon substrate and on a gold wire.

Figure 2.23: a) Far-field images of a [Fe(Htrz)2(trz)]BF4 film on a gold wire (Si substrate)
at 378 K before and after applying a 92 mA current pulse to the wire (pulse duration 1
min). b) Image and average cross section of the reflectance difference between the two
images in (a), i.e. the reflectance change induced by the heating of the wire.
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heating the sample with the wire. It may be worth noting that each scan was carried out

in the same thermal conditions. The tip aperture was of 70 nm. We chose a small aperture

because when the sample topography and the tip have the same size, tip motion artifacts

are more prominent [159]. The power of the laser at the entrance of the tip fiber was

fixed at 500 µW to assure that the material will not change its spin state due to local

laser heating. The NSOM images present details with a resolution below the wavelength

(488 nm) as shown in figure 2.24. After heating the material on the wire, the NSOM

reflectivity signal should increase on the wire. On the other hand, on the Si substrate the

optical properties (i. e. the NSOM signal) should be the same, since the temperature of

the material is not modified by the applied current. Based on this assumption, supported

by the far-field data, we have normalized the NSOM images using a reference area far

from the wire. The result of this treatment is shown in figure 2.24. The cross sections in

panel c show that the normalized NSOM reflectance remains unchanged on the whole Si

substrate (i.e. not only in the reference area) providing strong support for the validity of

our data treatment. We observe an increase of the NSOM reflectance after the current

pulse only on the wire (see panel d). This increase (ca. 7%) is comparable with the

far-field result (ca. 6%). Overall there is a very good agreement between the far-field

and near-field results. The signal to noise ratio of the latter is of course less good, but it

provides high resolution details, which are obviously not accessible in far-field.

After a few scans the NSOM reflectance images were difficult to reproduce. In

many cases a brighter zone, corresponding to the scanned area, was observed in the

far field images, as shown in figure 2.25. Taking a closer look to the topography, we

observed several holes in the SCO film. The appearance of these holes in the topography

image indicates that the tip moved the particles while scanning the surface. Decreasing

the interaction between the tip and the sample by modifying the gain, the oscillation

amplitude and the setpoint did not completely solve this problem. Besides tip-sample

interactions, long exposures to light and high temperatures in ambient air also affect

the sample integrity. Therefore, after a couple of days of continuous manipulation the

reflectance intensity difference between the HS and LS states decreases until it is no

longer detectable.

Up to now we have performed NSOM experiments in AFM feedback, i.e. following

the topography of the sample. It is also possible to carry out NSOM measurements at a

constant height. This method has the advantage that tip-sample mechanical interactions

are considerably reduced. Several authors have compared the two methods [159, 160].

They found that high contrast images can only be obtained in feedback, but the NSOM

images include artifacts mainly due to the crosstalk with the topographic signal.

When working at a constant height, it is necessary to perform a preliminary topog-

raphy scan to determine the highest point of the topography. In this way, a minimum safe

distance can be defined and thus avoid any damage of either the sample or the tip. It is
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Figure 2.24: a) NSOM map of a [Fe(Htrz)2(trz)]BF4 film on a gold wire (thickness 250
nm, length 1 mm, width 4 µm, Si substrate) before and after applying a 92 mA current
pulse through the wire. b) Normalized reflectance difference between the two images
shown in panel (a). c) and d) Average cross sections of the images in panels (a) and (b),
respectively.
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Figure 2.25: Images of a film (≈ 250 nm) of [Fe(Htrz)2(trz)]BF4 on a wire (thickness =
250 nm, length = 1 mm, width = 4 µm) a) Far-field pictures before scans and after scans
and b) near-field maps of the first and fourth scans. A damage in the sample is observed
after scanning.

also important to compensate the inclination of the sample in both the x and y directions.

The distance at which the high spatial frequency components can be observed depends

on the size of the aperture of the tip and the used wavelength.

Constant height NSOM reflectivity measurements were carried out on a new sample

prepared in the same conditions. The gold wire used here had a different geometry:

thickness 250 nm, length 1 mm, width 8 µm. The experimental set-up for combined

near-field and far-field reflectivity measurements was the same as used for the previous

experiments. First, we have recorded the reflectivity in far-field (see figure 2.26). The

results are similar to those obtained with the previous sample (cf. figure 2.23), but in

this case the reflectance change upon applying a 190 mA current pulse, i.e. between the

LS and HS states, is only 3 %. The smaller reflectance change is probably related to the

different sample thermal history and / or to the different sample thickness. One should

also note the different current used to heat the sample - this is simply due to the different

widths of the wires used in the two experiments.

Topography tests on the sample revealed that the roughness of the sample is ca.

45 nm and the highest point was found always below 55 nm on a relatively flat area. In

order to carry out NSOM measurements at a constant height around a gold wire, the

approach of the tip to the sample was always performed on the wire. Then, the tip was

retracted 5 steps, (i.e. 60 nm away from wire and 310 nm away form the silicon substrate)
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Figure 2.26: a) Far-field images of a film (≈ 250 nm) of [Fe(Htrz)2(trz)]BF4 on a gold
wire (thickness 250 nm, length 1 mm, width 8 µm, Si substrate) at 378 K before and after
applying a 190 mA current pulse to the wire. b) Image and average cross section of the
reflectance difference between the two images in (a), i.e. the reflectance change induced
by the heating of the wire.

before scanning the sample. The tip was completely retracted from the sample before any

temperature change was applied to the sample either with the heater stage or with a gold

wire.

The constant height NSOM reflectivity scans revealed a strong difference between

the reflectance on the wire and the reflectance on the Si substrate (figure 2.27). This

contrast is clearly related to the tip-sample distance difference since it was not observed

in NSOM experiments with feedback (figure 2.24). The main consequence of the abrupt

change of the tip-sample distance is that the high frequency spatial components observed

on the wire are lost on the Si substrate where the different sub-wavelength features are

no longer distinguishable (figure 2.27). The NSOM images were normalized as described

in the previous experiment. An increase of the NSOM reflectance after the current pulse

was observed only on the wire (see panel d). This increase (ca. 10%) is three times larger

than in far-field (ca. 3%). To confirm this finding this experiment was repeated on a

new sample (see figure 2.28). The far-field reflectance difference between the two spin

states was around 6 % for the new sample, while in near-field the reflectance on the wire

increased 30 % after the current pulse. The difference is at least 4-5 times higher than for

the far-field data. In addition, brighter and darker points on the sample with a resolution

of ca. 300 nm can be observed. We can conclude that NSOM images at constant height

are much more sensible to the spin transition than far-field or even feedback NSOM

measurements. In addition constant height scans do not degrade the sample and give

high resolution spatial information of the reflectance of the sample.
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Figure 2.27: a) Constant height NSOM reflectivity images of [Fe(Htrz)2(trz)]BF4 de-
posited on a gold wire (thickness = 250 nm, length = 1 mm, width = 8 µm). The two
images were acquired at 378 K before (LS) and after (HS) applying a 190 mA current
pulse through the wire. c) Average cross section of the images shown in (a). b) Image
and d) average cross section of the reflectance difference between the two images in (a),
i.e. the reflectance change induced by the heating of the wire.
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Figure 2.28: a) Far-field and b) constant height NSOM reflectivity images of
[Fe(Htrz)2(trz)]BF4 deposited on a gold wire (thickness 250 nm, length 1 mm, width
8 µm). The images were acquired at 378 K before and after applying a 190 mA cur-
rent pulse through the wire. Image and average cross section of the reflectance difference
between the two images in (a) are shown in c). Image and average cross section of the
reflectance difference between the two images in (b) are shown in d).
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2.5.0.2 NSOM tip as heating device

Up to now we have used the NSOM tip to analyze the optical properties of the

samples with high spatial resolution with the aim to infer information about the spin

state change locally. However, the NSOM tip can be used not only to detect the spin

state of the sample, but also to manipulate it locally. For example, by increasing the

intensity of the laser beam injected into the NSOM fiber we can heat the sample above

the spin transition temperature and transform a small volume from the LS to the HS

state. Indeed, the metal coating at the end of the tip produces multiple reflections at

the metallized sides. Such reflections increase the total amount of light absorbed by the

metal coating (from 8% at normal light incidence to 20 - 30 %) and thus it can increase

the temperature of the metallic film up to several hundreds of degrees [161]. Even though

the heated volume depends on many parameters (tip and sample properties, etc), it was

shown that local heating on the sample surface can be achieved with sub-wavelength

resolution [162]. This technique opens up therefore the possibility to switch the spin state

of a single SCO nanoparticle, which can be used, for example, in a memory device. In

our experiments heating with the NSOM tip can replace the nanowire heaters. Of course,

laser heating is less well controlled when compared to Joule heating with the metallic

nanowire, but it provides more flexibility in the experiments. A specific problem with

the nanowire approach is that the presence of the wire significantly modifies the surface

topography. When heating with the NSOM tip it is possible to work on a flat area of the

sample, increasing the stability of the feedback and decreasing the probability of moving

the particles around with the tip.

To explore this idea in a first step we determined the laser power needed to trigger the

spin transition in the Fe(Htrz2(trz))BF4 film we used in the previous NSOM reflectivity

experiments. To this aim, the sample was scanned with different light intensities while

keeping the temperature of the sample stage at 395 K. The power of the laser at the

entrance of the tip fiber was adjusted using a variable neutral density filter and controlled

with an optical power meter (PM100D from Thorlabs). The spin state of the sample was

determined from far-field reflectance images taken before and after each scan. (N.B. The

experimental set-up is the same as described in the section 2.5.) Figure 2.29 (a) shows the

reflectance change of the sample in the scan area plotted as a function of the laser power

measured at the entrance of the tip fiber. One can note that there exists a threshold

laser power (ca. 2 mW) below which the spin state of the sample does not change. This

observation is not surprising since the thermal spin transition in this compound is very

abrupt (see figure 2.22). Above this threshold value the reflectance increases gradually

until a saturation value. The gradual variation is at first sight difficult to conceal with

the abrupt spin transition. We believe that this gradual increase of the reflectance can

be observed if several particles transit during the laser heating. Heat will diffuse in an
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Figure 2.29: a) Reflectivity intensity difference between the scanned area and two reference
areas (zones 1 and 2) following NSOM scans with different laser intensities on a film of
[Fe(Htrz)2(trz)]BF4. The sample temperature was kept at 395 K. b) Topography image
of the scanned area, which is indicated in the far-field image below together with the two
reference areas.

inhomogeneous manner and thus the particles will change their spin state at different

laser intensities.

Figure 2.30 shows far-field reflectivity images taken after scanning with the laser

power indicated in each picture. The area scanned by the NSOM tip is indicated by the

yellow rectangles. With increasing power one can observe more and more bright dots in

and near the scanned area, which correspond to particles transformed to the HS state.

It may seem surprising that particles out of the scanned area change their spin state, but

we have to note that nucleation of the HS phase may occur even if the particle is only

partially heated. In addition the positioning of the scanned area within the far-field image

is perhaps not perfectly accurate. The images show that different particles do not transit

for the same laser intensity. It is difficult to correlate these images with the topography

image, because the contrast in NSOM and AFM is often different. In addition in the

present case further complications arise from the facts that the illumination and heat

diffusion conditions are different for each particle. Above 5 mW the number of particles

in the high spin state was not significantly increased. The dark dot that appears after

the scan performed with 6 mW is most probably a damage done to the sample by the tip

during an engage. In fact, when the tip approaches to the sample to achieve the tip-sample

contact, it can tap harder on the sample until the feedback is properly established.
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Figure 2.30: Far-field reflectivity images taken of a thin film (≈ 300 nm) of
[Fe(Htrz)2(trz)]BF4. Each image was taken after scanning with an NSOM tip. A blue
laser (488 nm) was injected into the NSOM fiber with the power indicated in each image.
The yellow rectangles mark the scanned area (10 X 5 µm2).
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2.6 Conclusions

In this chapter we have described a novel experimental set-up, which we imple-

mented to investigate the optical properties of spin crossover thin films with high spatial

resolution. To our knowledge, this is the first proven case where the spin state of SCO

nanomaterials was imaged with submicrometric spatial resolution 3. We explored in this

chapter NSOM reflectivity and NSOM with fluorescence contrast enhancement and both

methods allowed us to observe the spin transition in SCO films. Since most NSOM exper-

iments were carried out in AFM feedback we had also access to spin-state dependent AFM

topography data. However, within our experimental conditions, which are far from opti-

mal for high resolution AFM topography measurements, we could not observe significant

surface topography changes in the films upon the spin transition.

To overcome the severe experimental constraints imposed by the necessity to carry

out a series of NSOM scans at different temperatures in a quantitative manner, we put in

place an original experimental strategy based on local heating of the sample by a metallic

nanowire. Indeed, the wear of the tip and the sample during several scans associated

with various unwanted thermal effects (sample drift, tip heating, etc.) are very difficult

to handle when using conventional SPM heating stages. The fast local heating with the

nanowires proved to be very successful and allowed us to observe the spin transition as

a function of the temperature even during a single scan. We believe that this approach

may find a general interest in the SPM community for several reasons. First of all, the

sample drift is negligible and probe heating can be minimized. (In particular convection

effects become negligible.) In addition, sample thermalization is instantaneous (at the

time scale of an SPM scan) and the fact that the temperature difference is confined to the

wire provides a reference area near the wire, which can be useful to control the evolution

of the tip-sample interaction. Finally, the fact that the wire is heated by an electrical

current and its temperature is monitored through its electrical resistance provides a useful

means to integrate and synchronize the nanoheater with the rest of the set-up.

Another important aspect of our experimental approach is the simultaneous use of

3We are aware that since 2010 several papers claimed that molecular spin states were identified by
scanning tunneling microscopy (STM) [91, 163–165]. Even if these reports are extremely interesting, in
our opinion in none of these papers there is an irrefutable proof that the changes observed by the STM
are related to the spin state switching phenomena. The three main factors behind the difficulties of inter-
pretation are the high fragility of the measuring STM junctions, the difficulties in their characterization
by any other means than the tunnelling spectra and the impossibility to connect the molecules to the
electrodes without changing their properties. In addition STM is basically limited to the investigation
of (sub)monolayer samples on conducting surfaces. In another approach, parallel with our work, the
teams of Hauser and Zewail [10] published an electron microscopy study wherein they were able to follow
spin state changes in a single nanoparticle. Their approach is very complementary to our SPM based
approach with different advantages and drawbacks. Finally, we must recall that we have also published
in our team an NSOM-AFM investigation on bulk single crystals [93], but the technical challenges and
scientific objectives are very different to those in the the case of nanometric thin films.
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far-field optical detection and the SPM. The former appears indispensable to monitor

in-situ the spin-state of the sample. In fact, the spin transition in certain samples is not

very robust and needs to be followed continuously during the long SPM experiments.

In addition, in some cases the SPM probe itself can also influence the properties of the

sample (either reversible or irreversible), which can be often detected by far-field optics.

NSOM experiments were first carried out in luminescence mode on thin films of

[FeII(hptrz)]3(OTs)2 (ca. 60 nm) doped with Rhodamine 110. We could successfully ob-

serve the spin transition in this sample through the variation of the luminescence intensity

in the near-field. However, these observations remained rather qualitative due mainly to

photobleaching problems. For this reason, we turned to NSOM reflectivity measurements

where photobleaching effects are not expected. Reflectivity provides in many cases a

weaker contrast between the HS and LS states than luminescence and indeed for thin

films of [FeII(hptrz)]3(OTs)2 it was not possible to implement this approach. On the

other hand, for films of [Fe(Htrz)2(trz)]BF4 particles (ca. 300 nm) we observed a sig-

nificant variation of the reflectivity in both far-field and near-field, the HS state being

much more reflective. NSOM reflectivity experiments on this sample were carried out

both in AFM feedback and in constant height mode. Both gave similar results, but the

later proved to be more reproducible because it leads to less sample damage. On the

whole, NSOM proved to be useful to achieve high spatial resolution (ca. 200-300 nm in

our experiments) imaging of the spin transition in nanometric thin films and clearly there

is no fundamental obstacle to further increase this resolution by using tips with smaller

apertures. On the other hand the acquisition of a series of quantitative scans remain a

challenge due to experimental difficulties to achieve stable measurements over long peri-

ods and also for more fundamental reasons which concern the interpretation of the NSOM

signal, in particular the discrimination of far-field contributions.

Besides the high resolution imaging of the spin transition, NSOM proved to be

useful also to manipulate the spin state of [Fe(Htrz)2(trz)]BF4 particles through local

laser heating. It is possible to produce a transition from the LS to the HS state in a single

nanometric object. It would be possible therefore to use this technique to perform laser

witting on the surface with submicrometric resolution, in particular if a more homogeneous

SCO film and a sharper tip is used.

A very interesting perspective of the work presented here is the use of spin

crossover thin films for micro- and nano-scale thermal imaging purposes. In particu-

lar, the large thermal hysteresis loop associated with the spin transition in the compound

[Fe(Htrz)2(trz)]BF4 provides an unparalleled scope for imaging transient heating phe-

nomena with high spatial resolution thanks to the long-lived metastable states within the

hysteresis region. The high resolution imaging of transient heating by a current pulse

is clearly demonstrated, for example, in figure 2.27. This promising application of SCO

films is currently investigated in our team in the frame of the thesis of Olena Kraieva.
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Mechanical Properties

The mechanical properties play a key role in the spin-transition behavior of SCO

solids. Indeed, many interesting cooperative phenomena [34, 94] can be rationalized only

by taking into account the volume misfit of the HS and LS states and the associated elastic

interactions between the SCO centers [166]. In addition, recently developed, promising

applications of SCO materials as microactuators [167] require also a detailed knowledge

of the mechanical properties, such as the Young’s modulus and mechanical strain. Taking

into account their central role in the SCO phenomenon, it is thus rather surprising to

realize that the elastic constants of spin-transition materials have been determined only

in a few occasions, using nuclear inelastic scattering [168], high-pressure X-ray diffraction

[169, 170], and Brillouin spectroscopy [171]. In addition most of these measurements

were carried out in either in the HS or LS forms and the spin-state dependence of elastic

moduli has been reported only very recently [168]. However, we know that the LS to

HS transition involves a drastic increase of the metal-ligand bond lengths (up to 10%)

[172]. This softening of the coordination bonds has been clearly observed by vibrational

spectroscopies and by 57Fe Mössbauer spectroscopy [173]. This latter method gives access

to the Debye temperature, which can be roughly related to the bulk modulus by a square-

root relationship K1/2 ∼ ΘD. The available scarce Mössbauer data suggests a typical

variation of 1.6 > KLS/KHS > 1.2. This variation is not huge, but possibly detectable

using an AFM. For these reasons we decided to explore AFM mechanical modes for

imaging the spin transition through the variation of elastic moduli. While this approach

may seem somewhat indirect it provides two important advantages: the possibility of

quantitative analysis and (potentially) very high spatial resolution.

The quantitative imaging of mechanical properties using an SPM is a significant

challenge even today due to the difficulties to quantify tip-sample interactions and the

contact geometry. In our case these difficulties are further amplified by the need for

temperature dependent and non-destructive (reversible) measurements as well as the rel-

atively weak contrast between the elastic moduli of the two spin states. We start this
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Mode Measured Property Reference

AFM Nanoindentation
H , E, Adh, plasticity, Dissipation, De-
formation

[174, 175, 181,
182, 185, 186]

Force Modulation Dissipation and stiffness (Qualitative) [187–190]
Contact Resonance E, G, E ′, E ′′, Loss Tangent [191–197]
Tapping Dissipation (Qualitative) [198–208]
Loss Tangent Measurement Loss Tangent [190, 209, 210]
Bimodal Techniques E, Loss Tangent, Dissipation [211–213]
Force Volume Mode H , E, Adh, Dissipation, Deformation [138, 214]
Quantitative Imaging H , E, Adh, Dissipation, Deformation [215, 216]
Peak Force Tapping H , E, Adh, Dissipation, Deformation [137, 217]
Lateral Force Microscopy Friction coefficient, G [176, 177, 180]

Table 3.1: AFM modes that give information about the mechanical properties of the
sample. E is the Young’s modulus, E ′ is the storage modulus, E ′′ is the loss modulus, H
is hardness, Adh is adhesion and G is the shear modulus.

chapter with a broad survey of the different AFM mechanical modes with special empha-

sis on the techniques we had access during the thesis work. The next part is devoted

to our preliminary tests on electron beam irradiated Polymethyl-methacrylate (PMMA)

samples, which were used to test and optimize the different measurement protocols. Fi-

nally the AFM mechanical studies of SCO films through the thermal spin transition are

presented.

3.1 Analysis principles

As applications in micro-systems grow, there has been an increasing interest in

studying the mechanical properties of nano- and micro-materials. Addressing this need

several AFM modes have been developed in the last years that are able to determine the

hardness (H) [174], the plasticity [175], the coefficient of friction [176, 177], the shear

modulus (G) [178–180] and the Young’s modulus (E) [138, 181, 182]. If both E and G

are measured, it is also possible to determine the Poisson’s ratio [183]. The most common

AFM modes to obtain the mechanical properties are listed in table 3.1. (N.B. Several

other approaches were also proposed - the interested reader can consult the recent review

of Passeri et al. [184].)

Adhesion and plasticity are not really interesting for the study of SCO materials

since the first is more related to the chemical properties of the material and the second

refers to an irreversible process, so the same area can not be probed more than once.

Among the main elastic moduli, the bulk modulus cannot be accessed by AFM and the

shear modulus can be measured only under special circumstances. On the other hand,

the Young’s modulus can be obtained in almost any AFM system and on a variety of
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samples directly from a force-distance curve. In this work we focused on this property.

In the next sections a description of the different modes we had access to is presented.

For a better understanding, the modes are separated in two families: the dynamic AFM

modes, which are basically tapping mode based, and the force curve based modes.

3.1.1 Dynamic AFM modes

Techniques based on dynamic AFM modes have the ability to make fast and less

invasive measurements. However, quantifying the physical properties of the sample is

difficult, since a direct relationship between the observables and the forces is not obvious

to deduce.

In AC mode, one can use either the amplitude A1, the frequency f1 or the phase

to control the feedback loop. The phase φ1 or the amplitude are free to vary depending

on the tip-sample interactions, which translates in a qualitative manner the mechanical

properties of the sample.

3.1.1.1 Tapping mode and its variants

Depending on the parameter that is used to make the feedback loop slight differences

in the interaction between the probe and the sample are observed. In the following

paragraphs we discuss briefly each of them.

a) Amplitude modulation

As already stated in section 1.2.1.2 in AM-AFM the amplitude of the oscillation of

the tip (A1) is maintained constant by a feedback loop. When the tip enters in interaction

with the material, this latter will exert a force on the tip, so the frequency of oscillation of

the tip will be delayed or advanced from that of the excitation force. This phase difference

(∆φ) will depend, among others, on the mechanical properties of the sample surface. As

a consequence this mode receives the name of "phase imaging".

The phase angle φ can be obtained as function of the driving frequency ω as follows:

tan(φ) =
ωω0

Q(ω2 − ω2
0)

(3.1)

where ω0 is the resonant frequency and Q is the quality factor of the vibrating cantilever.

(This latter is defined as Q = ω0

∆ω
, where ∆ω is the half-power bandwidth.) If the tip

is far from the sample (i.e. ω0), there is no interaction between the tip and the sample,

thus the probe phase angle is 90◦, by convention. As the probe approaches to the sample,

the long-range attractive forces acting on the probe will decrease the resonance frequency.

Subsequently the driving frequency becomes larger than the resonant frequency and there-
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fore φ > 90◦. When the tip is near the sample the resonant frequency becomes larger than

the driving frequency consequently φ < 90◦. Therefore it is possible to obtain qualitative

information about the adhesive forces and the viscoelastic properties [218, 219].

b) Frequency modulation

When the oscillation amplitudes are small in FM-AFM, the frequency shift is pro-

portional to the force gradient of the tip sample interaction [203]. Since the topography

of the sample is obtained at a constant frequency by adjusting the tip - sample distance,

the topography image is made at a constant force gradient. The record of the drive am-

plitude over the course of a scan provides a second image where the variations in the

drive amplitude are proportional to the dissipated energy by nonconservative tip-sample

interactions (viscoelasticity, dissipative forces) [204].

c) Phase modulation

In PM-AFM the scan is performed by adjusting the phase difference, so it is not

performed at a constant force gradient as in FM-AFM. On the other hand, PM-AFM mode

is more stable than AM-AFM and FM-AFM modes [207]. Jumps normally observed in

the two other modes are minimized [208]. As in the previous case the dissipation channel

is given by the amplitude signal and it is defined as:

A =
A0

(

1 −
(

fd

f0

)2
)

+
(

fd

Qf0

)

(3.2)

These methods are very interesting to observe contrasts due to differences in the

viscoelastic properties of the sample. They are particularly attractive to study composite

materials, since the change in the phase or amplitude, depending if the study is made in

AM or in FM/PM mode, may indicate the spatial distribution of the different materials

more reliably than the topography.

The observable quantities in dynamic modes are averaged over many cycles of os-

cillation, therefore it is not straightforward to obtain an analytical relationship between

observables and forces. Nevertheless, a few quantitative methods, such as the loss tangent

or the multifrequency modes, have been developed. Both of them are discussed with more

details below.

3.1.1.2 Loss tangent mode

Proksch related the phase angle in amplitude modulation mode with the loss tangent

[210], which is a dimensionless parameter that measures the ratio of energy dissipated (E ′′)
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to energy stored (E ′) in one cycle of a periodic deformation:

tan(δ) =
E ′′

E ′
(3.3)

The measurement is done in two pass. First, the topography is saved. In the second pass

the cantilever moves at a preset height ∆z above the surface, where the frequency and

amplitude is measured by operating the cantilever in phase locked loop.

An attractive feature of the loss tangent is that it is independent of the indenter tip

contact area. The loss tangent can be determined as follows:

tan δ =
sin φ1 − ω0A1

ωsAs

QA1

As

(

1 −
ω2

0

ω2
s

)

− cos φ1

(3.4)

where A is the amplitude and the subindex 1 and s means the first pass, second pass

respectively.

There is a controversy about the effectiveness of this method. In a recent work it was

reported that loss tangent values obtained by this method do not give reliable information

[209]. This study reveals that this method gives higher loss tangent values and an incorrect

trend between different materials, most probably due to a complicated frequency response

form the material and long range adhesive tip-sample interaction forces. An important

remark is that this method calculates the cantilever loss tangent which is not necessarily

equivalent to the material loss tangent.

3.1.1.3 Bimodal methods

Bimodal methods normally work in the repulsive regime (intermittent contact

mode). They profit from the fact that the cantilever-tip ensemble is a mechanical system

that has a number of discrete oscillations which are determined by the boundary condi-

tions. Therefore two different excitation signals can be sent to the tip, with two separated

feedbacks loops, so the tip is forced to oscillate at two vibrational modes of the cantilever

simultaneously. Typically the first and the second flexural resonances are used, although

others work as well.

In most common set-ups an output signal of the first mode (either the amplitude

or the frequency shift) is used to image the topography, while the other flexural mode

is used to measure the mechanical, electrical or magnetic properties of the sample [211].

Several bimodal configurations have been developed due to the diversity of observables.

The most common bimodal approaches are presented in table 3.2, which specifies also the

feedback mode (amplitude modulated or frequency modulated) for each flexural mode

and the material properties that can be measured quantitatively.

In the so-called AM-FM mode, the amplitude of the lower cantilever resonance is
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Mode name Feedback mode 1 Feedback mode 2 Material Property
Bimodal AM AM open Loss tangent

AM-FM AM FM Loss tangent, stiffness, Young’s modulus
Bimodal FM FM open Dissipation, stiffness, Young’s modulus

Table 3.2: Bimodal AFM configurations

Figure 3.1: Schematic representation of the AM-FM mode, where two separated excitation
signals are sent to the tip (blue and red) [220].

maintained at a constant value A0 (AM-AFM), while in the second vibrational mode, the

drive frequency is adjusted to keep the phase at 90 degrees, on resonance (FM-AFM).

The topography and the loss tangent are obtained in the AM mode, while the FM mode

is used to probe the stiffness and the dissipation, as shown in figure 3.1.

The force applied by the tip was derived by Garcia et al. [211]:

Fts ≈
k2A02

QA2
cos φ2 (3.5)

where the subindex 2 is associated to the second oscillation mode signal and 0 refers to

the free oscillation of the tip. Q is the quality factor and k is the spring constant of

the cantilever. The Young’s modulus (E) can be calculated using one of the tip-sample

interaction models described in sec 3.1.3. The tip-sample contact area (rc = R(d − d0))
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is obtained with a calibration sample of known Young’s modulus.

The advantage of this approach is that it is as fast as single frequency tapping mode

(up to some tens of Hz), while providing more quantitative information. In contrast to

force curves based methods, AM-FM can probe a large range of E values using the same

probe, as each flexural mode is associated to a different frequency and thus different spring

constant. However, if there is a complicated interaction between the tip and the sample

then equation 3.5 may be no longer valid.

3.1.2 Force curves based methods

One of the most commonly applied methods to study the elastic moduli is indenta-

tion, where a hard tip with known mechanical properties applies a pressure on the sample.

The applied pressure is determined as a function of the indented depth or the residual

indentation area to obtain the Young’s Modulus or hardness respectively. In nanoinden-

tation small tip sizes and loads are used, so the indentation area may only be a few square

micrometers or some nanometers as it is the case of AFM nanoindentation, where the tip

radius only measures some tens of nanometers and the applied force can be in the order of

some pN for softer samples e.g. cells and some µN for harder samples, e.g. silicon wafers.

3.1.2.1 Force spectroscopy

Force-distance curves (often called force spectra) allow a quantitative determination

of several physical and mechanical properties of a material such as dissipated energy,

adhesion and Young’s modulus, as shown in figure 3.2. When the tip approaches to the

sample van der Waals forces attract the tip until it jumps into the surface deflecting

downwards a distance proportional to the attractive forces. If it continues to approach

the tip will deflects upwards. When the sample is not infinitely hard, the tip will deform

it and the resulting curve will be the applied force as function of the deformation of the

sample. The Young’s modulus and the deformation can be obtained from the slope of

this latter part of the curve as shown in the figure. When the tip is retracted the tip

will not disengage until the applied force is higher than the adhesion forces. The energy

dissipation can be obtained from the area between the approach and retract curves.

As already discussed, the force spectra are recorded by moving the cantilever to-

wards and away from the sample while measuring both the Z-piezo extension and the

cantilever deflection (presented in section 1.2.1.1). As mentioned before, most AFM sys-

tems measure the cantilever deflection by detecting a laser beam reflected by the backside

of the cantilever. As the tip approaches to the sample the system measures the deviation

of the laser to the center of the photo-detector, which is measured in volts versus the

height position of the piezoelectric translator. This needs to be transformed into a force-

distance curve. Once the deflection sensitivity (S) is known, the applied force F and the
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Figure 3.2: Typical force-distance curve obtained with and AFM.

tip position d can be calculated as follows:

F = kDS (3.6)

d = z − DS (3.7)

where D is the cantilever deflection (measured in Volts), k is the cantilever spring constant

and z is the vertical scanner position. This latter can be determined using scanner sensors,

such as optical interferometers, or a standard calibration sample (typically a Si grating).

In the next paragraphs a brief description of the methods to measure the deflection

sensitivity and the spring constant are presented.

Deflection sensitivity calibration

The deflection sensitivity depends on the type of cantilever, but also on the optical

path and alignment of AFM detection laser. For this reason it will be slightly different

each time the cantilever is mounted. Hence it is necessary to determine it each time a tip

is placed on the system - even if it is the same tip.

The deflection sensitivity can be obtained from a force-distance curve performed on

a hard substrate (silicon or sapphire). In this case the tip does not indent the material
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and a good relation between the deviation of the laser beam and the deflection of the

cantilever can be made. The repulsive contact region where the deflection rises steeply

upwards is linear for a hard surface. If no long-range forces are acting and the tip and

sample are infinitely hard, the slope of the contact part of the force curve gives directly the

deflection sensitivity S = ∆z/∆D. The defection of the cantilever can then be determined

in nanometers Zc = DS.

This calibration process can damage the tip, hence it should be done at the end of

the experiment. Alternatively if the spring constant of the cantilever is precisely known

(which is often not the case) one can use the thermal tuning method (see next section)

to obtain S. The accurate determination of S is very important since a small error in S

leads to a huge uncertainty on the value of d. Indeed, this latter value is usually very

small (a few nm), but it is obtained as a difference of two relatively large values, as shown

by equation 3.7.

Spring constant calibration

Assuming that the cantilever deflection is always very small, the applied force can

be calculated using Hooke’s law Fts = kZc, provided we know the spring constant of the

cantilever.

The spring constant can be determined if the exact shape of the cantilever and the

Young’s modulus of the material is known. The problem is that the thickness of the

material is the smallest dimension of the cantilever and if it is not precisely measured

the error on k would be very high. Therefore, several alternative methods have been

developed to obtain k [221–223]. Among these methods, two are commonly used due to

their simplicity: thermal tuning and Sader’s method. Both methods are equally reliable

and offer similar uncertainty on rectangular cantilevers, typically about 5% [223].

Thermal tuning

The measurement using the thermal tuning (or thermal noise) method is based on

the fact that a harmonic oscillator in equilibrium with its surroundings will oscillate in

response to thermal noise, where the amplitude of the oscillations depends only on the

spring constant of the cantilever at a given temperature. Hutter and Bechhoefer proposed

that if we approximate the cantilever to an oscillator with only one degree of freedom,

the spring constant of the cantilever could be related to its thermal energy using the

equipartition theorem, resulting [222]:

1
2

k
〈

Z2
c

〉

=
1
2

kBT (3.8)

where 〈Zc〉 is the mean squared displacement of the cantilever.
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Later, Butt and Jaschke added a correction to this formula [224], since the cantilevers

do not act as perfect simple harmonic oscillators. In addition, the optical lever deflection

detection scheme results in a further error because it detects the cantilever inclination

rather than its true displacement; therefore the energy of each oscillatory mode varies

slightly from 1
2
k 〈Zc〉. They proposed to take into account these effects simply by a

correction factor:

k = 0.817
kBT

〈Z2
c 〉

(3.9)

In order to isolate the contribution due to thermal oscillations from other noise

sources, the data is examined in the frequency domain. In the limit of small damping,

the power spectral density can be fitted using a Lorentz function. Other noise sources

will add a background to this thermal response. After subtracting this background the

area below the peak at the resonance frequency of the cantilever is then a measure of the

power of the cantilever oscillations. Since the integral of the power spectrum (P ) equals

the mean square of the fluctuations in the time-series data, the estimate of the spring

constant becomes:

k = 0.817kBT/P (3.10)

Sader method

Let’s consider a rectangular cantilever where L denotes the length, w the width and

t the thickness of the cantilever. If L >> w >> t, Sader’s formula for the spring constant

of a rectangular cantilever is [225]:

kc = 7.5246ρfw2LQf 2
0 Γi(Re) (3.11)

where ρf is the density of the surrounding medium, Q is the quality factor, f0 is the

resonant frequency and Γi is the imaginary component of the hydrodynamic function

which depends on the Reynolds number Re. This latter depends on the viscosity (ηf)

and density (ρf ) of the medium and is given by Re = 2πρff0w2/4ηf . Details on the

hydrodynamic function can be found in Sader’s publications [225].

3.1.2.2 From force spectroscopy to spectral imaging

In an effort to combine force spectroscopy and imaging with nanometric resolution

different methods have been developed. The main difference between these methods is

the way the probe is moved along the sample surface. In any case, the key issue is to

achieve reasonable imaging time while obtaining proper and detailed spectral data from
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each sampled point.

a) Force Volume Mapping

The force-volume method (also called force mapping) was proposed by Radmacher

et al. [226]. It consists in collecting a matrix of force curves across the sample surface

that are individually analyzed, allowing spatial reconstruction of the topographic maps.

This avoids the problem of lateral forces associated with contact-imaging, since the tip is

completely detached from the surface before moving to the next point, as shown in figure

3.3. In this way it is possible to make a map of the elasticity of the material and the

topography of the surface can be recovered from the zero-force contact point from each

force curve, see figure 3.2. However, the big drawback of this mode is that the required

time to acquire each force curve is too long. Force curves can be obtained at best at a

rate of 100 Hz [137]. In other words, a scan of only 128 x 128 points can take several

hours.

b) Quantitative Imaging QIT M

Quantitative Imaging (QI) was developed by the company JPK to collect force

curves with a higher speed than the force volume method. The obvious aim is to increase

the resolution of the images. The faster acquisition of force curves is achieved by moving

the tip laterally at the end of the retraction as well as at the beginning of the approach

phases. In other words, vertical and lateral movements are not completely dissociated (see

figure 3.3). Nevertheless, during the acquisition of the force-distance curve the tip does

not move laterally, which is important to obtain accurate data. Thanks to the fast data

transfer on-line data analysis is possible to some extent. In addition, all force-distance

curves are saved for posterior analysis. Thanks to the software OpenFovea developed by

the Longo et al. [227] it is possible to treat thousands of curves in a few minutes and

obtain the mechanical property maps. It should be noted that similar approaches have

been recently developed by other AFM companies and they are usually touted as "Fast

Force Mapping".

c) Peak Force Tapping

The Peak Force Tapping (PFT) method associated with Quantitative Nanomechan-

ical Analysis (QNM) was developed in 2009 by Veeco Instruments (currently owned by

Bruker), but somewhat similar approaches are used by other companies as well. As in

the previous cases the tip and the sample are intermittently brought together, so they

are in contact for short periods of time, eliminating lateral forces. Here also the tip does

not move laterally while making the force-distance curve. In contrast, it moves faster
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Figure 3.3: Schematic representation of the tip movement in force volume (FV), quan-
titative imaging (QI) and peak force tapping (PFT). The arrows show the movement of
the tip.

when moving from one point to the next. In fact, the approach and retract to the sample

as function of the time is a sinusoidal function [137]. In each oscillation cycle a whole

force-distance curve is acquired. In this mode force curves can be acquired at frequencies

between 1 - 10 kHz. It is important to notice that this frequency is much lower than the

resonance frequency of the cantilever. Overall, this method combines the advantages of

AC modes (fast and soft imaging) and contact modes (good force control) and it provides

thus a good compromise for mapping mechanical properties.

This technique, similar to the other force spectroscopy based approaches, has been

applied to quantify the elastic properties of soft as well as moderately hard nanomaterials

with a elastic modulus lower than ca. 100 GPa [217]. Usually measurements are carried

out at 2 kHz with typical peak to peak amplitudes in air of 300 nm. The key parameters

to optimize the tracking are the peak force setpoint and the gains, which differ a lot from

regular tapping mode.

3.1.3 Tip-sample interaction models

Since the force between two surfaces depends on both the material properties and

the geometry of the contact, several models have been developed to calculate the Young’s

modulus. The difference between one model and the other is basically the forces that they

take into account. All these models have in common that they are only valid for elastic

deformations of the material. It is possible to determine when a plastic deformation

is being made in the sample, through the force-distance curve, as shown in figure 3.4.

With a good control on the applied force it is relatively easy to stay below the yielding

point. It is worth to note that not only the magnitude of the applied force, but also the
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Figure 3.4: Force-distance curve in air on PBMA at 30◦ C. The approach curve (open
circles) is fitted using the Hertz model (dashed line). [138]

indentation velocity may have an influence. Another important thing to consider when

AFM nanoindentation measurements are performed is that an elastic deformation should

not lead to hysteresis, but friction can produce it. When the tip gets into contact with

the sample and the piezoelectric translator keeps approaching, the tip may slide over the

sample surface due to the tilt in the cantilever. Indeed, the probe is not placed parallel

to the surface, but it has an inclination of 7-20◦ to assure that the tip is the first thing to

touch the sample.

A few important models that have been proposed to describe the tip-sample inter-

action are listed below.

• Hertz Model: Describes the elastic interaction between two geometrical objects.

In AFM mechanics the tip is usually approximated by a sphere in contact with an

infinite plane [224, 228].

• Derjaguin Muller & Toporov model (DMT): It is similar to the Hertz model,

but it takes into account the adhesion forces outside the contact area. It is valid for

stiff and small contacts, where Fadh << Fts [229].

• Johnson Kendall Roberts model (JKR): Defines the interaction between ob-

jects that have a small Young’s modulus and large adhesion and contact area. The

tip is approximated by a cone in this case. It is a good model to analyze soft

biological samples [230].

• Tatara Model: It describes the contact mechanics of a finite sized object which

has similar dimensions than the tip. In this case the deformation is symmetrically
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Figure 3.5: Model of a spherical tip in contact with a flat surface

generated on both sides of the sample, one in contact with the tip and the other in

contact with the substrate. It is proposed to study nanoparticles [231].

• Bottom effect cone correction (BECC): This model was recently introduced

by Gabara and Chadwick to eliminate the influence of the stiffness of the substrate

in the case of soft samples [232].

In this work we used the Hertz and DMT models to calculate the Young’s modu-

lus, since they appear the most adequate for our samples. The type of contact is very

important in these models. In AFM two geometries are normally used, either a sphere or

a cone in contact with a plane. Indentations deeper than ca. 2 nm produced irreversible

damages to the SCO materials we tested. A good approximation of the shape of the tip

in the case of such small indentations is a sphere that gets into contact with a flat surface,

as shown in figure 3.5. In the following we discuss only this geometry.

3.1.3.1 Hertz model

Hertz analyzed the stresses at the contact of two elastic solids. In this model the

adhesion of the sample is neglected and it is assumed that there are no other forces than

elastic stress. Therefore, this model can only be applied when the surface forces are much

smaller than the maximum applied force. The force between the tip and the sample is

given by:

Fts =
4
3

E ∗
√

R(d − d0)3 (3.12)

where E∗ is the reduced elastic modulus, R is the radius of the tip and d−d0 is the sample

deformation.

The reduced Young’s modulus is defined by:

E∗ =

[

1 − ν2
s

Es
+

1 − ν2
tip

Etip

]−1

(3.13)

where νs is the Poisson’s ratio of the sample, νtip is the Poisson’s ratio of the tip, Es is the



Chapter 3 : Mechanical Properties 89

Young’s modulus of the sample and Etip is the Young’s modulus of the tip. In the case

of soft samples, Es << Etip and the second term in equation 3.13 can be neglected. The

Poisson’s ratio is often not known, but a good estimation can be made in most cases.

3.1.3.2 Dejarguin Müler and Toporov model (DTM)

This model uses the geometry of the Hertz model, but it assumes in addition that

long-rage adhesion forces act outside the contact area. The forces involved in the tip-

surface interaction are described by:

Fts =
4
3

E∗
√

R(d − d0)3 + Fadh (3.14)

where Fadh is the adhesion force. This latter as well as the sample deformation are

determined from the force spectra, as shown in figure 3.2. On the other hand, a further

calibration is needed to determine the tip radius.

Tip size calibration

Knowing the tip dimensions accurately is essential to calculate the Young’s modulus

and several methods have been developed to this aim. For small indentations of around

1 nm, were the tip is approximated to a sphere, the radius of the tip is usually estimated

by two different methods using either a so-called "tip characterizer" or a reference sample

with known Young’s modulus. The tip characterizer consists of a rough, hard surface (e.g.

Si or SiO2). The topography image of this surface depends both on its roughness and on

the size of the tip. This latter is obtained by deconvolution. An important drawback of

this method is that it might damage the tip. Another option is to use a reference sample

with an E value near to that of the sample. Since the Young’s moduli of the samples

studied in this thesis fall between 1-10 GPa, we used a Polystyrene calibration sample

(E = 2.7 GPa, ν = 0.35) to determine the tip radius.

3.2 Preliminary tests

Variable temperature quantitative AFM imaging of samples with unknown elastic

properties (i.e. our SCO samples) is very challenging. For this reason we started this

work with test measurements on PMMA (polymethyl methacrylate) films, with well doc-

umented properties. The aim of these tests was to evaluate the efficiency of different AFM

methods which were available for us locally (i.e. tapping, contact and peak force tapping

(PFT)), to better understand their advantages and disadvantages and to develop our own

methodology for thermomechanical measurements on SCO compounds.
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Figure 3.6: a) Height distribution histogram of the patterns generated by e-beam irradia-
tion on a PMMA film (dose = 1050 µC/cm2) obtained by different AFM modes. b) Plot
of the depth of the patterns vs the electron dose. The straight line is a linear fit.

As a test sample a layer (≈ 300 nm) of PMMA was used. Square patterns (250 x

250 nm) were engraved in the films by a focused electron beam using different doses (70

- 2500 µC/cm2). (These samples were prepared by Franck Carcenac at the LAAS-CNRS

using a RAITH e-beam lithography machine.)

3.2.1 Tests in ambient conditions

All measurements presented in this section were performed in ambient air at room

temperature unless otherwise stated. Topography measurements were carried out in am-

plitude modulation tapping (both repulsive and attractive regimens), PFT and contact

modes using a Dimension Icon (Bruker) instrument and appropriate tips (ArrowT M NC

(Nanoworld), MPP-11120 (Bruker) and SNL (Bruker), respectively). Mechanical prop-

erties were inferred from phase images (tapping mode), QNM images (PFT mode) and

lateral force images (contact mode).

PMMA is most commonly used as a positive resist for e-beam lithography. The

electron beam causes scission of the polymer chains, hence it becomes softer and more

soluble in the developer. The irradiated zones can be identified as sunken areas in the

sample topography. Since the number of affected polymer chains is proportional to the

electron dose, the depth of the irradiated patterns is expected to increase with the dose.

Indeed, topography AFM images show a nearly linear augmentation of the the depth as

a function of the dose (figure 3.6). No difference was observed in the topographic images

between the different modes, tips and acquisition settings.

In phase imaging mode a contrast between the irradiated and non irradiated zones is

observed in both attractive and repulsive modes as shown in figure 3.7. Phase imaging is

related to inelastic interactions between the tip and the sample, i.e. it is a measurement of

the dissipated energy and reflects the difference in the viscoelastic properties of different

points of the surface. The phase interactions can be very different in the attractive (non-
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contact) and repulsive (intermittent contact) regimens. In the attractive regimen the

phase angle values inside the square were found lower than outside, while the opposite

trend was observed in the repulsive regimen (figure 3.7 a-d). When the tip is in the

attractive regimen ω < ω0, as already stated in section 3.1.1. The phase lag will be higher

between the excitation and the response of the cantilever when the interfacial adhesion

forces are stronger and therefore the difference between ω and ω0 will increase. Taking

into account equation 3.1 we can conclude that higher adhesive forces will lead to lower

phase angles. This is exactly what we observed in the case of PMMA, where the irradiated

areas should present a higher adhesion than the rest of the sample. On the other hand,

in the repulsive regimen the harder the surface is, bigger will be the force that exerts

the material on the tip. Hence both ω and the phase angle will increase. Since the

PMMA is softer inside the irradiated zone the phase value should be lower. However in

our AFM images exactly the opposite can be observed. This inversion of the phase has

been already reported for high oscillation amplitudes [218] and it has been associated

to an increase in the energy dissipation caused by viscous damping when the oscillation

amplitude increases. Even if the interpretation of these results seems difficult there is

a clear relationship between the viscoelastic properties of the sample (i.e. the dose)

and the change of the phase angle in each case. Taking into account that the e-beam

irradiation changes only slightly the viscoelastic properties of PMMA we can conclude

that phase imaging is a sensitive technique to detect changes of these properties. One

evident drawback of this method is that it is very dependent of the contact area, hence

different topographic slopes will give different phase angles. In the case of our sample

important phase angle changes are clearly observed around the edges of the irradiated

zones. However, these changes are not related to a change in the mechanical properties

of the sample, but to a difference in the sample topography. In other words, if the

interpretation of phase imaging results difficult for flat samples, it becomes even worst

for rough samples. Nevertheless, it is an interesting tool to study composites since it can

reveal details that can not be observed in topography images.

Tapping studies were also performed in phase modulation mode using a Nanonics

Multiview 2000 instrument (for more details see section 2.1). In this case the phase channel

will show the feedback error and the energy dissipation will be observed in the amplitude

channel. This system only works in the repulsive regimen. As stated in section c), a

change in the amplitude can be associated to a change in dissipation. Figure 3.8 shows

the results obtained with the irradiated PMMA sample. Similar to amplitude modulation

imaging, there is an artifact around the border of the irradiated area, which is related to

the topography. A difference in the amplitude signal is observed between the irradiated

and non irradiated zones in the sample, although a clear tendency with the electron dose

was not obtained. It may be worth noting that the contrast in the amplitude channel was

better for higher gains and shorter probes.
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Figure 3.7: (a,b) Phase images of square patterns fabricated by e-beam irradiation on
a PMMA film, a) repulsive regimen, b) attractive regimen. Panels c) and d) show the
average cross-sections of images (a) and (b), respectively. e) Plot of the phase angle
difference between the irradiated and non-irradiated regions as a function of the dose.

On the whole tapping mode appears as a fast, sensitive, non-invasive and easy-to-

implement approach to detect changes in viscoelastic properties, but the data interpreta-

tion and quantification remains delicate.

PFT-QNM images were obtained using a RTESPA tip (k ≈ 40 N/m). Deflection

sensitivity was calibrated on a silicon wafer and the spring constant was obtained by

thermal tuning. The radius of the tip (4.5 nm) was determined with a tip characterizer

(titanium roughness sample, Bruker). The maximum force was set to 40 nN and the DMT

model was used to calculate the Young’s modulus. The Poisson ratio of PMMA (0.3) was

taken from reference [233].

Figure 3.9 shows the images acquired around the irradiated patterns for different

channels, including topography, Young’s modulus, adhesion and deformation. A few

representative force-distance curves are also shown. A difference between the irradiated

and non-irradiated zones was observed in all detection channels, though the uncertainty is

rather high in the case of the deformation data. It must be remarked that the signal in the

deformation and adhesion channels is deteriorated due to optical interference phenomena.

This is a well-known artifact in force spectroscopy (see more details in appendix A). In

addition artifacts occur around the borders of the irradiated areas due to the change in

the contact area. A plot of the adhesion force and the Young’s modulus as a function of

the electron dose is presented in figure 3.10. From this plot, we can conclude that the

PMMA becomes softer and more adhesive as the electron dose increases. These results are

congruent with the expected properties of the sample. In particular we must underline the

high sensitivity of the Young’s modulus measurement: changes of only a few percent can

be quantified. This provides a significative advantage over phase imaging in tapping mode
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Figure 3.8: a) PM-AFM topography of a PMMA film where the letter E was obtained by
electron beam irradiation, b) The amplitude channel of the same scan. c) Cross section
of the letter E (indicated by a blue line in (b)) for different doses.

since we measure a material property, which can be determined also by other methods

and compared with the AFM data. In addition PFT-QNM remains reasonably fast and

non-invasive, even in comparison with tapping mode. (A Young’s modulus map with a

resolution of 256 X 128 points can be obtained in less than ten minutes.) One should

note also that the Young’s modulus obtained for the PMMA (ca. 3 GPa) by PFT-QNM

corresponds well to the literature data. However, we remarked that this value increases

along successive scans. This artifact, which is related to the change of the tip radius, will

be examined more in detail in section 3.3.

Exploratory studies were also performed in Lateral Force Microscopy mode using

an SNL contact tip (k = 0.36 N/m). LFM is performed in contact mode. It consists

in recording the lateral deflection of the cantilever, which provides information about

the friction coefficient between the tip and the sample. Obviously a measurement of

the friction coefficient is possible if the deflection sensitivity is calibrated in the lateral

direction. By convention, negative (positive) values refer to the left-hand (right-hand) side

of the photodetector. Figure 3.11 shows LFM images and the corresponding cross-sections

obtained on the PMMA test sample around an irradiated pattern. A clear contrast is

observed between the irradiated and the non-irradiated zones. From these data we can

infer that the friction coefficient is higher inside the irradiated zone. To be noted that

during the trace acquisition (i.e. scan from left to right) the tip deflects more to the right

inside the irradiated zone resulting in an increase of the LFM signal. In the retrace curves

(i.e. scan from right to left) the contrast inverses, but this is expected since the tip is

deflected in the opposite direction. Figure 3.11 shows also the lateral deflection change

as a function of the electron dose. A clear tendency is observed, the friction coefficient



94 Chapter 3 : Mechanical Properties

Figure 3.9: PFT-QNM images of a thin film of PMMA with squares made by elec-
tron beam irradiation. For each image a cross section across the squares is also shown.
a)Topography, b) Young’s modulus, c) adhesion and d) deformation. e) Selected repre-
sentative force-distance curves recorded inside (red) and outside (blue) of the squares.

Figure 3.10: Variation of the adhesion force and the Young’s modulus as a function of the
dose for a thin film of PMMA irradiated by an electron beam. (The difference is obtained
by subtracting the data obtained after irradiation from the initial values.)
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Figure 3.11: LFM images of a section of squares patterned by e-beam in a PMMA film.
The corresponding cross-sections for the trace and retrace signals are also shown in the
images. The lateral force difference between the irradiated and non-irradiated zone is also
plotted as a function of the electron dose.

is higher for higher electron doses. We can explain this by the higher adhesion of the

irradiated zone, which must lead to higher friction coefficients.

These tests revealed that each mode provides a useful (and complementary) con-

trast between the irradiated and non-irradiated zones of the test sample. Among them

PFT-QNM and LFM can provide quantitative information about the sample mechanical

properties, but the former gives more detailed and better defined data and introduces less

damage to the sample. Further studies were therefore restricted to this mode.

3.2.2 Variable temperature tests

As already discussed in the precedent chapter, changing the sample temperature

during SPM measurements adds considerable difficulties to the data acquisition and even

more importantly to the data analysis. In the case of the mechanical property studies an

obvious problem is related to the fact that the properties of the probe (spring constant,

resonant frequency, etc) change with the temperature. To evaluate the importance of

these issues we have carried out variable temperature measurements using the PMMA test

sample. A film of PMMA (280 nm) was spincoated on the same nanowire heater which

was used in our NSOM studies (for details see section 2.2.1). As discussed before, using

this nanoheater the evolution of the sample properties can be studied more conviniently

as a function of the temperature when using an SPM.

Before the measurements on the PMMA we have first investigated the effect of

temperature on the properties of the AFM probe. Two experiments were carried out.

First, a silicon substrate was heated in ambient air using a heating stage, while the
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Temperature (K) Deflection sensitivity (nm/V) Spring constant (N/m)
297 127 94
313 128 90
343 122 89
373 123 94

Table 3.3: Deflection sensitivity of the detection system and spring constant of the probe
at different temperatures.

probe (MPP11120, Bruker) was also heated using an internal circuit and the deflection

sensitivity was determined for different temperatures (from 297 K to 373 K). In the second

experiment only the retracted probe was heated in air and the spring constant of the

cantilever was measured using the thermal tuning method. The results are compiled in

table 3.3. In the investigated temperature range (297-373 K) we observed no substantial

change in the properties of the probe. For this reason, this effect will be neglected in the

following experiments.

In figure 3.12 the Young’s modulus map of a PMMA film spin coated on a gold

nanowire (Si substrate) are presented for 1 mA and 28 mA current passing through the

nanowire. The nanowire is very well delineated and the heat is well confined on the

nanowire. The Young’s modulus, calculated using the DMT model, is virtually constant

for applied currents between 0 mA and 25 mA. As we approach to the melting point of

PMMA the Young’s modulus decreases from 3.4 to 0.8 GPa between 413 and 473 K (i.e.

25-28 mA). The variation of the elastic modulus with the temperature reproduces the

data reported elsewhere for bulk PMMA [234] (figure 3.12 (g)). The thermal expansion

of PMMA is clearly observed for currents higher than 12 mA, but the height of the film

decreases near 28 mA, probably because the material melts. An image of the topography

recorded at room temperature before and after heating with 28 mA is shown in figures

3.12 e and f, revealing a flow of the material in the heated area (i.e. on the nanowire).

Further tests were performed on PMMA spin coated on nanowires (5 wires, each

with a width=0.5 µm, thickness=50 nm and length=80µm), but this time on a glass

substrate (figure 3.13). The heat conductivity of glass is much lower than that of silicon,

hence on glass substrates the heat spreads laterally over a larger area. In consequence

the change of elasticity is not restricted to the heating wires. For this reason a larger

sample area was scanned to observe the change of Young’s modulus as a function of the

distance to the wires. In this case the Young’s modulus was calculated using the Hertz

model, but this has not changed the result, we obtained the same value for E (3.0 GPa).

Figure 3.13 shows the variation of E in the direction perpendicular to the nanowires for

two current values (0 and 13 mA). As expected the Young’s modulus difference between

the two curves (i.e. between room temperature and high temperature) is not restricted

to the wires, but also observed until at least 5 µm away from the nanowires. This result
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Figure 3.12: Young’s modulus maps for a film (300 nm) of PMMA spin coated on a gold
nanowire (Si substrate) for an applied current of a) 1 mA and b) 27 mA. Plots of the
c) Young’s modulus and d) the height of the PMMA film on the wire as a function of
the temperature. Topography of the PMMA film at room temperature d) before and e)
after applying 28 mA through the nanowire g) Temperature dependence of the storage
modulus and loss tangent for bulk PMMA [234].
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Figure 3.13: Young’s modulus map of a PMMA film spin coated on five nanowires (pat-
terned on a glass substrate) for different applied currents (0 and 13.2 mA). Cross-section
of the two white lines shown in the Young’s modulus map. The radius of the tip was 4
nm and the maximum applied force was 20 nN.

contrasts with those obtained for Si substrates where a few hundred nanometers away

from the wires no heating occurs.

In summary these variable temperature mechanical measurements on PMMA proved

that PFT-QNM can be used to follow physical phenomena, which lead to a change of the

sample stiffness. In a not too large temperature range the properties of the probe remain

reasonably constant. The local heating approach using nanowires allows for an easier

observation of the temperature effects and help also the data treatment. In the rest

of this chapter all the experiments were performed on gold nanowires patterned on Si

substrates, since their heat confinement is tighter.

3.3 [FeII(hptrz)]3(OTs)2 thin films

The study of mechanical properties of crystals or nanoparticles is delicate, since small

movements of the particles may lead to large errors in the Young’s modulus measurement.

To avoid this problem we decided to work on spin crossover thin films. As described in

detail in the previous chapter [FeII(hptrz)]3(OTs)2 films doped with Rhodamine 110 were

spin coated on gold nanowires (silicon substrate) and analyzed using PFT-QNM. (N.B. We
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have also carried out measurements on the [Fe(Htrz)2(trz)]BF4 nanoparticle films, but up

to now we could not obtain well reproducible mechanical data on this sample. We attribute

this to problems related to the low adherence of the particles on the substrate. Preliminary

data were also acquired with composite films of [FeII(hptrz)]3(OTs)2 in PMMA matrix

(see appendix B))

AFM analysis were performed at room temperature in air using a Dimension Icon

instrument (Bruker) and reflective Al-coated Si probes (MPP11120, Bruker). These latter

are characterized by a nominal resonance frequency of 300 kHz, a spring constant of 40

N·m−1 and a tip radius of 8 nm. AFM images (typically 8 µm X 4 µm, 256 pixels X

128 pixels) were recorded at a scan rate of 0.3 Hz in peak force tapping mode at 2 kHz

modulation with quantitative nanomechanical analysis (QNM). The peak force setpoint

(25 nN) was chosen to achieve ca. 1-2 nm sample deformation. The deflection sensitivity

of the photodetector was determined on a silicon sample, while the spring constant of

the cantilever was obtained by thermal tuning. Both parameters were found to be nearly

independent of the temperature in the investigated range (see section 3.2.2 for details).

A polystyrene calibration sample (Bruker PSFILM, E = 2.7 GPa, Poisson’s ratio =

0.35) was used to determine the tip radius by means of the Derjaguin Müller Toporov

model, as implemented in the software of the AFM instrument. The Poisson ratio used

for the SCO material was 0.4. This value is just an estimation and does not take into

account the possible difference between the two spin states. Nevertheless, we should note

that the calculated values of E are not very sensitive to small changes of ν. The spin-

transition curves of a sample were constructed using 28 AFM images, which were acquired

during a period of ca. 6 h. This implies a non-negligible sample drift, which becomes

especially critical when investigating non-homogenous samples and/or rough surfaces. For

this reason the AFM images must be systematically aligned, which was achieved using

the 2D cross-correlation method described by Quintero et al [9].

Briefly this method consists of aligning two or more images of the same scene. Our

routine compensates automatically any drift of the sample obtained during the experi-

ments. It receives a stack of images (in TIFF format) and asks from the user two inputs:

(1) a section of interest or feature in the 1st image of the stack that will be tracked during

the alignment process and (2) at least three reference points present in all the images of

the stack which would be used later for fine tuning of the alignment. Once these param-

eters are defined by the user, the routine executes the normalized 2D cross-correlation

process between the feature and the rest of the images of the stack following equation

3.15:

CCR(u, v) =

∑

x,y

[

f(x, y) − f̄u,v

]

[t(x − u, y − v) − t]
∑

x,y{
[

f(x, y) − f̄u,v

]2
∑

x,y

(

t(x − u, y − v) − t̄
)2

}0.5
(3.15)
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Figure 3.14: PFT-QNM images and associated data histograms for a [FeII(hptrz)]3(OTs)2

thin film at room temperature. a) Topography and b) Young’s modulus. c) Histograms
of the Young’s modulus of different samples of the same compound deposited in the same
way on similar substrates. Measurements and data treatment were done using the same
protocol, but with a different AFM tip in each case.

where CCR(u, v) is the crosscorrelation, f(x, y) is the image to be analyzed, t is the

feature, t̄ is the mean value of the selected feature and f̄u,v is the mean value of f(x, y)

in the region under the feature.

First the sample topography and stiffness were investigated at room temperature.

Although the film is very homogeneous, it has a roughness of approximately 6 nm due

to the polycrystalline nature of the sample, which is deduced from the width of the

height distribution peak (see figure 3.14 (a)). This topography produces an inherent

error in the determination of E of 0.4 GPa, as inferred from the width of the Young’s

modulus distribution in figure 3.14 (b). At room temperature the Young’s modulus of

the compound is E = 1.4 ± 0.4 GPa. This was calculated using the DMT model. To

test the reproducibility of E we performed four measurements in the same experimental

conditions, but using in each case a different tip and a different sample. The obtained value

was consistently the same as shown in figure 3.14 (c). This proves that our experimental

approach provides an excellent precision for the measurement of the Young’s modulus.

On the other hand, the accuracy of this Young’s modulus value is more difficult to
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evaluate. The obtained value of the Young’s modulus (ca. 1.4 GPa) seems reasonable

in comparison with the few reported values of elastic moduli in SCO materials (typically

a few GPa. [4, 168–170]). However, it is very important to keep in mind that several

factors can influence the measured absolute values of the Young’s modulus of such thin

films, such as the approximations inherent to the contact mechanics model (tip radius,

shape, etc.), the experimental uncertainties, the presence of adsorbed molecules on the

surface, as well as the roughness and even the thickness of the film [138].

This uncertainty in the absolute value of E will affect to a lower degree, however,

the measured variation of the Young’s modulus between the two spin states (which is our

main interest), since the same error will be propagated through the whole series of scans.

Hence, the variation of the elastic moduli between the two spin-states should be a more

robust observable.

In a first time scans in PFT mode were performed for an applied current of 1 mA

(295 K, LS state) and 21 mA (342 K, HS state) in order to obtain a preliminary idea of

the expected changes. Figure 3.15 shows images and cross-sections in the two spin states

of the material for five different AFM channels (topography, Young’s modulus, adhesion,

deformation and dissipation). The deformation of the sample is very similar over the whole

imaged surface and for both temperatures. A similar deformation means similar contact

area, which is obviously a very useful feature for quantitative analysis. In all channels,

except the dissipation, the signal changes between the two measurements (if any) are

observed only on the area heated by the wire. Indeed, far from the wires the sample

remains at room temperature and we do not expect thus any change in its properties. We

believe that the dissipation data reflects more artifacts due to laser interference than the

material properties. It may be worth noting that interference effects are also visible in

the adhesion and Young’s modulus channels.

From only two images it is impossible to conclude about the effects of the spin

transition because these are convoluted with ordinary thermal effects, such as thermal

expansion. Hence a series of data at different temperatures must be acquired both in

heating and cooling to deconvolute these different phenomena, to check their reversibility

and also the eventual presence of thermal hysteresis. However, for a quantitative study

of the mechanical properties during the course of several scans, the wearing of the tip

becomes a critical issue. For example, studies of the wear of different tips have been made

by Vahdat et al. in tapping mode [235]. In this study, the authors show that the radius

of the silicon tip changes from the first scan, and after nine scans the radius is doubled.

We have decided to carry out a similar test on our sample. Figure 3.16 (a) shows the

variation of the Young’s modulus observed over 17 successive scans on the same sample

area and in the same conditions. The radius of the tip increases from scan to scan due to

wear of the tip, producing the wrong impression that the Young’s modulus increases with

time. Figure 3.16 (b) shows the efficiency of this approach. In order to avoid this, we
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Figure 3.15: AFM maps and the corresponding average cross-sections of the topography,
Young’s modulus, adhesion, deformation and dissipation of a [FeII(hptrz)]3(OTs)2 thin
film (40 nm) spin coated on a gold wire. Data are plotted for two different currents (1
and 21 mA) flowing in the wire.
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Figure 3.16: Topography image of the [FeII(hptrz)]3(OTs)2 thin film sample showing the
measurement and reference areas. The plots show the Young’s modulus of the measure-
ment area for successive scans without (a) and with (b) the tip radius correction. See the
main text for details.

selected a reference area far from the wire and we corrected the tip radius for each scan

such a way that the Young’s modulus of the reference area was kept constant. In order to

acquire a large number of images without the need to carry out a complete tip calibration

procedure after each image, we propose to scan always a reference area (next to the area

of interest) that would have the same properties in each scan. This information can be

used to recalculate the radius of the tip for each scan and obtain quantitative values in

each image.

As mentioned above, in this type of measurements oscillations coming from optical

interference may be present. This interference is produced because the laser beam is not

only reflected by the cantilever, but it traverses the cantilever or "leaks" around its borders

and finally reflected on the sample as well (more details can be found in appendix A).

It is possible to decrease the interference by assuring a good laser alignment and using

highly reflective probes, but in our experimental conditions it was not possible to avoid

it completely. When the oscillations are very marked, it is difficult to determine the

variations in the adhesion and the dissipation. Therefore we only focused on the variation

of the Young’s modulus as a function of the temperature.

Figure 3.17 shows the AFM topographic images of a 70 nm thick film of

[Fe(hptrz)3](OTs)2 doped with Rhodamine 110 deposited on a heater made of two par-

allel Au nanowires. AFM scans were performed in PFT mode for different currents in

the wires. In the topography images we observe no substantial change (Figure 3.17 a-b).

Though the spin transition is known to induce a spontaneous strain, in our thin layer the

associated expansion is expected to be less than 1 nm which remains difficult to detect

owing to the non-negligible sample roughness. On the other hand, it is important to

notice the absence of any significant sample degradation in the topography scans. The

map of the Young’s moduli (E) was obtained using the DMT model. The observed values
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Figure 3.17: AFM study of a thin film (70 nm) of the compound [Fe(hptrz)3](OTs)2 doped
with Rhodamine 110 and spin-coated on two gold microwires. a) AFM topography image.
b) Average cross sections of the topography for different currents flowing in the wires (1,
14 and 28 mA), c) Young’s modulus maps and d) average cross sections of the Young’s
modulus for I = 1 mA and 28 mA. The two dotted horizontal lines indicate the Young’s
modulus change ∆E of the film due to Joule heating. The dashed vertical lines show the
edges of the wires where measurement artifacts may occur.

of E are not exactly the same above and next to the wires, which is probably related to

the fact that the stiffness of gold (79 GPa) and that of the substrate (for SiO2 E ≈ 75

GPa) are different and/or the film thickness is not exactly the same on the nanowire and

on the SiO2 substrate. The most important finding here is that an increase of the current

to 28 mA in the wires leads to a very substantial decrease of the Young’s modulus by ca.

30% (Figure 3.17 c-d). This change is clearly linked to the current increase because no

change is observed away from the wires and upon switching the current level back from 28

to 1 mA, the changes are perfectly reversible. These observations have been reproduced

several times on the same sample, even two months after the first experiment, as well as

on other samples using different wire geometries.

The decrease of the Young’s modulus for increasing currents in the wires (i.e., for

increasing temperatures) is expected to occur chiefly due to the LS to HS spin transition

in the film, since the HS form of the material has a lower stiffness. However, ordinary

thermal expansion may also contribute to this effect. It is therefore necessary to correlate

the AFM data with independent measurements of the spin-state change of the material.
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Figure 3.18: Normalized variations of the Young’s modulus and that of the fluorescence
intensity of a thin layer of [Fe(hptrz)3](OTs)2 doped with Rhodamine 110 as a function
of the current applied to the nanowire heaters. Figures a) and b) show two data series on
the same sample (the double wire device), but acquired in one week interval. Figure c)
show data for the single wire device. The error bars represent the standard deviations of
the measured data points.

As already explained in chapter 2 this can be achieved with this sample by recording

fluorescence images as a function of temperature (i.e. applied current). Figure 3.18 shows

the (normalized) variation of the fluorescence intensity and that of the Young’s modulus

of the material as a function of the current applied to the wires. Data are shown for the

double wire device (depicted in figure 3.17) and also for the single wire device (depicted

in figure 3.15). In each case we observed an increase of the fluorescence intensity for

increasing currents, which is an unambiguous indication of the spin transition. The good

correlation of fluorescence with the Young’s modulus changes proves that the change of

this latter arises chiefly as a result of the spin transition. (N.B. Some difference between

the fluorescence and the Young’s modulus curves can be observed, but one should note

that the fluorescence data were obtained in far-field with a spatial resolution, which is

comparable with the width of the wires. This means that these data integrate possibly

unheated sample area as well explaining their shift towards higher temperatures. It may

be worth noting also that different wires produce the spin transition at different current

values, which is simply related to the fact that their resistance is different.)

By calibrating the wire resistance against temperature (see section 2.2.1), it is also

possible to plot the Young’s modulus changes as a function of the temperature. As shown

in Figure 3.19 the spin transition is centered around 313 K, which corresponds well to our

previous results on these films (See section 2.2.2). The initial room-temperature value

of the Young’s modulus is reproduced after a full thermal cycle, within the experimental

uncertainty, providing evidence that the observed changes are not linked to a sample

degradation or instrumental drift. When going from the low spin to the high spin state
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the Young’s modulus decreases from ca. 1.7 GPa to 1.3 GPa. To our knowledge this is the

first time that the Young’s modulus and its spin state dependence has been determined for

a spin crossover material. For the lack of literature data we can not make really meaningful

comparisons, but we can note that the variation of the Young’s modulus observed by AFM

( ELS/EHS = 1.33±0.04) correlates well with the change of Debye temperature extracted

from Mössbauer data for a few SCO compounds (see the introduction of section 3).

One of the key aspects of the present study is that the sample stiffness can be

determined with a high spatial resolution. To illustrate this point, figure 3.20 shows the

Young’s modulus of a film of [Fe(hptrz)3](OTs)2 as a function of the current intensity in a

wire for different regions of interest (ROI) of the film. We were interested in determining

the size at which we can still observe the Young’s modulus variation. We show that it

is possible to follow spin transition on an area of 70 x 70 nm2. It might be possible

to observe the spin transition at lower spatial resolutions, but more resolved images are

necessary. We must stress that the spatial resolution of the Young’s modulus and the

spatial resolution of the thermal spin transition curve is obviously not the same, since

this latter is extracted from a series of AFM images, while the former refers to a single

image. Nevertheless, the spin transition curves can be retrieved even for very small sample

areas.

Another approach to analyze the spatial resolution is based on the fact that the

heat is spatially strongly confined to the wire. For example, one can analyze the Young’s

modulus data in the direction perpendicular to the nanowire. For this purpose, we fixed

the size of the ROIs to 70 nm along the x axis (i.e., perpendicular to the wire length).

For each ROI selected above the wire, we observe similar changes as in figure 3.17: an

increase of E by ca. 400 MPa when going from the HS to the LS phase. As can be

expected, this change is fairly homogeneous over the whole surface of the wire. In the

immediate proximity of the wire, there is still a small change in the Young’s modulus of

about 100 MPa. However, more than 200 nm away from the wire we observed no changes.

Indeed, one expects that the heat generated in the wires flows away in the direction of

the substrate (z axis), since the thermal conductivity of the latter is several orders of

magnitude higher than that of the compound. For a more-quantitative discussion, the

heat distribution in the devices (both the single wire and the double wire device) has been

calculated using finite element simulations by means of COMSOL Multiphysics. (These

calculations have been performed by Olena Kraieva and the numerical details have been

published in reference [156].) Figure 3.21 shows the results of the simulations as well as

ther comparison with our AFM results. Overall there is an excellent agreement between

the heat distributions derived from the COMSOL simulations and the Young’s modulus

distributions inferred from the AFM data. Incidentally we can remark on the basis of

this result that this type of thermomechanical measurements might be also used for high

spatial resolution thermometry purposes.
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Figure 3.19: Averaged Young’s modulus of a thin layer (40 nm) of [Fe(hptrz)3](OTs)2

(doped with Rhodamine 110) as a function of the temperature for the heating and cooling
modes. The error bars represent the standard deviations of the measured data points.
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Figure 3.20: a) Topography maps of a [Fe(hptrz)3](OTs)2 thin film (40 nm) spin-coated on
a gold wire. The selected regions of interest (ROI) of 70 nm widths as well as the reference
area are shown in the images. b) Variation of the Young’s modulus for the different ROIs
as function of the current intensity in the wire. c) Young’s modulus variation for areas
of different sizes shown in the AFM topography image. The large square (1) is ca. 500 x
700 nm2, while the small squares (2-4) measure ca. 70 x 70 nm2. It is possible to follow
the spin transition at such small sizes.
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Figure 3.21: 3D model of the temperature distribution in our nanoheater devices simulated
by COMSOL for a) the single nanowire device (width = 1 µm, thickness = 50 nm and
length = 80 µm, 20 mA current) and c) for the double wire device (widths = 1 µm and 500
nm, thickness = 50 nm and length = 80 µm, 32 mA current). b) and d) Cross sections
of the calculated temperature distribution and that of the experimentally determined
Young’s modulus change (Eref − EROI) along the x axis for a current of 20 mA and 32
mA, respectively.
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Figure 3.22: a) Young’s modulus maps and distribution histograms obtained by AM-FM
for a thin film (thickness = 40 nm) of [FeII(hptrz)]3(OTs)2 on a nanowire heater system
for 0 and 20 mA currents. b) Young’s modulus map of the same film obtained in QI
mode. During image acquisition the current flowing in the wire was successively switched
on and off as indicated. A representative force-distance curve is also shown.

As already stated the Young’s modulus value depends on the choice of the contact

model, the Poisson ratio and the geometry of the tip, which are all delicate to validate.

In addition the results may also depend on the choice of the tip, the AFM instrument

and/or the imaging mode. In order to further approve our results, a few additional tests

were performed in Quantitative Imaging mode (using a NanoWizard 3 AFM at JPK In-

strument), and in AM-FM mode (using a Cypher AFM at Asylum Research office). The

tests were performed as part of demos in the respective companies, hence the results pre-

sented below are preliminary. Nevertheless, they provided several interesting conclusions.

In each case we used the contact mechanics model implemented in the software: DMT

for the Cypher and Hertz for the NanoWizard.

These tests were performed on similar samples than used in our PFT measurements.

Figure 3.22 shows a summary of the main findings. AM-FM data were collected in the

LS (0 mA) and HS (20 mA) states of the Fe(hptrz)]3(OTs)2 film. The Young’s modulus

distribution histograms in the two cases reveal mean values of 1.4 GPa (HS) and 1.8 GPa

(LS) in excellent agreement with the PFT data. In addition the images show the same

confinement of the Young’s modulus change to the heated area, as observed previously.

The QI data were collected in a single AFM scan by turning successively on and off the
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Figure 3.23: Loss tangent images and histograms for a thin layer of [FeII(hptrz)]3(OTs)2

on a nanowire heater system, for 0 mA and 20 mA currents.

current in the wire as shown in figure 3.22 (b). A reproducible change of E between 0.7

GPa (HS) and 1.4 GPa (LS) was observed. From the force-distance curves obtained in

QI mode it can be inferred that a thin layer of liquid was present on the sample at the

moment of the measurement (Figure 3.22), which might explain the lower E values when

compared to the other data. Although these are preliminary results, it is important to

remark that the order of magnitude of E is the same for all measurements and in all cases

the Young’s modulus in the HS state is lower than in the LS state.

During the experiments with the Cypher, the loss tangent images of the sample were

also obtained for 0 and 20 mA currents, as shown in figure 3.23. The contrast between

the material on the wire and on the substrate is higher for 20 mA. The loss tangent values

are negative which is of course physically impossible. Unfortunately we were only able

to do this experiment once, so the results could be improved. Nevertheless, the contrast

between the HS and the LS states is remarkable.

3.4 Conclusions

In this chapter we described a novel approach, AFM thermomechanical measure-

ments, to detect and image the spin transition phenomenon in nanometric thin films.

This approach is based on the fact that the spin transition involves a significant change

of the stiffness of the material.

Based on a few preliminary tests, we have chosen the peak force tapping mode for
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quantitative nanoscale thermomechanical measurements. Using this method in conjunc-

tion with a nanowire heating device, we have been able to image the Young’s modulus

change of the spin crossover complex [FeII(hptrz)]3(OTs)2 between the two spin states.

When going from the low-spin to the high-spin state we observed, for the first time, a

decrease of the modulus from 1.7 GPa to 1.3 GPa, i.e. a change of ca. 25-30%, which can

be rationalized by taking into account the softening of the metal-ligand bonds in the HS

state.

The most important asset of our approach is that it allows the spin-transition phe-

nomenon to be followed with a nanometric spatial resolution. Actually, we believe that

among the various SPM techniques this type of mechanical measurements provide the

highest resolution to this aim1. This opens up a unique possibility for the investigation

of the spin transition in different nano-objects. In addition, the nanoscale imaging of

spatially localized events, such as formation of the phase boundaries and their motion,

also becomes possible. Indeed, the spin transition encompasses various phenomena oc-

curring at different length scales (both nanometric and micrometric), which have been

studied, up to now, chiefly by diffraction-limited optical microscopy. On the other hand,

our results also highlight that the AFM studies of thin spin crossover layers can offer

an interesting alternative for high-resolution imaging of surface temperature variations,

which is currently a great concern in many fields of science and technology.

Beyond the nanoscale detection of the spin transition, merely the fact that we de-

termined the Young’s modulus of a spin crossover film is an important new result. For

example, the knowledge of the Young’s modulus (and its variation) is an indispensable

input for the design of microactuator devices based on spin crossover complexes and also

for the theoretical modeling of the spin transition. In addition to the Young’s modulus

(stiffness) other material properties (adhesion, dissipation, loss tangent, etc.) were also

extracted in the two spin states and provide additional and previously unknown informa-

tion about these systems.

Peak force tapping is one of the force curve based methods, which are probably the

most appropriate for quantitative mechanical studies. Nevertheless, we proved that other

methods such as phase imaging, loss tangent imaging, multifrequency (AM-FM) imaging

and lateral force microscopy can also provide useful and sometimes complementary infor-

mation. Among them AM-FM appears as a very interesting method for future work due

to its very high imaging speed compared to force curve based methods, while providing

similar quantitative data. Future work should also address in more detail the validity

range of contact mechanical models for different SCO samples and it would be also very

interesting to test the possibility of (thermo)mechanical addressing the spin state of these

materials.

1STM cannot be used on insulating films.



113

Chapter 4

Imaging and manipulation of SCO
single crystals

The spin crossover phenomenon has been deeply characterized using Mössbauer spec-

troscopy, X-ray diffraction, as well as magnetic and optical methods. However, the in situ

observations of the nucleation, the evolution of the phase boundaries and the associated

changes of the microstructure have been reported very recently in spin crossover solids.

Nevertheless, much remains unknown concerning the nucleation and growth kinetics for

cooperative SCO systems.

In the frame of the thesis of Salma Bedoui in the team, the spatial and tem-

poral dynamics of the spin transition was deeply investigated in single crystals of the

molecular spin crossover compound [FeII(bapbpy)(NCS)2] (bapbpy = N-(6-(6-(pyridin-2-

ylamino)pyridin-2-yl)pyridin-2-yl)pyridin-2-amine) showing first order spin transition [78–

81]. By means of far-field optical microscopy the heterogeneous nucleation of different spin

domains and their propagation was observed and the velocity of the domain barrier was

found to be a few micrometers per second. The formation of one stable nucleus during the

phase transition was found a scarce and extremely reproducible process, which occurred

at predetermined locations (micro-structural defects). For this reason the transformation

kinetics strongly depends on the crystal quality and differs from one crystal to another.

In good quality crystals a single nucleation event occurs at a predetermined place (usually

at a corner or edge) followed by the formation of a well defined phase boundary, which

propagates through the whole crystal. The possibility to modulate or even to control

the spatiotemporal dynamics was also demonstrated by either ablating microstructural

defects in the crystal or by locally heating it with a laser pulse. Comparative studies of a

non-cooperative compound of the same family, the [Fe(Meta’Me2(bapbpy)(NCS)2] were

also carried out. In line with the very gradual character of the SCO in this compound,

the spin crossover process occurs in a homogenous manner without discernible domain

formation.
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However, there are many open questions that can be studied with higher spatial

resolution techniques, such as: How the nucleation and growth phenomena depend on

the morphology and structure of the sample? What is the minimum size where phase

separation can still be observed? What is the size and the nature of the phase boundary?

To answer some of these questions the existing experimental methods are not sufficient

and we need new technics able to detect the spin transition with high spatial resolution.

In the continuity of the previous work in our team we decided to explore the possibil-

ities provided by AFM techniques to image and to manipulate the spin transition in single

crystals. Unfortunately the compound [FeII(bapbpy)(NCS)2] displays spin transition at

low temperatures which we can not access with our AFM set-ups. For this reason we

decided to work with the [Fe(bbpya)(NCS)2] complex from the same family. This latter

compound exhibits an abrupt spin transition above room temperature which makes it an

interesting candidate for AFM studies.

In this chapter we present an AFM imaging of the spin transition in

[Fe(bbpya)(NCS)2]. The synthesis and the main properties of the sample will be pre-

sented at first, followed by optical far-field microscopy imaging of its spin transition.

Important electrostatic and thermal interactions between the sample and the AFM probe

were observed. These will be discussed in the next section. Afterwards, the change in the

topography of the crystals due to spin transition is presented in different experimental

conditions.

4.1 Sample description

Inspired by their earlier investigation of the compound [Fe(bapbpy)(NCS)2] (2),

where bapbpy is the ligand N-(6-(6-(pyridin-2-ylamino)pyridin-2-yl)pyrindin-2-yl)pyridin-

2-amine [236](Figure 4.1 a), Zheng et. al. have synthesized a new SCO compound, the

[Fe(bbpya)(NCS)2] (1), where bbpya is the ligand N,N-bis(2,2’-bipyrid-6-yl)amine (figure

4.1 b).

Magnetic susceptibility and differential scanning calorimetry measurements were

performed by Zheng et. al. on powder samples and revealed that the spin transition in

[Fe(bbpya)(NCS)2] occurs around 410 K (figure 4.2). This is one of the highest transition

temperatures reported in the literature for a SCO compound. Intriguingly, the SCO is

rather gradual between approx 350 - 500 K, but still a clear hysteresis is observed with

T ↑

1/2 = 418K upon warming and T ↓

1/2 = 403K upon cooling. These results were corrob-

orated by differential scanning calorimetry measurements where anomalies were found

in both warming and cooling modes at T ↑

1/2 = 434K and at T ↓

1/2 = 415K, respectively.

Unfortunately the crystal structure was only determined at room temperature (i.e. in the

LS state).
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Figure 4.1: Structures of the spin transition compounds a)[Fe(bapbpy)(NCS)2] and
b)[Fe(bbpya)(NCS)2].

Figure 4.2: Thermal variation of χMT (a) and the molar heat capacity (b) for
[Fe(bapbpy)(NCS)2] measured at 10 K min−1 upon warming (empty circles) and cool-
ing (empty squares) [237].
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4.2 Preliminary sample characterization

In this work we investigated [Fe(bbpya)(NCS)2] single crystals of ca. 40 µm of

width, 20 µm thickness and a length that can vary from 0.8 to 1.8 mm. The crystals were

carefully chosen under an optical microscope so they present an adequate size to perform

AFM studies (they should be twice as long as the width of the cantilever to observe the

influence of the tip on the crystal) and the less possible visible defects on the surface. (The

crystals were grown by Sipeng Zheng in the group of Sylvestre Bonnet at the University

of Leiden.)

4.2.1 Raman Spectroscopy

Since the properties of large single crystals can be significantly different when com-

pared to powder samples and some differences may also occur from crystal to crystal, the

spin transition of the crystals was first checked by means of variable temperature Raman

spectroscopy. In fact, the structural changes which accompany the spin transition phe-

nomenon are in general clearly manifested in the vibrational spectra of SCO molecules.

We acquired Raman spectra by means of a LabramHR (Horiba Jobin Yvon) confocal

micro-spectrometer equipped with a Peltier-cooled CCD detector (Andor DU420) and an

Olympus BXFM optical microscope. A HeNe laser operating at 632.8 nm was used as

an excitation source. The laser beam was focused on a spot of approximately 2 µm via

a 50x long-working-distance objective (NA=0.5), which also served to collect the scat-

tered photons. The confocal hole was kept at 1000 µm. The Rayleigh scattering was

removed by an edge filter and the Raman spectra were recorded between 1200 and 2200

cm−1 with acquisition times between 10 and 30 s. The spectral resolution was set to

ca. 3 cm−1. The long axis of the needle shaped crystals was perpendicular to the laser

polarization direction. The sample was enclosed in a Linkam THMS600 liquid nitrogen

cryostat equipped with a glass window. Before the experiment the sample chamber was

purged by dry nitrogen for 30 min at 403 K in order to remove traces of solvents.

Figure 4.3 a, shows selected representative Raman spectra of a crystal of the com-

pound [Fe(bbpya)(NCS)2] at three different temperatures (433, 453 and 513 K). The

spectrum at 433 K shows relatively intense peaks between 1250 and 1650 cm−1 and two

isolated peaks between 2050 and 2200 cm−1. These latter correspond to the CN stretch-

ing modes of the thiocyanate ligands. Since they are isolated from the other peaks and

are relatively intense, they can be used to study the spin transition in analogy with the

compound 2, which was previously investigated in detail by Bedoui et al. [79]. In the

case of compound 1 the Raman peak at 2076 (2113) cm−1 probes the HS (LS) state.

To follow the spin transition we recorded the Raman spectra of compound 1 at different

temperatures while increasing the temperature from 353 to 533 K. To avoid any artifacts
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Figure 4.3: a) Raman spectra of a single crystal of [Fe(bbpya)(NCS)2] at 433, 453 and
513 K. b) Ratio of the CN stretching intensities in the heating mode.

that may affect the intensity of the peaks, we have followed the intensity ratio of the CN

stretching modes. The ratio between two peaks of the same spectrum was obtained by

Ratio = IHS

IHS+ILS
, where IHS and ILS are the maximum intensities of the peaks at 2076 and

2011 cm−1. To our surprise the crystals of compound 1 present a two-step thermal spin

transition, which was not detected for the powder sample. An abrupt transition in the

crystals is observed between 433 and 453 K from the LS state to an intermediate phase

(IP ), which consists of ca. 50/50 % HS and LS molecules. This first step is followed by a

very gradual conversion to the HS state, as shown in figure 4.3 b. The transformation of

the crystal to the pure HS state can not be obtained because for temperatures higher than

533 K (nHS ≈ 0.75) sample decomposition was observed. For this reason, in the following

experiments only the transition between the LS and the IP phases will be discussed. It

may be worth to note also that somewhat similar differences were previously reported also

in compound 2 between the powder and the single crystal samples, the latter showing

more abrupt transitions and a better defined plateau between the two steps of the spin

transition [77].
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4.2.2 Optical microscopy studies

For the investigation of the spatio-temporal dynamics of the spin transition, the

good reproducibility of this latter is indispensable. Unfortunately the quality of many

SCO crystals degrades dramatically during the transition due to auto-split, cleavage and

other failures. As a matter of fact, the availability of good quality crystals displaying

a robust and well reproducible spin transition is the main bottleneck for this type of

study. (In our case the number of available samples is further restricted by the relatively

small temperature range accessible by our AFM.) In order to test the reproducibility

of the spin transition curve in the compound [Fe(bbpya)(NCS)2], we used conventional

far-field optical microscopy. As already stated in chapter 2 SCO compounds present

a drastic change of their optical properties at the spin transition temperature. In the

case of 1 the optical density in the visible range decreases when going from the LS

to the HS state. This property can be used to follow in a quantitative way the spin

transition by an optical microscope. Optical microscopy images of several crystals were

recorded in bright-field either in transmission or in reflectivity modes using an Olympus

BX51 microscope equipped both with a color CMOS camera (IDS UI-1250ML) and a

thermoelectrically cooled CCD camera (Andor Ikon-M with 13 µm pixel size). A 50 X

objective (numerical aperture NA = 0.5, working distance WD = 10.6 mm) was used.

The sample was illuminated by a halogen lamp (400 to 700 nm), but in certain cases the

spectral range was reduced using a band-pass filter (650 ± 25 nm). The temperature of

the sample was controlled by means of a Linkam THMS600 cryostat.

The overall shape of the transition curves is the same for the different crystals we

investigated, but the fine details vary from crystal to crystal. In each case we observed a

very abrupt spin transition, which was complete in less than 0.1-0.5 K. The spin transition

occurs always with a hysteresis of ca. 1.5-8 K width, which is centered around approx.

435-440 K. When compared to 2 in this sample it was much more difficult to find crys-

tals which preserve their integrity over successive thermal cycles. We observed in many

cases self-cleavage and also pronounced thermosalient phenomena ("jumping crystals").

In fact during the transition the crystals always changed in a perceptible manner their

size and shape, which can explain these phenomena. Nevertheless, we succeeded to find

several robust crystals, which displayed reasonably well reproducible SCO. Perhaps not

surprisingly, these latter were usually small and thin needles. The spatio-temporal devel-

opment of the transition was found globally very similar to that observed for 2. Briefly,

nucleation occurs usually at the apex of the crystals and the well defined phase bound-

ary moves from one end of the crystal to the other. The forward and reverse transitions

follow spatially the opposite way. In many cases we observed a slow-down or even the

trapping and successive re-acceleration of the phase boundary, which is certainly linked

to the presence of microstructural defects. It is important to note that it was possible



Chapter 4 : Imaging and manipulation of SCO single crystals 119

Figure 4.4: Optical reflectance of two different crystals of 1 recorded over several succes-
sive thermal cycles. The temperature rates were 1K/min and 0.1 K/min for (a) and 0.5
K/min for (b).

to block the position of the phase boundary if the heating (or cooling) was stopped in

the middle of the hysteresis region and the sample temperature was slightly decreased (or

increased).

Figures 4.4, 4.5 and 4.6 show a few typical transition curves and optical microscopy

images of 1 recorded across the spin transition. The spin transition curves in figure 4.4 (a)

were acquired at different rates (0.1 and 1 K/min) during six successive thermal cycles.

One can observe an increase of the reflectance around 439 K due to the transition from the

LS to the IP phase, while the reverse transition occurs around 436 K. The quality of this

sample is relatively low which is reflected by the fact that the transition is not very abrupt

and the hysteresis is rather narrow. Nevertheless, it shows a good reproducibility, which is

nearly independent of the heating and cooling rates (within the investigated range). For

comparison, the spin transition of a higher quality crystal is depicted in figure 4.4 (b). In

this case the transition occurs in a virtually discontinuous manner and it is completed in

less than 0.1 K. The hysteresis in this sample is somewhat larger and centered at a higher

temperature, but the exact values of the transition temperatures are difficult to define

because they change slightly between every cycle.

Selected snapshots of the nucleation and growth process are shown for two crystals

in figures 4.5 and 4.6. In both cases there is a single nucleation point at the apex of the

crystals. It is interesting to remark the very well defined and nearly constant orientation

of the phase boundary with respect to the orientation of the crystal. This phenomenon

has already been observed by Sy et al. [66] in another SCO sample. They explained the

specific orientation of the phase boundary by the existence of a HS/LS interface which
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Figure 4.5: Far-field optical microscopy snapshots (transmission mode) of the spin tran-
sition of a [Fe(bbpya)(NCS)2] crystal in the cooling mode. The low temperature (LS)
phase has higher optical density.

minimizes the elastic strain at the phase boundary.

4.3 AFM

Optical microscopy has proven that crystals of 1 have on the whole adequate spin

transition properties (such as size, spin transition temperature, reproducibility, etc) to

study their spatio-temporal dynamics using atomic force microscopy. However, the high

temperatures at which transition occurs increases unfortunately the heat transfer between

the sample (and/or the heating stage) and the probe even if this latter is heated. In the

following section we will describe this effect and the associated problems in detail.

AFM experiments discussed in this chapter were performed using a SmartSPM

(AIST-NT) in tapping mode using a silicon tip with aluminium coating on the back-

side of the cantilever (Rtespa, Bruker, frequency = 300 kHz, k = 40 N·m−1), unless

otherwise indicated.

4.3.1 Probe-sample interactions

As already mentioned the crystals move during the spin transition, therefore it is

necessary to fix them to the surface. A small drop of Epoxy glue was homogeneously

spread over the surface of the Si substrate. Crystals of 1 were then placed one by one

on the substrate with the help of a needle. The sample temperature was controlled with

a heating state provided by the AFM company. All experiments were carried out in air.

The AFM probe was approached to the crystals either vertically at a fixed lateral position

or laterally at a constant height. The spin state of the crystal was followed in-situ by

conventional far-field optical microscopy using a 10 X Mitutoyo objective (NA = 0.28).

The crystals were illuminated with a halogen lamp and the reflected light was captured

using a CMOS camera.



Chapter 4 : Imaging and manipulation of SCO single crystals 121

Figure 4.6: Far-field optical microscopy snapshots (transmission mode) of the spin tran-
sition of a [Fe(bbpya)(NCS)2] crystal in the heating and cooling modes. The low temper-
ature (LS) phase has higher optical density.
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In a first experiment the temperature of the crystal was increased to 433 K (LS

state) at a rate of 10 K/min and an approach was performed on the crystal in order to

calibrate the tip-sample distance. Then, the tip was retracted 500 µm and the temperature

was increased to 448 K. As mentioned before at this temperature the sample is in the

intermediate phase (HS-LS). Following sample thermalization, the tip-sample distance

was decreased in small steps (10 µm) and a snapshot of the sample was taken after each

step. As shown in figure 4.7 at ca. 70 µm tip-sample separation, the nucleation of the

LS phase (characterized by a dark contrast) was observed in the crystal under the AFM

probe. As the tip further approached to the crystal the LS domain has progressively

grown towards the other end of the crystal. When the tip is engaged on the sample

surface the LS phase progressed ca. 90 µm, which corresponds to approx 50 % of the

length of the crystal. When retracting the probe the opposite phenomenon occurs, but

the approach and retract curves present a wide hysteresis of ca. 50 µm. This hysteresis

reflects obviously the bistability of the sample. This experiment was reproduced three

times on the same sample with the same result and it was also confirmed using other

crystals. Interestingly if the tip is maintained at a certain height the phase boundary

remained at the same position (for at least 2 hours). However, the elastic strain produced

on the crystal provokes an irreversible damage (cracks) around the phase boundary after

ca. 15-20 minutes.

This experiment reveals that the AFM probe strongly influences the spin state of

the crystal even at large distances. The most obvious hypothesis to explain this finding is

heat transfer between the sample and the probe, i.e. the probe which is colder than the

sample brings this latter to the low temperature (LS) phase. On one hand this thermal

interaction is a huge difficulty for the imaging of the spin transition. On the other hand it

is an exciting finding which opens perspectives for the manipulation of the spin transition

in a reversible and spatially localized manner. In order to further explore this possibility

we have carried out a few other experiments.

In a second experiment the tip-surface distance was calibrated as previously and

the temperature was fixed again at 448 K. However, in this case the tip was kept at a

constant height from the substrate (100 µm) and the sample was moved laterally, i.e.

parallel to the length of the cantilever (Y axis). As the tip approached to the crystal,

the nucleation of the LS phase was observed at the extremity of the crystal near to the

cantilever, as shown in figure 4.8. The distance between the tip and the nucleation point

was of 490µm. As the tip further approaches to the crystal the new phase propagates

through it, i.e. the volume of the LS phase increases. The phase boundary moves ca.

0.85 µm for every micrometer the tip approaches or retracts from the crystal. As in the

previous case a hysteresis is observed (ca. 80 µm.). We have also carried out experiments

(not shown here) where the tip moved from one side to the other of the crystal. In such

a case the phase boundary follows the movement of the tip in a more direct way. The
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Figure 4.7: Plot of the vertical distance between the tip and the crystal surface vs the
normalized reflectance of a [Fe(bbpya)(NCS)2] crystal in the area marked in the images
below. Arrows indicate increasing and decreasing tip-sample distance. A few selected
images corresponding to this plot are shown below. The tip-sample distance is indicated
in each image. The experiment was performed at 448 K. The size of the images is 300 X
300 µm2.
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Figure 4.8: Distance between the phase boundary and the nucleation point in crystal of 1
as a function of the tip-sample distance for the experiment shown in the images. The tip-
substrate distance (100 µm) and the sample stage temperature (448 K) are kept constant
and the tip approaches the sample in the Y direction. Arrows in the plot indicate the
approach and the retract of the tip. The tip-sample distance is indicated in each image.
The size of the images is 290 x 450 µm2.

volume of the crystal that is transformed to the LS state was found to depend not only on

the tip-sample distance, but of course also on the temperature of the sample. Depending

on the choice of the crystal as well as on the experimental details, in particular where and

how the crystal is approached by the tip, we observed different behaviors, such as multiple

nucleation points and thus several domains with sometimes different boundary angles and

propagation directions. Another interesting observation is that if the tip approaches to

the crystal far from a natural nucleation point (i.e. far from a corner or a defect in the

crystal), the transition is more difficult to induce.

In order to better understand the nature of the tip-sample interaction, similar ex-

periments were performed on a crystal, but using different AFM probes (Rtespa (Bruker),

HQCSC17 and HQNSC15 (Micromash), etc). Each probe consists of a sharp Si tip at-

tached to a cantilever, which is held by a silicon chip. (The scheme of a probe can be

depicted in figure 3.1.) Figure 4.9 shows the reflectivity as function of the tip-surface

distance for two different probes (Rtespa and HQCSC17 with a cantilever length of 125
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Figure 4.9: Reflectance of a crystal of compound 1 as a function of the tip-sample vertical
distance for two different tips measured both in approach and retract modes.

and 450 µm, respectively). In these experiments the tip moves in the Z axis and basically

we observe the same phenomenon as previously in figure 4.7. The interesting finding here

is that longer cantilevers produce a switch to the LS state at shorter tip-sample distances.

From this result we can infer that not only the tip-sample distance, but also the distance

between the crystal and the chip has an influence on the probe-sample interaction. To

confirm this conclusion we also made experiments using silicon chips without any can-

tilever or tip and the spin transition was also observed when approaching only the bare

chip. Nevertheless, this does not mean that the tip has no effect at all. For example, when

using long cantilevers (450 µ m) we observed nucleation at two different points, near the

end of the tip as well as close to the chip. Let us note also that preliminary experiments

suggest that the interaction between the probe and the sample is significantly more im-

portant when using probes made of conducting materials (Si or metal) when compared

to insulating materials such as glass or plastic.

4.3.2 Investigation of the heat transfer between the probe and

the sample

As already mentioned, the most probable cause of this long-range interaction be-

tween the probe and the crystal is a local heat transfer. When a silicon tip approaches
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to a hot surface, there is normally a thermal interaction between the tip and the sample

that is not negligible. In general there are three different modes of heat transfer in air:

conduction, convection and radiation. The relative importance of heat transfer modes

depends on the operating temperatures, the dimensions and the distance of the objects

as well as on the conditions of air flow (open/closed space and cavities). At low operating

temperatures (< 573 K) micro-scale heat transfer by radiation in air is small compared to

that by conduction or convection over a wide range of dimensions [238]. Therefore only

heat conduction and convection in air will be considered in the following. Heat conduc-

tion in air becomes relatively important (in our experimental conditions) when the air

gap between the sample and the tip is only a few tens of microns. Heat convection plays a

role in carrying heat and mass from the hot surface to the colder probe and environment

at larger distances [239]. It is important to remark that micro-scale heat convection is

not zero [240].

The different heat transfer modes at this scale can be analyzed with good accuracy

using finite elements simulations. From an experimental point of view a powerful approach

would be to repeat our measurements under vacuum and also using probes made of

materials with very different thermal properties. Unfortunately, at this moment of the

thesis work, these experimental tools were not available and a proper numerical modeling

would have taken too much time. We have therefore decided to use an experimental

approach, which was readily available. In fact, temperature changes can be measured

locally using the nanowire heater system presented in section 2.2.1 by simply measuring

the electrical resistance of the nanowire. In these experiments a clean gold nanowire

(thickness = 50 nm, width = 1 µm, length = 40 µm) on a silicon substrate was used. The

substrate was heated using the AFM heater stage. The current applied to the nanowire

was controlled using a source-meter (Keithley model 2611A). In each experiment the

distance to the nanowire was calibrated by performing an initial approach to the sample

as well as a scan to locate the nanowire in the X - Y directions. We always assured that

the end of the tip was on the middle of the nanowire. The resistance of the nanowire was

measured while applying 0.5 mA current to it, unless otherwise indicated.

In the first experiment the tip was located at a constant distance (200 µm) above the

nanowire and the resistance of the nanowire was measured for different temperatures. The

temperature was changed using either the heater stage (i.e. by heating a large surface) or

the nanowire (i.e. by heating only a tiny surface area). Each measurement was performed

both in the presence and in the absence of the AFM probe. For this the probe holder

with the probe was manually removed and replaced three times for each temperature

and the average resistance value was taken. In each case, the resistance was measured

after the temperature of the system was fully stabilized. Figure 4.10 shows the results

of this experiment. As expected the relation between the resistance of the wire and its

temperature is nearly linear (in particular in the absence of the probe). The presence
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Figure 4.10: a) Electrical resistance as function of the temperature of a gold nanowire
heated either with a heater stage (open symbols) or by injecting a current into the
nanowire (closed symbols). Resistance was measured both in the presence of an AFM
tip (located at 200 µm above the wire) (square symbols) and in its absence (diamond
symbols). b) The difference between the resistance measured with and without the tip
as a function of the temperature. Open and closed symbols correspond to heating by the
heating stage or by directly the nanowire (NW), respectively.

or absence of the probe has strictly no influence on the resistance of the nanowire when

only this latter is heated (figure 4.10 (b)). However, when the sample is heated using the

heating stage we observed a clear effect of the probe. In the presence of the probe the

resistance is systematically lower. This resistance difference (i.e. with and without the

probe) increases linearly with the temperature. From this data we can deduce that even

when the tip is at 200 µm from the surface the average temperature of the wire decreases

by as much as 5 K (at 423 K) when the heater stage is used. We must insist that we

measured the mean temperature of the wire and locally the effect of the probe can be

even higher than 5 K. Hence, it is not surprising that the SCO crystals change their spin

state from HS to LS even before the tip is in contact with the surface. In other words

when the probe approaches to the crystal, it starts to affect (reduce) the temperature of

the crystal locally already from large distances (i.e. 200 µm). The presence of the probe

favors thus the low temperature (LS) phase. The thermal effect of the probe (ca. 5 K)

may seem rather small, but we must recall that the spin transition is extremely abrupt

in sample 1 and due to the hysteresis it is not necessary to heat the whole sample, but

only a small volume (i.e. the nucleation volume).

In the next step we carried out similar experiments in which the temperature was

kept constant and the tip-sample distance was changed. Figure 4.11 (a) shows the resis-

tance of a gold nanowire (NW) as a function of the tip - NW distance at room temperature.

No significant variation of the resistance is observed. On the contrary, when we repeat the
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same experiment at 423 K the resistance decreases monotonously when the tip approaches

the NW 4.11 (b). From the NW resistance we can infer that for a tip-sample separation of

200 (50) µm the temperature of the NW is 8 (15) K below that of the heating stage. The

large gap (200 µm) at which the heat transfer occurs indicates that thermal convection

is present in the system. One way to diminish the thermal convection phenomena is to

reduce the size of the heated area by several orders of magnitude. This will affect the

Grashof number [239, 241], which governs the convection heat transfer process, diminish-

ing the convection effect. In fact the nanowire heater system reduces the heated area by

three orders of magnitude. If the main heat transfer mechanism in our case is thermal

convection this highly reduced area should lead to a drastical decrease of heat transfer.

However, if thermal conduction dominates the heat transfer we can expect less dramatic

changes. We thus repeated the previous experiment, but instead of heating with the

stage, we directly heated the nanowire by an applied current of 5 mA, which corresponds

to 427 K. The result of the experiment is shown in figure 4.11 (b). It shows that there

is no considerable heat transfer (∆T < 1 K) between the tip and the wire even when

the tip is engaged on the sample surface. However, a closer look on these data (figure

4.12) reveals that the temperature on the wire decreases a few tenths of a degree for tip -

sample distances smaller than 40 µm, as expected for conductive heat transfer in air. The

influence of the tip - NW distance on the nanowire temperature was also investigated for

different applied currents. The range of applied currents (1-5 mA) corresponds to NW

temperatures between 313 and 427 K. As shown in figure 4.12, almost independently of

the initial temperature of the NW, the approach of the tip to the nanowire leads to a

similar resistance (i.e. temperature) change of this latter. In each case, the temperature

of the wire decreases only a few tenths of a degree even when the tip is engaged. This

small thermal effect slowly increases with the current applied to the tip (figure 4.12 (b)).

We have seen above in figure 4.8 that the probe has an influence on the spin state

of the crystals of 1 even when these latter are laterally several micrometers away from

the tip. In order to better understand this result, we repeated this experiment using the

gold nanowires instead of the SCO crystals in order to determine the lateral temperature

distribution. The tip was placed 100 µm above the surface which was maintained at

423 K using a heater stage. The sample was moved parallel to the cantilever (Y axis)

using the stepper motors. (N.B. The AIST probe holder is built in such a way that the

angle between the probe and the sample is of 20◦.) Figure 4.13 shows the resistance

of the nanowire as a function of its lateral distance to the tip. Remarkably the lowest

temperature (resistance) value was observed in the middle of the probe and not near the

tip, supporting our hypothesis of a heat transfer dominated by thermal convection in the

system.

The different experiments with the nanowires evidence clearly an important heat

transfer due to convection phenomena between the AFM probe and the sample. This can
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Figure 4.11: a) Resistance of a gold nanowire (thickness = 50 nm, width = 1 µm, length
= 40 µm, glass substrate) as a function of the distance between the nanowire and the
AFM tip. The temperature of the sample stage was maintained at 297 K. b) Variation of
the temperature of the NW (obtained from the resistance of the wire) as a function of the
distance between the nanowire and the AFM tip. Squares correspond to the experiment
where the whole sample stage was kept at 423 K. Diamonds indicate another experiment
were only the nanowire was heated to 427 K.

Figure 4.12: a) Resistance difference (∆R = Rmax - R) as a function of the distance
between a gold nanowire (thickness = 50 nm, width = 1 µm, length = 40 µm, glass
substrate) and the AFM tip for different currents applied to the wire. b) Resistance
difference (∆R = Rmax - Rmin) as a function of the nanowire temperature (i.e. applied
current). The temperature difference corresponding to the resistance changes is also shown
for both figures.
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Figure 4.13: Resistance as a function of the position of the wire relative to the tip at a
constant tip height (≈ 100 µm) and temperature (423 K).

of course explain the influence of the probe on the spin state of our samples. However, this

observation does not exclude the existence of other types of probe-sample interactions.

In particular, we observed that electrostatic effects also occur in the experiments. A very

obvious manifestation of these latter was repeatedly observed when the crystals were not

glued to the surface. In such case, as the tip approached to the crystals we observed them

moving and in some cases the crystals even "jumped" towards the probe and stuck to it.

An example of this phenomenon is shown in figure 4.14. We observed this phenomena

in crystals of all sizes and shapes. (It is interesting to note that the force needed to

pull crystals of ca. 100 - 200 µm length 30 µm away from the surface is ca. 0.9 - 1.4

nN.) Another interesting observation concerns the relationship between these electrostatic

effects and the spin transition. In fact, electrostatic phenomena were observed most often

during the spin transition and in particular after several spin transition events (i.e. after

several heating-cooling cycles). Trying to better understand this phenomena we applied

different voltages at different distances between the tip and the sample. However, we

did not observed any effect on the spin state of the crystals nor we were able to make

them move. We believe a triboelectric effect occurs during the spin transition, i.e. most

probably the crystal is charged due to friction between the different HS and LS domains

in the crystal and/or due to the formation of cracks in the crystal. To further investigate

these phenomena we performed Electrostatic Force Microscopy (EFM) measurements (see

details on EFM in reference [121]). In EFM the tip scans the surface topography during
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Figure 4.14: Selected optical images of a crystal of compound 1 that show the crystal
is moving towards the probe. The probe was moved towards and away form the crystal
while keeping its height constant (30 µm). The temperature of the sample holder was
fixed at 448 K.

the trace in AC mode. Then, the tip is retracted from the surface and the retrace is

performed at a constant tip-surface distance while applying a voltage between them. The

amplitude of the oscillation of the tip will be modified depending on the electrostatic

forces between the probe and the substrate. We performed EFM measurements at room

temperature on crystals of 1 after two or three thermal cycles. The tip was lifted 100

nm above the surface for each measurement. Charges on the crystal were found after

two thermal cycles in the crystal, although they are not uniformly distributed (i.e. most

of the crystal is not charged even after four thermal cycles). Figure 4.15 shows EFM

images after 2 and 3 cycles for the same zone. Images were taken for two different applied

voltages (+10 and -10 V). Darker and brighter areas can be found in all images, which

correspond most probably to differently charged areas. From the images we can infer that

some areas are indeed charged, since we observe an inversion of the contrasts between the

images taken for +10 and for -10 V. After cycling the crystal once more we observed an

increase in the amplitude of the EFM signal, confirming the hypothesis that the crystal

accumulates charges during the spin transitions.

4.3.3 Variable temperature topography studies

Unfortunately NW heaters can not be used to heat micrometric single crystals.

Other methods and hints must be therefore considered in order to avoid, or at least

reduce, unwanted thermal effects between the AFM probe and the crystals. Possible ideas

include (i) the use of a vacuum chamber, which would completely eliminate convection

and significantly reduce conduction effects, (ii) the use of very long cantilevers which can

reduce convection effects, and (iii) heating the AFM probe to the same temperature as the

sample stage. Since we had no equipment to carry out these measurements under vacuum

we tested the two latter solutions. The use of long cantilevers has brought effectively some
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Figure 4.15: EFM images on the same zone of a crystal of 1 following 2 and 3 thermal cy-
cles. The images were recorded at room temperature for two different tip-sample voltages
(+10 V, -10V). The tip was lifted 100 nm from the surface to perform the scans.
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improvement, but this approach is very restrictive in terms of spring constants and this

in particular for tapping mode. For this reason most of the measurements were carried

out by heating the AFM probe. Since the tip is made of silicon it can be heated by

Joule effect in order to decrease the thermal difference between the tip and the sample.

It is important to note that the cantilever and especially the chip are not heated to the

same temperature as the tip for simple geometry reasons. Hence this approach can only

reduce, but not completely eliminate heat transfer problems. In addition to tip heating

we also purged the sample chamber by a gentle nitrogen flux, which also contributed to

the temperature stabilization of the system.

Taking into account the promising results obtained previously on single crystals of

the SCO compound Fe(pyrazine)[Pt(CN)4] in topography mode [93] we decided to focus

in a first time on this mode. Indeed topography images are very straightforward to obtain

and should reflect the structural changes associated with the spin transition. Other than

observing structural changes, topography images can help us also to observe defects (such

as thin cracks) which are not visible in the optical microscope. Such information can be

useful to better understand the spatio-temporal dynamics. For example, the propagation

of the new phase tends to stop or slow down due to defects in the crystals. These defects

are sometimes only visible using more resolved techniques as atomic force microscopy.

At first, topography images were acquired at room temperature on several crystals

of 1 in order to get familiarized with the sample. For typical AFM scan sizes, the surface

of the crystals are relatively smooth with a roughness of a few nanometers, as shown in

figure 4.16. The topography is clearly different for each crystal. This is not very surprising

since probably we are observing different crystallographic planes and also crystals with

different growth and thermal history.

Images at different temperatures were recorded using a Dimension Icon (Bruker)

instrument in non-contact mode. The advantage of using this system is that the tip can be

heated and the sample chamber can be purged. Far-field optical images were also recorded

systematically between the AFM scans. Figure 4.17 (a) shows optical reflectivity images

of a crystal of compound 1 in the LS and IP phases. In these images we can observe

that the crystal elongates along its long axis, while it is compressed in the other direction

when going from the LS to the IP phase. The color change confirms the spin transition.

Somewhat unexpectedly the surface area (determined by ImageJ) is actually ca. 0.4 %

larger in the LS state (1395 µm2) than in the IP (1389 µm2). Selected AFM images for

the two phases are presented in figure 4.17 (b). Thanks to the tip heating strategy we

succeeded to acquire AFM images not only in the LS, but also in the high temperature

phase. The AFM images show several distinguishable features that help us to locate

different points on the crystal during the spin transition and measure the distance between

them. This way we followed the expansion/contraction of the crystal as a function of the

temperature. Figure 4.17 (c) shows a few examples for this type of measurements. Each
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Figure 4.16: Tapping topography images for four different crystals of 1 at room temper-
ature.
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plot corresponds to a distance between selected features on the surface (indicated by white

lines in the topography images) as a function of the temperature measured both in the

heating (closed circles) and cooling (open circles) modes. The first important observation

is that the thermal variation of the distances between the features is reversible in each

case. This proves that the observed movements correspond to the expansion/compression

of the crystal and not to the degradation of its surface. It is worth noting that a crack

appeared on the crystal after the spin transition, which is visible both in the optical and

the AFM images. Apart from this the topography of the surface appears very similar

in both phases. This contrasts the case of Fe(pyrazine)[Pt(CN)4] wherein a significant

surface reconstruction was observed between the HS and LS forms [93]. Since the crack

observed in the AFM image is closely parallel to the long axis of the crystal, we measured

distances parallel (lines 1 and 4) and perpendicular (lines 2 and 3) to the crack. From

figure 4.17 (c) it is clear that lines 1 and 4 retract by ca. 2.4 %, while lines 2 and 3

elongate by ca. 3.1% when going from the LS to the IP phase. In other words, these

data indicate that the crystal elongates perpendicular to the crack and compresses in the

other direction in good agreement with the optical microscopy observations. It will be

necessary to compare these results also with crystallography data, but unfortunately up

to now we have not been able to determine the crystal structure of this compound in the

high temperature phase.

Certain crystals after being thermally cycled several times (7-9 times from 433 K

to 448 K) present a peculiar feature, which consist of several nearly parallel dark lines

in the optical images. An example is shown in figure 4.18 (a). AFM topography im-

ages recorded at room temperature revealed that these lines are actually nearly periodic,

"sawtooth-liked" topography features with peak to peak distances of ca. 2-3 µm and peak

to valley distances of ca. 50-70 nm. After a few weeks at room temperature these fea-

tures disappeared and the crystal became once again flat. These topographic features

are reminiscent to those observed earlier for crystals of compound 2 during the transition

between the LS and intermediate (HS-LS-LS) phases [79]. In the case of this latter

compound these undulations were attributed to a twinning process, the LS phase being

non-merohedraly twinned. Interestingly during the spin transition the formation of twin

domains was also accompanied by the formation of a parallel spin domains. These latter,

distinguished by Raman spectroscopy, of course disappeared at the end of the transition.

In the case of our compound the LS phase is not twinned, but apparently the twin-like

features are related to the thermal spin transition since we observed them only after a

few transition cycles. To further investigate this hypothesis we carried out a series of

experiments with a crystal presenting this feature.

Figure 4.19 (a) shows far-field optical images of a crystal of compound 1 recorded

at 448 K with the AFM tip engaged at two different locations on the crystal. In these

conditions a part of the crystal is in the LS phase (on the right from the AFM tip) and
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Figure 4.17: a) Optical and b) AFM images of a crystal of 1 in the IP and LS phases.
c) Variation of the length of the white lines in (b) as a function of the temperature in the
heating and cooling modes.



Chapter 4 : Imaging and manipulation of SCO single crystals 137

Figure 4.18: a) Optical image, b) AFM topography image and c) topography cross-section
of a crystal of 1 recorded at room temperature following 9 thermal cycles across the spin
transition. The yellow rectangle in the optical image indicates the area of the AFM scan.
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the rest is in the IP phase as inferred from the optical contrasts. In addition, several

dark lines appear on the crystal. The spatial frequency of these lines is higher than

previously, but actually in each experiment we observed slightly different line densities

between 0.1-0.5 µm−1. One can remark that the orientation of these lines parallels the

shape of the cantilever, but this might just be a coincidence, since the orientation of the

phase boundary in the absence of any AFM tip was already observed similar. When

displacing the AFM tip along the crystal these lines move with the tip as shown in the

figure. When imaging the topography of this region by the AFM, which was not obvious

due to the fact that the lines move with the probe, we could observe similar sawtooth-like

features as in figure 4.18. When the tip is retracted the whole crystal is transformed to

the IP phase and the lines disappear. It may be worth to note that this experiment was

carried out in contact mode using a very long (450 µm) cantilever, which allowed us (as

mentioned already in section 4.3.2) to reduce heat transfer between the probe and the

sample and thus record images during the spin transition. Nevertheless, the control of the

sample temperature and its spin state was extremely difficult. To improve the stability

and reproducibility of the experiment we changed the experimental set-up by adding an

additional optical path to the system, which allowed us to focus a laser beam (λ = 633

nm) on the sample surface. This oblique laser beam was aligned so as to irradiate the

sample surface near the AFM tip and it was used to locally heat the sample. This way

we disposed an independent and local temperature control.

Figure 4.20 compiles the results of an experiment using this laser heating method.

In the absence of the laser beam (i.e. 0.0 mW in the images) we observe basically the

same phenomena as reported above. The crystal is partially transformed to the LS phase

and there are lines around the tip. When the laser is turned on (1.0 mW) the laser-

induced heating brings the crystal to the IP phase. As a consequence the lines in the

optical images disappear and the topography becomes flat. As shown in figure 4.20 (b)

the switching between these two topographies could be repeated several times. We have

also repeated this experiment at a different location of the same crystal (figure 4.21). For

this experiment we reduced the laser intensity to 0.5 mW because long exposure to 1.0

mW led to some surface degradation. On the whole the same effects were observed in this

part of the crystal as well, the only notable difference is the change of the orientation of

the "sawtooth" lines.

These experiments prove that the peculiar twin-like topography in this sample is

strongly related to the spin transition. As mentioned before, this latter is accompanied

by a significant volume and structural change. It is plausible that the elastic strain during

the transition is accommodated by the formation of these topographic features. In other

words, similar to the famous martensitic transitions, the elastic energy is minimized by

these microstructures. This explanation may seem difficult to conceal with the fact that in

some cases the sawtooth topography was also observed at room temperature (i.e. far from
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Figure 4.19: a) Optical images, b) AFM topography image and c) topography cross-
section of a crystal of 1 recorded at 448 K with the tip engaged on the surface of the
crystal. AFM topography was acquired in contact mode using a HQ CSC17 Micromasch
probe (k = 0.18 N/m, length = 450 µm).
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the spin transition). It is possible that some plastic deformation occurs in the system,

which is frozen-in when the sample is cooled to room temperature and this metastable

structure relaxes over a rather long period (several weeks).
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Figure 4.20: a) Optical images, b) AFM topography images and c) topography cross-
sections of a crystal of 1 recorded at 448 K with the tip engaged on the surface of the
crystal. Images were acquired while turning successively on (0.0 mW) and off (1.0 mW)
a laser beam (633 nm) focused near the tip. AFM topography was acquired in tapping
mode using a FESPA (Bruker) probe.
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Figure 4.21: a) Optical images, b) AFM topography images and c) topography cross-
sections of a crystal of 1 recorded at 448 K with the tip engaged on the surface of the
crystal. Images were acquired while turning successively on (0.0 mW) and off (0.5 mW)
a laser beam (633 nm) focused near the tip. AFM topography was acquired in tapping
mode using a FESPA (Bruker) probe.
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4.4 Conclusions

Contrary to the previous chapters which were devoted to the SPM investigation of

nanocrystalline spin crossover samples (thin films, nanoparticles), here we described AFM

studies of surfaces of macroscopic single crystals. The principal objective of this work was

the observation and manipulation of the phase separation in the course of a first-order

transition, which we could accomplish only partially. Nevertheless, several important

findings could be obtained and a number of technical issues, in particular heat transfer

effects, were clarified.

In a first time we investigated the spin transition properties of single crystals of

[Fe(bbpya)(NCS)2] using conventional optical microscopy and Raman spectroscopy. These

measurements revealed that actually the spin transition in this compound occurs in two

steps, which was not observable in the case of the powder samples. The second step of

the transition being very gradual and incomplete, we characterized more deeply the first

step between the low spin and the intermediate (HS-LS) phases. This first step of the

transition is extremely abrupt and is associated with nucleation and growth phenomena,

which were found fairly similar to those reported for the [Fe(bapbpy)(NCS)2] complex

from the same family of compounds.

AFM studies of 1 proved to be very difficult due to severe heat transfer between

the sample and the probe. We have investigated the details of the heat exchange and

using our nanowire heaters we provided evidence that the most important contribution

comes from thermal convection phenomena in our experimental conditions. Due to these

convection effects the probe affects the sample temperature at distances as large as a

few hundreds of micrometers. We were able to overcome partially these problems by

heating the not only the sample, but also the AFM probe. This allowed us to obtain

AFM topography images in the two phases and even in the course of the spin transition.

Further technical improvements are still possible, but we believe the real solution would

be to establish a homogeneous temperature over the whole system, including the sample

stage, the sample, the probe and the medium around them. In our opinion this can be

achieved only if the AFM images are acquired in liquid medium. This will of course

further restrict the working temperature range.

The analysis of AFM topography images recorded in the low spin and intermediate

phases revealed a very anisotropic volume change. This latter correlated well with optical

microscopy data, but further confirmation using high temperature x-ray diffraction will

be necessary. Even more interestingly during thermal cycling we observed the emergence

of a peculiar sawtooth-like topography on the sample surface. We have shown that this

topographic feature appears during the spin transition and we tentatively explained this

phenomenon as a way for the system to reduce the excess elastic energy arising from

the volume misfit of the HS and LS molecules during the spin transition. During these
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measurements we put in place a new set-up for local laser heating of the sample. This set-

up allows also the collection and analysis of laser light scattered locally by the sample and

thus Raman spectroscopic maps could be acquired simultaneously with the AFM images.

This represents an important perspective for this work as Raman maps may allow to

confirm if the observed sawtooth topography corresponds or not to spin domains.

Tip-sample thermal interactions represent a serious obstacle to acquire AFM images

during the spin transition. On the other hand, we recognized that the open-up very

interesting perspectives to manipulate and control locally the spatio-temporal dynamics.

In particular we have shown that by simply moving the AFM probe with respect to the

sample, we can induce the spin transition at different possible nucleation points and finely

control the position of the phase boundary, which are very difficult or even impossible

to achieve when the whole sample is heated. Further improvements are possible if the

experiments are carried out in vacuum, i.e. based only on thermal conduction effects. Let

us note finally that electrostatic phenomena were also observed during the spin transition.

There is no accepted theory or unequivocal experimental proof in the literature which

could account for electric fields effects on the spin state of SCO compounds, but we can

not exclude that these latter might have some role in our observations.
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General Conclusions and
Perspectives

The research presented in this thesis was motivated by the recent development of

nanosized materials (thin films, nanoparticles, etc.) of transition metal complexes display-

ing molecular spin state switching phenomena. Bistable spin crossover nanoobjects are

appealing for a variety of applications, but a lot of efforts are still needed to analyze and

understand the different physical and chemical phenomena governing their properties.

In this work we demonstrated that spin crossover phenomena can be studied and

triggered by means of scanning probe microscopy with nanometric spatial resolution. We

showed that scanning probe microscopy can be used to follow the thermal spin transition

in nanoscale SCO materials through the analysis of different kinds of tip-sample inter-

actions including the detection (or generation) of evanescent electromagnetic waves by

an apertured fiber tip, the analysis of elastic deformation induced by a sharp silicon tip.

Additionally, we proved that SCO phenomena in bulk can also be followed by observing

changes of features in the sample topography as a function of the temperature. In ad-

dition, the possibility to trigger and even finely control the spin transition by local heat

exchange between the sample and the probe was also put in evidence.

Scanning probe microscopy techniques have been used in the past two decades to

investigate phase change phenomena in different materials, such as ferroelectrics, polymers

and magnetic materials. In most cases, however, SPM imaging across the phase change

phenomena remained qualitative. Quantitative imaging of a material property which can

be controlled by independent means has been rarely reported even in other fields. The

main obstacle in any quantitative SPM approach is the analysis of the interactions between

the SPM probe and the sample, all the more that both can change their properties during

the SPM measurements. In addition, the phase change must be triggered by some external

stimuli, which can also perturb the SPM analysis. In the case of SCO compounds the

most convenient way to induce the spin transition is thermal excitation. We observed at

several instances that the wear of the tip and the sample during successive scans as well

as various unwanted thermal effects (sample drift, heat exchange between the sample and

the probe, etc.) are very difficult to handle when using conventional SPM heating stages.
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To overcome (or at least minimize) these problems we implemented a novel experimental

strategy to study SCO films based on the localized heating of the sample by a Joule-heated

metallic wire. This original approach allowed us to achieve very fast and tightly controlled

temperature changes as well as to significantly reduce thermal drift and thermal exchange

with the probe. Scans over the non-heated area allowed also to correct (or at least to

detect) tip and/or sample degradation. These latter were also monitored in most cases

in-situ by means of high sensitivity optical microscopy coupled to the SPM. We believe

that this nanoheater strategy is not only interesting for the SCO field, but can find a

more general application within the SPM community.

Perhaps somewhat unexpectedly AFM thermo-mechanical measurements proved to

be the most powerful approach for the quantitative imaging of the spin transition. We

succeeded to indent SCO thin films in a non-destructive manner and from the temperature

dependence of the indentation data we could extract the Young’s modulus of the films

in the two spin states. This information is very relevant on its own, but even more

importantly it can be used to monitor the spin state change with unparalleled spatial

resolution. These measurements were carried out using a relatively recent AFM mode -

the Peak Force Tapping, which belongs to the family of fast force mapping techniques.

Preliminary tests using other mechanical modes were also made and it was shown that

multifrequency AC imaging can provide similar results, but at an even faster imaging

rate.

Even if the SCO is associated with a significant volume change, surface topography

AFM images were not useful to follow the spin transition in thin film samples. (N.B. This

simple approach deserves, however, further efforts in the future.) On the other hand,

very interesting surface topography changes were observed during the SCO in single crys-

tal samples. The topography differences between the two spin states were analyzed and

they correlate well with the change of the crystal shape. Even more importantly, intrigu-

ing transient topography changes were also observed during the spin transition in the

form of surface undulations around the phase boundary. We suggested these undulations

are formed in order to minimize the significant elastic stress and strain near the phase

boundary.

Nanoscale optical imaging of SCO films provided also useful contrast between the

high spin and low spin phases both in fluorescence and reflectance modes. The former uses

fluorescent probes incorporated in the film, while the latter probes directly the refractive

index change of the SCO sample. Reflectivity measurements proved to be more robust,

in particular in constant height NSOM mode. In the case of the investigated samples

the quantification of the spin state changes observed in NSOM was difficult (both in

fluorescence and in reflectivity). A possible solution to this problem would be to work in

transmission mode, but this would request samples with rather specific optical properties.

(I.e., a thin sample with a high optical density change upon the SCO in the UV spectral
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region is needed.) Generally speaking, samples with appropriate properties are crucial

not only for NSOM, but also for any other SPM technique and future work must focus

more on this issue.

Beside the detection of spin state changes in a small sample volume, we have shown

that an SPM tip can be also used to trigger the spin transition locally. We tested high

resolution photothermal laser writing using NSOM tips and we succeeded in switching

the spin state of individual nanoparticles. In another (simple) approach, a cold Si probe

was used to induce the high spin to low spin transition in a single crystal. We have shown

that the tip can induce the nucleation of the LS phase and allows also the fine control

of the position of the phase boundary. This finding opens up interesting possibilities to

investigate the properties of the phase boundary. Clearly there are many other ways to use

an SPM probe to manipulate the spin state of matter with nanometric resolution, such as

using specific thermal probes or mechanical effects, which remain to be explored. These

tools are appealing since they can allow to perform nanometric write/errase operations

and can therefore give access to new devices, such as nanoscale memories. For example,

we have shown in this work that the thermal memory observed in some SCO compounds

provides an unprecedented scope for imaging transient thermal events with a high spatial

resolution.

Finally we must note that other SPM methods provide also exciting perspectives

for the SCO field. Notably it would be interesting to explore the possibilities provided by

magnetic force microscopy (MFM) and nanoscale vibrational spectroscopy methods, such

as tip enhanced Raman and FTIR spectroscopies.
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Appendix A

SPM Artifacts

An ideal AFM image is an accurate representation of a sample surface or sample

properties. Every part of an image that differs from the sample surface or properties is

an artefact. As with any analytical technique, SPM is not free of artifacts. Here some

common artifacts which were found during this work are presented.

A.1 AFM artifacts

A.1.1 Tip shape issues

The most known and probably the most studied of these artifacts are the so-called

"tip-artifacts", which originate from the finite-sized tip. This problem often arises when

imaging features from 50 to 500 nm. In this case the shape of the SPM tip has a drastic

effect on the images that are acquired (figure A.1). This is one area where having repro-

ducible probes is an advantage, if the tip shape is well characterized, so that the images

can be better interpreted and the obvious artifacts identified. Topography images are

always a combination of the tip shape and the true surface topography. Obviously the

sharper and narrower tip produces the most accurate representation of the surface. This

artifact will depend on the cone angle of the main pyramid that forms the tip and the

radius of the tip end.

When something contaminates the tip, such as a particle that glues to the tip,

strange repetitive shapes are introduced to the image. In order to diagnose this issue a

new sample with known features must be scanned or the tip must be replaced. It might

be possible to clean the tip, but it is better to simply change the probe. In addition to

the repetitive shapes, tip contamination can lead to twinned features, as shown in figure

A.2.
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Figure A.1: Scheme of an AFM probe scanning a small square. The doted line repre-
sents the topography image obtained with the probe. The black line represents the real
topography.

Figure A.2: AFM topography Image of a SCO crystal of [Fe(Pyrazine)Pt(CN)4] made
with a contaminated probe.
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A.2 Oscillations

Oscillations in AFM data can come from several sources, including electrical inter-

ference, mechanical vibrations, acoustic noise and optical interference. There are some

practical rules that can be used to infer the origin of oscillations in AFM data. For exam-

ple, if the periodicity of the oscillations appears to increase as scan rate is diminished, the

oscillations come from some fixed frequency interference. This sort of interference may

come from an acoustic source in the room, or from mechanical vibrations or electrical in-

terference transmitted to the microscope. By measuring the frequency of the oscillations,

one can often get a clue of what is causing the interference. For example, 60 Hz (or 50

Hz where appropriate) oscillations are usually electrical in origin. The frequency of these

oscillations is determined using the following:

2scansize(nm)
oscilationperiod(nm)

· scanfrequency(Hz) (A.1)

The factor 2 comes from the fact that tip travels twice the scan size (forward and reverse)

each cycle. In when the scan angle is affected, the oscillation features will rotate with

respect to the sample accordingly.

When changing the scan rate does not change the periodicity of the oscillations, then

they have a fixed spatial frequency. This is the case for optical interference artifacts, which

are produced when the ambient laser light (i.e., light passing around or even through

the cantilever, and then reflecting off the surface) interferes with laser light reflecting

from the cantilever. This is a common problem with all the commercial AFMs based

on an optical detection system, in which a laser source with coherent output is used.

Although the artifacts described in this work are more frequent in contact mode on highly

reflective surfaces, they occasionally appear in non-contact mode images, as in tapping

mode. Although optical interferences could be essentially eliminated using other AFM

modes, such as phase detection and frequency modulation, in many AFM applications in

materials science, such as force curve mapping (adhesion maps acquisition) and friction

analysis, the contact mode is required. In this work, these artifacts are presented as

regularly spaced (1-2 µm), sine-shaped stripes along the whole image, as shown in the

adhesion images shown in figure A.3. In this figure the topography and adhesion images

are shown for different scan and sample angles. When the scan angle is zero we observe

parallel lines in the adhesion image which are formed parallel to the wire shown in the

topography (figure A.3 a). If only the scan angle is rotated, the parallel lines in the

adhesion map continue to be parallel to the wire (figure A.3 b). From this result we can

determine that the lines are not result of electrical interference, mechanical vibrations

or acoustic noise. However, if the sample is rotated 90 degrees, the parallel lines in the

adhesion map are no longer parallel to the wire, but they are rotated 90 degrees, as shown
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Figure A.3: Topography and adhesion images of a thin film of [FeII(hptrz)]3(OTs)2 spin
coated on a nanowire device for different scan angles and sample angles.

in panel c. This is a clear indication that the lines are an artifact, which is related to

the detection system. In this case it is result of optical interference produced by the

optical deflection system. As this effect depends on the reflection of a part of the laser

beam on the surface, it will be more pronounced on highly reflective and smooth surfaces.

Although other authors have noted this phenomenon, no results about their influence

either on surface roughness measurements or on image contrast (which is the basis of

some AFM modes) have been reported. Moreover, in order to remove these artifacts from

images, the fast Fourier transform technique (FFT) has been used, improving the results

of the usual flattening routines. However, real information can be lost during this process.

A.3 NSOM artifacts

Topography artifacts are normally observed in NSOM when imaging steep slopes

or edges on a sample. Sometimes topography artifacts can modify or even completely

obscure the optical information contained in the data, namely due to the fact that the

variations of the sample refractive index and topographic variations can lead to the same

effects on the NSOM data. An example of this effect is the luminescence on the borders

of a nanowire as shown in figure 2.17.

Regular oscillations on the NSOM signal can be also observed. This oscillations are

normally related to mechanical vibrations or acoustic noise that are transmitted through

the fiber tip, as shown in figure A.4. This artifact is normally found when the tip is not

well attached to a surface so it oscillates due to external noises.
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Figure A.4: NSOM image of [Fe(Htrz)2(trz)]BF4 nanoparticles deposited on a gold wire.
The image was obtained with a loose fiber tip.
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Appendix B

Mechanical studies on a SCO
composite

One of the interest to use AFM for mechanical measurements is the possibility to

analyze heterogeneous samples with high spatial resolution. In this context phase imaging

is very interesting since it allows to observe differences in the mechanical properties of

the material. Contrary to force based curves this method takes into account all forces

(i.e. adhesive and repulsive forces). Therefore it is easier to observe the location of

the different compounds in a composite. In order to investigate this possibility we have

prepared mixtures of PMMA and [FeII(hptrz)]3(OTs)2.

The Young’s modulus of the PMMA do not change between 293 K and 343 K,

whereas the elastic modulus of the [Fe(hptrz)]3(OTs)2 changes due to spin transition

(more details are presented in sections 3.2 and 3.3. If the mechanical properties of the

forming parts do not change when the composite is prepared, the contrast between the

two compounds will be grater in high spin than in low spin. Phase images performed in

tapping mode and force curves carried out in Quantitative Imaging mode show a clear

contrast between both compounds. The phase images are very different, depending on

the setpoint and amplitude of the cantilever. The brighter points in the phase images

with a setpoint of 60% are related to the lower points in the topography, but the rest

do not have any relation with the topography. Although the middle image (Amp=50,

setpoint=60%) can be consider a mixture of the other two images, it is hard to make a

relation between the different phases and determine without doubt which is the PMMA

and which is the SCO compound.

Conversely Quantitative Images give a better idea of the different materials, once

again there is no clear relation between the adhesion or the stiffness to the topography

image. The contrast in the adhesion image is bigger than in the stiffness image, probably

because the tip probes a bigger volume of the sample while only the adhesion of the surface

is detected. Nevertheless, in general it is possible to determine from the images that the
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Figure B.1: Images obtained by phase imaging and QI modes of [FeII(hptrz)]3(OTs)2 and
PMMA composite, the phase channel is presented for different amplitudes and setpoints,
below the topography, adhesion and stiffness obtained in QI.

harder parts of the material are also more adhesive. Since PMMA’s elastic modulus is

higher than the Young’s modulus from the SCO compound we can determine that the

yellow parts in the adhesion corresponds to PMMA polymer and red parts to the adhesion

correspond to SCO particles.

A thin film of this compound was deposed on a NW heater, to measure the Young

Modulus as function of the temperature (current) on the NW. In figure B.2 the height of

the NW is plotted as function of the current passing through it. For currents bigger than

14 mA a decrease of the height of the NW is observed. Even though the thickness of the

film is lower the Young’s modulus do not increase, but slightly decrease for high currents

(> 14 mA). This could be due to two different reasons, the melting point of the composite

is lower than the melting point of the PMMA (≈ 433 K), or the temperature reached by

the NW with this material is higher than with [Fe(hptrz)]3OTs2. A complete analysis

of the NW in order to determine the reached temperature at different currents with this

materials would be necessary to solve this question. Although since the spin transition

curve was not obtained by any other method like Raman or plasmon. We decided to stop

the analysis with this compound.

The study of the mechanical properties of SCO composites will be continued as

the part of the analysis of the thesis of Dolores Manrique, where it is very important

to determine the Young’s Modulus in the high spin state and in the low spin state to

determine the work done by SCO micro- and nano-actuators. As part of this research

the influence of the substrate for very thin layers, must be also investigated, to continue

the work in nanoactuators, but also to continue the study of the mechanical properties of

SCO nanoparticles.
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Figure B.2: Cross sections of a thin layer of [FeII(hptrz)]3(OTs)2 and PMMA composite
spin coated in a nanowire device of (top) the topography and (bottom) the Young’s
modulus for different applied currents.
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Appendix C

Etudes à hautes résolutions spatiales
du phénomène de conversion de spin
par microscopies à sonde locale

C.1 Introduction

Les matériaux à transition de spin sont des complexes inorganiques qui présen-

tent une transformation de phase entre l’état haut spin (HS) et l’état bas spin (BS).

Comme dans un grand nombre de matériaux, la stabilité des phases et la cinétique de

la transition dépendent de la taille du système. En particulier, il a été montré que la

température de transition (ou plus généralement le diagramme de phase) et le caractère

complet de la transformation sont fortement affectés à l’échelle nanométrique. Les études

expérimentales et théoriques qui permettent de comprendre les mécanismes physiques

sous-jacents sont très récents et demandent encore de confirmation. D’un autre côté, les

propriétés exceptionnelles des nanomatériaux à transition de spin font d’eux des matéri-

aux très intéressants pour un grand nombre d’applications technologiques. En effet, le

changement d’état de spin de ces nano-objets à transition de spin (nanoparticules, couches

minces, nanostructures, ect.) est accompagné par différentes modifications des propriétés

du matériau, comme par exemple, les propriétés magnétiques, optiques, électriques et

mécaniques. Cette modification des propriétés permet un large éventail d’applications

dans les domains de la nanoélectronique, la spintronique, la nanophotonique et les sys-

tèmes nanomécaniques. Par exemple, ils ont été proposés comme éléments outils pour
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des capteurs de gaz [1, 2], micro- et nano- actuateurs (MEMS, NEMS)[3, 4], des pig-

ments activables thermiquement [5], des guides d’ondes photonique [6], des filtres Thz

commutables [7] et des nanothermomètres [8, 9].

Les méthodes expérimentales usuelles utilisées pour caractériser les matériaux mas-

sifs à transition de spin (magnétométrie, diffraction des rayons-X, calorimétrie, spectro-

scopie Mössbauer, spectroscopies électronique et vibrationnelle), ne sont pas toujours

adaptées pour étudier les matériaux à transition de spin à l’échelle nanométrique. Cela

est due en général à la faible quantité de matière sondé. De ce fait, de nouvelles tech-

niques de caractérisations doivent être développées. En particulier, il est nécessaire de

pouvoir développer un outil ayant une haute résolution spatiale et une grande sensibilité

afin d’être capable de détecter le changement d’état de spin dans une très petite quan-

tité de matière qui, idéalement, est un nano-objet unique isolé. Au delà de leur haute

résolution et/ou de leur grande sensibilité, ces systèmes expérimentaux permettent aussi

d’avoir des informations sur les propriétés du matériau, qui sont difficiles d’accès par

les techniques conventionnelles ou non significatives à d’autres échelles de tailles. Les

techniques de microscopie optique en champ lointain ont déjà été utilisées avec succès

pour observer le changement d’état de spin dans un nano-objet unique. Par exemple, les

nanoparticules uniques à transition de spin sont étudiées avec de la fluorescence, du spec-

troscopie Raman et de la microscopie à contraste interférentiel. D’autre part, des couches

minces d’épaisseurs nanométriques de matériaux à transition de spin ont été analysées

par différentes méthodes photoniques (ellipsométrie, résonance des plasmons de surface,

etc.).

Dans le but de dépasser la résolution spatiale des méthodes optiques en champ loin-

tain, nous pouvons utiliser des faisceaux d’électrons ou des rayons-X, ce qui permet de

connaître la structure et d’obtenir des informations spectroscopiques avec une très haute

résolution spatiale. Dans le cas des matériaux à transition de spin relativement fragiles,

des précautions doivent être cependant prisent du fait de la nature invasive de ces tech-

niques: chauffage de l’échantillon et dommages causés par les radiations. Ces problèmes

ont largement été diminués dans une très récente étude qui utilise une microscope élec-

tronique afin de suivre la transition de spin dans des nanoparticules uniques [10]. Une

autre approche possible que nous avons exploré au cours de cette thèse est basée sur les
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microscopies à sonde locale. Bien que les microscopies à sonde locale ont déjà été utilisés

pour étudier la transition de phase dans différents métaux, l’étude des matériaux à tran-

sition de spin à l’aide de ces techniques est . En effet, seul la microscopie par effet tunnel

a été utilisé dans ce domaine mais, cette microscopie est plus adaptée dans le cadre d’une

étude sur une molécule unique que sur des nanomatériaux qui sont les objects de notre

travail. Effectivement, le principal objectif de ce travail est d’explorer l’utilisation possible

de microscopie à sonde locale pour caractériser et manipuler l’état de spin de matériaux

à transition de spin à l’échelle nano et micrométrique. Nous nous sommes concentrés sur

deux méthodes de microscopie à sonde locale: la microscopie optique en champ proche

et la microscopie à force atomique. Cette dernière a été utilisé pour obtenir des images

topographiques de l’échantillon et pour cartographier ses propriétés mécaniques.

C.1.1 Introduction au phénomène de la transition de spin

Le phénomène de TS peut être expliqué par la théorie du champ de ligands (LFT).

D’autre part, cette théorie est également un outil important pour comprendre les pro-

priétés optiques des composés à TS (plus de détails peuvent être trouvés dans l’article

de Hauser [46] Lorsque l’ion Fe(II) est complexé à six atomes donneurs, il adopte une

configuration octaédrique qui entraîne la levée de dégénérescence des 5 orbitales d en

niveaux de symétrie t2g triplement dégénérés et en niveaux de symétrie eg doublement

dégénérés de plus haute énergie (Figure C.1). La différence d’énergie (10 Dq) qui sépare

les deux niveaux t2g et eg est directament liée au champ cristallin. Les six électrons du

fer(II) peuvent alors se répartir de deux façons différentes selon les valeurs relatives du

champ de ligand et de l’énergie d’appariement des électrons, Π. Si 10Dq > Π c’est l’état

bas-spin (BS, 1A1), diamagnétique et si 10Dq < Π, c’est l’état haut spin (HS, 5T2),

paramagnétique. Le diagramme de Tanabe-Sugano de la Figure C.1 montre, pour un

ion de configuration d6 dans un environnement octaédrique, qu’un état 5T2 (état HS),

est stabilisé par les champs faibles alors que l’état 1A1 (état BS), est stabilisé par les

champ forts. Ainsi, pour des complexes ayant une éclatement du champ cristallin 10Dq

proche de Π, le système peut passer d’un état à l’autre sous l’effet d’une perturbation

extérieure comme la température, une pression, une irradiation lumineuse ou l’application

d’un champ magnétique ou électrique.
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Figure C.1: a) Diagramme de Tanabe-Sugano pour un ion 3d6 dans un champ électrosta-
tique octaédrique. b) Configurations électroniques Haut Spin (champ crystallin faible) et
bas spin (champ crystallin fort) pour un ion 3d6 (Fe(II), Co(III)).

C.1.2 Introduction à la microscopie à sonde locale

La microscopie à sonde locale est une branche de la microscopie qui a été créé pour

accéder à des résolutions au delà de la diffraction optique. Cela consiste à avoir une

pointe fine qui balaye toute la surface de l’échantillon avec une précision nanométrique

ou subnanométrique. Ceci peut être comparer au fait de toucher la surface avec son

doigt. Avec cette technique, il est possible d’obtenir des images à trois dimensions de

la surface d’un solide avec une résolution atomique. Parmi cette variété de technique

de microscopie à sonde locale, deux approches semblent particulièrement adaptées pour

l’étude des composés à transition de spin: (1) la microscopie optique en champ proche

(NSOM en anglais) puisque l’indice de réfraction des matériaux à transition de spin change

durant la transition et (2) les différents modes mécaniques de la microscopie à force

atomique (AFM en anglais) puisque l’élastisité varie d’un état de spin à un autre.

En AFM, la force entre la pointe et l’échantillon est gardée constante grâce à une

boucle d’asservissement qui contrôle la déflexion du levier. Il y a deux modes principaux

de microscopie à force atomique: (1) le mode contact, où la déflexion du levier est contrôlée

par une boucle de rétroaction et (2) le mode tapping, où la pointe est forcée d’osciller à sa

fréquence de résonance, et la boucle de rétroaction garde soit l’amplitude, soit la phase,

soit la fréquence constante.

Le NSOM a été développé dans le but de dépasser la limite de diffraction optique.
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Figure C.2: a) Modèle d’AFM utilisant un système de mesure de déflexion par faisceau
optique. b) NSOM configuration en réflection: on excite l’échantillon à travers l’ouverture
de la pointe en champ proche et on collecte la lumière réfléchie en champ lointain.

Cette limite peut être dépassée en réduisant la source d’illumination lumineuse à un

volume plus petit que sa longueur d’onde. Cependant, le champ proche est étroitement

confiné à la surface de la matière, ainsi, sa détection n’est pas facile et a besoin d’actuateurs

de précision nanométrique, c’est-à-dire, capables de bouger un capteur ou une source de

lumière à quelques nanomètres de l’échantillon.

C.2 Microscopie optique en champ proche (NSOM)

C.2.1 Méthodologie

Afin de surmonter les contraintes expérimentales fortes imposées par la nécessité

de procéder à une série de mesures par microscopie optique en champ proche (NSOM) à

différentes températures et de manière quantitative, nous mettons en place une stratégie

expérimentale originale basée sur un chauffage local de l’échantillon par un nanofil mé-

tallique (Voir Figure C.3). En effet, l’usure de la pointe et de l’échantillon au cours de

mesures successives NSOM associées à divers effets thermiques indésirables (dérive de

l’échantillon, chauffage de la pointe, etc.) sont très difficiles à appréhender lorsque l’on

l’utilise des techniques de chauffage classiques en microscopie à sonde locale. Le chauffage

local rapide avec les nanofils s’avére très concluant, ce qui nous permet d’observer la tran-

sition de spin en fonction de la température même au cours d’un seul et unique balayage.

Nous pensons que cette approche peut trouver un intérêt général dans la communauté de la
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Figure C.3: a) Image effectuée par microscopie electronique à balayage et b) représentation
schématique d’un dispositif de nanofil chauffant d’or de dimension 50 nm × 1 µm × 80
µm.

.

microscopie à sonde locale pour plusieurs raisons. Tout d’abord, la dérive de l’échantillon

est négligeable et le chauffage de la sonde peut être minimisé. En outre, la thermalisation

de l’échantillon est très rapide et la différence de température est confinée au niveau du

fil, fournissant ainsi une zone de référence proche du fil. Cette zone peut être utile pour

contrôler l’évolution de l’interaction pointe-échantillon. Enfin, la possibilité de chauffer

la fil par un courant électrique et de contrôler sa température au travers de sa résistance

électrique donnent des moyens utiles d’un intégration et de synchronisation du nanofil

chauffant avec l’autre partie de l’installation.

C.2.2 Détection de la fluorescence en NSOM

Les premières experiences de NSOM sur le composé [FeII(hptrz)]3(OTs)2 ont été

réalisées en utilisant la fluorescence. L’échantillon a été irradié avec de la lumière bleue

(488 nm) provenant d’un laser argon (Melles Griot) couplé à la fibre de la pointe. Lorsque

la pointe est proche de l’échantillon, des ondes évanescentes générée à proximité du

sommet de la pointe excitent un très petit volume des fluorophores. La lumière émise

par l’échantillon est ensuite collectée par un objectif de Mitutoyo (grossissement 50x,

N.A.=0.55). Ensuite la lumière est filtrée par un miroir dichroïque (Semrock FF510-

Di02) et un filtre passe bande centré autour de 550 nm. Le signal est détecté par un tube

photomultiplicateur (PMT). En guise de protection, un filtre coupe bande centré autour
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de 488 nm est placé en face du tube photomultiplicateur. Des mesures de NSOM ont

été ensuite réalisées en parallèle de l’acquisition de la topographie par microscopie à force

atomique (AFM).

La figure C.4 montre des images de microscopie en champ lointain et en champ

proche à température ambiante. La figure C.4 b présente une comparaison de l’intensité

de fluorescence entre les données du champ proche et celles du champ lointain en fonction

de la température. Les données des mesures en champ lointain sont tracées à la fois pour

l’aire balayée et une autre surface "vierge" qui n’a pas été balayée en champ proche. Du-

rant le chauffage amenant l’échantillon de la température ambiante à 343 K, l’intensité de

fluorescence en champ lointain diminue de manière assez monotone, mais le changement

le plus important semble se produire entre 303 K et 343 K. Au cours du refroidissement,

l’intensité de fluorescence reste constante jusque 313 K avant d’augmenter pour attein-

dre sa valeur initiale à température ambiante. La courbe observée présente un cycle

d’hystérésis. Ces résultats peuvent être attribués à la transition de spin de l’échantillon.

La différence entre l’intensité en champ lointain à l’intérieur et à l’extérieur de la surface

balayée reste négligeable dans cette expérience. Il y a donc une assez bonne correspon-

dance entre la dépendance en température du signal fluorescent en champ proche et en

champ lointain, en particulier au début du cycle thermique. A la fin du cycle, la dif-

férence entre les données champ proche et champ lointain augmente considérablement.

Cette différence est probablement associée à un changement des propriétés de la pointe.

Nous pouvons tout de même conclure que la transition de spin est détectable au travers

du signal fluorescent en champ proche.

C.2.3 Réflectivité en NSOM

Dans le but d’effectuer des mesures NSOM à hauteur constante autour du fil d’or,

l’approche de la pointe vers l’échantillons a toujours été réalisée sur le fil. Ensuite, la pointe

est retractée de 60nm du fil avant le balayage de l’échantillon. La pointe est complétement

rétractée de l’échantillon avant qu’un quelconque changement de la température ne soit

appliqué à l’échantillon soit par le système de chauffage de l’AFM soit à l’aide du fil

d’or. Après avoir chauffé le matériel sur le fil par effet Joule, des mesures NSOM doivent

montrer une augmentation de la réflectivité au niveau du fil. D’un autre côté, les propriétes
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Figure C.4: a) Intensité de fluorescence en champ lointain et en champ proche d’une
couche (≈ 150 nm) de [FeII(hptrz)]3(OTs)2 enduit par centrifugation sur du silicium.
b) Evolution de l’intensité de fluorescence avec la température pour la même couche en
champ lointain et en champ proche. Les données en champ lointain sont représentées à la
fois pour la surface balayée (repérée par un rectangle rouge dans a)) et une autre surface
qui n’a pas été balayée en champ proche.

optiques sur le substrat de silicium doivent être identiques puisque la température du

matériau n’est pas modifiée par le courant appliqué. En s’appuyant sur cette hypothèse

et des données en champ lointain, nous avons normalisé les images NSOM au moyen

d’une surface de référence choisie loin du fil. Une augmentation de la reflectance NSOM

après l’application d’un pulse de courant a été observée uniquement sur le fil. Cette

augmentation (env. 10%) est trois fois plus importants qu’en champ lointain (env. 3%).

Afin de confirmer ce résultat, nous avons répété l’expérience sur un nouvel échantillon

(voir figure C.5). La différence de réflectance en champ lointain entre les deux états de

spin est d’environ 6% pour le nouvel échantillon, tandis que la réflectance en champ proche

sur le fil augmente d’environ 30% après l’application du pulse de courant. La différence

est au moins 4-5 fois plus importante que pour les données champ lointain. De plus, on

a pu observer des points plus clairs et plus sombres avec une résolution d’environ 300

nm. Nous pouvons conclure que les images NSOM effectuées à hauteur constante sont

beaucoup plus sensibles à la transition de spin que des mesures en champ lointain. De plus,

un balayage à hauteur constante ne dégrade pas l’échantillon et donne des informations

sur la réflectance de l’échantillon avec une résolution spatiale élevée.
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Figure C.5: Images de la réflectivité a) en champ lointain et b) en NSOM (avec hauteur
constante) du composé [Fe(Htrz)2(trz)]BF4 dopé avec Rhodamine 110 déposé sur un fil
d’or (épaisseur 250nm, longueur 1mm et largeur 8µm). Les images ont été obtenues à la
température de 378K avant et après l’application d’un courant pulsé de 190mA au travers
du fil d’or. Les images et les profils moyens de la différence de réflectance entre les deux
images en a) (b)) sont montrées dans c) (d)).
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C.2.3.1 Utilisation de la pointe NSOM comme dispositif de chauffage

La pointe NSOM peut être utilisée non seulement pour détecter l’état de spin de

l’échantillon, mais aussi pour le manipuler localement. En augmentant l’intensité du fais-

ceau laser injecté dans la fibre NSOM, nous pouvons chauffer l’échantillon au dessus de

sa température de transition et transformer un petit volume de l’état LS vers l’état HS.

En effet, la lumière absorbée par le métal dont le bout de la pointe est induite, augmente

la température du film métallique de plusieurs centaines de degrés du fait de la réflexion

multiple au niveau de la partie métallique[161]. Même si le volume chauffé est dépendant

de nombreux paramètres (propriétes thermiques de la pointe et de l’échantillon...), nous

avons pu tout de même montrer que le chauffage local de la surface de l’échantillon peut

être réalisé avec une résolution sub-longueur d’onde. Par conséquence, cette technique ou-

vre la possibilité de changer l’état de spin d’une unique nanoparticule à transition de spin

et pourra être utilisée, par exemple, dans des dispositifs de stockage d’information. La fig-

ure C.6 montre des images de la réflectivité en champ lointain prises sur des nanoparticules

de [Fe(Htrz)2(trz)]BF4 après balayage en champ proche avec un laser dont la puissance

est indiquée sur chaque image. La surface balayée par la pointe NSOM est indiquée par

les rectangles jaunes. Avec l’augmentation de la puissance du laser, on peut observer des

points de plus en plus clairs à l’intérieur et proche de la surface balayée, ce qui correspond

à des nanoparticles transformées dans l’état HS par effet photothermique. Il peut paraître

surprenant que des nanoparticules situées en dehors de l’aire balayée changent d’état de

spin, cependant il nous paraît important de noter que la nucléation de la phase HS peut se

produire même si la particule n’est chauffée que partiellement. De plus, le positionnement

de la surface balayée à l’intérieur de l’image en champ lointain n’est peut être pas parfait.

Les images montrent que les différentes particules ne changent pas d’état de spin pour une

même intensité de laser. Il est difficile de corréler ces images avec celles de la topographie,

du fait d’une différence de contraste entre les images NSOM et AFM. De plus, dans le

cas présent, d’autres complications existent du fait que les conditions d’illumination et

de diffusion de la chaleur sont différentes pour chaque particule. Au dessus de 5mW ,

l’augmentation du nombre de particules dans l’état HS n’est pas significative. Les points

sombres qui apparaissent après le balayage effectué avec une puissance de laser de 6mW

correspondent très probablement à une dégradation de l’échantillon par la pointe lors de
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Figure C.6: Images de la réflectivité en champ lointain prises sur un film mince (≈ 300
nm) de [Fe(Htrz)2(trz)]BF4. Chaque image a été prise après un balayge avec la pointe
NSOM. un laser bleu (488nm) a été incorporé dans la fibre NSOM. La puissance fournie
par le laser à l’échantillon est indiquée sur chaque image. Les rectangles jaunes repèrent
les surfaces balayées par la pointe (10 X 5 µm2).).

l’engagement de celle-ci.

C.3 Propriétés méchaniques

Les propriétés mécaniques jouent un rôle clé dans le comportement de la transition

de spin dans les solides. En effet, beaucoup de phénomènes coopératifs intéressants [34, 94]

peuvent être rationalisés seulement en considérant la variation de volume entre les états

haut spin et bas spin et des interactions élastiques associées [166]. De plus, des applications

récentes et prometteuses des matériaux à transition de spin en tant que microactuateurs

[167] requièrent aussi une connaissance détaillée des propriétés mécaniques comme le

module de Young et la contrainte mécanique. Si on prend en compte leurs rôles majeurs

dans la transition de spin, il est alors plutôt surprenant de réaliser que les constantes

élastiques des matériaux à transition de spin ont été déterminées dans seulement quelques

études, en utilisant la diffusion inélastique nucléare [168], la diffraction des rayon X sous

haute pression [169, 170], et la spectroscopie Brillouin [171]. De plus, la plupart de

ces mesures ont été effectuées soit dans la forme HS ou BS et la dépendance d’état de

spin du module élastique à seulement été reporté très récemment [168]. Cependant, on
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sait que les transitions BS vers HS impliquent une augmentation drastique des distances

métal-ligand (jusqu’à 10%)[172]. Cet affaiblissement des liaisons de coordination a été

clairement observé par spectroscopie vibrationnelle et par spectroscopie Mössbauer du

57Fe[173]. Cette dernière méthode donne accès aux températures de Debye qui peuvent

être reliées au module de bulk K1/2 ≈ θD. Les données Mössbauer disponibles suggèrent

une variation typique de 1.6 > KLS/KHS > 1.2. Cette variation n’est pas grande, mais

peut être détectable en utilisant l’AFM. Pour ces raisons nous avons décidé d’explorer les

modes mécaniques en utilisant l’AFM. Alors que cette approche peut paraitre en assez

indirecte, elle possède deux avantages : l’accès à une analyse quantitative et une très

haute résolution spatiale.

C.3.1 Études des couches minces du composé

[FeII(hptrz)]3(OTs)2

Les analyses AFM ont été réalisées à température ambiante dans l’air en utilisant

un appareil "Dimension Icon (Bruker)" et une sonde de Si avec une couche métalique d’Al

(MPP11120, Bruker). Les images AFM (généralement 8 µm × 4 µm) on été enregistrées

avec une vitesse de balayage de 0.3 Hz dans le mode "peak force tapping" avec une analyse

nanomechanique quantitative (QNM). La force maximale appliquée (25 nN) a été choisi

pour atteindre une déformation de l’échantillon de ca. 1-2 nm. La sensibilité de la

déflection du photodétecteur a été déterminée sur un échantillon de silicium, alors que la

constante de ressort du levier a été obtenue en enregistrant son bruit thermique. Ces deux

paramètres sont pratiquement indépendants de la température sur la plage étudiée. Un

échantillon de calibration de polystyrène (Bruker PSFILM, E = 2.7 GPa, coefficient de

Poisson = 0.35) a été utilisé pour déterminer le rayon de la pointe en utilisant le modèle

de Derjaguin Müller Toporov. Le coefficient de Poisson (ν) utilisé pour le complexe à

transition de spin était de 0.4. Cette valeur n’est qu’une estimation et ne prends pas en

compte la possible différence entre les deux états de spin. Néanmoins, il est important de

noter que les valeurs calculées de E ne sont pas vraiment sensibles aux faibles changements

de ν. Les images AFM ont été systématiquement alignées en utilisant une méthode de

corrélation 2D [9].
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La figure C.7 montre que les images AFM topographiques d’un film de 70 nm

d’épaisseur de [Fe(hptrz)3](OTs)2 dopé avec de la Rhodamine 110 déposé sur un système

chauffant composé de nanofil d’or. Les balayages AFM on été réalisés pour différents

courants appliqués aux fils. Sur les images topographiques nous n’avons pas observé

de changement significatif (Figure C.7 a-b). Bien que la transition de spin est connu

pour induire une déformation spontanée, dans notre couche mince l’expansion associée

est attendue en dessous de 1 nm, ce qui reste difficile à détecter à cause de la rugosité de

l’échantillon qui est non négligeable. D’autre part, il est important de remarquer l’absence

de dégradation de l’échantillon sur les images topographiques. La cartographie du module

de Young (E) a été obtenue en utilisant le model DMT. Les valeurs observées de E ne sont

pas exactement les mêmes sur et à coté des fils ce qui est probablement lié au fait que la

dureté de l’or (79 GPa) et celle du substrat (E ≈ 75 GPa pour le SiO2) sont différentes et

/ou l’épaisseur du film n’est pas exactement la même sur les nano-fils et sur le substrat de

SiO2. La découverte la plus importante dans cette configuration est qu’ une augmentation

du courant jusqu’à 28 mA dans les fils entraine une diminution substantielle du module de

Young de ca. 30% (Figure C.7 c-d). Ce changement est clairement lié à l’augmentation

du courant car ce phénomène n’est pas observé hors des fils et lorsque le courant est

diminué de 28 à 1 mA le changement est parfaitement réversible. Ces observations ont

été reproduites à plusieurs reprises sur le même échantillon : deux mois après la première

expérience et aussi sur d’autres échantillons en utilisant des fils de géométrie différente.

La diminution du module de Young lorsque le courant est augmenté dans les fils

(i.e., pour une augmentation de température) est attendue à cause de la transition de

spin BS vers HS dans le film, car la forme HS du matériau possède une plus faible rigid-

ité. Cependant, l’expansion thermique ordinaire peut aussi contribuer à cet effet. C’est

pourquoi il est nécessaire de corréler les résultats AFM avec des mesures indépendantes

du changement d’état de spin du matériau. Cela peut être effectué avec cet échantillon

en enregistrant des images de fluorescence en fonction de la température (i.e. du courant

appliqué). La figure C.8 montre la variation de l’intensité de la fluorescence et le module

de Young du matériau en fonction du courant appliqué dans les fils. Des résultats ont

été obtenu pour le dispositif à deux fils (décrite FigureC.7) et aussi pour celui à un fil.

Dans tout les cas, nous avons observé une augmentation de l’intensité de fluorescence
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Figure C.7: Étude AFM d’un film mince (70 nm) du composé [Fe(hptrz)3](OTs)2 dopé
avec la Rhodamine 110 et déposé sur deux microfils d’or. a) Image AFM topographique.
b) moyenne du plan de coupe de la topographie pour différentes intensités de courant dans
les fils (1, 14 et 28 mA), e) cartographie du module de Young d) moyenne du plan de coupe
du module de Young pour I = 1 et 28 mA. Les deux lignes en pointillées horizontales
indiquent un changement du module de Young (∆E) des films à cause du chauffage par
effet Joule. Les lignes en tirets verticaux montrent les extrémités des fils où des artefacts
liés à la mesure peuvent apparaitre.
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Figure C.8: Variation normalisée du module de Young et de l’intensité de fluorescence
d’un film mince de [Fe(hptrz)3](OTs)2 dopé avec de la Rhodamine 110 en fonction du
courant appliqué dans les nanofils chauffants. Les figures a) et b) montrent deux séries
de données pour le même échantillon et c) pour un échantillon différent.

avec une augmentation du courant, ce qui indique sans ambigüité la transition de spin.

La bonne corrélation de la fluorescence avec le changement de module de Young prouve

que le changement de ce dernier provient de la transition de spin.

En calibrant la résistance avec la température, il est aussi possible de tracer le

changement du module de Young en fonction de la température. Comme observé sur la

Figure C.9 la transition de spin est centrée autour de 313 K, ce qui correspond bien aux

résultats dejà publiés sur ces films. La valeur initiale du module de Young à température

ambiante est retrouvée après un cycle thermique complet, avec l’incertitude expérimentale,

donnant la preuve que les changements observés ne sont pas liés à une dégradation de

l’échantillon ou une dérive instrumentale. Lors du passage HS vers BS le module de

Young diminue de ca. 1.7 GPa à 1.3 GPa. À notre connaissance c’est la première fois

que le module de Young et sa dépendance avec l’état de spin ont été déterminés pour un

matériau à transition de spin. À cause de l’absence de donnés dans la littérature nous

ne pouvons pas faire de comparaison, mais on peut noter que la variation du module de

Young observée par AFM (EBS/EHS = 1.33 ± 0.04) correspond bien avec le changement

de la température de Debye extraite des données du Mössbauer pour plusieurs composés

à transition de spin.

Un des aspects clef de l’étude présentée est le fait que la rigidité de l’échantillon

peut être déterminée avec une haute résolution spatiale. Nous avons démontré qu’il est
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Figure C.9: Moyenne des modules de Young d’une couche mince (40 nm) de
[Fe(hptrz)3](OTs)2 ( dopée avec la Rhodamine 110) en fonction de la température pour
les modes de chauffage et refroidissement.
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possible de suivre la transition de spin d’une surface de 70 x 70 nm2. Il pourrait même

être envisageable d’observer la transition de spin à plus haute résolution spatiale, mais des

images mieux résolues sont nécessaires. Nous devons insister sur le fait que la résolution

spatiale du module de Young et la résolution spatiale des courbes à transition de spin

avec la température ne sont évidement pas les mêmes, car ces dernières sont extraites

d’une série d’image AFM, alors que le premier provient d’une seule image. Néanmoins,

les courbes de transition de spin peuvent être obtenues même pour des petites zones de

l’échantillon.

C.4 Imagerie et manipulation de monocristaux à

transition de spin

Dans la continuité du travail réalisé par Salma Bedoui au sein de notre équipe durant

sa thèse [78–81], nous avons décidé d’explorer des possibilités fournies par les techniques

d’AFM pour imager et manipuler la transition de spin dans les mono-cristaux. Nous

avons choisi de travailler avec le complexe [Fe(bbpya)(NCS)2] (1). Ce composé dispose

d’une transition de spin abrupte au dessus de la température ambiante faisant de lui un

candidat intéressant pour les études AFM.

C.4.1 Interactions sonde-échantillon

Les cristaux se déplacent durant la transition de spin, par conséquent, il est néces-

saire de les fixer à la surface. Une petite goutte de colle Epoxy a été répandue de manière

homogène à la surface du substrat de silicium. Les cristaux de 1 ont alors été placés un

par un sur le substrat à l’aide d’une aiguille. Toutes les expériences ont été effectuées à

l’air libre. La transition de spin a été suivie in-situ par microscopie optique en champ

lointain conventionnelle utilisant un objectif Mitutoyo x10 (NA = 0.28). Les cristaux ont

été irradiés avec une lampe halogène et la lumière réfléchie a été capturée à l’aide d’une

caméra CMOS.

La température du cristal a été progressivement augmentée jusqu’à 433 K (état BS)

à un taux de chauffage de 10 K/min et une approche a été réalisée sur le cristal dans le
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but de calibrer la distance pointe-échantillon. Alors, la pointe a été éloignée à 500 µm

et la température a été augmentée jusqu’à 448 K. A cette température, l’échantillon est

dans la phase intermédiaire (HS-BS). La pointe a été maintenue à une hauteur constante

du substrat (100 µm) et l’échantillon a été déplacé latéralement, i.e. parallèlement à la

longueur du levier (Y axis). Quand la pointe a été approchée du cristal, la nucléation de

la phase BS a été observée à l’extrémité du cristal près du levier, comme montré dans la

figure C.10. Nous atribuons ce phénomene à un tranfert thermique par convection entre

la sonde AFM et l’échantillon. La distance entre la pointe et le point de nucléation était

de 490 µm. Quand la pointe s’approche davantage du cristal, la nouvelle phase se propage

à travers celui-ci, i.e. le volume de la phase BS augmente. Pour chaque micromètre où la

pointe s’approche ou s’éloigne du cristal, les parois du domaine se déplace d’environ 0.85

µm. Comme dans le cas précédent, un hystérésis est observé (ca. 80 µm). Nous avons

également effectué des expériences où la pointe se déplace d’un côté à l’autre du cristal.

Dans de tels cas, la frontière du domaine suit le mouvement de la pointe de manière

plus directe. Le volume du cristal qui a transité vers l’état BS a été trouvé dépendant

non seulement de la distance pointe-échantillon, mais également de la température de

l’échantillon. En fonction du choix du cristal ou des détails expérimentaux, en particulier

l’endroit et la manière dont la pointe s’approche du cristal, nous avons observé différents

comportements, tels que de multiples points de nucléation et donc, plusieurs domaines

avec quelques fois différents angles et directions de propagation. Une autre observation

intéressante est que si la pointe approche le cristal loin du point de nucléation naturel

(i.e. loin du coin ou d’un défaut du cristal), la transition est plus difficile à induire.

C.4.2 Études de la topographie à température variable

Malheureusement, le contrôleur de température NW ne peut pas être utilisé pour

chauffer les monocristaux micrométriques. D’autres méthodes et astuces doivent donc

être considérées dans le but d’éviter, ou du moins, de réduire les effets thermiques non

désirés entre la sonde AFM et les cristaux. Des idées possibles incluent (i) des mesures sous

vide, qui éliminerait complètement la convection et réduirait significativement les effets de

conduction thermique, (ii) l’utilisation de très longs leviers qui pourraient réduire les effets

de convection, et (iii) chauffer la sonde AFM à la même température que l’échantillon.
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Figure C.10: Deplasment du parois HS/BS le cristal du composé 1 en fonction de la
distance pointe-échantillon pour l’expérience montrée dans les images. La distance pointe-
substrat (100 µm) et la température de l’échantillon (448 K) sont gardées constantes et
la pointe approche l’échantillon dans la direction Y. Les flèches sur la figure indiquent
l’approche et le retrait de la pointe. La distance pointe-échantillon est indiquée dans
chaque image. La taille de l’image est 290 x 450 µm2.
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Puisque nous n’avons pas d’équipement pour réaliser ces mesures sous vide, nous avons

testé les deux dernières solutions. L’utilisation d’un long levier a effectivement apporté

quelques améliorations, mais cette approche est très restrictive en terme de constante de

ressort, en particulier pour le mode tapping. Pour cette raison, une grande partie des

mesures ont été réalisées en chauffant la sonde AFM par effet Joule.

Des images à différentes températures ont été enregistrées via l’appareil "Dimension

Icon" (Bruker) en mode non-contact. Des images optiques en champ lointain ont aussi

été enregistrées systématiquement entre les scans AFM. La figure C.11 (a) montre des

images de réflectivité optique d’un cristal du composé 1 dans la phase BS et IP (1389

µm2). Les images AFM sélectionnées sont présentées dans la figure C.11 (b).

Les images AFM montrent plusieurs caractéristiques (repères) distinguables qui nous

aide à localiser différents points sur le cristal durant la transition de spin et à mesurer

les distances entre eux. De cette manière, nous avons suivi l’expansion/contraction du

cristal en fonction de la température. La figure C.11 (c) montre quelques exemples pour

ce type de mesures. Chaque courbe correspond à une distance entre des repères sélec-

tionnées sur la surface (indiqué par des lignes blanches sur les images de topographie) en

fonction de la température mesurée à la fois durant le chauffage (cercles pleins) et durant

le refroidissement (cercles vides). La première observation importante est que la varia-

tion thermique des distances entre les repères est réversible à chaque fois. Cela prouve

que les déplacements observés correspondent à l’expansion ou à la contraction du cristal

après la transition de spin, ce qui est visible à la fois dans les images optiques et d’AFM.

Excepté cela, la topographie de la surface apparaît comme très similaire dans les deux

phases. Puisque la fissure observée dans les images AFM est presque parallèle à l’axe long

du cristal, nous avons mesuré les distances parallèles (lignes 1 et 4) et perpendiculaires

(ligne 2 et 3) à la fissure. De la figure C.11 (c), il est clair que le cristal s’allonge per-

pendiculairement à la fissure (3.1%) et se contracte dans l’autre direction (2.4%) en bon

accord avec les observations de la microscopie optique. Il sera nécessaire de comparer ces

résultats avec les données cristallographiques, mais malheureusement jusqu’à maintenant,

nous n’avons pas été capable de déterminer la structure cristalline de ce composé dans la

phase haute température.

La figure C.12 regroupe les résultats d’une expérience utilisant la méthode de
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Figure C.11: Images optiques a) et AFM b) d’un cristal du composé 1 dans les phases P I
et BS. c) Variation de la longueur des lignes blanches de b) en fonction de la température
lors du chauffage et du refroidissement.
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chauffage laser. En l’absence de faisceau laser (i.e. 0.0 mW dans les images), nous

observons une topographie en dents de scie. Le cristal transite partiellement dans l’état

BS et il y a un mélange de phases autour de la pointe. Quand le laser est allumé (1.0

mW), le chauffage induit par le laser amène le cristal dans la phase P I. En conséquence,

les lignes dans les images optiques disparaissent et la topographie devient plate. Comme

montré dans la figure 4.20 (b), la transition entre ces deux topographies pourrait être

répété plusieurs fois.

Ces expériences prouvent que la topographie de surface dans cette échantillon est

fortement liée à la transition de spin. Cette dernière est accompagnée par un changement

significatif du volume et de la structure. Il est plausible que les déformations élastiques

durant la transition soient accompagnées par la formation de ces repères topographiques.

En d’autres mots, de manière similaire aux fameuses transitions martensitiques, l’énergie

élastique est minimisée par ces microstructures. Cette explication pourrait sembler difficile

à concilier avec le fait que dans quelques cas la topographie en dents de scie a aussi été

observée à température ambiante (i.e. loin de la transition de spin). Cependant il est

possible que des déformations plastiques apparaissent dans le système, et restent gelés

quand l’échantillon est refroidi à température ambiante et cette structure métastable

relaxe sur une plus longue période (plusieurs semaines).
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Figure C.12: a) Image optique, b) topographie AFM et c) coupe transversale de l’image
de topographie d’un cristal du composé 1 enregistré à 448 K avec la pointe engagée sur
la surface du cristal. Les images ont été obtenues en allumant (1.0 mW) et éteignant (0.0
mW) successivement le faisceau laser (633 nm) focalisé près de la pointe.
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C.4.3 Conclusions

Dans ce travail nous avons démontré que le phénomène de la transition de spin (TS)

peut être étudié et déclenché par de la microscopie en champ proche (AFM en anglais)

avec une résolution spatiale nanométrique. Nous avons montré que la AFM peut être

utilisée pour suivre la transition de spin thermique dans des nanomatériaux à TS à travers

l’analyse de différents types d’interactions pointe-échantillon, incluant la détection (ou la

génération) d’ondes électromagnétiques évanescentes par une pointe de fibre optique et

l’analyse des déformations élastiques induites par une pointe de silicium pointue. De plus,

nous avons prouvé que le phénomène du TS dans les matériaux massifs peut aussi être

suivi en observant les changements des caractéristiques de la topographie de l’échantillon

en fonction de la température. Enfin, la possibilité de déclencher et même de finement

contrôler la transition par un chauffage localisé à l’aide de la pointe a été également mis

en évidence.

Les techniques de AFM ont été employés ces deux dernières décennies pour étudier

les phénomènes de changement de phase dans différents matériaux. Dans la plupart des

cas, toutefois, l’imagerie AFM pendant le changement de phase est restée qualitative.

L’imagerie quantitative d’une propriété d’un matériau qui peut être contrôlée par des

stimuli externes a rarement été publiée, même dans d’autres domaines. L’obstacle prin-

cipal dans toute approche AFM est l’analyse des interactions entre la sonde AFM et

l’échantillon, et cela d’autant plus que les deux peuvent changer de propriétés durant les

mesures. De plus, le changement de phase doit être déclenché par des stimuli extérieurs,

qui peuvent également perturber les analyses AFM. Dans le cas de composés à TS, la

manière la plus aisée d’induire la transition est par excitation thermique. Nous avons

observé à plusieurs occasions que l’usure de la pointe et de l’échantillon durant des scans

successifs ainsi que les effets thermiques non-désirés (dérive de l’échantillon, échange de

chaleur entre l’échantillon et la pointe, etc.) sont très difficiles à gérer en se servant de

dispositifs de chauffage AFM conventionnels. Pour éliminer (ou du moins minimiser)

ces problèmes nous avons implémenté une stratégie expérimentale originale pour étudier

les films à TS. Cette strategie est basée sur un chauffage local de l’échantillon par effet

Joule sur un fil métallique. Cette approche nous a permis d’obtenir des changements de

température très rapides et contrôlés ainsi que de réduire significativement la dérive ther-
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mique et les échanges thermiques avec la pointe. Des scans sur les parties non-chauffées de

l’échantillon nous ont aussi permis de corriger (ou du moins de détecter) la dégradation de

la pointe et/ou de l’échantillon. Cette dernière a été également surveillée dans la plupart

des cas in-situ par des moyens de microscopie optique à haute sensitivité couplée à la

AFM. Nous pensons que cette stratégie de nano-chauffage est intéressante non seulement

pour le domaine de la TS, mais pourra trouver des applications plus générales dans la

communauté AFM. Peut-être de manière inattendue, les mesures thermo-mécaniques par

microscopie à force atomique (AFM) ont prouvées être les plus efficaces pour l’imagerie

quantitative de la transition de spin. Nous avons réussi à indenter des couches minces

de SCO d’une manière non-destructive et de la dépendance en température des données

d’indentation nous avons pu extraire le module de Young des films dans les deux états de

spin. Cette information est déjà très pertinente en soi, mais elle peut en plus être utilisée

pour surveiller l’évolution du changement d’état de spin avec une résolution spatiale sans

égale. Ces mesures ont été effectuées à l’aide d’un mode AFM relativement récent - le

Peak Force Tapping, qui appartient à la famille des techniques de cartographie de force

rapide. Des tests préliminaires à l’aide d’autres modes mécaniques ont aussi été réalisés et

il a été prouvé que l’imagerie AC multifréquence peut prodiguer des résultats similaires,

mais avec un taux d’imagerie encore plus rapide.

Même si la TS est associée à un changement de volume significatif, la topographie

de surface des images AFM n’ont pas été utiles pour suivre la transition de spin dans des

échantillons de films minces. (N.B. Cette approche simple mérite, toutefois, des efforts

plus poussés dans le futur.) D’un autre côté, des changements de topographie de surface

très intéressants ont été observés pendant la TS dans des échantillons de monocristaux.

Les différences de topographie entre les deux états de spin ont été analysées et elles sont

bien corrélées avec le changement de la forme du cristal. Encore plus important, d’étranges

changements de topographie temporaires ont été observés durant la transition de spin sous

la forme d’ondulations de surface autour de la bordure de phase. Nous suggérons que ces

ondulations sont formées afin de minimiser des constraintes élastiques près des bordures

de phase.

L’imagerie optique à l’échelle nanométrique de films de TS a également prodigué

un contraste utile entre les phases haut spin et bas spin à la fois en fluorescence et en
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réflectance. Le premier se sert d’éléments fluorescents incorporés dans le film, alors que

le dernier teste directement le changement d’indice optique de l’échantillon. Les mesures

de réflectivité ont été plus robustes, en particulier en mode de hauteur constante NSOM.

Dans le cas des échantillons étudiés, la quantification des changements d’état de spin

observés en NSOM était difficile (à la fois en fluorescence et réflectivité). Une solution

possible à ce problème serait de travailler en transmission, mais cela demanderai des

échantillons avec des propriétés optiques spécifiques (c.a.d, une couche mince avec un

grand changement de densité optique lors de la TS dans la région des UV). De manière

générale, des échantillons avec des propriétés appropriées sont cruciaux non seulement

pour la NSOM, mais également pour n’importe quelle autre technique AFM et ces travaux

futurs devront se centrer plus sur cette question.

En plus de la détection de changements d’état de spin dans un petit volume, nous

avons montré qu’une pointe AFM peut également être utilisée pour déclencher cette tran-

sition localement. Nous avons testé l’écriture photothermique avec un laser à haute réso-

lution en utilisant des pointes NSOM et nous avons réussi à faire transiter des particules

à TS individuelles. Dans une autre approche simple, une pointe de Si froide a été utilisée

pour induire la transition de haut spin vers bas spin dans un seul monocristal. Nous avons

montré que la pointe peut induire la nucléation de la phase BS et permet un contrôle fin

de la position des bordures de phase. Clairement, il y a bien d’autres manières d’utiliser

une pointe AFM pour manipuler l’état de spin avec une résolution nanométrique, tel

qu’utiliser des pointes thermiques spécifiques ou des effets mécaniques, qui restent encore

à explorer. Ces outils sont intéressants car ils permettent de faire des opérations de lec-

ture/écriture nanométriques et ainsi donnent accès à de nouveaux dispositifs, comme des

mémoires à échelle nanométrique. Par exemple, nous avons montré dans ce travail que

la mémoire thermique observée dans certains composés SCO prodigue une méthode sans

précédent pour imager des effets thermiques transitives avec une haute résolution spatiale.

Finallement, nous pourrons noter que d’autres méthodes AFM nous font également

espérer des perspectives intéressantes pour le domaine de la TS. Notamment il serait

intéressant d’explorer les possibilités offertes par la microscopie à force magnétique (MFM)

et des méthodes spectroscopiques vibrationnelles, comme le Raman ou les spectroscopies

FTIR en champ proche.
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Résumé

Récemment, un grand nombre d’objets de taille nanométrique, incluant les nanoparticules, les films minces, les dispositifs
nanostructurés, présentant des phénomènes de commutation impliquant différents états de spin, ont été développé pour des
applications dans le domaine des capteurs et des systèmes nanophotoniques, nanoélectroniques et nanomécaniques. En effet,
ces nanomatériaux à conversion de spin présentent une dépendance en taille des propriétés physico-chimiques très intéressantes.
Même si l’origine du phénomène de conversion de spin est purement moléculaire, le comportement macroscopique de ces
systèmes à l’état solide est fortement influencé par les interactions intermoléculaires élastiques. On s’attend donc à ce que les
propriétés coopératives et, de manière plus générale, le diagramme de phase, soient très dépendantes de la taille du système. Au
delà de la stabilité des phases, les cinétiques de transformation dépendent également de la taille du système. Dans ce contexte,
des interactions élastiques fortes conduisent dans de nombreux cas à des transitions de type premier ordre accompagnées par
une séparation de phase hétérogène. Les détails du mécanisme de la dynamique spatio-temporelle associée à la transition
de spin restent encore inexplorés. L’ensemble de ces phénomènes observés dans les matériaux à transition de spin demande
des méthodes de caractérisation possédant une capacité d’imagerie d’une grande résolution spatiale afin d’aller au delà des
techniques de microscopie optique en champ lointain habituellement employées. Par conséquence, l’objectif global de cette
thèse de doctorat est de développer de nouvelles approches qui permettent de détecter le phénomène de transition de spin avec
une résolution spatiale nanométrique. Pour observer la transition de spin thermique dans les films minces, nous avons utilisé
pour la première fois la microscopie optique en champ proche (NSOM en Anglais) ainsi que la microscopie à force atomique
(AFM en Anglais) en conjonction avec des dispositifs originaux de chauffage à l’échelle du nanomètre, conçus à partir de
nanofils et fonctionnant par effet Joule. En utilisant ces techniques, le changement de l’état de spin a pu être observé avec
une résolution sub-longueur d’onde au travers des changements des propriétés mécaniques et optiques du matérial. Le NSOM
en mode illumination, utilisé soit en mode luminescence ou en mode réflexion fournit un signal utile pour la détection du
changement d’état de spin; mais ne permet en revanche qu’une quantification limitée du phénomène en raison de l’instabilité
des échantillons. D’un autre côté, les différents modes mécaniques AFM, incluant la spectroscopie de force rapide et l’analyse
multifréquentielle, ont permis des mesures quantitatives et reproductibles avec une résolution nanométrique. En particulier,
nous avons été capable de mesurer pour la première fois l’augmentation du module d’Young (env. 25-30%) observée lors de la
transition de l’état Haut Spin vers l’état Bas Spin et nous avons utilisé cette propriété pour réaliser une imagerie quantitative
de la transition de spin. Des mesures AFM ont été faites sur des monocristaux à transition de spin. Nous avons montré que
les transferts thermiques entre la sonde et l’échantillon peuvent être utilisés pour manipuler la nucléation et la propagation des
phases Haut et Bas Spin dans des cristaux. Par ailleurs, ces interactions sonde-échantillon rendent difficiles l’imagerie AFM
de ces phénomènes. Néanmoins, les changements d’ordre topographique de la surface au cours de la transition de spin ont pu
être observés et discutés en conjonction avec les résultats de spectroscopie Raman et microscopie optique en champ lointain.
L’ensemble de ces résultats ouvre de nouvelles possibilités d’étude et de contrôle/manipulation de ces objets bistables à l’échelle
du nanomètre.

Mots-clés: Microscopie à sonde locale, microscopie à force atomique, microscopie optique en champ proche, transition de spin.

Abstract

Recently a variety of nanoscale objects, including nanoparticles, thin films and nanometric assemblies, exhibiting molecular
spin-state switching phenomena have been developed for applications in sensors, nanophotonic, nanoelectronic and nanome-
chanical systems. These spin crossover nanomaterials have been also reported to exhibit interesting size-dependent properties.
Indeed, even if the origin of the spin crossover phenomenon is purely molecular, the macroscopic behavior of these systems in
the solid state is strongly influenced by elastic interactions between the molecules. These cooperative properties and, in general,
the phase diagram are expected to depend strongly on the size of the material. Beyond the phase stability, the transformation
kinetics is likely to display also size dependence. Indeed, the strong elastic interactions in these materials lead, in many cases,
to first-order phase transitions and phase separation phenomena. Details of the associated spatio-temporal dynamics of spin
crossover systems remain largely unexplored. All these size dependent and spatially heterogeneous phenomena in spin crossover
materials call for appropriate characterization methods with high spatial resolution imaging capability, but to date only far-field
optical microscopy has been used to this aim. Hence, the overall objective of this PHD thesis was to develop new approaches
allowing to trigger and detect the spin crossover phenomenon with nanometric spatial resolution. For the detection of the
thermally induced spin crossover in thin films, we used for the first time Near-Field Scanning Optical Microscopy (NSOM) and
Atomic Force Microscopy (AFM) in conjunction with an original nano-heater device, based on Joule-heated metallic nanowires.
Using these techniques the spin-state change in the films was inferred with sub-wavelength resolution through the associated
optical and mechanical property changes of the material. Apertured NSOM used either in luminescence or reflectivity mode
provided useful signal for detecting the spin-state switching phenomena, but rather limited quantification was possible due
to sample stability issues. On the other hand, AFM mechanical modes, including fast force spectroscopy and multifrequency
analysis, allowed for quantitative and well-reproducible measurements with nanometric resolution. In particular, we have
measured for the first time the increase of the Young’s modulus (ca. 25-30 %) when going from the high spin to the low
spin state and used this property for quantitative imaging of the spin transition. AFM measurements were also performed
on spin crossover single crystals. We have shown that probe-sample thermal interactions can be used to manipulate the
nucleation and propagation of the high spin and low spin phases in the crystals. On the other hand, these interactions make for
difficulties for the AFM imaging of these phenomena. Nevertheless changes of the surface topography during the spin transition
could be observed and discussed in conjunction with far-field optical microscopy and Raman spectroscopy data. The en-
semble of these results open up new possibilities for the investigation and manipulation of these bistable objects at the nanoscale.

Key words: Scanning probe microscopy, atomic force microscopy, near-field scanning optical microscopy, spin transition.
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