

tre :

Université Toulouse 3 Paul Sabatier (UT3 Paul Sabatier)

ED MITT : Image, Information, Hypermedia

Ghasan Bhatti

vendredi 21 novembre 2014

User-centered multi-layer programming approach to model scenarios on

driving simulators.

UT3-IRIT : Institut de Recherche en Informatique de Toulouse

Professeur Jean-Pierre Jessel

Professeur Frédéric Merienne

Professeur Ronan Querrec

Dr. Roland Brémond (Co-directeur de thèse)

Professeur Andras Kemeny

Dr. Corinne Brusque

M. Guillaume Millet

Acknowledgements

One of the joys of completion is to look over the journey and remember all the people who

have contributed and supported me all along to achieve this milestone in my life. So I am

using this opportunity to express my gratitude to these people. First of all, I would like to

thank the company OKTAL and the organizers of the ADAPTATION project for financing this

work and allowing me to become a part of their team and work on this subject.

I would like to express my utmost gratitude to my Advisor Professor Jean-Pierre Jessel for

allowing me to join him. I am thankful to him for his patience, his valuable support during

this time and useful advices which allowed me to complete this work. It would have been

difficult to complete this work without his support. I would also thank him for his help all

along in the administrative work.

My special thanks to my co-advisor Dr. Roland Brémond, who has been an utmost help

during all the stages of my thesis work. I appreciate him for his patience, support and valu-

able suggestions and discussions. He has been a great mentor. And I would not hesitate to

say that, it would have been difficult to complete my work without his support.

I wish to thank Guillaume Millet and Dr. Fabrice Vienne. It was a pleasant experience

to work with them and I would like to thank them for all the support during this time and

especially the technical assistance they have provided during the time of my PhD thesis. I am

grateful to Dr. Nguyen-Thong Dang for his assistance and the valuable discussions we had

during my thesis work. . I am also thankful to Gilles Gallée for his support.

I would like to extend my appreciation to my manuscript reviewers, Professor Frédéric

Merienne and Dr. Ronan Querrec, for taking out time to read my thesis and for their valuable

feedback. I would like to extend my gratitude to other Jury members Dr. Andras Kemeny and

Dr. Corinne Brusque for becoming the part of the jury.

Special thanks are due to my colleagues at IFSTTAR and OKTAL for providing me a wonder-

ful and a friendly working environment. I have spent a memorable time with these people.

Here I would like to mention Ferhat and Karine, Abdurrehmane and Abdarrehmane, with

i

Acknowledgements

whom I have spent a memorable time. I would also like to thank my colleagues in the ADAP-

TATION project. I am also grateful to all the participants, who participated with patience in

my experimental studies.

I would like to direct my most sincere thanks to my friends around the globe and especially

in France Ayyaz, Hassan, Zakir, and Sohail.

I am forever indebted to my parents and sisters for their unconditional love and faith in

me. It is due to their prayers that I have been able to achieve what I have. I wish you both a

very good health.

In the end, I would like to mention about the most important person of my life, my wife

Zainab. I am really thankful to her for her support during the last days of my work, I love you

a lot!

Last but not the least; I am grateful to almighty ALLAH for his blessings and for giving me

the courage and strength to complete my work.

Champs sur Marne, 21 Novembre 2014 G. B.

ii

Abstract

Driving simulators are useful tools for researcher in order to study the drivers’ behaviour,

to analyze road safety features and to evaluate ADAS (Advance Driving Assistance Systems).

Modeling scenarios on driving simulators is a critical and complex task for behavioral re-

searcher. It requires specific technical and programming skills, for which researchers are not

formally trained. One of the main reasons why designing scenarios is a complex task is the

lack of User-Centered Design (UCD) of the scenario authoring tools, which could account

for the skills they lack in order to achieve their objectives with driving simulators. The user

interfaces are thus not very intuitive and user-friendly in most driving simulators. A User-

Centered and Multilayer programming approach is proposed in order to fill the gap between

the end-user’s skills and the goals they want to achieve with driving simulators.

A user study was conducted to gather the user’s needs and requirements to model scenarios

on driving simulators. Different steps have been identified, followed by the end-users while

designing an experimental protocol; moreover, different types of users who interact with driv-

ing simulators have been identified. We propose that the interface to develop an experimen-

tal protocol should be split into three sub-interfaces used by different end-users who interact

with driving simulators: the Template Builder for Technical persons, the Experiment Builder

for Researchers, and the Experiment Interface, for Experiment operators. Using the Exper-

iment Builder, researchers can develop scenarios at high-level exploiting the programming

primitives. An evaluation of the approach was conducted on a semi-functional and a func-

tional prototype. During the evaluation, end-users (behavioral researchers) developed exper-

imental protocols on driving simulators. The results have shown that the proposed approach

has empowered the non-programmers to model scenarios on driving simulators without any

technical or programming help from technical persons.

Besides, every driving simulator has a different execution platform. An interoperability frame-

work and a Scenario-Meta Language (SML) is proposed and developed to port the scenarios

from one platform to another. The scenarios developed using the multi-layer programming

approach can be executed on different driving simulators. The interoperability framework

and the meta-language has been successfully tested by integrating them with the SCANeR

software.

Key words: Driving simulators, Scenario modelling, User-centered design, Multi-layer pro-

iii

Acknowledgements

gramming, End-user software engineering, Interoperability framework.

iv

Résumé

Le simulateur de conduite est un outil très utilisé par les chercheurs, Il leurs permet d’étu-

dier le comportement des conducteurs, d’analyser certains aspects de la sécurité routière et

d’évaluer des Systèmes d’Aide à la Conduite (SAC). La modélisation des scénarios pour ces

simulateurs de conduite est une tâche cruciale et complexe pour le chercheur. Elle exige des

compétences techniques et de programmation spécifiques, pour lesquelles les chercheurs

ne sont pas nécessairement formés. Une des principales raisons est le manque de concep-

tion centrée sur l’utilisateur (UCD), ce qui pourrait expliquer la difficulté des chercheurs à

atteindre leurs objectifs avec des simulateurs de conduite. L’interface utilisateur n’est donc

pas très intuitive et conviviale dans la plupart des simulateurs de conduite. Afin de combler

l’écart entre les compétences des utilisateurs et les objectifs qu’ils souhaitent atteindre en

utilisant des simulateurs de conduite, une approche de programmation multicouche centrée

sur l’utilisateur est proposée.

Une étude a été menée sur des utilisateurs afin de recueillir leurs besoins et leurs exigences

pour modéliser des scénarios sur simulateur de conduite. Les différentes étapes que suit l’uti-

lisateur final lors de la conception d’un protocole expérimental et les différents types d’utili-

sateurs qui interagissent avec les simulateurs de conduite ont été identifiés. L’interface pour

le développement d’un protocole expérimental a été divisée en trois sous-interfaces, qui sont

utilisées par les différents utilisateurs qui interagissent avec les simulateurs de conduite :

le ’Template Builder’ pour le personnelle technique, le ’Experiment Builder’ pour les cher-

cheurs, et le ’Experiment Interface’ pour les opérateurs expérimentés. L’utilisation de cet ’Ex-

periment Builder’ peut permettre aux chercheurs de développer des scénarios à haut niveau

tout en exploitant les primitives de programmation.

Une évaluation de l’approche a été effectuée sur un prototype semi-fonctionnel et fonction-

nel. Lors de l’évaluation, les utilisateurs finaux (les chercheurs) ont développé un protocole

expérimental sur simulateurs de conduite. Les résultats obtenus ont montré que l’approche

proposée permet aux chercheurs non-programmeurs de modéliser des scénarios sur les si-

mulateurs de conduite sans aucune aide technique ou de programmation. En outre, chaque

simulateur de conduite à une plate-forme d’exécution différente. Un cadre d’interopérabilité

et un Scénario-Meta Langage (SML) ont été proposés et développés afin de porter les scé-

narios d’une plateforme à une autre. Les scénarios développés avec l’approche de program-

mation multicouches peuvent ainsi être exécutées sur différent simulateurs de conduite. Le

v

Acknowledgements

cadre d’interopérabilité et le métalangage ont été testés avec succès en les intégrant dans le

logiciel SCANeR.

vi

Contents

Acknowledgements i

Abstract iii

List of figures xi

List of tables xiii

1 Introduction 1

1.1 End users programming . 1

1.2 Driving simulators . 3

1.3 Driving simulator scenarios . 5

1.4 Challenges in modeling scenarios . 7

1.5 Driving simulation platforms . 9

1.6 Overview of the thesis . 9

2 State of the art 11

2.1 Scenario authoring in driving simulators . 11

2.2 Scenario modeling approaches . 14

2.3 Scenario authoring language . 16

2.4 Driving simulators and other domains . 19

2.4.1 End-user programming Systems . 20

2.5 Dealing with designing interfaces for end-users 22

3 End-user requirements 25

3.1 User-Centered Design . 25

3.2 User Interviews . 26

3.3 Method . 26

3.3.1 Participants . 26

3.3.2 Procedure . 27

3.4 Results . 27

3.4.1 General problems . 28

3.4.2 Concept-to-script translation problems . 29

3.4.3 Ideal approach to model scenarios . 30

vii

Contents

3.4.4 Improvement of the driving Simulator in use 30

3.5 Discussion and conclusion . 31

4 Proposed Multi-Layer programming approach 33

4.1 Key challenges for researchers . 33

4.1.1 Technical challenges . 34

4.2 User roles . 34

4.3 Experimental Protocol development Steps . 35

4.4 Proposed solution . 36

4.4.1 Multi-layer Programming . 36

4.4.2 Empowering the end-users . 37

4.4.3 Scenario modeling process using Multi-layered approach 37

4.4.4 Discussion on user roles . 39

4.4.5 Movie theater metaphor of the approach 40

4.5 Prototype Building . 41

4.5.1 Step 1: Experiment Description . 41

4.5.2 Step 2: Terrain selection . 42

4.5.3 Step 3: Configure subject vehicle . 42

4.5.4 Step 4: Configure Autonomous Traffic . 43

4.5.5 Step 5: Configure environment . 43

4.5.6 Step 6: Select dependent variables . 43

4.5.7 Step 7a: Construct critical events and scenarios 43

4.5.8 Step 7b: Specify Template parameters . 44

4.5.9 Step 7c: Overview of the experiment . 44

4.6 Significance of the approach . 47

4.6.1 Overcoming barriers . 47

4.6.2 Support higher-level goals . 48

4.6.3 Reusability . 49

4.6.4 Is it another new System? . 49

4.7 Comparison with the existing system . 49

4.7.1 Interface . 50

5 User Experience 61

5.1 Preliminary study . 61

5.1.1 Procedure . 61

5.1.2 Interviews . 62

5.1.3 Results . 62

5.1.4 Discussion . 63

5.2 Main study . 63

5.2.1 Participants’ selection and participation 63

5.2.2 Experiment Setup and Procedure . 64

5.2.3 Experiment Task . 64

5.2.4 Data Collection . 66

viii

Contents

5.2.5 Data Analysis . 68

5.2.6 Results . 69

5.3 Discussion and hypotheses exploration . 76

5.3.1 User selection . 77

5.3.2 User performance . 77

5.3.3 Problems with the users . 78

5.3.4 Hypotheses Exploration . 78

5.4 Conclusion . 79

6 Interoperability of the solution 81

6.1 Need for interoperability of scenarios . 81

6.2 Challenges to develop an interoperability framework 82

6.3 Scenario modelling process . 82

6.4 Scenario Meta-Language (SML) . 83

6.4.1 Functional requirements . 83

6.4.2 General requirements . 83

6.4.3 Description of the SML . 83

6.5 Interoperability framework . 91

6.5.1 Implementation of the Interoperability Framework 92

6.6 Conclusion . 94

7 Conclusion 95

7.1 Concluding discussion . 95

7.2 Contributions . 98

7.3 Prospective . 99

Publications 101

Bibliography 109

A Appendix A 111

B Appendix B 115

ix

List of Figures

1.1 High-fidelity driving simulator (credit: Tongji university, China). 4

1.2 Low-fidelity driving simulator (credit: Ludoscience.com). 5

1.3 Scenario modeling process followed by researchers. 6

1.4 Basic steps for driving simulation study. 6

1.5 SCANeR Interface (OKTAL SA). 7

1.6 ARCHISIM Interface (IFSTTAR). 8

2.1 SDL in STI SIM. 12

2.2 STIM SIM PDE. 13

2.3 ISAT Scene Authoring GUI [Kearney and Timofey F, 2011]. 14

2.4 SCANeR (top) and ARCHISIM (bottom) GUI for scenario authoring. 15

2.5 Assembling scene from tiles in Simvista [Kearney and Timofey F, 2011]. 17

4.1 Multi-layer Programming Architecture. 37

4.2 Experiment Building Environment. 39

4.3 User roles corresponding to scenario levels. 40

4.4 Experiment description (Step 1). 41

4.5 Terrain selection (Step 2). 42

4.6 Subject Vehicle Configuration (Step 3). 42

4.7 Autonomous traffic configuration (Step 4). 43

4.8 Top: Configure environment. Bottom: Weather zone configuration (Step 5). . . 44

4.9 Variable Selection (Step 6). 45

4.10 Trigger for the template (Step 7a). 45

4.11 End-user specifying template parameters (Step 7b). 46

4.12 Visualization of the experiment on the Time line and distance line (Step 7c). . . 46

4.13 Comparison of Participant vehicle configuration. 52

4.14 Comparison of Autonomous traffic configuration. 54

4.15 Comparison of environment configuration. 55

4.16 Comparison of selecting the Variables. 57

4.17 Comparison of constructing the critical events. 59

5.1 Exercise to model scenario. 62

5.2 5-point Likert scale. 67

xi

List of Figures

5.3 Task performance data. 70

5.4 Learning Experience of all users. 71

5.5 Mean SUS score rating [Bangor et al., 2009]. 72

5.6 Task performance data (Experienced vs inexperienced users). 73

5.7 Learning experience of Traffic zone (Experienced vs inexperienced). 73

5.8 Learning experience of Situation 1 (Top) and 2 (bottom). 74

5.9 SUS score (Experienced vs inexperienced users). 75

6.1 Typical scenario modeling process. 82

6.2 SML Schema. 84

6.3 Typical scenario modeling process. 91

6.4 Interoperability Framework. 92

6.5 Interoperability Framework using multi-layer programming. 93

xii

List of Tables

3.1 Driving Simulators. 27

3.2 User Profile. 27

3.3 Programming Language Knowledge of the Users. 28

3.4 Solution to problem mapping. 32

4.1 Terrain Selection comparison. 50

4.2 Participant vehicle comparison. 51

4.3 Comparison of configuration of autonomous traffic. 53

4.4 Comparison of configuration of Environment. 56

4.5 Comparison of the process of selecting the dependent variables. 56

4.6 Comparison of construction of critical events. 58

5.1 SUS score of all users. 71

5.2 Task easiness rating (All users). 72

5.3 Task easiness rating (Experienced User). 75

5.4 Task easiness rating (Inexperienced User). 76

xiii

Chapter 1

Introduction

The work presented in this thesis was carried out under the framework of European FP7

project "ADAPTATION". The project consists of several industrial partners, universities and

research organizations including IFSTTAR and OKTAL. ADAPTATION aims at studying the

whole range of adaptation processes in response to ADAS (Advance Driving Assistance Sys-

tems) including not only observable behavioral changes, but also changes in regulatory, cog-

nitive and motivational processes. Researchers use different tools in the projects like adapta-

tion to study drivers’ behaviour and to propose road safety feature. Driving simulator is one

of the tools used by researchers to perform different studies. The efficient and effective use of

driving simulators plays a vital role in obtaining the results of their studies. This thesis aims

at improving the user experience while using driving simulators.

1.1 End users programming

Software technology has revolutionized today’s world. The increasing use of software tech-

nologies in different platforms (desktop, web, mobile) has enabled the users to adopt soft-

ware programmers as their profession. But nowadays software development is not only done

by professional programmers but sometimes also by non-professional programmers, which

we call here end-user. End-users are domain experts who do programming to support their

business goals. For example, Accountants use spreadsheet, teacher use excel sheets for grad-

ing. Scientists develop programs to support their analysis and research work. Gartner’s report

in 2011 indicated that by the end 2014, 25% of the new business application will be developed

by end-users, which indicates the role of end-users in developing the future applications.

"End-User Development is a set of methods, techniques and tools that allow users of software

systems, who are acting as non-professional software developers, at some point to create,

modify, or extend a software artifact" Lieberman et al. [2006]. End-User development is a

multi-disciplinary process which integrates the knowledge from different domain which is

Human-Computer Interaction, Software Engineering (SE) and Artificial Intelligence. A better

1

Chapter 1. Introduction

integration of knowledge from these field can help to develop concepts like configurability,

end-user programming, usability, visual programming, natural programming and provides a

considerable knowledge but they need to be better integrated.

End-user development is different from software development because in software develop-

ment, software developers develop application by following the need and requirements of the

end-users. End-users are not proficient in programming, but they have domain knowledge

and they use this knowledge to develop application in order to support their work so what

makes end-users different from professional programmers are their goals Ko et al. [2011].

End-user programming has been one of the key research areas in the domain of human-

computer interaction, where the focus is to develop the system to do programming for end-

users who do not have programming skills or who have never programmed before. One of

the ways to tackle this problem is to study the profile of the end-users and propose solutions

which could fulfill the barriers of programming using these systems. Many approaches and

notions have been used in past decades in order to tackle this problem. Ko (Ko, Myers et al.

2004) has identified 6 barriers which end-users faces while learning a end-user programming

system. These barriers are:

1. Design barriers ("I do not know what I want my computer to do").

2. Selection barriers ("I think I know what I want computer to do but I do not know what

to use").

3. Coordination barriers ("I think I know what things to use, but I do not know how to

make them work together")

4. Use barriers ("I think I know what to use, but I do not know how to use it")

5. Understanding barriers ("I knew how to use it, but I did not know what I expected")

6. Information barriers ("I think I know why it did not do what I expected but I did not

know how to check it")

End-user systems should address these barriers so that end-users could achieve the tasks us-

ing the tools. End-users are not like programmers, they know what they want to do, and

what are their goals, but they may not know what they need (support from the end-user

systems) in order to achieve these goals. The end-user programming systems provide sup-

port to end-users to achieve these goals and to remove the barriers they face while learn-

ing those systems. So many issues need to be addressed while designing those systems.

Repenning and Ioannidou [2006] has proposed 13 design guidelines to design the usable pro-

gramming systems for end-users. Besides these guidelines, there is a need to do the task

analysis of the users: what the users want to do, what support do they need while performing

the programming tasks using these systems. End-user programming systems should take in

2

1.2. Driving simulators

to account that how end-users can be empowered to achieve their goals using these systems

by considering their profile and capabilities.

End-user software engineering has been used in almost all the domains to support the tasks

of the end-users, i.e. from daily use (using macros in excels and word) to the advanced use

of these systems, for example statistical use and many other scientific uses. In the domain of

driving simulators, they are used by researchers to configure their experiment for the study

they want to conduct.

1.2 Driving simulators

A driving simulator is a useful tool for behavioral researchers in order to study the driver’s

behaviour, to analyze road safety features, and to study and evaluate ADAS (Advance Driving

Assistance Systems) without any safety risk. In driving simulators, real driving environments

are simulated and displayed to the drivers in order to achieve the study goal.

There are many advantages of using driving simulators over conducting a study on real roads

and real cars. One advantage is that the experiment can be conducted in a controlled manner

by easily setting up different environments and different parameters, which is one of the key

requirements of most study: all participants must encounter the same driving conditions.

The second advantage is the reproducibility of situations. If a researcher wants to study the

behavior of drivers in a given situation, it is possible to simulate this situation for all the

participants of the study. There are many dangerous driving situations which are risky to

study in a real environment, for example accident situations, performing secondary tasks

while driving etc. These situations can be studied in driving simulators without any safety

risk. In the case of designing the new features or systems such as during the early design

phases of an ADAS, it is cost-effective to test those systems on driving simulator rather than

developing physical prototype of these systems. While performing a behavioral study, data is

collected regarding the study, it is fairly easy and cost-effective to collect the data on driving

simulator rather than using physical sensors in instrumented cars. They are also used for

drivers training: drivers can be trained to drive in certain driving environment and situations,

such as snow, motorway etc.

However, there are also some weak points which come along with driving simulators. The

validity of driving simulators is a topic that has been addressed long ago, and significant

work has been done to validate driving simulators for various tasks Blana [1996], Kaptein et al.

[1996], Törnros [1998], Godley et al. [2002]. Simulator sickness is also a problem which may

be encountered by some participants on driving simulators, presumably due to motion cues.

The fidelity of the driving simulator also plays a role in the realism. Low-fidelity driving simu-

lators are less realistic but cheaper as compared to high-fidelity and medium fidelity driving

simulators. Figure 1.1 and 1.2 show examples of high-fidelity and low-fidelity driving simula-

tors.

3

Chapter 1. Introduction

Figure 1.1: High-fidelity driving simulator (credit: Tongji university, China).

Designing and implementing an experiment on a driving simulator is a quite critical and

complex task, which requires careful considerations and controlled environment. It is often

carried out by behavioral researchers with an educational and research background in psy-

chology or ergonomics, while implementing scenarios in the experimental protocol requires

technical and programming skills which those researchers lack in most of the cases; so they

take help from technical persons of their organization, who program scenarios for them.

Figure 1.3 shows the typical process followed by the researchers in order to develop an exper-

imental protocol. A researcher designs an experimental protocol on the paper or using any

software. In most of the cases he gives the design (which includes the scenario specification)

to the technical persons who implement the scenarios on the driving simulators. In a next

run, this scenario is validated or re-negotiated by the researchers. This process continues

until the scenario is validated according to the requirements of the driving simulation experi-

ment. Once the scenario fits the requirements of the researcher, he conducts the experiment.

End-users are totally dependent on the technical persons for the experiments to be imple-

mented. Conducting a driving simulator study is a 3 steps process which includes a designing

step, a implementation step and an experiment execution step as shown in Figure 1.4.

During step 1, end-users deign their study (i.e. environment, scenarios and data to be col-

lected), mainly without software support. During the second step the protocol is imple-

mented on the driving simulator. During the third step, the participants participate in the

study and data is collected from the experiment which is analyzed in order to answer the

research questions.

As shown in Figure 1.3, the end-users (researchers) are dependent on technical persons for

the implementation of scenarios, as the scenario creation requires technical and program-

4

1.3. Driving simulator scenarios

Figure 1.2: Low-fidelity driving simulator (credit: Ludoscience.com).

ming skills for which these researchers typically do not have enough training. Thus, they

depend on the technical persons or on the scenario developers in their respective organiza-

tions who program scenarios for them. This can be a time-consuming task because of the

dependency on the other people and the need for the researchers to create precise specifi-

cations of the exact scenarios they wish to be created (sometimes with a limited awareness

of the capabilities of the simulator). Interpreting and translating these specifications into a

simulator scenario can therefore be a time consuming task for technical persons as well. So

there is a need of a scenario development environment using which end-users can develop

scenarios without depending on technical persons. In other words, the direct involvement of

technical persons in the development of scenarios should be minimized. Figure 1.5 and 1.6

shows the interface of two existing and popular driving simulators.

SCANeR has a Graphical User Interaface (GUI) while ARCHISIM has a textual interface to

model scenarios. But it is still difficult to develop scenarios using these interfaces. If the

scenario is long and complex then it is difficult to manage or debug.

1.3 Driving simulator scenarios

The term "scenario" in general means a sequence of actions or events. But this term is

used with variance in the driving simulation literature. A driving simulator scenario may

be the specification of road and traffic situations along the road in the driving simulator

Olstam and Espié [2007]. According to Papelis et al. [2003], scenarios are termed as "every-

thing that happens in the driving simulator", which include specifying and controlling am-

bient traffic and its attributes, ambient environment and simulation conditions, route of the

participants and their position, and series of the real world situations which are to be ma-

5

Chapter 1. Introduction

Figure 1.3: Scenario modeling process followed by researchers.

Figure 1.4: Basic steps for driving simulation study.

nipulated on driving simulators. Wolffelaar defines the scenario as a constellation of con-

secutive traffic situations [Wolffelaar, 1999]. It is sometimes used to specify both the lay-

out and the activities during the experimental trial. Other authors use the term "Scene" to

specify the layout (road network, terrain, driving environment, etc.) and the term "scenario"

to specify what is going to happen during the simulation, i.e. critical situations and events

Kearney and Timofey F [2011]. So the scenario is usually regarded as the sequence of activi-

ties that happens during the experimental trial. These activities include different situations

and maneuvers to be tested, for example, crash situations and traffic-jam, etc. In the present

document scenario modelling includes specifying the ambient traffic, environment, simula-

tion conditions and the manipulation of the real-world traffic situations.

6

1.4. Challenges in modeling scenarios

Figure 1.5: SCANeR Interface (OKTAL SA).

1.4 Challenges in modeling scenarios

In the case of scenario programming on driving simulators, there are two global objectives

shared by all driving scenarios: realism and reproducibility, which are also the key advan-

tages of using the driving simulators. The researchers want the scenario to be realistic when

participants encounter the scenario during the experimental study. Also they want all the

participants to encounter the same situations, or at least to control the encountered situa-

tions.

There are two main factors which present the key challenges to making events happen at the

right time and at the right place in a natural way [Kearney and Timofey F, 2011]. First, driv-

ing behaviour is complicated and not all aspects are well-understood (this is why so many

studies experimental are needed!); so it is difficult to create realistic as well as controllable

traffic. The second factor is the variability of driving behaviour, as people change their speed,

lane position and tactical decisions with time during the simulation trials, which leads to vari-

ance in the drivers’ behaviour. For example, imagine you want to create an accident situation,

where a car overtakes the participant car and stops in front of his vehicle. To implement this

situation using a modeling language, there are many parameters to control and consider in-

cluding speed and position of the overtaking vehicle, speed of the participant’s vehicle and

the distance to stop from the participant’s vehicle. Every driving simulator provides a script-

ing environment, where behavioural researchers can model scenarios, by using triggers and

actions or some event-driven mechanism. Besides these issues, the interaction environment

provided by driving simulators does not help to fill the gap between the user’s skills and their

goals.

7

Chapter 1. Introduction

Figure 1.6: ARCHISIM Interface (IFSTTAR).

Driving simulators languages provide a broad range of support to manipulate and develop

almost all kind of traffic situations but the scenario modeling systems offered by these driv-

ing simulators are at low-level. They do not correspond to the skill level of the behavioral

researchers as they do not have any formal training for that. Also there is no standardized

or common procedure to discuss the requirements and implementation of the scenarios be-

tween researchers and technical persons. The communication and the interaction between

the researchers and technical persons are not standardized, so that researchers cannot eas-

ily communicate their requirements to the technical persons, and technical persons cannot

easily make them understand the capabilities of the driving simulators. So there is a need

for a standardized mechanism which could explain the role of all technical persons and re-

searchers. The role of technical persons should be minimized and the researchers should

be empowered, so that they could develop the scenarios with minimum or no help from the

technical persons. Significant work has been done in order to develop the scenario author-

ing tools for driving simulator but little effort has been done to empower the end-user to

use these tools with the current set of skills. One of the reasons why programming is diffi-

cult, is that programs are abstract [Cypher and Smith, 1995]. It is difficult for the people who

do not have a solid programming background to think in an abstract manner to implement

a given situation, compared to thinking about the same situation in the real world. So ab-

straction is one of the barriers, especially for novice users. Also it is a common observation

that, the more complex the situation, the more abstraction is required in the program. Also,

programming languages have been designed without careful attention to human-computer

interaction issues [Newell and Card, 1985], which makes programming more difficult than

necessary [Pane et al., 2001]. So there is a need to develop a user-centered interaction envi-

8

1.5. Driving simulation platforms

ronment which could support the users to achieve their goals with the driving simulator. As

researchers are the primary users of driving simulators, so the needs, requirements and pro-

file of the researchers should be kept in mind while designing the scenario authoring tools for

the driving simulators. It would also reduce the workflow of the technical persons and make

the scenario modeling process efficient and effective for both the researchers and technical

persons. So one of the goals of this thesis is to provide an intuitive methodology for end-users

to program scenarios, who do not have technical and programming skills.

1.5 Driving simulation platforms

Driving simulation platforms are quite heterogeneous, and it is not possible, given the cur-

rent state of the art, to port scenarios from one driving simulation platform to another. Also,

there is no common and standard way of describing the scenarios on driving simulators,

though it is a common practice to execute the same scenarios on different driving simulators,

especially in European projects, where similar scenarios are executed on different partner

sites for different purposes. So there is a need for a common methodology and a framework

that could provide interoperability of driving scenarios on different driving simulators. The

second goal of this thesis is to propose an interoperability framework so that standardized

scenarios could be executed on multiple driving simulation platforms.

1.6 Overview of the thesis

There is a need to develop environments for end-users corresponding to their skills to model

scenarios on driving simulators. Almost all the driving simulators reviewed in this document

are not developed with in mind the profile of the primary users of the driving simulators.

So in this thesis a user-centered design approach is presented which takes into account the

requirements and skills of the end-users.

In the second chapter, a review of existing driving simulators is presented. The existing sce-

nario modeling languages, scenario modeling systems and the approach they follow to model

scenario is discussed in detail. This chapter also presents the different end-user development

paradigms which have been proposed. Then there is some literature review about Human-

Computer Interaction (HCI) issues and the user-centered design approach. In the end, we

discuss different interoperability frameworks and meta-languages which are developed by

keeping the platform independence in mind.

In chapter 3, a study is presented which was conducted to get to know about the needs and

requirements of the users. As user-centered design approach was used, so users were inter-

viewed before the design phase, and were involved during all the phases of the development

of our proposed solution.

Chapter 4 discusses the new multi-layer multi-user programming solution developed us-

9

Chapter 1. Introduction

ing the user-centered design approach. The user interface for end-users is split into 3 sub-

interfaces corresponding to the skills of different users interacting with the driving simulators.

This chapter also discusses the details of the prototype developed based on the proposed so-

lution. Then the proposed interface is compared with existing driving simulator interfaces.

Chapter 5 discusses the details of all the testing of the proposed solution. The prototype

was first tested with the end-users during a small study, where users gave some feedback at

the early stage of the design. After this preliminary study the solution was improved and a

new solution was developed and then was tested by the users in the real environment where

users developed a real experiment. The user’s activity was logged and their performance was

measured using subjective as well as objective data. The users rated the solution using stan-

dardized usability questionnaires and questionnaires specific to the tasks they performed.

Users were interviewed in detail as well to get detailed information about their subjective ex-

perience with the developed solution. In order to make our solution interoperable, and to be

executed on most of the driving simulation platforms, an interoperability framework and a

scenario-meta language is proposed. Chapter 6 discusses the interoperability framework and

the schema of scenario-meta language in detail, which is followed by the implementation of

a tool to execute the scenario on SCANeR software using the developed interface. Finally, the

conclusion of the thesis is presented, followed by the perspective and the contribution of this

research work.

10

Chapter 2

State of the art

This chapter discusses previous work regarding the end-user development and scenario au-

thoring in driving simulators. The chapter is divided into 4 sections. Section 1 discusses the

scenario authoring in driving simulators, section 2 discusses the different scenario languages

in the domain of driving simulators section 3 is a literature review on end-user programming

systems, and the last section discusses the issues encountered while dealing with user inter-

faces. The chapter overall focuses on the scenario modeling in the domain of driving simula-

tor.

2.1 Scenario authoring in driving simulators

In the past decades, significant work has been done in order to make scenario modeling

realistic for end-users. STI SIM Simulator developed by System Technology has done con-

siderable work on scenario authoring on driving simulators. Allen et al. [2003, 2004] have

identified the steps which are independent in a scenario modeling tool during the process of

modeling the scenarios. They have also provided a procedural method to model scenarios.

These steps include:

1. Identification of goals and objectives

2. Scenario definition (Sequence length of the scenario).

3. Preparation of models for specific components (vehicles, pedestrian, traffic control de-

vices, etc.).

4. Scenario Programming (Program the scenarios using a modeling language).

5. Testing upgrading and validation of the whole scenario.

11

Chapter 2. State of the art

These authors use a text-based Scenario Definition Language (SDL) [Allen et al., 2001]. The

scenario events are described in a framework which is tied to the driver’s progress through the

simulation. These events cover scenario layout, road network configuration, placement of

objects and critical events. It has a Graphical user Interface (GUI) for the configuration man-

agement system of the driving simulator which includes specifying visual display system, res-

olution, aspect ratio, field of view, adjust lighting and atmospheric conditions [Rosenthal et al.,

2003]. STI SIM Drive provides a mechanism to use the set of events as a reusable component

called "Previously Defined Events" (PDE), and these PDE’s can be specified of the traveling

path of the driver.

This approach has advantages as well as limitations. By organizing everything with respect

to the driver’s path, it ensures the consistency from one run to another, and the roadway is

built on the fly in order to match the specification of the scenario script. The limitation of

this approach is topographical. If a driver takes a 90 degree turn they will be expecting to

be on the road they crossed. Since a globally consistent road network is not constructed,

the driver will never cross a road previously crossed. So this approach is not suitable for the

experiments where map learning is important. An example of STI SIM SDL and PDE is shown

in the Figure 2.1 and Figure 2.2 respectively.

Figure 2.1: SDL in STI SIM.

The NADS (National Advance Driving simulator) developed by the National Highway traffic

Safety Administration is located at the University of Iowa, USA. It uses a tool called ISAT (In-

teractive Scenario Authoring Tool) for scenario authoring and the Tile Mosaic Tool (TMT)

for the creation of road networks Papelis et al. [2001]. ISAT is a front-end tool which uses

12

2.1. Scenario authoring in driving simulators

Figure 2.2: STIM SIM PDE.

a Scenario Definition and Control (SDC) software component. The SDC uses different sce-

nario elements during the scenario modeling process. It has a Scenario Object Library (SOL)

which includes deterministic Dynamic objects (objects with no autonomous behaviour), au-

tonomous dynamic objects (objects with autonomous behaviors), traffic manager, traffic

light manager, triggers and actions. An example of the ISAT is shown in Figure 2.3.

Besides the development of scenario modeling tools, some work has been done on the per-

formance and efficiency of using scenario development approaches and tools, which affect

the efficiency of using these tools in terms of acquiring good data. Papelis et al. [2005] has

addressed some issues which affect the performance measures of the study as an outcome.

Lot of efforts are being made in order to address issues to reuse or replicate the scenarios,

which includes software-engineering, visual database, frame rate audio/vibration feedback,

simulator disorientation and scenario implementation details. Unfortunately performance

measures are not addressed. The point is to assess how different driving simulators render

the cues necessary to implement a virtual environment.

Simulator fidelity has an effect on performance measures, which are quite sensitive to the hy-

pothesis under study by the researcher who designed the experiment. Performance measures

vary with the experiment and the hypothesis: for instance, in the study of drowsiness/drug

impairment, during a car following event, the performance measures may be the velocity

variance, the lane deviation, or lane deviation variance, etc.

Researchers usually replicate and re-use scenario events in order to compare the result dur-

ing the studies. Ahmad [2005] has highlighted this issue as time-consuming and error prone.

They have proposed a technique to solve this problem: they propose to specify the general

topology of the scenario event, and to add some logical anchor points (position), to add sce-

nario elements relative to these anchor points and finally apply the general specified event

to the real environment by mapping the anchor points.

13

Chapter 2. State of the art

Figure 2.3: ISAT Scene Authoring GUI [Kearney and Timofey F, 2011].

2.2 Scenario modeling approaches

This section briefly discusses different flavors of interaction environments for scenario mod-

eling approaches and the methodology used by the driving simulators for modeling scenar-

ios. It briefly discusses the User Interface (UI) of some of these simulators, i.e. how to place

scenario objects in the scenario, and how to manipulate the scenario events.

The SCANeR software [Reymond et al., 2000], developed by OKTAL SA and Renault, has a

GUI for implementing the experimental protocols and to model the scenarios. The scenario

objects (vehicles, pedestrians, traffic signals) are placed on the map using the mouse. The

ambient traffic is generated by placing the "sources" on the map or by placing individual

vehicle in the map. To build critical situations, it uses a GUI for defining condition-action

pairs (If-else statements) (See Figure 2.4, top.).

ARCHISIM [Espie et al., 1994] developed by IFSTTAR has a textual interface to define an ex-

perimental protocol and to model scenarios. The scenario objects are specified in the text

files by specifying the location on the road. Ambient traffic is created manually using text

files. To construct critical situations, it uses a simple text editor like notepad. In the notepad,

the user can specify the condition-action pairs for different events (See Figure 2.4, bottom.).

STISIM, as explained above, has a textual Interface for scenario modeling process. SDL (Sce-

nario Definition Language) is a scripting language developed to define the scenario events

[Park et al., 2011]. The scenario objects are placed in the scenario by the route travelled by

the driver using the following statement of SDL:

on distance, Event, Appear Distance, Parameter1, parameter2... Parameter (n)

14

2.2. Scenario modeling approaches

Figure 2.4: SCANeR (top) and ARCHISIM (bottom) GUI for scenario authoring.

Where "on distance" is the distance travelled by the driver during the simulation. "Event"

refers to the specific object (buildings, vehicle, pedestrian, etc.). "Appear Distance" is the lon-

gitudinal distance relative to "On Distance", when the event will appear in the scene. Ambi-

ent traffic is generated by pre-defined events in the text file using textual statement described

above. (See Figure 2.1).

Three types of interfaces to model scenarios on driving simulators have been presented: plac-

ing objects directly on a map as in SCANeR, specifying the position of the objects using textual

statements as in ARCHISIM, and using the route traveled by the driver during the simulation

trial.

Sometimes it is required to dynamically generate a script during the simulation. Some driv-

ing simulators provide this functionality, and some use other means to fulfill this require-

ment. Wassink et al. [2005] have proposed a movie-set metaphor to generate scenarios dy-

15

Chapter 2. State of the art

namically based on Green Dino Virtual Realities’ Dutch Driving Simulator. They have pro-

posed the movie-set as a driving simulator, where actors (vehicles, pedestrians etc) come at

the scene and play a certain set of roles, which are assigned to them in the script. They have

also emphasized on the user’s problem of to model scenarios using a scripting language. A

tile-based approach is also used to specify scene and scenario elements in driving simulators.

The whole scene is divided into different tiles, which are configured, assembled and loaded

into the driving simulator during the experimental trial. A ’Tile’ is a section of the route which

contains elements such as roads, traffic signals, buildings, trees and scenario objects. These

tiles are then grouped together and loaded using an interface or by specifying the sequence of

tiles. The scenario events are then created on the map. In some systems, tiles are static and

may not be altered or moved during the experiment run [Papelis et al., 2003, Krueger et al.,

2005], while there are some systems in which tiles as well as data on the tiles (scene objects,

scenario objects) can be altered dynamically during the experiment run. This is the case

with SimCreator (SimVista) [Romano, 2003] where tiles are assembled dynamically with the

scenario data. They use sensors and markers as triggering objects, and traffic maneuvers

objects are placed to perform different scenario operations.

Many scenario authoring tools use a tile-based approach for modeling scenarios have been

proposed. It is the case with the "Tile Manager Interface" Software, which uses XML to define

scenarios in the tiles [Suresh and Mourant, 2005], "SILAB", which claims to be a task-oriented

simulation where the database is dynamically linked depending on the task the driver is cur-

rently performing on the driving simulator [Krueger et al., 2005]. Another similar approach

is used at the Federal Highway Administration (FHWA) in their Event Driven Dynamic Inter-

active Experiments (EDDIE) scenario control software. There are some shortcomings in the

tile-based approach: for instance, there is a restricted visibility for the drivers, and specifying

traffic density especially at the edges of the tiles can be challenging. An example of scene

authoring using tile-based approach for SimVista is shown in the Figure 2.5.

To sum up, almost all the scenario modeling approaches for driving simulators use condition-

action approaches to specify the events and maneuvers encountered by the drivers during

the simulation. These tools and approaches have not considered how end-users (e.g. re-

searchers) interact with these tools or how these tools assist them, in such a way that they

can specify the scenarios easily and in an intuitive manner.

2.3 Scenario authoring language

Scenario authoring languages determine and manipulate objects (Vehicles for example) and

their behavior in order to achieve realism during the driving experience on the driving simu-

lators. Kearney et al. [1999] have highlighted issues in the design and requirement for devel-

oping scenario languages for driving simulation. The scenario authoring languages should

be able to address the following operations:

16

2.3. Scenario authoring language

Figure 2.5: Assembling scene from tiles in Simvista [Kearney and Timofey F, 2011].

• Event management: How events are managed during the scenario, based on a contin-

uous monitoring or by sensor on the events.

• Abstraction: To encapsulate the scenarios into modules which can be later reused dur-

ing the same scenario or for other scenarios using different parameters.

• Semantics for scenario invocation: How different scenarios will be invoked during the

scenario execution.

• Scheduling the scenarios: The order of the scenario events is often very critical, so one

should be able to schedule the scenarios based on temporal and spatial relationships

between the scenario events.

Based on these requirements and discussions, HPTS (Hierarchical Parallel transition Sys-

tems) and HCSM (Hierarchical Concurrent State Machines) [Cremer et al., 1995] have been

designed at IRISA, Rennes and at IOWA state University, USA respectively.

Leitao et al. [1999] have developed a scripting language to control the ambient traffic in sce-

narios on driving simulators. The language is based on the Grafcet or Sequential functional

charts (English version of Grafcet). Grafcet is a graphical language which is commonly used

in industrial computing for programming the controllers [David, 1995]. The common ele-

ments of Grafcet are Steps (actions), transitions (based on conditions), and the connection

(between different steps).

17

Chapter 2. State of the art

Devillers and Donikian [2003] developed a generic scenario language to author virtual worlds.

The proposed language uses state machine (FSM) to specify the instructions. In the state ma-

chine approach, we have states and transitions. A transition from one state to another de-

pends on the conditions or actions performed on the states. It discusses the grammar for the

scenarios language fulfilling the requirements for scenario language, i.e. actor management,

scheduling and abstractions. The use of state machines and transition systems can be used

in an efficient way for authoring the scenarios but these states and transitions are made at

low-level, which makes them difficult and complicate to specify the scenarios at high-level.

Wolffelaar et al. [1999] has proposed a NSL (Network Specification Language) and a SSL (Sce-

nario Specification Language). The network specification language is used to define the

scene of the scenario, for example the road network profile and the objects associated with

the network. Like the condition actions features of all the languages described above, they

also use the same architecture, but besides this condition action paradigm, they use the fea-

ture of high-level programming languages such as variables, functions.

Gajananan et al. [2011] have proposed a Scenario Markup Language (SML) to author scenar-

ios in the domain of driving simulation. As the name specifies, it is a markup language based

on XML and developed for multi-user driving simulations where multiple drivers are involved

during one simulation trial. SML also claims to be at high-level. But the structure of this

language is tightly bound to their simulation engine OpenenergySim [Nakasone et al., 2011].

The scenarios specified using SML are at high-level, but they use a specific structure which

can only be executed on their specific simulation platform, and cannot be used on other plat-

forms developed around the globe. So, one of the main objectives of our work is to develop

a high-level scenario specification language which could be executed on most of the driving

simulation platforms.

So far, not enough work has been done to develop a framework or a specification language

which could be used on different driving simulation platforms. Some work has been done

however in defining military scenarios for the purpose of interoperability. The OneSAF Objec-

tive System (OOS) program has created an XML-based mechanism for specifying scenarios:

the Military Scenario Definition Language (MSDL) [Franceschini et al., 2004]. It is an open

specification and is designed to allow the decoupling of planning and execution systems to

enable a broad range of interoperability and reuse during the simulation. MSDL has four

important characteristics [Wittman and Abbott, 2006]:

• Separation of code from data. MSDL contains all the data necessary to define the initial

condition of a military scenario.

• Using Industry scenario for data format and content definition. MSDL is defined using

the World-Wide Web Consortium (WC3) extensible Mark-up Language (XML).

• MSDL documents are application-independent and are explained by standardized XML

schemas.

18

2.4. Driving simulators and other domains

• Separation of concerns. MSDL contains information related to military scenario and

does not include any application specific or device specific information.

Like the concept of MSDL, an attempt to create an open source Battle Management Language

(BML) has also been carried out. The BML framework is used to:

• Command and control forces and equipment conducting military operations;

• Provide the situational awareness and a shared common operational picture. It can be

viewed as a digital commander issuing commands to the troops [Hieb et al., 2004].

Military scenarios have a specific context different from the context of driving scenarios, so

the architecture of the development of this specification language does not correspond to-

tally to the driving simulations scenarios. Another purpose of these languages was to be

able to provide an open framework to allow the simulation systems to communicate with

command and control devices from different vendors involved in the military scenarios. The

main idea in MSDL is the decoupling of the planning system and the execution system, which

is related to our problem, in which we are decoupling the experiment building platform from

their respective execution platform.

2.4 Driving simulators and other domains

All the authoring languages discussed above belong to the specific domain of driving sim-

ulation. We call Domain-Specific Languages the language specifically designed for the do-

main of driving simulation. "A domain-specific language (DSL) is a programming language

or executable specification language that offers, through appropriate notations and abstrac-

tions, expressive power focused on, and usually restricted to, a particular problem domain"

[Deursen et al., 2000]. The benefits of DSL over general purpose languages include an in-

creased productivity, conciseness, reuse of domain knowledge and validation at the domain

level. DSLs are used in almost every domain for productivity and efficiency of the systems

developed in these domains for example finance, multimedia technologies, telecommunica-

tion, modeling and simulation, etc. Some well-known examples of DSL are SQL, spreadsheet

and HTML. DSLs are also used in virtual reality systems. Driving simulation is an application

of virtual reality systems and can be regarded in some cases as a serious game. Serious games

are the games whose primary purpose is not entertainment but to educate end-users. As ex-

plained before, driving simulators are also used for the driver’s training, so methodologies

used in the domain of virtual reality systems and serious games can be used in the develop-

ment of driving simulation systems.

But what makes driving simulation different from serious games and other virtual reality sys-

tems is that the primary users of these systems are non-technical users who have to manipu-

late the real-world traffic situations on the driving simulators in order to achieve their study

19

Chapter 2. State of the art

or training objectives. Significant amount of work has been done to ease the process of learn-

ing programming. But in the domain of driving simulation, the purpose of researchers is

not to learn the scenario languages but to use these languages to develop their experimental

protocol.

2.4.1 End-user programming Systems

In this section, we discuss different end-user programming approaches and techniques which

have been proposed before. A significant amount of work has been done on end-user pro-

gramming.

Ko et al. [2011] has conducted a literature review for end-user software engineering from the

prospect of software engineering. They have analyzed the different phases of software engi-

neering with a comparison to end-user development, from the requirement analysis to the

design, debugging and testing phases of development. Paterno [2013] has also conducted

a detailed and an interesting survey on end-user development with the prospect of empow-

ering the end-user to develop applications. In contrast to Andrew’s survey who addressed

only desktop applications, Parterno also conducted the survey for mobile and web appli-

cations. Myers et al. [2006] have given an overview of the research being conducted in the

domain of end-user programming systems. Many programming paradigms have been pro-

posed for end-users in different domains, to make the process of programming easier for

the end-users (Cypher and Smith 1995). One of the famous paradigms in end-user program-

ming is Programming By Demonstration (PBD) or sometimes called programming by exam-

ple. In PBD, end-users develop their application by carrying out the steps as an example. The

programming system learns what the user is actually doing, then perform these steps auto-

matically. So the end-user actually demonstrates an example by executing the sequence of

actions, and the systems infers a general application supporting the desired behavior. The

earlier work on PBD was performed by Myers [1986], which was further extended by [Cypher,

1991, Cypher and Smith, 1995], who have used it for the simulation tool Eager for hyper card

environments. Eager monitors the user-interaction history of the events, and detects the

looping pattern. PBD is an easy approach to use, but generalizing the behaviour from a spe-

cific one is a challenging task for end-users, and they are not very expressive to build complex

applications. Programming By Analogy (PBA) is a programming paradigm in which a prob-

lem is solved by using the concepts and techniques used to solve similar problems in the

same or in different domains. Using analogies ease the process of understanding a problem,

and can help the learners to understand the problems by linking the abstract concepts with

specific situations [Anderson and Thompson, 1989].

Different notions regarding PBA have been proposed in the past [Dershowitz, 1986, Schmid et al.,

1998, Dunican, 2002]. Repenning and Perrone [2000] have proposed an alternate version of

PBA called programming by analogous examples. It is the combination of programming by

example and programming by analogy. In this approach, the idea of programming by ex-

20

2.4. Driving simulators and other domains

ample is preserved while increasing the reusability of the program by combining it with pro-

gramming by analogy. But PBA is not free from challenges; one of the issues is to deal with

the exceptions to one domain, which cannot be used in others. A similar to PBA is program-

ming using metaphor. The difference between programming using metaphor and PBA is

that PBA uses an abstract concept to solve a problem at a specific level, while programming

using metaphor is a technique in which familiar situations are used during the process of

programming. Programming using metaphor has been used in different systems. For exam-

ple, Logo programming environment [Papert, 1980] was the pioneer to use the programming

using metaphor. It uses the turtle physical movements as a metaphor to manipulate the pro-

gramming activities as turtle graphics. Another systems called HANDS (Human-centered

advances for Novice development of software) was developed in the framework of a natu-

ral programming project [Myers et al., 2004]. It is an event-based system featuring a con-

crete model for computation based on concepts which are quite known to non-programmers

[Pane, 2002]. In HANDS, all the programming activities are responded by a character sitting

on a table like people sit on the table while playing cards. The character reacts to the events

and manipulates different cards that contain the data for the program. Natural programming

is a programming through a language which is close to the way people who do not have pro-

gramming experience would expect.

Another approach which has been widely used in many EUD systems is visual programming

for example (LabView, Matlab Simulink, Prograph etc.). One of the goal of End-user devel-

opment is to reach closeness of mapping as Green and Petre [1996] stated: "The close the

programming world is to the problem world, the easier the problem-solving ought to be.

Conventional textual languages are a long way from that goal." Even graphical languages

often fail to furnish immediately understandable representation for the developers. Visual

programming have been able to achieve this closeness of mapping and also helped to over-

come the syntax problems, but they still have some weak points. As control flow is always a

problem in visual languages, graphic representation of the programs are usually not abstract

enough [Myers, 1986]. Some interesting surveys have already been conducted on visual pro-

gramming [Glinert, 1990, Boshernitsan and Downes, 2004].

The main goal of End-user development is to empower the end-user so that they can develop

the systems by themselves adapt it easily. According to Lieberman et al. [2006], from the user-

centered design perspective, end-user activities can be categorized as belonging to one of two

different types.

Parametrization or customization

These activities involve the change of behaviour of a programming entity by end-users, by

customizing this entity. Or they can choose among different alternate behaviour available in

the system. In adaptive systems, this customization happens automatically using the user

activity on those systems. For example one may configure the email client by customizing it

according to the user’s choice. In programming by customization, the programming entity

21

Chapter 2. State of the art

is a kind of template which can be customized according to the end-user requirements. But

they are not very expressive and it can be difficult to program the complex entities by just

using customization.

Program creation and modification and reuse

These activities involve modifying the existing computational entities to modify the existing

computing artifact or developing it from scratch. These computational artifacts can also be

reused by modifying them, and used for the current programming task. The modification

and reuse can be at a conceptual level, at a design level or at low-level.

Programmorphosis [Ioannidou, 2003] is an end-user programming approach which enables

end-user programmers (novice) to define the behaviour of the interacting agents in a high-

level abstract language. Behaviour templates are used to structure domain concepts. It uses

modification and customization in the process of programming and replaces high-level spec-

ification with low-level representation in the program. By definition, there are two transfor-

mations in programmorphosis:

1. When the programming process is transformed from a synthesis task to a customiza-

tion and modification task;

2. When the program itself is transformed from the high-level to low-level language spec-

ifications.

The main idea is the representation of the knowledge base in templates which can be cus-

tomized by the users during the process of programming. But they are still strict to the rule

specification. Evaluations of this technique have found that the major challenges to the end-

users are the translation of theirs ideas into workable computer programs.

2.5 Dealing with designing interfaces for end-users

Human computer Interaction (HCI) also known as man-machine Interaction (MMI) or Computer-

Human Interaction (CHI) involves the study, planning and design of the interaction between

people and computers. It is often regarded as the intersection of computer science, behavioural

sciences, design and several other fields.

According to [Pane et al., 2002], a programming system is the user interface between the

programmers and the computer. Programming is a notoriously difficult activity, and some

of this difficulty can be attributed to the user interface as opposed to other factors. Pro-

gramming languages have been designed without giving careful attention to the HCI issues

[Newell and Card, 1985]. This is why the purpose of interfaces is to minimize the gap between

end-users and the programming system. The only way to allow the user to use these systems

22

2.5. Dealing with designing interfaces for end-users

effectively is to develop approaches close to the real-world and to minimize the gap between

end-users and programming system by developing user-friendly and intuitive interfaces.

Task modeling technique is used to determine the user activities to reach their goals. Some

work has been done about how to use this effectively to design user interfaces and interac-

tion patterns [Hallvard, 2008]. Understanding and analyzing the user-tasks gives the basis for

designing usable interfaces for end-users [van Welie, 2001].

One popular design methodology of HCI is the User-Centered Design (UCD) approach, in

which user is in the centre of design for any computer system. In this approach users are

involved at the early stage of the design, and they work together with designers and technical

experts involved in the design. [Vredenburg et al., 2002] have conducted a survey of user-

centered design practices and evaluated each practice practically. UCS [2002] has specified

pros and cons of different UCD methods. Some work has been done on using two methods

together in order to evaluate the UCD [Rieman et al., 1995].

The design and evaluation of a user interface prototype is central to the UCD process. Design-

ers usually use a variety of prototyping tools and technologies, ranging from simple art sup-

plies to custom prototyping languages and environments. Studies have been conducted in

order to survey how designer program interactive behavior and how the prototype evaluation

of the design is done in practice [Myers et al., 2008, Carter and Hundhausen, 2010]. There are

tools and techniques which can be used to evaluate the design and model programming tasks

in order to evaluate the user performance on the new interfaces (of programming systems),

for example CogTool [Robin et al., 1991, Bellamy et al., 2010].

23

Chapter 3

End-user requirements

In order to find the solution of the problem as mentioned in the previous chapter, user-

centered design approach is used. As the name suggests this is the design approach where

user is focused during the design process.

3.1 User-Centered Design

As stated by Mao et al. [2005], "User-Centered Design (UCD) is a multidisciplinary design ap-

proach based on the active involvement of users to improve the understanding of user and

task requirement, and the iteration of design and evaluation". As the name UCD suggests,

the outcome of the product using UCD approach is developed by placing the user as the cen-

tre of the design. The international standard ISO 9241-210 (formerly known as ISO-13407)

provides the basis for UCD processes. UCD is a common practice in the development of

software which follows different phases like analysis (user and task analysis), design, proto-

type and evaluation (design iteration), implementation of the design and finally the product

deployment. UCD methods claim to provide an end-product, which satisfies the users and

enables them to achieve their goal while taking their profile into account. However many

claims have been found in the literature about the UCD methods to be impractical and in-

efficient for different reasons [Gulliksen et al., 1999, Mao et al., 2005]. But many developers

don’t use basic usability principles, because they find them very expensive, time-consuming

and intimidating in their complexity [Bellotti, 1988, Nielsen, 1994].

There are many UCD methods (e.g. user analysis, prototyping, heuristic evaluation, cog-

nitive walkthroughs, etc) which are practiced by the Usability practitioners. Many surveys

[Vredenburg et al., 2002, Mao et al., 2005] have been conducted to find out which UCD meth-

ods are being practiced in the industry, or which methods and measures are found to be

effective in the UCD.

Though recent scenario modelling systems are powerful enough to manipulate almost all

25

Chapter 3. End-user requirements

kind of traffic maneuvers and situations, they do not take into account the profile of the end-

users (researchers), who are the primary users of the driving simulators. Also, there is no such

system, which is being designed by considering the user as the centre of the design. So we

think that the needs and profile of the end-users of driving simulators should be reflected in

the design of scenario authoring tools for driving simulators. That is why UCD approach has

been used to model scenarios on driving simulator. The next section explains the details.

3.2 User Interviews

We have used Interview technique of the user-centred design practice. Interview technique

has many advantages over other techniques. It is an effective way of gathering the user needs

and requirements by asking open questions, and also to understand the user’s profiles and

the context of their use. So involvement of the users at the start of the designing process was

necessary. The needs of the users’ requirements was explored in 4 different themes, which

includes

1. What are their general problems (Problems that they face when they are operating the

scenario authoring tools).

2. Concept to script translation problem (If they think about a traffic situation in the real

world, and they have to develop this situation using a scripting language).

3. What is an ideal method or approach for them to model scenarios? (With current set of

skills, what are their expectations from the scenario authoring tools, and how can they

account for the skills, which are required to model scenarios).

4. Their ideas and the feedback for the improvement of driving simulator in their use.

3.3 Method

This subsection explains the participants and the method to conduct the interviews of the

end-users.

3.3.1 Participants

19 Driving simulator users (7 females, 12 males) with various backgrounds, profiles and expe-

rience on driving simulator were informally interviewed, as shown in Tables 3.1 and 3.2. All

users except two software engineers had no programming background. Most of the users had

used ARCHISIM or SCANeR software for their work. But users from other driving simulator

were interviewed as well.

26

3.4. Results

Driving Simulator Number of User(s)
ARCHISIM 7
SCANeR 6
ST SIM 2
STI SIM Drive 1
VTEC Driving Simulator 1
Honda Simulator 1
DriS 1

Table 3.1: Driving Simulators.

Users Number of User(s)
Ph.D. Researchers 7
Behavioural Researchers 8
Software Engineer 2
Research Engineer 1
Post. Doctorate 1

Table 3.2: User Profile.

3.3.2 Procedure

Six users were interviewed in person, as they were from IFSTTAR. The rest of the users were

interviewed on phone, except 1 user who was interviewed on Skype. The average duration of

the interviews in person was 40 to 45 minutes, the average duration of telephonic interview

was 50 to 60 minutes, and the Skype interview took 83 minutes. The participants were not

given any incentive to participate in the interviews.

The interview was qualitative, semi-standardized, and open-ended and same questions were

asked to all the users. But based on the user feedback, some other questions were also asked

to them.

The interviews were not recorded, but it was made sure that any relevant details were not

missed by preparing some formats on note-taking sheet.

3.4 Results

These qualitative interviews have provided a very good platform to explore the user needs by

discussing in depth about their experience of modelling scenarios on driving simulators. The

details of the participants programming language experience is shown in Table 3.3.

The expertise level of the users for these programming languages was basic for all languages

except software engineers, one researcher and one research engineer, who had good exper-

27

Chapter 3. End-user requirements

Programming Language Number of User(s)
C++ 3
Visual Basic 3
Matlab Simulink 3
HTML 2
Java 1
Action Script 1
Python 1
No experience 7

Table 3.3: Programming Language Knowledge of the Users.

tise in C++ and Matlab Simulink. The software engineers model scenarios for the behavioural

researchers. 9 of the 19 users do not model scenarios at all, so technical persons or software

engineers model scenarios for them. The remaining 8 users model scenarios with the help

(major or minor) of the software engineers or technical persons in their institutions. Seven

users had no knowledge of programming at all.

As explained above the interview has been categorised into 4 different themes. The subsec-

tions "General problems" and "Concept-to-script translation problems" describe the users

problems, while the subsections "Ideal approach to model scenarios" and "Improvement of

the driving Simulator in use" describe the users ideas and feedback for the improvement of

the driving simulators.

In the remaining section, there is a discussion about the users’ problems, their needs and re-

quirements which is identified by users. The subsections "General problems" and "Concept

to script translation problems" describe the users problems, while the subsections "Ideal ap-

proach to model scenarios" and "Improvement of the driving Simulator in use" describe the

users ideas and feedback for the improvement of the driving simulators. The problems and

the ideas mentioned below are mentioned by most of the users, while some problems are

platform specific. Our focus is to identify the problems in general, which the user faces due

to lack of programming skills.

3.4.1 General problems

1. Finding/Selecting the relevant functions in order to perform a specific task. It is diffi-

cult for the users to find the relevant low-level function/procedure to perform a certain

task, and also to find out that which functions can fulfill their task.

2. Sometimes, it is difficult to test the rules before running the simulation. If a situation

has to occur after 25 minute of simulation time, they can only test the situation after 25

minutes of simulation and not before.

3. Debugging the Script in order to find the error is quite difficult and time consuming. It

28

3.4. Results

is difficult for the end-users to debug a scenario, to fix a scenario which is not working;

it is even more difficult, when the script is long and complex.

4. Syntax of the scenario modelling language is difficult for the users to follow. Usually

all the scenario modelling languages are at low-level, and require programming skills,

knowledge and experience. 5. The users have to control and program the scenarios

by doing programming at a low level, which is quite difficult for them. For example,

the situations which require a precise tuning, for example, when a car approaches an

intersection and another car have to cross the vehicle.

5. A scenario is composed of different testing conditions. When the script is long and

complex, it is difficult to go back and forth between those conditions (mainly the IF-

ELSE condition).

6. Scenario modeling authoring process is not transparent to the end-users, as they have

to develop their scenarios using the terrain. They can’t figure out that when and how a

situation will happen unless they run the simulation.

7. In most cases, the scenarios are developed for researchers by scenario developers. Some-

times it is difficult for scenario developers to interpret the situations wanted by the

researchers. For example, a specific maneuver requires that, a car should overtake an-

other car suddenly. It is difficult to interpret the word suddenly. As for scenario devel-

oper, suddenly is a parameter that has to be set.

3.4.2 Concept-to-script translation problems

The "Concept to script" problem refers to the problems that users face, when they want to

manipulate the real-world situation on driving simulator using the programming language

of driving simulator. According to the users, this is a difficult step for them as they can’t

implement the traffic situation, the way they actually think about the situation they think.

The main problems identified by users are as below.

1. Controlling the ambient traffic using the script is very difficult for the users. The ambi-

ent traffic is used to create some level of realism in the experiment. Each vehicle has to

be created individually, which is a time taking and cumbersome task. In order to have

realism and reproducibility, it has to be controlled by script, which is quite difficult for

unskilled end-users.

2. Tuning the traffic situations is uneasy. In order to make the situation happen at the

right place and right time, different variables have to be tuned. A change in one vari-

able may impact the other variable, which is difficult to interpret for the user in most

cases, if they are not aware of the internal working of the function (API) used to model

a specific situation. Also end-users usually can’t figure out which variable to control

for a specific situation. Consider a situation that as a participant vehicle approaches

29

Chapter 3. End-user requirements

an intersection, a car has to cross the intersection violating the traffic rule, and crosses

the road making the participant to either stop or encounter an intersection accident.

For such situation, we cannot control the participant’s speed or position, but we can

control the speed or the position of the vehicle crossing the intersection.

3. Selection of triggers (speed, distance etc.) in order to tune the events. Sometimes it is

confusing for the end-users which trigger (position of a vehicle, simulation time) to use

for the situation.

4. Reproducibility of the situations needs extensive scripting, and is difficult to manage.

For realism and reproducibility of the scenarios, low-level scripting is required, which

is a difficult task for the end-users.

3.4.3 Ideal approach to model scenarios

After the users described their problems, they were asked about their ideal approach to model

scenarios, and how their problems can be solved. These ideas are described as below:

1. Drag-and-Drop a situation for a scenario. Ten users out of 19 proposed the notion of

Dragging and dropping the scenario situations. They think that, this way, they would

just have to specify the specific parameter for a specific situation, and not the complete

code.

2. High-level scripts for scenarios. This idea is the same as 1, but when users were told

that, every user has his own requirements, so it will be difficult to manage long list of

libraries for dragging and dropping, then they specified that, in order to use High-Level

script for complex scenarios, there should be a functionality of editing the high-level

script at low-level.

3. Interaction with the map. The users want to interact with the world map while mod-

elling the scenarios.

4. There should be an image/preview of the work that the user is doing. They want to

have the overview of their work.

5. It will be more comfortable for the users, if they could click on autonomous vehicle and

set their rules and behaviours in the scenario.

6. It would be easier to specify and follow the tasks/events based on a time-line or distance-

line of the experiment protocol.

3.4.4 Improvement of the driving Simulator in use

Users were asked how the driving simulator software in their use can be improved to model

scenarios. Users’ responses to these questions are described below.

30

3.5. Discussion and conclusion

1. Searching of the relevant functions should be made easier. A good search facility for

the functions should be provided which would help user to find the relevant function

for their task.

2. Interface of the scenario modelling software. All users have used textual interface for

scenario modelling, except the users of SCANeR software, which has Graphical User

Interface (GUI). So most of the users who are using textual user interface would prefer

using a GUI for the scenario modelling.

3. There should be a very user-friendly documentation for how to use the relevant func-

tions, with some examples.

4. There should be only one interface in order to configure different files on the driving

simulators. One of to configure different files in some driving simulators in order to

run a simulation. For example in ARCHISIM and STISIM.

3.5 Discussion and conclusion

The user problems and ideas given above have a minimum frequency of 3 occurrences among

all the participants in the experiment. During the interviews, users were also asked about

their general experience about driving simulators and what is the formal/informal process

they follow to use a driving simulator for their experiment. Users were also asked about the

different steps they follow to design an experimental protocol, which is explained in the next

chapter.

Problems faced by the users and also their expectations from the driving simulators to model

scenarios have been discussed. For some problems the solutions are already proposed by the

end users while proposing the ideas for driving simulators. The user’s problems matching

with user ideas are shown in the Table 4.

As behavioral researchers are the primary users of the driving simulators, their requirements

and ideas should be reflected in the design of authoring tools for driving simulators. Also the

interaction environment of driving simulators should account for the skills they lack and fill

the gap between the user skills and the goals the end-user wants to achieve using a driving

simulator.

31

Chapter 3. End-user requirements

Ideas/feedback Description Problems
addressed

Drag & Drop If there are some high-level packages of situations and 3, 4, 5, 8
Situation for a maneuvers e.g. traffic jam. Traffic jam should be created 9 and 10.
scenario. based on drag and drop, providing number of vehicles.

Or some kind of template for specific situations
to be used just on the few clicks.

High-level scripts If software takes most of the scripting responsibility 3, 4, 5, 8
and users just have to click on few things to generate the 9 and 10.
script. This script should be editable at the low-level,
if users have skills to develop the script by themselves.

Interaction It would be quite useful if we interact 7
with map with map while modeling the scenarios.
Geographical user A GUI would be useful in order to model the scenarios. 7
Interface (GUI)
List of variables A GUI should provide a list of variables 7
in GUI to be studied that users could select.
Preview or Image There should be an image or preview of the work, 7
of what users which users are trying to do Which means
are doing they should be able to see, what they are trying to do.

Table 3.4: Solution to problem mapping.

32

Chapter 4

Proposed Multi-Layer programming
approach

This chapter discusses a new approach to model scenarios on driving simulator. First the key

challenges are discussed, then the different users who interact with the driving simulators

will be considered, which is followed by a discussion on the steps followed by the researchers,

and finally our new approach is given in details.

As UCD approach has been used to find the solution of the problem, so users are involved

at the start of the design and their profile is studied by conducting interviews and their re-

quirements need and preferences are identified as explained in Chapter 3. The UCD process

enables the users to get involved at the early stage of the design, which makes designers un-

derstand what end-users expect from the system and how they perceive their work, and also

enables the designers to understand the user requirements and needs in the context of their

work as well as their preference to interact with the systems in order to achieve their goal.

4.1 Key challenges for researchers

As discussed before, there are many key challenges which makes scenario modeling process

a difficult task for the end-users.

1. It is difficult for the researchers in most of the cases to master the skills to develop

scenarios. So they want to have a tool or approach which can fill the gap between their

skills and the objectives they want to achieve using the driving simulators.

2. Every driving simulator language has its own syntax and method, so if researchers have

to do collaborative work in other laboratories or at other jobs, they have to learn new

tools.

33

Chapter 4. Proposed Multi-Layer programming approach

3. It is a time-consuming task for researcher because of their dependency on technical

persons. It is also a time-consuming task for technical people, because they need to

have frequent meetings with the researcher in order to finalize and validate the sce-

nario before the experiment.

4. Sometimes, it is difficult to interpret the situation between researchers and technical

persons.

4.1.1 Technical challenges

Besides key challenges for researchers, there are some technical challenges that need to be

considered while proposing a solution for end users.

1. First challenge that arises is, whether the proposed solution will be just another ap-

proach like many other approaches and methods offered by the scenario authoring

tools of the other driving simulators. And will the existing system need an overhaul.

2. How different driving simulator users can reap the benefits from the proposed approach,

as scenario authoring environment of all simulators is tightly bound to the execution

platforms.

3. Transformation of researcher experimental development process into meaningful in-

terface that reflects their way of thinking to develop an experiment.

4. There is no standard method of reusing the scenarios which are developed elsewhere

even on the same driving simulators. As the probability of using the same scenarios

with minimal changes is high, so if these scenarios can be reused by researchers with-

out developing them from scratch, it will save time for both researchers and technical

persons.

4.2 User roles

Three different kinds of users have been identified, who interact with the driving simulators

based on their skills and roles assigned to them.

1. Researchers: Researchers design experiments and conduct studies in order to meet

their research objectives. Researchers, in most of the cases are not equipped with tech-

nical and programming skills required to implement an experimental protocol.

2. Technical persons: Technical persons implement experiment for researchers. They

have formal training for programming and develop scenarios for the researchers, in

case researchers cannot implement the experiment by themselves.

34

4.3. Experimental Protocol development Steps

3. Operators: Operators can be a researchers or technical persons depending on the orga-

nization culture. In small organizations, the researcher has to operate the experiment

and collect the data, while in some big organization, they have specific people to con-

duct an experiment but under the instruction of the researcher.

The roles explained above may or may not be three different persons depending on the or-

ganization culture. But in most organization, researchers adopt the role of operator as well.

And in some cases, if the researchers have technical skills, then they design the experiments,

develop them, and then also adopt the role of an operator. It means, one person adopts more

than one role, but theoretically, there are 3 different roles.

4.3 Experimental Protocol development Steps

From the user-survey, different steps have been identified that are usually followed while

designing an experimental protocol. These steps are given below in the order of occurrence.

1. Terrain selection (Users design the terrain for their experiment i.e. Highway, city, sub-

urbs, number of lanes on the road, etc)

2. Configure participant/subject vehicle. Participant or subject vehicle is the cockpit ve-

hicle, which is driven by the subject during the experiment. At this step the users think

about initial position, ADAS (if it is the requirement of the project), maximum speed,

and other parameters.

3. Specifying the ambient traffic (At this step, end-users think about the ambient traffic

around the participant vehicle at different positions in the simulation environment.

They think about number of vehicles per hour or traffic density and their speed, itinerary

and behaviour) and traffic signals.

4. Configure the environment (At this step, end-users think about the environment of the

experiment for example in snow, fog, rain or dark, etc.).

5. Construct critical events using scripting. (At this step, end-users design different traf-

fic situations involving different traffic maneuvers during the experimental trial. They

precisely design all the necessary situations for the experiment, for example Traffic Jam,

Pedestrian crossing etc.).

6. Set the dependent variables (At this step, end users think about the dependent vari-

ables, they want to study during their experiment)

7. Experiment execution and data collection (At this step, end users conduct the experi-

ment and collect the data recorded during the experiment trial).

35

Chapter 4. Proposed Multi-Layer programming approach

4.4 Proposed solution

Based on the above-mentioned challenges, the user’s roles and the procedure to develop an

experimental protocol, a new end-user multi-layer programming solution is proposed in this

thesis.

Traditionally, in order to implement an experimental protocol, a user (technical person or

researcher) uses the same interface for implementing an experiment protocol, regardless of

level of his technical and programming skills. A multi-layer programming approach is pro-

posed. As the name suggests, there will be different layers of programming and researchers

and technical persons will be interacting at different layers corresponding to their skills. The

end-user (researchers) is then empowered by exploiting the typical programming process,

and replaces it with customization and configuration process.

4.4.1 Multi-layer Programming

In our proposed multi-layer programming solution, end-users (researchers) interact with the

higher-layer, which is close to the human language or real world, and the technical persons

interact with the middle layer, which are the Application Programming Interfaces (API’s) or

the high-level functions of the driving simulator software. API is the set of programming

instructions to access software applications. In the case of driving simulators, the API’s can be

for example Change Lane function (Instruction to change the lane of the specific car), Change

Speed function (Instruction to change the speed of the car) etc. Technical persons develop

Templates for the researchers using the API of the driving simulator. Then, there is the lower-

layer, which is a platform specific layer and close to the machine language for example (C++,

VBScript and JavaScript etc) depending on the software architecture of the driving simulator.

It is used by driving simulator manufacturer to build the platform for the execution of driving

scenarios. The multi-layer programming architecture is shown in the Figure 4.1. The middle

layer functions (APIs) are usually developed by driving simulators developers (for example

SCANeR by OKTAL), or it can be developed by the Technical persons of the driving simulators,

if the driving simulator is built the research institution (for example ARCHISIM by IFSTTAR).

So in principle, the researcher will interact with the higher-layer, and the technical person

will interact with the middle-layer, and driving simulator manufacturers with the lower-layer.

Traditionally, Researchers and Technical persons interact with the API layer to develop an

experiment, where they have to follow the programming rules and syntax. We add an extra

layer (Higher-layer) for the researcher, where they can develop the experimental protocol by

exploiting the programming primitives. Using this layer, end-users can develop scenarios

using high-level (necessary) information using the graphical programming.

36

4.4. Proposed solution

4.4.2 Empowering the end-users

Although in some driving simulators (for example SCANeR) provide customization of the traf-

fic maneuvers, it is at low-level, and end-users still find it difficult because the APIs are still

at an abstract level and do not correspond to real-world situations. So the end-users are em-

powered by adding an extra "Higher layer" as shown in the Figure 4.1.

Figure 4.1: Multi-layer Programming Architecture.

The role of technical persons is not omitted, but they facilitate end-users (researchers) at

the higher layer. The goal is to minimized the user dependency on the technical persons

and empower them to develop experiments with no or minimal support from the technical

persons.

Besides the empowerment of end-users, it will save time for technical persons as well. As

they don’t have to develop scenarios for each individual, they can develop situations for them,

which will be used by the end-users. It is explained in detail in the rest of the chapter.

4.4.3 Scenario modeling process using Multi-layered approach

As explained above, 3 different kinds of users have been identified who actively interact with

the driving simulators. So scenario modeling activity is divided into 3 sub-interfaces de-

pending on the roles they have to perform while modeling scenarios and the set of skills

they have. The 3 roles are "Technical Person" as "R1" (Good programming/technical skills),

"Researcher" as "R2" (Low or no programming skills), and Operator as "R3" (No technical

skills required). Based on the user roles, we split the scenario modeling activity into 3 sub-

interfaces which are "Template builder", "Experiment Builder" and "Experiment Interface".

The technical persons will interact with the Middle layer of our Multi-layer programming ar-

37

Chapter 4. Proposed Multi-Layer programming approach

chitecture (see Figure 4.1) via "Template Builder" performing role "R1", the researcher will

interact with the higher layer via "Experiment Builder" performing role "R2", and Operator

will also interact with the higher-layer via "Experiment Interface" performing role "R3" The

proposed approach is explained with the help of an example. The example scenario contains

two events.

• Accident Event: A vehicle overtakes the participant’s vehicle by increasing its speed,

changes its lane to the lane of the participant’s vehicle and then brakes.

• Pedestrian crossing event: A pedestrian walks and then crosses the road as the partici-

pant vehicle approaches.

Template Builder

This sub-interface will be used by technical persons performing role R1, and having good pro-

gramming and technical skills. R1 will design the GUI-based templates of the scenario events.

The template builder will let R1 use existing functions offered by the scenario-modeling envi-

ronments of the driving simulator to model scenario events. In our example, at the back-end,

for the template "Accident", the "Template Builder" will let R1 program a vehicle around the

participant vehicle to accelerate, change position, and apply brakes at some distance from

the subject vehicle. For the event "Pedestrian crossing", the "Template Builder" will let R1

program a pedestrian to walk and cross the road as the participant vehicle approaches the

intersection. At the front end of the template, there would be different text fields to specify

the parameters for the events "Accident" and "Pedestrian crossing". These parameters will

be filled by the Researcher (R2) in the "Experiment Builder" sub-interface, if he or she wants

to modify the default values. The templates developed by R1 will be stored in a template li-

brary, so that researchers could access the templates in the "Experiment Builder" interface as

described in Figure 4.2.

Experiment Builder

This sub-interface will be used by researchers/trainers performing role R2 and possibly have

low or no programming skills. R2 will define the whole experiment using a user-friendly and

intuitive GUI which includes specifying the experiment conditions, environment, ambient

traffic, and data to be collected (the usual steps of an experiment). To specify the critical

events or situations to be studied, R2 will access the template library developed by techni-

cal persons in the ’Template Builder’ and will place them in the scenario editor using drag

and drop proceeded by a user-defined trigger. If needed, R2 will fill the parameters of the

template.

In this example, the end-user will specify the position and actors involved in the templates

"Accident" and "Pedestrian crossing" besides the template parameters, if needed. There will

38

4.4. Proposed solution

Figure 4.2: Experiment Building Environment.

always be appropriate default values for all the parameters of the template.

Traditionally, end-users have to configure different files to create an experimental protocol

for example for autonomous vehicles, environment, variables to study, and critical events. In

some tools, they have to configure everything in the same scenario editor or different text

files, which are sometimes difficult to understand, when the experimental design is long and

complex. So for researchers, a wizard-based interface is proposed, in which they can develop

the experimental protocol in the same way they design it.

Experiment Interface

The "Experiment Interface" will be used by the user (researcher or the person who will ex-

ecute the experiment, depending on the organization culture) performing role R3. Using

this sub-interface, R3 will load and execute the scenarios in the driving simulator, developed

with the "Experiment Builder". R3 can change the parameters of the scenario or template (if

needed), during the experiment trial and finally collect the data.

4.4.4 Discussion on user roles

As explained in the previous chapters a scenario consists of different traffic situations (for ex-

ample, overtaking of a car). The traffic situation itself consists of different low-level traffic or

vehicle maneuvers. So the technical persons can develop traffic situations using API, which

39

Chapter 4. Proposed Multi-Layer programming approach

will be used by researchers to develop scenarios as shown in the Figure 4.3.

Figure 4.3: User roles corresponding to scenario levels.

4.4.5 Movie theater metaphor of the approach

The end-users’ roles in the proposed approach can be explained using the theater play metaphor.

Theater play metaphor has been previously used to describe traffic scenarios [Alloyer et al.,

1997, Wassink et al., 2005, 2006, Olstam and Espié, 2007]. According to them, Theater play

can be regarded as a driving simulation scenario. Where actors (vehicles, pedestrians) come

on the stage (road environment) and adopt a role (vehicle type, color, model etc.) to perform

acting according to the script (maneuvers or manipulation of the traffic scenarios). As in

theater plays, the script for the play is written by the writers, which in most of the cases are

technical persons, as script needs to be written in a specific scripting language used by the

driving simulators. So many authors have used theater metaphor to tackle and explain the

problems in the above-mentioned references.

Traditionally, researchers who have no programming skills usually have no active role in writ-

ing the script and assigning the script to the actors involved in any traffic situation. Technical

persons act as the writer for this script and assigning roles to the actors in the play. The tech-

nical persons write this script exclusively for the specific play and researchers, which is not a

very efficient process, as researchers totally depend on the technical persons who write that

script, and this script cannot be used in an efficient way.

In order to make this process efficient for end-users, we specify the roles of researchers and

technical persons. Technical persons will write the script for all the situations acting as a

scriptwriter, as they have the expertise to write the script but they will just write the script

for the situations without specifying the roles of a specific actor who is going to perform that

40

4.5. Prototype Building

script. Role of the researcher is to pick up the specific actor and cast him for the specific role

and assign a script from the already available scripts. It will reduce the total dependency of

the end-users on the technical persons, and will make this process efficient and effective for

the end-users.

4.5 Prototype Building

As discussed in previous chapter, UCD is used. One of the key practices in UCD design is the

development of the prototype of the design and to get the feedback from the end-users at the

early stage of the design.

A prototype based on the proposed approach is developed. This chapter focuses on the Ex-

periment builder sub-interface will be focused, which will be used by researchers. The pro-

totype of the proposed solution is based on the problems identified, user suggestions and

the steps that were identified during the user survey. The prototype is built using "Justin-

Mind Prototyper" [JustinMind, 2013], a tool to develop prototypes of any kind of application.

We briefly explain all the steps which end-users will have to undertake in order to develop

an experimental protocol. These steps correspond to the skills of the end-users. The user is

guided using the Breadcrumb navigation [Nielsen, 2007] during the experiment development

process. The details of all steps are explained as follows.

4.5.1 Step 1: Experiment Description

In this step, end-users provide the name and description of the experiment as shown Figure

4.4.

Figure 4.4: Experiment description (Step 1).

41

Chapter 4. Proposed Multi-Layer programming approach

4.5.2 Step 2: Terrain selection

In this step, end-users select the terrain/map for the experiment from a library as shown

Figure 4.5.

Figure 4.5: Terrain selection (Step 2).

4.5.3 Step 3: Configure subject vehicle

In this step, end-users configure the subject’s vehicle. They specify the vehicle type, model, its

initial position, heading maximum speed, etc. on the road. They can also specify the Itinerary

for the vehicle, if it has to travel on a specific path, and they can also specify the ADAS and

other parameters in the ’Advance’ tab as shown Figure 4.6. There are default values for all the

parameters, so that the user does not need to fix every parameter.

Figure 4.6: Subject Vehicle Configuration (Step 3).

42

4.5. Prototype Building

4.5.4 Step 4: Configure Autonomous Traffic

In order to specify the autonomous traffic, the users can define zones for the traffic according

to the design of the experiment. A Traffic zone has a start and an end position in the terrain.

End-users can specify either the traffic density or the traffic flow in the traffic zone. They can

specify the density or they can provide the custom density value for the traffic. They can also

specify the traffic distribution and traffic’s behaviour distribution in the zone as shown Figure

4.7.

Figure 4.7: Autonomous traffic configuration (Step 4).

4.5.5 Step 5: Configure environment

In this step, end-users specify the environment (light, rain, fog, snow etc). They can also

specify zones for the environment as well as for traffic. A zone has a start and an end position.

One can configure various zone parameters e.g. rain, fog, snow etc, as shown Figure 4.8.

4.5.6 Step 6: Select dependent variables

In this step, end-users can select the dependent variables explicitly, that is, the variables they

want to save in the output file for further analysis, as shown in the Figure 4.9.

4.5.7 Step 7a: Construct critical events and scenarios

This is a critical step for the end-users. In this step, end-users have to manipulate the traffic

situations and vehicle maneuvers, which they want to study during the experimental trials.

End-users drag the template of the traffic situation or the vehicle maneuvers in the scripting

area and configure the parameters of the template. End-users will drag the template on the

map, followed by configuring the condition (trigger) for this template to execute, as shown

43

Chapter 4. Proposed Multi-Layer programming approach

Figure 4.8: Top: Configure environment. Bottom: Weather zone configuration (Step 5).

in the Figure 4.10. The templates that end-users will drag have been built previously by the

Technical persons using the Template Builder.

4.5.8 Step 7b: Specify Template parameters

After the selection of the trigger type and value for the template, end-users specify the param-

eters for the template as shown Figure 4.11.

4.5.9 Step 7c: Overview of the experiment

After the user has developed the experiment, he/she can visualize the whole experiment in a

spatio-temporal representation. The templates which will be triggered based on the position,

can be viewed on the map and also on the distance line. The templates which will be triggered

based on the time, can be viewed on the time line and their description appears in the tool

tip, as shown Figure 4.12.

44

4.5. Prototype Building

Figure 4.9: Variable Selection (Step 6).

Figure 4.10: Trigger for the template (Step 7a).

The support is provided to the end-users during each step using different Interaction tech-

niques in the experiment development process. End-users are kept away from the technical

part of the development process, in which they previously had to write the low-level scripts.

In fact, end-users are empowered by providing them the interface, with which they can de-

velop scenarios with the skills they have and minimal help from the technical persons.

Traditionally users have to configure and set up each autonomous vehicle, whether it is in-

teracting with the subject is vehicle or not. In this way they have to configure many vehicles,

which is quite complex sometimes, when the traffic is dense. And most of the time the user’s

requirement is to specify the traffic at a high level, for example the terminologies they use is

"normal traffic", "dense traffic", or "specific number of vehicles" in the specific area (Zone).

So end-users are enabled to specify the traffic at high level. If the users want a vehicle with

specific characteristics or a vehicle which will be involved in the scenario, they can configure

45

Chapter 4. Proposed Multi-Layer programming approach

Figure 4.11: End-user specifying template parameters (Step 7b).

Figure 4.12: Visualization of the experiment on the Time line and distance line (Step 7c).

it in Step 7, during the construction of critical events.

In order to reduce the complexity, the environment configuration is separated from the sce-

nario specification. The users can change the environment (fog, rain, light, snow) by interact-

ing with the map (Figure 14.7 and 14.8). They can set the environment based on time or the

vehicle position. If needed, users can also configure the environment based on some other

condition using the template for the environment in step 7.

The end-users develop critical events and situations using the drag and drop. They can inter-

act with the map, while specifying the triggers for the templates, which is very important for

them. They said in the user survey that without interacting with the map, the process is not

clear to them. Time/distance representation of the experiment will enable them to have an

overview of the experiment, so that they can anticipate what is going to happen.

46

4.6. Significance of the approach

4.6 Significance of the approach

Programming requires formal training, which end-users usually lack. Thus, the program-

ming environments should account for their skills. Also researchers develop scenarios in

order to achieve their primary goals (conduct an experiment to answer their research ques-

tions). So the scenario authoring approaches should allow them to focus on the domain

problems of their goals instead of limiting them by low-level programming.

Researchers do not have time or motivation to improve their technical skills so they depend

on technical persons, which is a time consuming task for them. Traffic situations are numer-

ous but not unlimited in number, so sometimes technical persons have to develop approxi-

mately the same scenarios; if it were already available to the technical person, he/she would

be able to develop quickly. In the survey, end-users also specified that, it is easier for them

to edit existing scenarios in order to achieve their goals rather than developing them from

scratch.

4.6.1 Overcoming barriers

End-users usually have problems with the programming systems, because they cannot over-

come the barriers to learn the programming system. [Ko et al., 2004] have identified six dif-

ferent barriers that end-users face while learning programming systems. These 6 barriers

are Design Barriers, Selection Barriers, Use Barriers, Coordination Barriers, Understanding

Barriers and Information Barriers.

Design Barriers correspond to how to transform a problem into solution, people can think of

a solution, but it is difficult to transform it using computer artifacts. The challenge to over-

come this problem is to make those solutions usable and customizable corresponding to the

user’s skills. The proposed solution overcomes this barrier by presenting the customizable

templates of the situation at high-level, so users will just have to customize the traffic situa-

tions, rather than spending time on how to create the situations from scratch.

Selection Barriers correspond to selecting the relevant solution for the problem. What func-

tions or API to use in order to solve a problem? Does a specific function can solve the prob-

lem? This is also an issue, the users specified during the user survey. The solution can be

example solutions or code for a specific problem. Existing scenario authoring systems have

low-level APIs, which end-users have to use in order to design traffic situations. In the pro-

posed approach, end-users have to select the situation, which is specified at high-level in the

form of template, and they just have to customize it.

Use Barriers correspond to the usage of specific actions in order to solve the problems. For

example what can be the possible effect of these actions, or how can I perform a specific

action using a particular function. In the proposed solution, end-users don’t have to use low-

level functions; they use templates and customize them according to their requirement. As

47

Chapter 4. Proposed Multi-Layer programming approach

a situation template is composed of different low-level traffic maneuvers, so the end-users

don’t have to come across any use barriers, they can just drag the template and customize it.

Coordination Barriers correspond to how two programming interfaces can be combined to-

gether in order to solve a problem. In driving simulator scenarios, end-users have to use

different API’s in order to develop a specific traffic situation, Sometimes syntax and logical

mistakes are made by the end-users. As scenario authoring languages use rule based method

(if-else conditions), sometimes it is difficult to combine two low-level functions to create a

specific situation. The proposed solution enables the users to customize the already devel-

oped situations. End users will use the same rule-based language, but the conditions of a

specific situation are followed by the complete template for that situation rather than a low-

level function.

Understanding Barriers refer to what causes the specific behavior in response to some spe-

cific action. There can be logical errors performed by the end-users, and when end-users

have to use more than one functions for a situation, then it is difficult for them to under-

stand why it is not behaving as it should. In the proposed solution, if end-users are unable

to achieve the desired output behavior of a traffic situation, they just have to go through the

editing of customization process rather than going through low-level function in order to fix

the problem.

Information Barriers refer to the information about the internal working of the program. In

scenario authoring tools, end-users usually need to follow the internal working of the spe-

cific functions to develop a specific situation. Usually there is no debugging tool to get the

information about the internal function or variables used during the development of a traffic

situation. As the templates will be developed and tested completely by the technical persons,

end-users will not have to go through the internal working of the functions used to develop a

traffic situation, and the documentation for the working of template will be available for the

end-users, using which they can customize the templates according to their requirements.

4.6.2 Support higher-level goals

According to Pane et al. [2001], programming is the process of transformation of high-level

mental plans into plans compatible with computers. The end-user programming systems

should help the end-users for the transformation of these plans, but user’s skills and experi-

ence resist this transformation. So end-user programming systems should minimize these

difficulties by providing high level computational models which are closer to the real world,

which is called "closeness of mapping" by Green [1989]. Even in the programming process,

the end-user starts thinking about the problem at higher-level and start breaking down the

problem into different meaningful subtasks and then goes to low-level computational mod-

els. In the proposed approach, templates are developed at a level closer to the real world,

so that they can customize the templates and configure the situations according to their re-

quirements, as end-users usually don’t want to spend too much time in developing situations

48

4.7. Comparison with the existing system

using low-level programming languages.

4.6.3 Reusability

Technical persons who develop scenarios often use previously developed ones to develop the

new scenarios in order to save time and efficiency as previously tested scenarios have already

been tested. Also end-users who sometimes develop scenarios by themselves said during the

user survey that if they have some scenarios, which can be used after major or minor mod-

ification, then the process is easier as compared to developing from scratch. Unfortunately,

the process of using previous scenarios is not very efficient. In the proposed approach, a tem-

plate library for traffic situation is used to develop scenarios. Using it, end-users will have ac-

cess to all the situation templates which has been developed by technical persons, and they

can just use them to develop their scenarios. Also, if they have good skills for programming

then they can develop their own templates of the situations. It will save time and effort for

both researchers and technical persons. Technical persons will not be overloaded with the

work of developing scenarios for researchers. He just needs to develop the templates, and

researchers can reuse them for their scenarios, or if a specific template does not exist in the

library, then the Technical person can develop one for the end-users.

4.6.4 Is it another new System?

Execution platforms differ from one system to another. In order to model scenarios, they use

different modeling languages with different syntax, and different methods followed by the

scenario authoring tools. The proposed approach is not a new system which will require its

own execution platform. In fact an extra higher layer has been added for researchers, which

enables them to use their existing skills to model scenarios as explained above. So any system

adopting this approach will not need a complete overhaul. This extra layer can be added to

the existing system and researchers can interact with the system using this layer. So it is

a generic system for most of the driving simulators. The detail about the interoperability

framework is explained in Chapter 6.

4.7 Comparison with the existing system

This section explains the comparison of our approach towards modeling scenarios with ex-

isting approaches used in driving simulators. First it addresses the different steps followed by

the researchers to model scenarios; then it compares that how researchers will model the sce-

narios using the proposed approach, or with two systems (SCANeR Studio and ARCHISIM)

which are market leaders in the domain of driving simulation and have been used for the last

two decades.

As explained above the different steps that researchers follow to design an experimental pro-

49

Chapter 4. Proposed Multi-Layer programming approach

tocol include Terrain development, Configuration of a participant vehicle, Configuration of

autonomous traffic, Configuration of the environment, Critical situations, and choosing the

dependent variables to be studied.

In almost all the systems under study, there is no usable interface which guides researchers

during the experimental protocol development process. There is no standard way to develop

the protocol. They are usually designed using the format and the method provided by differ-

ent driving simulators, but not in the way researchers think about designing them.

4.7.1 Interface

In the proposed prototype researchers are guided (using breadcrumb navigation) to develop

their experimental protocol. Now we explain each step with a comparison of to two different

platforms (SCANeR and ARCHISIM).

Step 1 (Terrain selection)

Terrain development addresses the simulated road environment, where the participant drives

the car. The comparison of this step is explained in the Table 4.1.

SCANeR In SCANeR studio, one can develop a terrain using the
’Terrain’ module and select it to develop scenarios.

ARCHISIM In ARCHISIM, one can develop a terrain using the
tool ’WR2’ and select it to develop scenarios.

Proposed Development of the terrain is not considered, as it is
Approach not the focus of the work. Usually every system provides a

tool to develop a terrain. Also we are not developing a new system,
but trying to improve existing tools. The proposed approach is
compatible with the existing ones. So users are just provided with
the interface to select the already developed terrain.

Table 4.1: Terrain Selection comparison.

Step 2 (Configure Participant Vehicle)

The comparison of how different software configure the participant vehicle is explained in

Table 4.2.

50

4.7. Comparison with the existing system

SCANeR Studio In SCANeR studio, one has to select the vehicle
from the list of vehicles using the mouse, and configure lots
of parameter of this vehicle, some of which are not very important
for most of the users then, one has to set this vehicle as the
vehicle driven by the participant as shown in the figure 4.13.
There is an interaction with the map, but one can place the vehicles
on the map using the co-ordinates. It is difficult to specify them
using the distance.

ARCHISIM In ARCHISIM, one has to configure a file with extension "xxx.vp".
The file contains different parameters to configure, such as Initial
position, maximum speed, equipped with ADAS (Advance Driving
Assistance Systems), etc.

Proposed In the proposed approach, one can provide the important and relevant
Approach information to configure a participant vehicle. There is also a GUI to

configure an ADAS. The ADAS and its parameters have been selected
after the extensive literature review and studying the different
experimental protocol developed for the researchers. One can interact
with the map to place the participant’s vehicle on the map, as shown in
figure 4.13.

Table 4.2: Participant vehicle comparison.

51

Chapter 4. Proposed Multi-Layer programming approach

Figure 4.13: Comparison of Participant vehicle configuration.

52

4.7. Comparison with the existing system

Step 3 (Configure Autonomous Traffic)

Configuration of the autonomous traffic is a very tricky step during the development of an

experimental protocol. One has to make a trade-off between the reproducibility and the real-

ism of the autonomous vehicles. Every driving simulator provides a means to configure the

autonomous traffic, by using textual scripting or using GUI, but still it is a complex task, as

one has to configure the behavior of each vehicle. The comparison of traffic configurations

is explained in the Table 4.3 and displayed in Fig. 4.14.

SCANeR Studio In SCANeR studio, one can place each vehicle by dragging
and dropping the vehicles on the map and configure them (Initial and
maximum speed, behavior etc). If one has to generate traffic, then
"Source" (from where vehicles start emitting) and "Sink" (where
vehicles vanish) can be used to generate the traffic by specifying
the traffic flow. But "Sources and "Sinks" can only be created per
lane per direction. This does not fully fulfill the goals of the researchers,
as they work with the traffic density with concepts such as "normal",
"dense", "very dense" traffic. In order to keep or create the desired
traffic in a specific area, scenario developers have to do scripting for
that and also for complex scenarios as shown in the figure 4.14.

ARCHISIM In ARCHISIM, one has to configure textual files to create the autonomous
traffic. One has to configure each vehicle in more than one file with the
relevant information. In ARCHISIM, there are two kinds of vehicles:
"archisim" (intelligent vehicle) and "asservi" (unintelligent vehicles), and they
are configured according to the requirement of the experiment as
shown in the figure 4.14. It is really difficult to manage and control these
vehicles, they are greater in number, and if the scenario is complex, it
becomes a very time-consuming task for the scenario developers.

Proposed Neither ARCHISIM nor SCANeR follow the way researchers usually
Approach design or think about the autonomous traffic in an experiment.

Configuring and managing vehicles at the individual level can be difficult,
complex, time consuming and unintuitive as well. We use a user-centered
approach for the specification of autonomous traffic is used. Researchers
can specify the traffic density they want in a specific road section rather
than specifying each vehicle, and this is how an average researcher thinks.
End-user can specify the traffic flow or the traffic density, which will be
maintained by the system as shown in the figure 4.14. It is more efficient,
as no extensive scripting is involved, which will take less system resources.

Table 4.3: Comparison of configuration of autonomous traffic.

53

Chapter 4. Proposed Multi-Layer programming approach

Figure 4.14: Comparison of Autonomous traffic configuration.

54

4.7. Comparison with the existing system

Step 4 (Configure the Environment)

Configuring the environment includes, setting the default environment for the experiment,

and changing it dynamically during the trials. The comparison of environment configuration

is explained in Table 4.4; the interfaces are displayed in Fig. 4.15.

Figure 4.15: Comparison of environment configuration.

55

Chapter 4. Proposed Multi-Layer programming approach

SCANeR In SCANeR studio, one can set the default environment of the
experiment, and it can be changed using the software during the
simulation trials, or it can be changed using the scripting language
as shown in the Figure 4.15.

ARCHISIM In ARCHISIM, one has to configure the environment in the scenario file
using the rules based language as shown in the Figure 4.15.

Proposed As scripting is already a complicated task for end-users, so in
Approach order to simplify the scenario, dynamic changes of the environment have

been shifted from the scripting step, and one can specify the environment
using the zones as for the traffic. Users can specify at which specific road
section they want to change the environment shown (see Figure 4.15).

Table 4.4: Comparison of configuration of Environment.

Step 5 (Selecting the dependent variables)

The selection of the dependent variables includes the output file, which includes all the vari-

ables which are to be studied by the researchers. The comparison of variable selection is

explained in Table 4.5; the interfaces are displayed in Fig. 4.16.

SCANeR SCANeR studio records all the data of the experiment, and after the
experiment an analyzing tool is used to extract the required data.

ARCHISIM In ARCHISIM, One has to configure a textual file where one can
specify the variables that researchers want to study after the
experiment as shown in Figure 4.16.

Proposed In order to provide the facility of on-the-fly analysis to the
Approach researchers after the experiment, researchers are provided with the

facility to specify the relevant data; the end-user can analyze the
selected data soon after the experiment. Also there is an interface.
In other simulators, one has to select the variables for all the external
devices attached to the driving simulators (e.g. Eye trackers). In the
developed interface, all the data can be configured as shown in the
Figure 4.16.

Table 4.5: Comparison of the process of selecting the dependent variables.

56

4.7. Comparison with the existing system

Figure 4.16: Comparison of selecting the Variables.

57

Chapter 4. Proposed Multi-Layer programming approach

Step 6 (Construction of critical situations)

The complexity of constructing critical events and how different software use different tech-

niques and metaphors in order to create critical events are already explained in the previous

chapters. The comparison of SCANeR and ARCHISIM with our approach is explained in Table

4.6; the interfaces are displayed in Fig. 4.17.

SCANeR SCANeR studio provides a low-level but GUI based interface to
construct critical events. It provides different API’s and functions
to construct different events using a rule-based (if else) approach
and programming techniques like variables as shown in Figure 4.17.
The tool for modeling the scenarios on SCANeR works on Middle layer
of the Multilayer programming architecture as shown in the Figure
4.1. It is difficult to debug the script, if the script is not working
accordingly.

ARCHISIM In ARCHISIM, One has to write the scenarios using a specific syntax in
the textual format which also use programming techniques variables as
shown in Figure 4.17. It also works on the Middle layer of multilayer
programming architecture as shown in Figure 4.2. It is also difficult
and time-consuming to debug the scenarios in ARCHISIM.

Proposed IIt is difficult for end-users to develop scenarios at Middle layer
Approach of the multilayer programming architecture. So a new layer is introduced,

which will help user to exploit the programming primitives, and to focus
only on their goals. As explained before, the end-user will not have to
use traditional rule-based scripting. They will just do the customization
of the templates. Debugging is also easy, as end-users will not have to
take care of the syntax; they will just specify the parameters, so that
the situation could be simulated according to their requirements. There
is also a summary or the bird eye-view of the whole experiment, and
end-users are given the opportunity to interact directly with the terrain
for every step of the experiment development process, as shown in
Figure 4.17.

Table 4.6: Comparison of construction of critical events.

58

4.7. Comparison with the existing system

Figure 4.17: Comparison of constructing the critical events.
59

Chapter 5

User Experience

Evaluation of the system gives an insight on system’s behaviour, when users interact with the

system. As the UCD approach is being followed, so the users were involved during all the

phases.

The main purpose of software prototype is to evaluate the system at the early stage of the

design. So a user evaluation was conducted on the developed prototype. After the user eval-

uation on the prototype, the system was improved based on the user feedback. It was imple-

mented as a fully functional system, and was tested again by the end-users in a controlled

environment.

5.1 Preliminary study

The first iteration of the design was conducted to get a general overview of the proposed

approach. It was a qualitative study, so that more information can be gathered from the end-

users.

5.1.1 Procedure

A total of 9 users participated in the study. These users were behavioral researchers who used

driving simulators for their research but had no technical or programming skills to program

scenario. The approach was explained to the users and then they performed a small exercise

using the prototype. They were observed during the exercise and interviewed later on. In the

exercise, the users created a small scenario, in which first, they had to create a lead vehicle the

driver should follow. After this, there was another event, in which the vehicle being followed

should brake as shown in the Figure 5.1. The end-users had to create a traffic and a weather

zone. The interviews were not recorded. The average time for a user was 30-40 minutes

with 5-7 minutes for explanation, 15-20 minutes for the exercise and 10-20 minutes for the

61

Chapter 5. User Experience

interviews.

5.1.2 Interviews

In the interviews, users were asked about their feedback with respect to the new approach,

division of the scenario into experiment protocol steps, the difficulties during the exercise (i.e.

which step was difficult to comprehend), and they were also asked, whether there anything

that needs to be improved. The questions were not limited to what was specified or prepared.

It was discussed in detail if user raised any issue.

Figure 5.1: Exercise to model scenario.

5.1.3 Results

The structure of the UI and the steps to create the experimental protocol were quite clear

to all the users. They all gave a positive feedback about the approach for creating scenar-

ios/events by using templates. There were some minor problems, for example, 4 users told

that creating a zone for autonomous traffic was not very intuitive and a bit uncomfortable,

which was observed for 2 more users. Three users also suggested that, in order to create

events based on position, they would have preferred to be able to drop the template on the

map. Previously they had to drop the template in the scripting area and later they were able

to change the position of the template by dragging it on the map. Five users attempted to do

that as well.

62

5.2. Main study

5.1.4 Discussion

Users were uncomfortable to create the traffic zone as when they tried to create another zone

they clicked "next" and went to the next step, although they tried to create another zone.

During the interviews, they felt the prototype easy to use and it was intuitive for them to con-

figure the templates, rather than doing the low-level coding, and they were also interacting

with the map, so they were aware of the activity where and what is going to happen. Users

also suggested that the length of the zone can be helpful in creating the experiment. Users

appreciated the guidance by navigation, that there is a separate sub-interface for each step

minimizing the complexity to create the experiment. After the user feedback, the prototype

is being improved and implemented based on the suggestions by the end-users.

5.2 Main study

The first iteration of our design was conducted to get the general overview of the proposed

approach. After the first iteration, a fully functional tool was developed using which partici-

pants were able to develop a complete experiment. The development of the tool included the

improvements as suggested by the first iteration. It was a qualitative study, so that more in-

formation can still be gathered from the end-users. The goal of this study was to evaluate the

approach and interface in detail by the end-users. Three hypotheses were explored during

the experiment.

• H1: The proposed method/tool will empower the user to develop an experimental pro-

tocol.

• H2: End-User will focus on domain problems rather than programming issues

• H3: End-User will need lesser or no help using the proposed method/tool.

5.2.1 Participants’ selection and participation

Eighteen participants of two types were recruited for the study. First, were the ones who had

no programming skills and experience of developing scenarios on driving simulators, and

second those who had experience of developing experiment on driving simulators but no

programming skills or formal training in programming the scenarios. 10 inexperienced and

8 experienced users participated in the experiment. These participants were selected from

IFSTTAR (from different sites of IFSTTAR) and from ADAPTATION project (www.adaptation-

itn.eu). 14 users were using ARCHISIM for their research, 2 users were using SCANeR soft-

ware and rest of the 2 users had used STI Simulator. Out of 14 ARCHISIM uses, there were

8 experienced users and 6 inexperienced users. For SCANeR and STI Simulator, there was

1 experienced and 1 inexperienced user for each. Nine participants participated in the ex-

periment on site while the remaining participated online. All participants were behavioral

63

Chapter 5. User Experience

researchers who use driving simulators for their research and had an average of 4 to 5 years

experience of working on driving simulator.

5.2.2 Experiment Setup and Procedure

The participants who participated on-site used the tool on the provided system. The system

was equipped with Atomi [2013]. ActivePresenter is a tool to record screen activity. The par-

ticipants who participated online installed the tool and Skype or TeamViewer [2013] on their

system. TeamViewer is a software to host online meetings. And the screen of the participants

was shared using TeamViewer or Skype.

Each participant was given the same instructions. They were given a tutorial on how to use

the tool and they were allowed to ask any question about the tool. After the tutorial, partic-

ipants developed an experiment using the tool. The experiment was based on true experi-

ment which was already conducted in the ADAPTATION project. After the development of

the protocol, participants filled two questionnaires. These questionnaires included the Sys-

tem usability Scale (SUS) [Brooke, 1996], the Single-Ease Question (SEQ) [Sauro, 2013] and

a questionnaire related to the tasks performed during the experiment. After the question-

naires, end-users were interviewed and asked about their experiment. They were also told to

think aloud [Van Someren et al., 1994], if they feel any difficulty during the experiment devel-

opment process.

5.2.3 Experiment Task

The purpose of this experiment was to test the new approach and tool in the real environ-

ment. Also we wanted to use an experiment which is neither very complex nor not very easy,

and which could cover all the features of the tool. So an experiment was selected from the

ADAPTATION project as mentioned above. The reason to select this experiment was that,

there was direct access to the author in order to design the experimental protocol for the par-

ticipants who had to develop the scenario with the new tool. Also this experiment included

all the necessary information (ADAS selection, Traffic Zones, weather zones, traffic scenar-

ios) that we wanted to test during the experiment. Also we wanted to select both simple and

a bit, but not very complex scenarios, because of the time constraint. The results of the study

conducted on this experiment is already published [Beggiato and Krems, 2013]. The docu-

mentation for templates was provided to the end-users so that if they want to take some help

regarding the templates they can study the documentation. The details description of the

task was written as follows:

Description of the scenario

The simulator track is comprised of an approx. 23-km long two-lane highway with an average

driving time of 17 min and 40 s. With the exception of a 100-km/h speed limit in construction

64

5.2. Main study

zones, simulator speed limit is set to 120 km/h. The route consists of five consecutive road

sections of approximately 4 km each and approximately 2 km of straight road at the end.

Every road section includes:

• Two left bends and one right bend.

• A cut-in situation.

• A construction zone of approximately 1 km, where only the right lane could be used

and a lead car with a constant speed of 80 km/h set the driving pace.

• A situation involving queuing at the beginning of the construction zone.

However, the five base modules differ as follows:

• Weather conditions (good weather / light fog / heavy fog)

• Cut-in vehicle (normal car / motorbike / white car)

• Last car in the queue (normal car / white truck)

• Lead car in the construction zone (normal car / white truck)

Scenario Details

General settings

• Subject vehicle is equipped with ADAS (ACC)

• You can use the default values, if information is not provided for any field.

• You will select "Terrain 1" while selection experiment terrain in the tool.

1st Road section

• Good weather (Baseline)

• Cut-in by a yellow car at 1.7 Km (ACC is ’ON’ before the situation)

• Normal Traffic in the module

• A car is stopping at the start of construction zone and starts moving when subject car

approaches it at distance 15m from that car.

2nd Road section

65

Chapter 5. User Experience

• Light Fog

• Cut-in by a yellow car at 5.7 Km (ACC is ’ON’ before the situation)

• Normal Traffic in the module

• A car is stopping at the start of construction zone and starts moving when subject car

approaches it and at distance 15m from that car.

3rd Road section

• Good weather

• Cut-in by a Motorbike at 10.2 Km (ACC is ’OFF’ before the situation)

• Normal Traffic in the module

• A white truck is stopping at the start of construction zone and starts moving when sub-

ject car approaches it and at distance 15m from that car.

So there are two situations in each zone. 1st is Cut-in situation, and 2nd is car-following

situations.

5.2.4 Data Collection

Data was collected from different sources during the experiment.

Screen recording and audio data

As explained above, the off-site users participated using Skype or TeamViewer and their screen

were recorded to log the user activity during the experiment. Users were asked to think-aloud

if they encounter any problem or stuck somewhere. Think-aloud technique is used to test

the user, that what are their thoughts, what he wants to do while performing a certain task

[Lewis and Rieman, 1993]. Think-aloud moments and the user-activity were recorded using

the audio recording facility provided by the ActivePresenter software.

Task performance data

The output of the experiment was an XML file to be executed on the specific simulation

platform. The output file represents the user-performance: how correctly they have imple-

mented the experimental protocol according to the instructions provided to the end-users.

The time that each user spent on each sub-task was also recorded. Using this data, it could

be identified, how correctly they have performed a specific task.

66

5.2. Main study

Questionnaires

A questionnaire is one of the methods to collect information from the users. They have many

advantages in the usability research. If the questions are designed carefully and used cor-

rectly they can give a useful feedback of the system or the interface being tested. There

are some standard usability questionnaires which are used in the industry for the usability

research. There are different kinds of standardized questionnaires for example post- study

questionnaires and post-task questionnaires. Some post-study questionnaires are:

1. QUIS (Questionnaire for User Interaction Satisfaction) [Tullis and Stetson, 2004].

2. SUMI (Software Usability Measurement Inventory) [Kirakowski and Corbett, 1993].

3. PSSUQ (Post-Study System Usability Questionnaire) [Lewis, 2002].

4. SUS (System Usability Scale) [Brooke, 1996].

5. UMUX and UMUX-LITE (Usability Metric for User Experience) [Lewis et al., 2013].

Some post-task questionnaires are:

1. ASQ (After Scenario Questionnaire) [Lewis, 1991].

2. SEQ (Single Ease Question) [Tedesco and Tullis, 2006].

3. SMEQ (Subjective Mental Effort Questionnaire) [Sauro and Dumas, 2009].

4. UME (Usability Magnitude Estimation) [Sauro and Dumas, 2009].

Using the standardized questionnaires has many advantages for instance Reliability and Va-

lidity. We used SUS was used as a post-study questionnaire. It is a reliable questionnaire

and has been used in the in more than 600 studies (Sauro). It is a short questionnaire with

10 items and each item has 5 choices as shown in the Figure 5.2. The SUS can be used to

test the usability of almost all kinds of software, hardware, Mobile phone and Smartphone

applications. It is a reliable and valid questionnaire which can measure the usability of the

system. The shortcoming of this questionnaire is that it cannot identify the usability prob-

lems encountered by the end-users.

Figure 5.2: 5-point Likert scale.

67

Chapter 5. User Experience

SEQ was used as a post-task questionnaire. As its name says, it is a one-question question-

naire for each task. It can measure the satisfaction of the user while performing a task after

the task has been performed and can diagnose the usability problems faced while perform-

ing the task. It does not measure the overall satisfaction of the system or interface, but for a

specific task. It is a very small simple, short and reliable questions which is easy for users to

respond and easy to administer (Sauro and Dumas 2009). The SUS and SEQ questionnaires

can be found in Annex A.

5.2.5 Data Analysis

All the sources and hypotheses were explored using the data gathered from the experiment.

The end-users were categorized into two groups of users: Experienced and Inexperienced

users. Experienced users are those users who do not have a technical background but are

involved in developing an experimental protocol on driving simulators by themselves or by

partial help from the technical persons. Inexperienced users are those users, who do not have

any technical background and who have never been involved in developing an experimental

protocol. First there is an analysis of all the users, and then we go deeper in detail to analyze

the difference between the two types of users. The data of two inexperienced was corrupted,

so we excluded those two inexperienced user from the analysis, and we processed the data

from 8 inexperienced and 8 experienced users.

Time

The time that the end-user spent on each trial was recorded at each trial. In a driving simu-

lator experiment, end-users normally test more than 1 trial of the same situation in order to

test the same situation in baseline, and in a specific environment. The time at each trial was

recorded so that the learning behavior of the end-users could be identified. Then the time

was compared across the participants as well.

Task performance/completion data

The task performance data was gathered from the output XML file that user had generated

after developing the experiment. The output file contains all the configuration of the experi-

ment including the parameter values for the traffic situation. The task performance data was

computed using a formula for each step of experiment protocol. For description, terrain se-

lection, participant vehicle and variable selection steps, the task was easy, and if users had

completed that step, It was regarded as 100% completed tasks.

For environment zones, if end-users created two zones successfully, it was considered as 50%

(25% for each task) completed task, and If end-users successfully configured the environment

zones, then it was considered as remaining 50% (25% for each task) completed task. For traf-

fic zones, if end-users created 3 zones successfully, it was considered as 50% (16.6% for each

68

5.2. Main study

zone) completed task. If end users successfully configured the traffic zones, it was considered

as remaining 50% (16.6% for each zone) completed task.

There were 2 critical situations (vehicle cut-in and car-following) in every zone, so in 3 zones

there were 6 critical situations. If end-users successfully configured all the Cut-in situations,

it was considered as 50% completed task. If end-users had successfully configured all the car-

following situations it was considered as the remaining 50% completed task. Computation of

task performance for both situations is written as follows:

• Cut-in vehicle: There were three cut-in situations in the experiment with varied param-

eters. In the third situation, end-user had to turn-off the ADAS. So they had to add one

more template. Thus, there were 4 templates in total to configure. If end-users had suc-

cessfully configured the condition of the template it was considered as 25% completed

task (6.25% for each template). If end-users had successfully configured the templates

of the cut-in situation it was considered as the remaining 25% completed task (6.25%

for each template).

• Car-following: There were three car-following situations in the experiment with vari-

able parameters. In each situation, end-users had to create a lead vehicle, allow it to

move, so that subject vehicle could follow this lead vehicle. So there were 6 templates

in total to consider. If end-users had successfully configured the condition of the tem-

plate it was considered as 25% completed task (4.1% for each template). If end-users

had successfully configured the templates of car-following situations, it was considered

as 25% completed task (4.1% for each template).

Usability Data

The audio and video (data from the screen) data was analyzed to gather the usability prob-

lems faced by the user during the evaluation. The "ActivePresenter" software makes it easy to

capture the event when user e thinks-aloud for any problem. The user activity was analyzed

at that time on the screen. The SUS and SEQ questionnaires were studied and compared

against the interviews conducted with the end-users after the evaluation. The SEQ data was

compared with the user performance data and if the user could not complete a specific task;

it was compared with the user response during the interview regarding this task.

5.2.6 Results

In this section, the results of all the users are presented, and then we compare the user activ-

ity of both experienced and inexperienced users. After that, our hypotheses are explored in

detail. There was problem with the data of 2 users, so actually the analysis was done on 16

users.

69

Chapter 5. User Experience

Task Completion

The task performance data can be found in Figure 5.3. All the users completed all the tasks

except configuring the environment and configuring the traffic situations. Only 1 user could

not complete the task of Environment configuration. To create critical situations, 4 users

completed the task, 10 users completed more than 75% of this task. One user completed 50%

and one user could not do this task at all.

Figure 5.3: Task performance data.

Learning Experience

Configuring the autonomous traffic and creating the traffic situations are difficult tasks for

the end-users. As there were different trials for traffic situations and autonomous traffic, the

time that end-users spent on each task and their learning experience is displayed in figure 5.4.

As we can see, there is a learning behavior, as the time spent in 2nd and 3rd trial is decreased

compared to the first trial. There is a slight increase in the value for Situation 1 in the 3rd trial

because end-user had to create another subtask which lead to this slight increase.

Usability of the system

In order to get the usability data of the tool, the SUS questionnaire was used. The result of

the SUS is shown in the Table 5.1.

Table 5.1 shows that, 78% of the users have rated the tool with a score above 70%, and 22% of

the users have rated the tool as less than 60. The SUS has been used in many studies so it was

easy to compare the result with other studies. Bangor et al. [2009] has presented a table using

which an adjective rating to the SUS score can be given, it can be found in the Figure 5.5.

70

5.2. Main study

Figure 5.4: Learning Experience of all users.

Score % of users
80-100 6%
70-79 72%
60-69 0%
50-59 11%
lower than 50 11%

Table 5.1: SUS score of all users.

According to figure 5.5, 6% of the users have rated the tool as excellent, 72% of the users have

rated the tool as good, 11% of the users have rated the tool as OK, and 11% of the users have

rated the tool as poor

Task Easiness rating

The user also filled the SEQ questionnaire in which they specified the easiness rating for every

experiment protocol task. User rating for these tasks can be found in table 5.2.

Table 5.2 shows that 12% of the users find the autonomous traffic task difficult as well as 6%

of the users for the environment and critical event part. While some users said that they have

no idea whether it was difficult or not, according to the users, it means that it was neither

very difficult nor very easy, as it requires some practice to learn.

71

Chapter 5. User Experience

Figure 5.5: Mean SUS score rating [Bangor et al., 2009].

Task Easy Difficult No idea
Terrain 100% 0% 0%
Participant Vehicle 94% 0% 6%
Autonomous Traffic 89% 12% 0%
Environment 88% 6% 6%
Variables 100% 0% 0%
Critical Situations 72% 6% 22%

Table 5.2: Task easiness rating (All users).

Experienced vs. inexperienced users’ data analysis

In this section, we compare the performance of experienced and inexperienced users. Expe-

rienced users have already tried to develop experimental protocol by themselves using the

help from technical persons.

Task Completion (Experienced vs Inexperienced) Figure 5.6 shows the comparison of task

completion data of Experienced and Inexperienced user. One can see from the "environ-

ment" and "templates" items that, experienced users’ performance was better than inexperi-

enced user.

Inexperienced user could not complete the critical situation task at all, and one inexperi-

enced user could not configure the environment zones. Also, the average of task completion

of experienced user is better than for inexperienced users. One inexperienced user could not

perform the environment configuration task, because he could not understand that he has

to create the traffic zones, so every time he wanted to configure the environment in the zone,

he changed the default configuration environment, which was wrong.

72

5.2. Main study

Figure 5.6: Task performance data (Experienced vs inexperienced users).

Learning experience (Experienced vs inexperienced) The figure 5.7, 5.8 and 5.9 show the

comparison of learning experience between the experienced and inexperienced users for the

Traffic zone configuration, Situation 1 and Situation 2. These figures show that the learning

happened for all the users as the time of the 2nd and 3rd trial decreased for both groups. It

can also be seen that, both groups have roughly the same performance during the 3rd trial.

Figure 5.7: Learning experience of Traffic zone (Experienced vs inexperienced).

Usability rating (Experienced vs inexperienced) There was not much difference between

the usability score of the experienced and inexperienced user as shown in the figure 5.10.

73

Chapter 5. User Experience

Figure 5.8: Learning experience of Situation 1 (Top) and 2 (bottom).

Task easiness rating Task easiness rating for experienced and inexperienced users is shown

in the table 5.3 and table 5.4 respectively. None of the inexperienced user found the critical

situation task difficult, but 30% said that they have no idea whether it was difficult or not.

10% of the inexperienced users found the autonomous traffic and environment task difficult.

Interview data Users were asked about their experience while using the tool, if any informa-

tion was missing which was necessary to develop during the experiment, or any suggestions

or remarks: what was the difficulty, if any, while performing each task, and if they had any

remarks or suggestions to improve the tool. The users did not find anything missing in the

tool except 1 user who said that there was no information to specify the vehicle as right-hand

or left-hand side. That’s why he rated the task as "No idea".

As shown in Figure 5.6, some tasks were not completed by the users, When they were asked

about that, some said that, they did not know that they had to use two templates to complete

the situations, so they tried to complete the task using only one template.

Users were asked to explain their experience on the tool under evaluation. Almost all users

74

5.2. Main study

Figure 5.9: SUS score (Experienced vs inexperienced users).

Task Easy Difficult No idea
Terrain 100% 0% 0%
Participant Vehicle 88% 0% 12%
Autonomous Traffic 88% 12% 0%
Environment 100% 0% 0%
Variables 100% 0% 0%
Critical Situations 76% 12% 12%

Table 5.3: Task easiness rating (Experienced User).

have raised the same points and given the same remarks. Experienced users raised the points

that classification of the category for the templates is very important, as it is easy to look for a

specific template according the situation category. For example all templates related to vehi-

cle movement or overtaking should be in one section. They mentioned that at the start it is a

bit difficult but after some practice, it is easy to work on that. So if a good tutorial or training

is provided at the start, we can learn this tool and approach easily. They also specified the

need of a good documentation of all the templates, as it will make them understand what

the functionality of each specific template is. These users said that GUI stepwise develop-

ment was intuitive, easy to understand and that no low-level scripting was required. But they

also said that if there are some improvements like copy-paste the templates in the scripting

area and when we change the environment, the environment change should reflect it on the

map. They also wanted to preview the situation after it is configured. Some users said that

since they have worked on other tools, it was difficult for them to adopt this new tool though

it was helpful some practice. Also if possible, one should be able to trigger more than one

template from one condition. Inexperienced users’ views were not different from the experi-

enced users, they also said that, it was difficult at start, but after some practice, they learnt

to develop the experimental protocol. And it was really easy, intuitive and simple to develop,

75

Chapter 5. User Experience

Task Easy Difficult No idea
Terrain 100% 0% 0%
Participant Vehicle 100% 0% 0%
Autonomous Traffic 90% 10% 0%
Environment 80% 10% 10%
Variables 100% 0% 0%
Critical Situations 70% 0% 30%

Table 5.4: Task easiness rating (Inexperienced User).

as they do not have to do any scripting or low-level programming, the guidance during the

experiment development process is really helpful, so only a good documentation of the tem-

plates can help them to develop scenarios by themselves. They also mentioned that it would

be good, if they were able to preview the situations after configuration.

Users were instructed to think-aloud, but most of the time they did not. They argued that they

forget to speak. They were asked what kind of help they think they would need in order to

develop critical situations. They said that they might need help at the start, but after this they

can do that by themselves, if there is a good documentation of the templates, which should

explain all the parameters. Also, if one situation is not available in the library then they will

have to take help from the technical persons. These were the answers of both experienced

and inexperienced users.

When users were asked if they still need help from the technical persons while developing the

experimental protocol, 89% of the users said that they do not need any help anymore using

this tool.

5.3 Discussion and hypotheses exploration

The results show that the end-users have significantly improved their skills to develop an

experimental protocol on driving simulators.

End-users usually take total or partial help from technical persons, but using the new ap-

proach, end-users have developed the experimental protocol without any help from techni-

cal persons, as no help was provided to the end-users during the experiment. During inter-

views, they said during the interviews that they only need help at the start of learning the tool

and a good documentation. Every driving simulator has documentation, so if documentation

can be organized to help user to configure the templates, they can really do well. And the role

of technical person is minimized during the experimental development process, which is a

good point for them as well.

76

5.3. Discussion and hypotheses exploration

5.3.1 User selection

Most of the users were selected from ARCHISIM. For this experiment, such users were needed

who have some or no experience and no technical background. Because most of the users

who use driving simulators have no technical background, it probably could be a good idea

to compare the performance of users from different simulators and compare their result. For

inexperienced users, the type of the simulator is not relevant because they never program

scenarios on driving simulators. For experienced user, there was 1 user from SCANeR and 1

user from STI simulator. But there was no difference between the performances of these users

compared to ARCHISIM. Also, there are many driving simulators in the market so it would be

difficult to compare results of users of all driving simulators. Since our proposed approach

is independent of any driving simulation platform, it can be tested by the end-users of any

simulators. During the user survey (as explained in chapter 3) end-users of most simulators

have mentioned the same problems and requirements.

5.3.2 User performance

Task completion meant that end-users have successfully completed each step to execute it

on a driving simulator. If end-users completed all the tasks, it was considered as a complete

experimental protocol. But some users could not complete the critical situations. The com-

pletion rate for inexperienced user was around 60% and completion rate for experienced

user was 75%. The difference is obvious as experienced user have developed experimental

protocol before. But the improvement of inexperienced user from 0% to 60% is an interest-

ing figure. Because even the inexperienced end-users have experience of working on driving

simulators they were never able to develop an experimental protocol by themselves.

User learning experience shows in Fig 5.4 that there was decrease in the time during the trial

2 and 3, except for trial 3 of the situation 1 (vehicle cut-in) because end-users had to config-

ure more than one template during that trial. There was a difference between the time to

complete the task between experienced and inexperienced users at the start but in the third

trial, the difference between two groups was minimized.

It would have been a good idea to compare the time the end-users took to complete this

experimental protocol and the time they spent on other driving simulators, but there is no

previous study that could be compared to the time taken by the users using the proposed

approach. But using the time information, one can say that users have actually learnt to use

the tool. Also, time is not an issue for the users when they have to do it by themselves but

if they have to depend on the technical persons then it takes much more time, as technical

persons are usually very busy developing scenarios for all researchers in the team.

77

Chapter 5. User Experience

5.3.3 Problems with the users

Some users could not complete the task critical situation task. One of the reasons is that they

did not know that they had to use the two templates in the case of situations (car-following).

So some users suggested that there should be only one template for one situation. Also, when

a researcher designs an experiment, he has an in-depth knowledge of all the situations that

he/she is going to test during the experiment. In the case under study, the experiment was

designed by somebody else, and researchers have to design it using the explanation of the

author who designed the experiment. Another point is that the users were given instructions

and tutorial in English, and for some users, it was difficult to follow the tutorial and instruc-

tions in English. One user who could not complete the environment configuration task and

some users who could not complete the task of creating the critical situations mentioned this

problem. They said, if the instructions would have been given in French, it would have been

easier to understand.

5.3.4 Hypotheses Exploration

In this section we go back to the hypotheses under study during the user experience.

H1 : The Proposed method/tool will empower the user to develop an experimental proto-

col The main objective of this tool was to empower the end-users who do not have skills to

develop experiments by themselves. The inexperienced users had never developed any ex-

perimental protocol. But they managed to complete the tasks to develop an experimental

protocol and for critical situation, average performance of all the inexperienced users was

60%, which shows that end-users have managed to develop an experimental protocol, and it

is also evident from the user learning experience that they started to adopt the tool.

H2 : End-User will focus on domain problems rather than programming issues Syntax or

the abstraction of the programming languages is one of the barriers hurdles for end-users

while using end-user programming systems. While talking to the users during the interviews,

end-users did not specify any syntactical problem but they emphasized more on the docu-

mentation of the templates, how can they use a specific template in order to perform a task.

They were comfortable with the drag and drop environment, and it is also a good point, when

considering the usability of the tool, that user do not make any syntactical error.

H3 : End-User will need lesser or no help using the proposed method/tool Another objec-

tive of the work was to minimize the role of technical persons so that dependency on tech-

nical persons could be reduced in order to make the experimental development process effi-

cient for researchers and save time for technical persons. Users mentioned that they do not

need any help while using this tool; also they completed all tasks by themselves, as no help

78

5.4. Conclusion

was provided.

5.4 Conclusion

An improved capacity for end-users with no programming skills has been demonstrated,

which was the purpose of the new interface concepts. Following a User-Centered Design

approach, a prototype interface has been designed in order to design scenarios for driving

simulators. The skills we addressed were in terms of programming skills. We did not want to

improve the end-users skills, because most end-users are behavioral researcher, with no back-

ground in computer science and do not want to improve these skills. Instead, an interface is

proposed where these programming skills are not needed any more, so that the end-user may

achieve his goal of building the scenario with his own skills. The prototype was evaluated on

a panel of unskilled and low-skilled end-users, showing good results in terms of completion

rate. Also, the subjective evaluation was encouraging, and we could show that the users could

16 easily learn how to use the tool, so that after 3 trials, the performance of low skilled and

unskilled users was roughly the same. The proposed approach is not platform dependent,

and should now be implemented on several driving simulator platforms. We hope it would

be beneficial for both the behavioral researchers and the technical teams working on driving

simulators.

79

Chapter 6

Interoperability of the solution

This chapter explains how the proposed solutions in Chapter 4 can be made on different

driving simulation platforms. For this an interoperability framework and a Scenario-meta

language have been developed. The scenario meta-language is then integrated with the pro-

posed approach using the interoperability framework.

6.1 Need for interoperability of scenarios

Executing scenarios from one platform to another is an idea that has not been discussed be-

fore in this manuscript. But it is sometimes important to make it possible to execute the

same scenarios on more than one simulation platform. It is a common objective in differ-

ent European projects in the domain of transport that for different research objectives, one

scenario needs to be executed on different driving simulators (for example the TrainAll and

SafeRider projects). In the TrainAll project, same curriculum was given to different partners

in the project to train the people in their respective sites and so the same scenarios need to

execute on different driving simulators. So partners are usually given the specification of the

scenarios to be developed on the driving simulators.

When researchers have to work together in a team, and they have to work on different part-

ner sites, or if they move to other organizations, they have to interact with the different

driving simulator with different technical specification, which is a time-consuming tasks, as

explained in previous chapters that in most of the cases researchers are not equipped with

enough technical knowledge to learn it quickly and develop the scenarios without the help

from technical persons. So there is a need of a framework that if they have learnt to develop

the scenarios on one platform, they should be able to execute the same format other driving

simulators.

81

Chapter 6. Interoperability of the solution

6.2 Challenges to develop an interoperability framework

Every driving simulator has a different execution platform, and software architecture, and

the language which is used to develop scenarios on a driving simulator is also different. Also

driving simulators vary in providing different functionalities. Some functionality which is

offered by one platform is not always provided by other platforms.

6.3 Scenario modelling process

Figure 6.1 shows the typical scenario modelling process across different platforms. All the

interfaces to develop scenarios on driving simulators are tightly coupled with their respecting

execution platforms.

Figure 6.1: Typical scenario modeling process.

As the end-users develop scenarios using the interface of a specific driving simulator, it can

only be executed on the specific platform and not on any other platform, as they are devel-

oped in the specific low-level programming language offered by the platform.

It is difficult to port the information at low-level, as all the simulators have different way of

describing the scenarios as well. So there is a need to describe a general format, which could

be understood by different driving simulators. So there is a need of meta-format, which could

be executed on different driving simulators.

82

6.4. Scenario Meta-Language (SML)

6.4 Scenario Meta-Language (SML)

A new meta-model is needed which could be translated to the platform specific languages

for the driving simulators. There are some functional and technical requirements for this lan-

guage. All the information about the experiment is introduced in order to define a standard

format to port the scenarios from one platform to another.

6.4.1 Functional requirements

• It should describe the initial description of the environment, the actors, and the activi-

ties of the different actors involved in the experimental trial.

• It should also describe the list of all the critical events which will change the initial

description as well as information about where, when (Event Trigger) and what (Event

action e.g. vehicle maneuvers) will happen during the experimental trial.

6.4.2 General requirements

• It should allow the decoupling of experiment development from experiment execution

to provide the interoperability and the reuse among different driving simulators.

• It should keep the data separate from the business logic

• It should be application independent

• It should be able to transform on almost all the execution platforms.

• It should be concise and clear.

Note that all these requirements are not specific to driving simulation, and would apply to

any virtual reality simulators.

6.4.3 Description of the SML

XML (Extensible Markup Language) is used to define the format for SML. XML is a very com-

monly used mark-up language that defines sets of rules to encode a document in a format

which is understandable by both humans and machines. XML is independent of any execu-

tion platform and widely used over the Internet as well as for desktop and simulation appli-

cation.

The main purpose of SML is to describe a format which is understandable by different driving

simulation platforms. The same steps are included in the SML which were used to describe

the experimental protocol as explained in Chapter 4. So the language should be able to de-

scribe the following information in order to run an experimental trial.

83

Chapter 6. Interoperability of the solution

• Experiment Information

• Terrain Information

• Participant vehicle Information

• Ambient Traffic

• Environment

• Critical situation/events

• Variables

Figure 6.2

Figure 6.2: SML Schema.

The overview of schema of SML is shown in Fig 6.2. The detail of the schema can be found in

Annex B. The details of the functional elements of the SML are shown below.

Experiment information

This step describes general information about the experiment. The description of an experi-

ment in SML format is shown below.

1 <Experiment name="ACC highway" Description =" Experiment on ADAS on Highway"/>

84

6.4. Scenario Meta-Language (SML)

Terrain information

This step describes more specific information about the experiment. The example is shown

below

1 <Terrain name=" highway"/>

At the moment, Terrain specification format is not taken into account. But we can specify the

Cartesian coordinates of the terrain and also the general road database, which includes the

information about the road name, kilometric position or the distance on a specific road and

lane information.

Participant Vehicle Information

This step describes the initial description and the parameters of the participant vehicle, which

includes position, speed, itinerary, and the ADAS system, they will use. The position can be

either 2D based on the terrain co-ordinates or based on road database and the distance on

the road. An example of the participant vehicle configuration is shown below.

1 <ParticpantVehicle name -ID=" DrivingVehicle" model =" Model1">

2 <Position Type="PK Position">

3 <Roadtrack >Highway _2lane </Roadtrack >

4 <Distance unit="m">200</ Distance >

5 <Lane >1</Lane >

6 <Heading >0.0 </ Heading >

7 </Position >

8 <MaxSpeed unit="Km/h">90</MaxSpeed >

9 <ADAS include ="Yes">

10 <Type >ACC </Type >

11 <CrusingSpeed >90</ CrusingSpeed >

12 <Headway type="Time">3</Headway >

13 <EnableAtStart >yes </ EnableAtStart >

14 </ADAS >

15 <Itinerary >

16 <Intersection id="1">

17 <Direction >0</Direction >

18 </Intersection >

19 </Itinerary >

20 </ParticpantVehicle >

Ambient Traffic

This step describes the autonomous traffic during an experimental trial. We define the au-

tonomous traffic in zones and the whole experiment is divided into virtual traffic zones, and

each zone contains the information about the description and behavior of traffic in that zone.

Zone description has a start and end position. These positions can be based on terrain coor-

dinates or road database as described in the step 2. Each zone has a name and a type. The

type of zone can be ’traffic density’ or ’traffic flow’. When the user will specify the traffic den-

sity, it can be ’Normal’, ’Dense’ ’Very dense’ and ’customize’. The value for ’Normal’, ’Dense’

85

Chapter 6. Interoperability of the solution

and ’Very dense’ can be computed on the execution platform. We can also specify the value

of density, if we select the ’customize’ option.

Each zone has an ending behavior which can be ’Loop’, ’Disappear’ and ’Random’. The ’loop’

selection will let the vehicles in the zone to re-initialize at the same position after reaching at

the end of the zone. The ’Disappear’ selection will let the vehicles to disappear at the end of

the zone and ’random’ selection re-initialize vehicles at any random position within the zone.

Traffic behavior is distributed at three different levels which are ’Cautious’, Normal” ’Aggres-

sive’. The percentage value for each level can be specified. The ’Cautious’ behavior means

that vehicles will be driven very carefully e.g. with large time-headways or distance headways

and try to avoid risky overtakes. The ’Aggressive’ behavior mean that, vehicles will be driven

aggressively and undertaking risky over takes and keeping very small headways. The ’Normal’

behavior means that vehicles will be driven with normal driving parameters e.g. overtakes

and lane change maneuvers will be performed when it is necessary. The parameters for spec-

ifying the behavior depend on the parameters of the traffic model followed by the driving

simulator. The end-user can also specify the types of vehicles required for each specific zone.

In a zone, the percentage value of all kinds of vehicles can be specified.

1 <AutonomousTraffic trafficZones ="2">

2 <TrafficZone name=" Normal traffic" type=" Traffic Density">

3 <StartPosition Type="PK Position">

4 <Roadtrack >Highway _2lane </Roadtrack >

5 <Distance unit="m">400</ Distance >

6 <Lane >1</Lane >

7 </StartPosition >

8 <EndPosition Type="PK Position">

9 <Roadtrack >Highway _2lane </Roadtrack >

10 <Distance unit="m">900</ Distance >

11 <Lane >1</Lane >

12 </EndPosition >

13 <TrafficDensity >

14 <Traffic >Normal </Traffic >

15 <EndingBehaviour >Loop </ EndingBehaviour >

16 </TrafficDensity >

17 <ZoneDistribution >

18 <VehicleDistribution >

19 <Car >60</ Car >

20 <Bus >30</ Bus >

21 <MotorBike >10</ MotorBike >

22 <VehicleDistribution/>

23 <BehaviourDistribution >

24 <Cautious >20</ Cautious >

25 <Normal >70</Normal >

26 <Aggressive >10</ Aggressive >

27 </Behaviour >

28 </ZoneDistribution >

29 </TrafficZone >

30 </AutonomousTraffic >

86

6.4. Scenario Meta-Language (SML)

Environment

This step describes the environment of the experimental trial. The end-user should specify

the default environment for the whole experiment, which can be changed by dividing them

into virtual zones as for Autonomous traffic in step 4.

Like zones for autonomous traffic, there is a start and end position of the zone, which can

be based on terrain coordinates or road database. For each zone we specify the parameters

to change in the environment, which are light condition, rain, fog, and snow. An example is

shown below:

1 <Environment >

2 <EvironmentSetting hasEnvironmentZone ="Yes">

3 <Light >1</Light >

4 <Rain >0</Rain >

5 <Snow >0</Snow >

6 <Fog >0</Fog >

7 </EvironmentSetting >

8 <EnvironmentZone noofZones ="2">

9 <Zone name="Light Fog">

10 <ZoneStart startCondition =" Position"

11 Type="Co-ordinates">

12 <X>100</X>

13 <Y>200</Y>

14 </ZoneStart >

15 <ZoneEnd EndCondition =" Position"

16 Type="Co-ordinates">

17 <X>500</X>

18 <Y>600</Y>

19 </ZoneStart >

20 <ZoneParameters >

21 <Light >1</Light >

22 <Rain >0</Rain >

23 <Snow >0</Snow >

24 <Fog >3</Fog >

25 </ZoneParameters >

26 </Zone >

27 </Environment >

Dependent Variables

This step describes the variables that are going to be recorded during the experimental trial.

There are different categories of data to be recorded, which include the vehicle data and also

the equipment attached to the driving simulator, for example eye-trackers, equipment to

record physiological data. A sample of vehicle data and the eye-tracker is shown below. An

example is shown below.

1 <Dependentvariables >

2 <Categories >

3 <Vehicle name ="/ DrivingVehicle">

4 <Speed/>

5 <Acceleration/>

6 <BrakePedal/>

7 </Vehicle >

87

Chapter 6. Interoperability of the solution

8 <EyeTrackerData >

9 <GazeDirection/>

10 <HeadDirection/>

11 </EyeTrackerData >

12 </Categories >

13 </Dependentvariables >

Critical Situations/events

This step describes the critical events to be studied during the experimental trial. There is a

template of each event or situation to be studied. And each situation/event will be triggered

by a condition, which could be based on simulation time, position of the vehicle or any exter-

nal input etc. So each template will have a name and the parameters to be set for the critical

event, variables to be studied during the critical event. The three section of a critical event:

Template Condition, Template Action and Template Variables are discussed below.

Template Condition Template condition will trigger the situation/event followed by the

trigger. The triggers can be the Position of the vehicle and based on terrain co-ordinates, or

the road database as described in previous steps. It can also be Simulation time as we have

described for the environment zones in Step 5. It can also be an external input by keyboard

or from the cockpit of the driving simulator. Template Condition is followed by the Template

Action.

Template Action Template Action contains the parameters of a specific situation. e.g. in

order to set the speed of a vehicle, we specify vehicle ID and the speed. The parameters can

be varied from template to template.

Template Variables Template variables contain the variables that will be collected during

the specific situation. These variables are the same as we have discussed in step 6.

A sample of 2 events is defined below. The first event is ’Vehicle Cut-in’, which will be trig-

gered, based on the condition provided. In this event, we create the cut-in vehicle, based on

the absolute or relative position to the participant vehicle. Then we specify the relative or ab-

solute speed, with which the cut-in vehicle will overtake the participant’s vehicle and at the

cut-in distance provided by the end-user, will changes lane. Then, the speed after the cut-in

is specified. In the 2nd event, the speed of a vehicle suddenly changes.

Examples of SML formats for creating critical events or situations are shown below.

1 <Events noOfEvents ="2">

2 <Template name=" VehicleCutin">

3 <TemplateCondition type="Time" multipleCondition ="No">

4 <Time >

5 <Condition >Equal </ Condition >

88

6.4. Scenario Meta-Language (SML)

6 <Value unit="sec">500</Value >

7 </Time >

8 </TemplateCondition >

9 <TemplateAction nameOfParametersSet ="Cutin Left">

10 <ChangeADASSettings Change ="No"/>

11 <CutinVehicle selectionType =" Create" name -ID="

Yellow car">

12 <Type >Car </Type >

13 <Model >M1</Model >

14 <Color >Yellow </Color >

15 <Position type=" relative">

16 <Lane >1</Lane >

17 <PositionOffset >10</ PositionOffset >

18 </Position >

19 <InitSpee Type=" Relative ">20</InitSpeed >

20 <MaxSpeed >100</ MaxSpeed >

21 </CutinVehicle >

22 <CutInParameters >

23 <CutInDistance >3</ CutInDistance >

24 <OvertakingLane >-1</OvertakingLane >

25 </CutInParameters >

26 <TemplateVariables >

27 <Categories >

28 <Vehicle name=" DrivingVehicle">

29 <Speed/>

30 <Acceleration/>

31 <BrakePedal/>

32 </Vehicle >

33 </Categories >

34 </TemplateVariables >

35 </TemplateAction >

36 </Template >

37

38 <Template name=" Change Speed">

39 <TemplateCondition type=" Position" umultipleCondition ="No">

40 <Position Type="PK Position">

41 <Roadtrack >Highway _2lane </Roadtrack >

42 <PK unit="m">400</PK>

43 </Position >

44 </TemplateCondition >

45 <TemplateAction nameOfParametersSet =" Vehicle yello speed">

46 <Vehicle name -ID=" Yellow car "/>

47 <Speed Unit="Km/h">0</Speed >

48 <TemplateVariables >

49 <Categories >

50 <Vehicle >

51 <Speed/>

52 <BrakePedal/>

53 </Vehicle >

54 </Categories >

55 </TemplateVariables >

56 </TemplateAction >

57 </Template >

58 </Events >

89

Chapter 6. Interoperability of the solution

Discussion on SML

The SML is developed at high-level, because the purpose is to make it provide information for

all the necessary information to execute a driving scenario on different simulation platforms

and it is difficult to port all the information at low-level.

Terrain Every driving simulator uses a specific terrain format in order to build the terrain

database for the simulation trial. Attempts are being made to develop standard format to

build the terrain database. The most common formats used in the industry and research

organizations are RoadXML developed by IFSTTAR, OKTAL, Renault, PSA Peugeot Citroen,

Thales, and OpenDrive developed by BMW, Daimler, TNO, VTI and other industrial part-

ners. The goal was to provide non-proprietary, consistent and managed and standardized

format to build the road database. In driving simulators, there are usually two ways to spec-

ify the position. One is using Cartesian coordinates (for instance OKTAL’s SCANeR Studio),

and the other is by specifying the position of the object on the road (for instance IFSTTAR’s

ARCHISIM). There is another way in which objects are specified by the distance travelled by

the driver during the simulation trial (for instance System technology’s STISIM Drive). In the

SML, Both cartesian coordinates based and position based positions can be used.

Participant vehicle Normally, the participant’s vehicle is created and configured the same

way as all other vehicles but with a very small change in a parameter to consider it as a vehicle

driven by the subject. So in SML there is a tag to specify the characteristics of a participant’s

vehicle.

Autonomous Traffic Specifying autonomous traffic is a critical and difficult task. In most

current architectures, the vehicles are specified individually and configured accordingly. So

usually the traffic is specified at low-level. Unfortunately, end-users are usually not con-

cerned with the traffic at individual level, but they have to create the traffic by following the

procedure offered by the driving simulators. In the SML framework that we propose, the in-

formation is provided at the high-level (i.e. number of vehicles in a specific area, types of

vehicles, and their behaviour in the specific zone). If the end-user wants to specify the spe-

cific behavior of a vehicle from the traffic, s/he can specify it in the critical event section.

Environment In existing driving simulation scenario languages, the environment parame-

ters (Rain, Fog, Light etc) are usually handled in the script written by the scenario developers.

Separating it from the script will not only simplify the script but will be corresponding to the

user way of designing the experimental protocol.

90

6.5. Interoperability framework

Critical Situation/Events Most driving simulators follow a rule-based language to specify

the critical situations. And every driving simulator has list of API’s which are used to develop a

certain situation. So the APIs in different driving simulators provide different functionalities,

so it was difficult to provide the generality of the traffic situation parameters at the low-level.

Instead, the information is provided at the higher-level where users (researchers) specify the

parameters of the situations. For example for a simple vehicle-cut-in event, the parameters

could be characteristics of the cut-in vehicle, and the distance when the vehicle will change

its lane to the specific lane, and some other parameters depending on the situation to be stud-

ied. Any driving simulator could be equipped with the template library as specified in chapter

4, using which the end-user can manipulate the parameters at low-level using the low-level

language provided by the parameters; it can be done using the Interoperability framework

which is presented in the next section.

6.5 Interoperability framework

This section presents an interoperability framework, in order to execute the driving scenarios

on different driving simulators. Figure 6.3 presents the scenario modelling process using

the SML and the high level view of the interoperability framework. End-users can develop

scenarios using the user interface developed in chapter 4 in the SML format, or they can just

develop the SML format for the experiment. The SML format can be imported to the specific

platform using the importer that will convert the SML information into the platform specified

code for the driving simulator.

Figure 6.3: Typical scenario modeling process.

The proposed approach (interface in chapter 4) can be integrated with SML using the frame-

work as shown Figure 6.4 and 6.5. The technical person will develop a template, which has

two representations: XML representation and low-level specification.

91

Chapter 6. Interoperability of the solution

Figure 6.4: Interoperability Framework.

The end-user will fill the template parameters along with the other experiment steps in the

interface and the whole scenario will be converted into SML format. The SML file will then

be imported by the importer on a specific platform, which will use the low-level specification

of the template and execute the scenario on the driving simulator. The whole framework

can be regarded as a multi-layer programming environment, where end-users interact with

the higher upper layer (High-level), i.e. the typical programming process is converted into

customization process.

The technical-persons interact with the lower-layer and develop the templates to be used at

upper layer, along with the low-level representation. There are two representation of a tem-

plate, XML and low-level. The XML representation contains the parameters of the template

and the low-level specification contains the logic and the programming representation of the

template developed with the API of a specific driving simulator.

6.5.1 Implementation of the Interoperability Framework

In order to test the interoperability framework, an SML was implemented on the SCANeR

software. An importer was developed to parse the SML file and generate the SCANeR specific

scenario file to be executed on the SCANeR platform. The creation of participant vehicle is

simple, and it can be created easily with the parameters specified by the user. As all driving

simulators have different ways of specifying traffic vehicles, so in order to create the vehicles

in a specific zone, the importer was able to generate vehicles that will be active in the specific

zone. Implementation of the traffic zones can be a tricky part depending on the architecture

of the driving simulator software. In some simulators it is not possible (at the moment) to

92

6.5. Interoperability framework

Figure 6.5: Interoperability Framework using multi-layer programming.

create vehicles dynamically, for example SCANeR. While in some simulators it is possible to

create the vehicles dynamically. The formula applied during the implementation on SCANeR

was that, create the maximum number of vehicles specified in the scenario, but activate or

make them visible according to density specified by the user in a specific traffic zone. For

example in one zone user has specified the traffic density as 10 vehicle/mile and in second

zone the user has specified the density as 20 vehicle/mile. Then maximum 20 vehicles will

be created, and 10 vehicles will be deactivated when the participant will be driving the car in

the first zone, and all 20 vehicles will be activated while driving in the second zone.

The environment ones can be created the same way as the traffic zone, but they are easier

to configure than traffic zones. The environment zones can be configured depending on the

conditions specified by the user in the interface.

Similarly, template parameters specified by the end-users can be adapted to the low-level

libraries developed for the simulators. As discussed earlier that, templates are composed of

different low-level functions hidden to the researchers. So the configuration of the templates

is adapted to the low-level functions, which are finally executed on the driving simulators.

The traffic and environment zones were successfully tested on the SCANeR platform, but

templates could not be completed implemented because of the shortage of time. When the

end-users will import the SML file, it will actually generate the platform specific file (files)

which is be executed on the driving simulator.

93

Chapter 6. Interoperability of the solution

6.6 Conclusion

The Interoperability framework and SML help the scenario to be ported on more than one

platform. The SML format is proposed based on the necessary information required to de-

velop an experimental protocol. The interoperability framework separates the implementa-

tion of the scenarios at low-level from the high-level parameters entered by the end-user in

order to configure a scenario. The High-level information is converted to Meta-format (SML)

and finally to the platform specific format. So in order to execute an SML file, the platform

needs to parse the SML file to execute the SML on the driving simulation platform. At the

moment the conversion is one way. i.e. from proposed interface to the specific platform. The

complexity of the scenarios is managed during the creation of the templates, when the tem-

plate is created successfully it can be easily converted to be executed on the specific platform.

The test case on SCANeR has been conducted in order to verify the format and the framework

to execute it on different driving simulators.

94

Chapter 7

Conclusion

This chapter explains the concluding discussion followed by the contribution of the thesis

and In the end future perspective of the presented work is explained.

7.1 Concluding discussion

End-user programming has been growing among users from different domains, and in the fu-

ture it is expected that there will be an extensive need of end-user programming for end-user

who can use such programming systems to fulfill their goals. In driving simulators, there is

a need of a usable and intuitive end-user programming system using which researchers can

develop experimental protocols to conduct experiments. Existing scenario authoring tools

use low-level approaches to author scenarios on driving simulators, which make it difficult

for the primary users of the simulators to model the scenario of their experiment. The rea-

son is the gap between the end-user’s skills and the goals they want to achieve using driving

simulators. The user interfaces are expected to fulfill the gap between the end-users and

the system they use. So one of the ways to fulfill this gap is to develop intuitive and user-

friendly approaches and interfaces which could help end-users to develop scenarios using

driving simulators. Many scenario modeling approaches and scenario modeling languages

have been proposed, but none actually achieved the goal of filling the gap between end-users

and scenario authoring systems. To sum up, no existing systems have the objective of allow-

ing the users to develop scenarios with their current set of skills, so that they are currently de-

pendant on technical persons. Many end-user programming techniques and methods have

been proposed to support end-user programming activities. These techniques have been de-

veloped with different objectives in the mind. Also, there is no framework for the portability

of scenarios among driving simulation platforms. Existing driving simulation platforms use

different methodology and approach to model scenarios, so it is difficult to port scenarios

at low-level, because all driving simulation platforms have their own specific low-level lan-

guage. So there is a need for an interoperability framework and a meta-language which allow

95

Chapter 7. Conclusion

the users to port scenarios from one platform to another for different reasons (e.g. different

partners working on a same project, end-user need to learn a different technique or language

syntax whenever they work on new driving simulations). So there is a need for an interface

which could be used to develop scenarios on driving simulators and could be used on existing

driving simulators.

In order to develop a system for end-users, the User-Centered Design (UCD) technique was

used, in which end-users were involved at an early stage of the design process. Nineteen

users with various levels of experience and background were interviewed. During the inter-

views they could explain their problems in detail while programming scenarios on driving

simulators, and gave suggestions about the improvement to be made in driving simulators.

The main problems shared by most users were 1) to control the ambient tra?c around drivers

during the critical situations; 2) to be able to tune or optimize the critical events; 3) to ?nd

the relevant functions in order to design an event; and 4) the availability of triggers to design

critical events. The users also suggested some ideas in order to improve the scenario design:

to drag and drop critical situations at high-level from a database, to be able to interact with

the environment or to provide a preview of the successive steps needed in order to design an

experimental protocol. User interviews gave a good insight of the user requirements corre-

sponding to their needs to model scenarios on driving simulators.

Based on the user study and on the literature review, different users interacting with the driv-

ing simulators and their roles have been identified and a multi-user multilayer user centered

design approach is proposed. Three sub-interfaces (Experiment Builder, Template Builder,

and Experiment Interface) are proposed for each layer corresponding to the skill of end-users.

Sub-interface The Experiment Builder (Higher-layer) is for the researcher who programs sce-

narios using the customization of the templates, the Template Builder (lower-layer) is for

technical persons who develop the scenario templates. Researchers interact with the higher

layer to customize the templates, exploiting the low-level programming practices while the

technical persons interact with the lower-layer and develop scenarios using the low-level

API’s of the driving simulators. The sub-interface Experiment Interface is used by researchers

or by the person who operates the experiment. Splitting the scenario development into sub-

tasks not only empowers the end-users (researchers, psychologists, etc.) to develop scenarios

by themselves using their own skills, it also reduces the workload of the technical persons,

and both types of users can achieve their goals more efficiently. Technical persons build

the high-level template library, while the researchers can use this library to customize the

scenario templates, thus achieving their goals without being totally dependent on technical

persons.

A prototype based on the proposed approach has been developed, and preliminary evalua-

tion was conducted on 9 end-users. The users performed a small exercise on the prototype

and were observed and interviewed later on. The early feedback was really encouraging. Dur-

ing the interviews, the users felt easy and it was intuitive for them to configure the templates,

rather than low-level coding, and they were also interacting with the map. They appreciated

96

7.1. Concluding discussion

the guidance by navigation: there is a separate sub-interface for each step, minimizing the

complexity of creating an experiment. After this preliminary study, the approach was im-

proved and a new fully functional prototype was developed. Another study was conducted

to get detailed feedback of the end-users. During this study qualitative as well as quantitative

feedback were collected. Eighteen users participated in this study and they developed a real

driving simulator experiment. In the exercise, there were two critical situations (cut-in and

car-following). In driving simulator experiments, researchers usually have more than one

trial for a given task with varying parameters.

This experiment was conducted with 3 hypotheses: 1) the proposed approach will empower

the end-users, 2) The end-users will focus more on domain problems rather than program-

ming issues; 3) The end-users will take less or no help using the proposed tool. Researchers of

two categories were involved during the study. The first one had no programming experience

at all and had never developed scenarios by themselves, while the other had some program-

ming experience of developing scenarios on driving simulators with the help of technical

persons. After performing the exercise, the end-users filled different questionnaires (Study-

related, and SUS (System Usability Scale)). They were interviewed later on about their expe-

rience using the tool based on the proposed approach. The results of these two categories of

users were compared.

All users completed all tasks, except configuring the environment and configuring the traffic

situations. Only one user could not complete the Environment configuration task. To create

critical situations, 4 users completed the task, and 10 users completed more than 75% of the

task, one completed 50% and one could not do the task at all.

Configuring the autonomous traffic and creating the traffic situations has been found quite

difficult, as expected. Along the situations, it was possible to see whether practice improved

performance. Fig. 8 shows a learning behaviour, in terms of time spent to the task, for the con-

figuration of the traffic zone and for both situations (cut-in and car-following). The learning

effect only occurred between the first and second trials, which suggest that the tool was quite

intuitive. From the SUS questionnaire, 6% of the users rated the tool as excellent, 72% rated

it as good, 11% rated it as OK, and 11% rated it as poor. The user also filled a questionnaire

in which they specified the easiness of each task. All tasks were considered easy by at least

88% of the users; 12% found the autonomous traffic task difficult, and 6% found the environ-

ment and critical event tasks difficult. We found that the performance of experienced user

was better than for inexperienced user, but an interesting fact was that for each three tasks

(traffic, first and second critical situations) the performance was nearly the same during the

second and third trial, showing that inexperienced user adopted the tool and improved their

performance with time. Some users, having worked on other tools, said it was uneasy in the

beginning to adapt to this new tool. One encouraging result is that 89% of the users said they

would not need help from technical persons anymore using the proposed interface.

Following a User-Centered Design approach, a prototype interface was designed in order to

97

Chapter 7. Conclusion

design scenarios for driving simulators. This prototype followed some principles taken from

a user needs study: for instance, in the proposed interface, the user’s roles, interacting with

driving simulators, have been separated. One of the difficulties in the programming is the

division of a programming task into meaningful sub-tasks. The experimental protocol proce-

dure was divided into different sub-tasks corresponding to the user’s way of developing the

experiment.

Support is provided at each step using different interaction techniques. The customization

of the template should enable the end-user to develop his experiments without following a

typical low-level programming process. The main objective of this work was to give unskilled

users a tool to build their experiment by themselves, as much as possible, instead of asking

the technical team. The prototype was evaluated on a panel of unskilled and low-skilled end-

users, showing good results in terms of completion rate. Also, the subjective evaluation was

encouraging, and we could show that the users could easily learn how to use the tool, so that

after 3 trials, the performance of low skilled and unskilled users was roughly the same.

Another advantage of developing scenarios at high-level is that it is easy to port scenario from

one simulation platform to another, which was another objective of this thesis work. In order

to achieve this objective an interoperability framework and a meta-language were proposed

and developed. The meta-language was successfully integrated on the SCANeR platform. It

is practically possible to generate low-level platform specific code from the high-level infor-

mation by developing an import module for most driving simulation platforms. Using this

information the end-user can exchange scenarios within projects with common goals. It is

usually a practice that simulation data are archived which can be further used by other peo-

ple. Similarly, the high-level scenarios can also be archived and used by other people follow-

ing the standards of the proposed meta-language. Although the role of the technical persons

is not omitted completely, it is assigned as an assistant who develops the template which can

be used by end-users in their absence. So end-users will not totally depend on the technical

persons and they can develop a complete experimental protocol by themselves.

7.2 Contributions

In this section, we revisit the main contributions of this thesis work.

Behavioral researchers are the main users of the driving simulators, so they should be able to

use these systems efficiently and effectively. But existing systems are not designed with the re-

quirements and needs of behavioral researchers, and they also do not incorporate the profile

of the researchers. We have proposed a new design for scenario development, using a user-

centered design approach so that they could effectively and efficiently develop scenarios and

use driving simulators to achieve their goals. End-users usually do not have programming

and technical skills, which makes it difficult for them to program scenarios on driving sim-

ulators. A proof of concept of a new multi-layer programming approach is proposed, with

which end-users can develop scenarios without programming and technical skills.

98

7.3. Prospective

User-interfaces fill the gap between systems and the users to help them to achieve their goals

from the system in use. We have proposed an example of usable and intuitive user-interface

using which end-users developed experiment protocol, which proves that HCI techniques

can effectively be used to fill the gap between systems and user skills. Technical persons

are also among the users of driving simulators. They develop scenarios for researchers, but

there is no standardized way with which they can help researchers to achieve their goals.

The proposed multi-layer programming approach defines the role of the technical persons

and empowers end-users so that they can develop scenarios by themselves without totally

depending on the technical persons.

The need for an interoperability framework to port scenarios from one platform to another is

discussed in detail in Chapter 6. Such an interoperability framework is proposed, where sce-

narios at high-level can be ported from one platform to another. In order to transfer scenarios

from one platform to another, a meta-format is needed, which could be adapted by different

platforms; an attempt to develop such a meta-language is proposed and can be used to inte-

grate existing driving simulators with any interface developed with the proposed approach.

This interoperability framework is validated on the SCANeR platform by developing an im-

porter to integrate meta-language with the SCANeR software.

7.3 Prospective

A study was conducted with the tool developed during this thesis work, but there was no

existing study with which we could compare the results, showing to what extent end-users

have improved their performance in comparison to other tools. Thus, a within-group study

should now be conducted where the performance of users (with the same profile) could be

compared on existing tools vs. on the tool developed during this work.

A meta-framework has been proposed to port scenarios from one platform to another. The

interoperability framework was tested on the SCANeR platform, which imported the meta-

format (SML (Scenario Meta-Language) format) of the scenarios and generated SCANeR-specific

low-level code. There is a need for improvement in the meta-framework during its integra-

tion with other tools, as it would be tricky for existing driving simulation platforms to adapt

the high-level information and convert it into low-level platform specific information. So

this interoperability framework still has a room to be improved while validating it for other

driving simulation platforms. We hope that a standardized framework could be emerged.

The ’Template Builder’ used by technical persons will be used to develop templates for future

situations. It represents how different actors or simulation objects will behave during the

simulation trial, and end-users will customize these templates in the ’Experiment Builder’. So

Templates must reflect the end-users mental model of a specific situation. More information

is needed to find out to what extent a template is actually expressive for the end-users. For

instance, it was observed during the experiment that in the first traffic situation the end-users

had to use one template while in the second situation, two templates were needed, which

99

Chapter 7. Conclusion

was sometimes confusing. So more information is needed while developing templates for

the end-users. It can be identified by discussing with the end-users during the enrichment

of the template library and by using the experience of technical persons. In order to support

the users during the development of experiment protocols, additional features can also be

provided to entertain the users, for example copying and pasting the scenario templates etc.

With the growing need of end-user software development, this thesis is an attempt to em-

power unskilled end-users of the driving simulators to develop scenarios by themselves. Users

are the center of any system, so user-centered design technique has been used to design the

scenario authoring tools for driving simulation end-users.

100

Publications

International Journal

• Ghasan BHATTI, Roland BREMOND, Jean-Pierre JESSEL, Nguyen-Thong DANG, Fab-

rice VIENNE, Guillaume MILLET. Conception and Evaluation of a User-Centered User

Interface to Model Scenarios on Driving Simulators. Transportation Research: Part C

- Emerging Technologies [IF=2.82], special issue on new technologies and emerging

methodologies in road safety (available online)

Book chapter

• Ghasan BHATTI, Roland BREMOND, Jean-Pierre JESSEL, Nguyen-Thong DANG, Fab-

rice VIENNE, Guillaume MILLET. User-Centered Design (UCD) Approach to Model Sce-

narios on Driving Simulators. In "Driver Adaptation to Information and Assistance Sys-

tems" Edited by A. Stevens, J. Krems and C. Brusque (IET Publisher), pp. 275-299, 2013.

Conference papers

• Ghasan BHATTI, Roland BREMOND, Jean-Pierre JESSEL, Nguyen-Thong DANG, Fab-

rice VIENNE, Guillaume MILLET. A detailed description of a user-centered interface

to model scenarios on driving simulator. In Proc. International Conference on Road

Safety and Simulation (RSS 2013), Rome (Italy), October 2013.

• Ghasan BHATTI, Roland BREMOND, Jean-Pierre JESSEL, Nguyen-Thong DANG, Fab-

rice VIENNE, Guillaume MILLET. Filling the User Skill Gap Using HCI Techniques to

Implement Experimental Protocol on Driving Simulators. In Proc. International Con-

ference on Advances in Computer-Human Interactions (ACHI 2013), Nice (France),

February 2013.

• Ghasan BHATTI, Roland BREMOND, Jean-Pierre JESSEL, Fabrice VIENNE, Guillaume

MILLET. Towards the development of a user interface to model scenarios on driving

simulators. In Proc. Driving Simulation Conference (DSC 2012) Paris, September 2012.

101

Chapter 7. Conclusion

• Ghasan BHATTI, Roland BREMOND, Jean-Pierre JESSEL, Fabrice VIENNE, Guillaume

MILLET. User-requirements to model scenarios on driving simulators. In Proc. Inter-

national Conference on Drivers Behaviour and Training (ICDBT 2011) Paris, November

2011.

102

Bibliography

Ahmad, O. (2005). Issues related to the commonality and comparability of driving simulation

scenarios. In Proc. IMAGE, Scottsdale, AZ.

Allen, R. W., Park, G., Rosenthal, T. J., and Aponso, B. (2004). A process for developing scenar-

ios for driving simulations. In Proc. Image Conference, Scottsdale, AZ.

Allen, R. W., Rosenthal, T. J., Aponso, B., and park, G. (2003). Scenarios produced by pro-

cedural methods for driving research, assessment and training applications. In Driving

Simulation Conference North America.

Allen, W., Rosenthal, T., Aponso, B., Parseghian, Z., Cook, M., and Markham, S. (2001). A sce-

nario definition language for developing driver simulator courses. In Driving Simulation

Conference, pages 369–377, Sophia Antipolis, France.

Alloyer, O., Bonakdarian, E., Cremer, J., Kearney, J., and Willemsen, P. (1997). Embedding

scenarios in ambient traffic. In Driving Simulation Conference.

Anderson, J. R. and Thompson, R. (1989). Use of analogy in a production system architecture,

pages 267–297. Cambridge University Press, NY.

Atomi (2013). Activepresenter.

Bangor, A., Kortum, P., and Miller, J. (2009). Determining what individual sus scores mean:

Adding an adjective rating scale. Journal of usability studies, 4(3):114–123.

Beggiato, M. and Krems, J. F. (2013). The evolution of mental model, trust and acceptance

of adaptive cruise control in relation to initial information. Transportation research part F:

traffic psychology and behaviour, 18:47–57.

Bellamy, R., John, B., Richards, J., and Thomas, J. (2010). Using cogtool to model program-

ming tasks. In Proc. of Evaluation and Usability of Programming Languages and Tools,

pages 1–6, New York, NY. ACM.

Bellotti, V. (1988). Implications of current design practice for the use of hci techniques. In Pro-

ceedings of the Fourth Conference of the British Computer Society on People and computers

IV, pages 13–34. Cambridge University Press.

103

Bibliography

Blana, E. (1996). Driving Simulator Validation Studies: A Literature Review. Leeds University,

UK.

Boshernitsan, M. and Downes, M. S. (2004). Visual programming languages: A survey. Tech-

nical report, UC Berkeley, CA.

Brooke, J. (1996). Sus-a quick and dirty usability scale. Usability evaluation in industry,

189:194.

Carter, A. and Hundhausen, C. (2010). How is user interface prototyping really done in prac-

tice? a survey of user interface designers. In IEEE VL/HCC, pages 207–211.

Cremer, J., Kearney, J., and Papelis, Y. (1995). Hcsm: a framework for behavior and scenario

control in virtual environments. ACM Transactions on Modeling and Computer Simulation,

5(3):242–267.

Cypher, A. (1991). Eager: Programming repetitive tasks by example. In Proceedings of the

SIGCHI conference on Human factors in computing systems: Reaching through technology,

pages 33–39. ACM.

Cypher, A. and Smith, D. C. (1995). Kidsim: end user programming of simulations. In Pro-

ceedings of the SIGCHI conference on Human factors in computing systems, pages 27–34.

David, R. (1995). Grafcet: A powerful tool for specification of logic controllers. Control Sys-

tems Technology, IEEE Transactions on, 3(3):253–268.

Dershowitz, N. (1986). Programming by analogy, pages 395–423. Morgan Kaufmann.

Deursen, A. V., Klint, P., and Visser, J. (2000). Domain-specic languages: an annotated bibli-

ography. Technical report, Technical report, Centrum voor Wiskunde en Informatica, Am-

sterdam.

Devillers, F. and Donikian, S. (2003). A scenario language to orchestrate virtual world evolu-

tion. In Proc. Eurographics, pages 265–275. Eurographics Association.

Dunican, E. (2002). Making the analogy: Alternative delivery techniques for first year pro-

gramming courses. In Proceedings from the 14th workshop of the psychology of program-

ming interest group, pages 89–99, Brunel University, Belgium.

Espie, S., Saad, F., Schnetzler, B., Bourlier, F., and Djemane, N. (1994). Microscopic traffic

simulation and driver behaviour modelling: the archisim project. In Proc. Road Safety in

Europe and Strategic Highway Research Program, pages 22–31. VTI.

Franceschini, D., Franceschini, R., Burch, R., Sherrett, R., and Abbott, J. (2004). Specifying

scenarios using the military scenario definition language. In Proceedings of the 2004 Simu-

lation Interoperability Workshop.

104

Bibliography

Gajananan, K., Nakasone, A., Prendinger, H., and Miska, M. (2011). Scenario markup lan-

guage for authoring behavioral driver studies in 3d virtual worlds. In Visual Languages

and Human-Centric Computing (VL/HCC), 2011 IEEE Symposium on, pages 43–46. IEEE.

Glinert, E. P. (1990). Visual programming environments: paradigms and systems. IEEE Com-

puter Society Press.

Godley, S. T., Triggs, T. J., and Fildes, B. N. (2002). Driving simulator validation for speed

research. Accident Analysis and Prevention, 34(5):589–600.

Green, T. and Petre, M. (1996). Usability analysis of visual programming environments: a

’cognitive dimensions’ framework. Journal of Visual Language and Computing, 7(2):131–

174.

Green, T. R. G. (1989). Cognitive dimensions of notations. People and computers V, pages

443–460.

Gulliksen, J., Lantz, A., and Boivie, I. (1999). User centered design in practice - problems and

possibilities. Technical report, KTH, Royal Institute of Technology, Stockholm (Sweden).

Hallvard, T. (2008). Ui design without a task modeling language - using bpmn and diamodl

for task modeling and dialog design.

Hieb, M. R., Tolk, A., Sudnikovich, W. P., and Pullen, J. M. (2004). Developing extensible battle

management language to enable coalition interoperability. In European Simulation Inter-

operability Workshop.

Ioannidou, A. (2003). Programmorphosis: a knowledge-based approach to end-user pro-

gramming.

JustinMind (2013). Justinmind prototyper.

Kaptein, N. A., Theeuwes, J., and Van Der Horst, R. (1996). Driving simulator validity: Some

considerations. Transportation Research Record: Journal of the Transportation Research

Board, 1550(1):30–36.

Kearney, J., Willemsen, p., Donikian, S., and Devillers, F. (1999). Scenario languages for driv-

ing simulation. In Driving Simulation Conference.

Kearney, J. K. and Timofey F, G. (2011). Scenario authoring. In Handbook of Driving Simula-

tion for Engineering, Medicine, and Psychology, Boca raton, FL. CRC Press/Taylor & Francis.

Kirakowski, J. and Corbett, M. (1993). Sumi: The software usability measurement inventory.

British journal of educational technology, 24(3):210–212.

Ko, A., Abraham, R., Beckwith, L., Blackwell, A., Burnett, M., Erwig, M., Scaffidi, C., Lawrance,

J., Lieberman, H., Myers, B., Rosson, M., Rothermel, G., Shaw, M., and Wiedenbeck, S.

(2011). The state of the art in end-user software engineering. ACM Comput. Surv., 43(3):1–

44.

105

Bibliography

Ko, A. J., Myers, B. A., and Aung, H. H. (2004). Six learning barriers in end-user programming

systems. In IEEE Symposium on Visual Languages and Human Centric Computing, pages

199–206. IEEE.

Krueger, H.-P., Grein, M., Kaussner, A., and Mark, C. (2005). Silab - a task-oriented driving

simulation.

Leitao, M., Sousa, A. A., and Ferreira, F. N. (1999). A scripting language for multi-level control

of autonomous agents in a driving simulator. In Driving Simulation Conference, volume 99,

pages 339–351.

Lewis, C. and Rieman, J. (1993). Task-centered user interface design: A Practical Introduction.

Univ. Colorado, Dept. Computer Science.

Lewis, J. R. (1991). Psychometric evaluation of an after-scenario questionnaire for computer

usability studies: the asq. In ACM SIGCHI Bulletin, volume 23, pages 78–81.

Lewis, J. R. (2002). Psychometric evaluation of the pssuq using data from five years of usability

studies. International Journal of Human-Computer Interaction, 14(3-4):463–488.

Lewis, J. R., Utesch, B. S., and Maher, D. E. (2013). Umux-lite: when there’s no time for the sus.

In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pages

2099–2102. ACM.

Lieberman, H., Paterno, F., Klann, M., and Wulf, V. (2006). End-User Development: An Emerg-

ing Paradigm End User Development, volume 9 of Human–Computer Interaction Series,

pages 1–8. Springer Netherlands.

Mao, J.-Y., Vredenburg, K., Smith, P. W., and Carey, T. (2005). The state of user-centered design

practice. Communications of the ACM, 48(3):105–109.

Myers, B., Park, S. Y., Nakano, Y., Mueller, G., and Ko, A. (2008). How designers design and

program interactive behaviors. In Proc. IEEE Symposium on Visual Languages and Human-

Centric Computing, pages 177–184. IEEE Computer Society.

Myers, B. A. (1986). Visual programming, programming by example, and program visualiza-

tion: a taxonomy. In ACM SIGCHI Bulletin, volume 17, pages 59–66.

Myers, B. A., Ko, A. J., and Burnett, M. M. (2006). Invited research overview: end-user pro-

gramming. In CHI’06 extended abstracts on Human factors in computing systems, pages

75–80. ACM.

Myers, B. A., Pane, J. F., and Ko, A. (2004). Natural programming languages and environments.

Commun. ACM, 47(9):47–52.

106

Bibliography

Nakasone, A., Prendinger, H., Miska, M., Lindner, M., Horiguchi, R., and Kuwahara, M. (2011).

Openenergysim: A 3d internet based experimental framework for integrating traffic simu-

lation and multi-user immersive driving. In Proceedings of the 4th International ICST Con-

ference on Simulation Tools and Techniques, pages 490–498. ICST (Institute for Computer

Sciences, Social-Informatics and Telecommunications Engineering).

Newell, A. and Card, S. K. (1985). The prospects for psychological science in human-

computer interaction. Human-computer interaction, 1(3):209–242.

Nielsen, J. (1994). Guerilla HCI: Using discount usability engineering to penetrate the intimi-

dation barrier, pages 245–272. Academic Press, Boston MA.

Nielsen, J. (2007). Breadcrumb navigation increasingly useful. Jakob Nielsen’s Alertbox.

Olstam, J. and Espié, S. (2007). Combination of autonomous and controlled vehicles in driv-

ing simulator scenarios. In International Conference on Road Safety and Simulation, pages

23–32, Rome, Italy.

Pane, J. F. (2002). A Programming System for Children that is Designed for Usability. PhD

thesis, Carnegie Mellon University, Computer Science Department.

Pane, J. F., Myers, B. A., and Miller, L. B. (2002). Using hci techniques to design a more usable

programming system. In IEEE Symposia on Human Centric Computing Languages and

Environments, pages 198–206. IEEE.

Pane, J. F., Ratanamahatana, C., and Myers, B. A. (2001). Studying the language and struc-

ture in non-programmers’ solutions to programming problems. International Journal of

Human-Computer Studies, 54(2):237–264.

Papelis, Y., Ahmad, O., and Schikore, M. (2001). Scenario definition and control for the na-

tional advance driving simulator. SAE Technical Papers.

Papelis, Y., Ahmad, O., and Watson, G. (2003). Developing scenarios to determine effects of

driver performance: Techniques for authoring and lessons learned. In Driving Simulation

Conference North America.

Papelis, Y., Ahmad, O., and Watson, G. (2005). Driving simulation scenario definition based

on performance measures.

Papert, S. (1980). Mindstorms: Children, computers, and powerful ideas. Basic Books, Inc.

Park, G. D., Allen, R. W., and Rosenthal, J. (2011). Flexible and real-time scenario building for

experimental driving simulation studies. In Proc. CHI.

Paterno, F. (2013). End user development: Survey of an emerging field for empowering people.

ISRN Software Engineering, 2013:11.

107

Bibliography

Repenning, A. and Ioannidou, A. (2006). What Makes End-User Development Tick? 13 Design

Guidelines, pages 51–86. Springer, Dordrecht.

Repenning, A. and Perrone, C. (2000). Programming by example: programming by analogous

examples. Communications of the ACM, 43(3):90–97.

Reymond, G., Heidet, A., Canry, M., , and Kemeny, A. (2000). Validation of renault’s dy-

namic simulator for adaptive cruise control experiments. In Driving Simulation Confer-

ence, pages 181–191.

Rieman, J., Franzke, M., and Redmiles, D. (1995). Usability evaluation with the cognitive

walkthrough. In Proceedings of CHI, pages 387–388.

Robin, J., James, R. M., Cathleen, W., and Kathy, U. (1991). User interface evaluation in the

real world: a comparison of four techniques. In Proceedings of the SIGCHI Conference on

Human Factors in Computing Systems, pages 119–124. ACM.

Romano, R. (2003). Real-time multi-body vehicle dynamics using a modular modeling

methodology. SAE Technical Papers, pages 207–212.

Rosenthal, T. J., Allen, R. W., and Aponso, B. (2003). Configuration management and user’s

interface for a pc based driving simulator.

Sauro, J. (2013). Measuring usability with the system usability scale (sus).

Sauro, J. and Dumas, J. S. (2009). Comparison of three one-question, post-task usability ques-

tionnaires. In Proceedings of the SIGCHI Conference on Human Factors in Computing Sys-

tems, pages 1599–1608. ACM.

Schmid, U., Mercy, R., and Wysotzki, F. (1998). Programming by analogy: Retrieval, mapping,

adaptation and generalization of recursive program schemes. In Proc. of the Annual Meet-

ing of the GI Machine Learning Group, pages 140–147.

Suresh, P. and Mourant, R. R. (2005). A tile manager for deploying scenarios in virtual driving

environments. In Driving Simulation Conference North America, Orlando, FL.

TeamViewer (2013). Teamviewer.

Tedesco, D. and Tullis, T. (2006). A comparison of methods for eliciting post-task subjective

ratings in usability testing. Usability Professionals Association (UPA), 2006:1–9.

Törnros, J. (1998). Driving behaviour in a real and a simulated road tunnel. A validation study.

Accident Analysis and Prevention, 30(4):497–503.

Tullis, T. S. and Stetson, J. N. (2004). A comparison of questionnaires for assessing website

usability. In Proc. Usability Professional Association Conference, pages 1–12.

UCS (2002). User centered design methods. Usability Consulting Service.

108

Bibliography

Van Someren, M. W., Barnard, Y. F., and Sandberg, J. A. C. (1994). The think aloud method: A

practical guide to modelling cognitive processes. Academic Press, London.

van Welie, M. (2001). Task-Based User Interface Design. PhD thesis, Vrije Universiteit, Amster-

dam.

Vredenburg, K., Mao, J.-Y., Smith, P. W., and Carey, T. (2002). A survey of user-centered design

practice.

Wassink, I., van Dijk, B., Zwiers, J., Nijholt, A., Kuipers, J., and Brugman, A. (2006). In the tru-

man show: Generating dynamic scenarios in a driving simulator. IEEE Intelligent Systems,

21(5):28–32.

Wassink, I. H. C., Dijk, E. M. A. G. v., Zwiers, J., Nijholt, A., Kuipers, J., and Brugman, A. O.

(2005). Bringing hollywood to the driving school: dynamic scenario generation in simu-

lations and games. In Proceedings of the First international conference on Intelligent Tech-

nologies for Interactive Entertainment, pages 288–292. Springer-Verlag.

Wittman, R. and Abbott, J. (2006). Keeping up with the military scenario definition language

(msdl).

Wolffelaar, P., Bayarri, S., and Coma, I. (1999). Script-based definition of complex scenarios.

In 4th Driving Simulation Conference.

Wolffelaar, P. C. v. (1999). Functional aspects of the driving simulator at the university of

groningen. Report, University of Groningen, Groningen, Netherlands.

109

Appendix A

Appendix A

SUS Questionnaire

The 10 item questionnaire with 5 response options is show below.

1. I think that I would like to use this system frequently.

2. I found the system unnecessarily complex.

3. I thought the system was easy to use.

4. I think that I would need the support of a technical person to be able to use this system.

111

Appendix A. Appendix A

5. I found the various functions in this system were well integrated.

6. I thought there was too much inconsistency in this system.

7. I would imagine that most people would learn to use this system very quickly.

8. I found the system very cumbersome to use.

9. I felt very confident using the system.

10. I needed to learn a lot of things before I could get going with this system.

112

SEQ Questionnaires

1. Creating and Specifying Participant vehicle was

2. Overall, Traffic zone creation and configuration task was

3. Overall, Environment/Weather zone creation and configuration task was

4. Overall, Creation of traffic situation task was

5. It was easy to specify the triggers

6. It was easy to specify the template parameters while creating traffic situations

113

Appendix A. Appendix A

Other questions

1. The proposed approach to construct events can help the non programmers to develop an

experimental protocol without any help (or minimum help) from the end-users

2. I spent less time on this tool while developing this protocol as compared to the tool that I

use or have used for my research

114

Appendix B

Appendix B

SML schema

Participant Vehicle

115

Appendix B. Appendix B

Traffic Zones

Environment Zones

Critical Situations

116

Triggers/Conditions for Critical situations

Template Parameters for Critical situations

117

	Résumé
	Chapter 1 Introduction
	1.1 End users programming
	1.2 Driving simulators
	1.3 Driving simulator scenarios
	1.4 Challenges in modeling scenarios
	1.5 Driving simulation platforms
	1.6 Overview of the thesis

	Chapter 2 State of the art
	2.1 Scenario authoring in driving simulators
	2.2 Scenario modeling approaches
	2.3 Scenario authoring language
	2.4 Driving simulators and other domains
	2.4.1 End-user programming Systems

	2.5 Dealing with designing interfaces for end-users

	Chapter 3 End-user requirements
	3.1 User-Centered Design
	3.2 User Interviews
	3.3 Method
	3.3.1 Participants
	3.3.2 Procedure

	3.4 Results
	3.4.1 General problems
	3.4.2 Concept-to-script translation problems
	3.4.3 Ideal approach to model scenarios
	3.4.4 Improvement of the driving Simulator in use

	3.5 Discussion and conclusion

	Chapter 4 ProposedMulti-Layer programming approach
	4.1 Key challenges for researchers
	4.1.1 Technical challenges

	4.2 User roles
	4.3 Experimental Protocol development Steps
	4.4 Proposed solution
	4.4.1 Multi-layer Programming
	4.4.2 Empowering the end-users
	4.4.3 Scenario modeling process usingMulti-layered approach
	4.4.4 Discussion on user roles
	4.4.5 Movie theater metaphor of the approach

	4.5 Prototype Building
	4.5.1 Step 1: Experiment Description
	4.5.2 Step 2: Terrain selection
	4.5.3 Step 3: Configure subject vehicle
	4.5.4 Step 4: Configure Autonomous Traffic
	4.5.5 Step 5: Configure environment
	4.5.7 Step 7a: Construct critical events and scenarios
	4.5.8 Step 7b: Specify Template parameters
	4.5.9 Step 7c: Overview of the experiment

	4.6 Significance of the approach
	4.6.1 Overcoming barriers
	4.6.2 Support higher-level goals
	4.6.3 Reusability
	4.6.4 Is it another new System?

	4.7 Comparison with the existing system
	4.7.1 Interface

	Chapter 5 User Experience
	5.1 Preliminary study
	5.1.1 Procedure
	5.1.2 Interviews
	5.1.3 Results
	5.1.4 Discussion

	5.2 Main study
	5.2.1 Participants’ selection and participation
	5.2.2 Experiment Setup and Procedure
	5.2.3 Experiment Task
	5.2.4 Data Collection
	5.2.5 Data Analysis
	5.2.6 Results

	5.3 Discussion and hypotheses exploration
	5.3.1 User selection
	5.3.2 User performance
	5.3.3 Problems with the users
	5.3.4 Hypotheses Explora

	5.4 Conclusion

	Chapter 6 Interoperability of the solution
	6.1 Need for interoperability of scenarios
	6.2 Challenges to develop an interoperability framework
	6.3 Scenario modelling process
	6.4 ScenarioMeta-Language (SML)
	6.4.1 Functional requirements
	6.4.2 General requirements
	6.4.3 Description of the SML
	6.5 Interoperability framework
	6.5.1 Implementation of the Interoperability Framework

	6.6 Conclusion

	Chapter 7 Conclusion
	7.1 Concluding discussion
	7.2 Contributions
	7.3 Prospective

	Bibliography
	Appendix
	Appendix A
	Appendix B

