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Abstract. We present and analyze an abstract step size selection algorithm which
ensures asymptotic stability of numerical approximations to asymptotically stable
ODEs. A particular implementation of this algorithm is proposed and tested with
two numerical examples. The application to ODEs solving nonlinear optimization
problems on manifolds is explained and illustrated by means of the Rayleigh flow
for computing eigenvalues of symmetric matrices.

1 Introduction
Step size control algorithms are nowadays standard in numerical methods for solv-
ing ordinary differential equations (ODEs). Due to the fact that the characteristics
of the vector field depend on the state (and possibly also on time), adaptive step
sizes should be used as the solution evolves. Using efficient implementations, the
additional computational effort for the online computation of suitable step sizes is
typically negligible compared to the gain in computational efficiency. Usually, the
adaptive step sizes are selected on the basis of local error estimates and the corre-
sponding algorithms are classical and can be found in any text book on numerical
methods for differential equations, as, e.g., in [4, 14, 15, 25].
While error estimation based step size selection schemes achieve very good results
in ensuring accurate approximations on finite time intervals, they do not necessarily
guarantee that the asymptotic behavior of the numerical solution equals that of the
exact solution. In this paper, we will investigate this case for ODEs exhibiting an
asymptotically stable equilibrium. It is well known that any consistent and stable
numerical scheme for ODEs inherits the asymptotic stability of the original equa-
tion in a practical sense, even for more general attractors than equilibria, see for
instance [11, 12, 20] and [25, Chapter 7] for fixed step size and [7, 21] for schemes
with variable step size. However, in general the numerical approximation need not
be asymptotically stable in the usual sense. Instead, it may happen that the numeri-
cal solution does not converge to the equilibrium but only to a small neighborhood
thereof and this can happen not only for fixed step sizes but also when error based
step size control techniques are used, as [18, Example 2.11] shows.
A popular approach to ensure “true” asymptotic stability of the numerical scheme is
the use of specialized numerical schemes, like (typically implicit) schemes having
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the A-stability or B-stability property which guarantee asymptotic stability for cer-
tain classes of ODEs, cf. e.g., [4, 15, 25], or geometric integration methods which
preserve structural properties of the ODE also on infinite integration intervals, cf.
e.g., [13] or [10]. Here, we build upon a different approach which was recently pro-
posed in [18]. In this reference, general consistent Runge-Kutta schemes (explicit or
implicit) were represented as hybrid control systems such that the step size selection
problem could be reformulated as a nonlinear feedback stabilization problem. Con-
sequently, nonlinear feedback design techniques like the small gain methodology or
Lyapunov function based design, e.g., via backstepping, could then be applied to
solve the problem under suitable assumptions on the system and, in case of Lya-
punov function based design, on the corresponding Lyapunov function. Although
the methods proposed in [18] may not necessarily outperform specialized taylored
methods for particular problem classes, they form a systematic and versatile ap-
proach which can be applied to many different problems. While the majority of the
results in [18] were focused on existence issues or explicit state dependent step size
formulas, it was also observed that if a Lyapunov function for the ODE is known,
then an online step size control algorithm similar to classical error estimation based
step size control schemes can be designed.
In this paper, we will further investigate and refine this concept. Specifically, we
will present an abstract Lyapunov function based step size control algorithm and
prove asymptotic stability of the generated numerical approximations under general
assumptions on the functions adjusting the step sizes. We then propose an imple-
mentation of this abstract algorithm in which the adjustment of the step sizes is ob-
tained using ideas from consistency order based step size control. In this context it is
important to note that the discretization error introduced by the Runge-Kutta scheme
may not necessarily destroy asymptotic stability. On the contrary, it may well hap-
pen that the numerical approximation converges to the equilibrium at a faster rate
than the exact solution and this effect may be even stronger if large time steps are
used. A particular feature of our algorithm — which will also be visible in our
numerical examples — is that it is able to detect this situation and then allows for
large step sizes. Of course, proceeding this way, we can no longer guarantee that
the numerical solution faithfully reproduces the exact solution. However, the algo-
rithm still ensures convergence to the correct equilibrium and may thus be able to
reach a small neighborhood of this equilibrium with considerably less steps than an
approximation which aims at a correct reproduction of the exact solution during the
transient phase.
The algorithm is thus particularly suited for applications in which the numerical
computation of an asymptotically stable equilbrium — but not necessarily the path
along which this equilibrium is approached — is of interest. A typical class of prob-
lems in which this is the case are ODEs which are desiged for solving nonlinear
optimization problems. Since such ODEs, moreover, often come with a canonical
Lyapunov function (in the simplest case the function to be optimized, itself), our
algorithm is readily applicable. For optimization problems appearing in mathemat-
ical systems theory, the monograph of Helmke and Moore [16] presents a variety
of ODEs for optimization and we will illustrate the use of our algorithm in this
area by applying it to the Rayleigh flow for computing the minimal eigenvalue of a
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symmetric matrix which is a particular example from [16].
The remainder of the paper is organized as follows. After introducing the neces-
sary notation at the end of this introduction, Section 2 defines the systems under
consideration as well as Runge-Kutta approximations and their representation via
hybrid systems and introduces the precise problem formulation. Moreover, prelimi-
nary Lyapunov function results from [18] are recalled for convenience of the reader.
In Section 3 we first present and analyze our abstract step size control algorithm and
then discuss a particular implementation of this algorithm and illustrate its perfor-
mance by means of two numerical examples. Section 4 then discusses the applica-
tion nonlinear optimization, gives a brief survey of approaches from the literature to
which our algorithm applies and finally illustrates the performance of our algorithm
for the Rayleigh flow.

1.1 Notation

By C0(A ; Ω), we denote the class of continuous functions on A ⊆ Rn, which take
values in Ω ⊆ Rm. By Ck(A ; Ω), where k ≥ 1 is an integer, we denote the class of
differentiable functions on A with continuous derivatives up to order k, which take
values in Ω.
For a vector x ∈ Rn we denote by ‖x‖ the Euclidean norm and by xT its transpose.
By Bε(x), where ε > 0 and x ∈ Rn, we denote the ball of radius ε > 0 centered at
x ∈ Rn, i.e., Bε(x) := {y ∈ Rn : |y− x|< ε }.
R+ denotes the set of non-negative real numbers and Z+ the set of non-negative
integer numbers. By K∞ we denote the set of all strictly increasing and continuous
functions ρ : R+→ R+ with ρ(0) = 0 and lims→+∞ ρ(s) = +∞.
For every scalar continuously differentiable function V : Rn→R, ∇V (x) denotes the
gradient of V at x ∈ Rn, i.e., ∇V (x) = ( ∂ V

∂x1
(x), . . . , ∂ V

∂xn
(x)). We say that a function

V : Rn→R+ is positive definite if V (x) > 0 for all x 6= 0 and V (0) = 0. We say that
a continuous function V : Rn→R+ is radially unbounded if for every M > 0 the set
{x ∈ Rn : V (x)≤M } is compact.

2 Setting and problem formulation
We consider autonomous differential equations of the type

ż(t) = f (z(t)) , z(t) ∈ Rn (1)

where f : Rn→ Rn is a locally Lipschitz vector field for which there exists x∗ ∈ Rn

with f (x∗) = 0. Without loss of generality we may assume x∗ = 0. For every z0 ∈Rn

and t ≥ 0, the solution of (1) with initial condition z(0) = z0 will be denoted by z(t)
or by z(t,z0) if we want to emphasize the dependence on the initial value z0.

2.1 Runge-Kutta schemes
A standard way of obtaining a numerical approximation of this solution is via a
Runge-Kutta scheme. Here we summarize the facts for these schemes we need
in this paper. Proofs and more details can be found, e.g., in the monographs [4],
[14, 15] or [25].
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Given an approximation z̃ ≈ z(t) for some t ≥ 0 and a time step h > 0, an approxi-
mation Φ(z̃,h)≈ z(t +h) via an s-stage Runge-Kutta method is given by

k j = f

(
z̃+h

s

∑
l=1

a jlkl

)
, j = 1, . . . ,s (2)

Φ(z̃,h) := z̃+h
s

∑
j=1

b jk j (3)

Here a jl , b j, j, l = 1, . . . ,s, are the coefficients of the scheme and k1, . . . ,ks are called
the stages of the scheme. Some popular examples for Runge-Kutta schemes can be
found in Section 3.3, below. If a jl = 0 for all l ≥ j and all j = 1, . . . ,s, then the
scheme is called explicit and the equations (2) can be evaluated recursively. Other-
wise, the scheme is called implicit and the equations (2) form a system of (in general
nonlinear) equations. Under the Lipschitz assumption on f one can show using Ba-
nach’s fixed point theorem that there exists a continuous function hmax : Rn → R+

such that a unique solution of (2) exists for each z̃ ∈ Rn and each h ∈ (0,hmax(z̃)],
see, e.g. [18]. In a practical implementation, (2) needs to be solved by some nu-
merical method, e.g., a fixed-point iteration or Newton’s method. Even though this
introduces additional numerical effort in computing Φ(z̃,h), this effort may pay off
when solving stiff equations.
Given the initial time τ0 = 0, an initial value z0 ∈ Rn and a sequence of time steps
hi > 0 we recursively define the times τi+1 := τi + hi. Then, one can generate ap-
proximations z̃i ≈ z(τi,z0) at the times τi via the iteration

z̃0 := z0, z̃i+1 := Φ(z̃i,hi).

In order to analyze the convergence of a Runge-Kutta scheme, one looks at the
approximation error ei := ‖z̃i− z(τi,z0)‖. For estimating this error, the concept of
consistency is used.

Definition 1. A Runge-Kutta scheme is called consistent with order p ≥ 1, if for
each compact set K ⊂ Rn there exists h̄ > 0 and a constant C > 0 such that the
inequality

‖Φ(z0,h)− z(h,z0)‖ ≤Chp+1 (4)

holds for all z0 ∈ K and all h ∈ (0, h̄], where z(h,z0) denotes the solution of (1) and
h̄ > 0 is chosen such that this solution exists for all z0 ∈ K and all h ∈ (0, h̄].

The consistency and the order of consistency depends on the coefficients of the
scheme. For instance, the condition ∑

s
j=1 b j = 1 ensures consistency with order

p = 1 for continuously differentiable vector fields f . Additional conditions on the
coefficients a jl and b j ensure higher order convergence, i.e., (5) with p≥ 2, provided
the vector field f is sufficiently smooth. Consistency together with a Lipschitz-
type stability condition (which holds for any Runge-Kutta scheme provided f in
(1) is Lipschitz) then implies convergence of the scheme. More precisely, if the
scheme is consistent and if the solution z(t,z0) exists for t ∈ [0,T ], then there exists a
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constant CT > 0, such that for any selection of time steps h0, . . . ,hN−1 > 0 satisfying
τi ∈ [0,T ] for i = 0, . . . ,N the inequality

max
i=0,...,N

ei ≤CT hp (5)

holds for all sufficiently small h > 0, where h := maxi=0,...,N hi and p is the order of
consistency of the scheme.

2.2 Runge-Kutta schemes as hybrid systems
Our goal in this paper is to analyze the dynamical behavior of the numerical approx-
imation, more precisely its asymptotic stability at the origin. To this end, we need
to interpret the values z̃i as states of a dynamical system. This is a relatively easy
task if the time steps hi are constant, i.e., hi ≡ h for all i = 0, . . . ,N, since in this case
z̃i+1 = Φ(z̃i,h) defines a standard discrete time dynamical system. However, if the
hi are time varying — which is the case we consider in this paper — the situation
becomes more complicated. Varying time steps can, for instance, be handled as part
of an extended state space, cf. [22], or by defining the discrete time system on the
nonuniform time grid {τ0,τ1,τ2, . . .} induced by the time steps, cf. [21] or [7]. Here,
we choose another option, namely to represent the numerical approximation by a
hybrid dynamical system of the form

ẋ(t) = F(hi,x(τi)) , t ∈ [τi,τi+1)
τ0 = 0 , τi+1 = τi +hi

hi = ϕ(x(τi)) exp(−u(τi))
x(t) ∈ Rn , u(t) ∈ [0,+∞)

(6)

where ϕ ∈ C0(Rn;(0,r]), r > 0 is a constant, F :
⋃

x∈Rn ([0,ϕ(x)]×{x})→ Rn is
a (not necessarily continuous) vector field with F(h,0) = 0 for all h ∈ [0,ϕ(0)],
limh→0+ F(h,z) = f (z), for all z ∈ Rn. The function u : R+ → R+ is a locally
bounded input to the system whose meaning will be described below.
The solution x(t) of the hybrid system (6) is obtained for every such u by setting
τ0 = 0, x(0) := x0 and then proceeding iteratively for i = 0,1, . . . as follows (cf.
[17]):

1. Given τi and x(τi), calculate τi+1 according to τi+1 = τi +ϕ(x(τi))exp(−u(τi))

2. Compute the state trajectory x(t), t ∈ (τi,τi+1] as the solution of the differ-
ential equation ẋ(t) = F(hi,x(τi)), i.e., x(t) = x(τi)+ (t − τi)F(hi,x(τi)) for
t ∈ (τi,τi+1].

We denote the resulting trajectory by x(t,x0,u) or briefly x(t) when x0 snd u are clear
from the context.
Any Runge-Kutta scheme can be represented by a hybrid system (6) by defining

F(h,x) := h−1(Φ(x,h)− x) =
s

∑
j=1

b jk j (7)
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Indeed, from the explicit solution formula in Step 2, above, it immediately follows
that the solutions of the hybrid system using this F and x0 = z0 satisfy

x(τi,x0,u) = z̃i.

The corresponding time steps hi = ϕ(x(τi)) exp(−u(τi)) are determined via the state
dependent function ϕ(x(τi)) and the time dependent factor exp(−u(τi)) ∈ (0,1].
Hence, ϕ(x(τi)) can be interpreted as the maximal allowable step size for the state
x(τi) (with global upper bound r > 0) and u(τi) can be used to arbitrarily reduce this
value. Note that for implicit Runge-Kutta schemes typically an upper bound on the
step size is needed in order to ensure solvability of the system of equations (2) and
the function ϕ can be used for this purpose, for details we refer to [18].
We will further assume that there exists a continuous, non-decreasing function M :
R+→ R+ such that

‖F(h,x)‖ ≤ ‖x‖M (‖x‖) for all x ∈ Rn and h ∈ [0,ϕ(x)] (8)

This condition implies that (6) has the “Boundedness-Implies-Continuation” prop-
erty and thus for each locally bounded input u : R+ → R+ and x0 ∈ Rn there ex-
ists a unique absolutely continuous solution function [0,+∞) 3 t → x(t) ∈ Rn with
x(0) = x0, see [17]. Appropriate step size restriction can always guarantee that (8)
holds for F from (7), cf. [18].
Modeling numerical schemes (and particularly Runge-Kutta schemes) as hybrid sys-
tems is nonstandard but has certain advantages compared to the alternative discrete
time formulations approaches from [7, 21, 22]. For instance, here we aim at stability
statements for all step size sequences (hi)i∈N0 with hi > 0 and hi ≤ ϕ(x(τi)), cf. the
discussion after Definition 3, below. Once ϕ is fixed, for the hybrid system (6) this
is equivalent to ensuring the desired stability property for all locally bounded func-
tions u : R+→ R+. Hence, our hybrid approach leads to an explicit condition (“for
all u”) while the discrete time approach leads to a more technical implicit condition
(“for all hi satisfying hi ≤ ϕ(x(τi))”). Moreover, the formulation via hybrid models
enables us to use readily available stability results from the hybrid control systems
literature, while for other formulations we would have to rely on ad hoc arguments.

2.3 Problem formulation
Our general aim is to ensure asymptotic stability of the origin for (6), (7) for suitable
choices of ϕ and all locally bounded inputs u, provided the origin is asymptotically
stable for (1). To this end, we first precisely define these stability properties.
For the differential equation (1) we use the following condition, cf. [23] (see also
[17, 19]).

Definition 2. We say that the origin 0 ∈ Rn is uniformly globally asymptotically
stable (UGAS) for (1) if it is
(i) Lyapunov stable, i.e., for each ε > 0 there exists δ > 0 such that ‖z(t,z0)‖ ≤ ε

for all t ≥ 0 and all z0 ∈ Rn with ‖z0‖ ≤ δ and
(ii) uniformly attractive, i.e., for each R > 0 and ε > 0 there exists T > 0 such that
‖z(t,z0)‖ ≤ ε for all t ≥ T and all z0 ∈ Rn with ‖z0‖ ≤ R.
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The next definition formalizes the condition that (6) is asymptotically stable for all
locally bounded inputs u, cf. [17].

Definition 3. We say that the origin 0 ∈Rn is uniformly robustly globally asymptot-
ically stable (URGAS) for (6) if it is
(i) robustly Lagrange stable, i.e., for each R > 0 it holds that sup{‖x(t,x0,u)‖| t ≥
0, ‖x0‖ ≤ R, u : R+→ R+ locally bounded}< ∞.
(ii) robustly Lyapunov stable, i.e., for each ε > 0 there exists δ > 0 such that
‖x(t,x0,u)‖ ≤ ε for all t ≥ 0, all x0 ∈ Rn with ‖x0‖ ≤ δ and all locally bounded
u : R+→ R+ and
(iii) robustly uniformly attractive, i.e., for each R > 0 and ε > 0 there exists T > 0
such that ‖x(t,x0,u)‖ ≤ ε for all t ≥ T , all x0 ∈ Rn with ‖x0‖ ≤ R and all locally
bounded u : R+→ R+.

Contrary to the ordinary differential equation (1), for the hybrid system (6) Lya-
punov stability and attraction do not necessarily imply Lagrange stability. This is
why — in contrast to Definition 2 — we explicitly included this property in Defini-
tion 3.
Note that our choice ϕ ∈ C0(Rn;(0,r]) implies infx∈N ϕ(x) > 0 for any bounded
neighborhood N of the origin. This implies that the asymptotic stability property
can be achieved for a sequence of step sizes hi which is bounded from below by
a positive value. This avoids the undesirable property that the discretization step
sizes tend to 0 as i→+∞. However, as we will see, it will also be possible to make
rigorous statements in situations where such a ϕ does not exist, cf. Theorem 8 and
the discussion after its proof.
The stability property in Definition 3 is called robust because it requires the respec-
tive stability properties uniformly for all locally bounded inputs u and thus for all
(positive) step sizes hi ≤ ϕ(x(τi)). This is an important feature because it allows us
to couple our method with other step size selection schemes. For instance, we could
use the step size min{ϕ(x(τi)), h̃i} where h̃i is chosen such that a local error bound
is guaranteed. Such methods are classical, cf. [14] or any other textbook on numeri-
cal methods for ODEs. Proceeding this way results in a numerical solution which is
asymptotically stable and at the same time maintains a pre-defined accuracy. Note
that our approach will not incorporate error bounds, hence the approximation may
deviate from the true solution, at least in the transient phase, i.e., away from 0. On
the other hand, as [18, Example 2.1] shows, local error based step size control does
in general not guarantee asymptotic stability of the numerical approximation. Thus,
a coupling of both approaches may be needed in order to ensure both accuracy and
asymptotic stability.
Assuming that Definition 2 is satisfied, Definition 3 now gives rise to several prob-
lems. The first of these is the following existence problem.
(P1) Existence Is there a continuous function ϕ : Rn → (0,r], such that 0 ∈ Rn is
URGAS for system (6), (7)?
Provided the answer to (P1) is positive, one may then look at the following design
problems.
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(P2) Global Design Construct a continuous function ϕ : Rn→ (0,r], such that 0 ∈
Rn is URGAS for system (6), (7).
(P3) Trajectory based Design For a given initial value x0, construct a sequence of
step sizes hi > 0 satisfying hi ≤ ϕ(x(τi)) for all i ∈ N and the function ϕ from (P1).
A variety of results related to Problems (P1) and (P2) can be found in [18]. In this
context we note that any consistent and stable numerical scheme for ODEs inherits
the asymptotic stability of the original equation in a practical sense, even for more
general attractors than equilibria, see for instance [11, 12] or [25, Chapter 7]. Prac-
tical asymptotic stability means that the system exhibits an asymptotically stable
set close to the original attractor, i.e., in our case a small neighborhood around the
equilibrium point, which shrinks down to the attractor as the time step h tends to 0.
In contrast to this, the property defined in Definition 3 is “true” asymptotic stabil-
ity, a stronger property which cannot in general be deduced from practical stability.
In [25, Chapter 5], several results for our problem for specific classes of ODEs are
derived using classical numerical stability concepts like A-stability, B-stability and
the like. In [18], it was observed that Problems (P1) and (P2) can be interpreted as
feedback stabilization problems for the system (6), (7) in which ϕ plays the role of
the stabilizing feedback law. Consequently, various methods from nonlinear con-
trol theory, like small-gain and Lyapunov function techniques, have been applied to
these problems in [18] generalizing the results from [25, Chapter 5] to more general
classes of systems and to systems with different structural properties. In contrast to
[18], in this paper our focus lies on Problem (P3) and applications thereof.

2.4 Lyapunov functions
Lyapunov functions are the main technical tool we are going to use in this paper. In
this section we collect and extend some results from [18] which form the basis for
our algorithm and analysis. The first lemma gives a sufficient Lyapunov condition
for the URGAS property for hybrid systems of the form (6). For its proof we refer
to [18, Lemma 4.1].

Lemma 4. Consider system (6) and suppose that there exist a continuous, positive
definite and radially unbounded function V : Rn → R+ and a continuous, positive
definite function W : Rn → R+ such that for every x ∈ Rn the following inequality
holds for all h ∈ [0,ϕ(x)].

V (x+hF(h,x))≤V (x)−hW (x) (9)

Then the origin 0 ∈ Rn is URGAS for system (6).

In the following section, we will use inequality (9) in order to construct adaptive
step sizes hi online while computing the numerical solution. To this end, we need
to know a Lyapunov function V . Similar to [18], we will use a Lyapunov function
for the continuous-time system (1) for this purpose. Such a Lyapunov is defined as
follows.

Definition 5. A positive definite, radially unbounded function V ∈ C1(Rn;R+) is
called a Lyapunov function for system (1) if the inequality

∇V (x) f (x) < 0 (10)
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holds for all x ∈ Rn\{0}.

As we will see in the proof of Theorem 8, below, such a Lyapunov function for (1)
can indeed be used in order to establish (9) for F from (7). As a prerequisite for this
proof, in the remainder of this section we establish bounds on the decay of V along
the solutions of (1). To this end, observe that the equation

lim
h→0
h>0

V (z(h,x))−V (x)
h

= ∇V (x) f (x)

(which follows by the chain rule) together with ∇V (x) f (x) < 0 for x 6= 0 implies
that for each λ ∈ (0,1), each x ∈Rn and each sufficiently small h > 0 the inequality

V (z(h,x))−V (x)≤ hλ∇V (x) f (x) (11)

holds. The following lemma makes the statement “sufficiently small h > 0” in this
observation more precise.

Lemma 6. Let V ∈ C1(Rn;R+) be a Lyapunov function for system (1) and λ ∈
(0,1). Then the following statements hold.

(i) For each two constants R > ε > 0 there exists hε,R > 0 such that (11) holds
for all x ∈ Rn with R≥ ‖x‖ ≥ ε and all h ∈ (0,hε,R].

(ii) Assume that W (x) := −∇V (x) f (x) is locally Lipschitz and that there exist
constants b > 1, ε,c > 0 and a continuous positive definite function ` : Rn→
R+ satisfying

`(x)≥ sup
{
|W (y)−W (z)|
‖y− z‖

: y,z ∈ Rn , y 6= z , max{‖y‖ , ‖z‖} ≤ b‖x‖
}

for all x ∈ Rn \{0} and
‖x‖ `(x)≤ cW (x) (12)

for all x ∈ Bε(0). Then there exists a continuous function ϕ ∈ C0(Rn;(0,r])
for some r > 0 such that (11) holds for all x ∈ Rn and all h ∈ (0,ϕ(x)).

Proof. (i) Fix an arbitrary η ∈ (0,ε) and consider the compact sets K := {x ∈
Rn |R ≥ ‖x‖ ≥ ε} and Kη := {x ∈ Rn |R + η ≥ ‖x‖ ≥ ε − η} and the map x 7→
∇V (x) f (x). This map is continuous and attains negative values on K, hence the
value α := maxx∈K ∇V (x) f (x) exists and satisfies α < 0. Moreover, since any con-
tinuous map is uniformly continuous on each compact set, the map is uniformly
continuous on Kη , i.e., for given ε ′ > 0 there exists δ > 0 such that

|∇V (x) f (x)−∇V (y) f (y)| ≤ ε
′

holds for all x,y ∈ Kη with ‖x− y‖ ≤ δ .
Since the vector field f is also continuous, its norm ‖ f (x)‖ is bounded on Kη by
some M > 0 and thus for all t ∈ [0,η/M] we obtain that z(t,x) ∈ Kη and ‖z(t,x)−
x‖ ≤ tM for all x ∈ K.
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Now we set ε ′= (λ−1)α , pick δ > 0 from the uniform continuity property (without
loss of generality we may choose δ ≤ η) and set hε,R := δ/M. Then for all x ∈ K
and all t ∈ (0,hε,R] we obtain ‖z(t,x)− x‖ ≤ δ and thus for all h ∈ (0,hε,R] we can
estimate

V (z(h,x))−V (x) =
∫ h

0
∇(z(t,x)) f (z(t,x))dt

≤
∫ h

0
∇(x) f (x)+ ε

′dt = h ∇(x) f (x)+h(λ −1)α

≤ h∇(x) f (x)+h(λ −1)∇(x) f (x) = h(1−λ )∇(x) f (x)

which shows the claim.
(ii) Follows from [18, Lemma 4.3].

3 Lyapunov function based step size control
In this section we present our Lyapunov function based step size control algorithm.
We start by stating and analyzing an “abstract” version of this algorithm and then de-
scribe the details of our implementation and illustrate it by means of two numerical
examples.

3.1 An abstract step size control algorithm
The following algorithm provides an abstract step size selection method based on a
Runge-Kutta scheme for (1), expressed via (7) as a hybrid system (6), a Lyapunov
function V for (1) according to Definition 5 and its derivative ∇V . Moreover, we
assume that we have defined two functions

hreduce : R+×Rn→ R+ and hnew : R+×Rn→ R+,

which for a given h > 0 and x ∈Rn produce a reduced step size hreduce(h,x) < h and
a new step size hnew(h,x) > 0. In order to simplify the presentation, the algorithm
uses a maximal step size hmax > 0 which does not depend on the state x, but the
inclusion of a state dependent upper bound is straightforward.

Algorithm 7. (Lyapunov function based step size control algorithm)
Input: Initial value x0 ∈ Rn, initial step size h0 > 0, maximal step size hmax > 0,
parameter λ ∈ (0,1)
(0) set x(0) := x0, τ0 := 0, i := 0
(1) set hi := min{hi,hmax} and compute x(τi +hi) := Φ(x(τi),hi)
(2) while V (x(τi +hi))−V (x(τi)) > λh∇V (x(τi)) f (x(τi))
(3) set hi := hreduce(hi,x(τi)) and recompute x(τi +hi) := Φ(x(τi),hi)
(4) end while
(5) set hi+1 := hnew(hi,x(τi)), τi+1 := τi +hi, i := i+1 and go to (1)

Note that this algorithm does not have a termination criterion and hence — in prin-
ciple — produces infinitely many values x(τi). Of course, if only a solution on some
interval [0,T ] is desired, the algorithm could be modified accordingly.

10
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Since the above algorithm only produces one single sequence of step sizes hi for
each initial value x0, it does not make sense to talk about robust stability concepts
anymore. Moreover, since the Lyapunov function condition in step (2) is only en-
sured at the discrete times τi, we cannot in general expect stability properties for
all t ≥ 0 (although under suitable conditions they could be recovered by continuity
arguments, see, e.g., [24]). However, under appropriate assumptions on hreduce and
hnew we can still recover the required properties from Definition 3 at the discrete
time instants τi, as the following theorem states.

Theorem 8. Consider Algorithm 7 in which Φ is a consistent Runge-Kutta scheme
with order p ≥ 1. Let V ∈ C1(Rn;R+) be a Lyapunov function for system (1) and
λ ∈ (0,1). Assume that hmax > 0 is chosen such that Φ(x,h) is defined for all x ∈Rn

and h ∈ (0,hmax] and that the functions hreduce and hnew satisfy

• there exist real values 0 < ρ1≤ ρ2 < 1 such that hreduce(x,h)∈ [ρ1h,ρ2h] holds
for all x ∈ Rn and all h > 0 for which the condition in Step (2) of Algorithm 7
is satisfied

• hnew(x,h) ≥ h holds for all x ∈ Rn and all h > 0 for which the condition in
Step (2) of Algorithm 7 is not satisfied.

Then, for each initial value Algorithm 7 generates an infinite sequence of time steps
hi (i.e., the while loop in steps (2)–(4) always terminates) and at the times τi the
resulting trajectories are
(i) Lagrange stable, i.e., for each R > 0 it holds that sup{‖x(τi,x0)‖| i ∈ N, ‖x0‖ ≤
R}< ∞.
(ii) Lyapunov stable, i.e., for each ε > 0 there exists δ > 0 such that ‖x(τi,x0)‖ ≤ ε

for all i ∈ N and all x0 ∈ Rn with ‖x0‖ ≤ δ

(iii) uniformly attractive, i.e., for each R > 0 and ε > 0 there exists T > 0 such that
‖x(τi,x0)‖ ≤ ε for all τi ≥ T and all x0 ∈ Rn with ‖x0‖ ≤ R.
If, in addition, there exists a continuous function ϕ ∈C0(Rn;(0,r]) for some r > 0
such that

V (Φ(x,h))−V (x)≤ hλ∇V (x) f (x) (13)

holds for all x ∈ Rn and all h ∈ (0,ϕ(x)), then for each initial value x0 ∈ Rn there
exists hmin > 0 such that hi ≥ hmin holds for all i ∈ N. In particular, in this case the
sequence of times τi generated by Algorithm 7 tends to ∞ as i→ ∞.

Proof. Let (ak)k∈N be an arbitrary sequence with 0 < ak+1 < ak, limk→∞ ak→ 0 and
pick λ̃ ∈ (λ ,1) arbitrarily. Define the sets M := {x ∈ Rn |V (x) ≤ a1}, Mk := {x ∈
Rn |V (x) ∈ [ak+1,ak]} and let k ∈ N be arbitrary. Since V is continuous, positive
definite and radially unbounded, it follows from Lemma 3.5 in [19] that there exist
functions α1,α2 ∈K∞ with

α1 (‖x‖)≤V (x)≤ α2 (‖x‖) for all x ∈ Rn. (14)

This implies that the sets M and Mk are compact and there exists Rk > εk > 0 such
that Rk ≥ ‖x‖ ≥ εk holds for all x ∈ Mk. Thus we can apply Lemma 6(i) which

11
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implies that there exists hεk,Rk ∈ (0,hmax] such that the condition (11) holds for λ̃ in
place of λ for all x ∈Mk and all h ∈ (0,hεk,Rk ].
Since the scheme is consistent and V is Lipschitz, this implies

V (Φ(h,x))−V (x)≤V (z(h,x))−V (x)+LChp+1 ≤ hλ̃∇V (x) f (x)+LChp+1

for all x ∈Mk and all h ∈ (0,min{h̄,hεk,Rk}], where h̄ is the step size from the con-
sistency condition for the compact set M and L is the Lipschitz constant of V on the
set K = {Φ(x,h) |x ∈M, h ∈ [0, h̄]}∪{z(h,x) |x ∈M, h ∈ [0, h̄]}, which is compact
since M× [0,h] is compact and both z(·, ·) and Φ(·, ·) are continuous. Setting

γk := max
x∈Mk

∇V (x) f (x) < 0 and h′k :=

(
(λ − λ̃ )γ

LC

) 1
p

> 0,

for h̄k := min{h̄,hε,R,h′} we thus obtain

V (Φ(x,h))−V (x)≤ hλ∇V (x) f (x)≤ hλγk (15)

for all x ∈Mk and all h ∈ (0, h̄k].
Now consider the while loop in the steps (2)–(4) of Algorithm 7 for some x(τi)∈Mk
and denote by hi,old the time step for which step (1) is executed before entering
this loop. Inequality (15) and the inequalities for hreduce then implies that for any
x(τi) ∈ Mk the loop terminates with a time step hi ≥ min{hi,old ,ρ1h̄k} for which
V (Φ(x(τi),hi)) ≤ V (x(τi)) ≤ hiλγk holds. Moreover, since hnew(hi,x(τi)) ≥ hi, the
subsequent time steps h j, j≥ i+1, will satisfy the same lower bound as hi as long as
x j ∈Mk holds. Hence, as long as x j ∈Mk holds, V (x(τi)) decreases monotonically
with a fixed amount of decay and a uniform positive lower bound on the time step.
Thus, by definition of the sets Mk, for each k ∈N there exists a time tk > 0 such that
whenever x(τi) ∈Mk there exists a τ j ≤ τi + tk such that either x(τ j) = 0 (and thus
x(τm) = 0 for all τm ≥ τ j) or x(τ j) ∈ Ml holds for some l ≥ k + 1. By induction,
for each k ∈ N one thus obtains a time Tk > 0 such that for each x0 ∈M there exists
some ik ∈ N such that τik ≤ Tk and either x(τi) ∈Mk or x(τi) = 0 holds for all i≥ ik.
The three stability properties (i)–(iii) are now readily concluded from this property:
(i) Given R > 0 we choose a1 = α2(R) which implies that each x0 ∈Rn with ‖x0‖ ≤
R lies in M. Then the whole solution x(τi) lies in M which implies ‖x(τi)‖ ≤
α
−1
1 (α2(R)) which implies Lagrange stability.

(ii) Given ε > 0 we choose δ = α
−1
2 (α1(ε)). Then the inequality needed for Lya-

punov stability follows as in (i) with δ in place of R.
(iii) Given R and ε , choose a1 as in (i) and k so large that ak ≤ α1(ε) holds. Then,
for T = Tk and all τi ≥ T , the solution x(τi) is either equal to 0 or lies in Ml for some
l ≥ k. This implies ‖x(τi)‖ ≤ α

−1
1 (V (x(τi)))≤ α

−1
1 (ak) = ε for all τi ≥ T .

We finish the proof by proving the additional property of the hi in case that ϕ ∈
C0(Rn;(0,r]) exists such that (13) holds. To this end, pick an arbitrary x0 ∈ Rn and
choose a1 so large that x0 ∈M holds. Then, (13) implies that the values h̄k defined
in the proof, above, can be bounded from below by h∗ := minx∈M ϕ(x) > 0. By
induction, the inequality hi ≥min{hi,old ,ρ1h̄k} then implies hi ≥min{h0,ρ1h∗}> 0
for all i ∈ N which yields the desired positive lower bound on the step sizes hi.

12
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We note that various sufficient conditions ensuring the existence of ϕ ∈C0(Rn;(0,r])
with (13) can be found in [18, Section 4]. We emphasize, however, that even without
this condition the stability properties defined in Theorem 8 and in particular the con-
vergence x(τi)→ 0 is ensured. In particular, the numerical solution will converge to
the origin even if Problem (P1) does not have a solution.

3.2 Implementation of the algorithm
There are various ways of defining hreduce and hnew such that the conditions of The-
orem 8 are satisfied. A simple way, proposed in [18] is to define

hreduce(h,x) := h/2 and hnew(h,x) := 2h.

This choice produces reasonable results (cf. [18]) but due to the “try and error”
nature of the resulting algorithm it has the disadvantage that typically the while loop
is executed at least once for each i, implying that Φ is usually evaluated at least twice
for each i.
A more efficient way of defining hreduce and hnew is obtained by using ideas from the
classical error estimation based step size control, cf. e.g. [14, Section II.4]. To this
end, define the Lyapunov differences

∆V (x,h) := V (z(h,x))−V (x) and ∆̃V (x,h) := V (Φ(x,h))−V (x)

for the exact solution and the numerical approximation. If V and f are sufficiently
smooth, then for a p-th order scheme there exists a constant c ∈ R such that the
approximate equality

∆̃V (x,h)≈ ∆V (x,h)+ chp+1

holds for all sufficiently small h > 0. Hence, we can approximately compute c as

c≈ ∆̃V (x,h)−∆V (x,h)
hp+1 .

We now intend to find a time step h̃ > 0 such that

∆̃V (x, h̃)≤ λ h̃∇V (x) f (x)

holds, which will be approximately satisfied if the inequality

∆V (x, h̃)+ ch̃p+1 ≤ λ h̃∇V (x) f (x)

holds, i.e, if

h̃≤
(

λ∇V (x) f (x)−∆V (x, h̃)/h̃
c

) 1
p

holds. Inserting the approximate value for c, we obtain the condition

h̃≤ h

(
λ∇V (x) f (x)−∆V (x, h̃)/h̃

∆̃V (x,h)/h−∆V (x,h)/h

) 1
p

.

13
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This suggests to use the expression on the right hand side of this inequality as a
candidate for a new step size in our algorithm for h = hi. However, this expression
is implicit (as it contains the unknown h̃) and contains the values ∆V (x,h) which are
not available in practice as they depend on the exact solution.
Both problems vanish if we replace the term ∆V (x,h) by its first order approximation
h∇V (x) f (x) (both for h and h̃) which leads to the expression

h

(
(λ −1)∇V (x) f (x)

∆̃V (x,h)/h−∇V (x) f (x)

) 1
p

.

Although the first order approximation ∆V (x,h) ≈ h∇V (x) f (x) introduces an error
of higher order than the error of the scheme, the resulting step size control mecha-
nism shows very good results (cf. the discussion at the end of Example 9), probably
due to the fact that the choice of λ < 1 introduces some tolerance against additional
approximation errors.
For the practical implementation, we moreover need to take into account that the de-
nominator ∆̃V (x,h)/h−∇V (x) f (x) may become negative or 0 — this happens if the
discretization error speeds up the convergence to the origin instead of slowing down
the convergence. To this end, we replace the denominator by max{∆̃V (x,h)/h−
∇V (x) f (x),eps(λ −1)∇V (x) f (x)}, where eps > 0 is a small positive constant. Fi-
nally, in order to compensate for the various approximations during the derivation,
we multiply our formula with a security factor ρ ∈ (0,1). All in all, we end up with

hreduce(h,x) := ρh

(
(λ −1)∇V (x) f (x)

max{∆̃V (x,h)/h−∇V (x) f (x),eps(λ −1)∇V (x) f (x)}

) 1
p

.

(16)
For hnew we may use the same formula, i.e.,

hnew(h,x) := hreduce(h,x), (17)

although this formula does not rigorously ensure the condition hnew(x,h) ≥ h im-
posed in Theorem 8 (it would satisfy this condition if all approximate equations in
the derivation were exact). As an alternative, one might use the definition hnew(h,x) :=
max{h,hreduce(h,x)}, however, the difference between these two choices turned out
to be marginal in our numerical simulations and since (17) yields a slightly lower
number of evaluations of Φ we have used this variant in our simulations.

3.3 Examples
In our simulations we run Algorithm 7 with (16) for the Euler, the Heun and the
classical Runge-Kutta scheme. All these schemes are explicit and thus satisfy a jl = 0
for all j, l = 1, . . . ,s with l ≥ j. The Euler scheme is a scheme of order p = 1 with
s = 1 stages and coefficient b1 = 1, the Heun scheme is an s = 2 stage scheme of
order p = 2 with

s = 2, a21 = 1, b1 = b2 = 1/2

14
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and the classical Runge-Kutta scheme (henceforth abbreviated as RK4) is of order
p = 4 with s = 4 stages and

a21 = a32 = 1/2, a43 = 1, a41 = a42 = a31 = 0, b1 = b4 = 1/6, b2 = b3 = 1/3.

The standard parameters in all examples were h0 = 0.1, hmax = 1, and ρ = 0.9 and
eps = 0.01 in Formula 16.

Example 9. The first example we investigate is the 2d differential equation

ż1 =−z1 + z2
2, ż2 =−z2− z1z2

with Lyapunov function V (x) = ‖x‖2, cf. [18, Example 4.15]. The Figures 1–3
show simulation results (phase portrait, Lyapunov function V (x(τi)) over time and
time steps) on the time interval [0,20] with λ = 0.5 and x0 = (5,5)T .
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Figure 1: Phase portrait for Example 9 with λ = 0.5 and x0 = (5,5)T
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Figure 2: Lyapunov function (logarithmic scale) for Ex. 9, λ = 0.5, x0 = (5,5)T

All solutions approach the equilibrium x = 0 very quickly. The total number of steps
for the three schemes on the time interval [0,20] were 28 for the Euler scheme, 42
for the Heun scheme and 52 for the RK4 scheme. Here, two facts are worth noting.
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Figure 3: Time steps (logarithmic scale) for Example 9 with λ = 0.5 and x0 = (5,5)T

First, although the Euler scheme is the scheme with the lowest order, it allows for the
largest steps and needs the fewest total number of steps. This is due to the fact that
for asymptotic stability not only the size of the error matters but also the direction
in which the error distorts the solution. Here, the error in the Euler scheme speeds
up the convergence towards 0 and hence there is no reason for the scheme to reduce
the time step. In contrast to this, while the errors for the Heun and the RK4 scheme
are smaller, they have a tendency to slow down the convergence to 0 and hence the
time steps have to be chosen more cautiously.
Second, it is clearly visible that our step size control Algorithm 7 does by no means
ensure that the numerical solution is close to the exact solution during the transient
phase, i.e., until a small neighborhood of the equilibrium is reached. In fact, the
three numerical solutions differ considerably and the Euler solution actually looks
quite irregular. This is not a drawback of our algorithm but actually intended, since
all the algorithm cares about is the convergence to x = 0 which is perfectly achieved
for all schemes. If, in addition, a faithful reproduction of the exact solution during
the transient phase is desired, our step size control algorithm could be coupled with
traditional error estimation based techniques.
In order to illustrate the effects of different choices of λ ∈ (0,1), Figure 4 shows the
time steps for the RK4 scheme for λ = 0.1,0.5,0.9.
As expected, the time steps become the smaller the closer the value λ is to 1, i.e.,
the more decay of the Lyapunov function is supposed to be guaranteed. The total
number of steps for the simulations on the time interval [0,20] was 28 for λ = 0.1,
52 for λ = 0.5 and 290 for λ = 0.9.
In order to investigate the efficiency of Formula (16), we have changed the definition
of hnew in (17) by using Formula (16) with ρ = 1.1 instead of 0.9 (the ρ in the
formula for hreduce remains unchanged). With this enlarged ρ , it turns out that the
condition in step (2) of Algorithm 7 is violated in more than 90% of the iterations
(similar results have been obtained for Example 10, below). In contrast to that, with
the choice of ρ = 0.9 this typically happens in less than 5% of the iterations, which
shows that Formula (16) with ρ = 0.9 very precisely predicts a good (i.e., small
enough but not too small) time step hi+1 for the next time step.

Example 10. Our second example is [18, Example 4.11(ii)], given by the 2d differ-
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Figure 4: Time steps from Algorithm 7 (logarithmic scale) using the RK4 scheme
applied to Example 9 with λ = 0.1,0.5,0.9 and x0 = (5,5)T

ential equation
ż1 =−‖z‖2z1 + z2, ż2 =−z1−‖z‖2z2

with Lyapunov function V (z) = ‖z‖2. Since the vector field for this example satisfies
‖ f (z)‖ = O(‖z‖) in a neighborhood of z = 0, one can show that in a neighborhood
of z = 0 the consistency error of a p-th order Runge-Kutta scheme satisfies

‖Φ(z0,h)− z(h,z0)‖= O(hp+1‖z0‖)

which, since V is quadratic, implies∣∣∣∆̃V (z0,h)−∆V (z0,h)
∣∣∣ =

∣∣∣(V (Φ(z0,h))−V (z0)
)
−
(

V (z(h,z0))−V (z0)
)∣∣∣

= O(hp+1‖z0‖2).

On the other hand, writing the system in polar coordinates one verifies that

∆V (z0,h) = O(h‖z0‖4),

again in a neighborhood of 0. Hence, for each fixed h > 0 and all z0 sufficiently
close to 0 the inequality

∆̃V (z0,h) < 0 (18)

can not be guaranteed from these estimates, since the Lyapunov difference consis-
tency error |∆̃V (z0,h)−∆V (z0,h)| is not guaranteed to be smaller than the exact
decay ∆V (z0,h). Since the analysis in [18] uses similar estimates, this explains why
none of the sufficient conditions in [18] guaranteeing asymptotic stability for h 6→ 0
is satisfied for this example.
However, the fact that (18) is not guaranteed by this analysis does, of course, not im-
ply that this inequality does not hold. Indeed, the fact that the difference ‖Φ(z0,h)−
z(h,z0)‖ is large does not necessarily imply that the difference |∆̃V (z0,h)−∆V (z0,h)|
is large: it may well happen that the error included in Φ(z0,h) is large compared to
∆V (z0,h) but nevertheless does not act destabilizing, because it changes the exact
solution z(h,z0) into a direction in which V does not grow — or does even further
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decrease. In fact, we already observed this behavior in Example 9 for the Euler
scheme and will also observe it for this example, but now for the RK4 scheme.
The Figures 5–7 show the simulation results (phase portrait, Lyapunov function
V (x(τi)) over time and the time steps) on the time interval [0,200] with λ = 0.5
and x0 = (5,5)T .
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Figure 5: Phase portrait for Example 10 with λ = 0.5 and x0 = (5,5)T
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Figure 6: Lyapunov function (logarithmic scale) for Ex. 10, λ = 0.5, x0 = (5,5)T

The total number of steps is 24925 for the Euler scheme, 621 for the Heun scheme
and 240 for the RK2 scheme. Hence, in this example the benefit of using higher
order schemes is clearly visible.
However, the advantage of the RK4 is not only due to the higher order. Looking at
the step sizes one sees that for the Euler and the Heun scheme the step size is strictly
decreasing after the first couple of time steps. Longer simulations indicate that the
sequences indeed converge to 0 which is in accordance with the discussion above,
i.e., that decay of the Lyapunov function can only be guaranteed for vanishing step
size h if the discretization error acts destabilizing, which appears to be the case for
these two schemes. In contrast to this, the error in the RK4 scheme has a stabilizing
effect, because we observe a much faster decay of the Lyapunov function V than in
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Figure 7: Time steps (logarithmic scale) for Example 10, λ = 0.5, x0 = (5,5)T

the other examples (even faster than for the exact solutions), while the step sizes are
constantly equal to the maximal allowed step size hmax = 1.

Summarizing, our examples show that the step size control scheme manages to ob-
tain asymptotically stable solutions for different numerical schemes. A particular
feature of the scheme is that step sizes are only reduced if a large error has desta-
bilizing effect, while the scheme allows for large step sizes (and errors) as long as
they do not affect the decay of the Lyapunov function.

4 Application to optimization
An obvious limitation of Algorithm 7 is that a Lyapunov function for (1) needs to be
known. There are, however, several settings in which a Lyapunov function is known
and yet finding a solution of (1) which converges to an equilibrium x∗ of f (which
in this section is typically 6= 0) is a meaningful problem. Examples can be found in
[18, Section 6]. Here we focus on the solution of a nonlinear optimization problem
(also called a nonlinear program), which are defined as follows.

min
x∈Rm

F(x)

subject to

hi(x) = 0, i = 1, . . . ,m
g j(x)≤ 0, j = 1, . . . ,k.

(19)

Here F : Rm→ R, hi,g j : Rm→ R for i = 1, . . . , p and j = 1, . . . ,q are twice contin-
uously differentiable functions.
The Problem (19) is well posed, e.g., if its feasible set

Ω := {x ∈ Rm |hi(x) = 0, i = 1, . . . , p, g j(x)≤ 0, j = 1, . . . ,q}

is nonempty and F is radially unbounded, or if Ω is nonempty and compact.

4.1 Differential equation approach to nonlinear optimization
The idea to solve (19) which fits our setting is now as follows: Design a differential
equation

ż = f (z) (20)
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with state z = (x, x̄) ∈ Rm+k, which exhibits an asymptotically stable equilibrium
z∗ = (x∗, x̄∗) such that x∗ is a minimizer of (19).
In order to explain how this can be accomplished, let us first look at an unconstrained
problem, i.e., a problem (19) with p = q = 0. Then, a candidate for (20) (with
z = x ∈ Rm) is the (negative) gradient flow

f (x) :=−∇F(x).

Using V (x) := f (x)− f (x∗), we obtain

∇V (x) f (x) =−(∇F(x))2

and if f is radially unbounded and ∇F(x) 6= 0 for all x 6= x∗ (which means that x∗ is
the only critical point of F), then V is a Lyapunov function for f and global asymp-
totic stability of x∗ follows from standard Lyapunov function arguments. Moreover,
even though x∗ and f (x∗) are unknown, the Lyapunov function V (x) := f (x)− f (x∗)
can be used in Algorithm 7 since the term f (x∗) vanishes in the derivative ∇V (x) and
cancels out in the Lyapunov difference V (Φ(h,x))−V (x). For further information
on this approach for unconstrained problems we refer to [9].
For constrained problems, there are different ways to incorporate hi and g j into
the definition of f in (20). Typically, these approaches include the constraints via
suitable penalization terms in (20). In order to illustrate this concept in a simple
setting, let us consider the case where no inequality constraints are present (i.e.,
q = 0) and the equality constraints are linear, i.e., of the form Ax = b for a matrix A
and a vector b of suitable dimension. For this setting, it was shown in [18, Section
6.1] that — under appropriate conditions on F and A — the system

ż =
(
−(∇2F(x)(∇F(x)+ x̄T A)T +AT (Ax−b))
−A(∇F(x)+ x̄T A)T

)
=: f (z)

has a unique asymptotically stable equilibrium z∗ = (x∗, x̄∗) where x∗ minimizes F .
The corresponding Lyapunov function V (z) = ‖∇F(x)− x̄T A‖2 + ‖Ax− b‖2 does
not require the knowledge of x∗ and is thus implementable in Algorithm 7. Similar
constructions can be made for more general constraints, see, e.g., [1, 2, 3, 26, 27],
however, not all of these approaches provide a Lyapunov function implementable in
Algorithm 7 and sometimes the dynamics are only locally defined. Of course, suit-
able conditions on the data of (19) are needed in order to ensure that the (extended)
minimizer is indeed an asymptotically stable equilibrium of (20). For this purpose,
linear independence conditions on the derivatives of the constraint functions and
sufficient conditions like KKT or Fritz John conditions can be employed, which we
will not discuss in detail here (the interested reader is referred, e.g., to [5, 6, 8]).
However, the interplay between these conditions for the approaches just cited and
Algorithm 7 is still largely unexplored and will be addressed in future research.
Finally, we remark that — unless certain convexity assumptions are satisfied —
is in general overly optimistic to assume that the global optimum x∗ is the only
equilibrium of (20). However, as our example in the next section shows, one may
still be able to solve (20) using Algorithm 7 if the initial value lies in the domain of
attraction. Again, the precise behavior of Algorithm 7 in this situation is subject to
future research.
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4.2 Optimization on manifolds: the example of the Rayleigh flow
Optimization problems of the type (19) can be designed on order to solve various
problems in systems theory. A comprehensive account of such techniques can be
found in Helmke and Moore [16]. For many of the problems discussed in this mono-
graph gradient flows are presented and analyzed. Typically, the optimization prob-
lems presented in [16] are posed on suitable manifolds M ⊂ Rn and the constraints
in (19) then represent the condition x ∈M.
As an example, let us look at the problem of computing the smallest eigenvalue λmin
of a symmetric real matrix A∈Rn×n. The minimal eigenvalue can then be computed
as the minimum of the Rayleigh quotient

rA(x) =
xT Ax
‖x‖2

over all x ∈ M = Sn−1 := {x ∈ Rn |‖x‖ = 1} and the minimizer x∗ ∈ Sn−1 is an
associated eigenvector. Hence, λmin and an associated eigenvector can be computed
by solving (19) with F(x) = xT Ax and h1(x) = ‖x‖2−1.
The gradient flow associated to this minimization problem is the Rayleigh flow

ẋ =−(A− rA(x)In)x, (21)

where In is the n× n identity matrix and the derivative of rA at a point x ∈ Sn−1

applied to ξ from the tangent space TxSn−1 is given by

∇rA(x)ξ = 2xT Aξ

(details on the derivation of these formulas can be found in [16, Section 1.3]).
Similar gradient flows are provided and analyzed in [16] for various other problems
on manifolds M. All these flows have in common that the solution of the gradient
flow stays in M, i.e., that the vector field in (20) satisfies f (x) ∈ TxM for all x ∈M.
Hence, for the exact solution to (20) the constraints are automatically satisfied.
However, when applying a Runge-Kutta scheme to (20), due to the discretization
error x ∈M does in general not imply Φ(h,x) ∈M. One remedy for this problem is
to incorporate the constraints which keep the system on M into the definition of f in
(20) and to consider Φ as an “exterior” approximation to the gradient flow on M in
the ambient Rn. However, our attempt to do this for the Rayleigh flow so far did not
yield satisfactory results, since the solution deteriorates due to additional equilibria
appearing outside M = Sn−1.
Hence, as an alternative approach we use an “interior” approximation, in which
we modify Φ in order to keep the numerical solution on M (for more information
on this approach see [13, Chapter IV] and for its relation to differential algebraic
equations see [15, Chapter VII]). This approach is possible if we can define (and
implement) a projection operator P which maps each point in a neighborhood N
of M to M. For M = Sn−1 such a projection is simply given by Px = x/‖x‖ for all
x ∈N = Rn \{0}. Then, we may replace Φ(h,x) by PΦ(h,x) and if P satisfies the
inequality ‖Px− x‖ ≤C‖y− x‖ for all x ∈N , all y ∈M and some constant C > 0,
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then one easily verifies that for sufficiently small h > 0 the projected approximation
PΦ(x,h) is well defined and consistent with the same order of consistency as Φ(x,h).
Proceding this way leads to very good results for the Rayleigh flow, as the following
example shows.

Example 11. We applied Algorithm 7 with PΦ = Φ/‖Φ‖ and Φ obtained by ap-
plying the Euler, Heun and RK4 scheme introduced on Section 3.3 to the Rayleigh
flow (21). As Lyapunov function we use V (x) = rA(x)−λmin, which, as explained
in Section 4.1, can be implemented in Algorithm 7 without the knowlegde of λmin.
Here, we use the (randomly chosen) symmetric 3×3 matrix

A =

 1 2 3
2 5 4
3 4 11


with λmin ≈−0.046732641945883 and associated eigenvector

x∗ ≈

 0.954876958271786
−0.242466419355919
−0.171522680851079

 ∈ Sn−1.

Since the Rayleigh flow has several equilbria (in fact, each eigenvalue of A is a
critical value of rA), the system is not UGAS. However, it is still UGAS on each
compact subset of the domain of attraction of either x∗ or−x∗ and if we start in such
a set then the guaranteed decay of V ensures that we stay in this set. Moreover, since
the set of exceptional points (i.e., the set of initial values for which the solution does
not converge to either x∗ or −x∗) is a set of lower dimension, picking a “random”
initial value (in our simulation x0 = (1,0,0)T ) the probability of starting in a compact
subset of the domain of attraction is very high. Due to this fact, we did not observe
any problems in our numerical simulations (which showed comparable results for
several other matrices we have tested).
The Figures 8–10 show the phase portrait (projected into the (x1,x2)-plane), the
values rA(x(t))−λmin and the corresponding time steps. For each scheme, the sim-
ulation was stopped if the condition |rA(x(τi+1))− rA(x(τi))|< 10−10 was satisfied.
The total number of steps in the computation was 13 for the Euler scheme, 32 for
the Heun scheme and 26 for RK4. The value λ = 0.4 in the simulations was chosen
because it turned out to yield termination in a smaller number of steps than larger or
smaller choices of λ .
It is interesting to note that — as in Example 9 — the Euler scheme turns out to yield
the best results since it delivers the approximation of the minimal eigenvalue λmin
up to the desired accuracy of 10−10 in the smallest number of steps, even though
the solution (as clearly visible in Figure 8) is obviously not a good approximation
during the transient phase. Hence, the example shows that if the emphasis lies on
a numerically cheap computation of the minimum, i.e., the equilibrium, then high
order schemes may not necessarily be advantageous.
For the Euler scheme (and to a lesser extent also for the Heun scheme), Figure
10 shows that the step size constantly changes between larger and smaller values.
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Figure 8: Phase portrait (in (x1,x2)-plane) for Ex. 11 with λ = 0.4 and x0 = (1,0,0)T
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Figure 9: rA(x(t))−λmin (logarithmic scale) for Ex. 11, λ = 0.4, x0 = (1,0,0)T

This behavior is typical for the application of Lyapunov based step size control with
explicit schemes to stiff equations (cf. e.g., [18, Example 6.1]) which may lead to
the conjecture that the Rayleigh flow for the particular matrix A we have chosen is a
moderately stiff system (even though we did not check this rigorously).
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Figure 10: Time steps (logarithmic scale) for Example 11, λ = 0.4, x0 = (1,0,0)T
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Since the Rayleigh flow is a well studied systems and there are many known tech-
niques for its discretization (again, we refer to [16]), we do not expect Algorithm 7 to
outperform more sophisticated methods particularly taylored for the Rayleigh flow.
Still, our methods produces very reasonable results and moreover provides valuable
insights into the performance of different discretization methods.
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