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∗Mathematisches Institut, Universität Bayreuth, 95440 Bayreuth,
Germany (email: lars.gruene@uni-bayreuth.de)

Abstract: This paper provides a survey on recent results on NMPC without terminal con-
straints. We investigate stability, performance and feasibility issues, both for classical stabilizing
NMPC and for economic NMPC. Besides explaning and comparing different approaches ob-
tained during the last couple of years, the paper also contains previously unpublished results and
proofs for exponential convergence of economic NMPC performance and for recursive feasibility
of stabilizing NMPC without stabilizing terminal constraints. Several examples are presented
to illustrate our findings.
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1. INTRODUCTION

When looking at the NMPC literature, the vast majority
of papers considers schemes with terminal constraints.
This may lead to the impression that imposing terminal
constraints is a necessary condition for obtaining rigorous
proofs for, e.g., stability and feasibility of NMPC schemes.
It is the purpose of this paper to demonstrate that this
is not the case by summarizing and explaining recent ad-
vances in the analysis of NMPC schemes without terminal
constraints.

Particularly, we will focus on properties like stability, per-
formance and feasibility. We compare and explain different
approaches which can be found in the literature, including
some new results from our own research — both for stabi-
lizing NMPC and for the relatively new area of economic
NMPC — as well as alternative (and shorter) proofs for
some known results. Moreover, we will discuss a motivating
example which shows that it is not only possible but can
even be advantageous to omit terminal constraints. Fur-
ther examples are provided to illustrate certain results and
phenomena described in the paper. While these examples
often have linear dynamics (in order to keep them tech-
nically simple), we emphasize that all results presented in
this paper hold for general nonlinear discrete time systems.
For all results we provide proofs which are, however, often
only sketched in order to highlight the main arguments
with references to the appropriate literature for details.

The paper is organized as follows. After introducing the
basic setting and notation in Section 2, we discuss sta-
bility and performance properties of stabilizing NMPC in
Section 3. The same topics are investigated for economic
NMPC in Section 4. Section 5 gives two results on feasi-
bility of NMPC schemes without terminal constraints and
Section 6 concludes the paper.
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2. SETTING AND PRELIMINARIES

We consider discrete time control systems with state x ∈
X and control values u ∈ U , where X and U are normed
spaces with norms denoted by ‖ · ‖. The control system
under consideration is given by

x(k + 1) = f(x(k), u(k)) (1)

with f : X × U → X. For any control sequence u =
(u(0), . . . , u(K − 1)) ∈ UK or u = (u(0), u(1), . . .) ∈ U∞,
by xu(k, x) we denote the solution of (1) with initial value
x = xu(0, x) ∈ X. Note that the general setting with
X and U being normed spaces particularly covers exact
sampled data models of finite dimensional continuous time
systems with sampling time T > 0 by setting U =
L∞([0, T ],Rm), i.e., by defining the discrete time control
value u(n) to be the piece of the continuous time control
function acting on the (n + 1)st sampling interval. Of
course, sampled data systems with zero order hold can
be modelled as well by defining u(n) to be the constant
control input on each sampling interval. Likewise, sampled
infinite dimensional systems governed by PDEs fit to our
setting.

For given admissible sets of states X ⊆ X and control
values U ⊆ U and an initial value x ∈ X we call the
control sequences u ∈ UK satisfying xu(k, x) ∈ X for
all k = 0, . . . ,K − 1 admissible. The set of all admissible
control sequences is denoted by UK(x). Similarly, we define
the set U∞(x) of admissible control sequences of infinite
length.

Given a state feedback map µ : X→ U, we denote the solu-
tions of the closed loop system x(k+1) = f(x(k), µ(x(k)))
by xµ(k) or by xµ(k, x) if we want to emphasize the
dependence on the initial value x = xµ(0). We say that
a feedback law µ is admissible if f(x, µ(x)) ∈ X holds for
all x ∈ X.

Our goal is now to find an admissible feedback controller
which (approximately) solves the infinite horizon optimal
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control problem

minimize
u∈U∞(x)

J∞(x, u) :=
∞∑
k=0

`(xu(k, x), u(k)) (2)

where ` : X × U → R is called the stage cost or running
cost. We define the optimal value function related to (2)
by V∞(x) := infu∈U∞(x) J∞(x, u). Note that the state
constraints xu(k, x) ∈ X are implicitly included in (2) since
we minimize over u ∈ U∞(x). In order to measure the
performance of a given feedback law µ : X→ U we define
the closed loop cost

Jcl∞(x, µ) :=
∞∑
k=0

`(xµ(k, x), µ(xµ(k, x))).

Approximate infinite horizon optimality of µ then refers
to the fact that Jcl∞(x, µ) ≈ V∞(x) holds. A substantial
portion of our results will focus on the case where the
optimization objective in (2) is designed in order to solve
a stabilization or tracking problem, see Section 3, below,
for details. In this case, stability of the closed loop will be
equally important as approximate optimality.

Since infinite horizon problems (2) are typically difficult
to be solved directly, we use the NMPC receding horizon
approach in order to compute a feedback law. To this end,
we define the finite horizon counterpart of (2)

minimize
u∈UN (x)

JN (x, u) :=
N−1∑
k=0

`(xu(k, x), u(k)) (3)

and the corresponding optimal value function VN (x) :=
infu∈UN (x) JN (x, u). We assume that for each x ∈ X a (not
necessarily unique) optimal control sequence u? ∈ UN (x)
for (3) exists, i.e., satisfying VN (x) = JN (x, u?). While
most of the statements in this paper could alternatively
be formulated via approximate mininizers, the existence
of a minimizer considerably simplifies the presentation of
the results.

The NMPC approach then consists of solving the open
loop optimization problem (3) with initial value x = xµ(k)
at each sampling instant k for some given optimization
horizon N ∈ N and then defining the feedback value
µ(x) = µN (x) to be the first element of the corresponding
optimal control sequence, i.e.,

µN (x) := u?(0).

Since nowadays efficient algorithms for the necessary on-
line minimization of JN (x, u) are available (for instance, by
converting the problem into a static nonlinear optimization
problem followed by sequential quadratic programming
(SQP) or an interior point method for solving this prob-
lem, see, e.g., [Grüne and Pannek, 2011, Chapter 10] and
the references therein), this method is computationally
feasible for large classes of systems. In this context we
like to note that even when the system is too complex or
the systems’ dimension is too high for an online solution
of (3) within one sampling period, NMPC can still be
useful as an approximate numerical solution method for
infinite horizon optimal control problems which would be
computationally intractable otherwise.

We end this section by defining some notation and recall-
ing some concepts which we will need in the sequel. The set

R+
0 denotes the non negative real numbers. With K∞ we

denote the set of continuous functions α : R+
0 → R+

0 which
are strictly increasing and unbounded with α(0) = 0. With
KL we denote the set of continuous functions β : R+

0 ×
R+

0 → R+
0 which are strictly increasing in the first ar-

gument, strictly decreasing to 0 in the second argument
and satisfy β(0, t) = 0 for all t ≥ 0. With dre and brc we
denote the smallest integer ≥ r ∈ R and the largest integer
≤ r ∈ R, respectively.

Although we do not use dynamic programming for actually
solving our optimal control problems, in our analysis we
will make extensive use of the dynamic programming
principle, cf. Bertsekas [1995]. The form of this principle
which applies here states that for the optimal control
sequence u? for the problem with finite horizon N and
each K ∈ {1, . . . , N − 1} the equality

VN (x) =
K−1∑
k=0

`(xu?(k, x), u?(k))

+ VN−K(xu?(K,x)) (4)
holds. As a consequence, since µN (x) = u?(0), for K = 1
we get

VN (x) = `(x, µN (x)) + VN−1(f(x, µN (x))). (5)

3. STABILIZING NMPC

This section will focus on stability and performance issues
of stabilizing NMPC, i.e., of NMPC schemes which are
designed to yield a controller stabilizing a given reference
solution. In order to avoid problems with feasibility, we
assume U∞(x) 6= ∅ for all x ∈ X, i.e., that for each initial
value x ∈ X we can find a trajectory staying inside X for all
future times. Note that this property immediately implies
that for each x ∈ X there exists u ∈ U with f(x, u) ∈ X,
i.e., that X is controlled forward invariant or viable, cf.
Aubin [1991]. Ways to relax this condition are discussed
in Section 5, below.

In order to simplify the presentation, we restrict ourselves
to the problem of asymptotically stabilizing the origin
xe = 0. To this end we assume that 0 is an equilibrium
of f for some control value ue ∈ U, i.e., that f(0, ue) = 0
holds. Asymptotic stability of the origin is then defined as
follows.
Definition 3.1. Consider the system (1). Then we say that
a feedback law µ : X→ U renders the origin asymptotically
stable if there exists a function β ∈ KL such that the closed
loop trajectory xµ satisfies the inequality

‖xµ(k, x)‖ ≤ β(‖x‖, k)
for all x ∈ X and all k ∈ N.

NMPC is easily adapted to more general asymptotic stabil-
ity settings. For instance, we could use equilibria different
from 0, time varying references (including periodic ones)
or whole compact sets in place of a single point. All these
extensions can be straightforwardly achieved by replacing
the norms ‖xµ(k, x)‖ and ‖x‖ — in Definition 3.1 and
in all subsequent statements — by the distances to the
respective points or sets.

The well known idea of stabilizing NMPC is now to use
a stage cost ` which penalizes the distance of the state x



to the origin. Moreover, we require that the corresponding
infinite horizon problem is well defined in the sense that
the optimal value function is bounded by a K∞ function (if
a stabilizing feedback law exists, then this can always be
achieved by choosing ` appropriately, see, e.g., [Grüne and
Pannek, 2011, Theorem 4.3]). Formally, these conditions
are stated in the following assumptions.
Assumption 3.2. (i) There are functions α1, α2 ∈ K∞ such
that `?(x) := minu∈U `(x, u) satisfies

α1(‖x‖) ≤ `?(x) ≤ α2(‖x‖).
(ii) There exists a function α3 ∈ K∞ such that

V∞(x) ≤ α3(‖x‖)
holds for all x ∈ X.

Our goal is now to find conditions which ensure that the
NMPC feedback law µN stabilizes the system (1) in the
sense of Definition 3.1.

There exists an elaborate and elegant theory for ensuring
stability of NMPC schemes by adding terminal constraints
and terminal costs, see the seminal survey paper Mayne
et al. [2000] or the monographs Rawlings and Mayne [2009]
or Grüne and Pannek [2011]. This approach requires that
the finite horizon problem (3) to be solved in each step is
changed to

minimize
u∈UN (x)

JN (x, u) :=
N−1∑
k=0

`(xu(k, x), u(k))+F (xu(N, x)).

Here F : X0 → R+
0 is called a terminal cost which is

defined on a so called terminal region X0 and in order to
be well defined we need to add the terminal constraint
xu(N, x) ∈ X0 as an additional constraint to (3). The
terminal cost function is then assumed to be a control
Lyapunov function on X0 which is compatible with `. This
means that for each x ∈ X0 there exists a control value
u ∈ U satisfying f(x, u) ∈ X0 and

F (f(x, u)) ≤ F (x)− `(x, u).

In this paper, we are not going to apply this approach. In
particular, we like to avoid using terminal constraints of
the type xu(N, x) ∈ X0. We illustrate our motivation for
this by means of the following example.

3.1 A motivating example

Example 3.3. We consider a swarm of P “agents” moving
in R2 given by

ẋi = f(xi, ui)
for i = 1, . . . , P with xi = (xi1, xi2, xi3, xi4)T ∈ Xi = R4,
ui = (ui1, ui2)T ∈ Ui = R2 and f : R4×R2 → R4 given by

f(xi, ui) = (xi2, ui1, xi4, ui2)T .
The system and the following simulations are taken from
Jahn [2010], to which we also refer for all details of the
parallel implementation of the NMPC algorithm on a
graphics processor (GPU).

The overall state space of the system is X = R4P and the
control inputs lie in the space U = R2P . Each agent i can
be considered as a point moving in the plane with position
(xi1, xi3)T and velocity (xi2, xi4) whose acceleration can
be controlled by the control input ui = (ui1, ui2)T . While
the system dynamics is linear, the constraints render

the overall problem nonlinear: We impose control input
constraints U = [−12, 12]2P and state constraints given by

X :=

x ∈ X
∣∣∣∣∣∣∣∣∣
‖(xi1, xi3)T − (xj1, xj3)T ‖ ≥ 0.1
for all i, j = 1, . . . , P with i 6= j
and (xi1, xi3)T 6∈ B0.3(yp), p = 1, 2, 3
and ‖(xi2, xi4)T ‖ ≤ 1
for all i = 1, . . . , P


with y1 = (1.4, 0.4)T , y2 = (1.4,−0.4)T , y3 = (2.1, 0)T and
Br(y) denoting the closed ball with radius r around y in
R2. The first constraints are non-collision constraints for
the agents, the second constraints define three disc-shaped
obstacles which cannot be crossed by the subsystems and
the third constraints limit the speed of the agents.

The discrete time system (1) is obtained from the asso-
ciated zero order hold sampled data system for sampling
period T = 0.02s. The goal of the optimal control problem
is to first move all agents to the origin xe1 = 0 ∈ R4, i.e., to
the position xp1 = (0, 0)T . After t = 20s, i.e., after k = 1000
sampling times, the control task is changed and the agents
are supposed to move to xe2 = (3, 0, 0, 0)T ∈ R4, i.e., to the
position xp2 = (3, 0)T . To this end, the stage cost

`(x, u) =
P∑
i=1

(
‖(xi1, xi3)T − xp‖+ ‖(xi2, xi4)T ‖/50

)
is used with xp = xp1 for the sampling instants k ∈
{0, . . . , 999} and xp = xp2 for k ∈ {1000, . . . , 1999}. Ob-
serve that u is not penalized in the cost. The initial state
for each agent is x0

i = ((i−1)0.12, 0, 1, 0)T and the problem
was solved by NMPC without terminal constraints with
horizon N = 6. Figure 1 shows the positions of a swarm
of P = 64 agents (depicted as small blue discs) under the
NMPC feedback law at different times of the simulation.
The system shows exactly the desired behavior: the agents
first move to a position as close as possible to the origin
which is reached at about k = 700. After k = 1000, i.e.,
after changing the functional, the swarm moves through
the obstacles (depicted as large red discs) to the new
desired position xp2 = (3, 0)T .

In fact, this example uses a slight variation of the basic
NMPC scheme outlined in Section 2 which is explained in
Section 3.3(d), below. However, we emphasize that neither
terminal constraints nor Lyapunov function terminal costs
were used in this implementation. In fact — given the con-
straints of the velocity on the system — the design of a ter-
minal constraint set X0 rendering the initial configuration
in our simulation feasible (i.e., ensuring that there exists a
control sequence u satisfying xu(N, x0) ∈ X0) would either
require the terminal cost F to be defined on a very large
terminal region X0 (including the obstacles which make
the design of a control Lyapunov functions a hard task)
or a considerable enlargement of the optimization horizon
N leading to a very difficult optimization problem to be
solved in each step of the NMPC scheme.

The attentive reader may moreover have noticed that in
this example the desired positions xe1 and xe2 are not even
admissible equilibria for the overall system due to the non-
collision constraints. Hence, in this example the goal is
not to stabilize the system at the point xe but rather at
the set of admissible states x ∈ X at which `(x) attains
its minumum. Using terminal constraints, this set would
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Fig. 1. Position of the agents at times k = 30, 120, 700,
1040, 1116 and 1600 (top to bottom)

have to be computed beforehand and used in the design of
the terminal cost. However, as our simulation shows, for
NMPC without terminal constraints this is not needed, at
all, since the NMPC scheme is able to find the “best” state
as part of the optimization taking place in each step of the
algorithm.

3.2 Stability results

There are several papers in which stability results for
NMPC without stabilizing terminal constraints have been
developed, e.g., Alamir and Bornard [1994], Primbs and
Nevistić [2000], Jadbabaie and Hauser [2005], Grimm et al.
[2005], Tuna et al. [2006], Grüne and Rantzer [2008], Grüne
[2009], Grüne et al. [2010a]. Here, we explain the main
ideas behind the last five of these references since they use
similar conditions and arguments. Before discussing these
arguments, we state the following sufficient condition for
both stability and approximately optimal performance.
Proposition 3.4. Let 1 N ≥ 2 and assume that the optimal
value function VN and the NMPC feedback law µN satisfy
the inequality
1 Note that our definition of JN implies that N = 2 is the shortest
meaningful horizon, since for N = 1 the stage cost is evaluated only
at the initial value.

VN (f(x, µN (x))) ≤ VN (x)− α`(x, µN (x)) (6)
for some α ∈ (0, 1] and all x ∈ X. Then the inequality

Jcl∞(x, µN ) ≤ V∞(x)/α
holds for all x ∈ X. If, moreover, Assumption 3.2 holds,
then µN stabilizes (1) in the sense of Definition 3.1.

The proof of the first assertion, which uses quite straight-
forward dynamic programming arguments, can be found in
[Grüne and Rantzer, 2008, Proposition 2.2]. Note that for
α = 1 the inequality is in fact an equality, since Jcl∞(x, µ) ≥
V∞(x) holds for any admissible controller µ. The second
assertion follows since Assumption 3.2 in conjunction with
the obvious inequalities `?(x) ≤ VN (x) ≤ V∞(x) implies

α1(‖x‖) ≤ VN (x) ≤ α3(‖x‖)
for all x ∈ X. Together with (6) this implies that VN
is a Lyapunov function for the closed loop from which
asymptotic stability can be concluded, cf. [Grüne and
Pannek, 2011, Theorem 4.11].

One could now try to compute α by computing the optimal
value functions VN , which is essentially the approach from
Primbs and Nevistić [2000]. Since the computation of
VN , however, is only feasible in exceptional cases, we will
instead use suitable bounds on the value functions. More
precisely, our main assumption is the following.
Assumption 3.5. There exists γ > 0 such that the inequal-
ity

VN (x) ≤ γ`?(x)
holds for all N ≥ 2, all x ∈ X and `? from Assumption 3.2.

One way to ensure Assumption 3.5 is by assuming an
exponential controllability condition w.r.t. the stage cost
` of the following type:

There exist constants C > 0 and σ ∈ (0, 1) such that for
each x ∈ X and each N ∈ N there is u ∈ UN (x) such that

`(xu(k, x), u(x)) ≤ Cσk`?(x) (7)
holds for k = 0, . . . , N − 1.

This assumption immediately implies

JN (x, u) ≤
N−1∑
k=0

Cσk`?(x) ≤ C

1− σ `
?(x)

and thus Assumption 3.5 with γ = C/(1− σ).

Note that it is not necessary that the system itself is
exponentially controllable to the origin for (7) to hold.
As an example, consider the 1d system

x(k + 1) = x(k) + u(k)x(k)3

with X = [−1, 1] and U = [−1, 1]. While the system itself is
not exponentially controllable to 0 (due to the nonlinearity
x(k)3 multiplied with u(k)), (7) can still be satisfied by
choosing, e.g.,

`(x, u) = e−
1

2x2 ,

for details see [Grüne and Pannek, 2011, Example 6.5]

We now claim that Assumption 3.5 implies (6) for suffi-
ciently large N and describe three different ways to prove
this claim leading to three different estimates for α in (6).

Variant 1: Consider the optimal trajectory xu?(k, x) of
(3) for someN ≥ 2 and abbreviate `k = `(xu?(k, x), u?(k)).



This implies VN (x) =
∑N−1
k=0 `k and `k ≥ `?(xu?(k, x)).

Now Assumption 3.5 implies
∑N−1
k=0 `k ≤ γ`0 and thus

`p ≤ γ`0/N for at least one p ∈ {0, . . . , N − 1}. Supposing
N > γ moreover yields p ≥ 1. Hence, using Assumption
3.5 for x = xu?(p, x) yields

VN−p+1(xu?(p, x)) ≤ γ`p and `p ≤ γ`0/N (8)
for some p ∈ {1, . . . , N−1}. We denote the optimal control
sequence corresponding to VN−p+1(xu?(p, x)) by ũ?. Now,
if we use the control sequence ũ consisting of the control
values (u?(1), . . . , u?(p−1), ũ?(0), . . . , ũ?(N−p)) we obtain

VN (xu?(1, x))≤ JN (xu?(1, x), ũ)

=
p−1∑
k=1

`k + VN−p+1(xu?(p, x)) (9)

=
p∑
k=1

`k − `p + VN−p+1(xu?(p, x))

≤
p∑
k=1

`k + (γ − 1)`p

≤
p∑
k=1

`k + γ(γ − 1)`0/N.

Using that by definition of µN we have f(x, µN (x)) =
xu?(1, x), we thus end up with

VN (f(x, µN (x)))≤
p−1∑
k=1

`k + γ(γ − 1)`0/N

≤ VN (x)− `0 + γ(γ − 1)`0/N

≤ VN (x)− (1− γ(γ − 1)/N)`0.
By definition of `0 this ensures (6) with α ≥ 1−γ(γ−1)/N .
In particular, for N > γ(γ − 1) we obtain α > 0 and
asymptotic stability can be concluded from Proposition
3.4.

Variant 1 essentially follows the arguments used in Grimm
et al. [2005], where it should be noted that the setting in
this reference is considerably more general than our setting
here, cf. Section 3.3(e) and (f), below. In the present
setting, we can considerably enlarge the lower bound for
α — and thus decrease the upper bound for the minimal
stabilizing horizon N — using the following alternative
proof.

Variant 2: We use the same notation as in Variant 1. Since
by the dynamic programming principle tails of optimal
trajectories are again optimal trajectories, for each p =
0, . . . , N − 2 we obtain

N−1∑
k=p

`k = VN−p(xu?(p, x)) ≤ γ`?(xu?(p, x)) ≤ γ`p

implying
N−1∑
k=p+1

`k ≤ (γ − 1)`p for all p = 0, . . . , N − 2 (10)

which yields

`p +
N−1∑
k=p+1

`k ≥
∑N−1
k=p+1 `k

γ − 1
+

N−1∑
k=p+1

`k =
γ

γ − 1

N−1∑
k=p+1

`k.

Using this inequality inductively for p = 1, . . . , N−2 yields
N−1∑
k=1

`k ≥
(

γ

γ − 1

)N−2

`N−1.

Applying (10) for p = 0 we then obtain

(γ − 1)`0 ≥
N−1∑
k=1

`j ≥
(

γ

γ − 1

)N−2

`N−1

which finally leads to

`N−1 ≤ (γ − 1)
(
γ − 1
γ

)N−2

`0 = γ

(
γ − 1
γ

)N−1

`0.

Replacing the second inequality in (8) by this inequality
and continuing as in Variant 1 with p = N − 1 we obtain

VN (f(x, µN (x)))

≤ VN (x)−
(

1− γ(γ − 1)
(
γ − 1
γ

)N−1
)
`0

= VN (x)−
(

1− (γ − 1)N

γN−2

)
`0

which ensures (6) with α ≥ 1 − (γ − 1)N/γN−2. A little
computation shows that the inequality α > 0 needed to
conclude stability from Proposition 3.4 is now ensured for

N > 2 + 2
ln γ

ln γ − ln(γ − 1)
.

For γ → ∞, the expression on the right hand side grows
like 2 2γ ln γ which shows that Variant 2 yields a much
smaller bound on the optimization horizon N needed to
guarantee stability than Variant 1. This bound and its
derivation is similar to Tuna et al. [2006] and Grüne and
Rantzer [2008].

Variant 3: The bound from Variant 2 can be further
improved by using that (9) and Assumption 3.5 implies

VN (xu?(1, x)) ≤
p−1∑
k=1

`k + VN−p+1(xu?(p, x))

≤
p−1∑
k=1

`k + γ`p for all p = 1, . . . , N − 1. (11)

Although the derivation of a bound for α from these
inequalities is not as simple as in Variants 1 and 2,
an explicit expression can still be obtained: in Grüne
[2009] it was observed that computing α in (6) under the
inequalities (10) and (11) is a linear optimization problem
and an explicit solution of this optimization problem was
obtained in Grüne et al. [2010a]. This explicit solution
reads

α = 1− (γ − 1)N

γN−1 − (γ − 1)N−1
(12)

which is positive if the inequality

N > 2 +
ln(γ − 1)

ln γ − ln(γ − 1)
(13)

holds. For γ →∞ this bound behaves asymptotically like
γ ln γ and is thus about half the size of the bound from
2 By this we mean that(

2 + 2
ln γ

ln γ − ln(γ − 1)

)/
(2γ ln γ)→ 1 as γ →∞.



Variant 2. We summarize the findings in the following
theorem.
Theorem 3.6. Consider an NMPC problem satisfying As-
sumptions 3.2 and 3.5. Then the closed loop is asymptoti-
cally stable if the optimization horizon N satisfies (13). In
this case, the inequality

Jcl∞(x, µN ) ≤ V∞(x)/α
holds for all x ∈ X with α from (12).

As shown in Grüne [2009], in terms of stability this
is the best possible bound that can be derived from
Assumption 3.5: if we consider the class of all NMPC
problems satisfying Assumptions 3.2 and 3.5 for a given
γ > 1 and choose N smaller than the bound in (13)
(resulting in α < 0), then there is at least one system
in this class for which the NMPC closed loop solutions do
not converge to 0, i.e., for which asymptotic stability fails
to hold.

We remark that computing γ in Assumption 3.5 is in
general a difficult task, hence, rigorously ensuring stability
of NMPC via this inequality may not always be feasible.
However, there exist NMPC problems — including infinite
dimensional ones — for which a derivation was carried out
using the controllability condition (7), see, e.g., Altmüller
et al. [2010a,b]. Moreover, even if γ in Assumption 3.5
is not explicitly computable, the estimates provided in
this section can provide valuable guidelines for designing
stage costs ` under which stabilization is possible with
small N , see, e.g., [Grüne and Pannek, 2011, Section 6.6].
Note, however, that a stage cost particulary designed for
stabilization purposes may not necessarily reflect desired
performance criteria like, e.g., low energy consumption,
hence there may be a tradeoff between good closed loop
performance and stability. In this sense, the situation
is similar as in terminal constrained MPC where the
terminal constraint may also enforce stability at the price
of lower performance. Finally, α in (6) can alternatively be
computed numerically, see, e.g., Grüne and Pannek [2009]
or [Grüne and Pannek, 2011, Section 7.7].

3.3 Extensions

The methods for obtaining stability and performance
estimates described in the last section can be extended
to more general settings in various ways. Here we describe
some of these extensions.

(a) The values γ in Assumption 3.5 can be chosen to de-
pend on N . Since the VN are typically strictly increasing,
this allows to use smaller γN for smaller N and thus better
estimates for α and the stabilizing optimization horizons.
The generalization of (12) to this setting is

α = 1− (γN − 1)
∏N
k=2(γk − 1)∏N

k=2 γk −
∏N
k=2(γk − 1)

, (14)

for details see Grüne et al. [2010a] or [Grüne and Pannek,
2011, Section 6.4]. Particularly, if (7) holds, then we obtain
the inequality

VN (x) ≤ γN `?(x) with γN = C
1− σN
1− σ .

An analysis of (14) for this case shows that, no matter
what σ ∈ (0, 1) is, for C sufficiently close to 1 we can

always obtain stability with N = 2, i.e., with the shortest
possible prediction horizon, see, e.g., Grüne et al. [2010a]
or [Grüne and Pannek, 2011, Section 6.6].

(b) If the system (1) is a sampled data system originat-
ing from a Lipschitz ODE, then the difference between
xu(k, x) and xu(k + p, x) can be bounded by a Lipschitz
estimate. This bound can be used as an additional growth
condition for deriving the value for α in (12) or (14) and
considerably improves the value of α for small sampling
periods. For details see Grüne et al. [2010b], [Grüne and
Pannek, 2011, Section 7.5] or [Worthmann, 2011, Section
5.3].

(c) Instead of using only the first element u?(0) of the
finite horizon optimal control sequence, one may also
implement the first m elements. Formulas (12) and (14)
can be adapted to this case and particularly show that
when choosing m = dN/2e (i.e., when using the first half
of elements of the finite horizon optimal control sequence)
then the minimal N needed for ensuring stability grows
only linearly in γ as γ →∞, as opposed to the asymptotic
growth γ ln γ for the “classical” NMPC setting withm = 1,
cf. Variant 3. For details we refer to Grüne et al. [2010a]
and [Worthmann, 2011, Chapter 4]. In this setting, the
advantage of Variant 3 over Variant 2 for computing α
becomes even more significant, for a detailed comparison
see [Worthmann, 2011, Section 5.4].

(d) The optimal control problem (3) can be modified by
including terminal weights ω > 1, leading to 3

minimize
u∈UN (x)

JN (x, u) :=
N−2∑
k=0

`(xu(k, x), u(k))

+ ω`(xu(N − 1, x), u(N − 1)). (15)

The terminal weight ω can be included into the stability
analysis. For instance, in the case γ > ω > 1 Formula (13)
becomes

N > 2 +
ln(γ − ω)

ln γ − ln(γ − 1)
.

Note however, that γ in Assumption 3.5 typically grows
with ω when passing from (3) to (15). Moreover, the
estimate for Jcl∞ in Proposition 3.4 in general no longer
holds when introducing terminal weights. Nevertheless, the
stability result in Proposition 3.4 remains valid and a judi-
cious choice of ω can significantly reduce the optimization
horizon N needed for stabilization, for details see Grüne
et al. [2010a] or [Grüne and Pannek, 2011, Section 7.2].
This has also been exploited in the example in Section
3.1, where the terminal weight ω = 20 was used in the
simulations.

(e) Instead of the linear bound γ`?(x) in Assumption 3.5
one could use a general nonlinear bound

VN (x) ≤ δ(`?(x))
for some δ ∈ K∞. It can then be shown that we still
obtain semiglobal asymptotic stability (in the optimization
horizon N) if δ(·) has a linear upper bound on each interval
3 Note that this approach is different from adding a Lyapunov
function terminal cost as, e.g., in Mayne et al. [2000] (see also the
references therein and the detailed analysis for linear MPC in Löfberg
[2003]), since the terminal cost is a multiple of the stage cost here
and does not need to be a Lyapunov function.



of the form [0, R] and semiglobal practical asymptotic
stability if δ(·) has a linear upper bound on each interval
of the form [r,R], see [Grüne and Pannek, 2011, Section
6.7]. Since the latter holds for any K∞-function, this
proves semiglobal practical asymptotic stability for general
nonlinear bounds, a fact already known from Grimm et al.
[2005].

(f) The lower bound on `? in Assumption 3.2(i) can be
replaced by a detectability condition, thus allowing to use
positive semidefinite stage costs. In this case, VN will in
general not be a Lyapunov function anymore. Rather, a
Lyapunov function can be constructed from VN and an
auxiliary function from the detectability condition. For
details see Grimm et al. [2005] or [Grüne and Pannek,
2011, Section 7.3].

(g) We finally remark that a continuous time version of
the estimates from Variant 3 was derived in Reble and
Allgöwer [2011]. An in depth comparison between the
discrete time and the continuous time estimates has been
carried out in Worthmann et al. [2012].

4. ECONOMIC NMPC

In the previous section we have considered NMPC prob-
lems in which the stage cost penalizes the distance to some
desired equilibrium. There are, however, many optimal
control problems with other optimization objectives.
Example 4.1. (i) For instance, one may look at the prob-
lem of keeping the state x(k) of (1) inside the admissible
set X with minimal control effort, which can, e.g., be
modelled by the stage cost `(x, u) = ‖u‖2. In this case,
` does not satisfy the lower bound in Assumption 3.2(i).
As a simple prototype system from this problem class, we
may look at the (open loop unstable) 1d dynamics

x(k + 1) = 2x(k) + u(k)
with with X = U = R, X = [−0.5, 0.5] and U = [−2, 2], cf.
Grüne [2011] or Grüne [2012].

(ii) Another situation which does not fit the assumptions
of the previous section occurs if ` satisfies the lower bound
in Assumption 3.2(i) but 0 is not an equlibrium of the
dynamics for any u ∈ U. An example from this class,
taken from Diehl et al. [2011], is a linearized model of
a continuously stirred tank reactor with two dimensional
affine linear dynamics

x(k + 1) =
(

0.8353 0
0.1065 0.9418

)
x(k)

+
(

0.00457
−0.00457

)
u(k) +

(
0.5559
0.5033

)
and stage cost `(x, u) = ‖x‖2 + 0.05u2. We use the
state and control constraints X = [−100, 100]2 and U =
[−10, 10]. Here the stage cost ` tries to force the sys-
tem to the origin (0, 0)T with control 0. However, since
(x, u) = ((0, 0)T , 0) is not an equilibrium for the dynamics,
stabilization at this point will not be possible.

Instead, one may aim at the “best compromise”, i.e., at
the equilibrium (xe, ue) which yields the smallest value of
` among all equilibria of the dynamics. This equilibrium
can be computed as xe ≈ (3.546, 14.653)T with ue ≈ 6.163
and cost `(xe, ue) ≈ 229.1876.

In fact, Example 3.3 is similar to Example 4.1(ii) in the
sense that the desired states xe1 and xe2 are not equilib-
ria of the system under the imposed state constraints.
However, in this example the set of minimizers {y ∈
X | `(y) = minx∈X `(x)} w.r.t. the state constraint set X
still consists of equilibria and the stage cost is positive
definite with respect to this set, which is why this example
still fits the framework of Section 3 (in the generalized
setting discussed after Definition 3.1). In contrast to this,
for Example 4.1(ii) the optimal equilibrium stage cost
`(xe, ue) ≈ 229.1876 does not coincide with the minimal
value of ` over all admissible x ∈ X and u ∈ U, which is
`(0, 0) = 0.

4.1 Terminal constrained economic NMPC

Problems like those in Example 4.1 are referred to as
economic (N)MPC in the literature since the stage cost
reflects an economic criterion rather than a mere distance
to some desired equilibrium. In a series of papers (Angeli
et al. [2009], Angeli and Rawlings [2010], Diehl et al. [2011],
Amrit et al. [2011]), a theory of economic NMPC with
terminal constraints has been developed. We briefly sketch
some of the main results of these papers for the special case
where xe ∈ X is an equilibrium, i.e., f(xe, ue) = xe holds
for some ue ∈ U (note that some of these references also
discuss the case of periodic solutions which we will not
treat here). For any equilibrium xe it is shown that if we
use the NMPC approach from Section 2 but impose the
terminal constraint xu(N, x) = xe in (3) (assuming that
this constraint is feasible for the given initial value x ∈ X),
then the inequality J

cl

∞(x, µN ) ≤ `(xe, ue) holds, where

J
cl

∞(x, µ) := lim sup
K→∞

1
K

K−1∑
k=0

`(xµ(k, x), µ(xµ(k, x)))

denotes the infinite horizon averaged functional. Particu-
larly, if `(xe, ue) is an optimal equilibrium (in the sense
that the equilibrium cost `(xe, ue) is less or equal than the
infinite horizon averaged functional along any other trajec-
tory) then optimal performance of the closed loop follows.
In the Examples 4.1(i) and (ii) it can be shown that
optimal equilibria in this sense exist. In Example 4.1(i)
this is given by (xe, ue) = (0, 0) and in Example 4.1(ii)
the “best compromise” equilibrium xe ≈ (3.546, 14.653)T ,
ue ≈ 6.163 meets this condition.

Note that even in the case of an optimal equilibrium
convergence of the closed loop trajctories to xe does not
necessarily follow. In order to ensure convergence, the
following condition (cf. Angeli and Rawlings [2010]) can
be employed. We define a modified cost

˜̀(x, u) := `(x, u) + λ(x)− λ(f(x, u)) (16)
for a given function λ : X → R. Then the inequality
minx∈X,u∈U ˜̀(x, u) ≤ ˜̀(xe, ue) = `(xe, ue) holds. Addition-
ally, we make the following assumption.
Assumption 4.2. The function λ in (16) is bounded on
X and there exists an equilibrium (xe, ue) ∈ X × U and
α` ∈ K∞ such that

min
u∈U

˜̀(x, u) ≥ `(xe, ue) + α`(‖x− xe‖)

holds for all x ∈ X with ˜̀ from (16).



One checks that Assumption 4.2, which can be interpreted
as a dissipativity property, is satisfied for Examples 4.1(i)
and (ii) for λ(x) = −x2/2 and λ(x) = cTx with cT ≈
(−368.6684,−503.5415)T , respectively. Assumption 4.2 is
sufficient for the equilibrium (xe, ue) to be optimal and
also ensures that NMPC closed loop solutions for the
terminal constrained NMPC scheme converge to xe.

4.2 Economic NMPC without terminal constraints

For exactly the same reasons as outlined at the beginning
of Section 3 it is now interesting to investigate whether
these properties remain true if we do not impose the
terminal constraint xu(N, x) = xe in (3). In order to show
what kind of performance is reasonable to expect for such
schemes, let us first show simulations for the Examples
4.1(i) and (ii).
Example 4.3. (i) We reconsider Example 4.1(i). For this
problem, it is easily seen that an optimal way of keeping
the system within the admissible set X in an infinite
horizon averaged sense is to steer the system to the
equilibrium xe = 0 in a finite number of steps k′ and set
u(k) = ue = 0 for k ≥ k′. Moreover, `(x, u) ≥ 0 implies
J
cl

∞(x, µ) ≥ 0 for each feedback law µ.

Figure 2 shows the NMPC closed loop trajectory x(k) =
xµN

(k, x) for x = 0.5 (solid) and the open loop opti-
mal trajectories xu?(·, x(k)) for each k (dashed) for X =
[−0.5, 0.5]. One sees that while the open loop trajectories
eventually move to the upper boundary of the admissible
set, the closed loop trajectory tends towards a neighbor-
hood of xe = 0.
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Fig. 2. Closed loop trajectory x(k) = xµN
(k, x0) (solid)

and optimal predictions xu?(·, x(k)) (dashed) along
x(k) for Example 4.1(i) with N = 5, x = 0.5 and
X = [−0.5, 0.5]

When increasing N , the closed loop solution ends up
in smaller neighborhoods of xe whose diameters shrink
exponentially. This exponential decay is also reflected
in the infinite horizon averaged value J

cl

∞(x, µN ), which
converges to the optimal equilibrium value `(0, 0) = 0
exponentially fast, i.e., the difference to 0 decays like
CθN for constants C > 0 and θ ∈ (0, 1), as shown in
Figure 3 (note that the scale on the J

cl

∞(x, µN )-axis is
logarithmic). This figure also shows that for the admissible
set X = [−0.5, 0.5] the values J

cl

∞(x, µN ) are smaller —
and thus better — than for the larger set X = [−1, 1].
This may be surprising at the first sight since the infinite

horizon optimal equilibrium does not depend on the size of
the state constraints. An explanation for this phenomenon
is provided at the end of this section.
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Fig. 3. J
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∞(x, µN ) for Example 4.1(i) with N = 2, . . . , 15,
x = 0.5, X = [1, 1] (solid) and X = [−0.5, 0.5]
(dashed)

(ii) We now perform similar simulations for Example
4.1(ii). As mentioned in Section 4.1, in this example
the infinite horizon averaged performance is bounded
from below by the optimal equilibrium value `(xe, ue) ≈
229.1876. The solutions exhibit a similar behavior as for
Example 4.1(i): the open loop optimal trajectories first
move towards xe and then move away while the closed loop
trajectories converge to an equilibrium close to xe (Figure
4) and the closed loop performance J

cl

∞(x, µN ) converges
exponentially towards `e for N →∞ (Figure 5).
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Fig. 4. Phase space plot of two closed loop trajectories
x(k) = xµN

(k, x0) (solid) and optimal predictions
xu?(·, x(k)) (dashed) along x(k) for Example 4.1(ii)
with N = 10 and x0 = (4, 20)T and x0 = (3, 10)T .
The diamond indicates the equilibrium of the closed
loop dynamics and the circle indicates the optimal
equilibrium xe.

In order to prove the behavior observed in these simu-
lations, it turns out that one can identify the following
counterpart to Proposition 3.4.
Proposition 4.4. Let N ≥ 2, abbreviate `e = `(xe, ue) and
assume that the optimal value function VN and the NMPC
feedback law µN satisfy the inequality
VN (f(x, µN (x)))−VN (x) ≤ `(x, µN (x)) + `e+ ε(N) (17)

for all x ∈ X and a function ε : N → R+
0 Then the

inequality
J
cl

∞(x, µN ) ≤ `e + ε(N)
holds for all x ∈ X.
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∞(x, µN ) − `(xe, ue) for Example 4.1(ii) with
N = 2, . . . , 20 and x = (4, 20)T

The proof of this proposition follows by observing that
(17) is equivalent to

VN (x)− VN−1(x) ≤ `e + ε(N).
Now the assertion follows as in [Grüne, 2012, Proof of
Proposition 4.1].

Proposition 4.4 means that we can prove value convergence
for the closed loop. If, moreover, Assumption 4.2 holds
and Nε(N)→ 0 as N →∞, then also convergence of the
closed loop solution xµ(k, x) to a neighborhood of xe can
be shown, where the size of this neighborhood shrinks to 0
as N →∞, cf. [Grüne, 2012, Theorem 7.6]. Hence, under
the additional condition Nε(N)→ 0 we can also conclude
trajectory convergence. Note that the numerical results
from Example 4.1 indicate that this additional condition
holds for these examples, since the observed exponential
decay ε(N) ≤ CθN , θ ∈ (0, 1), implies Nε(N)→ 0.

The central question is thus whether we can ensure the
inequality (17), preferably with Nε(N) → 0 as N → ∞.
Inequality (17) can be concluded by a modification of the
construction in Variant 1 from Section 3.2. Similar to the
construction before (9), the idea is to obtain an approx-
imate control sequence ũ for initial value f(x, µN (x)) by
suitably prolonging the tail (u?(1), . . . , u?(N − 1)) of the
optimal control sequence u? for initial value x. This is
done by inserting an additional control value û ≈ ue at a
time k at which the trajectory xu? satisfies xu?(k, x) ≈ xe
and shifting the remainder of the sequence u? to the
right by one time index, for details we refer to [Grüne,
2012, Proof of Theorem 4.2]. Besides some continuity and
boundedness conditions on f , ` and VN , which ensure
that `(û, xu?(k, x)) ≈ `e and that the value along the
tail of the optimal trajectory does not change too much
after inserting û, the main requirement for this proof to
work is that the open loop optimal trajectory for horizon
N satisfies xu?(k, x) ≈ xe for some k ∈ {0, . . . , N}. In
quantitative terms, this leads to the following assumption.
Assumption 4.5. There exists σ : N→ R+

0 with σ(N)→ 0
as N → ∞ and N1 ∈ N such that for each x ∈ X and
each N ≥ N1 there exists an optimal trajectory xu?(·, x)
satisfying

‖xu?(kx, x)− xe‖ ≤ σ(N)
for some kx ∈ {0, . . . , N}.

Assumption 4.5 is a particular form of a so called turn-
pike property which is a classical tool in optimal control,
see [Carlson et al., 1991, Section 4.4], particularly for

understanding the optimal dynamics of economic control
problems, cf. McKenzie [1986] and the references therein.

An inspection of the proof of [Grüne, 2012, Theorem
4.2] shows that the value ε(N) in (17) can be obtained
from σ(N). More precisely, under suitable continuity and
boundedness assumptions on f , ` and VN in a neighbor-
hood of xe, the estimate ε(N) ≤ p(σ(N)) can be obtained,
where p is a polynomial with p(0) = 0. Particularly, this
shows that σ(N) → 0 implies ε(N) → 0 and if σ(N)
converges to 0 exponentially fast, then ε(N) will do so,
too.

In what follows we will thus investigate conditions for
Assumption 4.5 to hold. In order to simplify the com-
putations, for the subsequent considerations we will as-
sume `(xe, ue) = 0 and λ(xe) = 0 which also implies
˜̀(xe, ue) = 0. These asumptions can be made without
loss of generality by adding suitable constants to ` and
λ. Note that adding such constants does neither change
the optimal trajectories and control sequences nor does it
affect the validity of Assumption 4.2 and the function α
in this assumption. Moreover, we define the modified cost
functional

J̃N (x, u) :=
N−1∑
k=0

˜̀(xu(k, x), u(k)).

Observe that by definition of the modified cost ˜̀ the
functionals JN from (3) and J̃N are related via

J̃N (x, u) = JN (x, u) + λ(x)− λ(xu(N, x)). (18)

With these assumptions and notations we now present two
variants for proving Assumption 4.5.

Variant 1: Let Assumption 4.2 hold and let C :=
2 supx∈X |λ(x)| < ∞. Assume moreover that VN (x) is
bounded from above on X, i.e., VN (x) ≤ M holds for all
x ∈ X and some M ∈ R. Then from (18) we obtain

J̃N (x, u?) ≤ JN (x, u?) + C = VN (x) + C ≤M + C.

for all N ∈ N. Like in Variant 1 from Section 3.2 this
implies ˜̀(xu?(k, x), u?(k)) ≤ (M + C)/N for some k ∈
{0, . . . , N − 1}. Assumption 4.2 then implies

‖xu?(k, x)− xe‖ ≤ α−1((M + C)/N) =: σ(N)
with α from Assumption 4.2 which shows Assumption 4.5.

In our examples the function ˜̀ is quadratic around xe

which means that α is quadratic and hence α−1 behaves
like a square root near 0. Hence, the proof shows that
σ(N) is of the order of

√
N which converges to 0 much

slower than the exponential convergence we observe in
the examples. Generally, unless α−1 happens to be very
“flat” near 0 (which appears to be an exceptional case), the
proof just sketched will not yield exponential convergence
of σ(N) to 0. Consequently, this proof (which follows
[Grüne, 2012, Theorem 5.3]) shows value convergence but
in general we cannot conclude trajectory convergence.
In order to improve the estimate, we present another
variant to estimate σ(N) which, however, needs stronger
assumptions.

Variant 2: Let Assumption 4.2 hold, assume that ˜̀ is
bounded on X × U and consider the following terminal
constrained optimal value function



Ṽ tN (x0, xT ) := inf
u∈UN (x0)

xu(N,x0)=xT

J̃N (x0, u).

Assume that there exists γ ≥ 1 such that for all x0, xT ∈ X
for which a trajectory from x0 to xT exists the inequality

Ṽ tN (x0, xT ) ≤ γ`?(x0) + (γ − 1)`?(xT ) (19)
holds. This inequality generalizes Assumption 3.5 to the
terminal constrained problem and we can use it in a similar
way as we have exploited Assumption 3.5 in Variant 2 from
Section 3.2: We first observe that by virtue of (18) for
each optimal trajectory xu?(·, x) for VN (x) and all p, q ∈
{0, . . . , N} with p < q the trajectory piece from k = p

to k = q is also an optimal trajectory for Ṽ tq−p(x0, xT )
if we set x0 = xu?(p, x) and xT = xu?(q, x). Hence,
defining ˜̀

k := `(xu?(k, x), u?(k)), k = 0, . . . , N − 1 and
˜̀
k := `?(xu?(N, x)), from (19) we obtain the inequalities

q∑
k=p

˜̀
k ≤ γ ˜̀

p + γ ˜̀
q.

An inspection of this inequality yields that now we can
proceed similarly to Variant 2 from Section 3.2, either
in forward direction for k = 0, . . . , bN/2c or in backward
direction for k = N, . . . , dN/2e. This yields either

˜̀bN/2c ≤ γ
(
γ − 1
γ

)bN/2c−1

˜̀
0

or

˜̀dN/2e ≤ γ
(
γ − 1
γ

)bN/2c−1

˜̀
N .

Since we assumed ˜̀to be bounded on X (say, by a constant
M), this implies Assumption 4.5 with

σ(N) = α−1

(
Mγ

(
γ − 1
γ

)bN/2c−1
)
.

If α has at least polynomial growth near 0 (which is true in
Examples 4.1(i) and (ii) since ˜̀ and thus α is quadratic),
this σ indeed decays exponentially.

This analysis also yields an explanation for the observation
from Figure 3, namely that the error ε(N) increases
when the constraint set X is enlarged. Indeed, as X is
enlarged the bound M on ˜̀ increases and thus σ(N) and
consequently also the error bound ε(N) becomes larger.

We summarize our findings in the following theorem.
Theorem 4.6. Consider an economic NMPC problem sat-
isfying Assumption 4.2 where without loss of generality we
assume `(xe, ue) = 0.

(i) Assume that f , ` and VN are locally Lipschitz with
Lipschitz constant independent of N in case of VN 4 and
that λ from Assumption 4.2 and VN are bounded on X
with a bound independent of N in case of VN . Then the
value convergence

J
cl

∞(x, µN )→ `(xe, ue)
holds for all x ∈ X as N →∞.
4 The Lipschitz conditions can be replaced by weaker but more
technical continuity conditions, see Conditions (a) and (b) of [Grüne,
2012, Theorem 4.2]. Moreover, the Lipschitz and the boundedness
condition on VN independent of N can be ensured by a controllability
condition [Grüne, 2012, Theorem 6.4].

(ii) If, moreover, ˜̀is bounded on X×U, α from Assumption
4.2 has at least polynomial growth near 0 and (19) holds,
then the value convergence is exponentially fast and for
each δ > 0 there exists N > 0 such that

‖xµN
(k, x)− xe‖ ≤ δ

holds for all x ∈ X and all sufficiently large n ∈ N.

Inequality (19) used in Part (ii) of this theorem is a
natural extension of Assumption 3.5. However, unlike the
by now well investigated Assumption 3.5, it is currently
not completely clear how restrictive (19) is in terms of the
dynamics of the system and the stage cost. Investigations
on this are subject of ongoing research and will — together
with a detailed version of the proof sketched in Variant 2
— appear in Damm et al. [2012].

5. FEASIBILITY

In order to ensure that an NMPC scheme is well defined, it
is important that at each time k there exists an admissible
control sequence for the closed loop state x = xµN

(k, x0),
i.e., that UN (x) 6= ∅. In the previous sections we have
circumvented this problem by simply assuming UN (x) 6= ∅
for all x ∈ X. However, in general it is a difficult task to
construct a state constraint set X meeting this assumption.
It is thus of interest to look at other ways to ensure
UN (x) 6= ∅ for all points x = xµN

(k, x0), k ∈ N.

Defining the feasible sets
XN := {x ∈ X |UN (x) 6= ∅}

and
X∞ := {x ∈ X |U∞(x) 6= ∅}

the question is thus whether we can ensure xµN
(k, x0) ∈

XN for all k ∈ N. To this end, we use the following
definitions.
Definition 5.1. Consider an NMPC scheme with optimiza-
tion horizon N and a set A ⊆ XN .

(i) The scheme is called strongly feasible on A, if for each
x ∈ A and u ∈ UN (x) the condition xu(1, x) ∈ A holds.

(ii) The scheme is called recursively feasible on A, if for
each x ∈ A and each optimal control sequence u? ∈ UN (x)
for (3) the condition xu?(1, x) ∈ A holds.

The notion of strong feasibility demands that for any
admissible trajectory starting in A remains in A for at least
one step. Note that strong feasibility (the name goes back
to Kerrigan [2000]) is weaker than the well known property
of strong forward invariance: in contrast to strong forward
invariance we do not require the admissible trajectories
xu(k, x) to remain inside A for all k = 1, . . . , N − 1
but only for k = 1. The notion of recursive feasibility is
weaker in the sense that it requires the same property but
not for all admissible trajectories starting in A but only
for the optimal ones. Many authors have observed the
importance of invariance in control (see, e.g., Blanchini
[1999], Blanchini and Miani [2008] and the references
therein) and more specifically in MPC. Some variants of
MPC (like, e.g., the so called tube based MPC method, see
Langson et al. [2004]) even rely on the explicit construction
of invariant sets. In contrast to this, here we will only use
them as an analysis tool whose explicit knowledge is not
needed in order to run the NMPC algorithm.



Using the identity xµN
(1, x) = xu?(1, x), it is easily seen

by induction that recursive feasibility ensures xµN
(k, x) ∈

A ⊆ XN for all x ∈ A and all k ∈ N and is thus sufficient
for the NMPC scheme being well defined. Since this
means that xµN

(k, x) is an admissible trajectory of infinite
length, we immediately obtain the inclusion A ⊆ X∞. The
stronger condition of strong feasibility is of interest if we
run an NMPC scheme with non-optimal (but admissible)
u instead of the optimal u?. Although not treated in detail
in this paper, this is, for instance, important if we cannot
obtain an optimal solution of (3), e.g., if because of time
constraints the iterative optimization algorithm used for
solving (3) cannot be iterated until convergence.

One of the main advantages of terminal constrained
NMPC schemes is that including a terminal constraint
set X0 with the properties described at the beginning of
Section 3 “automatically” leads to strong feasibility, if we
take into account that the terminal constraint condition
xu(N, x) ∈ X0 needs to be incorporated in the definition
of XN . For a detailed analysis we refer to [Kerrigan, 2000,
Chapter 5]. It is also easily seen that strong feasibility
holds without terminal constraints if the set X is controlled
forward invariant, as assumed in the previous sections.

In the following two sections we sketch two ways which can
be used in order to conclude strong or recursive feasibility
if X is not controlled forward invariant and no terminal
constraints are imposed.

5.1 Strong feasibility via stationarity

Strong feasibility for NMPC without terminal constraints
can be ensured if the question whether a point x lies in X∞
can be determined in a finite number of steps. In order to
make this statement precise, we look at the dependence
of the sets XN on N , following [Kerrigan, 2000, Theorem
5.3] and [Grüne and Pannek, 2011, Section 8.2] (the latter
references essentially rephrases the results from the earlier
one using a different notation, a fact which unfortunately
escaped us when writing Grüne and Pannek [2011]). Here
we give a self-contained and actually quite short proof of
the main result in these references.

The definition of the feasible set XN immediately implies
the inclusion XN2 ⊆ XN1 for all N2 > N1 ≥ 2. We say that
the sequence of sets XN becomes stationary, if there exists
N0 ≥ 0 such that XN2 = XN1 holds for all N1, N2 ≥ N0.
Theorem 5.2. Assume that the feasible sets become sta-
tionary for some N0 ∈ N. Then the NMPC scheme is
strongly feasible on A = XN for all N ≥ N0 + 1.

Proof: From the definition of the XN it follows that
for each x ∈ A = XN and u ∈ UN (x) the relation
xu(1, x) ∈ XN−1 holds. Since the stationarity assumption
implies XN−1 = XN = A for all N ≥ N0 + 1, we obtain
xu(1, x) ∈ A which shows the claim.
Example 5.3. Consider the zero order hold sampled data
model of a double integrator with sampling time T = 1,
i.e., x(k + 1) = f(x(k), u(k) with

f(x, u) =
(
x1 + x2 + u/2
x2 + u

)
.

We use the state constraints X = [−1, 1]2 and the control
constraints as U(x) = U = [−ū, ū] with ū > 0.

A straightforward but somewhat tedious computation
shows that feasible sets XN are given by

XN = X \
N−2⋃
j=1

{
x ∈ R2

∣∣∣∣ x1 > −jx2 + 1 + j2ū/2 or
x1 < jx2 − 1− j2ū/2

}
.

Since the two inequalities in this set are never satisfied
for x ∈ [−1, 1]2 if j ≥ 1/ū holds, the sets XN become
stationary for N0 = d1/ū+ 1e.

Even though this has not been checked rigorously, we
conjecture that the same is true for the more complicated
dynamics and state constraints in Example 3.3, which
explains why we did not encounter feasibility problems in
the simulations for this example.

5.2 Recursive feasibility via stability

In case the condition of Theorem 5.2 is not satisfied, there
is little hope to obtain strong feasibility without imposing
terminal constraints. However, recursive feasibility can
still be obtained if the assumptions needed for stability
can be met. In this section we present a method to
ensure recursive feasibility which goes back to Primbs
and Nevistić [2000] for finite dimensional linear systems
and was extended to nonlinear systems on general metric
spaces in [Grüne and Pannek, 2011, Section 8.3].

Since we want to conclude feasibility from stability, we
suppose that Assumptions 3.2 and 3.5 are satisfied, where
we restrict ourselves to points x from the sets X∞ and
XN on which the optimal value functions V∞ and VN
are well defined. Moreover, we assume that there exists
a neighborhood N of the origin for which N ∩ X is con-
trolled forward invariant. Recall that controlled forward
invariance means that for each x ∈ N ∩ X there exists
u ∈ U with f(x, u) ∈ N ∩ X. We emphasize that the set
N is not needed in the implementation but only for the
analysis of the NMPC scheme. Hence, there is no need to
actually compute this set.

Defining M := infx 6∈N∩X `
?(x), for each x ∈ X the

inequality `∗(x) < M implies x ∈ N ∩ X. Moreover, if
N contains a ball of radius ε around the origin then we
can estimate M ≥ α1(ε) for α1 from Assumption 3.2(i).

Following the computations from Variant 2 in Section 3.2,
for each x ∈ XN our assumptions ensure the inequality

`(xu?(N − 1, x), u?(N − 1)) ≤ γ
(
γ − 1
γ

)N−1

`(x, u?(0)).

Since VN (x) ≥ `(x, u?(0)) this implies

`(xu?(N − 1, x), u?(N − 1)) ≤ γ
(
γ − 1
γ

)N−1

VN (x).

Hence, if for c > 0 we define the sublevel sets
AN,c := {x ∈ XN |VN (x) ≤ c},

then for each x ∈ AN,c we obtain

`(xu?(N − 1, x), u?(N − 1)) ≤ γ
(
γ − 1
γ

)N−1

c. (20)

Since the right hand side of this inequality decreases to
0, we can conclude that there exists Nc > 0 such that
`(xu?(N −1, x), u?(N −1)) < M and thus xu?(N −1, x) ∈
N ∩ X holds for all x ∈ AN,c and all N ≥ Nc. Moreover,



since the right hand side of (20) shrinks exponentially
fast, Nc grows logarithmically (i.e., at very slow rate) with
increasing c.

Now, for any N ≥ Nc, since xu?(N − 1, x) ∈ N ∩ X and
N ∩ X is controlled forward invariant, the trajectory can
be extended to stay in X forever, and as a consequence
all points on the trajectory xu?(k, x) lie in X∞. Hence, we
can now apply the estimates from Variant 3 in Section 3.2
which imply that VN is a Lyapunov function for the NMPC
closed loop if N satisfies (13). Hence, for all N ≥ Nc
satisfying (13) we obtain

VN (xu?(1, x)) = VN (xµN
(1, x)) ≤ VN (x)

for all x ∈ AN,c, implying xu?(1, x) ∈ AN,c. This proves
that the NMPC scheme is recursively feasible on A = AN,c.

Note that the upper bound VN (x) ≤ γα2(‖x‖) implies that
AN,c covers each bounded subset of X∞ for sufficiently
large c. Particularly, if X itself is bounded then X∞ will
be recursively feasible for all sufficiently large N .

Again, we summarize the derivations from this section in
a theorem.
Theorem 5.4. Consider an NMPC problem with a not
necessarily controlled forward invariant state constrains
set X. Assume that Assumptions 3.2 and 3.5 hold on X∞
and XN , respectively. Then for each c > 0 there exists
Nc > 0 with Nc ∼ ln c such that the NMPC algorithm
is recursively feasible on the set {x ∈ XNc |VNc(x) ≤ c}.
Particularly, for each bounded set K ⊆ X∞ there exists
NK > 0 such that the NMPC algorithm is recursively
feasible on a set A ⊇ K.

While the arguments outlined in this section essentially
follow [Grüne and Pannek, 2011, Section 8.3] (to which we
also refer for more details), the proof has been improved
by using Variant 2 from Section 3.2 instead of Variant 1
as in [Grüne and Pannek, 2011, Section 8.3]. The benefits
of using Variant 2 are the logarithmic growth of Nc with c
(as opposed to a linear growth Nc ∼ c) and a considerably
simplified construction of the sublevel set AN,c.

6. CONCLUSION

In this paper we have surveyed recent results on stability,
performance and feasibility of NMPC without terminal
constraints. We have shown that many properties of ter-
minal constrained NMPC schemes can also be rigorously
derived without terminal constraints. By means of Exam-
ple 3.3 we have demonstrated that by avoiding terminal
constraints NMPC can yield controllers with large oper-
ating regions even for very short optimization horizons.
While a rigorous check of stability and feasibility condi-
tions may be more involved than for terminal constrained
schemes, the design is typically considerably more simple
since no Lyapunov function terminal costs need to be com-
puted. Hence, NMPC without terminal constraints can
provide an attractive alternative to terminal constrained
schemes.
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