
1496  |     Diversity and Distributions. 2020;26:1496–1509.wileyonlinelibrary.com/journal/ddi

 

Received: 11 March 2020  |  Revised: 9 June 2020  |  Accepted: 6 July 2020

DOI: 10.1111/ddi.13136  

B I O D I V E R S I T Y  R E S E A R C H

Climate change exposure and vulnerability of the global 
protected area estate from an international perspective

Samuel Hoffmann1  |   Carl Beierkuhnlein1,2,3

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, 
provided the original work is properly cited.
© 2020 The Authors. Diversity and Distributions published by John Wiley & Sons Ltd.

1Department of Biogeography, University of 
Bayreuth, Bayreuth, Germany
2Bayreuth Center of Ecology and 
Environmental Research, BayCEER, 
University of Bayreuth, Bayreuth, Germany
3Geographical Institute, University of 
Bayreuth, GIB, Bayreuth, Germany

Correspondence
Samuel Hoffmann, Department of 
Biogeography, University of Bayreuth, 
Universitaetsstr. 30, 95447 Bayreuth, 
Germany.
Email: samuel.hoffmann@uni-bayreuth.de

Funding information
ECOPOTENTIAL project – EU Horizon 2020 
research and innovation programme, Grant/
Award Number: 641762

Editor: Luigi Maiorano

Abstract
Aim: Protected areas are essential to conserve biodiversity and ecosystem benefits 
to society under increasing human pressures of the Anthropocene. Anthropogenic 
climate change, however, threatens the enduring effectiveness of protected areas in 
conserving biodiversity and providing ecosystem services, because it modifies and 
redistributes biodiversity with unknown consequences for ecosystem functioning 
within protected areas. Here, we assess (a) the climate change exposure of the global 
terrestrial protected area estate and (b) the climate change vulnerability of national 
protected area estates.
Location: Terrestrial protected areas worldwide.
Methods: We calculated local climate change exposure as predicted climate anoma-
lies between the present and 2070 using ten global climate models, two emission sce-
narios (RCP 4.5 and 8.5) and the finest spatial resolution available for global climate 
projections (approx. 1 km). We estimated the climate change vulnerability of national 
protected area estates by analysing countrywide relationships between protected 
areas’ climate anomalies and other protected area characteristics, that is area, eleva-
tion, terrain ruggedness, human footprint and irreplaceability for globally threatened 
species.
Results: We found predicted climate anomalies highest in protected areas of (sub-)
tropical countries. The correlations between climate anomalies and protected area 
characteristics strongly differ between countries. Globally, protected areas show-
ing large climate anomalies tend to be at high elevation and highly irreplaceable for 
threatened species, increasing climate change vulnerability. These protected areas 
are relatively large in area, of high topographic heterogeneity and less pressured by 
humans, decreasing climate change vulnerability.
Main conclusion: This study reveals potential hotspots of climate change impact in-
side the terrestrial protected area estate. It thus supports and guides climate-smart 
conservation policy and management, particularly national to local authorities, to en-
sure the future effectiveness of protected areas in preserving biodiversity and eco-
system benefits under climate change.
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1  | INTRODUC TION

Protected areas (PAs) are effective in conserving biodiversity, eco-
system functioning and services under increasing human pressures 
of the Anthropocene. Local biodiversity is generally higher inside 
than outside PAs (Gray et al., 2016). PAs preserve species and pop-
ulations better than other conservation measures (Geldmann et al., 
2013). For global biodiversity conservation, PAs are particularly 
effective when they are located in biodiversity hotspots (Joppa, 
Visconti, Jenkins, & Pimm, 2013), actively managed and funded (Coad 
et al., 2019). PAs cannot stop but decelerate the global biodiversity 
loss (Geldmann, Manica, Burgess, Coad, & Balmford, 2019). Further, 
PAs safeguard ecosystem services such as climate change mitigation 
and adaptation (MacKinnon, Dudley, & Sandwith, 2011); natural ca-
tastrophe control and the provision of natural resources (Xu et al., 
2017); tourism and recreation (Balmford et al., 2009); and poverty 
reduction (Andam, Ferraro, Sims, Healy, & Holland, 2010). They 
are consequently considered crucial tools to meet the Sustainable 
Development Goals (SDG) and Aichi Biodiversity Targets (Mace 
et al., 2018). Conservationists perceive PAs as the most important 
policy for biodiversity conservation in the face of climate change 
(Hagerman & Satterfield, 2014).

Already in the 1980s scientists have warned of climate change 
being an inevitable threat to PA effectiveness (Peters & Darling, 
1985). PAs are exposed to various direct and indirect climate change 
effects, for example increasing temperatures, melting of snow and 
ice, more severe droughts and storms, seasonal shifts, rising sea level 
and increased environmental acidification (Gross, Woodley, Welling, 
& Watson, 2017). Climate change is predicted to cause gains 
(Berteaux et al., 2018) and losses of biodiversity within PAs (Velazco, 
Villalobos, Galvão, & De Marco Júnior, 2019). In any case, the risk 
of PA downgrading, downsizing and degazettement (PADDD) in-
creases for PAs that lose the biodiversity they were meant to pro-
tect (Thomas & Gillingham, 2015). Climate change modifies and 
redistributes biodiversity and thus forms novel ecosystems whose 
functioning and contributions to human well-being are unclear 
(Pecl et al., 2017). Climate change additionally co-occurs with other 
threats to biodiversity, such as human land use, implying interactive 
effects (Schulze et al., 2018). Therefore, the future effectiveness of 
PAs in preserving biodiversity and ecosystem services under climate 
change is uncertain.

Predicting the future climate inside PAs is required to inform 
conservation management and policymakers of potential climate 
change impacts on PAs (Rannow et al., 2014). Conservation man-
agement and policy are mainly adopted at the national to local 
scale. However, global studies about climate change impact neither 
address national authorities nor represent the local extent of PAs 
(Williams et al., 2007; Beaumont et al., 2011; García-López & Allué, 

2013; Bellard et al., 2014; Garcia et al., 2014; Ordonez et al., 2016; 
Li, Wu, et al., 2018; Li, Kou, et al., 2018); and the climate change re-
search that focuses on PAs comprises a limited geographical extent 
only, for example North America (Batllori, Parisien, Parks, Moritz, 
& Miller, 2017) or Europe (Nila, Beierkuhnlein, Jaeschke, Hoffmann, 
& Hossain, 2019). A recent biogeographical investigation predict-
ing climate shifts within PAs worldwide does not contemplate the 
governmental level either (Hoffmann, Irl, & Beierkuhnlein, 2019). A 
national view of the local climate change impact on individual PAs 
worldwide is missing but vital to support local to national conserva-
tion policy and management in reaching global conservation goals 
beyond 2020 despite climate change (Watson et al., 2016).

Here, we approach this research gap by assessing the climate 
change exposure of the terrestrial PAs worldwide at the highest 
spatial resolution for which global climate data is available, that is 
approximately 1km. In a first step, we assessed the climate change 
exposure of PAs as the climate anomalies predicted for the year 
2070 within each grid cell covered by a PA. In a second step, we 
summarized the climate anomalies by each PA and present the PAs’ 
median climate anomalies by country and management category. In a 
third step, we calculated country-specific correlations between me-
dian climate anomalies and other PA characteristics to provide addi-
tional information about the climate change vulnerability of national 
PA estates. In a fourth step, we compare the median climate anom-
alies and other PA characteristics between national PA estates via a 
principal component analysis (PCA). The outcomes inform proactive 
management that can compensate for negative impacts of climate 
change on PA effectiveness (Game, Lipsett-Moore, Saxon, Peterson, 
& Sheppard, 2011). Our work sets out to support climate-smart pol-
icy and management of PAs, particularly at the national to local level.

2  | METHODS

2.1 | Protected area data

The World Database on Protected Area (version January 2018) in-
cludes boundary data for 201,464 PAs excluding marine, coastal 
(i.e., semi-terrestrial) and non-designated PAs (IUCN & UNEP-
WCMC, 2019). Non-designated PAs are PAs without legal recogni-
tion whose effectiveness is dubious. We rasterized the PA polygons 
by the same resolution as the climate data (30 arc seconds, i.e., ap-
proximately 1 km at the equator) via cell center coverage. We thus 
produced a global raster grid containing all cells that are covered by 
any of the PAs we selected. Because small PAs may cover no cell 
centroids, 137,735 PAs remained after rasterization, which compose 
26,038,594 cells and 20,658,583 km2, that is 14% of the global ter-
restrial surface and 99.9% of the terrestrial area under protection.
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The area and IUCN management category of each PA was re-
trieved from the WDPA. We consider PA area as a proxy for the 
amount of available resources for biodiversity to adapt to climate 
change within PAs. The IUCN management categories I to IV mean 
stricter protection, while categories V and VI allow for the sustain-
able use of natural resources, for example via silviculture and agricul-
ture (Dudley, 2008). We applied the Terrain Ruggedness index (TR) 
as a measure of topographic heterogeneity. The TR index has also a 
resolution of 30 arc seconds (Amatulli et al., 2018). Planar area has a 
TR of 0m, whereas mountain areas can have a TR of up to 2,000 m 
in the Himalayas (Amatulli et al., 2018). The median of the TR values 
inside PAs was used to represent the topographic heterogeneity of 
each PA. The median is more robust against extreme values than the 
mean. The human footprint index 2009 is the most recent global 
indicator of human pressure and involves eight indicators of human 
land use (Venter et al., 2016a): population density, buildings, electric 
infrastructure, roads, railways, navigable waterways, cropland and 
pasture. We calculated the median human footprint of each PA by 
taking the median of the raster cell values that fall within each PA 
polygon. The irreplaceability index provided by Le Saout et al. (2013) 
reflects the conservation value of PAs in terms of the species diver-
sity covered by PAs (Hoffmann, Beierkuhnlein, Field, Provenzale, & 
Chiarucci, 2018). This irreplaceability index represents the degree of 
overlap between each PA included in the WDPA (version October 
2012) and the ranges of species on the IUCN Red List (Le Saout et al., 
2013). The index involves ranges of 21,296 species: 6,240 amphibi-
ans, 9,793 birds and 5,263 mammals.

2.2 | Climate data

We used the WorldClim global climate data provided by Hijmans et al. 
(2005) including 19 bioclimatic variables with a resolution of 30 arc 
seconds. The 19 bioclimatic variables cover the full climate spectrum 
relevant for biodiversity, from annual trends (e.g., mean annual tem-
perature and annual precipitation) to seasonal trends (e.g., annual 
range in temperature and precipitation) and extreme conditions (e.g., 
temperature of the coldest and warmest month, and precipitation 
of the wettest and driest quarters of the year). The 19 bioclimatic 
variables are listed in Table S.1. Each current bioclimatic variable 
represents the mean value across the years 1960 to 1990; each fu-
ture bioclimatic variable represents the mean value across the years 
2061 to 2080, that is of 2070. WorldClim's current climate data 
were generated by interpolating climate station data. WorldClim's 
future climate data were downscaled from the GCMs of the Coupled 
Model Intercomparison Project Phase 5 (Intergovernmental Panel 
on Climate Change, Fifth Assessment Report). We considered pro-
jected data for the Representative Concentration Pathways (RCP) 
4.5 and 8.5 as well as 10 GCMs: BCC-CSM1-1, CCSM4, CNRM-CM5, 
GFDL-CM3, HadGEM2-AO, INMCM4, IPSL-CM5A-LR, MIROC5, 
MPI-ESM-LR and MRI-CGCM3. We selected the ten GCMs based 
on data availability (Hijmans et al., 2005) and dissimilarity between 
GCM outputs (Knutti, Masson, & Gettelman, 2013) to represent 

a diversity of predictive skills for different geographical regions 
worldwide.

Since WorldClim does not provide a monthly time series of mean 
climate variables for the period 1960–1990, we used the monthly 
time series provided by Abatzoglou et al. (2018). These data rep-
resent locally observed interannual climate variability (ICV), that is 
the standard deviation of mean monthly climate data from 1960 to 
1990. The ICV data have a resolution of 2.5 arc minutes, which is 
coarser than the resolution of WorldClim's mean climate data of cur-
rent and future conditions (30 arc seconds). To assign the ICV data 
to the mean climate data of current and future conditions, we disag-
gregated the ICV data to the resolution of 30 arc seconds. Matching 
both datasets in this way is appropriate, because the WorldClim 
data were used as input data for the calculation of the ICV data 
by Abatzoglou et al. (2018). For the ICV data, we calculated the 19 
bioclimatic parameters via the biovars function of R package dismo 
(Hijmans, Phillips, Leathwick, & Elith, 2017).

2.3 | Calculating climate change exposure

Climate change exposure can be measured by a variety of climate 
change metrics (Bellard et al., 2014; Dawson, Jackson, House, 
Prentice, & Mace, 2011; Li, Wu, et al., 2018). Climate change metrics 
are either calculated for a single locality, that is at the local level, or 
for a set of localities, that is at the regional level (Garcia et al., 2014). 
Here, we aim at analysing future climate change at the local level of 
PAs. Hence, we applied a local climate change metric. The most fun-
damental local climate change index is the climate anomaly metric, 
which is a measure of the magnitude of climate change at a given 
location indicating demographic population changes, particularly of 
species close to their climatic tolerance limits and with low adap-
tation capacity (Garcia et al., 2014). We refer to this local climate 
change index as climate change exposure.

We calculated the climate anomaly of each climate cell covered 
by a PA as the standardized Euclidean distance (SED) between inde-
pendent climate variables of mean current (1960–1990) and mean 
future (2061–2080) climate conditions relative to the current ICV 
(1960–1990). The SED is a widely applied metric to estimate future 
climate anomaly (Bellard et al., 2014; Garcia et al., 2014; Mahony, 
Cannon, Wang, & Aitken, 2017; Ordonez et al., 2016; Williams et al., 
2007). The standardization of climate distance by the ICV makes the 
SED robust against distance inflation, which occurs when interan-
nual climate variability is high but not considered by the distance 
metric. The SED between the mean current and mean future climate 
at a given location will be lower under high ICV than under low ICV, 
all else being constant.

We computed the SED based on independent climate variables. 
By applying the SED to independent climate variables, we avoid 
variance inflation resulting from intercorrelated climate variables. 
To produce independent climate variables, we projected the mean 
current, mean future and ICV climate data onto the first five princi-
pal components of the ICV data. In other words, the axes of the PCA 
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represent the spatial variation of 1960-1990 interannual climate 
variability. Thus, the PCA well reflects the entire spatial and tempo-
ral variation of current climate conditions as a reference to measure 
future climate anomaly. We log10-transformed the precipitation 
variables before we conducted the PCA to correct for nonlinearity. 
We thus reduced the 19 bioclimatic variables to five independent 
climate variables that were computationally practicable for us. The 
first five PCA axes account for 92% of the variation in the ICV data. 
The PC loadings are shown in Table S.1. The PC space was built on 
the ICV data of all climate cells covered by a PA (n = 26,038,594). In 
the PCA space with axes scaled to have unit variance, the SED equals 
the Mahalanobis distance (Mahony et al., 2017).

We defined the following parameters to calculate the SED: [A] is 
a (n × K) matrix of n climate cells of K mean climate variables for the 
period 1960–1990. [B] is a (n × K) matrix of n climate cells of K mean 
climate variables for the period 2061–2080. Each climate cell i thus 
represents a mean climate value aik and bik for a period of time and 
a climate variable k. [Ci] is a (T × K) matrix of T annual mean obser-
vations (31-year time series) and K climate variables of a climate cell 
i. citk is the mean value of climate variable k at year t, i.e., of the ICV 
reference period 1960–1990. sik is the standard deviation of the ICV 
reference period at cell i in variable k across the 31 citk values. The 
SED of cell i based on independent climate variables can finally be 
calculated by SEDi=

�

∑K

k=1
(bik−aik)

2∕s2
ik

.
The fewer climate variables are considered in measuring climate 

distance, the lower is the risk of Type I inference error (i.e., overesti-
mating climate distance) and the higher is the risk of Type II inference 
error (i.e., underestimating climate distance). Because five variables 
are relatively few to represent all dimensions of the climate space, 
our results may underestimate the climate change impact in regions 
of low climate anomaly (Mahony et al., 2017).

2.4 | Estimating climate change vulnerability of 
national PA estates

We consider the PA characteristics “area,” “elevation” and “terrain 
ruggedness” as indicators for the PAs’ capacity to buffer climate 
change impact. The larger the PA area, the more and more diverse 
resources are likely provided for species to adapt to climate change 
via migration and adaptation. High resource diversity is also found 
in PAs of mountain regions, that is of higher elevation and terrain 
ruggedness. Terrain ruggedness is a proxy for climate and habitat di-
versity, and thus of resource availability and the adaptation capacity 

of PAs’ biodiversity to impacts of climate change (Carroll et al., 2017; 
Lawler et al., 2015). We further assume that an increasing human 
footprint decreases the adaptive and buffer capacity of PAs because 
high human footprints indicate landscape fragmentation and human 
land use, lowering habitat extent, connectivity and resource availa-
bility, and hindering species adapting and migrating to track suitable 
climate conditions (Di Marco, Venter, Possingham, & Watson, 2018; 
Venter et al., 2016b). “Irreplaceability” represents the PAs’ ecological 
importance for the conservation of globally threatened species (Le 
Saout et al., 2013).

We summarized the cell-based climate anomalies by individual 
PAs using the median, grouped the resulting median climate anom-
alies of each PA by country and correlated the median anomalies 
of PAs to other PA characteristics (see Section 2.1). We tested for 
correlations by using Pearson's correlation coefficient r and a modi-
fied t-test accounting for spatial autocorrelation (Dutilleul, Clifford, 
Richardson, & Hemon, 1993). The countrywide correlations be-
tween PAs’ climate anomalies and other characteristics add infor-
mation about the climate change vulnerability of entire national PA 
estates. Climate change vulnerability of PAs increases with climate 
anomalies (i.e., climate change exposure), the human footprint and 
irreplaceability scores and decreases with PA area, elevation and ter-
rain ruggedness. The magnitude of Pearson's correlation coefficient 
r and the p-value indicate the goodness of the fit of the country-spe-
cific relationships between climate anomalies and PA characteristics. 
Please note that the r and p-values cannot be compared between 
countries and do not represent the degree of climate change vul-
nerability of nationwide PA estates. However, the presence or ab-
sence of a significant correlation adds information about the climate 
change vulnerability of national PA estates. For example, a negative 
correlation between climate change exposure and PA area means 
that smaller PAs are more exposed to climate anomalies in the coun-
try, which is a valuable information for national conservation policy. 
To compare the median climate anomalies and other PA character-
istics of national PA estates, we additionally performed a PCA. We 
used the PAs’ median climate anomaly, latitude, area, elevation, ter-
rain ruggedness, the human footprint and irreplaceability as input 
data for the PCA (n = 84,032). We then calculated group centroids 
of the PAs’ seven PC scores using countries as grouping factors and 
show these centroids along the first two PCA axes. The first two 
PCA axes account for 48% of the variation in the PA data for RCP 4.5 
and 8.5. The data on PAs’ median climate anomalies and characteris-
tics are supplied under https://doi.org/10.5061/dryad.f4qrf j6tf and 
linked to the WDPA via the WDPA ID.

F I G U R E  1   Predicted climate anomalies within the terrestrial PA estate for the year 2070 under the moderate emission scenario RCP 4.5 
and the high emission scenario RCP 8.5. The climate anomaly represents the magnitude of future climate change at a given location. Climate 
anomalies were calculated for each grid cell of approximately 1km resolution, using the standardized Euclidean distance between the current 
and future climate conditions. Here, we show the mean and standard deviation (SD) of climate anomalies resulting from future climate 
projections of ten global climate models. The SD is a measure of the variation among future climate predictions. (a) Mean climate anomalies 
under RCP 4.5. (b) Density distribution of mean climate anomalies by degree latitude under RCP 4.5. (c) SD climate anomalies under RCP 4.5. 
(d) Density distribution of SD climate anomalies by degree latitude under RCP 4.5. (e) Mean climate anomalies under RCP 8.5. (f) Density 
distribution of mean climate anomalies by degree latitude under RCP 8.5. (g) SD climate anomalies under RCP 8.5. (h) Density distribution of 
SD climate anomalies by degree latitude under RCP 8.5

https://doi.org/10.5061/dryad.f4qrfj6tf
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RCP 4.5

RCP 4.5

RCP 8.5
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3  | RESULTS

The predicted mean climate anomaly under RCP 4.5 (Figure 1a,b) 
and 8.5 (Figure 1e,f) is highest inside tropical and subtropical PAs 
between −25° and 25° latitude, but also remarkably high in polar PAs 
at high northern latitudes. The geographical pattern of the stand-
ard deviation (Figure 1c,d,g,h) largely conforms to the pattern of the 
mean (Figure 1a,b,e,f): the larger the predicted climate anomaly is, 
the higher is the variation of the predictions.

From a national perspective, Albania, Bhutan, Bolivia, Bosnia 
and Herzegovina, Burundi, Cameroon, Central African Republic, 
Colombia, Congo, Equatorial Guinea, French Guiana, Guatemala, 
Guinea, Guyana, Macedonia, Malawi, Malaysia, Mexico, Montenegro, 
Nepal, Nicaragua, Palestine, Peru, Rwanda, Sierra Leone and Uganda 
are among the top ten countries containing PAs of any IUCN man-
agement category with on average highest median climate anoma-
lies under RCP 4.5 (Figure 2); see Figure S.1 in Appendix S1 for RCP 
8.5. Considering the global pool of PAs (see “Global” in Figure 2), the 
median climate anomalies of PAs marginally differ between manage-
ment categories.

At the global scale, the median climate anomalies of PAs under 
RCP 4.5 correlate positively with PA area (r = .05, p < .001), eleva-
tion (r = .40, p < .001), terrain ruggedness (r = .32, p < .001) and 
irreplaceability (r = .06, p < .001) (see “Global” in Figure 3). There is 
no significant global correlation between climate anomaly and the 
human footprint under RCP 4.5; see Figure S.2 in Appendix S1 for 
results of RCP 8.5. Those worldwide correlations were weak. The 
country-scale relationships are on average stronger than the global 
relationships and even change direction. They differ considerably 
between countries.

The vectors of the PA characteristics in the two-dimensional 
PCA space (Figure 4) also show a clear correlation between ele-
vation, terrain ruggedness and median climate anomaly; between 
latitude and the human footprint; and between area and irreplace-
ability; see Figure S.3 in Appendix S1 for results of RCP 8.5. The PC 
loadings reveal the contributions of PA characteristics to the PCs 
(in decreasing order of importance for PC1): elevation (PC1: −0.57, 
PC2: −0.17), terrain ruggedness (PC1: −0.54, PC2: −0.24), median 
climate anomaly (PC1: −0.45, PC2: −0.15), human footprint (PC1: 
0.30, PC2: −0.18), latitude (PC1: 0.24, PC2: −0.24), irreplaceability 
(PC1: −0.15, PC2: 0.61) and area (PC1: −0.13, PC2: 0.66). The first 
PCA axis is mostly spanned by elevation, terrain ruggedness, me-
dian climate anomaly, the human footprint and latitude, while the 
second PCA axis correlates mostly with area and irreplaceability. 
PC1 and PC2 can explain 30.2% and 17.6% of the variance in the PA 

data, respectively. The national PA estates that are most associated 
with high elevation, terrain ruggedness and median climate anom-
aly are Bhutan, Rwanda, Nepal, Afghanistan and Kyrgyzstan. High 
irreplaceability and large area of PAs are especially found in Algeria, 
Niger, Venezuela, Mauritius and Botswana. Many tropical countries 
such as Ecuador, Bolivia, Peru and Colombia contain PAs of high el-
evation, terrain ruggedness, median climate anomaly, irreplaceabil-
ity and large area. PA estates of most European countries are only 
strongly related to large human footprints.

4  | DISCUSSION

We found hotspots of predicted climate anomaly in tropical, sub-
tropical and polar PAs. Our climate anomaly metric integrates fu-
ture changes of multiple thermal and hydraulic variables. Previous 
investigations have disentangled the roles of temperature and pre-
cipitation in forming these climate change hotspots: temperature 
change is projected largest in tropical regions, while precipitation 
change might be greatest in polar regions (García-López & Allué, 
2013; Garcia et al., 2014; Li, Kou, et al., 2018). We predicted high-
resolution patterns of climate anomaly inside PAs worldwide, which 
geographically agree with other global climate predictions based 
on different methods and coarser spatial resolution (Williams et al., 
2007; Beaumont et al., 2011; García-López & Allué, 2013; Garcia 
et al., 2014; Ordonez et al., 2016; Li, Wu, et al., 2018; Li, Kou, et al., 
2018).

Our study adds to previous research in climate change of the 
global PA estate by applying a fundamental climate change metric 
to the finest spatial resolution for which global climate data are 
available. The SED is sensitive to interannual climate variability, 
and, when applied to independent climate variables, it also avoids 
variance inflation resulting from intercorrelated climate variables 
(Mahony et al., 2017). Our findings particularly complement another 
global analysis of climate change within PAs using a similar set of PAs 
as well as climatic and environmental data (Hoffmann et al., 2019). 
Here, we predict local climate anomalies to be highest in tropical, 
subtropical and polar PAs, while Hoffmann et al. (2019) predict tem-
perate PAs to experience highest areal changes of climate zones, 
because temperate PAs are relatively small and contain low topo-
graphic heterogeneity. This is also in line with Loarie et al. (2009), 
who forecast that climate change velocities will probably make small 
PAs in the Mediterranean biome and in temperate coniferous for-
ests lose largest proportions of their current climate conditions. In 
contrast to the pure numbers of changes of climate conditions in 

F I G U R E  2   Predicted climate anomalies (2070, RCP 4.5) of PAs grouped by country and IUCN management category; see Figure S.1 for 
results of RCP 8.5. We summarized the mean climate anomalies (Figure 1) for each PA using the median. The IUCN management categories 
from I to VI cover a gradient of human integration, from strict human exclosure to sustainable human land use, respectively. The black 
numbers represent the number of PAs within the countries and IUCN management categories. “NA” means no management category was 
available. The boxplots were ordered by decreasing median. The limits of the grey box show the lower and upper quartiles, that is the 
interquartile range. The whiskers extend to the lowest and highest values within 1.5 times the interquartile range. The black dots indicate 
outliers beyond the whiskers. The alpha-3 country codes are given (i.e., ISO 3166). “Global” composes all PAs, while “Trans” refers to 
transboundary PAs
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PAs (Hoffmann et al., 2019; Loarie et al., 2009), the high-resolution 
map of local climate anomalies in the present study shows climate 
anomaly hotspots within PAs and can consequently guide spatial 
conservation management even inside individual PAs. Since conser-
vation policy is mainly adopted at the national and smaller level, it is 
also reasonable to highlight national responsibilities (applied here) in 

addition to biogeographical regions (Hoffmann et al., 2019; Loarie 
et al., 2009) for climate-smart conservation recommendations. PAs 
are the cornerstones of conservation effort, but extending our 
high-resolution approach to the entire terrestrial surface would be 
extremely useful for environmental management worldwide. We 
highly recommend to follow this future perspective, although the 

F I G U R E  3   Global and country-specific correlations of the PAs’ median climate anomalies (2070, RCP 4.5) with PA characteristics; see 
Figure S.2 for results of RCP 8.5. The PA characteristics “area,” “elevation” and “terrain ruggedness” indicate the PAs’ capacity to buffer 
the climate change impact; “irreplaceability” represents the PAs’ importance for the conservation of globally threatened species. By 
relating the predicted climate anomalies to the PA characteristics at the country level, we provide additional information about the climate 
change vulnerability of national PA estates. PAs are assumed to be particularly vulnerable to climate change when the predicted climate 
anomalies, the human footprint and irreplaceability are high, while the area, elevation and terrain ruggedness are low. Bars reflect Pearson's 
correlation coefficients r; red for positive and blue for negative coefficients. Asterisks represent the significance level considering spatial 
autocorrelation (*p ≤ .05, **p ≤ .01, ***p ≤ .001), while no asterisk means non-significant correlation (p > .05). The alpha-3 country codes are 
shown (i.e., ISO 3166). “Global” composes all PAs, while “Trans” refers to transboundary PAs

F I G U R E  4   Principal components 
analysis of the PAs’ median climate 
anomalies (2070, RCP 4.5) and other PA 
characteristics grouped by countries; see 
Figure S.3 for results of RCP 8.5. The PA 
characteristics “area,” “elevation” and 
“terrain ruggedness” indicate the PAs’ 
capacity to buffer the climate change 
impact; “irreplaceability” represents the 
PAs’ importance for the conservation of 
globally threatened species. By relating 
the predicted climate anomalies to the PA 
characteristics at the country level, we 
provide additional information about the 
climate change vulnerability of national 
PA estates. PAs are assumed to be 
particularly vulnerable to climate change 
when the predicted climate anomalies, the 
human footprint and irreplaceability are 
high, while the area, elevation and terrain 
ruggedness are low. The alpha-3 country 
codes are shown (i.e., ISO 3166). “Trans” 
refers to transboundary PAs
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computational burdens are enormous and the computational capac-
ities required are hardly available.

Climate anomalies imply various consequences for biodiversity 
and ecosystems. Given that all other factors are constant, high cli-
mate anomalies are more likely to modify biodiversity and ecosys-
tems than low anomalies. The impact of climate anomalies depends 
on the magnitude of anomaly and on the ecological systems them-
selves. In general, low climate anomalies suggest locations in which 
present biodiversity and ecosystem functioning is likely to persist 
under ongoing climate change. Novel species assemblages and in-
teractions are expected to emerge under high climate anomalies 
(Ordonez et al., 2016). High local climate anomalies can lead to phys-
iological, morphological and behavioural changes of individuals and 
demographic changes of populations (Peñuelas et al., 2013). Species 
living close to their climatic tolerance limits and having low adapta-
tion capacity are most affected by climate anomalies (Garcia et al., 
2014), potentially leading to population declines (Foden et al., 2007) 
and local extinctions (Sinervo et al., 2010). Local climate anomalies 
can also positively affect biodiversity. Rising temperatures cause 
increasing plant diversity in high latitudes (Hill & Henry, 2011) and 
elevations (Steinbauer et al., 2018). The fitness of mountain lizards 
can increase due to warming (Chamaille-Jammes, Massot, Aragon, 
& Clobert, 2006). High-latitude PAs are projected to gain biodiver-
sity under global warming (Berteaux et al., 2018). In Kruger National 
Park, climate change is expected to increase plant productivity and 
thus elephant populations (Scheiter & Higgins, 2012).

Climate anomalies cause new, non-analogue communities, that 
is communities without current analogues, because species differ in 
their ability to respond to climate change via dispersal, range dy-
namics and biotic interactions (Williams & Jackson, 2007). The func-
tioning of such novel communities remains largely unknown (Hobbs 
et al., 2006). Impacts of recent climate change onto ecosystem func-
tioning and services are manifold (Scheffers et al., 2016). Mascaro 
et al. (2012) show that non-native species led to increased produc-
tivity, carbon storage and nutrient cycling in lowland Hawaiian rain 
forests. In contrast, forest carbon storage is decreasing with increas-
ing frequency and intensity of droughts, fires, windthrow and insect 
outbreaks (Holmgren, Hirota, van Nes, & Scheffer, 2013; Seidl, 
Schelhaas, & Lexer, 2011).

PAs are assumed to be particularly vulnerable to climate change 
when the predicted climate anomalies, the human footprint and 
irreplaceability are high, while the area, elevation and terrain rug-
gedness are low (Hoffmann et al., 2019). We revealed that increas-
ing climate anomalies are, at the global scale, related to increasing 
elevation, terrain ruggedness, PA area and irreplaceability. We do 
not want to overestimate these weak global relationships. Some of 
the country-specific relationships were, however, strong, providing 
valuable information about the climate change vulnerability of na-
tional PA estates. When management resources are limited, national 
authorities should prioritize and pro-actively improve the character-
istics of their national PA estates that are strongly associated with 
high climate change exposure and indicate climate change vulner-
ability. Generally, large PA area, high terrain ruggedness and high 

irreplaceability are beneficial for conservation under climate change 
exposure, while large human footprints are detrimental. For exam-
ple, if climate change exposure negatively correlates with PA area, 
elevation and terrain ruggedness, but positively with irreplaceability 
and the human footprint, climate-smart conservation management 
should prioritize the smaller PAs at lower elevation to become less 
climate-vulnerable, for example by expanding and connecting PA 
area, reducing human land use and restoring habitat of threatened 
biota (i.e., increasing irreplaceability). However, some characteris-
tics of established PAs cannot simply be improved by conservation 
management to decrease climate change vulnerability. While reduc-
ing human footprints, restoring habitat of endangered species and 
expanding PA area might be feasible, terrain ruggedness can hardly 
be modified at larger scales. Moreover, not each particular conser-
vation objective of individual PAs might be supported by large area, 
high terrain ruggedness, high irreplaceability and small human foot-
prints. This is why a single vulnerability index for each PA that is a 
composite of these multiple PA characteristics would not be very 
useful for individual PA management.

Nevertheless, conservation planning and management are cer-
tainly more challenging in areas where climate anomaly is higher, all 
else being equal. We still warn of naively applying common man-
agement responses to climate change. They involve contextual 
drawbacks since they are biased towards specific species, ecosys-
tems and regions (Felton et al., 2009). Management responses must 
be developed in the context of individual PAs because the climate 
predictions, their uncertainties (Belote et al., 2018), ecosystem in-
tactness (Watson, Iwamura, & Butt, 2013), conservation targets 
(Belote et al., 2017), the conservation capacity of land (Gillson, 
Dawson, Jack, & McGeoch, 2013), the management resources avail-
able (Wintle et al., 2011) and the risks of management actions (Ando 
et al., 2018) differ between PAs. Climate-smart management guide-
lines generally aim at the persistence and resistance of present bio-
diversity despite climate change, or at the adaption of biodiversity to 
climate change (Gross et al., 2017). Reasonable management inter-
ventions can vary from low intensity, for example monitoring, to high 
intensity, for example assisted migration and restoration (Dawson 
et al., 2011; Gillson et al., 2013). Appropriate management practice 
may be conservative, innovative, flexible, reversible or experimental 
(Belote et al., 2018). Alternatively, “no-regret” strategies could be 
applied, which intend to achieve conservation benefits irrespective 
of climate change (Hallegatte, 2009). In any case, adaptive PA man-
agement is a promising tool to ensure the enduring effectiveness 
and efficiency of PAs in the light of uncertain future developments 
(Rannow et al., 2014).

Our methodological approach implies assumptions that limit the 
implications of our findings. The climate anomaly index is the most 
fundamental indicator of climate change exposure at the local level, 
but cannot reveal the entire complexity of biodiversity and eco-
system responses to climate change at the local and regional level 
(Garcia et al., 2014). This local indicator does, for instance, not reflect 
shifts in seasonal climate nor changes in climate extremes, which are 
both extremely relevant for biodiversity, ecosystem functioning and 
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services (Pecl et al., 2017; Scheffers et al., 2016). However, seasonal 
climate shifts and changing climate extremes are hardly predictable 
for the local level but global extent. Ideally, future studies would in-
corporate multiple climate change metrics of the local and regional 
level (Garcia et al., 2014) to understand the full potential of climate 
change impact.

Further, the predictive skills of GCMs differ between geograph-
ical regions (Bring et al., 2019). For our global assessment including 
national perspectives, we selected ten GCMs based on dissimilarity 
between GCM outputs (Knutti et al., 2013) to represent a diversity, 
and thus complementarity, of predictive skills. We then estimated 
the variation among future climate projections, but an uncertainty 
of the predictions remains that is inherent in the climate models and 
practically incalculable. Especially in mountain regions with a low 
density of climate stations (Hijmans et al., 2005), the quality of the 
WorldClim data is poor (Bobrowski & Schickhoff, 2017). Accordingly, 
our results must be carefully interpreted for those regions. Moreover, 
the climate data resolution of approximately 1 km do not consider 
microclimate, which can buffer climate change impact (Suggitt et al., 
2018). Interacting effects between climate change and other threats 
to biodiversity and ecosystem functioning (e.g., invasive species) are 
neglected as well. Also, the human footprint index from 2009 and the 
irreplaceability index from 2012 are out of date and newer version 
are not available. Nevertheless, given that human land cover (Venter 
et al., 2016b) and species loss (Johnson et al., 2017) are increasing 
globally, our application of the human footprint and irreplaceability 
index may even underestimate the climate change exposure of PAs.

In addition, the climate change vulnerability of biodiversity, eco-
system functioning and services depend not only on climate change 
exposure, adaptive capacity and ecological importance, but also on 
resistance (or sensitivity, i.e., ability to remain in the original state 
despite change) and resilience (i.e., ability to return to the original 
state after change) (Dawson et al., 2011; Li, Wu, et al., 2018). We did 
not incorporate resistance and resilience measures since there are 
no appropriate datasets available yet for the local level but global 
extent. A new, very comprehensive, global and high-resolution (ca. 
1 km) bioclimatic resilience index is in progress though (Ferrier, 
Harwood, Ware, & Hoskins, 2019).

Eventually, we delivered a simplistic assessment of the climate 
change exposure and vulnerability of the international PA estate 
that is intuitive and can thus be easily understood by stakeholders 
and policymakers. This study is to inform national and local author-
ities of the potential climate change impact on PAs. This work does, 
however, not reveal the complex responses of conservation objec-
tives to climate change and other factors within global PAs, which is 
important to derive well-grounded management recommendations 
for individual PAs under rapid environmental changes worldwide. 
Such a comprehensive analysis could be the foundation of a globally 
coordinated and adaptive PA planning and management system in 
the future. We perceive the development and application of a global 
adaptive PA management system as a major future task to reach 
global conservation and sustainability targets, and safeguard human 
well-being of generations to come.
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