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Abstract
Understanding how and why rates of evolutionary diversification vary is a key issue 
in evolutionary biology, ecology, and biogeography. Evolutionary rates are the net 
result of interacting processes summarized under concepts such as adaptive radia-
tion and evolutionary stasis. Here, we review the central concepts in the evolution-
ary diversification literature and synthesize these into a simple, general framework 
for studying rates of diversification and quantifying their underlying dynamics, which 
can be applied across clades and regions, and across spatial and temporal scales. Our 
framework describes the diversification rate (d) as a function of the abiotic environ-
ment (a), the biotic environment (b), and clade-specific phenotypes or traits (c); thus, 
d ~ a,b,c. We refer to the four components (a–d) and their interactions collectively as 
the “Evolutionary Arena.” We outline analytical approaches to this framework and 
present a case study on conifers, for which we parameterize the general model. We 
also discuss three conceptual examples: the Lupinus radiation in the Andes in the con-
text of emerging ecological opportunity and fluctuating connectivity due to climatic 
oscillations; oceanic island radiations in the context of island formation and erosion; 
and biotically driven radiations of the Mediterranean orchid genus Ophrys. The results 
of the conifer case study are consistent with the long-standing scenario that low com-
petition and high rates of niche evolution promote diversification. The conceptual 
examples illustrate how using the synthetic Evolutionary Arena framework helps to 
identify and structure future directions for research on evolutionary radiations. In 
this way, the Evolutionary Arena framework promotes a more general understanding 
of variation in evolutionary rates by making quantitative results comparable between 
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1  | INTRODUC TION

“In reviewing the literature, we are struck that there is 
no one formula for developing a convincing hypothe-
sis about diversification and its causes.” 

(Donoghue & Sanderson, 2015, p. 263).

Biologists have long been fascinated by the circumstances 
under which species diversification and trait disparification 
rates—evolutionary radiations—are accelerated. Studies in re-
cent decades on evolutionary radiations (words in bold are in 
the Glossary) have produced a proliferation of terminology and 
new statistical approaches. These developments in (macro)
evolution are largely based on the adaptive radiation paradigm 
(Osborn, 1902; Schluter, 2000; Simpson, 1944, 1953), a met-
aphorical concept describing the evolution of a multitude of 
ecological forms from a single common ancestor. The paradigm, 
however, complicates quantitative comparisons of the trajec-
tories and correlates of diversification between evolutionary 
lineages (species, clades) and among geographical regions, and 
does not address the circumstances under which evolutionary 
stasis or decline may occur. Here, we build on current theoret-
ical foundations and propose a conceptual framework for the 
integrative study of shifts and stasis in diversification rates. 
It is not our aim to thoroughly review the literature on evo-
lutionary radiations; rather, we provide an overview of recent 
developments and integrate these into a framework that can 
in principle be quantified in all systems, from cellular to global 
spatial scales and spanning ecological to evolutionary time 
frames.

1.1 | A short history of diversification theory

Darwin, in sharp contrast to early-nineteenth-century dogma, en-
visioned evolution to be gradual, with small changes accumulating 
from generation to generation, eventually leading to species diver-
gence (Orr, 2005). This gradualist view was soon challenged and 
seemingly contradicted by the fossil record, leading to the apprecia-
tion that rates of divergent evolution are uneven through time and 
among clades, sometimes generating species and ecomorphologi-
cal diversity in evolutionary radiations (Mayr, 1954; Stanley, 1979), 
while at other times demonstrating long-term stasis (Eldredge & 
Gould, 1972; Flegr, 2010; Gould & Eldredge, 1977) or decline in di-
versity (Benton, 1995; Rohde & Muller, 2005).

The development of phylogenetic theory (Hennig, 1950, 1965) 
followed by the generation of massive DNA sequence datasets, in-
creased computing power, and the proliferation of analytical methods 
(i.a., maximum likelihood, Felsenstein, 1973, 1981; Bayesian infer-
ence, Huelsenbeck, Ronquist, Nielsen, & Bollback, 2001; Bayesian 
molecular dating, Drummond, Ho, Phillips, & Rambaut, 2006; mul-
tispecies coalescence, Degnan & Rosenberg, 2006; Edwards, 2009) 
have resulted in a vast accumulation of progressively higher quality 
phylogenies (Maddison, 1997; e.g., Brassac & Blattner, 2015), leading 
to recognition of monophyletic groups and estimates of the tempo-
ral dynamics of evolutionary radiations (Alfaro et al., 2009; Magallón 
& Sanderson, 2001; Morlon, 2014; Nee, May, & Harvey, 1994; 
Rabosky, 2014; Stadler, 2011). These have revealed orders-of-mag-
nitude differences in clade diversification rates, exemplified 
by Amborella trichopoda, an understory shrub endemic to New 
Caledonia, which is the only species of an angiosperm clade that is 
sister to, and therefore just as old as, the clade that contains all re-
maining ca. 400,000 species of flowering plants (Albert et al., 2013). 
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Placing such salient diversification rate differences into a striking 
temporal context, Salzburger (2018, p. 705) recently noted that 
within “the time span that it took for 14 species of Darwin's finches 
to evolve on the Galapagos archipelago […], about 1,000 cichlid spe-
cies evolved in Lake Malawi alone.”

1.2 | Drivers of evolutionary radiations

The importance of traits and environments for understanding the 
mechanisms underlying evolutionary radiations was emphasized by 
Simpson (1944), and he postulated that most radiations are under-
pinned by adaptation. His adaptive radiation model envisioned diver-
sification to take place in adaptive zones. A species may enter new 
adaptive zones by the evolution of new traits, climate change, or the 
formation of novel landscapes and disturbance regimes, such as newly 
emerged volcanic islands or human-induced night-light environments 
around the globe (Erwin, 1992; Simpson, 1953). The adaptive zone is a 
metaphor for the ways in which evolutionary innovations interact with 
environmental factors to modulate species diversification and trait 
disparification rates (Olson, Arroyo-Santos, & Vergara-Silva, 2019; de 
Vladar, Santos, & Szathmary, 2017), and Simpson's concept of adap-
tive radiation underpinned and inspired a highly productive period 
of research on evolutionary radiations (e.g., Baldwin, 1997; Cooney 
et al., 2017; Fryer, 1969; Hughes & Eastwood, 2006; Losos, 1994; Losos 
& Ricklefs, 2009; Marques, Meier, & Seehausen, 2019; Sanderson & 
Donoghue, 1994; Wagner, Harmon, & Seehausen, 2012).

The effects of traits on species diversification (the interplay of 
speciation and extinction rates), combined with the temporal se-
quence of geographic movement and environmental change, es-
timated across a phylogenetic tree, have led to the recognition of 
key innovations (Heard & Hauser, 1995; Hunter, 1998; Liem, 1973; 
Miller, 1949; Sanderson & Donoghue, 1994; Van Valen, 1971). Key 
innovations are exemplified by freezing tolerance in Antarctic 
fishes (Portner, 2002) and herbaceous life-history strategies for 
occupying seasonally freezing environments by flowering plants 
(Zanne et al., 2014). In addition, phylogenetic comparative studies 
(Felsenstein, 1985; Harmon, 2018) have revealed the importance 
of key events, such as mass extinctions (e.g., of dinosaurs), climate 
change (e.g., late Miocene aridification), and orogeny (e.g., of the 
Andes and the New Zealand alps). Including evolutionary changes 
in genomic structure has led to the recognition that the connec-
tions between key innovations, key events, and diversification rate 
shifts can be complex (Erwin, 2001, 2017), for example, in the con-
text of hybridization and whole-genome duplications in flowering 
plants (Landis et al., 2018; Naciri & Linder, 2020; Tank et al., 2015) 
or African Rift Lake cichlids (Irisarri et al., 2018; Meier et al., 2017). 
Generally, however, it is the interaction between variable intrinsic 
(e.g., genome duplication) and extrinsic (e.g., climate change) factors 
that is thought to modulate diversification rates (for a review on con-
text-dependent diversification see Donoghue & Sanderson, 2015; 
on the interplay of dispersal and biome shifts see Donoghue & 
Edwards, 2014).

The interaction between intrinsic (lineage-specific) and extrin-
sic (environmental) factors provides the ecological opportunity for 
adaptive radiations to occur (Erwin, 2015). Simpson (1953) summa-
rized such opportunities in terms of three factors: (i) physical access 
to an environment, resulting from dispersal, or from the change of 
geo-ecological conditions in the region where a lineage already oc-
curs; (ii) lack of effective competition in the environment, because 
no suitably adapted lineages already occur there; and (iii) genetic 
capacity and adaptability of a lineage, which can be manifested in 
the evolution of key innovations, or more generally, in the ability 
to more readily explore the character space of certain trait innova-
tions (Nürk, Atchison, & Hughes, 2019). All three conditions have 
to be met for successful adaptive radiation to start (Donoghue & 
Edwards, 2014; Stroud & Losos, 2016).

The evolution of diversity ultimately requires the evolution of 
reproductive isolation, which can be promoted by geographic frag-
mentation. Geographic isolation can result in stochastic divergence 
underpinned by intensified genetic drift in smaller populations 
(Duret, 2002; Kimura, 1968), eventually leading to allopatric spe-
ciation. Repeated allopatric speciation can result in “nonadaptive” 
radiation (Comes, Tribsch, & Bittkau, 2008; Gittenberger, 1991; 
Verboom, Bergh, Haiden, Hoffmann, & Britton, 2015). Such (mainly) 
isolation-driven processes are contrasted to ecological speciation, 
which is driven by divergent selection pressures from the envi-
ronment, implying that there will be (some) adaptation. Ecological 
speciation can result in repeated evolution of phenotypes and 
trait–environment interactions in adaptive radiations (trait utility; 
Schluter, 2000). However, in most radiations both ecological adap-
tation (natural selection) and geographic isolation (intensified ge-
netic drift) are involved (Brawand et al., 2014; Gittenberger, 2004), 
although their relative contributions to diversification may vary 
between study systems (Czekanski-Moir & Rundell, 2019; Naciri & 
Linder, 2020; Rundell & Price, 2009).

Variation in the relative contributions of nonadaptive and adap-
tive processes to diversification was encapsulated by Simpson 
(1953) in his distinction between “access to an environment” and 
“lack of competition in that environment.” In ecological niche the-
ory, it is well appreciated that species live in environments that 
can be described by abiotic and biotic factors (for a review on the 
various aspects of niche concepts see McInerny & Etienne, 2012; 
McInerny, Etienne, & Higgins, 2012). Both abiotic and biotic fac-
tors can influence diversification rates (Holt, 2009) and may have 
varying or even opposite effects (Bailey, Dettman, Rainey, & 
Kassen, 2013) on speciation probability and extinction risk (Ezard, 
Aze, Pearson, & Purvis, 2011). Species interactions can drive diver-
sification (Brodersen, Post, & Seehausen, 2018; Gavini, Ezcurra, & 
Aizen, 2019), or can have negative effects on species diversity, for ex-
ample, under competition for limited resources (Harpole et al., 2016; 
Rosenblum et al., 2012). On the other hand, heterogeneous abiotic 
conditions appear to be generally associated with higher species 
diversity (Rainey & Travisano, 1998; see also Erwin, 2001) poten-
tially due to higher carrying capacities of larger and more hetero-
geneous areas (Field et al., 2009; Storch & Okie, 2019; Wagner, 
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Harmon, & Seehausen, 2014), greater topographic complexity 
(Badgley et al., 2017; Sundaram et al., 2019), more climatic variability 
(Flantua, O’Dea, Onstein, Giraldo, & Hooghiemstra, 2019; Weigelt, 
Steinbauer, Cabral, & Kreft, 2016), or more complementary distur-
bance dynamics concordant or discordant with life histories (Jentsch 
& White, 2019). Indeed, abiotic and biotic factors and their effects 
on diversification are firmly established in research on evolutionary 
radiations (Aguilée, Gascuel, Lambert, & Ferriere, 2018; Condamine, 
Romieu, & Guinot, 2019; Ezard et al., 2011) and both factors are part 
of the extrinsic environment in which the evolution of a lineage takes 
place.

In general, it is not the particular sequence of trait evolution 
or access to a novel environment that triggers a radiation, but the 
establishment/evolution of a complementary state—either the es-
tablishment of an environment that fits a pre-evolved trait or an 
exaptation, or the evolution of the trait that is an adaptation to 
a preexisting environment (Bouchenak-Khelladi, Onstein, Xing, 
Schwery, & Linder, 2015; Kozak & Wiens, 2010; Nürk, Michling, & 
Linder, 2018; Wagner et al., 2012). Exploring the theoretical argu-
ments that underpin such context-dependent radiations, Donoghue 
and Sanderson (2015) coined the terms synnovation for interacting 
combinations of (several) innovative traits, and confluence to de-
scribe sequential combinations of a set of traits and events along 
the stem lineages of radiating clades. The idea that evolutionary 
radiations are the product of synnovations and confluences of mul-
tiple intrinsic and extrinsic factors has gained momentum (Arakaki 
et al., 2011; Guerrero, Rosas, Arroyo, & Wiens, 2013; Harmon 
et al., 2019; Linder & Bouchenak-Khelladi, 2017; Nürk, Atchison, 
et al., 2019; Seehausen, 2015; Wagner et al., 2012).

2  | THE E VOLUTIONARY ARENA 
FR AME WORK

2.1 | Description of the framework

Here, we synthesize these insights into the drivers of evolutionary 
radiations—the context-dependent interplay between clade-specific 
intrinsic and extrinsic biotic and abiotic factors—into a simple frame-
work, which we call the “Evolutionary Arena” (EvA). In EvA, the di-
versification (or disparification) rate of a focal lineage is a function of 
three components into which all macroevolution-relevant processes 
can be grouped and parameterized:

where d = diversification or disparification rate, a = abiotic envi-
ronment, b = biotic environment, and c = clade-specific phenotypes 
or traits (Figure 1).

In more detail, these four components are as follows:
d: Diversification or disparification is the rate of evolution in the 

broadest sense and depends on the values of the a, b, and c com-
ponents (note that d might influence the other components as well; 

Figure 1). Here, d can be expressed by the rate of change in tax-
onomic diversity (number of species), interspecific morphological/
phenotypic disparity, DNA nucleotide diversity and genetic differen-
tiation (e.g., functional variation of expressed genes or metabolites), 
physiological diversity (e.g., photosynthetic modes), or niche diver-
sity (e.g., diversity of ecological niches occupied) and differentiation 
(e.g., rate of ecological expansion). This list is not exhaustive, and 
which expression of d is used depends on the question being inves-
tigated. The instantaneous rate of diversification, defined as specia-
tion minus extinction per unit time (Nee et al., 1994), is the simplest 
expression of d and can be directly inferred from a dated spe-
cies-level phylogeny (Magallón & Sanderson, 2001). Disparification 
can be measured, for example, by (relative) evolutionary rate esti-
mates (Butler & King, 2004), the change in trait variance in a clade 
through time (Rolshausen, Davies, & Hendry, 2018), or by transition 
rates between discrete character states (Huelsenbeck, Nielsen, & 
Bollback, 2003). The diversification rate may be positive, resulting 
in an increase in diversity, or negative, resulting in a decrease in 
diversity.

a: Abiotic environment incorporates abiotic factors, such as cli-
mate, soil, habitat variables, or fragmentation of the species range. 
It can also include biotic elements, particularly with respect to their 
physical characteristics, such as vegetation types (which, as classes, 
cannot evolve). Component a can be measured as absolute values, 
for example, area or niche space, or as the variance in these across 
space and time, for example, variance in mean annual precipitation, 
in number of vegetation types or soil types, physiographic hetero-
geneity, and the functional and structural connectivity. Ideally, the 

d∼a,b,c

F I G U R E  1   The Evolutionary Arena framework. The four 
components of the Evolutionary Arena (boxes) are illustrated 
with interactions (arrows) among the components, with those 
influencing diversification rates in larger, black arrows. We refer 
to the environment (abiotic [a] and the biotic [b] components; blue 
boxes) in combination with clade traits (c) and diversification/ 
disparification rate (d) of an evolutionary lineage (green boxes) as 
the Evolutionary Arena. This framework is potentially dynamic, 
because interactions among the components allow for feedback, 
together shaping evolution. Note that, although all components can 
affect each other (positively or negatively; indicated by small and/
or gray arrows), we focus here on the dependence of diversification 
on environmental (extrinsic biotic and abiotic) and clade-specific 
(intrinsic trait) factors

biotic  b

clade traits  c diversification  d

abiotic  a

Evolutionary Arena 
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abiotic environment is described by processes that generate this en-
vironment, such as erosion or orogeny, or patterns of change, such 
as climate or vegetation change.

b: Biotic environment captures the interactions of the focal lin-
eage with all other species (including species both within and outside 
the clade and also including trophic interactions). The interaction(s) 
can be, for example, mutualistic or commensalistic (e.g., pollinators 
or dispersers, interspecific facilitation, or mycorrhiza), antagonistic 
(e.g., herbivores, diseases, interspecific competition, or parasites), or 
genetic (e.g., hybridization/introgression and horizontal gene trans-
fer). Note, however, that the capacity to hybridize may be treated 
as a trait, and so categorized under c. These biotic interactions can 
also be indirect, if seen as part of the extended phenotype of the 
focal lineage (e.g., habitat modification such as niche construction, 
or grasslands increasing fire frequency, or stoichiometric needs of 
organisms modifying available resources; Jentsch & White, 2019). 
There is a rich theory surrounding biotic interactions (e.g., the 
macroevolutionary Red Queen hypothesis [Benton, 2009; see 
also Van Valen, 1973], niche construction [Laland, Matthews, & 
Feldman, 2016]) suggesting they can have a powerful influence on 
diversification rates. However, the biotic environment is complex; 
quantifying and including it in comparative analyses is a challenging 
task (Harmon et al., 2019). Indeed, recent studies indicate that inter-
lineage competition (e.g., Pires, Silvestro, & Quental, 2017; Silvestro, 
Antonelli, Salamin, & Quental, 2015) or interactions with possible 
dispersal agents (Onstein et al., 2018) may modulate diversification 
rates.

c: Clade-specific traits include the phenotypic characteristics 
of the focal species or lineage. Included here are, among others, 
physiological characteristics (e.g., variation in photosynthetic 
mode), anatomical or morphological traits, life-history strategies, 
pollination strategies, and dispersal modes. Clade-specific traits 
are part of the phenotype and can be labile or phylogenetically 
conserved. This is illustrated by the remarkable floral variation in 
the orchid genus Disa (Johnson, Linder, & Steiner, 1998), and the 
impact of a lack of floral morphology variation on diversification in 
the oil-bee-pollinated Malpighiaceae (Davis et al., 2014). The phe-
notype (or the extended phenotype) is a manifestation, or func-
tion, of the genome (via the genotype–phenotype map, inasmuch 
as this is independent of the environment), or genome diversity 
(e.g., structural variation such as ploidy-level variation, variation 
in genome size, or DNA nucleotide sequence variation) within the 
focal group. Therefore, this parameter should ultimately be genet-
ically measurable.

2.2 | Extended properties

The d ~ a, b, c  formulation of the EvA framework is general because 
it is simple and all-encompassing. The key challenge faced in stud-
ies addressing evolutionary radiations is to disentangle the effects 
of the different components at different moments in time. The ulti-
mate in understanding radiations and evolutionary stasis would be 

the joint estimation of all components at all times, but we cannot 
analyze an infinite number of variables. On the other hand, stud-
ies sometimes assign an increase or decrease of diversification to 
particular factors that happen to have been investigated and quanti-
fied, disregarding the possible effects of other factors that may be 
driving or constraining diversification. We argue that the complete 
EvA, as expressed by the abiotic and biotic environment, as well as 
the traits of organisms, should be considered when attempting to 
explain variation in diversification rates. Not only does this ensure 
that all relevant factors are taken into account, but the same set 
of components are considered in all analyses. In this way, the EvA 
framework can provide new insights by comparing diversification 
between clades directly.

To make EvA operational requires parameterizing it appropri-
ately, which means making it more specific and detailed. Here, we 
describe four simple extensions to illustrate how the EvA framework 
can be enriched by more properties to provide insights into differ-
ent hypotheses in evolutionary diversification. We end this section 
by outlining general analytical approaches and possibilities for null 
hypothesis formulation.

2.2.1 | Direction of effects

The three components a, b, and c can have a significant positive (+) 
or negative (-) effect on d, thus causing the diversification rate to 
increase or decrease, or even show a false absence of change as the 
summed end result of the three. This process of “nullification,” or 
less increase or decrease than expected, is sometimes ignored and 
interpreted as a lack of power by the factors influencing diversifi-
cation. Statistical approaches comparing different systems could 
provide insights in cases in which diversification rates are higher or 
lower than expected.

2.2.2 | Complex conditions

The framework can be expanded to include any set of variables 
per component. For example, the abiotic environment could be de-
scribed by climatic factors such as mean annual precipitation and 
temperature, and by disturbance factors such as fire frequency. The 
set of variables selected depends on the hypothesis being tested. If, 
for example, the hypothesis is that d is related to the total variance in 
the abiotic environment a, then a=

∑n

i=1
ai, where ai is the ith variable 

of a (up to the last variable an) given as a measure of variance. Thus, 
the abiotic environment a (as well as the other components in EvA) 
can be decomposed into diverse measures.

2.2.3 | Rate shifts

Explanations for shifts in diversification rates can be sought by test-
ing for changes in the EvA component values. This can be done by 
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including initial values at time t (ancestral) and the values after a 
time interval ∆t (derived), for example, at time t+∆t after an event: 
Δd=(a,b,c)t+Δt−(a,b,c)t or simply Δd ~ Δa, Δb,Δc. If we, for example, 
hypothesize that geographic movement to a new region is a key 
event, the condition of a varies between t and t+∆t.

2.2.4 | Interaction of components

We can incorporate interactions between components, such as ac, 
bc, or abc: d ~ a,b,c,ab,ac,bc,abc. This allows us to analyze context de-
pendence: whether the single components or the interactions among 
them modulate the diversification rate, that is, driving or constrain-
ing the evolution of diversity. Such interactions can be exemplified 
by ecosystem engineers modifying disturbance regimes (Jentsch & 
White, 2019), such as impacts of grass invasion on forests increasing 
fire frequency and ultimately transforming the environment (Beerling 
& Osborne, 2006; Bond, Woodward, & Midgley, 2005). Similar in-
teractions (or transformations) have been proposed for changes 
in fruit size (component c) as consequences of mega-herbivore ex-
tinctions (component b) and climate change (component a; Onstein 
et al., 2018). A further dynamic factor is provided by interactions be-
tween the diversification rate (d) and the predictor variables (a, b, c). 
Such feedback mechanisms can broadly be summarized by the con-
cept of niche construction (Laland et al., 2016), and are exemplified 
by the “Viking syndrome” described in reference to grasses (Linder, 
Lehmann, Archibald, Osborne, & Richardson, 2018). The latter pro-
poses that global grass success (in species richness, environmental 
range, ecological dominance, and geographical distribution) is due to 
the high invasiveness of grasses, which results from their high rate 
of dispersal, effective establishment, ecological flexibility and dis-
turbance tolerance (all component c), and ability to transform envi-
ronments by increasing the frequency of fire (component a) and the 
density of grazers (component b). These scenarios describe feedback 
systems where through increased diversity and dominance, the diver-
sifying clade increasingly modifies the abiotic and biotic environment.

2.3 | Analytical approaches

The EvA framework can facilitate the direct testing of competing hy-
potheses about the diversification of a group, using standard model 
selection approaches (e.g., likelihood ratio tests for nested models, 
AIC, or Bayes factors; Burnham & Anderson, 2002). Phylogenetic 
pseudoreplication (Maddison & FitzJohn, 2015), which describes the 
nonindependence of, or the autocorrelation among, species’ traits 
due to shared ancestry, is a basic property of comparative analyses 
(Felsenstein, 1985). Phylogenetically independent contrasts (PIC; 
Felsenstein, 1985) and phylogenetic generalized least squares (PGLS; 
Grafen, 1989; Martins & Hansen, 1997) are methods for analyzing 
comparative phylogenetic data by accounting for the covariances 
between traits resulting from shared phylogenetic history (Pennell 
& Harmon, 2013). These methods may be generally useful for 

exploring the relationships between components in the EvA frame-
work. Although both methods can be thought of as “analogous to 
data transformations made to better approximate the assumptions 
of standard statistical tests” (Huey, Garland, & Turelli, 2019, p 762), 
they, as well as most other phylogenetic comparative methods (but 
see Rolshausen et al., 2018), implicitly assume a specific process un-
derlying character state change along the evolutionary lineage (i.e., 
a model of character evolution such as Brownian motion; Boucher, 
Demery, Conti, Harmon, & Uyeda, 2018). The appropriate data trans-
formation model in relation to the hypothesis being tested is a non-
trivial question in comparative analyses (Uyeda, Zenil-Ferguson, & 
Pennell, 2018); graphical models depicting hypothesized causal links 
(Höhna et al., 2014) can help here. On the other hand, the case of a 
singular, unreplicated event in the evolutionary history of a lineage 
challenges the statistical power of comparative phylogenetic methods 
(Maddison & FitzJohn, 2015). An approach to overcome this limitation 
might be the combined application of hypothesis testing and explora-
tory methods (“phylogenetic natural history”) as outlined by Uyeda 
et al. (2018).

Associations between diversification rates and the other com-
ponents in the EvA framework can be tested using state-dependent 
speciation and extinction (SSE) models (such as BiSSE): a birth–death 
process where the diversification rates depend on the state of an 
evolving (binary) character (Maddison, Midford, & Otto, 2007), given 
a phylogeny and trait data. For complex components, the multistate 
SSE (MuSSE) model can be applied to accommodate several qualita-
tive character states, or multiple (binary state) characters following 
Pagel (1994) for state recoding (FitzJohn, 2012). Although SSE model 
extensions for quantitative characters (QuaSSE; FitzJohn, 2010) 
and geographic range evolution (GeoSSE; Goldberg, Lancaster, & 
Ree, 2011) (to name just a few; for a critical introduction to SSE mod-
els, see O'Meara & Beaulieu, 2016) have been developed, in the SSE 
model family none is currently available for the likelihood calculation 
of a model considering both quantitative and qualitative variables 
(but see Felsenstein, 2012; Revell, 2014). Nor do current SSE models 
allow the analysis of interactions, and so context-dependent radia-
tions. This situation could be common under the EvA framework and 
represents a priority for method development.

Comparing a biologically meaningful and appropriately com-
plex null hypothesis to the goodness-of-fit of alternative (H1) mod-
els is essential for detecting whether a character state-dependent 
model can explain more of the observed variation than could be 
expected under random diversification rates (Caetano, O'Meara, 
& Beaulieu, 2018). It has, for example, been shown for SSE models 
that the variation in the diversification rate observed in a phyloge-
netic tree is not necessarily explained by the focal factor (charac-
ter) under study (Rabosky & Goldberg, 2015). False positives can 
potentially result because the null hypotheses did not account for 
the possibility that diversification rates can be “independent of the 
character but not constant through time” (Harmon, 2018, p 215). 
Hidden state model (HSM) approaches (Beaulieu & O'Meara, 2016; 
Beaulieu, O'Meara, & Donoghue, 2013; Caetano et al., 2018; Marazzi 
et al., 2012), which incorporate unobserved (“hidden”) factors as 
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model parameters equivalent to observed ones, offer a solution to 
this problem. Comparing goodness-of-fit between “hidden state” 
null models and those representing the focal factor(s) provides ap-
propriately complex null hypotheses that can be used for testing 
differently parameterized EvA models, and thereby allows identi-
fication of “the meaningful impact of [the] suspected ‘driver[s]’ of 
diversification” (Caetano et al., 2018, p 2,308).

3  | ADVANTAGES OF THE E VOLUTIONARY 
ARENA FR AME WORK

The Evolutionary Arena framework does not contribute any new 
concepts or terms but is built on the concepts developed over the 
past few decades, reviewed above (section “1.2 Drivers of evolu-
tionary radiations”). However, what is still lacking is, as noted by 
Donoghue and Sanderson (2015), a single, simple formula with 
which to develop convincing hypotheses of the drivers of evolution-
ary rate changes. This we attempt to provide with EvA. The basic 
four components—diversification/disparification, clade-specific in-
trinsic traits, and extrinsic abiotic and biotic factors—and their in-
teractions can be compared between systems to gain more general 
insights into the factors that underpin evolutionary diversification. 
Considering all four components together in a single framework 
fosters a holistic approach. EvA consequently incorporates the 
full complexity of triggers, synnovations, and confluences associ-
ated with evolutionary radiations (Bouchenak-Khelladi et al., 2015; 
Donoghue & Sanderson, 2015). This facilitates comparative analy-
ses of evolutionary radiations, or evolutionary stasis and decline, 
using phylogenetic comparative methods. This is possible because 
d can be positive or negative/smaller, so the correlates (e.g., a x c in 
EvA) of diversification increase or decrease (e.g., density-dependent 
slowdowns) can be sought. EvA does not present any new analyti-
cal methods, and analyses within this framework can be done using 
existing packages and software (it may also indicate priorities for 
method development). Particularly important is the central notion 
that no single factor is a sufficient explanation for an evolutionary 
rate change, but that the interaction between external and internal 
factors results in shifts in diversification and/or disparification rates 
(Givnish, 2015). Overall, there are three heuristic advantages to 
couching evolutionary radiation studies in the EvA framework:

Firstly, this framework, similar to a model, predicts which fac-
tors may be drivers of evolutionary radiations. This reduces the risk 
of missing important drivers, and so stimulates the development of 
comprehensive models, rather than the simple exploration of the ef-
fect of a factor on diversification rates. In addition, it encourages 
taking recent advances in understanding context dependence into 
account.

Secondly, this framework is readily quantified, for example, as 
a regression model. Quantification both facilitates and encourages 
data transparency (i.e., what datasets are used, and how these data 
are transformed). This transparency becomes more important as the 
model is expanded to reflect the complexity of the predictor factors.

Thirdly, it provides a single, general framework within which to 
analyze all or any evolutionary radiations. The framework can be ap-
plied to any biological organisms, geographical regions, or ecosys-
tems. This facilitates the comparison among taxa and regions as to 
the processes underlying diversification, even if the studies were by 
different people. This will ease the progression from case studies to 
general syntheses.

4  | C A SE STUDY: CONIFERS

We use a case study of conifer radiation to illustrate EvA implemen-
tation and component quantification. In contrast to the conceptual 
simplicity of the framework, obtaining data for all components across 
multiple lineages can be challenging, although well-developed phy-
logenies over a wide range of taxa are increasingly available. Here, 
we use published data on 455 conifer species (Larcombe, Jordan, 
Bryant, & Higgins, 2018) that enable parameterization of the d ~ a,b,c 
framework. The conifers provide an excellent study clade for com-
parative analysis: The lineage is rich in species grouped into well-
defined clades, geographically widespread, and well studied with 
excellent distribution data (Farjon, 2018). Although conifers origi-
nated ca. 300 million years (Ma) ago, with the main clades thought to 
have diverged between the early Triassic (ca. 240 Ma) and mid-Cre-
taceous (ca. 100 Ma), most modern species arose in the Neogene or 
Quaternary (23 Ma–present; Leslie et al., 2012). We used the dated 
phylogeny of Leslie et al. (2012; inferred from a Bayesian analysis 
assuming an uncorrelated lognormal clock model, based on two nu-
clear and two plastid genes, and calibrated with 16 fossils) to define 
70 reciprocally monophyletic or single-species groups, using a stem 
age cutoff at 33.9 Ma (the Eocene/Oligocene boundary) in order to 
focus on the variables which could explain Neogene–Quaternary 
diversification rate variation (Larcombe et al., 2018). Forty-one of 
these groups have more than one species, the most species-rich 52 
species, and range in age from 34 to 146 Ma.

The factors that contribute to a, b and c in the conifers model 
were derived from the output of a process-based niche model 
(Larcombe et al., 2018). This niche modeling method is described in 
detail in Higgins et al. (2012) and is based on a mechanistic model 
of plant growth, the “Thornley transport-resistance” model, which 
models resource acquisition, transport, and allocation between 
roots and shoots, based on environmental information extracted 
from species distribution data. This produces two types of informa-
tion for each species: (i) estimates of the geographic distribution of 
the potential niche of each species (i.e., a species distribution model 
[SDM]); and (ii) estimates of the physiological parameters that de-
scribe the niche of each species (Higgins et al., 2012). We used these 
metrics, and occurrence data and species richness per clade to pa-
rameterize d ~ a,b,c as follows (note that all four factors are values 
for the 41 multispecies clades, not for the constituent species indi-
vidually; Larcombe et al., 2018):

d = the diversification rates for each clade: calculated using the 
method-of-moments estimator of Magallón and Sanderson (2001) as 
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, where rs is the net diversification rate assuming 
a relative extinction fraction ε = 0.9, n the number of extant species, 
and t the stem age of the clade.

a = abiotic environment, quantified by the clade's potentially 
suitable area size: the projected geographical range reflecting the 
potential niche of all species within the clades. This is calculated per 
clade as the number of ¼° grid cells across the globe that at least one 
species of the clade can occupy, based on the physiological SDM 
and corrected for clade species numbers (i.e., rarefied to the clade 
with the lowest diversity to remove sampling effects; Larcombe 
et al., 2018). This means that if the score is small, the niche size of a 
clade is expected to be narrow, and if the score is large, the niche size 
of the clade is large so that the clade comprises ecologically more 
generalist species or the species in the clade might be specialized 
but different from one another. Despite its simplifying assumptions 
about the spatial distribution of environmental variation (some types 
of environment are more common than others), this clade-wise suit-
able area size is an appealing measure of a because it approximates 
the potential niche, consequently biotic interactions and effects of 
traits can be estimated separately. Figure 2 shows the combined po-
tential niche for all 455 species in the dataset, that is, the abiotic 
arena of the conifers.

b = competitive interactions estimated at the species level: We 
determine the expected competition for each species with all mem-
bers within its clade (one of the 41 clades defined above) as the 
product of niche and geographic overlap between species. The met-
ric underestimates competition because it excludes competitive pro-
cesses with other clades and other indirect competitive processes 
(see discussion in Larcombe et al., 2018). Geographic overlap is es-
timated based on the occurrence data. Niche overlap between each 
species pair was calculated using Schoener's niche overlap metric D 
(Schoener, 1968) based on the potential distributions from the SDM 
analysis. We then scaled these two numbers to range from 0 to 1 

for each species pair and multiplied them to provide a competition 
index (Larcombe et al., 2018). This means that if either score is zero, 
the competition score is zero, and if they have the same (potential) 
niche and the same (realized) range, then the competition score is 1. 
The species-level estimates were averaged to provide a clade-level 
competition score.

c = clade-specific rate of niche evolution: We used eleven phys-
iological traits (see Figure 6 in Larcombe et al., 2018) that were 
identified as being most important for defining the overall niche 
space of conifers (Larcombe et al., 2018). Although an effectively 
limitless number of physiological traits could be defined, our 
method provides an objective selection criterion of ecologically 
appropriate measures. These eleven traits were fitted together 
in a multivariate Brownian motion model of evolution (Butler & 
King, 2004) on the conifer phylogeny of Leslie et al. (2012), and 
the diagonal elements of the resulting variance–covariance ma-
trix for the species traits represent the phylogenetic rate of evo-
lution (O'Meara, Ané, Sanderson, & Wainwright, 2006). These 
were summed and scaled to provide a multidimensional clade-level 
niche evolution rate.

Our expectation is that conifer diversification rates (d) are posi-
tively affected by the available abiotic environment (a) and the rate 
of niche evolution (c), and negatively by interspecific competition 
(b). We fitted the conifers EvA model 

√

d∼ ln (a)+b+ ln (c) by means 
of phylogenetic generalized least squares (PGLS), controlling for 
the nonindependence between cases resulting from phylogenetic 
structure in the data using the R v3.5.3 (R Core Team, 2013) library 
“phylolm” v2.6 (Ho & Ané, 2014). Note that the variables a, c and d 
were transformed to reduce skewness in the data. PGLS estimates 
the regression parameters of all variables (the scaled variables used 
to parameterize the components of EvA), adjusted for the phyloge-
netic signal in the model residuals. We accessed the standardized 
coefficients and calculated the variance explained by the full model 

F I G U R E  2   Projected potential species richness (SR) of conifers representing their abiotic arena. The abiotic arena of conifers is defined 
by geographic locations (quarter degree grid cells) that can support one or more of the 455 conifer species, based on projections from the 
process-based physiological niche model (approximating the fundamental conifer niche). The projected potential SR (yellow-green shading) 
highlights areas that are suitable for conifer species. The abiotic arena alone does not always predict patterns of conifer diversity. For 
example, the eastern Congo is predicted to be climatically suitable for many species but has relatively low conifer diversity (Farjon, 2018). It 
is likely that clade-specific traits (c) and biotic interactions (b) limit the diversity in certain regions (see main text)
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using the coefficient of determination (R2) to measure goodness-
of-fit, and also assessing partial r2 (variance explained per predictor 
variable a, b, and c) using the R library “rr2” v1.0.1 (Ives, 2019; Ives 
& Li, 2018). R scripts are available in Dryad (Nürk, Linder, et al., 
2019).

The full model accounted for 64% of the variation in diversifica-
tion rates among the conifer clades (adjusted R2 = 0.638). The pre-
dictor variables a, b, and c in the conifer EvA model differentially 
contributed to explaining d (Table 1). Against our expectations, the 
abiotic environment of clades (a) showed no relationship to diversifi-
cation rate (slope −0.003, p = .89), neither did the rate of niche evo-
lution (c; slope 0.166, p = .36). Contrarily, competitive interactions 
(b) between the species in a clade indicated a significant negative 
relationship to diversification (slope −0.581, p < .001), supporting 
our expectation (Figure 3).

The significantly negative effect of competition (b) on diversifica-
tion (d) indicates higher diversification rates in clades where compe-
tition among species is low. This result is consistent with the concept 
of diversity-dependent diversification (Foote, 2000; Rabosky, 2013) 
and suggests that diversity-dependent relationships are more im-
portant among the conifers in regulating diversification rate than 
potential area size (a) or rates of physiological trait evolution (niche 
evolution; c). However, the rates of niche evolution (c) among the 
conifer clades show a very similar, although inverse, pattern to that 
of competition (b) (Figure 3). Estimates of a model accounting for in-
teractions among predictor variables (results not shown due to lack 
of statistical power using n = 41; see R scripts in Nürk, Linder, et al., 
2019) indicated that the two-way interaction b:c (competition inter-
acting with rate of niche evolution) influenced diversification in the 
conifers, in line with findings by Larcombe et al. (2018), who showed 

F I G U R E  3   Quantified EvA model for the conifers. Colored trees illustrate the distribution of abiotic environment (a), competitive 
interactions (b), rate of niche evolution (c), and diversification rates (d) across the conifer phylogeny with bars at tips detailing the values 
per clade and variable. The estimated effects on net diversification rates rε are indicated by arrows scaled to the standardized coefficients 
(slopes) also showing significant levels (ns, nonsignificant; ***, p < .001). Colors on branches are rate estimates (obtained using the fastAnc 
function in the R package phytools; Revell, 2012; see R scripts in Nürk, Linder, et al., 2019) and illustrate parameter distribution on the 
tree. When competition among species is low and the rate of niche evolution in a clade is pronounced, the diversification rate of that clade 
accelerates

low high

length = 168.5

a
abiotic

d
diversification

b
competition

c
niche evolution

–0.581 ***

–0.003 ns

0.166 ns

Source Slope SE t Value p
Partial 
r2

Abiotic environment 
(a)

−0.003 0.148 −0.018 .985 0.000

Competition (b) −0.581 0.127 4.563 <.001 0.360

Rate of niche 
evolution (c)

0.166 0.181 0.919 .364 0.022

(Intercept) 0.601 0.160 3.761 <.001 —

TA B L E  1   Estimated effects of abiotic 
environment (a), competitive interactions 
(b), and rate of niche evolution (c), on net 
diversification rate rε (d) across the conifer 
clades (samples size n = 41)
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that conifer evolution is jointly shaped by bounded and unbounded 
evolutionary processes (e.g., Harmon & Harrison, 2015). The two-
way interaction b:c may enhance or relax diversity-dependent 
processes so as to promote or constrain diversification (Larcombe 
et al., 2018). This is also consistent with the concept that spatial (or 
temporal) variation in trait disparity can result in variation in com-
petitive pressure (Marshall & Quental, 2016; McPeek, 2008). The 
interaction of competition and rate of niche evolution suggests that 
the fastest diversification in conifers is found when competition is 
low (increased ecological opportunity), which could be the result of 
fast trait/niche evolution (high adaptability of the lineage).

The case presented here shows the potential to infer general pat-
terns using the EvA framework. However, it is in no way a full explo-
ration of the approach, and more sophisticated analyses are likely to 
prove more informative. For example, our analysis assumes that rates 
for d, b, and c are fixed within the 41 clades, which is an oversim-
plification. It could be interesting to repeat the analysis using spe-
cies instead of clades, as this allows us to account for phylogenetic 
structure within the clades, ecologically highly variable species, and 
diversification stasis. However, there are issues interpreting tip-di-
versification rates (Title & Rabosky, 2019). Methods are available to 
reconstruct ancestral sympatry and infer the effect of competition on 
trait divergence and lineage diversification (Aristide & Morlon, 2019; 
Harmon et al., 2019). Methods that reconstruct and evolve ances-
tral states along phylogenies for a, b, and c, are also appealing (Uyeda 
et al., 2018), and with increasing complexity of the EvA model, ap-
proaches such as hidden states will be important for rigorous testing 
against equivalently complex null hypotheses (Caetano et al., 2018). 
This illustrates the value of EvA in making data assumptions explicit.

5  | CONCEPTUAL E X AMPLES

5.1 | Lupinus continental radiation

Among the most intensively investigated radiations are several in 
the tropical alpine environments of the high-elevation Andean grass-
lands. These environments emerged as a result of the most recent 

Pliocene uplift of the Northern Andes, and consequently, the radia-
tions themselves are largely confined to the Pleistocene (Hughes & 
Atchison, 2015; Luebert & Weigend, 2014). These are exemplified by 
the diversification of c. 85 species of Lupinus L. (lupines, atmospheric 
nitrogen-fixing Leguminosae) within the last 1.2–3.5 Ma. The Andean 
Lupinus radiation has been attributed to a combination of intrinsic 
evolutionary (trait) innovation and extrinsic ecological opportunity 
(Hughes & Atchison, 2015). The shift from an annual to a perennial 
life history (i.e., evolution of a clade-specific phenotype = c in EvA; 
Figure 4) is hypothesized to have acted as a key innovation facilitat-
ing occupation of mesic montane habitats (Drummond, Eastwood, 
Miotto, & Hughes, 2012), also enabling accelerated disparification of 
plant growth forms in the Andes (Nürk, Atchison, et al., 2019). This is 
because perennials have different cold tolerance strategies than an-
nuals, underpinning their adaptation to high-elevation ecosystems, 
and a fundamentally greater potential growth-form disparity than an-
nuals (Nürk, Atchison, et al., 2019; Ogburn & Edwards, 2015). At the 
same time, extrinsic ecological opportunities for diversification were 
available in the island-like high-elevation habitats that emerged during 
the last few million years due to Andean uplift and cooling of global 
temperatures (i.e., abiotic factors = a in EvA), prompting Hughes and 
Eastwood (2006) to refer to the Andean Lupinus clade as an example 
of “island-like radiation on a continental scale.” In this example, the 
evolution of secondary perenniality, the shift from lowland to mon-
tane habitats, and the primary shift to higher rates of species diversi-
fication all coincide on the same branch of the phylogeny, presenting 
an example of a “key confluence” sensu Donoghue and Sanderson 
(2015). In the Andean Lupinus clade, d has been estimated as the rate 
of species diversification (Drummond et al., 2012), disparification of 
plant growth forms (Nürk, Atchison, et al., 2019), and coding DNA se-
quence evolution (Nevado, Atchison, Hughes, & Filatov, 2016). All of 
these estimates of d show accelerated rates across the western New 
World montane radiation when compared to the earlier diverging line-
ages of more slowly diversifying lowland western New World Lupinus 
annuals.

Lupinus thus provides an apparently straightforward example of 
a confluence of intrinsic innovation and extrinsic opportunity as the 
trigger for accelerated diversification of species and disparification 

F I G U R E  4   The EvA model for Lupinus: 
(d1, d2, d3) ~ (a1, a2, a3), b1, c1. Note that 
rates of growth-form disparification and 
accelerated gene evolution can influence 
diversification rates; consequently, the 
grouping of variables as the components 
of the EvA framework depends on the 
questions being investigated
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of plant growth forms. This explanation assumes that ecological op-
portunity presented by empty sky island habitats and the means to 
take advantage of those opportunities (secondary perenniality) are 
driving diversification. However, treating the biotic environment (b in 
EvA) as zero, or empty of competition is clearly an oversimplification, 
given that there were apparently many plant radiations playing out 
during the Pleistocene across the high-elevation Andean grasslands, 
presumably in parallel with each other (Luebert & Weigend, 2014). 
The detailed order of timing of these radiations and their interac-
tions remain unknown, just as interactions among sympatric and 
more or less contemporaneous radiations have been difficult to 
tease out more generally (Tanentzap et al., 2015). The EvA frame-
work draws attention to the fact that biotic factors have not been 
critically investigated beyond the simple idea of lack of competition 
in the newly emerged tropical alpine sky island habitat (Figure 4).

A more detailed analysis might indicate what factors of these 
high-elevation habitats are important for the observed high rates 
of diversification. Indeed, it is aspects of the abiotic environment 
that are most often put forward as the central explanation for the 
numerous rapid recent radiations in the high-elevation Andean 
grassland. Foremost among these aspects are (i) the large conti-
nental-scale extent of the high-elevation Andes; (ii) the extreme 
physiographic heterogeneity; and (iii) the rapid fluctuation in the 
extent and connectivity between the north Andean alpine sky is-
lands (páramo) during the Pleistocene glacial–interglacial climate 
cycles. Physiographic heterogeneity of the Andes, spanning steep 
and extended environmental gradients (e.g., temperature and rain-
fall), has long been considered as a key factor driving Andean ra-
diations (Hughes & Eastwood, 2006) and indeed of diversification 
more generally (e.g., Rangel et al., 2018). It has also long been recog-
nized that the area and connectivity of the high-elevation Andean 
grasslands have varied dramatically through the Pleistocene due to 
elevational shifts in vegetation zones and species distributions im-
posed by glacial–interglacial periods. However, it is only recently 
that area and connectivity have been modeled and quantified in 
sufficient detail through the Pleistocene (Flantua et al., 2019) to as-
sess the potential of such an alpine “flickering connectivity system” 
(Flantua & Hooghiemstra, 2018) to further enhance diversification 
(e.g., Nevado et al., 2016). Such models demonstrate the need to 
quantify attributes of the abiotic environment through time as well 
as the potential of such time-dependent models to make more real-
istic estimates of the impact on diversification rates (d in EvA).

Considering the Andean Lupinus radiation in light of the EvA 
framework highlights the lack of knowledge of the biotic interac-
tions involved. This illuminates that explanations using only the abi-
otic environment and intrinsic traits may be incomplete. Using the 
EvA framework suggests new research questions.

5.2 | Island radiations

Volcanic islands that arise de novo on the oceanic crust show a typi-
cal life cycle. In contrast to islands on the continental shelf, oceanic 

islands emerge following a volcanic eruption, grow rapidly in area 
and elevation, and then erode down to the sea level over 5 to 30 
million years, depending on the substrate and climatic conditions. 
Even though oceanic islands may show a flickering connectivity ef-
fect as a result of Pleistocene climate fluctuations (e.g., lower sea 
levels would have resulted in larger islands areas leaving an imprint 
on current biodiversity; Weigelt et al., 2016), we here focus on the 
entire oceanic island life cycle (Borregaard et al., 2017; Whittaker, 
Triantis, & Ladle, 2008). At this scale, island ontogeny can be con-
sidered unimodal in its key properties, and so differs from a flick-
ering model as described for terrestrial high mountains (Flantua & 
Hooghiemstra, 2018; Flantua et al., 2019), which is multimodal. The 
island life cycle is an ontogenetic geomorphological trajectory of 
area, elevation, and habitat diversity—from island birth, through ma-
turity, until island submergence. Consequently, this can be analyzed 
as a continuous time series. The potential effects of this ontogeny 
on evolutionary processes have been described in the general dy-
namic model of island biogeography (Whittaker et al., 2008), which 
provides a temporal framework for variations in island features (Lim 
& Marshall, 2017) such as area, topographic complexity, isolation, 
and habitat diversity (a in EvA; Figure 5). The model has already been 
implemented using quantitative methods (Borregaard, Matthews, & 
Whittaker, 2016; Valente, Etienne, & Phillimore, 2014) and therefore 
can define the temporal dimension of the abiotic arena in an insular 
context (Figure 5).

In the EvA framework, oceanic islands offer a convenient con-
ceptual aspect, in that the abiotic, geographical component (a in 
EvA), the island or archipelago, has discrete boundaries. While 
many classic studies have analyzed insular diversification and 
disparification (d in EvA) in single monophyletic radiations (e.g., 
Hawaiian silverswords, Baldwin & Sanderson, 1998; Madagascan 
vangas, Jønsson et al., 2012), a potential of islands is that entire 
communities resulting from multiple colonizations of the same 
island can be studied simultaneously, because the abiotic en-
vironment is the same for all included taxa with similar disper-
sal capacity. For instance, by including all terrestrial birds of the 
Galápagos islands in the same model, Valente, Phillimore, and 
Etienne (2015) showed that Darwin's finches have statistically ex-
ceptional rates of species diversification (i.e., significantly differ-
ent from the “background” rates of all terrestrial Galápagos birds). 
The effect of the phenotype (c in EvA; Figure 5) can be considered 
on a lineage-specific basis (e.g., Givnish et al., 2009) or, potentially, 
using a community-level multilineage approach, where the ef-
fects of given traits are assessed across multiple insular radiations 
within the same EvA model. Regarding the effect of the biotic in-
teractions on islands (b in EvA), it needs to be considered that in 
most cases, there are precursors to current-day islands that have 
been eroded to the Pleistocene sea level and are now submerged 
as guyot seamounts. These previous islands may explain the fact 
that the evolutionary age of lineages can be older than the respec-
tive island where they are endemic today (Pillon & Buerki, 2017). 
Also, while methods for assessing diversity-dependent effects 
within single lineages already exist (Rabosky & Glor, 2010; Valente 
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et al., 2015), we currently lack an approach for testing how the 
interaction of habitat heterogeneity, island size, and present diver-
sity can affect all lineages on an island-wide basis.

EvA provides a heuristic framework for the integration of 
time-dependent model and multiclade analyses. Once several anal-
yses of clades or archipelagos are available in this framework, it 
should be possible to combine them to develop a single model for 
the evolution of diversity within island systems. Furthermore, island 
disparification and diversification can be compared using the same 
analytical framework, allowing us to test the hypothesis that they re-
spond to the same factors. The simple EvA framework makes explicit 
these research questions.

5.3 | Ophrys biotically driven radiation

It is thought that biotic interactions have been a dominant driver of 
the radiation of the Mediterranean orchid genus Ophrys L., which has 
produced two parallel adaptive radiations within the last ~ 1 Ma. Both 
of these radiations are characterized by a shift to (mostly) Andrena 
Fabricius solitary bees as highly specific pollinator species, and by 
rapid disparification of flowers (Breitkopf, Onstein, Cafasso, Schlüter, 
& Cozzolino, 2015; Paulus & Gack, 1990). In this system, pollinators 
(b in EvA) mediate strong reproductive isolation in the absence of any 
measurable postpollination barriers to gene flow among closely re-
lated species (Sedeek et al., 2014; Xu et al., 2011). Consequently, pol-
linators may drive speciation in these two parallel radiations.

The high specificity of the pollinators in the Ophrys system is 
due to the plants’ chemical mimicry of the pollinator females’ sex 
pheromones (i.e., phenotypic traits), which is predominantly me-
diated by alkenes (Schiestl et al., 1999; Xu, Schlüter, Grossniklaus, 
& Schiestl, 2012). A simple genetic basis underlies alkene biosyn-
thesis, with only two loci being sufficient to completely change the 
pollinator-important alkene double-bond profile sensed by insects 
(Schlüter et al., 2011; Sedeek et al., 2016). Selection on alkene 

composition, and on loci putatively involved in their biosynthesis (c 
in EvA), is in stark contrast to the rest of the loci in the genome, 
where abundant polymorphisms are shared across closely related 
species (Sedeek et al., 2014). Simulations suggest that this simple 
trait architecture could lead to rapid pollinator-driven divergence 
(Xu & Schlüter, 2015). Overall, the available data suggest that, given 
the trait architecture of pollinator attraction, pollinators may be a 
key factor driving the Ophrys radiations (Figure 6). However, the 
relative importance of other factors remains unknown. For exam-
ple, what is the potential contribution to phenotypic variation (i.e., 
disparification; d in EvA) attributable to the highly heterogeneous 
(dynamic) abiotic environment (a in EvA) providing habitats for plants 
and pollinators (b in EvA) during the last million years?

Potentially, proxies for all components are measurable here. Due 
to the extensive amount of allele sharing, and gene coalescence times 
frequently predating “speciation” times (establishment of reproduc-
tive barriers), diversification among very recent groups of Ophrys may 
best be assessed not by phylogenetic means, but by within-group 
pairwise estimates among closely related species, either in terms of 
genetic differentiation (e.g., FST) or phenotypic measurements (d in 
EvA). Among the abiotic measurables (a in EvA) would be estimates 
of habitat fragmentation (also, e.g., estimates from biogeographic and 
niche modeling approaches) over the estimated age of target clades/
species groups. Biotic interactions (b in EvA) can be represented as 
matrices of interactions at varying levels; in its simplest form, orchid 
species vs. pollinator species. Due to the occurrence of (i) parallel use 
of the same pollinators in different lineages and (ii) repeated use of 
the same pollinators by allopatric orchid species, such an interaction 
matrix could initially take the shape of a variance–covariance matrix 
as in comparative analyses (O'Meara, 2012). Since the importance of 
different floral traits (including morphology and chemistry) for suc-
cessful interaction with pollinators can be experimentally measured 
by quantifying insect responses (e.g., Xu et al., 2012), such an interac-
tion matrix may eventually contain explicit likelihoods of plant/polli-
nator interactions (cf. pollination probabilities in Xu & Schlüter, 2015). 

F I G U R E  5   The EvA model for island radiations: (d1, d2) ~ (a1, a2, a3), b1, c1. Island ontogeny describes the typical life cycle of oceanic 
islands; isolation the degree of isolation of the insular system (e.g., distance from the continent); geographical fragmentation could be the 
number of islands (if dealing with an archipelago). Incorporating the lineage-specific traits is complex, as several independent lineages may 
be involved. Trait disparification is particularly interesting in islands, for example, Hawaiian honeycreepers and silverswords
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Clade-specific intrinsic effects essentially refer to the complexity 
of genetic/genomic change needed to effect a change in a relevant 
trait (c in EvA). This trait change would ideally be based upon mecha-
nistic molecular knowledge that could then be quantified numerically. 
As a first step in this direction, it may be possible to construct a sta-
tistic that summarizes trait–gene associations derived from genomic/
transcriptomic data on gene polymorphisms and/or expression from 
phenotyped individuals. Overall, although the data to formally test 
the components of the EvA framework in the Ophrys example are not 
yet collected, doing so seems at least theoretically straightforward.

EvA adds a comparative structure to the questions developed 
above. It may also provide a semantic to bridge micro- and macro-
evolution in systems where investigations span different levels, from 
populations to species and clades.

6  | CONCLUSIONS

In this review, we synthesize the central concepts of the evolution-
ary diversification literature and present the Evolutionary Arena 
(EvA) framework, a heuristic for exploring the modulators of diver-
sification rates, in terms of the (extrinsic) biotic and abiotic environ-
ment and the (intrinsic) traits of the focal lineage (Table 2); that is, 
we integrate three comprehensive classes of diversification rate 

modulators. The framework encourages us to organize knowledge 
about the factors regulating evolutionary radiations, evolutionary 
stasis and evolutionary decline of lineages. It does so in a generalized 
framework and helps recognize missing information. Particularly in 
the exploratory phases of research, EvA may support the search for 
more complete explanations of diversification rate variation.

The framework is very flexible, facilitating the incorporation of 
detailed variables, interactions among the components, changes in 
the direction of effect of these components, and interpretation of 
phylogenetic conservatism and trait lability. EvA advocates a mul-
tivariate perspective on radiations and can be readily expanded to 
accommodate increasing levels of complexity, to test for the inter-
actions among variables, or to rank variables according to their rel-
ative influence on diversification rates. Whether the specific results 
are tallied, or whether the predictors are collapsed, will most likely 
depend on the type of question being asked, and on the power avail-
able in the study system. EvA can be formulated as a hypothesis-test-
ing framework to test whether the likelihood of observing the data 
under a favorite particular model provides better fit than an appro-
priate null model, or to compare models of varying complexity. The 
framework may be particularly useful in parameterizing data-rich, 
broadscale analyses comparing different systems, such as evolution-
ary radiations of clades across different regions, or between differ-
ent clades within the same region, for example, the plant radiations 

TA B L E  2   Summary of EvA components for the four examples detailed above: worldwide conifers (quantified), Andean Lupinus, island 
radiations, and Mediterranean Ophrys

Case d a b c

Conifers Net diversification rate Potential area size (0.001% r2) Competition (36% r2) Physiological traits 
(2.2% r2)

Lupinus Speciation
Growth-form disparification
Genetic differentiation

Extent of páramo
Physiographical heterogeneity
Flickering connectivity

Low competition (?) Secondary perenniality

Islands Diversification
Disparification

Island ontogeny
Isolation
Fragmentation

Competition for 
resources

Idiosyncratic (?)

Ophrys Speciation/genetic 
differentiation

Fragmentation of range Pollinators Floral traits, esp. odors
Genetic basis

F I G U R E  6   The EvA model for 
Ophrys: d1 ~ a1, b1, (c1, c2). Floral 
traits (c1.1 geometry, c1.2 epidermis 
micromorphology, and c1.3 color and 
patterns), also including scent, are 
probably the most important regulators of 
the highly specific pollination system, but 
the role of mycorrhiza and geographical 
isolation on the Mediterranean islands is 
poorly understood
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in the north Andean páramos. Applying these analyses within the 
framework allows us to identify the important components that 
account for differences in diversification rates between clades and 
regions. The Evolutionary Arena framework thus encourages a more 
comparative approach to exploring phylogenetic and geographical 
variation in the correlates of speciation and extinction.

7  | GLOSSARY

Adaptation: a trait is an adaptation to a selective regime if it evolved 
in response to selection by that regime (Gould & Vrba, 1982).

Adaptive zone: a fitness peak in a set of related niches (the adap-
tive grid or macroevolutionary landscape) that a lineage occupies by 
virtue of a novel trait(s) that confer fitness in these niches.

Confluence: the sequential coming together of a set of traits 
(innovations and synnovations), environmental changes, and geo-
graphic movements along the branches of a phylogenetic tree 
(Donoghue & Sanderson, 2015).

Disparification: increase in trait variance in a clade through time, 
that is, increase in measurable phenotypic differences among taxa, 
where the traits in question may be morphological, anatomical, 
physiological, genetic, behavioral, etc. Disparification is a character-
istic of adaptive radiation.

Diversification: increase in the taxonomic diversity in a clade 
through time. The diversification rate is defined as speciation minus 
extinction and can thus be negative.

Ecological opportunity: lineage-specific environmental con-
ditions that contain both niche availability and niche discordance, 
favoring adaptation and promoting diversifying selection within the 
lineage (adapted from Wellborn & Langerhans, 2015).

Exaptation: a trait that has evolved under selection for one 
use and that is later useful for another usage (sometimes deceptively 
termed “pre-adaptation,” adapted from de Vladar et al., 2017). The 
original definition of Gould and Vrba (1982) is as follows: “features 
that now enhance fitness but were not built by natural selection for 
their current role.”

Extrinsic factor: environmental factors such as abiotic and biotic 
niche parameters, not inherited genetically by the focal lineage.

Intrinsic factor: phenotypic (morphological, physiological) or ge-
netic trait(s), inherited by the focal lineage.

Key event: events that trigger a shift in diversification rates.
Key innovation: new trait which facilitates the occupation of a 

new adaptive zone, or which breaks an evolutionary constraint, that 
is, a “phenotype(s) that allowed a species to interact with the envi-
ronment in a novel way” (Stroud & Losos, 2016, p. 508).

Phenotype: a set of features of an individual that stems from the 
interactions between genotype and environment.

Radiation: accelerated proliferation of species and/or pheno-
types, in the sense of significant increase in the diversification and/
or disparification rate compared to background rates (without a shift/
significant rate increase, it is not a radiation but [background] diver-
sification / disparification). Radiation (diversification / disparification) 

can be combined with an epithet, such as adaptive, geographical, eco-
logical, or genetical (gene flow) to further describe the nature of the 
evolutionary forces and situations (e.g., “sexual radiation” may refer to 
radiation driven by sexual selection, or “montane radiation” to radia-
tion in mountains, “insular radiation” to radiations on islands, or sim-
ply “cichlid radiation” to refer to a certain lineage, etc.). We refer to 
biological radiation most generally as “evolutionary radiation” as the 
change in diversification / disparification rates has macroevolution-
ary consequences. In addition, there are two prominent concepts that 
refer to the process underlying the evolutionary radiations:

Adaptive radiation: proliferation of species driven by the evolu-
tion of phenotypic (ecological and/or morphological) diversity that 
can be linked to adaptation to an environment. The environment 
may act as a modulator, driving (potentially sympatric) speciation 
and/or slowing extinction.

Geographic radiation: proliferation of species driven by en-
hanced opportunities for allopatric speciation (reproductive isola-
tion resulting from spatial barriers) in a particular region (modified 
from Simões et al., 2016). Also referred to as “nonadaptive radiation” 
(= geographic), or “climatic radiation” when differing climates are 
thought important. Note that the adaptive and geographic catego-
ries are simplified: Both adaptive and neutral processes likely play a 
role in modulating diversification rates in most radiations, but their 
relative contributions differ. For example, ecological factors may en-
hance the opportunity for reproductive isolation, and species diver-
gence in adaptive radiations may additionally be promoted by spatial 
isolation (see main text, Drivers of evolutionary radiations).

Synnovation: interacting combination of traits with a particular 
consequence (Donoghue & Sanderson, 2015).

Trait: a heritable attribute of evolutionary lineages (genes, indi-
viduals, populations, species, clades) that can be observed.

Trigger: event or situation starting a radiation.
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