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Abstract

The problem of interpolating a set-valued function with convex images is ad-
dressed by means of directed sets. A directed set will be visualised as a usually
non-convex set in Rn consisting of three parts together with its normal direc-
tions: the convex, the concave and the mixed-type part. In the Banach space
of the directed sets, a mapping resembling the Kergin map is established. The
interpolating property and error estimates similar to the point-wise case are then
shown; the representation of the interpolant through means of divided differences
is given. A comparison to other set-valued approaches is presented. The method
developed within the article is extended to the scope of the Hermite interpolation
by using the derivative notion in the Banach space of directed sets. Finally, a nu-
merical analysis of the explained technique corroborates the theoretical results.
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1. Introduction

Hermite interpolation is still a matter of recent research. To mention a few
examples, it is applied in the following fields: the construction of shape preserv-
ing interpolation methods with C1- or C2-functions (cf. [28]); the interpolation
of Bézier curves and patches (cf. [27]); terrain modelling and reconstruction as
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in [22]; the analysis of subdivision schemes incorporating derivative data as in
[16]; the interpolation of α-level sets for fuzzy sets (cf. [19]). Another field of
application is the analysis of linear/nonlinear partial differential equations. Here,
the Hermite interpolant, as a function of x for fixed time t, has given function
and derivative values of a regular solution y(·, t) of the PDE (cf. [20, 7]). More
applications and references are listed in the preprint [6].

The main difficulties in extending the notation and algorithms to the set-
valued case (even in the simplest setting of C(Rn), the set of convex compact
non-empty subsets of Rn) arise when defining a suitable difference and a suitable
derivative. Known approaches like the geometric difference as in [21] or the
Demyanov difference as in [11] carry the disadvantage of generating either too
small (even empty) or too big (convex) sets. In any case, the set C(Rn) is not a
vector space.

To overcome these difficulties, embeddings as proposed by Rådström, Hör-
mander can be used. The main disadvantage is the lack of a visualisation of
differences of embedded convex sets as subsets of Rn. For more references and
a detailed discussion, cf. [32, 2].

Directed sets are the n-dimensional generalisation of generalised/directed in-
tervals (cf. [24]) and provide an embedding of C(Rn) into the Banach space

−→
Dn

of the directed sets. The embedding admits generalisations of the known set
arithmetics like the Minkowski addition and multiplication with non-negative
scalars; it also delivers a visualisation for differences of embedded sets from
C(Rn), cf. [2, 3]. Directed sets were successfully applied to calculate and visu-
alise the approximation and derivatives of set-valued maps in [4] and to poly-
nomial Lagrange interpolation in [33]. For these reasons, the focus lies on the
embedding by directed sets.

In this paper, the work [33] is extended to Hermite interpolation. Some of
the results achieved in [36, 14, 34, 17, 39] for polynomial interpolation in Ba-
nach spaces can be applied, since

−→
Dn is itself a Banach space. These pioneering

works were aimed at more theoretical results, whereas here we focus on the nu-
merical analysis; in fact, error estimates are not provided in [36] or demand in
[34, 17, 39] too much regularity. We shall point out that, although the regularity
assumptions in [14] are rather weak, the conditions (i),(ii),H1 in [14] for deriving
error estimates (in

−→
Dn) still demand research. Furthermore, no numerical results

of set-valued interpolation are visualised in these works unlike in [26, 33].
We will present simple recursive proofs as well as a representation through

means of two components (a lower-dimensional directed set together with a
scalar function); in this way, connections to other approaches as in [26] are re-
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vealed easier than with arguments in [33] based on Banach spaces (cf. Section
5). Therein, polynomial interpolation with higher degree than one may generate
negative weights; the interpolating polynomial of the support function is then no
longer convex with respect to the direction and additional geometric assumptions
have therefore to be posed to ensure the non-emptiness of the sets.

The directed sets, which constitute the main tool within this work, will be
introduced in Section 2. Therein, the embedding Jn in [2] from the cone of the
convex compact subsets of Rn into

−→
Dn is recalled. The section following is in-

tended to acquaint the reader with a notion for differentiability of convex-valued
set-valued maps, i.e. with the notion of directed differentiability. There, the no-
tations for the divided differences and polynomial interpolation as well as basic
facts are recalled and specialised to the directed sets. The Hermite-Genocchi
formula and an estimate for divided differences and the remainder term of the
interpolating polynomial are presented. Continuing, the interpolating map KΘF
is introduced in Section 4 and some remainder formulae are illustrated which
generalise well-known error estimates to the set-valued case. Piecewise Hermite
interpolation of sets and error estimates for the derivatives of the interpolant are
studied as well. Finally, the numerical results are gathered in the last section,
showing that the directed sets are indeed a convenient tool for performing Her-
mite interpolation.

2. Directed sets

2.1. Preliminaries
In this introductory subsection, the notation will be fixed and basic definitions

will be presented.
Denote by ‖ · ‖ the Euclidean norm in Rn, let Br(m) be the corresponding

closed ball in Rn with radius r and centre m ∈ Rn and S n−1 ⊂ Rn the unit sphere.
The class of all non-empty convex compact sets in Rn is called C(Rn). The
support function δ∗(·,A) of a set A ∈ C(Rn) is defined in Rn as

δ∗(l,A) := max
a∈A
〈l, a〉 . (1)

We leave out intentionally a review of the properties of the support function
(cf. [37], [38]) assuming these to be well-known to the reader.

For any l ∈ Rn and A ∈ C(Rn), we denote with

Y(l, A) =
{
a ∈ A | 〈l, a〉 = δ∗(l,A)

}
(2)
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the supporting face of A in the direction l. It equals the subdifferential ∂δ∗(l,A)
of the support function. An element from Y (l, A) will be denoted by y (l, A) or,
alternatively, in the more compact fashion yl

A.
We consider the usual arithmetic operations, i.e. the Minkowski addition

A + B := {a + b | a ∈ A, b ∈ B} (3)

for A, B ∈ C(Rn) and the multiplication by a real scalar λ ∈ R

λ · A := {λ · a | a ∈ A}

(cf. e.g. [13]). For the particular case as for λ = −1, the notation 	A is also often
used. The geometric/Pontryagin’s difference in [21] is defined as

A−∗ B :=
⋂

l∈S n−1

{
x ∈ Rn | 〈l, x〉 ≤ δ∗(l,A) − δ∗(l,B)

}
which might be empty.

We denote by dH
(
A, B

)
the Hausdorff distance of the two sets and by dD

(
A, B

)
the corresponding Demyanov distance; cf. [11] for the original definition of the
Demyanov distance and [33, Proposition 2.4.5].

2.2. Definition of directed sets
At this stage, basic facts concerning the directed sets introduced in [2, 3] are

briefly recalled. A directed set A
→

is parameterised by directions l ∈ S n−1 and
consists of two components: a continuous function an(l) and a (n−1)-dimensional
uniformly bounded directed set function,

−−−−−→
An−1(l).

Let a(·) be a function from S n−1 into R, l ∈ S n−1 and

H l
a := {x ∈ Rn | 〈l, x〉 = a(l)} (4)

denote the corresponding hyperplane. H l
a and Rn−1 being isomorph for each

l ∈ S n−1, we introduce the affine function (shortly called projection)

Πl
a : H l

a −→ Rn−1 (5)

whose corresponding linear function is the isomorphic projection from H l
0 onto

Rn−1 (cf. [2, 4]). The above function generates an (affine) re-projection

∗Π
l
a : Rn−1 −→ H l

a (6)

with (Πl
a ◦
∗Πl

a)(x) = x for all x ∈ H l
a.

For a directed set, the hyperplaneH l
a is fixed by a(l) = an(l).

A directed set is defined recursively with respect to its dimension n ∈ N.
3



Definition 1. Consider n ∈ N and denote with
−→
Dn the space of the directed sets

of dimension n. A directed set of dimension n = 1 is given by the expression

A
→

:= (a1(l))l∈S 0 = (a1(−1), a1(+1))

for a function a1(·) : S 0 −→ R. The norm of the one-dimensional A
→

is given as

‖ A
→
‖1 := max

l∈S 0
|a1(l)| = max{|a1(−1)|, |a1(+1)|} .

For higher dimensions n ≥ 2, a directed set A
→
∈
−→
Dn is defined by a function

A
→

: S n−1 −→
−→
Dn−1 × R

l 7→ (
−−−−−→
An−1(l), an(l)) .

Here, the second component an(·) : S n−1 → R is continuous and the first compo-
nent
−−−−−→
An−1(·) : S n−1 →

−→
Dn−1 has to be uniformly bounded with regard to the norm

‖ · ‖n−1. The norm in
−→
Dn is defined recursively as

‖ A
→
‖n := max{ sup

l∈S n−1

‖
−−−−−→
An−1(l)‖n−1,max

l∈S n−1
|an(l)|} . (7)

We remark that for denoting a directed set A
→
∈
−→
Dn the compact form(

A
→ l

n−1, a
l
n

)
l∈S n−1

(8)

will be also often used. Notice that for n = 1 only the right-hand component is to
be considered. Moreover, when the dimension n appears clear from the context,
we drop the subscript in (7).

Convex compact sets can be embedded into the Banach space of the directed
sets; of course, the embedding is also recursively defined. For further references
on other possible embeddings and related articles see [2, 3].

Definition 2. The embedding Jn : C(Rn) −→
−→
Dn is given by

Jn(A) =


(
δ∗(l,A)

)
l∈S 0

for n = 1,(
Jn−1

(
Πl
δ∗(·,A)(Y(l, A))

)
, δ∗(l,A)

)
l∈S n−1

for n ≥ 2.
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From the definition above, we gather that, for an embedded convex compact
set C, the hyperplane H l

an
as in (4) is determined by the value of its support

function δ∗(·,C) in direction l, whereas
−−−−−→
An−1(l) is the embedded projection of its

supporting face Y(l,C) (seen as (n − 1)-dimensional set) into
−→
Dn−1.

The operations of a real vector space are introduced component-wise in
−→
Dn.

Definition 3. For A
→
=

(
A
→ l

n−1, a
l
n

)
l∈S n−1

, B
→
=

(
B
→ l

n−1, b
l
n

)
l∈S n−1

∈
−→
Dn and λ, µ ∈

R, the operations are defined recursively:

λ · A
→
+µ · B
→

:=
(
λ · A
→ l

n−1 + µ · B
→ l

n−1, λ al
n + µ bl

n

)
l∈S n−1

Notice that the first component of a directed set is not present for n = 1.

2.3. Properties of directed sets

Endowed with the above operations, the space
−→
Dn enjoys remarkable proper-

ties which are portrayed in [2]. Above all,
−→
Dn is a Banach space (see [2, Theorem

3.9]). Since we are basically interested in embedded elements of C(Rn) (along
with their difference and visualisation), we restrict our attention to the Banach
space consisting of the closure of the linear hull

−→
Cn of Jn(C(Rn)) with respect to

the norm in Definition 1.
The embedding in Definition 2 commutes with the addition, therefore pre-

serving the Minkowski-sum, as well as with the multiplication with a non-nega-
tive scalar as shown in [2, Theorem 4.17].

Proposition 1. Let A and B be in C(Rn). Furthermore, consider real scalars
λ ≥ 0 and µ ≥ 0. Then the following equality holds:

Jn(λ · A + µ · B) = λ · Jn(A) + µ · Jn(B)

We now recall basic notion concerning the visualisation of directed sets; for
more details, the reader may refer to [3]. The visualisation of a directed set
A
→
∈
−→
Cn consists of three parts: the convex part

Pn(A
→

) :=
⋂

l∈S n−1

{x ∈ Rn | 〈l, x〉 ≤ an(l)} , (9)

the concave part

Nn(A
→

) := 	
⋂

l∈S n−1

{x ∈ Rn | 〈l, x〉 ≤ −an(l)} , (10)
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and the (non-convex) mixed-type part

Mn(A
→

) := Bn(A
→

) \ (∂Pn(A
→

) ∪ ∂Nn(A
→

)) . (11)

Here, Bn(A
→

) is the boundary part given by

Bn(A
→

) :=


∂P1(A
→

) ∪ ∂N1(A
→

) = {−a1(−1), a1(+1)}, if n = 1,

⋃
l∈S n−1

∗Πl
an

(Vn−1(
−−−−−→
An−1(l))), if n ≥ 2.

(12)

The visualisation is defined as the union

Vn(A
→

) := Pn(A
→

) ∪ Nn(A
→

) ∪ Mn(A
→

) . (13)

For each boundary point x ∈ Bn(A
→

), the orientation bundle denotes a set of unit
directions with

O1(x, A
→

) :=


{−1}, if A

→
= ±J1([a, b]), a < b and x = ±a,

{+1}, if A
→
= ±J1([a, b]), a < b and x = ±b,

{±1}, if A
→
= J1({a}), a = b and x = a,

(14)

On(x, A
→

) := {l ∈ S n−1 : x ∈ ∗Πl
an

(Vn−1(
−−−−−→
An−1(l)))}, if n ≥ 2. (15)

It appears clear from the above definitions that the re-projection of the visual-
isation of

−−−−−→
An−1(l) lies on the hyperplane H l

a (recall (4)). This image forms the
boundary part of the visualised A

→
in direction l ∈ S n−1.

Remark 1. At this stage some useful properties of the visualisation should be
mentioned; for a description of the mixed-type part we refer to [3]. First of all,
the visualisation of an embedded convex set A

→
equals the set itself, i.e.

Vn(A
→

) = Pn(A
→

) ≡ A, Bn(A
→

) = ∂A, Mn(A
→

) = ∅, (16)

whereas for its inverse − A
→

each boundary point of A
→

is inverted, but preserves
its orientation bundle, i.e.

Vn(− A
→

) = 	Vn(A
→

), Bn(− A
→

)= 	 Bn(A
→

),

Pn(− A
→

) = 	Nn(A
→

), Nn(− A
→

)= 	 Pn(A
→

), Mn(− A
→

) = 	Mn(A
→

)
6



and On(−x,− A
→

) = On(x, A
→

) for all x ∈ Bn(A
→

).
Furthermore, the difference of two embedded sets A

→
, B
→
∈ C(Rn)

Pn(A
→
− B
→

) = A−∗ B, Nn(A
→
− B
→

) = 	(B−∗ A)

includes the geometric difference in its visualisation. Finally, the visualisation
and the boundary part of a general directed set is always non-empty: either the
convex or concave part are non-empty (except for the degenerate case of a point)
or, if both are empty, the mixed-type part is non-empty (see [3, Proposition 3.4]).

3. Set-valued derivatives and divided differences

The images of convex-valued set-valued maps defined on I = [t0,T ] ⊂ R are
embedded into the Banach space

−→
Dn. Thus, the embedded function F

→
is given

by the composition F
→

:= Jn ◦ F for a set-valued map F : I ⇒ Rn with convex
images.

The usual notion of differentiability of functions having values in Banach
spaces will be applied to embedded convex-valued maps as in [4].

Definition 4. A function F
→

: I →
−→
Dn is differentiable in t ∈ I, if the following

limit exists:

D F
→

(t) := lim
h→0
t+h∈I

F
→

(t + h) − F
→

(t)
h

(17)

The directed set D F
→

(t) is called the derivative of F
→

at t. The derivatives Dk F
→

of higher order k ≥ 2 are defined recursively in the usual way. A convex-valued
function F : I ⇒ Rn is said to be directed differentiable in t, if its embedding
F
→

:= Jn ◦ F is differentiable in this point.

With the notation

F
→

(t) =
(

F
→ l

n−1(t), f l
n(t)

)
l∈S n−1

(18)

resembling (8), we state the differentiability formula for the components of a
directed set function. The norm in Definition 1 demands intrinsically a certain
uniformity within the limit (17) with respect to the parameter l ∈ S n−1.

Proposition 2. If the map F
→

: I −→
−→
Dn is differentiable in t ∈ I, then both

components are differentiable in t uniformly in l ∈ S n−1 with the representation

D F
→

(t) =
(
D F
→ l

n−1(t),D f l
n(t)

)
l∈S n−1

. (19)
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Proof : Recalling Definition 4 of the directed derivative, the limit

lim
h→0
t+h∈I

F
→ l

n−1(t + h) − F
→ l

n−1(t)
h

,
f l
n(t + h) − f l

n(t)
h


l∈S n−1

(20)

forces the uniformity of the convergence for both components due to the defini-
tion of the norm (7), i.e. the assertion follows immediately. �

From the proposition above, we understand that the uniformly differentia-
bility of both components implies the directed differentiability of the map F

→
.

We now present a central criterion for the directed differentiability of a convex-
valued function (refer to [33, Theorem 3.2.2]) that depends only on the differen-
tiability of the support function of the supporting face.

Proposition 3 (Characterisation of Smoothness). The convex-valued map F(·)
is directed differentiable in t ∈ I if and only if the support function δ∗(η,Y

(
l,F(·)

)
)

is differentiable in t uniformly in both arguments l and η ∈ S n−1.

Directed differentiability implies the smoothness of t 7→ δ∗(l,F(t)) uniformly
in l ∈ S n−1 which is very natural in the study of numerical methods for set-
valued quadrature methods, in the study of set-valued Runge-Kutta methods and
in set-valued interpolation (cf. [15, 5, 26] and references therein).

Corollary 1. Suppose the convex-valued map F(·) to be directed differentiable
in t ∈ I. Then, the support function δ∗(l,F(·)) is differentiable in t in the classical
sense uniformly in l ∈ S n−1.

Proof : Being δ∗(l,Y(l,F(·))) = δ∗(l,F(·)), Proposition 3 can be applied. �
In the following, let I = [t0,T ] be a compact interval with t0 < T . By

convention, Θ = (θ0, . . . , θk) will denote a k-grid on I of k + 1 points θi ∈ I,
i = 0, . . . , k, k ∈ N0, and Θ j = (θ0, . . . , θ j) the sub-grid of the first j + 1 elements
of Θ. co(Θ) will denote the convex hull of {θ0, . . . , θk}.

For any map F
→

: R → −→Dn, its divided difference of order j with respect
to the k-grid Θ with distinct nodes θi, i = 0, . . . , k, is recursively defined in the
usual manner (see e.g. [9]) as in the following equations

F
→

[θi] := F
→

(θi) , (21)

F
→

[θi, θi+1, . . . , θi+ j] :=
F
→

[θi+1, . . . , θi+ j] − F
→

[θi, . . . , θi+ j−1]
θi+ j − θi

(22)

for i = 0, . . . , k − j in (21)–(22) with j = 0 in (21) resp. j = 1, . . . , k in (22).
The following lemma is meant to highlight, in the spirit of (18), the compo-

nent-wise representation of the divided differences defined in (21)–(22).
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Lemma 1. Let F
→

: I →
−→
Dn and Θ be a k-grid on I of distinct points. Then, the

divided difference F
→

[Θ] has the following component-wise representation:

F
→

[Θ] =
(

F
→ l

n−1[Θ], f l
n[Θ]

)
l∈S n−1

Proof : We proceed per induction on the order j of the divided difference.
For j = 0 and i = 0, . . . , k, (21) yields trivially:

F
→

[θi] = F
→

(θi) =
(
F
→ l

n−1(θi), f l
n(θi)

)
l∈S n−1

=

(
F
→ l

n−1[Θ], f l
n[Θ]

)
l∈S n−1

(23)

For j ≥ 1 and i = 0, . . . , k − j, the recursive setting (22) applied to the j-grid
(θi, θi+1, . . . , θi+ j) can be rewritten as

F
→

[θi, θi+1, . . . , θi+ j] =
F
→

[θi+1, θi+2, . . . , θi+ j] − F
→

[θi, θi+1, . . . , θi+ j−1]
θi+ j − θi

.

The inductive hypothesis and the component-wise operations in
−→
Dn finally yield

F
→

[θi, θi+1, . . . , θi+ j] =

(
F
→ l

n−1[θi+1, θi+2, . . . , θi+ j], f l
n[θi+1, θi+2, . . . , θi+ j]

)
l∈S n−1

θi+ j − θi

−

(
F
→ l

n−1[θi, θi+1, . . . , θi+ j−1], f l
n[θi, θi+1, . . . , θi+ j−1]

)
l∈S n−1

θi+ j − θi

=

(
F
→ l

n−1[θi, θi+1, . . . , θi+ j], f l
n[θi, θi+1, . . . , θi+ j]

)
l∈S n−1

.
�

The limiting process, i.e. collapsing nodes in the k-grid of the interpolation
data, is studied in the next proposition. It guarantees a continuity property of the
divided differences generalising the real-valued result, e.g. in [12].

Proposition 4. Assume F
→

: I −→
−→
Dn to be k-times continuously differentiable

at θ ∈ I. Furthermore, assume that the nodes θi, i = 0, . . . , k, from the k-grids Θ
in the following limit are all different. Then:

lim
θi→θ
0≤i≤k

F
→

[Θ] =
1
k!
· Dk F
→

(θ) (24)

Moreover, for any ε > 0 there exists a δ = δ(ε) > 0 depending on the continuity
modulus of Dk F

→
(·) such that for all k-gridsΘ with distinct nodes θi, i = 0, . . . , k,

and |θi − θ| ≤ δ it follows that

‖ F
→

[Θ] −
1
k!
· Dk F
→

(θ)‖ ≤ ε . (25)
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Proof : We shall proceed by induction on n.
For n = 1, Proposition 2 shows that f l

1(·) is k-times continuously differen-
tiable in θ uniformly in l ∈ S n−1. Since this function is real-valued, we already
know that

lim
θi→θ
0≤i≤k

f l
1[Θ] =

1
k!
·

dk

dtk f l
1(θ) .

Additionally, for each l ∈ S 0 there exists ξl ∈ co{θ0, . . . , θk} with

f l
1[Θ] =

1
k!
·

dk

dtk f l
1(ξl) .

Since the k-th derivative of F
→

(·) is continuous, there exists δ = δ(Dk F
→

) > 0
such that for all θi ∈ [θ − δ, θ + δ] ∩ I, it follows that

|
dk

dtk f l
1(ξl) −

dk

dtk f l
1(θ)| ≤ ‖Dk F

→
(ξl) − Dk F

→
(θ)‖ ≤ k! · ε , (26)

because ξl is a convex combination of two nodes from Θ; δ depends only on k! ·ε
and on the continuity modulus of Dk F

→
(·).

Now, let n ≥ 2. Proposition 2 shows that f l
n(·) and F

→ l
n−1(·) are k-times con-

tinuously differentiable in θ uniformly in l ∈ S n−1. Because of the inductive
assumption and the fact that f l

n(·) is real-valued, it follows that

lim
θi→θ
0≤i≤k

F
→ l

n−1[Θ] =
1
k!
· Dk F
→ l

n−1(θ) and lim
θi→θ
0≤i≤k

f l
n[Θ] =

1
k!
·

dk

dtk f l
n(θ) .

The uniformity (with respect to l ∈ S n−1) of the limits above is not yet evident.
Moreover, the choice of δ(Dk F

→ l
n−1) in (26) seems to depend on the continuity

modulus of each function Dk F
→ l

n−1(·). Since

max
{
‖Dk F
→ l

n−1(θi) − Dk F
→ l

n−1(θ)‖,
∣∣∣∣ dk

dtk f l
n(θi) −

dk

dtk f l
n(θ)

∣∣∣∣ }
≤ ‖Dk F

→
(θi) − Dk F

→
(θ)‖ ,

the inductive assumption can be exploited, δ(Dk F
→ l

n−1) depends only on k! · ε
and on the continuity modulus of Dk F

→
(·) for each l ∈ S n−1. For the second

component function, that is real-valued, we can proceed as for n = 1; in fact,

10



the argument with the continuity modulus can be repeated also here. Hence, the
convergence is indeed uniformly in l ∈ S n−1. Finally,

lim
θi→θ
0≤i≤k

F
→

[Θ] =
(

lim
θi→θ
0≤i≤k

F
→ l

n−1[Θ], lim
θi→θ
0≤i≤k

f l
n[Θ]

)
l∈S n−1

=
( 1
k!
· Dk F
→ l

n−1(θ),
1
k!
·

dk

dtk f l
n(θ)

)
l∈S n−1

=
1
k!
· Dk F
→

(θ) . �
Following [40, Section 2.1.3] and [12, Lemma 7.11 and subsequent remarks]

we shall now extend the recursive formula (21)-(22) to the case of (some) co-
inciding points using the continuity as in Proposition 4. Let us assume that
θi ≤ θi+1 ≤ · · · ≤ θi+ j. This involves no loss of generality because the divided
difference are symmetric function of their arguments (cf. [17, Proposition 5.4],
[40, (2.1.3.6) and Theorem (2.1.3.9)]). The recurrence relation will obviously
fail in the case θi+ j = θi which also implies that θi = θi+1 = · · · = θi+ j. Applying
(24), we thus distinguish the following two cases:

F
→

[θi, θi+1, . . . , θi+ j] :=


F
→

[θi+1, . . . , θi+ j]−F
→

[θi, . . . , θi+ j−1]
θi+ j − θi

if θi+ j , θi,

1
j!

D j F
→

(θi) if θi+ j = θi.

(27)

We state a result concerning alternative representations of the divided differ-
ences. In the case of a general k-grid with (some) coinciding points one has the
equivalence between the recursive definition given in (27) and a representation
through means of a Bochner integral over the unit simplex.

Theorem 1. Let Θ = (θ0, . . . , θk) be a general k-grid on I and Tk ⊂ Rk be the
unit simplex. If F

→
: I →

−→
Dn is k-times continuously directed differentiable, then

F
→

[Θ] =
∫

Tk

Dk F
→

(
θ0 +

k∑
j=1

ν j(θ j − θ0)
)

dν1 . . . dνk. (28)

Proof : Cf. [17, Section 1]. �
An equivalent formulation of the Hermite-Genocchi Formula in (28) based

on a certain normalised spline is given by

F
→

[Θ] =
1
k!

∫
I

M(t|Θ) Dk F
→

(t) dt . (29)

11



It is proved for directed sets in [33, Theorem 4.3.2] for distinct points. The
function M(·|Θ) is the normalised B-spline with knots Θ and∫

I
M(t|Θ) dt = 1 (30)

(see e.g. [10] or [35]). An extensive treatment of B-splines and their properties
can be found e.g. in [35, Section 5.4 & 5.9] or [10, Chapter IX]. Evidently, the
support of the spline M(·|Θ) is included in the convex hull co(Θ). For (some)
coinciding points, M(·|Θ) acts as a distribution, see [30] and [18, (4.4)].

Moreover, the integral on the right-hand in (28) and (29) are Bochner in-
tegrals, as introduced in [8], because the integrands take values in the Banach
space

−→
Dn.

Thanks to Theorem 1, it is possible under certain assumptions, to derive im-
mediately some useful properties of divided differences, in particular: the inde-
pendence from the ordering of the knots in Θ; its continuity with respect to Θ;
its meaning for collapsing points. For further details, one may see [34, 17].

Proposition 5. Let F
→

: I →
−→
Dn be the embedding of the convex-valued map

F : I ⇒ Rn and Θ be a k-grid on I. If F is k-times continuously directed
differentiable on I, then the estimate for the k-th divided difference is given by∥∥∥ F

→
[Θ]

∥∥∥ ≤ 1
k!
· sup
θ∈[θ0,θk]

‖Dk F
→

(θ)‖ . (31)

Proof : The statement follows immediately from the Hermite-Genocchi formula
(Theorem 1), the estimation of the Bochner integral by the norm of the integrand
and from the fact that the volume of the unit simplex is 1

k! . �
Another way to prove the estimate on the divided differences would be an

induction on the space dimension n. For n = 1, the statement is well-known
for real-valued functions; for n ≥ 2, Lemma 1 allows you to study the two
component functions separately. The argument for the second component is the
same as for n = 1, the inductive assumption helps for the first component.

The main idea in the proof of [33, Theorem 4.3.2] consists in applying an
induction per k (the order of the divided difference) and, based on (29), in using
the recurrence formula for the derivative of the B-spline Nk

j (·) (cf. [10, Chapter
IX]) involved in the definition of M(·|Θ) to establish the statement. In [14, 17]
a different idea for the proofs has been pursued instead. Basically, the scalarisa-
tion, through means of functionals, of the functions taking their values in Banach
spaces allows to apply well-known results for real-valued functions; finally, the

12



separation of points by functionals is exploited to finish the proofs. In [34] the
restriction to finite-dimensional subspaces containing interpolation points plays
a major role.

At this stage all tools for introducing an interpolating map are established as
for the real-valued case.

4. The (Kergin) interpolating map

We deliberately make use of the term “Kergin interpolation” and its notation
to suggest that the presented approach may easily be extended to the scope of
multivariate interpolation, see [30].

The following convention is introduced. Suppose that among the k+1 points
θ0, . . . , θk ∈ I = [t0,T ] only m + 1, say θ̂0, . . . , θ̂m, are distinct. Let θi occur in the
list of points µi ≥ 1 times so that k :=

∑m
i=0 µi − 1, i.e.

Θ :=
(
θ0, θ1, . . . , θk

)
:=

(
θ̂0, . . . , θ̂0︸     ︷︷     ︸

µ0

, . . . , θ̂i, . . . , θ̂i︸   ︷︷   ︸
µi

, . . . , θ̂m, . . . , θ̂m︸      ︷︷      ︸
µm

)
(32)

Then, the (Hermite) interpolating map (denoted by KΘ F
→

) for a (µ − 1)-times
differentiable function F

→
: I →

−→
Dn with µ := maxi=0,...,m µi determines the (Her-

mite) polynomial map, for which the following interpolation conditions hold:

Di(KΘ F
→ )

(̂θ j) = Di F
→

(̂θ j) (i = 0, . . . , µ j − 1, j = 0, . . . ,m) (33)

The interpolation property in the following proposition is well-known (cf.
[36, Theorems 4.3 and 5.2], [14], [34, Theorem 1], and [17, Theorem 5.7]) and
generalises, cf. [12, Theorem 7.6], to the set-valued case. Hereby, the interpola-
tion approach propagates to the components of the directed set function so that
the interpolating map is always polynomial with respect to t.

Proposition 6. Let Θ be the k-grid on I as in (32) and F
→

: I −→
−→
Dn be (µ− 1)-

times continuously differentiable in I with µ := maxi=0,...,m µi. Then, the polyno-
mial map KΘ F

→
: I →

−→
Dn of degree less or equal to k interpolating F on the

k-grid Θ with conditions (33), is given by

(
KΘ F
→ )

(t) :=
k∑

j=0

ω
j−1
Θ

(t) · F
→

[Θ j] . (34)

13



Hereby, ω j−1
Θ

(t) =
∏ j−1

i=0 (t−θi), j = 0, . . . , k. The map above exhibits the following
component-wise representation:

KΘ F
→
≡

(
KΘ F
→ l

n−1,KΘ f l
n

)
l∈S n−1

(35)

Proof : Set H
→

(t) := KΘ F
→

(t). First of all, Lemma 1 shows that

H
→ l

n−1(t) =
k∑

j=0

ω
j−1
Θ

(t) · F
→ l

n−1[Θ j] , hl
n(t) =

k∑
j=0

ω
j−1
Θ

(t) · f l
n[Θ j] . (36)

Proposition 2 allows to rewrite the interpolation conditions in (33) as

Di( H
→ l

n−1
)
(̂θ j) = Di F

→ l
n−1(̂θ j) ,

di

dti h
l
n(̂θ j) =

di

dti f l
n(̂θ j) (i = 0, . . . ,m j − 1)

for j = 0, . . . ,m. At this stage we proceed per induction on n.
n = 1: The uniqueness result for real-valued Hermite interpolation shows

that hl
1 = KΘ f l

1.
Similarly, for n ≥ 2 one may immediately show that hl

n = KΘ f l
n. The in-

ductive assumption shows that H
→ l

n−1 = KΘ F
→ l

n−1 and (35) follows from (36).
�

The term KΘ F
→

respectively KΘ F
→ l

n−1 is the Kergin interpolating map in a

Banach space (i.e.
−→
Dn respectively

−→
Dn−1; refer to [34, 17]); KΘ f l

n is the well-
known real-valued (Kergin) interpolating map (see e.g. [25]). The map in (34) is
a polynomial with values in a Banach space in the sense of [36, Section 2], [14,
Definition 2] and [17, Section 2].

After having introduced an interpolating map, we focus on deriving estimates
for the interpolation error. We will denote with R

→
Θ := F

→
− KΘ F

→
the remain-

der term; it acts component-wise due to Proposition 6. For l ∈ S n−1 we have

R
→
Θ =

(
R
→ l
Θ,n−1 , r

l
Θ,n

)
l∈S n−1

, R
→ l
Θ,n−1 =F

→ l
n−1 − KΘ F

→ l
n−1 , rl

Θ,n = f l
n − KΘ f l

n . (37)

Variants of the following Proposition 7 are known. The error representation
presented in (39) is proved in [17, Theorem 6.1] and used in [17, Theorem 6.2]
to show an error estimate for the more restrictive class of holomorphic functions.
For an estimation with the modulus of smoothness for Lagrange interpolation
and for another embedding of C(Rn) into a vector space under weaker smooth-
ness assumptions, see [14, Corollary 3].

14



Proposition 7. Let F
→

: I −→
−→
Dn be (k + 1)-times continuously differentiable

and k =
(∑m

j=0 µ j
)
− 1. Then the following error estimate holds for t ∈ I:

‖ R
→
Θ(t)‖ ≤

1
(k + 1)!

· ‖Dk+1 F
→
‖∞ ·

m∏
j=0

|t − θ̂ j|
µ j (38)

Proof : With R
→
Θ as in (37) one has as in [34, Lemma 2]:

R
→
Θ(t) = ωk

(Θ,t)(t) · F
→

[(Θ, t)], ωk
(Θ,t)(t) =

m∏
j=0

(t − θ̂ j)µ j (39)

Proposition 5 yields the assertion. �
The next two results are generalisations of the real-valued case. Other error

estimates known for real-valued functions could be transferred to
−→
Dn in a similar

manner. The first estimation (cf. [23, Satz 3] for the real-valued case) provides
an estimate for the interpolation error of the derivatives up to order k + 1.

Lemma 2. Let F
→

: I −→
−→
Dn be (k+ 1)-times continuously differentiable. Then,

the following error estimate holds for j = 0, . . . , k + 1 and t ∈ I:

‖D j F
→

(t) − D j(KΘ F
→ )

(t)‖

≤
1

(k + 1 − j)!
· ‖Dk+1 F

→
‖∞ ·

k− j∏
i=0

max
{
|t − θi|, |t − θi+ j|

}
Proof : We shall start with n ≥ 2, since the real-valued case is known for n = 1,
and set H

→
(t) := KΘ F

→
(t).

The second component of F
→
−H
→

is estimated by [23, Satz 3] yielding

|
d j

dt j f l
n(t) −

d j

dt j h
l
n(t)|

≤
1

(k + 1 − j)!
· ‖

dk+1

dtk+1 f l
n ‖∞ ·

k− j∏
i=0

max
{
|t − θi|, |t − θi+ j|

}
, (40)

where j = 0, . . . , k + 1 and l ∈ S n−1. Concerning the first component, one obtains
with the inductive assumption:

‖D j F
→ l

n−1(t) − D j H
→ l

n−1(t)‖

≤
1

(k + 1 − j)!
· ‖Dk+1 F

→ l
n−1 ‖∞ ·

k− j∏
i=0

max
{
|t − θi|, |t − θi+ j|

}
. (41)
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Since the estimates (40)–(41) and

max
{
‖Dk+1 F

→ l
n−1 ‖∞ ,

∥∥∥∥ dk+1

dtk+1 f l
n

∥∥∥∥
∞

}
≤ ‖Dk+1 F

→
‖∞

hold, the assertion follows. �
Consider a fixed step-size h = T−t0

N , N ∈ N, and the knot-grid
θ̂i := t0 + ih ∈ I = [t0,T ], i = 0, . . . ,N. Set

Θi := (̂θi, . . . , θ̂i︸   ︷︷   ︸
µ

, θ̂i+1, . . . , θ̂i+1︸         ︷︷         ︸
µ

) ,

Ii := [̂θi, θ̂i+1] and denote with H
→

the piecewise defined map consisting of Her-
mite interpolating maps Hi

→
on Ii for i = 0, . . . ,N with polynomial order 2µ − 1,

µ0 = µ1 = µ; thus: m = 1, k = 2µ − 1 in (32) and

KΘi F
→
|Ii
= Hi
→
.

Following the idea in the proof of [7, Theorem 2], we formulate the following
estimation for the set-valued piecewise Hermite interpolation.

Corollary 2. Assume F
→

: I →
−→
Dn to be (2µ)-times continuously differentiable.

Then, the following error estimate holds for the piecewise Hermite interpola-
tion with polynomial order 2µ − 1 and step-size h defined above for t ∈ I and
derivatives of order j = 0, . . . , µ − 1:

‖D j F
→

(t) − D j H
→

(t)‖ ≤
1

(2µ − j)!
· ‖D2µ F

→
‖∞ · h2µ− j (42)

Proof : Lemma 2 can be applied on Ii for j = 0, . . . , 2µ yielding

‖D j F
→

(t) − D j H
→

(t)‖ = ‖D j F
→

(t) − D j Hi
→

(t)‖

≤
1

(2µ − j)!
· ‖D2µ F

→
‖∞ ·

2µ− j−1∏
ν=0

max
{
|t − θi,ν|, |t − θi,ν+ j|

}
≤

1
(2µ − j)!

· ‖D2µ F
→
‖∞ · h2µ− j ,

where θi,ν = θ̂i for ν = 0, . . . , µ − 1 and θi,ν = θ̂i+1 for ν = µ, . . . , 2µ − 1.
Notice that H

→
is (µ − 1)-times continuously differentiable on I, having the

following conditions to hold for i = 0, . . . ,N − 1:

D j H
→

(̂θi) = D j F
→

(̂θi) and D j H
→

(̂θi+1) = D j F
→

(̂θi+1) ( j = 0, . . . , µ − 1)

Hence, the global estimation on I is valid only for j = 0, . . . , µ − 1. �
16



5. Connections to other approaches

Consider t ∈ I and the representation of the images of a convex-valued map
F : I =⇒ Rn through means of the support function:

F(t) =
⋂

l∈S n−1

{
x ∈ Rn | 〈l, x〉 ≤ δl(t)

}
(43)

Hereby, we set δl(t) := δ∗(l,F(t)) for simpleness of notation.
In [26], polynomial interpolation of δl for every l ∈ S n−1 underlies the fol-

lowing set-valued approximation of F(t):(
LΘF

)
(t) :=

⋂
l∈S n−1

{
x ∈ Rn | 〈l, x〉 ≤

(
KΘδ

l)(t) } (44)

Notice that LΘF may result in an empty set for some t; in fact, l 7→ KΘδl(t)
might not be convex and thus, may not be a support function of (LΘF

)
(t).

Before discussing the connection to the approach with the directed sets, we
notice that Proposition 6 holds true in particular for the embedding of any convex-
valued map F : I ⇒ Rn which is sufficiently smooth (in the directed sense). The
specialisation to this case yields as one component the (Kergin) interpolation of
the support function as in [26], but takes into account also lower-dimensional
projections of support faces.

Corollary 3. Consider Θ on I and µ as in Proposition 6. Let F : I ⇒ Rn be a
convex-valued function and F

→
denote its embedding. If F is assumed (µ − 1)-

times directed differentiable, then the (Kergin) interpolating map equals

KΘ F
→
=

(
KΘ F
→ l

n−1,KΘδ
∗(l,F(·))

)
l∈S n−1

(45)

with F
→ l

n−1(t) = Jn−1

(
Πl
δ∗(·,F(t))(Y(l, F(t)))

)
.

We underline the fact that the second component KΘδl(·) in (45) coincides with
the Newton form of the interpolating polynomial to δl(·) with nodes Θ.

As a consequence of (13) and Remark 1, the visualisation of the interpolation
by directed sets actually yields a “super-map” of the approach as in [26], since

(KΘδl)(t) =∑
j:` j(t)≥0

` j(t)δl(θ j) −
∑

j:` j(t)<0
|` j(t)| · δl(θ j)

is the second component of KΘ F
→

. It determines the convex part by (9).
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Proposition 8. Let F : I ⇒ Rn be a convex-valued function and assume that all
conditions in Corollary 3 hold. Then, it holds for every t ∈ I:(

LΘF
)
(t) = Pn

((
KΘ F
→ )

(t)
)
⊆ Vn

((
KΘ F
→ )

(t)
)
, ∅ . (46)

Since the convex part of a directed set may be empty, conditions on the set-
valued map F are required in [26, Corollary 2.5] to achieve non-emptiness of the
images of the interpolating map LΘF. The following proposition recalls both
these conditions and [26, Lemma 2.6].

Proposition 9. Let Θ = (θ0, . . . , θk) be a k-grid on I consisting of distinct points
and F : I ⇒ Rn be a convex-valued map. For t ∈ I, set

ε(t) := sup
l∈S n−1

|δl(t) −
(
KΘδ

l)(t)| , c(t) := max
l∈S n−1

(
KΘδ

l)(t) .
Then, the following error estimates hold for the two possible cases below:
(i) If δ∗(l, (LΘF)(t)) = KΘδl(t), then

dH
(
F(t),

(
LΘF

)
(t)

)
= ε(t) .

(ii) Otherwise, if δ∗(l, (LΘF)(t)) < KΘδl(t), then we assume additionally the ex-
istence of a ball Br(t)(m(t)) with centre m(t) ∈ Rn and radius r(t) > 0 that is a
subset of the image F(t) as well as that the error fulfils 0 < ε(t) < r(t). Then,

dH
(
F(t),

(
LΘF

)
(t)

)
≤

2c(t)
r(t) − ε(t)

· ε(t) .

Because of the conditions expressed above, the difference of the two support
functions of F(t) respectively of

(
LΘF

)
(t) can be estimated through means of the

difference δl(t) −
(
KΘδ

l)(t); it also tells us that
(
LΘF

)
(t) is non-empty.

We notice that in [26] the support function δ∗(l,F(·)) of each image F(t) ∈
C(Rn) is interpolated polynomially. Nevertheless, the interpolating map as a
whole is not, in general, polynomial as a set-valued function (with respect to
the parameter t) like in the approach with directed sets. In the latter approach,
the first component leading back to the supporting face is considered, in view of
Corollary 3, and interpolated as well. Since

−→
Dn is a Banach space (which also

offers a visualisation for all directed sets), the values of the interpolating function(
KΘ F
→ )

(t) always have a non-empty visualisation, see Remark 1. Therefore, an
interior ball condition, as in (ii) of the above proposition, is not necessary.
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Remark 2. Piecewise constant and linear set-valued interpolation (cf. [41, 1,
31, 29]) are special cases of the Kergin interpolation with directed sets as intro-
duced in Section 4. For the embedded function F

→
(t) = Jn(F(t)) and a k-grid Θ

with k ≤ 1 different points, it follows that:(
KΘ F
→ )

(t) = F
→

(θ0) resp.
(
KΘ F
→ )

(t) = F
→

(θ0) + t−θ0
θ1−θ0
·
(

F
→

(θ1) − F
→

(θ0)
)

In both cases, the interpolation of F
→

(·) yields a convex combination of embedded
function values. Thus, it coincides with the usual set-valued interpolation

Vn
((
KΘ F
→ )

(t)
)
=

(
LΘF

)
(t) =

F(θ0) if k = 0,
θ1−t
θ1−θ0
· F(θ0) + t−θ0

θ1−θ0
· F(θ1) if k = 1,

by Remark 1. Clearly,
(
KΘδ

l)(t) is the support function of
(
LΘF

)
(t) in both cases.

The error estimates derived in Section 4 are formulated in the Banach space
−→
Dn of directed sets. The following remarks indicate how they can be reinter-
preted in the original space C(Rn) of convex, compact sets; a complete answer is
challenging and an ongoing subject of research.

Let us consider the special case in which the Hermite interpolation of F
→

(t) =
Jn(F(t)) delivers an embedded convex set H

→
(t) = Jn(H(t)) (as in all examples

from Section 6). The metric

dV
(
A, B

)
= ‖Jn(A) − Jn(B)‖ (A, B ∈ C(Rn))

introduced in [2] is equivalent to the Demyanov metric dD
(
·, ·

)
; it is stronger than

the Hausdorff metric (cf. the discussion in [2]). The estimate

dH
(
F(t),H(t)

)
≤ dV

(
F(t),H(t)

)
= ‖Jn(F(t)) − Jn(H(t))‖ (47)

follows easily. Remark 1 delivers the main argument, since the visualisation of
the embedded set H(t) coincides with itself and

dH
(
Vn(F
→

(t)),Vn(H
→

(t))
)
= dH

(
F(t),H(t)

)
.

Thus, the achieved error estimates expressed by the norm in
−→
Dn are upper bounds

for the ”visual distance” of both functions, i.e. the Hausdorff distance of their
visualisations.
For the more general case, let us assume that the j-th derivatives

D j F
→

(t) = Jn(F( j,1)(t)) − Jn(F( j,2)(t)) ,

D j H
→

(t) = Jn(H( j,1)(t)) − Jn(H( j,2)(t))
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are differences of embedded convex sets, j = 0, . . . , k. From the equivalence
relation

A + D = B +C (48)

for pairs of sets (A, B), (C,D) ∈ C(Rn) × C(Rn) in [32], it follows as before

dH
(
F( j,1)(t) + H( j,2)(t),H( j,1)(t) + F( j,2)(t)

)
≤ ‖Jn(F( j,1)(t) + H( j,2)(t)) − Jn(H( j,1)(t) + F( j,2)(t))‖ = ‖D j F

→
(t) − D j H

→
(t)‖

by using additionally Proposition 1.
To summarise, the corresponding equivalence relation (48) holds approxi-

mately, if we know that the error between D j F
→

(t) and D j H
→

(t) is small. For
the examples in the next section, the Hermite interpolant will produce embed-
ded convex sets as approximations so that the error estimates of Section 4 carry
over to the Hausdorff distance of the convex-valued functions. Nevertheless, the
derivatives of these functions are no longer embedded convex sets in general (see
Examples 2–4). It is therefore convenient to formulate interpolation estimates in
the Banach space

−→
Dn keeping the equivalence relation (48) and the preceding

remarks in mind.

6. Numerical tests

The computations presented in this section aim to corroborate the theory
shown so far; in particular, the interest is focused on the order of convergence.
More detailed examples are given in [6]; for similar computations for polynomial
interpolation, refer to [33].

In all the presented examples, the function F is sufficiently often directed
differentiable on the interval I; this fact follows from easy calculations of the
embedding. Furthermore, in Example 2–3 the additional geometric conditions
of Proposition 9(ii) are satisfied, especially the existence of an interior ball with
a uniform radius for all images of the set-valued map F. As Proposition 7 demon-
strates and Example 1 shows inter alia, no particular geometrical conditions on
F have to be assumed for guaranteeing the order of convergence, since the visu-
alisation is always non-empty for directed sets (cf. Proposition 8).

The computations are performed taking into account a discrete set of direc-
tions. The perturbation analysis with respect to the finite number of unit direc-
tions is discussed in [33, Section 6.1]. The analysis relies on the equivalence be-
tween the norm in the space of directed sets and the Demyanov distance, cf. [2].

In Examples 1–3, the derivative at the boundary points are shown. We shall
notice that the interpolating map actually matches F within plot precision.
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Example 1. We interpolate the set-valued map F : [0, 1] =⇒ R2 given by F(t) =
t5 · [−1, 1]2. The unit square is scaled by a function with non-negative derivative,
cf. left picture in Figure 1. Hence, D F

→
(t) = 5 · t4 · J2([−1, 1]2); the values of

the derivative consist of embedded convex sets with outer normals, cf. the middle
respectively the right picture in the same picture. Incidentally, notice that F
violates the geometrical condition mentioned above, since there is no interior of
F(t) at time t = 0.
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Figure 1: Funnel of F(·) and derivative data D
−→
F (0) and D

−→
F (1)

For the Hermite interpolation nodes Θ = (0, 1), µi = 2, i = 0, 1, and the test
points τi =

i
10 , i = 0, . . . , 10, we get the following error estimate for the Hermite

interpolation polynomial
−→
H3(·) of degree 3:

max
i=0,...,10

‖
−→
F (τi) −

−→
H3(τi)‖ = 0.0489

Example 2. The convex-valued function F (with its funnel and two derivative
values depicted in Figure 2) to be interpolated reads:

F : [0, 1] =⇒ R2 : t 7→ et · [−1, 1]2 +
1
2

e−t · B1(0) (49)

The derivative for the embedded function is a difference of embedded convex
sets. The visualisation of the derivative contains a growing convex part and a
shrinking non-convex mixed-type part for larger times t.

F
→

(t) = et · J2
(
[−1, 1]2) + 1

2
e−t · J2

(
B1(0)

)
,

D F
→

(t) = et · J2
(
[−1, 1]2) − 1

2
e−t · J2

(
B1(0)

)
21



0

0.5

1
−2

0

2

−2

0

2

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

Figure 2: Funnel of F(·) and derivative data D
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F (0) and D
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Let us apply the Hermite interpolation piecewise on subintervals
Ii = [̂θi, θ̂i+1], where θ̂i = i

Nk
with i = 0, 1, . . . ,Nk = 2k, multiplicities µi = 2,

i = 0, 1, and k = 0, 1, . . . , 5. We shall test the theoretical result of Corollary 2.
To this end, test points τ j =

j
M , j = 0, 1, . . . ,M, with M = 10 · 25 = 320 are used

to evaluate the error
εk = max

j=0,...,M
‖
−→
F (τ j) −

−→
H3(τ j)‖

obtaining the results as in Table 1.

number of maximal
subintervals Nk error εk

1 6.982005e-03
2 5.280388e-04
4 3.666896e-05
8 2.421134e-06

16 1.556075e-07
32 9.863408e-09

Table 1: Maximal error on test points for piecewise Hermite interpolation

The least square approximation of the logarithmic error bound log(C · hp)
in Table 1 with the unknown parameters log(C) and p yields the values C =
1.007620 and p = 3.893485. This last value is very close to the expected (theo-
retical) value 4.0.

We highlight that in Examples 1 and 2 the inclusion F(t1) ⊆ F(t2) holds for
t1 ≤ t2 so that the convex part appears in the visualisation of the derivative.
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Example 3 (Cf. [33, Section 6.2.2]). In the following example a rotating ellip-
soid E is considered. We set I = [0, 1], c = (0, 0),

Q =
(
4 0
0 1

)
and, finally, R(t) =

(
cos(π2 · t) − sin(π2 · t)
sin(π2 · t) cos(π2 · t)

)
.

The function then reads

F(t) = R(t) · E(c,Q) , E(c,Q) = {x ∈ R2 : 〈x,Q−1x〉 ≤ 1}

and its embedding equals
−→
F (t) = J2(R(t) · E(c,Q)).

The images of the set-valued map are strongly convex which results in a smooth
case. Although the derivative has an empty convex and concave visualisation
part, cf. Figure 3, its interpolant still has only convex images (which are no
longer ellipsoids).
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Figure 3: Funnel of F(·) and derivative data D
−→
F (0) and D

−→
F (1)

The Hermite interpolating polynomial is computed around the point 0.5 for
shrinking intervals Ik = [1

2 −
hk
2 ,

1
2 +

hk
2 ], hk = 10−k, k = 0, 1, 2, 3, obtaining the

results presented in Table 2. Clearly, the theoretical expected order of conver-
gence 4 is achieved. The least square approximation of the logarithmic error
bound log(C · hp) in Table 2 yields the values C = 2.499332 and p = 3.790366.
This value for p is close to the expected (theoretical) value 4.0; the first value for
ε0 in Table 2 is a rather good starting value for the error and slightly disturbs
the gain of 4 digits after each step.

The interpolation (boundary part with attached normals) achieves a good
approximation of the original function, as Figure 4 exemplifies.
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interval Ik for maximal
interpolation error εk

[0.0, 1.0] 5.740347e-01
[0.45, 0.55] 2.754315e-04

[0.495, 0.505] 2.838795e-08
[0.4995, 0.5005] 2.840173e-12

Table 2: Maximal error for the Hermite interpolation at τ = 0.5
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Figure 4: Comparison of the intermediate values F(τ) and
−→
H3(τ) for τ = 0.2 resp. τ = 0.6

Example 4. An expanding ball moving along a curve c(t) = (x(t), y(t)) for t ∈
I = [0, t0] with t0 =

4
√

3 originates the convex-valued map:

F : [0, 4
√

3] =⇒ R2 : t 7→ Br(t)(c(t)) , (50)

where r(t) = 1
4 (cos(π(t + t0)/t0) + 1), x(t) = t4 − 1 and y(t) = t5 − t. We notice

straight away that this is a smooth example by rewriting it as a sum of a scaled
ball and a vector:

F(t) = r(t)B1(0) + c(t) (51)

which allows us to directly obtain the expression for its embedding and its di-
rected derivative

−→
F (t) = r(t) · J2(B1(0)) + J2({c(t)}) , (52)

since the radius r(t) ≥ 0. The derivative equals

Dµ
−→
F (t) = Dµr(t) · J2(B1(0)) + J2({Dµc(t)}) (53)

and is either an embedded ball or its inverse, depending on the sign of Dµr(t).
The error estimate on a test-grid τi := i

10 · t0 for i = 0, 1, ..., 10 delivers:

ε = max
i=0,...,10

‖
−→
F (τi) −

−→
H3(τi)‖ = 0.6447253 (54)
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This is a rather good accuracy, since the Hermite interpolating polynomial has
only polynomial degree 3 and the enlargement of the sets as well as the 2D-
movement of

−→
F (·) in the phase space changes rapidly, cf. Figure 6.

In Figures 5–6, the linear, quadratic and Hermite interpolation of degree 3
are compared with the original function. In the left column, the 2D-movement in
the phase space can be seen, whereas in the right column the t-y-projection of
the interpolation polynomial is shown.

type of interpolation maximal error ε
linear 2.559469

quadratic 0.808878
Hermite 0.644725

Table 3: Maximal error on test points for various interpolation polynomials

For this example, the error ε = max
i=0,...,10

‖
−→
F (τi) −

−→
H3(τi)‖ is calculated on the

test-grid for the various interpolation polynomials. The results are gathered in
Table 3 and Figures 5–6. The best result is obtained by the Hermite interpolation.
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Figure 5: The linear (first row) and quadratic interpolation for Example 4
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Figure 6: Hermite interpolation (first row) and original map for Example 4

Conclusions
The Hermite interpolation of set-valued maps with the aid of directed sets

produces, as shown in the examples, satisfactory approximations to the original
map. The derivatives and the interpolating polynomials, even when involving
differences of embedded convex sets or their limits, deliver very reasonable re-
sults. Although in the examples the derivative data at the left and right end-points
may be inverse to embedded convex sets or even have non-convex visualisa-
tion parts, the Hermite interpolating polynomial has as values always embed-
ded convex images. These facts are by no means to be expected in the general
case; the examples are, actually, chosen to demonstrate the potentiality of the
approach with directed sets. A first reinterpretation of the error estimates for
directed sets within the original space of convex compact sets is presented and
relates the Hausdorff distance of the visualisations with the interpolation error in
this Banach space. For the simple case of constant and linear interpolation, the
presented method coincides with the usual set-valued interpolation, whereas for
higher polynomial degree it contains the interpolation based on support functions
and on the geometric difference. In contrast to the latter approach, the images of
the (directed) interpolating polynomial are always non-empty. In any case, the
software used for the calculations also works if the interpolant has non-convex
visualisation parts.

Besides the visualisation, another advantage is represented by the space of
directed sets itself; it is a Banach space based on a recursive principle and hence
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it is straight forward to carry over theoretical results from real-valued functions
to the set-valued case, as for error estimates on the derivatives of the function
and of its interpolant as well as for piecewise interpolation.
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