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Abstract: Plastics entering the environment can not only undergo physical degradation and
fragmentation processes, but they also tend to be colonized by microorganisms. Microbial colonization
and the subsequent biofilm formation on plastics can alter their palatability to organisms and result in a
higher ingestion as compared to pristine plastics. To date, the early stage of biofilm formation on plastic
materials has not been investigated in context of the environmental medium and polymer properties.
We explored the early-stage biofilm formation on polyamide (PA), polyethylene terephthalate (PET),
and polyvinyl chloride (PVC) after incubation in freshwater and artificial seawater and categorized
the structural diversity on images obtained via scanning electron microscopy. Furthermore, by the
measurement of the initial ζ-potential of the plastic materials, we found that PA with the highest
negative ζ-potential tended to have the highest structural diversity, followed by PET and PVC
after incubation in freshwater. However, PVC with the lowest negative ζ-potential showed the
highest structural diversity after incubation in seawater, indicating that the structural diversity is
additionally dependent on the incubation medium. Our results give insights into how the incubation
medium and polymer properties can influence the early-stage biofilm formation of just recently
environmentally exposed microplastics. These differences are responsible for whether organisms
may ingest microplastic particles with their food or not.
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1. Introduction

Plastic materials have a considerable number of favorable properties, amongst others their
lightweight, versatility, and longevity [1]. However, once plastics enter the environment, their longevity
is a disadvantage that prevents their degradation and promotes their accumulation in the
environment [2]. There, most plastic items break down into smaller pieces. Those smaller plastic
particles are defined as microplastic particles [3] if their size is smaller than 5 mm [4]. Meanwhile,
microplastic particles are detected in all environmental compartments, ranging from marine [5] and
limnetic environments [6] over soils [7] up to the atmosphere [8,9]. The occurrence of microplastic
particles in the environment is not necessarily restricted to areas of high human activities such as
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in urban areas because microplastic particles are also found in remote mountain lakes [10], remote
islands [11], the Antarctica [12], and even in the deep sea [13]. Once plastics enter an environmental
compartment, they may pose a risk to the associated organisms, for example due to the ingestion
of plastic items [14]. Already thirty years ago, Harper and Fowler [15] described the ingestion
of plastic items by sea birds. By now, the ingestion of microplastic particles has been shown in
a variety of organisms within the food web, starting at the bottom with zooplankton [10,16] and
mussels [17,18] going up to vertebrates such as fish [14,19,20] and right up to humans [9,21,22].
Although there is no broad evidence for plastic ingestion-related mortality [14], internal blockage or
lesions of the digestive tract and a false feeling of satiation due to indigestible plastic filling up the
stomach was described to negatively affect associated organisms and may lead to their death [20,23].
In addition to those physical risks, microplastics are controversially discussed to act as vectors for
adsorbed hazardous chemicals [24] or pathogenic microorganisms [25]. The ingestion of microplastic
particles has been found to be enhanced for weathered particles [26,27], i.e., particles exposed longer
to environmental influences, thereby undergoing degradation and fragmentation processes [2,28].
Next to those physicochemical changes, plastics released to the environment are typically also rapidly
colonized by microbes. The observed enhanced ingestion by organisms after the aging of microplastics
was suggested to be due to the presence of a biofilm masking the plastics by mimicking an organic
origin and thus altering the palatability of the particles [27]. Unfortunately, the exposure time for
microplastics collected from the environment cannot be determined but can theoretically be decades
or longer. Biofilms on plastic materials have already been described in exposure experiments in the
environment [29,30] and on plastic materials collected directly from nature [30,31]. Such exposure
experiments ranged from short time scales of days [32] and weeks [29,30] up to longer time scales of
months [33,34] and years [35].

An initial coating with microbes is considered to occur within minutes to hours after the exposure
in marine waters [36]. Renner and Weibel [37] described the five typical successive steps of biofilm
formation as follows: First, microorganisms reversibly attach to surfaces via pili, flagella, or membrane
proteins. By extruding extracellular polymeric substances (EPS), the second step of biofilm formation
is initiated. At this point, microorganisms have already irreversibly attached to the surfaces, which can
be defined as the early stage of a biofilm formation. In the third step, microorganisms embedded in the
EPS proliferate, form smaller colonies, and release additional EPS. The microbial communities further
proliferate and form three-dimensional structures described as the maturing of a substantial biofilm
within the fourth step. Lastly, in the fifth step, cells can again detach from the biofilm and colonize
newly available surfaces [37]. This description highlights that a mature biofilm is a highly complex
and dynamic system controlled in addition to abiotic factors by many different biotic factors, including
microbial interactions and competition [38]. Rummel et al. [39] emphasize in their comprehensive
review that the surface properties of polymers, such as their roughness, surface energy, and charge or
hydrophobicity may be relevant for biofilm formation. In this context, Hossain et al. [34] showed that
the formation of a biofilm on microplastics in freshwater mesocosms that have been enriched with
bacterial strains was dependent on the polymer type.

It has further been shown that an incubation period of two months already alters the initial
polymers’ physicochemical properties by microbial attachment [34]. However, to date, it has not
been investigated whether the initial surface properties of different polymer types predefine the
colonization in the early stage of a biofilm formation, or if colonization patterns of the same polymer
differ between different environmental media. To fill this gap and to correlate the initial surface
properties with the biofilm formation, we monitored the very early stage of biofilm formation (0 h
up to 14 days) in freshwater and artificial seawater on the surfaces of polyamide (PA), polyethylene
terephthalate (PET), and polyvinyl chloride (PVC) fragments, which are three polymers that are
produced in high amounts [40]. The chosen polymers highly differ in their chemical composition
(PA-containing amid groups, PET-containing ester groups and PVC-containing chloride) resulting in
different physicochemical properties, which allows a correlation of the early-stage biofilm formation
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with the polymers’ properties. We visualized microorganisms and associated structures on the
microplastic fragments’ surfaces by using scanning electron microscopy (SEM). We compared the
structural diversity of the biofilms by determining microbial and non-microbial structures on the
polymer fragments for different incubation times and incubation media. To evaluate how the fragments’
surface properties may influence the early stage biofilm formation, we measured the pH-dependent
initial ζ-potential of the three polymer types. Additionally, the structural diversity on mature biofilms
from a very late stage of biofilm formation (more than two years) on the surface of PA incubated in either
freshwater or seawater was compared to the very early stage biofilm formation in our experiments.
We hypothesize that due to the different initial properties of the chosen polymers, the very early stage
of biofilm formation differs between polymers and incubation media and changes over time.

2. Materials and Methods

2.1. Microplastic Particles

Polymers were purchased as raw pellets from different suppliers (PA Pellets: Leibniz-Institut
für Polymerforschung Dresden e.V.; Polymers used for fragments: PA: BASF, PET: Neogroup and
PVC: Vinnolit; see Table 1). For long-term incubation of PA, the whole pellets were incubated without
further processing. To obtain the microplastic fragments for the time-series incubation, the raw pellets
were ground in an ultra-centrifugal mill (ZM 200 Retsch, Haan, Germany) with a 12-tooth rotor and a
sieve size of 1000 µm with 18,000 U/min. The milling was performed in liquid nitrogen to prevent the
conglutination of the fragments. Subsequently, 10 g of the fragments were sieved using an Alpine air
jet sieve (E200LS, Hosokawa Alpine, Augsburg, Germany) with mesh sizes of 125 µm and 4000 Pa for
15 min.

Table 1. Summary of the used polymers. The suppliers, the corresponding trading names, and size in
µm after milling.

Polymer Type Supplier Trade Name Size Distribution [µm]

Polyamide pellet * Leibniz-Institut für
Polymerforschung Dresden e.V. - 2000–2500

Polyamid fragments BASF, Ludwigshafen, Germany Ultramid®, A3K, PA66 <500

Polyethylene
terephtalate fragments

Neogroup, Klaipeda district,
Lithuania Neopet 80 <500

Polyvinyl chloride
fragments

Vinnolit GmbH & Co.KG,
Ismaning, Germany

®Vinnolit S 3268 < 500

* The polyamide pellet for the long-term experiment was not milled.

2.2. Incubation of Microplastic Particles in Environmental Media

PA pellets that were incubated in freshwater and seawater for approximately two years in
a long-term experiment were used to investigate a mature late-stage biofilm on the surface of a
microplastic particle for comparison with the biofilms of the short-term experiments. To monitor
the early stage of biofilm formation, the polymer fragments were incubated in two environmental
media, freshwater and seawater. Prior to incubation, the produced fragments of each polymer type
were washed thoroughly in ultrapure water (Purelab Flex Elga, Veolia Water Technologies, Celle,
Germany) to remove possible contamination from milling: 250 mg of each polymer fragments were
transferred to a 15 mL tube (CELLSTAR®, Greiner Bio-One GmbH, Frickenhausen, Germany) and
filled up with 10 mL ultrapure water. After carefully mixing for 30 seconds (Reax 2000, Heidolph
Instruments GmbH & Co. KG, Schwabach, Germany, pace 8), all polymers were homogeneously
suspended. Subsequently, the samples were centrifuged (2500 g, 20 min, room temperature), the
supernatant was removed via pipetting, and the samples were resuspended in 10 mL of the respective
environmental media. Before incubating each polymer type in the respective environmental media,
samples were prepared for SEM images as a control. The freshwater for incubation was obtained
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from an artificial pond at the University of Bayreuth (49◦55′44.1′′ N; 11◦34′60.0′′ E), and seawater
was obtained from a marine aquarium facility of the University of Bayreuth (sampling sites of the
environmental media in Figure S1).

To analyze the time-dependent development of a biofilm, we sampled the fragments after 0,
0.5, 1, 2, 5, 7, 11, and 14 days of incubation from the respective tube. For maintaining a vital
microbial community during the incubation series, the respective media in the incubation tubes were
exchanged three times per week after centrifugation, as described above. To avoid sedimentation
of the microplastic fragments and obtain a homogeneous development of a biofilm on the particles’
surface, the 15 mL tubes were placed in a hybridization furnace and continuously agitated to prevent
sedimentation (26.5 ± 0.5 ◦C, 9 rpm).

2.3. Sample Preparation for Scanning Electron Microscopy

To visualize biofilm formation, the samples were analyzed using a scanning electron microscope
(SEM, LEO1530 Zeiss, Oberkochen, Germany, magnification 500×–50,000×, 2–3 kV, SE2 detector).
From each sample, 20 µL were pipetted onto carbon conductive tabs (Ø 12 mm Plano GmbH, Wetzlar,
Germany) fixed to aluminum stubs (Ø 12 mm, Plano GmbH, Wetzlar, Germany). Then, the stubs were
transferred into a desiccator, vacuum-dried, and stored until the images were acquired. Samples were
subsequently sputter-coated with a two nm-thick platinum layer (208HR sputter coater, Cressington,
Watford, UK) and visualized using the SEM. The structural diversity was further compared with
SEM images from the literature [12,31,41–53]. Additionally, we investigated both incubation media,
freshwater and seawater, as a blank for comparison with the samples. To do so, 20 µL of the respective
pure media without microplastics were pipetted onto the carbon conductive tabs and further processed
as described.

2.4. Classification of Observed Structural Diversity via SEM Images

We compared the microorganismal and non-microorganismal structures in the SEM images and
compared them with typical microbial structures found in the literature [12,31,41–53]. For instance,
spherical structures resembling coccoid cellular structures were defined as coccoid bacteria (cc).
A summary of all detected structures can be found in Table 2.

The overall number of different structures observed within the 14-day incubation were counted
and defined as the biofilms’ structural diversity. We categorized the structural diversity into low,
medium, and high structural diversity (0–3, 4–6, and 7–9 numbers of different structures, respectively),
depending on the number of the observed different structures.

Table 2. Summary of the biofilm structures. Abbreviations and associated structures from late and
early stage biofilm formation were observed in SEM images.

Biofilm Structures

Abbreviation Associated Structure

la
te

-s
ta

ge
bi

ofi
lm

compf compartmented filaments
edia elongated diatoms

f filamentous
flag flagella-like
mc multicellular

media marine elongated diatoms
pEPS particulate EPS

res rough elliptical structure
sp sporous

tmf thin mucus-like film
tub tubular
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Table 2. Cont.

Biofilm Structures

Abbreviation Associated Structure
ea

rl
y

st
ag

e
bi

ofi
lm

a non-assignable/exceptional microorganismal structure
cc coccoid bacteria
cd centric diatom
d diatom
f filamentous structure

mc multicellular
p platelet
rp round platelet

rod rod-/vibrio-shaped bacteria
rodf rod-/vibrio-shaped bacteria with flagella

sf solid film
tf thin film
uc unicellular

2.5. ζ-Potential

The ζ-potential gives information about the electrostatic potential at the surfaces of the polymer
of hydrodynamic shear or slipping plain surrounding a polymer particle and helps to predict how a
particle may interact with other surfaces or soluble [54]. The ζ-potential measurements were performed
as recently described [55]. In brief, 200 mg of each polymer type’s fragments were investigated with
the Electrokinetic Analyzer EKA (Anton Paar GmbH, Austria). The fragments were packed densely in
a cylindrical powder cell with a diameter 12 mm and height 2 mm and covered at both ends with a
20 µm pore sized membrane. After mounting the powder cells, 0.001 M KCl was streamed through
the samples until an equilibrium was reached. The pH value was adjusted by adding 0.1 M HCl or
0.1 M KOH solution. The ζ-potential was calculated as described in Drechsler et al. [55], without the
correction for the surface conductivity, as the particle geometry was unknown for fragments.

3. Results

3.1. Surface Properties—ζ-Potential

We measured the initial ζ-potential via a pH titration, ranging from an acidic pH of 2 up to an
alkaline pH of 9. In the acidic pH range, PET showed the highest ζ-potential, followed by PA and the
lowest ζ-potential for PVC. Within the pH titration, we observed the highest drop in ζ-potential for PA
(from +12 ± 0.1 mV at pH 2.5 to −55 ± 1 mV at pH 8.9), followed by PET (from +15 ± 0.1 mV at pH 2.6
to −39 ± 1 mV at pH 8.8) and PVC showing the smallest drop in ζ-potential (from +3 ± 1 mV at pH 2.5
to −17 ± 2 mV at pH 8.9) (Figure 1). Table 3 shows the ζ-potential at pH 8 which refers to the pH of
both incubation media with PA showing the highest negative ζ-potential, followed by PET and PVC
showing the lowest negative ζ-potential (−55 ± 1 mV, −43 ± 1 mV and −15 ± 1 mV, respectively).

Table 3. ζ-potential at pH 8, contact angles, and the overall number of structural diversities on the surfaces
of the three polymers after the incubation in freshwater (FW) and seawater (SW) within two weeks.

Polymer Type ζ-Potential (pH 8) Contact Angle [56] Environmental Media Biofilm Structural
Diversity [14 Days]

PA −55 mV 70◦
FW 9
SW 7

PET −43 mV 81◦
FW 6
SW 6

PVC −15 mV 87◦
FW 3
SW 8
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Figure 1. Zeta potential values of the three polymers versus pH value. The zeta potential was measured
for polyvinyl chloride (PVC) (blue), polyamide (PA) (red), and polyethylene terephthalate (PET) (green)
via pH titration in 0.001M KCl. Values indicate means ± standard error of the mean.

3.2. Structural Diversity of the Early-Stage Biofilm

We found differences in the numbers of structural diversities depending on the polymer type and
incubation medium. After incubating the polymers in freshwater, we found the highest structural
diversity on PA followed by a medium structural diversity on surfaces of PET and a low structural
diversity on PVC. However, in seawater, PVC showed the highest structural diversity followed by a
high structural diversity of PA and a medium structural diversity of PET (see Table 3).

We did not find any structures resembling microorganismal or non-microoroganismal origin
forming a biofilm on any control image of the non-incubated polymers (see Figure S2). In botch
incubation media, freshwater and seawater, microorganisms, and non-microoroganismal structures
were abundant (see Figures S3 and S4).

3.3. Morphological Strcutures Within Late-Stage Biofilms

For comparison with the early stage biofilms we first investigated PA pellets incubated in
freshwater and seawater for approximately two years for a clear idea of the structures forming a mature
biofilm. The mature biofilm on PA pellets incubated in freshwater (Figure 2) showed a relatively
smooth surface consisting of filamentous (f), compartmented multicellular (compf, mc), and smooth
tubular (tub) structures with embedded elongated diatoms (edia). Figure 3 shows a mature biofilm
on a PA pellet incubated in seawater, with microorganismal structures and marine diatoms (media)
embedded in reticulate structures with a relatively rough surface. The overall structural diversity on
the PA pellets after two years was higher in freshwater compared to the structural diversity observed
in seawater (eight and four morphological structures, respectively).
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cable bacteria. Scale bars: (a–c) 100 µm, (d–i) 10 µm.
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3.4. Morphological Strcutures Within Early-Stage Biofilms

All polymers incubated in seawater showed increasing amounts of salt crystals with increasing
incubation time, which we could not detect for the polymers incubated in freshwater. Nevertheless,
there were no obvious differences in the roughness or overall appearance for all polymer types
from both incubation media for incubation times less than eleven days. However, we observed
marked differences in structural diversity of early-stage biofilms for all polymer types, time points,
and incubation media (Figures 4–9).

Although elongated diatoms (edia, bilateral, mostly sessile [57]) occurred in both late-stage biofilms
from fresh- and seawater, diatoms (d) were only observed once in the early-stage biofilms of PA after
two weeks of incubation in freshwater (Figure 4). Interestingly, centric diatoms (cd, radial, mostly
planktonic [57]) exclusively occurred in early-stage biofilms originating from seawater and were found
on all polymer type surfaces but not in late-stage biofilms on PA pellets.

Small coccoid and platelet-shaped structures (cc, see e.g., Figure 6 after seven days of incubation)
occurred in both incubation media on all polymer types. Whereas the round platelet (rp) structures,
which were also present in the pure incubation media (see Figure S3 and S4), were exclusively found
on PA and PET in early-stage freshwater biofilms (see e.g., Figure 4 after two days of incubation and
Figure 6 after seven days of incubation) but not on PVC at any time. Another interesting finding was
that rod- and vibrio-shaped bacteria (rod, see e.g., Figure 7 after one day of incubation) were found
on all polymer types incubated in both media, except for PVC incubated in freshwater (which was
mainly covered by platelet-shaped (p) and coccoid (cc) structures). Albeit, the rod- and vibrio-shaped
bacteria, which seemed to have a long flagellum (rodf, see e.g., Figure 5 after eleven days of incubation),
only occurred on the surfaces of PA microplastic fragments independent of the incubation medium.
Filamentous (f ) structures on PVC microplastic fragments incubated in freshwater after two weeks
could possibly resemble flagella (see e.g., Figure 8 after 14 days of incubation), or also other bacterial
appendices. In addition to the unicellular (uc) structures (see e.g., Figure 7 after eleven days of
incubation) observed on all polymer types incubated in seawater, the multicellular (mc) structures
were only observed on surfaces of PA and PET microplastic particles incubated for eleven days in
freshwater (Figures 4 and 6). A comparison of the found morphological structures of both late and
early stage biofilms with descriptions of biofilms from the literature is given in the following Section 4.
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Figure 4. Scanning electron microscopy images of PA incubated in freshwater. Numbers in black boxes
indicate incubation times in days (0 = raw material, 0.5 = half day, 1 = one day, 2 = two days, 5 = five
days, 7 = seven days, 11 = eleven days, 14 = 14 days of incubation). Microorganismal structures are
highlighted with arrows. rod= rod/vibrio-shaped bacteria, rodf = rod/vibrio-shaped bacteria with
long flagella, cc = coccoid bacteria, d = diatom, f = filamentous structure, mc = multicellular structure,
rp = round platelet structure, p = platelet structure, uc = unicellular structure. Scale bar: Large image
10 µm, magnified image 2 µm.
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Figure 5. Scanning electron microscopy images of PA incubated in seawater. Numbers in black
boxes indicate incubation times in days (0 = raw material, 0.5 = half day, 1 = one day, 2 = two
days, 5 = five days, 7 = seven days, 11 = eleven days, 14 = 14 days of incubation). Microorganismal
structures are highlighted with arrows. a = non-assignable structure, rod= rod-/vibrio-shaped bacteria,
rodf = rod-/vibrio-shaped bacteria with long flagella, cc = coccoid bacteria, cd = centric diatom,
p = platelet structure, uc = unicellular structure. Scale bar: Large image 10 µm, magnified image 2 µm.
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Figure 6. Scanning electron microscopy images of PET incubated in freshwater. Numbers in black boxes
indicate incubation times in days (0 = raw material, 0.5 = half day, 1 = one day, 2 = two days, 5 = five
days, 7 = seven days, 11 = eleven days, 14 = 14 days of incubation). Microorganismal structures are
highlighted with arrows. a = non-assignable structure, rod= rod/vibrio-shaped bacteria, cc = coccoid
bacteria, mc = multicellular structure, p = platelet structure, rp = round platelet structure. Scale bar:
Large image 10 µm, magnified image 2 µm.
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days, 7 = seven days, 11 = eleven days, 14 = 14 days of incubation). Microorganismal structures are 
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bacteria, p = platelet structure, tf = thin film, uc = unicellular structure. Scale bar: Large image 10 µm, 
magnified image 2 µm. 

Figure 7. Scanning electron microscopy images of PET incubated in seawater. Numbers in black boxes
indicate incubation times in days (0 = raw material, 0.5 = half day, 1 = one day, 2 = two days, 5 = five
days, 7 = seven days, 11 = eleven days, 14 = 14 days of incubation). Microorganismal structures are
highlighted with arrows. a = non-assignable structure, rod= rod/vibrio-shaped bacteria, cc = coccoid
bacteria, p = platelet structure, tf = thin film, uc = unicellular structure. Scale bar: Large image 10 µm,
magnified image 2 µm.
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Figure 8. Scanning electron microscopy images of PVC incubated in freshwater. Numbers in black
boxes indicate incubation times in days (0 = raw material, 0.5 = half day, 1 = one day, 2 = two days,
5 = five days, 7 = seven days, 11 = eleven days, 14 = 14 days of incubation). Microorganismal structures
are highlighted with arrows. cc = coccoid bacteria, f = filamentous structure, p = platelet structure.
Scale bar: Large image 10 µm, magnified image 2 µm.
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4. Discussion 

Figure 9. Scanning electron microscopy images of PVC incubated in seawater. Numbers in black boxes
indicate incubation times in days (0 = raw material, 0.5 = half day, 1 = one day, 2 = two days, 5 = five
days, 7 = seven days, 11 = eleven days, 14 = 14 days of incubation). Microorganismal structures are
highlighted with arrows. a = non-assignable structure, rod= rod/vibrio-shaped bacteria, cc = coccoid
bacteria, cd = centric diatom, p = platelet structure, sf = solid film, tf = thin film, uc= unicellular
structure. Scale bar: Large image 10 µm, magnified image 2 µm.
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4. Discussion

4.1. Correlation of Structural Diversity of Early-Stage Biofilms and Polymer Properties

It has already been shown that several factors are influencing the results from ζ-potential
measurements, such as the pH, particle concentration, and additionally the ionic strength of the
measurement media [58]. The freshwater and artificial seawater medium used for incubation in our
experiments both had a pH value of around 8. Interestingly, within this pH range, PA has the highest
negative ζ-potential followed by PET and PVC, showing the lowest negative ζ-potential (see Table 3).
It must be considered that beside the similar pH values of freshwater and seawater, the ionic strength
may be different. Due to a higher amount of solved salts in seawater, the ionic strength is described to
be 500 times higher than in freshwater [59]. As soon as the polymers face either freshwater or seawater,
their surfaces may interact with available ions, influencing their ζ-potential immediately. Therefore,
we conducted a time-series incubation to monitor the time-dependent development of an early-stage
biofilm formation and if this correlates with the initial ζ-potential of the polymers. We found a clear
correlation between the higher negative initial ζ-potential and the highest structural diversity observed
for PA when incubating the polymers for two weeks in freshwater, indicating that a negative charge of
the polymer surface facilitates or triggers the settlement of microorganisms in freshwater. The latter
correlation holds not true for the polymers incubated in seawater, as we found the highest structural
diversity on PVC with the lowest negative ζ-potential, followed with a high structural diversity on
PA and PET showing medium structural diversities (see Table 3). This indicates that other surface
properties than ζ-potential may also play a role in the early stage biofilm formation in seawater.

Sanni et al. [60] describe that the settlement of bacteria on the polymer surface is strongly correlated
with the polymer’s morphology. The morphologies of the pristine polymers (before the incubation)
visualized with SEM differed only slightly. PA and PET fragments showed similar, relatively smooth
surfaces with some cracks, whereas PVC particles were relatively spherical with a slightly rougher
surface and deeper cracks (see Figure S2). In addition to the morphology and initial ζ-potential of
the particles, the settlement of bacteria on the polymer surface is also correlated with the polymer’s
hydrophobicity [60]. The hydrophobicity of polymers can be measured via determining the contact
angle of a liquid drop in contact with a solid surface [61]. The larger the contact angle, the larger the
hydrophobicity of the solid surface. It was found that the contact angles for PA, PET, and PVC are 70◦,
81◦, and 87◦, respectively [56]. Contact angles smaller than 90◦ are usually associated with hydrophilic
surfaces. This indicates that all polymers used in our experiments have hydrophilic surfaces, with PA
being the most and PVC the least hydrophilic polymer. Nevertheless, contact angles are usually
measured by applying a water drop on the polymers’ clean and flat surfaces, which makes it difficult
to measure the contact angle for irregularly shaped microplastic particles [56], such as those we used in
our experiments. Next to the different initial ζ-potential, morphology, and hydrophobicity of the three
polymers used, the nature of the polymer itself may play an additional role. For instance, it has already
been described that PVC has a low binding affinity to Staphylococci, which may also be true for other
microorganisms because of its chloride content and the high content of plasticizers [62]. Interestingly,
the structural diversity on PVC surfaces incubated in seawater was the highest observed, which is
probably due to the fact that microorganisms from seawater are better adapted to higher chloride
concentrations than freshwater microorganisms. This is most probably related to the overall higher
salinity of seawater compared to freshwater, with sodium chloride being amongst the most common
salts in the marine environment [63].

4.2. Descriptive Analysis of the Observed Morphological Structures Forming a Late-Stage Biofilm

The smooth tubular structures (tub, see Figure 2e) observed on the PA pellet incubated in
freshwater for 2 years strongly resembled fungal hyphae [41], with indications of spore formation (sp,
see Figure 2d). Structures (Figure 3e) observed on PA incubated in seawater resemble the microbial
cells that Zettler et al. [31] found on marine plastic debris (see Zettler et al. [31], Figure 2d), although
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in our case, the cells seemed attached to, instead of pitting into, the PA surface. The differences
between seawater and freshwater in the late-stage biofilm structures may relate to different types of
EPS and the differences in salinity of the incubation media. Two types of EPS are typically described,
which are defined as dissolved and particulate EPS (pEPS, Figure 3 h) [42,43]. For instance, diatoms
show different morphological forms of EPS, such as highly crystalline and rigid fibrils (rough) up to
highly hydrated and mucilaginous capsules (smooth) [43,44]. We observed diatoms in both biofilms
originating from freshwater and seawater, which may explain the structural differences in the late-stage
biofilms. The observed rough surface of the biofilm originating from seawater may be a combination
of a higher proportion of particulate EPS and the higher salinity of seawater, resulting in salt crystals’
embedment during the sample drying.

4.3. Descriptive Analysis of the Observed Morphological Structures Forming an Early-Stage Biofilm

The abundant platelet-shaped structures (p, e.g., Figure 4) observed already after one-day
incubation on all polymer surfaces independent of the incubation medium were likely not of biological
origin. While they remain unidentified and could indicate desorption or outcropping processes within
polymers, some resembled triangular scales of the testate amoeba Penardeugenia [45] and scales of other
protists of the genera Thaumatomastix and Reckertia [46]. However, the platelet-shaped structures may
also originate from polygonal cells [53] or damaged Staphylococcus aureus-like cells [47], as we found
small coccoid structures (cc, see e.g., Figure 6 after seven days of incubation) in both incubation media
and on all polymer types, just as the platelet-shaped structures. Bacterial cocci are typically 0.5–1.5 µm
in size [64], which is about the size range of the coccoid-shaped structures we observed. Interestingly,
round platelet (rp) structures were exclusively found on PA and PET in early-stage freshwater biofilms
(see e.g., Figure 4 after two days of incubation and Figure 6 after seven days of incubation). We did not
observe round platelet structures on PVC, but at any time in the pure freshwater incubation medium
(SEM images of both incubation media, see Figure S3 and S4), we can exclude that these structures
originate from drying effects or from the early degradation processes of the polymers. The round
platelet structures also resembled scales from planktonic algae such as silica-scaled chrysophytes [48],
but their early appearance and very regular distribution make them unlikely to be of microorganismal
but rather inorganic origin or drying effects.

The multicellular structures found in the early-stage biofilms resemble those found in the late-stage
freshwater biofilms, indicating that these organisms may attach to surfaces already after less than two
weeks of incubation and further develop a mature biofilm. The multicellular structures could be of
diverse origin but resemble filamentous microorganisms such as cable bacteria [49] or multicellular
Cyanobacteria [50]. Abundantly found on the surfaces of polymers incubated in seawater were
structures resembling centric diatoms [12,44] (cd, see e.g., Figure 9 after one day of incubation). In their
comprehensive review, Hoagland et al. [44] described different mechanisms for the attachment of
elongated and centric diatoms on surfaces using EPS in the form of stalks, tubes, apical pads, adhering
films, fibrils, or cell coatings. We observed some structures in the very early-stage of biofilm formation,
which we named exceptional microorganismal structures (e.g., in Figure 5 after one day of incubation).
These were exclusively found in seawater treatments and may be centric diatoms forming fibrils or
stalks [44]. However, these structures with about 3 µm in diameter are at the lower size range of small
centric diatoms [51,52]. Furthermore, we found film-like structures on PET and PVC incubated in
seawater that may be part of extruded EPS (Figures 7 and 9). On PET, we found exclusively thin and
smooth films (tf, see e.g., Figure 7 after seven days of incubation), which were additionally accompanied
by a solid film (sf, see e.g., Figure 9 after half a day of incubation) on PVC. When considering the five
successive steps of biofilm formation described by Renner and Weibel [37], EPS’s excretion initiates
the second step of biofilm formation, which starts the formation of a mature biofilm. This means
that for PET and PVC incubated in seawater, five days and one week of incubation, respectively,
initiates the maturing of a biofilm. Furthermore, our observations demonstrate that the structural
diversity on the surfaces of the three polymers from either freshwater or seawater differed, although
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the same experimental conditions were chosen for each polymer–environmental medium combination.
This highlights that the properties of a polymer itself may play a crucial role for the formation of a very
early-stage biofilm on different plastics.

4.4. Potential Ecological Implications of Our Findings

De Tender et al. [65] showed the temporal dynamics of bacterial and fungal colonization on
plastic materials within almost one year in the marine environment. They found community changes
by using genetic screening methods and additionally visualized the development of the late-stage
biofilm. Within the observed time periods of one month, the maturing of a biofilm was macroscopically
visible [65]. For plastics incubated in seawater, it has already been shown that biofilms enhance
polymer palatability by mimicking an organic origin [26,27]. Exposure of polystyrene beads to filtered
seawater for three weeks [26] and polyethylene for one month of incubation directly in the marine
environment [27] increased the ingestion, possibly increasing the physical and chemical risks from
plastic particles to the tested organisms. However, this phenomenon has not been shown for other
polymer types incubated for shorter time periods or incubated in freshwater. Hence, our results
indicate that even short-term environmental exposure may be sufficient that a variety of organisms
from different ecosystems mistake microplastics with food.

5. Conclusions

Here, we show that already, half a day of incubation in either freshwater or seawater initiates
the formation of an early-stage biofilm by the attachment of microbial structures, but possibly also
the appearance of non-microbial structures. The overall structural diversity of biofilm structures
increased within two weeks for all polymer types in both incubation media. We show that a mature
biofilm on PA differs in its composition depending on the incubation medium and found that the
early-stage biofilm formation on three different polymers depends on the incubation medium and is
most probably related to the polymers’ surface properties. In freshwater, we found a correlation of the
initial ζ-potential of the particles with the structural diversity on the polymer’s surfaces. PA, with the
highest negative initial ζ-potential, showed the highest structural diversity and PVC with the lowest
negative initial ζ-potential showed the lowest structural diversity. However, in seawater, PVC showed
the highest structural diversity with the lowest negative initial ζ-potential. For seawater, we did
not find a clear correlation with the initial ζ-potential, as there were not such apparent differences
between PET and PA. Furthermore, we show that the early-stage biofilm formation on polymers
seems additionally being dependent on the polymers’ surface morphology and the polymers’ chemical
composition. Our findings emphasize the complexity that can be related to research on microplastic
biofilms and show that not solely the polymer type but also the incubation medium, time, and the
initial surface properties of the used polymers may play an important role for the initial colonization
of plastic surfaces.

Supplementary Materials: The following figures are available online at http://www.mdpi.com/2073-4441/12/11/
3216/s1, Figure S1: Photographs of the sampling sites for the incubation media, Figure S2: Scanning electron
microscopy images of the three polymer raw materials. Figure S3: Scanning electron microscopy images of the
freshwater incubation medium after evaporation of water, Figure S4: Scanning electron microscopy images of the
saltwater incubation medium after evaporation of water.
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