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Abstract

In this paper we develop and illustrate methods for estimating the degree of subopti-
mality of receding horizon schemes with respect to infinite horizon optimal control.
The proposed a posteriori and a priori methods yield estimates which are eval-
uated online along the computed closed–loop trajectories and only use numerical
information which is readily available in the scheme.
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1 Introduction

Receding horizon control (RHC), often also termed model predictive control
(MPC), is by now a well established method for the optimal control of lin-
ear and nonlinear systems [1,13]. The method approximates the solution to a
infinite horizon optimal control problem which is computationally intractable
in general by a sequence of finite horizon optimal control problems. Then the
first element of the resulting control sequence is implemented in each time
step which generates a closed–loop static state feedback.
The approximation of the infinite horizon problem naturally leads to the ques-
tion about the suboptimality of the resulting MPC feedback. Hence our main
task is to give estimates of the degree of suboptimality — and implicitly for sta-
bility — of the MPC feedback with respect to the original infinite horizon cost
functional. This matter was treated in a number of papers, see e.g. [3–6,10,18].
Here we deal with discrete–time nonlinear systems on arbitrary metric spaces
and use finite horizon optimal control problems without terminal costs or
terminal constraints. For these schemes, we present techniques for estimat-
ing the degree of suboptimality online along the closed–loop trajectory. The
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techniques rely on the computation of a “characteristic value” α at each time
instant n along the closed–loop trajectory x(n) and the actual estimate can
then be computed from the collection of all these α-values. Like in [4] or [6],
our approach is based on relaxed dynamic programming.
The motivation for this work is twofold: on the one hand, we expect trajectory
based estimates to be less conservative than the global estimates derived, e.g.,
in [4], [6] or [18], because in these references the worst case over the whole
state space is estimated while here we only use those points of the state space
which are actually visited by the closed–loop trajectory. On the other hand, we
expect that our trajectory based estimates can be used as a building block for
MPC schemes in which the optimization horizon is tuned adaptively, similar
to adaptive step size control in numerical schemes for differential equations.
In this context, the computational cost for evaluating our estimates is a cru-
cial point and this is where the two techniques we present differ. While the
first estimation technique yields a sharper estimate, it can only be evaluated a
posteriori, i.e., the value α for time n can only be computed at time n+1. The
second technique leads to a more conservative estimate of α but is computable
with smaller effort from values which are known at time n.
Moreover we present results for the case of practical stability and hence extend
results from [4] which treat this problem globally by combining them with re-
sults from [7] for the non–practical case to relax the necessary conditions.
The paper is organized as follows. In Section 2 we describe the problem setup
and give the basic relaxed dynamic programming inequality which leads to
our first estimation method. In the following Section 3 we state our main the-
orem which leads to an alternative estimation method. In Section 4 we extend
our main theorem to the case of practical suboptimality and illustrate both
methods for these two cases by means of a numerical simulation in Section 5.
The final Section 6 concludes the paper.

2 Problem formulation

Throughout this paper the nonlinear discrete–time system

x(n + 1) = f(x(n), u(n)), x(0) = x0 (1)

with x(n) ∈ X and u(n) ∈ U for n ∈ N will the basis of this analysis. Here the
state space X is an arbitrary metric space and we denote the space of control
sequences u : N0 → U by U .

Remark 1 Note that this in particular means that presented results also ap-
ply to the discrete–time dynamics induced by a sampled infinite dimensional
system, cf. [6] for a numerical example and [9] for a continuous–time analysis
of this setting.
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For this control system we want to find a static state feedback u = µ(x) ∈ U
which minimizes the infinite horizon cost functional

J∞(x0, u) =
∞∑

n=0

l(xu(n), u(n)) (2)

with stage cost l : X × U → R
+
0 . The optimal value function for this problem

will be denoted by V∞(x0) = inf
u∈U

J∞(x0, u). Moreover one can prove optimality

of a feedback law µ via

µ(x(n)) := argmin
u∈U

{V∞(x(n + 1)) + l(x(n), u)} (3)

using Bellman’s optimality principle for a given optimal value function.

Remark 2 In order to simplify the presentation here and in the following we
will assume that the minimum with respect to u ∈ U is attained.

Here we will use a receding horizon approach in order to avoid the problem
of solving an infinite horizon optimal control problem which necessarily in-
volves the solution of a Hamilton–Jacobi–Bellman equation. Doing this we
replace the previously stated problem by a sequence of finite horizon opti-
mal control problems. Therefore we minimize the truncated cost functional

JN(x0, u) =
N−1∑
n=0

l(xu(n), u(n)) and denote the associated optimal value func-

tion by VN(x0) = min
u∈U

JN(x0, u). Moreover we will use the abbreviation

uN(x0, ·) = argmin
u∈U

JN(x0, u) (4)

for the minimizing open–loop control sequence of the reduced cost functional.
This control gives us the open–loop solution

xuN
(n + 1, x0) = f (xuN

(n, x0), uN(xuN
(0, x0), n)) , n = 0, . . . , N − 1 (5)

to the initial value xuN
(0, x0) = x0 where uN(x0, n) represents the n-th control

value within the open–loop control sequence.
In order to obtain an infinite control sequence from this setting we define
a feedback law µN by implementing only the first element of the optimal
control sequence uN . By Bellman’s principle of optimality this feedback law
µN is given by

µN(x(n)) := argmin
u∈U

{VN−1(x(n + 1)) + l(x(n), u)} (6)

and we denote the corresponding closed–loop system by

x(n + 1) = f (x(n), µN(x(n))) , x(0) = x0, n ∈ N0. (7)
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In the literature this setup is usually called nonlinear model predictive control
(NMPC) or receding horizon control (RHC). Note that the optimal value
function on a finite horizon can also be expressed via these feedback laws via

VN(x0) =
N−1∑
n=0

l(xµN
(n), µN−n(xµN

(n))).

The main idea of our task is to make this strategy to be real time applicable.
Here our aim is to reduce the computational time necessary for computing
(4) in every step of this NMPC setup and at the same time to be able to
guarantee a certain degree of suboptimality of the solution (6), (7) compared
to the infinite horizon solution (1), (3) with u(n) = µ(x(n)).
To this end we define the infinite horizon cost corresponding to µN by

V µN
∞ (x0) :=

∞∑

n=0

l (x(n), µN(x(n))) (8)

and develop upper bounds for this infinite horizon value, either in terms of
the finite horizon optimal value function VN or in terms of the infinite horizon
optimal value function V∞. In particular, the latter will give us estimates
about the degree of suboptimality of the controller µN in the actual step of
the NMPC process.
The main tool we are going to use for this purpose is a rather straightforward
and easily proved “relaxed” version of the dynamic programming principle.
Recently, this has been studied by Lincoln and Rantzer in [11, 17]. Here we
want to use the estimate given in Proposition 2.2 of [4] but adapt it to hold
only along trajectories (6), (7).

Proposition 3 Consider a feedback law µN : X → U and its associated tra-
jectory x(·) according to (7) with initial value x(0) = x0 ∈ X. If there exists
a function VN : X → R

+
0 satisfying

VN(x(n)) ≥ VN(x(n + 1)) + αl(x(n), µN(x(n))) (9)

for some α ∈ [0, 1] and all n ∈ N0 then

αV∞(x(n)) ≤ αV µN
∞ (x(n)) ≤ V∞(x(n))

holds for all n ∈ N0.

Proof. The proof is similar to that of [17, Proposition 3] and [4, Proposition
2.2]. Rearranging (9) and summing over n we obtain the upper bound

α
K−1∑

j=n

l(x(j), µN(x(j)) ≤ VN(x(n)) − VN(x(K)) ≤ VN(x(n)).

Hence, taking K → ∞ gives us our assertion since the final inequality VN ≤ V∞

is obvious. �

4



Since all values in (9) are available at runtime α can be easily computed
online along the closed–loop trajectory and thus (9) yields a computationally
feasible and numerically cheap way to estimate the degree of suboptimality
of the trajectory. However, using (9), for the computation of α for the state
x(n) we need to know VN(x(n + 1)). In other words, (9) yields an a posteriori
estimator, which is an obvious disadvantage if α is to be used in order to
determine a suitable horizon length N at time n. Hence, in the next section
we present an alternative way in order to estimate α.

3 Suboptimality estimation

This section aims at reducing the amount of information necessary to give an
estimate of the degree of suboptimality of the trajectory (6), (7) under con-
sideration. Here we are interested in ignoring all future information which is
to say we try to avoid the use of VN(x(n + 1)) in our calculations. Of course,
this will in general yield a more conservative estimate.
Since we deal with NMPC schemes without terminal costs we can always use
the observation VM(x) ≤ VN(x) ≤ V∞(x) for all M , N ∈ N0 with M ≤ N .
The following estimates are similar to certain results in [4], where, however,
they were defined and used globally for all x ∈ X. In order to make those
results computable without using a discretization of the state space X or an-
alytical a priori information, here we formulate and prove alternative versions
of these results which can be used along trajectories.

Lemma 4 Consider N ∈ N, a receding horizon feedback law µN and its asso-
ciated closed–loop solution x(·) according to (7) with initial value x(0) = x0.
If

VN(x(n + 1)) − VN−1(x(n + 1)) ≤ (1 − α)l(x(n), µN(x(n))) (10)

holds for some α ∈ [0, 1] and all n ∈ N , then VN satisfies (9) and

αV∞(x(n)) ≤ αV µN
∞ (x(n)) ≤ VN(x(n)) ≤ V∞(x(n))

holds for all n ∈ N0.

Proof. Using the principle of optimality and (10) one can easily see that (9)
holds and hence Proposition 3 guarantees the assertion. �

In order to shorten notation the following assumption contains the main in-
gredients for our results.

Assumption 5 For a given N ∈ N, N ≥ 2 there exists γ > 0 such that the
inequalities

V2(xuN
(N − 2, x(n)))≤ (γ + 1)V1(xuN

(N − 2, x(n))) (11)

Vk(xuN
(N − k, x(n)))≤ (γ + 1)l(xuN

(N − k, x(n)), µk(xuN
(N − k, x(n))))(12)
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hold for all k ∈ {3, . . . , N} and all n ∈ N0 where the open–loop solution
xuN

(j, x(n)) is given by (5).

We would like to point out that x(·) in Assumption 5 is the closed–loop tra-
jectory which is the outcome of the NMPC algorithm, i.e. equations (6) and
(7). In contrast to that xuN

(·, x(·)) represents the open–loop solutions coming
from (4) and (5) which are also known in every single step of this algorithm.
Note that those two values are not identical in general.

Proposition 6 Consider N ≥ 2 and assume that Assumption 5 holds for this
N . Then

(γ + 1)N−2

(γ + 1)N−2 + γN−1
VN(x(n)) ≤ VN−1(x(n))

holds for all n ∈ N0.

Proof. In the following we use the abbreviation xuN
(j) := xuN

(j, x(n)),
j = 0, . . . , N , since all our calculations using the open–loop trajectory defined
by (4), (5) refer to the fixed initial value x(n).
Set ñ := N −k. Using the principle of optimality and Assumption 5 we obtain

Vk−1(f(xuN
(ñ), µk(xuN

(ñ)))) ≤ γl(xuN
(ñ), µk(xuN

(ñ))) (13)

for all k ∈ {3, . . . , N} and all n ∈ N.
Now we will prove the main assertion ηkVk(xuN

(ñ)) ≤ Vk−1(xuN
(ñ)) by in-

duction over k = 2, . . . , N . For notational reason we will use the abbreviation

ηk = (γ+1)k−2

(γ+1)k−2+γk−1 . By choosing xuN
(0) = x(n) with n being arbitrary but

fixed we obtain

V2(xuN
(N − 2)) ≤ (γ + 1)V1(xuN

(N − 2)) =
1

η2
V1(xuN

(N − 2)).

For the induction step k → k + 1 the following holds using the induction
assumption

Vk(xuN
(ñ)) = Vk−1(f(xuN

(ñ), µk(xuN
(ñ)))) + l(xuN

(ñ), µk(xuN
(ñ)))

≥ ηk

(
1 +

1 − ηk

γ + ηk

)
Vk(f(xuN

(ñ), µk(xuN
(ñ))))

+

(
1 − γ

1 − ηk

γ + ηk

)
l(xuN

(ñ), µk(xuN
(ñ)))

and hence Vk(xuN
(ñ)) ≥ ηk

γ+1
γ+ηk

Vk+1(xuN
(ñ)) with

ηk

γ + 1

γ + ηk

=
(γ + 1)k−2

(γ + 1)k−2 + γk−1

γ + 1

γ + (γ+1)k−2

(γ+1)k−2+γk−1

=
(γ + 1)k−1

(γ + 1)k−1 + γk
= ηk+1.

If we choose k = N then we get ñ = 0. Inserting this in our induction result
we can use xuN

(0) = xuN
(0, x(n)) = x(n) and our assertion holds. �

Using this technical construction we can now state our first main result:
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Theorem 7 Consider γ > 0 and N ∈ N, N ≥ 2 such that (γ + 1)N−2 > γN

holds. If Assumption 5 is fulfilled for these γ and N , then the estimate

αV µN
∞ (x(n)) ≤ VN(x(n)) ≤ V∞(x(n)) with α =

(γ + 1)N−2 − γN

(γ + 1)N−2
(14)

holds for all n ∈ N.

Proof. Considering Proposition 6 and j = n − 1 we obtain

VN(x(j + 1)) − VN−1(x(j + 1)) ≤
γN

(γ + 1)N−2
l(x(j), µN(x(j))).

where we used the definition of the open–loop solution from (5) with x0 =
x(j) similar to the proof of Proposition 6 and (13) with k = N . Hence the
assumptions of Lemma 4 are fulfilled with

α = 1 −
γN

(γ + 1)N−2
=

(γ + 1)N−2 − γN

(γ + 1)N−2
(15)

and the assertion holds. �

Theorem 7 immediately leads to our second suboptimality estimate: at each
time instant n we can compute γ from the inequalities (11) and (12) (cf.
Remark 12) and then compute α according to (14). Furthermore, if l is in-
dependent of u (as in our numerical example) then the control value is not
needed at all and thus γ can be computed only from the data available at time
n. In either case we obtain an a priori estimate which is available before the
current step is actually carried out.

Remark 8 Intuitively, this result states that if the instantaneous running cost
contains sufficient information about the optimal value function, then the re-
sulting controller will be suboptimal. Here we can say that VN and l contain
“sufficient” information if we obtain α > 0 from Proposition 3 by using (15)
and there exists a γ > 0 such that the inequalities (11) and (12) hold.

Now our aim is to weaken our previous relation between α and γ. To this end
one can see from the proof of Proposition 6 that we need (11) to establish the
induction anker only. This leads to the following relaxation of Assumption 5:

Assumption 9 For a given N , N0 ∈ N, N ≥ N0 ≥ 2 there exists γ > 0 such
that the inequalities

VN0
(xuN

(N − N0, x(n)))

γ + 1
≤ max

j=2,...,N0

l(xuN
(N − j, x(n)), µj−1(xuN

(N − j, x(n))))

Vk(xuN
(N − k, x(n)))

γ + 1
≤ l(xuN

(N − k, x(n)), µk(xuN
(N − k, x(n))))
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hold for all k ∈ {N0 +1, . . . , N} and all n ∈ N0 where the open–loop solution
xuN

(j, x(n)) is given by (5).

Using these relaxed conditions we can reformulate Propostion 6:

Proposition 10 Consider N ≥ N0 ≥ 2 and assume that Assummption 9
holds for these constants. Then

(γ + 1)N−N0

(γ + 1)N−N0 + γN−N0+1
VN(x(n)) ≤ VN−1(x(n))

holds for all n ∈ N0.

Proof. According to the changes in our assumptions we only have to show
that the induction anker in the proof of Proposition 6 holds true, i.e. k = N0.

We define ηk = (γ+1)k−N0

(γ+1)k−N0+γk−N0+1 and obtain the induction anker via

VN0
(xuN

(N − N0))≤ (γ + 1) max
j=2,...,N0

l(xuN
(N − j), µj−1(xuN

(N − j)))

≤ (γ + 1)
N0∑

j=2

l(xuN
(N − j), µj−1(xuN

(N − j)))

=
1

ηN0

VN0−1(xuN
(N − N0)).

�

Using this proposition it is easy to prove

Theorem 11 Consider γ > 0 and N , N0 ∈ N, N ≥ N0 such that (γ +
1)N−N0 > γN−N0+2 holds. If Assumption 9 is fulfilled for these γ, N and N0,
then the estimate

αV µN
∞

(x(n)) ≤ VN(x(n)) ≤ V∞(x(n)) with α =
(γ + 1)N−N0 − γN−N0+2

(γ + 1)N−N0

holds for all n ∈ N.

Proof. Since the proof is identical to the proof of Theorem 7 now using
Proposition 10 we omit it here. �

Remark 12 (i) Assumption 9 generalizes Assumption 5 and [4, Assumption
4.6] in which N0 = 2 was used. In the numerical example, below, we will see
that a judicious choice of N0 can considerably improve our estimates.
(ii) The only data which is not immediately available is the control value
µj−1(xuN

(N − j, x(n))) in Assumption 9 which needs to be determined by solv-
ing an additional optimal control problem with horizon j − 1 ≤ N0 − 1. Since
typically N0 is considerably smaller than N , this can be done with much less
effort than computing VN(x(n + 1)). Furthermore, this control value is not
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needed at all if l does not depend on u as in our numerical example in Section
5.

Remark 13 (i) Another way of numerically computing suboptimality esti-
mates was presented in [18] for linear finite dimensional system. The main
difference to our approach is that the condition in [18] has to be verified by
computing numerical approximations to the optimal value functions, which is
feasible only for low dimensional linear systems but infeasible in our nonlinear
setting on arbitrary metric spaces.
(ii) Asymptotic stability can be concluded from our suboptimality results if
α > 0 and the running cost l is positive definite, for details see [6]. Further-
more our results can be extended to practical optimality and stability similar
to [4].
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Figure 1. Relationship
between α and (γ, N)
for N0 = 2

Using the relationship between α and the tupel
(γ, N) from Theorem 11 for fixed N0 we can see
from the figure on the left which combinations of
N and γ values actually guarantee stability and a
certain degree of suboptimality.
Moreover one observes that in order to be stable,
i.e. α ≥ 0, we need

N ≥ N0 +
2 ln(γ)

ln(γ + 1) − ln(γ)
=: h(γ, N0)

to hold. Note that

h′(γ, N0) =
2γ ln(γ + 1) − 2γ ln(γ) + 2 ln(γ + 1)

(γ + 1)γ(− ln(γ + 1) + ln(γ))2

is independent of N0. Hence, since for all x ≥ x ≈ 0.01 we obtain h′(x, N0) > 1
for fixed N0 ∈ [2, N ], we can use the positive definiteness and strict mono-
tonicity of h′(·, N0) to conclude that h(·) grows unboundedly and stronger
than linear. Additionally we obtain that N grows less than quadratic since for
x ≈ 5.7 we have h′(x) < x for all x ≥ x.

4 Practical Optimality

In general, one cannot expect that the conditions presented in the section 3
hold in practice. This is due to the fact that in many cases the discrete–time
system (1) is obtained from a discretization of a continuous–time system, e.g.
sampling with zero order hold, see [15,16]. Hence, even if the continuous–time
system is controllable to a fixed point x∗, it is likely that the corresponding
sampled–data system is only practically stabilizable at x∗. In addition, numer-
ical errors in the optimization algorithm may become predominant in a small
neighborhood of x∗.
One way to adapt results from Theorem 7 and 11 could be to modify the stage
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cost l to be positive definite with respect to a forward invariant stabilizable
neighborhood N of x∗. However, the computation of N and hence the design
of l may be difficult if not impossible.
Still, even with the original l and in the presence of sampling and numerical
errors one would expect a receding horizon controller to practically stabilize
the system, i.e., to drive the system towards a small neighborhood of x∗, see
also [8]. Hence, an intuitive idea is to “virtually” cut off and shift the running
cost. Note that we still solve the original optimal control problem but that
we interpret the resulting trajectory and control values using a modified cost
function.

Proposition 14 Consider a feedback law µN : X → U and its associated
closed–loop trajectory x(·) according to (7). Assume there exists a function
VN : X → R

+
0 satisfying the inequality

VN (x(n)) ≥ VN (x(n + 1)) + min {α (l(x(n), µN (x(n))) − ε) , l(x(n), µN (x(n))) − ε}
(16)

for some α ∈ [0, 1], some ε > 0 and all n ∈ N0. Consider a discrete time
interval I := {n1, . . . , n2}. Let n1, n2 ∈ N, n1 < n2, for which the inequality
l(x(n), µN(x(n))) ≥ ε holds for all n ∈ I and set σ := VN (x(n2 + 1)). Then,
for the modified stage cost

l(x(n), µN(x(n))) = max {l(x(n), µN(x(n))) − ε, 0} , (17)

and the corresponding functional V
µN

I (x(n)) =
∑n2

j=n l(x(j), µN(x(j))) using
the controller µN the estimate

αV
µN

I (x(n)) ≤ VN(x(n)) − σ ≤ V∞(x(n)) − σ (18)

holds for all n ∈ I.

Proof. From the definition of l and I we obtain

αl(x(n), µN(x(n))) = max {α (l(x(n), µN (x(n))) − ε) , 0}
(16)

≤ VN(x(n)) − VN (x(n + 1)),

for n ∈ I. Thus, summing over n gives us

αV
µN

I (x(n)) = α
n2∑

j=n

l(x(j), µN(x(j))) ≤ VN(x(n)) − σ,

which implies the assertion since VN ≤ V∞ is obvious. �
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n

ε

l(x(n), µ (n))

T

Figure 2. Illustration of Proposition 14

If (16) is satisfied, then inequal-
ity (18) is true for all subin-
tervals I = {n1, . . . , n2} of N0

on which l(x(n), µN (x(n))) ≥ ε

holds, implying that on I the
corresponding trajectory behaves
“almost” like an infinite horizon
optimal one. In particular, x(n)
approaches x∗ and thus the se-
quence of l-values will repeatedly

(possibly infinitely often) enter and leave the set [0, ε], cf. Figure 2, in which
the arrows at the bottom indicate the intervals on which the trajectory is ap-
proximately optimal. When leaving [0, ε] the possible growth of VN is bounded
by ε due to (16). Thus, once l(x(n), µN(x(n))) has entered [0, ε] for the first
time, the system will remain in a neighborhood of x∗ defined by a sublevel set
of VN whose precise shape, however, cannot be easily determined a priori, see
also [4, Remark 5.2 and Example 5.10].

Similar to Lemma 4 we can use the following observation:

Lemma 15 Consider N ∈ N, a receding horizon feedback law µN and its
associated closed–loop solution x(·) according to (7) with initial value x(0) =
x0. If

VN(x(n+1))−VN−1(x(n+1)) ≤ max {(1 − α)l(x(n), µN(x(n))) + αε, ε} (19)

holds for some α ∈ [0, 1], some ε > 0 and all n ∈ [0, n0] ⊂ N0, then

αV
µN

I (x(n)) ≤ VN (x(n)) − σ

holds for all n ∈ [0, n0].

Proof. Using the principle of optimality and (19) we obtain

VN(x(n))≥ l(x(n), µN (x(n))) + VN(x(n + 1))

−max {(1 − α)l(x(n), µN(x(n))) − αε, ε}

= min{α (l(x(n), µN(x(n))) − ε) , l(x(n), µN(x(n))) − ε}

+VN(x(n + 1)).

Hence (16) holds and Proposition 14 guarantees the assertion. �

Similar to the non–practical case we can now state sufficient conditions which
will later on be used to guarantee our practical suboptimality estimate.

Assumption 16 For a given N ∈ N, N ≥ 2 there exist γ, ε > 0 such that
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the inequalities

V2(xuN
(N − 2))≤max{(γ + 1)V1(xuN

(N − 2)) + (1 − γ)ε,

V1(xuN
(N − 2)) + ε} (20)

Vk(xuN
(N − k))≤max{l(xuN

(N − k), µk(xuN
(N − k))) + (k − 1)ε,

(γ + 1)l(xuN
(N − k), µk(xuN

(N − k))) + (k − γ − 1)ε} (21)

hold for all k ∈ {3, . . . , N} and all n ∈ [0, n0] ⊂ N0 using the abbreviation
xuN

(j) := xuN
(j, x(n)) for the open–loop solution given by (5).

Proposition 17 Consider N ∈ N and assume that Assumption 16 holds for
this N . Then

min

{
(γ + 1)N−2

(γ + 1)N−2 + γN−1
(VN(x(n)) − Nε) , VN(x(n)) − Nε

}

≤ VN−1(x(n)) − (N − 1)ε

holds for all n ∈ [0, n0] ⊂ N0.

Proof. In order to prove the assertion we show that given Assumption 16 for
Vk, k = 2, . . . , N , Assumption 5 holds for are modified optimal value function
Ṽk and hence Proposition 6 will guarantee our assertion.
By considering the stage cost l̃(x, u) := l(x, u) − ε which gives us Ṽk(x) =
Vk(x)− kε for arbitrary x and u we can use the same proof as for Proposition
6. Note that l̃ and Ṽk(x) may become negative. Still the induction holds since
we do not have to assume those terms to be nonnegative in this construc-
tion. Hence, we have shown that (11), (12) hold for either γ = 0 or γ from
Assumption 16 for Ṽk and l̃ and we can conclude

min{ηkṼk(xuN
(N − k)), Ṽk(xuN

(N − k))} ≤ Ṽk−1(xuN
(N − k))

via Proposition 6. Finally, setting Ṽk(x) = Vk(x) − kε and choosing k = N

proofs the assertion. �

Theorem 18 Consider γ and N ∈ N such that (γ + 1)N−2 > γN holds. If
Assumption 16 is fulfilled for these γ, N and some ε > 0, then the estimate

αV
µN

I (x(n)) ≤ V∞(x(n)) − σ with α =
(γ + 1)N−2 − γN

(γ + 1)N−2

holds for all n ∈ [0, n0] ⊂ N0.

Proof. Using Propositon 17 we obtain

VN(x(n))−VN−1(x(n))−ε ≤ max

{
γN−1

(γ + 1)N−2
(VN−1(x(n)) − (N − 1)ε) , 0

}
.

12



Now we use a construction similar to the proof of Theorem 7 and obtain (19)

to hold with α = 1 − γN

(γ+1)N−2 = (γ+1)N−2−γN

(γ+1)N−2 . Hence Lemma 15 provides the
assertion. �

Since in our numerical examples results using Assumption 9 instead of As-
sumption 5 are significantly better we want to adapt this to the present case
of practical stability.

Assumption 19 For a given N , N0 ∈ N, N ≥ N0 ≥ 2 there exists γ > 0
such that the inequalities

VN0
(xuN

(N − N0))≤ max
j=2,...,N0

{
l(xuN

(N − j), µj−1(xuN
(N − j))) + ε,

(γ + 1)l(xuN
(N − j), µj−1(xuN

(N − j))) + (γ + 1 − N0γ)ε
}

(22)

Vk(xuN
(N − k))≤max{l(xuN

(N − k), µk(xuN
(N − k))) + (k − 1)ε,

(γ + 1)l(xuN
(N − k), µk(xuN

(N − k))) + (k − γ − 1)ε} (23)

hold for all k ∈ {N0 +1, . . . , N} and all n ∈ [0, n0] ⊂ N0 where the open–loop
solution xuN

(j) := xuN
(j, x(n)) for the open–loop solution given by (5).

Again one can easily see that Assumption 16 is a special case of Assumption
16 by setting N0 = 2.

Proposition 20 Consider N ∈ N and assume that Assumption 19 holds for
this N . Then

min

{
(γ + 1)N−N0

(γ + 1)N−N0 + γN−N0+1
(VN (x(n)) − Nε) , VN(x(n)) − Nε

}

≤ VN−1(x(n)) − (N − 1)ε

holds for all n ∈ [0, n0] ⊂ N0.

Proof. Similar to the proof of Proposition 10 we can show the induction
anker in the proof of Proposition 17 to hold. Hence we can conclude our as-
sertion analogously. �

Theorem 21 Consider γ and N ∈ N such that (γ+1)N−N0 > γN−N0+2 holds.
If Assumption 19 is fulfilled for these γ, N and some ε > 0, then the estimate

αV
µN

I (x(n)) ≤ V∞(x(n)) − σ with α =
(γ + 1)N−N0 − γN−N0+2

(γ + 1)N−N0

holds for all n ∈ [0, n0] ⊂ N0.

Proof. Similar to the proof of Theorem 18 we obtain our assertion using
Proposition 20 and Lemma 15. �

13



Note that Assumption 9 represents sufficient conditions separately for each
N0. Hence one is free to choose the best resulting estimate.

5 Numerical Experiments

In order to illustrate our results we consider a digital redesign problem (cf. [14])
of an arm/rotor/platform (ARP) model:

ẋ1 = x2 + x6x3 ẋ2 = − k1

M
x1 −

b1
M

x2 + x6x4 −
mrb1
M2 x6

ẋ3 = −x6x1 + x4 ẋ4 = −x6x2 −
k1

M
x3 −

b1
M

x4 + mrk1

M2

ẋ5 = x6 ẋ6 = −a1x5 − a2x6 + a1x7 + a3x8 − p1x1 − p2x2

ẋ7 = x8 ẋ8 = a4x5 + a5x6 − a4x7 − (a5 + a6)x8 + 1
J
u

For this system a continuous-time full-state feedback u0 was designed via
backstepping such that the output ζ(t) := x5(t) −

a3

a1−a2a3
[x6(t) − a3x7(t)] is

close to x5(t) and tracks a given reference signal ζref(t) = sin(t), see [2, Chapter
7.3.2] for details on the backstepping design and the specification of the model
parameters.
To solve the sequence of optimal control problems we use a direct approach,
i.e. discretize the continous-time system and use an SQP method to solve the
resulting optimization problem.
In order to make our results comparable we fix the initial values to x(t0) =
(0, 0, 0, 0, 10, 0, 0, 0), the absolute and relative tolerances for the solver of the
differential equation both to 10−10, the length of the open–loop horizon within
the MPC–algorithm to H = N · T with N = 10 and sampling period T = 0.3,
and set the optimality tolerance of the SQP solver to 10−8. Moreover we use

the cost functional J(x, u) =
N∑

j=0

∫ tj+1

tj |x5(t) − x5,ref(t)|dt. The corresponding

x5–component of the trajectory is shown in Figure 3.
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Figure 3. MPC closed loop trajectory and reference

For this trajectory the estimates from Proposition 3 are shown in Table 1.
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n α VN (·) l(·, µN (·)) n α VN (·) l(·, µN (·))

0 0.9999963 0.5591784 0.4799116 5 0.9963067 0.0000623 0.0000504

1 0.9999884 0.0792685 0.0683697 6 0.8018461 0.0000120 0.0000081

2 0.9999123 0.0108996 0.0089076 7 -0.194100 0.0000055 0.0000007

3 1.0000000 0.0019927 0.0016924 8 1.0000000 0.0000056 0.0000004

4 0.9973933 0.0003000 0.0002383 9 0.7623827 0.0000045 0.0000020

Table 1
α values from Propositon 3

In our simulation, the exact α-values from Proposition 3 are close to one for
the first iteration steps indicating that the feedback is almost infinite horizon
optimal. However, from iteration step 6 onwards the values become smaller and
even negative which shows that optimality is lost here. One possible reason for
this is that here the values of VN are close to the accuracy of the optimization
routine and the tolerances of the solver of the differential equations, hence
numerical errors become dominant. Nevertheless, the measured values of α in
conjunction with the values of VN show that the closed loop system behaves
“almost optimal” until a very small neighborhood of the reference trajectory
is reached which is exactly what we expected to happen.
Now we compare our results from Proposition 3 and Theorems 7 and 11 in
Table 2 to see how conservative the apriori estimate actually is.

N0 = 2 N0 = 5 N0 = 9

n α γ α γ α γ

0 0.9999770 0.4668339 0.9999831 0.2429414 0.9964495 0.1603063

1 -264.9238 19.850013 0.9945251 0.6918806 0.9911805 0.2208164

2 -2182.487 50.537502 0.9996013 0.4198728 0.9945399 0.1864140

3 -1214.420 38.616759 0.4008902 2.0718476 0.9878472 0.2474980

4 -1068.819 36.448100 -1159.313 36.448100 0.9879047 0.2470791

Table 2
Comparing results from Theorem 11 for H = 10 · T and various N0

From Table 2 one can clearly see that the enhanced apriori estimate given
by Theorem 11 is by far not as conservative as the apriori estimate given by
Theorem 7 which even does not even guarantee stability and, compared to
results from Proposition 3, we obtain very good results. Table 2 also shows
that one can not specify a “best” N0. However, since all necessary values are
computable or can be estimated easily one can use a simple maximization to
obtain the “best” possible estimate α.
In Table 1 one can see that our estimates deteriorate when the values of
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VN(x(n)) or l(x(n), µn(x(n))) are very small, implying that optimality of the
trajectories is lost in a small neighborhood of the reference solution. Note that
this is also true for Table 2 which we truncated for reasons of clarity. One can
only speculate whether this is due to sampling or due to numerical optimiza-
tion errors, most likely the effect is caused by a combination of both. In either
case, one would expect to obtain better estimates when considering practical
optimality.
Using Proposition 17 for our model problem we obtain the following values
for α for horizon length H = 10 · T and ε = 10−6. Here we do not compare

n α VN (·) l(·, µN (·)) n α VN (·) l(·, µN (·))

0 0.999 0.55917846 0.47991166 5 1.000 0.00006231 0.00005041

1 1.000 0.07926857 0.06836975 6 0.913 0.00001209 0.00000816

2 1.000 0.01089961 0.00890766 7 1.000 0.00000555 0.00000077

3 1.000 0.00199273 0.00169242 8 1.000 0.00000569 0.00000047

4 1.000 0.00030002 0.00023833 9 1.000 0.00000450 0.00000206

Table 3
α values from Propositon 17

results for suboptimality and practical suboptimality since it is clear from the
inequalities that the estimates for practical suboptimality will always yield
better α values.
Note that here the resulting values for α are the outcome of a simple maxi-
mization for ε. We also like to point out that for n = 7 and 8 we have that
l(x(n), µN(x(n))) < ε. Here we have by definition α = 1 since we are in the
chosen ε-region. Note that for n = 9 we leave the ε-region but the optimization
routine takes us back there in only one step. Hence, using the notation from
Proposition 14 here we have two intervals I1 = {0, 6} and I2 = {9}.

We now compare the results from Theorem 18 and all the previously mentioned
results. In Table 4 we used the same setting as before. To compute the results

n α (Prop. 3) α (Theorem 11) α (Prop. 17) α (Theorem 21)

0 0.99999631 0.99998316 0.99999840 0.99999994

1 0.99998840 0.99982736 1.00000000 0.99999822

2 0.99991231 0.99899284 1.00000000 0.99894664

3 1.00000000 0.99775792 1.00000000 0.99995965

4 0.99739334 0.98790477 1.00000000 0.99999651

Table 4
Comparing results from Propositions 3 and 17 as well as Theorems 11 and 21

for Theorem 21 we solved all possible N0-subproblems and took the maximal
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value of α. We may have stated the results for each N0 separately but this
will give us no more insight information than we already obtained in the non-
practical case.

6 Conclusion

Using known results for rigorous suboptimality estimates of receding hori-
zon controllers we have derived variants and extensions which are computable
along trajectories. The advantage of these approaches are their simple evalu-
ability using already calculated or easily computable values. Furthermore we
have shown conditions which guarantee a certain degree of suboptimality and
are applicable in a real time setting.
Using numerical experiments we showed that the presented conditions can be
verified easily and hence our estimates can be a good starting point for de-
signing algorithms which adaptively choose suitable optimization horizons N .
Future research will address the design of algorithms which adaptively com-
pute suitable optimization horizons N based on our suboptimality estimates.
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