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In this paper we develop and illustrate methods for estimating the degree of suboptimality of receding horizon schemes
with respect to infinite horizon optimal control. The proposed a posteriori and a priori methods yield estimates which
are evaluated online along the computed closed-loop trajectories and only use numerical information which is readily
available in the scheme.

1 Introduction

Receding horizon control (RHC), often also termed model predictive control (MPC), is by now a well established
method for the optimal control of linear and nonlinear systems [1,2,14]. The method approximates the solution to a
infinite horizon optimal control problem which is computationally intractable in general by a sequence of finite horizon
optimal control problems. Then the first element of the resulting control sequence is implemented in each time step
which generates a closed—loop static state feedback.

The approximation of the infinite horizon problem naturally leads to the question about the suboptimality of the
resulting MPC feedback. Hence our main task is to give estimates of the degree of suboptimality — and implicitly
for stability — of the MPC feedback with respect to the original infinite horizon cost functional. This matter was
treated in a number of papers, see e.g. [4,6-8,11,17]. Here we deal with discrete-time nonlinear systems on arbitrary
metric spaces and use finite horizon optimal control problems without terminal costs or terminal constraints. For these
schemes, we present techniques for estimating the degree of suboptimality online along the closed—loop trajectory. The
techniques rely on the computation of a “characteristic value” « at each time instant n along the closed—loop trajectory
x(n) and the actual estimate can then be computed from the collection of all these a-values. Like in [6] or [8], our
approach is based on relaxed dynamic programming techniques.

The motivation for this work is twofold: on the one hand, we expect trajectory based estimates to be less conservative
than the global estimates derived, e.g., in [6], [8] or [17], because in these references the worst case over the whole state
space is estimated while here we only use those points of the state space which are actually visited by the closed—loop
trajectory. On the other hand, we expect that our trajectory based estimates can be used as a building block for
MPC schemes in which the optimization horizon is tuned adaptively, similar to adaptive step size control in numerical
schemes for differential equations. In this context, the computational cost for evaluating our estimates is a crucial
point and this is where the two techniques we present differ. While the first estimation technique yields a sharper
estimate, it can only be evaluated a posteriori, i.e., the value « for time n can only be computed at time n + 1. In
contrast to this, the second technique leads to a more conservative estimate of a but is computable with small effort
from values which are known at time n.

The paper is organized as follows. In Section 2 we describe the problem setup and give the basic relaxed dynamic
programming inequality which leads to our first estimation method. In the following Section 3 we state our main
theorem which leads to an alternative estimation method. In Section 4 we illustrate both methods by means of a
numerical simulation. The final Section 5 concludes the paper.

2 Problem formulation
Throughout this paper the nonlinear discrete-time system
z(n+1) = f(z(n),u(n)), =(0)=mo (2.1)

with z(n) € X and u(n) € U for n € N will the basis of this analysis. Here the state space X is an arbitrary metric
space and we denote the space of control sequences u : Ng — U by U.

Remark 2.1. In particular our setting includes discrete—time dynamics induced by a sampled infinite dimensional
system, cf. [9] for a continuous—time analysis of this setting and [8] for a numerical example.
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For this control system we want to find a static state feedback u = pu(x) € U which minimizes the infinite horizon cost
functional Joo(wo,u) = > or o Uz (n),u(n)) with stage cost [ : X x U — R{ and optimal value function Vi (zg) =
infy ey Joo (o, u). Here and in the following we will assume that the minimum with respect to u € U is attained for
reasons of simplicity.

In order to avoid the problem of solving an infinite horizon optimal control problem which necessarily involves the
solution of a Hamilton—Jacobi-Bellman partial differential equation we will use a receding horizon approach and replace
the previously stated problem by a sequence of finite horizon optimal control problems. For this purpose we minimize
the truncated cost functional Jy (o, u) = Zg;ol l(xy(n),u(n)) and denote the associated optimal value function by
Vn (20) = miny,ey Jn(xo,u). Moreover we will use the abbreviation

un (2o, ) = argmin, o, Jn (2o, u) (2.2)

for the minimizing open—loop control sequence of the reduced cost functional. This control gives us the optimal
open—loop solution

Tun(n+1,20) = [ (Tuy (0, 20), un (@ y (0,20),m)),  Tuy (0,20) =29, n=0,...,N —1 (2.3)

where up (29, n) represents the n-th control value within the open—loop control sequence corresponding to the initial
value xg.

In order to obtain an infinite control sequence from this setting we define a feedback law py by implementing only the
first element of the optimal control sequence uy. This is equivalent to defining pn via Bellman’s optimality principle
for the optimal value function Vy, i.e.

pn(z(n)) = argmin, ey {Vy-1(z(n + 1)) + l(z(n), u)} . (2.4)

In the literature this setup is usually called nonlinear model predictive control (NMPC) or receding horizon control
(RHC). The resulting closed—loop trajectory will be denoted by

z(n+1)=f(z(n),un(z(n))), =x(0)=mxzy, n < Ny. (2.5)

Our intention is to give an estimate on the degree of suboptimality of the feedback py for the infinite horizon problem
which can be evaluated online along the closed—loop trajectory (2.5) without significant additional computational costs.
More precisely, if we define the infinite horizon cost corresponding to pun by VEN (2¢) := >~ ol (z(n), un(x(n))), then
we are interested in upper bounds for this infinite horizon value, either in terms of the finite horizon optimal value
function Vi or in terms of the infinite horizon optimal value function V. In particular, the latter will give us estimates
about the degree of suboptimality of the controller py in the actual step of the NMPC process.

The main tool we are going to use for this purpose is a rather straightforward and easily proved “relaxed” version
of the dynamic programming principle. This fact has been used implicitly in many papers on dynamic programming
techniques during the last decades. Recently, it has been studied by Lincoln and Rantzer in [12,16].

Proposition 2.2. Consider the MPC feedback law pun : X — U from (2.4) and its associated trajectory x(-) according
to (2.5) with initial value ©(0) = xo € X. If the inequality

Vn(z(n)) = Vi (z(n + 1)) + al(z(n), py (x(n))) (2.6)
holds for some o € (0,1] and all n € Ny then aVy(z(n)) < aVE(xz(n)) < Vi (x(n)) < Voo (z(n)) holds for all n € Ny.

Proof. The proof is similar to that of [16, Proposition 3] and [6, Proposition 2.2]. Rearranging (2.6) and summing
over n. we obtain the upper bound

K-1
o Z Wz(5), pn (2(5)) < Vi (z(n)) = V(2(K)) < Vi (2(n)).

Hence, taking K — oo gives us our assertion since the final inequality Vy < V is obvious. O

Remark 2.3. Note that in this formulation « only depends on the points x(n), while in [6, Proposition 2.2] it depends
on all x € X. Hence we expect a less conservative approximation of the degree of suboptimality.

Since all values in (2.6) are available at runtime, the value a can be easily computed online along the closed-loop
trajectory and thus (2.6) yields a computationally feasible and numerically cheap way to estimate the suboptimality
of the trajectory.

Under suitable controllability assumptions, one can show that « — 1 as N — oo, cf. [6,8]. Hence, the knowledge of «
can in principle be used to adapt the optimization horizon N online by increasing N if the computed « is too small.
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However, using (2.6), for the computation of a for the state z:(n) we need to know Vy(x(n 4+ 1)). At time n, this
value can in principle be obtained by solving an additional optimal control problem. Proceeding this way, however,
essentially doubles the computational effort and may thus not be feasible in real time applications. If we want to
use only those numerical information which is readily available at time n then we will have to wait until time n + 1
before the quality of the MPC feedback value pn(z(n)) can be evaluated. In other words, (2.6) yields an a posteriori
estimator, which is an obvious disadvantage if « is to be used for an online adaptation of IV at time n. In the next
section we present an alternative way in order to estimate a.

3 An estimation method for «

This section aims at reducing the amount of information necessary to give an estimate of the degree of suboptimality
of the trajectory (2.4), (2.5) under consideration. Here we are interested in avoiding the use of future information,
ie., of Vx(z(n+ 1)), in our calculations. Of course, this will in general yield a more conservative estimate.

The following estimates are similar to certain results in [6], where, however, they were defined and used globally for
all z € X. In order to make those results computable without using a discretization of the state space X, here we
formulate and prove alternative versions of these results which can be used along trajectories.

Lemma 3.1. Consider N € N, a receding horizon feedback law py and its associated closed—loop solution x(-) according
to (2.5) with initial value x(0) = xo. If

Vn(z(n+1)) = Vi (z(n + 1)) < (1= a)l(z(n), un (2(n))) (3.1)

holds for some a € (0,1] and all n € N, then Viy and pn satisfy (2.6) and oV (z(n)) < aVEN (z(n)) < Vn(z(n)) <
Voo(x(n)) holds for all n € Ny.

Proof. Using the principle of optimality we obtain

Vn(x(n)) = l(z(n), pn(2(n))) + Vy-1(z(n + 1)) % Vn(z(n+1)) + al(z(n), pn (z(n)))

Hence (2.6) holds with V= VN, i = pn and Proposition 2.2 guarantees the assertion. O
The following assumption contains the main ingredients for our result.
Assumption 3.2. For given N, Ng € N, N > Ny > 2 there exists v > 0 such that the inequalities

Vo (Zuy (N — No, z(n)))

v+1 < max By (N = 5,2(n)), -1 (@uy (N = j, 2(n)))) (3.2)
Vk(mu}v (’Z}/V'f‘_].k7x(n))) < l(xuN (N — k,m(n))’uk(xuz\f (N - k,x(n)))) (33)

hold for allk € {No+1,...,N} and alln € Ny where x,,, (-, z(n)) is the optimal open—loop solution from (2.3) starting
in z(n) and x(-) is the MPC closed-loop solution from (2.5).

Remark 3.3. (i) Assumption 3.2 generalizes [6, Assumption 4.6] in which Ny = 2 was used. In the numerical
example, below, we will see that a judicious choice of Ny can considerably improve our estimates.

(i) Assumption 3.2 involves both the state of the closed—loop trajectory x(-) from (2.5) at time n and the open—loop
tragectory Ty, (-, x(n)) from (2.3) starting in x(n). Note that typically these two trajectories do not coincide. However,
both are available in the MPC scheme atl time n once the finite horizon optimization problem with initial value x(n)
is solved. From these, the optimal value functions on the left hand sides of the inequalities (3.2) and (3.3) are easily
computed, since by Bellman’s optimality principle they can be obtained by simply summing up the running cost along
the “tails” of the optimal trajectory x, (-,x(n)). The only data which is not immediately available is the control value
i—1(zuy (N — j,2(n))) in (3.2) which needs to be determined by solving an optimal control problem with horizon
j—1 < Ny —1. Since typically Ny is considerable smaller than N, this can be done with much less effort than
computing Vi (xz(n + 1)). Furthermore, if 1 is independent of u (as in our numerical example) then the control value
is mot needed at all and thus v can be computed directly from the data available at time n.

Proposition 3.4. Consider N > Ny > 2 and assume that Assumption 3.2 holds for these constants. Then

(v + DN
(’Y + 1)N7N0 + 7N7N0+1

Vn(z(n)) < Vy_1(z(n))

holds for all n € Ng.
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Proof. In the following we use the abbreviation 2y, (j) := Zuy (j,2(n)), 5 =0,..., N, since all our calculations using
the open—loop trajectory defined by (2.2), (2.3) refer to the fixed initial value x(n).
Set n:= N — k. First we will prove

Vi1 (f (@uy (), e (@y (7)) < AUZup (), (T (7)) (3.4)

for all k € {No,..., N} and all n € N. Using the principle of optimality and Assumption 3.2 we obtain

B _ _ ~ B (3.3) _ ~
Vi1 (f (@un (1), ok (2uy (1)) = Vie(@uy (1)) = U uy (1), i (Tuy (7)) < AUy (1), i (Tuy (7))

Now we will prove the main assertion by induction over £k = Njy,...,N. For notational reason we will use the
k— N,

abbreviation 7, = (ﬂ/_s_l)(,?jvlo)_k,yki%ﬂ to prove NgVi(zuy (7)) < Vi—i(zuy(n)) for k = No,...,N. For k = Ny we

obtain this via
(32) . .

VNo(xuN(N_NO)) < (’7"’_1) . max l(xuN(N_]%Nj*l(xuN(N_.7)))

j=2,...,No

1

Ny
< O+ 1)Zl($uN(N—j)’uj—1($uN(N—j))) =3 Vg—1(Zuy (N — No)).

No

For the induction step k& — k + 1 the following holds

Velran @) = Vit Gy (1) it () + 1 (7). (7))
S (U 2 ) Voa (o (0 ) + (=95 )t () i (7))
S (1 ) W b )+ (112 ) U () i ()
= T R @ () () + L ()11 ()} = TV (0 ()
i W SO 2 A v+l D
Yo (YRR (7+<1w)1-}>2+7k71 (y+ 1)1 Ak

If we now insert k = N, i.e. 7 = 0, we obtain the desired inequality for z,, (0) = x4, (0,z(n)) = x(n). Since n was
arbitrary, this yields the assertion. O

Theorem 3.5. Consider v > 0 and N, Ng € N, N > Ny such that (y + 1)N=No > AN=No+2 polds. [f Assumption
3.2 is fulfilled for these v, N and Ny, then the estimate

N—No _ ~N—No+2
VI (aln) < Vi) < Vala()  with @ = LED 0 35)

holds for all n € N.

Proof. Using Proposition 3.4 we get

(,y+ l)NfNo +,YN7N()+1
(y + 1) =R

N—No+1
ry 0

- 1) Vn-1(z(n)) = WVN—l(I(n))'

Va(z(n)) — Vi1 (2(n)) < (

Considering j = n — 1 we obtain the open—loop expression

N—Np+1
~y o+

Vn(z(j+1)) = Vno1(z(f+ 1)) < m

VN,1(f(.’L'uN (0’ Q?(])), IJ’N(:'L.UN (071‘(3))»)

Now we can use (3.4) with K = N and get

N—No+2 N —No+2
0% 0 ~y 0

Vn(z(j+1)) = Vn-1(z(j +1)) < ml(fﬂw(ow(]’)),m\r(ww (0,2(5)))) = ml(x(j), pun (z(5)))-

N—Ng+1 (v+1)N—No _N=No+2

Hence the assumptions of Lemma 3.1 are fulfilled with o =1 — GIDN = GTD N

O

4 MTNS - Extended Abstract, Bayreuth, Germany, 2008



L.Grline, J. Pannek

Theorem 3.5 immediately leads to our second suboptimality estimate: at each time instant n we can compute v from
the inequalities (3.2) and (3.3) (cf. Remark 3.3) and then compute « according to (3.5). In contrast to computing «
directly from (2.6), we obtain a criterion for the quality of py(x(n)) which is computable with small computational
effort from the data available at time n (cf. Remark 3.3(ii)), i.e., we obtain an a priori estimate which is available
before the current step is actually carried out.

Remark 3.6. (i) Asymptotic stability can be concluded from our suboptimality results if the running cost l is positive
definite, for details see [8]. Furthermore our results can be extended to practical optimality and stability similar to [6].
(ii) Another way of numerically computing suboptimality estimates was presented in [17] for linear finite dimensional
system. The main difference to our approach is that the condition in [17] has to be verified by computing numerical
approximations to the optimal value functions, which is feasible only for low dimensional linear systems but infeasible
in our nonlinear setting on arbitrary metric spaces.

4 Numerical Experiments

In order to illustrate our results we consider a digital redesign problem (cf. [15]) of an arm/rotor/platform (ARP)
model:

Ty =2+ XeT3 Ty = Tg

iy = —Ba — Moyt agwy — Whlag i = —a1m5 — as®s + a127 + a3Ts — P1T1 — Paa
T3 = —wex1+ T4 Ty = w8

i’4 = —Xgx2 — %l’g — bﬁl$4 + %’;1 3.5'8 = Q45 + a5Tg — A4 X7 — (a5 + ag)xg + %'LL

For this system a continuous-time full-state feedback ug was designed via backstepping such that the output ( :=
T5 — ge—[zg — a7 is close to x5 and tracks a given reference signal (ief(t) = sin(t), see [3, Chapter 7.3.2] for
details on the backstepping design and the specification of the model parameters. In the MPC redesign we now use
the trajectory of the continuously controlled system as a reference trajectory for the MPC scheme in order to compute
a sampled-data feedback which tracks the continuous time behavior. To this end we denote the reference solution
generated by the continuous time system z,qf(-).

We set the initial value to z(ty) = (0,0,0,0,10,0,0,0), the absolute and relative tolerances for the solver of the
differential equation as well as the accuracy of the optimization routine to 1076, the length of the open—loop horizon
within the MPC-algorithm to H = N - T with N = 5 and sampling period T = 0.3. Moreover we use the cost

functional J(z,u) = 320 f;fl |5(t) — 5 ree(t)|dt.

Prop. 2.2 Theorem 3.5, Ny = 2 Theorem 3.5, Ny =4

n Vn (z(n)) @ «@ y ! vy

1 || 0.55878228 || 0.99933183 0.41130899 | 1.59325108 0.99452337 | 0.18661250
2 || 0.07950916 || 0.99904250 0.24403255 | 1.72584196 0.98682604 | 0.25473550
3 || 0.01103795 || 0.99889255 || -0.19707587 | 2.00666873 0.99126149 | 0.22009511
4 || 0.00200117 || 0.99951566 0.53980747 | 1.47468820 0.98390720 | 0.27367155
5 || 0.00031303 || 0.99795730 0.93745853 | 0.82379521 0.98955100 | 0.23452637
6 5.9986e-05 || 0.96752356 || -3.8274e+02 | 2.1005e+01 || 0.99329164 | 0.20044056
7 1.1639e-05 || 0.98150222 || -3.4011e+02 | 1.9880e+01 || -4.22481242 | 2.67868057
8 2.9932e-06 || 0.63738607 || -5.4845e+02 | 2.4868e+01 || -2.80911012 | 2.33280061
9 2.4208e-06 || -0.93289676 || -9.6362e+02 | 3.2503e+01 || -1.0239e+03 | 3.2503e+01
10 || 2.4882e-06 || 0.67495857 0.84640267 | 1.06102880 0.62356666 | 0.89323127

Table 1: Comparing results from Proposition 2.2 and Theorem 3.5 for N = 5 and various Ny

Here the a—values shown in the table for Proposition 2.2 for each time n are computed from (2.6) for this n, i.e., these
are the a—values which are computed from Vi (z(n + 1)) and thus become available at time n + 1.

In our simulation, the exact a-values from Proposition 2.2 are close to one for the first iteration steps indicating that
the feedback is almost infinite horizon optimal. However, from iteration step 8 onwards the values become smaller
and even negative which shows that optimality (even approximate optimality) is lost here. The reason for this is that
here the values of Vjy are close to the accuracy of the optimization routine and the tolerances of the solver of the
differential equations, hence numerical errors become dominant. Nevertheless, the measured values of « in conjunction
with the values of Vy show that the closed loop system behaves “almost optimal” until a very small neighborhood of
the reference trajectory is reached.

The numerical results also reveal that for Ny = 4 the estimated a-values from Theorem 3.5 yield good estimates for
the exact values until the neighborhood of the reference trajectory is reached. While in this simulation Ny = 4 is
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clearly preferable, further numerical experiments have shown that one can not specify a “best” Ny in advance. This
is reasonable since « in (3.5) is monotone in v and Ny separately. However, one may use a simple optimization over
Ny in order to obtain the “best” possible estimate « in the sense of Assumption 3.2 and Theorem 3.5.

5 Conclusion

We have presented two methods for the online estimation of the suboptimality of MPC schemes along trajectories. In
both methods the estimation is based exclusively on numerical values which are readily available in the scheme. While
the first method produces tighter estimates, it only allows to assess the quality of the n-th step a posteriori, i.e., at
time n + 1. In contrast to this our second method allows for an estimation at time n with small computational effort.
Future research will aim at the design of algorithms which adaptively choose suitable optimization horizons N based
on these estimates.
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