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Zusammenfassung

Gegenstand dieser Arbeit ist die Sensitivitätsanalyse und die spezialisierte adaptive Diskre-

tisierung für die modellprädiktive Regelung von Optimalsteuerungsproblemen mit partiellen

Differentialgleichungen. In jedem Schritt eines modellprädiktiven Reglers wird ein Optimal-

steuerungsproblem auf einem möglicherweise langen Zeithorizont gelöst. Nur ein Anfangsteil

der optimalen Lösung wird als Regelung für das zu steuernde System verwendet. Dies motiviert

die Verwendung von effizienten Diskretisierungsschemata, die genau auf dieses Vorgehen zuge-

schnitten sind, die also Orts- und Zeitgitter verwenden, welche am Anfang des Zeithorizonts fein

sind und gegen Ende immer gröber werden.

In dieser Arbeit wird eine umfangreiche Sensitivitätsanalyse durchgeführt, um den Einfluss

von Störungen, die in ferner Zukunft auftreten, auf die Rückkopplung des modellprädiktiven

Reglers, also die optimale Steuerung auf einem Anfangsteil des Lösungshorizonts, abzuschätzen.

Es wird unter Stabilisierbarkeitsannahmen an die zugrundeliegenden Operatoren gezeigt, dass

der Einfluss von Störungen lokaler Natur ist, d.h., dass Diskretisierungsfehler, die in ferner Zu-

kunft auftreten, einen vernachlässigbaren Einfluss auf die Rückkopplung der modellprädiktiven

Regelung haben. Diese Eigenschaft wird für eine Vielzahl von Problemklassen bewiesen, darun-

ter Probleme, deren Dynamik durch eine stark stetige Halbgruppe, durch eine nichtautonome

parabolische Gleichung oder durch eine semilineare parabolische Gleichung beschrieben wird.

Weiterhin wird gezeigt, dass dieses Abklingen von Störungen im Falle eines autonomen Pro-

blems sehr nah mit der Turnpike Eigenschaft verwandt ist – einer strukturellen Eigenschaft von

optimalen Lösungen, die sich dadurch auszeichnet, dass die Lösungen von Optimalsteuerungs-

problemen auf langen Zeithorizonten die meiste Zeit nahe eines Gleichgewichts verweilen. In

diesem Kontext werden neue Turnpike Resultate gezeigt.

Diese theoretische Analyse bietet die Grundlage für effiziente Diskretisierungsverfahren für die

modellprädiktive Regelung. Wir schlagen dazu verschiedene Methoden zur a-priori-Diskretisie-

rung in Ort und Zeit vor. Weiter analysieren wir die zielorientierte a-posteriori-Fehlerschätzung

mit einer bestimmten Interessensfunktion, die nur einen Anfangsteil des Horizonts mit einbe-

zieht, als wirksames Werkzeug für die adaptive modellprädiktive Regelung. Dazu werden wir

unter Stabilisierbarkeitsannahmen beweisen, dass die Fehlerindikatoren außerhalb des Trägers

dieser spezialisierten Interessensfunktion exponentiell abfallen. Wir werden das Verhalten und

die Performanz dieser adaptiven Diskretisierungsmethoden im Kontext der modellprädiktiven

Regelung an einer Vielzahl von numerischen Beispielen testen, darunter Probleme mit linearen,

semilinearen und quasilinearen Dynamiken unter verteilter Steuerung sowie Randsteuerung.
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Abstract

Subject of this thesis is the sensitivity analysis and the specialized adaptive discretization for the

Model Predictive Control (MPC) of optimal control problems with partial differential equations.

In every iteration of an MPC controller, an optimal control problem on a possibly long time

horizon is solved. Only an initial part of the optimal solution is used as a feedback for the

system to be controlled. This motivates the use of efficient discretization schemes tailored to

this approach, i.e., space and time grids, which are fine at the beginning of the time interval

and become coarser towards the end.

In this work, a comprehensive sensitivity analysis is performed to estimate the influence of

perturbations that occur in the far future on the MPC feedback, i.e., the optimal control on an

initial part. Under stabilizability conditions on the involved operators it will be shown that the

influence of perturbations is of local nature, meaning that discretization errors that occur in the

far future only have a negligible effect on the MPC feedback. This property will be proven for

various problem classes, covering problems governed by strongly continuous semigroups, by non-

autonomous parabolic equations or by semilinear parabolic equations. It is further shown that,

in case of an autonomous problem, the exponential decay of perturbations is strongly connected

to the turnpike property—a structural feature of optimal solutions stating that solutions of

autonomous optimal control problems on a long time horizon reside close to a steady state for

the majority of the time. In that context, novel turnpike results for optimal control problems

are given.

The theoretical analysis serves as a foundation for efficient discretization methods for MPC.

Thus, we propose several a priori space and time discretization schemes. Further, we analyze

goal oriented a posteriori error estimation with a specialized objective for refinement, which only

incorporates an initial part of the horizon, as a powerful tool for adaptive MPC. We will prove

under stabilizability assumptions that the error indicators decay exponentially outside the sup-

port of this specialized quantity of interest. Finally, we illustrate the behavior and performance

of these specialized discretization algorithms in an MPC context by various numerical examples,

including problems governed by linear, semilinear, and quasilinear dynamics with distributed

and with boundary control.
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Chapter 1

Introduction

Model Predictive Control (MPC) is a control technique which is widely used in many appli-

cations, such as chemical process engineering, electrical engineering, aerospace engineering or

automotive engineering, cf. [26, 115]. It represents an optimization-based feedback controller, in

which the solution of an optimal control problem (OCP) on an indefinite or infinite horizon is

split into the successive solution of problems on a finite but possibly long horizon T > 0. Only

an initial part up to a time τ > 0, where often τ � T , is implemented in the system under

control. The resulting state is then measured or estimated and set as an initial condition, and

the process is repeated. This procedure is depicted in Algorithm 1.

Algorithm 1 Standard MPC Algorithm

1: Given: Prediction horizon T > 0, implementation horizon 0 < τ ≤ T , initial state x0

2: k = 0

3: while controller active do

4: Solve OCP on [kτ, T + kτ ] with initial state xk, save optimal control in u

5: Implement u∣∣[kτ,(k+1)τ ]
as feedback, measure/estimate resulting state and save in xk+1

6: k = k + 1

7: end while

The resulting trajectories arising from an MPC algorithm can, in many applications, be

proven to be quasi-optimal for the original problem on the infinite horizon. For this and many

other aspects, we refer the interested reader to the paper [61] and the books [66, 118] which pro-

vide a mathematical foundation by covering topics including approximation properties, stability

analysis, feasibility, robustness and efficient numerical implementation.

A rigorous stability analysis and performance estimates for MPC without terminal constraints

or terminal cost can be concluded if a turnpike property is present, cf. [61]. The turnpike property

is a feature of solutions to optimal control problems and, qualitatively speaking, states that the

solution trajectory of an autonomous OCP on a long time horizon subject to an evolution

equation resides close to an optimal steady state for the majority of the time. This behavior is

1



depicted by the green trajectory in Figure 1.1. Loosely speaking, the turnpike property allows to

replace the infinite horizon in the optimal control problem by a finite but large horizon without

significantly changing the behavior of optimal solutions at small time instances. Also outside

an MPC context, the turnpike property is a useful tool to understand and capture the structure

and main features of solutions to problems on large time intervals.

After having been observed in the midst of the last century in the context of economics

analysis, cf. [43], the turnpike property has since received interest in various fields of mathematics

and economics, cf.,e.g., [7, 43, 53, 65, 75, 76, 79, 112, 134, 156, 157]. A particular kind of

turnpike behavior is the so called exponential turnpike property, where the convergence of the

dynamic problem’s solution to the optimal steady state is exponential, cf. the recent works

[24, 36, 62, 63, 113, 114, 123, 135, 136]. Recently, turnpike properties for non-observable systems

[51, 111], for problems arising in deep learning [47] and for fractional parabolic problems [142]

were presented.

As can be observed in Algorithm 1, an important feature of MPC is that only a first part

on [0, τ ] of the optimal control is used as a feedback and thus, only the solution on this part

has to be computed accurately. This motivates the use of discretizations in space and time

that are fine on [0, τ ] and coarse on the remainder. In optimal control of dynamical systems,

however, the optimal solution is subject to an adjoint equation which is formulated backwards in

time. Hence, the optimal solution is subject to a fully coupled system of forward and backward

equations and it is not clear a priori, that discretization errors stay local in time. However, if a

turnpike property is present, it seems intuitively clear that perturbations of the system (e.g. by

discretization errors) that occur in the far future will only marginally affect the optimal control

at present time, cf. Figure 1.1.

t = T

t = 0 exact solution
perturbed solution

turnpike

t = τ

Implemented as MPC feedback

Figure 1.1: Depiction of steady state turnpike behavior and sketch of a solution being accurate

only on an initial part.
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CHAPTER 1. INTRODUCTION

One main goal of this thesis is to prove this property of exponential decay of perturbations

under suitable stabilizability assumptions. We will analyze this topic in a very broad framework

by means of sensitivity analysis and we will see that this property is very closely connected

with the turnpike property, which can be interpreted as a property of exponential decay of

perturbations of initial (and terminal) values. In that context, the abstract analysis presented

in this thesis enables us to provide novel results in turnpike theory. Outside the context of MPC

and turnpike theory, this property of decay of perturbations can also be used for efficient domain

decomposition methods, cf. [105].

The stability and sensitivity analysis in this work will be carried out for problems governed

by general evolution equations with bounded and unbounded control or observation and purely

initial or initial and terminal condition. Moreover, we consider the case of OCPs governed by

non-autonomous parabolic equations under a particular stabilizability condition. Further, we

utilize the linear analysis to derive a local nonlinear result for semilinear parabolic equations.

Eventually, we will show how the theoretical results lead to very efficient MPC schemes using

goal oriented error estimation. We will present a particular objective for refinement that is

tailored to an MPC context. Due to the exponential decay of perturbations shown before, we

show for various examples that the controller performance is significantly increased when using

this specialized refinement objective.

1.1 Contributions and outline

This work is organized as follows.

Chapter 1 - Introduction. The remainder of this chapter will consist of introducing the

notation used in this work.

Chapter 2 - Sensitivity and turnpike analysis for linear quadratic optimal control

of general evolution equations. We show for optimal control problems governed by strongly

continuous semigroups that the influence of perturbations of the extremal equations decays ex-

ponentially in time if the operators satisfy a stabilizability and detectability assumption. Under

the same assumptions, we provide a turnpike result. We prove these results for bounded control

and observation operators in Theorem 2.27 and Theorem 2.30, unbounded but admissible con-

trol or observation in Theorem 2.48 and Theorem 2.49, and, under a controllability assumption,

for problems including terminal conditions on the state in Theorem 2.55 and Theorem 2.56.

We further provide sharper estimates for the particular case of a parabolic equation by a boot-

strapping argument in Section 2.6.1 and by maximal parabolic regularity in Section 2.6.2. We

accompany the theoretical results by various examples including heat and wave equations.
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1.1. CONTRIBUTIONS AND OUTLINE

Chapter 3 - Sensitivity analysis for linear quadratic optimal control of non-

autonomous parabolic equations. In this chapter we show in Theorem 3.14 for non-

autonomous problems satisfying a particular stabilizability notion that perturbations of the

optimality conditions decay exponentially in time. Moreover, assuming that the problem is au-

tonomous, we derive a turnpike result in Sobolev norms in Theorem 3.16. Finally, in Section 3.3,

we numerically illustrate the turnpike property for optimal control of a heat equation. Addi-

tionally, we put forward a priori time and space grid generation techniques specialized for MPC

and evaluate their performance by means of examples with distributed and boundary control of

a heat equation.

Chapter 4 - Sensitivity and turnpike analysis for nonlinear optimal control prob-

lems. We analyze nonlinear problems by formulating the extremal equations as a nonlinear

operator equation. We first present an abstract implicit function theorem with scaled norms,

which enables us to extend the sensitivity and turnpike results from the linear quadratic setting

to a nonlinear setting. A central assumption in this result is a T -independent bound on the

solution operator corresponding to the linearized system as well as T -uniform differentiability

of the corresponding nonlinearities. We will present two applications of this abstract analysis

and provide a turnpike and sensitivity result for finite dimensional problems in Corollary 4.18

and Corollary 4.19 and for semilinear parabolic problems in Corollary 4.30 and Corollary 4.31,

respectively. Further, in Section 4.5, we illustrate the turnpike property by means of numerical

examples of distributed control of a semilinear and boundary control of a quasilinear equation

and evaluate the performance of different a priori grid generation techniques.

Chapter 5 - Goal oriented error estimation for Model Predictive Control. We

utilize goal oriented a posteriori error estimation to efficiently and adaptively solve optimal

control problems arising in a Model Predictive Controller. To this end, we formulate a particular

functional for refinement tailored to MPC. We evaluate the space and time grids resulting

from refinement via this specialized objective and compare it to classical a posteriori error

estimation with respect to the cost functional. We prove in Theorem 5.2 and Theorem 5.6 under

stabilizability conditions that if one uses a localized objective for refinement, the error indicators

decay exponentially outside the support of this functional. Finally, we inspect the behavior

and the performance gain from using this specialized goal oriented error estimator in an MPC

loop. Thus, in Section 5.3, we present examples including autonomous and non-autonomous

optimal control of linear, semilinear and quasilinear parabolic equations with distributed or

boundary control and a domain with a reentrant corner. We conclude the chapter by providing

implementation details for efficient adaptive nonlinear MPC algorithms covering topics such as

parallelization, grid warm starts and solution warm starts.
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CHAPTER 1. INTRODUCTION

1.2 Notation

Throughout this thesis Ω ⊂ Rn, n ∈ {2, 3} is considered to be a bounded domain with Lip-

schitz boundary ∂Ω in the sense of [50, Definition 4.4] and [60]. If (X, ‖ · ‖X) is a Banach

space, we denote the topological dual space by X∗ and the duality product by 〈·, ·〉X∗×X , where

〈ϕ, v〉X∗×X := ϕ(v) for ϕ ∈ X∗, v ∈ X. By Lp(Ω), 1 ≤ p ≤ ∞ (and analogously for the

boundary ∂Ω), we denote the standard Lebesgue spaces of measurable functions v : Ω → R for

which

‖v‖Lp(Ω) :=

(∫
Ω
|v(ω)|p dω

) 1
p

<∞ for 1 ≤ p <∞,

‖v‖L∞(Ω)
:= ess sup

ω∈Ω
|v(ω)| <∞.

By ∂iv we mean the (weak) derivative of a space dependent function v with respect to the

i-th spatial variable. ∇v is the (weak) gradient of v and ∆v :=
∑n

i=1
∂2v
∂xi

the Laplacian. For

integers m, p we denote by Wm,p(Ω) the usual Sobolev space endowed with the norm

‖v‖Wm,p(Ω) :=

 ∑
0≤|α|≤m

∫
Ω
‖Dαv(ω)‖p dω

 1
p

,

where α = (α1, . . . , αn), |α| =
∑n

i=1 αi and Dα denotes the mixed (weak) partial derivative. We

adopt the usual notation and write Hm(Ω) = Wm,2(Ω). We will denote by tr : H1(Ω)→ L2(∂Ω)

the Dirichlet trace operator, cf. [138, Theorem 2.1] or [107, Section 2]. By H1
0 (Ω), we mean all

functions in H1(Ω) that are zero a.e. on the boundary. By H−1(Ω) we denote the topological

dual of H1
0 (Ω). For a precise definition of these Sobolev spaces the reader is referred to [1,

Chapter 3]. For a Lebesgue exponent 1 ≤ p ≤ ∞, we will write p′ for the dual exponent, i.e.,
1
p + 1

p′ = 1, where we use the convention 1
∞ = 0.

Let [0, T ] a bounded proper interval. If (X, ‖·‖X) is a Banach space, we denote by Lp(0, T ;X)

for 1 ≤ p ≤ ∞ the space of (Bochner)-measurable functions v : (0, T )→ X for which we have

‖v‖Lp(0,T ;X) :=

(∫ T

0
‖v(t)‖pX dt

) 1
p

<∞ if p <∞,

‖v‖L∞(0,T ;X) := ess sup
t∈[0,T ]

‖v(t)‖X <∞.

C(0, T ;X) denotes the space of all continuous functions v : [0, T ]→ X with norm

‖v‖C(0,T ;X) := max
t∈[0,T ]

‖v(t)‖.

For a precise definition of Bochner spaces of vector-valued functions, the reader is referred to

[158, Section 23.2] and [138, Section 3.4]. We will gather a few important properties of these

spaces.
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1.2. NOTATION

C(0, T ;X) and Lp(0, T ;X) together with the respective norms form Banach spaces, in case

of Lp(0, T ;X) after forming equivalence classes of functions who are equal a.e.. If X is a Hilbert

space with scalar product 〈·, ·〉X , then L2(0, T ;X) is, with the scalar product

〈u, v〉L2(0,T ;X) =

∫ T

0
〈u(t), v(t)〉X dt.

If (Y, ‖ · ‖Y ) is a Banach space and if the embedding X ↪→ Y is continuous, then Lp(0, T ;X) ↪→
Lp(0, T ;Y ) continuously for 1 ≤ p ≤ ∞. Moreover we have that Lp(0, T ;X)∗ ∼= Lp′(0, T ;X∗).

Analogously, for any measurable subset S ⊂ Rn, n ∈ N we denote by Lp(S;X) the space of

functions v : S → X such that

‖v‖Lp(S;X) :=

(∫
S
‖v(s)‖pX ds

) 1
p

<∞ if p <∞,

‖v‖L∞(S;X) := ess sup
s∈S

‖v(s)‖X <∞.

Eventually, we will denote the space of infinitely differentiable test functions ϕ : [0, T ] → X

by C∞([0, T ];X) and if X = R, we may write C∞(0, T ) = C∞([0, T ];X). For a function

v : [0, T ]→ X we mean by v′ or d
dtv the (distributional) time derivative of v.

If (X, ‖ · ‖X) and (Y, ‖ · ‖Y ) are Banach spaces we denote by L(X,Y ) the space of linear

bounded operators from X to Y endowed with the usual norm

‖M‖L(X,Y ) := sup
‖x‖X 6=0

‖Mx‖Y
‖x‖X

and we may abbreviate L(X) = L(X,X).

6



Chapter 2

Sensitivity and turnpike analysis for

linear quadratic optimal control of

general evolution equations

In this chapter, we will analyze the sensitivity of general optimal control problems that are

subject to dynamics governed by a strongly continuous semigroup. Strongly continuous semi-

groups are a very powerful tool for studying linear dynamical systems and their properties,

cf. [44, 109, 133, 153]. The case of (optimal) control of dynamical systems using a semigroup

approach is extensively treated in, e.g., [19, 35, 90, 91, 95, 132, 139, 154]. We will utilize this

theory to obtain sensitivity results in a very general setting. Additionally, we will make use

of the concept of admissible control and observation operators and well-posed linear systems

as introduced in the seminal papers [124, 125, 145], the monographs [132, 139] and the survey

articles [140, 146] in order to cover the case of unbounded observation or control operators. Such

unboundedness can occur when the control or observation acts on the boundary or at isolated

points. Semigroup theory and admissibility can be seen as the most general framework to obtain

trajectories that are continuous in time, which itself is crucial to make sense of initial conditions.

The analysis presented here is based on investigating the first-order necessary optimality

conditions (sometimes also referred to as extremal equations) of the optimal control problem

and characterizing their stability via bounds of the corresponding solution operator that are

independent of the time horizon T . The key to establishing these uniform operator bounds

are stabilizability and detectability assumptions and the main step is to consider special test

functions, similar to [113] and [135], that decay exponentially. Consequently, we will be able

to show that perturbations of the extremal equations’ dynamics decay exponentially in time.

Concerning temporal regularity, we show uniform estimates as well as L2-type estimates for

perturbations of L2 and L1 temporal integrability. As described in Chapter 1, an important

motivation for our sensitivity analysis is Model Predictive Control (MPC). The analysis in this

part shows that even in a very general setting, under appropriate stability assumptions, it

can be shown that perturbations occurring towards the end of the optimization horizon only

7



have negligible influence on the MPC feedback, if the optimization horizon is large. As stated

in Chapter 1, this particular feature will allow for a very efficient adaptive discretization of

optimal control problems governed by PDEs in a Model Predictive Controller, i.e., only refining

the spatial and temporal grid on the initial part.

As a second result, we show an exponential turnpike property as depicted in Figure 1.1. The

proofs establishing the turnpike property in recent works [24, 135] are based on a stabilizability

and detectability assumption on the system. We will also depend on these assumptions, however

under significantly weaker structural assumptions on the semigroup, which allows us to extend

the existing results to a very general setting. In particular, turnpike theorems in Hilbert spaces

were given in [135] for general strongly continuous semigroups with bounded control and obser-

vation operators as well as for boundary controlled parabolic equations. The proofs in [135],

however, make use of the Algebraic Riccati Equation—a theory that is well established for ad-

missible boundary control of parabolic equations but not for general evolution equations. Here,

we will show a turnpike result for unbounded but admissible control of non-parabolic equations

that has not been available until now. This is possible, as we avoid using Riccati theory in our

approach. Moreover, we present results in the case of initial and terminal conditions on the

state under a controllability condition. To the authors’ best knowledge, such a result was also

not available in a general Hilbert space setting.

Additionally, the analysis sheds light on the close connection of exponential sensitivity anal-

ysis and the turnpike property, both emerging from the T -uniform boundedness of the operator

corresponding to the extremal equations. This becomes clear by comparing the abstract scaling

results in Theorem 2.27 and Theorem 2.30.

Finally, we will see two approaches for refining the sensitivity estimates if one assumes addi-

tional structure on the system, i.e., that the underlying semigroup is analytic. For the turnpike

case, this relates to the analysis performed in [24], where the authors deduce a turnpike property

for analytic semigroups in Sobolev norms.

We will accompany all theoretical considerations by various examples of parabolic and hy-

perbolic systems with boundary or distributed control and observation.

Structure. First, in Section 2.1 we present our theoretical framework, the optimal control

problem and optimality conditions. In the first part of Section 2.2, namely Section 2.2.1, we

derive a general result on the propagation of perturbations over time in Theorem 2.27, under the

assumption that various norms of the extremal equations’ solution operator, which itself may

indeed depend on the horizon T , can be bounded independently of T . Further, in Section 2.2.2,

under the same assumptions of T -independent bounds on several solution operator’s norms,

we show a turnpike result in Theorem 2.30 for general evolution equations. In Section 2.2.3

we show that the T -independent bounds on these operator norms hold, if the dynamics are

exponentially stabilizable and detectable. In Section 2.3, we will extend the results to unbounded

but admissible control operators and discuss the necessary modifications to the proofs. Then,

in Section 2.4, under an exact controllability assumption, we extend our results to the case of a

terminal condition on the state. We then present two examples that fulfill the assumptions of

8
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our analysis, namely the interior control of a heat equation and the Dirichlet boundary control

of a wave equation, in Section 2.5. Eventually, in Section 2.6, we discuss the case of an analytic

semigroup and present two approaches to obtain stronger estimates. Finally, we will illustrate

these refined results by means of an example with a heat equation.

This chapter comprises the results of [71]. In Section 2.6, we present previously unpublished

results considering the particular case of an analytic semigroup.

2.1 Setting and preliminaries

In this section, we will introduce the solution concept for the dynamics we will consider, namely

the mild solution defined by a strongly continuous semigroup. In the first part we will cover

homogeneous equations, whereas in the second, we will include nonzero right hand sides. Last,

we will move to optimal control problems involving strongly continuous semigroups and recall

known results concerning existence of minimizers and optimality conditions. The majority of

this introduction is based on the books [35, 44, 109].

2.1.1 Strongly continuous semigroups and their generators

We are interested in solutions of an abstract dynamical system described by

x′ = Ax, x(0) = x0, (ACP)

where A : D(A) ⊂ X → X is a possibly unbounded but closed operator, x0 ∈ X is an initial

datum and X is a Hilbert space with scalar product and induced norm denoted by 〈·, ·〉 and

‖ · ‖, respectively. This initial value problem is often referred to as an abstract Cauchy problem

(ACP). To facilitate notation, we will indicate the operator norm by the same norm symbol,

i.e., for T ∈ L(X,X) =: L(X) we set ‖T‖ = ‖T‖L(X) if no ambiguity is possible.

In order to discuss the existence of solutions, a very powerful concept is to characterize the

solutions of the system above via a family of linear operators, parameterized by time, mapping

initial values to the state at the current time. Three important features are demanded from

this family: First, a semigroup property, second, that the operator corresponding to time zero

is the identity on X, and third, a strong continuity property, i.e., continuity in time at time

zero for all initial values. This family of operators is called a strongly continuous semigroup

or C0-semigroup, denoted by (T (t))t≥0. We will only consider semigroups that are strongly

continuous. Thus, for the sake of brevity, we will sometimes not explicitly annotate the strong

continuity and only write semigroup.

Definition 2.1 (Strongly continuous semigroup). An operator valued map T : R≥0 → L(X) is

called a strongly continuous semigroup if the following conditions are satisfied:

i) T (t)T (s) = T (t+ s) ∀t, s ≥ 0,

ii) T (0) = I,

9
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iii) ‖T (t)x0 − x0‖
t→0→ 0 for all x0 ∈ X.

A direct consequence of this definition is continuity of trajectories x(t) = T (t)x0.

Theorem 2.2. Consider a strongly continuous semigroup (T (t))t≥0. Then the map t 7→ T (t)x0

is continuous for all t ≥ 0 and x0 ∈ X.

Proof. See [109, Corollary 2.3].

In order to establish a connection between the abstract Cauchy problem (ACP) and a strongly

continuous semigroup, we define the infinitesimal generator.

Definition 2.3 (Infinitesimal generator). A linear operator A : D(A) ⊂ X → X is called the

infinitesimal generator of a strongly continuous semigroup (T (t))t≥0 if

Ax0 = lim
t→0

T (t)x0 − x0

t
∀x0 ∈ D(A),

where D(A) :=
{
x0 ∈ X | limt→0

T (t)x0−x0

t exists
}

is called the domain of A.

Remark 2.4. Another class of operator semigroups is formed by uniformly continuous semi-

groups, which can be defined via continuity at zero in the uniform operator topology, i.e.,

‖T (t)− I‖L(X)
t→0→ 0 as opposed to the strong operator topology in Definition 2.1 iii). It can be

shown that every uniformly continuous semigroup is of the form

T (t) = etA :=
∞∑
k=0

tkAk

k!
, (2.1)

where A ∈ L(X) [44, Chapter I, Theorem 3.7]. Moreover, boundedness of the generator on

X, closedness of D(A) in X and uniform continuity of the semigroup are equivalent, cf. [109,

Theorem 1.2] or [44, Chapter II, Corollary 1.5]. In this case, t 7→ T (t)x0 is continuously

differentiable in t, cf. [44, p.48f] or [109, Corollary 1.4]. However, demanding A to be bounded

on X is too restrictive in terms of applications, e.g., if A is the Laplace operator and X = L2(Ω).

The definition of the generator can also be interpreted as the derivative of the orbit map

t 7→ T (t)x0 at time t = 0. The following theorem shows that if x0 ∈ D(A), then the orbit

maps are differentiable for t ≥ 0. In this case semigroup and generator commute. It additionally

shows that not only the generator and its domain are defined uniquely by the strongly continuous

semigroup, but that the converse is also true.

Theorem 2.5. Let A with corresponding domain D(A) be the generator of a strongly continuous

semigroup (T (t))t≥0. Then, the following properties hold:

i) A : D(A) ⊂ X → X is a linear operator.

ii) A is a closed and densely defined operator that defines the strongly continuous semigroup

(T (t))t≥0 uniquely.

10
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iii) If x0 ∈ D(A), then T (t)x0 ∈ D(A) for all t ≥ 0 and

d

dt
T (t)x0 = T (t)Ax0 = AT (t)x0 ∀t ≥ 0.

Proof. See [44, Chapter II, Lemma 1.3 and Theorem 1.4] or [109, Theorem 2.4 and Corollary

2.5].

We can now define mild and classical solutions to the abstract problem (ACP).

Definition 2.6 (Solution concepts, homogeneous case). Consider (ACP) and let A generate a

strongly continuous semigroup (T (t))t≥0.

i) For x0 ∈ X, we call x(t) := T (t)x0 ∈ C(0, T ;X) the mild solution of the initial value

problem (ACP).

ii) A function x : R≥0 → X is called a classical solution of (ACP) if it satisfies (ACP) in the

classical sense, i.e.,

(a) x′(t) ∈ X, x(t) ∈ D(A) and x′(t) = Ax(t) in X ∀t ≥ 0,

(b) x(0) = x0.

While the classical solution is defined via the initial value problem (ACP), the mild solution

is defined via the strongly continuous semigroup (T (t))t≥0. However, the two solution concepts

are strongly connected, with mild solutions being a generalization of classical solutions, as the

following theorem shows. For a further discussion on the topic of well-posedness and existence

of particular types of solutions, the interested reader is referred to [44, Section II.6].

Theorem 2.7 (Relation of classical and mild solution). A classical solution to (ACP) exists if

and only if x0 ∈ D(A). In this case, the mild solution and the classical solution coincide.

Proof. The proof follows directly from the definition of mild and classical solutions and Theo-

rem 2.5.

Up to now, we introduced the semigroup and its infinitesimal generator. In many theoretical

considerations, a third component comes into play: the resolvent operator. This operator will

play a role when we investigate a particular class of semigroups, namely analytic semigroups, at

the end of this chapter, cf. Section 2.6.

Definition 2.8 (Resolvent operator). The set

ρ(A) := {λ ∈ C |λI −A : D(A)→ X is bijective}

is called the resolvent set of A. By the closed graph theorem [84, Theorem 5.20], for any λ ∈ ρ(A),

the operator

R(λ,A) := (λI −A)−1

is a bounded linear operator in X, called the resolvent operator. The complement of ρ(A) in C
is called the spectrum of A which we will denote by σ(A).
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Remark 2.9. It is common to define the semigroup first and then the generator as the right

derivative of the orbit maps in zero. In certain cases, there are also ways to define the semigroup

by the generator or the resolvent. A strongly continuous semigroup can sometimes be defined via

a Cauchy integral formula T (t) := 1
2πi

∫
∂U e

λtR(λ,A) dλ where U ⊂ C is an open neighborhood

of σ(A) with smooth positively oriented boundary ∂U (cf. [44, Section II.4.a]), an analogon to

Eulers formula T (t) := limn→∞(ntR(nt , A))n ([44, Chapter III, Corollary 5.5]), or by approxi-

mating the unbounded generator A by a sequence of bounded operators (An)n∈N and defining the

semigroup via T (t) := limn→∞ e
tAn with the exponential defined in (2.1) (An are called Yosida

approximations, cf. [44, Chapter II, Theorem 3.5]).

In concrete applications, the semigroup (T (t))t≥0 is unknown, whereas the operator A resp.

the initial value problem (ACP) is known. In this case, it is necessary to show that A indeed

is the generator of a strongly continuous semigroup. We shortly present the most important

theorems that establish such a result. The most general theorem is the Hille-Yosida theorem,

see [44, Chapter II, Theorem 3.8] and [35, Theorem 2.1.12]. The second one is the Lumer-

Phillips theorem for dissipative operators A, i.e., operators such that ‖(λ−A)x‖ ≥ λ‖x‖ for all

x ∈ D(A) and λ > 0, which, under additional assumptions, generate a contraction semigroup,

i.e., a semigroup such that ‖T (t)‖ ≤ 1 cf. [109, Theorem 4.3]. In a Hilbert space setting, Stone’s

theorem states that any densely defined skew adjoint operator A∗ = −A generates a unitary

group, i.e., ‖T (t)‖ = 1 for all t ∈ R, see, e.g., [44, Chapter II, Theorem 3.24].

In the following, we will discuss the asymptotic behavior of ‖T (t)‖ for t→∞.

Definition 2.10 (Type). The number ω0(T ) := inft>0
1
t log ‖T (t)‖ is called the type of a

strongly continuous semigroup (T (t))t≥0.

Theorem 2.11. Let (T (t))t≥0 be a strongly continuous semigroup. Then

i) ω0(T ) is finite or −∞.

ii) For every ω > ω0(T ), there exists Mω ≥ 1 such that

‖T (t)‖ ≤Mωe
ωt ∀t ≥ 0.

Proof. For i) see [19, Part II-1, Proposition 2.2] and for ii) see [19, Part II-1, Corollary 2.1].

Definition 2.12 (Exponential stability). A strongly continuous semigroup (T (t))t≥0 is called

exponentially stable if there exists α > 0 and M ≥ 1 such that

‖T (t)‖ ≤Me−αt ∀t ≥ 0.

The following theorem is a slightly modified version of [19, Part II-1, Theorem 2.2] and sheds

light on the connection of stability of a strongly continuous semigroup and its type. Additionally,

it shows that whenever the operator norm of a strongly continuous semigroup decays to zero for

t→∞, then it decays exponentially.
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Theorem 2.13 (Characterizations of exponential stability). Let (T (t))t≥0 be a strongly contin-

uous semigroup with generator A and 1 ≤ p <∞. Then the following are equivalent:

i) ω0(T ) < 0.

ii) There is a constant c > 0 such that∫ ∞
0
‖T (t)x0‖p ≤ cp‖x0‖p ∀x0 ∈ X.

iii) (T (t))t≥0 is exponentially stable in the sense of Definition 2.12.

iv) (T (t))t≥0 is asymptotically stable in L(X), i.e.,

‖T (t)‖ → 0 for t→∞.

In particular, for all ω > ω0(T ) the operator A−ωI generates an exponentially stable semigroup

(Tω(t))t≥0 with

Tω(t) = e−ωtT (t) ∀t ≥ 0.

Proof. See [19, Part II-1, Theorem 2.2] and [19, Part II-1, Corollary 2.2]

Remark 2.14. The equivalence of Theorem 2.13 ii) and exponential stability is also known as

the Datko-Pazy theorem, cf. [109, Theorem 4.1]. The characterization Theorem 2.13 ii) can also

be interpreted as T -uniform boundedness of the solution operator S : x0 → T (t)x0 to the abstract

Cauchy problem as a map from X to Lp(0, T ;X), i.e., S ∈ L(X,Lp(0, T ;X)) for 1 ≤ p < ∞
with operator norm independent of the time horizon T . This interpretation will be useful in the

next section, where we will establish T -independent bounds on solution operator norms under

stabilizability conditions.

2.1.2 Inhomogeneous equations

While we only considered homogeneous initial value problems in the previous subsection, we

will discuss the solutions to inhomogeneous equations in this part. To this end we replace the

problem of interest (ACP) by the inhomogeneous abstract Cauchy problem

x′ = Ax+ f, x(0) = x0, (iACP)

where again x0 ∈ X and A : D(A) ⊂ X → X is a possibly unbounded but closed operator.

Definition 2.15 (Mild solution, inhomogeneous case). Let A generate a strongly continuous

semigroup (T (t))t≥0 and consider x0 ∈ X and f ∈ L1(0, T ;X). The function

x(t) := T (t)x0 +

∫ t

0
T (t− s)f(s) ds (2.2)

is called the mild solution of the inhomogeneous initial value problem (iACP).
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The formula (2.2) is sometimes referred to as the variation of constants formula. By the

definition above, the mild solution exists, it is continuous in time and depends continuously on

the problem data. The following lemma shows that the mild solution is the unique solution of

(iACP). We again refer to classical solutions, being defined completely analogous to classical

solutions of homogeneous equations, cf. Definition 2.6.

Lemma 2.16 (Uniqueness of solutions, [109, Chapter 4, Corollary 2.2]). Let f ∈ L1(0, T ;X)

and x0 ∈ X. Then (iACP) has at most one classical solution which is a mild solution in the

sense of Definition 2.15.

Definition 2.17 (Weak solution). Let x0 ∈ X. A function x ∈ C(0, T ;X) is called a weak

solution of the inhomogeneous initial value problem (iACP) if

i) x(0) = x0,

ii) t→ 〈x(t), v〉 is absolutely continuous for v ∈ D(A∗),

iii) d
dt〈x(t), v〉 = 〈x(t), A∗v〉+ 〈f(t), v〉 for v ∈ D(A∗) and a.e. t ∈ [0, T ].

Theorem 2.18 (Equivalence of weak and mild solution [9]). Let x0 ∈ X and f ∈ L1(0, T ;X).

There exists a unique weak solution of (iACP) if and only if A generates a strongly continuous

semigroup on X, and in this case the weak solution is the mild solution, i.e., satisfies (2.15).

Remark 2.19. In the inhomogeneous case, one can define further meaningful solution concepts

than the mild, weak and classical solutions presented here. In particular, we refer to the notion

of strict and strong solutions, cf. [19, Part II-1, Definition 3.1].

In view of optimal control, we will need the definition of an adjoint semigroup. The following

theorem shows that, in a Hilbert space, the semigroup consisting of the adjoint operators is

generated by the adjoint of the generator.

Theorem 2.20 (Dual semigroup, [35, Theorem 2.2.6]). If A with domain D(A) generates a

strongly continuous semigroup (T (t))t≥0 on a Hilbert space X, then A∗ with domain D(A∗)

generates the dual semigroup (T (t)∗)t≥0 on X.

Remark 2.21 (Backwards-in-time equations). Let A generate a strongly continuous semigroup

(T (t))t≥0 and consider a backwards differential equation

−x′ = Ax+ f, x(T ) = xT

with terminal condition xT ∈ X. By a simple time transformation t→ T − t, it can be seen that

the unique mild solution is given by

x(t) = T (T − t)xT +

∫ T

t
T (s− t)f(s) ds.
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We furthermore recall a well-known scaling argument, of which we will make use in the

sensitivity analysis. Whenever we refer to the solution of an abstract Cauchy problem, it is

meant in the sense of the mild solution, cf. Definition 2.6 i) resp. Definition 2.15.

Lemma 2.22. Let A generate a strongly continuous semigroup (T (t))t≥0 on X, f1, f2 ∈ L1(0, T ;X)

and x0, xT ∈ X. Assume x1, x2 ∈ C(0, T ;X) solve the abstract Cauchy problems

x′1 = Ax1 + f1, x1(0) = x0,

−x′2 = A∗x2 + f2, x2(T ) = xT .

Then for any µ ∈ R :

i) x̃1(t) := e−µtx1(t) and x̃2(t) := e−µtx2(t) solve

x̃′1 = (A− µI)x̃1 + e−µtf1, x̃1(0) = x0,

−x̃′2 = (A+ µI)∗x̃2 + e−µtf2, x̃2(T ) = e−µTxT .

ii) For all 0 ≤ s ≤ t ≤ T ,

〈x1(t), x2(t)〉 − 〈x1(s), x2(s)〉 =

∫ t

s
(〈x2(τ), f1(τ)〉 − 〈f2(τ), x1(τ)〉) dτ.

Proof. For i), we multiply the variation of constants formula for x(t) by e−µt and get

x̃1(t) = e−µt
(
T (t)x0 +

∫ t

0
T (t− s)f1(s) ds

)
= e−µtT (t)x0 +

∫ t

0
e−µ(t−s)T (t− s)e−µsf1(s) ds.

Moreover, if a semigroup (T (t))t≥0 has generator A, the scaled semigroup (e−µtT (t))t≥0 has

generator A − µI [44, p.60] with the same domain as A, as the domain does not change under

bounded perturbations, cf. [44, Chapter III]. The result for x̃2 follows analogously. For ii), see

[95, Proposition 5.7].

2.1.3 Optimal control with bounded control and observation

In this part, we will consider the case of optimal control of dynamics governed by the generator

of a strongly continuous semigroup. Two further ingredients will come into play: On the one

hand an input operator B, which allows us to influence the dynamics via, e.g., actuators, and

on the other hand an output operator C, that could model, e.g., sensors.

Problem 2.23.

min
(x,u)

1

2

∫ T

0
‖C(x(t)− xd(t))‖2Y + ‖R(u(t)− ud(t))‖2U dt

s.t. x′ = Ax+Bu+ f,

x(0) = x0

(2.3)

with the following standing assumptions:
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i) T > 0 is a fixed time horizon,

ii) X is a real Hilbert space and A : D(A) ⊂ X → X is a (possibly unbounded) generator of a

strongly continuous semigroup (T (t))t≥0 on X, f ∈ L1(0, T ;X) and x0 ∈ X,

iii) U is a real Hilbert space with scalar product 〈·, ·〉U and induced norm ‖ · ‖U , B ∈ L(U,X),

ud ∈ L2(0, T ;U),

iv) R ∈ L(U,U) with ‖Ru‖2U ≥ α‖u‖2U for α > 0 and all u ∈ U ,

v) Y is a real Hilbert space with scalar product 〈·, ·〉Y and induced norm ‖ · ‖Y , C ∈ L(X,Y ),

xd ∈ L2(0, T ;X).

Theorem 2.24 (Existence of optimal solution and optimality conditions). There exists a unique

minimizer (x, u) ∈ C(0, T ;X)× L2(0, T ;U) to Problem 2.23. Further, there is an adjoint state

λ ∈ C(0, T ;X) such that

C∗Cx− λ′ −A∗λ = C∗Cxd,

R∗Ru−B∗λ = R∗Rud,

x′ −Ax−Bu = f,

(2.4)

λ(T ) = 0 and x(0) = x0. The second equation is to be understood in U∗ ∼= U for a.e. t ∈ [0, T ]

and the first and third in a mild sense along [0, T ].

Proof. First, observe that the control-to-state map S : L2(0, T ;U)→ C(0, T ;X) is given by

x(t) = (Su)(t) := T (t)x0 +

∫ t

0
T (t− s)(Bu(s) + f(s)) ds. (2.5)

Inserting this into the cost functional yields the reduced cost functional

J(u) :=
1

2

∫ T

0
‖C((Su)(t)− xd(t))‖2Y + ‖R(u(t)− ud(t))‖2U dt,

where J : L2(0, T ;U) → R is radially unbounded, i.e., J(u) → ∞ if ‖u‖L2(0,T ;U) → ∞ due to

‖Ru‖U ≥ α‖u‖U ∀u ∈ U , cf. Assumption iv) in Problem 2.23. By standard arguments, this

yields the existence of an optimal control, cf. [138, Theorem 2.14]. In order to derive optimality

conditions, we take the derivative of J at the optimal control u ∈ L2(0, T ;U) in direction

δu ∈ L2(0, T ;U):

J ′(u)δu =

∫ T

0
〈C((Su)(t)− xd(t)), C(

∫ t

0
T (t− s)Bδu(s) ds)〉Y + 〈R(u(t)− ud(t)), Rδu(t)〉U dt.

The adjoint of (Lδu)(t) :=
∫ t

0 T (t− s)Bδu(s) ds as a mapping from L2(0, T ;U) to L2(0, T ;X) is

given by (L∗d)(t) =
∫ T
t B∗T ∗(s− t)d(s) ds, cf. [90, Section 0.4]. Further, requiring J ′(u)δu = 0

for all δu ∈ L2(0, T ;U) yields∫ T

0
〈
∫ T

t
B∗T ∗(s− t)C∗C((Su)(s)− xd(s)) ds, δu(t)〉U + 〈R∗R(u(t)− ud(t)), δu(t)〉U dt = 0.
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As this equation needs to be fulfilled for all δu(t) ∈ L2(0, T ;U), we get

B∗
∫ T

t
T ∗(s− t)C∗C((Su)(s)− xd(s)) ds+R∗R(u(t)− ud(t)) = 0

for a.e. t ∈ [0, T ]. Defining λ(t) = −
∫ T
t T

∗(s − t)C∗C((Su)(s) − xd(s)) ds together with (2.5)

yields the system (2.4).

Remark 2.25. A different and more involved proof of existence of a solution and optimality

conditions for bounded control and observation in a nonlinear setting is given in [95, Chapter

3 and 4]. However, in this linear-quadratic setting, we presented a simpler proof, as this yields

the possibility to be extended to the unbounded control case, cf. the discussion in Remark 2.44.

In order to simplify notation and for a clear presentation, we will rewrite the optimality

system as a linear operator equation.

Definition 2.26 (Time evaluation operator). For t ∈ [0, T ], we define a linear bounded operator

Et : C(0, T ;X)→ X by Etx := x(t) for x ∈ C(0, T ;X).

DefiningQ := R∗R and eliminating the control via the second equation with u = Q−1B∗λ+ud

leads to the linear system of equations
C∗C − d

dt −A
∗

0 ET
d
dt −A −BQ−1B∗

E0 0


︸ ︷︷ ︸

=:M

(
x

λ

)
=


C∗Cxd

0

Bud + f

x0

 . (2.6)

The operator M corresponds to the two abstract inhomogeneous evolution equations (2.4) with

initial and terminal condition after elimination of the control, i.e., the adjoint equation in the

first two rows and the state equation in the last two rows, and allows for a brief notation. The

solution operator of this system, which we denote by M−1, maps initial values and source terms

for the state and the adjoint equation to the solution. A central question in the following will

be the dependence of the norm of M−1 on the time T . Here we recall Remark 2.14, where we

observed that for strongly continuous semigroups the solution operator has an T -independent

bound as operator from X to Lp(0, T ;X) with 1 ≤ p < ∞ if and only if the semigroup is

exponentially stable. In the optimal control setting, instead of assuming exponential stability of

the strongly continuous semigroup generated by A, a weaker notion, namely stabilizability and

detectability of (A,B) resp. (A,C) will suffice to derive T -independent bounds for the solution

operator M−1.

2.2 The case of bounded control and observation

This section is split up into three major parts. The first two subsections give two preliminary

results, the first stating that perturbations of the right hand side stay local in time, whereas the
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second yields an exponential turnpike result. They are preliminary in the sense that they include

assumptions on T -independent bounds on M−1 as defined in (2.6). Under a stabilizability and

detectability assumption, these bounds will be derived in the third part of this section.

2.2.1 An abstract exponential sensitivity result

We will refer to the solution (x, λ) ∈ C(0, T ;X)2 of (2.6) as the exact solution and assume that

there is a second pair of variables (x̃, λ̃) ∈ C(0, T ;X)2 that satisfies the perturbed system
C∗C − d

dt −A
∗

0 ET
d
dt −A −BQ−1B∗

E0 0

(x̃λ̃
)

=


C∗Cxd

0

Bud + f

x0

+


ε1

εT
ε2

ε0

 (2.7)

for perturbations (ε1, ε2) ∈ L1(0, T ;X)2 and (ε0, εT ) ∈ X2. The solution (x̃, λ̃) will be referred

to as the perturbed solution. The terms ε1 and ε2 are perturbations of the dynamics which

could be caused by discretization errors in time or space over the time interval [0, T ], whereas

ε0 and εT resemble perturbations from space discretization errors in the initial and terminal

datum, respectively. The question we want to answer is the following: How does (ε0, εT ) and

the behavior of the perturbation of the dynamics ε1 and ε2 over time influence the temporal

behavior of δx := x̃− x and δλ := λ̃− λ? To answer this question, we subtract (2.6) from (2.7)

and conclude by linearity
C∗C − d

dt −A
∗

0 ET
d
dt −A −BQ−1B∗

E0 0

(δxδλ
)

=


ε1

εT
ε2

ε0

 =: ε. (2.8)

Directly from the solvability of the extremal equations, one would obtain the estimates

‖(δx, δλ)‖C(0,T ;X)2 ≤ c‖ε‖(L1(0,T ;X)×X)2 ,

‖(δx, δλ)‖Lp(0,T ;X)2 ≤ c‖ε‖(L1(0,T ;X)×X)2 ,

for any 1 ≤ p ≤ ∞, meaning the absolute error will be small if the perturbation is small.

However, there are two downsides of this estimate. First, we do not know how the constant

c ≥ 0 depends on T and second, motivated by the particular application to MPC, we would

like (ε1, ε2) to be increasing towards T , modeling grids that coarsen up exponentially. In that

case, this estimate would yield no useful information. It turns out that the key towards deriving

local-in-time estimates for the absolute error (δx, δλ) is a scaling argument combined with T -

independent bounds on the solution operator M−1, as stated in the following theorem.

Theorem 2.27. Let (δx, δλ) ∈ C(0, T ;X)2 solve (2.8), where ε1, ε2 ∈ L1(0, T ;X) and ε0, εT ∈
X. Moreover, let δu = Q−1B∗δλ. Assume the solution operator’s norms

‖M−1‖L((L1(0,T ;X)×X)2,C(0,T ;X)2), ‖M−1‖L((L2(0,T ;X)×X)2,C(0,T ;X)2),

‖M−1‖L((L1(0,T ;X)×X)2,L2(0,T ;X)2), ‖M−1‖L((L2(0,T ;X)×X)2,L2(0,T ;X)2)

(2.9)
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can be bounded independently of T . Then there is a scaling factor µ > 0 satisfying

µ <
1

‖M−1‖L((L2(0,T ;X)×X)2,L2(0,T ;X)2)

and a constant c ≥ 0, both independent of T , such that, defining

ρ :=
∥∥e−µtε1(t)

∥∥
S

+
∥∥e−T εT∥∥+

∥∥e−µtε2(t)
∥∥
S

+ ‖ε0‖

for S := L1(0, T ;X) or S := L2(0, T ;X), we have∥∥e−µtδx(t)
∥∥
L2(0,T ;X)

+
∥∥e−µtδλ(t)

∥∥
L2(0,T ;X)

≤ cρ,∥∥e−µtδu(t)
∥∥
L2(0,T ;U)

≤ cρ
(2.10)

and ∥∥e−µtδx(t)
∥∥
C(0,T ;X)

+
∥∥e−µtδλ(t)

∥∥
C(0,T ;X)

≤ cρ,∥∥e−µtδu(t)
∥∥
L∞(0,T ;U)

≤ cρ.
(2.11)

Proof. For µ > 0 arbitrary we introduce scaled variables δ̃x(t) := e−µtδx(t), δ̃λ(t) := e−µtδλ(t),

ε̃1(t) := e−µtε1(t) and ε̃2(t) := e−µtε2(t) and apply Lemma 2.22 i). This yields

(2.8) ⇐⇒




C∗C − d
dt −A

∗

0 ET
d
dt −A −BQ−1B∗

E0 0

+ µ


0 −I
0 0

I 0

0 0


︸ ︷︷ ︸

=:P


(
δ̃x

δ̃λ

)
=


e−µtε1

e−T εT
e−µtε2

ε0

 .

Introducing z̃ :=
(
δ̃x, δ̃λ

)
and ε̃ := (e−µtε1, e

−T εT , e
−µtε2, ε0), we compute

(M + µP )z̃ = ε̃ ⇒ (I + µPM−1)Mz̃ = ε̃ ⇒ z̃ = M−1(I + µPM−1)−1ε̃. (2.12)

Next, we expand (I+µPM−1)−1 into a Neumann series, cf. [85, Theorem 2.14]. In the following,

denote E = (L2(0, T ;X) × X)2. While the previous computation is valid for all µ ∈ R, we

now choose µ > 0 small enough such that β := µ‖M−1‖L(E,L2(0,T ;X)2) < 1. By assumption,

‖M−1‖L(E,L2(0,T ;X)2) is bounded independently of T , so we can choose µ > 0 independently of

T . Since ‖P‖L(L2(0,T ;X)2,E) ≤ 1, it follows that ‖µPM−1‖L(E,E) ≤ β < 1. A Neumann series

expansion of (I + µPM−1)−1 yields

‖(I + µPM−1)−1‖L(E) ≤
∞∑
i=0

‖((µPM−1)i‖L(E) ≤
∞∑
i=0

βi =
1

1− β
. (2.13)

Hence, we obtain the desired L2-estimate on state and adjoint for the case S = L2(0, T ;X):

‖z̃‖2L2(0,T ;X) ≤ ‖M
−1‖L(E,L2(0,T ;X)2)‖(I + µPM−1)−1‖L(E,E)‖ε̃‖E .
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To prove the remaining pointwise estimates or the case S = L1(0, T ;X), we use the following

alternative representation, which can be verified by premultiplication with (I + µPM−1):

(I + µPM−1)−1 = I − (I + µPM−1)−1µPM−1.

Now, we estimate the operator norm for Z = C(0, T ;X)2 or Z = L2(0, T ;X)2 via

‖(M−1(I + µPM−1)−1‖L((S×X)2,Z) = ‖(M−1 −M−1(I + µPM−1)−1µPM−1‖L((S×X)2,Z)

≤ ‖M−1‖L((S×X)2,Z) + ‖M−1‖L(E,Z)‖((I + µPM−1)−1‖L(E,E)‖µPM−1‖L((S×X)2,E)

≤ ‖M−1‖L((S×X)2,Z) +
µ‖M−1‖L(E,Z)‖M−1‖L((S×X)2,L2(0,T ;X)2)

1− β

using ‖P‖L(L2(0,T ;X)2,E) ≤ 1 and (2.13). Thus, by (2.12) it follows with taking norms that

‖z̃‖Z ≤

(
‖M−1‖L((S×X)2,Z) +

µ‖M−1‖L(E,Z)‖M−1‖L((S×X)2,L2(0,T ;X)2)

1− β

)
‖ε̃‖S2 , (2.14)

for Z = C(0, T ;X)2 or Z = L2(0, T ;X)2. Using the assumption on the T -independent bound

on the operator norms and the definition ρ := ‖ε̃‖(S×X)2 , we obtain the result for the state and

the adjoint by going back to the original variables via z̃ = (e−µtδx, e−µtδλ). For the control, we

conclude

‖e−µtδu(t)‖L2(0,T ;U) = ‖e−µtQ−1B∗δλ‖L2(0,T ;U) ≤ ‖Q−1B∗‖L(X,U)

∥∥δ̃λ∥∥L2(0,T ;X) ≤ cρ,

‖e−µtδu(t)‖U = ‖e−µtQ−1B∗δλ(t)‖U ≤ ‖Q−1B∗‖L(X,U)

∥∥δ̃λ(t)
∥∥ ≤ cρ (2.15)

for a.e. t ∈ [0, T ], where we used the bound on ‖e−µtδλ‖L2(0,T ;X) and ‖e−µtδλ‖C(0,T ;X) and the

fact that B and Q are local in time. This yields (2.10) and (2.11).

Remark 2.28. We will briefly comment on the Neumann series occurring in (2.13). The

operator (I + µPM−1)−1 can be represented by its Neumann series, i.e., (I + µPM−1)−1 =∑∞
i=0(−µPM−1)k, see [85, Theorem 2.14]. We provide an illustration for the summand for

k = 2, i.e., (µPM−1)2 = µPM−1µPM−1. The application of this operator can be interpreted

as the following. M−1 solves the corresponding Cauchy problems with right hand side including

initial and terminal condition. Afterwards, the operator µP maps the solutions to source terms

scaled by µ, i.e., µP (δx, δλ) = (−µδλ, 0, µδx, 0). This right hand side then enters M−1 again,

the Cauchy problems are solved with zero initial data and source terms −µδλ and µδx and the

process is repeated.

The crucial assumption in Theorem 2.27 is that the operator norms in (2.9) can be bounded

independently of T . This ensures that the scaling factor and the constants in the upper bound

do not deteriorate for T →∞. In Section 2.2.3, we will show that these T -independent bounds

can be derived if the dynamics are exponentially stabilizable and detectable. It will turn out

that all bounds in (2.9) can be shown simultaneously. Yet before, we will present another

scaling theorem which, again under T -independent boundedness ofM−1, provides an exponential

turnpike property. The approach will be very closely connected to the proof of Theorem 2.27.
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2.2.2 An exponential turnpike result

In this section, we modify the scaling approach employed in Theorem 2.27 to deduce a turnpike

result for the optimal solution of Problem 2.23 and the corresponding adjoint state. In the case

of optimal control problems governed by general evolution equations in Hilbert spaces, turnpike

theorems were given for dynamics governed by a strongly continuous semigroup with bounded

control and observation operators as well as for boundary controlled parabolic equations in

[135]. We give an alternative proof for the case of bounded control and observation that can be

generalized to unbounded control or observation, see Section 2.3, and a terminal condition on the

state, see Section 2.4. First, we introduce the steady state optimization problem corresponding

to Problem 2.23. To this end, we assume that xd, ud and f are independent of time, i.e.,

xd ≡ x̄d ∈ X, ud ≡ ūd ∈ U and f ≡ f̄ ∈ X. The steady state control problem then reads

min
x̄,ū

1

2
‖C(x̄− x̄d)‖2Y +

1

2
‖R(ū− ūd)‖2U

s.t. −Ax̄−Bū = f̄ .

(2.16)

We tacitly assume that A is continuously invertible to ensure the existence of a control-to-state

map. In the case of parabolic PDEs where A is a differential operator of second order, this could,

e.g., be achieved by assuming coercivity of the bilinear form induced by A via the Lax-Milgram

lemma. By coercivity of R, cf. Problem 2.23 iv), the problem is convex and (x̄, λ̄) solves the

corresponding necessary and sufficient first-order conditions(
C∗C −A∗
−A −BQ−1B∗

)(
x̄

λ̄

)
=

(
C∗Cx̄d

Būd + f̄

)
, (2.17)

where Q = R∗R and where we eliminated the control via ū = Q−1B∗λ̄+ ūd.

Lemma 2.29. Let (x, u, λ) solve Problem 2.23 with f = 0. Moreover, let (x̄, ū, λ̄) solve the

corresponding steady state problem (2.16). Then (δx, δλ) := (x− x̄, λ− λ̄) solves
C∗C − d

dt −A
∗

0 ET
d
dt −A −BQ−1B∗

E0 0

(δxδλ
)

=


0

−λ̄
0

x0 − x̄

 , (2.18)

where δu := u− ū = Q−1B∗δλ and Et for t ∈ [0, T ] is defined in Definition 2.26.

Proof. Using (2.17) and d
dt x̄ = d

dt λ̄ = 0 yields that (x̄, λ̄) satisfies
C∗C − d

dt −A
∗

0 ET
d
dt −A −BQ−1B∗

E0 0

(x̄λ̄
)

=


C∗Cx̄d

λ̄

Būd + f̄

x̄

 . (2.19)

We conclude the result by subtracting (2.19) from (2.6).
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Theorem 2.30. Let (x, u, λ) solve Problem 2.23 and let (x̄, ū, λ̄) solve the corresponding steady

state problem (2.16). Assume the solution operator’s norms

‖M−1‖L((L2(0,T ;X)×X)2,C(0,T ;X)2) and ‖M−1‖L((L2(0,T ;X)×X)2,L2(0,T ;X)2) (2.20)

can be bounded independently of T . Then, defining (δx, δu, δλ) := (x − x̄, u − ū, λ − λ̄), there

exist a scaling factor µ > 0 satisfying

µ <
1

‖M−1‖L((L2(0,T ;X)×X)2,L2(0,T ;X)2)

and a constant c ≥ 0, both independent of T , such that∥∥∥∥ 1

e−µt + e−µ(T−t) δx(t)

∥∥∥∥
L2(0,T ;X)

+

∥∥∥∥ 1

e−µt + e−µ(T−t) δu(t)

∥∥∥∥
L2(0,T ;U)

+

∥∥∥∥ 1

e−µt + e−µ(T−t) δλ(t)

∥∥∥∥
L2(0,T ;X)

≤ c
(
‖x0 − x̄‖+

∥∥λ̄∥∥) , (2.21)

∥∥∥∥ 1

e−µt + e−µ(T−t) δx(t)

∥∥∥∥
C(0,T ;X)

+

∥∥∥∥ 1

e−µt + e−µ(T−t) δu(t)

∥∥∥∥
L∞(0,T ;U)

+

∥∥∥∥ 1

e−µte−µ(T−t) δλ(t)

∥∥∥∥
C(0,T ;X)

≤ c
(
‖x0 − x̄‖+

∥∥λ̄∥∥) . (2.22)

Proof. We proceed similarly to the proof of Theorem 2.27 and introduce a scaling factor

0 < µ < 1
‖M−1‖L((L2(0,T ;X)×X)2,L2(0,T ;X)2)

and scaled variables δ̃x := 1
e−µt+e−µ(T−t) δx and δ̃λ :=

1
e−µt+e−µ(T−t) δλ, and compute

(2.18) ⇐⇒




C∗C − d
dt −A

∗

0 ET
d
dt −A −BQ−1B∗

E0 0


︸ ︷︷ ︸

=M

+µ


0 F

0 0

−F 0

0 0


︸ ︷︷ ︸

=:P


(
δ̃x

δ̃λ

)
=

1

1 + e−µT


0

−λ̄
0

x0 − x̄



where F := e−µ(T−t)−e−µt
e−µt+e−µ(T−t) and the factor 1

1+e−µT
arises due to the scaling of the initial values.

The proof for the estimate of the state and the adjoint in (2.21) and (2.22) is analogous to the

one of Theorem 2.27. Defining z̃ := (δ̃x, δ̃λ) and r̃ := 1
1+e−µT

(0,−λ̄, 0, x0 − x̄), we get

(M + µP )z̃ = r̃ ⇒ (I + µPM−1)Mz̃ = r̃ ⇒ z̃ = M−1(I + µPM−1)−1r̃. (2.23)

We observe that ‖F‖L(L2(0,T ;X),L2(0,T ;X)) ≤ 1 and thus ‖P‖L(L2(0,T ;X)2,(L2(0,T ;X)×X)2) ≤ 1. Thus,

as in the proof of Theorem 2.27, by a standard Neumann series argument, cf. [85, Theorem

2.14] and by choosing µ such that β := µ‖M−1‖L((L2(0,T ;X)×X)2,L2(0,T ;X)2) < 1, the mapping
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(I + µPM−1) is continuously invertible. Therefore, using the Neumann series representation of

(I + µPM−1)−1 yields that

‖(I + µPM−1)−1‖L((L2(0,T ;X)×X)2,(L2(0,T ;X)×X)2)

≤
∞∑
i=0

‖(µPM−1)i‖L((L2(0,T ;X)×X)2,(L2(0,T ;X)×X)2) ≤
∞∑
i=0

βi =
1

1− β
.

(2.24)

Hence, we conclude with (2.23) and (2.24)

‖z̃‖L2(0,T ;X)2 ≤
‖M−1‖L((L2(0,T ;X)×X)2,L2(0,T ;X)2)

1− β
‖r̃‖(L2(0,T ;X)×X)2 ,

‖z̃‖C(0,T ;X)2 ≤
‖M−1‖L((L2(0,T ;X)×X)2,C(0,T ;X)2)

1− β
‖r̃‖(L2(0,T ;X)×X)2 .

(2.25)

Finally, ‖r̃‖(L2(0,T ;X)×X)2 ≤ ‖x0 − x̄‖ +
∥∥λ̄∥∥ and going back to the original variables yields the

result for the state and adjoint. We set δ̃u := 1
e−µt+e−µ(T−t) δu and from boundedness of B, we

compute∥∥δ̃u∥∥L2(0,T ;U) =

∥∥∥∥ 1

e−µt + e−µ(T−t)Q
−1B∗δλ

∥∥∥∥
L2(0,T ;U)

≤ ‖Q−1B∗‖L(X,U)‖
∥∥δ̃λ∥∥L2(0,T ;X) ≤ c‖r̃‖(L2(0,T ;X)×X)2 ,∥∥δ̃u(t)

∥∥
U =

∥∥∥∥ 1

e−µt + e−µ(T−t)Q
−1B∗δ̃λ(t)

∥∥∥∥
≤ ‖Q−1B∗‖L(X,U)

∥∥δ̃λ(t)
∥∥ ≤ c‖r̃‖(L2(0,T ;X)×X)2 for a.e t ∈ [0, T ],

(2.26)

which completes the estimate (2.22).

We give a short interpretation of the two estimates given in Theorem 2.30. For the first

inequality (2.21) consider a fixed ε ∈ (0, 1
2). For t ∈ [εT, (1−ε)T ] and if T →∞, the two scaling

terms e−µt and e−µ(T−t) approach zero exponentially fast and we estimate

1

e−µt + e−µ(T−t) ≥
1

e−µεT + e−µ(T−(1−ε)T )
=

1

2e−µεT
.

Hence, e.g., for the difference of state x and its turnpike x̄,∫ T

0

∥∥∥∥ x(t)− x̄
e−µt + e−µ(T−t)

∥∥∥∥2

dt ≥
∫ (1−ε)T

εT

∥∥∥∥ x(t)− x̄
e−µt + e−µ(T−t)

∥∥∥∥2

dt ≥ 1

4e−2µεT

∫ (1−ε)T

εT
‖x(t)− x̄‖2 dt

which, using (2.21) of Theorem 2.30, implies that∫ (1−ε)T

εT
‖x(t)− x̄‖2 dt ≤ ce−2µεT

(
‖x0 − x̄‖+

∥∥λ̄∥∥)2 .
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Proceeding analogously for the adjoint and the control, we get

‖x− x̄‖L2(εT,(1−ε)T ;X), ‖u− ū‖L2(εT,(1−ε)T ;U),
∥∥λ− λ̄∥∥

L2(εT,(1−ε)T ;X)
→ 0 if T →∞

i.e., L2(0, T ;X)-convergence on a part Iε = [εT, (1− ε)T ] of the whole time interval [0,T]. The

convergence rate is exponential and the size of Iε grows linearly in T , as its length is (1− 2ε)T .

Hence, the share of Iε of the whole interval is constant because (1− 2ε)T/T = 1− 2ε. Thus, on

a fixed percentage of the interval [0, T ], the state, the control and the adjoint converge to the

turnpike in the L2 norm, as the horizon T goes to infinity.

For the second inequality, i.e., (2.22), rewriting the pointwise estimate, we have

‖x(t)− x̄‖+
∥∥λ(t)− λ̄

∥∥ ≤ c(e−µt + e−µ(T−t))

for every t ∈ [0, T ]. Therefore, if we fix ε ∈ (0, 1
2) and take the maximum over all t ∈ [εT, (1−ε)T ],

we get

‖x− x̄‖C(εT,(1−ε)T ;X) +
∥∥λ− λ̄∥∥

C(εT,(1−ε)T ;X)
≤ 2ce−µεT .

The right hand side approaches zero exponentially fast as T → ∞. Hence, for each ε ∈ (0, 1
2),

we obtain uniform exponential convergence on the interval [εT, (1− ε)T ] of x and λ to x̄ and λ̄,

respectively, as T →∞. Again, as (1−2ε)T/T = (1−2ε), we conclude that on a fixed fraction of

the whole interval [0, T ], the state and adjoint converge to the turnpike in the maximum norm.

Under the assumption of T -independent bounds on various solution operator’s norms, we

have deduced two results: First, we proved that perturbations of the right hand side stay local

in time, cf. Theorem 2.27 and second, we obtained a turnpike result, cf. Theorem 2.30. In

the following, we will show that these T -independent bounds indeed hold, provided that the

dynamics are stabilizable and detectable.

2.2.3 T -independent bounds for the solution operator

In this section, we will derive T -independent bounds on the norm of the solution operator M−1,

which is a central assumption in the abstract scaling result of Theorem 2.27 and Theorem 2.30.

Since [0, T ] is bounded, we have the continuous embeddings

C(0, T ;X) ↪→ L2(0, T ;X) ↪→ L1(0, T ;X).

Hence, we may denote

‖v‖1∨2 := min{‖v‖L1(0,T ;X), ‖v‖L2(0,T,X)}

for v ∈ L1(0, T ;X) (setting ‖v‖L2(0,T ;X) =∞ if v 6∈ L2(0, T ;X)), where

min

{
1,

1√
T

}
‖v‖L1(0,T ;X) ≤ ‖v‖1∨2 ≤ ‖v‖L1(0,T ;X).

Likewise, we write

‖v‖2∧∞ := max{‖v‖L2(0,T ;X), ‖v‖C(0,T ;X)},
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for v ∈ C(0, T ;X) satisfying

‖v‖C(0,T ;X) ≤ ‖v‖2∧∞ ≤ max
{

1,
√
T
}
‖v‖C(0,T ;X).

We note that ‖ · ‖2∧∞ induces an equivalent norm on C(0, T ;X) where the constants in

the equivalence of norms deteriorate for T → ∞. This is not the case for ‖ · ‖1∨2, which does

not satisfy a triangle inequality. For brevity of notation, for z := (v1, v2) ∈ L1(0, T ;X)2, we

will write ‖z‖21∨2 := ‖v1‖21∨2 + ‖v2‖21∨2. Similarly for z = (v1, v2) ∈ C(0, T ;X)2 we abbreviate

‖z‖22∧∞ := ‖v1‖22∧∞ + ‖v1‖22∧∞. In the following, c > 0 denotes a generic constant and will be

renamed accordingly over the course of a proof. It is very important, however, that the constants

in the proofs will never depend on the horizon T . Also, we tacitly use equivalence of norms in

R2: max{|a|, |b|} ≈
√
|a|2 + |b|2 ≈ |a|+ |b| for all a, b ∈ R2.

We first present a Hölder-like inequality for the notions introduced above.

Lemma 2.31. Let v ∈ C(0, T ;X) and w ∈ L1(0, T ;X). Then,∫ T

0
〈v(s), w(s)〉 ds ≤ ‖v‖2∧∞‖w‖1∨2.

Proof.∫ T

0
〈v(s), w(s)〉 ds ≤ min{‖v‖C(0,T ;X)‖w‖L1(0,T ;X), ‖v‖L2(0,T ;X)‖w‖L2(0,T ;X)}

≤ min{‖v‖2∧∞‖w‖L1(0,T ;X), ‖v‖2∧∞‖w‖L2(0,T ;X)} ≤ ‖v‖2∧∞‖w‖1∨2.

The main result of this section will be a T -independent bound for

‖M−1‖L(((L1(0,T ;X),‖·‖1∨2)×X)2,(C(0,T ;X),‖·‖2∧∞)2).

This implies all desired T -independent bounds required by Theorem 2.27 and Theorem 2.30. To

this end, consider the mild solution (x, λ) of the system
C∗C − d

dt −A
∗

0 ET
d
dt −A −BQ−1B∗

E0 0

(xλ
)

=


l1
λT
l2
x0

 (2.27)

in [0, T ], where l1, l2 ∈ L1(0, T ;X) and x0, λT ∈ X are given. Again, we abbreviate z = M−1r

with z = (x, λ) and r = (l1, λT , l2, x0).

Next, we introduce the main assumption that ensures a T -independent bound. Recall from

Definition 2.12 that a strongly continuous semigroup (T (t))t≥0 is called exponentially stable if

there exist M,µ > 0 such that ‖T (t)‖L(X) ≤Me−µt for all t > 0.

Assumption 2.32.
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i) (A,C) is exponentially detectable, i.e., there exists a feedback operator KC ∈ L(Y,X) such

that the semigroup generated by A∗ + C∗K∗C is exponentially stable.

ii) (A,B) is exponentially stabilizable, i.e., there exists a feedback operator KB ∈ L(X,U) such

that the strongly continuous semigroup generated by A+BKB is exponentially stable.

By the norm identity of an operator and its adjoint, i.e., for a semigroup (T (t))t≥0, ‖T ∗(t)‖ =

‖T (t)‖, detectability can equivalently be formulated by exponential stability of the semigroup

generated by A+KCC.

The assumption above relates to Remark 2.14, where a T -independent bound for the solution

operator of a Cauchy problem can be shown if (and only if) the underlying semigroup is expo-

nentially stable. In the case of optimal control, we are able to replace exponential stability by

mere stabilizability and detectability. This weaker assumption allows to include unstable or con-

servative systems, e.g., the undamped wave equation, where the corresponding (uncontrolled)

semigroup is a group of isometries, i.e., ‖T (t)‖ = 1 for all t ∈ R.

Using the stabilizability and detectability assumption, we first define suitable exponentially

stable test functions. The approach in Lemma 2.33 and Lemma 2.34 is inspired by the stability

estimates in [135, Lemma 2] and [113, Lemma 3.5].

Lemma 2.33. Consider x ∈ C(0, T ;X), t ∈ [0, T ] and let ϕ ∈ C(0, t;X) solve

−ϕ′ = (A∗ + C∗K∗C)ϕ in [0, t],

ϕ(t) = x(t),
(2.28)

where K∗C is a stabilizing feedback for (A∗, C∗). Then, there are constants Mϕ, kϕ > 0 such that

for test functions v ∈ L2(0, t;X):∫ t

0
|〈v(s), ϕ(s)〉| ds ≤ ‖x(t)‖ Mϕ√

kϕ

√∫ t

0
‖v(s)‖2e−kϕ(t−s) ds. (2.29)

Additionally, consider λ ∈ C(0, T ;X), t ∈ [0, T ] and let ψ ∈ C(t, T ;X) solve

ψ′ = (A+BKB)ψ in [t, T ],

ψ(t) = λ(t),
(2.30)

where KB is a stabilizing feedback for (A,B). Then, there are constants Mψ, kψ > 0 such that

for test functions v ∈ L2(t, T ;X):∫ T

t
|〈v(s), ψ(s)〉| ds ≤ ‖λ(t)‖

Mψ√
kψ

√∫ T

t
‖v(s)‖2e−kψ(s−t) ds. (2.31)

Proof. We will first prove (2.29). By exponential stability of the strongly continuous semigroup,

there exist Mϕ, kϕ > 0, such that

‖ϕ(s)‖ ≤Mϕe
−kϕ(t−s)‖x(t)‖ ∀ 0 ≤ s ≤ t.
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Using this exponential stability, we get∫ t

0
|〈v(s), ϕ(s)〉| ds ≤

∫ t

0
‖v(s)‖‖ϕ(s)‖ ds ≤ ‖x(t)‖

∫ t

0
‖v(s)‖Mϕe

−kϕ(t−s) ds.

For v ∈ L2(0, t;X), the integral term can be estimated via:∫ t

0
‖v(s)‖Mϕe

−kϕ(t−s) ds =

∫ t

0
‖v(s)‖Mϕe

− kϕ
2

(t−s) · e−
kϕ
2

(t−s) ds

≤

√∫ t

0
‖v(s)‖2M2

ϕe
−kϕ(t−s) ds ·

√∫ t

0
e−kϕ(t−s) ds︸ ︷︷ ︸
< 1√

kϕ

.

The estimate (2.31) follows analogously.

By using ϕ and ψ from (2.28) and (2.30) as test functions for (2.27), respectively, we obtain

the following pointwise-in-time identities:

Lemma 2.34. Let (x, λ) solve (2.27). If ϕ solves (2.28), then

‖x(t)‖2 =

∫ t

0
−〈ϕ(s),KCCx(s)〉+〈R−∗B∗ϕ(s), R−∗B∗λ(s)〉U+〈ϕ(s), l2(s)〉 ds+〈x0, ϕ(0)〉 (2.32)

for all 0 ≤ t ≤ T . If ψ solves (2.30), then

‖λ(t)‖2 =

∫ T

t
−〈K∗BB∗λ(s), ψ(s)〉 − 〈Cx(s), Cψ(s)〉Y + 〈l1(s), ψ(s)〉 ds+ 〈ψ(T ), λT 〉 (2.33)

for all 0 ≤ t ≤ T .

Proof. We begin with the proof of (2.32). Testing the state equation with ϕ solving (2.28),

integration over [0, t] and integration by parts in the sense of Lemma 2.22 ii) on [0, t] with

x1 = x, f1 = BQ−1B∗λ+ l2, x2 = ϕ, and f2 = C∗K∗Cϕ yields

〈x(t), ϕ(t)〉 − 〈x(0), ϕ(0)〉 =

∫ t

0
〈ϕ(s), BQ−1B∗λ(s) + l2(s)〉 − 〈C∗K∗Cϕ(s), x(s)〉 ds.

Rearranging the terms, using the terminal condition ϕ(t) = x(t) andQ−1 = (R∗R)−1 = R−1R−∗,

we get

‖x(t)‖2 =

∫ t

0
−〈ϕ(s),KCCx(s)〉+ 〈R−∗B∗ϕ(s), R−∗B∗λ(s)〉U + 〈ϕ(s), l2(s)〉 ds+ 〈x0, ϕ(0)〉.

Formula (2.33) follows analogously by testing the adjoint equation with ψ solving (2.30).
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Based on (2.32) and (2.33), we will derive norm estimates for M−1 as a mapping into

L2(0, T ;X)2 and C(0, T ;X)2. While the latter turns out to be rather straightforward, the

L2-estimate requires integrating (2.32) and (2.33) over [0, T ]. The crucial observation is that

the integrals on the right hand side of (2.32) and (2.33) can be converted into convolutions

with exponentially decaying functions. This will allow us to derive an L2-estimate without any

constants depending on the time T with the help of the following general lemma:

Lemma 2.35. For w ∈ L1(0, T ; (0,∞)), consider

h1(t) :=

∫ t

0
w(s)e−kϕ(t−s) ds, where kϕ > 0,

h2(t) :=

∫ T

t
w(s)e−kψ(s−t) ds, where kψ > 0.

Then, there is a constant c ≥ 0 independent of T , such that

‖hi‖Lp(0,T ) ≤ c‖w‖L1(0,T ) for i = 1, 2 and 1 ≤ p ≤ ∞.

Proof. Extending w by 0 from [0, T ] to R and defining g1(τ) := e−kϕτ for τ ≥ 0 and g1(τ) = 0

otherwise, we can write h1 as the convolution

h1(t) = (g1 ∗ w)(t) =

∫
R
g1(t− s)w(s) ds

and apply Young’s inequality, cf. [147, Theorem II.4.4] to obtain

‖h1‖Lp(0,T ) = ‖g1 ∗ w‖Lp(R) ≤ ‖g1‖Lp(R)‖w‖L1(R) ≤ c‖w‖L1(0,T )

from ‖g1‖Lp(R) = ‖e−kϕt‖Lp(R+) ≤ c(kϕ). For h2, the estimate follows in the same way, setting

g2(τ) = ekψτ for τ ≤ 0 and 0 otherwise.

Using these convolution estimates, we can conclude:

Lemma 2.36. Let Assumption 2.32 hold and let (x, λ) solve (2.27). Then there exists a constant

c ≥ 0 independent of T , such that

‖x‖22∧∞ + ‖λ‖22∧∞ ≤ c
(
‖Cx‖2L2(0,T ;Y ) + ‖R−∗B∗λ‖2L2(0,T ;U) + ‖r‖21∨2

)
, (2.34)

where r = (l1, λT , l2, y0) and ‖r‖21∨2 := ‖l1‖21∨2 + ‖λT ‖2 + ‖l2‖21∨2 + ‖x0‖2.

Proof. Our first step will be to derive an estimate for ‖x(t)‖ from (2.32). By Lemma 2.33, we

28



CHAPTER 2. SENSITIVITY AND TURNPIKE ANALYSIS FOR LINEAR QUADRATIC
OPTIMAL CONTROL OF GENERAL EVOLUTION EQUATIONS

estimate the terms occurring in (2.32) as follows:∫ t

0
|〈KCCx(s), ϕ(s)〉|ds ≤ ‖x(t)‖

Mϕ‖KC‖L(Y,X)√
kϕ

√∫ t

0
‖Cx(s)‖2Y e−kϕ(t−s)ds, (2.35)

∫ t

0
|〈R−∗B∗λ(s), R−∗B∗ϕ(s)〉U | ds ≤ ‖x(t)‖

Mϕ‖BR−1‖L(U,X)√
kϕ

√∫ t

0
‖R−∗B∗λ(s)‖2Ue−kϕ(t−s) ds,

(2.36)∫ t

0
〈l2(s), ϕ(s)〉 ds ≤ ‖x(t)‖ Mϕ√

kϕ

√∫ t

0
‖l2(s)‖2e−kϕ(t−s) ds, (2.37)

or alternatively that∫ t

0
〈l2(s), ϕ(s)〉 ds ≤

∫ t

0
‖l2(s)‖‖ϕ(s)‖ ds ≤ ‖x(t)‖Mϕ

∫ t

0
‖l2(s)‖e−kϕ(t−s) ds, (2.38)

and finally that

〈x0, ϕ(0)〉 ≤ ‖x0‖‖x(t)‖Mϕe
−kϕt ≤ ‖x0‖‖x(t)‖Mϕ

√
e−kϕt. (2.39)

Now we substitute all estimates (2.35)-(2.39) into (2.32) while taking the minimum over (2.37)

and (2.38) and cancel ‖x(t)‖ on both sides. Taking squares on both sides and using the simple

inequality

(a+ b+ c+ d)2 ≤ 4(a2 + b2 + c2 + d2),

for a, b, c, d ≥ 0, we obtain the following pointwise estimate for x:

‖x(t)‖2 ≤ c
(∫ t

0
(‖Cx(s)‖2Y + ‖R−∗Bλ(s)‖2U )e−kϕ(t−s) dt+ ‖x0‖2e−kϕt

)
+ cmin

{∫ t

0
‖l2(s)‖2e−kϕ(t−s) ds,

(∫ t

0
‖l2(s)‖e−kϕ(t−s) ds

)2
}
.

(2.40)

To derive an estimate for ‖x‖2C(0,T ;X), we estimate all exponential functions by 1, extend the

domains of integration from [0, t] to [0, T ], and take the maximum over all t ∈ [0, T ]:

‖x‖2C(0,T ;X) ≤

c
(
‖Cx‖2L2(0,T ;Y ) + ‖R−∗B∗λ‖2L2(0,T ;U) + min{‖l2‖2L2(0,T ;X), ‖l2‖

2
L1(0,T ;X)}+ ‖x0‖2

)
.

(2.41)

Similarly via (2.33) we get:

‖λ‖2C(0,T ;X) ≤

c
(
‖Cx‖2L2(0,T ;Y ) + ‖R−∗B∗λ‖2L2(0,T ;U) + min{‖l1‖2L2(0,T ;X), ‖l1‖

2
L1(0,T ;X)}+ ‖λT ‖2

)
.

(2.42)
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To derive an estimate for ‖x‖2L2(0,T ;X), we have to integrate (2.40) over [0, T ] and apply Lemma 2.35

to the integral terms in (2.40). Setting w(s) := ‖l2(s)‖2 in Lemma 2.35, we obtain

h1(t) =

∫ t

0
‖l2(s)‖2e−kϕ(t−s) ds

and we conclude that∫ T

0

∫ t

0
‖l2(s)‖2e−kϕ(t−s) ds dt = ‖h1‖L1(0,T ) ≤ c‖w‖L1(0,T ) = c‖l2‖2L2(0,T ;X)

with Lemma 2.35 and similarly that∫ T

0

∫ t

0

(
‖Cx(s)‖2Y + ‖R−∗B∗λ(s)‖2U

)
e−kϕ(t−s)ds dt

≤ c
(
‖Cx(s)‖2L2(0,T ;Y ) + ‖R−∗B∗λ(s)‖2L2(0,T ;U)

)
.

If we set w(s) := ‖l2(s)‖ Lemma 2.35, then

h1(t) =

∫ t

0
‖l2(s)‖e−kϕ(t−s) ds,

and we obtain that∫ T

0

(∫ t

0
‖l2(s)‖e−kϕ(t−s)

)2

ds dt = ‖h1‖2L2(0,T ) ≤ c‖w‖
2
L1(0,T ) = c‖l2‖2L1(0,T ;X).

This yields the desired L2-estimate:

‖x‖2L2(0,T ;X) ≤

c
(
‖Cx‖2L2(0,T ;Y ) +R−∗B∗λ(s)‖2L2(0,T ;U) + min{‖l2‖2L2(0,T ;X), ‖l2‖

2
L1(0,T ;X)}+ ‖x0‖2

)
.

(2.43)

In the same way we compute

‖λ‖2L2(0,T ;X) ≤

c
(
‖Cx‖2L2(0,T ;Y ) + ‖R−∗B∗λ(s)‖2L2(0,T ;U) + min{‖l1‖2L2(0,T ;X), ‖l1‖

2
L1(0,T ;X)}+ ‖λT ‖2

)
.

(2.44)

Now, we take the maximum of (2.41) and (2.43) and add it to the maximum of (2.42) and

(2.44). Using the definition

‖v‖22∧∞ = max{‖v‖2L2(0,T ;X), ‖v‖
2
C(0,T ;X)}, ‖w‖21∨2 = min{‖w‖2L1(0,T ;X), ‖w‖

2
L2(0,T ;X)},

our result follows.

The first two terms on the right hand side of (2.34) still depend on the state and the adjoint.

We therefore present the following representation formula, motivated by [135, Proof of Theorem

1].
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Lemma 2.37. Let (x, λ) solve (2.27). Then

‖Cx‖2L2(0,T ;Y )+‖R
−∗B∗λ‖2L2(0,T ;U)

= −〈λT , x(T )〉+ 〈x0, λ(0)〉+

∫ T

0
〈l2(s), λ(s)〉 − 〈l1(s), x(s)〉 ds

≤ c (‖λT ‖‖x(T )‖+ ‖x0‖‖λ(0)‖+ ‖l2‖1∨2‖λ‖2∧∞ + ‖l1‖1∨2‖x‖2∧∞) .

(2.45)

Proof. We apply Lemma 2.22 ii) to the state and adjoint equation, which yields

〈λT , x(T )〉 − 〈x0, λ(0)〉 =

∫ T

0
〈l2(s), λ(s)〉 − 〈l1(s), x(s)〉 − ‖Cx(s)‖2Y − ‖R−∗B∗λ(s)‖2U ds.

Rearranging the terms and the Cauchy-Schwarz inequality yields the result.

Theorem 2.38. Let Assumption 2.32 hold. Then there is c ≥ 0 independent of T such that

‖M−1‖L(((L1(0,T ;X),‖·‖1∨2)×X)2,(C(0,T ;X),‖·‖2∧∞)2) ≤ c.

Proof. Consider z := (x, λ) ∈ C(0, T ;X)2 and r := (l1, λT , l2, x0) ∈ (L1(0, T ;X) × X)2 that

satisfy (2.27). Thus, as shown in Lemma 2.36, the estimate (2.34) applies. We substitute (2.45)

into (2.34) and apply the Hölder-like inequality of Lemma 2.31 to the integral terms to obtain

that

‖z‖22∧∞ := ‖x‖22∧∞ + ‖λ‖22∧∞
≤ c

(
‖λT ‖‖x(T )‖+ ‖x0‖‖λ(0)‖+ ‖l2‖1∨2‖λ‖2∧∞ + ‖l1‖1∨2‖x‖2∧∞ + ‖r‖21∨2

)
≤ c

(
(‖λT ‖+ ‖l1‖1∨2)‖x‖2∧∞ + (‖x0‖+ ‖l2‖1∨2)‖λ‖2∧∞ + ‖r‖21∨2

)
≤ c

(
‖r‖1∨2‖z‖2∧∞ + ‖r‖21∨2

)
.

The application of the simple estimate c‖r‖1∨2‖z‖2∧∞ ≤ 1
2(c2‖r‖21∨2 + ‖z‖22∧∞) implies the

estimate

‖M−1r‖2∧∞ = ‖z‖2∧∞ ≤ c‖r‖1∨2

and hence the desired result.

2.3 The case of unbounded control or observation

In this section, we extend the results of Section 2.2 to the case of a control operator B that is

unbounded as a mapping into X but admissible for the strongly continuous semigroup generated

by A in the sense of [139, Chapter 4]. The reader is referred to [139] for an in-depth introduction

to this topic. An unbounded control operator often arises in the case of boundary control. As

a consequence, the operator norm ‖B‖L(U,X) = ‖B∗‖L(X,U) is no longer finite. Additionally,

we will allow for a state feedback operator KB in Assumption 2.32 that is unbounded but

admissible. Inspection of the proofs in Sections 2.2.1 and 2.2.3 yields that norms of the control
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resp. observation operator are only used in inequality (2.36) and the dual version of (2.35).

In addition, the estimate of the control in Theorem 2.27 is performed via R∗Ru = B∗λ using

‖B∗‖L(X,U) in (2.15). All remaining estimates and constants do not involve norms of B or KB.

The goal of this section is to replace boundedness of B and the feedback operator KB in

Assumption 2.32 by a weaker property, which is known as admissibility while maintaining the

stability result of Lemma 2.36. Our strategy of proof will be to show surrogates for (2.36)

and the dual version of (2.35) involving KB that allow us to generalize our main results to

the case of admissible control and feedback operators. All further steps of the proofs remain

unchanged. The sensitivity results in Theorem 2.27 for the state and adjoint directly carry over

as stated in Theorem 2.48, whereas the estimate for the control in the proof of Theorem 2.27

involves the norm of the control operator. We therefore modify the proof to obtain the results in

Theorem 2.48 below. However, we only obtain an integral estimate but no uniform estimate of

the control in Theorem 2.27. This is the only price to pay for going from bounded to unbounded

but admissible control operators.

2.3.1 Well-posed linear systems and admissibility

We recall the definition of admissible control and observation operators. Let A : D(A) ⊂ X → X

be the generator of a strongly continuous semigroup (T (t))t≥0 on X. Moreover, let A∗ be the

adjoint operator of A with domain D(A∗). Let X1 be D(A) equipped with the norm ‖ · ‖1 :=

‖(βI − A) · ‖ for β ∈ ρ(A), where ρ(A) := {β ∈ C |βI − A is continuously invertible and (βI −
A)−1 ∈ L(X)} is the resolvent set of A as defined in Definition 2.8. Second, again for β ∈ ρ(A),

we define X−1 to be the completion of X with respect to the norm ‖ · ‖−1 :=
∥∥(βI −A)−1·

∥∥.

We note that the norms ‖ · ‖1 for different β are equivalent, see [139, Proposition 2.10.1], and

the same also holds true for ‖ · ‖−1, see [139, Proposition 2.10.2]. Furthermore, by, e.g., [139,

Proposition 2.10.4], the strongly continuous semigroup (T (t))t≥0 can be extended to a strongly

continuous semigroup on X−1, which we will denote by the same symbol (T (t))t≥0.

Definition 2.39. ([139, Definition 4.2.1, Definition 4.3.1])

i) B ∈ L(U,X−1) is called an admissible control operator for the strongly continuous semi-

group (T (t))t≥0 if for some τ > 0, ran Φτ ⊂ X, where

Φτu :=

∫ τ

0
T (τ − s)Bu(s) ds

for u ∈ L2(0,∞;U).

ii) C ∈ L(X1, Y ) is called an admissible observation operator for the strongly continuous semi-

group (T (t))t≥0 if for some τ > 0, Ψτ ∈ L(X1, L2(0,∞, Y )) has a continuous extension to

X, where

(Ψτz0)(t) :=

{
CT (t)z0 for t ∈ [0, τ ]

0 for t > τ

for z0 ∈ X1.
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Note that if i) and ii) in Definition 2.39 are satisfied for one τ ≥ 0, they hold for all τ ≥ 0,

see [139, Proposition 4.2.2, Proposition 4.3.2].

We briefly recall some properties of admissible control operators that will be important in

the remainder of this section.

Proposition 2.40. Let B be an admissible control operator for the strongly continuous semi-

group (T (t))t≥0. Then,

i) B∗ is an admissible observation operator for the adjoint semigroup (T ∗(t))t≥0.

ii) For all t ≥ 0 and x(t) ∈ D(A∗), there exists a constant Kt ≥ 0 such that∫ t

0
‖B∗T ∗(t− s)x(t)‖2U ds ≤ K2

t ‖x(t)‖2. (2.46)

iii) If (T ∗(t))t≥0 is exponentially stable, the constant Kt can be chosen independently of t.

Proof. Part i) follows from the duality result [139, Theorem 4.4.3]. For ii), see [139, Definition

4.3.1]. The fact that the bound can be chosen independently of t, as stated in iii), follows from

[139, Remark 4.3.5].

Remark 2.41. We briefly comment on the inequality (2.46).

• As the norm in the upper bound is the norm in X, this estimate can be extended to all

x(t) ∈ X by density of D(A∗) in X.

• A very prominent example, where an estimate like (2.46) holds for an unbounded control

operator is in the case of the wave equation with B∗ = ∂
∂ν = 〈∇·, ν〉, where ν is the outer

unit normal, cf. [139, Section 7.1]. This feature is often referred to as hidden regularity.

It can be shown that the estimate (2.46) holds for solutions of the wave equation even for

initial displacements in H1
0 (Ω) and U = L2(∂Ω). This is not obvious, as due to the lack of

a smoothing property of the wave equation, the displacements are in H1
0 (Ω) for every time

point and B∗ is not bounded from H1
0 (Ω) to L2(∂Ω). For a proof of this hidden regularity

property, the reader is referred to [89] or [139, Theorem 7.1.3].

In addition to the concept of admissible control and observation operators, we will make use

of the notion of well-posed linear systems, for which certain desirable properties hold. Besides

continuity of the state trajectory, these systems enjoy boundedness of input-to-state, state-to-

output and input-to-output maps, as partly defined in Definition 2.39, although the generating

operators can be unbounded. For an in-depth treatment of this topic, the interested reader is

referred to the seminal papers [124, 125, 145], to the monograph [132], and the survey articles

[140, 146].

A possible approach of defining well-posed linear systems is to require particular properties of

the maps mentioned above, cf. [140, Definition 3.1], which is very similarly to the way strongly

continuous semigroups were introduced in Definition 2.1. In the context of well-posed linear
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systems these properties include, e.g., that the initial-value-to-state map is given by a strongly

continuous semigroup, that the state does not depend on the future input and that the past

output does not depend on the future input, the latter two often being called causality. In

order to keep the presentation concise, the reader is referred to [140, Definition 3.1] for a precise

definition of the properties mentioned above. An important fact in our context is that the class

of operators (A,B,C) generating such well-posed linear systems are precisely characterized by

A generating a strongly continuous semigroup, admissibility of B and C with respect to the

strongly continuous semigroup, and a condition on the transfer function, assuring boundedness

of the input-output map, cf. [140, Proposition 4.9] and [132, Theorem 4.2.1, Theorem 4.4.2].

Proposition 2.42. ([140, Proposition 4.9])

A triple of operators (A,B,C) is well-posed on (U,X, Y ) if and only if the following conditions

hold:

• A generates a strongly continuous semigroup (T (t))t≥0 on X,

• B ∈ L(U,X−1) is an admissible control operator for (T (t))t≥0,

• C ∈ L(X1, Y ) is an admissible observation operator for (T (t))t≥0,

• some (hence every) transfer function associated with (A,B,C) is proper,

where the transfer function is characterized by G(s1)−G(s2) = C
(
(s1I −A)−1 − (s2I −A)−1

)
B

for every s1, s2 ∈ {s ∈ C | <(s) > ω0(T )} and ω0(T ) is the type of the strongly continuous

semigroup, cf. Definition 2.10. An analytic function with a domain in some right half plane is

called proper if it is bounded on some right half plane [140, p.8].

The optimality conditions (2.6) are derived assuming boundedness of the control and obser-

vation operator. For specific cases, i.e., e.g., boundary controlled wave equations, optimality

conditions are given in, e.g., [96] using functional analytic methods. However, to the author’s

best knowledge, optimality conditions in the abstract setting with unbounded control and ob-

servation as presented here are not yet available. Thus, in the remainder, we will assume that

(x, u, λ) solves the extremal equations, rather than that (x, u) solve the optimal control prob-

lem. Then, of course, the question of solvability of the extremal equation arises, i.e., existence

and uniqueness of solutions. The solution operators norm that we will derive in Theorem 2.47

implies that if a solution to the extremal equations exists, it is unique. The following theorem

gives a partial answer to the question of existence.

Theorem 2.43. Let (A,B,C) form a well-posed system and I resp. Q−1 be admissible feedback

operators in the sense of [145, Definition 3.5]. Then the operator

(
C∗C A∗

A BQ−1B∗

)
in (2.6)

with domain D(A+ BKC), where

A =

(
0 A∗

A 0

)
, B =

(
0 C∗

B 0

)
, C =

(
0 B∗

C 0

)
, K =

(
I 0

0 Q−1

)
generates a strongly continuous semigroup on X ×X.
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Proof. By the the well-posedness of (A,B,C), it follows that (A,B, C) form a well-posed system

on X ×X. Choosing the admissible feedback operator K =

(
I 0

0 Q−1

)
, the closed-loop system

(A+BKC,B, C) with A+BKC =

(
C∗C A∗

A BQ−∗B∗

)
forms another well-posed system, cf. [132,

Theorem 7.1.2] or [145]. In particular, the operator A + BKC generates a strongly continuous

semigroup and C =

(
0 B∗

C 0

)
is an admissible observation operator for the semigroup generated

by A+ BKC.

Remark 2.44. Theorem 2.43 shows that, even in the unbounded setting, assuming a well-posed

system, the operator occurring in the extremal equations (2.27) generates a semigroup on X×X.

However, it is not clear how this corresponds to solvability of a forward-backward systems of the

type (
x′(t)

−λ′(t)

)
= Acl

(
x(t)

λ(t)

)
,

(
x(0)

λ(T )

)
=

(
x0

λT

)
,

where Acl =

(
C∗C A∗

A BQ−∗B∗

)
. The main problem is the terminal condition λ(T ) = λT . One

strategy for showing solvability could be to substitute p(t) = λ(T − t), which yields(
x′(t)

p′(T − t)

)
= Acl

(
x(t)

p(T − t)

)
,

(
x(0)

p(0)

)
=

(
x0

λT

)
,

where now the temporal argument has changed in the second equation. Moreover, even though

Acl generates a semigroup, the solutions are only defined for t ∈ [0, T ], not, as by the definition

of a semigroup, for t ≥ 0.

Assumption 2.45. Let A generate a semigroup (T (t))t≥0 on X, C ∈ L(X,Y ) and B ∈
L(U,X−1) be an admissible control operator for (T (t))t≥0. Further, assume that

i) (A,C) is exponentially detectable, i.e., there exists KC ∈ L(Y,X) such that the semigroup

generated by A∗ + C∗K∗C is exponentially stable.

ii) (A,B) is exponentially stabilizable, i.e., there exists KB ∈ L(X1, U) such that

• (A,B,KB) is well-posed on (U,X,U) and

• A+BKB with domain D(A+BKB) generates an exponentially stable semigroup.

Remark 2.46. In a similar fashion, one could allow for unbounded but admissible C and KC

when assuming B and KB to be bounded. The case where all of the operators C, B, KC and

KB are unbounded but admissible cannot be included in all generality. This is due to the non-

existence of perturbation results for this case, i.e., not every admissible observation operator C

for A is admissible for A+BK if B is an unbounded but admissible control operator and K is an
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unbounded but admissible feedback operator. Mixed perturbation results of this kind are a very

delicate matter and the reader is referred to [139, Proposition 5.5.2, Example 5.5.3, Proposition

10.1.10] and the discussion after [139, Corollary 5.5.1]. In particular, such a perturbation result

is obtained in the example in [139, Section 10.8]. Finally, for the particular case of K = LC

with L ∈ L(Y, U), such perturbation results are established in [132, Theorem 7.1.2] or [145].

The strategy we will pursue in the following will be to apply the admissibility estimate of

Proposition 2.40 to ϕ and ψ in Lemma 2.33. As the underlying semigroups in Lemma 2.33

are exponentially stable, we may apply the estimate (2.46) to the respective admissible control

operators with Kt independent of t. This will turn out to be an appropriate replacement for

assuming finiteness of ‖B∗‖L(X,U) and ‖KB‖L(X,U).

2.3.2 Scaling results and T-independent bounds

With the help of the concept of admissible operators as defined in the previous section, we now

present all necessary modifications of the proofs of Section 2.2 to the case of an unbounded but

admissible control and feedback operator.

Theorem 2.47. Consider M defined in (2.6) and let Assumption 2.45 hold. Then there is c ≥ 0

independent of T such that

‖M−1‖L(((L1(0,T ;X),‖·‖1∨2)×X)2,(C(0,T ;X),‖·‖2∧∞)2) ≤ c.

Proof. As already noted, the only step in the proof of Theorem 2.38 where the operator norm of

B and KB is needed, is the proof of (2.36) and (2.35) with their respective dual counterparts. It

is thus sufficient to show a modification of this inequality that circumvents this operator norm

estimate by using exponential stability of the test functions and the fact that B is an admissible

control operator. We will sketch the proof for the estimate (2.36) and the estimate including

KB in the dual counterpart of (2.35) follows completely analogously.

Let ϕ solve (2.28), i.e., ϕ(s) = T ∗cl (t − s)x(t), where (T ∗cl (t))t≥0 is the strongly continuous

semigroup generated by (A∗ + C∗K∗C). By assumption, B is an admissible control operator for

the semigroup generated by A and KCC ∈ L(X,X). We obtain that B is an admissible control

operator for (A + KCC) by a perturbation result, cf. [139, Theorem 5.4.2]. Hence B∗ is an

admissible observation operator for the adjoint semigroup generated by (A+KCC)∗. We show

that the critical estimate (2.36) still holds with different constants, which do not involve the

operator norm of B. First, a simple calculation using the fact that R−∗ is bounded from U to

U and applying the Cauchy-Schwarz inequality twice yields∫ t

0
|〈R−∗B∗λ(s),R−∗B∗ϕ(s)〉U | ds≤c

∫ t

0
e−

kϕ
2

(t−s)‖R−∗B∗λ(s)‖U
∥∥∥B∗e kϕ2 (t−s)ϕ(s)

∥∥∥
U
ds

≤ c

√∫ t

0
e−kϕ(t−s)‖R−∗B∗λ(s)‖2U ds

√∫ t

0

∥∥∥B∗e kϕ2 (t−s)ϕ(s)

∥∥∥2

U
ds.

(2.47)
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By the exponential stability ‖T ∗cl (t−s)‖ ≤Mϕe
−kϕ(t−s), the scaled semigroup

(
e
kϕ
2

(t−s)T ∗cl (t)
)
t≥0

is still exponentially stable, cf. Definition 2.12. Hence we employ Proposition 2.40 ii) and iii)

and obtain√∫ t

0

∥∥∥B∗e kϕ2 (t−s)ϕ(s)

∥∥∥2

ds =

√∫ t

0

∥∥∥B∗e kϕ2 (t−s)T ∗cl (t− s)x(t)

∥∥∥2

ds ≤ K‖x(t)‖

with K being independent of t. Inserting this into (2.47), we conclude that

∫ t

0
|〈R−∗B∗λ(s), R−∗B∗ϕ(s)〉| ds ≤ c‖x(t)‖

√∫ t

0
e−kϕ(t−s)‖R−∗B∗λ(s)‖2 ds,

which yields the desired replacement for (2.36) with a different constant independent of the

norm of B. As the remaining results in Section 2.2.3, namely Lemma 2.36, Lemma 2.37 and

Theorem 2.38 do not hinge on boundedness, we can conclude the result analogously to the

bounded case.

As a consequence of Theorem 2.47, the estimates in Theorem 2.27 also hold true in the case of

unbounded control and feedback operators with constants independent of the horizon T , except

for the uniform estimate for the control. This is the statement of the following theorem.

Theorem 2.48. Let Assumption 2.45 hold. Assume (δx, δλ) ∈ C(0, T ;X)2 solve (2.8) with

ε1, ε2 ∈ L1(0, T ;X). Let δu = Q−1B∗δλ. Then there is a scaling factor µ > 0 satisfying

µ <
1

‖M−1‖L((L2(0,T ;X)×X)2,L2(0,T ;X)2)

and a constant c ≥ 0, both independent of T , such that defining

ρ :=
∥∥e−µtε1(t)

∥∥
S

+
∥∥e−T εT∥∥+

∥∥e−µtε2(t)
∥∥
S

+ ‖ε0‖

for S := L1(0, T ;X) or S := L2(0, T ;X), it holds that∥∥e−µtδx(t)
∥∥
L2(0,T ;X)

+
∥∥e−µtδu(t)

∥∥
L2(0,T ;U)

+
∥∥e−µtδλ(t)

∥∥
L2(0,T ;X)

≤ cρ,∥∥e−µtδx(t)
∥∥
C(0,T ;X)

+
∥∥e−µtδλ(t)

∥∥
C(0,T ;X)

≤ cρ.

Proof. First, choosing µ, such that µ‖M−1‖L((L2(0,T ;X)×X)2,L2(0,T ;X)2) < 1, by the same reason-

ing as in the proof of Theorem 2.27 we conclude the estimates for the state and adjoint∥∥e−µtδx(t)
∥∥
L2(0,T ;X)

+
∥∥e−µtδλ(t)

∥∥
L2(0,T ;X)

≤ cρ,∥∥e−µtδx(t)
∥∥
C(0,T ;X)

+
∥∥e−µtδλ(t)

∥∥
C(0,T ;X)

≤ cρ,
(2.48)
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with c, µ ≥ 0 independent of T as the occurring operator norms can be bounded independently

of T by Theorem 2.47. To estimate the control, we set δ̃x(t) := e−µtδx(t), δ̃λ(t) := e−µtδλ(t)

and δ̃u(t) := e−µtδu and compute that∥∥δ̃u∥∥2

L2(0,T ;U) =

∫ T

0

∥∥Q−1B∗δ̃λ(t)
∥∥2

U dt ≤ c
∫ T

0

∥∥Cδ̃x(t)
∥∥2

Y +
∥∥R−∗B∗δ̃λ(t)

∥∥2

U dt.

Similarly to Lemma 2.37 we obtain that∫ T

0

∥∥Cδ̃x(t)
∥∥2

+
∥∥R−∗B∗δ̃λ(t)

∥∥2
dt

= 〈δ̃x(T ), δ̃λ(T )〉 − 〈δ̃x(0), δ̃λ(0)〉
∫ T

0
−〈ε̃1(t), δ̃x(t)〉+ 〈ε̃2(t), δ̃λ(t)〉 − 2µ〈δ̃x(t), δ̃λ(t)〉 dt

≤
(
‖ε̃1‖1∨2 + ‖e−T εT ‖+ ‖ε0‖+ ‖ε̃2‖1∨2

) (∥∥δ̃x∥∥2∧∞ +
∥∥δ̃λ∥∥2∧∞

)
+ 2µ

∥∥δ̃x∥∥L2(0,T ;X)

∥∥δ̃λ∥∥L2(0,T ;X)

≤ cρ2,

where we used Lemma 2.22 ii) for the state and adjoint equation, with ε̃i(t) = e−µtεi(t), i = 1, 2

and the Hölder inequality of Lemma 2.31. In the last estimate we used the bounds on the scaled

right-hand side and the estimate on the state and the adjoint (2.48). Taking the square root

yields the result for the control.

As a second consequence of the T -independent bound of Theorem 2.47, we obtain a general-

ization of the turnpike result of Theorem 2.30 to the case of unbounded control.

Theorem 2.49. Let Assumption 2.45 hold. Assume (x, u, λ) solves (2.4). Moreover, let (x̄, ū, λ̄)

solve the corresponding steady state problem (2.16) and set (δx, δu, δλ) := (x− x̄, u− ū, λ− λ̄).

Then, there exist µ satisfying 0 < µ < 1
‖M−1‖L((L2(0,T ;X)×X)2,L2(0,T ;X)2)

and a constant c ≥ 0, both

independent of T , such that∥∥∥∥ 1

e−µt + e−µ(T−t) δx(t)

∥∥∥∥
L2(0,T ;X)

+

∥∥∥∥ 1

e−µt + e−µ(T−t) δu(t)

∥∥∥∥
L2(0,T ;U)

+

∥∥∥∥ 1

e−µt + e−µ(T−t) δλ(t)

∥∥∥∥
L2(0,T ;X)

≤ c
(
‖x0 − x̄‖+

∥∥λ̄∥∥) ,∥∥∥∥ 1

e−µt + e−µ(T−t) δx(t)

∥∥∥∥
C(0,T ;X)

+

∥∥∥∥ 1

e−µt + e−µ(T−t) δλ(t)

∥∥∥∥
C(0,T ;X)

≤ c
(
‖x0 − x̄‖+

∥∥λ̄∥∥) .
Proof. Again, choosing µ, such that β := µ‖M−1‖L((L2(0,T ;X)×X)2,L2(0,T ;X)2) < 1 and completely

analogous to the proof of Theorem 2.30, we conclude the estimates for state and adjoint, i.e.,

with z̃ := 1
e−µt+e−µ(T−t) (δx, δλ) we have

‖z̃‖L2(0,T ;X)2 ≤
‖M−1‖L((L2(0,T ;X)×X)2,L2(0,T ;X)2)

1− β
‖r̃‖(L2(0,T ;X)×X)2 ,

‖z̃‖C(0,T ;X)2 ≤
‖M−1‖L((L2(0,T ;X)×X)2,C(0,T ;X)2)

1− β
‖r̃‖(L2(0,T ;X)×X)2

(2.49)
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with r̃ := 1
1+e−µT

(0,−λ̄, 0, x0 − x̄), cf. (2.25). The remainder of this proof consists of estimat-

ing the control to conclude (2.21). To this end, we recall the approach taken in the proof of

Theorem 2.48, set δ̃u := 1
e−µt+e−µ(T−t) δu and obtain that

∥∥δ̃u∥∥2

L2(0,T ;U) =

∫ T

0

∥∥Q−1B∗δ̃λ(t)
∥∥2
dt ≤ c

∫ T

0

∥∥Cδ̃x(t)
∥∥2

+
∥∥R−∗B∗δ̃λ(t)

∥∥2
dt. (2.50)

Again, similarly to Lemma 2.37, using Lemma 2.22 ii) for the scaled state and adjoint equation

of system, we obtain that∫ T

0

∥∥Cδ̃x(t)
∥∥2

Y +
∥∥B∗δ̃λ(t)

∥∥2

U dt

= 〈δ̃x(T ), δ̃λ(T )〉 − 〈δ̃x(0), δ̃λ(0)〉+ µ

∫ T

0
〈F δ̃x(t), δ̃λ(t)〉+ 〈δ̃x(t), F δ̃λ(t)〉 dt

≤
∥∥δ̃x(T )

∥∥∥∥δ̃λ(T )
∥∥+

∥∥δ̃x(0)
∥∥∥∥δ̃λ(0)

∥∥+ 2µ
∥∥δ̃x∥∥L2(0,T ;X)

∥∥δ̃λ∥∥L2(0,T ;X)

≤
(∥∥δ̃x(T )

∥∥+
∥∥δ̃λ(0)

∥∥)(∥∥δ̃x(0)
∥∥+

∥∥δ̃λ(T )
∥∥)+ µ

(∥∥δ̃x∥∥2

L2(0,T ;X) +
∥∥δ̃λ∥∥2

L2(0,T ;X)

)
,

(2.51)

where we used that ‖F‖L(L2(0,T ;X),L2(0,T ;X)) ≤ 1. In order to estimate the end time value of the

state and the initial value of the adjoint, we compute that∥∥δ̃x(T )
∥∥+

∥∥δ̃λ(0)
∥∥ =

1

1 + e−µT
(‖δx(T )‖+ ‖δλ(0)‖) ≤ ‖δx‖C(0,T ;X) + ‖δλ‖C(0,T ;X)

≤ ‖M−1‖L((L2(0,T ;X)×X)2,C(0,T ;X)2)

(
‖x0 − x̄‖+

∥∥λ̄∥∥) .
Inserting this into (2.51) and (2.50) and using the estimate for the state and adjoint (2.25), we

obtain that∥∥δ̃u∥∥2

L2(0,T ;U) ≤ c
(
‖M−1‖2L((L2(0,T ;X)×X)2,C(0,T ;X)2)

(
‖x0 − x̄‖2 +

∥∥λ̄∥∥2
)

+ µ
‖M−1‖2L((L2(0,T ;X)×X)2,L2(0,T ;X)2)

(1− β)2

(
‖x0 − x̄‖2 +

∥∥λ̄∥∥2
))

,

where taking the square root and using µ‖M−1‖L((L2(0,T ;X)×X)2,L2(0,T ;X)2) < 1 yields

∥∥δ̃u∥∥L2(0,T ;U) ≤ c
(
‖M−1‖L((L2(0,T ;X)×X)2,C(0,T ;X)2)

+
‖M−1‖L((L2(0,T ;X)×X)2,L2(0,T ;X)2)

(1− β)2

)(
‖x0 − x̄‖+

∥∥λ̄∥∥) .
By Theorem 2.47 we obtain the T -independent bounds for the operator norms. Together with

(2.25), the estimate (2.21) follows.
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2.4 The case of a terminal condition on the state

In this part, we will conclude another generalization of the approach taken in Section 2.2. More

specifically, in addition to the initial condition, we will allow for a terminal condition on the state

in Problem 2.23. In order to not hide the main ideas behind technical details, we will assume

bounded control and feedback operators and discuss the case of an unbounded but admissible

control operator in Remark 2.53. Intuitively, it is clear that in order to satisfy this constraint,

the set of prescribed terminal values needs to be reachable in the sense that there is a control

that steers the initial state to the specified terminal state. This concept is called controllability

and we will briefly introduce it in the following subsection.

2.4.1 Observability and controllability

For an overview of controllability and observability of finite dimensional systems the interested

reader is referred to the overview given in [83, Chapters 2-4] and [159, Chapter 2] or [130].

There exist many characterizations for controllability and observability, e.g., the Kalman rank

condition, the Hautus test or observability estimates. A very important property is the duality

of observability and controllability, similarly to the duality of detectability and stabilizability,

cf. Assumption 2.32 or Assumption 2.45. Some concepts and properties of a finite dimensional

setting carry over to an infinite dimensional setting; in particular, observability estimates or the

duality mentioned above remain a very useful tool in the study of controllability and observability

in infinite dimensions. However, as can be expected, there are some major differences in the

infinite dimensional setting. First, there are several different concepts of controllability resp.

observability, namely approximate and exact controllability resp. observability and additionally

the notion of null controllability. For linear, time reversible systems, null controllability and exact

controllability are equivalent, cf. [159, Remark 3.1 b)] or [139, Remark 6.1.2]. Moreover, other

than in finite dimensions, controllability resp. observability at some time tc > 0 does not imply

controllability resp. observability for all times t > 0. The reader is referred to [34, 35, 139, 159]

for an in-depth introduction to controllability and observability of infinite dimensional systems.

For any τ ∈ [0, T ], let us recall the input map φτ : L2(0, T ;U)→ X with

φτu :=

∫ τ

0
T (τ − s)Bu(s) ds,

as defined in Definition 2.39 i). In the following, we will assume (T (t))t≥0 to always be the

semigroup generated by A : D(A) ⊂ X → X.

Definition 2.50. (Exact and approximate controllability) We call (A,B) exactly controllable in

time tc > 0 if ranφtc = X. Similarly, we call (A,B) approximately controllable in time tc if

ranφtc = X.

It is clear that exact and approximate controllability coincide in finite dimensions. More-

over, it is obvious that exact controllability implies exponential stabilizability as defined in

Assumption 2.32. An important characterization of controllability is the following observability

inequality, which was proven first in the seminal paper [97] by the Hilbert Uniqueness Method.
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Theorem 2.51 ([35, Theorem 4.1.7]). (A,B) is exactly controllable in time tc > 0 if and only

if there is αtc > 0 such that∫ tc

0
‖B∗T ∗(s)x0‖2U ds ≥ αtc‖x0‖2 ∀x0 ∈ X.

Using substitution in the previous estimate we immediately obtain that∫ T

T−tc
‖B∗T ∗(T − s)λT ‖2U ds ≥ αtc‖λT ‖2 ∀λT ∈ X. (2.52)

2.4.2 Scaling results and T-independent bounds

In this section, we discuss an extension of our result to optimal control problems with a condition

on the terminal state, i.e., adding a terminal condition x(T ) = xT ∈ X in Problem 2.23. In the

finite dimensional case, turnpike results for linear and nonlinear initial and terminal conditions

were proven in [136]. In the Hilbert space setting, this problem was discussed in [135, Section

2.6], where, however, the lack of invertibility of the Lyapunov operator prohibited the derivation

of a result for a terminal condition. To ensure existence of an optimal solution for arbitrary initial

and terminal data, we assume (A,B) to be exactly controllable in time tc where 0 < tc ≤ T ,

i.e., for any initial datum x0 ∈ X and terminal state xT ∈ X, we can find a control that drives

the state from x0 to xT in any time T ≥ tc. This assumption excludes parabolic equations with

control that does not act on the whole domain. The assumption is, however, fulfilled by many

hyperbolic systems, cf. Section 2.5. For a discussion of controllability issues for PDEs, the reader

is referred to the overview article [159].

Another crucial point in deriving Pontryagin Maximum Principles for problems including

both initial and terminal conditions on the state in infinite dimensions is a codimensionality

condition of the reachable set in X, cf. [95, Chapter 4]. This assumption is automatically

satisfied if one assumes exact controllability, as the reachable set is the whole space X. For

bounded control and observation operators, the optimal solutions satisfy the dynamics (2.4)

with x(0) = x0 and x(T ) = xT , where no terminal condition on the adjoint is imposed [95,

Theorem 1.6]. Again, by eliminating the control, we obtain the extremal equations
C∗C − d

dt −A
∗

ET 0
d
dt −A −BQ−1B∗

E0 0


︸ ︷︷ ︸

=:M̃

(
x

λ

)
=


C∗Cxd

xT
Bud + f

x0

 . (2.53)

We observe that in contrast to the initial condition on the state and the terminal condition on

the adjoint equation in (2.27), the system (2.53) is subject to an initial and terminal condition

on the state and no condition on the adjoint. As a consequence, the estimate presented in

Lemma 2.36 contains the unknown value λ(T ). In order to bound this unknown quantity by the

right hand side of (2.53), we will utilize the following observability estimate.
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Proposition 2.52. Let (x, λ) ∈ C(0, T ;X)2 solve
C∗C − d

dt −A
∗

ET 0
d
dt −A −BQ−1B∗

E0 0

(xλ
)

=


l1
xT
l2
x0

 (2.54)

and (A,B) be exactly controllable in time tc. Then there is c > 0 independent of T , such that

‖λ(T )‖2 ≤ c
∫ T

T−tc
‖B∗λ(s)‖2U + ‖Cx(s)‖2Y + ‖l1(s)‖2 ds.

Proof. The proof of this estimate is inspired by [113, Proof of Remark 2.1], where the finite

dimensional case is considered. We decompose λ = λ1 + λ2, where

−λ′1 = A∗λ1, λ1(T ) = λ(T ),

−λ′2 = A∗λ2 − C∗Cx+ l1, λ2(T ) = 0 ,

and apply the observability estimate (2.52) to λ1(t) = T ∗(T − t)λ(T ), which yields

αtc‖λ(T )‖2 ≤
∫ T

T−tc
‖B∗λ1(s)‖2U ds ≤

∫ T

T−tc
‖B∗λ(s)‖2U + ‖B∗λ2(s)‖2U ds

and we conclude that∫ T

T−tc
‖B∗λ2(s)‖2U ds ≤

∫ T

T−tc

∥∥∥∥B∗ ∫ T

s
T ∗(τ − s)(C∗Cx(τ) + l1(τ)) dτ

∥∥∥∥2

U

ds

≤ c(tc)
∫ T

T−tc
‖Cx(s)‖2Y + ‖l1(s)‖2 ds.

Similar to [113, Proof of Remark 2.1], it is important that we use integrals over time periods

of length tc, which yields the constants in the proof of Proposition 2.52, in particular αtc and

c(tc), independent of T .

Having derived the desired estimate for the terminal state on the adjoint, we briefly comment

on a possible extension to the unbounded case.

Remark 2.53. Controllability or observability with an unbounded but admissible control resp.

observation operator is discussed in, e.g., [34, Chapter 2] or [139, Chapter 6]. In that context,

(2.52) is required for all x0 ∈ D(A∗), similarly to the admissibility inequality (2.46), cf. [34,

Theorem 2.4.2] or [139, Definition 6.1.1]. In the above analysis, we observe that in the last

estimate of the proof of Proposition 2.52, only an admissibility-like estimate of B is needed.

Now, similarly to Theorem 2.38 and Theorem 2.47, we obtain a T -independent bound under

an exact controllability assumption.
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Theorem 2.54. Let (A,B) be exactly controllable in time 0 < tc ≤ T and (A,C) be exponentially

detectable. Then ∥∥M̃−1
∥∥
L((L2(0,T ;X)×X)2,(C(0,T ;X),‖·‖2∧∞)2) ≤ c,

where c ≥ 0 is independent of T .

Proof. We proceed analogously to Section 2.2.3. In order to estimate the unknown λ(T ) that

appears on the right hand side of (2.42) and (2.44), we use the estimate obtained in Propo-

sition 2.52. Thus, the statement (2.34) of Lemma 2.36 holds with an upper bound depending

only on
(
‖l1‖22 + ‖l2‖21∨2 + ‖x0‖2

)
. Using Lemma 2.37 and the fact that x(T ) = xT is a datum,

a straightforward adaption of the proof of Theorem 2.38, where xT plays the role of λT , yields

the result.

Completely analogously to Theorem 2.27, we can derive an estimate on the propagation of

perturbations.

Theorem 2.55. Let (A,B) be exactly controllable in time 0 < tc ≤ T and (A,C) be exponentially

detectable. Let (ε1, ε2) ∈ L2(0, T ;X)2 and (ε0, εT ) ∈ X2. Assume (δx, δλ) ∈ C(0, T ;X)2 solve
C∗C − d

dt −A
∗

ET 0
d
dt −A −BQ−1B∗

E0 0

(δxδλ
)

=


ε1

εT
ε2

ε0

 . (2.55)

Then there is a scaling factor µ > 0 satisfying

µ <
1∥∥M̃−1

∥∥
L((L2(0,T ;X)×X)2,L2(0,T ;X)2)

and a constant c ≥ 0, both independent of T , such that, defining

ρ :=
∥∥e−µtε1(t)

∥∥
L2(0,T ;X)

+
∥∥e−T εT∥∥+

∥∥e−µtε2(t)
∥∥
L2(0,T ;X)

+ ‖ε0‖,

we have ∥∥e−µtδx(t)
∥∥
L2(0,T ;X)

+
∥∥e−µtδλ(t)

∥∥
L2(0,T ;X)

≤ cρ,∥∥e−µtδu(t)
∥∥
L2(0,T ;U)

≤ cρ
(2.56)

and ∥∥e−µtδx(t)
∥∥
C(0,T ;X)

+
∥∥e−µtδλ(t)

∥∥
C(0,T ;X)

≤ cρ,∥∥e−µtδu(t)
∥∥
L∞(0,T ;U)

≤ cρ.
(2.57)

Moreover, the corresponding counterpart of the turnpike result Theorem 2.30 in case of

terminal conditions reads:
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Theorem 2.56. Let (x, λ) ∈ C(0, T ;X)2 solve (2.53) and (x̄, λ̄) ∈ X2 solve the correspond-

ing steady state problem and set u(t) = Q−1B∗λ(t) for a.e. t ∈ [0, T ], ū = Q−1B∗λ̄ and

(δx, δu, δλ) := (x − x̄, u − ū, λ − λ̄). Then, if (A,B) is exactly controllable and (A,C) is expo-

nentially detectable, there exists a scaling factor µ > 0 satisfying

µ <
1∥∥M̃−1

∥∥
L((L2(0,T ;X)×X)2,L2(0,T ;X)2)

and a constant c ≥ 0, both independent of T , such that∥∥∥∥ 1

e−µt + e−µ(T−t) δx(t)

∥∥∥∥
L2(0,T ;X)

+

∥∥∥∥ 1

e−µt + e−µ(T−t) δu(t)

∥∥∥∥
L2(0,T ;U)

+

∥∥∥∥ 1

e−µt + e−µ(T−t) δλ(t)

∥∥∥∥
L2(0,T ;X)

≤ c (‖x0 − x̄‖+ ‖xT − x̄‖) ,∥∥∥∥ 1

e−µt + e−µ(T−t) δx(t)

∥∥∥∥
C(0,T ;X)

+

∥∥∥∥ 1

e−µt + e−µ(T−t) δu(t)

∥∥∥∥
L∞(0,T ;U)

+

∥∥∥∥ 1

e−µt + e−µ(T−t) δλ(t)

∥∥∥∥
C(0,T ;X)

≤ c (‖x0 − x̄‖+ ‖xT − x̄‖) .

We conclude this part with a remark.

Remark 2.57. Similarly to Section 2.3, a possible extension would be the case of an unbounded

but admissible control operator, cf. Remark 2.53, analogously to Theorem 2.47 and Theorem 2.48.

As in Section 2.3, the price to pay will be the loss of the L∞-estimate on the control in (2.57).

Secondly, we only considered L2-perturbations in this part for the sake of simplicity of exposition.

All results, in particular Proposition 2.52 also hold with and L1-norm on the perturbations. This

can be proven using a straightforward adaption of the convolution inequality of Lemma 2.35 in

the last estimate of the proof of Proposition 2.52. Note that here the semigroup is not assumed

to be exponentially stable, however, the interval is bounded independently of T . This renders all

constants independent of T .

2.5 Examples

Finally, examples are provided to illustrate the sensitivity and turnpike results for bounded resp.

unbounded control and observation with initial condition on the state, cf. Theorems 2.27, 2.30,

2.48 and 2.49, and for bounded control and observation with initial and terminal condition on

the state, cf. Theorems 2.55 and 2.56. First, we consider the interior control of a heat equation

and second, the boundary control of a wave equation.

Example 2.58. (Interior control of an unstable heat equation) Let Ω ⊂ Rn, n ∈ {2, 3} be

bounded, open and non-empty with smooth boundary and ωc ⊂ Ω be non-empty. For T > 0, we
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consider the heat equation

∂x

∂t
= (∆ + c2I)x+ χωcu in Ω× (0, T ),

x = 0 in ∂Ω× (0, T ),

x(0) = x0 in Ω,

where χωc is the characteristic function of the control domain ωc, U = L2(ωc) and x0 ∈ L2(Ω).

Moreover, we consider an observation operator C = χωo for non-empty ωo ⊂ Ω. As ∆ generates

a strongly continuous semigroup on X = L2(Ω) with domain D(∆) = H2(Ω)∩H1
0 (Ω), (∆+ c2I)

generates a strongly continuous semigroup with the same domain as ∆ by classical perturbation

results, cf. [44, Chapter III, Theorem 1.3]. If c2 > λ1, where λ1 is the smallest eigenvalue of the

negative Dirichlet Laplacian, the uncontrolled system is unstable. Defining B : L2(ωc)→ L2(Ω)

via Bu := χωcu, the pair (∆, B) is null controllable [12, 54] and hence exponentially stabilizable,

cf. [154, Theorem 3.3]. Analogously, it follows that (∆, C) is exponentially detectable. As B ∈
L(U,X), one could apply the sensitivity result Theorem 2.27 or the turnpike result Theorem 2.30

to the prototypical optimal control problem Problem 2.23 governed by the operators defined above.

Concerning the case of terminal constraints it is well known that, whenever ωc 6= Ω, the system

is not exactly controllable and the results of Section 2.4, in particular Theorems 2.55 and 2.56

can not be applied. This is due to the smoothing effect of the heat equation. For a discussion of

this topic, the reader is referred to [159, Chapter 3].

Example 2.59 (Dirichlet control of a wave equation). Second, we provide an example of a

hyperbolic PDE with unbounded but admissible control operator along the lines of [139, Section

10.9]. We consider the model of a vibrating membrane on Ω ⊂ R2, where Ω is a bounded, non-

empty and open domain with C2-boundary. Further suppose that we can take action through

Dirichlet boundary control on a part Γc ⊂ ∂Ω of the boundary. Moreover, we assume that

(Ω,Γc, T ) fulfills the Geometric Control Condition (GCC), which ensures that all geometric

optics have to enter the control domain in a time smaller than T . A consequence of this condition

is exact controllability in time T , see [13, 117]. We consider the wave equation

∂2x

∂t2
= ∆x in Ω× (0, T ),

x = 0 in ∂Ω \ Γc × (0, T ),

x = u in Γc × (0, T ),

x(0) = f,
∂x

∂t
(0) = g in Ω,

where f ∈ L2(Ω), g ∈ H−1(Ω) and U := L2(Γc). It was shown in [139, Proposition 10.9.1] that

one can deduce a corresponding well-posed boundary control system on X = L2(Ω) × H−1(Ω)

with generator A =

(
0 I

−A0 0

)
, D(A) = H1

0 (Ω) × L2(Ω), where A0 is the Dirichlet Laplacian
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and a control operator B defined by

Bv =

(
0

A0Dv

)
∀v ∈ U = L2(Γc),

B∗
(
ϕ

ψ

)
= − ∂

∂ν
(A−1

0 ψ)∣∣Γc ∀(ϕ,ψ) ∈ D(A),

where D is the Dirichlet map and ∂
∂ν the outward normal derivative. The reader is referred

to [139, Section 10.6, Section 10.9] for details. In particular, the operator B is an admissible

control operator for the semigroup generated by A. Moreover, as the GCC is satisfied, the pair

(A,B) is exponentially stabilizable. If we now consider any observation region Ωo ⊂ Ω such that

(Ω,Ωo, T ) satisfy the GCC, then the pair (A,C) is exponentially detectable. As in this example

the control operator is unbounded on X, one cannot apply Theorem 2.27. However, Theorem 2.48

and Theorem 2.30 are applicable to the optimal control problems governed by this equation. In

order to consider the case of a terminal condition on the state, we replace the boundary control by

a distributed control on a subset ωc ⊂ Ω, analogously to Example 2.58. Assuming that (Ω, ωc, T )

satisfy the GCC-condition, we obtain that the system is exactly controllable by distributed control

on ωc, see [159, Chapter 3]. Hence, we can impose a terminal condition on the state and the

sensitivity and turnpike results of Theorems 2.55 and 2.56 apply.

2.6 The particular case of a parabolic equation

In the previous chapters, all estimates were posed in terms of integral or pointwise norms in

X, i.e., the function space that the initial conditions belongs to. This is due to the fact that

higher regularity can not be expected in this very general setting; in particular, only continuity

in time with values in X is ensured by the definition of the semigroup, cf. Definition 2.1. In this

chapter, we will present improved estimates by assuming more regularity of the solutions via

analyticity of the underlying semigroup. The corresponding equations are often called parabolic,

including the prominent example of the heat equation. For an in-depth treatment of analytic

semigroups, the interested reader is referred to, e.g., [44, Section II.4.a], [109, Section 2.5] and

[19, Part II-1, Section 2.7]. This class of semigroups shares favorable properties, i.e., e.g., that

solutions satisfy the differential equation in an a.e. (temporal) sense in X. Recall that for

general semigroups, differentiability of solutions in time is only given in a very weak sense in

D(A)∗, cf. Definition 2.17. Before we head to the formal definition of analytic semigroups, we

present a straightforward approach to refine the estimates of Theorem 2.38 and Theorem 2.47 a

posteriori by bootstrapping arguments. We will discuss the connection to analytic semigroups

in Remark 2.62.

2.6.1 Sharper estimates via direct bootstrapping

The bootstrapping analysis presented in this part uses the parabolic variational theory, cf.

[49, 127, 138, 150]. We will thoroughly discuss this setting for non-autonomous systems in

46



CHAPTER 2. SENSITIVITY AND TURNPIKE ANALYSIS FOR LINEAR QUADRATIC
OPTIMAL CONTROL OF GENERAL EVOLUTION EQUATIONS

Chapter 3. In this part, in order to keep the presentation concise, we will not delve into details

and refer the interested reader to Section 3.1 or the literature cited above. Assume, there is an

additional, more regular reflexive Banach space V with the continuous dense embedding V ↪→ X

such that A can be extended to an operator Ā ∈ L(V, V ∗) and we have a G̊arding inequality for

x ∈ L2(0, T ;V ):

∃ω ∈ R, α > 0 : α‖x‖2L2(0,T ;V ) ≤
∫ T

0
−〈Āx(t), x(t)〉V ∗×V dt+ ω‖x‖2L2(0,T ;X). (2.58)

By classical variational theory, cf. the references above, the state and adjoint equation yield

the regularities x, λ ∈ L2(0, T ;V ), x′, λ′ ∈ L2(0, T ;V ∗) and the state and adjoint equation in

(2.27) are satisfied in an L2(0, T ;V ∗)-sense. Testing the second row of the optimality system

(2.27) with x, using integration by parts on 〈x′, x〉V ∗×V , (2.45), and assuming boundedness of

‖B∗‖L(V,U) (which is weaker than boundedness of ‖B∗‖L(X,U)), we compute that∫ T

0
−〈Āx(t), x(t)〉V ∗×V dt =

∫ T

0
−〈x′(t), x(t)〉V ∗×V + 〈l2(t) +B(R∗R)−1B∗λ(t), x(t)〉 dt

≤ 1

2

(
‖x(0)‖2 − ‖x(T )‖2

)
+ ‖l2‖1∨2‖x‖2∧∞ + ‖R−∗B∗λ‖L2(0,T ;U)‖R−∗B∗x‖L2(0,T ;U)

≤ 1

2
‖x0‖2 + ‖r‖1∨2‖z‖2∧∞ + c(‖r‖1∨2 + ‖z‖2∧∞)‖R−∗B∗‖L(V,U)‖x‖L2(0,T ;V ),

where z = (x, λ) and r = (l1, λT , l2, x0). By Theorem 2.27 we may bound ‖z‖2∧∞ by ‖r‖1∨2

and substitute the result into (2.58). A short computation yields ‖x‖L2(0,T ;V ) ≤ c‖r‖1∨2 and

similarly ‖λ‖L2(0,T ;V ) ≤ c‖r‖1∨2. Hence, there is a T -independent bound c > 0 such that

‖M−1‖L((L1(0,T ;X),‖·‖1∨2×X)2,L2(0,T ;V )2) ≤ c.

This is a refined version of Theorem 2.38, as ‖ · ‖V usually is stronger than ‖ · ‖X , for example

V could be a Sobolev space, whereas X is an L2-space. By further bootstrapping via

x′ = Āx+B(R∗R)−1B∗λ+ l2 in L2(0, T ;V ∗),

we obtain ‖x′‖L2(0,T ;V ∗) ≤ c(‖r‖1∨2 + ‖l2‖L2(0,T ;X)) and similarly an estimate for ‖λ′‖L2(0,T ;V ∗).

Thus, also for the parabolic spaceW ([0, T ]) := {v : [0, T ]→ V | v ∈ L2(0, T ;V ), v′ ∈ L2(0, T ;V ∗)}
equipped with the norm ‖v‖W ([0,T ]) = ‖v‖L2(0,T ;V ) + ‖v′‖L2(0,T ;V ∗), we get the T -independent

bound c > 0 such that

‖M−1‖L((L2(0,T ;X)×X)2,W ([0,T ])2) ≤ c. (2.59)

These additional estimates can be used to obtain results in Theorem 2.27 and Theorem 2.48 and

also in Theorem 2.30 and Theorem 2.49 in stronger norms. However, despite the equation being

well-posed for l1, l2 ∈ L2(0, T ;V ∗), the arguments presented here only allow for right hand sides

bounded in L2(0, T ;X), see (2.59). This means that we do not obtain stability estimates in the

strongest possible norms in view of mere well-posedness. In order to get rid of this assumption

on the perturbations, we will fully exploit the regularity theory of parabolic equations, or, in

other words, the smoothing properties of analytic semigroups in the following part.
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2.6.2 Sharper estimates via maximal parabolic regularity

As stated in the introduction of this part, analytic semigroups represent a very important sub-

class of strongly continuous semigroups. For example, the Laplace operator on L2(Ω) gives

rise to such an analytic semigroup. For further reading, the interested reader is referred to the

respective parts of the monographs [19, Part II, Chapter 1], [133, Section 3.3] and [44, Section

II.4.a]. The solutions described by analytic semigroups share very favorable properties, e.g., if

the initial value lies in some interpolation space between D(A) and X and if right-hand sides be-

long to L2(0, T ;X), the solution lies in D(A) for almost every point in time and a time derivative

exists in L2(0, T ;X), allowing the differential equation

x′ = Ax+ f

to be understood in an L2(0, T ;X)-sense. Note that compared to the previous subsection,

L2(0, T ;X) takes the role of L2(0, T ;V ∗).

We first define analytic semigroups and follow the presentation in [109, Section 2.5]. Note

that there are many equivalent ways to define analytic semigroups, cf. [139, Definition 5.4.5],

[19, Part II-1, Theorem 2.11] or [44, Definition 4.5].

Definition 2.60 ([109, Definition 5.1]). Let ϕ1, ϕ2 ∈ R such that ϕ1 < 0 < ϕ2 and consider

the sector S := {z ∈ C |ϕ1 < arg z < ϕ2}. Let T (z) be a bounded linear operator for all z ∈ S.

Then we call (T (z))z∈S an analytic semigroup if

i) z 7→ T (z) is analytic in S,

ii) T (0) = I and limz→0,z∈S T (z)x = x, for all x ∈ X,

iii) T (z1 + z2) = T (z1)T (z2) for all z1, z2 ∈ S.

We observe that ii) and iii) are very similar to the properties of a strongly continuous semi-

group, cf. Definition 2.1. However analytic semigroups can be evaluated for elements of a sector

around the positive real axis and the map z 7→ T (z) is analytic. It can be shown that analytic

semigroups are generated by sectorial operators, as stated in the following theorem. As common

in the literature, we will assume 0 ∈ ρ(A), which can always be achieved by scaling the semi-

group with e−(ω0(A)+ε), where ω0(A) is the type of the semigroup and ε > 0, cf. the discussion

in [109, p.61].

Theorem 2.61 ([109, Theorem 5.2]). Let (T (t))t≥0 be a strongly continuous semigroup with

‖T (t)‖ ≤ 1, the operator A be its generator and 0 ∈ ρ(A). Then the following statements are

equivalent:

i) (T (t))t≥0 can be extended to an analytic semigroup on the sector Sδ := {z ∈ C | | arg z| < δ}
and ‖T (z)‖ is uniformly bounded on Sδ′ for all δ′ < δ.
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ii) There is 0 < δ < π
2 and M > 0 such that

Σ := {0} ∪
{
λ ∈ C | | arg λ| < π

2
+ δ
}
⊂ ρ(A)

and

‖R(λ,A)‖ ≤ M

|λ|
for λ ∈ Σ, λ 6= 0.

iii) (T (t))t≥0 is differentiable for all t > 0 and there is C ≥ 0 such that

‖AT (t)‖ ≤ C

t
for t > 0.

Remark 2.62. Any operator that satisfies the G̊arding inequality (2.58) generates an analytic

semigroup, cf. [19, Part II-1, Theorem 2.12] or [133, Section 3.6]. In particular, the Laplacian

with Dirichlet or Neumann boundary conditions generates an analytic semigroup in, e.g., L2(Ω).

After having defined analytic semigroups and obtaining a characterization of their generators,

we would like to fully exploit maximal parabolic regularity to derive fine stability estimates.

Definition 2.63. Let A : D(A) ⊂ X → X be the generator of a semigroup and denote

W 1,2(0, T,D(A), X) := {v ∈ L2(0, T ;D(A)) | v′ ∈ L2(0, T ;X)},
‖v‖W 1,2(0,T ;D(A),X) := ‖v‖L2(0,T ;D(A)) + ‖v′‖L2(0,T ;X).

Note that if A generates an exponentially stable analytic semigroup, then A is an isomorphism

from D(A) onto X and the norm ‖Ax‖ is equivalent to the graph norm ‖x‖ + ‖Ax‖ on D(A),

cf. [19, Part II-1, Section 3.6.2]. Moreover, by [19, Part II-1, Remark 4.2], we have the T -

independent embeddingW 1,2(0, T,D(A), X) ↪→ C(0, T ; (D(A), X) 1
2
), where (D(A), X) 1

2
denotes

a real interpolation space as defined in [19, Part II-1, Section 4.3]. Note that in the Hilbert space

setting and as D(A) ⊂ X, the complex and real interpolation spaces with exponent 2 coincide,

[19, Part II-1, Section 4.7] and [137, Remark 3 and Remark 4]. Interpolation spaces are a very

involved subject and for the sake of clarity of presentation, we will not define them here. The

interested reader is referred to the literature cited above, in particular to the monographs [137]

and [152]. As we will see later, interpolation spaces between D(A) and X can, in some cases, be

shown to be isomorphic to domains of fractional powers of A, cf. Example 2.71 and [90, Section

0.2.1].

Lemma 2.64. Let Acl generate an exponentially stable analytic semigroup on X and x0 ∈
(D(Acl), X) 1

2
and f ∈ L2(0, T ;X). Then, if x ∈ C(0, T ;X) is the mild solution of

x′ = Aclx+ f, x(0) = x0,

we have the improved regularity x ∈ W 1,2(0, T,D(Acl), X). Moreover, for c ≥ 0 independent of

T , we have

‖x‖W 1,2(0,T,D(Acl),X) ≤ c
(
‖f‖L2(0,T ;X) + ‖x0‖(D(Acl),X) 1

2

)
.
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Proof. See [19, Part II-1, Theorem 3.1].

The main assumption in this part is the following.

Assumption 2.65 (Standing assumptions). Let X1 be the space introduced in the beginning of

Section 2.3.1, i.e. D(A) equipped with the norm ‖ · ‖1 := ‖(βI −A) · ‖ for β ∈ ρ(A). Moreover,

assume that

i) A generates an analytic semigroup on X,

ii) B ∈ L(U,X), C ∈ L(X,Y ),

iii) (A,B) is exponentially stabilizable and (A,C) is exponentially detectable.

Proposition 2.66. Let (A,B,C) satisfy Assumption 2.65 and consider KC and KB to be sta-

bilizing feedback operators. Then

i) A+KCC and A∗ +K∗BB
∗ generate analytic semigroups on X.

ii) The graph norms of A+KCC and A, resp. A∗ +K∗BB
∗ and A∗, are equivalent.

Proof. Boundedness of B, C and the feedback operators immediately implies A-boundedness of

the perturbations, cf. [44, Chapter III, Lemma 2.16]. This in turn ensures the analyticity of the

perturbed semigroup, cf. [44, Chapter III, Theorem 2.10]. For ii), see [44, Chapter III, Lemma

2.4].

Theorem 2.67. Let Assumption 2.65 hold and (δx, δλ) solve the system
C∗C − d

dt −A
∗

0 ET
d
dt −A −BQ−1B∗

E0 0

(xλ
)

=


l1
λT
l2
x0

 .

where x0 ∈ (D(A), X) 1
2
, λT ∈ (D(A∗), X) 1

2
and l1, l2 ∈ L2(0, T ;X). Then

‖x‖2W 1,2(0,T,D(A),X) ≤ c
(
‖Cx‖2L2(0,T ;Y ) + ‖R−∗B∗λ‖2L2(0,T ;U) + ‖x0‖2(D(A),X) 1

2

+ ‖l2‖2L2(0,T ;X)

)
,

‖λ‖2W 1,2(0,T,D(A∗),X) ≤ c
(
‖Cx‖2L2(0,T ;Y ) + ‖R−∗B∗λ‖2L2(0,T ;U) + ‖λT ‖2(D(A∗),X) 1

2

+ ‖l1‖2L2(0,T ;X)

)
,

Proof. We add the exponentially stabilizing feedback and get

x′ = (A+KCC)x−KCCx−BQ−1B∗λ+ l2

and, using Proposition 2.66 and exponential stability, we conclude

‖x‖W 1,2(0,T,D(A+KCC),X)

≤ c
(
‖Cx‖2L2(0,T ;Y ) + ‖R−∗B∗λ‖2L2(0,T ;U) + ‖x0‖2(D(A+KCC),X) 1

2

+ ‖l2‖2L2(0;T ;X)

)
.
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By the equivalence of the graph norms of A and A+KCC we obtain

‖x‖W 1,2(0,T,D(A),X) ≤ c
(
‖Cx‖2L2(0,T ;Y ) + ‖R−∗B∗λ‖2L2(0,T ;U) + ‖x0‖2(D(A),X) 1

2

+ ‖l2‖2L2(0;T ;X)

)
.

Proceeding analogously for the adjoint equation, we conclude the result.

Theorem 2.68. Let Assumption 2.65 hold. Then, there is a constant c ≥ 0 independent of T

such that

‖M−1‖
L

((
L2(0,T ;X)×(D(A∗),X) 1

2
×L2(0,T ;X)×(D(A),X) 1

2

)
,(W 1,2(0,T,D(A),X)×W 1,2(0,T,D(A∗),X))

) ≤ c.
Proof. Analogously to the case of a general semigroup, Theorem 2.67 together with Lemma 2.37

yields the result.

Thus, a perturbation result and turnpike result are now a direct consequence by straightfor-

ward adaptation of the proof of Theorem 2.48 and Theorem 2.30.

Corollary 2.69. Let Assumption 2.65 hold. Then there are constants c, µ > 0, independent of

T , such that the perturbation estimate (2.10) of Theorem 2.27 for the case E = L2(0, T ;X) and

the turnpike result (2.21) of Theorem 2.30 still hold when replacing the L2(0, T ;X)-norms on the

left hand side of the estimate with the (stronger) W 1,2(0, T,D(A), X) resp. W 1,2(0, T,D(A∗), X)-

norm and the X-norm on the initial and terminal state by the (D(A), X) 1
2

resp. (D(A∗), X) 1
2
-

norm.

We briefly discuss an extension to unbounded control or observation.

Remark 2.70. The notion of A-boundedness allows for perturbations of the semigroup by un-

bounded operators, cf. [44, Chapter III]. In case of, e.g., an unbounded observation operator,

A+KCC still generates an analytic semigroup if KCC is compact as linear operator from D(A)

to X.

2.6.3 Example of heat equation revisited

We will now recall the example of a heat equation and show, how the refined analysis of Sec-

tion 2.6.1 and Section 2.6.2 leads to sharper estimates.

Example 2.71 (Example 2.58 revisited). Consider the system

∂x

∂t
= (∆ + c2I)x+ χωcu in Ω× (0, T ),

x = 0 in ∂Ω× (0, T ),

x(0) = x0 in Ω,

where c ∈ R, χωc is the characteristic function of the control domain ωc ⊂ Ω, U = L2(ωc) and

x0 ∈ L2(Ω). Moreover, we set the observation operator C = χωo for non-empty ωo ⊂ Ω. Not us-

ing the parabolic structure of the equation, the results of Section 2.2 would yield L2(0, T ;L2(Ω))-

or C(0, T ;L2(Ω))-estimates on state and adjoint for perturbations in L2(0, T ;L2(Ω)) and initial

values in L2(Ω). However, these estimates can be improved.

51



2.7. OUTLOOK

Application of direct bootstrapping (Section 2.6.1):

Choosing V = H1
0 (Ω), X = L2(Ω), the method presented in Section 2.6.1 yields W ([0, T ]) sen-

sitivity and turnpike estimates for perturbations in L2(0, T ;L2(Ω)) and initial values in L2(Ω).

Application of maximal parabolic regularity (Section 2.6.2):

We set X = L2(Ω) and hence D(∆) = H2(Ω)∩H1
0 (Ω). In this case, (D(∆), X)1/2

∼= D(−∆
1
2
ω )

(∗)∼=
H1(Ω), where ω is large enough such that ∆ω = ∆ − ωI generates a semigroup with negative

type and ·
1
2 denotes a fractional power of a positive operator, cf. [90, Section 0.2.1] or [19, Part

II-1, Section 1.4]. For the last relation (∗), see [139, Section 10.7]. Thus, Corollary 2.69 yields

W 1,2(0, T,H2(Ω)∩H1
0 (Ω), X)-estimates for state and adjoint for perturbations in L2(0, T ;L2(Ω))

if x0 ∈ H1(Ω).

2.7 Outlook

We briefly present several extensions of the approach presented in this chapter.

• We assumed the state, the input and the output space to be Hilbert spaces. A natural

question that arises is if a generalization to, e.g., reflexive Banach spaces is possible. To

this end, the reader is also referred to Section 4.4, where we derive Lp1(0, T ;Lp2(Ω))-

estimates with 2 < p1, p2 for parabolic equations. Considering the semigroup on other

Lp-spaces can be useful to allow for control and observation that are not admissible for

the semigroup on, e.g., L2(Ω) but on higher order Lp(Ω) spaces, cf. the heat equation with

Dirichlet boundary control, cf. [129, Section 4 4].

• In Assumption 2.45 we assumed that either the control operator B or the observation

operator C is unbounded. It would be interesting to allow for a fully unbounded but

admissible setting, i.e., control, observation and corresponding feedback operators to be

unbounded with a suitable well-posedness assumption.

• Another open problem is the rigorous derivation of the optimality conditions in case of an

unbounded control operator. An inspection of the proof of Theorem 2.24 shows that the

critical point is to interchange the application of B∗ and integration in time.
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Chapter 3

Sensitivity analysis for linear

quadratic optimal control of

non-autonomous parabolic equations

We now analyze how the results of the previous chapter carry over to the case of non-autonomous

parabolic equations in a variational setting. To this end, we aim to quantify how perturbations

of the right hand side of the extremal equations influence the solution if the underlying spatial

differential operator or the cost function is time-dependent. We recall that our main motivation

to consider perturbations is to estimate the influence of discretization errors, i.e., the perturba-

tions may represent the residual of a discretization scheme. Similar to the autonomous setting

considered in Chapter 2, we show that perturbations that increase exponentially in time only

influence the initial part of the solution negligibly. As indicated in the previous chapter, this

feature can be used to construct very efficient discretization schemes for MPC. Again, we stress

that locality of discretization errors is a priori unclear, as the backwards-in-time adjoint equa-

tion could propagate perturbations from close to the end time T to the initial part. As in the

autonomous setting of the previous chapter, we split the proof into an abstract scaling result

provided in Section 3.2.1 and the derivation of T -independent bounds on the extremal equa-

tions’ solution operator’s norm in Section 3.2.3. Additionally, we will provide a turnpike result

under the assumption that the problem is autonomous and relate the result to those obtained

in Chapter 2. Finally, we provide numerical examples and evaluate the performance of a priori

space and time grids that are specialized for MPC.

Although there exists an extension of the semigroup concept to non-autonomous Cauchy

problems—so called evolution families—their analysis in a general setting is rather involved. The

interested reader is referred to the respective parts in the monographs [44, Section VI.9], [109,

Chapter 5] or [133, Chapter 5]. Additionally, for non-autonomous equations, stability results are

difficult to establish (even in the finite dimensional case) due to the lack of a characterization of

stability via the spectrum of the (time-dependent) generator, cf. [151]. To this end, we consider a

particular notion of stability defined via an uniform ellipticity condition. Despite being stronger

53



3.1. SETTING AND PRELIMINARIES

than classical exponential stability as introduced in Definition 2.12, this particular notion has

several advantages and is particularly well suited for non-autonomous parabolic equations: First

and foremost, it straightforwardly allows for stability estimates in the context of non-autonomous

equations and considerably facilitates the proof of such. Second, this particular notion of stability

allows us to derive estimates in Sobolev norms with boundary control and observation. Last,

this stabilizability assumption can very easily be verified as we will illustrate by means of several

examples.

Non-autonomous optimal control problems are an interesting subject in their own right,

however, their analysis will be particularly useful when we approach nonlinear optimal control

problems in Chapter 4, where we will linearize the nonlinear extremal equations around a time-

dependent trajectory, which directly leads to a non-autonomous system.

Structure. In Section 3.1, we introduce the function spaces involved, the weak time deriva-

tive, and the resulting formulation of the PDE. Moreover, we define a linear quadratic optimal

control problem with dynamics governed by a parabolic PDE and derive optimality condi-

tions. Section 3.2 contains two central results in view of MPC. Under the assumption of a

T -independent bound on the extremal equations’ solution operator, we obtain an estimate in

Theorem 3.14 that proves exponential decay of perturbations for non-autonomous optimal con-

trol problems. Under the same assumption and assuming that the system is autonomous, we

will draw a link to the previous chapter and present an exponential turnpike result in Theo-

rem 3.16. In Corollary 3.30, we prove that under a particular stabilizability assumption, the

extremal equations’ solution operator can indeed be bounded independently of T .

The majority of the results in this chapter have been published in [69] and [70].

3.1 Setting and preliminaries

We will briefly introduce the generalized time derivative, the formulation of the parabolic equa-

tions and the linear quadratic optimal control problem of interest. To this end, we recall some

fundamental results on variational parabolic equations from the literature, cf. [49, 55, 96, 150,

158].

3.1.1 Gelfand triples and generalized time derivatives

Let (V, ‖·‖V ) be a separable and reflexive Banach space and H a separable and real Hilbert space

with scalar product 〈·, ·〉 and induced norm ‖ · ‖. Further, assume that V ↪→ H continuously

and densely. Thus, V ↪→ H ∼= H∗ ↪→ V ∗ continuously and densely, where V ∗ is the topological

dual of V . Such an ensemble of spaces is often called Gelfand triple or evolution triple. In the

following, we will identify H with its dual via the Riesz isomorphism.

Definition 3.1 (Generalized time derivative, [158, Definition 23.15]). Let Y and Z be Banach

spaces. Consider x ∈ L1(0, T ;Y ) and w ∈ L1(0, T ;Z). Then w is called the generalized time
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derivative of x on (0, T ) if∫ T

0
ϕ′(t)x(t) dt = −

∫ T

0
ϕ(t)w(t) dt ∀ϕ ∈ C∞0 (0, T ), (3.1)

where C∞0 (0, T ) = {ϕ ∈ C∞(0, T ) |ϕ(0) = ϕ(T ) = 0}.

In general, the left and right hand side of (3.1) lie in different spaces, i.e., Y and Z, respec-

tively and validity of the formula implies that both lie in Y ∩ Z. However, by density of the

embeddings in the Gelfand triple, one obtains the following characterization.

Lemma 3.2 (Characterization of the generalized time derivative, [158, Proposition 23.20]). Let

V ↪→ H ↪→ V ∗ form a Gelfand triple and 1
p + 1

q = 1. Then, for any x ∈ Lp(0, T ;V ), the function

w ∈ Lq(0, T ;V ∗) is the generalized time derivative of x if and only if∫ T

0
ϕ′(t)〈x(t), v〉 dt = −

∫ T

0
ϕ(t)〈w(t), v〉V ∗×V dt ∀v ∈ V, ϕ ∈ C∞0 (0, T ).

In this case, the generalized time derivative w is denoted d
dtx or x′.

We further will need a product rule for generalized time derivatives.

Lemma 3.3 (Product rule for generalized time derivatives). Let x ∈ L2(0, T ;V ) with generalized

time derivative x′ ∈ L2(0, T ;V ∗) and s ∈ C∞(0, T ). Then,

(sx)′ = s′x+ sx′.

Proof. The proof follows directly from the defining equation (3.1) and the product rule for

functions in C∞(0, T ).

We now define the space of functions in L2(0, T ;V ) with generalized time derivative in

L2(0, T ;V ∗) and recall well-known properties. From now on, we will assume that V ↪→ H ↪→ V ∗

form a Gelfand triple.

Lemma 3.4 (Solution space and important properties). Define the function space

W ([0, T ]) := {v : [0, T ]→ V | v ∈ L2(0, T ;V ), v′ ∈ L2(0, T ;V ∗)}

endowed with the norm ‖v‖W ([0,T ]) := ‖v‖L2(0,T ;V ) + ‖v′‖L2(0,T ;V ∗). Then,

i) W ([0, T ]) ↪→ C(0, T ;H) continuously with embedding constant independent of T .

ii) For v, w ∈W ([0, T ]) and 0 ≤ s ≤ t ≤ T , we have the integration by parts formula

〈v(t), w(t)〉 − 〈v(s), w(s)〉 =

t∫
s

〈v′(τ), w(τ)〉V ∗×V + 〈w′(τ), v(τ)〉V ∗×V dτ.
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iii)
(
W ([0, T ]), ‖ · ‖W ([0,T ])

)
is a Banach space.

iv) For w ∈W ([0, T ]), it holds that

〈w′, w〉L2(0,T ;V ∗)×L2(0,T ;V ) =
1

2

(
‖w(T )‖2 − ‖w(0)‖2

)
.

Proof. See [158, Proposition 23.23, Problem 23.10d] and [127, Section 2.3].

3.1.2 Parabolic PDEs in variational form

In this part, we introduce a solution concept for parabolic PDEs in variational form. To this

end, after having defined the generalized time derivative, we will consider a spatial differential

operator A satisfying the following assumptions.

Assumption 3.5.

i) A ∈ L(L2(0, T ;V ), L2(0, T ;V ∗)).

ii) A is local in time, i.e., for any s : R→ R and x ∈ L2(0, T ;V ), we have A(sx) = sAx.

iii) A satisfies the G̊arding inequality:

∃ω ∈ R, α > 0 : α‖x‖2L2(0,T ;V ) ≤ −〈Ax, x〉L2(0,T ;V ∗)×L2(0,T ;V ) + ω‖x‖2L2(0,T ;H). (3.2)

The inequality (3.2) also occurred in the bootstrapping arguments of the previous chapter,

particularly Section 2.6.1. We briefly give an example of an operator satisfying these assump-

tions.

Example 3.6. Consider κ(t, ω) : [0, T ]×Ω→ R, continuous and uniformly bounded from below

in both arguments, i.e., v · κ(t, ω)v ≥ α|v|2 for α > 0. Moreover, let V = H1
0 (Ω) or V =

H1(Ω) and H = L2(Ω). Then, for any constant c ∈ R, the linear operator A : L2(0, T ;V ) →
L2(0, T ;V ∗) defined by

〈Ax1, x2〉L2(0,T ;V ∗)×L2(0,T ;V ) :=

T∫
0

∫
Ω

−∇x1(t, ω) · κ(t, ω)∇x2(t, ω) + cx1(t, ω)x2(t, ω) dω dt

for x1, x2 ∈ L2(0, T ;V ) satisfies Assumption 3.5.

Using the time evaluation operator Etx = x(t) for t ∈ [0, T ] and x ∈ C(0, T ;H) as introduced

in Definition 2.26, we define an operator corresponding to a parabolic PDE in weak form via

Λ :=

(
d
dt −A
E0

)
: W ([0, T ])→ (L2(0, T ;V )×H)∗,
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where for x ∈W ([0, T ]) and test functions (v, v0) ∈ L2(0, T ;V )×H

〈Λx, (v, v0)〉(L2(0,T ;V )×H)∗×(L2(0,T ;V )×H) :=

〈(
d

dt
+A

)
x, v

〉
L2(0,T ;V ∗)×L2(0,T ;V )

+ 〈x(0), v0〉.

(3.3)

A parabolic problem in variational form is to find x ∈W ([0, T ]) such that

〈Λx, (v, v0)〉(L2(0,T ;V )×H)∗×(L2(0,T ;V )×H) = 〈f, v〉L2(0,T ;V ∗)×L2(0,T ;V ) + 〈x0, v0〉 (3.4)

for all (v, v0) ∈ L2(0, T ;V )×H, where f ∈ L2(0, T ;V ∗) is a source term and x0 ∈ H an initial

datum. Whenever we call a function a solution to a variational parabolic problem, we mean it

in the sense of (3.4).

Remark 3.7. Solvability of problems of type (3.4) is a classical issue and the interested reader

is referred to [49, 55, 96, 127, 150, 158]. If A satisfies Assumption 3.5, it can be shown that

Λ: W ([0, T ]) → L2(0, T ;V ∗) × H is an isomorphism, cf. [127, Theorem 3.4]. Additionally, if

x ∈ W ([0, T ]) solves (3.4), then the terms x′, Ax and f share the same temporal and spatial

regularity, i.e., they belong to L2(0, T ;V ∗). This feature is known as maximal parabolic regular-

ity, cf. Section 2.6.2 where we discussed this topic in a semigroup framework. For hyperbolic

equations, where A in particular does not satisfy (3.2) due to skew-adjointness, the correspond-

ing operator Λ can not be shown to be an isomorphism due to lack of surjectivity, cf. [19, Part

II-1, Remark 3.5].

The following proposition is a central result in view of optimal control and characterizes the

regularity of solutions of adjoint equations with particular right hand sides.

Proposition 3.8 (Higher regularity of adjoint state, [127, Proposition 3.8]).

Let (λ, λ0) ∈ L2(0, T ;V )×H be given. Then, the following assertions are equivalent:

i) There exist (l, l0, lT ) ∈ L2(0, T ;V ∗)×H ×H such that for all w ∈W ([0, T ]) it holds that

〈Λ∗(λ, λ0), w〉W ([0,T ])∗×W ([0,T ]) =

T∫
0

〈l(t), w(t)〉V ∗×V dt+ 〈l0, w(0)〉+ 〈lT , w(T )〉.

ii) λ ∈W ([0, T ]).

If these conditions are satisfied, then λ(T ) = lT and λ0 − λ(0) = l0.

Therefore, for right hand sides of the adjoint equation in L2(0, T ;V ∗) × H, we obtain an

adjoint state λ ∈ W ([0, T ]) with a prescribed terminal value. As a consequence, the rule of

integration by parts holds for the adjoint state and the adjoint equation can be interpreted as a

backwards-in-time equation, cf. [127, Section 3.2].
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3.1.3 Optimization problems with parabolic PDEs

In this section, we will move to optimization problems governed by parabolic PDEs. In contrast

to the previous chapter, where we considered autonomous optimal control problems governed

by general semigroups in Problem 2.23, we will consider the following non-autonomous optimal

control problem governed by a parabolic PDE. In order to formulate the problem of interest, we

will consider the following standing assumptions.

Assumption 3.9.

i) T > 0 is a fixed time horizon,

ii) A satisfies Assumption 3.5, f ∈ L2(0, T ;V ∗) and x0 ∈ H,

iii) ud ∈ L2(0, T ;U), U is a real Hilbert space with scalar product 〈·, ·〉U and induced norm ‖·‖U ,

B ∈ L(L2(0, T ;U), L2(0, T ;V ∗)),

iv) R ∈ L(L2(0, T ;U)) with ‖Ru‖2L2(0,T ;U) ≥ α‖u‖
2
L2(0,T ;U) for α > 0 and all u ∈ L2(0, T ;U),

v) xd ∈ L2(0, T ;V ), Y is a real Hilbert space with scalar product 〈·, ·〉Y and induced norm

‖ · ‖Y , C ∈ L(L2(0, T ;V ), L2(0, T ;Y )),

vi) C,B,R are local in time in the sense of Assumption 3.5 ii),

vii) ‖A‖L(L2(0,T ;V ),L2(0,T ;V ∗)), ‖B‖L(L2(0,T ;U),L2(0,T ;V ∗)), ‖C‖L(L2(0,T ;V ),L2(0,T ;Y )), and

‖R‖L(L2(0,T ;U)) can be bounded independently of T .

With these assumptions at hand, we aim to analyze solutions to the following optimal control

problem.

Problem 3.10. Find (x, u) ∈W ([0, T ])× L2(0, T ;U) solving

min
(x,u)

1

2

∫ T

0
‖C(x(t)− xd(t))‖2Y + ‖R(u(t)− ud(t))‖2U dt

s.t. x′ = Ax+Bu+ f,

x(0) = x0.
(3.5)

Remark 3.11. We will briefly comment on this problem and Assumption 3.9.

• In the case V = H1(Ω), the above setting naturally incorporates the case of boundary

control or observation, i.e., 〈Bu, v〉L2(0,T ;V ∗)×L2(0,T ;V ) :=
∫ T

0

∫
∂Ω u tr v dγ dt and Cx := trx

with Y = U = L2(∂Ω), where tr : H1(Ω)→ L2(∂Ω) is the Dirichlet trace operator.

• Assumption 3.9 vi) is merely needed for the scaling approach applied in, e.g., Theorem 2.27,

to permute the application of the operator and the multiplication with a scalar scaling

function. In particular, existence and uniqueness of solutions can be deduced for operators

B, C, and R that are non-local time, cf. [127].

58



CHAPTER 3. SENSITIVITY ANALYSIS FOR LINEAR QUADRATIC OPTIMAL
CONTROL OF NON-AUTONOMOUS PARABOLIC EQUATIONS

• Assumption 3.9 vii) is crucial to derive T -independent bounds. It is, however, not too re-

strictive in terms of applications. Two examples of operators L : L2(0, T ;V )→ L2(0, T ;V ∗)
bounded independently of T are

– 〈Lv,w〉L2(0,T ;V ∗)×L2(0,T ;V ) =
T∫
0

〈Lv,w〉V ∗×V dt, where L ∈ L(V, V ∗), as clearly

‖L‖L(L2(0,T ;V ),L(L2(0,T ;V ∗)) ≤ ‖L‖L(V,V ∗),

– 〈Lv,w〉L2(0,T ;V ∗)×L2(0,T ;V ) =
T∫
0

〈L(t)v, w〉V ∗×V dt, where L : [0,∞[→ L(V, V ∗) is con-

tinuous and sup
t∈[0,∞[

‖L(t)‖L(V,V ∗) <∞.

The analysis in this non-autonomous parabolic setting, again, is based on the characteriza-

tion of minimizers via the first-order necessary optimality conditions. Due to convexity of the

problem, these conditions are also sufficient. The following proposition states the optimality

conditions at a minimizer.

Proposition 3.12 (First order optimality conditions). Let (x, u) ∈ W ([0, T ]) × L2(0, T ;U) be

a minimizer of problem Problem 3.10. Then there is an adjoint state λ ∈W ([0, T ]) such that

C∗Cx−
(
d

dt
+A∗

)
λ = C∗Cxd in L2(0, T ;V ∗),

λ(T ) = 0 in H,

R∗Ru−B∗λ = R∗Rud in L2(0, T ;U),(
d

dt
−A

)
x−Bu = f in L2(0, T ;V ∗),

x(0) = x0 in H.

Proof. See [127, Theorem 1.1, Remark 1.2].

Defining Q := R∗R and using coercivity of R, we can eliminate the control via u = Q−1B∗λ+

ud and obtain that the optimal state and corresponding adjoint satisfy
C∗C − d

dt −A
∗

0 ET
d
dt −A −BQ−1B∗

E0 0


︸ ︷︷ ︸

=:M

(
x

λ

)
=


C∗Cxd

0

Bud + f

x0

 , (3.6)

where Et is time evaluation operator defined by Etx = x(t) for t ∈ [0, T ] in Definition 2.26 and

M : W ([0, T ])2 → (L2(0, T ;V ∗)×H)2.

In the following, we will refer to (3.6) as the extremal equations. We first formulate a scaling

result analogous to Lemma 2.22, where we proposed a similar lemma in a semigroup framework.
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Lemma 3.13. Let A satisfy Assumption 3.5, x0, xT ∈ H and f1, f2 ∈ L2(0, T ;V ∗). Assume

that x1, x2 ∈W ([0, T ]) solve

x′1 = Ax1 + f1, x1(0) = x0,

−x′2 = A∗x2 + f2, x2(T ) = xT .

Then, the following holds.

i) For any µ ∈ R, the operators A − µI and A + µI satisfy Assumption 3.5. Moreover,

x̃1(t) := e−µtx1(t) and x̃2(t) := e−µtx2(t) solve

x̃′1 = (A− µI)x̃1 + e−µtf1, x̃1(0) = x0,

−x̃′2 = (A+ µI)∗x̃2 + e−µtf2, x̃2(T ) = e−µTxT .
(3.7)

ii) For all 0 ≤ s ≤ t ≤ T it holds that

〈x1(t), x2(t)〉 − 〈x1(s), x2(s)〉 =

∫ t

s
〈f1(τ), x2(τ)〉V ∗×V − 〈f2(τ), x1(τ)〉V ∗×V dτ.

Proof. It is easily checked that A− µI and A+ µI satisfy Assumption 3.5. The second part of

i) immediately follows by the product rule for generalized time derivatives, cf. Lemma 3.3. Note

that locality of A in time as defined in Assumption 3.5 ii) is important here in order to permute

application of A and multiplication by the scaling term e−µt. The formula in ii) results from

testing the first equation with x2, the second equation with x1, subtracting both equations and

integrating by parts in time in the sense of Lemma 3.4.

3.2 Exponential sensitivity analysis

This section constitutes the main part of this chapter. We first present two abstract scaling

results under the assumption of a T -independent bound on the solution operator of (3.6). After

that, we derive the desired bound on the solution operator under a particular stabilizability

assumption.

3.2.1 An abstract exponential sensitivity result

We will refer to the solution (x, λ) ∈ W ([0, T ])2 of (3.6) as the exact solution. Assume that

there is a second pair of variables (x̃, λ̃) ∈W ([0, T ])2 solving the perturbed system

M

(
x̃

λ̃

)
=


C∗Cxd

0

Bud + f

x0

+


ε1

εT
ε2

ε0


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for ε1, ε2 ∈ L2(0, T ;V ∗) and ε0, εT ∈ H. This solution will be referred to as the perturbed

solution. The terms ε1, ε2 ∈ L2(0, T ;V ∗) are perturbations of the state and adjoint equation that

could stem from discretization errors in time or space, whereas ε0, εT ∈ H describe a perturbation

of the initial and terminal condition by space discretization errors. In this subsection, we will

give an estimate on the absolute error, i.e., the difference of (x̃, λ̃) and (x, λ). It follows by

linearity that this difference
(
δx, δλ

)
:=
(
x̃− x, λ̃− λ

)
between exact and perturbed solution

satisfies the system of equations

M

(
δx

δλ

)
=


ε1

εT
ε2

ε0

 . (3.8)

Analogous to the autonomous counterpart analyzed in Section 2.2, the main question here is

the following: How does the behavior of the perturbations ε1 and ε2 over time and ε0 resp. εT
influence the behavior of the error δx and δλ? To answer this question, we adapt the scaling

approach introduced in Theorem 2.27 to the parabolic variational setting.

Theorem 3.14. Assume that (δx, δλ) ∈W ([0, T ])2 solves (3.8), where ε1, ε2 ∈ L2(0, T ;V ∗) and

ε0, εT ∈ H. Let δu = Q−1B∗δλ. Suppose that ‖M−1‖L((L2(0,T ;V ∗)×H)2,W ([0,T ])2) can be bounded

independently of T . Then, for any scaling factor µ > 0 satisfying

µ <
1

‖M−1‖L((L2(0,T ;V ∗)×H)2,W ([0,T ])2)

there is a constant c ≥ 0 independent of T such that defining

ρ :=
∥∥e−µtε1(t)

∥∥
L2(0,T ;V ∗)

+
∥∥e−T εT∥∥+

∥∥e−µtε2(t)
∥∥
L2(0,T ;V ∗)

+ ‖ε0‖

we have the estimate∥∥e−µtδx(t)
∥∥
W ([0,T ])

+
∥∥e−µtδu(t)

∥∥
L2(0,T ;U)

+
∥∥e−µtδλ(t)

∥∥
W ([0,T ])

≤ cρ.

Proof. We proceed completely analogously to the L2-case in the proof of Theorem 2.27. We

define scaled variables δ̃x := e−µtδx ∈ W ([0, T ]) and δ̃λ := e−µtδλ ∈ W ([0, T ]) and conclude

with Lemma 3.13 that
(
δ̃x, δ̃λ

)
solves


C∗C − d

dt −A
∗

0 ET
d
dt −A −BQ−1B∗

E0 0

+ µ


0 −I
0 0

I 0

0 0


︸ ︷︷ ︸

=:P


(
δ̃x

δ̃λ

)
=


e−µtε1

e−T εT
e−µtε2

ε0

 .
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Setting z̃ :=
(
δ̃x, δ̃λ

)
and ε̃ :=

(
e−µtε1, e

−µT , e−µtε2, ε0

)
we compute

(M + µP )z̃ = ε̃ in (L2(0, T ;V ∗)×H)2,

(I + µM−1P )z̃ = M−1ε̃ in W ([0, T ])2.

Clearly we have the bound ‖P‖L(W ([0,T ])2,(L2(0,T ;V ∗)×H)2) ≤ 1. Thus, by choosing µ > 0 such

that β := µ‖M−1‖L((L2(0,T ;V ∗)×H)2,W ([0,T ])2) < 1, we get invertibility of (I + µM−1P ) as an

operator from W ([0, T ])2 to W ([0, T ])2 by a standard Neumann argument, cf. [85, Theorem

2.14]. Moreover, the Neumann series representation of (I + µM−1P )−1 yields

‖(I + µM−1P )−1‖L(W ([0,T ])2,W ([0,T ])2) ≤
∞∑
i=0

‖(µM−1P )i‖L(W ([0,T ])2,W ([0,T ])2) ≤
∞∑
i=0

βi =
1

1− β
.

Hence, we conclude

z̃ = (I − µM−1P )−1M−1ε̃,

which implies the estimate

‖z̃‖W ([0,T ])2 ≤
‖M−1‖L((L2(0,T ;V ∗)×H)2,W ([0,T ])2)

1− β
‖ε̃‖(L2(0,T ;V ∗)×H)2 ≤ cρ.

Writing this in the original variables yields the result. For the control, we compute∥∥e−µtδu∥∥
L2(0,T ;U)

=
∥∥e−µtR−1B∗δλ

∥∥
L2(0,T ;U)

=
∥∥R−1B∗e−µtδλ

∥∥
L2(0,T ;U)

≤ ‖R−1B∗‖L(L2(0,T ;V ),L2(0,T ;U))cρ,

where we used that R and B are local in time, i.e., application of the operators and multiplication

with the scaling term commute.

Corollary 3.15. Let the assumptions of Theorem 3.14 hold. Then there exist µ, c > 0 indepen-

dent of T such that ∥∥e−µtδx(t)
∥∥
C(0,T ;H)

+
∥∥e−µtδλ(t)

∥∥
C(0,T ;H)

≤ cρ.

If additionally B ∈ L(L2(0, T ;U), L2(0, T ;H)) with 〈Bu, v〉L2(0,T ;V ∗)×L2(0,T ;V ) =
∫ T

0 〈B(t)u(t), v(t)〉
for B ∈ L∞(0, T ;L(U,H)) and 〈Ru, v〉L2(0,T ;U) =

∫ T
0 〈R(t)u(t), v(t)〉U for R ∈ L∞(0, T ;L(U))

continuously invertible, and if B and R are bounded independently of T , then we have∥∥e−µtδu∥∥
L∞(0,T ;U)

≤ cρ

with a constant c ≥ 0 independent of T .

62



CHAPTER 3. SENSITIVITY ANALYSIS FOR LINEAR QUADRATIC OPTIMAL
CONTROL OF NON-AUTONOMOUS PARABOLIC EQUATIONS

Proof. The bound on state and adjoint state follows fromW ([0, T ]) ↪→ C(0, T ;H), cf. Lemma 3.4.

By the assumptions on B and R, we have

e−µtδu(t) = R−1(t)B(t)∗e−µT δλ(t)

for a.e. t ∈ [0, T ]. Hence, the pointwise bound on the control follows by the pointwise bound on

the adjoint state.

In Theorem 3.14 and Corollary 3.15, we assumed a T -independent bound on M−1. In Sec-

tion 3.2.3 we will derive this bound under a stabilizability assumption. Before that, however,

we briefly consider the case of an autonomous system to deduce a turnpike result similar to

Theorem 2.30.

3.2.2 An exponential turnpike result

In this section, in order to define a steady state problem corresponding to Problem 3.10 we will

restrict ourselves to an autonomous version of Problem 3.10, where the involved operators are

induced by time-independent ones, e.g., 〈Ax, v〉L2(0,T ;V ∗)×L2(0,T ;V ) =
∫ T

0 〈Āx(t), v(t)〉V ∗×V dt, for

Ā ∈ L(V, V ∗). Similarly, we assume B to be given by a time-independent B̄, C by C̄ and R

by R̄. Moreover, we assume constant references xd ≡ x̄d ∈ V and ud ≡ ūd ∈ U and a constant

source term f ≡ f̄ ∈ V ∗. The first pair of variables (x, λ) ∈ W ([0, T ])2 we consider is the

solution of the extremal equations (3.6). Secondly, we introduce the solution of a steady state

optimization problem, namely (x̄, ū) ∈ V × U being the minimizer of

min
x̄,ū

1

2
‖C̄(x̄− x̄d)‖2Y + ‖R̄(ū− ūd)‖2U

s.t.− Āx̄− B̄ū = f̄ .

This problem has a unique solution if, e.g., A is continuously invertible. This, for example can

be ensured by classical elliptic theory if (3.2) holds with ω = 0. Then, there is an adjoint state

λ̄ ∈ V such that (x̄, λ̄) is a solution of the corresponding first-order conditions(
C̄∗C̄ −Ā∗
−Ā −B̄Q̄−1B̄∗

)(
x̄

λ̄

)
=

(
C̄∗C̄xd

B̄ud + f̄

)
, (3.9)

where Q̄ := R̄∗R̄ and ū = Q−1B∗λ + ūd. Similar to Theorem 2.30, we present the following

turnpike result.

Theorem 3.16. Let (x, u, λ) solve Problem 3.10 and let (x̄, ū, λ̄) solve the corresponding steady

state problem (3.9). Assume ‖M−1‖L((L2(0,T ;V ∗)×H)2,W ([0,T ])2) can be bounded independently of

T and set (δx, δu, δλ) := (x− x̄, u− ū, λ− λ̄). Then, for any µ > 0 satisfying

µ <
1

‖M−1‖L((L2(0,T ;V ∗)×H)2,W ([0,T ])2)
,
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there exists a constant c ≥ 0 independent of T such that∥∥∥∥ 1

e−µt + e−µ(T−t) δx(t)

∥∥∥∥
W ([0,T ])

+

∥∥∥∥ 1

e−µt + e−µ(T−t) δu(t)

∥∥∥∥
L2(0,T ;U)

+

∥∥∥∥ 1

e−µt + e−µ(T−t) δλ(t)

∥∥∥∥
W ([0,T ])

≤ c
(
‖x0 − x̄‖+

∥∥λ̄∥∥) , (3.10)

∥∥∥∥ 1

e−µt + e−µ(T−t) δx(t)

∥∥∥∥
C(0,T ;H)

+

∥∥∥∥ 1

e−µte−µ(T−t) δλ(t)

∥∥∥∥
C(0,T ;H)

≤ c
(
‖x0 − x̄‖+

∥∥λ̄∥∥ |) .
(3.11)

Proof. First, we integrate (3.9) over [0, T ], add d
dt x̄ = d

dt λ̄ = 0, and Etx̄ = x̄, Etλ̄ = λ̄ and

conclude that (δx, δλ) := (x− x̄, λ− λ̄) solves
C∗C − d

dt −A
∗

0 ET
d
dt −A −BQ−1B∗

E0 0

(δxδλ
)

=


0

−λ̄
0

x0 − x̄


We introduce scaled variables δ̃x := 1

(e−µt+e−µ(T−t))
δx and δ̃λ := 1

(e−µt+e−µ(T−t))
δλ. Then, by the

product rule for generalized time derivatives, cf. Lemma 3.3, we obtain
 C∗C d

dt −A
∗

0 ET
d
dt −A −BQ−1B∗

− µ


0 F

0 0

−F 0

0 0


︸ ︷︷ ︸

=:P


(
δ̃x

δ̃λ

)
=


0

− 1
1+e−µT

λ̄

0
1

1+e−µT
(x0 − x̄)

 ,

where 〈Fv,w〉V ∗×V =
T∫
0

(e−µ(T−t)−e−µt)
(e−µt+e−µ(T−t))

〈v(t), w(t)〉V ∗×V dt. Defining z̃ :=
(
δ̃x, δ̃λ

)
and

l̃ := 1
1+e−µT

(
0,− 1

1+e−µT
λ̄, 0, 1

1+e−µT
(x0 − x̄)

)
, we compute that

(M − µP )z̃ = l̃

if and only if

(I − µM−1P )z = M−1 l̃. (3.12)

We proceed to show the bound ‖P‖L(W ([0,T ])2,(L2(0,T ;V ∗)×H)2) ≤ 1. This follows immediately by

the definition of P and the estimate

|〈Fv,w〉V ∗×V | =

∣∣∣∣∣
T∫

0

(e−µ(T−t) − e−µt)
(e−µt + e−µ(T−t))︸ ︷︷ ︸

|·|<1

〈v(t), w(t)〉V ∗×V dt

∣∣∣∣∣ ≤ ‖v‖W ([0,T ])‖w‖L2(0,T ;V ).
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Hence, we choose µ > 0 such that β = µ‖M−1‖L((L2(0,T ;V ∗)×H)2,W ([0,T ])2) < 1 and obtain

invertibility of (I − µM−1P ) by [85, Theorem 2.14]. Using the Neumann series representation

of (I − µM−1P )−1 yields

‖(I − µM−1P )−1‖L(W ([0,T ])2,W ([0,T ])2) ≤
∞∑
i=0

‖(µM−1P )i‖L(W ([0,T ])2,W ([0,T ])2) ≤
∞∑
i=0

βi =
1

1− β
,

and together with (3.12), we get

‖z̃‖W ([0,T ])2 ≤
‖M−1‖L((L2(0,T ;V ∗)×H)2,W ([0,T ])2)

1− β
‖l̃‖(L2(0,T ;V ∗)×H)2 ≤ c

(∥∥λ̄∥∥+ ‖x0 − x̄‖
)
.

Writing this in the original variables yields the result. The L2-estimate for the control follows

immediately analogous to the respective part of the proof of Theorem 3.14. The pointwise

bounds can be proven completely analogously to the proof of Corollary 3.15.

We immediately obtain the following corollary, where the bound for the control follows anal-

ogously to the proof of Corollary 3.15.

Corollary 3.17. Let the assumptions of Theorem 3.16 hold. Then there exist c, µ > 0 indepen-

dent of T such that for all t ∈ [0, T ]

‖x(t)− x̄‖+
∥∥λ(t)− λ̄

∥∥ ≤ c(e−µT + e−µ(T−t))
(
‖x0 − x̄‖+

∥∥λ̄∥∥) .
If additionally B̄ ∈ L(U,H), we get following the pointwise bound on the control

‖u(t)− ū‖U ≤ c(e−µT + e−µ(T−t))
(
‖x0 − x̄‖+

∥∥λ̄∥∥) .
We will now show that the T -independent bounds on ‖M−1‖L((L2(0,T ;V ∗)×H)2,W ([0,T ])2) as-

sumed in Theorem 3.14 and Theorem 3.16 can be proven under suitable stabilizability assump-

tions.

3.2.3 T -independent bounds for the solution operator

By c > 0 we will denote a generic T -independent constant, which will be redefined as necessary

in the proofs.

In order to derive the desired bound on the solution operator, let l1, l2 ∈ L2(0, T ;V ∗) and

x0, λT ∈ H, and consider the system
C∗C − d

dt −A
0 ET

d
dt +A −BQ−1B∗

E0 0

(xλ
)

=


l1
λT
l2
x0

 . (3.13)
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In the following, we will bound (x, λ) by means of (l1, λT , l2, x0) uniformly in T . In the au-

tonomous case, we assumed exponential stabilizability and exponential detectability to derive

the desired bound, cf. Assumption 2.32. In this part, we introduce a particular notion of stabil-

ity characterized by an ellipticity condition, which is especially well-suited for non-autonomous

parabolic equations.

Definition 3.18. An operator S : L2(0, T ;V ) → L2(0, T ;V ∗) is called L2(0, T ;V )-elliptic if

there exists α > 0 independent of T such that

〈Sv, v〉L2(0,T ;V ∗)×L2(0,T ;V ) ≥ α‖v‖2L2(0,T ;V ) ∀v ∈ L2(0, T ;V ). (3.14)

Remark 3.19. We briefly comment on L2(0, T ;V )-ellipticity in the context of evolution equa-

tions.

• It is clear that S is L2(0, T ;V )-elliptic if and only if S∗ is.

• If an operator S satisfies Assumption 3.5 and the L2(0, T ;V )-ellipticity condition (3.14)

for α > 0, then it can be shown by a simple scaling argument, cf. Lemma 3.13, that the

solution of

v′ = −Sv, v(0) = v0

with v0 ∈ H fulfills
∥∥eµtv∥∥

L2(0,T ;V )
≤ 1√

α−µ‖v0‖ for any µ < α and also ‖v(t)‖ ≤
e−αt‖v(0)‖ for t ≥ 0. Thus, if ‖ · ‖ represents an energy, the latter estimate yields imme-

diate energy dissipation.

• An example of an L2(0, T ;H1
0 (Ω))-elliptic operator is the Laplacian in weak form, i.e.,

〈Sv, v〉L2(0,T ;H−1(Ω))×L2(0,T ;H1
0 (Ω)) :=

T∫
0

∫
Ω

∇v · κ(t, ω)∇v dωdt,

where κ(t, ω) is a uniformly bounded measurable function from [0, T ] into the set of real

matrices, satisfying the uniform ellipticity condition v · κ(t, ω)v ≥ α|v|2 for α > 0.

The exponential estimates in the previous remark motivate the following definition of V -

exponential stabilizability.

Definition 3.20. Let A,B,C be defined as in Assumption 3.9. We call (A,B) V -exponentially

stabilizable if there exists a feedback operator KB ∈ L(L2(0, T ;V ), L2(0, T ;U)) such that −(A+

BKB) is L2(0, T ;V )-elliptic, i.e., fulfills (3.14). Similarly, we call (A,C) V -exponentially sta-

bilizable if there exists KC ∈ L(L2(0, T ;Y ), L2(0, T ;V ∗)) such that −(A+KCC) is L2(0, T ;V )-

elliptic, i.e., fulfills (3.14).

We briefly illustrate this stabilizability property by means of two examples of an unstable

heat equation with distributed control and Neumann boundary control, respectively.

66



CHAPTER 3. SENSITIVITY ANALYSIS FOR LINEAR QUADRATIC OPTIMAL
CONTROL OF NON-AUTONOMOUS PARABOLIC EQUATIONS

Example 3.21. Let Ω ⊂ Rn, n ∈ {2, 3}, be a non-empty, open, bounded domain with smooth

boundary and set V = H1(Ω) and H = L2(Ω). For γ > 0 and x, v ∈ L2(0, T ;H1(Ω)) let A be

defined by

〈Ax, v〉L2(0,T ;H1(Ω)∗)×L2(0,T ;H1(Ω)) :=

∫ T

0

∫
Ω
−∇x · κ(t, ω)∇v + γxv dωdt,

where κ(t, ω) is a uniformly bounded measurable function from [0, T ] into the set of real matrices,

satisfying the uniform ellipticity condition v · κ(t, ω)v ≥ α|v|2 for α > 0. First, we observe that

for small c > 0 (depending on the uniform ellipticity constant of κ) we have the lower bound

−〈Ax, x〉L2(0,T ;(H1(Ω))∗)×L2(0,T ;H1(Ω)) + (γ + c)‖x‖2L2(0,T ;L2(Ω)) ≥ c‖x‖
2
L2(0,T ;H1(Ω))

and hence A satisfies Assumption 3.5. However, for any γ > 0, the solutions of

x′ −Ax = 0, x(0) = x0

are not stable. This can easily be seen by inserting a spatially constant function into the PDE.

To stabilize the system H1(Ω)-exponentially, we consider a subset Ωc ⊂ Ω with positive

measure and set U = L2(Ωc). The control operator will be given by

〈Bu, v〉L2(0,T ;H1(Ω)∗)×L2(0,T ;H1(Ω)) :=

∫ T

0

∫
Ωc

uv dωdt.

Defining the feedback operator KB : L2(0, T ;H1(Ω))→ L2(0, T ;L2(Ωc)) by KBx(t) := −Kx(t)∣∣Ωc
for K > 0 and a.e. t ∈ [0, T ], we conclude

−〈(A+BKB)x, x〉L2(0,T ;H1(Ω)∗)×L2(0,T ;H1(Ω)) ≥
T∫

0

∫
Ω

c‖∇x‖2 − γx2 + χΩcKx
2 dωdt

≥ C(γ, c,K,Ω)‖x‖2L2(0,T ;H1(Ω)).

For given (c,Ω,Ωc), positivity of C(γ, c,K,Ω) can be ensured if γ > 0 is small enough. This

follows by the generalized Poincaré inequality, cf. [138, Lemma 2.5]. If Ωc = Ω, we note that

by choosing K > γ, the feedback operator KB defined above is H1(Ω)-exponentially stabilizing

for every γ > 0. If we assume an observation on the whole domain, i.e., C is the embedding

of L2(0, T ;H1(Ω)) into L2(0, T ;L2(Ω)) and Y = L2(Ω), we can choose KC = −KE where

K > γ and E is the embedding of L2(0, T ;L2(Ω)) into L2(0, T ; (H1(Ω)∗)), which yields the

L2(0, T ;H1(Ω))-ellipticity of −(A+KCC) for all γ > 0.

Example 3.22. A similar result holds if we replace the distributed control in Example 3.21 by

Neumann boundary control of the form ∂
∂νx = u on a subset Γc ⊂ ∂Ω of positive measure. In

this case, V = H1(Ω), H = L2(Ω) and 〈Bu, v〉L2(0,T ;V ∗)×L2(0,T ;V ) :=
∫ T

0

∫
Γc
u tr(v) dsdt where

tr : H1(Ω) → L2(∂Ω) is the Dirichlet trace operator. A stabilizing feedback operator KB can be

defined via KBx = −K trx for K > 0, leading to L2(0, T ;H1(Ω))-ellipticity of −(A+ BKB) if

γ is moderate. This follows by the generalized Friedrichs inequality, cf. [138, Lemma 2.5].
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Remark 3.23. In the above examples, the instability constant γ has to be moderate to show

V -exponential stabilizability using the Friedrichs and Poincaré inequality if the control and ob-

servation region is not the whole domain. Classical exponential stabilizability, i.e., such that the

closed-loop solution satisfies ‖x(t)‖ ≤Me−µt‖x0‖ for M ≥ 1 and µ > 0, can be shown, however,

for arbitrary γ, cf. [3, Section 3.4.1]. We recall that if an operator is L2(0, T ;V )-elliptic, the

solutions satisfy ‖x(t)‖ ≤ Me−µt‖x0‖ with M = 1. In the case of Neumann boundary control,

it was shown that the equation is exponentially stabilizable for arbitrary γ > 0 with overshoot

constant M = 1 for the case where γ is smaller than the constant of the generalized Friedrichs

or Poincaré inequality and with M > 1 for arbitrary large γ. For this fact, we again refer to

[3, Section 3.4.1]. This illustrates that in the case of an autonomous equation, there are cases

where classical stabilizability holds, whereas V -exponential stabilizability can not be established

via the straightforward approach of Examples 3.21 and 3.22.

The introduced stabilizability assumption will be the main tool to obtain a T -independent

bound on the solution operator.

Assumption 3.24. Let Assumption 3.9 hold and additionally assume that

i) (A,B) and (A,C) are V -exponentially stabilizable,

ii) the stabilizing feedbacks KB and KC can be bounded independently of T in the sense of

Assumption 3.9 vii).

Under these assumptions, we can conclude a preliminary stability estimate.

Lemma 3.25. Assume (y, λ) ∈ W ([0, T ])2 solves (3.13) and let Assumption 3.24 hold. Then

there is a constant c > 0 independent of T such that

‖x(T )‖2 + ‖x‖2L2(0,T ;V ) ≤ c
(
‖Cx‖2L2(0,T ;Y ) + ‖R−∗B∗λ‖2L2(0,T ;U) + ‖l2‖2L2(0,T ;V ∗) + ‖x0‖2

)
,

‖λ(0)‖2 + ‖λ‖2L2(0,T ;V ) ≤ c
(
‖Cx‖2L2(0,T ;Y ) + ‖R−∗B∗λ‖2L2(0,T ;U) + ‖l1‖2L2(0,T ;V ∗) + ‖λT ‖2

)
.

Proof. For the result on the state, we test the state equation of (3.13) with x and get〈(
d

dt
−A

)
x, x

〉
L2(0,T ;V ∗)×L2(0,T ;V )

= 〈BQ−1B∗λ+ l2, x〉L2(0,T ;V ∗)×L2(0,T ;V ).

Let KC be a stabilizing feedback for (A,C) in the sense of Definition 3.20. Applying Lemma 3.4

iv) and adding −〈KCCx, x〉L2(0,T ;V ∗)×L2(0,T ;V ) on both sides yields

1

2
‖x(T )‖2 − 〈 (A+KCC)x, x〉L2(0,T ;V ∗)×L2(0,T ;V )

= 〈−KCCx+BQ−1B∗λ+ l2, x〉L2(0,T ;V ∗)×L2(0,T ;V ) +
1

2
‖x0‖2.

(3.15)

Using the L2(0, T ;V )-ellipticity of −(A+KCC), we get that

1

2
‖x(T )‖2 + α1‖x‖2L2(0,T ;V ) ≤ ‖ −KCCx+BQ−1B∗λ+ l2‖L2(0,T ;V ∗)‖x‖L2(0,T ;V ) +

1

2
‖x0‖2.
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for α > 0. The left-hand side can be bounded from below by min{1
2 , α}(‖x(T )‖2 +‖x‖2L2(0,T ;V )).

Then, using the estimate

‖ −KCCx+BQ−1B∗λ+ l2‖L2(0,T ;V ∗)‖x‖L2(0,T ;V )

≤ 1

2

(
‖ −KCCx+BQ−1B∗λ+ l2‖2L2(0,T ;V ∗)

c
+ c‖x‖2L2(0,T ;V )

)

for c = min{1
2 , α} and applying the triangle inequality, we conclude the result for the state.

The result for the adjoint follows analogously, testing the first equation of (3.13) with λ and

subtracting the term 〈BKBλ, λ〉L2(0,T ;V ∗)×L2(0,T ;V ) on both sides.

Remark 3.26. If the stabilized operators are L2(0, t;V )-elliptic for all t > 0, as it is the case

in Examples 3.21 and 3.22, then one could also deduce a bound on ‖x‖C(0,T ;H) + ‖x‖L2(0,T ;V ) by

deriving (3.15) on [0, t] for arbitrary t ∈ [0, T ]. Similarly, a pointwise estimate for the adjoint

follows by considering (3.15) on [t, T ] for any t ∈ [0, T ]. We will conclude this estimate a

posteriori after having obtained a bound in the W ([0, T ])-norm via the T -independent embedding

W ([0, T ]) ↪→ C(0, T ;H), cf. Lemma 3.4 i).

The bounds in Lemma 3.25 still depend on x and λ. This dependence can be eliminated with

the following lemma.

Lemma 3.27. Let (x, λ) ∈W ([0, T ])2 solve (3.13). Then

‖Cx‖2L2(0,T ;Y ) + ‖R−∗B∗λ‖2L2(0,T ;U)

= −〈x0, λ(0)〉+ 〈λT , x(T )〉 − 〈l2, x〉L2(0,T ;V ∗)×L2(0,T ;V ) + 〈l1, λ〉L2(0,T ;V ∗)×L2(0,T ;V )

≤ 1

2

(
a‖z‖2(L2(0,T ;V )×H)2 +

‖l‖2(L2(0,T ;V ∗)×H)2

a

)
for arbitrary a > 0, where z := (x, x(T ), λ, λ(0)) and l := (l1, λT , l2, x0).

Proof. Testing the first equation of (3.13) with x and the third equation of (3.13) with λ and

subtracting the former from the latter yields the result, cf. also Lemma 3.13 ii). The second

estimate follows from the classical estimate yz ≤ ay2 + z2

a for all y, z ∈ R and a > 0.

Eventually, we obtain the following stability estimate.

Proposition 3.28. Assume (x, λ) ∈ W ([0, T ])2 solves (3.13) and let Assumption 3.24 hold.

Then, there exists a constant c > 0 independent of T such that

‖λ(0)‖2 + ‖x(T )‖2 + ‖x‖2L2(0,T ;V ) + ‖λ‖2L2(0,T ;V )

≤ c(‖l1‖2L2(0,T ;V ∗) + ‖l2‖2L2(0,T ;V ∗) + ‖x0‖2 + ‖λT ‖2).

Proof. Adding the two stability estimates from Lemma 3.25 and using the bound of Lemma 3.27

yields the result.
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The stability estimate for the variables in the L2(0, T ;V )-norm allows for the deduction of

an estimate in the W ([0, T ])-norm.

Theorem 3.29. Assume (x, λ) ∈ W ([0, T ])2 solve (3.13) and let Assumption 3.24 hold. Then,

there exists a constant c > 0 independent of T such that

‖x‖2W ([0,T ]) + ‖λ‖2W ([0,T ]) ≤ c(‖l1‖
2
L2(0,T ;V ∗) + ‖l2‖2L2(0,T ;V ∗) + ‖x0‖2 + ‖λT ‖2).

Proof. Rewriting the third equation of (3.13), i.e.,

x′ = Ax−BQ−1B∗λ+ l2 in L2(0, T ;V ∗),

and taking norms on both sides implies

‖x′‖L2(0,T ;V ∗) ≤‖A‖L(L2(0,T ;V ),L2(0,T ;V ∗))‖x‖L2(0,T ;V )

+ ‖BQ−1B∗‖L(L2(0,T ;V ),L2(0,T ;V ∗))‖λ‖L2(0,T ;V ) + ‖l2‖L2(0,T ;V ∗).

Proceeding analogously for the adjoint and using the estimate on ‖x‖L2(0,T ;V ) + ‖λ‖L2(0,T ;V ) of

Proposition 3.28 yields the result, as ‖v‖W ([0,T ]) := ‖v‖L2(0,T ;V ) + ‖v′‖L2(0,T ;V ∗).

The desired bound on the norm of the extremal equations’ solution operator now follows

immediately.

Corollary 3.30. Let Assumption 3.24 hold. Then, there is a constant c > 0 independent of T

such that

‖M−1‖L((L2(0,T ;V ∗)×H)2,W ([0,T ])2) ≤ c.

To conclude this part, we recall the most important results. Using the abstract scaling result

Theorem 3.14 together with Corollary 3.30, we showed, for systems fulfilling Assumption 3.24,

and thus in particular Examples 3.21 and 3.22, that perturbations of the extremal equations’

right hand side growing exponentially in time only lead to errors in the variables that are growing

exponentially in time. In particular, perturbations that are small on the initial part of a long

time interval lead to errors in the solutions that are small on the initial part. This result is of

particular interest in the context of a Model Predictive Controller, as the MPC feedback consists

of the control on an initial part of the time interval. Moreover, in Theorem 3.16 we showed that,

if the system is indeed autonomous, the solution of the dynamic optimal control problem resides

close to the solution of the corresponding steady state problem for the majority of the time.

3.3 Numerical results

We will illustrate the theoretical results by means of two numerical examples of optimal control

with a heat equation. First, in Section 3.3.1, we will depict the turnpike property established

in Theorem 3.16 for the distributed control of an autonomous problem. Second, we will use
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the theoretical results of Theorem 3.14 to construct efficient grids that are tailored to an MPC

context. The sensitivity result of Theorem 3.14 suggests that in order to obtain a high quality

MPC feedback, i.e., the discretization error being small on [0, τ ], the space and time grid should

be predominantly refined on [0, τ ]. We will investigate the performance of different a priori time

discretization schemes following this idea. To this end, we consider the distributed control of an

autonomous problem in Section 3.3.1 and the boundary control of a non-autonomous problem

in Section 3.3.2. Finally, in Section 3.3.3 we will apply an extension of this approach to a

priori space refinement and discuss limitations of these techniques, motivating the use of more

sophisticated a posteriori methods, which will be discussed in Chapter 5.

The spatial discretization was performed via standard finite elements, and the temporal

discretization is (loosely speaking) an implicit Euler scheme. We will not go into detail here, as

the implementation details will be provided in Chapter 5.

A priori time discretization strategies. Motivated by the sensitivity result of Theorem 3.14,

we present two methods to generate an a priori time grid tailored to MPC. First, we suggest a

construction of an exponential grid as described in Algorithm 2, motivated by the exponential

estimates of the previous sections.

Algorithm 2 Exponential grid generation

1: Given: Rate c > 0, t0 = 0

2: Set I := 1
N−1

∫ T
0 e−ct dt = 1

(N−1)c(1− e
−cT )

3: for i ∈ {0, . . . , N − 2} do

4: ti+1 = −1
c log(−cI + e−cti)

5: end for

The algorithm above computes vertices ti, i ∈ {0, . . . , N − 1} such that

ti+1∫
ti

e−ct dt = I ∀i ∈ {0, . . . , N − 2}. (3.16)

In our particular case, we chose c = 1. As a second strategy we use the same number of grid

points in [0, τ ] as in [τ, T ]. If τ � T , this naturally induces a clustering of discretization points

in [0, τ ]. We will compare both specialized discretization schemes with a standard uniform grid.

We briefly illustrate the three different discretization schemes for 11 time discretization points.

In all cases we ensure to have one time grid point at the implementation horizon τ .

i) Uniform:

0 τ T

ii) Exponential:
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0 τ T

iii) Piecewise uniform:

0 τ T

For each of these grids we run the MPC Algorithm 1, where the optimal control problem

in each step is solved on the respective a priori grid. The simulation of the model in step 5

of Algorithm 1 is always performed on a very fine temporal mesh with 51 grid points on the

interval [kτ, (k + 1)τ ] for every iteration index k. The spatial mesh was kept constant in time

and we used 768 triangles and correspondingly 417 vertices at every time step for the optimal

control problem as well as the simulation.

3.3.1 Distributed control with static reference

We first consider a linear quadratic optimal control problem with distributed control on a rect-

angular domain Ω := [0, 3] × [0, 1]. We choose the time horizon T = 10, Y = U = L2(Ω), and

consider the cost functional

J(x, u) :=
1

2
‖(x(t)− xstat

d )‖2L2(0,T ;L2(Ω)) +
α

2
‖u‖2L2(0,T ;L2(Ω)),

where α > 0 is a Tikhonov parameter and xstat
d is a time-independent reference defined by

xstat
d (ω) := g

(
10

3

∥∥∥∥ω − (1.5

0.5

)∥∥∥∥) ,
where g(s) :=

{
10e

1− 1
1−s2 s < 1

0 else.

(3.17)

0

0.5

1

0 0.5 1 1.5 2 2.5 3

ω
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Figure 3.1: Static reference trajectory xstat
d (ω1, ω2).
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As introduced in Example 3.21, we consider dynamics governed by the parabolic PDE in

classical form

x′ − 0.1∆x− sx = u in Ω× (0, T ),

x = 0 in ∂Ω× (0, T ),

x(0) = 0 in Ω,

where s ≥ 0 is an instability parameter. The natural space in this example is V = H1
0 (Ω), which

yields the equation in weak form

x′ −Ax−Bu = 0 in L2(0, T ;V ∗),

x(0) = 0 in L2(Ω),

where

〈Ax, v〉L2(0,T ;V ∗)×L2(0,T ;V ) :=

∫ T

0

∫
Ω
−0.1∇x · ∇v + sxv dω dt,

〈Bu, v〉L2(0,T ;V ∗)×L2(0,T ;V ) :=

∫ T

0

∫
Ω
uv dω dt.

We note that for s = 0 this equation models a linear heat equation with zero initial condition

that is stable due to the ellipticity of the negative Laplacian in H1
0 (Ω). The parameter s allows

us to reduce the stability, or to render the problem unstable. It can be easily seen that (A,B) is

H1
0 (Ω)-exponentially stabilizable for arbitrary s by choosing the feedback KBx = −(s + 0.1)x,

leading to −〈(A+ BKB)x, x〉L2(0,T ;V ∗)×L2(0,T ;V ) = 0.1‖x‖L2(0,T ;H1
0 (Ω)). Similarly, (A,C) can be

shown to be H1
0 (Ω)-exponentially stabilizable.

We apply four steps of Algorithm 1, where the MPC implementation horizon is chosen as

τ = 0.5 for two different choices of the instability parameter s. We observe that the solution

of the optimal control problem in every MPC step satisfies the turnpike property as proven in

Theorem 3.16. In both configurations the turnpike is approximately reached after one MPC

iteration. We see that the leaving arc is still present for the open-loop trajectories of MPC

iterations two to four. For the problem configuration depicted on the right, we observe that

switching off the control action towards the end of the optimization horizon leads to an increasing

norm of the state. This is due to the instability of the uncontrolled state equation. In contrast,

in the stable problem depicted on the left, switching off the control leads to a decay of the

state norm. Additionally, the leaving arc is less pronounced for smaller values of the Tikhonov

parameter α. Loosely speaking, this occurs because the control can be held longer at the turnpike

due to the lower control costs.
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Figure 3.2: Spatial norm of open-loop control and state over time for every MPC step. Left:

Stable problem with parameters s = 0 and α = 10−3. Right: Unstable problem with parameters

s = 4 and α = 10−1.

In Figure 3.3 the cost functional value of the closed-loop trajectory is depicted. The special-

ized a priori grids show a better performance than the classical uniform grid in all cases. While

the closed-loop cost is moderately lower for the stable problem shown on the left, the difference

is significant in case of unstable dynamics depicted on the right. The choice of a concentrated

time grid towards [0, τ ] leads to a closed-loop cost that is lower by almost one order of magni-

tude, despite identical numerical effort. In the unstable problem setting, the closed-loop cost

of approximately 4.5 which was achieved using 21 grid points in an exponential or piecewise

uniform grid was reached not before using 101 uniformly distributed grid points. Due to our

particular choice of the scaling parameter in (3.16), on [0, τ ] the exponential grid is coarser than

the piecewise uniform grid. This might serve as an explanation, why the piecewise uniform grid

performs better than the exponential grid. A more aggressive exponential refinement on [0, τ ]

by increasing the parameter c > 0 in (3.16) could increase the performance of the exponential

grid for these particular examples. In the nonlinear case, more precisely in Figure 4.4, we will

observe a better performance of the exponential grid compared to the piecewise uniform grid.
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Figure 3.3: Comparison of MPC closed-loop cost for an autonomous problem with different

priori time discretization schemes. Left: Stable problem with parameters s = 0 and α = 10−3.

Right: Unstable problem with parameters s = 4 and α = 10−1.

3.3.2 Boundary control with dynamic reference

We now consider the case of Neumann boundary control with distributed observation, cf. Ex-

ample 3.22. In this case, Y = L2(Ω) and U = L2(∂Ω) and the cost functional is given by

J(x, u) =
1

2
‖(x− xdyn

d )‖2L2(0,T ;L2(Ω)) +
α

2
‖u‖2L2(0,T ;L2(∂Ω)),

where again α > 0. The time-dependent reference trajectory xdyn
d is defined by

xdyn
d (t, ω) := g

(
10

3

∥∥∥∥ω − (ω1,peak(t)

ω2,peak(t)

)∥∥∥∥) , (3.18)

where g(s) :=

{
10e

1− 1
1−s2 s < 1

0 else
(3.19)

and

ω1,peak(t) := 1.5− cos

(
π

(
t

10

))
, w2,peak(t) :=

∣∣∣∣cos

(
π

(
t

10

))∣∣∣∣ ,
as depicted in Figure 3.4.
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Figure 3.4: Snapshots of the dynamic reference trajectory xdyn
d (t, ω1, ω2) at different time in-

stances.

The dynamics in classical form are given by

x′ − 0.1∆x = 0 in Ω× (0, T ),

0.1
∂x

∂ν
= u in ∂Ω× (0, T ),

x(0) = 0 in Ω.

In this case, we choose V = H1(Ω) and the equation in weak form reads

x′ −Ax−Bu = 0 in L2(0, T ;V ∗),

x(0) = 0,

where

〈Ax, v〉L2(0,T ;V ∗)×L2(0,T ;V ) :=

∫ T

0

∫
Ω
−0.1∇x · ∇v dω dt,

〈Bu, v〉L2(0,T ;V ∗)×L2(0,T ;V ) :=

∫ T

0

∫
∂Ω
u tr v dω dt.
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Analogously to Example 3.22, H1(Ω)-exponential stabilizability of (A,C) follows immediately,

whereas H1(Ω)-exponential stabilizability of (A,B) can be shown with the generalized Friedrichs

inequality, cf. [138, Lemma 2.5]. We apply four steps of Algorithm 1 with the implementation

horizon τ = 1. As the reference trajectory is time dependent, we do not have a steady state

turnpike property, cf. Figure 3.5. However, it can be observed that the open-loop trajectories for

MPC step two to four are very similar. This is due to the fact that even in a non-autonomous

setting, turnpike properties are often present, cf. [68]. In that case, the solutions to the dynamic

optimal control problem can be shown to be close to the solution of an infinite horizon optimal

control problem with free initial data for the majority of the time. In the autonomous case, this

reduces to an optimal steady state, cf. [24, Section 6].
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Figure 3.5: Spatial norm of open-loop state and control over time for every MPC step for

non-autonomous problem with α = 10−3.

Despite the lack of a steady state turnpike, Theorem 3.14 still suggests that meshes con-

centrated on [0, τ ] should perform better than uniform ones. Figure 3.6 depicts the closed-loop

performance of different a priori grids. We observe that again, the exponential and piecewise

uniform a priori grids perform better than the uniform grid.
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Figure 3.6: Comparison of cost functional values of MPC closed-loop trajectory for different a

priori space discretization schemes with Tikhonov parameter α = 10−3.

3.3.3 Discussion

We will briefly discuss a possible extension of the a priori time grid generation presented above

to a priori space refinement. In this context, it is important to note that the space discretization

is allowed to be time dependent, i.e., to every time grid point, a space grid that is independent

of the neighboring space grids is assigned. This has the advantage of allowing full flexibility in

the grid refinement. The price to pay is that the implementation of the time stepping scheme

requires particular attention, as the finite element spaces can change every time discretization

point. We will discuss an efficient remedy of this in detail in Chapter 5. In this part, we compare

the MPC closed-loop performance of the following a priori space discretization schemes. For

time discretization, we use the piecewise uniform refinement as described in Section 3.3 with 11

time grid points.

A priori space discretization strategies. We will compare the performance of the following

a priori space discretization strategies:

i) Uniform: All space grids share the same number of degrees of freedom.

ii) Piecewise uniform:

(a) We apply one additional uniform refinement to the grids on [0, τ ] compared to

the space grids on (τ, T ].

(b) We apply two additional uniform refinements to the grids on [0, τ ] compared to

the space grids on (τ, T ].

We evaluate the performance of these approaches by means of both examples introduced in

Sections 3.3.1 and 3.3.2. We observe that in particular for a lower number of space discretization

points, the closed-loop cost achieved with the specialized grids ii)(a) and ii)(b) is better than

the closed-loop cost achieved with a uniform space discretization. However, for higher total

space grid points, a saturation effect takes place and no difference of the three approaches can

be observed.
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Figure 3.7: Comparison of cost functional values of MPC closed-loop trajectory for different a

priori space discretization schemes. Left: Stable autonomous problem of Section 3.3.1 with pa-

rameters s = 0, α = 10−3, and τ = 0.5. Right: Stable non-autonomous problem of Section 3.3.2

with parameters α = 10−3 and τ = 1.

We conclude that a priori grid refinement tailored to MPC can be efficient in increasing the

closed-loop performance. In particular, ignoring the treatment of dynamic space grids for the

moment, no additional computational effort is required to perform the specialized discretization

schemes. Nonetheless, as to be expected, there are limitations to these a priori approaches.

First, no error estimator is at hand, i.e., it is not clear how much time or space grid points

are needed to ensure a particular accuracy. Thus, the suggested a priori discretization schemes

are only of qualitative nature. In particular, only uniform refinements in space were performed

without considering any structure of the optimal triple. Additionally, despite the exponential

decay of perturbations established in Theorem 3.14, it could be worth to refine the space or

time grid outside of [0, τ ]. This is due to the fact that the precise decay parameter is not known

beforehand and if it is very small, large perturbations could affect the optimal triple on the initial

part. For these reasons, we will inspect a goal oriented a posteriori grid refinement technique in

Chapter 5 that is particularly well suited to address these drawbacks.

3.4 Outlook

We briefly outline possible extensions of the work presented in this chapter.

• Future research could be focused on an extension of the results of this chapter to non-

autonomous hyperbolic problems. To this end, a framework with evolution families could

turn out useful, cf. the discussion at the beginning of this chapter.

• Similar to the analysis performed in Section 3.2.2, one could try to deduce a turnpike

result for non-autonomous systems. For that matter, one could compare optimal solutions

for the problem on [0, T ] with the optimal solutions for the problem on [0,∞] with free

initial data. However, the core of the analysis performed in this work is a comparison of

the optimality conditions and the derivation of such for problems on an infinite horizon is

a very delicate issue, even for finite dimensional systems.
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• Recently, an approach to deduce turnpike results for shape optimization problems was

presented in, cf. [88]. Motivated by the close connection of decay of perturbations and the

turnpike property established in this part, one could try to prove locality of discretization

errors for shape optimization problems.
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Chapter 4

Sensitivity and turnpike analysis for

nonlinear optimal control problems

In this chapter, we will extend the sensitivity and turnpike analysis of Chapters 2 and 3 to

nonlinear parabolic problems. To this end, we briefly provide a different interpretation of the

sensitivity result of Theorem 3.14 and the turnpike result of Theorem 3.16: If the solution

operator of the extremal equations is bounded independently of T in unscaled spaces, then

there is a scaling parameter µ > 0 independent of T such that the solution operator is also

bounded independently of T in scaled spaces with scaling function e−µt for the sensitivity result

and with scaling function 1
e−µt+e−µ(T−t) for the turnpike result, respectively. The analysis in this

chapter will use this methodology to employ an implicit function theorem. We thus formulate

the nonlinear extremal equations as a nonlinear operator equation. In order to apply the implicit

function theorem, we have to perform two main steps. The first is to choose a functional analytic

framework in which we can establish continuity and differentiability of the nonlinear operator

equation. This step will heavily rely on the theory of superposition operators. As a second

step, we show a T -independent bound on the solution operator corresponding to the linearized

extremal equations, similarly to, e.g., the approach in Sections 2.2.3 and 3.2.3. In this context,

the extremal equations linearized at a solution trajectory can be non-autonomous and we benefit

from the analysis of non-autonomous problems in the previous chapter. By the nature of the

implicit function theorem, all results will be local, i.e., they hold for small perturbations of the

extremal equations. In case of the turnpike result, this means that the initial and terminal

datum of the dynamic problem need to be sufficiently close to the turnpike, and, in the case of

the sensitivity result, the perturbation of the dynamics by, e.g., discretization errors is required

to be sufficiently small.

We briefly recall existing work on nonlinear turnpike theory. Nonlinear finite dimensional

problems were considered in [136], including the case of nonlinear initial and terminal conditions.

This was extended to a Hilbert space setting in [113, 114, 135]. A turnpike result for the two-

dimensional Navier-Stokes equations was obtained in [155]. These works analyze the turnpike

property via the extremal equations and are of local nature, i.e., the initial resp. terminal datum
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for state and adjoint need to be close to the turnpike. In [110], a semi-global turnpike result for a

semilinear heat equation with initial datum of arbitrary size is given, under the assumption that

either the state reference trajectory is small or that the control acts everywhere. A geometric

approach to tackle nonlinear problems was presented in [123]. A different approach that leads to

global turnpike properties is stability analysis based on a dissipativity concept. Motivated by the

seminal papers by Willems [148, 149], a notion of dissipativity for optimal control problems can

be defined, where the supply rate is related to the cost functional. Assuming this dissipativity

property, a global turnpike result for states and controls was deduced in, e.g., [53, 65, 68] or [66,

Proposition 8.15]. Under the assumption of a global turnpike property of states and controls, a

global turnpike property for the corresponding adjoint states was derived in [52]. The connection

of dissipativity and the turnpike property is discussed in [62, 63, 65, 134]. The difficult task

remaining is to indeed verify this dissipativity notion in particular applications. The reader is

referred to [62, 63] for a construction of storage functions in a linear quadratic finite dimensional

setting, which could also offer a promising strategy for problems with monotone nonlinearities.

Recently, the connection of turnpike properties and long-time behavior of the Hamilton-Jacobi

equation was analyzed in [48].

Structure. In Section 4.1, the optimal control problem of interest, the corresponding first-

order optimality conditions, and the implicit function theorem are introduced. Moreover, we

present the concept of superposition operators and discuss T -dependence of continuity and dif-

ferentiability. For specific problems, two main steps are necessary to apply the implicit function

theorem: The first one is to show T -independent invertibility of the linearization corresponding

to the first-order optimality system. The second one is to verify a T -uniform differentiability

condition of the superposition operators corresponding to the nonlinearities. In Section 4.3,

we will analyze the case of optimal control with an ordinary differential equation to illustrate

the main steps without functional analytic technicalities. After that, we address the case of a

semilinear parabolic equation in Section 4.4. We analyze the case where the data is sufficiently

smooth—i.e., the initial datum lies in H1(Ω) resp. H1
0 (Ω), depending on the boundary condi-

tions and the right-hand sides of the dynamics are supposed to be in L2(0, T ;L2(Ω)). In that

case, continuity and differentiability of the superposition operators follows straightforwardly.

However, the T -independent bound on the solution operator’s norm requires a refined approach.

Last, in Section 4.5, we present numerical examples of distributed control of a semilinear heat

equation and boundary control of a quasilinear heat equation.

This chapter comprises the results of [72, 73].

4.1 Setting and preliminaries

We briefly define the nonlinear optimal control problem of interest and formally derive the

optimality conditions. Assume that (V, ‖ · ‖V ) is a separable and reflexive Banach space and

H is a separable and real Hilbert space with scalar product 〈·, ·〉 and corresponding norm ‖ · ‖.
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Further suppose that V ↪→ H ∼= H∗ ↪→ V ∗ form a Gelfand triple, cf. Section 3.1.1. The control

space U will be assumed to be a real Hilbert space with scalar product denoted by 〈·, ·〉U and

induced norm ‖ · ‖U .

We consider the following parabolic nonlinear optimal control problem.

min
(x,u)

J(x, u) :=

∫ T

0
J̄(t, x(t)) +

1

2
‖R(u(t)− ud(t))‖2U dt

s.t. x′(t) = Ā(x(t)) + B̄u(t) + f(t),

x(0) = x0,

(4.1)

where x0 ∈ H, f ∈ L2(0, T ;V ∗), ud ∈ L2(0, T ;U), J(x, u) : L2(0, T ;V ) × L2(0, T ;U) → R is a

sufficiently smooth functional, B̄ : U → V ∗ is a continuous and linear operator, Ā : V → V ∗ is a

sufficiently smooth operator, R ∈ L(L2(0, T ;U), L2(0, T ;U)) such that ‖Ru‖2L2(0,T ;U) ≥ α‖u‖2
for α > 0.

Similarly to (3.3) we define an operator corresponding to the PDE with initial condition

denoted by Λ: W ([0, T ])→ L2(0, T ;V ∗)×H via

〈Λ(x), (λ, λ0)〉(L2(0,T ;V )×H)∗×(L2(0,T ;V )×H) :=

∫ T

0
〈x′(t)− Ā(x(t)), λ(t)〉V ∗×V dt+ 〈x(0), λ0〉

for (λ, λ0) ∈ L2(0, T ;V ∗)×H and B : L2(0, T ;U)→ L2(0, T ;V ∗) via

〈Bu, λ〉L2(0,T ;V ∗)×L2(0,T ;V ) :=

∫ T

0
〈B̄u(t), λ(t)〉V ∗×V dt

for λ ∈ L2(0, T ;V ). This allows us to briefly write the nonlinear PDE in variational form

〈Λ(x), (λ, λ0)〉(L2(0,T ;V )×H)∗×(L2(0,T ;V )×H) − 〈Bu, λ〉L2(0,T ;V ∗)×L2(0,T ;V )

= 〈f, λ〉L2(0,T ;V ∗)×L2(0,T ;V ) + 〈x0, λ0〉

for all (λ, λ0) ∈ L2(0, T ;V )×H. We further define A : L2(0, T ;V )→ L2(0, T ;V ∗) by

〈A(x), λ〉L2(0,T ;V ∗)×L2(0,T ;V ) :=

∫ T

0
〈Ā(x(t)), λ(t)〉V ∗×V dt.

We will assume that the optimal control problem (4.1) has a solution (x, u) ∈ W ([0, T ]) ×
L2(0, T ;U). One important ingredient for establishing this property are the classical lower semi-

continuity and coercivity properties of the cost functional. A second factor can be to establish

continuous invertibility of Λ(x), i.e., the existence of a continuous control to state map. In the

linear case , i.e., if A(x) = Ax, we ensured this by assuming −A to satisfy a G̊arding inequality,

cf. (3.2):

∃ω ∈ R, α > 0 : α‖x‖2L2(0,T ;V ) ≤ −〈Ax, x〉L2(0,T ;V ∗)×L2(0,T ;V ) + ω‖x‖2L2(0,T ;H).

For solvability of semilinear equations with globally Lipschitz semilinearities, we refer to [109,

Chapter 6] and [138, Chapter 5]. Locally Lipschitz semilinearities are treated in [119], where
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global existence of solutions was ensured by sufficiently regular data (Bu + f, x0), such that

the solution is bounded, i.e., x ∈ L∞(0, T ;L∞(Ω)). For a in-depth analysis of optimal control

problems governed by quasilinear parabolic equations, the interested reader is referred to [21,

31, 87, 104, 108].

We introduce a Lagrange multiplier (λ, λ0) ∈ L2(0, T ;V )×H and define the Lagrange function

via

L(x, u, (λ, λ0)) :=

J(x, u) + 〈Λ(x), (λ, λ0)〉(L2(0,T ;V )×H)∗×(L2(0,T ;V )×H) − 〈Bu+ f, λ〉L2(0,T ;V ∗)×L2(0,T ;V ).
(4.2)

Proceeding formally, the first-order optimality conditions of (4.1) are characterized by the sta-

tionarity conditions of the Lagrange function at a minimizer (x, u, (λ, λ0)), i.e.,

0 =

 Lx(x, u, (λ, λ0))

Lu(x, u, (λ, λ0))

L(λ,λ0)(x, u, (λ, λ0))

 =

Jx(x, u) + Λ′(x)∗(λ, λ0)

R∗R(u− ud)−B∗λ
Λ(x)−Bu− f

 .

If A′(x) satisfies the G̊arding inequality (3.2), we get the improved regularity λ ∈ W ([0, T ])

and λ(0) = λ0, cf. [127, Proposition 3.8] as in the linear quadratic setting considered in Sec-

tion 3.1.2. This allows us to write the adjoint equation as a backwards-in-time equation in the

variable λ. Further separating the initial and terminal conditions from the dynamics leads to

the extremal system

L′(x, u, λ) =


Jx(x, u)− λ′ −A′(x)∗λ

λ(T )

R∗R(u− ud)−B∗λ
x′ −A(x)−Bu− f

x(0)− x0

 = 0. (4.3)

Remark 4.1. The quadratic dependence of the objective function on the control allows for an

elimination of the control analogously to the linear quadratic case. For more general problem set-

tings, in order to represent the optimal control by the adjoint state arising in the first-order nec-

essary conditions, a standard assumption is the existence of α > 0 such that Juu(x, u)(δu, δu) ≥
α‖δu‖2L2(0,T ;U) for all δu ∈ L2(0, T ;U). This property is sometimes referred to as the strength-

ened Legendre-Clebsch condition, cf. [25, Chapter 6]. A second aspect if one allows for a general

nonlinear control dependence is that improved regularity of the optimal control might be needed

to conclude an implicit function argument. In particular cases, this improved regularity can be

established by classical bootstrapping in the optimality system.

Setting Q := R∗R and Lr(x, λ) := L(x,Q−1B∗λ + ud, λ), the reduced extremal equations

read

L′r(x, λ) =


Jx(x, u)− λ′ −A′(x)∗λ

λ(T )

x′ −A(x)−BQ−1B∗λ−Bud − f
x(0)− x0

 = 0. (4.4)
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This nonlinear system will be the starting point of our subsequent analysis. We present two

perturbations of the extremal equations (4.4) that we aim to analyze in this chapter.

First, in order to obtain a sensitivity result, we will consider (x̃, ũ, λ̃) ∈W ([0, T ])×L2(0, T ;U)×
W ([0, T ]) that solves a perturbed version of (4.4), i.e.,

L′r(x̃, λ̃) =


Jx(x̃, ũ)− λ̃′ −A′(x̃)∗λ̃

λ̃(T )

x̃′ −A(x̃)−BQ−1B∗λ̃−Bud − f
x̃(0)− x0

 =


ε1

εT
ε2

ε0

 , (4.5)

where ũ = Q−1B∗λ̃+ ud and ε = (ε1, εT , ε2, ε0) ∈ (L2(0, T ;V ∗)×H)2.

It is important to note that in order to derive a sensitivity result, we do not assume the

existence of a corresponding steady state problem, i.e., in particular J̄ can explicitly depend

on time which is the case for, e.g., tracking-type cost functionals with time-dependent reference

trajectories.

Second, to derive a turnpike result, we will consider the first-order necessary optimality

conditions of the steady state problem as a perturbation of the first-order optimality conditions

of the dynamic problem. In that context, we will always assume that J̄(t, x) ≡ J̄(x), i.e., J̄ does

not explicitly depend on time and ud ∈ U , R ∈ L(U,U), f ∈ V ∗ are independent of time. To

indicate this time-independence, we denote R̄ := R, ūd := ud and f̄ := f . We thus formulate

the corresponding steady state problem

min
(x̄,ū)

J̄(x̄) +
1

2
‖R̄(ū− ūd)‖2U

s.t. − Ā(x̄) = B̄ū+ f̄ ,

(4.6)

where we again assume that there is a minimizer (x̄, ū) ∈ V × U . For (x̄, ū, λ̄) ∈ V × U × V ,

we define the Lagrange function of the steady state system as L̄(x̄, ū, λ̄) := J̄(x̄, ū) − 〈Ā(x̄) −
B̄ū, λ〉V ∗×V , which leads to the first-order conditions

L̄′(x̄, ū, λ̄) =

 J̄x(x̄)− Ā′(x̄)∗λ̄

R̄∗R̄(ū− ūd)− B̄∗λ̄
−Ā(x̄)− B̄ū− f̄

 = 0. (4.7)

Setting Q̄ = R̄∗R̄, eliminating the control via ū = Q̄−1B̄∗λ̄+ ud and defining the reduced static

Lagrangian L̄r(x̄, λ̄) := L̄(x̄, Q̄−1B̄∗λ̄ + ud, λ̄). By the same argumentation as in the linear

quadratic case, cf. Lemma 2.29 or the proof of Theorem 3.16, this steady state system can be

written as a perturbation of the dynamic extremal equations by interpreting λ̄ and x̄ as functions

constant in time and adding λ̄′ = x̄′ = 0 and initial resp. terminal values to the equations, i.e.,

L′r(x̄, λ̄) =


Jx(x̄, ū)− λ̄′ −A′(x̄)∗λ̄

λ̄(T )

x̄′ −A(x̄)−BQ−1B∗x̄−Bud − f
x̄(0)− x0

 =


0

λ̄

0

x̄− x0

 . (4.8)
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4.1. SETTING AND PRELIMINARIES

The main results of this chapter will be the following: On the one hand we will deduce a turnpike

result stating that the solution of the dynamic problem (4.1) is close to the solution of the static

problem (4.6) for the majority of the time. On the other hand, we establish a sensitivity result

for (x̃, ũ, λ̃) solving (4.5) stating that the behavior of the perturbations (ε1, εT , ε2, ε0) towards

T influences the MPC feedback, i.e., the optimal control on [0, τ ] only negligibly, if τ � T .

We will perform this analysis by means of an implicit function theorem. In that context,

the derivative of the nonlinear first-order optimality condition will be needed, which in our case

(formally) reads

L′′r(x, λ) =


Jxx(x, u)−A′′(x)∗λ − d

dt −A
′(x)∗

0 ET
d
dt −A

′(x) −BQ−1B∗

E0 0

 , (4.9)

where Etx := x(t) for t ∈ [0, T ] and x ∈ C(0, T ;H), cf. Definition 2.26.

To obtain localized estimates in time, we consider a smooth scaling function s : R≥0 → R
with s(t) > 0 for all t ∈ R≥0. If X is a Banach space, we will make use of the scaled norm

‖x‖Lsp(0,T ;X) := ‖sx‖Lp(0,T ;X) (4.10)

for any 1 ≤ p ≤ ∞. The equivalence of this norm to the standard Lp(0, T ;X)-norm follows from

the positivity of s as we get for 1 ≤ p <∞ that

min
t∈[0,T ]

s(t)

(∫ T

0
‖x(t)‖pX dt

) 1
p

≤
(∫ T

0
‖s(t)x(t)‖pX dt

) 1
p

≤ max
t∈[0,T ]

s(t)

(∫ T

0
‖x(t)‖pX dt

) 1
p

(4.11)

and

min
t∈[0,T ]

s(t) ess sup
t∈[0,T ]

‖x(t)‖X ≤ ess sup
t∈[0,T ]

‖s(t)x(t)‖X ≤ max
t∈[0,T ]

s(t) ess sup
t∈[0,T ]

‖x(t)‖X . (4.12)

As Lp(0, T ;X) with the standard norm is a Banach space, by the equivalence of the norms

above,
(
Lp(0;T ;X), ‖ · ‖Lsp(0,T ;X)

)
is also a Banach space. Note that the equivalence of norms

can (and in our case with, e.g., s(t) = e−µt will) deteriorate for T →∞. The dynamics we will

inspect in Section 4.4 will be described by a closed operator A2 : D(A2) ⊂ L2(Ω)→ L2(Ω) that

is a generator of an analytic semigroup in L2(Ω), where D(A2) is the domain of A2 endowed

with the graph norm ‖ · ‖+ ‖A2 · ‖. More precisely, A2 will be a second order elliptic differential

operator. Further, we will impose either homogeneous Neumann or homogeneous Dirichlet

boundary conditions and hence D(A2) = {v ∈ H2(Ω) | ∂
∂νA

v = 0}, where ∂
∂νA

is a conormal

derivative corresponding to A2, or D(A2) = H2(Ω) ∩H1
0 (Ω). We will denote

W 1,2(0, T,D(A2), L2(Ω)) := {v ∈ L2(0, T ;D(A2)) | v′ ∈ L2(0, T ;L2(Ω)},
‖v‖W 1,2(0,T ;D(A2),L2(Ω)) := ‖v‖L2(0,T ;D(A2)) + ‖v′‖L2(0,T ;L2(Ω),
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where the time derivative is meant in a weak sense. For this vector-valued Sobolev space, we

will also utilize a scaled norm, i.e.,

‖v‖
W 1,2
s (0,T,D(A2),L2(Ω))

:= ‖sv‖W 1,2(0,T,D(A2),L2(Ω)).

For the scaling terms we have in mind, i.e., exponential functions, one can straightforwardly show

that the norm ‖v‖
W 1,2
s (0,T,D(A2),L2(Ω))

= ‖sv‖L2(0,T ;D(A2)) + ‖(sv)′‖L2(0,T ;L2(Ω)) is equivalent to

‖sv‖L2(0,T ;D(A2)) + ‖sv′‖L2(0,T ;L2(Ω)) = ‖v‖Ls2(0,T ;D(A2)) + ‖v′‖Ls2(0,T ;L2(Ω)) if µ < 1. We show in

Remark 4.2 that this choice of µ does not constitute a real restriction. By the equivalence of

scaled and unscaled L2-norms shown above, ‖·‖
W 1,2
s (0,T,D(A2),L2(Ω))

is equivalent to the standard

norm ‖ · ‖W 1,2(0,T,D(A2),L2(Ω)) with constants strongly depending on T . Hence,(
W 1,2(0, T,D(A2), L2(Ω)), ‖ · ‖

W 1,2
s (0,T,D(A2),L2(Ω))

)
is a Banach space.

As the semigroup generated by A2 is analytic, we have the T -independent continuous em-

bedding W 1,2(0, T,D(A2), L2(Ω)) ↪→ C(0, T ;V ), cf. [19, Part II-1, Remark 4.1, Remark 4.2],

where V = H1(Ω) or V = H1
0 (Ω) depending on the choice of boundary conditions, i.e. V =

D((−A2)−
1
2 ) is the domain of a fractional power of −A2, cf. Example 2.71 and [90, Section

0.2.1].

Finally, whenever we write V s(t) for t ∈ [0, T ], we mean V endowed with the equivalent norm

s(t)‖ · ‖V . This notation will be used to indicate a scaling of the initial resp. terminal datum.

Remark 4.2. We briefly show that in the linear case of Chapter 2, we implicitly assumed that

µ < 1. In the sensitivity and turnpike results of Theorems 2.27 and 2.30 we chose µ > 0 such

that

µ <
1

‖M−1‖L(L2(0,T ;X)×X)2,C(0,T ;X)2)
,

where M−1 is the solution operator of the extremal equations (2.27). We claim that this directly

yields µ < 1. To prove this, we assume that cM := ‖M−1‖L(L2(0,T ;X)×X)2,C(0,T ;X)2) < 1. Then,

setting l1 = l2 = 0 and for arbitrary x0, λT ∈ X we get the estimate

‖λ‖C(0,T ;X) + ‖x‖C(0,T ;X) ≤ cM (‖x0‖+ ‖λT ‖) < ‖x0‖+ ‖λT ‖,

where (x, λ) ∈ C(0, T ;X)2 solve the corresponding extremal equations (2.27). With the simple

estimate ‖x0‖+ ‖λT ‖ = ‖x(0)‖+ ‖λ(T )‖ ≤ ‖x‖C(0,T ;X) + ‖λ‖C(0,T ;X) we obtain a contradiction.

Hence, we always have ‖M−1‖L(L2(0,T ;X)×X)2,C(0,T ;X)2) ≥ 1.

4.2 An abstract framework for sensitivity analysis

In view of the first-order optimality conditions (4.4) and the perturbations (4.5) resp. (4.8),

the question we aim to answer is the following: How do z̃ = (x̃, λ̃) and z̄ = (x̄, λ̄) differ from
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z = (x, λ) depending on (ε1, εT , ε2, ε0) and (0, λ̄, 0, x̄ − x0), respectively? In particular, we aim

to obtain results localized in time, i.e., estimates in scaled norms as in Theorems 2.27, 2.30,

3.14 and 3.16. In the linear quadratic framework of Chapters 2 and 3, we concluded localized

estimates by subtracting the perturbed and unperturbed extremal equations, a scaling result

and a bound on the solution operator. In the nonlinear case, we will conclude a local result

by means of an implicit function theorem. For its application, we denote the solution space by

Z and the perturbation space by E. These spaces will contain the solutions and right hand

sides of, e.g., (4.4), i.e., Z contains (x, λ), (x̄, λ̄) and (x̃, λ̃) and E contains
(
0, λ̄, 0, x̄− x0

)
and

(ε1, εT , ε2, ε0). We introduce a nonlinear operator

G : Z × E → E

defined by

G(z, ε) := L′r(z)− ε ∀(z, ε) ∈ Z × E. (4.13)

It is clear that

• G(z, 0) = 0 for any solution z = (x, λ) of the dynamic problem (4.4),

• G(z̄, (0, λ̄, 0, x̄− x0)) = 0 for any solution z̄ = (x̄, λ̄) of the static problem (4.7),

• G(z̃, (ε1, εT , ε2, ε0)) = 0 for any solution z̃ = (x̃, λ̃) of the perturbed dynamic problem

(4.5).

First, in Section 4.3 we apply the abstract approach of this section to finite dimensional problems

to highlight the main steps without too many functional analytic overhead. In that context, we

will have V = H = Rn and we will deduce estimates in the scaled spaces

Zs =
(
H1(0, T ;Rn), ‖ · ‖W s([0,T ])

)2
,

Es =
(
L2(0, T ;Rn), ‖ · ‖Ls2(0,T ;Rn)

)
× (Rn)s(T ) ×

(
L2(0, T ;Rn), ‖ · ‖Ls2(0,T ;Rn)

)
× (Rn)s(0).

whereH1(0, T ;Rn) contains all functions v ∈ L2(0, T ;Rn) with weak derivative v′ ∈ L2(0, T ;Rn).

This space obviously coincides with W ([0, T ]) if one sets V = H = Rn in Lemma 3.4.

In Section 4.4 we consider optimal control problems governed by semilinear parabolic evolu-

tion equations. In that context, we will utilize the smoothing effect of parabolic equations and

obtain sensitivity and turnpike estimates in the scaled spaces

Zs =
(
Lp(0, T ;Lp(Ω)) ∩W 1,2(0, T ;D(A2), L2(Ω)), ‖ · ‖

Lsp(0,T ;Lp(Ω))∩W 1,2
s (0,T ;D(A2),L2(Ω))

)2
,

Es =
(
L2(0;T ;L2(Ω)), ‖ · ‖Ls2(0,T ;L2(Ω))

)
× V s(T )

×
(
L2(0;T ;L2(Ω)), ‖ · ‖Ls2(0,T ;L2(Ω))

)
× V s(0).

The perturbations of the dynamics are assumed to belong to an L2-space, whereas the perturba-

tions of the initial values have to belong to V , which will be a H1-space. This regularity of the

data leads to solutions with values a.e. in D(A2), a H2-space, that have a weak time derivative

with values a.e. in L2(Ω) by maximal parabolic regularity, cf. [19, Part II-1, Section 3].
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4.2.1 An implicit function theorem

We now present an implicit function theorem that allows for estimates in scaled norms in a

general setting. A particular feature of the following implicit function theorem is the tracking of

dependencies of the chosen neighborhoods for perturbations and solutions in scaled and unscaled

norms. This allows us to formulate criteria that render these neighborhoods independent of T ,

namely a T -uniform continuity condition on the linearization and T -uniform invertibility of

the operator corresponding to the linearized first-order necessary conditions. This uniformity

in T is crucial to derive meaningful turnpike and sensitivity results. The assumption of T -

independence of the solution operators norm is also a central assumption in the linear quadratic

setting and in that case can be achieved under stabilizability and detectability assumptions, cf.

Theorem 5.5 and Corollary 3.30. We will derive a similar property for the linearized system

in Section 4.4. Finally we emphasize that even though the scaled and unscaled norms are

equivalent, the involved constants in case of exponential scalings strongly depend on T . Thus,

this equivalence of norms can not be directly used to derive estimates, motivating a refined

analysis as carried out in the following theorem.

Theorem 4.3. Let (Z, ‖·‖Z) and (E, ‖·‖E) be Banach spaces, let ‖v‖Zs resp. ‖v‖Es be equivalent

norms on Z resp. E and set Zs := (Z, ‖ · ‖Zs) and Es := (E, ‖ · ‖Es). Consider the mapping

G : Z ×E → E defined in (4.13) with G(z0, ε0) = 0 for (z0, ε0) ∈ Z ×E. Assume the following:

i) Gz(z
0, ε0) is continuously invertible in L(Z,E).

ii) It holds that

δε(z
1, z2) :=

‖G(z1, ε)−G(z2, ε)−Gz(z0, ε0)(z1 − z2)‖E
‖z1 − z2‖Z

→ 0,

if z1, z2 → z0 in Z and ε→ ε0 in E.

iii) It holds that

δsε(z
1, z0) :=

‖G(z1, ε)−G(z0, ε)−Gz(z0, ε0)(z1 − z0)‖Es
‖z1 − z0‖Zs

→ 0,

if z1 → z0 in Z and ε→ ε0 in E.

Then there is rE , rZ ≥ 0, such that for every ε ∈ E satisfying ‖ε − ε0‖E ≤ rE there exists

z∗(ε) ∈ Z such that ‖z∗(ε)− z0‖Z ≤ rZ and G(z∗, ε) = 0. Further, we have the estimate

‖z∗(ε)− z0‖Zs ≤ c‖ε− ε0‖Es . (4.14)

Moreover we have the following T -uniformity:

• If the convergence in ii) is uniform in T and ‖Gz(z0, ε0)−1‖L(E,Z) is bounded independently

of T , then rZ and rE can be chosen independently of T .
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• If, additionally, the convergence of iii) is uniform in T and ‖Gz(z0, ε0)−1‖L(Es,Zs) is

bounded independently of T , then the constant in (4.14) is independent of T .

Proof. Throughout this proof, we denote BZ
rZ

(z0) := {z ∈ Z | ‖z − z0‖Z ≤ rZ} and BE
rE

(ε0) :=

{ε ∈ E | ‖ε− ε0‖E ≤ rE}. For k ∈ N0 let δzk := −Gz(z0, ε0)−1G(zk, ε) and zk+1 = zk + δzk. As

δzk+1 = −Gz(z0, ε0)−1
(
G(zk+1, ε)−G(zk, ε)−Gz(z0, ε0)(zk+1 − zk)

)
we have with ii) that

‖δzk+1‖Z ≤ ‖Gz(z0, ε0)−1‖L(E,Z)δε(z
k+1, zk)‖δzk‖Z (4.15)

where δε(z
k+1, zk) → 0, if zk+1, zk → z0 in Z and ε → ε0 in E. We now choose rZ > 0

and rE > 0 such that δε(z1, z2) ≤ 1
2‖Gz(z0,ε0)−1‖L(E,Z)

for all z1, z2 ∈ BZ
rZ

(z0) and ε ∈ BE
rE

(ε0).

Further, by continuity of G(z0, ε) in ε, continuous invertibility of G(z0, ε0) and as G(z0, ε0) = 0,

we can further decrease rE such that

‖δz0‖Z = ‖Gz(z0, ε0)−1G(z0, ε)‖Z ≤
rZ
2

for all ε ∈ BE
rE

(ε0). Thus, we get

‖δzk+1‖Z ≤ ‖Gz(z0, ε0)−1‖L(E,Z)δε(z
k+1, zk)‖δzk‖Z ≤

(
1

2

)k
‖δz0‖Z . (4.16)

Hence,

‖zk+1 − z0‖Z ≤
k∑
i=0

‖δzk‖Z ≤
1

1− 1
2

‖δz0‖Z ≤ rZ (4.17)

and hence inductively, zk ∈ BZ
rZ

(z0) for all k ∈ N. Thus, by completeness of Z, the iteration

zk = z0 +
∑k

i=0 δz
k converges to an element z∗ ∈ BZ

rZ
(z0) and as δε(z

∗, zk) ≤ 1
2‖Gz(z0,ε0)−1‖L(E,Z)

we get

‖Gz(z0, ε0)−1
(
G(z∗, ε)−G(zk, ε)−Gz(z0, ε0)(z∗ − zk)

)
‖Z ≤

1

2
‖z∗ − zk‖Z .

Hence, by the reverse triangle inequality, we get

‖Gz(z0, ε0)−1G(z∗, ε)‖Z ≤ ‖δzk + z∗ − zk‖Z +
1

2
‖z∗ − zk‖Z → 0

for k →∞ and thus G(z∗, ε) = 0. To obtain an estimate in the scaled norms, we compute, using

z1 = z0 + δz0 that

‖z∗ − z0‖Zs ≤ ‖z∗ − z1‖Zs + ‖δz0‖Zs .
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We further estimate with δz0 = −Gz(z0, ε0)−1G(z0, ε), by iii) and z∗ ∈ BZ
rZ

(z0) after possibly

further decreasing rZ and rE such that δsε(z, z
0) ≤ 1

2‖Gz(z0,ε0)−1‖L(Es,Zs)
for all z ∈ BZ

rZ
(z0) and

ε ∈ BE
rE

(ε0) that

‖z∗ − z1‖Zs = ‖Gz(z0, ε0)−1(Gz(z
0, ε0)(z∗ − z1))‖Zs

= ‖Gz(z0, ε0)−1(Gz(z
0, ε0)(z∗ − z0)− (G(z∗, ε)−G(z0, ε)))‖Zs

≤ 1

2
‖z∗ − z0‖Zs .

Hence by the particular structure of G, i.e., G(z0, ε) = G(z0, ε0) + ε− ε0 = ε− ε0 we obtain

1

2
‖z∗ − z0‖Zs ≤ ‖δz0‖Zs = ‖Gz(z0, ε0)−1G(z0, ε)‖Zs ≤ ‖Gz(z0, ε0)−1‖L(Es,Zs)‖ε− ε

0‖Es

which concludes the proof.

We have two particular applications of Theorem 4.3 in mind. First, to derive a turnpike

result, we set z0 = (x̄, λ̄) solving the static extremal equations (4.8), ε0 = (0, λ̄, 0, x̄ − x0), and

ε = 0 to derive an estimate on the difference of (x, λ) and (x̄, λ̄) in scaled norms with scaling

function s(t) = 1
e−µt+e−µ(T−t) . Second, in order to obtain a sensitivity result, we set z0 = (x, λ)

solving the exact dynamic extremal equations (4.4), ε0 = (0, 0), and ε = (ε1, εT , ε2, ε0) to derive

an estimate on the difference of (x, λ) and (x̃, λ̃) solving the perturbed extremal equations (4.5)

in scaled norms with scaling function s(t) = e−µt.

Remark 4.4. Due to its generality, Theorem 4.3 can also be applied to general evolution equa-

tions, i.e., hyperbolic equations. Moreover, we could apply it to elliptic PDEs to prove an expo-

nential decay property of the influence of right-hand sides in space, a well-known property for

elliptic equations, without knowledge of Green’s function.

A crucial point in the proof of the implicit function theorem, i.e., Theorem 4.3, is to ensure

that the series generated by Gz(z
0, ε0)−1G(zk, ε) converges in Z. In the assumptions of the the-

orem, this is ensured by i) and ii), i.e., differentiability of the nonlinear operator and continuous

invertibility of the linearization. As we will see in the following section, in general, the image of

a nonlinear map, e.g., G(zk, ε) has lower integrability than its argument zk. Thus, it is necessary

to prove a smoothing effect of the solution operator to the linearized problem, e.g., Gz(z
0, ε0)−1

to make up for this loss of regularity.

4.2.2 Superposition operators and T -uniform continuity

In order to rigorously verify assumptions ii)-iii) in Theorem 4.3, we employ the concept of

superposition operators. We will only consider continuity and differentiability of these operators

in Lp-spaces and the reader is referred to [138, Section 4.3.3] for a short introduction and [8, 56]

for an in-depth treatment of these topics in Sobolev and Lebesgue spaces of abstract functions.

Intuitively, a superposition operator is a nonlinear map between function spaces defined via
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an, e.g., scalar nonlinear function by superposition. The following definition of a superposition

operator is adapted from [138, Section 4.3.1] and [56, Section 2]. In this work we only consider

the case of a nonlinearity depending on one argument. A generalization of the presented results

to nonlinearities that additionally depend on space and time is straightforward. We consider a

measurable subset S ⊂ Rn with n ∈ N, which serves as a placeholder for the spatial domain Ω

or the temporal domain [0, T ]. The following definition of a superposition operator is adapted

from [138, Section 4.3.1] and [56, Section 2].

Definition 4.5 (Superposition operator). Let W1 and W2 be real valued Banach spaces. Con-

sider a mapping ϕ : W1 →W2. Then the mapping Φ defined by

Φ(x)(s) = ϕ(x(s)) for s ∈ S

assigns to an (abstract) function x : S → W1 a new (abstract) function z : S → W2 via the

relation z(s) = ϕ(x(s)) for s ∈ S and is called an (abstract) Nemytskij operator or (abstract)

superposition operator.

We will briefly illustrate this definition by an example.

Example 4.6. Consider W1 = W2 = R and S = Ω ⊂ Rn bounded with n ∈ N. Then the

nonlinear function ϕ : R→ R, ϕ(w) = w3 defines a superposition operator Φ via the relation

Φ(x)(ω) = x(ω)3 for ω ∈ Ω.

for x : Ω→ R. An immediate question that arises is the following: Given a function x ∈ Lp(Ω),

which integrability does the image Φ(x) have? We will provide an answer to this question in

Proposition 4.7. In this example, it is intuitively clear that, e.g., Φ: L6(Ω)→ L2(Ω).

Consider now T > 0 and the nonlinear function Φ: L6(Ω) → L2(Ω) defined above. Setting

W1 = L6(Ω) and W2 = L2(Ω) and S = [0, T ] in Definition 4.5, we define a second superposition

operator Φ for x : [0, T ]→ L6(Ω) via the relation

Φ(x)(t) = Φ(x(t)) for t ∈ [0, T ].

As we will see later, this map is well defined and continuous as a mapping Φ: L6(0, T ;L6(Ω))→
L2(0, T ;L2(Ω)). We thus obtained from a scalar nonlinear function a nonlinear mapping from

one space of abstract functions into another one by applying Definition 4.5 twice.

We will now discuss continuity and differentiability of nonlinear superposition operators. As

to be expected and if p < ∞, growth conditions on the underlying function ϕ play a key role

in establishing these properties in Lp-spaces. In the following, we give sufficient and necessary

conditions for continuity and differentiability of superposition operators. However, we first

characterize the image of a superposition operator under growth and boundedness conditions.

Proposition 4.7. Let W1 and W2 be real valued Banach spaces. Let ϕ : W1 →W2 be continuous.

For 1 ≤ p, q <∞ let

‖ϕ(w)‖W2 ≤ c1 + c2‖w‖
p
q

W1
∀w ∈W1 (4.18)
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for constants c1 ∈ R and c2 ≥ 0. Then the corresponding superposition operator maps Lp(S;W1)

into Lq(S;W2).

If for all c > 0 there is a constant β = β(c) ≥ 0 such that

‖ϕ(w)‖W2 ≤ β ∀w ∈W1 : ‖w‖W1 ≤ c,

then the corresponding superposition operator maps L∞(S;W1) into Lq(S;W2) for all 1 ≤ q <∞.

Proof. See [56, Theorem 1].

The following proposition shows that if a superposition operator maps one Lp-space into

another, continuity can be derived immediately.

Proposition 4.8 (Continuity of superposition operators). Let W1 and W2 be real valued Ba-

nach spaces. Let ϕ : W1 → W2 be continuous and 1 ≤ p ≤ ∞, 1 ≤ q < ∞. If the induced

superposition operator Φ maps Lp(S;W1) into Lq(S,W2), then it is continuous. If ϕ is locally

Lipschitz continuous from W1 to W2, then the induced superposition operator Φ is continuous

from L∞(S;W1) to L∞(S,W2).

Proof. For the first part, see [56, Theorem 4]. For the case p = q =∞ we refer to [138, Lemma

4.11].

We note that continuity in case of p = q =∞ can also be deduced under a uniform continuity

assumption on bounded sets, cf. [56, Theorem 5].

We briefly discuss Proposition 4.8 for the example of Φ and Φ defined in Example 4.6 via

the nonlinear function ϕ(w) = w3. Using Proposition 4.7 and Proposition 4.8, the operator Φ

defined in Example 4.6 is continuous as a mapping from L3q(Ω) to Lq(Ω) and L∞(Ω) to Lq(Ω) for

1 ≤ q <∞, respectively. Additionally, Φ is continuous as a mapping from L3q1(0, T ;L3q2(Ω)) to

Lq1(0, T ;Lq2(Ω)) for 1 ≤ q1, q2 <∞, from L∞(0, T ;L3q2(Ω)) to Lq1(0, T ;Lq2(Ω)) for 1 ≤ q1, q2 <

∞, and from L∞(0, T ;L∞(Ω)) to Lq1(0, T ;Lq2(Ω)) for 1 ≤ q1, q2 <∞.

As it turns out, the conditions stated in Proposition 4.7 are not only sufficient but also

necessary for continuity of the induced superposition operator, cf. [56, Theorem 3].

Next, we focus on the topic of differentiability, which plays a key role in applying the implicit

function theorem. The following result obtained in [56, Theorem 7] gives sufficient conditions

for Fréchet differentiability.

Proposition 4.9 (Differentiability of superposition operators). Let 1 ≤ q < p < ∞. Assume

that ϕ : W1 →W2 is continuously Fréchet differentiable. Moreover, let the superposition operator

defined by

Ψ(x)(s) = ϕ′(x(s)) for s ∈ S

be continuous from Lp(S;W1) to Lr(S;L(W1,W2)) with r = pq
p−q . Then the superposition oper-

ator Φ induced by ϕ is continuously Fréchet differentiable and the Fréchet derivative

Φ′ : Lp(S;W1)→ L(Lp(S;W1), Lq(S;W2))
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is given by Ψ, i.e.,

(Φ′(x)δx)(s) = Ψ(x)(s)δx(s) for s ∈ S, δx ∈ Lp(S;W1).

The conditions given in Proposition 4.9 are also necessary in the following sense: If a super-

position operator is differentiable from Lp(Ω) to Lq(Ω) with 1 ≤ p = q < ∞, then it is affine

linear. If it is differentiable from Lp(Ω) to Lq(Ω) with 1 ≤ p < q ≤ ∞, then it has to be constant,

cf. the discussion in [56, Section 3.1] and [8, Theorem 3.12].

Remark 4.10. One can easily check that if ϕ(w) is a polynomial of the form ϕ(w) = wd,

d ∈ N+, then it induces a continuous superposition operator Φ: Ldq(Ω) → Lq(Ω) via Proposi-

tion 4.8. Additionally, Φ is differentiable from Ldq(Ω) to Lq(Ω) for all 1 ≤ q < ∞ by applying

Proposition 4.9 with r = d
(d−1) . The same obviously carries over to the vector valued setting,

e.g., Φ: Ldq1(0, T ;Ldq2(Ω)) → Lq1(0, T ;Lq2(Ω)) induced by ϕ is continuous and differentiable

for all 1 ≤ q1, q2 <∞.

In order to render the radii rZ and rE and the estimate (4.14) independent of T , we have to

discuss the T -dependence of continuity moduli of superposition operators in unscaled and scaled

Lp-spaces as introduced at the end of Section 4.1 with norms defined in (4.10).

Definition 4.11 (T -uniform continuity). Let W1,W2 be real-valued Banach spaces. We say that

an operator Ψ: Lp(0, T ;W1)→ Lq(0, T ;W2) is T -uniformly continuous if for all x0 ∈ Lp(0, T ;W1)

and for all ε > 0 there is δ > 0 independent of T such that if ‖δx‖Lp(0,T ;W1) < δ then

‖Ψ(x0 + δx)−Ψ(x0)‖Lq(0,T ;W2) < ε.

Lemma 4.12. If the constants c1 and c2 in the growth condition (4.18) can be chosen indepen-

dent of T , then the continuity of the induced superposition operator is T -uniform.

Proof. The proof follows directly by the fact that the references establishing continuity under

growth conditions do not assume the domain S to be bounded, cf. [8, Chapter 3] and [56].

Example 4.13 (Remark 4.10 revisited). We briefly illustrate the previous lemma by means of

the example ϕ(w) = wd, d ∈ N+. In that case it is clear that the growth condition (4.18), i.e.,

|ϕ(w)| ≤ c1 + c2|w|
p
q

holds with p = dq, c1 = 0 and c2 = 1, i.e., ϕ induces a T -uniformly continuous superposition

operator from Ldq(0, T ;Ldp(Ω)) to Lq(0, T ;Lp(Ω)) for all 1 ≤ q, p < ∞. As [0, T ] and Ω are

bounded, one can show that continuity also holds from Ld̂q(0, T ;Ld̂p(Ω)) to Lq(0, T ;Lp(Ω)) for

d̂ > d, however, with constants that depend on T and |Ω|. This means, that the functional

analytic framework has to be chosen particularly suited to the nonlinearity to render the constants

and hence the continuity uniform in T .

The following lemma shows that if a superposition operator has a T -uniformly continuous

Fréchet derivative, the convergence in ii) and iii) of Theorem 4.3 can be shown to be T -uniform.
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Lemma 4.14. Let W1 and W2 be Banach spaces, 1 ≤ p ≤ ∞ and let Φ: Lp(0, T ;W1) →
Lq(0, T ;W2) have a T -uniformly continuous Fréchet derivative Φ′. Then,

‖Φ(x1)− Φ(x2)− Φ′(x0)(x1 − x2)‖Lq(0,T ;W2)

‖x1 − x2‖Lp(0,T ;W1)
→ 0

uniformly in T if x1, x2 → x0 in Lp(0, T ;W1). Moreover,

‖Φ(x0 + δx)− Φ(x0)− Φ′(x0)δx‖Lsq(0,T ;W2)

‖δx‖Lsp(0,T ;W1)
→ 0

uniformly in T if δx→ 0 in Lp(0, T ;W1).

Proof. We compute with the fundamental theorem of calculus, cf. [82, p.51], that

‖Φ(x1)− Φ(x2)− Φ′(x0)(x1 − x2)‖Lq(0,T ;W2)

= ‖
∫ 1

0
Φ′(x2 + θ(x1 − x2))− Φ′(x0) dθ(x1 − x2)‖Lq(0,T ;W2)

≤
(

sup
θ∈[0,1]

‖Φ′(x2 + θ(x1 − x2))− Φ′(x2)‖L(Lp(0,T ;W1),Lq(0,T ;W2))

+ ‖(Φ′(x0)− Φ′(x2))‖L(Lp(0,T ;W1),Lq(0,T ;W2))

)
‖x1 − x2‖Lp(0,T ;W1).

The first claim follows by T -uniform continuity of Φ′. For the second claim in scaled norms with

scaling function s, we compute analogously

‖Φ(x0 + δx)− Φ(x0)− Φ′(x0)δx‖Lsq(0,T ;W2)

= ‖s
(
Φ(x0 + δx)− Φ(x0)− Φ′(x0)δx

)
‖Lq(0,T ;W2)

≤ sup
θ∈[0,1]

‖Φ′(x0)− Φ′(x0 + θδx)‖L(Lp(0,T ;W1),Lq(0,T ;W2))‖sδx‖Lp(0,T ;W1)

= sup
θ∈[0,1]

‖Φ′(x0)− Φ′(x0 + θδx)‖L(Lp(0,T ;W1),Lq(0,T ;W2))‖δx‖Lsp(0,T ;W1),

which concludes the proof.

Hence, it turns out that whenever the superposition operators are differentiable with T -

uniformly continuous derivative, the uniform convergence needed in Theorem 4.3 ii) and iii) to

obtain T -uniform neighborhoods holds true. The remaining task in order to apply the implicit

function theorem is to verify the T -uniform estimate on the solution operator of the linearized

first-order optimality system, i.e., Gz(x
0, ε0)−1, in unscaled and scaled spaces. In the following

we will derive such a bound for a wide class of nonlinear finite dimensional and semilinear infinite

dimensional parabolic problems. In that context, our aim is to provide maximal flexibility in the

norms of this estimate in order match the functional analytic framework where one established

T -uniform continuity, cf. Example 4.13 on the importance of this issue.
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4.3 Nonlinear finite dimensional problems

We briefly discuss the case of a finite dimensional system as a particular case of a parabolic

problem. To this end, we consider V = H = Rn, Ā : Rn → Rn twice continuously Fréchet

differentiable , U = Rm, and B ∈ L(Rm,Rn) for n,m ∈ N. In this case, we have the solution

space W ([0, T ]) = {v ∈ L2(0, T ;Rn) | v′ ∈ L2(0, T ;Rn)} =: H1(0, T ;Rn). Further we have

H1(0, T ;Rn) ↪→ C(0, T ;Rn) with an embedding constant independent of T , cf. Lemma 3.4. Very

similarly to Theorems 3.14 and 3.16 we will deduce a T -independent bound on the linearized

extremal equations solution operator under a stabilizability and detectability assumption. To

this end, we consider the linearized extremal equations at two different linearization points.

First, to deduce a turnpike result, we linearize the extremal equations at the optimal steady

state (x̄, λ̄) ∈ (Rn)2, leading to an autonomous linearization L′′r(x̄, λ̄). Second we analyze the

linearization of the extremal equations at the dynamic solution (x, λ) ∈ H1(0, T ;Rn)2 of (4.4)

to derive a sensitivity estimate. As in that case the linearized system governed by L′′r(x, λ) is

non-autonomous, we consider the stabilizability notion introduced for non-autonomous systems

in Chapter 3, namely V -exponential stabilizability.

4.3.1 A T -independent bound for the solution operator

First, we introduce an important square root property for the second derivative of the reduced

Lagrangian.

Lemma 4.15. Let (x0, λ0) solve either the steady state problem (4.8) or the dynamic problem

(4.4). Assume that Ā′′ and J̄ ′′ are continuous. Suppose that

(Lr)xx(x0, λ0)(t) = J̄xx(x0(t))− Ā′′(x0(t))Tλ0(t) ≥ 0

for t ∈ [0, T ]. Then, there is a self-adjoint C ∈ L(L2(0, T ;Rn)) for all 1 ≤ p ≤ ∞ such that

(Lr)xx(x0, λ0) = C2. (4.19)

Proof. As x0 and λ0 are continuous in time, and by continuity of Ā′′ and J̄xx, (Lr)xx(x0, λ0) ∈
C(0, T ;Rn). By this continuity and the symmetry of (Lr)xx(x0, λ0)(t) for each t ∈ [0, T ] the

result follows by concatenating the pointwise matrix square roots. For details on square roots

of matrices, see [92, Chapter 10].

The assumption of (Lr)xx(x0, λ0) being positive semidefinite is rather unusual, compared

to, e.g., second-order sufficient conditions, where one has only the positive definiteness for all

directions satisfying the dynamics. However, it is crucial to analyze the stability of the linearized

system, cf. also [136, Remark 6].

Theorem 4.16. Let the assumptions of Lemma 4.15 hold. Let (x̄, λ̄) ∈ (Rn)2 solve the steady

state problem (4.6). Consider C to be defined as in (4.19). Assume (Ā′(x̄), C) is exponentially
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detectable and (Ā′(x̄), B̄) is exponentially stabilizable in the classical sense of Assumption 2.32.

Then there is a constant c ≥ 0 independent of T such that∥∥L′′r(x̄, λ̄)−1
∥∥
L((L2(0,T ;Rn)×(Rn))2,H1(0,T ;Rn)2)

≤ c.

Additionally, for any 0 < µ < 1 satisfying

µ <
1∥∥L′′r(x̄, λ̄)−1

∥∥
L((L2(0,T ;Rn)×Rn)2,H1(0,T ;Rn)2)

,

there is a constant c ≥ 0 independent of T such that setting s(t) = 1
e−µT+e−µ(T−t) it holds that∥∥L′′r(x̄, λ̄)−1

∥∥
L((Ls2(0,T ;Rn)×(Rn)s(T )×Ls2(0,T ;Rn)×(Rn)s(0)),(H1(0,T ;Rn),‖·‖Ws([0,T ]))

2)
≤ c.

Let (x, λ) ∈ H1(0, T ;Rn)2 solve the dynamic problem (4.4). Assume (A′(x), C) and (A′(x), B)

are Rn-exponentially stabilizable in the sense of Definition 3.20. Then there is a constant c ≥ 0

independent of T such that∥∥L′′r(x, λ)−1
∥∥
L((L2(0,T ;Rn)×Rn)2,H1(0,T ;Rn)2)

≤ c.

Additionally, for any 0 < µ < 1 satisfying

µ <
1

‖L′′r(x, λ)−1‖L((L2(0,T ;Rn)×Rn)2,H1(0,T ;Rn)2)

,

there is a constant c ≥ 0 independent of T such that setting s(t) = e−µt it holds that∥∥L′′r(x, λ)−1
∥∥
L((Ls2(0,T ;Rn)×(Rn)s(T )×Ls2(0,T ;Rn)×(Rn)s(0)),(H1(0,T ;Rn),‖·‖Ws([0,T ]))

2)
≤ c.

Proof. The proof of the T -independent bound on L′′r(x̄, λ̄)−1 follows completely analogously to

Theorem 2.38. In that context, after having bounded the L2(0, T ;Rn)-norm of state and adjoint,

the bound on the derivative of state and adjoint can be derived analogously to the proof of

Theorem 3.29. The bound in the scaled spaces follows completely analogously to Theorem 2.30.

Similarly, the proof of the T -independent bound on L′′r(x, λ)−1 can be derived by as a par-

ticular case of Corollary 3.30 and Theorem 3.14.

4.3.2 Exponential sensitivity and turnpike results

Having established T -independent invertibility of L′′r(x̄, λ̄) and L′′r(x, λ) in scaled and unscaled

spaces, it is crucial to ensure that L′′r is the Fréchet derivative of L′r in the corresponding

functional analytic setting such that Theorem 4.3 ii) and iii) are satisfied.

Proposition 4.17. Let 2 ≤ p1, p2 < ∞ and the assumptions of Theorem 4.16 hold. As-

sume that Jx(x, u) induces a superposition operator from Lp1(0, T ;Rn) to L2(0, T ;Rn) with

T -uniformly continuous Fréchet derivative. Further let A(x) induce a superposition operator

from Lp2(0, T ;Rn) to L2(0, T ;Rn) with two T -uniformly continuous Fréchet derivatives. Then

G(z, ε) := L′r(z)− ε with L′r defined in (4.4) satisfies the assumptions of Theorem 4.3 uniform

in T with either
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i) s(t) = 1
e−µt+e−µ(T−t) and (z0, ε0) = ((x̄, λ̄), (0, λ̄, 0, x̄− x0)) for any 0 < µ < 1 satisfying

µ <
1∥∥L′′r(x̄, λ̄)−1

∥∥
L((L2(0,T ;Rn)×Rn)2,H1(0,T ;Rn)2)

,

or

ii) s(t) = e−µt and (z0, ε0) = ((x, λ), 0) for any 0 < µ < 1 satisfying

µ <
1

‖L′′r(x, λ)−1‖L((L2(0,T ;Rn)×Rn)2,H1(0,T ;Rn)2)

,

with the spaces Z = H1(0, T ;Rn) and E = ((L2(0, T ;Rn) × Rn)2 and with the scaled norms

‖ · ‖Zs = ‖ · ‖W s([0,T ])2 and ‖ · ‖Es = ‖ · ‖Ls2(0,T ;Rn)×(Rn)s(T )×Ls2(0,T ;Rn)×(Rn)s(0).

Proof. First, we observe that the assumptions of Lemma 4.14 with W1 = W2 = Rn are satisfied

for Φ = Jx(x, u) with p = p1 and q = 2 and for Φ = A(x) resp. Φ = A′(x)Tλ for p = p2 and q = 2,

respectively. Further, with the T -independent embedding H1(0, T ;Rn) ↪→ Lp(0, T ;Rn) for all

2 ≤ p < ∞ independently of T , cf. [5, Theorem 3], the assumptions ii) and iii) of Theorem 4.3

follow. The T -independent bounds on the solution operators L′′r at either linearization point

follow directly from Theorem 4.16.

This result now directly implies a turnpike and sensitivity result for the nonlinear system via

the implicit function theorem of Theorem 4.3. Note that the implicit function theorem provides

the estimates for state and adjoint, whereas the estimates for the control follow straightforwardly

by the relation δu(t) = Q−1B∗δλ(t) for a.e. t ∈ [0, T ] for either δu(t) = u(t) − ū and δλ(t) =

λ(t)− λ̄ (distance to the turnpike) or δu(t) = ũ(t)−u(t) and δλ(t) = λ̃(t)−λ(t) (absolute error

for perturbed system), cf. the elimination of the control after (4.5).

Corollary 4.18. Suppose the assumptions of Proposition 4.17 hold. Let (x, u, λ) solve the non-

linear dynamic problem (4.3) and (x̄, ū, λ̄) the nonlinear static problem (4.7). Define (δx, δu, δλ) :=

(x− x̄, u− ū, λ− λ̄). Then there is a radius rE > 0 independent of T such that, if

‖x0 − x̄‖+
∥∥λ̄∥∥ ≤ rE ,

then for any 0 < µ < 1 satisfying

µ <
1∥∥L′′r(x̄, λ̄)

∥∥
L((L2(0,T ;Rn)×Rn)2,H1(0,T ;Rn)2)

there is a constant c ≥ 0 independent of T such that we have∥∥∥∥ 1

e−µt + e−µ(T−t) δx(t)

∥∥∥∥
H1(0,T ;Rn)

+

∥∥∥∥ 1

e−µt + e−µ(T−t) δu(t)

∥∥∥∥
L∞(0,T ;Rm)

+

∥∥∥∥ 1

e−µt + e−µ(T−t) δλ(t)

∥∥∥∥
H1(0,T ;Rn)

≤ crE .
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Corollary 4.19. Let the assumptions of Proposition 4.17 hold. Let (x, λ) solve the extremal

equations (4.4) and (x̃, λ̃) the perturbed extremal equations (4.5). Define (δx, δλ) := (x̃−x, λ̃−λ)

and δu := Q−1B∗δλ. Then there is a radius rE > 0 independent of T such that, if

‖ε1‖L2(0,T ;Rn) + ‖εT ‖+ ‖ε2‖L2(0,T ;Rn) + ‖ε0‖ ≤ rE ,

then for any 0 < µ < 1 satisfying

µ <
1

‖L′′r(x, λ)‖L((L2(0,T ;Rn)×Rn)2,H1(0,T ;Rn)2)

there is a constant c ≥ 0 independent of T such that, setting

ρ :=
∥∥e−µtε1

∥∥
L2(0,T ;Rn)

+
∥∥e−µT εT∥∥+

∥∥e−µtε2

∥∥
L2(0,T ;Rn)

+ ‖ε0‖ ,

it holds that∥∥e−µtδx(t)
∥∥
H1(0,T ;Rn)

+
∥∥e−µtδu(t)

∥∥
L∞(0,T ;Rm)

+
∥∥e−µtδλ(t)

∥∥
H1(0,T ;Rn)

≤ cρ.

4.4 Semilinear heat equations

In this part we will verify the assumptions of the abstract implicit function theorem, i.e., The-

orem 4.3, for a class of semilinear heat equations. To this end, we assume that Ω ⊂ Rn, n ≥ 2

is a bounded domain with smooth boundary. The analysis in this part is heavily motivated by

the approach taken in [119], where the authors derive a Maximum Principle for optimal control

problems governed by semilinear parabolic PDEs. In that work it is shown that for sufficiently

smooth data, the solution x of a semilinear parabolic PDE with monotone nonlinearity indeed

satisfies x ∈ L∞(0, T ;L∞(Ω)). This allows for existence results globally in time without global

Lipschitz conditions on the nonlinearity. For convenience of the reader, we briefly introduce

the setting considered in [119]. To this end, we assume that the PDE of interest is semilinear

parabolic, i.e., the nonlinear operator of the state equation of (4.1) is given by

Ā(x) = Ax− ϕ(x),

where ϕ : R→ R is a smooth nonlinearity satisfying ϕ′(x) ≥ c0 for c0 ∈ R. The operator −A is

considered to be an elliptic differential operator of second order, i.e.,

Ax :=
n∑

i,j=0

Di(aijDjx), (4.20)

where aij = aji ∈ C(Ω̄,R) and ai,j(ω)v · v > 0 for all ω ∈ Ω and v ∈ Rn. By ∂x
∂νA

(t, s) =∑n
i,j=0 aij(s)∂jx(t, s)νi(s) we denote the conormal derivative of x, where ν = (ν1, . . . , νn) is the

outward unit normal to ∂Ω. We consider the domain

D(A) = {v ∈ C2(Ω) | v = 0 on ∂Ω} or D(A) = {v ∈ C2(Ω) | ∂v
∂νA

= 0 on ∂Ω} (4.21)
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for either homogeneous Dirichlet or homogeneous Neumann boundary conditions. We assume

w.l.o.g. that there is α > 0 such that

−
∫

Ω
Avv dω ≥ α

2
‖v‖2H1(Ω) (4.22)

for v ∈ D(A). In case of Dirichlet boundary conditions this immediately follows with integration

by parts and the Poincaré inequality. For Neumann boundary conditions, we can replace Ax
by (A − kI) for any k > 0 by Ā(x) = Ax − ϕ(x) = (A − kI)x + kx − ϕ(x) and redefine

ϕ(x) := ϕ(x)− kx accordingly.

It can be shown that for all 1 ≤ l < ∞ the closure Al of A in Ll(Ω) generates an ana-

lytic semigroup (Tl(t))t≥0 in Ll(Ω). For 1 < l < ∞, the domain is given by D(Al) = {v ∈
W 2,l(Ω) | v = 0 on ∂Ω} or D(Al) = {v ∈ W 2,l(Ω) | ∂v∂νA = 0 on ∂Ω}, depending on the choice in

(4.21). Additionally, the spectrum of Al does not depend on 1 ≤ l <∞. For details we refer to

[122] and [119, Section 3].

For the semigroup (Tl(t))t≥0, we have the following stability estimate, which is the main tool

of this part.

Proposition 4.20. For any δ > 0 there is µ0 > 0 and a constant c > 0 independent of t, such

that

‖Tl(t)ψ0‖Lq(Ω) ≤ c
e−µ0t

t
n
2

( 1
l
− 1
q

+δ)
‖ψ0‖Ll(Ω) ∀t > 0 (4.23)

for all ψ0 ∈ Ll(Ω) and 1 ≤ l ≤ q ≤ ∞ with l < ∞. In the case of homogeneous Dirichlet

boundary conditions δ = 0 can be chosen.

Proof. See [122, Lemma 1] or [4, Proposition 12.5].

This stability result for analytic semigroups turns out to be crucial to derive estimates in Lp-

spaces for large p for, e.g., right-hand sides in L2(0, T ;L2(Ω)) as performed in the following. As a

consequence of those Lp-estimates, we can allow for a wide range of different functional analytic

settings, i.e., different choices of integrability parameters. This flexibility can then be leveraged

when verifying T -uniformity in the context of the superposition operator, i.e., rendering the

constants in Proposition 4.7 independent of T , cf. Example 4.13. We will again come back to

this issue in Remark 4.34.

Depending on the choice of boundary conditions above, we will set V = H1(Ω) in the case of

homogeneous Neumann boundary conditions or V = H1
0 (Ω) in the case of homogeneous Dirichlet

boundary conditions. Further suppose that the control is distributed, i.e., B ∈ L(L2(Ωc)), L2(Ω))

for a control domain Ωc ⊂ Ω..

An important assumption in the remainder of this part is boundedness on the linearization

point. This allows us to analyze the linearized PDE system by classical methods as the involved

coefficients are bounded. Another crucial point is positivity of the second derivative of the

Lagrangian with respect to the state. We will make the following assumptions.
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Assumption 4.21. Let the following hold.

i) (x, λ) ∈ L∞(0, T ;L∞(Ω)) for any solution (x, u, λ) of (4.3) and (x̄, λ̄) ∈ L∞(Ω) for any

solution (x̄, ū, λ̄) of (4.7).

ii) Set (x0, λ0) = (x, λ) solving (4.3) or (x0, λ0) = (x̄, λ̄) solving (4.7). We assume that

(Lr)xx(x, λ) = Jxx(x0)+ϕ′′(x0)λ0 ∈ L∞(0, T ;L∞(Ω)) induces a nonnegative multiplication

operator, i.e., for v : [0, T ]× Ω→ R

((Lr)xx(x0, λ0)v)(t, ω) := (Lr)xx(x0, λ0)(t, ω) · v(t, ω)

and (Lr)xx(x0, λ0)(t, ω) ≥ 0 for a.e. t ∈ [0, T ] and ω ∈ Ω.

We briefly remark on these assumptions

Remark 4.22. In order to render Assumption 4.21 i) satisfied, one usually assumes that the

data of (4.1) and (4.6) is sufficiently smooth. Boundedness of solutions in time and space for

parabolic problems was proven in [119]. Similarly, for semilinear elliptic equations, a proof for

continuity of solutions can be found in [30]. The interested reader is also referred to the respective

parts in the monograph [138].

Regarding Assumption 4.21 ii), (Lr)xx(x0, λ0) induces a multiplication operator if, e.g., the

cost functional is of the form

J(x, u) =
1

2

∫ T

0
‖x− xd‖2L2(Ωo)

+
α

2
‖u(t)‖2U

for Ωo ⊂ Ω and if the nonlinearity is given by ϕ(x) = x3. In that case,

(Lr)xx(x0, λ0) = χΩo + 6x0λ0,

where χΩo is the characteristic function of the observation region Ωo. The positivity assumption

is fulfilled if, e.g., Ωo = Ω and if λ0 and x0 are small in L∞(0, T ;L∞(Ω)). For (x0, λ0) = (x̄, λ̄)

or (x0, λ0) = (x̃, λ̃), the latter can be verified by imposing smallness conditions on the data of the

underlying steady-state or dynamic OCP, cf. Example 4.33. Again, we note that, as seen in this

example and as stated in [136, Remark 6], this assumption is not standard in optimal control. In

particular, it is not clear how to verify it by, e.g., second-order sufficient conditions. However,

this assumption is crucial to define a square root as we will do in the following, which itself

is necessary to obtain stability results for the linearized system, cf. the proof of Theorem 4.27.

The assumption that Lxx is positive semidefinite, was also made in [136, Theorem 1] and [135,

Theorem 1].

We now introduce a square root property for the second derivative of the reduced Lagrange

function with respect to the state.
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Lemma 4.23. Let Assumption 4.21 hold and set (x0, λ0) = (x, λ) or (x0, λ0) = (x̄, λ̄). Then,

there is a multiplication operator C ∈ L(Lp1(0, T ;Lp2(Ω))) for all 1 ≤ p1, p2 ≤ ∞ defined by

(Cv)(t, ω) :=
√

(Lr)xx(x0, λ0)(t, ω) · v(t, ω) (4.24)

such that

(Lr)xx(x0, λ0) = C2.

Proof. The claim follows directly from Assumption 4.21 by positivity of (Lr)xx(x0, λ0)(t, ω) and

regularity of x0 and λ0.

4.4.1 A T -independent bound for the solution operator

In order to apply Theorem 4.3, we will show a bound on the inverse of

L′′r(x
0, λ0) : (Lp1(0, T ;Lp2(Ω)) ∩W 1,2(0, T,D(A2), L2(Ω))2 → (L2(0, T ;L2(Ω))× V )2,

where 2 ≤ p1, p2 ≤ ∞, n2 (1
2 −

1
p2

) < 1
p1

+ 1
2 , p2 <

2n
n−2 and (x0, λ0) either solves the static system

(4.8) or the dynamic system (4.4).

To derive an operator norm we consider the linear system
Jxx(x0) + ϕ′′(x0)λ0 − d

dt −A
∗
2 + ϕ′(x0)

0 ET
d
dt −A2 + ϕ′(x0) −BQ−1B∗

E0 0


︸ ︷︷ ︸

L′′r (x0,λ0)

(
δx

δλ

)
=


l1
δλT
l2
δx0

 (4.25)

for (l1, δλT , l2, δx0) ∈ (L2(0, T ;L2(Ω)× V ). Note that due to x0 ∈ L∞(0, T ;L∞(Ω)) and due to

the smoothness of ϕ, the terms Jx(x0), ϕ′(x0), and ϕ′′(x0) are in L∞(0, T ;L∞(Ω)) because of

Proposition 4.8 and hence can be interpreted as pointwise multiplications. With slight abuse of

notation, we denote by the same symbol the corresponding superposition operator.

Moreover, under Assumption 4.21 and with Lemma 4.23, we obtain a self-adjoint operator

C ∈ L(Lp1(0, T ;Lp2(Ω))) as defined in (4.24) for all 1 ≤ p1, p2 ≤ ∞ such that we may write

Jxx(x0) + ϕ′′(x0)λ0 = C2.

We now aim to estimate (δx, δλ) by means of the right-hand side of (4.25) in appropriate

norms. To this end, we make the following stabilizability assumptions.

Assumption 4.24. Let Assumption 4.21 hold. Further, set (x0, λ0) = (x, λ) or (x0, λ0) = (x̄, λ̄)

and let c0 ∈ R such that c0 ≤ ϕ′(w) for all w ∈ R. Consider C ∈ L(Lp1(0, T ;Lp2(Ω))) for all

1 ≤ p1, p2 ≤ ∞ defined by (4.24). Let C̄ ∈ L(Lp(Ω), Lp(Ω)) for all 2 ≤ p ≤ ∞ be such that

‖C̄v‖L2(0,T ;L2(Ω)) ≤ ‖Cv‖L2(0,T ;L2(Ω)) for all v ∈ L2(0, T ;L2(Ω)), where C is defined in (4.24).

Additionally assume:
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i) (Al − c0I, B̄) is exponentially stabilizable in the sense that for all 1 ≤ l < ∞ there is

K̄B̄ ∈ L(Ll(Ω), Ll(Ωc)) satisfying B̄K̄B̄ ∈ L(Ll(Ω)) such that Al− c0I + B̄K̄B̄ generates an

exponentially stable analytic semigroup in Ll(Ω) satisfying (4.23).

ii) (Al − c0I, C̄) is exponentially stabilizable in the sense that for all 1 ≤ l < ∞ there is

K̄C̄ ∈ L(Ll(Ω)) such that Al − c0I + C̄∗K̄C̄ generates an exponentially stable analytic

semigroup in Ll(Ω) satisfying (4.23).

iii) (A2 − ϕ′(x0), C) and (A2 − ϕ′(x0), B) are exponentially stabilizable in the following sense:

There are operators KB ∈ L(L2(0, T ;L2(Ω)), L2(0, T ;L2(Ωc))) and KC ∈ L(L2(0, T ;L2(Ω)))

such that

−
∫ T

0

∫
Ω

(
A2 − ϕ′(x0) +BKB

)
vv dω dt ≥ α‖v‖2L2(0,T ;V )

−
∫ T

0

∫
Ω

(
A2 − ϕ′(x0) + CKC

)
vv dω dt ≥ α‖v‖2L2(0,T ;V )

for all v ∈ L2(0, T ;D(A2)).

iv) ‖x0‖L∞(0,T ;L∞(Ω)) and ‖C‖L(Lp(0,T ;Lp(Ω)),Lp(0,T ;Lp(Ω))) are bounded independently of T for

all 1 ≤ p ≤ ∞.

We briefly comment on these assumptions.

Remark 4.25. The assertions Assumption 4.24 i) and ii) ensure that the linearized system

is stabilizable and detectable and that the closed-loop operators generate a strongly continuous

exponentially stable analytic semigroup in Ll(Ω) for all 1 ≤ l < ∞ satisfying the particular

stability estimate (4.23). The third assumption, i.e., iii) allows us to deduce the W ([0, T ])-

bound analogously to Theorem 3.29 and was introduced for non-autonomous parabolic problems

in Definition 3.20. The last assumption ensures that the coefficients in the linearized system

are bounded independently of T . This is trivially fulfilled for a steady state linearization point

(x0, λ0). In case that the linearization point is the time-dependent optimal solution, this estimate

is satisfied if, e.g., a turnpike property in this uniform norm holds. The latter was proven in cf.

[110, Theorem 0.2] under a smallness assumption on the reference state in case of a tracking

type cost functional. If ϕ′(x) ≥ 0, i.e., the nonlinearity is monotone, then conditions i)-iii) are

trivially satisfied by choosing zero for all feedback operators.

A central tool in the following will be a convolution estimate, similar to the proof of Lemma 2.36

in the linear case. This proof is further motivated by the approach of [119, Proposition 3.1].

Theorem 4.26. Let Assumption 4.24 hold and let (δx, δλ) ∈ W ([0, T ])2 solve (4.25). Then,

for all p1, p2 ≥ 2 satisfying n
2 (1

2 −
1
p2

) < 1
p1

+ 1
2 with p1 < ∞ and p2 <

2n
n−2 , there is a constant

c > 0 independent of T , such that

‖(δx, δλ)‖W 1,2(0,T,D(A2),L2(Ω))2 + ‖(δx, δλ)‖Lp1 (0,T ;Lp2 (Ω))2

≤ c
(
‖Cδx‖L2(0,T ;L2(Ω)) + ‖B∗δλ‖L2(0,T ;L2(Ωc)) + ‖r‖(L2(0,T ;L2(Ω))×V )2

)
,
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where r := (l1, δλT , l2, δx0). In the case of homogeneous Dirichlet boundary conditions, p1 =∞
can be chosen.

Proof. We will first show all estimates for the state. To this end, for theW 1,2(0, T,D(A2), L2(Ω))-

estimate, we consider the state equation of (4.25), i.e.,

δx′ + (−A2 + ϕ′(x0))δx−BQ−1B∗δλ = l2

with initial condition δx(0) = δx0. Adding the stabilizing feedback CKC from Assumption 4.24

iii), we obtain

δx′ + (−A2 + ϕ′(x0)− C∗KC)δx = BQ−1B∗δλ+ l2 − C∗KCδx.

Testing the equation with δx, using the coercivity of Assumption 4.24 iii) we get

‖δx‖L2(0,T ;V ) ≤ c
(
‖δx0‖V + ‖B∗δλ‖L2(0,T ;L2(Ω)) + ‖l2‖L2(0,T ;L2(Ω)) + ‖Cδx‖L2(0,T ;L2(Ω))

)
(4.26)

As A2 generates an exponentially stable analytic semigroup in L2(Ω) by applying the maximal

regularity result [19, Part II-1, Theorem 3.1] to

δx′ −A2δx = −ϕ′(x0)δx+BQ−1B∗δλ+ l2

we obtain (similarly to Lemma 2.64)

‖δx′‖L2(0,T ;L2(Ω)) + ‖A2δx‖L2(0,T ;L2(Ω))

≤ c
(
‖δx‖L2(0,T ;L2(Ω)) + ‖B∗δλ‖L2(0,T ;L2(Ω)) + ‖l2‖L2(0,T ;L2(Ω))

)
.

Together with (4.26) we conclude

||δx‖W 1,2(0,T,D(A2),L2(Ω))

≤ c
(
‖l2‖L2(0,T ;L2(Ω)) + ‖B∗δλ‖L2(0,T ;L2(Ω)) + ‖Cδx‖L2(0,T ;L2(Ω)) + ‖δx0‖V

)
.

To obtain the estimate in Lp1(0, T ;Lp2(Ω)), we proceed similar to [119, Proof of Proposition

3.1]. Let ψ0 ∈ Ll(Ω), 1 ≤ l <∞ and ψ ∈ C(0, T ;Ll(Ω)) solve the auxiliary problem

ψ′ = (Al − c0I + C̄∗K̄C̄)ψ, ψ(0) = ψ0,

where K̄C̄ is a stabilizing feedback for (Al − c0I, C̄) in the sense of Assumption 4.24 ii). Thus,

by Proposition 4.20 for all δ > 0 and 1 ≤ l ≤ q ≤ ∞ with l < ∞ and t > τ ≥ 0 we have the

estimate

‖ψ(t− τ)‖Lq(Ω) ≤ c
e−µ0(t−τ)

(t− τ)
n
2

( 1
l
− 1
q

+δ)
‖ψ0‖Ll(Ω). (4.27)
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We will now assume that ψ0 is smooth, and the result for ψ0 ∈ Ll(Ω) can be verified via a

density argument. We compute∫
Ω
ψ0(ω)δx(t, ω) dω =

∫ t

0

(
d

dτ

∫
Ω
ψ(t− τ, ω)δx(τ, ω) dω

)
dτ︸ ︷︷ ︸

I

+

∫
Ω
ψ(t, ω)δx0(ω) dω︸ ︷︷ ︸

II

. (4.28)

For the first part of (4.28) we obtain with c0 − ϕ′(x0) ≤ 0 and by self-adjointness that

I =

∫ t

0

(∫
Ω
−ψ′(t− τ, ω)δx(τ, ω) + ψ(t− τ, ω)δx′(τ, ω) dω

)
dτ

=

∫ t

0

(∫
Ω
−Alψ(t− τ, ω)δx(τ, ω)− C̄∗Kψ(t− τ, ω)δx(τ, ω) + c0ψ(t− τ, ω)δx(τ, ω)

+ ψ(t− τ, ω)A2δx(τ, ω)− ϕ′(x0)ψ(t− τ, ω)δx(τ, ω) + l2(t, ω)ψ(t− τ, ω)

+ B̄Q−1B̄∗δλ(τ, ω)ψ(t− τ, ω) dω

)
dτ

≤
∫ t

0

(∫
Ω
−C̄∗Kψ(t− τ, ω)δx(τ, ω)+ψ(t− τ, ω)l2(t, ω)+ψ(t− τ, ω)B̄Q−1B̄∗δλ(τ, ω) dω

)
dτ.

In the following we denote by p′2 the dual exponent to p2, i.e., 1
p2

+ 1
p′2

= 1. Using the exponential

stability estimate of (4.27) and setting l = p′2 and q = 2, we obtain for the first summand of

(4.28) that

I ≤ c‖ψ0‖Lp′2 (Ω)

∫ t

0

e−µ0(t−τ)

(t− τ)
n
2

( 1
p′2
− 1

2
+δ)

(
‖C̄δx(τ)‖L2(Ω) + ‖B̄∗δλ(τ)‖L2(Ωc) + ‖l2(τ)‖L2(Ω)

)
dτ.

For the second part of (4.28) we use Hölder’s inequality and (4.27) with q = l = p′2 and obtain

for any δ > 0 that

II ≤ ‖ψ(t)‖Lp′2 (Ω)‖δx0‖Lp2 (Ω) ≤ c
e−µ0t

tδ
‖ψ0‖Lp′2 (Ω)‖δx0‖Lp2 (Ω). (4.29)

Taking the supremum over all ψ0 ∈ Lp′2(Ω) yields for any t ∈ [0, T ] that

‖δx(t)‖Lp2 (Ω) ≤ c
∫ t

0

e−µ0(t−τ)

(t− τ)
n
2

( 1
p′2
− 1

2
+δ)

(
‖C̄δx(τ)‖L2(Ω) + ‖B̄∗δλ(τ)‖L2(Ωc) + ‖l2(τ)‖L2(Ω)

)
dτ

+ c
e−µ0t

tδ
‖x0‖Lp2 (Ω).

We now integrate this inequality over time. To this end, we recall Young’s convolution inequality,

cf. [147, Theorem II.4.4], which states for 1
p1

+ 1 = 1
2 + 1

h that

‖w ∗ g‖Lp1 (R) ≤ ‖w‖Lh(R)‖g‖L2(R).
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We apply this convolution inequality to the functions defined by

g(τ) := ‖C̄δx(τ)‖L2(Ω) + ‖B̄∗δλ(τ)‖L2(Ωc) + ‖l2(τ)‖L2(Ω),

w(τ) :=
e−µ0τ

τ
n
2

( 1
p′2
− 1

2
+δ)

for any τ ∈ [0, T ] and extended by zero otherwise. Additionally, we require that n
2 ( 1

p2
− 1

2 +δ) < 1
h

and p1 <∞ to ensure ‖w‖Lh(R) <∞. This yields

‖δx‖Lp1 (0,T ;Lp2 (Ω))

≤ c
(
‖C̄δx‖L2(0,T ;L2(Ω)) + ‖B∗δλ‖L2(0,T ;L2(Ωc)) + ‖l2‖L2(0;T ;L2(Ω)) + ‖e

−µt

tδ
‖Lp1 (R)‖δx0‖Lp2 (Ω)

)
≤ c

(
‖Cδx‖L2(0,T ;L2(Ω)) + ‖B∗δλ‖L2(0,T ;L2(Ωc)) + ‖l2‖L2(0;T ;L2(Ω)) + ‖δx0‖V

)
,

where the last estimate follows from Assumption 4.24, i.e., ‖C̄v‖L2(0,T ;L2(Ω)) ≤ ‖Cv‖L2(0,T ;L2(Ω))

for all v ∈ L2(0, T ;L2(Ω)), by 0 ≤ δ < 1 and by the classical Sobolev embedding theorem

V ↪→ Lp2(Ω) for p2 <
2n
n−2 , cf. [1, Theorem 5.4]. For Dirichlet boundary conditions δ = 0 can be

chosen and thus we can take the supremum over all t in (4.29), i.e., choose p1 =∞.

For the adjoint state λ, one proceeds analogously: First, adding the stabilizing feedback

BKB from Assumption 4.24 iii) allows to conclude the W 1,2(0, T,D(A2), L2(Ω))-estimate. The

remaining Lp1(0, T ;Lp2(Ω))-estimate follows by the same argumentation by replacing the time

argument t− τ for 0 ≤ τ < t by t+ τ for 0 ≤ τ ≤ T − t in (4.27) and integrating from t to T in

(4.28).

This stability estimate can be used to derive a T -uniform estimate for the solution operators

norm. This in turn can then be used to also bound the solution operator in exponentially scaled

spaces. Both these bounds play a central role in the assumptions of the implicit function theorem

Theorem 4.3. The following theorem states the main result of this section.

Theorem 4.27. Let Assumption 4.24 hold. Further, set z0 = (x, λ) solving (4.3) or z0 = (x̄, λ̄)

solving (4.7). Then, for all 2 ≤ p1, p2 satisfying n
2 (1

2 −
1
p2

) < 1
p1

+ 1
2 , p1 <∞ and p2 <

2n
n−2 there

is a constant c ≥ 0 independent of T such that∥∥L′′r(z0)−1
∥∥
L((L2(0,T ;L2(Ω))×V )2,(Lp1 (0,T ;Lp2 (Ω))∩W 1,2(0,T,D(A2),L2(Ω))2)

≤ c (4.30)

Moreover for all 0 < µ < 1 satisfying

µ <
1

‖L′′r(z0)−1‖L((L2(0,T ;L2(Ω))×V )2,(Lp1 (0,T ;Lp2 (Ω))∩W 1,2(0,T,D(A2),L2(Ω))2)

(4.31)

there is a constant c ≥ 0 independent of T such that∥∥L′′r(z0)−1
∥∥
L((Ls2(0,T ;L2(Ω))×V s(T )×Ls2(0,T ;L2(Ω))×V s(0)),(Lsp1 (0,T ;Lp2 (Ω))∩W 1,2

s (0,T,D(A2),L2(Ω)))2)
≤ c

(4.32)

for the scaling functions s(t) = e−µt or s(t) = 1
e−µt+e−µ(T−t) . In the case of homogeneous

Dirichlet boundary conditions, p1 =∞ can be chosen.
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Proof. Using the bound derived in Theorem 4.26, it only remains to estimate ‖Cδx‖2L2(0,T ;L2(Ω))+

‖B∗δλ‖2L2(0,T ;L2(Ωc))
. This follows by testing in (4.25) the adjoint equation with the state, the

state equation with the adjoint, integrating by parts and subtracting, which yields

‖Cδx‖2L2(0,T ;L2(Ω)) + ‖B∗δλ‖2L2(0,T ;L2(Ωc))
≤

|〈l1, δx〉L2(0,T ;L2(Ω))|+ |〈l2, δλ〉L2(0,T ;L2(Ω))|+ |〈δx0, δλ(0)〉L2(Ω)|+ |〈δλT , δx(T )〉L2(Ω)|.

The bound (4.30) then follows. To prove the bound in the scaled spaces we proceed anal-

ogously to the proofs of Theorems 3.14 and 3.16. Hence we define M := L′′r(z
0) and set

Z := (Lp1(0, T ;Lp2(Ω)) ∩W 1,2(0, T ;D(A2), L2(Ω)))2 and E := (L2(0, T ;L2(Ω)) × V )2. First,

setting s(t) = 1
e−µt+e−µ(T−t) a straightforward computation shows that for ε ∈ E

Mδz = ε

(M − µP )(sδz) = sε

(I − µM−1P )(sδz) = M−1sε

where P :=

(
0 F
0 0
−F 0
0 0

)
and F := (e−µ(T−t)−e−µt)

(e−µt+e−µ(T−t))
< 1. Thus, choosing µ < 1

‖M−1‖L(E,Z)
and setting

β = µ‖M−1‖L(E,Z) < 1, a standard Neumann argument, cf. [85, Theorem 2.14] yields,

‖sδz‖Z ≤
‖M−1‖L(E,Z)

1− β
‖sε‖E .

Thus, by definition of the scaled norms, the bound (4.32) for s(t) = 1
e−µt+e−µ(T−t) follows.

Completely analogously we conclude (4.32) for s(t) = e−µt with the same argumentation and

P :=

(
0 −I
0 0
I 0
0 0

)
.

We briefly comment on the estimates of Theorem 4.26 and Theorem 4.27 in the case of

homogeneous Dirichlet boundary conditions.

Remark 4.28. In the case of n = 2, the restrictions for p1, p2, i.e., n
2 (1

2 −
1
p2

) < 1
p1

+ 1
2 with

p1 < ∞ and p2 <
2n
n−2 , allow for all 2 ≤ p1, p2 ≤ ∞ except p1 = p2 = ∞. If n = 3, e.g., the

choice 2 ≤ p1 = p2 < 6 is allowed. The pointwise in time estimates, i.e., choosing p1 = ∞
and thus requiring p2 < ∞ for n = 2 and p2 < 6 for n = 3 are consistent with maximal

parabolic regularity theory. In that case, for initial values in H1
0 (Ω) and right-hand sides in

L2(0, T ;L2(Ω)) the maximal parabolic regularity theory leads to solutions continuous in time

with values in H1
0 (Ω), even in case of time-dependent generators, cf. [6]. By classical embedding

theorems we get C(0, T ;H1
0 (Ω)) ↪→ C(0, T ;Lp(Ω)) with 1 ≤ p <∞ for n = 2 and 1 ≤ p < 6 for

n = 3 which coincides with the choice of p2 specified above.
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4.4.2 Exponential sensitivity and turnpike results

We can now combine the results of Section 4.2.2 regarding superposition operators and the

bound on the solution operator to the linearized problem of Section 4.4.1 to apply the implicit

function theorem Theorem 4.3 to semilinear parabolic problems. In that case, we will choose

p1 = p2 as the image space of the superposition operators is L2(0, T ;L2(Ω)), i.e., spatial and

temporal integrability coincide. In that case, the assumptions of Theorem 4.27 on p1 = p2 = p

simplify to p < 2n
n−2 . This choice of p represents the largest exponent such that H1(Ω) ↪→ Lp(Ω).

Theorem 4.29. Let Assumption 4.24 hold and consider 2 ≤ p < 2n
n−2 arbitrary. Further,

let ϕ(x) and Jx(x) induce twice continuously Fréchet differentiable superposition operators from

Lp(0, T ;Lp(Ω)) to L2(0;T ;L2(Ω)) with T -uniformly continuous derivatives. Then, the nonlinear

operator G(z, ε) := L′r(z) − ε with L′r given in (4.4) satisfies the assumptions of Theorem 4.3

uniformly in T for any 0 < µ < 1 satisfying (4.31) with

• z0 = (x̄, λ̄) solving the steady-state problem (4.8) and ε0 = (0, λ̄, 0, x̄− x0) and the scaling

s(t) = 1
e−µt+e−µ(T−t) , or

• z0 = (x, λ) solving the dynamic problem (4.4) and ε0 = 0 and the scaling s(t) = e−µt

with the spaces Z =
(
Lp(0, T ;Lp(Ω)) ∩W 1,2(0, T,D(A2), L2(Ω))

)2
and E = (L2(0, T ;L2(Ω))× V )2

and the scaled norms ‖ · ‖Zs = ‖ · ‖
(Lsp(0,T ;Lp(Ω))∩W 1,2

s (0,T,D(A2),L2(Ω)))
2 and

‖ · ‖Es = ‖ · ‖Ls2(0,T ;L2(Ω))×V s(T )×Ls2(0,T ;L2(Ω))×V s(0).

Proof. Assumption ii) and iii) of Theorem 4.3 follow by T -uniform continuity of the derivative

of the superposition operators via Lemma 4.14. T -uniform continuous invertibility of L′′r(x̄, λ̄)−1

resp. L′′r(x̄, λ̄)−1 in scaled and unscaled spaces follows from Theorem 4.27 setting p1 = p2 = p.

This result can now be used to deduce a local turnpike result, stating that solutions of the

dynamic problem (4.3) are close to solutions of the static problem (4.8) for the majority of the

time under the assumption that initial resp. terminal values are close enough to the turnpike.

Again note that the implicit function theorem Theorem 4.3 provides the estimates for state

and adjoint. The estimates for the control can be concluded via δu(t) = Q−1B∗δλ(t), i.e.,

inserting the eliminating relation for the control, cf. (4.5).

Corollary 4.30. Let the assumptions of Theorem 4.29 hold with 2 ≤ p < 2n
n−2 . Consider

(x, u, λ) solving the nonlinear dynamic problem (4.1) and (x̄, ū, λ̄) solving the nonlinear static

problem (4.6). Define (δx, δu, δλ) := (x − x̄, u − ū, λ − λ̄). Then there are rE > 0, 0 < µ < 1

(satisfying (4.31) with z0 = (x̄, λ̄)) and c ≥ 0, all independent of T , such that if

‖x0 − x̄‖V +
∥∥λ̄∥∥

V
≤ rE
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it holds that∥∥∥∥ 1

e−µt + e−µ(T−t) δx(t)

∥∥∥∥
Lp(0,T ;Lp(Ω))∩W 1,2(0,T,D(A2),L2(Ω))

+

∥∥∥∥ 1

e−µt + e−µ(T−t) δu(t)

∥∥∥∥
L∞(0,T ;L2(Ωc))

+

∥∥∥∥ 1

e−µt + e−µ(T−t) δλ(t)

∥∥∥∥
Lp(0,T ;Lp(Ω))∩W 1,2(0,T,D(A2),L2(Ω))

≤ crE .

Further, we can conclude a sensitivity result, which states that perturbations of the extremal

equations’ dynamics that are small on an initial part lead to disturbances in the variables that

are small at an initial part. More specifically we obtain that solutions to the perturbed dynamic

problem (4.5) are close to the solutions of the unperturbed dynamic problem (4.3) on an initial

part, even if the perturbations increase exponentially. In that context, we have to assume that

the perturbations in unscaled norms are sufficiently small.

Corollary 4.31. Let the assumptions of Theorem 4.29 hold with 2 ≤ p < 2n
n−2 . Let (x, λ) solve

the nonlinear extremal equations (4.4) and (x̃, λ̃) solve the perturbed extremal equations (4.5).

Define (δx, δλ) := (x̃ − x, λ̃ − λ) and δu = Q−1B∗δλ. Then there are rE > 0, 0 < µ < 1

(satisfying (4.31) with z0 = (x, λ)) and c ≥ 0, all independent of T , such that if

‖ε1‖Lp(0,T ;Lp(Ω)) + ‖εT ‖V + ‖ε2‖L2(0,T ;L2(Ω)) + ‖ε0‖V ≤ rE

and setting

ρ :=
∥∥e−µtε1

∥∥
L2(0,T ;L2(Ω))

+
∥∥e−µT εT∥∥V +

∥∥e−µtε2

∥∥
L2(0,T ;L2(Ω))

+ ‖ε0‖V ,

it holds that∥∥e−µtδx(t)
∥∥
Lp(0,T ;Lp(Ω))∩W 1,2(0,T,D(A2),L2(Ω))

+
∥∥e−µtδu(t)

∥∥
L∞(0,T ;L2(Ωc))

+
∥∥e−µtδλ(t)

∥∥
Lp(0,T ;Lp(Ω))∩W 1,2(0,T,D(A2),L2(Ω)) ≤ cρ.

We conclude this section by some remarks for possible extensions and an example.

Remark 4.32. We assumed in this part that the control operator is bounded as linear operator

to L2(Ω), ruling out the case of boundary control. The case of boundary control could be included

if one can ensure that the closed-loop semigroup is analytic and satisfies the stability estimate

Proposition 4.20. Perturbations of analytic semigroups can be analyzed with the notion of A-

boundedness or A-compactness, cf. [44, Chapter III].

Example 4.33. We present an example with distributed control of a heat equation with Dirichlet

boundary conditions. To this end we set V = H1
0 , B̄ = χΩc, where Ωc ⊂ Ω non-empty, A = ∆

and the nonlinearity ϕ(x) = x3 − c0x for c0 ∈ R. If c0 is larger than the smallest eigenvalue of

−∆ in H1
0 (Ω), the uncontrolled PDE is unstable. Let the cost functional be given by J(x, u) =

1
2

∫ T
0 ‖x − xd‖

2
L2(Ω) + ‖u‖2L2(Ωc)

, where xd = x̄d ∈ L2(Ω) is a static reference. Using maximal

elliptic regularity, cf. [30], we get for the solution of the static system

‖x̄‖L∞(Ω) + ‖λ̄‖L∞(Ω) ≤ c(Ω)‖xd‖L2(Ω),
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i.e., (x̄, λ̄) satisfy Assumption 4.21. Thus, choosing xd sufficiently small such that∥∥λ̄x̄∥∥
L∞(0,T ;L∞(Ω))

=
∥∥λ̄x̄∥∥

L∞(Ω)
= m < 1,

the operator

(Lr)xx(x̄, λ̄) = I − λ̄x̄.

is nonnegative and satisfies the assumptions of Lemma 4.23. The square root C̄ of this operator

in the sense of (4.24) can thus be defined pointwise for v : Ω→ R and a.e. ω ∈ Ω by

(Cv)(ω) =
√

(1− λ̄(ω)x̄(ω))v(ω).

As the linearization point is the turnpike, i.e., a steady-state, C as defined in (4.24) is time-

independent and we can set C̄ = C in Assumption 4.24. We will now verify the stabilizability

assumptions, i.e., Assumption 4.24 i)-iii) for two particular cases. First, assume c0 ≥ 0. Then

we can choose the feedback operators K̄B̄ = 0 and K̄C̄ = 0 in Assumption 4.24 i) and ii) and

KB = 0 and KC = 0 in Assumption 4.24 iii). If c0 < 0, the uncontrolled system can be unstable.

If Ωc = Ω and B̄ = I, i.e., the control is active on the whole domain, one can choose, e.g., the

feedback K̄B̄ in Assumption 4.24 i) such that B̄K̄B̄ = c0I and hence Al − c0I + B̄K̄B̄ = Al.
One can proceed analogously in Assumption 4.24 ii) and iii). Alternatively, if neither c0 ≥ 0 nor

Ωc = Ω, Assumption 4.24 i) and ii) can be verified by null controllability results for heat equations

in Banach spaces, which imply stabilizability [154, Theorem 3.3]. Further, Assumption 4.24 iii)

can be shown analogously as in Example 3.21 with the generalized Poincaré inequality, cf. [138,

Lemma 2.5]. Hence, if Assumption 4.24 is satisfied and we can apply the turnpike result of

Corollary 4.30.

In order to apply the sensitivity result of Corollary 4.31 we need to analyze

(Lr)xx(x, λ) = I − xλ

where (x, λ) solves (4.4). In [119], the authors deduce a T -dependent bound

‖x‖L∞(0,T ;L∞(Ω))+‖λ‖L∞(0,T ;L∞(Ω))

≤c(T )
(
‖xd‖L2+δ(0,T ;L2+δ(Ω)) + ‖x0‖L∞(Ω)

)
.

for any δ > 0. If the nonlinear and linearized uncontrolled equation is stable, e.g., if c0 ≥ 0,

it is possible to show the above bound for the state independently of T , cf. [110, Lemma 1.1]

where such an estimate was shown under the assumption that xd ∈ L∞(0, T ;L∞(Ω)). Having

bounded the state the corresponding bound on the adjoint can be obtained, cf. [110, Lemma

A.1] by parabolic regularity. Hence, choosing the data xd, ud and x0 small enough, similar

to the elliptic case, we have ‖λx‖L∞(0,T ;L∞(Ω)) = m < 1 and thus the operator (Lr)xx(x, λ)

satisfies the assumptions of Lemma 4.23 and and we can define the square root C via (4.24)

with ‖C‖L(Lp(0,T ;Lq(Ω)) = ‖
√

(1− λx)‖L∞(0,T ;L∞(Ω)) for all 1 ≤ p, q ≤ ∞. Choosing C̄ = cI in
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Assumption 4.24, where c ≤
√

1−m2 yields for v : (0, T )× Ω→ R and a.e. (t, ω) ∈ (0, T )× Ω

the estimate

c2|v(t, ω)| ≤ |1−m||v(t, ω)| =
(
1− ‖λx‖L∞(0,T ;L∞(Ω))

)
|v(t, ω)| ≤ ‖1− λx‖L∞(0,T ;L∞(Ω))|v(t, ω)|.

Taking the square root yields ‖C̄v‖L2(0,T ;L2(Ω)) < ‖Cv‖L2(0,T ;L2(Ω)) for all v ∈ L2(Ω). Thus,

Assumption 4.24 is satisfied and we can apply the sensitivity result of Corollary 4.31.

Remark 4.34. We briefly discuss the case of nonlinearities that are sums of monotone poly-

nomials, e.g., ϕ(x) = x3 + x5. In standard applications of superposition operators where the

estimates do not need to be uniform in the size of the domain, only the behavior of the non-

linearity towards infinity is important. Thus, in case of ϕ(x) = x3 + x5 one would estimate

the cubic term on the set where x > 1 by the higher order term x5 and bound the remain-

der by the measure of the domain, as there x ≤ 1. This is not possible if one is particularly

interested in estimates independent of the size of the domain, i.e., in our case, independent

of T , cf. also Example 4.13. As a remedy, one has to invoke Theorem 4.3 with the space

Z =
(
L10(0, T ;L10(Ω)) ∩ L6(0, T ;L6(Ω)) ∩W 1,2(0, T ;D(A2), L2(Ω))

)2
, where the bound on the

solution operator follows by Theorem 4.27 if n = 2.

4.5 Numerical results

In this part, we will showcase the theoretical results of this chapter by means of numerical

examples of nonlinear parabolic equations. First, we will illustrate the turnpike property and

second we evaluate the a priori time refinement strategies presented in Section 3.3. Even though

the theoretical results in this chapter only consider distributed control of semilinear equations,

we will also investigate the boundary control of a quasilinear equation and find that, at least

numerically, the same results hold.

4.5.1 Distributed control of a semilinear equation

We briefly recall the numerical example of Section 3.3.1 and add a semilinearity to the state

equation. Again, we consider T = 10, Ω = [0, 3]× [0, 1], and the cost functional

J(x, u) :=
1

2
‖(x− xd)‖2L2(0,T ;L2(Ω)) +

α

2
‖u‖2L2(0,T ;L2(Ω)),

where α > 0 and xd is either the static reference defined in (3.17) or the dynamic reference

defined in (3.18). We consider dynamics governed by the semilinear heat equation

x′ − 0.1∆x+ ex3 = u in Ω× (0, T ),

x = 0 in ∂Ω× (0, T ),

x(0) = 0 in Ω,

where e ≥ 0 is a nonlinearity parameter. In Figure 4.1, the norm of the optimal state and control

for different nonlinearity parameters e are depicted. The turnpike property emerges in all four
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cases, even for very large choices of the nonlinearity parameter. Additionally, we observe that

the norm of the turnpike decreases for increasing nonlinearity. This is due to the fact that the

nonlinearity increases the stability of the state equation (towards zero), which can be seen by

testing the state equation with the state, integrating by parts in time and space and using the

Poincaré inequality, which leads to

‖x(t)‖2 ≤ −c(Ω)

∫ t

0
‖x(s)‖2 + e‖x(s)‖4 ds+

∫ t

0
u(s)x(s) ds.

0
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Figure 4.1: Spatial norm of open-loop state and control over time with the static reference xstat
d

and α = 10−1 for different nonlinearity parameters.

Second, we apply four steps of the MPC Algorithm 1 to the optimal control problem above.

We set the implementation horizon τ = 1 and choose the dynamic reference xdyn
d defined in

(3.18). The simulation of the closed-loop trajectory emerging from the MPC feedback is again

computed on three uniform refinements of the initial grid. In Figure 4.2, the closed-loop cost

for different a priori time discretization schemes as introduced in Section 3.3 is depicted. It can

be seen that the exponential and piecewise uniform time grids achieve lower closed-loop cost

than a conventional uniform grid. As all grids are constructed a priori, we note again that the

numerical effort is the same for all three techniques.
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Figure 4.2: Comparison of MPC closed-loop cost for different a priori time discretization schemes

with dynamic reference xdyn
d and parameters e = 1 and α = 10−2.

4.5.2 Boundary control of a quasilinear equation

As a second numerical example, we consider a heat equation with heat conductivity depending

on the temperature. To this end, we introduce the heat conduction tensor

κ(x)(t, ω) :=
(
c|x(t, ω)|2 + 0.1

)
,

where c ≥ 0 is a nonlinearity parameter and consider the quasilinear dynamics

x′ −∇ · (κ(x)∇x) = 0 in Ω× (0, T ),

κ(x)
∂x

∂ν
= u in ∂Ω× (0, T ),

x(0) = 0 in Ω.

We use the same tracking-type cost functional as in Section 4.5.1. For an in-depth analysis of

optimal control problems governed by quasilinear parabolic equations, the interested reader is

referred to [21, 31, 87, 104, 108]. Our theoretical results in Section 4.4 do not cover the case

of a quasilinear equation. However, the turnpike property can be observed in Figure 4.3 even

for very large choices of the nonlinearity parameter c. Moreover, we observe the same behavior

of the norm of the turnpike as in the semilinear example: for increased nonlinearity, the norm

of the turnpike decreases. This again reflects the stabilizing effect of the nonlinearity (towards

zero). We depict the turnpike property in a norm that is motivated by the second derivative

of the Lagrange function, i.e., the scaled H1(Ω)-norm ‖v‖αd,H1(Ω) := ‖v‖L2(Ω) +
√
dα‖∇v‖L2(Ω)

with d = 0.1.
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Figure 4.3: Spatial norm of open-loop state and control over time with the static reference xstat
d

for different nonlinearity parameters and α = 10−1.

In Figure 4.4 we compare the closed-loop cost of different a priori time discretization schemes.

Similar to the semilinear example investigated before, we observe that exponential and piecewise

uniform a priori time grids outperform the conventional uniform grid.
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Figure 4.4: Comparison of MPC closed-loop cost for different a priori time discretization schemes

with dynamic reference xdyn
d for different priori time discretization schemes with parameters

c = 0.1 and α = 10−2.
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4.6 Outlook

We will briefly discuss several extensions of the analysis performed in this chapter.

• A first extension would be to replace the parabolic equation by a general Cauchy problem.

A result on T -independent invertibility was established for the autonomous linear case in

Chapter 2. This can be applied to the linearization of the nonlinear first-order necessary

optimality conditions, if the linearization point is a steady state and the linearized genera-

tor gives rise to a strongly continuous semigroup. Thus, turnpike results can be established

in that case when choosing a functional analytic setting where the superposition operators

are continuous and differentiable. For a time-dependent linearization point however, the

non-autonomous case has to be considered. Under appropriate assumptions, it should be

possible to derive estimates in the same spaces as for the autonomous case. The main

difficulty, however, is that there is no smoothing effect in general evolution equations.

Thus, we have to establish continuity and differentiability of the superposition operators

mapping from X to X, which is only possible for X = Lp(Ω) if the nonlinearity is indeed

affine linear, X = Rn or p = ∞, cf. [56, Section 3.1] and [8, Theorem 3.12]. For the

latter however, one has to ensure that the underlying dynamics give rise to a continuous

semigroup on L∞(Ω), which is, e.g., not the case for the Laplacian, cf. [119, Section 3.1].

A remedy is to not allow for general nonlinearities in the Cauchy problems but rather

particular cases, e.g., a semilinear wave equation of the form

x′′ −∆x+ ϕ(x) = u,

where the nonlinearity only depends on x. In that case, utilizing the solution theory for

wave equations, there is indeed a smoothing effect of the solution operator in the fol-

lowing sense. Let V ↪→ H ↪→ V ∗ form a Gelfand triple. Then one obtains solutions in

x ∈ L2(0, T ;V ), x′ ∈ L2(0, T ;H), x′′ ∈ L2(0, T ;V ∗) for right hand sides in L2(0, T ;H)

and further x ∈ C(0, T ;V ), x′ ∈ C(0, T ;H), cf. e.g., [96]. After writing the equation as a

first-order system and deriving the estimate on the linearized equations’ solution operator

with range C(0, T ;X)2 and L2(0, T ;X)2 for X = V × H with the results of Chapter 2,

a T -independent bound in Lp(0, T ;V ) for all p ∈ [2,∞] follows by the generalized Hölder

inequality. Moreover, if, e.g., V = H1(Ω), then V ↪→ Lp(Ω) for all p <∞ in space dimen-

sion two and differentiability of the superposition operator corresponding to a polynomial

nonlinearity ϕ(x) in these spaces can be deduced straightforwardly.

• The local analysis presented in this chapter fails for equations where the nonlinearity is not

continuously differentiable. This is, e.g., the case for problems with control constraints,

where the constrains can be eliminated via a max-operator in the optimality conditions.

A second example are parabolic non-smooth dynamics of the form

x′ −∆x+ max(x, 0) = u.

with, e.g., homogeneous Dirichlet boundary conditions. In these cases, the implicit func-

tion theorem fails due to non-smoothness.
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• Finally, we discuss an extension to quasilinear equations. In Section 4.5.2, we observed

that the solutions to quasilinear problem indeed enjoy turnpike behavior and that localized

grids on [0, τ ] yield an increased MPC performance. The abstract framework presented in

this chapter, in particular the implicit function theorem Theorem 4.3 can, in principle, be

applied to quasilinear equations. In that context, after choosing an appropriate functional

analytic framework, a T -independent bound on the solution operator to the linearized

equation and T -uniform continuity has to be derived.
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Chapter 5

Goal oriented error estimation for

Model Predictive Control

In this chapter, we illustrate how a posteriori goal oriented grid adaptivity can be used to

efficiently solve the subproblems arising in a Model Predictive Control (MPC) algorithm. This

is motivated by the theoretical findings of Chapters 2 to 4, cf. in particular Theorems 2.27,

2.48 and 2.55 for general linear evolution equations, Section 2.6 for linear autonomous parabolic

equations, Theorem 3.14 for linear non-autonomous parabolic equations, and Corollary 4.31 for

semilinear parabolic equations, where we showed that in order to obtain a low absolute error of

the state and control on an initial part, the perturbations of the extremal equations only have

to be small on this initial part. This directly implies that in order to have an MPC feedback

of high quality, any adaptive space-time discretization scheme should predominantly refine the

grid on [0, τ ].

We briefly touched the subject of grid adaptivity in Sections 3.3 and 4.5, where we presented

different a priori discretization techniques for MPC. The question that remained was how to

determine a suitable discretization that is specialized for a Model Predictive Controller, auto-

matically. In this chapter, we will employ a posteriori goal oriented error estimation techniques

to adaptively refine the grids in every loop of the MPC algorithm to obtain highly efficient

discretizations in time and space. We will illustrate the performance of this approach and show

that adaptive space and time mesh refinement aiming for a small discretization error on [0, τ ]

leads to grids that are fine on [0, τ ] and coarse on the remainder.

The aim of goal oriented error estimation techniques is to refine the time and/or space grid

to reduce the error in an arbitrary functional I(x, u), the so called quantity of interest (QOI),

with, e.g., the goal to guarantee that

I(x, u)− I(x̃, ũ) < tol,

where (x, u) is the optimal solution and (x̃, ũ) a numerical approximation on a time and/or space

grid. In the particular case of MPC, this methodology can be used to minimize the error of the

MPC feedback and its influence on the state, meaning that I(x, u) is a functional incorporating
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only x∣∣[0,τ ]
and u∣∣[0,τ ]

. To this end, we present a truncated version of the cost functional as an

objective for refinement that is specialized for MPC. The main objective of this chapter will be

to illustrate the efficiency gain from using a goal oriented error estimation technique in a Model

Predictive Controller in the sense that for a fixed number of total degrees of freedom for the

solution of the OCP we will significantly reduce the closed-loop cost when using the truncated

cost functional for refinement compared to using the full cost function. We will further show

that the error indicators computed by the goal oriented error estimator for this truncated QOI

decay exponentially outside of [0, τ ].

Structure. After defining the abstract problem setting, the time and space discretization

scheme and recalling basic properties of goal oriented error estimation in Section 5.1, we will

present a specialized QOI for MPC in Section 5.2. We further provide an extension of the

sensitivity result of, e.g., Theorem 3.14, proving that goal oriented error indicators decay ex-

ponentially in time on [τ, T ] if the QOI is localized at [0, τ ]. In Section 5.3 we provide various

numerical examples to illustrate the behavior of goal oriented error estimation specialized for

MPC in time and space. We consider a linear quadratic setting in Section 5.3.1, semilinear

dynamics in Section 5.3.2 and boundary controlled quasilinear dynamics in Section 5.3.3. We

will compare the resulting grids, solutions and MPC closed-loop performance of goal oriented

adaptivity with the cost functional as QOI to results of goal oriented adaptivity, where we choose

a truncated cost functional as QOI in the context of time, space and space-time adaptivity. Fi-

nally, in Section 5.3.4, we provide implementation details and present various aspects that can

be taken into account for fast adaptive MPC methods.

5.1 Setting and preliminaries

In this section, we briefly recall the parabolic optimal control problem of the previous chap-

ter and the corresponding optimality conditions. We further present the spatial and temporal

discretization scheme and recall the basics of goal oriented error estimation for parabolic opti-

mization problems.

5.1.1 Optimal control problem and optimality conditions

Analogously to Section 4.1, suppose that (V, ‖ · ‖V ) is a separable Banach space, (H, 〈·, ·〉) is a

separable and real Hilbert space, and V ↪→ H ∼= H∗ ↪→ V ∗ forms a Gelfand triple. We consider

the optimal control problem

min
(x,u)

J(x, u) :=

∫ T

0
J̄(t, x(t), u(t)) dt

s.t. x′(t) = Ā(x(t)) + B̄u(t) + f(t),

x(0) = x0,

(5.1)
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where x0 ∈ H, f ∈ L2(0, T ;V ∗), and J(x, u) is a twice continuously differentiable functional

from L2(0, T ;V )×L2(0, T ;U) to R. We assume that the operator B̄ ∈ L(U, V ∗) and Ā : V → V ∗

is twice continuously Fréchet differentiable. For clarity of presentation, we consider only the case

where Jxu = Jux = 0, which is, e.g., the case for standard tracking type cost functionals. Again,

we will assume that the optimal control problem has a solution in W ([0, T ]) and the reader is

referred to the discussion in Section 4.1 for that matter. We briefly recall the definition of the

Lagrange function with Lagrange multiplier (λ, λ0) ∈ L2(0, T ;V )×H, that is,

L(x, u, (λ, λ0)) := J(x, u) + 〈x′ −A(x)−Bu− f, λ〉L2(0,T ;V ∗)×L2(0,T ;V ) + 〈x(0)− x0, λ0〉, (5.2)

where

〈A(x), λ〉L2(0,T ;V ∗)×L2(0,T ;V ) :=

∫ T

0
〈Ā(x), λ〉V ∗×V dt,

〈Bu, λ〉L2(0,T ;V ∗)×L2(0,T ;V ) :=

∫ T

0
〈B̄u, λ〉V ∗×V dt.

The corresponding optimality conditions read

L′(x, u, λ) =


Jx(x, u)− λ′ −A′(x)∗λ

λ(T )

Ju(x, u)−B∗λ
x′ −A(x)−Bu− f

x(0)− x0

 = 0. (5.3)

We note that one could straightforwardly incorporate a terminal state penalization JT (x(T ))

into the cost functional, which would result in a nonzero terminal condition for the adjoint. We

will omit this terminal cost for ease of presentation. Correspondingly, the second derivative of

the Lagrange function is given by

L′′(x, u, λ) =


Jxx(x, u)−A′′(x)∗λ 0 − d

dt −A
′(x)∗

0 0 ET
0 Juu(x, u) −B∗

d
dt −A

′(x) −B 0

E0 0 0

 , (5.4)

where again Etx = x(t) for t ∈ [0, T ] as defined in Definition 2.26.

5.1.2 Discretization and goal oriented error estimation

For the discretization of the infinite dimensional problem, we use a discontinuous Galerkin

approach of order zero in time (denoted by dG(0)), and a continuous Galerkin approach of

order one in space (denoted by cG(1)) as presented in [100, 101]. In the literature, this combined

approach is often referred to as dG(0)cG(1)-discretization. We will briefly recall some of the

work considering this discretization technique.
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Discretization and adaptivity for parabolic equations with discontinuous Galerkin methods

was first established in the seminal papers [45, 46]. For the particular case of Ā(x) = ∆x, a

priori time and space discretization error estimates for optimal control of parabolic PDEs of

order k + 1 and s+ 1, respectively, are given in [102, Section 5.1], where k and s are the orders

of the polynomials in the ansatz space in time and space, respectively. Control constraints were

included in [131]. For semilinear parabolic PDEs, a priori bounds were obtained in [106] under

growth conditions, whereas the case of semilinear parabolic PDEs without growth conditions

was treated recently in [103]. Considering efficient numerical realization, the reader is referred

to [120] for a PDE context and to [16] for the case of optimal control. Lastly, there are recent

discrete maximal parabolic regularity results for the discrete-time equations, cf. [93, 94].

For the reader’s convenience, we will briefly recall the definition of this discretization scheme

and the corresponding a posteriori error goal oriented estimation. In the following, we will

abbreviate

W := W ([0, T ]), U = L2(0, T ;U), 〈v, w〉I :=

∫
I
〈v(t), w(t)〉V ∗×V dt.

Time discretization

We split up the interval [0, T ] = {0} ∪ I1 ∪ I2 ∪ · · · ∪ IM into subintervals Im = (tm−1, tm] of

corresponding size km := tm−tm−1 for m ∈ {1, . . . ,M} and set I0 := {0}, where 0 = t0 < t1 · · · <
tM = T . We define the discrete-time spaces of piecewise constant in time ansatz functions by

Wk := {vk ∈ L2(0, T ;H) | vk∣∣Im ∈ V, m = 1, . . . ,M, vk(0) ∈ H},

Uk := {uk ∈ L2(0, T ;U) |uk∣∣Im ∈ U, m = 1, . . . ,M}.

By continuity of elements in W = W ([0, T ]) ↪→ C(0, T ;H), cf. Lemma 3.4, this forms a non-

conforming ansatz space, as elements ofWk are not necessarily continuous. However, despite the

nonconformity, the important feature of Galerkin orthogonality of the difference of continuous

and discrete solution to the test space is preserved, cf. [100, Remark 5.2]. To capture the possible

discontinuities, we denote the right and left sided limits and the jump at time grid point tm for

vk ∈ Wk via

v+
k,m := lim

t→0+
vk(tm + t), v−k,m := lim

t→0+
vk(tm − t), [v]k,m := v+

k,m − v
−
k,m,

and illustrate this definition in Figure 5.1.
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tm−1 tm tm+1

v−k,m

v+
k,m

[vk]m

Figure 5.1: One sided limits and jumps of discrete-time variables.

Due to the nonconformity of the ansatz space, the Lagrange function defined in (5.2) is not

defined on Wk. Thus, we define the discrete-time Lagrange function Lk : Wk×Uk×Wk → R by

Lk(xk, uk, λk) :=

M∑
m=1

∫ tm

tm−1

J̄(s, xk, uk) ds+
M∑
m=1

(
〈x′k, λk〉Im − 〈Ā(xk)− B̄uk − f, λk〉Im

)
+

M∑
m=1

〈[xk]m−1, λ
+
k,m−1〉+ 〈x−k,0 − x0, λ

−
k,0〉,

(5.5)

where the jump terms [xk]m−1 capture the discontinuities of the state. This Lagrange function

is also well defined for state and adjoint state belonging to the continuous function space W
and on this space it coincides with the continuous-time Lagrangian defined in (5.2). For piece-

wise constant functions of the space Wk, the time derivative vanishes, whereas for functions

continuous in time belonging to W, the jump terms vanish.

The discrete-time version for the state equation of (5.3) reads

〈Lkλ(xk, uk, λk), ϕk〉W∗k×Wk
=

M∑
m=1

(
〈x′k, ϕk〉Im − 〈Ā(xk)− B̄uk − f, ϕk〉Im

)
+

M∑
m=1

〈[xk]m−1, ϕ
+
k,m−1〉+ 〈x−k,0 − x0, ϕ

−
k,0〉 = 0

(5.6)

for ϕk ∈ Wk. Analogously, the discrete-time counterpart to the third equation of (5.3), is given

by

〈Lku(xk, uk, λk), ϕk〉U∗k×Uk =
M∑
m=1

〈J̄u(·, xk, uk)− B̄∗λk, ϕk〉Im = 0 (5.7)

for ϕk ∈ Uk. Using integration by parts on each subinterval in the state equation (5.6), one can

derive the adjoint equation as discrete-time counterpart to the first equation of (5.3), that is,

〈Lkx(xk, uk, λk), ϕk〉W∗k×Wk
=

M∑
m=1

〈J̄x(·, xk, uk), ϕk〉Im +

M∑
m=1

(
〈−λ′k − Ā′(xk)∗λk, ϕk〉Im

− ([λk]m−1, ϕ
−
k,m−1)

)
+ 〈λ−k,M , ϕ

−
k,M 〉 = 0

(5.8)
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for all ϕk ∈ Wk. The resulting time-stepping scheme is equivalent to an implicit Euler method

if the temporal integrals are approximated via the box rule, cf. [100, Section 3.4.1], and thus

inherits its A-stability.

Space discretization and time-stepping on dynamic meshes

For spatial discretization we use linear continuous finite elements as treated in the standard

literature [23, 32, 77]. To this end, we assign a regular triangulation Kmh and corresponding

conforming finite element spaces V m
h ⊂ V and Umh ⊂ U to each interval Im and obtain the fully

discrete spaces

Wkh := {vkh ∈ L2(0, T,H) | v
kh
∣∣Im ∈ V m

h , m = 1, . . . ,M, vkh(0) ∈ V 0
h },

Ukh := {ukh ∈ L2(0, T, U) |u
kh
∣∣Im ∈ Umh , m = 1, . . . ,M}.

(5.9)

Due to conformity of these spaces with respect to the discrete-time spaces, i.e., Wkh ⊂ Wk and

Ukh ⊂ Uk, the discrete-time Lagrangian (5.5) is well defined on Wkh × Ukh ×Wkh.

In order to allow full flexibility for the spatial adaptivity, it is possible that the triangulation

Kmh on the interval Im is different from the triangulation Km−1
h on the interval Im−1. In terms

of numerical realization, this leads to difficulties in efficiently evaluating the scalar product of

basis elements of different time steps as needed for the assembly of the Euler step equations

(5.6) and (5.8). A remedy is presented in [128], where the authors suggest the evaluation of

scalar products on a common triangulation of Kmh and Km−1
h , which we denote by Km−1/2

h .

This common triangulation is depicted in Figure 5.2, where the original meshes have been

independently red-green refined, cf. [40, Section 6.2.2] and [11]. If both meshes stem from the

same original mesh by refinement, then the common refinement leads to a regular triangulation

and to a finite element space V
m−1/2
h such that V m−1

h , V m
h ⊂ V

m−1/2
h .

Km−1
h Km−1/2

h Kmh

Figure 5.2: Sketch of common refinement Km−1/2
h of two triangulations Km−1

h and Kmh .

In our case, this common refinement is computed by the module dune-gridglue [14] of the

DUNE C++-library [20] and allows us to compute scalar products of basis elements ψm ∈ V m
h
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and ψm−1 ∈ V m−1
h via ∫

Ω
ψmψm−1 =

∑
K∈Km−1/2

h

∫
K
ψmψm−1. (5.10)

By construction of the grids, for each cell K ∈ Km−1/2
h , there are corresponding parent cells

Km ∈ Kmh and Km−1 ∈ Km−1
h such that K ⊂ Km and K ⊂ Km−1. The dune-gridglue module

provides the index of the associated parent cells Km and Km−1 in each original mesh. Thus, the

integral over cells of the commonly refined triangulation in (5.10) can be evaluated efficiently

with local evaluation in Km and Km−1 and a suitable quadrature rule. Hence, the price to

pay for dynamic space grids is the computation of the common triangulations and the assembly

of M − 1 mass matrices, assigning to finite element functions defined on one space grid a

linear functional on a neighboring space grid. The algorithms completing these tasks can be

implemented in parallel using all available CPU-cores. Further, after refinement of space grid

Kmh , only the common refinements Km−1/2
h and Km+1/2

h and the corresponding mass matrices

need to be updated. We will discuss this topic in detail in Section 5.3.4.

Goal oriented error estimation

We will now introduce the concept of goal oriented error estimation for optimal control of

parabolic PDEs. There are a lot of works considering goal oriented error estimation starting

with the seminal papers [15, 17, 18], which were extended to systems with state or control

constraints [116], optimal control of hyperbolic equations [86] and optimal control of parabolic

equations [100, 101, 102]. A comprehensive introduction to adaptive finite element methods

for ODEs and PDEs with applications is given in the monograph [10]. The main idea of goal

oriented error estimation is to estimate and reduce the discretization error with respect to an

arbitrary functional I(x, u), called the quantity of interest (QOI). Motivations for the definition

of QOIs range from allowing error estimation outside of the usual energy norm for, e.g., flow

simulation in the PDE case [18, 78] to the case of optimal control, where applications include

parameter estimation and optimal choice of regularization parameters [102, 141] to the standard

case of choosing the cost functional as the QOI.

We follow the literature [100, 101] and denote by (x, u, λ) ∈ (W×U ×W) a continuous-time

solution of the extremal equations (5.3), by (xk, uk, λk) ∈ (Wk×Uk×Wk) and by (xkh, ukh, λkh) ∈
(Wkh×Ukh×Wkh) time and fully discrete solutions of the system described by (5.6), (5.7), and

(5.8). One intermediate aim of goal oriented a posteriori error estimation is to derive error

estimators ηk and ηh such that

I(x, u)− I(xkh, ukh) ≈ ηk + ηh,

where ηk approximates the time discretization error and ηh approximates the space discretization

error. A detailed derivation of the estimators is performed in [100, Chapter 6] and [101]. We

briefly recall the main steps for the convenience of the reader and for later use. For more
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details, the interested reader is referred to the references above. Besides the solution triple

ξ := (x, u, λ) of the first-order necessary conditions, a second triple of variables χ := (v, q, z) has

to be considered. These secondary variables solve the linear system

L′′(ξ)χ = (Lk)′′(ξ)χ = −


I ′x(x, u)

0

I ′u(x, u)

0

0

 in W∗ ×H × U∗ ×W∗ ×H, (5.11)

on the continuous-time level, the system

(Lk)′′(ξk)χk = −


I ′x(xk, uk)

0

I ′u(xk, uk)

0

0

 in W∗k ×H × U∗k ×W∗k ×H, (5.12)

on the discrete-time level, and the system

(Lk)′′(ξkh)χkh = −


I ′x(xkh, ukh)

0

I ′u(xkh, ukh)

0

0

 in W∗kh × V 0
h × U∗kh ×W∗kh × VM

h . (5.13)

on the fully discrete level. These equations are similar to the defining equation of a Lagrange-

Newton step, where the derivative of the Lagrangian on the right hand side is replaced by the

derivative of the QOI.

With the continuous triples ξ = (x, u, λ) and χ = (v, q, z) and the corresponding discrete

counterparts, we define the residual of the first-order optimality condition via

ρλ(x, u, λ)ϕ := 〈Lkx(x, u, λ), ϕ〉W∗k×Wk
,

ρu(x, u, λ)ϕ := 〈Lku(x, u, λ), ϕ〉U∗k×Uk ,

ρx(x, u, λ)ϕ := 〈Lkλ(x, u, λ), ϕ〉W∗k×Wk
,

and a residual involving the secondary variables χ = (v, q, z) via

ρz(ξ, v, q, z)ϕ := Lkλx(ξ)(z, ϕ) + Lkux(ξ)(q, ϕ) + Lkxx(ξ)(v, ϕ) + I ′x(x, u)ϕ,

ρq(ξ, v, q, z)ϕ := Lkuu(ξ)(q, ϕ) + Lkxu(ξ)(v, ϕ) + Lkλu(ξ)(z, ϕ) + I ′u(x, u)ϕ,

ρv(ξ, v, q)ϕ := Lkxλ(ξ)(v, ϕ) + Lkuλ(ξ)(q, ϕ).
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With these residuals, the time discretization error can be estimated via

I(x, u)− I(xk, uk) ≈
1

2

(
ρλ(xk, uk, λk)(v − vk) + ρu(xk, uk, λk)(q − qk) + ρx(xk, uk)(z − zk)

+ ρz(ξk, vk, qk, zk)(x− xk) + ρq(ξk, vk, qk, zk)(u− uk) + ρv(ξk, vk, qk)(λ− λk)
)

for (vk, qk, zk), (xk, uk, λk) ∈ Wk × Uk ×Wk arbitrary. Similarly, the space discretization error

estimator can be approximated via

I(xk, uk)− I(xkh, ukh) ≈
1

2

(
ρλ(xkh, ukh, λkh)(vk − vkh) + ρu(xkh, ukh, λkh)(qk − qkh)

+ ρx(xkh, ukh)(zk − zkh) + ρz(ξkh, vkh, qkh, zkh)(xk − xkh)

+ ρq(ξkh, vkh, qkh, zkh)(uk − ukh) + ρv(ξkh, vkh, qkh)(λk − λkh)
)

for (vkh, qkh, zkh), (xkh, ukh, λkh) ∈ Wkh×Ukh×Wkh. The arbitrary choice of the test functions

originates in Galerkin orthogonality, cf. [101, Proposition 4.1, Theorem 4.3]. The terms v − vk,
q − q

k
, z − zk, x − xk, u − uk, λ − λk resp. vk − vkh, qk − qkh, zk − zkh, xk − xkh, uk − ukh,

λk − λkh are often called weights and need to be approximated to obtain computable error

estimates as the solutions in the infinite dimensional spaces, i.e., expressions with no subscript

or subscript k, are not at hand. Approximating the weights by elements of Wk and Wkh,

respectively, causes the estimators to vanish due to Galerkin orthogonality. Hence, will discuss

options to efficiently approximate the weights in Section 5.3.4. Having approximated the weights

for the time discretization error by wkv , wkq , wkz , wkx, wku and wkλ and the weights for the space

discretization error by whv , whq , whz , whx, whu and whλ we define the error indicators by

ηk :=
1

2

(
ρλ(xkh, ukh, λkh)(wkv ) + ρu(xkh, ukh, λkh)(wkq ) + ρx(xkh, ukh)(wkz )

+ ρz(ξkh, vkh, qkh, zkh)(wkx) + ρq(ξkh, vkh, qkh, zkh)(wku) + ρv(ξkh, vkh, qkh)(wkλ)
) (5.14)

and

ηh :=
1

2

(
ρλ(xkh, ukh, λkh)(whv ) + ρu(xkh, ukh, λkh)(whq ) + ρx(xkh, ukh)(whz )

+ ρz(ξkh, vkh, qkh, zkh)(whx) + ρq(ξkh, vkh, qkh, zkh)(whu) + ρv(ξkh, vkh, qkh)(whλ)
)
.

(5.15)

5.2 Exponential decay of error indicators

Having introduced the concept of goal oriented error estimation, we will present a quantity of

interest particularly well suited for the adaptive solution of the optimal control problems in a

Model Predictive Controller as described in Algorithm 1. In every iteration of the MPC loop, the

control on [0, τ ] is used as feedback. Hence, we suggest using a truncation of the cost functional
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as a quantity of interest, namely

Iτ (x, u) :=

τ∫
0

J̄(t, x, u) dt. (5.16)

This specialized quantity of interest in goal oriented error estimation yields time and space

grids such that the error of the MPC feedback is small. The stability results in Chapters 2

to 4 suggest that the propagation of discretization errors over time is exponentially damped

for optimal control problems satisfying stabilizability and detectability conditions. In other

words, to obtain a low error in Iτ (x, u), it is expected that it suffices to use a fine grid in space

and time on [0, τ ] that becomes coarser towards T . In this part, we will prove that the error

indicators ηk and ηh defined in (5.14) and (5.15) for the QOI defined in (5.16) decay exponentially

outside the interval [0, τ ]. First, we observe that by the linear dependence, the error indicators

inherit the behavior of the secondary variables. Thus, it suffices to analyze the behavior of the

continuous version of these variables, i.e., χ = (v, q, z) defined in (5.11) or the discrete-time

version χk = (vk, qk, zk) defined in (5.12). In these defining equations, we observe that the right

hand side depends on the derivatives of the QOI. In case of a QOI as defined in (5.16), these

functionals only integrate over a small part of the time horizon if τ � T . In the following we

will show that the continuous-time secondary variables χ = (v, q, z) defined in (5.11) or the

discrete-time secondary variables ξk = (vk, qk, zk) defined in (5.12) inherit the locality of the

QOI in the sense that they are large on [0, τ ] and small on [τ, T ]. As the involved operator

in the defining equation for the secondary variables is the second derivative of the Lagrange

function, the assumptions made in this part will be of the same nature as in the nonlinear case

considered in Chapter 4.

Assumption 5.1. Let (x, u, λ) be a solution of the optimality system (5.3). Assume the follow-

ing:

• There is a Hilbert space (Y, 〈·, ·〉Y ) and an operator C ∈ L(L2(0, T ;V ), L2(0, T ;Y )) such

that Lxx(x, u) = C∗C.

• There is an operator R ∈ L(L2(0, T ;U), L2(0, T ;U)) satisfying ‖Ru‖L2(0,T ;U) ≥ α‖u‖U for

α > 0 such that Juu(x, u) = R∗R.

• A′(x) ∈ L(L2(0, T ;V ), L2(0, T ;V ∗)).

• (A′(x), C) and (A′(x), B) are V -exponentially stabilizable in the sense of Definition 3.20,

i.e., there are feedback operators KC ∈ L(L2(0, T ;Y ), L2(0, T ;V ∗)) and

KB ∈ L(L2(0, T ;V ), L2(0, T ;U)) and a constant α > 0 such that

−〈A′(x) +KCCv, v〉L2(0,T ;V ∗)×L2(0,T ;V ) ≥ α‖v‖2L2(0,T ;V ),

−〈A′(x) +BKBv, v〉L2(0,T ;V ∗)×L2(0,T ;V ) ≥ α‖v‖2L2(0,T ;V )

for all v ∈ L2(0, T ;V ).

126



CHAPTER 5. GOAL ORIENTED ERROR ESTIMATION FOR MODEL PREDICTIVE
CONTROL

Theorem 5.2. Let Assumption 5.1 hold. Consider the QOI Iτ (x, u) defined in (5.16). Let

(v, q, z) ∈W ([0, T ])× L2(0, T ;U)×W ([0, T ]) solve (5.11), i.e.,

L′′(x, u, λ)

vq
z

 =


Lxx(x, u) 0 − d

dt −A
′(x)∗

0 0 ET
0 Juu(x, u) −B∗

d
dt −A

′(x) −B 0

E0 0 0


vq
z

 = −


Iτx(x, u)

0

Iτu(x, u)

0

0

 .

Then, setting

M :=


C∗C − d

dt −A
′(x)∗

0 ET
d
dt −A

′(x) −BJuu(x, u)−1B∗

E0 0

 ,

the solution operator norm ‖M−1‖L((L2(0,T ;V ∗)×H)2,W ([0,T ])2) can be bounded independently of T .

Further, for all µ > 0 satisfying

µ <
1

‖M−1‖L((L2(0,T ;V ∗)×H)2,W ([0,T ])2)

there is a constant c(τ) > 0 independent of T such that∥∥∥∥∥∥eµt
vq
z

∥∥∥∥∥∥
W ([0,T ])×L2(0,T ;U)×W ([0,T ])

≤ c(τ)
(
‖Jx(x, u)‖L2(0,τ ;V ∗) + ‖Ju(x, u)‖L2(0,τ ;U)

)
. (5.17)

Proof. We first rewrite the system by eliminating the control via q = J−1
uu (x, u) (B∗z − Iτu(x, u))

as 
C∗C − d

dt −A
′(x)∗

0 ET
d
dt −A

′(x) −BJuu(x, u)−1B∗

E0 0

(vz
)

= −


Iτx(x, u)

0

BJuu(x, u)−1Iτu(x, u)

0.

 .

With the assumptions of V -exponential stabilizability the bound on M−1 follows analogously

to Corollary 3.30. A bound on the variables scaled by eµt follows completely analogously to the

proof of Theorem 3.14 by replacing the scaling e−µt with eµt. Finally, we estimate the scaled

right hand side via∥∥∥∥∫ τ

0
eµtJ̄x(t, x, u) dt

∥∥∥∥
L2(0,T ;V ∗)

+

∥∥∥∥BJuu(x, u)−1

∫ τ

0
eµtJ̄u(t, x, u) dt

∥∥∥∥
L2(0,T ;U)

≤ c(τ)
(
‖Jx(x, u)‖L2(0,τ,V ∗) + ‖Ju(x, u)‖L2(0,τ ;U)

)
,

which concludes the proof.
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We will derive a similar estimate in Theorem 5.6 for the discrete-time secondary variables vk,

qk and zk and the fully discrete secondary variables vkh, qkh and zkh. Further, we will show in

Remark 5.3 that the term on the right hand side, i.e., ‖Jx(x, u)‖L2(0,τ ;V ∗) + ‖Ju(x, u)‖L2(0,τ ;U)

is bounded independently of T if a turnpike property holds. Before that, however, we give

a short interpretation of the estimate (5.17): As the scaling eµt grows exponentially in time,

the variables (v, q, z) have to decay exponentially in time such that the product is bounded

independently of the end time T . Thus, the secondary variables (v, q, z) inherit the behavior of

the QOI Iτ (x, u) being localized on [0, τ ]. Due to the linear dependence, this also carries over

to the error indicators in (5.14) and (5.15).

Remark 5.3. We will briefly give sufficient conditions under which the upper bound in (5.17)

can be shown to be bounded independently of T in the case of a linear quadratic problem. It turns

out that when a turnpike property holds, the initial part of the optimal solution is only affected

by the horizon negligibly, if the horizon is large. Consider a time horizon T > 0 and the linear

quadratic optimal control problem

min
(x,u)

J(x, u) :=
1

2

∫ T

0
‖C(x(t)− xd)‖2Y + ‖R(u(t)− ud)‖2U dt s.t. x′ = Ax+Bu, x(0) = x0,

where xd ∈ V and ud ∈ U and all operators are time-independent. Suppose that the involved

operators satisfy the stabilizability assumptions of Assumption 5.1. Then it follows by Theo-

rem 3.16 that the state and control satisfy the turnpike estimate∥∥(x(t)− x̄, u(t)− ū
)∥∥
H×U ≤ c(e

−µt + e−µ(T−t))
(∥∥λ̄∥∥+ ‖x̄− x0‖

)
(5.18)

for a.e. t ∈ [0, T ], where (x̄, ū) denotes the optimal solution of the corresponding steady state

problem, λ̄ is the corresponding adjoint state and c ≥ 0 is independent of T . Hence, in particular

we have ∥∥(x(t), u(t)
)∥∥
H×U ≤ c1 (5.19)

for a.e. t ∈ [0, T ] with c1 ≥ 0 independent of T . Thus,∫ τ

0
‖x(t)− xd‖+ ‖u(t)− ud‖U dt ≤ τc1 + c2

with c2 ≥ 0 independent of T . Hence, together with (5.19) we get

‖Jx(x, u)‖L2(0,τ ;V ∗) + ‖Ju(x, u)‖L2(0,τ ;U) ≤ c

with c ≥ 0 independent of T . Finally we note that the steady state turnpike assumed in (5.18) can

be replaced by a dynamic turnpike concept and the proof remains valid, if the dynamic turnpike is

bounded independently of T . In particular, for time-varying problems in discrete time, a similar

property was proven in [67, Theorem 3].
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The result of Theorem 5.2 does not immediately carry over to the discrete-time secondary

variables as defined in (5.12) due to the nonconformity of the discrete-time ansatz space. Thus,

we will give a separate proof of this matter in the following. To this end, we introduce a suitable

function space for scaled functions of Wk which are not necessarily piecewise constant in time.

Definition 5.4. We define the space of functions that are weakly differentiable on every subin-

terval via

WM ([0, T ]) := {v ∈ L2(0, T ;V ) | v∣∣Im ∈W ([tm−1, tm]), m = 1, . . . ,M, v(0) ∈ H}

and endow it with the natural norm

‖v‖WM ([0,T ]) =
M∑
m=1

(
‖v‖W ([tm−1,tm]) + ‖v−m−1 − v

+
m−1‖

)
+ ‖v(0)‖.

Additionally, we define linear operators Λk,Λk,− : WM ([0, T ])→WM ([0, T ])∗ via the relations

〈Λkv, ϕ〉WM ([0,T ])∗×WM ([0,T ]) :=

M∑
m=1

(
〈v′, ϕ〉Im + 〈[v]m−1, ϕ

+
m−1〉

)
− 〈A′(x)v, ϕ〉L2(0,T ;V ∗)×L2(0,T ;V ) + 〈v−0 , ϕ

−
0 〉,

〈Λk,−v,ϕ〉WM ([0,T ])∗×WM ([0,T ]) :=

−
M∑
m=1

(
〈v′, ϕ〉Im + 〈[v]m−1, ϕ

−
m−1〉

)
− 〈A′(x)∗v, ϕ〉L2(0,T ;V ∗)×L2(0,T ;V ) + 〈v−M , ϕ

−
M 〉.

It is clear that Wk ↪→ WM ([0, T ]) and that WM ([0, T ]) with the norm defined above is a

Banach space due to W ([tk, tk+1]) ↪→ C(tk, tk+1;H) for all 0 ≤ k ≤M − 1. Testing of the initial

resp. terminal condition is included in the operators Λk resp. Λk,− due to the terms 〈v−0 , ϕ
−
0 〉 and

〈v−M , ϕ
−
M 〉. We first employ a T -independent invertibility result for the discrete-time operator

occurring in (5.12). To this end, we note that Lxx = Lkxx and Luu = Lkuu, i.e., the second

derivatives with respect to the state and control of the continuous and discrete-time Lagrange

function coincide. This is because the time derivative and the jump terms enters the Lagrange

function in a linear way, i.e., they vanish in the second derivative.

Theorem 5.5. If Assumption 5.1 holds, the inverse of the operator

Mk :=

(
Lxx(x, u) Λk,−

Λk −BJuu(x, u)−1B∗

)
can be bounded by

‖(Mk)−1‖L((L2(0,T ;V ∗)×H)2,WM ([0,T ])2) ≤ c,

where c ≥ 0 is T -independent constant.
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Proof. We extend the proof of Corollary 3.30 to corresponding time-discretized differential op-

erators Λk and Λk,− that allow for discontinuous states. Consider the system(
C∗C Λk,−

Λk −BJuu(x, u)−1B∗

)(
v

z

)
=

(
(l1, zT )

(l2, v0)

)
(5.20)

for l1, l2 ∈ L2(0, T ;V ∗) and zT , v0 ∈ H. First, we test the state equation, i.e., the second

equation of (5.20) with v and obtain

M∑
m=1

(
〈v′, v〉Im + 〈[v]m−1, v

+
m−1〉

)
+ ‖v−0 ‖

2 − 〈A′(x)v +BJuu(x, u)−1B∗z, v〉L2(0,T ;V ∗)×L2(0,T ;V )

= 〈l2, v〉L2(0,T ;V ∗)×L2(0,T ;V ) + ‖v0‖2

and use the formula from Lemma 3.4 iv) and the definition of the jump terms [v]m := v+
m − v−m

applied on every subinterval to compute

M∑
m=1

(
〈v′, v〉Im + 〈[v]m−1, v

+
m−1〉

)
+ ‖v−0 ‖

2

=
M∑
m=1

(
1

2
‖v−m‖2 −

1

2
‖v+
m−1‖

2 + ‖v+
m−1‖

2 − 〈v−m−1, v
+
m−1〉

)
+ ‖v−0 ‖

2

=
M∑
m=1

(
1

2
‖v−m‖2 − 〈v−m−1, v

+
m−1〉+

1

2
‖v+
m−1‖

2

)
+ ‖v−0 ‖

2

=
M∑
m=1

(
1

2
‖v−m−1‖

2 − 〈v−m−1, v
+
m−1〉+

1

2
‖v+
m−1‖

2

)
+

1

2

(
‖v−M‖

2 + ‖v−0 ‖
2
)

=

M∑
m=1

1

2
‖v−m−1 − v

+
m−1‖

2 +
1

2

(
‖v−M‖

2 + ‖v−0 ‖
2
)

for the first three terms. Thus, adding the stabilizing feedback KC from Definition 3.20, we

obtain

M∑
m=1

1

2
‖v−m−1 − v

+
m−1‖

2 +
1

2

(
‖v−M‖

2 + ‖v−0 ‖
2
)
− 〈(A′(x) +KCC)v, v〉L2(0,T ;V ∗)×L2(0,T ;V )

≤ c
(
‖Cv‖L2(0,T ;Y ) + ‖B∗z‖L2(0,T ;U) + ‖l2‖L2(0,T ;V ∗)

)
‖v‖L2(0,T ;V ) + ‖v0‖2.

Hence, by L2(0, T ;V )-ellipticity of −(A′(x) +KCC), we get

M∑
m=1

1

2
‖v−m−1 − v

+
m−1‖

2 +
1

2

(
‖v−M‖

2 + ‖v−0 ‖
2
)

+ ‖v‖2L2(0,T ;V )

≤ c
(
‖Cv‖2L2(0,T ;Y ) + ‖B∗z‖2L2(0,T ;U) + ‖l2‖2L2(0,T ;V ∗) + ‖v0‖2

)
.

(5.21)
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Analogously, we test the adjoint equation with z and compute

−
M∑
m=1

(
〈z′, z〉Im + 〈[z]m−1, z

−
m−1〉

)
+ ‖z−M‖

2

= −
M∑
m=1

(
1

2
‖z−m‖2 −

1

2
‖z+
m−1‖

2 + 〈z+
m−1, z

−
m−1〉 − ‖z

−
m−1‖

2

)
+ ‖z−M‖

2

= ‖z−0 ‖
2 +

M∑
m=1

(
1

2
‖z−m‖2 − 〈z+

m−1, z
−
m−1〉+

1

2
‖z+
m−1‖

2

)

=
1

2

(
‖z−0 ‖

2 + ‖z−M‖
2
)

+
M∑
m=1

1

2
‖z−m−1 − z

+
m−1‖

2

and thus, analogously to the state, by using V -exponential stabilizability of (A′(x), B), we get

for the adjoint that

M∑
m=1

1

2
‖z−m−1 − z

+
m−1‖

2 +
1

2

(
‖z−M‖

2 + ‖z−0 ‖
2
)

+ ‖z‖2L2(0,T ;V )

≤ c(‖Cv‖2L2(0,T ;Y ) + ‖B∗z‖2L2(0,T ;U) + ‖l1‖2L2(0,T ;V ∗) + ‖zT ‖2).

(5.22)

It remains to estimate the term ‖Cv‖2L2(0,T ;Y ) + ‖B∗z‖2L2(0,T ;U). To this end, we test the first

equation of (5.20) with v, the second equation of (5.20) with z, subtract the latter from the

former and obtain

‖Cv‖2L2(0,T ;Y ) + ‖B∗z‖2L2(0,T ;U)

≤
∣∣∣〈Λk,−z, v〉WM ([0,T ])∗×WM ([0,T ]) − 〈Λkv, z〉WM ([0,T ])∗×WM ([0,T ])

∣∣∣ (5.23)

+ (‖(l1, zT )‖L2(0,T ;V ∗)×H + ‖(l2, v0)‖L2(0,T ;V ∗)×H)
(
‖v‖L2(0,T ;V ) + ‖v−0 ‖+ ‖z‖L2(0,T ;V ) + ‖z−M‖

)
We proceed to show that 〈Λk,−z, v〉WM ([0,T ])∗×WM ([0,T ]) = 〈Λkv, z〉WM ([0,T ])∗×WM ([0,T ]) and com-

pute

〈Λk,−z, v〉WM ([0,T ])∗×WM ([0,T ])

= −
M∑
m=1

(
〈z′, v〉Im + 〈[z]m−1, v

−
m−1〉

)
+ 〈A′(x)∗z, v〉L2(0,T ;V ∗)×L2(0,T ;V ) + 〈z−M , v

−
M 〉

=
M∑
m=1

(
〈z, v′〉Im − 〈z−m, v−m〉+ 〈z+

m−1, v
+
m−1〉 − 〈z

+
m−1 − z

−
m−1, v

−
m−1〉

)
+ 〈A′(x)v, z〉L2(0,T ;V ∗)×L2(0,T ;V ) + 〈z−M , v

−
M 〉

=

M∑
m=1

(
〈z, v′〉Im + 〈z+

m−1, v
+
m−1 − v

−
m−1〉

)
+ 〈A′(x)v, z〉L2(0,T ;V ∗)×L2(0,T ;V ) + 〈z−0 , v

−
0 〉

= 〈Λkv, z〉WM ([0,T ])∗×WM ([0,T ]).

131



5.2. EXPONENTIAL DECAY OF ERROR INDICATORS

The interested reader is referred to a similar result in [127, Proposition 3.6] in a continuous-time

setting. Thus, together with (5.21), (5.22), and (5.23) we obtain with c ≥ 0 independent of T :

M∑
m=1

1

2
‖v−m−1 − v

+
m−1‖

2 +
1

2

(
‖v−M‖

2 + ‖v−0 ‖
2
)

+
M∑
m=1

1

2
‖z−m−1 − z

+
m−1‖

2

+
1

2

(
‖z−M‖

2 + ‖z−0 ‖
2
)

+ ‖(v, z)‖2L2(0,T ;V )2 ≤ c‖(l1, zT , l2, v0)‖2(L2(0,T ;V ∗)×H)2

(5.24)

To obtain an estimate on the derivatives, we test the state equation with a test function ϕm ∈
C∞([tm−1, tm];V ) such that ϕ(tm−1) = ϕ(tm) = 0 and obtain

M∑
m=1

〈v′, ϕ〉Im = 〈BJ−1
uu B

∗z + l2 +A′(x)v, ϕ〉L2(0,T ;V ∗)×L2(0,T ;V ).

By density of C∞0 ([tm−1, tm];V ) in L2(tm−1, tm;V ), cf. [127, Lemma 2.1], we conclude the esti-

mate

‖v′‖L2(tm−1,tm;V ∗) ≤
(
‖A′(x)‖L(L2(tm−1,tm;V ),L2(tm−1,tm;V ∗))

+ ‖BJ−1
uu B

∗‖L(L2(tm−1,tm;V ),L2(tm−1,tm;V ∗))

)
‖(v, z)‖L2(tm−1,tm;V )2 + ‖l2‖L2(tm−1,tm;V ∗),

which, together with (5.24) and proceeding analogously for the adjoint, yields the result.

We now obtain an analogous result to Theorem 5.2 for the discrete-time system.

Theorem 5.6. Let Assumption 5.1 hold and consider the QOI Iτ (x, u) defined in (5.16). Let

(vk, qk, zk) ∈WM ([0, T ])× L2(0, T ;U)×WM ([0, T ]) solve (5.12), i.e.,Lxx(x, u) 0 Λk,−

0 Juu(x, u) −B∗
Λk −B 0

vkqk
zk

 = −

Iτx(x, u)

Iτu(x, u)

0

 . (5.25)

Then for all µ > 0 satisfying

µ <
1

‖(Mk)−1‖L((L2(0,T ;V ∗)×H)2,WM ([0,T ])2)

,

there is a constant c(τ) > 0 independent of T such that∥∥∥∥∥∥eµt
vkqk
zk

∥∥∥∥∥∥
WM ([0,T ])×L2(0,T ;U)×WM ([0,T ])

≤ c(τ)
(
‖Jx(x, u)‖L2(0,τ ;V ∗) + ‖Ju(x, u)‖L2(0,τ ;U)

)
.

(5.26)
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Proof. Again, we eliminate the control via qk = J−1
uu (x, u) (B∗zk + Iu(x, u)) and obtain(

C∗C Λk,−

Λk −BJuu(x, u)−1B∗

)
︸ ︷︷ ︸

=Mk

(
vk
zk

)
= −

(
Iτx(x, u)

BJuu(x, u)−1Iτu(x, u)

)
.

We further choose µ < 1
‖(Mk)−1‖

L((L2(0,T ;V ∗)×H)2,WM ([0,T ])2)
independently of T , cf. Theorem 5.5,

introduce scaled variables ṽk = eµtvk and z̃k = eµtzk and compute that

〈Λkvk, ϕ〉WM ([0,T ])∗×WM ([0,T ]) = 〈Λk(e−µtṽk), ϕ〉WM ([0,T ])∗×WM ([0,T ])

=
M∑
m=1

〈(e−µtṽk)′, ϕ〉Im + 〈[e−µtṽk]m−1, ϕ
+
m−1〉 − 〈A

′(x)e−µtṽk, ϕ〉L2(0,T ;V ∗)×L2(0,T ;V )

+ 〈(e−µtṽk)−0 , ϕ
−
0 〉

=
M∑
m=1

〈(ṽk)′ − µṽk, e−µtϕ〉Im + 〈[ṽk]m−1, e
−µtϕ+

m−1〉 − 〈A
′(x)ṽk, e

−µtϕ〉L2(0,T ;V ∗)×L2(0,T ;V )

+ 〈(ṽk)−0 , (e
−µtϕ)−0 〉

= 〈(Λk − µI)ṽk, ϕ̃〉WM ([0,T ])∗×WM ([0,T ]),

where ϕ̃ = e−µtϕ. Proceeding analogously for the adjoint equation we get

Mk

(
vk
zk

)
= −

(
Ix(x, u)

BJuu(x, u)−1Iu(x, u)

)
(Mk + µP )

(
ṽk
z̃k

)
= −

( ∫ τ
0 e

µtJ̄x(t, x, u) · dt
BJuu(x, u)−1

∫ τ
0 e

µtJ̄u(t, x, u) · dt

)

where P =

(
0 I

−I 0

)
and hence ‖P‖L(WM ([0,T ])2,(L2(0,T ;V ∗)×H)2) < 1. Completely analogously to

the proof of, e.g., Theorem 3.14, we multiply the equation by (Mk)−1 and employ a Neumann-

series argument as µ < 1
‖(Mk)−1‖

L((L2(0,T ;V ∗)×H),WM ([0,T ])2)
and obtain∥∥∥∥(vkzk

)∥∥∥∥
WM ([0,T ])2

≤ ‖(I + µ(Mk)−1P )−1‖L(WM ([0,T ])2,WM ([0,T ])2)‖(Mk)−1‖L((L2(0,T ;V ∗)×H)2,WM ([0,T ])2)∥∥∥∥( ∫ τ
0 e

µtJ̄x(t, x, u) · dt
BJuu(x, u)−1

∫ τ
0 e

µtJ̄u(t, x, u) · dt

)∥∥∥∥
L2(0,T ;V ∗)2

≤ c(τ)
(
‖Jx(x, u)‖L2(0,τ,V ∗) + ‖Ju(x, u)‖L2(0,τ ;U)

)
with a constant c > 0 independent of T . For the control, we compute

‖qk‖L2(0,T ;U) = ‖Juu(x, u)−1B∗zk + Juu(x, u)−1Iu(x, u)‖L2(0,T ;U)

≤ c(τ)
(
‖Jx(x, u)‖L2(0,τ,V ∗) + ‖Ju(x, u)‖L2(0,τ ;U)

)
,
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which concludes the proof.

We will briefly illustrate the exponential decay of the secondary variables proven in The-

orems 5.2 and 5.6 for the linear quadratic problem of Section 3.3.1. The plots in Figure 5.3

show the exponential decay of the linearly interpolated discrete-time secondary variables for the

QOI Iτ (x, u) defined in (5.16). In Figure 5.3, we observe that for all values of the Tikhonov

parameter α, the state and the control decay exponentially after the time τ = 0.5. The ledges

in the plot are introduced by the tolerance of the linear solver used for solution of the linear

system (5.13). The smaller we choose α, the faster the secondary variables decay in time. The

reason for this can be found when inspecting the proof of, e.g., Lemma 3.25, showing that

‖M−1‖L((L2(0,T ;V ∗)×H)2,W ([0,T ])2) is proportional to ‖R‖L(L2(0,T ;U)) = α. Thus, decreasing α

allows for a larger choice of the scaling parameter µ > 0 in Theorem 5.2 due to the bound

µ <
1

‖M−1‖L((L2(0,T ;V ∗)×H)2,W ([0,T ])2)
.

This straightforwardly carries over to the discrete-time setting considered in Theorems 5.5

and 5.6. Further, as the decay parameter µ is chosen in the same fashion in the turnpike

results, i.e., e.g., Theorem 3.16, also the speed of exponential convergence to the turnpike is in-

creased when decreasing α, which is in accordance with the findings of [3, Table 3.1, p. 41] where

a lower stabilizing horizon for MPC could be chosen when decreasing the Tikhonov parameter

α.
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Figure 5.3: Norm of the secondary state v and control q of (5.12) over time. The vertical black

line indicates the implementation horizon τ = 0.5.
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5.3 Numerical results

In this part we qualitatively and quantitatively examine the results of goal oriented error esti-

mation with the specialized QOI defined in (5.16), i.e.,

Iτ (x, u) :=

τ∫
0

J̄(t, x, u) dt

and compare it with classical error estimation using the full cost functional as QOI, i.e.,

J(x, u) =

T∫
0

J̄(t, x, u) dt.

We inspect the error indicators for time, space and space-time adaptivity, the resulting grids

and the performance of a Model Predictive Controller evaluated via the cost functional value of

the MPC trajectory, using goal oriented error estimation with both QOIs used for adaptivity in

every solution of an OCP.

We briefly comment on adaptive time discretization if the solutions satisfy steady state

turnpike behavior. If the optimal control problem is autonomous and satisfies a stabilizability

and detectability condition, we showed in Theorems 2.30 and 3.16 for linear quadratic problems

that the optimal triple exhibits turnpike behavior. This was extended to the nonlinear case in

Corollary 4.30. We further observed this property numerically in Figures 3.2, 4.1 and 4.3. An

important property of turnpike behavior is that the approaching and leaving arcs’ lengths are

independent of the time horizon. As in between these transient arcs the solution stays close

to an equilibrium of the dynamics, any adaptive time discretization scheme will predominantly

refine the time grid at the beginning and the end of the time interval to resolve dynamic parts.

Further, the independence of leaving and approaching arc of the size of the interval suggests

that in case of time adaptivity, the resulting computational cost will be almost independent of

the length of the interval. This naturally suggests that in case of a steady state turnpike, an

adaptive time discretization can be very efficient. Moreover, the turnpike property was also

exploited in [136] to construct an efficient shooting algorithm. These considerations are however

not applicable when considering non-autonomous problems that do not possess a corresponding

static optimization problem and hence no optimal equilibrium. One then has to rely on classical

a posteriori grid refinement techniques to adaptively refine the time and space grid.

Problem setting

In the following, we fix Ω = [0, 3] × [0, 1] and the time horizon T = 10. We briefly recall the

reference trajectories as defined in Section 3.3. That is, using the function

g(s) :=

{
10e

1− 1
1−s2 s < 1

0 else,
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we construct a static reference trajectory via

xstat
d (ω) := g

(
10

3

∥∥∥∥ω − (1.5

0.5

)∥∥∥∥) , (5.27)

and a dynamic reference trajectory via

xdyn
d (t, ω) := g

(
10

3

∥∥∥∥ω − (ω1,peak(t)

ω2,peak(t)

)∥∥∥∥) , (5.28)

where

ω1,peak(t) := 1.5− cos

(
π

(
t

10

))
, w2,peak(t) :=

∣∣∣∣cos

(
π

(
t

10

))∣∣∣∣ .
The static trajectory xstat

d and the dynamic trajectory xdyn
d are depicted in Figure 3.1 and

Figure 3.4, respectively. We will further consider examples with a reference concentrated towards

the boundary that grows exponentially in time, i.e.,

xexp
d (t, ω) := e

t
2 g

(
10

3

∥∥∥∥ω − ( 1.5

ω2,peak

)∥∥∥∥) , (5.29)

where ω2,peak ∈ [0, 1] will be specified later. We consider the cost functional∫ T

0
J̄(t, x, u) dt :=

1

2

∫ T

0
‖x(t)− xd(t)‖2L2(Ω) + α‖u(t)‖2U dt, (5.30)

where xd is one of the reference trajectories defined above and α > 0 is a Tikhonov parameter.

Depending on the governing dynamics, we will set U = L2(Ω) for the case of distributed control

and U = L2(∂Ω) in the case of boundary control. Whenever we use the autonomous reference

trajectory defined in (5.27), we will use the implementation horizon τ = 0.5. In case of the

non-autonomous trajectory (5.28), we consider a larger implementation horizon τ = 1.

#uniform refs. 0 1 2 3 4 5

#Triangles 12 48 192 768 3072 12288

#Vertices 11 33 113 417 1602 6273

Table 5.1: Number of elements and degrees of freedom for different hierarchies of the spatial

grid.

In the following we will consider different linear and nonlinear unstable and stable dynamics

with distributed and boundary control. We apply the MPC Algorithm 1 to these different model

problems and perform goal oriented error estimation and grid refinement for either Iτ (x, u) or

J(x, u) as QOI after termination of the nonlinear OCP solver. After refinement, we use the

interpolated solution on the refined grid as starting guess and solve the nonlinear OCP again on
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the refined mesh. This procedure is repeated until the maximal number of time or space grid

points is reached.

In all MPC simulations, we will perform four steps of Algorithm 1. In case of time adaptivity,

we compute all trajectories on a space grid uniformly refined three times, cf. Table 5.1, and start

the adaptive algorithm with three time points. The simulation is performed on a grid with 51

time grid points on [0, τ ]. In case of space adaptivity, we fix the number of total time grid points

to 41, perform adaptive space adaptivity starting with a grid with one uniform refinement, and

perform the simulation with the same time step size. The space grids for the simulation are

five times uniformly refined. In case of space-time adaptivity, we perform the simulation with

51 time grid points on [0, τ ], where every space grid is five times uniformly refined and we start

with five time grid points and one uniform refinement.

5.3.1 Linear quadratic optimal control problems

We will first consider linear quadratic problems and dynamics governed by a linear heat equation

with distributed control, i.e.,

ẋ = 0.1∆x+ sx+ u in (0, T )× Ω,

x(0) = 0 in Ω, (5.31)

x = 0 in Ω× (0, T ),

where s ∈ R is a stability (if s < 0) or instability (if s > 0) parameter. Alternatively, we consider

Neumann boundary control, i.e.,

ẋ = 0.1∆x+ sx in (0, T )× Ω,

x(0) = 0 in Ω, (5.32)

0.1
∂x

∂ν
= u in Ω× (0, T ),

where ∂
∂ν denotes the outward unit normal derivative.

We set U = L2(Ω) or U = L2(∂Ω) and aim to minimize the standard tracking-type cost

functional (5.1) subject to either of the dynamics defined above.

We will observe that the stability of the underlying optimal solution plays a major role in the

adaptive time discretization. In that context, we investigate the case of an unstable uncontrolled

equation, i.e., choosing s > 0 large enough. In that case, the presented dG(0) scheme can be

numerically unstable. Thus, for strongly unstable open-loop dynamics, a multiple shooting

approach, cf. [27, 28, 80, 81], should be considered to prevent instabilities or blow-ups of the

numerical solution.

Time adaptivity

In Figure 5.4, we depict the spatial norm of state and control over time for an autonomous

problem with reference trajectory xstat
d and Tikhonov parameter α = 10−1 governed by dynamics
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described by (5.31) with instability parameter s = 4. We observe that the refinement with

respect to the truncated QOI Iτ (x, u) only takes place at the beginning of the time interval.

Further, we see that the error indicators decay exponentially shortly after the implementation

horizon τ = 0.5 due to the exponential decay of the secondary variables proven in Theorems 5.2

and 5.6. Second, choosing the entire cost functional as a QOI, we see that the refined time grid

is fine towards t = 0 and t = T . This is because the dynamics exhibit a steady state turnpike

behavior, i.e., the highly dynamic parts are located at the beginning and the end of the time

horizon. Hence, in order to obtain an accurate solution on the whole horizon, these parts need

to be refined. Further, we observe that the solution obtained by refinement via Iτ (x, u) does

not exhibit the leaving arc despite very clearly showing the approaching arc.
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Figure 5.4: Open-loop trajectories and error indicators in the first MPC step after adaptive

refinement with 41 time grid points for an unstable problem with distributed control and static

reference. The vertical lines illustrate the adaptively refined time grid.

Further, in Figure 5.5, we depict the same quantities for a non-autonomous problem and

choose the time-dependent reference trajectory xdyn
d and α = 10−3. The dynamics are governed

by (5.32) with s = 0 and we set the implementation horizon to τ = 1. Similarly to the

autonomous problem we again observe that the refinement and error indicators are concentrated

on the implementation horizon [0, τ ] if Iτ (x, u) is chosen as QOI. If we use the cost functional

as QOI, the time refinement and error indicators are distributed over the whole time horizon,

as the reference and hence the solution is dynamic at all times.
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Figure 5.5: Open-loop trajectories and error indicators in the first MPC step after adaptive

refinement with 41 time grid points for a boundary controlled stable non-autonomous problem

with dynamic reference. The vertical lines illustrate the adaptively refined time grid.

Having investigated the error indicators and the resulting time refinement in the context of

one optimal control problem, we depict the performance gain in a Model Predictive Controller

with three examples when using the truncated QOI in Figure 5.6 for adaptivity in every MPC

step. We show the closed-loop cost of the MPC trajectory obtained by applying four steps of

the MPC algorithm Algorithm 1 to the optimal control problem. The plot on the top right

and on the bottom correspond to the setting of Figure 5.4 and Figure 5.5, respectively, whereas

the plot on the top left compares the closed-loop cost for a stable autonomous problem with
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s = 0, α = 10−3, and reference xstat
d . In all three cases we observe that for a given number of

maximal time steps, choosing the specialized QOI Iτ (x, u) as an objective for refinement leads

to a significant reduction of the closed-loop cost, i.e., a better controller performance.
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Figure 5.6: Comparison of cost functional values of the MPC closed-loop trajectory for different

QOIs used for temporal refinement. Top left: Stable autonomous problem. Top right: Unstable

autonomous problem. Bottom: Boundary controlled non-autonomous problem.

Space adaptivity

In this part, we investigate the case of space refinement. To this end, we compare the error

indicators, the resulting space grids and the closed-loop cost for refinement with Iτ (x, u) and

J(x, u). In the upper row of Figure 5.7, the space error indicators for an autonomous optimal

control problem governed by the linear dynamics with distributed control defined in (5.31) with

reference xstat
d and Tikhonov parameter α = 10−3 are depicted. Again, the error indicators for

the objective Iτ (x, u) decay exponentially after the implementation horizon, whereas they stay

almost constant over the whole time horizon in case of the QOI J(x, u). This again is due to

the turnpike property, i.e., the dynamic trajectories are close to the solution of the steady state

problem for the majority of the time. The higher indicators at the beginning of the time interval

are due to the high control action to approach the turnpike. Further, the indicators for the cost

functional decay at the end of the horizon due to the terminal condition of the adjoint, which

requires the control to approach zero, leading to a more regular state by diffusion and thus

less need to refine. In the lower row of Figure 5.7, the resulting space grids for three different

numbers of maximal spatial degrees of freedom (DOFs) are depicted. It is clearly visible that

for Iτ (x, u) a refinement only takes place at the beginning of the time horizon and the majority

of the space grids are unrefined. In contrast to that, the spatial refinement for J(x, u) takes
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place on the whole horizon.
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Figure 5.7: Spatial error indicators before refinement and spatial degrees of freedom after last

refinement for different maximal numbers of degrees of freedom for an autonomous optimal

control problem. The vertical black line indicates the implementation horizon τ = 0.5.

In Figure 5.8, we depict the resulting space grids and the state over time for the intermediate

case in Figure 5.7, i.e., the grids enjoy 5825 and 5478 total spatial DOFs, respectively. It is clearly

visible that in case of refinement for the full cost functional, the space grids have to capture

the steady state turnpike on the majority of the interval. This is not the case for refinement

with Iτ (x, u), where we observe unrefined space grids shortly after the implementation horizon

τ = 0.5.
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time tIτ (x, u) J(x, u)

t = 0

τ = 0.5

T = 10

Figure 5.8: Evolution of adaptively refined space grids for Iτ (x, u) (left) and J(x, u) (right) with

5825 and 5478 total spatial DOFs, respectively.
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As a second example for space adaptivity in the linear quadratic setting, we present the case

of reference that increases exponentially in time, i.e., xexp
d as defined in (5.29) with ω2,peak = 0.5.

We choose the Tikhonov parameter α = 10−3, s = 0, and consider the distributed dynamics

(5.31). In Figure 5.9 we show the error indicators before refinement and the spatial DOFs

after refinement for different numbers of maximal spatial DOFs. As the reference xexp
d increases

exponentially in time, the solution also increases exponentially in time. This leads to the error

indicators for J(x, u) also increasing in time (top right) and in particular to a refinement which

is concentrated towards T (bottom right). On the other hand, when refining for Iτ (x, u) the

exponential damping of discretization errors is stronger than the exponential increase of the

solution, as the indicators for this truncated cost functional decay exponentially (top left).

This, again, similarly to the autonomous case, leads to space grids that are refined on [0, τ ]

(bottom left).
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Figure 5.9: Spatial error indicators before refinement and spatial degrees of freedom after last

refinement for different maximal numbers of degrees of freedom for a non-autonomous optimal

control problem. The vertical black line indicates τ = 1.

Finally we examine the performance gain from using Iτ (x, u) as a QOI in adaptive MPC

again. In Figure 5.10, we observe that for both examples, i.e., the autonomous problem of Fig-

ure 5.7 and the non-autonomous problem of Figure 5.9 with exponentially increasing reference,

the closed-loop cost is lower when using the specialized QOI Iτ (x, u) for refinement. In case

of the exponentially increasing reference, we further see that increasing the allowance for space

refinement does not improve the performance when refining with J(x, u); this is due to the fact

that all grid point are used towards T and thus the MPC feedback is not refined at all, cf. the

bottom left of Figure 5.9.
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Figure 5.10: Comparison of cost functional values of the MPC closed-loop trajectory for different

QOIs used for spatial refinement. Left: Autonomous problem. Right: Non-autonomous problem

with exponentially increasing reference.

Space-time adaptivity

We briefly address the subject of space and time adaptivity for the linear dynamics (5.31) with

static reference xstat
d , α = 10−3, and s = 0. After time and space error estimation, we refine

either space or time, depending on which is subject to a larger total error. This was chosen

due to clarity and simplicity and we note that there are more involved space-time refinement

strategies, cf. [100, Section 6.5]. As to be expected, the space and time grid refinement for

Iτ (x, u) primarily takes place on the initial part of the horizon, cf. Figure 5.11.

101

102

103

104

sp
at

ia
l

D
O

F
s(

t)

Refined with QOI Iτ (x, u)

0 1 2 3 4 5 6 7 8 9 10

101

102

103

104

time t

sp
at

ia
l

D
O

F
s(

t)

Refined with QOI J(x, u)

Figure 5.11: Spatial DOFs over time for a total allowance for 20000 degrees of freedom for a

fully adaptive space-time refinement.
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The adaptive refinement with Iτ (x, u) terminated with 12 time grid points, whereas the

refinement with J(x, u) terminated with 11 time grid points. In Figure 5.12, we clearly observe

that again refinement with the truncated cost functional leads to a better performance of the

Model Predictive Controller.
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Figure 5.12: Comparison of cost functional values of the MPC closed-loop trajectory for different

QOIs used for space-time refinement.

We note that, for this example, employing only time adaptivity for the QOI Iτ (x, u) with

three uniform refinements in space, cf. Table 5.1, leads to a lower closed-loop cost for the same

number of total DOFs. This is no longer the case when using two uniform refinements.

5.3.2 Semilinear optimal control problems

In this part, we move from linear dynamics to the semilinear heat equation introduced in Sec-

tion 4.5.1, i.e.,

x′ − d∆x+ ex3 = u in Ω× (0, T ),

x = 0 in ∂Ω× (0, T ), (5.33)

x(0) = 0 in Ω,

where d > 0 is a diffusivity parameter and e > 0 is a nonlinearity parameter. We note that the

semilinearity has a stabilizing effect due to monotonicity, cf. Section 5.3.2.

Time adaptivity

In Figure 5.13, we depict the error indicators and the resulting time grids for an optimal control

problem with cost functional (5.30), dynamic reference xdyn
d defined in (5.28), Tikhonov param-

eter α = 10−2 and the semilinear dynamics described in (5.33) with semilinearity parameter

e = 1. We choose τ = 1 as implementation horizon. We observe that, similarly to the non-

autonomous linear quadratic case depicted in Figure 5.5, the error indicators are concentrated on

the beginning of the interval if the objective for refinement is Iτ (x, u), leading to a fine time grid

on [0, τ ]. The refinement with the cost functional as QOI shows a time refinement distributed
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over the whole interval. In particular, the initial part up to the MPC implementation horizon

was not refined at all when refining for J(x, u). This different refinement behavior leads to the

optimal state and control being fundamentally different.
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Figure 5.13: Open-loop trajectories and error indicators in the first MPC step after adaptive

refinement with 41 time grid points for a semilinear problem. The vertical lines illustrate the

adaptively refined time grid.

Correspondingly, in Figure 5.14, we depict the closed-loop cost of the adaptive Model Pre-

dictive Controller. We observe that due to the coarse grid on [0, τ ] for the refinement with

J(x, u), the performance for increasing number of time grid points remains constant. On the
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other hand, the performance of the Model Predictive Controller using Iτ (x, u) as refinement

objective is increased when increasing the time grid point allowance.
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Figure 5.14: Comparison of cost functional values of the MPC closed-loop trajectory for different

QOIs used for temporal refinement with semilinear dynamics.

Space adaptivity

We observed that the behavior of the adaptive time refinement algorithm in case of semilinear

dynamics is very similar to the case of linear dynamics in the previous part. This is also the case

when moving to space adaptivity. In the previous examples with space adaptivity we introduced

a necessity for spatial refinement via the reference trajectory. In contrast to that, in this part,

we will change the computational domain and consider a reference constant in time and space.

We endow the rectangle with a reentrant corner as depicted in Figure 5.15. We note that from

a theoretical point of view, regularity theory is often formulated for convex domains, which is

not the case here. In the case of a nonconvex domain, as depicted in Figure 5.15, one usually

obtains regularity results coupled with the angle at the reentrant corner, cf. [60, Section 8.4].

Figure 5.15: Rectangular domain [0, 3] × [0, 1] with a reentrant corner at (1.5, 0.5) with corre-

sponding angle of approximately 2.4 degrees.

In this part, we consider a reference constant in time and space, i.e., xd ≡ 1 and Tikhonov

parameter α = 10−3 in the cost functional (5.30) and choose e = 0.1 as nonlinearity parameter.

In Figure 5.16, the error indicators and the corresponding space grids are depicted. Again, we

see that the error indicators for the objective Iτ (x, u) decay exponentially in time, whereas the

indicators for J(x, u) stay constant. Correspondingly, the adaptive space refinement for Iτ (x, u)
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is concentrated on the implementation horizon [0, 0.5], whereas the refinement for J(x, u) is

distributed evenly over the whole horizon [0, 10]. The latter is, yet again, due to the turnpike

property which can also clearly be observed in Figure 5.17 as the problem at hand is autonomous.
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Figure 5.16: Spatial error indicators before refinement and spatial degrees of freedom after last

refinement for different maximal numbers of degrees of freedom for an autonomous semilinear

optimal control problem. The vertical black line indicates the implementation horizon τ = 0.5.

We depict the space grids over time and the corresponding state in Figure 5.17. Due to

the homogeneous Dirichlet boundary conditions, the refinement primarily occurs close to the

boundary. In case of refinement for J(x, u) and due to the turnpike property, the space grids

are almost identical over time, whereas for the specialized QOI Iτ (x, u), the refinement happens

primarily on the space grids assigned to the implementation horizon [0, 0.5].
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time tIτ (x, u) J(x, u)

t = 0

τ = 0.5

T = 10

Figure 5.17: Evolution of adaptively refined space grids for Iτ (x, u) (left) and J(x, u) (right)

with 8237 and 8450 total spatial DOFs, respectively.
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Finally, in Figure 5.18, we depict the closed-loop cost of the MPC algorithm endowed with

goal oriented space adaptivity. Again, the performance is better when using the specialized QOI

Iτ (x, u) for refinement as opposed to adaptivity with respect to the full cost functional.
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Figure 5.18: Comparison of cost functional values of the MPC closed-loop trajectory for different

QOIs used for spatial refinement with semilinear dynamics.

5.3.3 Quasilinear optimal control problems

As a last model problem, we consider optimal control with the boundary controlled quasilinear

problem introduced in Section 4.5.2. To this end, we recall the nonlinear heat conduction tensor

κ(x)(t, ω) :=
(
c|x(t, ω)|2 + d

)
,

where c, d > 0 and consider the quasilinear dynamics

x′ −∇ · (κ(x)∇x) = 0 in Ω× (0, T ),

κ(x)
∂x

∂ν
= u in ∂Ω× (0, T ),

x(0) = 0 in Ω.

We note that the theory of Chapter 4 does not cover this boundary controlled quasilinear case.

However, the results for exponential decay of the secondary variables, i.e., Theorem 5.2 and

Theorem 5.6, still apply. This is due to the fact that the secondary variables are defined as a

solution to a linear problem, even if the problem is nonlinear, cf. (5.11).

In Figure 5.19, we depict the time error indicators and corresponding state and control

norm over time for a non-autonomous problem with xdyn
d as reference, α = 10−2, c = d =

0.1, and implementation horizon τ = 1. The time refinement with the full cost functional as

QOI is again, similarly to the case of linear dynamics depicted in Figure 5.5 and the case of

semilinear dynamics shown in Figure 5.13 distributed on the whole horizon and the time grid

on the implementation horizon [0, τ ] remains unrefined. The refinement for the truncated cost

functional Iτ (x, u) is concentrated on the initial part. Note that the depicted norm is again

a scaled H1(Ω)-norm corresponding to the second derivative of the Lagrange function, i.e.,

‖v‖αd,H1(Ω) := ‖v‖L2(Ω) +
√
αd‖∇v‖L2(Ω).
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Figure 5.19: Open-loop trajectories and error indicators in the first MPC step after adaptive

refinement with 41 time grid points for an autonomous problem with boundary controlled quasi-

linear dynamics. The vertical lines illustrate the adaptively refined time grid.

The depiction of the closed-loop cost of the MPC trajectory in Figure 5.20 shows that the cost

is again consistently lower when using Iτ (x, u) as a QOI for adaptive time refinement.
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Figure 5.20: Comparison of cost functional values of the MPC closed-loop trajectory for different

QOIs used for temporal refinement with quasilinear dynamics.

Space adaptivity

We consider the exponentially increasing reference trajectory xexp
d with ω2,peak = 1, implemen-

tation horizon τ = 1, Tikhonov parameter α = 10−3 and parameters d = 10−1 and c = 10−2

for the heat conduction tensor. In Figure 5.21, we see that despite the exponentially increasing

trajectory, the error indicators for Iτ (x, u) still decrease exponentially over time. This, yet again

shows the damping mechanism with respect to discretization errors. However, as opposed to the

example of distributed control of a linear problem in Figure 5.9, the space grids are refined also

outside of the implementation horizon. This is due to the fact that the damping mechanism is

weaker due to the (less powerful) boundary control. The error indicators and the correspond-

ing spatial DOFs after refinement for the full cost functional J(x, u) are again exponentially

increasing.

153



5.3. NUMERICAL RESULTS

10−4

10−2

100

|η
h
(t

)|

Refined with QOI Iτ (x, u)

space error indicators

0 2 4 6 8 10

102

103

time

sp
at

ia
l

D
O

F
s(

t)

1660 total DOFs
2992 total DOFs
5934 total DOFs

100

102

104

|η
h
(t

)|

Refined with QOI J(x, u)

space error indicators

0 2 4 6 8 10
101.5

102

102.5

time

sp
at

ia
l

D
O

F
s(

t)1711 total DOFs
2924 total DOFs
5924 total DOFs

Figure 5.21: Spatial error indicators before refinement and spatial degrees of freedom after

last refinement for different maximal numbers of degrees of freedom for a boundary controlled

quasilinear problem. The vertical black line indicates the implementation horizon τ = 1.

The state over time and the corresponding space grids are shown in Figure 5.22. Although

state and control are relatively small on the initial part, the spatial refinement is most active

there when refining for Iτ (x, u). On the other hand, the spatial grids refined for the full cost

functional show no refinement on the whole implementation horizon [0, 1], as they are primarily

refined towards the end of the horizon, due to the exponentially increasing reference trajectory.
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time tIτ (x, u) J(x, u)

t = 0

τ = 1

T = 10

Figure 5.22: Evolution of adaptively refined space grids for the boundary control of a quasilinear

equation refined for QOI Iτ (x, u) (left) and J(x, u) (right) with 5934 and 5924 total spatial DOFs,

respectively.
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Finally in Figure 5.23 we show the corresponding closed-loop cost of the MPC trajectory.

Similar to the linear quadratic example with exponentially increasing reference in Figure 5.10, an

increasing number of space grid points does not increase the MPC performance when refining

with J(x, u). This is, again, because the error indicators and thus also the refinements are

predominant towards T and not on the MPC implementation horizon. Thus, a refinement with

the QOI Iτ (x, u) yields a significantly better controller performance, as can be observed in

Figure 5.23.
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Figure 5.23: Comparison of cost functional values of the MPC closed-loop trajectory for different

QOIs used for spatial refinement with quasilinear problem.

5.3.4 Implementation details and particularities for nonlinear problems

We briefly specify implementation details corresponding to the solution of the optimal control

problems, the discretization and the error estimation. Further, we discuss various aspects that

can be utilized for fast and efficient adaptive MPC methods. All algorithms were implemented

in the C++-library for vector space algorithms Spacy1 using the finite element library Kaskade7

[57] for spatial finite elements, assembly and spatial grid management. For the blockwise fac-

torization in the forward and backward solver of the PDE, we applied the sparse direct solver

UMFPACK [37].

Evaluation of the error indicators

We first present the numerical realization to evaluate the time and space error indicators defined

in (5.14) and (5.15). For the approximation of the weights needed for time error estimation in

(5.14), we follow the approach described in [101, Section 5.1] and approximate , e.g., wkx = x−xk
by (I

(1)
k − I)xk, where I

(1)
k is the interpolation operator from discontinuous piecewise constant

functions to continuous piecewise linear functions. The major advantage of this approach is

that almost no additional numerical effort is needed for this approximation. If one computes

the integrals weighted by I
(1)
k xk by the trapezoidal rule and the integrals weighted by xk by the

box rule, the error estimator (5.14) can be computed without even computing the interpolant,

cf. [100, Section 6.4]. A second aspect of the evaluation of the time error estimator (5.14) is the

1https://spacy-dev.github.io/Spacy/
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computation of differences of functions of different finite element meshes, i.e., e.g., xm−1 and

xm being defined on the grids Km−1
h and Kmh , respectively. Directly computing the difference

would be computationally infeasible, as one had to loop over vertices of Km−1
h and evaluate xm

at these points, which includes searching Kmh for the triangle containing the evaluation point.

However, the common refinement illustrated in Figure 5.2 can be used to compute this difference

efficiently: For any cell Km−1/2 of the common refinement Km−1/2
h , the dune grid-glue module

provides direct access to the parent cells Km−1 ∈ Km−1
h and Km ∈ Kmh . Thus, we can iterate

over the cells of the common refinement and efficiently evaluate xm−1 and xm locally on the

parent cell Km−1 resp. Km to compute the difference.

For approximating the weights for space error estimation via formula (5.15), one could pursue

a similar approach as for time error estimation, i.e., via interpolation. However, in order to define

an interpolant it is often assumed that the grid exhibits a patch structure to obtain a higher

order solution by, e.g., biquadratic interpolation in case of quadrilaterals, cf. [102, Section 3.2 and

Section 3.4]. As we use triangles instead of quadrilaterals and an unstructured mesh, we pursue

a different approach and approximate the weights in formula (5.15), i.e., e.g., whx = xk−xkh, by

a higher order method.

Assume we have a local minimizer ξkh = (xkh, ukh, λkh) ∈ Wkh ×Ukh ×Wkh of the nonlinear

OCP at hand. Then we have

〈(Lk)′(ξkh), ϕ〉(Wkh×Ukh×Wkh)∗×Wkh×Ukh×Wkh
= 0

for all ϕ ∈ Wkh × Ukh ×Wkh. In order to obtain an approximation of the continuous solution

we consider an extension of the finite element space by bubble functions, which are bilinear

combinations of the standard linear finite elements on the reference triangle, cf. [144, p.62 and

Section 5.3]. We denote the resulting finite element space at time step m by (V m
h )e resp. (Umh )e

where (V m
h )e ∩ V m

h = {0} and (Umh )e ∩Umh = {0}. Using these ansatz spaces in every time step,

we obtain the fully discrete spaces We
kh and Ue

kh with We
kh ∩ Wkh = {0} and Ue

kh ∩ Ukh = {0}
analogously to (5.9). We evaluate the residual in this function space and perform a Newton step

in the higher order space, i.e., we solve(
(Lk)′′(ξkh)

)
ee
ξe
kh = −

(
(Lk)′(ξkh)

)
e
, (5.34)

where the subscripts e and ee denote evaluation in the extension space. We are not interested in a

Newton update with a component inWkh×Ukh×Wkh, as this term would vanish in (5.15) due to

Galerkin orthogonality. Thus, the solution of (5.34) purely on the extension spaceWe
kh×We

kh×
We
kh is justified. We solve the system (5.4) with a conjugate gradient method and refer the reader

to Section 5.4 for a discussion on further work regarding an efficient approximation of the system.

Having solved (5.34), we approximate the weights via
(
xk − xkh, uk − ukh, λk − λkh

)
≈ ξe

kh. We

apply the same strategy to the secondary variables as they can be characterized to be a critical

point for a so called exterior Lagrangian, cf. [101, Section 4.2]. The performance of the resulting

error estimator is shown in Table 5.2, where we can observe a very accurate estimation of the

error in terms of the cost functional.
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1 uni. ref. 2 uni. ref. 3 uni. ref. 4 uni. ref.

|J(xh, uh)− J(x, u)| 1.30193 0.467676 0.121828 0.0298524

|ηh| 1.1127 0.441415 0.120613 0.0316621
|J(xh,uh)−J(x,u)|

|ηh| 1.17006 1.05949 1.01007 0.942843

Table 5.2: Performance of space error estimator.

Remark 5.7. The approach described above is very closely related to hierarchical error esti-

mation, cf. the seminal paper [39], and the respective parts in the monographs [40, Chapter 6]

and [2, Chapter 5]. More recently, goal oriented error estimation for optimal control of elliptic

PDEs using hierarchical error estimation techniques was discussed in [143, Section 2.4]. In that

context, one usually aims to solve an error system of the form(
L′′hh L′′he
L′′eh L′′ee

)(
eh
ee

)
= −

(
0

L′e

)
,

A common approach for efficiently solving the system is to simplify the equation above by drop-

ping a block of the operator, cf. [143, Section 2.2]. This yields, e.g.,(
L′′hh L′′he

0 L′′ee

)(
eh
ee

)
= −

(
0

L′e

)
.

As in the context of goal oriented error estimation the influence of eh vanishes in the evaluation

of the error estimator (5.15) due to Galerkin orthogonality, one only has to solve the lower

equation which corresponds to (5.34).

Localization strategies

We briefly recall localization strategies to localize the error estimator of (5.14) and (5.15) to

a cell-wise level. All considerations are valid for space and time discretization. The most

straightforward approach for localization is to use the cell contributions of the time and space

integrals occurring in the definition of the error estimators as local cell indicators. However,

in case of space error estimation, it was shown in [29] that this can lead to overestimation of

the total error. Hence, more advanced strategies were developed in the literature. First, under

a regularity assumption of the optimal triple one can apply integration by parts in space to

formulate local error contributions, cf. [17, 18]. Second, assuming a patch structure on the

underlying mesh, a filtering approach was introduced in [22, 102]. Last, and more recently, a

strategy using a partition of unity was introduced in [121, Section 4.3], which leads to nodal

error contributions. In this work, we use the first methodology due to its simplicity, i.e., we

use the cell-wise contributions of the error estimator as local indicators. Further, we are not

primarily interested in the total error but rather in the relative behavior of the error indicators

over time. Accordingly, we mainly compare the refinement for two different QOIs for a given

number of maximal grid points, where the relative size of error indicators with respect to other

indicators is more important than the absolute error.
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Refinement strategies

Assume we have cell-wise error indicators ηi, i ∈ I for the space or time error at hand, where I
the index set of the time or space grid. We present two refinement strategies that can applied

to either space or time adaptivity. Further, we assume that the error indicators are ordered by

absolute value, i.e. w.l.o.g. ηi, i ∈ I are ordered in decreasing order. The strategy depicted in

Algorithm 3 refines all cells with error indicators above a fixed fraction of the maximal error.

Algorithm 3 Refinement strategy for percentage of maximal error

1: Given: maximal number of cells and 0 < c < 1

2: while #cells < maximal number of cells do

3: Solve OCP

4: Compute error indicators ηi for all i ∈ I
5: for i ∈ I do

6: if |ηi| ≥ c|η0| then

7: Mark cell i for refinement

8: end if

9: end for

10: Refine

11: end while

Second, we present a refinement strategy first discussed by Dörfler in [42, Section 4.2], which

aims to reduce the error by a certain percentage.

Algorithm 4 Dörfler strategy

1: Given: maximal number of cells and 0 < c < 1

2: while #cells < maximal number of cells do

3: Solve OCP

4: Compute error indicators ηi for all i ∈ I
5: p = 0

6: for i ∈ I do

7: Mark cell i for refinement

8: p = p+ |ηi|
9: if p ≥ c

∑
i |ηi| then

10: break

11: end if

12: end for

13: Refine

14: end while

In all numerical experiments we used Algorithm 4 with c = 0.5 for time refinement and

Algorithm 3 with c = 0.3 for space refinement. This choice is due to the fact that the refinement
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via Algorithm 3 is more aggressive if a lot of space grids need to be refined evenly, e.g., in

case the variables are close to a turnpike for several time discretization points. With a Dörfler

criterion, i.e., Algorithm 4, it can happen that the refinement procedure terminates after refining

only some of the space grids, despite the error indicators being of the same size. For a more

advanced refinement strategy, where the number of refined cells is optimized, the interested

reader is referred to [100, Section 6.5] and the references therein.

OCP solver

For the numerical solution of the optimal control problem in every MPC step, we use a composite

step method [98, 126] which is particularly well suited for strongly nonlinear optimal control

problems. Roughly speaking, this method can be seen as a globalized Newton method for

the first-order optimality system, splitting the total step into a tangential step for optimality

and a normal step for feasibility. This allows us to also solve quasilinear problems with a

very strong nonlinearity. The arising linear systems are solved with a projected preconditioned

conjugate gradient method, where the dynamics are solved exactly by blockwise factorization in

the preconditioner.

Solution warm starts

An important component for nonlinear problems is to fully utilize initial guesses for the non-

linear iteration, whenever they are available. In the context of grid adaptivity, one has to solve

the nonlinear problem again after refinement. Interpolating the solution on the old grid onto

the new grid serves as a good starting guess. We will illustrate this by the example of spatial

refinement. We consider the cost functional (5.30) and the quasilinear equation of Section 4.5.2

and replace the Neumann boundary control by a distributed control. Further we set the non-

linearity parameter to c = 10000, the Tikhonov parameter to α = 10−2 and use the dynamic

reference (5.28). We run the nonlinear algorithm on a coarse mesh, starting with 33 vertices, cf.

Table 5.1, uniformly refine the space grid and use the interpolated solution on the fine grid as a

starting guess for the next nonlinear iteration. Then the process is repeated. We compare the

iteration numbers with choosing zero as initial guess in each nonlinear iteration in Table 5.3.

We observe that significantly less iterations are needed when using the interpolated solution as

starting guess.

refinement loop 0 1 2 3

warm start (it.) 20 10 7 6

no warm start (it.) 20 18 18 21

Table 5.3: Iterations of the nonlinear solver with and without solution warm start after grid

refinement for a strongly quasilinear problem.

A second application of initial guesses is to use the shifted solution of the OCP in the previous

MPC step as an initial guess for the nonlinear OCP solve in the current MPC step. We will
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illustrate this by means of an example with the control variable u for initialization of the second

MPC iteration and describe how to obtain a starting guess for the optimal control defined on

[τ, T + τ ] from the previously obtained optimal control defined on [0, T ]. First, we restrict the

optimal control of the previous MPC step defined on [0, T ] onto [τ, T ]. Second, we perform

a constant extrapolation, i.e., u(t) = u(T ) for t ∈ [T, T + τ ], to obtain a function defined on

[τ, T + τ ]. We will briefly evaluate this by methodology means of two problems with different

reference trajectories, i.e., the static reference xstat
d defined in (5.27) and the dynamic reference

xdyn
d defined in (5.28) and the quasilinear problem mentioned above. The first nonlinear solve

for the first MPC step took 16 iterations for the autonomous problem and 20 iterations for the

non-autonomous problem. We choose the time horizon T = 10 and compare the number of

iterations needed for the second MPC step with and without solution warm start for different

implementation horizons in Table 5.4. In the autonomous case depicted on the left, despite

the length of the implementation horizon the nonlinear solver with initial guess needed only

three iterations to converge. This is mostly due to the presence of a steady state turnpike

property that is approached by the open-loop solution of the first MPC step. The second MPC

step then only remains at the turnpike, leading to both open-loop solutions being very similar.

Without initial guess, significantly more iterations were needed. This performance gain when

using a good initial guess is dampened when considering larger implementation horizons τ for

a non-autonomous problem, as the open-loop solutions of two succeeding MPC steps can be

fundamentally different.

τ 1 3 5 10

warm start (it.) 3 3 3 3

no warm start (it.) 13 14 13 15

τ 1 3 5 10

warm start (it.) 6 15 13 12

no warm start (it.) 16 22 19 11

Table 5.4: Iterations of the nonlinear solver with or without solution warm start in the sec-

ond MPC step for a strongly quasilinear problem. Left: autonomous problem. Right: non-

autonomous problem

Grid warm starts

Another aspect is the grid refinements and their reuse in an MPC scheme. One can use the

adaptive grids computed in MPC step i for starting grids in MPC step i+1. Due to the forward

stepping of MPC, one does not need to incorporate a coarsening algorithm. If the time or space

grid at time instance ti with ti > t0 + τ is refined in one MPC step due to a significant influence

on the MPC feedback, its influence will be even higher on the MPC feedback computed in MPC

step i+ 1. Further, if one wants to utilize warm starts of the solution in the MPC scheme, grid

warm starts further allow to use the computed solution without interpolation.
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Figure 5.24: Possible reuse of time and space grid in an adaptive Model Predictive Controller.

Parallelization

We briefly compare the effect of parallelization for the two most time consuming tasks in the

solution of the nonlinear OCP, i.e., the factorization of the block diagonal for each Euler step and

the computation of the common refinements. We show the computation times for sequential and

parallel execution of these two tasks in Table 5.5 and Table 5.6 and observe that a parallelization

with four CPU cores led to a speedup of approximately two in both cases. For both test cases,

we used eleven time step points.

total space DOFs 1243 4587 17611 69003 273163

time sequential (ms) 3 14 68 289 1472

time parallel (ms) 3 9 40 151 701

speedup factor 1 1.6 1.7 1.91 2.1

Table 5.5: Comparison of sequential and parallel computation time for block-diagonal factoriza-

tion of the differential operator.

total space DOFs 1243 4587 17611 69003 273163

time sequential (ms) 292 1225 5093 20771 86806

time parallel (ms) 140 669 2394 10371 44528

speedup factor 2.1 1.8 2.1 2.0 1.9

Table 5.6: Comparison of sequential and parallel computation time for common refinement and

transfer matrix assembly.

5.4 Outlook

We conclude this chapter with several research perspectives.
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• A direction of further research could be to utilize model order reduction combined with

grid adaptivity to obtain fast MPC methods. We refer to recent works combining grid

adaptivity and proper orthogonal decomposition [58, 59] and works employing proper or-

thogonal decomposition in an MPC context, cf. [64, 99]. In that context, the turnpike

property can turn out useful as it reveals a lot of structure of the dynamic problem and, in

case of a steady state turnpike, can be used to construct a reduced basis of high approx-

imation quality after solution of an elliptic OCP, which then can be enlarged by classical

methods.

• We considered only parabolic problems in this chapter. An adaption to hyperbolic prob-

lems is straightforward, cf. [86] for a posteriori goal oriented methods for hyperbolic prob-

lems.

• A possible extension could be to not perform grid refinement and solution of the nonlinear

problem separately, but to blend both into an adaptive algorithm. To this end, one could

apply the techniques of goal oriented error estimation to the defining equations of the

updates for the nonlinear algorithm. In the spirit of inexact Newton methods, one could

start the refinement procedure as soon as the region of fast local convergence is entered.

In order to obtain an efficient algorithm, the refinement needs to be just as aggressive

to render the solution on the coarse grid interpolated to the new grid in the region of

fast local convergence of the refined problem. Additionally, one can couple the estimated

discretization error and the tolerance of the underlying linear solvers to render the algebraic

and discretization error to be of the same order of magnitude. For an introduction to

Newton algorithms with adaptive finite element methods, the reader is referred to [38,

Chapter 8].

• One could investigate the use of an approximation of the system for computing the weights

for spatial error estimation, i.e., (5.34), affects the error estimation. A possible approx-

imation could be a constraint preconditioner, cf. [33] and [126, Section 7], i.e., dropping

Lxx(x, u, λ) and replacing Luu(x, u, λ) by its diagonal. Further, in the spirit of the DLY

methodology [39], one could additionally approximate the discretized differential operator

by taking the diagonal blockwise, which leads to a very efficient solution of the above

system without any considerable additional effort. We expect that this does not have any

considerable impact on the error estimation.
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- Modélisation Mathématique et Analyse Numérique, 19(4):611–643, 1985.

[47] C. Esteve, B. Geshkovski, D. Pighin, and E. Zuazua. Large-time asymptotics in deep

learning, 2020, arXiv:2008.02491.

[48] C. Esteve, H. Kouhkouh, D. Pighin, and E. Zuazua. The turnpike property and the

long-time behavior of the Hamilton-Jacobi equation, 2020, arXiv:2006.10430.

[49] L. C. Evans. Partial differential equations. American Mathematical Society, Providence,

R.I., 2010.

[50] L. C. Evans and R. F. Gariepy. Measure theory and fine properties of functions. Chapman

and Hall/CRC, 2015.
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Ich erkläre zudem, dass ich keine früheren Promotionsversuche unternommen habe.

Ich bin damit einverstanden, dass die elektronische Fassung dieser Dissertation unter Wahrung

meiner Urheberrechte und des Datenschutzes einer gesonderten Prüfung unterzogen werden kann
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