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Abstract

Abstract en Français

Les recherches et les logiciels présentés dans cette étude s’adressent à une
importante minorité au sein de notre société, à savoir la communauté des
sourds. Selon l’Organisation Mondiale de la Santé, cette minorité compte
plus de 278 millions de personnes dans le monde. De nombreuses recherches
démontrent que les sourds ont de grosses difficultés avec la langue vocale (LV
– Anglais, Chinois, etc.) ce qui explique que la plupart d’entre eux préfèrent
communiquer en Langue des Signes (LS). Du point de vue des sciences de
l’information, les LS constituent un groupe de minorités linguistiques peu
représentées dans l’univers du numérique. Et, de fait, les sourds sont les su-
jets les plus touchés par la fracture numérique.
Cette étude veut donc être une contribution pour tenter de combler ce frac-
ture numérique qui pénalise les sourds. Pour ce faire, nous nous sommes prin-
cipalement concentrés sur l’informatisation de SignWriting, qui constitue
l’un des systèmes les plus prometteurs pour écrire la LS. Concrètement, Sign-
Writing est un système d’écriture qui utilise des symboles pour représenter
les configurations des mains, les mouvements et les mimiques du visage de
la LS.
Nos travaux visent donc à projeter et élaborer un système pour développer la
production et l’utilisation des ressources en LS écrites avec SignWriting. Ce
système a été baptisé: SignWriting-oriented resources for the deaf (SWord).
Le but final de SWord est de rendre SignWriting effectivement exploitable
par les sourds aussi bien en tant que moyen de communication qu’en tant que
support d’apprentissage notamment dans le domaine du numérique. SWift,
un éditeur numérique permettant la création de ressources numériques en LS
écrites avec SignWriting, a été le premier logiciel à être inclus dans SWord.
Dans la présente étude, nous souhaitons illustrer une série de fonctions mises
à jour de SWift, comme par exemple la possibilité de composer des histoires
entières en LS. En outre, pour évaluer la fiabilité et la facilité d’utilisation
de l’application, nous avons organisé une session de tests sur un échantillon
de ses principaux usagers, à savoir des personnes qui connaissent et utilisent
SignWriting. Etant donné que cet échantillon est composé en majeure partie
de sourds, nous avons adapté l’approche des tests de façon à ce qu’elle soit
valable aussi bien pour les utilisateurs de la LS que ceux de la LV. Pour la
réalisation du test, nous avons adapté une méthode classique d’évaluation de
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la facilité d’utilisation, à savoir le Think-Aloud Protocol (TAP) ainsi qu’un
questionnaire de satisfaction très répandu, à savoir le Questionnaire for User
Interaction Satisfacion (QUIS).
En dépit des efforts accomplis, nous avons constaté que les éditeurs numériques
pour SignWriting, comme par exemple SWift (et de nombreux autres) sont
encore bien loin d’offrir à l’utilisateur une interface en mesure d’imiter la
simplicité de l’écriture manuscrite. C’est la raison pour laquelle nous avons
approfondi nos recherches afin de projeter une nouvelle génération d’éditeur
pour SignWriting, en mesure d’épargner à l’utilisateur d’éventuelles obliga-
tions liées au click, au glissé-déposé, à la recherche et à la navigation sur
l’Interface Utilisateur (IU) pendant le processus de composition d’un signe.
Notre objectif est de réaliser un mode d’interaction se rapprochant le plus
possible de la méthode papier-stylo dont se servent habituellement les êtres
humains pour écrire ou dessiner.
Cet objectif représente le noyau de notre étude. Pour pouvoir réaliser cette
nouvelle génération d’éditeur, nous avons conçu et élaboré un logiciel préposé
à la conversion électronique d’images scannées contenant des symboles manuscrits
ou imprimés en textes numériques dans SignWriting. Cette technique est
dénommée SignWriting Optical Glyph Recognition (SW–OGR) dans la présente
étude. Apparemment SW-OGR a beaucoup de points en commun avec les
techniques de Optical Character Recognition (OCR) pour LV, qui sont
largement entérinées par la littérature sur la vision par ordinateur. Par
conséquent, après avoir recueilli un bon nombre de textes manuscrits dans
SignWriting, en fonction de leur caractéristique picturale, nous avons étudié
les similitudes possibles entre le SW-OGR et les techniques à la pointe de
l’OCR pour les caractères manuscrits de la langue arabe, indienne et chi-
noise. Même si ces techniques adoptent des approches similaires, fondées sur
des techniques de reconnaissance des formes et de l’Apprentissage Automa-
tique, leur application dépend souvent de la notation spécifique qui doit être
reconnue.
Dans le cas présent, nous n’avons pas pu suivre le même parcours pour
la conception du moteur SW-OGR et nous avons dû élaborer nos pro-
pres procédures de reconnaissance. Un choix qui a été dicté par les car-
actéristiques de SignWriting. Primo parce que, contrairement à de nombreux
alphabets, SignWriting offre une série de symboles de l’ordre de dizaines de
milliers. Secundo parce que, habituellement, l’écriture à la main étant rel-
ativement imprécise, chaque symbole peut être dessiné de plusieurs façons
différentes (généralement de l’ordre de dizaines de façons différentes), comme
n’importe qu’elle notation manuscrite.
Par conséquent, il est évident que n’importe quelle formation pour une ap-
proche basée sur l’apprentissage automatique prendrait un temps exagérée
et, surtout, demanderait un nombre considérable de modèles. Il y a également
une autre raison qui complique l’application des techniques de reconnais-
sance des formes: l’absence de règles fixant le nombre, le type et la position
des symboles dans un signe écrit avec SignWriting. En effet, la liberté de
composition, qui est l’une des caractéristiques faisant de SignWriting un in-
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strument très utile pour l’écriture au quotidien en LS, complique beaucoup
la modélisation de la notation.
Pour toutes les raisons mentionnées ci-dessus, nous avons donc projeté et
mis en place SW-OGR de façon à effectuer la reconnaissance des textes dans
SignWriting en travaillant exclusivement sur les caractéristiques géométriques
et topologiques des symboles et leurs relations topologiques. Nous nous
sommes également appuyés sur des informations contextuelles, comme par
exemple la connaissance de l’organisation de l’alphabet de SignWriting.
Dans la présente étude nous présentons également nos recherches sur l’alphabet
de SignWriting visant à d’identifier les critères géométriques permettant
de classifier ses symboles, la conception de la procédure de reconnaissance,
l’élaboration et la mise à l’essai du moteur SW-OGR. La première partie de
la procédure vise à repérer les formes bases au sein des fragments présents
dans le texte écrit (cercles, polygones, etc.). C’est la seule étape au cours de
laquelle nous pouvons exploiter les procédures d’apprentissage automatique
existantes. Les formes détectées et leurs caractéristiques sont utilisées pour
inférer la région du corps et le type d’élément non-anatomique (mouvement,
contact, etc.) que le fragment peut décrire.
A partir de là, les critères identifiés correspondent à une série de vérifications
effectuées pour reconnâıtre les caractéristiques du symbole. Les résultats de
ces vérifications sont ensuite utilisés pour construire un code, qui est lui-
même utilisé pour identifier le symbole.
Le moteur SW-OGR a vocation à accomplir une double fonction: en pre-
mier lieu, il peut être intégré dans un éditeur de SignWriting existant, tel
que SWift, afin de fournir un support immédiat à l’écriture manuscrite et de
rendre le processus de composition beaucoup plus rapide et pratique pour un
usage quotidien. A signaler que depuis le début de nos travaux, nous étions
conscients de la présence (et des dimensions importantes) d’un certain nom-
bre de corpus manuscrits en SignWriting recueillis par diverses communautés
dans le monde. Cette documentation est un bien précieux qui pourrait être
beaucoup plus utile encore si elle était numérisée. En second lieu, SW-OGR
est donc en mesure de numériser ces corpus de façon � intelligente �, à
savoir qu’il ne se limite pas à effectuer un simple � balayage � des docu-
ments mais, à travers la reconnaissance, il est en mesure de recueillir toutes
les informations sur le rapport entre les signes et les symboles qui les com-
posent, et permet ainsi à la communauté scientifique de réaliser tout type
d’analyse linguistique sur des séries de données complètes en SignWriting.
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Abstract in English

The studies and the software presented in this work are addressed to a rel-
evant minority of our society, namely deaf people. According to the World
Health Organization, such “minority” currently counts more than 278 mil-
lion people worldwide. Many studies demonstrate that, for several reasons,
deaf people experience significant difficulties in exploiting a Vocal Language
(VL - English, Chinese, etc.). In fact, many of them prefer to communicate
using Sign Language (SL). As computer scientists, we observed that SLs
are currently a set of underrepresented linguistic minorities in the digital
world. As a matter of fact, deaf people are among those individuals which
are mostly affected by the digital divide.
This work is our contribution towards leveling the digital divide affecting
deaf people. In particular, we focused on the computer handling of Sign-
Writing, which is one of the most promising systems devised to write SLs.
More specifically, SignWriting is a writing system which uses visual symbols
to represent the handshapes, movements, and facial expressions of SLs.
Our efforts aim at designing and implementing a framework to support
the production and the use of SignWriting-oriented resources for the deaf
(SWord). The ultimate purpose of SWord is to make SignWriting effectively
exploitable as a communication mean and a learning support for deaf peo-
ple, especially in the digital world. The first software to be included into the
SWord framework was SWift, a digital editor which allows the creation of
digital SL resources written in SignWriting. In this work, we present a num-
ber of upgraded features of SWift, such as the possibility to write signed
stories. Moreover, to asses the reliability and the usability of such appli-
cation, we conducted a test session with its main target users, i.e. people
which are proficient in SignWriting. Since our sample was mainly composed
by deaf people, we adapted our testing approach to be viable for both SL
and VL users. In order to perform the assessment, we adapted a popular us-
ability testing methodology, namely the Think-Aloud Protocol (TAP), and
a widespread customizable questionnaire, namely the Questionnaire for User
Interaction Satisfaction (QUIS).
Despite our efforts, we observed that SignWriting digital editors, such as
SWift (and many others), are still far from granting the user an interface
which is able to emulate the simplicity of handwriting. For this reason, we
continued working towards the possibility to design a new generation of
SignWriting editors, able to lift the user of any burden related to clicking,
dragging, searching, browsing on the User Interface (UI) during the compo-
sition process of a sign. Our aim is to implement an interaction style which
is as similar as possible to the paper-pencil approach that humans normally
use when writing or drawing.
The main part of the present work deals with this latter goal. To make
such new generation of editors feasible, we designed and implemented a
software application whose purpose is to operate the electronic conversion
of scanned images containing handwritten or printed SignWriting symbols



11

into machine-encoded SignWriting texts. Such technique is referred to as the
SignWriting Optical Glyph Recognition (SW-OGR) in the present work.
Apparently, the SW-OGR topic shares much in common with the Optical
Character Recognition (OCR) techniques for VLs, which are well consoli-
dated within the computer vision literature. More specifically, after gather-
ing a fair number of handwritten SignWriting texts, and given their pictorial
nature, we investigated the possible similarities between the SW-OGR and
the modern OCR techniques employed to perform the recognition of Arabic,
Indian and Chinese handwritten characters. Even if such techniques adopt
similar approaches, based on pattern recognition and machine learning, their
implementation may often depend on the specific notation to be recognized.
In our case, we could not follow a similar line for the design of the SW-OGR
Engine, and we were forced to devise our own recognition procedures. The
reason for this choice is the very particular nature of SignWriting. First of
all, unlike most alphabets, SignWriting features a number of symbols which
is in the order of the tens of thousands. Moreover, since handwriting is usu-
ally quite inaccurate, each symbol can be drawn in a number (usually in the
order of tens) of different ways, as in any handwritten notation. As a conse-
quence, it is evident that any training to enable a machine learning approach
would require an unreasonable amount of time and, most of all, of training
templates. A further reason makes the application of pattern recognition
techniques very difficult, i.e. the total lack of rules regulating the number,
type and position of the symbols within a SignWriting sign. In fact, the
composition freedom, which is one of the features which make SignWriting
a very handy tool for everyday SL writing, also makes the modeling of the
notation very difficult.
For the above reasons, we designed and implemented SW-OGR to perform
the recognition of SignWriting texts by only working with the geometric and
topological features of the symbols, and with their topological relationships.
We also relied on context-dependent information, such as the knowledge of
the organization of the SignWriting alphabet.
In this work we present the studies performed on the SignWriting alphabet
in order to identify geometric criteria to classify its symbols, the design of
the recognition procedure, and the development and testing of the SW-OGR
engine. The starting points of the procedure aims at identifying base shapes
within the fragments of the written text (circles, polygons, etc.). This is the
only step where we can exploit existing machine learning procedures. De-
tected shapes and their features are used to infer the body area or kind of
non-anatomical element (movement, contact, etc.) that the fragment may
depict. From this point on, the identified criteria correspond to a series of
checks performed to recognize the features of the symbol. The result of the
checks are used to build a code, which is finally used to identify the symbol.
The engine is intended to serve a twofold purpose: first of all, it can be
embedded within existing SignWriting editors, such as SWift, in order to
provide a prompt support for handwriting, and make the composition pro-
cess much faster and comfortable for everyday use. In addition, since the
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beginning of our work, we were aware of the presence (and of the consid-
erable size) of a number of handwritten SignWriting corpora gathered from
different communities around the world. Those corpora are an invaluable as-
set, and they could become even more useful if digitalized. SW-OGR is able
to digitalize such corpora in a smart way, since it does not simply perform a
“scan” of the documents, but, through the recognition, it is able to gather
any information about the relationship between a sign and the symbols that
compose it, thus allowing the research community to perform any kind of
linguistic analysis on whole SignWriting datasets.



13

Abstract in Italiano

Gli studi ed i software presentati in questo lavoro sono indirizzati ad una
importante minoranza nella nostra società, ossia quella costituita dalle per-
sone sorde. Attualmente, secondo la World Health Organization, tale “mi-
noranza” è costituita da più di 278 milioni di persone in tutto il mondo.
Molti studi dimostrano che, per diverse ragioni, le persone sorde incontrano
serie difficoltà nell’utilizzo di una Lingua Vocale (LV - Inglese, Cinese, ecc.).
Infatti, molti di loro preferiscono comunicare usando la Lingua dei Segni
(SL). Da un punto di vista delle scienze dell’informazoine, si può osservare
che le LS costituiscono attualmente un gruppo di minoranze linguistiche
poco rappresentate nel mondo digitale. Di fatto, le persone sorde sono tra
gli individui maggiormente affetti dalla digital divide.
Il presente lavoro rappresenta il nostro contributo per ridurre la digital
divide che colpisce le persone sorde. In particolare, ci siamo concentrati
sull’informatizzazione di SignWriting, che è uno dei sistemi più promettenti
ideati per scrivere la LS. Più specificamente, SignWriting è un sistema di
scrittura che utilizza simboli per rappresentare le configrazioni delle mani, i
movimenti e le espressioni facciali della LS.
I nostri sforzi mirano a progettare e implementare un framework per fa-
vorire la produzione e l’utilizzo di risorse in LS scritte con Signwriting, il
nome del framework è SignWriting-oriented resources for the deaf (SWord).
Il fine ultimo di SWord è di rendere SignWriting effettivamente sfruttabile
come mezzo di comunicazione e come supporto per l’apprendimento per le
persone sorde, soprattutto nel mondo digitale. Il primo software ad essere in-
cluso in SWord è stato SWift, un editor digitale che permette la creazione di
risorse digitali in LS scritte con SignWriting. In questo lavoro, presentiamo
una serie di features aggiornate di SWift, come ad esempio la possibilità di
comporre intere storie in LS. Inoltre, per valutare l’affidabilità e l’usabilità
di tale applicazione, abbiamo condotto una sessione di test con un campione
dei suoi principali utenti finali, ossia persone che conoscono ed usano Sign-
Writing. Dato che il nostro campione è composto principalmente da persone
sorde, abbiamo adattato il nostro approccio di test in modo da essere valido
sia per gli utenti di LS che di LV. Al fine di eseguire il test, abbiamo adattato
un popolare metodo per la valutazione dell’usabilità, ossia il Think Aloud
Protocol (TAP), e un questionario personalizzabile molto diffuso, vale a dire
il Questionario per la User Interaction Satisfaction (QUIS).
Nonostante i nostri sforzi, abbiamo osservato che gli editor digitali per Sign-
writing, come ad esempio SWift (e molti altri), sono ancora molto lontani dal
fornire all’utente un’interfaccia che sia in grado di emulare la semplicità della
scrittura a mano. Per questo motivo, abbiamo continuato a lavorare verso la
possibilità di progettare una nuova generazione di editor per SignWriting, in
grado di sollevare l’utente da eventuali oneri legati a click, drag-and-drop,
ricerca e navigazione sull’Interfaccia Utente (UI) durante il processo di com-
posizione di un segno. Il nostro obiettivo è realizzare uno stile di interazione
che sia il più simile possibile al metodo carta-e-penna che gli esseri umani
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normalmente utilizzano durante la scrittura o il disegno.
La parte principale del presente lavoro affronta quest’ultimo obiettivo. Per
rendere realizzabile questa nuova generazione di editor, abbiamo progettato
e implementato un software il cui scopo è quello di operare la conversione
elettronica di immagini scansionate contenenti simboli scritti a mano o stam-
pati in testi digitali in Signwriting. Nel presente lavoro, tale tecnica viene
definita come SignWriting Optical Glyph Recognition (SW-OGR).
Apparentemente, SW-OGR ha molto in comune con le tecniche di riconosci-
mento ottico dei caratteri (OCR) per LV, che sono ben consolidate nella
letteratura relativa alla computer vision. In particolare, dopo aver raccolto
un discreto numero di testi scritti a mano in SignWriting, e data la loro
natura pittorica, abbiamo studiato le possibili analogie tra la SW-OGR e le
moderne tecniche di OCR per i caratteri scritti della lingua araba, indiana e
cinese. Anche se tali tecniche adottano approcci simili, basati su tecniche di
pattern recognition e machine learning, la loro attuazione può spesso dipen-
dere dalla specifica notazione che deve essere riconosciuta.
Nel nostro caso, non abbiamo potuto a seguire una linea simile per la pro-
gettazione del motore SW-OGR, e abbiamo elaborato le nostre procedure
di riconoscimento. La ragione di questa scelta è la particolare natura di
SignWriting. Prima di tutto, a differenza di molti alfabeti, SignWriting pre-
senta una serie di simboli che è dell’ordine delle decine di migliaia. Inoltre,
poiché la scritturaa mano è di solito piuttosto imprecisa, ogni simbolo può
essere disegnato in un numero (di solito dell’ordine di decine) di modi di-
versi, come in qualsiasi notazione manoscritta. Di conseguenza, è evidente
che qualsiasi training per consentire un approccio basato sul machine learn-
ing richiederebbe una quantità irragionevole di tempo e, soprattutto, di
templates. Un ulteriore motivo rende l’applicazione di tecniche di pattern
recognition molto difficile, cioè la totale mancanza di norme che regolino
il numero, il tipo e la posizione dei simboli all’interno di un segno scritto
con SignWriting. Infatti, la libertà composizione, che è una delle caratteris-
tiche che rendono Signwriting uno strumento adatto per l’utilizzo quotidi-
ano, rende anche la modellizzazione della notazione molto difficile.
Per le ragioni di cui sopra, abbiamo progettato e implementato SW-OGR in
modo da eseguire il riconoscimento di testi in SignWriting lavorando esclusi-
vamente con le caratteristiche geometriche e topologiche dei simboli, e con le
loro relazioni topologiche. Abbiamo anche fatto affidamento su informazioni
contestuali, come ad esempio la conoscenza dell’organizzazione dell’alfabeto
di SignWriting.
In questo lavoro presentiamo i nostri studi sull’alfabeto di SignWriting al
fine di identificare i criteri geometrici per classificare i suoi simboli, il de-
sign della procedura di riconoscimento, e lo sviluppo e il testing del motore
SW-OGR. La parte inziale della procedura mira ad individuare le forme
base all’interno dei frammenti presenti del testo scritto (cerchi, poligoni,
ecc). Questo è l’unico passo in cui possiamo sfruttare procedure di machine
learning esistenti. Le forme rilevate e le loro caratteristiche sono usate per
inferire la regione del corpo o il tipo di elemento non-anatomico (movi-
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mento, contatto, ecc) che il frammento può descrivere. Da questo punto in
poi, i criteri individuati corrispondono a una serie di controlli effettuati per
riconoscere le caratteristiche del simbolo. Il risultato dei controlli vengono
utilizzati per costruire un codice, che viene infine utilizzato per identificare
il simbolo.
Il motore SW-OGR è destinato a servire un duplice scopo: in primo luogo,
esso può essere integrato all’interno di editor di Signwriting esistenti, come
SWift, al fine di fornire un supporto rapido per la scrittura a mano, e rendere
il processo di composizione molto più veloce e comodo per l’uso quotidiano.
Inoltre, fin dall’inizio del nostro lavoro, eravamo consapevoli della presenza
(e della notevole dimensione) di un certo numero di corpus manoscritti in
SignWriting, raccolti da diverse comunità in tutto il mondo. Questi corpus
sono un bene prezioso, e potrebbero diventare ancora più utili se digitaliz-
zati. SW-OGR è in grado di digitalizzare tali curpus in modo intelligente, in
quanto non si limita a eseguire una semplice “scansione” dei documenti, ma,
attraverso il riconoscimento, è in grado di raccogliere tutte le informazioni
sul rapporto tra i segni e i simboli che li compongono, permettendo cos̀ı alla
comunità scientifica di eseguire qualsiasi tipo di analisi linguistica su interi
dataset in SignWriting.
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Introduction

The subject of the present work lies in the middle between image processing
and human-computer interaction (HCI). The title reads: Informatisation of
a graphic form of Sign Languages - application to SignWriting, and it is
important to spend a few words to clarify its meaning. First of all, Sign
Language (SL) is the visual-gestural language used by many deaf people to
communicate with each other. SL is deeply different from the Vocal Lan-
guage (VL) used by hearing people, such as English, Chinese, etc. This is
mainly due to the fact that the cognitive structures underlying the language
processing of deaf people are deeply different from those exploited by hearing
people. In fact, such structures reflect the highly visual perception experi-
enced by people who mainly feel the world surrounding them through their
eyes.
Like many other languages in the world, SLs do not currently have a widely
acknowledged graphic (or written) form. The main difference between the
two situations is that in the former case the problem is mostly limited to
small and isolated communities, while SLs, which are different in the differ-
ent countries like VLs, are used by a community which shares its communi-
cation space with another (hearing) community, whose VL is the dominating
one. As a matter of fact, the deaf communities around the world do not cur-
rently share a common writing system to represent their preferred language.
This still happens notwithstanding the fact that a number of writing systems
have been developed for SLs, by different research teams and for different
purposes (see Chapter 1). Actually, choosing one writing system for SLs is
subordinated to the goal that one must pursue. In our case, given our goal
to increase the accessibility of electronic resources to deaf people in every
day life, SignWriting proved the most appropriate candidate to work with,
since it has features that can rarely be found in other SL writing systems.
More specifically, SignWriting is a writing system which uses visual symbols
to represent the handshapes, movements, and facial expressions of SLs. Its
high iconicity, and the possibility to be employed in everyday use made it
the ideal candidate for a wide diffusion, and for this work (see Chapter 2).
Unfortunately, neither SLs, and even less any of the systems devised to write
them, are adequately, extensively and ubiquitously exploited to transmit in-
formation in the digital world. Most digital artifacts, in fact, are available
only in VL, whether they are applications, content, websites, etc. Little
attention is paid to accessibility design for deaf people, which is often car-
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ried out using solutions on the edge of the workaround, i.e. through textual
captioning and audio-content transcription. As detailed in Chapter 1, this
kind of design may support the needs of people who become deaf after the
acquisition of speech and language (post-lingual deafness), but issues re-
lated to pre-lingual deafness are seldom and poorly addressed. Actually, a
deaf-oriented accessibility design based on SL support is still far from be-
ing realized. Videos, more specifically signed videos, are typically the most
widespread technique for SL inclusion. However, even if many deaf com-
munities have recently replaced many functions of writing by using signed
videos, this is not always possible or appropriate. As an example, it is not
possible to take notes with a video, or to annotate a web resource (tagging)
or to enter a query on a search engine. In other words, videos lack the ease
of handling and the variegate usability of a written expression.
The belief underlying the present work is that the informatisation of SLs is
of paramount importance to achieve an effective deaf-oriented accessibility
design, and to ultimately mitigate the impact of the digital divide on deaf
people. First of all, in order to achieve this goal, it was necessary to design
a framework to support the production and the use of SignWriting-oriented
resources for the deaf (SWord). SWord is a framework designed to include
software for the acquisition, management and dissemination of signs and
signed stories written in SignWriting. The ultimate purpose of SWord is to
make SignWriting effectively exploitable as a communication mean and a
learning support for deaf people, especially in the digital world (see Chapter
3). The first software to be included into the SWord framework was SWift,
a digital editor which allows the creation of digital SL resources written
in SignWriting. In this work, we present a number of upgraded features of
SWift, such as the possibility to write signed stories. Moreover, we conducted
a test session to evaluate the usability and the correct functioning of SWift;
in order to do this, a sample of the main target users of SignWriting digital
editors was gathered. Since most participants were deaf, the tools and the
methodologies chosen for the test were adapted to work with deaf people
too (see Chapter 3.2)
The HCI, however, is not the core topic of this dissertation. In fact, despite
our efforts, we observed that handwriting signs is still much easier than using
any SignWriting digital editor, such as SWift, to compose them. For this rea-
son, we designed and implemented a software methodology whose purpose
is to operate the electronic conversion of scanned images containing hand-
written or printed SignWriting symbols into machine-encoded SignWriting
texts. Such technique is referred to as the SignWriting Optical Glyph Recog-
nition (SW-OGR) in the present work (see Chapter 4, 5, 6 and 7).
Due to the huge number of symbols to recognize (about 40.000), it was not
possible to rely on Machine Learning techniques, since any training proce-
dure aiming at recognizing the whole set of glyphs would have been un-
sustainably expensive. For this reason, SW-OGR performs the recognition
of SignWriting texts by only working with processing rules related to the
geometric and topological features of the symbols, and with their topologi-
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cal relationships. We also relied on context-dependent information, such as
the knowledge of the organization of the SignWriting alphabet. In this work
we present the studies performed on the SignWriting alphabet in order to
identify geometric criteria and rules to classify its symbols, the design of the
recognition procedure, and the development and testing of the SW-OGR
engine. The engine is intended to serve a twofold purpose: first of all, it can
be embedded within existing SignWriting editors, such as SWift, in order to
provide a prompt support for handwriting, and make the composition pro-
cess much faster and comfortable for everyday use. In addition, SW-OGR is
able to digitize paper SignWriting corpora in a smart way, since it does not
simply perform a “scan” of the documents, but, through the recognition, it
is able to gather any information about the relationship between a sign and
the symbols that compose it, thus allowing the research community to per-
form any kind of linguistic analysis on newly-acquired SignWriting datasets.
The present dissertation is composed by 7 chapters. Chapter 1 covers the
necessary background about deafness and language; Chapter 2 provides a
detailed description of SignWriting; Chapter 3 introduces the SWord frame-
work and SWift. The remaining chapters cover SW-OGR. Chapter 4 intro-
duces SW-OGR and the related work about Optical Character Recognition
(OCR); Chapter 5 covers the studies on the SignWriting alphabet in order
to identify the features to be exploited during the recognition procedure;
Chapter 6 details the design and the implementation of SW-OGR; finally,
Chapter 7 covers the testing of the application.





Chapter 1

Deafness and communication

1.1 Deafness and language

1.1.1 Sign language in history

Deaf 1 people and the way they communicate exist since the beginning of the
history of Man. Only a limited number of partial sources, mostly fragments
of experiences or studies made by philosophers, poets, scientists, legislators,
are available from the first centuries of documented history. Despite this, we
can clearly state that the deaf were mostly ignored and, in particular times
or situations, harshly opposed for a number of different reasons, ranging
form pedagogical to religious (Encrevé, 2013).
Ever since the times of the Bible, prejudices against deaf people led to con-
sider both the healing or the education of a deaf person as a miraculous
event. The Holy Scriptures regarded them as incomplete and weak beings,
their only chance to be part of the society was to be “touched” by Jesus.

32 There some people brought to him a man who was deaf and
could hardly talk, and they begged Jesus to place his hand on
him. 33 After he took him aside, away from the crowd, Jesus
put his fingers into the man’s ears. Then he spit and touched the
man’s tongue. 34 He looked up to heaven and with a deep sigh
said to him, “Ephphatha!” (which means “Be opened!”). 35 At
this, the man’s ears were opened, his tongue was loosened and
he began to speak plainly.

(Biblica, 2011) NIV, Mark 7:32-35.

From the above citation we can notice that in those centuries (and for many
to come), the causal connection between the faculty to hear sounds and the

1During years of work and research along with the Deaf Community, we acknowledged
that the most appropriate term to refer to people with a hearing loss, is actually “deaf
people”, so we will be adopting it for the present work. For further information please
refer to (Cavender, Trewin, & Hanson, 2009)
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faculty to produce sounds was still unclear to the most, so there was no
distinction between deaf people and dumb people.
Among the early sources about deafness, we count the observations of three
of the brightest minds of the ancient Greece. Plato was one of the first au-
thors to observe and make a clear reference to a gestural language used by
the deaf.

SOCRATES: [...] And here I will ask you a question: Suppose
that we had no voice or tongue, and wanted to communicate with
one another, should we not, like the deaf and dumb, make signs
with the hands and head and the rest of the body?
HERMOGENES: There would be no choice, Socrates.
SOCRATES: We should imitate the nature of the thing; the
elevation of our hands to heaven would mean lightness and up-
wardness; heaviness and downwardness would be expressed by
letting them drop to the ground; if we were describing the run-
ning of a horse, or any other animal, we should make our bodies
and their gestures as like as we could to them.
HERMOGENES: I do not see that we could do anything else.
SOCRATES: We could not; for by bodily imitation only can
the body ever express anything.

(Sedley, 2003) Plato, Cratylus.

In his dialogue Cratylus (Sedley, 2003), he underlines the expressive power
of a language which makes large use of the body to “mean” (σημαίνειν)
anything. Notice that the whole body is observed to take part in the com-
munication: the meaning is not exclusively conveyed by the hands but also
by “the head and the rest of the body” (Sedley, 2003). Unfortunately, Plato’s
findings were mostly ignored and the deaf continued to be considered like
individuals without any cognitive development whatsoever. Aristoteles, and
Hippocrates before him, were among the first men to reckon that speaking
and hearing abilities were linked, being derived from the same area in the
brain. For this reason, they believed that the deaf could never speak (Eriks-
son & Schmale, 1998). Their hypothesis was also supported, four centuries
later, by Galen, and it was considered to be correct until the sixteenth cen-
tury.
One of the few texts providing an enlightened vision about deaf people
and their education is the Talmud: the first written compendium of Ju-
daism’s Oral Law, dating back to the second century CE. In the Mishnah of
the Talmud (Danby, 1933), the writers described people with disabilities as
children of God who might be capable of reasoning despite their handicaps
(Marschark & Spencer, 2011) and contemplate the possibility for them to
be “educated and made intelligent” (Danby, 1933).
In the same age, under the Roman empire, the connection between deaf-
ness and dumbness was not understood nor accepted. This resulted in the
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widespread belief that education, healing and reasoning were beyond the
reach of such minority. As a consequence, Roman law (Codex Justinianus
(Mommsen, Krueger, & Kroll, 2010)) specified that those born deaf had no
legal rights or obligations and were forbidden to marry in addition to being
required to have guardians to look after them. On the other hand, those who
could read and write (mostly those who became deaf after having developed
speech) were allowed to enjoy full legal rights.
Over the next millennium we find little information that might help us un-
derstand how deaf people lived. It seems likely, however, that the Middle
Ages were especially dark for deaf people. It is not possible to identify a
consistent vision or attitude towards deaf people, in this period. On the
one hand, deaf people were often denied to enter churches, due to improper
or extreme interpretations of the Holy Scriptures (see the citation below),
which led people to think that hearing was a necessary condition to receive
the “Word” of God.

17 Consequently, faith comes from hearing the message, and the
message is heard through the word about Christ.

(Biblica, 2011) NIV, Romans 10:17.

On the other hand, they were well accepted in communities observing the
monastic silence, such as the Benedictine Monks. On the one hand, deaf
people were integrated into the agricultural and artisan society of the Mid-
dle Ages, since their hearing loss did not affect their ability to work. On
the other hand, they were deemed useless by the feudal lords, due to their
inability to receive orders in battle (and, as a consequence, to fight). To sum-
marize this first period, we could define it as the “prehistoric age” of deaf
history, an age of prejudice and discrimination, which often saw the deaf
and the fool treated alike, without any education or legal representation.
A more complex view of deaf people and their education was developed
under the Renaissance, in conjunction with the major changes in creative
thinking brought by this period. In the late thirteenth century, the Dutch
humanist Rudolphus Agricola described a deaf person who had been taught
to read and write (Marschark & Spencer, 2011). With signs, he explained,
or some other visual or pedagogical means, deaf people could sufficiently
express themselves and understand the world (Radutzky, 1993). Due to the
slow diffusion of literacy among the masses, it was still very unusual to
find deaf people who could read and write. Even so, records identified some
notable deaf artist leading productive lives. As an example, Bernardino di
Betto Biagi, a.k.a. Pinturicchio, born in 1454, painted many frescoes of cap-
ital importance, among which are those about Moses’ life in the Sistine
Chapel, those in Borgia Apartments in the Vatican and the Death of St.
Bernardine in the church of St. Mary in Aracoeli (Fig. 1.1).
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Figure 1.1: Death of St. Bernardine, painted by Pinturicchio in the church of St.
Mary in Aracoeli.

Juan Fernàndes de Navarrete, a.k.a. El Mudo, a painter of Philip II of Spain,
was best known for his exquisite coloring and experimentation with light.
Deafened in 1529 at the age of three, he communicated in signs with the
curate of the parish of Santo Vincente who found them “as intellegible as
speech” (Lang & Meath-Lang, 1995). Navarrete died in 1579, and on his
death bed, with pen and paper, he write his own will and appointed an
executor (Marschark & Spencer, 2011).
In the same years, in San Salvador Monastery in Oña, the milestone teaching
work of the Spanish Benedictine monk Pedro Ponce de Leon was developing.
His deaf students were almost all children of wealthy aristocrats who could
afford private tutoring, such as Francisco and Pedro de Velasco: the deaf
sons of the Constable of Castille Juan Fernández de Velasco. The work of
Ponce de Leon focused on helping them to learn how to speak, read and
write Vocal Language (VL), Spanish in particular. He also taught his stu-
dents the basics of mathematics, the principles of Catholic Religion, ancient
and foreign languages, natural philosophy and politics. Unfortunately, the
writings of the Benedictine monk have been almost completely lost, so we do
not know whether he developed a working Sign Language (SL) or not, nor
we can directly evaluate the success of his teaching method. Nevertheless,
thanks to the witness of Pedro de Tovar, one of his students, we know that
Ponce made large use of the Franciscan dactylological alphabet (Encrevé,
2013), which would allow a student who mastered it to spell out, letter by
letter, any word. The success of Ponce’s methods is indirectly reflected by
the success of his students as individuals, thus witnessing the fact that deaf
people had found ways to communicate in Renaissance Europe. These ap-
pear to be the first indications of the empowerment of deaf people through
education (Marschark & Spencer, 2011).
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The next two centuries (seventeenth and eighteenth) brought an increase
in the academic attention towards deaf people but also laid the foundation
for one of the most notable philosophical conflicts in the history of the ed-
ucation of deaf learners: the controversy over the use of signed and spoken
communication methods.
The english natural philosopher John Bulwer published, in the late seven-
teenth century, a number of works about deaf education, illustrating the use
of natural language and (hand) gestures. His most notable works were:

• Chirologia: or the naturall language of the hand (Fig. 1.2) was a com-
pendium of manual gestures, citing their meaning and use from a wide
range of sources, mainly religious and medical. Chirologia was pub-
lished in London in 1644, in a single volume along with Chironomia:
or, the art of manuall rhetoricke which was a manual for the effective
use of gesture in public speaking.

• With Philocophus: or, the deafe and dumbe mans friend, published in
London in 1648; with this work, Bulwer became the first person in
Great Britain to discuss the possibility of educating deaf people. To
persuade the British “rational men” of “the philosophical verity of this
Art” (the education of deaf people), in this volume he explained the
theory and empirical evidence for its possibility.

Figure 1.2: Excerpt from John Bulwer’s Chirologia (Bulwer, 1644), presenting a
very early sign dictionary.

On the other hand, the Swiss physician Johann Konrad Ammann and his fol-
lowers focused mainly on oral communication method. In his 1693 work The
Talking Deaf, or a method proposed whereby he who is born deaf may learn to
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speak, the voice is regarded as the primary means of communicating human
language since it alone is “the expressive secret of the soul” (Ree, 1999).
Ammann’s teaching method consisted principally in focusing the attention
of his deaf pupils to the motions of his lips and larynx while he spoke, and
then inducing them to imitate these movements, until he brought them to
repeat distinctly letters, syllables and words. Thanks to his achievements,
Ammann is regarded as one the fathers of modern Speech and Language
Therapy.
One myth, perpetuated even into modern times, was the belief that ab-
stractions could not be conveyed through SL. Yet, the anecdotes of this
early period (Marschark & Spencer, 2011) reveal that the signs used by deaf
people contradicted this view. Public schools were not yet established, and
we have little information about how deaf children were taught individually,
but we do know there were communicative exchanges between hearing peo-
ple and partially, if not fully educated, deaf people.
During the Age of Reason, as the scientific societies grew in Europe, sci-
entists and philosophers expanded their interests. Jean-Jacques Rousseau,
instigator of the French Revolution, and his countryman Denis Diderot were
among the most notable people to examine the potential of deaf youth to
learn. Rousseau was an early influential proponent of “learning by doing”.
In his book Émile, he expressed views which became the basis for the new
order established in France after the Revolution. He redirected attention to
learning through the senses and to the importance of the child’s interac-
tion with the environment, rather than through rote memorization of the
classics. As a member of the French Academy of Sciences, Rousseau took
a special interest in examining deaf children instructed by a teacher named
Jacob Péreire, who was using pronunciation, fingerspelling, and lipreading.
As a result of the work of Rousseau and others, the instruction of deaf pupils
gained increasing respect as a profession (Marschark & Spencer, 2011).
Another milestone, on the road of deaf self-determination (and SL devel-
opment), was set during the 1760s: under the guidance of Charles Michel
de l’Épée, France established the world’s first government-sponsored school
for deaf children: the National Institution for Deaf-Mutes in Paris. Using
his solid background of language theory exposed by Locke, Diderot, Condil-
lac, Rousseau and others, the Abbé de l’Épée was able to see language as
more than a verbal system of sounds. He believed that SL was the most
natural way for deaf people to communicate, and, through a combination
of signs and written characters, he believed it was possible to teach deaf
students to think logically. The method developed by De l’Épée, however,
had a significant drawback, since the SL he adopted for teaching was shaped
to reproduce the syntax of French VL. As a consequence, the language used
by the Abbé was rather a signed version of the French VL, rather than a
proper SL. Besides the obvious consequence of producing an altered SL, such
a language sometimes proved very cumbersome and hard to understand, to
the extent that Jean-René Presneau speaks of “rébus linguistique et gestuel”
(Encrevé, 2013; Presneau, 1998).
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The clash between oralist and manualism, saw the Abbé de l’Épée and his
successor, Roch Ambroise Sicard, particularly assailed by Samuel Heinicke,
who established a school in Leipzig in 1778 based on the practice of teaching
deaf pupils to speak. Influenced by the writings of Amman, Heinicke was one
of the first to try to link speech to higher mental processes, arguing that
articulation and vocal language were necessary for abstract thought (Lane,
1984). The European founders of manualism (the Abbé de l’Épée) and oral-
ism (Heinicke) exchanged letters expressing their irreconcilable differences
on educating deaf students. The “war of methods” was thus born between
the proponents of the systematic use of SL in educating deaf children and
those who stressed the use of speech, lipreading, and residual hearing with-
out signs as an all-encompassing solution.
Among the students of Abbé Sicard, in the National Institution for Deaf-
Mutes in Paris, there was Louis Laurent Marie Clerc, which became later
known as “The Apostle of the Deaf in America” by generations of American
deaf people. Clerc was a 30-year-old assistant teacher when he met Thomas
Hopkins Gallaudet, which was learning the “french” method of instruction
for deaf children in the same, world-famous school. Gallaudet was able to
convince Clerc to accompany him to Hartford, Connecticut, where they ob-
tained funds to establish the Connecticut Asylum for the Deaf and Dumb
(now named the American School for the Deaf) in 1817. Gallaudet was its
director, and Clerc became the first deaf teacher in America.
After Clerc, tens of deaf people played instrumental roles in founding ed-
ucational institutions in the United States. Some became superintendents.
By 1850 there were more than fifteen residential schools serving deaf pupils,
with nearly 4 out of every 10 teachers in these schools deaf themselves. It was
not long before that proposals for high schools and “high classes” for deaf
pupils were presented at national conventions and published in journals for
educators. Higher education for deaf people received a great impetus in 1857
when Amos Kendall, the business manager for Samuel F. B. Morse and his
telegraph business, met with Edward Miner Gallaudet, the son of Thomas
Hopkins Gallaudet, and encouraged him to accept the responsibility as the
superintendent of a school for deaf and blind children which Kendall had
established the previous year in the District of Columbia. The Columbia In-
stitution for the Deaf, Dumb and Blind, incorporated by the United States
Congress that year, was authorized to grant college degrees in the liberal
arts and sciences. Years later, the college would become Gallaudet College
and later Gallaudet University (Marschark & Spencer, 2011).
The 1880 Congress of Milan, however, resulted in an explicit denial of the
emerging deaf empowerment. Congress participants, overwhelmingly hear-
ing educators, voted to proclaim that the German oral method should be
the official method used in schools of many nations.

“The congress, considering the incontestable superiority of speech
over signs, for restoring deaf-mutes to social life and for giving
them greater facility in language, declares that the method of
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articulation should have preference over that of signs in the in-
struction and education of the deaf and dumb”

(quoted in Lane (Lane, 1984), p. 394)

The congress was properly orchestrated by the oralist faction: many of the
proponents of SL communication were unable to attend, and deaf people
were excluded from the vote. Deaf communities around the world raged
at what they saw as the oppressive strategies of the hearing authorities in
the schools. Actually, the outcome of the congress mainly affected France,
since Italy and Germany had already adopted the oralist method before
1880, while United States remained a hard terrain for oralism even after
the congress. In fact, as a result of the Milan vote, the National Association
of the Deaf (NAD) was established in the United States to strengthen the
political clout of deaf people, who wanted to have control over their own
destiny. The choice of communication methods was a human rights issue, in
reality, and one that remains volatile today (Marschark & Spencer, 2011).
Despite the controversy, educators of the late nineteenth and early twenti-
eth centuries established a rich knowledge base, publishing their perspectives
on teaching in the American Annals of the Deaf and Dumb, which began
in 1847. The cultural perspective was bolstered particularly by the scientific
recognition of American Sign Language (ASL) as a true language. Through
the publication of his work (Stokoe, 1960), William Stokoe proved instru-
mental in changing the perception of ASL from that of a broken or simplified
version of English to that of a complex and thriving natural language in its
own right, with an independent syntax and grammar, as functional and pow-
erful as those underlying VLs. This led to ASL receiving more respect and
attention in academic and educational environments. Stokoe also invented a
written notation for SL (now called Stokoe notation) as there was no written
form at the time.
Greater public awareness and acceptance of ASL was accompanied by a
growing political voice among people who were deaf and hard of hearing.
The social and political transformations that took place led to wholly new
lifestyles for many deaf people in America as well as improved attitudes
about deafness in general.
Finally, another important breakthrough in the study of SLs was made by
Christian Cuxac (Cuxac, 1996, 2000) during the last decade of the twenti-
eth century. Gathering substantial empirical evidence during his studies on
the French Sign Language (LSF), Cuxac demonstrated that the face and its
components, the gaze above all, were to be considered as production param-
eters of SL as much as (and in many cases more than) the hands. Cuxac also
observed the existence of two important classes of signs within the LSF, such
classes have been later observed in Italian Sign Language (LIS) and other
SLs as well (Antinoro Pizzuto, 2009). The first class is composed by standard
lexicon of SLs, the so called standard signs (Cuxac, 1996). In other words
the first class is composed by the signs that are listed within SL dictionar-
ies, such as cat, house, etc. However, SLs can also take advantage of another
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way to refer to people, items, events, etc. In fact, SL users can produce signs
which cannot be listed as standard signs, since they are distinguished at a
meta-linguistic level (Antinoro Pizzuto, 2009) by a very particular use of
the gaze, presenting highly iconic features. As an example, one of the most
common iconic features is the transfer of person. During a SL production
(i.e. a signed speech), the whole body of the signer reproduces one or more
actions taken by (or occurred to) one or more characters within the produc-
tion. The narrator “becomes” the person he/she is talking about, assuming
the look of the represented entity, and assuming facial expressions, body
postures and hand configurations which are iconically congruent with the
action or state of the represented entity (Antinoro Pizzuto, 2009). Due to
their highly iconic content, according to the model proposed by Cuxac, such
signs are referred to as Highly Iconic Structures (Cuxac, 2000).
Please notice that the purpose of this section is to give a global idea of the
history of SLs. For this reason, we decided to enumerate only the major
events, characters and studies, since providing full-depth details about the
rich linguistic and historical literature about SL is far beyond the scope of
the present work.

1.1.2 Sign Language and written representation

According to (Antinoro Pizzuto, Rossini, & Russo, 2006), “for all the lan-
guage communities that use it, a writing system is a socially shared code
employed for the transmission of texts, overcoming time and space limita-
tions”. Different types of “communicative needs”, can be at the origin of a
writing system (e.g. the possibility of fixing and transmitting a shared corpus
of laws, the transmission of literary texts, the elaboration of written dictio-
naries and grammars for educational purposes). Therefore, writing system
are created in order to respond to communicative, artistic and educational
needs and are designed for that (Antinoro Pizzuto et al., 2006).
Writing systems undoubtedly provide an analysis of language structures
which must be sufficient to achieve particular goals, but it is typically not
an exhaustive analysis of the language structures. The linguistic structures
which are codified in a writing system are the ones necessary to vehiculate
the meanings which are communicated in particular settings and for par-
ticular purposes or usage. Therefore, “different societies and cultures (e.g.
the Chinese written culture vs. the western tradition) choose different as-
pects of a language in order to better achieve these ends. This always occurs
through a social process of elaboration, diffusion and institutionalization of
the writing system” (Antinoro Pizzuto et al., 2006).
Moreover, writing systems contribute to the standardization processes and
thus influence linguistic norms, providing structures that are to be conceived
as a model of a socially approved, “well formed” way of using a language
(Antinoro Pizzuto et al., 2006).
The specificity of SLs is that they currently do not have a writing system.
This makes them comparable to languages which feature an oral tradition
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only, which currently constitute the majority of the existing languages (Ong,
2002). Since many VLs and the majority of SLs do not have their own writing
system, they are often written using the writing system of other languages.
In the specific case of SLs, this carries many issues and complications. Above
all, the fact that during face to face communication, SL users express their
thoughts in a multilinear way, by vehiculating information through the gaze,
hands, facial expression, head and shoulders. More specifically, the structure
of SLs is deeply different from the linear, sequential organization of VLs, due
the presence of a 4-dimensional structure (spatial plus temporal) and even
more due to possible overlapping of SL components (both manual and non-
manual) along each dimension. Another important aspect that needs to be
considered is that the relation between the concept of sign (in SL) and the
concept of word (in VL) is very complex and one. In fact, a single sign
may not merely express a single word; signs are more often equivalent to
complex VL expressions (a concept, a situation, etc.). For more information
about this aspect, please refer to Antinoro Pizzuto and Pietrandrea (2001);
Antinoro Pizzuto et al. (2006). Besides the mentioned multilinearity of such
languages, and the complex relationship between signs and words, we have
also to consider the key role of non-manual components, of the iconic and
spatial components, and even the particularity of the channel used (visual-
gestural). The presence of a multilinear organization has never been observed
in any VL (Garcia & Sallandre, 2013), as a consequence any writing system
“borrowed” from VLs have a very limited applicability for SLs. One of the
major examples is the International Phonetic Alphabet (IPA), which can be
used to transcribe any VL in the world, but proves totally useless to repre-
sent SLs.
This and other difficulties (Antinoro Pizzuto et al., 2006) have undermined
the development process of a written form for SLs so far. The development
process is also hindered by the fact that “deaf signers live in a diglossic en-
vironment, in which their unwritten face-to-face SL must co-exist with the
dominant spoken and written language used by, and in interaction with, the
surrounding hearing community” (Di Renzo, Lamano, Lucioli, Pennacchi, &
Ponzo, 2006). However, due to well known difficulties engendered by deaf-
ness, most deaf signers, including several highly skilled and qualified deaf
researchers, do not develop appropriate literacy skills in the dominant writ-
ten language (Garcia, 2006).
Despite the above difficulties, a number of writing system have been devised
for SLs. However, most of them were not designed for every day, wide use,
and none of them has been accepted by the Deaf Communities worldwide as
the main writing system for SL (see Channon and van der Hulst (2010) for
further information). The following sections (Section 1.1.2.1, 1.1.2.2, 1.1.2.3,
1.1.2.4) present some of the most notable and widespread writing systems
for SLs in the world, and Section 1.1.2.5 covers a comparison of such systems.
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1.1.2.1 Glosses

From the very beginning of linguistic research related to SLs, researchers
have resorted to graphic representations based on glosses, i.e. the represen-
tation of isolated SL signs (or sequences) by written words (or sequences) of
the national VL (Garcia & Sallandre, 2013). The word chosen to represent
each sign is what might be considered the “name” of the sign, and typically
represents one meaning of the sign, though not necessarily the meaning of
the sign in context (ASL Font: Ways to write ASL, 2013). Additional in-
formation about the way each sign is produced (including specific direction,
motion, repetition, and non-manual features) is indicated using a few stan-
dard symbols.
The main problem of the glosses is that the reader cannot by any mean
reconstruct SL production that was there in the first place. “There is no
independent representation of the signs. Everything we have is simply a se-
quence of textual labels that were assigned to forms that are just not there.”
(Antinoro Pizzuto et al., 2006).
Questions about the inadequacy of VL glosses for SLs are thus unavoidable.
Ultimately, for Antinoro Pizzuto et al. (2006) and Garcia (2006) such prob-
lems are epistemiological. Antinoro Pizzuto and Pietrandrea (2001) have
stressed that the so called gloss of SL cannot claim the status of writing
system in the sense the term has in spoken language research, to the extent
that it lacks the initial level of transcribing the signifier form. This is not a
problem in the annotation of any VLs, even those without their own writing
system, since spoken languages can always be phonetically transcribed using
the IPA.
Fig. 1.3 shows the ASL sign for bear, glossed in English. Please notice that
the glossed notation (on the right) does not preserve anything to reconstruct
the original sign (on the left). In other words, even is the sign for bear was
totally different from the one shown in Fig. 1.3, we would still the very same
gloss.

Figure 1.3: ASL sign for bear, glossed in English. Images extracted from (Sutton,
1996).

1.1.2.2 The Stokoe notation

W. Stokoe proposed his notation in 1960, as a part of the demonstration
of the linguistic status of ASL (Stokoe, 1960). In fact, the characters of the
Stokoe notation, i.e. cherems, are intended to be equivalent to phonemes in
VLs. The system is composed by 55 cherems (19 handshapes, 12 locations,
24 movements). A large number of characters representing the cherems was
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borrowed from the Latin alphabet and the numerical system, while others
were invented anew for the purpose of writing SL. The notation is arranged
linearly on the page and it is generally devoid of iconicity. Each sign is
written following a strict order, specifying its location (first), handshape
(second), and movement (third).
The Stokoe notation has a number of important limitations: first of all, the
system does not cover facial expressions, mouthing, eye gaze, and body pos-
ture, as Stokoe had not worked out their phonemics in ASL (Kyle, Woll, &
Pullen, 1988). There is also no provision for representing the relationship
between signs in their natural context, which restricts the usefulness of the
notation to the lexical or dictionary level. Moreover, the notation is only re-
stricted to the symbols needed to meet the requirements of ASL rather than
accommodating all possible signs in any SL. Finally, the Stokoe notation
was never designed for everyday use, in fact, its complexity make it mostly
intended for linguists and academics.
Nonetheless, Stokoe demonstrated for the first time that a SL can be written
phonemically just like any other language. As a consequence, the model of
the Stokoe notation was the direct source of the vast majority of systems
used over the next two decades (1960 - 1980), as linguistic studies of other
sign languages developed (Garcia & Sallandre, 2013).
Fig. 1.4 shows the ASL sign for bear, written using the Stokoe notation. A
complete description of the writing system is available in Stokoe (1960)

Figure 1.4: ASL sign for bear, written using the Stokoe notation. Images extracted
from (Sutton, 1996).

1.1.2.3 The HamNoSys notation

One noteworthy system based on Stokoe’s is the Hamburg Notation System
(HamNoSys) (Prillwitz, Leven, Zienert, Hanke, & Henning, 1989). Ham-
NoSys is intended to enable the phonetic transcription of all SLs, and there-
fore includes a considerable number of symbols (more than 200 basic sym-
bols). Since 1985, the system was gradually enhanced for the notation of
spatial cues and non-manual aspects (facial expressions, body movements,
eye gaze). Like the Stokoe notation, HamNoSys is arranged linearly on the
page, and each sign is written following a strict order, specifying its hand-
shape (first), orientation (second), location (third), actions (fourth).
Unlike Stokoe’s system, however, “HamNoSys employs iconic symbols and
shows strong internal systematicity. Yet, it faces a serious legibility problem,
particularly for the recording of discourse” (Garcia & Sallandre, 2013). Nev-
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ertheless, thanks to its fast digitization and compatibility with annotation
software (see 3.2 below), it is integrated in large lexical databases (Hanke &
Storz, 2006).
Since HamNoSys can often prove quite cumbersome to read and write, it
is not employed for everyday use, but it has been frequently used in SL re-
search. Fig. 1.5 shows the ASL sign for bear, written using the HamNoSys
notation. A complete description of the writing system is available in Prill-
witz et al. (1989)

Figure 1.5: ASL sign for bear, written using the HamNoSys notation. Images ex-
tracted from (Sutton, 1996).

1.1.2.4 The SignWriting notation

Currently, the only system designed with the twofold objective of serving
both for research and communication is SignWriting (Sutton, 1977, 1995),
which can currently claim to approach the status of writing system (Garcia
& Sallandre, 2013).
SignWriting is designed to be able to write any SL precisely, and uses many
symbols, including symbols for writing non-manual features. It is written
top to bottom in columns. The symbols can be rotated in 8 directions (in
most cases) and placed anywhere in the writing area (always). Symbols indi-
cating location, handshape, and movement are mixed together and arranged
to create a “picture” of the sign.
Although it is an alphabetic type of notation, like its predecessors, “the
significant innovation in SignWriting lies in its semiographic aspect, adding
the analogical to the digital” (Garcia & Sallandre, 2013). In fact, the system
represents all gesture production as a multi-parameter composition and as
a whole (each “graphic cell” includes, analogically, the symbols of various
articulators, allowing the reader to see a body and a gaze within a space),
thus allowing a detailed reconstruction of spatial phenomena (Garcia & Sal-
landre, 2013).
Fig. 1.6 shows the ASL sign for bear, written using the SignWriting notation.
A complete description of the writing system is available in Sutton (1977,
1995, 1996). Since SignWriting plays a very important role in the present
work, a detailed description of its features is covered in Chapter 2.
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Figure 1.6: ASL sign for bear, written using the SignWriting notation. Images ex-
tracted from (Sutton, 1996).

1.1.2.5 A comparison of notations for Sign Language

The comparison between writing systems for SL is a complex linguistic mat-
ter that lies well beyond the borders of computer science. The purpose of
the present section is to provide a qualitative and visual comparison of the
notations which were just introduced, and to explain the rationale behind
our decision to choose SignWriting as the writing system to focus on. For a
more detailed comparison between writing systems for SLs, please refer to
Channon and van der Hulst (2010); Garcia and Sallandre (2013).
It is worth starting with our running example of the ASL sign for bear, show-
ing all the introduced notations in one single picture. Observing the different
ways of representing the sign, it is possible to notice that the glossed nota-
tion carries no information whatsoever about the original sign. Moreover, it
is possible to notice the higher level of iconicity of SignWriting with respect
to the other notations. In fact, looking at the SignWriting representation,
it is possible, even without knowing the system, to identify a head and two
hands, and to notice that their spatial arrangement is completely consistent
with the original (face to face) sign.
A simple qualitative comparison can be performed by evaluating the writ-

Figure 1.7: ASL sign for bear, written using different notations. Images extracted
from (Sutton, 1996).

ing systems according to a number of criteria. The evaluation is intended to
provide a high-level view of the features of the different systems. Such coarse-
grained evaluation can prove particularly useful, especially when working for
the informatisation of the written form of SLs, which is exactly our case.
The comparison is reported in Fig. 1.8, and it has been extracted from ASL
Font: Ways to write ASL (2013). For each representation system, the fol-
lowing features have been evaluated:

• Whether it can be used to write any SL in the world, or, for any reason,
its usage is restricted to ASL.
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Figure 1.8: A comparison between writing systems, conducted taking into account
different factors. Image extracted from ASL Font: Ways to write ASL (2013)

• Whether it can be used to write non-manual components (facial ex-
pression, body movements, prosody, eye gaze) or not.

• What is the purpose that the writing system serves (academic, every-
day use, etc.).

• The graphical arrangement of the characters of the writing system.

• The character set allowing the writing system to be used in the digital
world.

As explained in the previous sections, we can observe in Fig. 1.8 that the
Stokoe notation does not cover non-manual components, and it cannot be
used to write any SL different from ASL. HamNoSys provides more features,
but its use is limited to the academic context. SignWriting, on the other
hand, is the only writing system to provide a pictorial organization, and can
be effectively employed for everyday use. Glosses have been included in such
comparison, but they cannot definitely be considered a writing system for
SL, since their features make them only useful as an annotation system for
SLs (Antinoro Pizzuto & Pietrandrea, 2001; Antinoro Pizzuto et al., 2006).
Another interesting visual comparison (ASL Font: Ways to write ASL, 2013)
can be performed by evaluating the iconicity of different writing systems.
We decided to focus on the handshape, since it is one of the most impor-
tant components that make up a sign in any SL. The visual comparison is
provided by expressing a number of hand configurations using each writing
system introduced in the previous sections. More specifically, Fig. 1.9 shows
a number of configurations which are in use within the ASL, expressed using
different writing systems. Observing Fig. 1.9, it is possible to identify a clear
difference between systems with little or no iconicity (Stokoe notation and
glosses), and high iconicity (SignWriting).
Of course, the choice of a writing system is subordinated to the goal that
one must pursue. The present work is focused on the informatisation of the
written form of SLs, and the ultimate goal of our efforts is to contribute
in leveling the digital divide affecting deaf people, and SL users in general.
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As a consequence, SignWriting proved the most appropriate candidate to
work with, since it has features that can rarely be found even in modern
SL writing systems. Its high iconicity, and the possibility to be employed in
everyday use made it the ideal candidate for a wide diffusion.

Figure 1.9: A group of hand configurations in use within ASL, expressed using
different writing systems. Image extracted from ASL Font: Ways to write ASL
(2013)

1.2 Deafness and the digital divide

According to the World Health Organization (World Health Organization,
2012), 278 million people worldwide are deaf or have hearing difficulties.
Such people also share the same issues when approaching the digital world,
since they must generally overcome barriers which are very similar to those
they face in everyday life.
This is mainly due to the fact that the languages they use, i.e. SLs, are “a
set of linguistic minorities relatively underrepresented in the digital world.
Thus, members of the deaf community usually are confronted with websites
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not written in their native language, which may arise accessibility barriers”
(Fajardo, Vigo, & Salmerón, 2009). As a matter of fact, deaf people are
among those groups of individuals with special needs who are most heavily
affected by the digital divide. Despite the increasing attention towards ac-
cessibility issues, inclusion design for deaf people is often carried out using
solutions on the edge of the workaround. In fact, most accessibility guide-
lines that should address their needs just deal with textual captioning and
audio-content transcription (Fajardo et al., 2009). The absence of complete,
accurate and universally recognized guidelines does not contribute to over-
come this digital divide between deaf and hearing people. Moreover, this way
of approaching the problem reveals an old misunderstanding: as explained
in Section 1.1, the cognitive structures underlying the language processing
of deaf people are deeply different from those exploited by people experi-
encing VL since infancy. Among the possible reasons for this peculiarity,
deaf people base their perception and cognitive structuring of information
from exterior world mostly on the sense of sight. Therefore, they tend to
reflect their visual organization of the world over the organization of lan-
guage. Given this peculiarity, most deaf people find significant difficulties
in both learning and mastering VLs, even in their written form (Perfetti &
Sandak, 2000). Even if they succeed in mastering a VL, dealing with VL
content may prove quite a tiring task for them, unless it is performed for
a short time (Antinoro Pizzuto, Bianchini, Capuano, Gianfreda, & Rossini,
2010). In fact, it can be observed that most of them prefer to communicate
using SLs (Antinoro Pizzuto et al., 2010). Therefore, dealing with the issues
of deaf-oriented accessibility using written VL is quite unrealistic (Borgia,
Bianchini, & De Marsico, 2014), and any VL-based solution (VL captioning
and transcription) to overcome the digital divide rarely solves the prob-
lem. In summary, while captioning-based accessibility design may support
the needs of people who become deaf after the acquisition of speech and
language (post-lingual deafness), issues related to pre-lingual deafness are
seldom and poorly addressed. Despite some deaf people can use VL, dealing
with the issues of deaf-oriented accessibility using written VL is quite unre-
alistic (Borgia et al., 2014).
The Web Content Accessibility Guidelines (WCAG) document, produced
by the World Wide Web Consortium (W3C) is currently one of the few at-
tempts to address general accessibility issues, including deaf-related ones.
However, this document mainly addresses blindness, while there is little un-
derstanding of deaf people’s problems (see Perfetti and Sandak (2000) for
a discussion). In particular, in the first version WCAG 1.0 (Vanderheiden,
Chisholm, & Jacobs, 1999), the deaf-centered guidelines are quite vague
and they just deal with labeling and audio-content transcription, leaving SL
visual-spatial features unmanaged. WCAG 2.0 (Caldwell, B. and Cooper,
M. and Guarino Reid, L. and Vanderheiden, G., 2008) addresses such issues
in a better way. For instance, the success criterion 1.2.6, whose satisfaction
is mandatory to achieve the highest level of compliance (AAA), states that
“Sign language interpretation is provided for all prerecorded audio content
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in the form of synchronous media types”.
Despite the efforts made by the W3C, a widespread support for SL in the
digital world is still far from being realized. Some research projects have
developed a series of techniques to allow deaf people to access digital infor-
mation through different forms of deaf-oriented hyperlinking. A seemingly
simple idea is the basis of the Cogniweb project (Fajardo, Parra, Cañas,
Abascal, & Lopez, 2008), which tested two alternatives to feature SL videos
intended to support navigation, which are embedded within small frames. In
both cases, each video contains a SL translation (produced by a signing per-
son) of any text hyperlink. This approach was called Sign Language Scent, as
an alternative to provide Information Scent (Pirolli & Card, 1999), which is
usually embedded in well-designed textual links. In the first proposed tech-
nique, the video frame for to this task is located at the bottom of the page,
and starts the corresponding SL sequence as the user hovers the mouse
over a link. In the second technique, an embedded (mouseover-activated)
video is set near each link. Two tests demonstrated that deaf people can
navigate more efficiently using the second technique. Other, more advanced
approaches are aimed at producing digital content (more specifically, web
content) using exclusively SL. Those approaches are based on Hypervideo
technology, which features hyperlinks embedded within a video, allowing to
retrieve further information about the concepts expressed in the video. The
SignLinking system (Fels, Richards, Hardman, & Lee, 2006), based on Hy-
pervideo, has a similar, yet more advanced interaction modality than Sign
Language Scent. Each SignLink spans a time window within the video, where
the presence of a link is usually indicated by an ad hoc icon. As the icon
appears, the user can choose whether to follow the link or to keep watching
the video. It is still unclear which method, among the described ones, is best
suited for SL navigation (Fajardo et al., 2009).
Though effective and technologically smart and attractive, the above and
similar current approaches to support digital content for deaf people share
the same flaws. Even if the deaf community has recently replaced many
functions of writing by videos, this is not always possible or appropriate.
As an example, it is not possible to take notes with a video, or to annotate
a web resource (tagging) or to enter a query on a search engine. In other
words, videos lack the ease of handling and the variegate usability of a writ-
ten expression.
Concluding the present chapter, it is important to remark that we strongly
believe that including support for SL, within digital artifacts (whether they
are software applications, websites, etc.) is necessary in order to address
accessibility issues for deaf people, and ultimately to overcome the digital
divide affecting them. Such belief is shared with many researchers and sup-
ported by scientific evidence, as shown in the this section.
The present work continues with the description of SignWriting: the writing
system for SL that we adopted to perform our studies and to produce our
software applications.



Chapter 2

SignWriting

SignWriting is a writing system which uses visual symbols to
represent the handshapes, movements, and facial expressions of
signed languages. It is an “alphabet” - a list of symbols used to
write any signed language in the world.

The SignWriting alphabet can be compared to the alphabet we
use to write English, the Roman alphabet. The Roman alpha-
bet can be used to write many different spoken languages. While
each language may add or subtract one or two symbols, the same
basic symbols we use to write English are used to write Danish,
German, French and Spanish. The Roman alphabet is interna-
tional, but the languages it writes are not.

In the same way, the symbols in the SignWriting alphabet are
international and can be used to write American Sign Language,
Danish Sign Language, Norwegian Sign Language, British Sign
Language, Dutch Sign Language - any signed language you choose.

(Sutton, 1996) Valerie Sutton - What is SignWriting

SignWriting (Sutton, 1977, 1995) is a featural1 and iconic writing system for
SLs. In SignWriting, a combination of 2-dimensional symbols, named glyphs
is used to represent any possible sign in SL. The glyphs are abstract images
depicting positions or movements of hands, face and body. Fig 2.1 shows the
LIS sign for Fun, written in SignWriting.
The high iconicity of this system is due to the shapes of the glyphs them-
selves, which are abstract images depicting positions or movements of hands,
face, and body. SLs are characterized by a 3-dimensional spatial arrange-

1A featural alphabet is an alphabet wherein the shapes of the letters are not arbitrary,
but encode phonological features of the phonemes they represent. The term featural was
introduced by Geoffrey Sampson to describe Hangul (Sampson, 1990).
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ment of gestures and by their temporal structure, In the very same way, the
spatial arrangement of the glyphs in the page plays a core role, since it does
not follow a sequential order (like the letters of the written form of VLs)
but it follows the natural arrangement suggested by the human body.
Since SignWriting, as a featural system, it represents the actual physical for-
mation of signs rather than their meaning, no phonemic or semantic analysis
of a language is required to write it. A person who has learned the system
can “feel out” an unfamiliar sign in the same way an English speaking person
can “sound out” an unfamiliar word written in the Latin alphabet, without
even needing to know what the sign means.

Figure 2.1: LIS sign for Fun, written in SignWriting. Extracted from (Di Renzo et
al., 2012)

Section 2.1 provides an account of the history and the evolution of SignWrit-
ing over time, Section 2.2 focuses on the features of the system which are
relevant for the present work. Section 2.3 describes an alternative SignWrit-
ing coding which has proven very useful during our work. The opportunities
and the issues of digital SignWriting are covered in Section 2.4.

2.1 The history of SignWriting

Southern California, 1966. A young girl, who was in a professional ballet
training class, invented an iconic writing system for recording ballet steps,
for her own personal use. Her name was Valerie Sutton, and the system is
presently known as DanceWriting. Using this system, each significant step
of any dance can be recorded by writing a stick figure on a five-lined staff.
Each line of the staff represents a specific body level, from the Foot Line (the
bottom one), to the Shoulder Line (the top one). Fig. 2.2 shows a modern
(1983) example of DanceWriting, extracted from (Sutton, 1983).
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Figure 2.2: First steps of the Sugar Plum Fairy, from the second act of the
Nutcracker ballet, recorded with DanceWriting (Sutton, 1983).

The first important “public” demonstration of DanceWriting dates back to
1970, as Sutton moved to Copenaghen. At that time, the world-renowned,
historic ballet steps of the Royal Danish Ballet, called The Bournonville
Schools, were at risk of being forgotten for lack of recording. Sutton used
her personal writing system to record and preserve these historic dances,
improving the system itself in the process (Sutton, 1996).
The success of Sutton’s efforts did not pass unnoticed. In 1974, SL researcher
Lars von der Lieth, and his team at the University of Copenhagen, was
looking for way to record signs and gestures. He asked Sutton to record the
movements from a videotape, and she fulfilled her task, using a DanceWrit-
ing variation which basically recorded any movement from the waist up,
with a few differences (Sutton, 1996). The foundations of SignWriting were
being laid (Fig. 2.3).

Figure 2.3: Early fragment of SignWriting (1976), extracted from (Sutton & von der
Lieth, 1976). This fragment represents a Danish SL sentence meaning It is father.
The significant influence of DanceWriting over the newborn SignWriting can be
identified by the glyph shapes and by the presence of a three-lined staff.

During the second half of the 1970s, focus slowly shifted from DanceWriting
to SignWriting, which underwent a gradual improvement process, fueled by
the growing interest over the writing system.
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In 1977, Judy Shepard-Kegl, a graduate student in linguistics at the Mas-
sachusetts Institute of Technology (MIT), arranged the first SignWriting
Workshop in the United States with the New England Sign Language Soci-
ety. The workshop was held at the MIT, and the ensuing debate brought up
important issues. The discussion led in turn to a gradual reshaping of the
system (covered later in this section).
In the same year, SignWriting was taught to a deaf community (the Na-
tional Theater of the Deaf) for the first time. The success achieved with
this experience consolidated the motivation of Sutton’s team, bolstering the
SignWriting dissemination activity.

The early years were also filled with experiments. One day, Sut-
ton received permission from a school in Manchester, New Hamp-
shire, to visit one class of Deaf students for one hour. There,
Sutton wrote the sign for hello on the blackboard in SignWriting.
The students guessed it immediately. They became quite excited
when they found they could read basic signs in a matter of min-
utes.

(Sutton, 1996) Valerie Sutton - The History of SignWriting

The first paper about SignWriting (Sutton, 1977) dates back to 1977, and it
was presented at the National Symposium on Sign Language Research and
Teaching in Chicago. During her presentation, Sutton invited Dr. Stokoe to
talk to the group as well.
Now, almost forty years later, SignWriting is one of the most used writing
systems for SL, improved by the work of several research teams around the
world, and by the daily usage of countless communities 2.
As a consequence, years of work with SignWriting have resulted in a rich
literary production, which embraces different fields and comes in different
forms. Over time, most of the produced resources have been gathered in the
SignWriting Literature Project which currently includes Wikipedia pages
written in SL (Fig. 2.4), religious literature, SL works by deaf authors, SL
dictionaries with definitions written in SL, and much more.

2The official list of the communities using SignWriting is available at http://www

.signwriting.org/about/who/.

http://www.signwriting.org/about/who/
http://www.signwriting.org/about/who/


2.2.1 The history of SignWriting 55

Figure 2.4: Detail of the ASL Wikipedia page about Abraham Lincoln, written in
SignWriting.

SignWriting itself underwent deep changes. High-level aspects, such as the
representation rules and the visual organization, evolved along with low-level
aspects, such as the set of available glyphs and the appearance of the glyph
themselves. Tab. 2.1 illustrates a number of major changes in SignWriting
over time3.

Major changes to SignWriting since 1974

Change Description Sample

1974 - Early Origins
SignWriting originally stemmed from DanceWrit-
ing in 1974. DanceWriting places a “stick figure
drawing” on a five lined staff. Figures were writ-
ten from left to right, facing the reader (receptive
viewpoint).

1974 to 1980 - Detailed SignWriting
The five-lined staff was replaced with a three-lined
staff for the upper body. Tiny numbers were used
to show which fingers were projecting. Each sign
was separated by a thin vertical line. A thick
vertical line began and ended each sentence.

Continued on next page

3The details of the evolution of SignWriting during the last forty years is far beyond
the scope of this work, further information is available at http://www.signwriting.org/
library/history/hist008.html

http://www.signwriting.org/library/history/hist008.html
http://www.signwriting.org/library/history/hist008.html
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Major changes to SignWriting since 1974 – Continued from previous
page

Change Description Sample

1980s - Full-Body SignWriting
The three-lined staff was discarded due its limited
usefulness. Tiny numbers for fingers discarded, each
hand configuration was given a special appearance.

1980s - SignWriting Handwriting
The stick figure was discarded: it was only used
occasionally for special torso movements or contact
with the hips or shoulders. The use of vertical lines
to divide signs and sentences was limited.

1986 to 1996 - “The Expressive Revolution”
Several deaf SignWriting staff members manifested
the need to express their our own language from
their own perspective. The composition rules were
changed: the receptive viewpoint was replaced
with the expressive viewpoint. In other words,
users began writing signs as they are seen from the
person who is signing, and not from the one who
is watching.

N/A

1986 to 1996 - “The Stacked Revolution”
More and more deaf people were choosing the
SignWriting Handwriting, but instead of writing
the symbols in a line from left to right, they were
naturally stacking the symbols to look like the
human body. Each sign was like a little “stacked
unit”. The units were then placed from left to
right on the page.

1996 to present - “The Vertical Revolution”
Many deaf SignWriting staff members expressed
the interest in writing down the page in columns.
After the Stacked Revolution, since the visual
organization of each sign was vertical, writing from
left to right did not feel as natural (and consistent)
as writing in columns.

Table 2.1: Major changes to SignWriting since 1974 to present. Information and
images drawn from (Sutton, 1996).
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As shown in Tab 2.1, SignWriting is constantly evolving over time. As a
consequence, every few years (typically when a major change occurs), a new
release of the SignWriting system is issued. Any digital artifact presented
in this work has been produced using the 2010 version of SignWriting as
a reference point. This was a common agreement of most SignWriting re-
search teams in the computer science field around the world. The decision
was taken in order to have a set of applications, produced by different teams,
which can share each other’s data. For further information refer to Section
2.4.

Figure 2.5: Communities which use SignWriting around the world (Sutton, 1996).

Over time, SignWriting reached a worldwide diffusion, both as a communica-
tion and as a SL teaching tool. As visible in Fig 2.5, each of the 5 continents
is covered by a number of communities using SignWriting. The writing sys-
tem is adopted by a large number of communities both in the Americas and
in Europe, and it is also present (in minor extent) in Asia, Africa and Ocea-
nia. Tab. 2.2 provides an account of the communities adopting SignWriting
within each continent.

Communities using SignWriting around the world

Americas Europe Asia Africa Oceania

Bolivia Belgium Japan Ethiopia Australia
Brazil Czech Rep. Malaysia Malawi New Zealand

Canada Denmark Nepal Tunisia
Colombia Finland Philippines South Africa
Mexico France Saudi Arabia

Nicaragua Germany Taiwan
Peru Great Britain

United States Ireland
Italy
Malta

Netherlands
Continued on next page
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Communities using SignWriting around the world – Continued
from previous page

Americas Europe Asia Africa Oceania

Malta
Northern Ireland

Norway
Poland

Portugal
Spain

Sweden
Switzerland

Table 2.2: Communities using SignWriting around the world, divided by continent.
Information extracted from (Sutton, 1996).

As shown in Tab. 2.2, SignWriting has spread in many countries, some of
them being also very far from the “home” state of the writing system, i.e.
California. Such wide diffusion has been mainly fostered by the SignWrit-
ing Literature Project for Deaf Students (Sutton, 1996). The project has
developed software, web sites, DVDs, children’s stories and instruction ma-
terials, aimed at supporting the teaching of reading and writing in both SLs
and VLs, using SignWriting. These materials are donated to schools with
deaf students. One of the first schools to experiment with this method was
the Hodgin Elementary School in Albuquerque, New Mexico, in 1999. Many
other schools in many other countries have subsequently joined the Sign-
Writing Literature Project for Deaf Students (Sutton, 1996). The teaching
activities within classrooms with deaf students are supported through the
above-mentioned teaching materials, training for teachers and parents, and
full technical support. In order to fully understand the reasons leading a
teacher with deaf students to apply for the SignWriting Literature Project
for Deaf Students, it is worth reporting the following lines, written by the
teachers at the Kasterlinden School for the Deaf in September 13, 2004 (Sut-
ton, 1996) to describe their experience with the classroom.

Why do you want to learn SignWriting?
SignWriting is the written form of SignLanguage. We want to
teach the children the difference between the two languages they
live with, Flemish sign Language (FSL) and Dutch (written or
spoken). If we want to teach the children FSL we would want to
write it down, it would be a mistake to write it in Dutch but with
the grammar of FSL. SignWriting is also very visual, for ex: if
you want to actually show the children the difference between
two sign. They can mark it on the board!
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What have been some of your past frustrations when
teaching?
Not being able to have something on paper about FSL. The chil-
dren forgot what I told them about FSL because they had no
means of remembering, like writing it down. The children didn’t
really think FSL was a full language because they where always
given Dutch, in books and on paper.

(Sutton, 1996)

Statistical data about the actual number of SignWriting users is not cur-
rently available, since no study has been attempted in such direction. The
concept of SignWriting user itself is vague and needs some clarification. At
least three categories of people can be classified as SignWriting users, ac-
cording to their frequency of use and involvement with the writing system.

• People who actively use SignWriting.

• People who actively used SignWriting (most likely at school), but they
no longer do.

• People who have seen SignWriting, they know “something” about it,
but they cannot read it.

As an additional information, however,it is worth reporting that an informal
conversation about this topic has been held between members of the Sign-
Writing staff (including Valerie Sutton) and members of the SignWriting
research community. Each participant had a clear picture of the diffusion of
SignWriting in his/her own country, in terms of involved people. The follow-
ing figures emerged: the first group (people who actively use SignWriting)
can be esteemed in the order of tens or below (not reaching the count of ten
in some countries, such as Nicaragua) per country. The second group (people
who actively used SignWriting, but they no longer do) can be esteemed in
the order of tens, or a few hundreds per country. The last group, finally, can
be esteemed in the number of hundreds per country. No further (or more
accurate) claim is possible about this topic.

2.2 Overview of SignWriting system

As introduced in the opening of this Chapter, SignWriting is a featural
writing system for SL, which relies on small iconic elements - the glyphs, to
represent any sign.
SignWriting can be written both from the expressive viewpoint, i.e. the point
of view of the person producing the signs, and from the receptive viewpoint,
i.e. the point of view placed in front of (and facing) the person producing
the signs (Fig. 2.6).
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Figure 2.6: Difference between expressive and receptive point of view. Extracted
and translated from (Di Renzo et al., 2012).

The modern official SignWriting standard, however, recommends the use
of the expressive viewpoint, since the composition process turns out more
natural for SignWriting users (Sutton, 1996). Adopting the expressive view-
point, any glyph which is written on the left side of a sign describes the left
side of the body of the producing person.
Since 1996, the SignWriting standard also recommends to write following
a vertical organization: writing signs in columns, one below the other, as
shown in Fig. 2.4. For this reason, most of the SignWriting texts shown in
this work are written adopting a vertical organization.
The set of movements and positions that a human body can produce from
the waist up is huge. As a consequence, the set of glyphs that SignWriting
provides to write down any sign is accordingly vast (approximately 45.000
units). The whole set of glyphs is referred to as the International SignWrit-
ing Alphabet (ISWA). As introduced in Section 2.1, the 2010 version of the
ISWA: International SignWriting Alphabet 2010 (ISWA-2010) is the most
recent one, and it has been adopted as the current standard by many re-
search teams around the world, including ours 4.
The ISWA-2010 organizes its glyphs by dividing them into 7 categories. The
categories are identified by following a very intuitive principle: each one
covers a different anatomic part of the human body, with a small number
of exceptions. Tab. 2.3 provides the full list of categories, illustrating each

4For the full ISWA-2010 reference, please refer to (Slevinski, S.E., Jr, 2010a)
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entry with one of its most representative glyphs.

ISWA-2010 Categories

Category Description Glyph

Category 1: Hands
Hand configurations from over 40 SLs, divided into
10 groups (numbered 1-10). The groups are identified
by the fingers involved in the configuration.
Example: any configuration featuring a single in-
dex finger extended is located under Group 01: Index.

Category 2: Movements
Contact symbols, movements for fingers, hands, arm,
forearm etc. divided into 10 groups (numbered 11-20).
The groups are identified by the geometric plane to
whom they are parallel.
Example: any straight movement parallel to the
Front Wall Plane (the vertical plane identified by the
front wall) are located under Group 16: Straight Wall
Plane.

Category 3: Dynamics
Symbols which can be placed beside movements to
specify their dynamics and coordination. They are all
gathered in Group 21: Dynamics & Timing.

Category 4: Head & Faces
Facial expressions, head and face movements, divided
into 5 groups (numbered 22-26). The groups are
identified by the anatomic part which produces the
movement or the position, ordered from the top of
the head to the bottom of the neck.
Example: movements and positions produced with
mouth and lips are located under Group 25: Mouth
Lips.

Category 5: Body
Symbols for movements and positions of torso, shoul-
ders, hips, limbs etc. divided into 2 groups (numbered
27-28).
Example: movements and positions produced with
the trunk of the body are placed under Group 27:
Trunk.

Continued on next page
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ISWA-2010 Categories – Continued from previous page

Category Description Glyph

Category 6: Detailed Location
Used in ordered lists as annotation outside of the
written cluster. Not used for everyday writing. They
are all gathered under Group 29: Detailed Location.

Category 7: Punctuation
Punctuation symbols, used when writing complete
sentences or documents in SignWriting. They are all
gathered under Group 30: Punctuation.

Table 2.3: Categories identified within the ISWA-2010. Each category is illustrated
with one of its most representative glyphs. Information and images drawn from
(Sutton, 1996) and (Slevinski, S.E., Jr, 2010a).

Figure 2.7 shows the LIS sign for Fun (already introduced in Fig. 2.1) high-
lighting each glyph with a color, depending on its category. From top to
bottom, the categories are: Head & Faces (1 glyph), Hands (2 glyphs), Move-
ments (2 glyphs) and Dynamics. Tab. 2.3 already pointed out the existence

Figure 2.7: LIS sign for Fun, written in SignWriting. Different colors highlight
glyphs belonging to different ISWA categories.

of a further specification layer within the ISWA. In fact, each category is in
turn divided in one or more groups. Groups help in keeping a logical and
linguistic organization within categories which would otherwise be too vast
to manage. Category 1: Hands alone counts over 20.000 units, and it will
be our running example throughout this section to actually show how the
ISWA is organized. Category 1: Hands is divided in ten groups, each iden-
tified by the fingers involved in the hand configuration. Tab 2.4 shows the
full list of groups within Category 1: Hands, each entry is illustrated with
one of its most representative glyphs, and the relative hand configuration.

Organization of Category 1: Hands
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Group Number Group Name Glyph View

Group 01 Index

Group 02 Index Middle

Group 03 Index Middle Thumb

Group 04 Four Fingers

Group 05 Five Fingers

Group 06 Baby Fingers

Group 07 Ring Finger

Group 08 Middle Finger

Group 09 Index Thumb

Group 10 Thumb

Table 2.4: Group organization of Category 1: Hands, within ISWA-2010. Each group
is illustrated with one of its most representative glyphs, and the relative hand
configuration. Information and images drawn from (Sutton, 1996).

Similar distinctions are present in each category of the ISWA. The full list
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of groups is available in Tab. 2.5.

Glyph groups in ISWA-2010

Category Group(s)

Category 1: Hands

Group 01: Index
Group 02: Index Middle
Group 03: Index Middle Thumb
Group 04: Four Fingers
Group 05: Five Fingers
Group 06: Baby Finger
Group 07: Ring Finger
Group 08: Middle Finger
Group 09: Index Thumb
Group 10: Thumb

Category 2: Movements

Group 11: Contact
Group 12: Finger Movement
Group 13: Straight Wall Plane
Group 14: Straight Diagonal Plane
Group 15: Straight Floor Plane
Group 16: Curves Parallel Wall Plane
Group 17: Curves Hit Wall Plane
Group 18: Curves Hit Floor Plane
Group 19: Curves Parallel Floor Plane
Group 20: Circles

Category 3: Dynamics Group 21: Dynamics & Timing

Category 4: Head & Faces

Group 22: Head
Group 23: Brow Eyes Eyegaze
Group 24: Cheeks Ears Nose Breath
Group 25: Mouth Lips
Group 26: Tongue Teeth Chin Neck

Category 5: Body
Group 27: Trunk
Group 28: Limbs

Category 6: Detailed Location Group 29: Detailed Location

Category 7: Punctuation Group 30: Punctuation

Table 2.5: Glyph groups in ISWA-2010.
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We have shown that ISWA is organized in categories, and categories in turn
are organized in groups. There is no further specification layer within the
groups: each of them contain a set of glyphs. However, each group carries a
set of rules (variations, covered later in this section) that must be respected
by each glyph it contains. As an example, Group 01: Index under Category
1: Hands strictly contains hand configurations featuring a single extended
index finger, and such glyph follow the same rules.
Within most groups, we can identify a number of subsets of glyphs which are
“similar”. Each subset can be summarized by its most representative glyph,
namely the base symbol, which acts as a prototype (see Fig. 2.8) for the whole
subset. Applying simple graphical transformations (e.g. rotations, changes
in the color fill, etc.) to a base symbol, we can obtain any other element
in the subset of the base symbol. Such graphical transformations, namely
variations (according to SignWriting terminology), when applied to a given
glyph, reflect a slight change (rotation, orientation, etc.) in the production
of the matching body movement or position. The available variations vary
from group to group.
Resuming the above example of Category 1: Hands, we use a base symbol
(Fig. 2.8) from Group 1: Index and show its possible variations. Any glyph
within the same group (or in the same category, in some cases) has the same
possible variations, in our case, the variations available to the glyph in Fig.
2.8 are shared among the whole category (Category 1 - Hands).
Three variations are available for the glyph in Fig. 2.8. According to which

Figure 2.8: Base symbol of a hand configuration featuring a single index finger
extended. Extracted from (Sutton, 1996)

part of the hand is visible to the signer, there are three possible orientation
variations (Fig. 2.9): palm (white), cut (black and white), back (black).
According to the geometric plane which is parallel to the configuration, two
possible plane variations (Fig. 2.10) are available: horizontal (i.e. the hand
is parallel to the pavement), vertical (i.e. the hand is parallel to the front
wall). Finally, any glyph of the hand has 8 possible variations according to
its rotation (Fig. 2.11): 0◦ (upright hand), 45◦, 90◦, 135◦, 180◦, 225◦, 270◦,
315◦.
A number of different variations is available within the other categories and

Figure 2.9: Orientation variations available for a glyph belonging to Category 1 -
Hands. Extracted from (Sutton, 1996)
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Figure 2.10: Plane variations available for a glyph belonging to Category 1 - Hands.
Extracted from (Sutton, 1996)

Figure 2.11: Rotation variations available for a glyph belonging to Category 1 -
Hands. Original configuration image extracted from (Sutton, 1996)

groups, but the underlying logic remains the same. For further information
please refer to Sutton (1995) and Sutton (1996).
Categories, groups, base symbols and variations are the key elements to
identify a unique code (ISWA code) for each of the 45.000 glyph within the
ISWA. Such identifier is formed by 13 digits and it is built by encoding the
linguistic and production features of a glyph. As a consequence, it is able to
identify the glyph in a univocal way. Fig. 2.12 shows the details of the ISWA
code, and the involved elements for each group of digits. The first pair of
digits identifies the top level set, i.e. the category. The second pair identifies
the group. Digits 5 to 7 identify a specific base symbol. The last three pairs
of digits identify the three variation available for the glyph.
The ISWA code is a key element for the digitalization of SignWriting, since
it is much easier for a machine to work with 13-digit codes, rather than with
raw unorganized symbols. See section 2.4 for more information about digital
SignWriting.
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Figure 2.12: Illustration of the 13-digit Sutton ISWA code used to uniquely identify
any SignWriting glyph.

2.3 A different SignWriting coding

SignWriting has been adopted as a writing system for LIS by the Sign Lan-
guage and Deaf Studies (SLDS) laboratory at the Institute of Cognitive
Sciences and Technologies (ISTC) - National Research Council (CNR) in
Rome. Between 2007 and 2012, during the preparation of her Ph.D. thesis
(Bianchini, 2012), Bianchini analyzed the way deaf and hearing members of
the SLDS were using and mastering SignWriting.
It is worth mentioning that the members of SLDS learned SignWriting on
their own, by studying on the 1995 SignWriting manual (Sutton, 1995) and
using a digital editor provided by Sutton (Sutton, 1996). Despite a very
good knowledge of SW, recurring problems were noticed in its use. Most
problems were due to the lack of strict consistence in the organization of
SignWriting that was evident both in the manual and in the digital editor
in use in the lab. As an example, by analyzing the glyphs for the movements
of the hands, the following anomalies were detected:

• Variations of the same base glyph do not describe the same trajectory.

• It is not possible to realize the same trajectories on every geometric
plane (Fig. 2.13).

Therefore, Bianchini carried out a complete reorganization of SignWriting,
in full compliance with the work of Sutton and her team (i.e. no glyph has
been deleted). As a matter of fact, Bianchini suggested additions (see Fig.
2.13) in order to increase the consistence of the system (Bianchini & Borgia,
2012). This reclassification required a new numbering system for the glyphs,
and, as a consequence, a different ISWA coding, hence named International
SignWriting Alphabet Bianchini (ISWA-BIANCHINI). Such coding holds
different advantages, which are discussed in depth in (Bianchini, 2012). The
most relevant advantage, however, for both linguists and computer scientists
working with SignWriting, is that the ISWA-BIANCHINI coding allows to
easily extract the different features of the glyphs, with no exception. This
makes querying the tens of thousands of glyphs much easier. For instance,
a single query may extract all, and only, the movement from right to left of
the right hand in the horizontal plane.
For the above reason, the business logic of any digital artifact shown in the
present work adopts the ISWA-BIANCHINI coding for SignWriting glyphs,
when querying and matching becomes necessary.
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Figure 2.13: An example of the improvements introduced by ISWA-BIANCHINI.
The white boxes show the possible trajectories of hand movements within
ISWA2008, arranged by geometric planes; The orange boxes show the missing tra-
jectories which were added to improve the system consistence.

2.4 Digital SignWriting

A pencil and a piece of paper are the only required items to produce signs us-
ing SignWriting. In fact, ASL signs were written by hand with ink pens from
1974 to 1986 (Sutton, 1996). Since the early years, anyway, the need to pro-
duce a digital version of the system was evident. The informatisation of the
system, started in 1986 by Richard Gleaves with the SignWriter computer
program (Sutton, 1993), allowed SignWriting to achieve a wider diffusion
through the press of newspaper, books, and, in the last decade, websites
and other digital resources. The glyphs, which before 1986 were exclusively
handwritten, were joined by their digital duplicates, and the organization
was ensured by assigning to each of them a unique ISWA code.

2.4.1 Digital resources in SignWriting

SignWriting has been employed to produce different digital resources, over
time. The present section is not intended to be a complete list of all the
digital artifacts featuring SignWriting, it is rather intended to provide an
idea of the diversity of such artifacts. All the digital resources shown in this
section are bilingual, they support English and ASL, thus they ensure full
accessibility both to hearing and deaf people.

2.4.1.1 Websites

The SignWriting Website (Fig. 2.14) is the reference site for SignWriting
users and researchers, maintained by Valerie Sutton since 1996. It is an
example of website which is accessible to deaf and hearing people alike. The
website navigation elements carry labels both in English and in ASL, and
the content is always available in both languages too. It also provides a
number of utilities for SignWriting users, such as an online digital editor to
produce signs (see Section 2.4.1.4).
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Figure 2.14: Home screen of the SignWriting Website (available at http://www

.signwriting.org/).

2.4.1.2 Blogs

Adam Frost, a deaf interpreter from the U.S.A. built and currently main-
tains his blog The Frost Village. The blog features two languages: English
(through alphanumeric characters) and ASL (through SignWriting). Mr.
Frost himself explains the rationale of his work on the blog, using the fol-
lowing words: “Well, as I have said, I am Deaf, so I use ASL. I strongly
believe that there should be a way to write what I sign, just like anyone can
write what they speak. SignWriting does just that. My webpage is proof of
that technology can support it to even be in printed on the web.”. The two
supported languages are not available together at the same time (like The
SignWriting Website), but the user has the faculty to switch from one to
another anytime.

Figure 2.15: Home screen of the Frost Village blog (available at http://www

.frostvillage.com/).

http://www.signwriting.org/
http://www.signwriting.org/
http://www.frostvillage.com/
http://www.frostvillage.com/
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2.4.1.3 Wikipedia

The ultimate goal of the ASL Wikipedia Project is to provide a bilingual,
educational, informational tool. The ASL Wikipedia is intended to “provide
information about the world to deaf and hearing people who use ASL as
their daily, primary language”. The produced artifact is actually a tool for
teaching literacy in two languages: American Sign Language and English.
The ASL articles in the online ASL Wikipedia are translations of the English
articles in the English Wikipedia. The vision of the developers foresees a
bilingual learning as easy as “clicking on a tab in your web browser to read
the same article in two different languages” (Sutton, n.d.).

Figure 2.16: Home screen of the ASL Wikipedia Project (available at http://ase

.wikipedia.wmflabs.org/wiki/Main Page). A subset of the available entries are
visible.

2.4.1.4 Digital editors

SignWriting digital editors belong to a very important class of software.
In fact, they are the tools that enable the creation of digital SL resources
written in SignWriting. In other words, they are critical for the informati-
sation of SignWriting. The first digital editor for SW, named “SignWriter”
was developed in 1986 by Richard Gleaves (Sutton, 1993). Since then, many
applications have been produced by different research teams, delivered in dif-
ferent ways, ranging from desktop to web applications (Borgia et al., 2014).
A full list of such software is available at http://www.signwriting.org/

downloads.
Most SignWriting digital editors basically provide the same functionalities.
Despite differences in design and implementation existing from one editor
to another, such functionalities are:

• Search for (or type) glyphs which belong to the ISWA.

• Insert the chosen glyphs onto an area which is designated for the com-
position of the sign.

http://ase.wikipedia.wmflabs.org/wiki/Main_Page
http://ase.wikipedia.wmflabs.org/wiki/Main_Page
http://www.signwriting.org/downloads
http://www.signwriting.org/downloads
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• Manage the glyphs on the sign composition area.

• Save the sign in one (or more) formats.

Fig. 2.17 shows a screenshot of a SignWriting digital editor, the composition
of the LIS sign for Fun shown in Fig. 2.1 is underway in the top-right part
of the screen. More information about the editor displayed in Fig. 2.17 is
available in Chapter 3.2.

Figure 2.17: Screenshot of SWift SignWriting digital editor (available at http://

visel.di.uniroma1.it/SWift/).

2.4.2 Challenges of digital SignWriting

The informatisation of SignWriting poses different challenges. First of all,
computer scientists need to devise effective and efficient ways of dealing with
a set of symbols as large as the set of movements and positions that can be
produced from the waist up. When designing a SignWriting digital editor,
for instance, the large cardinality of the ISWA set might become a major
problem for the application if addressed incorrectly, since it might affect
both logic and presentation layers. It is necessary to get as close as possible
to the aurea mediocritas between the unrestricted access to the data (the
glyphs) and the presentation of a human-manageable amount of informa-
tion. As an example, if a user is looking for a particular glyph, belonging to
Category 01 - Hands, it is unreasonable to present him/her the whole lot of
glyphs within the category, since it contains more than 20.000 symbols.
Another important fact that computer scientists must take into account
when working with SignWriting is the nature of the ISWA code. As men-
tioned in Section 2.2, the ISWA code is constructed by taking exclusively
into account linguistic and production features of the glyphs. This means
that glyphs having a very similar ISWA code may have a very different ap-
pearance. Such detail might require special attention when producing Sign-
Writing applications based on image-processing techniques (see Chapter 5).
Last but not least, SignWriting grants a very high degree of freedom to

http://visel.di.uniroma1.it/SWift/
http://visel.di.uniroma1.it/SWift/
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its users. The rules which Sutton sets in (Sutton, 1995) merely cover all
the available categories and groups, specifying how to write glyphs, their
meaning, and their possible variations. There is no high-level rule about the
composition itself, no restriction is set to the number of glyphs within a sign,
to their possible spatial arrangement and to their relative positioning. It not
difficult, for example, to find signs written with two heads (used sometimes
to specify movement), or signs with no head at all (used when the move-
ments or expressions of the head are not important for the representation
of the sign). Given this, it is very difficult to produce a strict modeling of
SignWriting compositions, as a consequence, there is currently no way of
validating such compositions.
The features of SignWriting, and the challenges they pose to the informati-
sation of the system, have been taken into account during the design of our
applications. Such features directly influenced the choice of the methodolo-
gies and techniques we adopted to achieve the informatisation of the system,
as reported in the following chapters.



Chapter 3

SWord

3.1 The SWord framework

Our efforts for the informatisation of the written form of SLs using Sign-
Writing are carried out within the framework that we named SignWriting-
oriented resources for the deaf (SWord). The overall goal of SWord is to
make SignWriting effectively exploitable as a communication mean and as
a learning support for deaf people. As computer scientists, we focused on
making SignWriting viable as a writing system for SL in the digital world.
As already explained in Section 1.2, even among HCI experts, it is often
possible to find a “thick coat” of misunderstanding about accessibility de-
sign for deaf people. The “sharp” sound of the SWord acronym represents,
in a metaphorical way, our efforts along the past four years, to clarify such
misunderstandings and to overcome the resulting limitations (see Section
1.2 for further information).
Since SWord directly concerns SLs, we often found ourselves dealing with
issues related to linguistic aspects of SLs and technical questions about Sign-
Writing, which are far beyond our field of expertise. For this reason, the
studies and the digital artifacts presented in this work have been designed
with the aid of a multi-disciplinary range of competences. Such competences
include: linguists, interpreters, SignWriting experts and psychologists and
were provided by the research team at ISTC-CNR, and by Claudia S. Bian-
chini.
An intermediate goal of the framework is to gather, from different sources
and through different acquisition methods, a significant amount of signs, to
be stored in electronic form together with their decomposition into glyphs.
Such set of signs is referred to as structured corpus. The purpose of a corpus
prepared in this way is to allow the identification of recurring patterns in
the composition of the signs, and the computation of relevant statistics on
the transcribed form of the signs. Working with linguists in the past four
years, we are well aware of the key importance of such statistical data, since
they can help to gain understanding of the rules of SLs.
Fig. 3.1 shows a concept of SWord by Prof. Maria De Marsico. We designed
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the framework to acquire its corpus of signs from 3 possible sources (Fig. 3.1,
top and center part). First of all, digital editors: they are the tools that have
been serving the purpose of producing digital signs written in SignWriting
for about 30 years. In order to enable the acquisition of signs from a digital
editor (and for a number of other reasons), we implemented our own Sign-
Writing digital editor, namely SWift (illustrated later in this chapter). The
advantage of using SWift is that it is already able to produce signs coded
in a form which is best suited for the analysis, without the need for further
action. As a consequence it can be used for a first phase of mass production
of the structured corpus.
From this starting point, our aim is to implement a software environment
that is also able to handle signs coming from other sources, such as hand-
written documents in SignWriting or video clips of signing people. However,
these sources require a substantial pre-processing. In the case of a hand-
written document, it must be scanned and stored in an electronic form. In
addition, each text must be processed to extract the signs and glyphs that
compose it. To this end we designed a recognition engine for handwritten
SignWriting symbols, which is the core topic of this work and it is covered
in Chapter 4, 5, 6 and 7.
The last acquisition method requires the processing of video sequences of

Figure 3.1: Concept illustration of the SWord framework (courtesy of Prof. Maria
De Marsico).

signing subjects, in order to identify the signs, and to represent them using
SignWriting. Even in this case, the ultimate goal is to produce the same
type of information (i.e. stored with the output format of SWift) gathering
data from signed videos regarding both the performed signs and their com-
position. The pattern recognition procedures involved in this latter case are
much more complex, and therefore it is not sure that we can achieve the
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complete goal of allowing fully automatic gesture recognition. Nevertheless,
we are planning to implement a “user assisted” procedure to simplify the
system task, if needed.
As mentioned above, the structured corpus can be very useful for linguistic
research and statistical analyses, nonetheless, as computer scientists, we are
planning to use it also for a different goal, which is equally valuable. The
idea is that the precise production information stored by each SignWriting
glyphs allows to use them to determine the movements and expression of a
signing avatar in a very accurate and satisfactory way. A similar approach
has been already adopted by Karpov and Ronzhin (2014), by implement-
ing a 3D signing avatar for Russian sign language, which is based on signs
represented with HamNoSys (introduced in Section 1.1.2). In this way, one
might avoid using written text, which is almost impossible to automatically
translate in SL, to derive the avatar behavior. Using the intermediate form
of SignWriting as an alternative starting point to guide the avatar, people
using Sign Language may be supported in a number of activities that would
otherwise require the use of a VL (e.g. e-learning), even without directly
knowing SignWriting. Moreover, the use of avatars in signed digital commu-
nication is often considered a solution to privacy issues that may be raised
by the participation of a human subject. Their limited diffusion is due both
to the difficulties related to their implementation, but also to the fact that
avatar systems presently available do not achieve the expressiveness and
naturalness desired by deaf people, which often have a very critical opin-
ion about them (Kipp, Nguyen, Heloir, & Matthes, 2011). Our approach
would address both problems. The description of the SWord framework is
continued by introducing SWift, a digital editor for SignWriting.

3.2 SWift

The present section contains an overview of SignWriting improved fast tran-
scriber (SWift) (Borgia, 2010), a digital editor which allows to compose writ-
ten expressions in any SL in the world using SignWriting. It is important
to remark that SWift has been produced as a result of a previous work by
the author (Borgia, 2010). As a consequence, its design and development
are not part of the present work, but the usability testing of the application,
and a number of later added features are. Moreover, knowing the basics
about SWift is mandatory to correctly understand the content of the follow-
ing chapters in the present work, and to get a full picture about our efforts
towards the digitalization of SignWriting.

3.2.1 Introduction to SWift

In order to develop a better tool (with respect to its competitors), we started
by analyzing the existent SignWriting digital editors to detect any issues
within their interface and their interaction modality. More specifically, we
focused on the official SignWriting digital editor produced by the Sutton
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team, i.e. SignMaker (SM) (Slevinski, S.E., Jr, 2010b), shown in Fig. 3.2.
Our evaluation of SM was carried out by performing an expert cognitive
walkthrough (Wharton, Rieman, Lewis, & Polson, 1994) of the interface
and by collecting some informal opinions of people that have been using SM
for a long time. During our analysis, we detected a number of issues that
possibly make the user interaction with the application rather cumbersome,
especially for novice users. The results of our analysis are discussed in full
depth in (Bianchini, Borgia, Bottoni, & De Marsico, 2012; Bianchini, Bor-
gia, & De Marsico, 2012; Borgia, 2010), and they are summarized in the
following.
First of all, a number of important issues affects the components devoted
to the interaction between the user and the application, such as buttons
and toolbars. We observed that the buttons contain expert-oriented iconic
content, i.e. they can all be better understood by signing users with good
SignWriting proficiency. The buttons also contain text labels, which are only
presented in English language. This forces a deaf user to read text (which
may be uncomfortable in itself, as explained in Chapter 1) in a possibly for-
eign language. Moreover, the glyph search panel does not provide any help
to direct a SignWriting beginner to the glyph he/she is looking for. Glyphs
belonging to different categories are placed aside with no distinction, and no
graphical cue to symbolize the sign component they represent. The iconicity
of the symbols often makes up for this lack, but in other cases it may be
difficult to tell which component a glyph is representing. Finally, manag-
ing glyph simultaneously is not allowed: the user can interact (insert, edit,
delete) with only one glyph at a time. This can make the sign composition
process long, and ultimately frustrating.
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Figure 3.2: The user interface of Sutton’s SignMaker (Sutton, 1996).

We decided to use the results of our evaluation as a starting point for the
production of SWift. Any design phase, from the early definition of the pur-
pose of SWift to the latest graphical improvements, has been, and presently
is, supported by a very active validation group, i.e. the research team at
the ISTC-CNR in Rome, which includes many deaf researchers. Any choice
is discussed and later checked with people who are a true sample of the
group of main target users of SWift, in compliance with the core principles
of User-Centered Design (Norman & Draper, 1986) and Contextual Design
(Wixon, Holtzblatt, & Knox, 1990). The former design technique requires
to give extensive attention to needs, preferences and limitations of the end-
users of a product at each stage of the design process. The latter requires
that researchers aggregate data from customers in the context where they
will use the product, to apply these findings into the design stages.
The design and the implementation of the interface were performed accord-
ing to a number of core principles, derived from both the specific purpose of
the application and the general Human−Computer Interaction (HCI) guide-
lines, in particular:

• Intuitiveness: it is harmful to charge the user with the burden of learn-
ing the interface, when he can rather understand it. With this purpose
in mind, each function is presented and used in a intuitive and familiar
way.
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• Minimization of information: each screen presents a small amount of
essential information, to avoid overwhelming the user with a cluttered
interface.

• Proper information format: icons are simple, large and familiar. If
their meaning remains unclear, simple mouse-over-triggered anima-
tions have been embedded in the buttons definition to help the user.
Dealing with text labels in the interface might be difficult for deaf peo-
ple, so we kept these elements at a minimum (Perfetti & Sandak, 2000)
and, whereas they proved necessary, they were accurately designed.

• User-driven interface testing: each change in the features and interface
of SWift has been discussed with the team at the ISTC-CNR. The
discussion involved high-level aspects (such as the logic behind the
glyph search system), as well as low-level ones (such as the spatial
placement of buttons within the interface).

3.2.2 Core features

SWift has been conceived to be a multi-platform application, and to have a
wide and easy diffusion. The software has been developed as a self-containing
web application, its interface can be easily included within a Document Ob-
ject Model (DOM) element, thus allowing SWift to be embedded within
any web-based platform, in order to provide a prompt SL support (Bor-
gia et al., 2014). This also relieves the user from the burden of installation
and configuration details. The first context in which SWift has been suc-
cessfully integrated (Bottoni et al., 2013) is a Deaf−oriented E−Learning
Environment (DELE). DELE is a visual E-Learning environment based on
a metaphorical iconic representation of information (Bottoni, Capuano, De
Marsico, & Labella, 2012).
Many functions of the application, such as the one enabling the search of a
glyph within the ISWA, rely on data which are stored within the database
of the application. Such data include:

• Glyphs: the single elements that are used to compose the signs. The
information available on every single glyph record includes: the iden-
tifiers of the glyph (ISWA-2008, ISWA-2010 and ISWA-BIANCHINI),
the path of its PNG image, its frequency of use (incremented every
time that the glyph is used).

• Signs: whenever a completed sign is saved into the database, SWift
records the association between the involved glyphs, their spatial co-
ordinates and the title of the sign entered by the user. Such data are
used to compute statistics which should provide the user with hints
about co-occurring glyphs during the composition process, this inno-
vative function will be detailed in Section 3.2.2.1.
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3.2.2.1 Interface design

The features of SWift rely on a number of ideas which have been developed
and implemented to make the sign composition process faster. Such ideas
are illustrated analyzing the application by dividing its interface into 4 func-
tional areas (Fig. 3.3).

Figure 3.3: SWift’s (v. 1.01) home screen, divided in 4 functional areas.

Like any other digital editor, SWift provides an area to compose the sign.
Such component is referred to as the sign display, and it is a whiteboard-
resembling area whose purpose is to show the sign that the user is currently
composing. A sign is composed by dragging a number of glyphs from the
glyph menu and dropping them on the sign display. Once they are placed
there, they become both draggable (to be relocated at will) and selectable
(for editing purposes). Unlike SM, the whiteboard allows the selection of
multiple glyphs at once, so that moving and editing more than one glyph at
a time is possible, in order to save time and to avoid a frustrating experience
to the user.
The glyph menu allows the user to search any glyph within the ISWA. Once
the user finds the desired glyph, he/she can drag it and drop it on the sign
display, in order to include it within the sign that he/she is composing.
Most efforts were devoted to make the interaction with the glyph menu fast
and effective. The underlying concept is basically “Why browse, when you
can search?”, therefore the glyph menu features a search system which im-
plements a completely different approach with respect to SM (discussed in
Section 3.2.2.2). To support SignWriting beginners during the composition,
the glyph menu has been designed to present a stylized human figure (Fig.
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3.3, middle), named puppet, as a starting point for the search of a glyph.
The toolbox contains functions for the management of the glyphs that are
currently selected on the whiteboard. Such functions are devoted to glyph
deletion, duplication, rotation and handwriting, the latter will be covered in
Section 3.2.2.3.
The hint panel is one of the innovations that distinguishes SWift from other
digital editors. This component shows in real-time, as the composition pro-
cess is underway, a set of glyphs which are compatible with those the user
already entered in the sign display. Compatibility is computed and updated
according to the rate of co-occurrence of the glyphs. The glyphs suggested
in the hint panel are immediately available to be inserted into the sign dis-
play. With such action, the user can save the effort and the time required
to search for each glyph from scratch.
The compatibility check of the hint panel is triggered whenever a user
changes the set of glyphs in the whiteboard (by inserting, editing or deleting
glyphs). At that moment, the set of signs including such glyphs is retrieved
from the database. The most recurring glyphs within the set of signs are
presented in the hint panel in descending order of co-occurrence, taking into
account a number of other minor factors.
The database underlying SWift is vital for the compatibility computation.
For this reason, whenever a sign is composed and saved using any of the save
procedures provided by the application, it is stored in the database too.
Actually, the hint panel offers features that are very similar to the pre-
dictive text input method for VLs, adopted by mobile phones and other
electronic devices. Many studies, such as Curran, Woods, and O’Riordan
(2006) demonstrate that predictive text is an important aid to communica-
tion when handling the set of characters of a VL, which are in the order of
magnitude of tens. It is easy to realize how this can improve the interaction
with a set of tens of thousands symbols.

3.2.2.2 Glyph search system

Reducing the composition time of a sign is the key to make SignWriting
editors a viable alternative to the paper-pencil approach. Therefore, most
efforts were devoted to the design and optimization of the glyph menu and
of its navigation. SWift is intended for any SignWriting user, ranging from
novice to proficient, so the puppet (Fig. 3.3, middle), has been designed to
present in the most natural way the first important choice. As a matter of
fact, each different anatomical part of the puppet (head, shoulders, breast,
arms, hands) leads the user to a search interface for the specific glyphs re-
lated to that part. Four glyph families (contacts, punctuation, dynamics and
coordination) are not available on the puppet because they do not belong to
any specific anatomic area. They can be reached through 4 buttons located
under the puppet.
In an ordinary SWift session, if a user is looking for a glyph belonging to
a certain area, clicking on the corresponding anatomic part on the puppet
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will lead to the related search screen. In particular, Fig. 3.4 shows the search
interface related to the anatomic area of the hands, which is displayed after
the user clicks on the hands of the puppet. Such window will be our running
example in the present section to show the glyph search system in action.

Figure 3.4: Search interface related to the anatomic area of the hands.

In this, and in any other search window, a narrowed version of the puppet
(and of the buttons beneath) persists on the upper-left part of the screen,
to form a consistent navigation menu which allows the user to switch from
one anatomical part to another, without returning to the home. The cur-
rent part (in this case hands) is highlighted on the puppet to support user
orientation.
The blue boxes in the center of the screen are referred to as choose boxes
(or simply boxes), they allow the user to search for the desired glyph. The
boxes are organized in groups. Each group corresponds to a specific ISWA
category and it is displayed under an icon and a text label explaining which
kind of glyph can be found using the group.
Each box allows the user an exclusive choice corresponding to the selection
of a core feature of the searched glyph. A choice can be performed for each
box in a group. As explicitly asked by the team of ISTC-CNR, since users
may have different mental organization while searching, they should be free
to select the features of their glyph in any order, so the interaction with the
choose boxes has been designed accordingly. A user might want to select the
rotation of his glyph first, while another could select the number of fingers
involved, or the hand (left, right) involved.
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Figure 3.5: Search interface related to the anatomic area of the hands: one criterion
(glyphs involving only three extended fingers) is selected in one of the choose boxes.

Once a choice is made in any of the boxes belonging to a certain group, the
interface shows a set of glyphs meeting the requirements expressed so far.
As an example, in (Fig. 3.5) the interface shows all glyphs containing three
fingers, as requested by the selection in the second box. They are placed in
a scrollable panel and they can be immediately dragged on the sign display.
The panel replaces the group of boxes which cannot be select anymore (they
correspond to other categories). In some lucky cases, the user is able to find
the desired glyph just selecting one feature. More often, this happens after
about 3 choices. After each new choice, the set of proposed glyphs is updated
(narrowed). The user is granted the faculty of undoing his choices. Even in
this case, once undone, the set of proposed glyphs is updated accordingly
(enlarged). The choose boxes and the search criteria are designed so that, in
the worst case (i.e. the user has given a value to each box) the user will search
his glyph in a set of 40 glyphs maximum, a task that can be accomplished
by a human in an acceptable time.

3.2.2.3 Support for user-defined glyphs

Although the ISWA contains tens of thousands of symbols, it is not rare to
see a deaf person inventing a new ad hoc glyph (for an in-depth analysis of
this phenomenon see (Bianchini, Borgia, & Castelli, 2011)). This practice is
more often observed when a person achieves a good mastery of SignWriting.
This allows him/her to draw glyphs which are not present in the ISWA, still
respecting the rules of SignWriting. Such compliance is demonstrated by the
fact that the appearance of the ad hoc glyphs is consistent with the rest of
the ISWA, and that they are easily understandable by other SignWriting
users (Bianchini et al., 2011).
With paper and pencil, inventing ad hoc glyphs is not a problem, since they
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are drawn just like any other one. The challenge arises when dealing with
a digital writing. As a matter of fact, SM does not support this practice in
any way, so during SM sessions, the ad hoc glyphs are created by artificially
juxtaposing existing glyphs of different shapes, and often belonging to totally
different and discordant areas, in order to just create the desired visual effect.
This has negative consequences over statistical and linguistic research (e.g.
analysis of the frequency of the glyphs).
SWift specifically supports the creation of ad hoc glyphs by including a
function to address this need. The handwriting interface (Fig. 3.6, left) is
accessible from the toolbox and shows the whiteboard enlarged by a 1.5
factor to allow the user to draw with more accuracy.
The enlarged whiteboard includes, in light gray, the glyphs that the user

Figure 3.6: Support for handwritten glyphs provided by SWift: the glyph is first
handwritten (left) and then imported on the sign display (right).

already placed on it, to help avoiding to draw an under-sized or over-sized
glyph. At the end of the composition process, the glyph appears on the
whiteboard (Fig. 3.6, right) together with the others. The ad hoc glyphs
are saved in a special glyph family within the database. They are intended
to be reviewed by research personnel and developers in order to support a
constant update and widening of the ISWA.

3.2.2.4 Toolbox design

Buttons deserved particular attention. We avoided including text labels,
while devising a strategy to help the user understanding their function. To
this aim, each one is connected to an animated sequence of a few seconds
that activates on mouse-over. Each sequence animates the icon of the cor-
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responding button, making the associated function more understandable.
The choice to use an animation, rather than a short clip with the signed
sequence, is due to the high cost, in terms of space and loading time, of
a signed sequence. Additionally, the functions associated with the buttons
are fairly easy to “illustrate” using only icons and animations. Think, for
example, about the functions for saving, rotating, and deleting a glyph.
To get an idea of the result, see Fig. 3.7. It contains screenshots of anima-
tion frames of two buttons within the interface of SWift, namely counter-
clockwise rotation and delete.

Figure 3.7: Animation frames of two buttons within the interface of SWift: Anti-
clockwise Rotation and Delete.

3.2.2.5 Saving options and formats

In order to allow the users to save the work done with SWift, multiple saving
options have been developed. The saving form requires the user to enter two
parameters: the title of his sign, and the save format. Each format yields
different features.
By choosing the image format, the user is allowed to download an image
which contains the sign present on the sign display. By choosing the model
format, the user is allowed to download the sign as an XML-encoded file.
Such file can also be re-opened by SWift, so that a previously composed
file can be re-edited later. Choosing the remote save option, the associa-
tion between the single glyphs (including their spatial positions) and the
sign title, is saved into the database. This kind of saving carries many ben-
efits for both SWift and the user: as the library of signs managed by the
application grows, the automatic glyph hints, provided to the user during
the composition process, are more accurate and consistent. Moreover, since
the frequency of the glyphs is incremented for any sign they appear in, this
procedure is useful for linguistic research.

3.2.2.6 Storyboard

The storyboard (Fig. 3.8) is the last feature, in chronological order, to be
added to SWift. Unlike the features described in the previous sections, the
design and development of the storyboard are part of the present work. The
storyboard allows the user to compose not only single signs, but whole SL
stories. A SL story is basically a series of signs, one after the other, arranged
in a vertical order. The composition process starts as the user enters the title
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of the story. After this, he/she is allowed to add signs to the story, using the
classic interface for composing single signs. Following the instructions of the
ISTC-CNR team, and the modern SignWriting specifications, we designed
the storyboard so that the signs are stored in columns, from top to bottom,
because deaf people naturally write with SignWriting in this way. The sto-
ryboard can store any number of signs, which are arranged in pages, and
offers basic functions for the management of the single signs (create, edit,
delete).

Figure 3.8: Storyboard: the story composition screen. The management buttons
(open, save, delete) are visible in the title bar (top) and the signs already added
are visible in the center of the screen, along with the buttons for their management
(create, edit, delete).

As for the single signs, stories can be saved on the machine of the user, in
two possible formats. Choosing the document format, the user can download
a pdf document which contains the story. On the other hand, if the user
wishes to modify the story at a later stage, he/she can save it using the
archive format, which can be re-opened by SWift.

3.2.3 Usability test

3.2.3.1 Methodology

The characteristics required from users to be included into the test were not
easy to meet. As a matter of fact, in order to perform a reliable evaluation,
users involved in the test were required to have at least a beginner-level
knowledge of both SL and SignWriting. For such reason, the total number
of participants was very small; the test was administered to a total of 8 peo-
ple. The age of the participants ranged from 26 to 62 (µ : 37.3; σ : 11.7), 5
(62.5%) of them being male. Most participants: 7 ( 87.5%) were deaf. Only
1 hearing person was found to present the adequate skills to participate to
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the test. All the participants were very proficient in SL, their experience
ranging from 5 to 51 years (µ : 22.9; σ : 15.0), most of them, namely 6
(75%) were researchers in SL. The SignWriting expertise of the participants
ranged from 0.5 to 6 years (µ : 2.1; σ : 1.7); 6 (75%) of the participants
already had experiences with digital SignWriting editors, in particular with
SignMaker.
Given the particular situation, and in order to assess the usability of SWift,
we adapted our testing approach to be viable for both SL and VL users.
We chose a popular usability testing methodology, namely the Think-Aloud
Protocol (TAP) (Lewis, 1982; Lewis & Rieman, 1993), and a widespread
customizable questionnaire, namely the Questionnaire for User Interaction
Satisfaction (QUIS) (Chin, Diehl, & Norman, 1998). In the following we de-
scribe how they were modified.

Think-Aloud Protocol
Since deaf participants cannot actually “Think Aloud”, the TAP underwent
a number of changes to include SL. The new version was named Think by
Signs, since it can be used with deaf people who are able and willing to
express their thoughts through SL. The TAP itself partly interrupts the at-
tention flow of the user, since it engages cognitive resources along a different
track. However, the positive aspect is the possibility to express one’s own
impressions in real-time, without the possible bias due to the final outcome.
In fact, a tool used for a successful task is often evaluated better than a tool
used for a failed task, just for the positive result, and viceversa. On the other
hand, we also administered a final questionnaire. Moreover, signing during
different actions is typical of the way deaf people have to communicate while
performing a task.
As explained in Chapter 1, deaf people also disclose their attitudes and sen-
sations through a very high variability of SL non-manual components. Due
to this characteristic, it is of paramount importance to capture the user’s
face when recording a test session. Similar considerations already underlay
the work by Roberts and Fels (Roberts & Fels, 2006), who performed a
number of tests with deaf users adopting a TAP-based protocol. In partic-
ular, they asked participants to use a number of computer programs and
to express, possibly by signs and through the translation of an interpreter,
their impressions and final evaluation of such software. The authors also
adopted a spatial setting in which two cameras operate to record the overall
environment:

• CAM 1 records the participant (from behind), the computer screen
and the interpreter.

• CAM 2 records the participant (front), and the investigator.

Analyzing two recordings at once and synchronizing the obtained data could
prove a cumbersome task. For this reason, we decided to devise a novel spa-
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tial setting which has the benefit of using one single camera, and to keep
a synoptic view of anything happening in the environment which is worth
being recorded. Fig. 3.9 shows our setting, which also takes advantage of a
projector.
The orientation of the projector plays a key role, since, thanks to it, CAM1

Figure 3.9: Spatial setting for the Think by Signs Test.

records a front view of the participant and of the interpreter, as well as the
investigator, but also the computer screen, which is projected on the wall
behind the participant, at an angle which is suitable to avoid disturbing oc-
clusions between the elements of interest. Our different spatial configuration
is not the only difference with (Roberts & Fels, 2006). As a matter of fact,
after the definition of a proper spatial configuration, an even longer phase
was necessary for the definition of modalities, elements and actors of the
test itself. Such process was aimed at setting up a very general procedure
which can be used with any software product.
We designed the Think by Signs Test to be composed by two moments.
During the welcome time, which starts as soon as the participant sits down
in front of the computer, the system displays a welcome screen containing a
signed video (on the left part of the screen) and its VL translation (on the
right part). Consistently with the rules of the TAP, the greeting sequence
contains:

• A brief thanksgiving for the participation.

• A brief explanation about the structure of the test (e.g. “We will be
giving you a list of tasks to perform”) and rules (e.g. “We recommend
you to sign your thoughts as you perform the tasks”).

• A remainder about the purpose of the test, which is not conceived to
test the skills of the participant, but rather to test the capabilities and
the usability of the software; this should help the participant in feeling
at ease with the test.



88 SWord

The test time represents the core part of the procedure. The participant
is required to perform a list of tasks to test the functions of SWift and
their usability. As stated by the rules of the TAP, during this phase the
participant is asked to sign anything that comes to his/her mind. Given
the possible high number of tasks (9 in our case, listed in Tab. 3.1), it is
appropriate to alternate, when possible, simple jobs (like “Insert a glyph of
your choice”) with complex ones (like “Compose the given sign”), to avoid
tiring the participant. For the same reason, the participant might need a
remainder about the task that he is currently carrying out. To address such
need, we designed a “task list” to guide the participant. Since we deal with
deaf people, we designed the task list to be available both in VL and SL.

TASK # TASK

T1 Insert a glyph of your choice.

T2 Insert three given glyphs.

T3 Navigate to the home screen of SWift.

T4 Edit (rotate, delete) some of the glyphs within the whiteboard.

T5 Delete the whole content of the whiteboard.

T6 Compose the given sign.

T7 Handwrite 2 ad hoc glyphs.

T8 Save the sign in image format.

T9 Compose a sign of your choice.

Table 3.1: List of 9 tasks requested to the participants during the Think by Signs
Test.

It is worth reminding that, notwithstanding the composition of the group
involved into the test, our aim was to design a strategy suited for general
cases of usability tests performed with mixed VL/SL groups of participants.
Notice also that this is equivalent to a true bilingual setting.
Several options are available to create a bilingual task list. In the first place,
the test designer should decide whether to delegate the SL inclusion to an
electronic device (with signed videos illustrating each task) or to an inter-
preter. In the second place, consistently with the first choice, the specific
role and responsibilities of the device/interpreter must be clearly defined. In
our case, it was very important to avoid misunderstandings about the tasks
requested to the participants. Such misunderstandings would bias the whole
test because they would confuse the participant during the use of the tested
system. In this context, we considered that the involvement of an interpreter
usually makes the user feel more comfortable than a recorded explanation,
due to the possibility to indirectly or directly ask question about the re-
quired activities. Of course, this also increases the probability of a correct
understanding of the tasks. For this reason we chose an option involving the
interpreter.
It is to notice that we prefer a clear division between the role of the inter-



3.3.2.3 Usability test 89

preter and the role of the investigator. In other words, even if the investigator
is able to fluently use SL, it is better to leave him completely focused on
taking notes about anything interesting happening during the test. For this
reason, we decided to involve a different person to act as interpreter.
Given this, it is further necessary to define the way the interpreter has to
act during the test. We think that the best option is to always provide an
initial SL translation of the task. Therefore, at the beginning of each task, a
card is presented to the participant. The card contains a simple, direct VL
question which identifies the task (see Fig. 3.10). As the card is presented,
the interpreter signs the question to the participant. Afterwards, the partic-
ipant is allowed to ask questions to the investigator, using the interpreter as
intermediary. The answer may follow only if it does not affect the outcome
of the test (the participants were properly informed about this during the
Welcome Time).

Figure 3.10: VL representation of task number 6 of the Think by Signs Test.

Questionnaire for User Interaction Satisfaction
After the Think by Signs Test, the participant is left alone in the room,
to avoid any conditioning, to fill in the final satisfaction questionnaire. The
questionnaire was produced applying a number of changes to the QUIS (Chin
et al., 1998). As stated by the authors, the QUIS “is designed to be con-
figured according to the needs of each interface analysis by including only
the sections that are of interest to the user” (Chin et al., 1998). For such
reason, Section 1 (previous experience with the system), Section 8 (technical
manuals and online help), Section 9 (on-line tutorials), Section 11 (internet
access) and Section 12 (software installation) were removed because they
were out of the scope of the test. Furthermore, a number of spare questions
were removed from their respective categories, since they referred to fea-
tures that SWift does not provide. Such questions are about the use of text
messages/terminology and sound effects of the system. Tab.3.2 shows any
change (and the corresponding rationale) we applied to the official version
of QUIS (v.7) in order to build our final user satisfaction questionnaire.

Consistently with the first two phases of the test, the questionnaire was
available both in VL and in SL. Our version of QUIS was implemented as a



90 SWord

# SECTION NAME ACTION RATIONALE

N/A Demographic questionnaire KEEP

1 Experience with the system REMOVE
All participants were us-
ing the system for the first
time.

2 Previous experience KEEP

3 General satisfaction KEEP

4 Screen KEEP

5 Terminology & System Info CHANGE
Removed an item
concerning text mes-
sages/terminology.

6 Learning KEEP

7 System Capabilities KEEP

8
Technical manuals and online
help

REMOVE Not available in SWift.

9 On-line tutorials REMOVE Not available in SWift.

10 Multimedia effects CHANGE
Removed an item concern-
ing the sound effects of the
system.

11 Internet access REMOVE Not available in SWift.

12 Software installation REMOVE Not available in SWift.

Table 3.2: List of questions included in the QUIS employed for the test.
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sequence of web pages. Each page presented a question, written in VL, ac-
companied by its corresponding SL video, showing an interpreter signing the
question and its possible answers (see Fig. 3.11). Each page is conceived so
that the user indicates its level of satisfaction on a visual scale, implemented
via radio buttons (which are identified by very simple labels), ranging (in
most cases) from total disappointment, to complete satisfaction. The user
can also choose not to answer the question, choosing the “I don’t know”
option. A number from 0 (bad) to 5 (good) was associated to each step of
the satisfaction scale, in order to facilitate the analysis of the questionnaire.
At the end of the test, the user could choose to activate a camera, built-in
or placed near the computer, and to start signing any further comment.
In order to test the validity of some choices made during the design phase

Figure 3.11: Web page showing a question of the QUIS employed for the test.

of the application, we decided to add 6 items to the test, tailored on specific
aspects of SWift. Such items ranged from very specific, e.g. the usefulness
of a particular User Interface (UI) component, to very general ones, such as
the intuitiveness of the sign composition process. Such items were:

• Understanding the usage of the female character in the middle of the
screen was: (Very hard - Very easy).

• Understanding the glyph search engine was: (Very hard - Very easy).

• Searching for the glyphs you needed was: (Very hard - Very easy).

• Using the glyphs you needed was: (Very hard - Very easy).

• Composing a whole sign was: (Very hard - Very easy).

• Using SWift, did you feel the need of a help function: (Yes - No).
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3.2.3.2 Results

Each participant spent 7′ to 30′ (µ : 18′; σ : 7′ 1′′) to complete the test. Each
task took 0′ 2′′ to 14′ (µ : 2′ 1′′; σ : 2′ 44′′) to be carried out. To analyze
the outcome of the test, we introduced the definition of interesting event.
By this term we identify any noteworthy situation which occurred during
the test, e.g. comments, errors etc. Each participant triggered a number of
interesting events, ranging from 4 to 17 (µ : 12.1; σ : 3.9). Such events help
in identifying the areas of SWift which are worth improving. They have been
analyzed and classified into five “Event Sets”:

• S1 - Events related to interface appearance (39.8%): triggered
by the lack of understanding of the UI components.
Example: “The presence of graphics (instead of glyphs) in the home
screen was misleading”.

• S2 - Events related to application logic (24.7%): triggered by the
lack of understanding of the application logic. Example: “Difficulties
in understanding the usage of the glyph search engine”.

• S3 - Events related to interaction modality (16.1%): triggered
by the lack of understanding of the interaction rules of the application.
Example: “Using drag instead of click to activate a button”.

• S4 - Events related to glyph classification (11.8%): triggered
by the arrangement of the glyphs and to their search criteria in the
glyph search engine.
Example: “Difficulties in locating the glyph for the hand-to-head con-
tacts”.

• S5 - Events related to bugs (7.5%): triggered by bugs in the
application.
Example: “Glyph rotation function not working properly”.

The events were not smoothly distributed over the tasks proposed to the
participants, and were mainly focused on a restricted number of them. As a
demonstration, Tab. 3.3 shows the event occurrence percentage (out of the
number of total events recorded) for each of the 9 tasks. Two peaks were
detected, one during T2 (34.5%) and another during T9 (23.6%), we will
discuss such outcome in Section 3.2.3.3.
During each one of the tasks, different features and interaction modalities
were tested. As a consequence, it is interesting to report the distribution
of each event set for each task. Such distribution, shown in Tab. 3.4 varies
dramatically from task to task.
In order to have a finer-grained analysis of SWift, we tracked the occurrence
of each event. The count of the events is very high, some of them recurring
only one or two times. Tab. 3.5 illustrates the 5 most recurring events during
the test.
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# TASK EVENT %

T1 Insert a glyph of your choice. 10.7%

T2 Insert three given glyphs. 34.5%

T3 Navigate to the home screen of SWift. 0%

T4
Edit (rotate, delete) some of the glyphs within the white-
board.

1.1%

T5 Delete the whole content of the whiteboard. 5.4%

T6 Compose the given sign. 8.6%

T7 Handwrite 2 ad hoc glyphs. 12.9%

T8 Save the sign in image format. 3.2%

T9 Compose a sign of your choice. 23.6%

Table 3.3: Event occurrence percentage (out of the number of total events recorded)
for each of the 9 tasks of the Think by Signs Test.

TASK S1 S2 S3 S4 S5

Insert a glyph of your choice. 70.0% 20.0% 10.0% 0.0% 0.0%

Insert three given glyphs. 50.0% 33.3% 11.1% 2.8% 2.8%

Navigate to the home screen. N/A N/A N/A N/A N/A

Edit some of the glyphs. 0.0% 0.0% 100.0% 0.0% 0.0%

Delete the whiteboard con-
tent.

100.0% 0.0% 0.0% 0.0% 0.0%

Compose the given sign. 25.0% 37.5% 12.5% 12.5% 12.5%

Handwrite 2 ad hoc glyphs. 0.0% 57.11% 42.8% 0.0% 0.0%

Save the sign composed. 66.7% 0.0% 0.0% 33.3% 0.0%

Compose a sign of your
choice.

13.0% 8.7% 21.7% 34.8% 21.7%

Table 3.4: Percentage of occurrence of event sets for each task. The percentage of
an event set for a given task is calculated out of the total events occurring during
that given task. The most recurring event set is highlighted for each row. N/A is
found only if no events were detected during a task.

# EVENT EVENT %

E02
The usage of the glyph search system is unclear. Consequent
prolonged browsing.

20.6%

E03 Difficulties in locating the glyphs for the movement. 11.3%

E10
Presence of graphics (instead of glyphs) within the choose boxes
is misleading.

9.3%

E01
Presence of graphics (instead of glyphs) in the home screen is
misleading.

8.2%

E04 “Clear whiteboard” button is not well-recognized. 6.2%

Table 3.5: 5 most recurring events during SWift usability test.
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The analysis of QUIS questionnaire indicated an overall satisfaction of the
participants. The satisfaction was measured on a scale ranging from 0 (com-
plete disappointment) to 5 (complete satisfaction). The average satisfaction
level settled on 3.9 (σ : 1.0). More specifically, Tab. 3.6 shows the different
satisfaction levels for each section of the QUIS.

QUIS SECTION SATISFACTION (µ) SATISFACTION (σ)

Demographic questionnaire N/A N/A

Previous experience N/A N/A

General satisfaction 4.5 0.7

Screen 3.6 0.9

Terminology & System Info 3.8 1.0

Learning 4.2 0.8

System Capabilities 4.3 0.7

Multimedia effects 4.2 1.0

Custom SWift section 3.7 1.0

Table 3.6: Satisfaction level (µ and σ) for each section of the QUIS employed for
the test.

All the participants accepted to leave their comments, after the QUIS. The
comments were both positive and negative. More than half of the partici-
pants, mostly people with previous experience with other SignWriting digital
editors, expressed their satisfaction with SWift, in particular with the sim-
plicity of the composition process and with the UI of the application (words
like “beautiful” and “warm” were used). The hint panel, and the associated
glyph-suggestion function, was regarded as “one of the key feature of SWift”
by a number of users. The negative comments, on the other hand, were very
consistent with the distribution of the events of the Think by Signs Test
shown in Tab. 3.5. The area which received most negative comments was
the glyph search engine. The usage of such area remained unclear only for a
very restricted number of participants, but many of them complained about
being “overwhelmed” or “confused” by the big number of information (the
glyph search results) provided by the system, and expressed the need of a
graphical division between glyphs based on different prototypes. An impor-
tant issue was the usage of graphical components, such as the puppet, in the
home screen of SWift. In fact, a number of users expressed the need of actu-
ally “seeing glyphs” even on the home screen. Another recurring comment
regarded the learning curve of the application: many participants reported
that, after the first trial and error explorations which made them feel the
interaction uncomfortable, finding glyphs and composing signs (and use the
application in general) proved gradually easier.
Finally, no substantial performance/satisfaction difference was observed be-
tween deaf and hearing participants.
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3.2.3.3 Discussion

Analyzing the distribution of the events for each task (Tab. 3.3), we observed
a peak (34.5%) during T2, i.e. the second task in chronological order. Until
that moment, the participant had only been asked to insert a glyph of his/her
choice. The second task (“Insert three given glyphs”), however, forced the
participant to deal extensively with the glyph search engine, which is a
critical area in this application, as well as in any existing digital editor (e.g.
SignMaker). Due to the large amount of data that need to be presented to
the user, the search engine often needs some trial-and-error to be mastered.
This generated a high number of early events, but after the first “impact”
with the glyph search engine, events related to this area decreased (Tab.
3.4). Such decrease might most likely mean that the users learned to use
it in a very short time. This hypothesis is supported by the results of the
QUIS and by the comments of the participants. The second task, in terms of
detected events, is T9, i.e. the last one. Since T9 required to the participant
to compose a sign of his/her choice, the high number of events was most
likely due to the high degree of freedom which characterizes this task. The
participant was therefore able to follow his fantasy and take unpredictable
paths, which sometimes lead him to search very particular glyphs. This is
confirmed by the fact that most glyph classification related events occurred
during this task (Tab. 3.4).
Analyzing the occurrence of each event (Tab. 3.5), we observed that most
issues (20.6%) involve the glyph search engine, which needs some practice
to be fully understood by the novel users. As an example we noticed that,
although it was possible to check each choose box to refine the search results,
most participants only checked one single choice, taking to a huge amount
of candidate glyphs to browse. This is probably due to the fact that the
possibility to make multiple choices is not sufficiently clear. The high number
of comments about the glyph search engine, after the QUIS, confirm that
this is an area that is worth improving. Another critical issue was the use
of graphics (instead of glyphs) both in the home screen of the glyph menu
(8.2%) and in some of its choose boxes (9.3%). Nevertheless, it is to notice
that graphics (e.g. the picture of a hand) are present inside a choose box
only if this gives access to a search area that cannot be symbolized with
a single glyph, due to the number and the heterogeneity of the glyphs it
contains. As an example, the glyphs for the movements of the hands are
more than 14.000, so they cannot be summarized by one single glyph.
The results of the QUIS are almost completely in line with those of Think
by Sign test. Tab 3.6 shows Section 4 (Screen) yielding the lowest level of
satisfaction, more specifically, the average scores of item 4.2 “Highlighting
on the screen simplifies task” (µ: 3.3) and 4.3 “Organization of information
on screen” (µ: 2.8) are very low. This can be explained with the sensation,
reported by the participants (see Section 3.2.3.2) of being “overwhelmed”
by information when searching for a glyph. The custom section added to
QUIS was meant to gather data about particular design choices. Two items,
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in particular, received a very low score: item C-6 “Using SWift, did you feel
the need of a help function” (µ: 2.7) and item C-1 “Understanding the usage
of the female character in the middle of the screen was [...]” (µ: 3.3). This
brought our attention to the necessity to build help functions and a tutorial
for SWift, and, once more, to the necessity of improving the home screen of
the application.

3.2.3.4 Limitations

The main limitation to the usability test of SWift is the restricted number
of participants.
We also underlined that our aim was not to measure the user performance
of SWift, in terms of sign composition time, but rather the ease of use of the
application. It would have been worth to have a comparison in either one
aspect or the other with SM. This should have required users with a similar
experience in SignWriting and in the use of both applications. However, our
sample included users that were well trained in the use of SM. Therefore, the
past experience would have biased both performance and usability results.

3.2.4 After the test

A fair number of issues identified during the test were fixed. As an example,
to fix the issue E10: “Presence of graphics (instead of glyphs) in the home
screen is misleading”, we upgraded the puppet to show on mouseover, for
each anatomical area, a sample of the most important glyphs it refers to.
Fig. 3.12 shows the puppet interaction before the test (right) and after the
test (left).

Figure 3.12: Difference between the puppet of V.1.00 (before the usability test) on
the right and the puppet of V.1.01 (after the test) on the left; the circle with the
hand icon highlights the mouse pointer.



Chapter 4

Introduction to SW-OGR

In the present work, we define SignWriting Optical Glyph Recognition (SW-
OGR) as the electronic conversion of scanned images containing handwritten
or printed SignWriting glyphs into machine-encoded SignWriting texts.

The present chapter explains the reasons to work for SW-OGR. Chapter
5 and 6 grant an in-depth view of our SW-OGR. Chapter 7 provides a
performance analysis of the SW-OGR Engine.

4.1 Reasons to work for SW-OGR

The efforts of different teams around the world, including ours, produced
a set of different SignWriting editors, as illustrated in Chapter 2. Despite
their increasing capabilities in term of speed, usability, and reliability, such
editors are still far from granting the user an interface able to emulate the
simplicity of the handwriting. Actually, any software solution developed to
support the production of SW documents relies heavily on Windows Icons
Menu Pointers (WIMP) interfaces, both for accessing the application fea-
tures and for the SignWriting production process itself. The problem is all
but a theoretical one. Even dealing with word processors (Latin alphabet),
the users often feel the higher complexity and the slower composition time
with respect to handwritten text production, when no special formatting is
needed. Given its huge number of glyphs, this especially holds for people
using SignWriting, in particular for deaf people. In fact, they are far more
accurate, fast, comfortable using the plain old paper-pencil approach rather
than dealing with the (more or less) complex interaction styles of a digital
editor.
Observing the intrinsic shortcomings of the present digital SignWriting edi-
tors (Chapter 2), we evaluated the possibility to design a new generation of
SignWriting editing applications, able to partially overcome the concept of
WIMP interface. The new tools are intended to lift the user of any burden
related to clicking, dragging, searching, browsing on the UI during the Sign-
Writing production process, and to implement an interaction style which is
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as similar as possible to the paper-pencil approach that humans normally
use when writing or drawing. Of course, since WIMP is currently the easiest,
most common interface style in the world, it cannot be totally left behind,
because it is necessary to access to the features of most applications. Never-
theless, our aim is to limit or dismiss the WIMP style during the SignWriting
production process, which is the core part of any SignWriting editor.
Our idea for the new generation of SignWriting digital editors is illustrated
by the diagram in Fig. 4.1. We designed a OGR-powered SignWriting editor

Figure 4.1: Component diagram for a new generation of SignWriting editors fea-
turing a SW-OGR Engine.

composed by the following modules:

• The Data Acquisition Module, which is included within the User Inter-
face (UI). The purpose of the UI is to provide the user with a simple
interaction style for SignWriting composition, focusing on intuitiveness
(or, better, transparency) and accuracy. An ideal setting to provide a
paper-pencil-like tangible interaction style requires the usage of an ad-
ditional hardware component: the graphic tablet. This module must
also collect the data produced by the user (typically an image) and
pass it to the SW-OGR module.

• The SW-OGR Engine, which is the core component of the application.
Its purpose is to coordinate and control the recognition process. Two
modules belong to the SW-OGR Engine:

– The OGR Module, whose purpose is to provide a fast and accurate
recognition of all (or most) glyphs composed by the user.
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– The OGR Data Embedding Module, which is responsible for the
creation of a result image embedded with the data produced by
the OGR Module (it produces an image and an associated OGR
data file, typically a SWML-encoded file1).

• The data from the SW-OGR Engine are sent back to the UI, and are
shown within the Review Module, which also allows the user to make
corrections and/or add other data. The work done to produce SWift
could prove very useful during the development of this module, since
their functionalities (glyph search and editing) are very similar.

• The Data Finalization Module which receives the user-reviewed OGR
data from the UI. The purpose of this module is to save in the proper
form (file, database, etc.) the data it receives.

The implementation of such an editor is the main reason why we decided
to undertake the design and development of the SW-OGR Engine, since we
think that it is bound to be the core component of a future SignWriting
digital editor (as illustrated in Fig. 4.1).
As stated in the above list, the SW-OGR Engine is the component that is
designed to carry out the recognition for the symbols within a SignWriting
text. Before going further, however, it is important to introduce the defini-
tion of online recognition and offline recognition. On-line recognition system
recognize the text as it is being written (Khorsheed, 2002). The preferred
input device is an electronic tablet with a stylus pen. The electronic tablet
captures the (x,y) coordinate data of pen-tip movement, and an indication
of pen-up and pen-down (Wakahara, Murase, & Odaka, 1992). The on-line
recognition system has two major advantages: the high-recognition accuracy
and the interaction (Khorsheed, 2002). The first advantage is that on-line
recognition captures a character as a set of strokes, which are represented
by a series of coordinate points. As a consequence, temporal information
about the text are available to the recognition engine. The second advan-
tage is that “it is very natural for the user to detect and correct unrecognized
characters immediately by verifying the recognition results as they appear”
(Khorsheed, 2002). On the other hand, on-line recognition is limited to rec-
ognizing handwritten text. It is evident, at this point, that the component
diagram introduced in Fig. 4.1 depicts a system featuring online recognition.
The off-line recognition system, on the contrary, recognizes the text after it
has been written or typed (Khorsheed, 2002). The system may acquire the
text using a video camera or a scanner. The latter is commonly used be-
cause it is more convenient, it introduces less noise into the imaging process.
Typically, offline recognition is carried out by systems featuring high-speed
scanners, featuring a high volume document feeder and high throughput
Small Computer System Interface (SCSI) that can process a high number
of pages per minute (see (Khorsheed, 2002) for more details).

1SignWriting Markup Language (SWML) is an XML-based format developed for the
storage and processing of SignWriting texts and dictionaries
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Providing online recognition features was not the only goal that we pursued.
In fact, another motivation fueled our efforts while working on SW-OGR.
Since the beginning of the project, we were aware of the presence (and of the
considerable size) of a number of handwritten SignWriting corpora gathered
from different communities around the world. Those corpora are an invalu-
able asset, and they could become even more useful if digitalized. We expect
that SignWriting digitalization could allow a wider and faster diffusion of
the information carried by the aforementioned corpora, as well as allow the
linguistic research community to perform any kind of analysis on whole new
SignWriting datasets.
Since the SW-OGR Engine provides very fast recognition routines for a large
number of SignWriting glyphs, it can be employed for online (e.g. SignWrit-
ing editing) and offline (e.g. mass SignWriting corpora digitalization) pro-
cessing. In the second case, the diagram in Fig. 4.1 can be easily adapted
to avoid the constant presence of a human actor (Fig. 4.2). As illustrated in

Figure 4.2: Component diagram for a new generation of mass SignWriting corpora
digitalizer featuring a SW-OGR Engine.

Fig. 4.2, no human actor needs to interact with the system to provide input
images, since the data flow is maintained by an External Repository of Sign-
Writing texts. The images are handled, one by one, by the Data Acquisition
Module.
Since the SW-OGR Engine works in the background of the application, and
the image source does not affect its behavior, it presents no difference with
the (above) case of the SignWriting editor.
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Even in the case of offline recognition, it is not currently possible to com-
pletely avoid a human-in-the-loop approach. In fact, there may be errors in
the recognition that only a SignWriting-proficient human being can correct.
The Batch Recognition Module, however, is slightly different from its coun-
terpart in Fig. 4.1 since its purpose is to present, on demand, the whole
batch of OGR data produced, which undergoes a mass review process per-
formed by one (or more) human supervisor. As usual, once the review is
finished, the data is passed to the Data Finalization Module for the saving
operations.
It is worth underlining at this point that the digitalization that we aim at
is not the pure storage of digital SignWriting documents as images, which
is actually easily accomplished by a simple scanning operation. We want to
provide the same kind of integrated storage as SWift, where each sign is
stored together with the list of component glyphs, in order to allow both
the computation of linguistic statistics, and the enrichment of an effective
recommendation/suggestion tool for the WIMP version of the editor. It is
also worth noticing that, as in Latin alphabet, despite the glyphs allow to
write any Sign Language, the co-occurrence frequencies underlying recom-
mendation/suggestion depend on the specific language.

4.2 Related work on OCR

Apparently, the SW-OGR topic shares much in common with the Optical
Character Recognition (OCR) techniques, which are well established within
the computer vision literature. More specifically, we investigated the pos-
sible similarities between the SW-OGR and the modern OCR techniques
employed to perform the recognition of Arabic, “Indian” (Hindi, Devangari,
etc.), and Chinese handwritten characters. The comparison is motivated by
the particular nature of such writing systems, which present rich visual fea-
tures, so that they are more similar to the glyph-based system of SignWriting
than any other alphabet. A further investigation was also performed in the
field of Optical Music Recognition (OMR): a technique similar to OCR,
specifically intended to automatically decode handwritten or printed musi-
cal scores and generate their digital representation.
Different writing systems pose challenges of varying difficulty to the recog-
nition. As a consequence, before undertaking any implementation effort, it
is mandatory to identify the structural features of the writing system in
order to identify the most appropriate recognition strategies and techniques
to be employed. Such analysis is the starting point of any computer science
work related to OCR, and it must be performed by taking into account a
number of factors. First of all, the arrangement of the text, i.e. weather it is
written from left to right, as for Latin script, from right to left, as for Arabic
script, from top to bottom, like the Mongolian and other Asian scripts, etc.
Secondly, the symbols of the writing systems must be accurately analyzed,
in order to have a global idea of their features and possible variations.
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The recognition of Arabic script and the recognition of musical scores will
be our main running examples through all the present section. Khorsheed
(2002) reports a concise but effective analysis of the Arabic alphabet. The
alphabet is composed by 28 basic letters, which consist of strokes and dots.
Ten of them have one dot, three have two dots and two have three dots (Fig.
4.3, top). Dots can be above, in the middle or below the letter (Fig. 4.3, bot-
tom). Besides this, a number of variation to the symbols should be taken
into account, in fact “the shape of the letter is context sensitive, depending
on its location within a word. A letter can have up to four different shapes:
isolated, beginning connection from the left, middle connection from the left
and right, and end connection from the right. Most of the letters can be con-
nected from both sides, the right and the left. However, there are six letters
which can be connected from one side only: the right” (Khorsheed, 2002).
Moreover, some Arabic letters may have a zig-zag-like stroke called Hamza.
This additional character can be only associated to a restricted number of
letters, or isolated on the line. Another non-basic character is Ta-Marbuta
which is a special form of one of the letters of the Arabic alphabet (namely
Ta’ ), and it is always found at the end of the word.

Figure 4.3: Arab letters consist of strokes and dots. If they are present, dots can
occur from 1 to 3 times (top). Moreover, dots can be above, in the middle or below
the letter (bottom).

Another complex example is the set of characters in use in India, which can
be used to represent 18 official (i.e. Indian constitution accepted) languages.
Twelve different scripts are used to write these official languages. Analyzing
such characters, it can be observed (Pal & Chaudhuri, 2004) that, apart from
vowel and consonant symbols, called basic characters, there are compound
characters which are formed by combining two or more basic characters.
The shape of a compound character is usually more complex than the con-
stituent basic characters. In some languages, a vowel following a consonant
may take a modified shape, which depending on the vowel is placed to the
left, right, top or bottom of the consonant. They are called modified char-
acters. In general, there are about 300 character shapes in an Indian script
(Chaudhuri & Pal, 1998).
Besides this, the appearance (and consequently the features) of the sym-
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bols to be recognized may dramatically vary according to the writing style.
Writing styles may be classified according to their complexity into three
categories (Khorsheed, 2002):

• Typewritten or machine-printed : this is a computer-generated style,
and it is the simplest among all styles because of the uniformity in
writing a word.

• Typeset : this is normally used to print newspapers and books. Typeset
style is slightly more difficult than the machine-printed style, because
of the existence of possible overlaps and ligatures, which poses chal-
lenging problems. Ligatures occur when two or more letters overlap
vertically and touch. By contrast, overlaps occur when two or more
letters overlap vertically without touching.

• Handwritten: this is assumed to be the most difficult style because of
possible variations and inaccuracies in the shape of the symbols.

Some other factors should be taken into account during the study of the
writing system. One of the most important is the presence and the alignment
of a baseline. A Baseline is an important characteristic of a large number of
notations. In fact, it is a line (horizontal or vertical) that runs through the
connected primitives of a text. In most notations, the baseline is assumed
to have the maximum number of black pixels. This assumption, however,
is not valid for all notations (i.e. it is not valid for East Asian ideograms).
Moreover, if the script is skewed or handwritten, the baseline is not usually
straight, and may only be estimated (Khorsheed, 2002). As anticipated,
depending on the notation, the baseline can be both vertical or horizontal,
and it can be placed in different positions with respect to the symbols. Fig.
4.4 shows different baseline alignments in different notations. From left to
right, it is possible to identify the alphabetic baseline (Arabic, Latin, etc.),
the hanging baseline (Indian scripts, etc.), and the ideographic baseline (East
Asian ideograms, etc.).

Figure 4.4: Different baseline alignments in different notations. From left to right:
the alphabetic baseline (Arabic, Latin, etc.), hanging baseline (Indian scripts, etc.),
ideographic baseline (East Asian ideograms, etc.).

Once that all the defining features of the writing system to be recognized
have been identified, the OCR procedure can be designed and implemented.
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The study of the writing system is also a fundamental phase in OMR. In
fact, music notation “is a kind of alphabet, shaped by a general consensus of
opinion, used to express ways of interpreting a musical passage. It is the vi-
sual manifestation of interrelated properties of musical sound such as pitch,
dynamics, time, and timbre” (Rebelo et al., 2012). Musical notation has a
bi-dimensional structure, organized by the presence of the staff lines, and
characterized by the existence of several combined symbols organized around
the noteheads. The recognition of such symbols, especially when handwrit-
ten, poses challenges which are in all aspects as complex as the ones raised
by the recognition of a written VL.
Before going further, some basic image processing definitions are needed in
order to correctly understand how OGR/OMR procedures work. In image
processing, we define an object as “a two- or three-dimensional thing that
can appear in an image” (Parker, 2010). In the case of OCR, the term object
can be further specified by defining it as a word, a part of a word, a symbol,
or a part of symbol (Ahmed & Al-Ohali, 2000). In the case of OMR, on the
other hand, the term object can be further specified by defining it as a staff,
a clef, a beam, a stress symbol, an ornament symbol, a tie, a slur, a note,
or a rest (see Rebelo et al. (2012) for further information).
A crude but functional definition of a feature is “something that can be
measured within an image” (Parker, 2010). A feature is therefore a number
or a set of numbers derived from a digital image. The idea underlying many
approaches in image processing (pattern recognition above all), is that some
objects belong to groups based on each of these measurements.
Finally, we define a pattern as “a combination of qualities (data) that form a
characteristic arrangement” (Parker, 2010). Patterns can occur in numbers,
in pixels, in sounds, or even in behavior. Patterns are important in computer
vision because certain patterns of pixels represent specific objects in images.
If those patterns can be detected, then it is an indication of the occurrence
of that object in the picture. In the specific case of OCR/OMR, patterns are
based on strokes, points and any feature that characterize the objects. It is
important to remark that the definitions of object, feature and pattern are
necessary to correctly understand how modern OCR/OMR procedures work.
Regardless of the language and/or notation being recognized, most OCR/OMR
approaches are implemented using a consolidated 6-step procedure (Ahmed
& Al-Ohali, 2000). During a regular OCR/OMR session, a text undergoes
the following steps:

• Data acquisition is the first step in the recognition system. The objec-
tive is to acquire the text and transform it into a raster image.

• The pre-processing step attempts to compensate for poor quality orig-
inals and/or poor quality scanning. This is typically achieved by re-
ducing both noise and data variations.

• The segmentation step extracts the basic constituents from a given
text. Such constituents typically correspond to the definition of objects
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provided previously (Ahmed & Al-Ohali, 2000).

• The feature extraction step aims at capturing the essential character-
istics of an object by exploiting the attributes which make it different
from the other symbols.

• A major task after feature extraction is to perform the classification
of the object into one of several categories.

• The post-processing step, if applicable, aims at using properties of
natural languages to enhance the reliability of the recognition (Ahmed
& Al-Ohali, 2000).

Each of the above step is achieved through the application of different tech-
niques. Each step is further detailed (separately) in the following, through
an overview of the most relevant techniques it relies on.

4.2.1 Data acquisition

As anticipated earlier, the objective of this step is to acquire the text and
transform it into a digital raster image. The image may be acquired in color
mode, but the most common one is the grayscale mode (Parker, 2010). This
is due to the lightweight features of the grayscale mode, and because, in
most cases, a wider spectrum of colors is not needed.
The data acquisition plays an important role in shaping the whole recog-
nition procedure. In fact, depending on the source of acquisition (scanner,
tablet, camera, etc), the subsequent procedure may be an on-line or an off-
line recognition (introduced in Section 4.1). An on-line OCR/OMR system
recognizes handwritten text by capturing the pen positions in real time (the
recognition procedure can exploit temporal information). An off-line OCR
system recognizes an existing text (no temporal information available). In
such a system, digital images of existing texts are produced by scanning
them line by line or page by page. Afterwards these images are processed
and analyzed (Ahmed & Al-Ohali, 2000).

4.2.2 Pre-processing

Any OCR/OMR system depends upon both the original document qual-
ity and the registered image quality. The pre-processing stage attempts to
compensate for poor quality originals and/or poor quality scanning. This
is achieved by reducing both noise and data variations. All image acqui-
sition processes are subject to noise of some type, therefore there is no
ideal situation in which no noise is present. Noise can “neither be pre-
dicted nor measured accurately from a noisy image. Instead, noise may be
characterized by its effect on the image”(Khorsheed, 2002). There are two
types of noise: signal-independent noise and signal-dependent noise. Signal-
independent noise adds a random set of grey levels, statistically independent
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of the image data, to the pixels in the image. In signal-dependent noise, the
noise value for each point p in the image is a function of the grey level of p.
Investigating the state-of-the-art OCR (Khorsheed, 2002; Parker, 2010) and
OMR (Göcke, 2003; Rebelo et al., 2012) techniques, it is possible to observe
that coping with noise, and image pre-processing solutions in general, are
the same in both cases.
Smoothing is one of the most common ways to cope with noise within an
image. The smoothing process typically reduces the noise in an image using
a wide range of operations. Opening and closing are among the operations
which are frequently used to perform smoothing. “Opening opens small gaps
or spaces between touching objects in an image; this will break narrow isth-
muses and eliminate small islands. In contrast, Closing fills small gaps in an
image; this will eliminate small holes on the contour” (Khorsheed, 2002).
Please notice that both opening and closing apply the same basic morphol-
ogy operations, namely, dilation and erosion, but in the opposite order.
Opening applies an erosion operation immediately followed by a dilation
operation. Closing applies a dilation operation immediately followed by an
erosion operation, see Khorsheed (2002); Parker (2010) for more details.
Another approach to reducing noise (more specifically, salt-and-pepper noise)
is by applying the median filter. This is performed by passing a small win-
dow through all pixels in the image. The pixel in the center is replaced by
the median value of all the pixels in the region.
The presence of noise is not the only issue addressed during the pre-processing
step. In fact, scanning/writing a document so that text lines are within about
three degrees of the true horizontal is acceptable. However, for different rea-
sons related both to the acquisition device and to the actual content of the
original image, this is not always possible. As a consequence, one of the first
steps in attempting to read this document is to estimate the orientation an-
gle, i.e. the skew angle, of the text lines. This process is referred to as skew
detection, and the process of rotating the document with the skew angle, in
the opposite direction, is named skew correction. The common, and perhaps
the most efficient, approach to estimate the skew angle is to use the Hough
Transform (Hough, 1959), which is a method for detecting straight lines in a
raster image. Once the image has been pre-processed, it is ready to undergo
segmentation.

4.2.3 Segmentation

A document image is a visual representation of a printed page. Typically,
this page consists of blocks of text (which can possibly be interspersed with
tables and figures). During the segmentation process, the basic constituents
are extracted from a given page. In Arabic OCR, for example, the basic
constituents can either be a word, the complete shape of a character or the
partial shape of a character (Ahmed & Al-Ohali, 2000). In most writing
systems, methods of deriving the blocks can take advantage of the fact that
the structural elements of a document are generally laid down in rectangular
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blocks aligned parallel to the horizontal and vertical axes of the page. The
document decomposition and structural analysis task can be divided into
three phases (Srihari, Lam, Govindaraju, Srihari, & Hull, 1992):

• During phase one, i.e. block segmentation, the document is decom-
posed into several rectangular blocks. Each block is a homogeneous
entity which may contain a text, an image, a diagram or a table.

• During phase two, i.e. block classification, each block is assigned a label
(title, regular text, picture, table, etc.) using properties of individual
blocks from phase one.

• During phase three, the focus is mainly on text blocks, which undergo
a logical grouping and ordering.

The first challenges that almost any segmentation procedure must face is
the separation of lines (or columns) and the segmentation of words and sub-
words. A very common approach (Fehri & Ahmed, 1994) to identify the lines
in the text implies computing the horizontal projection of each row within
the image; of course, vertical projection is used to identify columns, if the
writing system has a vertical arrangement. After this, the procedure looks
for rows whose projection is equal to zero (no foreground pixel along the
row), then consider that every text line is situated between two blocks of
zero density pixel lines. This method is enhanced by identifying the lines
of pixels that have the largest density in the text. Words and sub-words
are determined by inspecting the projection along the remaining Cartesian
axis, i.e. vertical, if the text has an horizontal organization, and viceversa.
An average threshold value computed from all vertical gaps is used to de-
termine whether a spacing is an inter-word spacing or an intra-word spacing
(Altuwaijri & Bayoumi, 1994).
Another attempt at decomposing text into words, is based on the connected
components of that script. This method can solve the difficulty of segment-
ing handwritten script, where a clear cut between two consecutive text line
may be not possible to find (Abuhaiba, Holt, & Datta, 1998).
Regarding the Arabic notation, however, the classical method for identify-
ing text lines in an Arabic text image is to use a fixed threshold to separate
the pairs of consecutive lines (Amin & Masini, 1986; Khorsheed, 2002). This
threshold is obtained using the distances between various baselines of the
text. The median of different distance values is an appropriate selection.
In OMR, on the other hand, the actual segmentation of the text is typically
performed in tho phases:

• During phase one, the staff lines of the page are detected and removed.

• During phase two, the musical blocks are located and isolated for fea-
ture extraction and classification.

Staff line detection and removal are “fundamental stages in many optical
music recognition systems. The reason to detect and remove the staff lines
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lies on the need to isolate the musical symbols for a more efficient and cor-
rect detection of each symbol present in the score” (Rebelo et al., 2012). The
simplest approach consists of finding local maxima on the horizontal pro-
jection of the black pixels of the image (Fujinaga, 2005). Assuming straight
and horizontal lines, these local maxima represent line positions. Several
horizontal projections can be made with different image rotation angles,
keeping the image where the local maximum is higher. This eliminates the
assumption that the lines are always horizontal. The Hough Transform is
also used widely used in a number of approaches (Miyao & Nakano, 1995),
in order to detect staff lines. Other approaches (Fujinaga, 2005) incorpo-
rate a set of image processing techniques in the staff detection algorithm,
including run-length encoding, connected-component analysis, and projec-
tions. After applying the run-length encoding to find the thickness of staff
lines and the space between the staff lines, any vertical black run that is
more than twice the staff line height is removed from the original. Then,
the connected components are scanned in order to eliminate any component
whose width is less than the staff space height. After a global de-skewing,
taller components, such as slurs and dynamic wedges are removed.
The extraction of music symbols is the operation following the staff line
detection and removal. The segmentation process consists of “locating and
isolating the musical objects in order to identify them. In this stage, the
major problems in obtaining individual meaningful objects are caused by
printing and digitalization, as well as paper degradation over time. The
complexity of this operation concerns not only the distortions inherent to
staff lines, but also broken and overlapping symbols, differences in sizes and
shapes and zones of high density of symbols” (Rebelo et al., 2012). The most
usual approach for symbol segmentation is a hierarchical decomposition of
the music image. A music sheet is first analyzed and split by staffs and then
the elementary graphic symbols are extracted: noteheads, rests, dots, stems,
flags, etc. (Choudhury, Droetboom, Dilauro, Fujinaga, & Harrington, 2000;
Fujinaga, 2005; Miyao & Nakano, 1995).

4.2.4 Feature extraction

In order to carry out the recognition, OCR/OMR procedures evaluate the
features of the objects. As a matter of fact, such features are the properties
that make one object different from another. Therefore, their definition, ex-
traction and classification are of paramount importance to implement any
OCR/OMR procedure. The selected set of features should be a small set
whose values efficiently discriminate between patterns of different classes,
but are similar for patterns within the same class. The feature extraction
step is closely related to classification because the type of extracted features
must match what the classifier expects (Al-Badr & Mahmoud, 1995). Fea-
ture types can be categorized as structural features and statistical features.
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Structural features

Structural features describe a pattern in terms of its topology and geometry
by giving its global and local properties (Gonzalez & Woods, 2011; Parker,
2010). Such type of features can highly tolerate distortions and variations
in writing styles, but extracting them from images is not always easy. More-
over, the structural features used in OCR literature depend on the kind of
pattern to be classified (Al-Badr & Mahmoud, 1995). As a consequence,
this aspect of the OCR is highly depended on the writing system which is
to be recognized. In other words, OCR procedures for different writing sys-
tems extract different features. Within the same OCR procedure, structural
features can be organized in different, independent divisions, each one ex-
tracting a different set of features (Hassibi, 1994). Very often, based on the
preliminary features, an object may be assigned to a certain group where
further feature extraction is carried out (Amin, 1998; Gonzalez & Woods,
2011).
Resuming our running example, the features extracted from Arabic symbols
include strokes and bays in various directions, endpoints, intersection of
line segments, loops, stroke positions relative to the baseline, dots and their
positions relative to the baseline, and zigzag (Al-Badr & Mahmoud, 1995;
Khorsheed, 2002). Features can also be extracted from component curves
and strokes of a symbol. Such features include: the direction of curvature
(e.g., clockwise), the direction, slope, and length of strokes (Ahmed & Al-
Ohali, 2000), the length of a contour segment, the distance between the start
and end point of the contour projected on the X- and y-axis, and the dif-
ference in curvature between the start and end points (Margner & El Abed,
2007). Sometimes the pattern is divided into several zones and several types
of geometric features in each zone are registered and counted, with some
features constrained to specific zones (Al-Badr & Mahmoud, 1995). Those
features include the number of concavities, holes, cross points, loops, and
dots; the number and length of the contour segments; the zone with maxi-
mum (minimum) number of pixels; and concavities in the four major direc-
tions (Parvez & Mahmoud, 2013).
Similar techniques are also employed in music score recognition: a number of
authors (Bellini, Bruno, & Nesi, 2001; Fujinaga, 2005) have chosen to apply
projections to detect primitive symbols, and to extract features from the pro-
jection profiles. Another approach for the extraction of structural features
is based on the construction of graphs for each symbol. The symbols are iso-
lated and analyzed by using a region growing method and thinning (Rebelo
et al., 2012). Other approaches (Choudhury et al., 2000) propose the extrac-
tion of symbol features, such as width, height, area, number of holes and
low-order central moments; slightly different approaches (Taubman, 2005)
extract standard moments, centralized moments, normalized moments and
Hu moments.
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Statistical features

Statistical features are derived from the statistical distribution of pixels and
describe the characteristic measurements of a pattern. Generally speaking,
statistical features are easy to extract. Nonetheless, they may be mislead-
ing, due to a fraction of noise brought forth haphazardly according to the
binarization process.
Statistical features typically include zoning (Bazzi, Schwartz, & Makhoul,
1999), which considers the density distribution of character pixels, charac-
teristic loci (Abdelazim, Mousa, Saleh, & Hashish, 1990), which counts the
one and the zero segments and the length of each segment, the ratio of pixel
distribution between two parts of the image (Bouslama, 1996) and moments
(Sanossian, 1996).
Regarding the OCR for Arabic script, the text line was partitioned by some
researchers (Bazzi et al., 1999; Makhoul, Schwartz, Lapre, & Bazzi, 1998)
into a sequence of narrow vertical overlapping frames, with a width that was
a small fraction of the height of the line. Each frame was divided into 20
equal overlapping cells. Features extracted from each cell were: the intensity
of a cell, the vertical and horizontal derivative of intensity, and the local
slope and correlation across a window of two cells. The frame could have
a one-pixel width, as in Abdelazim et al. (1990). The system extracted a
feature vector from each column of pixels in the word image, where each
feature represented the length of black/white pixel run. Moment invariants
refer to certain functions of moments (Jain, 1989), which are invariant to
geometric transformations such as translation, scaling and rotation (Khor-
sheed, 2002). In is important to notice, however, that moment invariants are
sensitive to any change and multi-font recognition (Al-Badr & Mahmoud,
1995; Khorsheed, 2002).

4.2.5 Classification

As previously anticipated, a major task after feature extraction is to classify
the object into one of several categories. In computer science, more specifi-
cally in machine learning, a classifier is a function that takes the values of
various features (independent variables) in an example (the set of values of
the independent variables) and predicts the class that that example belongs
to (the dependent variable), on the basis of a training set of data containing
observations (or instances) whose class membership is known.

Minimum distance classifier

There are a number of various classification techniques applied in text recog-
nition. One of the most popular is the Minimum distance classifier. Given
K different classes, where each class is characterized by a feature vector
prototype, the problem is to assign an input feature vector to one of these
classes according to a predefined discriminant function. The features can
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typically be geometrical, statistical, or structural (see Khorsheed (2002) for
a complete bibliography).

Decision tree classifier

Another relevant classifier, widely used in OCR (Khorsheed, 2002), is the
decision tree classifier. This classifier splits the N dimensional feature space
into unique regions by means of a sequential method. More specifically, de-
cision tree learning uses a decision tree as a predictive model which maps
observations about an object to conclusions about the object’s target value.
In these tree structures, leaves represent class labels and branches represent
conjunctions of features that lead to those class labels.
The decision algorithm is typically designed such that every class need not
be tested to arrive at a decision. This becomes advantageous when the num-
ber of classes is very large. In the specific case of OCR, classification here
can be a two-step process (Goraine & Usher, 1994; Khorsheed, 2002). In the
first step, an input character is assigned to one of the main groups according
to some syntactic rules. Then, and relative to a more detailed feature vector,
the input character is matched with one of the group members.

Statistical classifiers

Statistical classifiers assume that different classes and the feature vector
have an underlying joint probability. One approach is to use the Bayes clas-
sifier (Devroye, Györfi, & Lugosi, 1996). The Bayes classifier minimizes the
total average loss in assigning an unknown pattern to one of the possible
classes. The probability density function can be cumulative, therefore at the
end, the assignment is to that class with majority samples.
Statistical classifiers are widely used in Arabic OCR (see Khorsheed (2002)
for a complete bibliography). Adopting statistical classifiers. Al-Badr and
Haralick (1996) implemented a three-step recognition process: first they
found instances of a set of shape primitives on a text image; then they
took the detected primitives of a word and hypothesized a number of alter-
native strings as the recognition of the word. The choice would be on the
one with the maximum a posteriori probability. Finally, the probability of
a match was computed between the symbol model and the word image.
Hidden Markov Models are statistical models which have been found ex-
tremely efficient for a wide spectrum of applications, especially speech pro-
cessing (Gales & Young, 2007). This success has motivated researchers to
implement HMMs in character recognition. Abdelazim et al. (1990) first ap-
plied HMMs to recognize Hindi numerals. Each numeral was represented
with a separate HMM. The observation sequence was passed to all the ten
models, and assigned to the numeral with the highest model probability of
the observation sequence.
HMMs are also employed within a number of novel OMR approaches (Pu-
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gin, Ashley, & Fujinaga, 2007.) which avoid the segmentation phase before
the feature extraction and classification phase. In fact, such methods simul-
taneously perform segmentation and recognition. The extraction of features
directly from the image frames (rather than from segmented objects) has ad-
vantages. Particularly, it avoids the need to segment and track the objects
of interest, a process with a high degree of difficulty and prone to errors
(Rebelo et al., 2012).

Neural networks classifiers

Finally, neural networks classifiers are a further example of technique ap-
plied to OCR. Actually, OCR is one of the most successful applications
that has been proposed for Neural Network (NN). A NN is a non-linear
system which may be characterized according to a particular network topol-
ogy (G. Zhang, 2000). This topology is decided by the characteristics of the
neurons and the learning methodology. NNs can simply cluster the feature
vectors in the feature space, or they can integrate feature extraction and
classification stages by classifying characters directly from images.
There are three main advantages behind implementing NNs in OCR: NNs
have faster development times; they have an ability to automatically take
into account the peculiarities of different writing/printing styles; and they
can be run on parallel processors. Generally speaking, the common archi-
tecture of NNs used in Arabic OCR is a network with three layers: input,
hidden and output. The number of nodes in the input layer varies accord-
ing to the dimension of the feature vector or the segment image size. The
number of nodes in the hidden layer govern the variance of samples that can
be correctly recognized by this NN. On the other hand, introducing a new
shape to the NN requires that the network be retrained, or even worse, that
the network be trained to a different architecture. Intensive work can be
found on the subject of Arabic OCR using neural networks (see Khorsheed
(2002) for a complete bibliography). NNs were also applied to recognize Ara-
bic words on-line Khorsheed (2002).
Regarding Indian OCR, the viability of NNs has been explored only for 2
out of 12 scripts, namely Telgu (Sukhaswami, Seetharamulu, & Pujari, 1995)
and Oriya scripts (Mohanti, 1998). About this latter script, Mohanti (1998)
proposed a system to recognize alphabets of Oriya script. The inputs pixels
are fed to the neurons in the Kohonen layer where the neurons determine
the output according to a weighted sum formula. The character is classi-
fied according to the largest output obtained from the neuron. The authors
made experiment only on five Oriya characters and hence the reliability of
the system is not fully established.
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4.2.6 Post-processing

The final stage in the recognition process is post-processing. One of the ob-
jectives of post-processing is to improve word recognition rate (as opposed
to character recognition rate). Post-processing is often implemented as a set
of techniques that rely on character frequencies, lexicons, and other con-
textual information. As classification, sometimes, produces a set of possible
solutions instead of a unique solution, post-processing is responsible for se-
lecting the right solution using higher level information that is not available
to the classifier. Post-processing also uses that higher level information to
check the correctness of the solutions returned by the classifier. The most
common post-processing operations are spell checking and correction. Spell
checking can be as simple as looking up words in a lexicon. To improve
the speed of lookup, a lexicon is sometimes represented as a tree (Khor-
sheed, 2002). When spell checking fails, Amin and Mari (Amin & Masini,
1986) use the Viterbi Algorithm to find alternate words whose characters,
with a high probability, can be interchanged with the original ones, using
a Hidden Markov model for each word. During the post-processing stage in
a restricted number of OMR approaches, the role of the user is of cardinal
importance in the recognition process. In fact, “an automatic OMR system
capable of recognizing handwritten music scores with high robustness and
precision seems to be a goal difficult to achieve” (Rebelo et al., 2012). Hence,
interactive OMR systems are a realistic and practical solution to this prob-
lem. MacMillan, Droettboom, and Fujinaga (2002) adopted a learning-based
approach in which the process improves its results through experts users.
The same idea of active learning was suggested by Fujinaga (2005) in which
“a method to learn new music symbols and handwritten music notations
based on the combination of a k-nearest neighbor classifier with a genetic
algorithm was proposed” (Rebelo et al., 2012).

4.3 SW-OGR issues at a glance

We decided to implement the 6-steps procedure which is distinctive of the
modern OCR techniques within our SW-OGR Engine (our implementation
is covered in Chapter 6). Actually, the early and final steps of the OCR, i.e.
acquisition, segmentation and post-processing, present little or no difference
as the language to be recognized varies. In fact, the techniques employed for
the implementation of such steps are very general purpose ones, i.e. they are
not language-specific (Parker, 2010). Therefore, we decided to adopt the tra-
ditional OCR approach for the acquisition, pre-processing and segmentation
steps, using a number of consolidated techniques in computer vision litera-
ture (an in-depth account of the employed techniques is covered in Chapter
6).
On the contrary, the core steps of the procedure, i.e. feature extraction and
classification, typically make large use of pattern recognition and machine-
learning techniques (as explained in Section 4.2), that aim at assessing both
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the quantitative (statistical, numerical) and qualitative (structural, topolog-
ical) features within the texts.
Unfortunately, we could not implement any pattern recognition and machine
learning approach within the SW-OGR Engine, and we were forced to de-
vise our own feature extraction and classification algorithms. The reason for
this choice is the very particular nature of SignWriting. More specifically,
the ISWA contains a number of symbols which is in the order of the tens
of thousands. Moreover, since handwriting is often inaccurate, each symbol
can be drawn in a number (usually in the order of tens) of different ways,
as in any handwritten notation. Last but not least, some details, e.g. the
number of eyelashes on an eye, can be chosen according to the writer pref-
erence, since the only relevant information is the presence of an open eye
with a certain expression. As a consequence, it is evident that any training
to enable a machine learning approach would take an unreasonable amount
of time, even for a subset of the ISWA, except for the basic shapes which
make up only the core part of the glyphs. And, actually, we used them for
this aim.
Another reason makes the application of pattern recognition techniques very
difficult, i.e. the total lack of rules regulating the number, type and position
of the glyphs within a SignWriting sign. In fact, the composition freedom,
which is one of the features which make SignWriting a very handy tool for
everyday SL writing, also makes the modeling of the notation very difficult.
For different reasons, in fact, it is not rare to see signs written with 2 or more
head symbols, or 3 or more hand configurations (to express, for example, a
specific movement). No study has been performed so far to perform a statis-
tical modeling about the type, number and position of the glyphs within a
SignWriting sign. This is one of the issues that our framework might help to
address. Moreover, the question also presents practical issues, since any rigid
modeling could basically be perceived by SignWriting users as a “limit” to
the distinctive freedom of composition boasted by the writing system.
The lack of statistical analyses, and previous studies on SignWriting, in com-
bination with the other two factor mentioned above, contributed in making
statistical feature extraction and classification not practically viable. For
the above reasons, we investigated the possibility to achieve SW-OGR by
working with three main sources of information:

• Structural (geometric and topological) features of the glyphs.

• Topological relationships among the glyphs.

• Context-dependent information, such as the knowledge of the organi-
zation of the ISWA.

Finally, for the reasons already introduced in the present section, more
specifically the lack of statistical analyses on SignWriting compositions, and
the high level of freedom featured by the system, we could not perform
the post-processing step automatically. As mentioned in this chapter, one
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of the objectives of post-processing is to improve the recognition rate of
words (signs, in our case). This step is typically implemented using a set of
techniques that rely on character frequencies, lexicons, and other contextual
information. At present, no such study has been carried out for SignWriting
compositions, so our post-processing step is performed with the aid of a hu-
man actor (as detailed in Section 4.1). As a consequence, the post-processing
step is not managed by the SW-OGR Engine.
A theoretical study (illustrated in the present Section) of the SW-OGR topic
was necessary prior to any engineering effort. Once the main algorithms and
entities involved in the recognition were defined (Chapter 5), the implemen-
tation (Chapter 6) and testing (Chapter 7) phases have taken place.
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Chapter 5

Coding system of SW-OGR

5.1 SignWriting datasets

Before starting any work for the SW-OGR Engine, it was necessary to gather
a comprehensive dataset of SignWriting texts. The present section provides
a sample of each dataset we used. We made sure to obtain datasets con-
taining both handwritten and printed symbols, in order to work on a wider
variety of symbols.
The first dataset we obtained, in chronological order, is the Pear Story
dataset (DS-PEAR). DS-PEAR is composed by 58 pages containing LIS
narrative texts produced by the signers of the SLDS laboratory via the
presentation of Chafe’s (Chafe, 1980) Pear Story film. Each text includes
a transcription from a video-recording and from a face-to-face signed pro-
duction. DS-PEAR was extracted from Bianchini (2012), a sample of the
dataset is shown in Fig. 5.1.
Another handwritten dataset is the Poitiers dataset (DS-POITIERS). DS-

POITIERS was provided by C.S. Bianchini, associate professor in linguistics
at the Université de Poitiers. The dataset is composed by 156 pages con-
taining LSF texts produced during different exercises by her students in
linguistics. A sample of the dataset is shown in Fig. 5.2.
SW-PEAR and SW-POITIERS are our main, original datasets. Sometimes,
however, especially during the development and the testing phase, it is use-
ful to have an utility dataset, built to test single features of the recognition
engine. For this reason, we created a Development dataset (DS-DEV), whose
texts contain symbols belonging to the same SignWriting category, or differ-
ent variations of the same symbol. As an example, in order to test the recog-
nition of the Hands Configurations area, we built a text containing a high
number of possible rotations, plane and hand variation of the same configu-
ration. The text is shown in Fig. 5.3. Even though the differences are difficult
to spot, please notice that DS-DEV was produced by the SW-OGR develop-
ment team, rather than SignWriting experts. Finally, as already mentioned,
we gathered a number of printed SignWriting texts in order to assemble the
Printed dataset (DS-PRINTED). Part of such texts were composed by the
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Figure 5.1: Sample of the DS-PEAR dataset.
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Figure 5.2: Sample of the DS-POITIERS dataset.

Figure 5.3: Sample of the DS-DEV dataset.
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SW-OGR development team using SWift, while another part was gathered
from the SignWriting Website (Sutton, 1996). The purpose of such dataset
is the same as DS-DEV, i.e. an utility dataset which can be exploited in mul-
tiple occasions during the development of the application. Moreover, printed
glyphs are often fairly different from handwritten glyphs, so DS-PRINTED
was also useful to test the robustness of out recognition procedure.

5.2 Core recognition elements

The full understanding of the terminology that we will be using in the follow-
ing chapters is of critical importance. Therefore, it is now worth introducing
a number of concepts that will be very important during the description of
the design and development of the SW-OGR Engine. Any keyword intro-
duced in this section is also available in the Glossary.
In the beginning of our work, we observed a number of SignWriting hand-
written texts from a conceptual point of view. Our aim was to perform a
top-down analysis of the graphical elements we would have to work with
within the image. In primis, the first element the SW-OGR has to deal with
is the image itself, as a whole. Such image contains handwritten or printed
SignWriting glyphs. We define such input image as a text (see Fig. 5.4).

A text is an image containing handwritten or printed SignWrit-
ing glyphs.

According to the visual organization of the text, it is possible to divide the
image in sections, i.e. rows (horizontal organization) or columns (vertical
organization). As illustrated in Chapter 2, SignWriting is naturally written
using a vertical visual organization, and all the datasets we used to test the
SW-OGR Engine follow such organization. It is not impossible, however, for
a text to follow a horizontal organization. Anyway, a text typically contains
one or more of such sections, each one of them is in turn composed by a set
of symbols. We define these sections as slices (see Fig. 5.5).

A slice is a section of a text. If the text follows a horizontal vi-
sual organization, a slice is a row within the text. Otherwise, if
the text follows a vertical visual organization, a slice is a column
within the text.

Each slice is composed by a set of connected components, that we define as
frags (see Fig. 5.6).

A frag is a 8-connected foreground component within a slice.
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Figure 5.4: An example of text belonging to the DS-POITIERS dataset.

Figure 5.5: An example of slice (courtesy of C.S. Bianchini).This is the first slice
extracted from the text in Fig. 5.4.
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At this stage, no relationship between frags and glyphs can be established,
since a large number of glyphs are composed by two (or more) unconnected
set of points. Moreover, it is allowed to draw one glyph over another, or two
glyphs could simply be close enough to result connected after the digital-
ization process, if any. For these, and for a limited number of other reasons,
we can only state that a frag may represent a glyph, a set of glyphs, or just
a part of a glyph (see Fig 5.7). The “pop-arty” illustration (Fig 5.8) of the
frags detected within a text concludes this section. Each frag within the text
has been highlighted with a different random color.

Figure 5.6: An example of frag (courtesy of C.S. Bianchini).This is the first frag
extracted from the slice in Fig. 5.5.

Figure 5.7: The complex relationship between frag and glyphs: a frag may represent
a set of glyphs (left), a glyph (middle) or just a part of a glyph (right - the glyph
is composed by three different frags).
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Figure 5.8: Set of frags detected within the text in Fig. 5.4. Each frag has been
highlighted with a different random color.
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5.3 OGR coding for SignWriting

The SW-OGR Engine mainly performs recognition by evaluating the geo-
metric and topological features of the glyphs. Therefore, in order to carry out
such evaluation, it was necessary to devise an alternative coding system for
SignWriting, based on geometric and topological criteria only. Such coding
is not intended to be used as an alternative to ISWA, but rather as a coding
of the process (sequence of checks) needed to recognize glyphs. It is worth
noticing that the code is independent from the software procedures which
are actually used to perform the required steps. We further detail this issue.
As illustrated in Chapter 2, the only available coding for SignWriting is the
ISWA coding, which is based on linguistic and production criteria. However
such criteria are semantic ones (e.g. we already know that a certain glyph
is an hand) while we rather need “lexical” ones. Since we could not use the
existing coding system, we devised a new one, namely the OGR coding for
SignWriting.
Unlike ISWA identifiers, OGR identifiers encode the relevant geometric and
topological features of the glyph they represent. A few examples of the fea-
tures that the OGR coding takes into account are: the presence and the size
of geometric shapes (circles, rectangles, etc..) detected within the image of
the glyph, the presence of relevant convexity defects1 within the convex hull
and the presence of thick foreground clusters (see Fig. 5.9). Some features,
like the width to height ratio of the glyph, are very easy to identify, while
others may require more complex analyses. Using a wide range of image pro-
cessing techniques, however, the SW-OGR Engine is able to automatically
identify the OGR coding of most glyphs within a handwritten SignWriting
text. This is the feature of the OGR coding system that actually makes the
recognition possible, and it is indeed its main advantage.
Devising a OGR coding for a given set of glyphs is a very delicate task. Each

Figure 5.9: A few examples of the features encoded by an OGR identifier: from
left to right: presence of geometric shapes, presence of convexity defects within the
convex hull, presence of foreground clusters.

digit in the OGR code represents a feature that the SW-OGR Engine must
evaluate in order to identify the glyphs within the set. Multiple requirements
should be satisfied in order to produce a working OGR coding.

1In mathematics, the convex hull of a set X of points in the Euclidean plane is the
smallest convex set that contains X. Any deviation of the set X of points from the convex
hull can be considered as convexity defect.
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• Uniqueness: One OGR code (i.e. a sequence of checks over the glyph)
must identify one single glyph, otherwise the coding is ambiguous.

• Robustness: The OGR coding shall take into account the most re-
curring handwriting inaccuracies for each glyph and address them as
much as possible (see Fig. 5.10).

• Efficiency : The number of checks necessary to build an OGR code
should be kept to a minimum in order to simplify and speed up the
recognition.

Failure to comply with the above requirements may have an impact of vary-
ing severity on the recognition. If the coding system is not unique, the recog-
nition would not be possible at all. In fact, after having performed all the
necessary checks over the image of a glyph, the SW-OGR Engine would be
forced to choose between two or more glyphs with the same OGR code,
without having further information to exploit. It is very important to no-
tice that the uniqueness requirement only states that one OGR code must
identify one single glyph, but the contrary is not necessary, and in some
sense not even desirable. Actually, in some cases, it is very useful to have a
glyph identified by multiple OGR codes. One of the most common reasons
for this is to handle recurring handwriting inaccuracies by the users, which
can dramatically alter the features of a glyph (see Fig. 5.10). It is worth
noticing that this also addresses the robustness requirement.
At a significant extent, in any case, less severe consequences occur if the
OGR coding is not robust. In fact, if (at least) the most recurring handwrit-
ing inaccuracies are not taken into account, the system would simply require
a very high level of precision from the users, but it could theoretically be still
working. On the other hand, a non-robust coding system, however, would
force the users to handwrite symbols so that they are very similar to the
digital glyphs, and this could prove a very tiring and frustrating job.
Finally, failure to comply with the efficiency requirement would result in a
coding which demands more checks over the glyph than necessary. A direct
consequence of such inefficiency is a redundant, resource-wasting SW-OGR
Engine. Inefficiency does not necessarily compromise the overall functioning
and recognition accuracy of the application. However, one of the purposes
of SW-OGR is to perform real-time glyph recognition, and speed is a key
requirement for the application, thus inefficiency cannot be accepted.
The shapes of the glyphs may be very different from category to category,

and even from group to group. Therefore, the features encoded within the
OGR identifiers vary accordingly. For example, the presence of one or more
triangles is valuable information for glyphs related to movements, but it is
completely useless when encoding the features of a hand configuration.
In order to avoid wasting time and resources on useless checks, the OGR
coding could benefit of the knowledge of the ISWA category or group it is
referring to. In other words, the SW-OGR Engine should not look for (and
encode) fingers, if the glyph being recognized is a facial expression.
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Figure 5.10: Glyph representing the shape of an eye (ISWA-2010: 04-02-006-01-01-
01). The original digital version is visible on the left, along with some examples of
drawing inaccuracies, found within our datasets.

Therefore, the very first information that the OGR coding should carry is
about the OGR area (or simply area) of the glyph.

An OGR area is a category or group within the ISWA whose
glyphs present similar geometric features.

The definition of area is intentionally vague (“a category or group”)2 because
in some cases a category may contain glyphs which present very similar fea-
tures (e.g. Category 1 - Hands), thus they can all be placed into the same
area. In other cases, however, the same category may contain glyphs which
are very different, according to the group they belong to (e.g. Category 4 -
Head & Faces). In such cases, an area corresponds to a group.
Categories and groups are concepts that have been introduced within Sut-
ton’s ISWA, and, as explained in Chapter 2, their definition is based on
linguistic and production (semantic) criteria. Such criteria are meaningless
within the OGR coding context. As a consequence, in order to pick out the
area of a glyph, it is necessary to isolate its geometric and topological fea-
tures and use them to identify its category and/or group. For example, to
check if a glyph belongs to the Contacts area, it is important to check for
the existence of particular shapes which are typical of the glyphs belonging
to Group 11 - Contacts, in Category 2 - Movement. Such shapes are asterisk
symbols, plus symbols, etc. Moreover, it is necessary to check whether the
size (e.g. width-to-height ratio) of the detected shapes respects a number of
constraints or not.
Tab. 5.1 reports the full list of areas defined within the OGR coding system.
For each area, the table reports:

• The code, i.e. a concise string, used to refer to the area during the
design and development phase.

• The ISWA category or group associated to the area.

• The list of checks necessary to assess if a given glyph belong to the
area. The check are performed over the image of the glyph, and they
include:

2Categories and groups are the fundamental sets (and subsets) of glyphs in SignWriting.
They have been introduced in Chapter 2.
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– Shape: detection of shapes within the image.

– Shape cardinality : the number of detected shapes within the im-
age.

– Size: different analyses of the size of the image (width-to-height
ratio, minimum or maximum width or height, etc.).

– Position: position of the image with respect to a reference point
or image.

– Containment : containment of the image with respect to a refer-
ence shape or image.

Areas defined within the OGR coding system

Code Description Checks

HaC Hand Configurations
Shape (CIRCLE, RECTANGLE, ...).
Size.

HaM Hand Movements
Shape (TRIANGLE).
Size.

ArP Arm Positions
Shape (LINE).
Size.

ArM Arm Movements

Shape (TRIANGLE).
Shape cardinality.
Size.

ShP Shoulders Positions
Shape (RECTANGLE, ...).
Size.

ShM Shoulder Movements
Shape (CIRCLE, RECTANGLE, ...).
Size.

HeE HE
Head Circles
Head Contacts

Shape (CIRCLE).
Size.

HeE EY Facial Expressions: Eyes
Containment within head.
Position.

HeE NO Facial Expressions: Nose
Containment within head.
Position.

HeE MO Facial Expressions: Mouth
Containment within head.
Position.

Continued on next page
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Areas defined within the OGR coding system – Continued from
previous page

Code Description Checks

HeM Head Movements

Shape (CIRCLE, TRIANGLE)
Size.
Position.

Co Hand Contacts
Shape (ASTERISK, PLUS, ...).
Size.

Dy Dynamics
Shape (ARC, TILDE).
Size.

Cr Coordination
Shape (ARC).
Size.

Pu Punctuation
Shape (RECTANGLE).
Size.

Table 5.1: Areas defined within the OGR coding system. For each area, the table
reports the code, the ISWA category or group associated to the area, and the checks
that SW-OGR performs, in order to check if a glyph belongs to the area.

Each area contains glyphs characterized by very different geometric features.
For such reason, each area has a different type of OGR coding, according
to the features that it is worth detecting within the images of the glyphs.
The different coding may vary from simple to complex, according to the
cardinality of the glyphs within the areas. In fact, an area which contains a
very high number of similar symbols, requires a very high number of checks
to univocally identify each of them. For example, the OGR coding of a very
small area, such as Facial Expressions - Nose, features only two digits. A
very dense area, on the other hand, such as Hand Configurations, has a
variable-length OGR code that may extend up to 145 digits, if the encoded
hand configuration has a high number of details (i.e. fingers, intersections
between fingers, etc.).
The following sections (Section 5.3.1 and Section 5.3.2) show two representa-
tive OGR areas, illustrating their OGR codings and explaining the procedure
to build them.

5.3.1 Hand Contacts (Co)

The present section shows the OGR coding for the Hand Contacts area,
and explains the procedure we followed to build it. Such area contains an
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average number of glyphs (85 symbols) and it is a representative example of
our efforts to build a OGR coding system covering each SignWriting glyph.
The first step to devise an OGR coding for a given area is to identify the set
of relevant image features to be extracted from the glyphs belonging to the
area. As a consequence, it is useful to gather such glyphs together to visu-
ally compare them and identify both common elements (to be checked first
in order to first identify the area) and peculiar ones (to distinguish glyphs
within the same area). Fig. 5.11 shows the whole set of glyphs within the
Hand Contacts area.
For the convenience of the reader, it is important to shed some light on the
production meaning of the contact symbols. The choice of the symbol indi-
cates a different interaction between a hand and another part of the body.
An asterisk symbol is used for simply touching the contact region, a circle
with a dot inside for brushing along the region and then leaving it, a spiral
for rubbing the region and not leaving, a hash symbol for striking the region,
and finally a plus sign for grasping the region (usually the other hand). From
the previous list, it is possible to notice the high level of production detail
featured by SignWriting.

Figure 5.11: The whole set of glyphs within the Hand Contacts area (85 symbols).

Even if the total number of glyphs is not that high (85 symbols), it is very
inefficient to work on the whole set. If fact, in most cases, there are features
that are very easy to detect, but they are responsible for a dramatic increase
of the cardinality of the glyphs within a given area. In the case of Hand Con-
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tacts, we preferred to ignore such features, and to detect them at the end of
our recognition procedure. One of such features is the rotation. In our case,
ignoring the rotation feature, the symbols to be identified dropped from 85
to 25 (decreasing by 70.5%). The set of remaining symbols is visible in Fig.
5.12.
From the point of view of the implementation of SW-OGR, ignoring a fea-
ture (such as the rotation), implies designing recognition procedures which
are invariant with respect to that feature. In the case of Hand Contacts (and
in many other OGR areas), we implemented recognition procedures which
are rotation-invariant. This goal was achieved by avoiding to use information
about the exact location of the features within the image. We rather used the
detection of the presence (and the evaluation of the characteristics) of some
relevant cues over the image of the glyph, and we quantitatively analyzed
the results. As a general example, we used techniques such as the generalized
Hough transform for the detection of curves (Duda & Hart, 1972) to hypoth-
esize the presence of a head, and the classification of the points of interests
(end, branch and cross points) of a thinned image proposed by (Sarfraz,
2005) to identify specific features of hand configurations and movements.

Figure 5.12: Glyphs within the Hand Contacts area, without rotations (25 symbols).

Analyzing the remaining set of glyphs, we searched for the most outstand-
ing feature to operate an initial division. We observed that, separating the
glyph according to the base shape detected within their images, we could
split our set into 5 subsets of equal cardinality. We assigned a code to each
base shape, as described in Table 5.2. Such code is the first digit of the OGR
coding of the Hand Contacts area.

Hand Contacts area - base shape check details
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Shape Code Image

PLUS 1

HASH 2

ASTERISK 3

SPIRAL 4

CIRCLE 5

Table 5.2: Hand Contacts area - base shape check details. For each shape, the table
reports the name, the OGR code and an example image.

Visualizing the organization of the area, shaped by the different geometric
checks, is very helpful both for computer scientists working for the OGR
coding, and for the readers of the present work. In order to do so, we used
a tree-like diagram, namely a OGR-tree. Fig. 5.13 shows the organization
of a typical OGR tree. The root of the tree carries the name of the area,
and its code, e.g. Hand Contacts. It represents the starting point for the
following evaluations. Each level of the tree represents a different feature
of the image (e.g. base shape), the more a level is close to the root, the
earlier the associated feature is evaluated. Internal nodes on the same level
represent different results for the same evaluation (e.g. Base Shape: PLUS,
Base Shape: HASH, etc.). Each internal node within the diagram carries in-
formation about the associated evaluation, the associated result, and about
the code (one or more digits) associated to the result. The leaf nodes of the
tree represent the glyphs within the area. Each leaf carries the image of the
glyph, as well as its final OGR code, and its ISWA-BIANCHINI code.

Figure 5.13: Organization of a OGR tree.

The OGR tree in Fig. 5.14 shows the state of the Hand Contacts area after
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the evaluation of the first feature. As anticipated, the glyphs have been
divided according to the base shape. Looking at the OGR codes written on
the leaf nodes, it is evident that such division is not sufficient to assign a
unique OGR identifier to each glyph, since many of them have the same
OGR identifier. Therefore, it is necessary to detect more features.
A further level of specification can be added by counting the repetitions of

Figure 5.14: Hand Contacts area after the base shape check.

the detected base shape, with the possible values being 1, 2 or 3 repetitions.
The detection of such feature divides each of the 5 subsets resulting from
the first check into 3 further subsets. Fig. 5.15 shows the state of the Hand
Contacts area after the evaluation of the second feature. A small number of
glyphs, (i.e. [OGR: 1.3], [OGR: 2.3], etc..) have already been identified in
an univocal way by the repetition check. Most glyphs, however, still present
ambiguity, and need further specification. Looking at Fig. 5.15, please notice
that some internal nodes and leaf nodes are hidden for the sake of space and
readability. Please notice also that the OGR codes on the leaf nodes have
been updated, including the results from the repetition check.
The remaining ambiguous glyphs are almost equal, but some of them present
one or more lines running along the sides of the base shape. This is actually
the only feature that can be exploited to remove the remaining ambiguity. It
is evident, from Fig. 5.16, that after the line check, each glyph is identified
by a different OGR code, thus fulfilling the uniqueness requirement of the
OGR coding system. Again, some internal nodes and leaf nodes are hidden
from Fig. 5.16, and the OGR codes on the leaf nodes have been updated.
It is worth reminding that almost each leaf node in Fig. 5.16, has 4 possible

rotations. The rotations have been hidden from our initial set of glyphs to
avoid useless overhead, but such feature must be encoded within the OGR
code. Therefore the rotation, with its 4 possible values, is the last digit of
the OGR coding system for the Hand Contacts area.
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Figure 5.15: Hand Contacts area after the repetition check. A number of internal
nodes and leaf nodes are hidden for the sake of space.

Figure 5.16: Hand Contacts area after the line check. A number of internal nodes
and leaf nodes are hidden for the sake of space.
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The following list summarizes the sequence of features exploited to build the
OGR coding for the Hand Contacts area.

1. Base shape (PLUS, HASH, ASTERISK, SPIRAL, CIRCLE).

2. Repetition (1, 2, 3).

3. Line (NO, YES).

4. Rotation (0◦, 45◦, 90◦, 135◦).

5.3.2 Hand Configurations (HaC)

The OGR coding of the glyphs belonging to Hand Contacts area is rather
simple (4 digits), since the area contains 85 symbols. The OGR coding shown
in the present section is far more complex (24 to 145 digits), since it encodes
the features of the glyphs within the Hand Configurations area, which con-
tains more than 23.000 symbols. Such area boasts the highest number of
glyphs in the OGR coding system. In fact, it proved one of the toughest
challenges we faced during our work.
The glyphs of the Hand Configurations area present features that are very
easy to detect, such as the color fill (white, black & white, black), as well as
other, more fine-grained features, such as those related to the fingers. Such
features are fairly difficult to draw, so the image produced by the user can
be very inaccurate. Moreover (and also due to this) such features are rather
hard to detect, thus they require a very thorough analysis of the image.
Therefore, reaching the aurea mediocritas between accuracy, efficiency and
robustness is crucial to build a working OGR coding for the Hand Configu-
rations area.
During the initial stage of our work on this area, we followed the same
approach illustrated in Section 5.3.1. First of all, we ignored the rotation
feature3, and we postponed its detection to the final steps of the recogni-
tion. Most symbols in this area have 8 possible rotations (0◦, 45◦, 90◦, 135◦,
180◦, 225◦, 270◦, 315◦), so the working set of symbols dropped from 23.136
to 2.892 units (decreasing by 87.5%).
Since the set of symbols is still very large, illustrating our work by showing
detailed views of the OGR tree might not the be the best option. For this
reason we will simply enumerate, discuss and illustrate the features we de-
cided to evaluate within the glyphs, in order to build our OGR coding for
this area.
As for the Hand Contacts area, the first feature we decided to isolate is the
base shape detected within the glyphs. Such base shapes are used to repre-
sent the palm of the hand, and they divide the working sets of glyphs into
subsets of varying cardinality. Tab 5.3 show the possible base shapes, and

3Similarly to what stated for Hand Contacts (Section 5.3.2), ignoring a feature (such
as the rotation), implies designing recognition procedures which are invariant with respect
to that feature.
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the associated code. This is the first digit of any OGR code within the Hand
Configurations area.

Hand Configurations area - base shape check details

Name Code Shape Image

SQUARE 1

RECTANGLE 2

CIRCLE 3

HOUSE 4

R-HOUSE 5

TRAPEZIUM 6

SPIRAL 7

Table 5.3: Hand Configurations area - base shape check details. For each shape, the
table reports the name, the OGR code, an image of the shape, and a number of
example glyphs.

The second feature we identified is the color filling of the base shape. Such
color filling identifies the orientation of the palm of the hand, and it may
assume three possible values: WHITE, BLACK&WHITE, BLACK. Table
5.4 shows more details about the orientation feature. The evaluation of such
feature concludes our assessments related to the base shape of the glyph.
The following evaluations are all focused on the fingers. Notice that we prefer
to use the word appendices to refer to the fingers, since such word has no
meaning in the OGR context.

Hand Configurations area - orientation check details
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Shape Code Image

WHITE 1

BLACK&WHITE 2

BLACK 3

Table 5.4: Hand Configurations area - orientation check details. For each orienta-
tion, the table reports the name, the OGR code and a number of example images.

The first evaluation performed over the appendices identifies their number
(appnum). Each glyph may have from 0 up to 5 appendices, and such num-
ber is the third digit within the OGR code.
The following evaluation aims at identifying whether the appendices (if any)
are detached or attached to the base shape. We named it the attachment
check. Since it is not possible to have both attached and detached appen-
dices on the same symbol, the check may only return two possible values:
ATTACHED and DETACHED. More details are provided in Tab. 5.5.

Hand Configurations area - attachment check details

Shape Code Image

ATTACHED 1

DETACHED 2

Table 5.5: Hand Configurations area - attachment check details. For each case, the
table reports the name, the OGR code and a number of example images.

The following evaluation is about the location of the appendices (apploc).
We define an outer appendix as an appendix which extends on the space
outside of its base shape, otherwise it is an inner appendix. Most glyphs
have outer appendices, but there are also less frequent cases, such as inner
and mixed (both inner and outer) appendices. Tab 5.6 provides more details
about the appendix location feature.

Hand Configurations area - apploc check details
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Shape Code Image

NO 0

INNER ONLY 1

OUTER ONLY 2

MIXED 3

Table 5.6: Hand Configurations area - apploc check details. For each case, the table
reports the name, the OGR code and an example image.

The fingers of the human hand may assume different shapes: they can be
extended, bent, etc. As a result, the appendices of the glyphs in the Hand
Configuration area can feature different shapes. The appendices can be
STRAIGHT or DOT when they represent an extended finger, and BENT
or STRAIGHTDOT when they represent a bent finger. Most glyphs feature
STRAIGHT or BENT shapes, while the other shapes are rather uncommon.
Tab 5.7 shows the possible shapes of the appendices, showing a number of
examples for each of them.

Appendix shapes within the Hand Configurations area

Shape Description Image

STRAIGHT The appendix is a straight line.

STRAIGHTDOT
The appendix is a straight line, terminat-
ing in a dot.

DOT The appendix is a dot or a square.

BENT
The appendix is a bent line or a curved
line.

Table 5.7: Appendix shapes within the Hand Configurations area. For each shape,
the table reports the name, a short description and a number of example images.
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The shapes of the appendices are the next feature to be evaluated within
our OGR code, according to the above classification. In fact, we decided
to count the number of appendices dividing them according to their shape.
More specifically, the appendix shape (appshape) check produces a 4-digit
string, which is built in the following way:

• 1st digit: the total count of STRAIGHT appendices.

• 2nd digit: the total count of STRAIGHTDOT appendices.

• 3rd digit: the total count of DOT appendices.

• 4th digit: the total count of BENT appendices.

As an example, if the result of the appshape evaluation is 2001, the analyzed
glyph features two STRAIGHT appendices, and one BENT appendix. More
examples are available in Fig. 5.17, please notice that there are three different
symbols which are encoded by the same string, i.e. 3000. This is a very
frequent case in the Hand Configurations area.
It is important to observe that any evaluation performed so far takes into

Figure 5.17: Results of the appshape check, applied to different glyphs.

account the features of the glyph as a whole. The OGR coding devised so
far encodes information about the image at a very high level (e.g. the color
filling, the number of appendices, etc.). However, since the symbols in this
area are very similar, the OGR coding we just illustrated is very far from
being unique. Before going further, it is worth recapitulating the features
evaluated until this point.

1. Base shape (SQUARE, RECTANGLE, CIRCLE, ...).

2. Orientation (WHITE, BLACK&WHITE, BLACK).

3. Appnum (0, 1, 2, 3, 4, 5).

4. Attachment (ATTACHED, DETACHED).

5. Apploc (NO, INNER, OUTER, MIXED).

6. Appshape (4-digit string).

In few, rare cases, such OGR code is enough to univocally identify a single
glyph: it is the case of those symbols which feature no appendix at all, and
a few other exceptions. In all the remaining cases, however, this code simply
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identifies subsets of symbols whose cardinality is in the order of tens.
Therefore, analyzing the glyph side by side, appendix by appendix, is nec-
essary to identify it in a univocal way. We need answers to questions like:

• How many appendices start from a given side?

• What kind of angle does a given appendix form with its starting side?

• Does a given appendix intersect any other appendices?

A very accurate analysis is necessary, and, as a consequence, a very detailed
OGR code. The more appendices are detected within the symbol, the longer
the code shall be. This is the reason why the OGR code for the Hands Area
has a fixed part, which is the one we illustrated so far, and a variable part
which is the one we are about to illustrate, which is directly dependent on
the number of appendices. The variable part of the code is very detailed,
and it carries many benefits: first of all, it provides the required level of
knowledge over the details of the appendices. Moreover, it is determinant to
detect the rotation of the glyph, and a number of other important features.
The variable part of the OGR identifier encodes, for each side of the base
shape, the related appendices. The sides are encoded following a fixed order,
i.e. clockwise order, starting from the top-left corner of the base shape (see
Fig. 5.18). The content of each side (i.e. the coding of its appendices) is
enclosed between square brackets. For example if the coding of a side is [
], then the side has no related appendices. If content is found between the
brackets, this means that the sides has one or more appendices. Fig 5.18
illustrates the encoding of the sides for a glyph which features a SQUARE
base shape and a single appendix. In Fig. 5.18, please notice the encoding
start point and the encoding direction: they determinate the evaluation or-
der of the sides, and of the appendices they contain. The evaluation order
is shown as a numeric counter near the sides (Side 01, Side 02, etc.).
For each side, appendices are evaluated following the encoding direction,

and the coding of each appendix is enclosed within round brackets. For ex-
ample, the variable part of the OGR coding of the glyph in Fig. 5.18 has
the following form:

[ ] [ ] [(Appendix coding)] [(Appendix coding)]

The first two sides have no appendices, while the last sides share a common
appendix. From the above code it is evident that when an appendix starts
from a corner between two sides, it is encoded on both sides. We made
such choice since we observed that, when an appendix starts from a corner
between two sides, it is necessary to evaluate its relation with both of them,
otherwise the coding may present ambiguities.
Each appendix is encoded by a 6-digit string (enclosed by round brackets).
Such string encodes any relevant features of the appendix. As a convention,
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Figure 5.18: Side encoding for a glyph which features a SQUARE base shape.

we identified the start point as the point of the appendix which is closer to
the side, and the end point as the farthest one. The encoded features are
the following:

• oncorner : this digit encodes whether the start point of the appendix is
on (or near) a corner of the base shape (see Fig 5.19). Possible values:

– 1 if the appendix is on a corner

– 0 otherwise

• inprojection: this digit encodes whether most of the length of the ap-
pendix is contained between the projection of its related side, Fig 5.20
explains this evaluation better than a thousand words. Possible values:

– 1 the appendix is within the projection

– 0 otherwise

• location: this digit encodes whether the appendix lies within the base
shape. Possible values:

– 1 the appendix is internal

– 2 the appendix is external

• shape: this digit encodes the shape of the appendix, according to the
codes identified in Tab. 5.7.

• stangle: this digit encodes the angle between the appendix and its
related side. Possible values:

– 1 if the angle is acute (0◦ to 80◦)
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– 2 if the angle is straight (81◦ to 99◦)

– 3 if the angle is obtuse (100 to 180◦)

– 0 if the angle is wider than 180◦

• contact : this digit encodes the contacts between appendices. Possible
values:

– 0 if the appendix has no contacts

– 1 if the appendix shares its start point with another appendix

– 2 if the appendix shares its end point with another appendix

– 3 if the appendix intersects another appendix

– 4 if the appendix has two or more contacts

Figure 5.19: Appendix encoding: oncorner evaluation.

Fig. 5.22 illustrates a summary of the evaluations performed on the appen-
dices. Concluding the example of the glyph in Fig 5.18, we report its full
OGR code (both fixed and variable part).

1.1.1.1.2.1000 [ ] [ ] [(1.0.2.1.0.0)] [(1.1.2.1.3.0)]

The above identifier is a rather simple one, the code might get far longer
and complicated than this, as the number of appendices within the symbol
increases. Despite the coding may seem excessively detailed, removing even
one of the encoded features would cause ambiguity within the coding.
Evaluating the features illustrated in the present section we were able to
build a working, non-ambiguous OGR coding for the glyphs within the
Hands Configurations area.



142 Coding system of SW-OGR

Figure 5.20: Appendix encoding: inprojection evaluation.

Figure 5.21: Appendix encoding: stangle evaluation.



5.5.4 Interoperability between coding systems 143

Figure 5.22: Appendix encoding: summary of all evaluations.

As mentioned earlier, a high level of detail within the coding can result in
a general vulnerability to drawing inaccuracies. The oncorner check on the
appendices, for instance, is one of the most critical evaluations, since there
is a very high number of glyphs which feature appendices that should be
drawn near corners (see Fig 5.23), but not exactly on them. Identifying the
same glyph using two or more OGR codes quickly solves issues like this one.

Figure 5.23: A set of glyphs belonging to the Hand Configurations area. Such sym-
bols can be subject to drawing inaccuracy: users may draw the bottom-right ap-
pendix of each glyph either on the corner or on the side.

5.4 Interoperability between coding systems

The OGR coding system shown in the previous sections is in all respects
an alternative coding system for SignWriting. It can be used to encode any
symbol within a SignWriting text. However, this is not its purpose. We
created it as a SW-OGR Engine internal coding. As mentioned before, the
main advantage is that OGR codes can be automatically identified by the
SW-OGR Engine, simply analyzing the image of a glyph. However, once
the glyph is recognized, it cannot be stored using the OGR code. First
of all, it would be highly inefficient: think, for example, about a 145-digit
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code for a glyph belonging to the Hands Area. Moreover, any research team
working with SignWriting, and any digital artifact which is somehow related
to SignWriting uses the ISWA coding. In summary, storing the recognized
glyphs using their OGR coding would result in a general inefficiency, and in
the total lack of interoperability with other teams or digital artifacts. This
would dramatically limit the value of our work, and undermine the benefits
of the SW-OGR Engine.
For the above reasons, all of our OGR trees carry a double information for
each glyph, namely its OGR code(s), and the ISWA code. Processing such
trees with simple regular expressions, we generated a number of mapping
tables (one for each area), which convert OGR codes to ISWA-BIANCHINI
codes. The regular expressions are used to remove all but the leaf nodes of
the OGR trees, since each one of them carries an association between one
(or more) OGR code(s) and one ISWA code, so they are the only piece of
information that matters for the purpose of building the mapping table. The
regular expressions are also used to format the data within each leaf node
in a machine friendly format, i.e. each row of the table carries an ISWA
identifier and a OGR identifier, separated by a tabulation character.
Summarizing, mapping tables are simple text files, like the one shown in Fig
5.24. Each row of a mapping table contains a ISWA-BIANCHINI code (left
side), followed by its associated OGR code (right side). Please notice the
asterisks within the OGR codes, on the right side of Fig 5.24. Such symbols
work as a wildcard, and they are used when the encoded glyph has already
been uniquely identified by the first detected features, so the encoding of
the last features is useless.
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Figure 5.24: Detail of the OGR to ISWA-BIANCHINI mapping table for the Facial
Expressions: Mouth area. Each ISWA-BIANCHINI code (on the left) is mapped to
an OGR code (on the right).

Using such mapping tables, the SW-OGR Engine is able to recognize and
encode a handwritten SignWriting text in a format that can be readable by
any research team or present digital artifact in the world.
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Chapter 6

Implementation of SW-OGR

6.1 Architecture of SW-OGR

6.1.1 Concept

Before starting any engineering effort for the realization of the SW-OGR
Engine, we worked to define the required operations to perform the recog-
nition, from the acquisition of the input image to the creation of the output
data. As anticipated in Section 4, we decided to be compliant with the
6-steps procedure which is distinctive of most modern OCR applications
(Ahmed & Al-Ohali, 2000; Parker, 2010). As a remainder, such phases are:
acquisition, pre-processing, segmentation, feature extraction, classification
and post-processing. As stated in Chapter 4, no machine-learning approach
was viable during the feature extraction and classification step. Moreover,
the lack of statistical analyses on SignWriting compositions, and the high
level of freedom featured by the system, made it impossible to perform the
post-processing step automatically. As a consequence, the post-processing
step is not managed by the SW-OGR Engine, it is rather performed with
the aid of a human actor (as detailed in Section 4.1).
The present section provides a high-level description of the recognition pro-
cedure implemented by the SW-OGR Engine. The procedure is illustrated
by the activity diagram in Fig 6.1. The purpose of the diagram is to grant
the reader a general knowledge of the recognition procedure, therefore it
does not provide any detail whatsoever about its activities. Each activity
will be covered in full detail in the following sections.
As shown in Fig 6.1, the recognition starts as an image containing hand-
written SignWriting glyphs is passed from the Data Acquisition Module in
the User Interface to the SW-OGR Engine (Section 4). While the details
regarding the adopted image processing techniques will be given in Section
6.2.1, we anticipate here a summary of the processing steps.
The acquired image undergoes a pre-processing step, whose purpose is to
remove as many imperfections as possible. Such imperfections might be due
to different factors, including poor source document quality, poor scanning
equipment, etc. The most common imperfections the SW-OGR Engine faces
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during this step are Gaussian noise and salt and pepper noise. After hav-
ing applied a number of filters to correct the imperfections, the SW-OGR
transforms the acquired image into a binary image (binarization). The bi-
narization is performed by thresholding the images in an adaptive way, as
detailed in Section 6.2.2. Working with a binary image enables or facilitates
a number of very useful operations over the image, including (but not lim-
ited to): contour detection, thinning, etc.

Figure 6.1: High-level activity diagram describing the recognition procedure imple-
mented by the SW-OGR Engine.

After the preliminary operations, the image, i.e. the text, is divided in its
component slices. Each slice is processed separately in order to identify its
8-connected components, namely the frags. Such operation is known as im-
age segmentation in computer vision theory, and its purpose is to “simplify
and/or change the representation of an image into something that is more
meaningful and easier to analyze” (Stockman & Shapiro, 2001). In fact, any
image operation illustrated from here on is performed slice by slice, frag by
frag, following a divide et impera approach.
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The first scan of the image aims at detecting any “interesting” shape within
each frag. Such shapes may be circles, rectangles, asterisks, etc. The informa-
tion gathered during this step is of primary importance during the following
phases. In fact, the evaluation of the shapes allows the system to infer the
area of each frag, and plays a key role during the ultimate recognition of the
glyph.
During the second scan, each frag is analyzed, along with the information
gathered during the previous step, in order to infer the OGR area with a
reasonable degree of certainty. The evaluations performed during this step
are conducted taking into account the uncertain relationship between frags
and glyphs (see Section 5.2).
During the third scan, the actual recognition of the symbols takes place.
A number of different advanced evaluations are performed on each symbol,
and such evaluations are different according to the OGR area inferred during
the previous step. At the end of this phase the SW-OGR Engine produces a
set of recognized glyphs, encoded both in OGR and in ISWA-BIANCHINI
format.
During the last step, the recognized glyphs are saved in multiple formats
(typically an image format and/or an XML format), and returned back to
the User Interface, for the human-assisted recognition review step.

6.1.2 Software architecture

Identifying the core recognition elements (Section 5.2) and the conceptual
procedure (Section 6.1.1) allowed us to design the software architecture of
the SW-OGR Engine. Before covering each step of the recognition procedure
in full detail, it is important to provide the reader a good knowledge of such
software architecture.
First of all, since the SW-OGR Engine contains a fair number of classes, it
is appropriate to analyze its package diagram, which provides a global snap-
shot of the architecture of the system. The package diagram is reported in
Fig 6.2. For each package, the diagram shows its dependencies with the other
packages (inter-package dependencies), and a set of representative classes.
Class details and class dependencies are out of the scope of such diagram,
and will be covered later.
The beans package contains the implementation of the core recognition enti-
ties discussed in Section 5.2. In other words, the package contains the classes
designed to store data about texts, slices, frags, and glyphs. This package
also contains the coding class, whose purpose is to store data about the
ISWA coding of a glyph. The classes within this package have very tight
dependency relationships, therefore, no class could have a complete specifi-
cation without the others.
The beans rely on the util package to perform a very large number of op-
erations, ranging from image segmentation to the evaluations required to
detect shapes within the frags. Actually, util is used by any package in
the application, since it provides the necessary business logic to perform a
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Figure 6.2: Package diagram of the SW-OGR Engine.

very large number of operations. Most of the util package is, in fact, a li-
brary of mathematical, geometric and image-oriented functions. This makes
util one of the most useful (and definitely the most reusable) package in
the whole application. The package also contains classes designed to carry
different data, such as those for storing shapes (circles, rectangles, asterisks,
etc), or those for storing the run-length encoding1 (Lynch, 1985) of an im-
age. A number of functions of the util package carry out operations directly
on slices, frags and glyphs. This explains the import dependency towards
the beans package in Fig. 6.2
The beans depend on the model package for any business logic dealing with
the inference of the OGR area of each frag. Each class within the model

package is designed to check the membership of a frag with respect to a
given OGR area. For example, the ModelHaC class will assess whether a
given frag may belong to the Hand Configurations area or not. The classes
within the model package make large use of the util package to perform
their evaluations.
Finally, the beans depend on the recog package for any business logic built
to provide the actual recognition of the symbols. Each class within this
package is designed to identify the OGR coding (and, as a result, the ISWA
coding) of a glyph which has been found belonging to a given OGR area. For

1Run-length encoding is a very simple form of data compression in which runs of data
(i.e. sequences in which the same data value occurs in many consecutive data elements)
are stored as a single item containing the value and the count of occurrences. This is most
useful on data containing consecutive occurrences of the same value. In our case, it is very
effective, since the recognition procedure deals with binary images (which may present
only two possible values for each pixel).



6.6.1.2 Software architecture 151

example, the RecogHaC class will identify the OGR coding of any glyph be-
longing to the Hand Configurations area. Such classes perform a large num-
ber of advanced image evaluations, making large use of the util package.
Both the model and the recog package have no intra-package dependency,
i.e. their classes are mutually independent.

The beans package

The present section provides an in-depth view of the beans package, de-
scribing its classes and their relationships. The class diagram of the package
is available in Fig. 6.3. For the sake of space and readability, the diagram
does not show a number of operations (e.g. get and set operations) and fields
which are of minor importance to understand the structure of the classes.
As anticipated in Section 6.1.2, the classes within the beans package are
the implementation of the core recognition entities; as a result, they present
very tight mutual relationships, as shown in Fig. 6.3.
In order to describe the classes of the beans, it is worth starting from the
Text class, since it is the highest-level class of the application, and since it
controls the entire recognition process, from the acquisition of the image to
the production of the output data. An instance of the Text class basically
contains:

• The image of the text, and a field which keeps track of its visual
organization (horizontal or vertical).

• The output image, i.e. the image containing the recognized glyphs.
Such image, and the set of recognized glyphs is the actual result of the
recognition.

• The list of the slices identified within the text. Such slices are instances
of the Slice class: this explains the relation between the Text and the
Slice class.

Among the most notable operations of this class, it is worth mentioning the
ones for the pre-processing and thresholding of the text. Moreover, a number
of operations are devoted to the detection and the management of the slices,
which, according to the visual organization of the text, can be either rows or
columns. Finally, a very important set of operations is composed by those
for invoking the three image analysis steps which ultimately lead to the
recognition of the test. Such operations are:

• invokeFirstScan(): invokes the first analysis on the image, whose
purpose is to detect any interesting shape within the frags.

• invokeSecondScan(): invokes the second analysis on the image, whose
purpose is to infer the OGR area of each frag.
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• invokeThirdScan(): invokes the third analysis on the image, whose
purpose is to actually recognize the symbols within the text.

Such operations are invoked within the Text class, but they are delegated
to the slices, which in turn delegate them to their respective frags (see Fig.
6.3). Therefore, the actual evaluations are performed within the Frag class,
but they are coordinated by the Slice class and by the Text class.

Figure 6.3: Class diagram of the beans package.

As mentioned before, any text is composed by a number of slices, the Slice

class is designed to store any useful data about a single slice, including:

• A reference to the parent Text object, along with the boundaries (top
left point and bottom right point) of the slice within the text.

• The image of the slice.

• Different structures to keep track and map any frag within the slice.

• Different structures to keep track and map any glyph within the slice.

Observing the fields of the Slice class, it is easy to understand why it is the
one with most relationships within the package. Slices, in fact, are highly
dependent on the text they are in, and on the frags (and later the glyphs)
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that they contain. Most of the operations made available by this class are
delegated by the Text class, such as those for the invocation of the three
recognition scans (invokeFirstScan(), etc.).
Actually, there’s more than the classic divide et impera rationale behind
our delegation-based approach. In fact, performing operations on smaller
elements, such as slices, or frags, instead of texts, grants a remarkable ad-
vantage: efficiency. In fact, as an example, there is no reason to perform
operations such as segmentation on areas of the image which belong to no
slice, since they are certainly empty (i.e. absence of relevant foreground).
The Frag class is designed to store any information about a given 8-connected
foreground component detected within a slice. Such information are the fol-
lowing:

• A reference to the parent Slice object, along with the boundaries (top
left point and bottom right point) of the frag within the slice.

• The image of the frag, and the set of its foreground points.

• Shapes (circles, rectangles, asterisks, etc.) and holes detected within
the frag. The value of these fields is typically defined during the first
recognition scan.

• A reference to the instance of the Glyph class associated to the Frag.
Such association is defined during the second recognition scan, as the
SW-OGR Engine infers the OGR area of the frag.

A relevant part of the operations provided by the Frag is devoted to the
management of the shapes detected within the frag. Such operations in-
clude: associating different shapes to the frag, fetching the largest shape
of a particular type, etc. As mentioned earlier in the present section, the
Frag class is ultimately delegated to the execution of the recognition scans.
This is the reason why the Frag class, unlike the Slice or the Text class,
does not feature methods such as invokeFirstScan(), instead, it provides
executeFirstScan(), executeSecondScan() and executeThirdScan(). The
name of such operations is there to clarify that the actual evaluations are
carried out within the frag.
The Glyph class comes into play during the second recognition scan, as the
SW-OGR Engine infers the OGR area of the frag. Before that moment, it
simply makes no sense to work with glyphs, since the system has no clue
about the relationship between frags and glyphs. Discovering the OGR area
of each frag sheds a fair light upon such relationship, thus the SW-OGR
begins to work with glyphs. Any instance of the Glyph class carries the
following information:

• A reference to the parent Slice object.

• A reference to the associated Frag object(s).

• The image of the glyph.
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• The inferred OGR area code of the glyph (HaC, Co, etc.) and an
indicator of the reliability of such information. The evaluation of the
reliability is based on the number of inference checks passed (and not
passed) by the frag.

• The Coding object(s) associated to the glyph, which keeps track of its
ISWA code.

It is important to notice that a relevant part of the information of the
Glyph class is gathered by aggregating the data coming from its associated
frag(s). For example, the top left point, which is useful to keep track of the
location of the glyph within its parent slice, is nowhere to be found among
the fields of the Glyph class. Such information is dynamically calculated
by gathering information about the top left point of the frags associated
to the glyph. A number of operations of the Glyph class are designed to
manage the relationship with the frags, e.g. retrieving information by a
particular frag, updating the glyph with the information contained in its
associated frags, etc. The Glyph class also features operations to manage
the Coding object(s) it contains. Finally, we mention the very simple Coding
class, whose only purpose is to store information about the ISWA coding
of a given glyph. The class simply contains any field necessary to handle
the three ISWA codings (International SignWriting Alphabet 2008 (ISWA-
2008), ISWA-2010 and ISWA-BIANCHINI) and the operations required to
manage them. Please notice the getImage() operation, whose purpose is
to use the ISWA coding to fetch the official ISWA image of the recognized
glyph. Such function is critical to build the final output image.

The util package

The present section provides an in-depth view of the util package. As men-
tioned before such package is basically a multi-purpose library whose func-
tions are used by many different classes, in different steps of the recognition
procedure. The diagrams included in this section do not report all the classes
of the util package. Classes designed for low-level utility purposes, such as
logging, image displaying, configuration of image import/export paths, etc.
are not described in this section, because their implementation is trivial.
Since there is little or no dependency relationships between the classes of
the util package, and since they contain a remarkable number of opera-
tions, the classes are shown separately.
The ImgUtil class is the image utility library of the util package (Fig 6.4).
The operations provided by such library can be divided into two subsets.
One subset provides functionalities for the analysis of the image, the other
one deals with image manipulation
Among the operations devoted to image analysis, it is worth mentioning the
one for the detection of 8-connected foreground components (findBlobs())
and holes (findHoles()), which are useful during the image segmentation
step, and during the final recognition step of the procedure. A fair number
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Figure 6.4: Class diagram of the util package: image utility library.

of image analysis operations provide different evaluations of the foreground
on sections of the image. As an example, the findForeground Rect() oper-
ation returns any foreground point within a given rectangle-shaped area of
the image, similar functions are available for a number of other shapes. The
image analysis subset also includes a number of other operations, such as
checkCircleSectorsCoverage(), whose purpose is to assess the reliability
of a detected circle by evaluating the foreground pixels around its circum-
ference (see Borgia (2013) for a discussion).
Among the operations devoted to image manipulation, it is worth mention-
ing the implementation of the Zhang-Suen algorithm (T. Zhang & Suen,
1984) for image thinning by the graduating student Luca Franciosi (Fran-
ciosi, 2014), who took part in the development phase of the SW-OGR
project. Such function also takes advantage of image pre-processing, i.e.
hole removal, smoothing and acute angle emphasis (Stentiford & Mortimer,
1983), as well as post-processing procedures, i.e. Holt staircase removal(Holt,
Stewart, Clint, & Perrott, 1987), which have been observed to improve the
result of the thinning, as suggested in Parker (2010). The ImgUtil class also
provides other manipulation functions, such as image rotation, color inver-
sion, background filling, etc.
The GeomUtil class is the geometric utility library of the util package (Fig.
6.5). Most of the library is composed by operations on coordinates, which
typically represent single points or shapes. Such operation include:

• Conversion between different coordinate systems (i.e. Cartesian coor-
dinates and image coordinates).

• Different measurements over a set of coordinates, such as distance,
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Figure 6.5: Class diagram of the util package: geometric utility library.
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centroid, topmost point, etc.

• Detection of the direction of a point with respect to a reference point
or shape, based on (Papadias, Sellis, Theodoridis, & Egenhofer, 1995).

• Manipulation of points or shapes, such as shifting, scaling, rotating,
etc.

• Check of overlap and/or inclusion check of points and/or shapes.

• Angle detection, and other angle-related operations, such as arctangent2()

Please notice the withinProjection() operation in the diagram in Fig. 6.5.
It is the implementation of the inprojection evaluation introduced in section
5.3.2, which takes place during the final recognition step of glyphs belonging
to the Hand Configurations area. The last libraries that we take into account

Figure 6.6: Class diagram of the util package: math utility library and comparation
library.

are the MathUtil and the CmpUtil classes (Fig 6.6). The first one provides
low-level mathematical functionalities, which mainly consist in a wide range
of operations on data arrays, such as smoothing, counting, filtering, etc. Fig.
6.6 also shows the CmpUtil class, which is a small library which provides
comparators working on different data, mainly for sorting purposes.
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Figure 6.7: Class diagram of the util package: shape classes.

The description of the Shape superclass and its specialized classes in Fig.
6.7 concludes our analysis of the util package. The diagram in Fig. 6.7 only
contains a restricted number of elements. Actually, we designed a subclass
of Shape for each shape that the SW-OGR Engine needs to detect within a
SignWriting text.
The Shape superclass is a very simple one, it contains one single field to keep
track of the type of the shape (rectangle, circle, etc.). Except for construc-
tors, getters and setters, the superclass only provides one single operation,
i.e detect(). Any subclass of Shape overrides such operation to provide
detection functionalities. For example, the detect() operation provided by
the Rectangle class is designed to analyze an input frag in order to detect
the presence of rectangles.
Analyzing the subclasses, it is easy to see that any specialized shape adds
its custom fields to those of the superclass. The Circle class, for example,
stores the center of the circle and its radius, while the Rectangle class adds
the coordinates of its corners. Each subclass also includes its own methods.
A number of methods provide different evaluations on the shape, such as
getArea() and getWidth(), while other methods allow the manipulation of
the shape, such as scale() and shift(). As mentioned before, each sub-
class overrides the detect() method, however, shape detection can be a very
tricky task, especially when dealing with handwritten symbols. For such rea-
son, each detection routine may need a set of supporting operations. The
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rectangle detection, for example, takes advantage of the corner detection
performed within the findCorners() operation, to locate the vertexes of
the possible rectangles within the image (see Section 6.2.3 for more details).
Moreover, some types of shapes may require a verification step, after the
detection process; this is the reason why the subclasses represented in Fig.
6.7 show operations like verify(), checkAngles(), etc. Those operations
are invoked after the detection step, to check if the detected shapes are both
reliable (i.e. making sure that the shape is actually there) and acceptable
(i.e. making sure that the shape meets a number of requirements).

The model package

The classes belonging to the model package are employed during the second
recognition scan. During this scan, the SW-OGR Engine produces the OGR
area inference for each frag, exploiting a wide range of information. The
class diagram of the package is shown in Fig. 6.8. As mentioned in Section
6.1.2, the model package contains a class for each OGR area. Only two of
them are shown in the class diagram, since their structure is very similar,
and they present little or no mutual relationship.
The Model superclass and its subclasses are the only classes in this package.

Figure 6.8: Class diagram of the model package.

Each subclass operates independently from the other subclasses, and they
all specify the Model superclass, overriding its only provided operation, i.e.
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checkMemberShip(). The purpose of the checkMemberShip() method of a
given subclass ModelXXX is to analyze an input frag, in order to infer if it
belongs to the OGR area that subclass ModelXXX represents. For example,
the checkMemberShip() method provided by the ModelHaC() class evaluates
the input frag, checking its size, and the presence of possible appendices
(fingers) to assess if the frag may belong to the Hands Configuration Area.
Each subclass provides a number of operations, such as checkSize(), to
support the inference of the OGR area. Each class also has a number of
constants carrying statistical data, to support the inference. As an example,
the purpose of the ModelHeE HE subclass is to understand whether a frag
belongs to the Head Circles and Contacts area. Frags belonging to such area
typically contain circles, just like those of other OGR areas. Their circles,
however, are particular, since they are bigger than the others. The class
constant HEE HEAD2SLICE RATIO helps in characterizing bigger by providing
the usual ratio between the diameter of the circle, and the width of the slice.
Such ratio is obtained by gathering statistical data out of our datasets, i.e.
calculating the mean of the diameter-to-slice-width ratio over hundreds of
head circles.
It is important to spend a few words about the ModelHeE HE class, which
represents an exception within the model package. A clue of this peculiarity
can be found by observing the high amount of operations and methods that
this class provides. In fact, the purpose of the ModelHeE HE class is not only
to assess if a frag is basically a head circle, but also to find any frag within
that head circle, and to assign them to their respective area. For example,
if a frag is found within the lower part of the head circle, it could likely be a
frag belonging to the Facial Expressions: Mouth area. This is how the OGR
area inference is performed for a large part of facial expressions.
If a class of the model package completes the OGR area inference procedure
with success, a Glyph object is created and associated both to Frag and to
the Slice objects. From this moment on, the SW-OGR Engine mainly works
on glyphs (rather than frags). In fact, during the third recognition scan, frags
are only used for low-level evaluations, while most of the work is performed
on glyphs. Otherwise, when the reliability of the inference (introduced in
Section 6.1.2) to a given OGR area does not exceed a fixed threshold value,
the inference is to be considered failed. In other words, the analyzed frag does
not represent any glyph belonging to that given OGR area. In this case, no
glyph is associated to the frag, and the other classes of the model package
execute their checkMemberShip() method on the frag. If no inference is
possible, the frag is excluded from the third and final step of the recognition
procedure. It will be processed in the final human-assisted review.

The recog package

The classes belonging to the recog package are employed during the third
recognition scan. During this scan, the SW-OGR Engine identifies the ISWA
coding of each recognized glyph within a SignWriting text. Observing the



6.6.1.2 Software architecture 161

Figure 6.9: Class diagram of the recog package.
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class diagram in Fig. 6.9), it is easy to see that the structure of the recog

package is very similar to the one of the model package. There is a class
for each OGR area, whose purpose is to carry out the recognition of any
glyph belonging to that particular OGR area. Such classes do not share
any relationship, except for the one with the Recog class. Such relationship,
however, is a use relationship: this simply means that the Recog class makes
use of the operations provided by the other classes. More specifically, the
Recog class analyzes the inferred OGR area of the input glyph, in order
to delegate its recognition to the most appropriate class. For example, if
the glyph has been inferred to belong to the Hands Configuration area, the
Recog class delegates the recognition to the RecogHaC class.
Except for constructors, getters and setters, the operations provided by each
recognition class are divided into four important subsets.

• The master recognition operation (recognize()), which coordinates
the whole recognition process for the input glyph by invoking the other
operations.

• The check operations (t01check(), t02check(), ...), whose purpose is
to perform different evaluations over the image of the glyph, in order to
gather the information required to build the OGR code. Please notice
that such evaluations can be very complex, so each check may require
a number of support operations. Such operations are visible in Fig. 6.9,
their names have the form t01check aux01(), t01check aux02(), etc.
depending on the check operation they support.

• The aggregators (aggregator01(), aggregator02(), ...), whose pur-
pose is to aggregate the information gathered by the check operations
in order to produce the OGR code of the glyph. In other words, they
process the results of the evaluations, which typically come in a wide
variety of data types (booleans, vectors, etc.) and they generate a
string containing the actual OGR code of the glyph.

• The finalizer (finalizer01()), whose purpose is to access the OGR-
to-ISWA mapping tables (see Section 5.4) and to convert the OGR
code of the glyph into the associated ISWA code.

As explained in Chapter 5, large and complex OGR areas (such as Hand
Configurations) require longer OGR codes with respect to other, simpler
areas (such as Facial Expressions: Mouth). Therefore, when dealing with a
large OGR area, it is necessary to perform a large number of checks over
the image of the glyph, thus the recognizer class carries a larger number of
field and operations. This explains the remarkable difference, visible in Fig.
6.9, between the RecogHaC class, and a simpler one, such as RecogHeE MO.
Finally, it is worth reminding that, since the recog package contains a high
number of classes, and since their structure is very similar, Fig. 6.9 shows
only a restricted number of elements.
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6.2 Design and development of SW-OGR

The present section provides an in-depth view of the development of the
recognition procedure implemented by the SW-OGR Engine. Since the ap-
plication features a fairly high amount of code (more than 17,000 lines, so
far), this section reports only the development details that may be of interest
from the point of view of computer science researchers and computer vision
experts.
The SW-OGR Engine is currently developed as a C++ application. The ap-
plication takes advantage of the OpenCV (Open Source Computer Vision)
library (Itseez, 2014), which is an open source computer vision and ma-
chine learning software library. According to its developers (Itseez , 2005),
OpenCV is “built to provide a common infrastructure for computer vision
applications and to accelerate the use of machine perception in the commer-
cial products. The library has more than 2500 optimized algorithms, which
include a comprehensive set of both classic and state-of-the-art computer
vision and machine learning algorithms”. Moreover, the application takes
advantage of the Boost C++ Libraries (Boost C++ Libraries, 2004; Nakari-
akov, 2013), a set of libraries for the C++ programming language that pro-
vide support for tasks and structures such as linear algebra, pseudo-random
number generation, multithreading, image processing, regular expressions,
and unit testing. Boost C++ Libraries were mainly included within our ap-
plication to support the use of regular expressions, especially when dealing
with the OGR to ISWA mapping tables.

6.2.1 Image pre-processing

As mentioned very often in the present chapter, the SW-OGR Engine deals
with the recognition of symbols, and the pre-processing and binarization
steps are the earliest ones of the recognition procedure. In such early steps,
there is actually no difference between OGR and OCR, so we took advan-
tage of the rich image processing literature about OCR, focusing on these
operations.
The presence of noise within digital images is a very common problem, and
the countermeasures for this are well consolidated in computer science lit-
erature. More specifically, when dealing with the recognition of symbols, it
is advisable to apply noise reduction before thresholding, so that the filters
devoted to noise reduction can exploit a more reliable information. A possi-
ble approach to noise reduction, when dealing with a paper source (Parker,
2010), requires acquiring multiple images of the same page. “Averaging the
grey levels of each pixel across all the samples will give a much better re-
sult as far as noise is concerned. Averaging four samples, for examples, cuts
the noise in half”. Of course, this is a long process, and very often it is
not possible to have the source paper document at hand, to perform multi-
ple scans. In such cases, one of the best options (Gonzalez & Woods, 2011;
Parker, 2010) is to blur the image by applying a median filter. A median
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filter is basically a pass through all pixels of the image, considering an n
x m window centered at each pixel. The pixel in the center is replaced by
the median value of all pixels in the window. Such procedure, already im-
plemented within the OpenCV library (cv::medianBlur()), removed most
noise within our source images.

6.2.2 Image binarization

In the image processing theory, segmentation is the generic process by which
an image is divided into its homogeneous regions, with respect to a certain
criterion (e.g. texture) or even into objects. Such division is typically carried
out to an extent which is determined by the problem which is to be solved.
In other words, the segmentation should stop when the objects of interest
in an application have been isolated (Gonzalez & Woods, 2011).
Binarization, on the other hand, is usually carried out as a part of the seg-
mentation process, and its purpose is to transform a grayscale (or BGR,
CMYK, etc.) image into a binary one (black and white), typically to iden-
tify the foreground from the background. “A binary image should contain
all the essential information concerning the number, position, and shape
of objects while containing a lot less information. The essential reason for
classifying pixels by grey level is that pixels with similar levels in a nearby
region usually belong to the same object, and reducing the complexity of
the data simplifies many recognition and classification procedures. Thresh-
olding is almost essential before thinning, vectorization, and morphological
operations” (Parker, 2010).

6.2.2.1 Thresholding methods

Please notice that SignWriting texts are acquired as grayscale images by
the SW-OGR Engine. The most common method to perform binarization
(Parker, 2010) is to select a single threshold value (thresholding). All the
grey levels below this value will be classified as black (0), and those above
will be white (1). “The segmentation problem becomes one of selecting the
proper value for the threshold” (Parker, 2010). The choice of the threshold
is usually performed by analyzing the image histogram. In the case of hand-
written SignWriting documents, binarization identifies the symbols within
the text from the background.
The texts within our datasets present remarkable differences in their his-
tograms. As a consequence, a single fixed threshold value for all the images
processed by the SW-OGR Engine was never an option. Threshold values
that might seem appropriate for some texts, might make other texts com-
pletely unusable. Fig 6.10 show an example of the consequences of a fixed
threshold value for all the texts. The three slices on the left part of the Fig
6.10 have all been binarized using 100 as threshold value (the binarized slices
are visible on the right part of Fig 6.10). It is evident that the thresholding
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result on the first slice is acceptable, while the same cannot be said for the
other two slices.

Figure 6.10: Fixed thresholding (t = 100) applied to different slices.

6.2.2.2 Thresholding performance evaluation

With the help of graduating student Marco Rotiroti (Rotiroti, 2014), we ap-
plied a number of state-of-the-art thresholding methods available in image
processing literature to our texts (Sezgin & Sankur, 2004), and we performed
a statistical analysis in order to choose the best candidate. The images were
processed with both global and local thresholding methods. Global thresh-
olding methods aim at identifying a threshold value for the whole image and
then use it to divide it into two classes: foreground and background. They
typically perform the binarization process in a quite simple and fast way. As
mentioned before, several methods for the determination of a threshold value
are based on the histogram of the image. However, in the case of images with
uneven illumination, the choice to perform a global thresholding might not
be appropriate. Local thresholding can help solve this problem. In fact, local
thresholding methods statistically determine the threshold values examining
the intensity values within the neighborhood of each pixel (e.g. local aver-
age, variance, standard deviation, etc.). Compared with global thresholding
methods, local ones are typically more accurate. However, from the point
of view of performance, they are much more demanding. The following list
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reports the methods used within the test. Please notice that the description
of each method is out of the scope of the present work.

• Global thresholding

– Basic thresholding (fixed, t=100) (Sezgin & Sankur, 2004).

– Basic thresholding (t=average intensity) (Sezgin & Sankur, 2004).

– P-tile (Sezgin & Sankur, 2004).

– Otsu (Otsu, 1979).

• Local thresholding

– Niblack (Niblack, W., 1985).

– Sauvola (Sauvola, J. and Pietikäinen, M., 2000).

Fig. 6.11 and Fig. 6.12 show the performance of the thresholding methods
reported in the above list, applied to two of the slices belonging to the
DS-PEAR dataset. Of course, the figures simply provide a qualitative idea
about the outcome of the test. Despite this, it is already possible to notice
the higher accuracy characterizing Otsu and Sauvola, with respect to the
other methods.

6.2.2.2.1 Testing metodology In order to perform the quantitative
analysis of the thresholding methods 2, we picked 7 images (slices) from the
DS-PEAR dataset, Fig. 6.11 and Fig. 6.12 show slice 1 and 4 respectively.
The selection of the images was based on different factors, such as stroke,
resolution, contrast, amount of symbols per slice and noise. Slice 1 and 4
are shown here to demonstrate that even a slight variation in the stroke of
the symbols (heavier in Fig. 6.11 and lighter in Fig. 6.12) can dramatically
affect the result of many thresholding methods. The performance evaluation
of the different thresholding methods was mainly conducted considering the
two metrics, misclassification error (ME) and relative foreground area error
(RAE), described in the survey by Sezgin and Sankur (2004).
Both metrics, i.e. ME and RAE, require the use of a reference image (ground
truth image). Such image represents the best result that can be expected as
the outcome of the thresholding. During our test, we adopted two different
methods (Sezgin & Sankur, 2004) for the creation of the ground truth im-
age. The first one (GT1) is based on manual segmentation of the different
images carried out by a group of image processing and SignWriting experts.
The second one (GT-2) is based on the application of different thresholding
methods over the same image, and evaluating the probability that a pixel

2In order to apply the p-tile method, it is mandatory to know a priori the percentage
of the foreground pixels within the image. Such knowledge, i.e. the percentage of the text
occupied by the symbols, is currently beyond reach. As a result, the p-tile method has not
been included into the test. In order to generate Fig. 6.11 and 6.12, the p-tile method has
been applied using default percentages commonly used in OCR (Parker, 2010).
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Figure 6.11: Multiple thresholding methods applied on the same slice: test slice 1.



168 Implementation of SW-OGR

Figure 6.12: Multiple thresholding methods applied on the same slice: test slice 2.

is included within the foreground or not. More details about the creation of
the ground truth images are provided in Rotiroti (2014).
The ME metric evaluates the percentage of background pixels wrongly as-
signed to the foreground and, vice versa, the pixels of the foreground erro-
neously assigned to the background. The ME can be defined as:

ME = 1− |BO ∩BT |+ |FO ∩ FT |
|BO|+ |FO|

where BO and FO indicate the background and the foreground of the refer-
ence image (or ground truth image), BT and FT denote the background and
foreground in the image which is undergoing the test, and | · | denotes the
cardinality of the set. The outcome of the ME ranges from 0 (perfect) to 1
(completely incorrect).
The RAE metric is actually a comparison of different properties of the fore-
ground, i.e. area of foreground detected and expected. It is defined by the
following equation:

RAE =

{
AO−AT

AO
, if AT < AO

AT−A0
AT

, if AT ≥ AO

where AO is the area of the ground truth image and AT is the area of the
one which is undergoing the test. In case of a perfect correspondence of the
regions, the RAE assumes the 0 value, while 1 represents a total lack of
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overlap between the two areas.
Since we created two categories of ground truth images, we performed two
series of tests. Each one was performed by analyzing the outcome of ME and
RAE metric for each thresholding method. The first series of tests made use
of ground truth images generated through the GT1 method, while GT2
was employed for the second series. For each series, the evaluation of the
thresholding methods was carried out through the following steps:

1. Pick a thresholding method k belonging to the set
S={T100, Taverage, P-tile, Otsu, Niblack, Sauvola}:

2. For each slice i=1,2,...7, thresholded with k, calculate the average ω(i)
between the results of the ME(i) and the RAE(i).

ω(i) =
ME(i) +RAE(i)

2

3. Sum the ω(i) values of all slices i processed with the thresholding
method k.

score(k) =
7∑

i=0

ω(i)

4. The optimal thresholding method mth is the one which yields the
lowest score(k).

mth = arg min
k∈S

score(k)

6.2.2.2.2 Results and discussion The results of the test with using
GT1 and GT2 are rather similar. It is interesting, anyway, to report and
discuss them separately, to have a more detailed view of our findings.

Figure 6.13: Test series (ground truth GT1): outcome of ME and RAE metrics for
image thresholding evaluation.

As we can see in Fig. 6.13 and Tab. 6.1, the results of ME cannot by them-
selves identify a single thresholding method as the most appropriate one.
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In fact, different methods, whether they are global (Otsu and T100) or lo-
cal (Sauvola) have a minimum value below 0.05 for all seven images. As
an example, the minimum values on slice 1 and 7, are 0.0017 and 0.0019
respectively, and they were obtained using the T100 method. Otsu resulted
the most accurate method for slice 6 with a value of 0.0002. Finally, the
minimum values on slice 2 and 3 were achieved by Sauvola, obtaining values
equal to 0.0105 and 0.0039 respectively. The only methods that can be ex-
cluded without the further assessment by RAE are the global method based
on the average value and the Niblack method. In fact, examining the slice 4
in Fig. 6.12, we can see how both methods introduce a considerable amount
of salt and pepper noise.

Test series (ground truth GT1): misclassification error

Image T100 Taverage Otsu Niblack Sauvola

slice 1 0.0017 0.0495 0.0217 0.3461 0.0271

slice 2 0.0368 0.0146 0.0166 0.3708 0.0105

slice 3 0.0312 0.0244 0.0041 0.3791 0.0039

slice 4 0.0324 0.1654 0.0062 0.3319 0.0123

slice 5 0.0378 0.0839 0.0056 0.3352 0.0199

slice 6 0.0044 0.0091 0.0002 0.3148 0.0231

slice 7 0.0019 0.0100 0.0025 0.3116 0.0239

Table 6.1: Test series (ground truth GT1): misclassification error. Minimum (i.e.
optimal) values for each slice are highlighted.

Performing a quantitative analysis of the results of RAE, it is possible to
notice (Tab. 6.2), that the T100 method still produces the best result for
the slice 1 and 7. However, as the contrast of the slices decreases (slice 2-5,
see Fig. 6.12), the histograms assume a unimodal distribution with negative
asymmetry (skewness). In such cases, the T100 method behaves worse than
Taverage and Niblack, that were previously discarded. The method by Otsu
presents, in some cases, values that exceed the T100 method (slice 1 and
7), the Taverage method (slice 2) and the Sauvola method (slice 2-3), but
it appears to be the one with the greater number of slices (5 out of 7)
segmented with a RAE value below 0.2 (for slice 4 and 5 Otsu is the only
one below this threshold).
It is important to notice that the selection of a thresholding method for the
SW-OGR Engine using the test series with GT1 may be compromised by the
incorrect creation of the reference images. In fact, the ground truth images
by GT1 method are created by expert users, i.e. human beings, who may
be inaccurate, in some cases. This causes the presence of less reliable values
in both ME and RAE. To avoid such bias, it is important to also perform
a quantitative analysis on the data coming from the test series performed
with GT2.
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Test series (ground truth GT1): relative foreground area error

Image T100 Taverage Otsu Niblack Sauvola

slice 1 0.0191 0.3557 0.1952 0.7942 0.2314

slice 2 0.4719 0.1580 0.2125 0.8222 0.1345

slice 3 0.3902 0.2339 0.0510 0.8251 0.0355

slice 4 0.8284 0.8090 0.1587 0.8913 0.3142

slice 5 0.9197 0.6709 0.1354 0.8868 0.4832

slice 6 0.0361 0.0693 0.0022 0.6892 0.1847

slice 7 0.0159 0.0765 0.0205 0.7001 0.1727

Table 6.2: Test series (ground truth GT1): relative foreground area error. Minimum
(i.e. optimal) values for each slice are highlighted.

Figure 6.14: Test series (ground truth GT2): outcome of ME and RAE metrics for
image thresholding evaluation.

The graph in Fig. 6.14 summarizes the results of the performance test series
performed using GT2. Analyzing the graph, it is evident that the optimal
results of ME and RAE obtained by method T100 on slice 1 and 7 when
comparing with GT1, are replaced by those produced by Sauvola (slice 1)
and Otsu (slice 7).
More specifically, performing a quantitative analysis of the results of ME
(Tab. 6.3), we notice that Sauvola presents values below 0.0010 for slices
1-3, while Otsu scores below 0.0030 for the remaining slices. Since the gen-
eration of the ground truth image is not influenced by considerations made
by users, the analysis of the ME proves to be more accurate. Despite this,
the selection of a single thresholding method is not yet possible without
evaluating the results of the RAE along with those of ME.

Test series (ground truth GT2): misclassification error
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Image T100 Taverage Otsu Niblack Sauvola

slice 1 0.0245 0.0232 0.0067 0.3221 0.0008

slice 2 0.0261 0.0253 0.0068 0.3721 0.0002

slice 3 0.0338 0.0218 0.0070 0.3751 0.0002

slice 4 0.0239 0.1739 0.0022 0.3288 0.0038

slice 5 0.0291 0.0925 0.0031 0.3311 0.0112

slice 6 0.0032 0.0104 0.0017 0.3133 0.0216

slice 7 0.0031 0.0088 0.0015 0.3113 0.0222

Table 6.3: Test series (ground truth GT2): misclassification error. Minimum (i.e.
optimal) values for each slice are highlighted.

Analyzing the graph (Fig. 6.14) and the values (Tab. 6.4) of the RAE met-
ric, it is possible to notice that the best score on slices 1-3 is achieved by
Sauvola, whether they present a slightly bimodal histogram (slice 1) or a re-
duced contrast (slice 2 and 3). However, considering the results of the RAE
scored by Sauvola, it is possible to notice the value 0.3449 for slice 5. This
latter value implies a number of problems related to the presence of areas
with reduced contrast, which is distinctive of images featuring a high con-
centration of dark pixels. Summarizing the above results, we can say that
the T100, Taverage and Niblack methods do not allow to perform the bina-
rization process for the entire dataset, since they do not score any minimum
(optimal) for both ME and RAE. This is due to issues such as the introduc-
tion of post-thresholding salt and pepper noise (Taverage), the persistence of
background noise (Niblack) or a completely inadequate (too low) choice of
thresholding value (T100). The GT1 graph in Fig. 6.13 is characterized by
the presence of sharp peaks in the results of the RAE for all thresholding
methods, while the GT2 shows that a single method, (i.e. Otsu) is the only
one featuring an almost “linear” trend.
Finally, it is interesting to compare the results of both test series GT1 and
GT2. Fig. 6.15 shows the overall performance of the different thresholding
methods calculated for both GT1 and GT2. It is important to notice that
in both graphs, the Otsu method appears to be the one with the least (op-
timal) score. As a consequence, the thresholding method we chose to use
in the binarization step of the SW-OGR Engine is Otsu. Such method is
already implemented within the OpenCV library (cv::threshold()).

Test series (ground truth GT2): relative foreground area error

Image T100 Taverage Otsu Niblack Sauvola

slice 1 0.2117 0.1668 0.0392 0.7340 0.0061

slice 2 0.3882 0.2733 0.0876 0.8466 0.0028

slice 3 0.4098 0.2086 0.0815 0.8194 0.0036

slice 4 0.7812 0.8502 0.0678 0.9148 0.1256
Continued on next page
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Test series (ground truth GT2): relative foreground area error –
Continued from previous page

Image T100 Taverage Otsu Niblack Sauvola

slice 5 0.8983 0.7405 0.0876 0.9108 0.3449

slice 6 0.0262 0.0788 0.0124 0.6924 0.1763

slice 7 0.0255 0.0675 0.0110 0.6972 0.1807

Table 6.4: Test series (ground truth GT2): relative foreground area error. Minimum
(i.e. optimal) values for each slice are highlighted.

Figure 6.15: Final performance results for the thresholding evaluation test.

6.2.3 Shape detection

The purpose of the first step of the actual recognition procedure is to detect
the presence of a number of base shapes within the text. Such detection is of
critical importance for the following recognition steps, and it is performed
frag by frag. The present section provides an in-depth view of a number of
relevant shape detection procedures adopted by the SW-OGR Engine.

6.2.3.1 Circles

There is a lot of stories about the famous painter Giotto. One of them is
particularly interesting, in our case.

Pope Boniface VIII wanted to commission some paintings for St.
Peter’s and so he sent a courtier around to find the best painter
in Italy. The courtier asked all the artists to give him a sample
of their work to send to the Pope. He came to Giotto’s workshop,
explained his mission, and asked him for a drawing which would
give the Pope some idea of his competence and style. “Sure”,
said Giotto; and he laid down a sheet of paper, reached for a
brush dipped in red paint, closed his arm to his side to make a
sort of compass of it, and in one even sweep scribed a perfect
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circle. “There you are”, he told the courtier, handing it to him
with a smile.

Unlike Giotto, handwriting a perfect circle is beyond the reach of most hu-
man beings, and SignWriting users make no exception. Moreover, the pro-
duction of a handwritten text is generally a fast, efficient process, which
aims at producing the required amount of symbols in the shortest time pos-
sible. Taking the time to handwrite a perfect circle every time that a head
or movement glyph is required is not efficient at all. Therefore, when deal-
ing with SignWriting texts, it is very frequent to find “circles” which are
drawn in a very inaccurate way. Fig. 6.16 reports a few examples of circles,
extracted from our datasets (DS-PEAR and DS-POTIERS). The symbols
present a different level of accuracy.
Two options have been explored in order to perform a fast and reliable de-
tection of the circles within a frag. The first one is based on the detection
of holes within the image (Wang, 1998). Such approach implies searching
for all the holes (i.e. a background area enclosed within a foreground area)
and evaluating their shape and dimensions to check if any of them can be
assimilated to a circular shape. It is important to remark that this technique
is not mainly intended for circle detection, and it is not a recent technique.
Despite this, it has two important advantages: first of all, it is very efficient:
its time complexity is O(n) (where n is the number of pixel within the im-
age). Moreover, the symbols of SignWriting featuring holes are distributed
among a very small number of OGR areas. We observed that simple analyses
over the size and the shape of the holes can help in understanding the OGR
area of the frag. However, such method present different drawbacks. One
above all is that, when dealing with handwritten symbols, it is common to
find circles which have not been completely drawn, and present an incom-
plete circumference (see Fig. 6.16 for an example). In such cases, no hole
can be identified within the image of the frag. The circumference could, in
some cases, be forcibly closed by applying morphological operators (Parker,
2010), but the image would be unpredictably altered. Such option was there-
fore discarded.

Figure 6.16: A number of circles, extracted from both DS-PEAR and DS-
POITIERS datasets.

The second option is a very popular one in image processing theory, and it
is the one that is currently implemented within the SW-OGR Engine. Such
option is based on the Hough transform (Hough, 1959), more specifically it
exploits the generalized Hough transform for the detection of curves (Duda
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& Hart, 1972). The generalized Hough transform performs very well with
most curves within our SignWriting texts, even if they are drawn very inaccu-
rately. The OpenCV implementation of the transform (cv::houghCircles())
also allows to specify a number of handy parameters to filter the outcome
of the transform, such as the minimum radius of the detected circles, the
minimum distance between the center of two detected circles, etc. Fig. 6.17
shows the results of the application of the generalized Hough transform for
the detection of curves to the circles which have already been introduced in
Fig. 6.16.

Figure 6.17: Application of the generalized Hough transform for the detection of
curves to images which contain circles.

However, the generalized Hough transform presents an important drawback
too. The ISWA, in fact, contains many symbols which do not have a circular
shape, but are composed of curved lines. Many of them, for example, are
gathered in the Hand Movements area. Such symbols are identified as (parts
of) circles too (see Fig. 6.18), and this may cause major inaccuracies to the
whole recognition procedure. To solve such issue, we devised (Borgia, 2013) a
simple circle reliability check, whose purpose is assessing if the circle detected
by the generalized Hough transform for curve detection is actually a circle.
The circle detection reliability check is described in Alg. 1, and illustrated in

Figure 6.18: Application of the generalized Hough transform for the detection of
curves to images which do not contain circles.

Fig. 6.19. The concept is very simple: the algorithm checks for the presence of
foreground points “near” the circumference of the detected circle, to assess if
it is actually a circle, or just a curve. The analysis of the foreground points
near the circumference is carried out by identifying a circle ring around
the circumference (see Fig. 6.19). The circle ring is split into a number of
sectors (the smaller the angle of the sectors, the more accurate the reliability
check). The algorithm checks for the presence of foreground pixels within
each sector. If the number of foreground pixels is greater than a threshold
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value, the sector is marked. The threshold value (FPt in Alg. 1) is set to half
the length of the circumference sector. Once all sectors have been analyzed,
the percentage of marked sectors is used to evaluate the reliability of the
circle detection. If such percentage exceeds 75% the detected shape is most
likely a circle. Else, if the percentage of marked sectors only exceeds 50%, the
shape is a curve. Otherwise, the detected shape is just a section of a curve.
Please notice that each of those 3 possibilities is a valuable information,
and it is exploited during the inference step of the detection procedure, to
determine which OGR area the frag may belong to.

Figure 6.19: Illustration of the circle detection reliability check implemented by the
SW-OGR Engine.
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Algorithm: CircleDetectionReliability

Data:
I: the image of the frag.
C: the circle detected (generalized Hough transform) within the frag.
Ang (integer) : 5.
Rng (float): 0.10 * C.radius.
FPt (float): (C.circumference / (360 / Ang)) * 0.5.

Result:
1, if the detected circle is actually a circle.
2, if the detected circle is actually a curve.
-1, otherwise.

Let Sec = 0 be a numeric constant such that Let CMin and CMax be
two circles;
CMin.center = C.center; CMin.radius = (C.radius - Rng);
CMax.center = C.center; CMax.radius = (C.radius + Rng);
Let R be the circle ring obtained by CiMax - CiMin;
Let RS = {S1, S2, ... Sn} be the set of ring sectors of R with an
angle of Ang degrees;

for each Si in RS do
if Si contains more than FPt foreground pixels: then

Sec += 1;
end
if Sec >= 0.75 * RS.size then

/* 75% sectors covered, the shape is a circle. */

return 1;

else if Sec >= 0.50 * RS.size then
/* 50% sectors covered, the shape is a curve. */

return 2;

else
return -1;

Algorithm 1: Circle reliability detection function implemented within
the SW-OGR Engine.
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6.2.3.2 Rectangles, triangles and other polygons

The observation about the inaccuracy of handwriting does not hold for cir-
cular shapes only, but also for the other shapes that SignWriting users draw
when producing a text. Polygons such as rectangles, triangles, etc. make no
exception. The present section describes the polygon detection algorithm
implemented within the SW-OGR Engine. The rectangular shapes, i.e. the
most common shapes featured in SignWriting symbols, will be used as an
example in the present section to illustrate the detection algorithm. Anyway,
the described approach is the same for any other polygon.
We explored two possible ways of detecting polygons: the first one relies on
the Hough transform for line detection (Hough, 1959), more specifically, we
tested both the standard and the probabilistic Hough transform (Duda &
Hart, 1972). Both methods are implemented within the OpenCV libraries
(cv::houghLines() and cv::houghLinesP()). In the field of computer vi-
sion, such methods are very useful to detect polygons within an image, since
the detected lines carry valuable information about the location of the fore-
ground pixels. The lines are typically processed and grouped according to
their length, start and end points in order to build polygons, in a very fast
and efficient way. However, after a number of tests on both the DS-PEAR
and the DS-POITIERS datasets, we discarded both the Hough methods.
The results of the line detection were mainly reliable in the presence of
well-drawn, straight lines. We observed both methods failing, with different
degrees of severity, in the following cases:

• Imperfections in the lines of the polygons (staircases, foreground clus-
ters, etc.).

• Images with very low resolution.

• Polygons featuring appendices stemming from sides and/or corners
(very common in SignWriting).

The second polygon detection algorithm we tested was far more reliable, and
it is currently in use within the SW-OGR Engine. The algorithm basically
looks for those points of the frag which could be the corners of the polygon,
in our case, the rectangle. After this, the algorithm tries to build a polygon
with the detected points. The K polygons with the largest area are chosen
among all others and further analyzed.
We tested two corner detection routines, i.e. the Harris method (Harris &
Stephens, 1988) and the Shi and Tomasi method (Shi & Tomasi, 1994), also
known as Good Features To Track (GFTT). Both methods are implemented
within the OpenCV library (cv::cornerHarris() and cv::goodFeaturesToTrack())
The performances of the two methods are very similar, when dealing with
binary images. Anyway, we decided to adopt the Shi and Tomasi method
since its OpenCV implementation allows a better filtering of the detection
results, increasing the overall efficiency of the algorithm. The upper part
of Fig. 6.20 shows the results of the Shi and Tomasi method, applied to a
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number of rectangles. The detected features are represented as small red
circles over the original image.
During the second part, each detected corner C is processed separately: first
of all, the algorithm finds the set of detected corners which are connected
to C. For the sake of clarity, a corner D is connected to C if the straight
line between C and D is exclusively composed by foreground pixels (with an
error margin). After this, the algorithm tries to build a polygon, in our case
a rectangle, using the set of connected corners and evaluating their relative
distance. The detected polygons are stored within a container, and sorted
by their area, in descending order. The K polygons with the largest area are
picked as the result of the detection. In most cases, K is equal to 1. In other
cases, such as the Hand Movements area, the glyphs may feature more than
one polygon (triangles, in particular), so it is useful to keep track of more
than 1 of them; the recognition step for such areas is implemented taking
into account this particularity. The algorithm is also capable of generating
polygons starting from an insufficient number of connected corners. As an
example, it is able to build a rectangle, starting from three connected cor-
ners, and guessing the position of the missing one (it is a rather frequent
case), while only two corners are needed to try and build a triangle, and so
on.
The lower part of Fig. 6.20 shows the final result of the detection algorithm.
Please notice that the algorithm is capable of detecting polygons also in a
number of difficult (but not uncommon) cases:

• Polygons featuring appendices stemming from sides and/or corners
(Fig. 6.20, third symbol from the left).

• Frags representing two different overlapping glyphs (Fig. 6.20, fourth
symbol on the left).

• Polygons which have been partially drawn (Fig. 6.20, last symbol from
the left)

6.2.4 OGR area inference

The purpose of the second step of the recognition is to analyze each frag in
order to infer its OGR area (see Section 5.3). The inference can be performed
only for those frags which have been associated to a detected base shape.
Otherwise, if no shape was detected for a given frag during the first step of
the recognition algorithm, the system cannot perform any inference, since
there is an insufficient amount of information to work with.
The key requirements to build a good inference algorithm are statistical
analyses and a sufficient understanding of the most distinguishing features of
each OGR area. Statistical analyses, performed in advance during a training
phase, come mainly into play when evaluating the type and the size of a
detected shape. In most cases, such evaluation is sufficient to carry out the
inference of the OGR area. In practice, inference algorithms for different
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Figure 6.20: Polygon detection algorithm implemented within the SW-OGR Engine,
applied to glyphs featuring rectangular shapes. The algorithm uses the Shi and
Tomasi method to locate the corners in each image (top). Afterwards, the corners
are processed in order to build the polygon, if this is possible (bottom).

OGR areas perform different evaluations on the detected shapes. As an
example, any glyph within the Shoulders Movements area is characterized
by a filled rectangular shape with a very small height and a very large width,
and the latter typically spans most of the width of the slice (see Fig. 6.21).
As a consequence, to ascribe a glyph to Shoulders Movements area, it is
appropriate to calculate the following:

• The ratio of width to height of the detected rectangle.

• The ratio of the width of detected rectangle to the width of the slice.

• The foreground filling of the rectangle (i.e. if it is filled or not).

Figure 6.21: Two examples of signs containing glyphs belonging to the Shoulder
Movements (ShM) area. The glyphs are visible right below the head circle.

In order to perform the evaluations in the above list, it is mandatory to per-
form a number of statistical analyses. More specifically, the SW-OGR Engine
requires threshold values to check the features of the detected shape which
is being analyzed. The analysis was performed on each text of the DS-PEAR
and DS-POITIERS datasets. For each text, we measured different features
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within glyphs belonging to different OGR areas. Such measurements are of
critical importance during the OGR area inference step. Of course, not ev-
ery evaluation needs a statistical background (e.g. checking the absence of
a given type of detected shape within a frag, etc.).
To provide a detailed view of the analysis and development effort behind the
classes which perform the inference of the OGR area, the following section
reports one of the most representative cases: the Head Circles and Contacts
area.
It is important to remind that if an OGR area inference procedure is suc-
cessfully performed, a Glyph object is created. From that moment on, the
SW-OGR Engine mainly works on glyphs (rather than frags).

6.2.4.1 Head Circles and Contacts (HeE HE)

The inference of the Circle and Contacts area is performed by the ModelHeE HE

class (Section 6.1.2), and it is triggered if and only if a circle is detected
within a given frag (Section 6.2.3.1). The ModelHeE HE class performs the
following checks over the frag:

• The ratio of the diameter of the circle to the width of the slice must
exceed the MIN HEAD2SLICE RATIO constant.

• The frag must not be associated to any detected triangle, otherwise
the frag most likely belongs to one of the movement areas. If a triangle
is associated with the frag, it must not present any appendix stemming
from the sides.

• (Optional) The frag should enclose other different frags (eyes symbols,
mouth symbols, etc.). Such requirement is optional because it is pos-
sible to draw an empty head circle within a SignWriting sign, without
specifying any facial expression.

It is evident that the only evaluation (among those reported in the above
list) requiring a statistical background is the first one, i.e. the check on
the ratio of the diameter of the circle to the width of the slice. It is worth
noticing that we do not deal with thresholds related to absolute values, but
to ratios between core elements, so that it is possible to process frags/glyphs
of different size. In other words, we deal with rations among slice elements,
instead of considering absolute measures. In the case at hand, analyzing
each text within the DS-PEAR (58 pages) and DS-POITIERS (156 pages)
datasets, i.e. 214 pages, we isolated each head circle, and calculated the
ratio of its diameter to the width of its slice. The results of our analysis
are reported in Tab. 6.5. It is evident that the diameter of most of the
head circles covers about the 30% of the width of the slice. This can also
be empirically verified by observing the texts within our datasets. In order
to make the OGR area inference more resilient (many head circles do not
reach the 30% threshold), we chose to use the µ - σ formula (average minus
standard deviation) to set the lower bound of the ratio, so the numeric
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constant MIN HEAD2SLICE RATIO is equal to 0.2137924 (see also Fig. 6.8).
No upper bound for the ratio has been set so far, since the head circles are
in any case the largest ones, within a SignWriting text.

Ratio of the diameter of head circles to the width of their slices

Avg. (µ) Std.Dev. (σ) Min Max

0.3067719 0.0929795 0.0978474 0.6145251

Table 6.5: Ratio of the diameter of head circles to the width of their slices.

The inference for the Head Circles and Contacts area is a very unique pro-
cedure within the whole SW-OGR Engine, since it presents one important
exception. In fact, the head circles are the only symbols, within the entire
ISWA, which may contain other symbols (eyes, mouth, etc.) inside, in a
structured way. More specifically, SignWriting basically allows the users to
draw any symbol within (or upon) any other symbol, if it is possible, and
if it makes sense from a linguistic and production point of view. The head
circles, for obvious reasons, impose a structured disposition on the symbols
they contain. In fact, it is “very unlikely”, to see a mouth symbol in the
place where a forehead symbol should be, etc.
Therefore, identifying a head circle makes a great deal of information avail-
able about any possible frag it may contain. For this reason, once that a frag
has been successfully inferred to belong to the Head Circles and Contacts
area, it is analyzed to check if it contains any frag. For each frag found in
this way, the SW-OGR Engine infers its OGR area (eyes, mouth, etc.) by
performing two assessments:

• The position of the head circle center with respect to the Minimum
Bounding Rectangle MBR of the contained frag (see Fig. 6.22). For
this, we exploited the classification of topological relationships between
points and MBRs defined in (Papadias et al., 1995).

• The relationship between the MBR of the head circle and the MBR of
the contained frag (see Fig. 6.23)

The purpose of the first check aims at defining the most likely OGR area for
the glyph. The position of the head circle center with respect to the MBR
of the frag (Papadias et al., 1995) is a valuable information, but it is often
not enough to complete the inference. In fact, as an example, both eyes and
forehead symbols can be placed north of the head circle center. Fig. 6.22 il-
lustrates the first check, applied to frags representing left eyes. The left side
of the figure shows the detected circle within the frag, the green highlighted
area within the circle identifies the region in which a frag representing a left
eye is allowed to occur. This concept is further elaborated in the right part
of the figure: all the possible relationship between the center of the detected
circle and the MBR of a frag representing a left eye are highlighted. Please
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notice that each MBR has a different topological relationship with the cen-
ter of the circle.

Figure 6.22: OGR area inference check for facial expressions. A frag is inferred to
represent a left eye according to the topological relationship between its MBR and
the center of the head circle.

The purpose of the second check is to confirm (or correct) the outcome of
the first check by evaluating the relationship between the MBR of the head
circle and the MBR of the frag. The second check is typically carried out
through the comparison of the coordinates of the MBRs, and evaluating their
distances. Fig. 6.23 shows the second check applied to frags representing left
eyes. Observing the figure, it is possible to notice that the check is performed
both on the x-axis and y-axis. More specifically, the check is performed by
calculating:

• W1: the x-axis distance between the top-left point of the MBR of the
detected circle and the top-left point of MBR of the frag.

• W2: the x-axis distance between the top-right point of the MBR of
the detected circle and the top-right point of MBR of the frag.

• H1: the y-axis distance between the top-left point of the MBR of the
detected circle and the top-left point of MBR of the frag.

• H2: the y-axis distance between the bottom-left point of the MBR of
the detected circle and the bottom-left point of MBR of the frag.

To perform the inference of the OGR area with success, the following rules
must hold: W1 < K * W2, and H1 < K * H2, where K equals to 1/3. In
other words, in order to successfully perform the inference, the MBR of the
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frag must be very close to the top-left point of the MBR of the detected
circle.

Figure 6.23: OGR area inference check for facial expressions. A frag is inferred to
represent a left eye according to the topological relationship between its MBR and
the MBR of the head circle.

6.2.4.2 Hand Configurations (HaC)

In spite of the complexity of the Hand Configurations, evaluating the fea-
tures of a glyph and inferring its membership to such OGR area is trivial.
The base shapes and a few other features, in fact, are sufficient to recognize
if a glyph belongs to the Hand Configurations area. In fact, most hand con-
figurations glyphs present very particular base shapes which are not present
into any other OGR area. In Chapter 5 (Tab. 5.3 in particular), we pre-
sented the full list of the base shapes of the glyph belonging to the Hand
Configurations area. As a remainder, such shapes have been identified as:

• SQUARE

• RECTANGLE

• CIRCLE

• HOUSE

• R-HOUSE

• TRAPEZIUM

• SPIRAL

As anticipated, a number of such base shapes can be found only within hand
configurations symbols, such shapes are SQUARE, HOUSE, R-HOUSE,
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TRAPEZIUM. On the opposite, RECTANGLE and CIRCLE are found in
other OGR areas, so they can be assigned to the Hand Configurations area
only by evaluating their dimensions. More specifically, RECTANGLE shapes
undergo a check of the height-to-width ratio, while CIRCLE shapes are in-
ferred by checking the ratio of the diameter to the width of the slice. Finally,
the SPIRAL shape can be found in other OGR areas. Only in the case of
the Hand Configurations, however, the SPIRAL shape has appendices stem-
ming from it. As a consequence, the neighborhood of the glyphs featuring a
SPIRAL shape is analyzed to look for possible appendices, if any is found,
then the glyph belongs to the Hand Configurations area.

6.2.5 Glyph recognition

After the OGR area inference step, the SW-OGR Engine is ready to take
on the final recognition step. During such step, the procedure analyzes each
glyph and attempts to generate its OGR identifier (and, as a consequence,
its ISWA identifier), exploiting any available information gathered during
the previous steps.
Even though the classes devoted to the final recognition have the same struc-
ture (Section 6.9), their business logic can be very different. Consistently
with the organization of the chapter, it is worth showing the implementa-
tion of two recognition classes with different levels of complexity. Section
6.2.5.1 describes RecogHeE HE: the recognition class for the glyph belonging
to the Head Circles and Contacts area. Section 6.2.5.2 describes the most
challenging class within the SW-OGR project, i.e. RecogHaC: the recognition
class for the glyph belonging to the Hand Configurations area.

6.2.5.1 Head Circles and Contacts (HeE HE)

The Head Circles and Contacts area contains a very restricted number of
glyphs. The glyphs are very similar among themselves, since they all rep-
resent head circles, and we are not dealing in this area with what can be
included inside the circles, i.e., eyes, nose and mouth. The glyphs differ by a
few, localized details, which can be found in different regions. Fig 6.24 shows
the most representative glyphs within such area. Please notice the different
features along the circle representing the head.
We decided to exploit our knowledge of the available features of the glyphs

Figure 6.24: A set of glyphs belonging to the Head Circle and Contacts area.

of such area, and their restricted number, by designing a number of ad hoc
evaluations. More specifically, given a glyph representing a head circle, the
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recognition algorithm inspects the image in a number of regions that may
contain distinctive features. In order to do that, we took advantage of two
very basic image processing tools:

• The computation of the convex hull containing the glyph (with con-
vexity defects evaluation).

• The run-length encoding (Lynch, 1985).

As an example, detecting the presence of a neck attached to the head circle
is performed by detecting the presence of major convexity defects in the bot-
tom part of the image. The presence of foreground-filled features (rightmost
symbol in Fig. 6.24) is detected by combining the evaluation of the convex
hull with that of the run-length encoding of the image. Fig 6.25 shows 3
screenshots, taken during the test phase of SW-OGR. Each glyph within
the figure shows a different feature, the colored square around each feature
shows that the recognition algorithm has successfully detected the features.
Once the features are detected, the aggregation methods of the class gener-
ate the OGR code for the glyph, which in turn allows retrieving its ISWA
code. The detected codes are stored, in order for them to be retrieved when
producing the output data of the recognition.

Figure 6.25: Feature recognition applied to a set of glyphs belonging to the Head
Circle and Contacts area.

6.2.5.2 Hand Configurations (HaC)

In order to identify the OGR code of a glyph belonging to the Hand Config-
urations area, a high amount of information is required. Full details about
the structure of the OGR coding is reported in Section 5.3.2. It is important
to remind, however, that each hand configuration symbol is composed by a
base shape, which represents the hand. Such shape is typically a rectangle,
but circles, trapeziums and other shapes are also common. The fingers of
the hand are represented by a number of segments (appendices) placed near
(or attached to) the base shape. Fig. 6.26 shows a number of hand config-
urations taken from the DS-PEAR dataset, along with their detected base
shapes.
The key image features of each hand configuration symbol can be divided
into two sets:
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• Features related to the base shape, such as type and color filling of the
shape.

• Features related to the appendices, such as number, shape, angle, con-
tacts with other appendices, etc.

The first set of features is trivial to evaluate: the type of the shape (rectangle,
circle, etc.) has already been identified during the first recognition step, and
the information is available to the recognition class. The color filling can
be easily evaluated inspecting the pixels within the shape, since its bounds
have already been identified too.
The most challenging set of features is actually the second one. First of
all, the appendices, being handwritten, and due to digitalization problems,
often show as quite thick clusters of foreground pixels whose features, e.g.
shape, direction or crossing, can be difficult to evaluate. For this reason, we
decided to apply the thinning algorithm of Zhang and Suen (T. Zhang &
Suen, 1984).
Thinning the image reduces any line within the image to a 1-pixel-wide

Figure 6.26: A set of glyphs belonging to the Hands Configurations area. The
detected base shape is marked over each glyph.

line. This proves very useful when evaluating the features of the appendices,
since it makes detecting their shape, direction, etc. much more easier. Of
course, this may have a serious impact over the integrity of the base shapes.
As you can see, in a number of glyphs in Fig. 6.27, a foreground filled base
shape is reduced to a 1-pixel wide line. However, this causes no problem,
since the evaluation of the base shape and the evaluation of the appendices
are carried out separately. Fig. 6.27 shows the symbols already introduced
in Fig. 6.26, as they appear after the thinning process.
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Figure 6.27: A set of glyphs belonging to the Hands Configurations area, as they
appear after the thinning process. The detected base shape is marked over each
glyph, and the original foreground area is visible in transparency behind each glyph.

We decided to begin the detection of the appendices after the thinning op-
erations, by locating their start points. In this context, we defined a start
point to be a point:

• which is part of the base shape (attached appendices) or as close as
possible to it (detached appendices),

• from which the appendix stems.

In order to locate the start points, we exploited our knowledge about the
base shape detected within the glyph. In fact, the algorithm looks for fore-
ground pixels in the outer neighborhood of the base shape. The start points
of the inner appendices, on the other hand, are located by scanning the inner
neighborhood of the base shape. The foreground pixels detected using such
method will most likely belong to an appendix.
The neighborhood check is performed by generating concentric shapes through
scaling the base shape detected within the glyph by a 0.10 factor for a num-
ber of times. Of course, the shape is enlarged to look for outer appendices,
and shrunk for inner appendices. The perimeter of each scaled shape is re-
ferred to as scan line. Any foreground pixel located along the generated
scan lines is considered as a possible start point of an appendix. Fig. 6.28
illustrates the start point detection of the outer appendices, applied to a
number of glyphs already introduced in Fig. 6.26. A number of scan lines
are visible on the outer neighborhood of the detected base shape of each
glyph, and the dots represent the detected foreground pixels along the scan
lines. Notice that, as the description of the algorithm goes on, the number
of details to be shown for each glyph increases, so we will be using a reduced
number of glyphs as examples, chosen among the most representative cases.
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By observing Fig. 6.28, it is possible to notice that each appendix is of-
ten detected multiple times through the different scan lines it intersects. To
address this issue, after the inner and outer scans, the SW-OGR Engine op-
timizes the detected points. Points which belong to the same appendix (i.e.
very close and connected among them) are merged into one single point,
namely the one closest to the base shape is chosen, since it represents the
most reasonable staring point of the appendix. This optimization is per-
formed for two reasons: the first one is, of course, to reduce the number of
points to work with. The second one is to make sure that the detected points
are as close as possible to the base shape, in order for them to be identified
with the actual start point of the appendix.

Figure 6.28: Start point detection of the outer appendices, applied to a number
of glyphs belonging to the Hands Configurations area. The detected base shape is
marked over each glyph, the scan lines are visible around the base shape, and the
detected foreground points along the scan lines are marked by dots.

After the detection of the start points of the possible appendices, the al-
gorithm “follows” the appendices to detect the full set of foreground lines
stemming from each start point. Since handwriting may often be very in-
accurate, and since the thinning procedure may sometimes introduce short
spurs in spite of any pruning procedure (Lam, Lee, & Suen, 1992), the num-
ber of foreground lines stemming from one single point can be surprisingly
high. However, it also very common to have one single line stemming from
one single start point (as it should be in most cases). The foreground lines
are analyzed in a specific direction: outward with respect to the base shape,
if following an outer appendix, and inward if following an inner appendix.
Adopting a very consolidated methodology (Sarfraz, 2005) in the field of
computer vision, during the analysis, the following points are marked, and
we will refer to them using the term Point of Interest (POI)

• End points: foreground pixels featuring only one neighbor (Fig. 6.29).

• Branch points: foreground pixels featuring three neighbors (Fig. 6.30).

• Cross points: foreground pixels featuring four neighbors (Fig. 6.31).
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Figure 6.29: Examples of end points in a line.

Figure 6.30: Examples of branch points in a line.

Figure 6.31: Examples of cross points in a line.

In this initial stage of the detection, if a foreground line connects two POIs, it
is treated as an independent appendix. As a consequence, it is not uncommon
to find glyphs which carry up to 30 initial appendices. Fig. 6.32 shows the
initial phase of the outer appendix scan, applied to the a number of glyphs
shown in Fig. 6.26. Each column of the image shows:

• The image of the glyph, along with its detected base shape.

• End, branch and cross points (POIs) detected following the appen-
dices.

• The detected appendices, each one highlighted with a random color.

Please notice that, in order to avoid false positives while following the ap-
pendices, during the scan for the outer appendices, the region occupied by
the base shape is erased, so that the appendix scan may proceed only on the
outer vicinity of the glyph. The opposite happens when following the inner
appendices: anything outside the detected base shape is erased.
As anticipated, the initial set of appendices can be quite large, often in the
order of tens. As a consequence, we devised an optimization procedure, com-
posed by different checks, in order to decrease the cardinality of the set to
a maximum value of 5. Such checks range from very simple ones, such as a
check on the minimum length of an appendix, to more complex ones. The
checks are all described in the following. They are iterated in the order listed
below until the set of appendices cannot be further reduced (i.e. no check
can be applied anymore). The first optimization check is a security one. It
basically checks for the existence of POIs which delimit no appendix. This
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does not occur during the initial iterations, but it may happen as a result
of the other optimization checks, which sometimes perform the removal of
an appendix. If a POIs with 0 appendices is found, it is erased.
The second optimization check is performed on appendices, instead of POIs.

Figure 6.32: Illustration of the initial outer appendix scan applied to a number
of glyphs belonging to the Hands Configurations area. Each column of the image
shows: the image of the glyph, along with its detected base shape; the POIs detected
following the appendices; the detected appendices, each one highlighted with a
random color.

If the length of the appendix is smaller than a threshold value T, the ap-
pendix is erased. T is calculated by multiplying a numeric constant K to the
average length of the sides of the base shape.
The third optimization check is performed if a POIs P delimits two appen-
dices, say A and B. Again, this situation can occur after the removal of
an appendix, performed during an optimization check, or if two appendices
share the same start point. If the direction of the appendices is compatible
(i.e. A heads North, and B North-East, or they both head North), the ap-
pendices are merged, and P is erased (see Fig. 6.33). If A and B are merged,
the new resulting appendix will have the start point of A and the end point
of B, and it will carry the points of both appendices. If the appendices are
not merged, it will most likely mean that the point is a start point, from
which two different appendices stem. This information is very useful when
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assessing contacts and intersections between appendices. As a consequence,
it is saved onto an appropriate data structure.
The fourth optimization check is oriented to the branch points. This is the

Figure 6.33: Illustration of the third appendix optimization step, performed during
the recognition of glyphs belonging to the Hands configuration area.

case when a POIs P delimits three appendices, say A and B and C. If the
directions of two of such appendices, say A and B, are compatible, the ap-
pendices are merged (see Fig. 6.34). If the length of C does not exceed a
threshold value T, then C is erased and, as a consequence, P is erased (since
it does not delimit any appendix anymore). If all three appendices have com-
patible directions, the pair to be merged is composed by the longest ones.

Figure 6.34: Illustration of the fourth appendix optimization step, performed during
the recognition of glyphs belonging to the Hands configuration area.

Finally, the last optimization check deals with cross points, i.e. POIs with
4 appendices. During this optimization step, the pairs of appendices with
compatible directions are merged, and the cross point is erased. The contact
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between the two new appendices are saved onto the proper data structure,
in order to be used later.
We tested our algorithm on a wide range of glyphs, picked from every dataset
we used. We observed that the optimization algorithm is very effective at
decreasing the number of detected appendices. Fig. 6.35 and Fig. 6.36 show
the algorithm in action on the glyphs introduced in Fig. 6.32 (except the
first one, since it does not need any optimization). It is possible to notice
that, step by step, the number of POIs and appendices of the glyphs is
progressively reduced. Please notice that sometimes the differences between
two successive snapshots in are very hard to spot, since the POIs can be
very dense.
The data structures of the RecogHaC class are designed to store any data

Figure 6.35: Illustration of the fourth appendix optimization step, performed during
the recognition of glyphs belonging to the Hands configuration area.

gathered during the optimization steps. More specifically, it is of critical
importance to store at least the following information:

• The points which compose the appendix, from the start point, to the
end point.

• The contacts (if any) of each appendix with the other appendices.

By performing different evaluations over the points of the appendix, the al-
gorithm can extract most of the information needed to build the OGR code
of the glyph (Section 5.3.2). More specifically, the points of an appendix
can be used to identify its shape, closest side, angle with the closest side,
etc. The information about the contacts between appendices comes also into
play when coding each appendix into the OGR code of the glyph.
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Figure 6.36: Illustration of the fourth appendix optimization step, performed during
the recognition of glyphs belonging to the Hands configuration area.

As explained in Section 6.1.2, any information detected about the glyph
is gathered by the aggregation methods of the recognition class RecogHaC.
Such methods combine the data about the appendices with those about the
base shape, in order to build the final OGR code of the glyph.
Once the OGR code is created, the finalization methods use it as a key to ac-
cess the mapping tables of the application. The mapping tables (introduced
in Section 5.4) are simple text files that match OGR codes with ISWA codes.
As a result, they allow the system to switch from an application-specific cod-
ing system (OGR) to a worldwide-accepted coding system (ISWA). Some-
times, the OGR code is not 100% accurate, and it cannot be found “as is”
within the mapping tables. This may be due to different reasons, including
inaccurate handwriting or general detection issues. For this reason, the fi-
nalization methods do not look for an exact match for the OGR code within
the mapping table. They rather evaluate a similarity score based on the Lev-
enshtein distance3 between OGR codes, choosing the most similar one. Once
the glyph has been identified, its ISWA and OGR codes are stored, in order
to be accessed at the end of the recognition procedure, when producing the
output data structures.
Fig. 6.37 and Fig. 6.38 summarize the recognition of two of the example
hand configuration symbols that have been used so far. Within each pic-

3In information theory, the Levenshtein distance is a string metric for measuring the
difference between two sequences. Informally, the Levenshtein distance between two words
is the minimum number of single-character edits (i.e. insertions, deletions or substitutions)
required to change one word into the other.
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ture, please notice: the original handwritten symbol (top-left), the detected
points and appendices (top-center and right), the recognized glyph (bottom)
and finally, written on the last line of the console (bottom) the ISWA code
of the glyph.

Figure 6.37: Screenshot representing the completed recognition of a glyph belonging
to the Hands Configurations area.

Figure 6.38: Screenshot representing the completed recognition of a glyph belonging
to the Hands Configurations area.

A very similar recognition algorithm has been employed for other OGR
areas, such as the Hand Movements area. In fact, the corresponding algo-
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rithm is based on the recognition of a base shape (strictly triangles), and
the evaluation of its appendices, which, unlike the hands configurations, do
not represent fingers, but the lines of an arrow.

6.3 Development status and limitations

Despite the design of the SW-OGR application is concluded, at least in its
core lines, its development is still ongoing. Developing and testing the busi-
ness logic necessary to support each ISWA area is a very time-consuming
task. Despite this, the application framework is ready, and the recognition
works for the presently supported OGR areas. In fact, the SW-OGR Engine
is a modular application: as soon as the work for an OGR area is completed,
it is included into the main branch of the project.
Tab. 6.6 summarizes the development status for each OGR area, updated
to the 27th of August 2014.

Development status of the SW-OGR Engine

Code Description Status

HaC Hand Configurations 80% Completed.
Further testing required.

HaM Hand Movements 80% Completed
To be tested.

ArP Arm Positions Designed.

ArM Arm Movements Designed.

ShP Shoulders Positions 40% Completed.

ShM Shoulder Movements 40% Completed.

HeE HE
Head Circles
Head Contacts

Completed.
Tested.

HeE EY Facial Expressions: Eyes Completed.
Tested.

HeE NO Facial Expressions: Nose Completed.
Tested.

HeE MO Facial Expressions: Mouth 80% Completed.
Tested.

Continued on next page
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Development status of the SW-OGR Engine – Continued from
previous page

Code Description Status

HeM Head Movements Designed.

Co Hand Contacts Designed.

Dy Dynamics Designed.

Cr Coordination Designed.

Pu Punctuation 80% Completed
To be tested.

Table 6.6: Development Status, updated to the 27th of August 2014.

Furthermore, it is important to mention one limitation of our SW-OGR
Engine. We observed that sometimes, SignWriting texts may contain over-
lapping glyphs, i.e. glyphs which have been drawn one upon the other. In
those cases, distinguishing one glyph from another can be very tricky. As
explained in Chapter 4, the SW-OGR Engine is able to perform both online
and offline recognition. In the fist case (online), the system recognizes the
text as it is being written. As a consequence, temporal information about the
composition is available, so the problem of overlapping glyphs is extremely
rare, since the user typically draws one symbol (or a part of a symbol) at a
time. In the second case (offline), on the other hand, no temporal informa-
tion is available and it is very difficult (sometimes also for a human being) to
distinguish all elements of one glyph from those of another one. For this rea-
son, the SW-OGR Engine currently does not recognize overlapping glyphs.
As shown in Section 6.2.3, the system is already able to identify a shape,
even if there are two overlapping shapes, that could be a good point to start.
A further design and development effort is necessary, however, to overcome
such limitation.
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Chapter 7

Testing of SW-OGR

7.1 Testing of SW-OGR

As mentioned in the previous section, the application has been developed
in a modular way: as soon as the code supporting a particular OGR area
is ready, it is included within the main project. For this reason, however, a
global testing of the whole SW-OGR Engine has not yet been performed.
More specifically, only a qualitative analysis of the execution of the global
recognition algorithm is available.
On the other hand, before including code supporting any OGR area within
the project, the code is thoroughly tested against the datasets we use. As
shown in Tab. 6.6, we decided to focus our attention of the most represen-
tative OGR areas first, i.e. the areas which are most frequently used within
a SignWriting text. Therefore, quantitative analyses are available for the
following areas: Head Circle and Contacts, Hand Configurations and Facial
Expressions: Eyes.
The dataset gathered for the tests has been assembled by extracting 20 pages
both from the DS-PEAR and the DS-POITIERS dataset: we will be refer-
ring to this dataset as DS-TEST. Any code included into the project has
been tested at least against DS-TEST. Some OGR areas, anyway, required
a larger amount of testing, especially the most complex ones, such as Hand
Configurations. In such cases, we also evaluated the behavior of our code
by using the DS-PRINTED dataset, and we generated (and tested the code
on) images of the DS-DEV datasets.
After gathering the dataset, it was necessary to generate a ground truth file
for each image, in order to enumerate the glyphs contained within the page.
More specifically, the ground truth file is an XML file, generated by humans,
which holds the code and the coordinates of any glyph within the text. In
other words, it is the product of a human-performed SW-OGR, which is
used to assess the reliability of the automatic recognition.
The quantitative analyses are performed separately for each dataset. More-
over, since the DS-TEST dataset contains pages extracted from two different
datasets (DS-PEAR and DS-POITIERS), it has been analyzed separately.
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As a results, in each table of the present section, we will be using the label
DS-TEST (POITIERS) when presenting the analysis of the performance of
the SW-OGR with the pages of DS-TEST which have been extracted from
DS-POITIERS, and we will use DS-TEST (PEAR) for the other half of the
dataset.
Four categories have been identified to evaluate the performance of thee
SW-OGR Engine:

• Recognized: if a glyph has been correctly recognized.

• Inaccurate: if a glyph has been correctly inferred to belong to the OGR
area which is being tested, but its recognition resulted in a wrong
ISWA code.

• Not recognized: if a glyph belongs to the OGR area which is being
tested, but the SW-OGR Engine was not able to perform the OGR
area inference, thus resulting in no recognition at all.

• False positive: if a glyph does not belong to the OGR area which is
being tested, but the SW-OGR Engine erroneously included it into the
recognition, thus resulting in a false positive.

The percentages (calculated over the whole dataset, not over the single
pages) of such categories for each OGR area are reported into each table
of the present section.

7.1.1 Head Circles and Contacts (HeE HE)

Given its low level of complexity, the code supporting the Head Circle and
Contacts area was the first one to be included within the test, in chronologi-
cal order. The test has been performed by taking into account the DS-TEST
only.

SW-OGR performance test: Head Circle and Contacts

Recognition DS-TEST-PEAR DS-TEST-POITIERS

Recognized 94.2% 97.1%

Inaccurate 2.8% 1.8%

Not recognized 2.8% 1.1%

False positives 0.2% 0%

Table 7.1: SW-OGR performance test: Head Circle and Contacts.
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The test results for this OGR area are very encouraging, and they are re-
ported in Tab 7.1. The results for the Head Circle and Contacts area are
quite satisfying: the average of the performance score being 95.6%.

Figure 7.1: A handwritten page belonging to the DS-TEST-POITIERS dataset, as
it appears before (left) and after (right) the recognition of the glyphs belonging to
the Head Circles and Contacts area.

We observed that most of the errors in the recognition were caused by ex-
tremely inaccurate handwriting (1.2% in DS-TEST-PEAR and 0.8% in DS-
TEST-POITIERS), and overlapping glyphs (1.6% in DS-TEST-PEAR and
1.0% in DS-TEST-POITIERS).
We also detected a small percentage of unrecognized glyphs within each
dataset. One of the reason for this failure in the recognition is the pres-
ence of overlapping glyphs (1.5% in DS-TEST-PEAR and 0.5% in DS-
TEST-POITIERS). Anyway, within both datasets, a significant percentage
of unrecognized glyph (1.3% in DS-TEST-PEAR and 0.6% in DS-TEST-
POITIERS) is justified by the fact that some pages within such datasets
feature large slices with very tiny head circles. As a consequence, the diam-
eter of the circles is smaller than the minimum threshold value necessary to
be included within the Head Circle and Contacts area.
Finally, the small percentage (0.2%) of false positives within the DS-TEST
(PEAR) has been observed to be due to an improper OGR area inference
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of a very restricted number of circular movements.
Fig. 7.1 shows a handwritten page belonging to the DS-TEST-POITIERS
dataset, as it appears before (left) and after (right) the recognition. We de-
cided to include this particular screenshot since it shows one of the issues
mentioned above, i.e. the failure of the recognition due to the presence of
overlapping glyph. In fact one of the head circle in the first column is over-
lapped with a hand configuration glyph, and therefore the recognition for
that particular symbol has failed (it is not shown in the output image on
the right side of Fig 7.1).

7.1.2 Facial Expressions: Eyes (HeE EY)

The support for Facial Expressions: Eyes area is the latest, in chronological
order, to be included within the SW-OGR Engine. The number of glyph
within this area is not particularly small, but the symbols have the advantage
of being very simple. As a consequence, they are quite easy to draw (with an
acceptable level of accuracy), and just as easy to recognize. Since no glyph
belonging to the Facial Expressions: Eyes area has been dealt with in this
Chapter, Fig. 7.2 shows a small selection of such symbols. Please notice that
the head circles are not necessarily part of the glyphs, more specifically, each
glyph in this area comes in two ways: with and without the head circle.

Figure 7.2: A set of glyph belonging to the Facial Expressions: Eyes area.

The results of the test for the Facial Expressions: Eyes area are shown in
Tab. 7.2. The recognition procedure has been tested using the DS-TEST
dataset, and its performances were very encouraging, since it reached an
average value of 94.9.
The total lack of false positives, and the very low percentages of recognition
inaccuracies (1.2% for DS-PEAR and 0.7% for DS-POITIERS) testify the
robustness and the efficiency of the recognition algorithms.
It was interesting, however, to understand the reason for the remarkable
percentages (5.1% for DS-PEAR and 3.2% for DS-POITIERS) of recogni-
tion failures. We tracked the reason for such failures in the presence of a
number of eye symbols that have been drawn so close to their head circles
to be included in the same frag, since they are connected. As a consequence,
the OGR area algorithm ascribed those frags to the Head Circles and Con-
tacts area, preventing the recognition of the eye symbol. This is just another
issue deriving from the presence of overlapping glyphs within the SignWrit-
ing texts. A minor percentage of the recognition failures are also due to the
presence of glyphs which are not yet supported by the recognition algorithm,
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such as eye movements, which appear as small arrows.

Figure 7.3: A handwritten page belonging to the DS-TEST-POITIERS dataset, as
it appears before (left) and after (right) the recognition of the glyphs belonging to
the Facial Expression: Eyes area.

SW-OGR performance test: Facial Expressions: Eyes

Recognition DS-TEST-PEAR DS-TEST-POITIERS

Recognized 93.7% 96.1%

Inaccurate 1.2% 0.7%

Not recognized 5.1% 3.2%

False positives 0% 0%,

Table 7.2: SW-OGR performance test: Facial Expressions: Eyes.

Fig. 7.3 shows a handwritten page belonging to the DS-TEST-POITIERS
dataset, as it appears before (left) and after (right) the recognition. Please
notice the two recognition failures within the column containing symbols
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containing eye movements, which are not yet supported.

7.1.3 Hand Configurations (HaC)

RecogHaC, i.e. the recognition class for the Hand Configurations area, is a
very complex one. As explained in Section 6.2.5.2, it features a huge set of
interleaving evaluations. For this reason, during the development phase of
the class, it was very difficult to perform debugging and testing with the
handwritten images from DS-PEAR and DS-POITIERS, since their hand-
writing style is often very inaccurate.
As a consequence, in order to carry out very specific evaluations, we gen-

Figure 7.4: Two datasets generated to test the recognition algorithms for the Hand
Configurations area. The page on the left represents a number of possible variations
of a hand configuration. The page on the right represents a number of printed hand
configurations.

erated a number of pages, including them within the DS-PRINTED or the
DS-DEV dataset. For the DS-PRINTED dataset, we generated a number
of pages containing printed hand configurations glyph, mainly to check the
detection of the appendices (Fig. 7.4, right side. For the DS-DEV dataset,
we generated a number of pages containing different variations for the same
glyph, in order to evaluate our algorithms for the recognition of rotation,
orientation, geometric plane and appendix position (Fig. 7.4, left side). Such
datasets were used to test and tune the SW-OGR Engine during the early
development phase. The test were conducted in an informal way during the
development of the application, thus no data is available. Once the SW-OGR
Engine started to perform flawlessly with DS-DEV and DS-PRINT, we ran
formal tests with the DS-TEST dataset. The results of the test are available
in Tab. 7.3.
As shown in Tab. 7.3, the average success percentage on the DS-TEST is
68.25. As already shown in Section 7.1.1, the recognition algorithm performs
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better with the DS-POITIERS dataset.

SW-OGR performance test: Hand Configurations

Recognition DS-TEST-PEAR DS-TEST-POITIERS

Recognized 65.3% 71.2%

Inaccurate 19.3% 15.6%

Not recognized 15.3% 13.2%

False positives 0% 0%,

Table 7.3: SW-OGR performance test: Hand Configurations.

It is possible to detect a relevant percentage of recognition inaccuracies
(19.3% for DS-TEST-PEAR and 15.6% for DS-TEST-POITIERS). This is
due to a combination of a very inaccurate handwriting, the presence of
glyphs which do not belong to the ISWA (Bianchini & Borgia, 2012; Bian-
chini et al., 2011) and a too strict feature evaluation routine. We think that
this issue can be solved by further tuning the feature evaluation routine of
the RecogHaC class.

Figure 7.5: A handwritten page belonging to the DS-TEST-POITIERS dataset, as
it appears before (left) and after (right) the recognition of the glyphs belonging to
the Hand Configurations area.
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It is also possible to observe a relevant percentage of failures in the recogni-
tion (15.3% for DS-TEST-PEAR and 13.2% for DS-TEST-POTIERS), this
result was expected, since the recognition of the Hand Configurations is not
completely over (See Tab. 6.6). In fact, the recognition of a number of shapes
is yet to be developed, as a result, both the OGR area inference based on
those shapes, and the consequent recognition, are not performed.
Finally, the strictness of the feature evaluations left no space for false posi-
tives.
Fig. 7.5 shows a handwritten page belonging to the DS-TEST-POITIERS
dataset, as it appears before (left) and after (right) the recognition.

7.2 The SW-OGR Engine in action

As explained in Section 7.1, not every part of the SW-OGR is fully devel-
oped or tested. Some classes just perform the recognition of a restricted set
of glyphs within their OGR areas, some classes need further debugging and
testing.
Nonetheless, as the conclusion of the present chapter, it is worth showing
that the SW-OGR Engine is already functional even if it is still under devel-
opment. Please notice that the figures in the present section are not meant
to provide an analysis of the recognition procedure from a quantitative point
of view.
We picked a number of pages from both the DS-PEAR and the DS-POITIERS
datasets, and we operated the recognition of any glyph supported by the SW-
OGR Engine. The recognition was performed by allowing any class, tested
and untested, to perform its evaluations for the recognition.
The results are shown in Fig 7.6 and Fig. 7.7. Recognition inaccuracies and
failures can be spotted along successfully recognized glyphs within each fig-
ure.
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Figure 7.6: A handwritten page belonging to the DS-TEST-PEAR dataset, as it
appears before (left) and after (right) the recognition.
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Figure 7.7: A handwritten page belonging to the DS-TEST-POITIERS dataset, as
it appears before (left) and after (right) the recognition.



Conclusions and future
research

Conclusions et recherche future en Français

Les défis que doivent relever au quotidien les sourds pour surmonter le frac-
ture numérique qui les sépare du monde ont été la source d’inspiration de
la présente étude. Vu et considéré que la plupart des problèmes dans ce
domaine de la recherche ne sont - pour ainsi dire - jamais abordés, ces
travaux proposent des études et des solutions au design d’accessibilité pour
les sourds, fondé sur l’inclusion des LS. Bien que les LS soient une forme
d’expression très répandue chez les sourds, leur importation dans les ser-
vices et les contenus électroniques reste, la plupart du temps, discrétionnaire
et limitée aux vidéos. Pourtant, l’interaction des sourds avec les artéfacts
numériques pourrait tirer de gros avantages d’un système d’écriture perme-
ttant de représenter des expressions et des contenus en LS de façon intuitive.
Les présents travaux ne constituent qu’un élément d’un framework global
visant à soutenir la communication des sourds à travers la plus naturelle
de leur forme d’expression (la LS) et nos efforts se sont concentrés sur la
gestion numérique de SignWriting qui est l’un des systèmes d’écriture des
langues des signes les plus prometteurs. Notre but final est de projeter et
mettre au point un système supportant la production et l’usage de ressources
en SignWriting pour les sourds (SWord). L’ultime finalité de SWord est de
rendre SignWriting efficacement exploitable en tant que moyen de commu-
nication et en tant que support d’apprentissage pour sourds, notamment
dans le domaine du numérique. Etant donné que SWord est étroitement lié
avec les LS, les études et les artéfacts numériques illustrés dans ces travaux
ont été conçus grâce à une synergie de compétences pluridisciplinaires. Ces
compétences comprennent des linguistes, des interprètes, des experts en Sign
Writing et des psychologues.
Le premier logiciel incorporé dans le système SWord est un éditeur numérique
pour SignWriting, à savoir un outil permettant de créer des ressources
numériques en LS (signes ou histoires signées) écrites en SignWriting. Cet
éditeur, baptisé SWift, est une véritable nouveauté par rapport à ses ri-
vaux en raison de ses fonctionnalités de pointe permettant de seconder une
composition naturelle et rapide de signes et d’histoires signées. Ces fonction-
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nalités comprennent (la liste ne doit pas être considérée comme exhaustive):
une composition guidée de signes, un support pour symboles ad hoc définis
par les usagers et un système intuitif de recherche des symboles. SWift est
conçu pour être incorporé dans n’importe quelle application/ressource web,
afin d’apporter un support immédiat aux LS. En fait, SWift a déjà été
intégré dans un environnement visuel de e-learning pour les sourds (DELE).
En outre, SWift permet de mémoriser dans une banque de données tous
les signes introduits par les usagers et tous les symboles les composant. Il
est ainsi possible d’étudier des modèles de composition de signes et la co-
occurrence des symboles dans des documents SW. C’est en travaillant, ces
quatre dernières années, avec des linguistes que nous avons pris la mesure
de l’importance des données statistiques issues de l’analyse des documents
en SignWriting, vu qu’ils peuvent contribuer à comprendre les règles gou-
vernant les LS.
Les fonctionnalités de SWift et sa facilité d’utilisation ont été testées sur
un échantillon de ses principaux usagers finals, à savoir des personnes con-
naissant et utilisant SignWriting. Etant donné que la majeure partie des
participants aux tests étaient sourds, il a donc été nécessaire, pour obtenir
des résultats fiables, d’utiliser une série d’outils et de méthodologies val-
ables aussi bien pour les participants sourds que pour les entendants. Par
conséquent, l’une des principales contributions qu’apportent les présents
travaux à la Human-Computer Interaction est le protocole Think by Signs,
à savoir une méthodologie de tests basée sur le protocole Think Aloud.
Think by Signs, expressément conçu pour tester des applications sur des
participants aussi bien sourds qu’entendants, est en mesure de fournir de
précieuses informations aussi bien sur la facilité d’utilisation d’une applica-
tion que sur la fiabilité de ses fonctionnalités. SWift a été testé avec succès à
l’aide de différents outils, parmi lesquels figure le protocole Think by Signs.
Les résultats du test se sont révélé particulièrement utiles pour résoudre une
série de lacunes de l’application, que ce soit de simples défauts d’ergonomie
que de véritables bugs.
Bien que de grandes avancées ont été accomplies dans le design, les éditeurs
numériques pour SignWriting, tels que SWift, sont encore bien loin d’offrir à
l’usager une interface en mesure d’émuler la simplicité de l’écriture manuelle.
C’est la raison pour laquelle nous avons conçu une nouvelle génération
d’éditeurs numériques pour SignWritting afin d’épargner à l’usager toutes
les contraintes qu’impose une interface WIMP dans la composition d’un
signe. Notre objectif était d’implémenter la qualité de l’interaction pour se
rapprocher le plus possible de la méthode � papier-stylo � que tous les
êtres humains utilisent habituellement pour écrire ou dessiner. Pour attein-
dre cet objectif, nous avons conçu une technique permettant de convertir
électroniquement des images contenant des symboles SignWriting manuscrits
(ou imprimés) en textes SignWriting numériques (codifiés dans le même for-
mat que celui de SWift).
Nous avons décidé de baptiser cette technique SignWriting Optical Glyph
Recognition (SW-OGR). Le moteur de SW-OGR est en mesure de reconnâıtre
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des textes SignWriting en se basant sur les caractéristiques structurelles
(géométriques et topologiques) des symboles et sur leurs relations topologiques.
Nous nous sommes également appuyés sur des informations intrinsèques au
contexte, comme par exemple la connaissance de l’organisation de l’alphabet
SignWriting. Dans ces travaux, nous avons exposé nos recherches sur l’alphabet
SignWriting afin d’identifier les critères géométriques permettant de classi-
fier les symboles, d’élaborer une procédure de reconnaissance et de développer
et tester le moteur SW-OGR. La codification de l’OGR est notamment l’une
des majeures contributions de cette recherche puisqu’elle constitue (par rap-
port à l’ISWA) une codification nouvelle et différente se fondant exclusive-
ment sur les caractéristiques structurelles des symboles. Par ailleurs, cette
nouvelle codification n’est pas uniquement réservée à SW-OGR, elle peut
être employée, en tant qu’organisation logique, à d’autres moteurs OGR et,
plus en général, à n’importe quel système fondé sur une codification struc-
turelle (plutôt que linguistique) des symboles de SignWriting. La phase du
test d’application a prouvé que l’actuelle implémentation du moteur SW-
OGR est valable, son opérationnalité a été mise à l’épreuve en utilisant une
banque de données hétérogène contenant des textes rédigés par des person-
nes différentes dans des contextes différents.
Réduire la fracture numérique, qui marginalise les sourds, est un objec-
tif ambitieux et il reste encore beaucoup à faire dans ce domaine, notam-
ment dans le développement des fonctions du logiciel SWord. L’évolution
naturelle de SWift impliquera très probablement la création d’une fonc-
tionnalité d’écriture à main libre servant d’interface avec le moteur SW-
OGR. Grâce à l’interaction des deux systèmes, les usagers de SignWriting
bénéficieront d’une interface qu’ils connaissent déjà tout en utilisant une
nouvelle fonctionnalité qui accélèrera considérablement le processus de com-
position des signes et des histoires signées. Par conséquent, le moteur SW-
OGR doit être étendu pour contenir toutes les zones OGR (à savoir toutes
les catégories de l’ISWA) dans le processus de reconnaissance. La conception
de l’application a été portée à terme, des contrôles de routine structuraux
ont été identifiés pour chaque catégorie de SignWriting, mais il faut encore
s’efforcer de développer le concept pour arriver à un support complet à tous
les symboles de SignWriting. Par ailleurs, comme il a déjà été proposé dans
d’autres études sur l’Optical Music Recognition (OMR), SW-OGR pourrait
être plus performant en intégrant (et en apprenant) des acteurs humains
dans le processus de reconnaissance. Dans cette étude, l’acteur humain a
été essentiellement présenté comme une figure ayant un rôle de réviseur
dans le processus de reconnaissance, du fait qu’aucune reconnaissance ne
peut être parfaitement exacte en toute circonstance. A l’avenir, le précieux
feedback des révisions fournies par les acteurs humains pourrait être utilisé
pour implémenter les fonctionnalités de l’apprentissage actif du système.
SW-OGR pourrait conserver une trace des variations les plus fréquentes ef-
fectuées par les usagers et les appliquer automatiquement (ou à la demande)
afin d’améliorer le résultat de la reconnaissance dans des délais graduelle-
ment décroissants pour l’acteur humain. Comme nous l’avons déjà évoqué
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dans ces présents travaux, SW-OGR est un module d’application réutilisable
qui peut être employé dans n’importe quel éditeur de SignWriting. Ces
éditeurs peuvent varier du simple éditeur de base pour des applications mo-
biles ou pour le web à un éditeur professionnel avancé à usages divers, telle
que la recherche ou l’authoring/publishing. Ces éditeurs, à leur tour, peu-
vent être incorporés dans une vaste gamme d’applications, notamment (mais
pas exclusivement) la messagerie instantanée, les logiciels d’apprentissage,
la productivité et le gaming. En général, un éditeur numérique pour Sign-
Writing favorise la production et la diffusion de contenus accessibles aux
sourds, ce qui est l’un de nos objectifs premiers. Le hardware plus appro-
prié pour héberger une application basée sur SW-OGR devrait évidemment
posséder des fonctionnalités tactiles, tels que les tablettes, les portables, les
ordinateurs à écran tactile, etc. afin d’exploiter au mieux les avantages d’une
interface naturelle pendant la composition d’un signe.
Un de nos objectifs majeurs est d’utiliser SignWriting pour transcrire les
signes en prenant une vidéo signée comme flux d’entrée. Ceci implique
l’usage de techniques de reconnaissance des formes pour transformer les
gestes d’une personne produisant des signes en symboles SignWriting. Les
positions et les mouvements capturés pourraient exploiter le système de cod-
ification OGR aussi bien pour la classification des caractéristiques que pour
leur mémorisation. Les signes reconnus pourraient être facilement utilisés
comme flux de données pour animer les avatars marquants grâce aux in-
formations de production exhaustives que constitue chaque symbole Sign-
Writing. Nous avons entamé notre recherche sur cette nouvelle méthode
d’acquisition près le Département de Informatique de � Sapienza � Univer-
sità di Roma.
Pour conclure, nous soulignerons que l’objectif final de nos travaux rejoint
celui de SWord, à savoir promouvoir SignWriting en tant que moyen de com-
munication performant pour les sourds dans l’univers numérique. Comme
nous l’avons longuement exposé ci-dessus, grâce à nos recherches et au logi-
ciel, que nous avons développé au cours de ces quatre dernières années, les
résultats concrets de SWord sont désormais à portée de main. Ces résultats
incluent la numérisation du corpus en SignWriting pour la communauté
des sourds et pour celle des chercheurs spécialisés en linguistique des LS,
des éditeurs numériques pour SignWriting (web et mobile) avec un support
pour l’écriture manuscrite et des avatars en mesure de produire des signes
à partir d’un texte SignWriting. Cette recherche veut être une réponse à
la fracture numérique et notre contribution pour limiter son impact sur les
sourds.
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Conclusions and future research in English

The present work has been significantly inspired by the challenges posed
by the digital divide experienced by deaf people. Acknowledging that most
issues in this research field remain largely unaddressed, the present work
proposes studies and solutions for deaf-oriented accessibility design, based
on SL inclusion. Even if SLs represent a widespread form of expression for
deaf people, their inclusion in electronic services and contents is still lim-
ited, when available, to videos. However, the interaction of deaf people with
digital artifacts may take great advantage from exploiting a written system
to represent SL expressions and contents in an intuitive way.
The present work is a brick in the creation of an overall framework targeted
at supporting deaf people through their most natural form of expression. In
particular, we presented our efforts towards improving the computer han-
dling of SignWriting, which is one of the most promising systems devised
to write SLs. Our general goal is the design and the implementation of a
framework to support the production and the use of SignWriting-oriented
resources for the deaf (SWord). The ultimate purpose of SWord is to make
SignWriting effectively exploitable as a communication mean and a learn-
ing support for deaf people, especially in the digital world. Since SWord
deals directly with SLs, the studies and the digital artifacts presented in
this work have been designed with the aid of a multi-disciplinary range of
competences. Such competences include: linguists, interpreters, SignWriting
experts and psychologists.
The first software to be included into the SWord framework was a SignWrit-
ing digital editor, i.e. a tool that enables the creation of digital SL resources
(signs, or signed stories) written in SignWriting. Our editor is named SWift,
and it represents an innovation with respect to its competitors, due its ad-
vanced features, aimed at supporting a natural and swift composition of
signs and signed stories. Such features include (but they are not limited
to) predictive text, support for user-defined ad hoc symbols, and an intu-
itive glyph search system. SWift is designed to be included into any web
application/resource to provide a prompt SL support. Presently, SWift has
already been integrated into a visual E-Learning environment for deaf people
(DELE). Moreover, SWift allows to store composed signs in a database to-
gether with the component glyphs. This allows to study patterns and their
co-occurrence in SW documents. Working with linguists in the past four
years, we are well aware of the key importance of the derived statistical
data, since they can help to gain understanding of the rules of SLs.
The features and the usability of SWift were tested with a sample of its
main target users, i.e. people which are proficient with SignWriting. Most of
the participants to the test were deaf, as a consequence, in order to gather
reliable data, it was necessary to employ a set of tools and methodolo-
gies viable for both deaf and hearing participants. As consequence, one of
the main contributions of the present work to the HCI field is represented
by the Think by Signs protocol, i.e. a testing methodology based on the
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Think-Aloud Protocol. Think by Signs is specifically designed to perform
application testing with both deaf and hearing participants, and it is capa-
ble of providing valuable information about the level of usability and about
the correct functioning of the features of any application. SWift has been
successfully tested using, among other tools, the Think by Signs protocol;
the results of the test were very useful to fix a number of issues with the
applications, ranging from usability flaws to bugs.
Notwithstanding many design efforts, SignWriting digital editors, such as
SWift, are still far from granting the user an interface which is able to em-
ulate the simplicity of handwriting. As a consequence, we designed a new
generation of SignWriting editors, able to lift the user of any burden related
to clicking, dragging, searching, browsing on the UI during the composition
process of a sign. Our goal was to implement an interaction style which is as
similar as possible to the paper-pencil approach that humans normally use
when writing or drawing. In order to achieve such goal, we designed a tech-
nique to operate the electronic conversion of images containing handwritten
or printed SignWriting symbols into machine-encoded SignWriting texts (in
the same format adopted by SWift).
Such technique is referred to as the SW-OGR. The SW-OGR engine is able
to perform the recognition of SignWriting texts by only working with the
structural (geometric and topological) features of the symbols, and with their
topological relationships. We also relied on context-dependent information,
such as the knowledge of the organization of the SignWriting alphabet. In
this work we presented the studies performed on the SignWriting alphabet
in order to identify structural criteria to classify its symbols, the design of
the recognition procedure, and the development and testing of the SW-OGR
engine. In particular, one of the main contributions of the present research is
represented by the OGR coding, i.e. a new, different (with respect to ISWA)
coding for SignWriting, based exclusively on the structural features of the
symbols. Such coding is not SW-OGR-specific, it can be employed as un-
derlying logical organization for other OGR engines, and, in general, within
any system where a structural (rather than linguistic) coding for SignWrit-
ing symbols is required. The testing phase of the application demonstrated
that the present implementation of the SW-OGR engine is currently work-
ing, and its validity has been proved with a heterogeneous group of datasets,
containing texts written from different people, in different contexts.
Leveling the digital divide affecting deaf people is an ambitious goal, and
much work is yet to be done in order to achieve it. In particular, regarding
the SWord framework, some development work is still pending. The natural
evolution of SWift shall most likely imply the development of a handwriting
functionality intended to serve as an interface with the SW-OGR engine.
Thanks to the integration of the two systems, SignWriting users will ben-
efit from a known interface while exploiting a new functionality which can
dramatically speed up the composition process of signs and signed stories.
The SW-OGR needs to be expanded in order to include all OGR areas (in
other words, all ISWA categories) into the recognition. The application is
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fully designed, structural check routines have been identified for each OGR
area, but a further development effort is needed, in order to achieve a full
support for any glyph in SignWriting. Furthermore, as proposed in a num-
ber of other studies, mainly related to Optical Music Recognition (OMR),
SW-OGR could benefit by including (and learning from) human actors in
the recognition process. Throughout the present work, the role of the human
actor has been presented mainly as one with recognition review responsibil-
ities, due to the fact that no recognition can be perfectly accurate under
any circumstances. In future, the valuable review feedback provided by the
human actors could be employed to implement active learning capabilities
for the system. SW-OGR shall keep track of the most frequent changes per-
formed by the users and it shall apply them automatically (or on-demand)
in order to improve the result of the recognition, with a gradually decreasing
time cost for the human actor.
As already mentioned in the present work, SW-OGR is a reusable applica-
tion module which could be employed within any SignWriting editor. Such
editors may range from simple, minified editors targeted for mobile or web
applications, to more complex, professional editors intended for different pur-
poses, such as research or authoring/publishing. Such editors can be in turn
embedded within a wide range of applications, including instant messaging,
learning, productivity and gaming software. In general, a SignWriting editor
fosters the production and the diffusion of deaf-accessible content, which is
one of our goals. The most appropriate hardware to host SW-OGR-based
application should provide touch capabilities, such as tablets, mobile phones,
computers with touchscreens, etc. in order to fully exploit the advantages of
a natural interface while composing a sign.
Another important goal we are pursuing is to use SignWriting to tran-
scribe signs, taking a signed video as an input feed. This involves employing
pattern-recognition techniques to map the gestures of a person producing
signs, into SignWriting glyphs. The captured positions and movements could
benefit of the features of the OGR coding system, both for feature classifi-
cation and storage purposes (though the first purpose seems more produc-
tive). The recognized signs could easily be employed as data feed to animate
avatars, due to the accurate production information carried by each Sign-
Writing symbol. We already started our efforts to investigate and design this
new acquisition method at “Sapienza” University of Rome.
In the end, it is our intention to remark that the ultimate goal of our work
corresponds to the goal of the SWord framework, i.e. promoting SignWrit-
ing as an effective communication mean for deaf people in the digital world.
As explained through the present work, thanks to the studies and to the
software developed during the past four years, practical outcomes of the
SWord framework are at hand. Such outcomes include digitized SignWrit-
ing corpora for the deaf and the linguistic research community, web and
mobile SignWriting digital editors featuring handwriting support, and sign-
ing avatars able to produce signs taking a SignWriting text as input. This is
our contribution in lessening the impact of the digital divide on deaf people.
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Conclusioni e ricerca futura in Italiano

Il presente lavoro è stato ispirato in modo molto significativo dalle sfide
poste dal digital divide che le persone sorde sperimentano ogni giorno. Ri-
conoscendo che la maggior parte dei problemi in questo campo di ricerca
restano in gran parte non affrontati, il presente lavoro propone studi e
soluzioni per il design di accessibilità per le persone sorde, basato sull’inclusione
delle LS. Nonostante le SL rappresentino una forma di espressione molto
diffusa tra i sordi, la loro inclusione in servizi e contenuti elettronici è an-
cora limitata, quando disponibile, all’utilizzo di video. Tuttavia, l’interazione
delle persone sorde con gli artefatti digitali potrebbe trarre un grande van-
taggio da un sistema di scrittura per rappresentare espressioni e contenuti
in LS in modo intuitivo.
Il presente lavoro è solo un tassello nella creazione di un framework globale
mirato a sostenere la comunicazione delle persone sorde attraverso la loro
forma più naturale di espressione. In particolare, abbiamo presentato i nostri
sforzi per migliorare la gestione digitale di SignWriting, che è uno dei sis-
temi di scrittura più promettenti per le LS. Il nostro obiettivo generale è la
progettazione e la realizzazione di una sistema per supportare la produzione
e l’uso di risorse in SignWriting per i sordi (SWord). Il fine ultimo di SWord
è di rendere SignWriting efficacemente utilizzabile come mezzo di comuni-
cazione e supporto di apprendimento per le persone sorde, in particolare nel
mondo digitale. Del momento che SWord è strettamente legato con le LS,
gli studi e gli artefatti digitali presentati in questo lavoro sono stati pro-
gettati grazie ad un range di competenze multidisciplinare. Tali competenze
includono: linguisti, interpreti, esperti di SignWriting e psicologi.
Il primo software incluso nel sistema SWord è un editor digitale per Sign-
Writing, vale a dire uno strumento che consente la creazione di risorse digi-
tali in LS (segni, o storie segnate) scritte in SignWriting. Il nostro editor si
chiama SWift, e rappresenta una novità rispetto ai suoi concorrenti grazie
alle sue funzionalità avanzate, che hanno l’obiettivo di favorire una compo-
sizione naturale e rapida di segni e storie segnate. Tali funzionalità includono
(ma non sono limitate a) composizione guidata di segni, supporto per sim-
boli ad-hoc definiti dall’utente e un sistema intuitivo di ricerca dei simboli.
SWift è progettato per essere incluso in qualsiasi applicazione/risorsa web,
in modo da fornire un pronto supporto per le LS. In realtà, SWift è già stato
integrato in un ambiente visivo di e-learning per le persone sorde (DELE).
Inoltre, SWift permette di memorizzare in un database i segni inseriti dagli
utenti, insieme ai singoli simboli che li compongono. Questo permette di stu-
diare i pattern di composizione dei segni e la co-occorrenza dei simboli nei
documenti SW. Lavorando con linguisti, negli ultimi quattro anni, abbiamo
preso coscienza dell’importanza fondamentale dei dati statistici che possono
derivare dall’analisi dei documenti in SignWriting, in quanto possono con-
tribuire a comprendere le regole che governano le LS.
L’usabilità e le funzionalità di SWift sono state testate con un campione dei
suoi principali utenti finali, cioè con persone che conoscono SignWriting. La
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maggior parte dei partecipanti al test erano sordi, di conseguenza, al fine di
raccogliere risultati affidabili, è stato necessario adottare una serie di stru-
menti e di metodologie valide sia per partecipanti sordi, sia per partecipanti
udenti. Di conseguenza, uno dei principali contributi del presente lavoro al
campo della HCI è rappresentato dal protocollo Think by Signs, ossia una
metodologia di test basata sul protocollo Think-Aloud. Think by Signs è
specificamente progettato per testare applicazioni con partecipanti sia sordi
che udenti, ed è in grado di fornire preziose informazioni circa il livello di
usabilità e sul corretto funzionamento delle funzionalità di un’applicazione.
SWift è stato testato con successo con diversi strumenti, tra i quali il proto-
collo Think by Signs; i risultati del test sono stati molto utili per risolvere
una serie di problemi dell’applicazione, a partire da difetti di usabilità fino
a veri e propri bug.
Nonostante molti avanzamenti nel design, gli editor digitali per SignWriting,
come SWift, sono ancora lontani dal fornire all’utente un’interfaccia che sia
in grado di emulare la semplicità della scrittura manuale. Di conseguenza,
abbiamo progettato una nuova generazione di editor digitali per SignWrit-
ing, in grado di sollevare l’utente da tutti gli oneri relativi all’utilizzo di
un’interfaccia WIMP durante la composizione di un segno. Il nostro obi-
ettivo era quello di implementare uno stile di interazione che fosse il più
simile possibile al metodo “carta e penna” che gli esseri umani normalmente
utilizzano durante la scrittura o il disegno. Al fine di raggiungere tale obi-
ettivo, abbiamo progettato una tecnica il cui scopo è quello di operare la
conversione elettronica di immagini contenenti simboli SignWriting scritti a
mano (o stampati) in testi SignWriting digitali (codificati nello stesso for-
mato adottato da SWift).
Abbiamo deciso di chiamare tale tecnica SignWriting Optical Glyph Recog-
nition (SW-OGR). Il motore SW-OGR è in grado di effettuare il riconosci-
mento di testi SignWriting basandosi sulle caratteristiche strutturali (geo-
metriche e topologiche) dei simboli, e sulle relazioni topologiche tra di essi.
Abbiamo anche potuto fare affidamento su informazioni dipendenti dal con-
testo, come ad esempio la conoscenza dell’organizzazione dell’alfabeto Sign-
Writing. In questo lavoro abbiamo presentato gli studi effettuati sull’alfabeto
SignWriting al fine di identificare i criteri geometrici per classificare i suoi
simboli, la progettazione della procedura di riconoscimento, e lo sviluppo
e di test del motore SW-OGR. In particolare, uno dei principali contributi
della presente ricerca è rappresentato dalla codifica OGR, cioè una nuova,
differente (rispetto a ISWA) codifica per SignWriting, basata esclusivamente
sulle caratteristiche strutturali dei simboli. Tale codifica non è specifica per
SW-OGR, può essere impiegata come organizzazione logica per altri motori
OGR, e, in generale, in qualsiasi sistema in cui sia richiesta una codifica
strutturale (piuttosto che linguistica) per i simboli di SignWriting. La fase
di test dell’applicazione ha dimostrato che l’attuale implementazione del mo-
tore SW-OGR è valida, la sua operatività è stata messa alla prova usando
un dataset eterogeneo, contenente testi scritti da persone diverse, in contesti
diversi.
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Ridurre il digital divide che colpisce le persone sorde è un obiettivo am-
bizioso, e molto lavoro è ancora da fare per raggiungerlo. In particolare,
per quanto riguarda SWord, è ancora necessario uno sforzo di sviluppo soft-
ware. L’evoluzione naturale di SWift comporterà molto probabilmente lo
sviluppo di una funzionalità di scrittura a mano libera destinata a fun-
gere da interfaccia con il motore SW-OGR. Grazie all’integrazione dei due
sistemi, gli utenti di SignWriting beneficeranno di un’interfaccia già nota,
sfruttando una nuova funzionalità in grado di accelerare notevolmente il
processo di composizione di segni e storie segnate. Il motore SW-OGR deve
essere ampliato per includere tutte le aree OGR (in altre parole, tutte le
categorie ISWA) nel riconoscimento. L’applicazione è completamente pro-
gettata, routine di controllo strutturale sono state identificate per ciascuna
categoria SignWriting, ma è necessario un ulteriore sforzo di sviluppo, al fine
di ottenere un supporto completo per qualsiasi simbolo SignWriting. Inoltre,
come proposto in una serie di altri studi, principalmente riguardanti la Op-
tical Music Recognition (OMR), SW-OGR potrebbe ricavare molti vantaggi
includendo (e imparando da) attori umani nel processo di riconoscimento.
In tutto il presente lavoro, il ruolo dell’attore umano è stata presentato
principalmente come un ruolo con responsabilità di revisione del riconosci-
mento, a causa del fatto che nessun riconoscimento può essere perfettamente
accurato in ogni circostanza. In futuro, il prezioso feedback delle revisioni
fornite dagli attori umani potrebbe essere impiegate per implementare fun-
zionalità di apprendimento attivo per il sistema. SW-OGR potrebbe tener
traccia delle più frequenti variazioni effettuate dagli utenti e potrebbe ap-
plicarli automaticamente (o su richiesta), al fine di migliorare il risultato
del riconoscimento, con un costo di tempo gradualmente decrescente per
l’attore umano. Come già accennato nel presente lavoro, SW-OGR è un
modulo applicativo riutilizzabile che può essere impiegato in qualsiasi editor
di SignWriting. Tali editor possono variare da semplici, essenziali editor per
applicazioni mobile o web, a più complessi editor professionali destinati ad
usi diversi, come ricerca o authoring/publishing. Tali editor possono essere
a loro volta incorporati all’interno di una vasta gamma di applicazioni, tra
le quali (ma non solo) l’instant messaging, software per l’apprendimento, la
produttività e il gaming. In generale, un editor digitale per SignWriting fa-
vorisce la produzione e la diffusione di contenuti accessibili ai sordi, che è uno
dei nostri obiettivi. L’hardware più appropriato per ospitare un’applicazione
basata su SW-OGR dovrebbe naturalmente fornire funzionalità touch, come
tablet, telefoni cellulari, computer con touchscreen, ecc, al fine di sfruttare
appieno i vantaggi di un’interfaccia naturale durante la composizione di un
segno.
Un altro obiettivo importante che stiamo perseguendo è quello di utilizzare
SignWriting per trascrivere i segni prendendo un video segnato come feed
di ingresso. Ciò comporta l’impiego di tecniche di pattern recognition per
trasformare i gesti di una persona che produce segni in simboli SignWriting.
Le posizioni e movimenti catturati potrebbero beneficiare del sistema di cod-
ifica OGR, sia per la classificazione delle caratteristiche, sia per la loro mem-
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orizzazione. I segni riconosciuti potrebbero essere facilmente utilizzati come
feed di dati per animare gli avatar segnanti, a causa delle accurate infor-
mazioni di produzione che ogni simbolo SignWriting rappresenta. Abbiamo
già dato inizio ai nostri sforzi per progettare questo nuovo metodo di acqui-
sizione presso il Dipartimento di Informatica dell’Università ”Sapienza” di
Roma.
Per concludere, è nostra intenzione sottolineare che il fine ultimo del nostro
lavoro corrisponde all’obiettivo di SWord, cioè promuovere SignWriting come
mezzo di comunicazione efficiente per le persone sorde nel mondo digitale.
Come spiegato nel presente lavoro, grazie agli studi e al software sviluppato
nel corso degli ultimi quattro anni, i risultati pratici di SWord sono a por-
tata di mano. Tali risultati comprendono digitalizzare corpora SignWriting
per la comunità sorda e per quella dei ricercatori in linguistica delle LS,
editor digitali per SignWriting (web e mobile) con supporto per la scrittura
a mano, e avatar in grado di produrre i segni a partire da un testo SignWrit-
ing. Questo, in ultima analisi, è il nostro contributo nel ridurre l’impatto del
digital divide sulle persone sorde.
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Glossary

frag A 8-connected foreground component within a slice..

slice A section of a text. If the text follows a horizontal visual organization,
a slice is a row within the text. Otherwise, if the text follows a vertical
visual organization, a slice is a column within the text..

text An image containing handwritten or printed SignWriting glyphs.
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Acronyms

ASL American Sign Language.

CNR National Research Council.

DELE Deaf−oriented E−Learning Environment.

DOM Document Object Model.

FSL Flemish sign Language.

GFTT Good Features To Track.

HamNoSys Hamburg Notation System.

HCI Human−Computer Interaction.

IPA International Phonetic Alphabet.

ISTC Institute of Cognitive Sciences and Technologies.

ISWA International SignWriting Alphabet.

ISWA-2008 International SignWriting Alphabet 2008.

ISWA-2010 International SignWriting Alphabet 2010.

ISWA-BIANCHINI International SignWriting Alphabet Bianchini.

LIS Italian Sign Language.

LSF French Sign Language.

MIT Massachusetts Institute of Technology.

NAD National Association of the Deaf.

NN Neural Network.

OCR Optical Character Recognition.
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OMR Optical Music Recognition.

POI Point of Interest.

QUIS Questionnaire for User Interaction Satisfaction.

SCSI Small Computer System Interface.

SL Sign Language.

SLDS Sign Language and Deaf Studies.

SM SignMaker.

SW-OGR SignWriting Optical Glyph Recognition.

SWift SignWriting improved fast transcriber.

SWML SignWriting Markup Language.

SWord SignWriting-oriented resources for the deaf.

TAP Think-Aloud Protocol.

UI User Interface.

VL Vocal Language.

W3C World Wide Web Consortium.

WCAG Web Content Accessibility Guidelines.

WIMP Windows Icons Menu Pointers.
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