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Résumé des travaux en français 

 

 

Introduction 

Ce travail porte sur l’étude des variabilités au sein de plaques composites 

carbone/epoxy en M10.1/38%/UD300/CHS avec une stratification quasi-isotrope 

de 16 plis. Un spectre large de variabilités est adressé, depuis le pli non polymérisé 

jusqu’à la pièce polymérisée, en passant par la phase de drapage et de 

polymérisation. 

L’objectif de l’ensemble des identifications de variabilités est de permettre 

d’introduire l’effet de ces variabilités dans des modèles de calcul du 

comportement de la pièce composite, et d’en évaluer l’influence sur le 

comportement mécanique. 

 

Chapitre 1 : étude bibliographique 

Dans ce chapitre 1, on montre que l’étude des variabilités sur des pièces 

composites reste un problème ouvert qui peut être abordé de plusieurs manières. 

En effet, il n’existe pas une méthodologie générale applicable pour chaque étape 

associée à l’établissement de la solution composite. La définition même de la 

variabilité reste l’interprétation des chercheurs ou des concepteurs. 

Sur l’analyse et la conception des structures composites, il existe une quantité 

importante de méthodes permettant l’introduction des variabilités dans le calcul 

des propriétés structurelles. La méthode Monte-Carlo est la plus utilisée pour 

alimenter  ce type d’analyse. Elle sert ainsi comme une sorte de benchmark des 

autres types de méthodes. Malgré la quantité importante de méthodes dédiées à 

l’étude des problèmes composites, la prise en compte les variations continues des 

propriétés au sein d’une pièce composite ou la présence d’un défaut localisé sont 
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peu ou pas réalisées. Les propriétés mécaniques sont variables à chaque itération 

mais en utilisant la même valeur pour tous les éléments finis. 

De plus, une grande quantité de méthodes pour l’introduction des 

variabilités est obtenue à partir d’éprouvettes normalisées. Celles-ci n’ont pas la 

même stratification que la structure finale et elles ne sont pas fabriquées dans des 

conditions identiques. Il est bien établi que les propriétés de la structure composite 

dépendent des matières premières et du procédé de fabrication car les interactions 

entre la matrice et le renfort ont une nature très complexe. Les variabilités au sein 

des matériaux composites sont souvent regardées comme des défauts, mais elles 

sont en réalité le résultat de l’interaction d’un nombre non déterminé de 

paramètres. 

 

Chapitre 2 : Vers une modélisation de la variabilité répartie sur une structure 

CFRP 

Le chapitre 2 explique le parti pris initial de ce travail. Il s’agit de la volonté 

d’inclure dans des modèles de calcul des variations locales de géométrie et de 

propriétés matériaux, tout en retenant comme idée principale que ces variations ne 

devaient pas être distribuées aléatoirement au sein de la structure composite, mais 

présenter des lois d’évolution spatiale qui soient en accord avec la réalité du 

matériau. Cette volonté d’injecter des lois d’évolution spatiale contrôlées constitue 

le fil conducteur des analyses, identifications et modélisation au cœur de ce 

travail. De plus, l’objectif affiché n’est pas de recréer à l’identique une unique 

pièce composite en « injectant » des lois d’évolution figées. Il s’agit de proposer 

une stratégie de modélisation qui respecte la réalité du matériau tout en contenant 

des grandeurs déterminées aléatoirement afin d’être capable de mener des études 

variabilistes. On souhaite ainsi restituer le fait que deux pièces a priori semblables 

ne se ressemblent pas tout à fait. Ainsi pour chaque paramètre étudié, il est 

proposé une loi mathématique retranscrivant de façon représentative ces 

variations, et à laquelle on adjoint une étude probabiliste effectuée sur les 

paramètres pilotant ces lois. 
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Chapitre 3 : Etude des variabilités sur une structure CFRP polymérisée en 

autoclave 

Dans ce chapitre, la fabrication de plaques composites est décrite ainsi que 

les mesures de certaines propriétés qui sont prises à chaque étape du processus de 

fabrication. 

Le premier paramètre étudié est, suivant l’ordre chronologique de fabrication 

de la structure composite, les variations de masse surfacique du pli de 

préimprégné. Une procédure, inspirée d’approches normatives, est proposée pour 

obtenir une mesure précise de cette grandeur, notamment via la numérisation de 

l’échantillon afin d’en déterminer l’étendue sans être influencée par les défauts 

géométriques des bords de l’échantillon. Une variabilité est identifiée sur cette 

grandeur avec un coefficient de variation de moins de 2 % au sein de chacun des 

lots de matériaux étudiés. Une forte variation de la masse surfacique  entre deux 

rouleaux différents est mise en évidence. Cependant, aucune corrélation  à ce 

stade n’a pu être identifiée entre la masse surfacique mesurée et la position de 

l’échantillon au sein du rouleau de pré-imprégné. De ce fait pour ce paramètre, 

aucune modélisation mathématique de son évolution spatiale n’a été effectuée. 

Une fois les structures composites polymérisées, les plaques ainsi créées ont 

été caractérisées au moyen d’une machine à mesurer tridimensionnelle. On met en 

évidence des variations conséquentes d’épaisseurs existant entre des plaques de 

différents lots de pré-imprégné pour un même matériau et une même 

stratification. Ces différences ont un lien probable avec le flot de résine se 

produisant au cours de la polymérisation, lui-même étant directement impacté par 

le choix et la place des produits d’environnement utilisés. De plus, les mesures 

démontrent que si l’ensemble des plaques ne possède pas une épaisseur constante, 

elles  présentent une épaisseur maximale en leur centre. Une modélisation 

mathématique de l’évolution spatiale globale de l’épaisseur de la plaque est 

proposée comme la somme d’une valeur moyenne et de la valeur d’une sinusoïde 

de longueur d’onde de l’ordre de la longueur de la plaque avec un déphasage de 

manière à présenter un maximum au centre de la plaque. L’amplitude des écarts 
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d’épaisseur entre le centre et les bords d’une plaque est estimée dans cette étude 

comme supérieure à la valeur de l’épaisseur d’un pli. Il s’agit donc d’un facteur 

majeur d’écart des propriétés mécaniques entre une représentation 

géométriquement parfaite de la pièce et la réalité. 

Des analyses physico-chimiques sont réalisées sur des échantillons découpés 

au sein des plaques ainsi polymérisées. De par la nature de ces analyses, ces 

mesures n’ont pu être faites qu’à l’échelle de la plaque, et non du pli. L’objectif de 

ces analyses est de relier l’évolution des propriétés volumiques matériau avec les 

épaisseurs. Il est montré que le taux de porosité semble augmenter avec 

l’épaisseur de la plaque, malgré une importante dispersion des résultats. En 

partant de cette constatation, une loi d’évolution de la porosité en fonction de 

l’épaisseur est proposée. Cette loi contient un paramètre qui suit une évolution 

linéaire directement liée à l’épaisseur de la plaque, mais elle est bornée de manière 

à obtenir une porosité nulle en dessous d’un seuil identifié par les mesures. A ce 

paramètre dépendant uniquement de l’épaisseur, on ajoute un terme déterminé 

par un tirage aléatoire basé sur les dispersions identifiées grâce aux mesures 

expérimentales. 

 

Chapitre 4 : Détermination et modélisation des désalignements de fibres dans le 

plan apparus pendant le drapage manuel d’un stratifié CFRP 

Dans ce chapitre, le paramètre étudié est l’orientation des fibres de chacun 

des plis. Un système optique est utilisé pour obtenir une image numérique de 

l’ensemble pli juste après son drapage et avant le drapage du pli suivant. Une 

analyse des photographies permet de remonter, via l’analyse d’images, aux 

orientations des mèches de fibres. Ainsi un écart ou une erreur d’orientation 

moyenne de chaque pli est aisément obtenue. La valeur de cet écart d’orientation 

semble faible, moins de 2° au maximum, et plus dépendante de l’habilité et de la 

fatigue de l’opérateur que de la valeur de l’orientation du pli. Une procédure est 

mise en place pour remonter à un champ d’orientations des mèches au sein du pli. 

De par la qualité des images et la résolution de l’appareil de mesure comparée à la 
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largeur de la pièce fabriquée, la procédure ne permet pas de remonter à des 

désorientations sur une zone de petite taille. Malgré cela, la procédure est 

suffisante pour identifier des évolutions locales d’orientation des mèches de fibres. 

L’analyse de ces évolutions démontre que toutes les fibres d’un pli ne présentent 

pas une orientation identique, mais que des zones de plusieurs cm² présentent des 

écarts par rapport à une valeur moyenne. Ces zones peuvent être par exemple le 

résultat de la manipulation du pli non polymérisé par l’opérateur. Cependant, on 

relève que ces zones, dont l’amplitude maximale ne dépasse pas 1°, ne présentent 

pas de régularité quant à leur position au sein du pli, ni de dépendance suivant 

l’orientation théorique du pli. 

Suite à ces constatations, les lois mathématiques d’évolution de l’orientation 

à travers un pli proposées contiennent un écart moyen une ondulation 

systématique dont la valeur est issue de la littérature de travaux anglo-saxons 

(mais qui n’est pas identifiée dans ces travaux parce que correspondant à des 

zones trop petites pour être atteignables par la stratégie de mesure), et enfin une 

somme de perturbations locales correspondant aux écarts identifiés par rapport à 

la valeur moyenne. Ces perturbations sont modélisées comme des surfaces 

gaussiennes, et une analyse probabiliste est faite sur l’amplitude et l’étendue de 

ces surfaces gaussiennes pour en définir des bornes qui soient basées sur la 

physique du matériau. Il est démontré qu’une somme d’une douzaine de surfaces 

gaussiennes est suffisante pour représenter fidèlement les évolutions d’orientation 

au sein de plis de 600 x 300 mm dans le plan. Pour l’exploitation numérique de ces 

résultats, on fera l’hypothèse que le placement des fibres n’est pas affecté par la 

polymérisation de la pièce. 

 

Chapitre 5 : Evolution spatiale de la variabilité de l’épaisseur de pli répartie sur 

une structure CFRP 

D’une part, l’étude des variations d’épaisseur des plis dans une section 

montre que les valeurs pour un même pli peuvent varier, le long de quelques 

millimètres dans le plan, d’une valeur supérieure à 30 % de sa valeur moyenne. 
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D’autre part, les variations d’épaisseur des plis dans une direction donnée 

semblent présenter des régularités, avec notamment l’existence de longueurs 

d’onde privilégiées. Cette constatation est confortée par une analyse fréquentielle 

sur les variations d’épaisseur dans une direction de plaque donnée. Elle démontre 

que les ondulations de chaque pli pris indépendamment peuvent être décrites 

sous la forme de sommes de sinusoïde, et peuvent être retranscrites fidèlement 

avec moins d’une dizaine de sinusoïdes. Cependant, la comparaison des résultats 

entre les différents plis d’une même section reste difficile à effectuer. Si certaines 

plages de longueurs d’onde semblent présentes dans tous les plis, d’autres ne le 

sont pas de façon systématique. De plus, aucun lien n’a pu être démontré pour 

l’instant entre les amplitudes, les longueurs d’onde de ces variations et 

l’orientation des plis. Néanmoins, on peut retenir d’une manière générale pour 

l’ensemble des plis que leurs épaisseurs varient via des répétitions périodiques 

allant de 50 mm à moins d’un millimètre. 

Ces variations périodiques d’épaisseur peuvent être « injectées » dans les 

modèles de calcul, en identifiant les lois mathématiques d’évolution spatiale, 

basées sur les résultats d’analyse fréquentielle. Ces lois mathématiques reposent 

sur la somme de fonctions sinusoïdales, dans lesquelles les amplitudes et 

longueurs d’onde sont tirées de manière aléatoire, tout en étant bornées dans des 

espaces de recherche basés sur les résultats des grandeurs expérimentales. Les 

déphasages des fonctions sinusoïdales sont également soumis à un tirage 

aléatoire, mais avec un contrôle permettant d’assurer le couplage entre les 

variations d’épaisseur de chaque pli et de la plaque. 

 

Chapitre 6 : Proposition d’un modèle éléments finis avec prise en compte des 

variabilités locales avec gradient contrôlé 

L’ensemble des modélisations mathématiques, proposées pour la 

représentation de l’évolution spatiale au sein d’une pièce respectivement de 

l’épaisseur des plis, de l’épaisseur de la pièce, du taux de porosité et de 

l’orientation réelle des plis, est utilisé pour la création de modèle par Eléments 
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Finis prenant en compte des variations locales de propriétés. La modélisation 

proposée est basée sur une modélisation en éléments coques 2D, de manière à être 

capable de mener un grand nombre de simulations en changeant les paramètres 

variables au sein des modélisations mathématiques proposées. Dans cette 

proposition de modèle, les valeurs des paramètres matériaux et géométriques 

changent non seulement d’une maille à l’autre, mais également pour une même 

maille, entre chacun des 16 plis constituant l’élément coque composite. 

Le premier paramètre déterminé l’est, pour chaque maille et en utilisant les 

formulations identifiées par les mesures (l’épaisseur de chaque pli) pour lequel on 

tient compte non seulement de ses variations propres mais également de 

l’évolution de l’épaisseur de la plaque. Ensuite, le taux de porosité par pli et par 

maille est déterminé en fonction de l’épaisseur du pli et d’un tirage aléatoire. En 

utilisant une hypothèse de volume constant de fibres, le taux de porosité et 

l’épaisseur du pli sont utilisés pour calculer les taux volumiques de fibres et 

matrice, et ainsi les propriétés mécaniques du pli orthotrope dans le repère lié à la 

direction des fibres. Enfin, l’orientation des fibres est déterminée et « injectée » 

dans le modèle comme un paramètre indépendant. 

L’utilisabilité de ce type de modélisation fine des variations locales des 

propriétés géométriques et matériaux d’un composite est illustrée par trois cas. 

Dans un premier temps, le modèle ainsi créé est confronté à des résultats 

expérimentaux et une analyse numérique faisant varier toutes les grandeurs de 

manière homogène dans le cas d’un essai de flexion 4 points, sur un échantillon de 

taille plus réduite que la pièce finale. L’étude démontre que la modélisation 

proposée permet d’obtenir des variations de propriétés en flexion qui sont 

cohérentes avec les variations identifiées via le dispositif expérimental, malgré un 

écart moyen qui est probablement dû plus à la stratégie de modélisation 

numérique plus qu’à la stratégie de prise en compte des variabilités. Afin de 

démontrer la faisabilité de cette stratégie d’introduction des variabilités dans des 

cas de structures de plus grandes dimensions, un calcul de déformations 

résiduelles dues aux contraintes internes de cuisson est effectué, sur une structure 
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de 600 x 300 mm. Ces calculs démontrent qu’à cette échelle, il apparaît, 

uniquement, du fait des variabilités identifiées, des variations de déformations 

non négligeables au sein d’une même pièce (de l’ordre de 10-4). Enfin, la stratégie 

est utilisée pour l’analyse d’un essai multi-axial pour un trajet de chargement 

complexe sur un évaluateur technologique. Elle requiert une simulation non 

linéaire géométrique car on se place dans le cas du flambage d’une structure 

composite sous une sollicitation de compression/flexion. Les premières 

applications de la stratégie font en particulier apparaître des dissymétries et 

hétérogénéités du champ des déformations liées aux variabilités, et pourraient 

ainsi permettre de mieux comprendre les résultats expérimentaux quand des 

couplages responsables  de voilement ou de gauchissement des pièces se mettent 

en place au sortir de la polymérisation. 

 

Conclusions 

L’ensemble des travaux de ce document prétend d’une part illustrer 

l’existence des variabilités dans les structures composites, phénomène connu de 

tous mais souvent non considéré dans la phase de conception. De plus, on propose 

une démarche de prise en compte numérique de ces variabilités, basée de façon 

prioritaire sur l’observation du matériau. Si dans ce document, n’est présenté 

uniquement que le cas d’une plaque plane et théoriquement homogène, il sert à 

démontrer la faisabilité de l’approche et des modèles associés. Il serait nécessaire 

d’explorer à terme des géométries et matériaux différents, et notamment toutes les  

zones proches des zones singulières, dont on sait qu’elles sont sources de fortes 

variabilités. De la même manière, si une seule stratification et un seul matériau ont 

été utilisés durant cette étude, la démarche proposée se veut applicable à un grand 

nombre de cas, mais nécessitera pour chaque application une mesure des 

différentes grandeurs sur des pièces témoins si possibles représentatives des 

structures finales, afin d’identifier les grandeurs caractéristiques des lois 

mathématiques proposées, voire proposer de nouvelles lois mathématiques de 

variations adaptées aux cas traités. 



 
Résumé des travaux en français 

- xi - 

 



 

- xii - 

Table of contents 

 

 

Remerciements i 

Résumé des travaux en français iii 

Table of contents xii 
List of figures xiv 
List of tables xviii 

General introduction 1 

Chapter 1: Literature review 5 
1.1 Introduction 5 
1.2 Definition of variability 5 
1.3 Variability calculation of the composite materials 8 

1.3.1 Introduction to a stochastic design of composite materials 8 
1.3.2 Reliability based methods 10 
1.3.3 Optimisation methods 13 
1.3.4 Stochastic finite element methods 15 

1.4 Identification and quantification of the variability during the manufacturing of composite 
structures 16 

1.4.1 Interdependencies of the sources of variability of composite materials 16 
1.4.2 Sources of variability in uncured unidirectional prepreg systems 18 
1.4.3 Fibre misalignments 19 
1.4.4 Ply thickness 21 
1.4.5 Composite properties affected during autoclave curing 21 
1.4.6 Variability attributed to an inclusion of a structural feature 24 

1.5 Conclusions 27 
1.6 References 28 

Chapter 2: Towards the modelling of the variability spread over a CFRP 
structure 35 

2.1 Problem statement 35 
2.2 Proposal of a finite element analysis framework to take into account the variability of the 

composite material 36 
2.3 Inclusion of variability in finite element analysis of composite structures 36 

2.3.1 Description of the modelling proposal 36 
2.3.2 Obtaining the material properties from the geometrical variations 40 
2.3.3 Value-added of the proposed methodology for the design and analysis of composite 

structures 41 
2.4 Measurements of variability in a composite structure cured in autoclave 43 

2.4.1 Choices for the identification and quantification of sources of variability in a CFRP 
structure 43 

2.4.2 Challenges in the multi-scale characterisation of the variability in composite structures
 43 

2.5 Overall description of the methodology 46 
2.6 References 48 



 
Table of contents 

- xiii - 

Chapter 3: Variability in a CFRP part cured in autoclave 51 
3.1 Material and process 51 
3.2 Determination of the mass per unit area of the UD prepreg 53 

3.2.1 Measurement protocol 53 
3.2.2 Sampling 57 
3.2.3 Results 58 

3.3 General description of the polymerization cycle for the M10.1/CHS 63 
3.4 Impact of the configuration of vacuum bagging on the thickness of the plates 67 

3.4.1 Vacuum bagging sequence 67 
3.4.2 Resin flow 70 

3.5 Measure of the thickness of plates 71 
3.6 Volume fractions of the cured plate 76 
3.7 Conclusions 80 
3.8 References 82 

Chapter 4: Determination and modelling of the in-plane local misalignments 
during a manual lay-up procedure of a CFRP laminate 83 

4.1 Introduction 83 
4.2 Optical analysis and image treatment 86 

4.2.1 Experimental setup and image treatment description 86 
4.2.2 Precision of the measurement and selection of the size and number of elements 90 

4.3 Materials and methods 96 
4.4 Results analysis of the optical measurements 98 

4.4.1 Overall ply misalignment 98 
4.4.2 Local misalignments 99 

4.5 Modelling the fibre misalignments 102 
4.5.1 General description of the mathematical model 102 
4.5.2 Data set analysis for the continuous misalignment 103 

4.6 Generation of a digital misalignment 108 
4.7 Conclusions 112 
4.8 References 113 

Chapter 5: Spatial evolution of the variability of ply thickness over a CFRP 
laminated structure 115 

5.1 Introduction 115 
5.2 Materials 117 
5.3 Variability of ply thicknesses 118 

5.3.1 Variation in the mean ply thickness 118 
5.3.2 Evolution of the ply thickness profile 120 

5.4 Modelling the ply thicknesses profile for use in a FE model 123 
5.4.1 Formulation of the mathematical law of the thickness profile 123 
5.4.2 Determination of the representative frequency peaks 125 

5.5 Generation of a digital stratification 130 
5.5.1 Digital profile 130 
5.5.2 FE model of the residual strains of a composite plate with variable thicknesses 135 

5.6 Conclusions 136 
5.7 References 138 

Chapter 6: Proposition of a finite element model for the introduction of local 
variabilities with controlled gradient 141 

6.1 Introduction 141 
6.2 Description of the characteristics of the finite element model 142 
6.3 Four-point bending test 148 

6.3.1 Introduction and experimental results 148 
6.3.2 Analytical simulations in bending 153 



 
 

- xiv - 

6.3.3 FE model of the four points bending test 156 
6.4 Residual strains of a cured plate subject to cooling 160 
6.5 Technological evaluator under flexion-compression loading 164 

6.5.1 Presentation of the ‘toolbox’: Multi-instrumented Technological Evaluator 164 
6.5.2 FE model of the technological evaluator under a flexion-compression loading case 168 

6.6 Conclusions 171 
6.7 References 174 

General conclusions and future work 177 
Future work 184 

 

List of figures 

Figure 1. Micrograph showing the ply thickness variations spread over a layered composite plate. 2 

Figure 1-1. Uncertainty modelling and propagation in Class A2 approach [9]. 9 

Figure 1-2. Schematic representation of FORM/SORM approximations [16]. 11 

Figure 1-3. Probability distributions of the ineffective length for various combinations of random 
variables [27]. 14 

Figure 1-4. Schematic representation of interdependencies in composites manufacturing [34]. 18 

Figure 1-5. On the left hand side the shear slip representation resulting in the formation of an 
S-shaped wrinkle and on the right hand side the of 0° plies showing severe out-of-plane 
misalignment in a micrograph of a ([90/45/0/-45]3)S stratification with intermediate 
debulks, showing an in-plane misalignment of greater than 20° in three of the six 0° plies in 
the vicinity of the S-shaped wrinkle [49]. 21 

Figure 1-6. Diagram showing the origin of residual stress and shape distortions in CFRP composite 
processing [62]. 23 

Figure 1-7. Soft-patch detail at base of repair, curvature in end of scarf cavity probably caused by 
hand machining error [72]. 26 

Figure 1-8. Moulded patch, detail of outer edge of repair [72]. 26 

Figure 2-1. Map of a randomly distributed normalised Young's modulus over a composite lamina 
with a mean of 1 (MPa/MPa) and standard deviation of 0.1. 37 

Figure 2-2. Map of the distribution of the normalised Young's modulus spread over a composite 
lamina with a known distribution where the mean NEx still equal to 1 with a standard 
deviation of 0.1. 38 

Figure 2-3. Map of the distribution of the Young's modulus spread over a composite lamina with a 
known distribution with random phase shifts. 39 

Figure 2-4. Schema generation and assignment of elastic properties in the F.E. model, element per 
element and ply per ply. 41 

Figure 2-5. Challenges in the determination of the volume fractions of the constituent material at 
local scale (ply scale) and global (specimen) scale. 45 

Figure 3-1. Typical cure cycle for a thick plate manufactured in M10.1/38%/UD300/CHS. 53 

Figure 3-2. Prepreg M10.1/38%/UD300/CHS (view from below). 54 

Figure 3-3. Determination of ply areas in protection scan of the image with, (a) the raw image after 
the scan, (b) correcting the brightness and contrast, (c) binary image and (d) removal of black 
pixels and smoothing the edges. 56 



 
Table of contents 

- xv - 

Figure 3-4. Mass per unit area compared to the area of the ply of samples E and R1. 60 

Figure 3-5. Average of the mass per unit area for each specimen with ± 1 standard deviation. 61 

Figure 3-6. Picture of the composite plates prior to introduction into the autoclave. 63 

Figure 3-7. Diagram indicating the placement of thermocouples TC-1, TC-2 and TC-3 in the 
composite plates. 64 

Figure 3-8. Actual cycle of temperature for autoclave batches A, B and C. 65 

Figure 3-9. Difference between the temperatures measured by thermocouples TC-1 and TC-2 to 
autoclave batch A and B. 66 

Figure 3-10. Temperature difference between TC-2 and TC-3 thermocouples for autoclave batch B.
 66 

Figure 3-11. Schematic of vacuum bagging for the autoclave polymerization. 68 

Figure 3-12. The batch “A” plates after being taken out from the autoclave and the excess flow of 
resin impregnated the breather mat. 69 

Figure 3-13. Positioning and clamping of a plate in the coordinate-measuring machine (CMM). 71 

Figure 3-14. Schematic drawing of the profile of composite plates with, (a) with mosite and 
(b) without mosite. 72 

Figure 3-15. Reference system for the coordinate-measuring machine (CMM). 73 

Figure 3-16. Thickness map of the A-2 plate. 74 

Figure 3-17. Thickness map of the plate B-2. 74 

Figure 3-18. Plate thickness generated using eq. 3-7. 75 

Figure 3-19. Evolution of the volume fraction of the porosity through the plate thickness. 77 

Figure 3-20. Evolution of the fibre mass per unit area ρAf with the ply thickness 78 

Figure 3-21. Change of the volume fractions of the fibre with respect the plate thickness. 79 

Figure 3-22. Change of the volume fractions of the resin respect the plate thickness. 79 

Figure 4-1. DSLR Camera mounting on an adapted ceiling panel. 87 

Figure 4-2. Working area (reference grid). 87 

Figure 4-3. Fibre orientation measurement in a composite prepreg with, a) laid ply onto the work 
zone, b) detail of an element image, c) the image after the application of the LOG filter and 
convolution masks, d) edge detection and e) Hugh lines along the fibre direction. 89 

Figure 4-4. Precision test on the orientation method by Hough lines comparing the theoretical 
value (written top) to the measured value (written between parentheses), each quadrant 
representing a different mean value with, (top) the 0° orientation and (bottom) the 45° 
orientation. 91 

Figure 4-5. Maximum resolution of the determined angle for a single Hough line according to the 
maximum length of the image. 92 

Figure 4-6. Mean number of Hough lines per elements (error bars for ±1 SD from the mean value) 
and its length in function of the number of elements with, (top) a ply oriented at 0° and 
(bottom) a ply oriented at -45°. 93 

Figure 4-7. Mean ply orientation in function the number of elements (error bars for a ±1 SD from 
the mean value) with, (top) a ply oriented at 0° and (bottom) a ply oriented at -45°. 95 

Figure 4-8. Difference between the theoretical orientation and the measured orientation in the ply.
 98 



 
 

- xvi - 

Figure 4-9. Orientation maps of 4 different plies from plate C-11 oriented, from top to bottom 0°, 
+45°, -45° and 90° respectively. 101 

Figure 4-10. Schematic description by a pseudo-Gaussian surface (on right) of a localized zone of 
fibre orientation perturbation (on left). 103 

Figure 4-11. Comparison of the misalignment maps for the plate C-11 ply #15 oriented at -45° with, 
(top) the measurements and (bottom) the ply reconstructed using the identification 
algorithm. 105 

Figure 4-12. Cumulative distribution function of the Amplitude Bi acquired by the optimisation 
algorithm. 107 

Figure 4-13. Cumulative distribution functions for the reconstructed misalignment using equation 
5-2 (square markings) compared to experimental data (diamond markings) with, (top) the 
mean misalignment and (bottom) the standard deviation of the in-ply misalignment. 109 

Figure 4-14. Cumulative distribution functions for the reconstructed misalignment using equation 
5-2 (square markings), corrected for a zero mean (cross markings) compared to experimental 
data (diamond markings) with (top) the maximum values and (bottom) the minimum 
values. 110 

Figure 4-15. Localisation and amplitude of the 12 perturbation peaks used to generate digital 
in-plane misalignments, the diameter of the circles indicating the values of the amplitudes Bi 
in degrees. 111 

Figure 4-16. Map of the generated in-plane fibre misalignment with the size of the element of 
30 x 30 mm. 111 

Figure 5-1. Micrograph showing the ply thickness variations spread over a layered composite plate.
 115 

Figure 5-2. Mean ply thicknesses listed for each of the 16 plies ± 1 standard deviation, the measured 
thickness divided by 2 for the pair of plies 4/5, 8/9 and 12/13. 119 

Figure 5-3. Profiles for the #2 and #3 interfaces delimiting the #2 ply, the crosses showing the 
selection points along the ply interface, while the continuous lines showing the interpolated 
interfaces. 121 

Figure 5-4. Thickness profile for the #2 ply and the least squares linear fit (dashed line) and the 
mean thickness fit (dashed horizontal line). 122 

Figure 5-5. Profile of the plate thickness. 123 

Figure 5-6. Zero mean thickness profile of the #2 ply before and after the application of a low pass 
filter with a cut-off frequency of 1 Hz. 126 

Figure 5-7. Amplitude spectrum of the thickness profile of #2 ply with selected frequency peaks.
 127 

Figure 5-8. Distribution of the number of peaks per ply (top) and amplitude distribution in 
function of the frequency peaks (bottom) with the double plies 4/5, 8/9 and 12/13 
considered as single plies. 128 

Figure 5-9. Digital profile generated by the model with equation 1 compared to the real profile of 
#2 ply. 131 

Figure 5-10. Comparison of the CV between the real plies (diamond markings) and the generated 
profiles (circle markings). 132 

Figure 5-11. Representation of the cross section of the 16 ply stratification (plies 4/5, 8/9 and 12/13 
shown as independent plies) with, a) reconstruction from the actual ply thickness profiles 
(after filtering), b) constant ply thickness accounting the contribution of the plate thickness 
variation in each ply and c) digital stratification generated by the proposed model. 134 



 
Table of contents 

- xvii - 

Figure 5-12. Strain field of the upper skin of a 16-ply composite plate subject to a thermal of -120 °C 
simulating the cooling process of a composite (on the left hand side) with constant thickness 
and (on the right hand side) with variable ply thickness. 136 

Figure 6-1. Map of the generated ply thickness in a ply of 200 x 100 mm dimensions. 145 

Figure 6-2. Theoretical example of the reinforcement misalignment in a +45° 200 x 100 mm ply. 147 

Figure 6-3. Theoretical example of a map of the Young’s modulus Ex distribution in a 200 x 100 mm 
ply oriented at +45°. 148 

Figure 6-4. Schema of the 4-point bending test with front view (top) and top view (bottom). 149 

Figure 6-5. Load as function of the displacement in a 4-point bending test. 151 

Figure 6-6. Flexural break load Pf of the tested specimens. 152 

Figure 6-7. Composite failure in a 4 points bending test with (on the left hand side) the expected 
failure of the 0° oriented plies under compression, and (on the right hand side) delamination 
of the mid plane. 153 

Figure 6-8. Flexural modulus Efx of the tested specimens. 153 

Figure 6-9. Distribution of the flexural modulus Efx for a 16-ply laminate for a mean ply thickness 
of 0.302 mm and standard deviation of 0.014 mm with (a) the plate thickness with the values 
x 16 (case 2); (b) each ply thickness different (case 3); (c) the ply thickness constant with ply 
misalignments (case 4) and (d) both the ply thicknesses and misalignments variables (case 5).
 155 

Figure 6-10. Strain field of the upper skin along the x-axis εx in a 4-point bending test for 
Δsa = 3 mm (nose displacement). 157 

Figure 6-11. Cumulative distributions for the flexural modulus of the 4-point bending test FE 
model for the deterministic case (dashed line), constant material properties (square 
markings) and material properties varying according to the local ply thickness (triangle 
markings). 159 

Figure 6-12. Comparison of the normalised flexural moduli as function of the plate thickness for 3 
cases with constant thickness with ply thickness divided by 16 (cross markings), all 
parameters variable (triangle markings) and experimental (square markings). 160 

Figure 6-13. Thickness variation of the composite plate. 161 

Figure 6-14. Thickness variation of ply #7. 162 

Figure 6-15. Variation of the fibre misalignment in a ply (ply #4) with a theoretical orientation (at 
+45°). 162 

Figure 6-16. Nodal displacements w along the z-axis. 163 

Figure 6-17. Strain field along the x-axis εxx for the upper skin ply#16 (top) and the lower skin ply 
#1 (bottom). 164 

Figure 6-18. Side view of the multi-axial testing machine. 165 

Figure 6-19. Different loading scenarios possible with the actual configuration of the multi-axial 
testing machine. 166 

Figure 6-20. Composite evaluator to be tested in the multi-axial testing machine. 167 

Figure 6-21. Boundary conditions in displacements imposed to the composite evaluator by mobile 
clamp. 167 

Figure 6-22. Composite evaluator during the testing, (right hand side) deformation of the plate in 
bucking moments before failure, (left hand side) failure of the composite, fracture of the 
outermost 0° ply subjected to compression near the clamp area. 168 



 
 

- xviii - 

Figure 6-23. Numerical representation by composite shell elements of the composite evaluator 
tested in a flexion-compression test. 169 

Figure 6-24. Strain field along the x-axis εx for the lower skin of a technological evaluator in a 
flexion-compression test with a homogenous material. 170 

Figure 6-25. Strain field along the x-axis εx for the lower skin of a technological evaluator in a 
flexion-compression test with material variabilities. 170 

 

List of tables 

Table 3-1. Nominal properties of the prepreg s UD M10.1/CHS and M21/T700GC. 51 

Table 3-2. Types, forms and formulas used for calculating the area. 55 

Table 3-3. Identification of groups for the determination of the mass per unit area. 58 

Table 3-4. Mass per unit area obtained with method 1. 59 

Table 3-5. Mass per unit area of material lot L-1 obtained with method 2 samples. 59 

Table 3-6. Summary of samples for comparison between the values of the MS for R1 and R2. 61 

Table 3-7. Comparison between theoretical mass and the actual mass of the plates. 62 

Table 3-8. Weighing composite plates before and after curing. 70 

Table 3-9. Measurement of thickness of composite plates. 73 

Table 5-1. Thickness comparison between the ply and the plate averages. 119 

Table 5-2. Parameters of the distribution for the Frequency (uniform) and Amplitude (normal) 
associated with the probability of appearance of the ith peak within a frequency band. 130 

Table 5-3. Frequencies and amplitudes of the thickness evolution for the digital stratification. 131 

Table 6-1. Homogenized elastic constants necessary for the composite shell element according to 
the SAMCEF® software syntax. 143 

Table 6-2. Mechanical properties of the CHS reinforcement and M10.1 resin. 143 

Table 6-3. Measurements and calculations coming from the 4-point bending test. 152 

Table 6-4. Statistical values of the plate thickness and flexural modulus Efx. 155 

Table 6-5. Elastic quantities for the principal directions 1 and 2 calculated for the median ply 
thickness of 0.300 mm. 156 

Table 6-6. FE model results for a digital 4-point bending test with constant plate thickness. 158 

 

 

 

 

 

 



 
Table of contents 

- xix - 

 

 

 

 

 

 





 

- 1 - 

General introduction 

 

 

 

 

The employment of composite structures in transport and civil applications 

has shown an exponential growth during the last decade. Today, the aeronautical 

industry relies heavily on the use of these advanced materials to decrease the 

structural weight and maintenance costs associated to corrosion and fatigue. 

However, polymer matrix composite materials present a higher variability of their 

mechanical properties compared to the classic engineering materials, such as 

metals. The origins of the material variability can be traced from the elementary 

material variability, the manufacturing conditions and chosen geometries of the 

composite structure, thus the notion of variability cannot be dissociated from the 

finished product. From the point of view of a finite element model, the input 

parameters that modify the structural behaviour include, but are not limited to the 

volume fractions of the fibres, resin, and porosity; the fibre orientation, both in-

plane and out-of-plane, characteristics of the type of material of the reinforcement 

and resin system employed, etc. In fact, the list of parameters and its couplings at 

the different material scales can be considered infinite, adding an unknown 

complexity to the composite solution. A first step to address the problem is 

through the geometric description of the composite structure at the mesoscopic 

and structural scales. This geometric description is driven by the evolution of the 

thicknesses of the plies and the structure itself. 

For design purposes, the structure thickness is given by the sum of the ply 

thicknesses that form the laminate, or alternatively the thicknesses of the plies are 

obtained by dividing the total structure thickness by the number of plies of the 

given stratification. The thickness of the structure is thus considered as constant 

and equal for all plies, provided that there is not change of the geometry of the 
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cross section and stratification. In reality, each ply in the stratification does not 

present a constant thickness (cf. Figure 1).  

 

 
Figure 1. Micrograph showing the ply thickness variations spread over a layered 

composite plate. 

 

The main goal of our approach is to propose a finite element model that 

takes account of the geometric and material variability present in a composite 

structure. This model is based on the assumption that the property variation 

shows a continuous evolution through the composite dimensions that cannot be 

reproduced by only randomly assigning a set property to each element of the 

model. 

This dissertation is composed by six chapters. 

The Chapter 1 is dedicated to a literature review where the variability 

parameters are shown to be tightly linked to the manufacturing process of the 

composite plate, as well as the raw materials. 

In Chapter 2, an overall solution for the variability introduction into a FE 

model is proposed. 
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 In Chapter 3, the general process of fabrication and measurement of the 

sources of variability are described for a chosen composite plate, with a particular 

focus on the measurement of the following parameters. 

The mass per unit area of the composite prepreg is a parameter associated 

with the variability of volume fractions of the elementary constituents. The 

influence of resin flow during the polymerisation by weighing the plates before 

and after the cure cycle is considered. The plate thickness variation through the 

composite plate and the differences that are due to the sequence of the used 

vacuum products in different autoclave batches are taken into account. It deals 

with the determination of the volume fractions of the constituent materials of the 

cured plates.  

In Chapter 4, the reinforcement misalignments are quantified during the 

lay-up procedure of the prepreg plies. A more in-depth analysis on the evolution 

of the ply thickness variations and the fibre orientations, describing the methods 

to obtain the geometric properties and as well the mathematical laws for their 

modelling is described. In a first step, the difference between the actual orientation 

and theoretical orientation of the plies is obtained. Then by the implementation of 

an in-house program, the values of local misalignments are determined.  

In Chapter 5, the evolutions of both the ply and the plate thicknesses are 

quantified. Using images of the cross-section of the composite, the variations in 

the thicknesses are modelled. It is demonstrated that the profile of the ply 

thickness exhibits a periodic variation. The amplitude spectrum, obtained by a 

discrete Fourier transform of the thickness profile, is then used to determine the 

representative pairs of frequencies and amplitudes. These representative peaks are 

used to model a digital ply that has variability of the same order of magnitude as 

the measured thickness profiles. 

 Finally, in Chapter 6 three cases of FE model are considered using the 

methodology proposed in Chapter 2 and the mathematical laws proposed in 

Chapters 3 through 5. 
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Chapter 1: Literature review 

 

 

 

 

1.1 Introduction 

Variability in composite materials is referred to the dispersion of the 

properties that these materials exhibit, and such are much more significant than 

for classic engineering materials, like the metals. The Military Handbook 17 [1] 

states that the variability of the composites property data may originate from 

different sources, like batch to batch variability in raw materials, variability in the 

fabrication process of the composite part, variability during the testing and the 

intrinsic variability of the material. However, in the literature, the definitions of 

variability and uncertainty are often used indifferently, as they are included 

within the boundaries of the lack of knowledge of the system [2]. 

 

1.2 Definition of variability 

Thunnisen [3] made a recompilation of different definitions of uncertainty 

grouped by areas of knowledge. In this recompilation, he states that there is no 

agreement in the different terms that are understood under the term uncertainty, 

the variability being one of these definitions. Likewise, he found that different 

areas of knowledge assign a different classification and term definitions for the 

same words. For the mechanical engineering domain, one of the most suitable 

taxonomy of the systems uncertainty is offered by Oberkampf [4], in which the 

variability is defined as the inherent variation associated to the physical system 

under consideration. Meanwhile, the uncertainty is the potential deficiency in any 
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phase or activity of the modelling process due to a lack of knowledge or 

incomplete information. Finally, an error is a recognisable deficiency in any phase 

or activity that is not due to the lack of knowledge. As can be seen, it is extremely 

difficult to draw the line between each definition, especially when dealing with 

multilevel systems with complex interactions such as the composite materials. 

Therefore, the material variability can be defined as the dispersion of 

properties that are due to the spatial and consistency variations of the material 

itself, and due to variations in its processing. The components of the material 

variability can be the combination of fixed effects and random effects and as well 

as errors. The fixed effects are produced by the controlled variables which are a 

systematic shift in a measured quantity due a particular level change or a 

treatment or condition, which is often under the control of the experimenter. The 

random effects are produced by uncontrolled variables that produce a particular 

change in the measured properties. This random effect is never under the control 

of the experimenter. The shift in the measured quantities is viewed as a random 

variable with a zero mean and a non-zero variance. The errors are the part of the 

data that varies due to unknown or uncontrolled external factors that affect the 

observation independently and unpredictably. A random error is a special case of 

a random effect where the errors vary independently from measurement to 

measurement. To further classify the errors, they can be divided into 

acknowledged and unacknowledged errors. An acknowledged error is for 

example the approximations or assumptions to simplify the modelling of a 

physical process, meanwhile an unacknowledged error can be referred as a simple 

mistake [3]. Defect is another term that is usually found in the literature linked to 

experimental work. A defect can be defined as an involuntary split, or flaw, from 

the theoretical properties produced by a physical imperfection of the material or 

caused by an error during the composite part processing. 

In order to successfully design a composite structure, the reliability of the 

system must be demonstrated. This exercise consists in the evaluation of the 

probabilities for the various structural responses to satisfy the specified design 
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criteria and quantify the uncertainty ranges for each response. The scatter in the 

structural behaviour cannot be simulated by the traditional deterministic methods 

that use a safety factor to account for uncertain structural behaviour. A 

probabilistic method is thus needed to accurately determine the structural 

reliability of a composite structure [5, 6]. 

Effectively, the vast quantity of variabilities and the infinite possible effects 

make difficult the calculation and analysis of composite structures. There are 

multiple methods and approaches that can be used. The acknowledgement of 

variability is therefore limited to the fields of study and the expected results. This 

implies that there is no global framework to introduce the variability in composite 

structure design. 

The properties of composite materials are cure and process dependent. In 

most of the cases, the composite structures are the product of complex multi-step 

procedures, and with each step, additional variability is introduced [7]. One 

important point to take into consideration is that most of the work done to design 

a composite structures is based on the test pyramid [1]. Thus, the design 

properties of composite material are derived from small laboratory scale coupons. 

It has been thought that when increasing the size of the composite its strength 

decreases. This is based on the assumption that the probability of encountering a 

flaw large enough to initiate the structural failure increases with the size of the 

specimen. However, this is not necessarily true since the processing techniques to 

fabricate a test coupon are not the same as those used to fabricate as full scale 

structure [8]. 

As is often the case, there is a strong dichotomy on the calculation aspects of 

the composite structures and the compilation of data in a real composite structure. 

This literature review intends to cover, on one side, the general aspects on how the 

variabilities in composite materials are studied during the design and analysis 

phases, and on the other side the lack of actual properties of the composites 

materials. The first part of this review is dedicated to the analysis and design of 

composite structures; starting from the most used methods to the required data 
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that is introduced into the models. The second part of this review focuses on the 

sources of variability of the real composite material and the techniques used to 

measure the material properties. 

 

1.3 Variability calculation of the composite materials 

1.3.1 Introduction to a stochastic design of composite materials 

The analysis of composite materials is performed usually at three different 

scales of the material: at the level of the elementary materials (fibre and matrix), 

known also as micromechanical level; at level of the homogenised ply or 

meso-scale, and at the structural scale, also known as macromechanical scale. 

Sriramula and Chryssanthopoulos [9] considered a significant number of studies 

and classified them into these three major groups regarding the scale at which the 

material is observed. The class A is set at micromechanical level, and it is further 

divided into two subgroups: 

The class A1 deals with the analysis of the composite from the 

determination of the material properties by the use of the micromechanical 

structure of the composite. In this class, the identified probabilistic models for the 

random variables can be introduced into composite micro-mechanics theory, 

leading to effective property estimation at lamina level, which can be later 

combined with the laminate theory and finite element (FE) analysis [10]. 

The class A2 builds the micromechanical properties from the morphology 

of the composite microstructure by the use of sophisticated numerical modelling 

of microstructural randomness in conjunction with spatial variability modelling of 

the studied variables. These methods consider of a representative volume element 

(RVE) of the composite structure linked to an appropriate micro-mechanical 

model to evaluate the response behaviour (cf. Figure 1-1). An example of a class 

A2 methodology is given by Guillaumat and Dau [11,12] where, using a 

micrograph of a composite cross-section, a RVE of the composite is determined. 
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Then, by varying the diameter of the fibres and the elastic moduli of the fibres and 

matrix, as well as the Poisson’s ratio for each variable, the compliance matrix of 

the composite lamina is determined. To reduce the impact of uncertainties at this 

stage, a material database is stablished to show the admissible and non-admissible 

values for each property at any given scale [13]. 

 

 

Figure 1-1. Uncertainty modelling and propagation in Class A2 approach [9]. 

 

Class B problems are studied at a component level (composite beam or 

panel). In this case, the models are based on random variables based on 

experimental evidence and engineering judgment. Typically the probability 

distributions for random variables representing stiffness or strength properties are 

specified. Finally, the meso-scale modelling, or Class AB, which is an intermediate 

stage of modelling, is suggested when the ply characteristics significantly 

influence the composite properties. This class is also used to verify the 

propagation of uncertainties across the length scales. 
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The rational treatment of the great number of variables considered in a 

composite system can be achieved by means of probability theory and statistics, 

and cannot be addressed by the traditional deterministic approach. Stochastic 

methods provide a way to represent a wide range of structural loading and 

strength scenarios. A stochastic field is defined as: 

  xFxF  1)(  (1-1) 

 

where the stochastic response of a variable F(x) is described by the mean value of 

said variable F̅ and a zero mean stochastic field ξ(x). There are two major 

approaches to assess a composite structure through a stochastic framework: 

reliability based methods and stochastic finite element methods (SFEM). For both 

approaches, the Monte Carlo simulation (MCS) is the most used method to solve 

stochastic problems and serves as well as a benchmark to qualify the results 

obtained by other types of methods [14]. 

As an example of a stochastic method to analyse composite structures 

presenting variability, Venini [15] used the Rayleigh-Ritz method to study an 

out-of-plane vibration of a cantilever composite beam. In this problem, five 

zero-mean random fields are introduced at a macromechanical level (E1, E2, ν12, 

G12, and the material density ρ). The properties were modelled as homogeneous 

random fields to be averaged into random variables by means of the stochastic 

Rayleigh-Ritz method, where each random variable results from a spatial average 

over the whole domain of the structure and therefore is representative of the entire 

structural system. 

 

1.3.2 Reliability based methods 

The reliability is defined as the probability that the system performs its 

intended functions for a specific period of time under a given set of conditions. In 

other words, the reliability is the probability that unsatisfactory performance or 

failure will not occur. 
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The probability of failure Pf is: 

    
  


0

0
xG

Xf dxxfxGPP  (1-2) 

 

where fX(x) is the joint probability density function (PDF) of the random variables 

X, whose realisations are x, and G(x) ≤ 0 denotes the failure domain. The reliability 

index β is the shortest distance between the origin of the space and the failure 

domain in the normalised space (cf. Figure 1-2). 

 

Figure 1-2. Schematic representation of FORM/SORM approximations [16]. 

 

A first order reliability method (FORM) is used to approximate the 

boundary of the failure domain G(x) into a linear function, by means of a first 

order Taylor series approximation of G(x) in the vicinity of the design point to 

evaluate the β index. A second order reliability method approximates the failure 

domain using the second order derivatives of G(x). 

The strength of a fibre reinforced in a composite material can be adequately 

described by probabilistic methods. Soares [17] introduced the different 

probabilistic approaches to represent the strength of fibre reinforced composite 

materials and to assess the reliability of laminated components. Di Sciuva [14] 

compared the mechanical properties of a composite beam obtained by MCS and 

several algorithms. In this study, the deformation of a cantilever composite beam 
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is calculated using stochastic variables which are the moment of inertia J, the 

Young’s modulus E, the length of the beam L and the transverse load applied to 

the beam q. Using a convergence criterion pre-established, they determined both 

the maximum deflection of the beam and the reliability. It is evident that FORM 

algorithms offer quick convergence and low computational costs. 

A probabilistic approach can be used to construct the macroscopic 

properties of a composite plate from the constituent materials to obtain a 

stochastic response of the macroscopic properties. Shaw et al. [18] used 14 random 

properties of the elementary constituents of a composite plate obtained from the 

literature to determine the macroscopic properties of the studied plate. By using 

MCS the macroscopic properties of the composite plate were then obtained. The 

properties include the longitudinal and transversal moduli in the principal 

directions, E1 and E2, the shear modulus G12 and the Poisson’s ratio ν12, as well as 

the ultimate longitudinal and transversal stresses, XT and YT. The derived 

macromechanical properties were compared against three probability 

distributions to determine the most suitable distribution for each property using a 

Kolmogorov-Smirnov (K-S) goodness-of-fit test. The tested probabilistic laws were 

the Normal law, the 2-parameters Weibull distribution and the lognormal (L-N) 

distribution. The failure probability estimates were then calculated by a 

combination of MCS and FORM/SORM using the Tsai-Hill failure criterion. 

Although this study compares the macroscopic properties derived from the 

micromechanical analysis to the values obtained by experimental setups found in 

the literature, it does not takes into account neither the details of the used material 

system, other than being a carbon/epoxy, nor the fabrication process. In 

comparison, Lekou and Philippidis [19,20] created a material database obtained 

from the tensile test coupons. The E-glass/polyester coupons were fabricated by 

hand lay-up. Nine macroscopic properties were obtained by experimental means. 

Each property was compared against 6 probability laws using the K-S test and the 

Tsai-Hahn criterion is used as a limit state function. 
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The reliability methods are used also to obtain the sensitivity factors of 

certain variables and how they affect the global behaviour of the system. 

Antonio [21] used MCS in a global sensitivity analysis to determine the reliability 

of a composite plate. The parameters used to assess the reliability were the 

maximum displacement and the critical Tsai number covering four stochastic 

variables: the ply angle, the elastic strength, the lamina thickness and the loading 

of the composite. The study assesses the effect of each property at different ply 

angles, ranging from 0 to 90°. The material properties are obtained from the 

literature and the coefficients of variation of each property are assigned. 

 

1.3.3 Optimisation methods 

The variability of the composite material does not only impact the reliability 

of the structure, but also it must be taken into account in the optimisation phase of 

the composite structure.  

Walker [22] developed a technique for optimally designing fibre-reinforced 

symmetric laminated plates under buckling loads for minimum mass accounting 

for manufacturing uncertainties in the fibre layup orientation. The constraint 

implemented is a minimum buckling load carrying capacity constraint, and the 

objective is to determine the value of the fibre orientation that corresponds to a 

minimum plate thickness, with the uncertainty included. 

Correspondingly, the optimisation techniques can be coupled with 

reliability analysis. This is the case of cylinders subject to pressure. Boyer and 

Béakou [23,24] obtained the optimal winding angle which reduces the mass of the 

composite structure by maximising the distance between the operating point and 

the failure domain. The failure mode used in this study is the Tsai-Wu criterion. 

The mechanical properties of the composite are built from the micromechanics of 

the elementary materials, using 9 properties with values obtained from the 

literature. Bouhafs et al. [25,26] expanded on the study of pipes to the sensitivity 

analysis of the design parameters, within a macromechanical study. This time the 
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variable parameter was the thickness variation of the container. Khiat et al. [27] 

continued with the micromechanical level by studying the fibre arrangement and 

analysed the sensitivity against the failure criterion, that in this case is the 

ineffective length of the broken fibres. A sensitivity analysis is performed to see 

how the probability distribution of the behaviour response changes when adding 

the stochastic parameters. The mean response remains the same, but the tails of 

the distribution function are more spread, indicating a higher value of uncertainty 

(cf. Figure 1-3).  

 

 

Figure 1-3. Probability distributions of the ineffective length for various combinations 

of random variables [27]. 

 

Composite materials show a wide variety of failure mechanisms as a result 

of their complex structure and manufacturing process. The accuracy of the 

reliability analysis is critically dependent on the appropriate criterion for the study 

conditions. Moreover, the reliability methods can be used to provide a 

reliability-based calibration to define the safety factors in the composite 

structure [16]. 
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1.3.4 Stochastic finite element methods 

Previous works are oriented into obtaining an analytical solution to the 

reliability calculation of composite structures. Therefore, they have their 

limitations on the size and the shape of the structure to be analysed. The FE 

analysis is a powerful tool to study the behaviour of complex structural systems. A 

stochastic finite element modelling (SFEM) implies that the values at each element 

are stochastic in nature, leading to random properties [28]. Computer power has 

grown at an increasing pace during the last few years permitting the SFEM to 

resolve large scale problems.  

Mendoza-Jasso [29] studied the open hole off-axis test of a unidirectional 

IM7/8552 carbon epoxy composite. In this case, the macromechanical properties 

E1, E2, ν12 and G12 were treated as stochastic variables, with their values varying for 

the entire coupon. A local variability of the fibre volume fraction Vf is introduced 

in bands aligned with the fibre axis. Vf of 0.556 with 2 different standard 

deviations of 0.03 and 0.09 are evaluated. The value of standard deviation was 

obtained from experimental data. Their results show that the dispersion in the 

fibre volume fraction is one of the causes of the probabilistic distribution of the 

failure initiation location in the coupons tested experimentally. The SFEM analysis 

of complex structures can be coupled with a first-order reliability approach [30]. 

This approach is applicable to any limit-state criterion that is prescribed in terms 

of random variables. Measurements of reliability sensitivity with respect to any set 

of parameters can be easier computed than with MC Simulation. 

SFEM is a particularly powerful tool to assign at each element a different 

property, as shown by Spanos [31]. In this study that deals with single-walled 

carbon nano tubes, a methodology to assign a different element property to 

composite plate is introduced.  The most used method to deal with the response 

variability calculation is the Monte Carlo simulation [28]. The mechanical 

properties are derived from MCS of the volume fraction of the reinforcement at 

each element. The MCS is the easiest method since it does not require a 

reformulation of the deterministic formulation of the FE analysis in order to take 
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account the random field. Thus, the homogenised properties can be used to 

determine the local Young modulus and the local Poisson’s ratio. The volume 

fractions of the reinforcement were obtained from the micrographic observations. 

Thus, the values obtained are representative of the reality of the composite plate.  

Regardless of the type of analysis to be performed, whether analytical or 

SFEM, in the majority of cases, the statistical data used as model input assumes 

that the mechanical properties are independent from the manufacturing process. 

Indeed, many of the structural performance calculations are based on the data 

obtained from elementary coupons. When changing the scale and the size of the 

tested element, the mechanical properties do not correlate with the model 

prediction. This is often linked to the increased probability of finding a material 

defect that initiates the failure. However, as Sutherland [32] suggested, the 

conditions of manufacturing of test specimens having larger dimensions are 

different from those employed to produce elementary coupons. Thus, the scale of 

the composite, as well as the fabrication process, must be taken into account when 

building a material database in order to feed stochastic models. 

In order to better understand how the different sources of variability affect 

the composite structure, another literature survey is performed. This time, the 

focus is put on the actual manufacturing and how the measuring techniques affect 

the material properties. 

 

1.4 Identification and quantification of the variability 
during the manufacturing of composite structures 

1.4.1 Interdependencies of the sources of variability of composite 
materials 

As stated, composite materials are the product of multiple complex 

processing stages to form the composite structure. Each stage adds its own 

variables that affect the material in various forms. This makes the problem even 
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more complex, as a unique solution cannot be obtained. As important as it would 

seem, the study of variability englobing all the composite life cycle sources of 

variability, starting from the manufacturing process up to the completion of the 

final part is not a problem widely studied on the open literature. The research is 

more interested into knowing how a particular variable affects the composite 

structure for a particular set of manufacturing process and application. This is 

most probably due to the great number of variables that are involved during the 

processing of composite components.  

In a great effort to understand the sources of variability in composites 

processing in order to generate more robust design and manufacturing process, 

Potter [33] identified more than 60 sources of variability and more than 130 defect 

types. His work is centred on aeronautic structures manufactured by autoclave 

process and resin transfer moulding (RTM). This work covers the variability 

sources having origins in the composite prepregs, the shape of the structure, and 

the effects that are due to thermal stresses and strains resulting from the curing 

process. One of the most important points to be considered is that the defects in 

composite materials do not necessarily come from poorly controlled 

manufacturing processes, but mostly form the complex interactions between the 

structure geometry and the manufacturing process. 

For the autoclave process, which is still a key process in manufacturing 

composite components principally in the aeronautic industry, the uncertainties 

that affect the final characteristics of the composite part are dependent of the fibre, 

matrix and processing. The uncertainties due to reinforcement are the fibre 

architecture variations which are generated during production, handling or 

storage of prepregs, dry textiles and preforms. For the matrix, the uncertainties are 

caused by variations in storage conditions, and by the resin composition and 

formulations. Finally variations in environmental parameters and processing 

conditions also affect the properties of the final part. One of the difficulties to deal 

with the problem during the manufacturing process itself is the interdependencies 

in each stage of the process [34] (cf. Figure 1-4).  
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Figure 1-4. Schematic representation of interdependencies in composites 

manufacturing [34]. 

 

1.4.2 Sources of variability in uncured unidirectional prepreg 
systems 

The variability in composite materials can be traced from the prepreg that 

are used to generate the laminate that conform the structure. For unidirectional 

(UD) prepregs, they present variations in the mass per unit area. This property is 

directly linked to the density and thus the volume fractions of the elementary 

materials in the prepreg. A coefficient of variation (CV) of 1.04 % has been 

measured for an undisclosed aerospace grade prepreg system [35], with a mean 

value of 406.54 g m-2. In this study, samples taken from 14 different prepreg 

batches have been controlled by a standard acceptance test. The fibre content and 

the resin weight fraction have been also controlled. It is found that the mass per 

unit area of the controlled prepreg rolls has a mean value of 267.19 g m-2 with a 

CV of 0.74 %. The resin content of the system, evaluated as the resin weight 

fraction, is 34.27 % with a CV of 1.67 %. As can be seen, the prepreg material 

presents variations in its constitutive properties; these variations can be 



 
Literature review 

- 19 - 

transferred to the cured part, especially on thinner laminates that are more 

dependent on point-to-point variability.  

The composite prepreg can also be a source of porosity, both by the 

presence of entrapped voids and by the surface roughness of the prepreg, which 

shows a preferential orientation transverse to the fibre direction [36].  

 

1.4.3 Fibre misalignments 

Variations in fibre orientation have an important impact on the composite 

structure performance. These variations are the result of several factors present 

during the different stages of the structure manufacturing. Fibre misalignment is 

one of the few sources of variability, that is well studied in the literature due to its 

importance to the mechanical strength of the composite, especially during 

buckling [22,36,37]. 

The fibre misalignment can be determined in two different stages of the 

composite material. The first one is a direct measure on the prepreg or 

reinforcement preform. The second one is the determination of the fibre shape of 

the cross-section of the composite material. 

A direct measurement on the prepreg to determine a maximum 

misalignment angle and a mean wavelength of the undulations is presented by 

Potter [39]. The UD prepregs are wound onto a drum for transportation and 

storage. This process causes undulations of the inner part of the ply to eliminate 

the path difference that is due to the ply thickness, which is between 0.250 to 

0.350 mm, thus creating a sinusoidal in-plane waviness. The measured 

undulations present a wavelength of 3 mm with an amplitude of 0.03 mm. These 

values correspond to a prepreg stored on a 300 mm diameter drum. This effect 

causes that the variability in the fibre orientation is already a pre-existing 

condition of the otherwise considered UD prepregs. Although the global response 

will not be greatly influenced by the inevitable fibre misalignments, it is not true 

to say that the misalignments will not have effects on local responses. 
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Autocorrelation methods can be coupled with image analysis to obtain a 

statistical representation of the fibre misalignments in a woven textile [40]. It was 

found that the mean warp direction was -0.1° with a standard deviation of 0.36°, 

and for the weft direction the orientation is 86.68° with a SD of 0.95°. The same 

methodology was also applied for a ± 45 non-crimp fabric (NCF) with results 

yielding a zero deviation from the mean orientation with a standard deviation of 

1.22° for both directions [41]. 

The majority of the works that deal with fibre misalignments is done by 

observing the cross section of cured specimens by measuring the fibre diameter. 

Yurgartis [42] was the first to propose a method in which the actual fibre 

misalignment can be calculated from the ellipsoidal form of the fibres. He 

measured a carbon/APC-2 composite obtaining a mean angle of 3.71° with a 

standard deviation of 0.794°. Even though this method is sensible to the assumed 

fibre diameter, it is however powerful in the sense that it can be used to determine 

the in-plane and out-of-plane misalignments of the fibre bundles and it is widely 

used to estimate the porosity fractions in cured composites [43].  

The limitation of this method is the careful treatment that must be given to 

the surface of the composite cross-section for microscopic analysis. The use of a 

fast Fourier transform (FFT) on lower resolution images of the cross-sections 

coupled with autocorrelation function allows the mean fibre orientation to be 

obtained on a specific zone [43–45]. The FFT coupled with filtering techniques 

means that the quality of the images of the cross-section can be lower and thus 

being taken by other means than optic microscopy, like X-rays. New technologies, 

like the use of a 3D tomography, allow the determination of the 3D behaviour of a 

fibre by means of a micro tomography technique [47]. This last technique can be 

used to determine the local volume fractions and fibre orientations in the three 

major axes of the specimens. 
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1.4.4 Ply thickness 

The ply thickness of a composite structure is usually considered as constant 

and equal for all plies, provided that there is no change of the geometry of the 

cross-section and stratification. In reality, each ply in the stratification can have 

different mean thicknesses that are dependent on the ply orientation and their 

position in the stratification [48]. As seen in the literature, the study in changes on 

the ply thickness is related to sudden changes in the geometry of the composite 

part (singularities) like the sections in the vicinity of bended sections leading to 

ply wrinkling [48,49] (cf. Figure 1-5). Regardless its major importance on the 

strength of a composite structure [10], the variation of this property is not well 

documented in the open literature, and the ply thicknesses are derived from the 

plate thickness measurements and their values are assumed constant over all the 

plate [47,50]. 

 

 

Figure 1-5. On the left hand side the shear slip representation resulting in the 

formation of an S-shaped wrinkle and on the right hand side the of 0° plies showing 

severe out-of-plane misalignment in a micrograph of a ([90/45/0/-45]3)S stratification 

with intermediate debulks, showing an in-plane misalignment of greater than 20° in 

three of the six 0° plies in the vicinity of the S-shaped wrinkle [49]. 

 

1.4.5 Composite properties affected during autoclave curing 

The polymerisation cycle of a composite part plays a major role in the 

determination of the properties of the composite structure. The interactions 
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between all the factors involved in the cure cycle, such as the visco-elastic 

properties of the resin system, resin flow, resin shrinkage, cure degree, 

arrangement of the reinforcements, temperature and pressure cycles, make the 

correlation between the entry parameters and the composite properties a 

challenging task [34].  

The principal parameters that control the material properties are the 

applied pressure and temperature cycles, and thus are the ones subjected to 

optimisation in order to extract the best material properties of the structure [52,53]. 

When dealing with thick laminates, a substantial amount of temperature lag and 

overshoot at the centre of a laminate is usually experienced due to the large 

thickness and low thermal conductivity of the composites. Furthermore, it 

requires a longer time for the resin to bleed out of the laminate. In some cases, 

consolidation is not completed before the resin viscosity rises beyond the 

processable range, which results in a poor consolidation region at the core 

area [54]. When compared to thin laminates, the properties of a thick laminate 

exhibit an evolution through the thickness of the core of the structure, showing an 

increasing fibre volume fraction through the top of the laminate [55].  

Nonetheless, the parameter that has a greater impact on the properties of 

the composite material is the void content. Voids can develop inside laminates if 

the pressure conditions of the cure cycle are not correctly controlled. There are 

several causes of void formation, but the most commonly studied are the 

entrapment of gases (mostly wet air) during impregnation of the fibres with resin 

or during the lay-up process; and the volatiles arising from the resin system itself 

[55–58]. In the process, resin flow is the primary mechanism to remove the excess 

resin and voids entrapped in the laminate to obtain a uniform composite plate. 

The data shows that there is a large resin pressure drop at the laminate bleeder 

interface when the resin flow in the bleeder was considered, which leads to a 

variation of the resin pressure, fibre compaction and fibre rearrangement [60]. The 

permeability of the bleeder has control over the resin absorbing capacity. A bad 

selection of the bleeder material results in resin rich and resin starved regions 
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within the laminate, thus affecting the laminate quality. The fibre volume fraction 

of the laminate is a function of the resin pressure distribution [61], the number and 

the sequence of the employed vacuum bagging products, the nature of the resin 

and reinforcements, the part thickness, and the lay-up sequence. The outputs of 

the system are the volume fractions of the elementary materials, the volume 

fraction and size of the voids in the structure, the resin flow, the degree of 

polymerisation of the resin and the presence of exothermal peaks during curing 

that are traduced into matrix cracking.  

Another effect that impacts the properties of a composite structure is the 

interaction between the composite and the tool, since a mismatch of the coefficient 

of thermal expansion generates warpage of the composite piece caused by the 

residual strains and stresses in the cured part.  

Furthermore, the internal stresses generated during the cure process are one 

of the subjects studied with great interest in the open literature. The presence of 

internal stresses are due to different material and manufacturing conditions such 

as the mismatch between the thermo-elastic properties of fibres and resin, resin 

shrinkage, and the interaction between the composite part and the tool [62]. 

Figure 1-6 [62] shows, on the left hand side, the ‘input’ variables such as material, 

geometry and process. On the right hand side the ‘output’ variables are the 

residual stress and shape distortions. The two branches indicate the origin of 

stress factors which are present during the forming of the composite products. 

 

 

Figure 1-6. Diagram showing the origin of residual stress and shape distortions in 

CFRP composite processing [62]. 
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The residual stresses and strains can generate matrix cracking and de-

bonding in the interface of the fibre and matrix, and generate geometric 

distortions on the composite part. The variation of angled parts due to resin 

shrinkage and anisotropic thermo-elastic properties is known as spring-in, 

whereas the global deformation of originally flat parts, caused by tool-part 

interaction, is described as warpage [63]. 

Using optical fibre Bragg grating (FBG) sensors, Mulle et al. [64,65] assessed 

the residual strains of a composite plate cured in autoclave. First, the residual 

strains were evaluated in an elementary specimen consisting of 8 unidirectional 

plies of the HexPly® M21/T700 carbon-epoxy system. One FBG was placed 

between the ply #2 and #3, while the second FBG was placed between the ply #7 

and #8. This arrangement was chosen in order to determine a gradient in the 

residual strains. The thin unidirectional specimen does not exhibit a gradient of 

residual stains between the layers closer to the mould-side and the layers on top of 

the composite. Subsequently, using a technological specimen consisting in a 

28 plies in a thick zone and 20 plies in a thin zone with an optimized stratification, 

the FBG were placed in 4 different layers to assess the strain distribution 

generated during the cooling phase during the cure process in the autoclave. A 

clear distribution of the residual strains through the thickness was found. These 

differences were attributed to the possible influence of environmental effects and 

the variability of the thought-the-thickness thermal properties. The use of FBG to 

determine the internal state of the material during the curing process can be 

complemented with ultrasonic measurements to follow the different stages of the 

cycles in order to measure at what stage the composite consolidates [66]. 

 

1.4.6 Variability attributed to an inclusion of a structural 
feature 

The added variability, which is a structural feature (or singularity) of a 

composite structure, represents a great challenge for the designers and 

manufacturers. The sudden change in the material properties, which are mostly 
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due to material discontinuities and added materials, leads to a new level of 

complexity in the study of structures. However, the majority of the structures have 

material singularities that accomplish a very precise function within the composite 

structure. Among the singularities that are most commonly present in composite 

structures are ply drop-offs [67,68], inclusion of stiffeners [69], drillings [70,71], 

and structural repairs [72]. 

In the following paragraph, a structural repair is used as an example of how 

a singularity in the composite structure can increase the variability of such 

structure. Unfortunately the scope of this work does not foresee the study in 

details of this kind of structural singularity. However, it can serve as statement of 

the open problems that still exist for the design and analysis of composite 

structures. 

Few studies have been made concerning the repair of composite parts. One 

of the major problems, that affect the composite structures after the removal of the 

damaged material and the adding of a repair patch, is the loss of structural 

integrity and the complete transfer of loads from the parent structure to the repair 

patch. As shown by Whittingham [72] there exist several mismatches between the 

parent part and the patch in a bonded scarf joint. Using either a hard patch cured 

before being installed in the structure or a soft patch cured in-situ, several 

problems have been observed. The principal problem is the warping of the most 

exterior plies of the patch. This effect is more significant for the soft patches. This 

warpage creates a mismatch in the continuity of the repaired plies and the original 

plies, which can create an improper transmission of loads (cf. Figure 1-7). Another 

effect that is necessary to consider is the size and the form of the bond line. In an 

ideal repair situation, the bond line is constant between the parent structure and 

the repair patch. However, depending on the type of used patch, a difference in 

the thickness of the bond line, resin pockets, porosity and adhesive voids may 

appear (cf. Figure 1-8).  
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Figure 1-7. Soft-patch detail at base of repair, curvature in end of scarf cavity probably 

caused by hand machining error [72]. 

 

 

Figure 1-8. Moulded patch, detail of outer edge of repair [72]. 
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1.5 Conclusions 

As shown in the above literature review, the variability in composite 

materials is an open topic that is considered in many different manners. 

Regardless, the fact that there is no common framework applied at each stage of 

the composite solution, starting from the definition of variability which is open to 

interpretation from the researcher or designer.  

Regarding the process of analysis and design of composite structures, there 

are many approaches to take into account the variability in the mechanical 

properties. The Monte Carlo simulation is the reference to which other types of 

methods are compared. Despite the various approaches and methods applied to 

study the composite problems, the majority does not account for the continuous 

variations of a property within a single part, other than the study of localised 

defects. The mechanical properties are varied for all elements at each iteration, 

with the same value for all elements.  

Additionally, many approaches use the mechanical properties obtained 

from standard test coupons that do not have the same geometry (stratification) of 

the designed structure and are not made with the same manufacturing process. As 

shown, the material properties are highly dependent on the raw materials and 

manufacturing process, since the interaction between the matrix and 

reinforcement are very complex. The study of the material variability cannot be 

detached from the manufacturing process, fibre architecture, resin system, tooling 

and structure geometry. Therefore, many of otherwise regarded as defects are, in 

fact, the direct result of the interaction of these parameters. 

In this review, a major importance is given to the autoclave processing and 

unidirectional reinforcements, since this process will be employed in further 

stages of this document. However, it is important to acknowledge that processes 

like resin transfer moulding (RTM), filament winding, pultrusion, have their own 

sources of variability and, thus, must be studied accordingly.  
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Chapter 2: Towards the modelling of the 
variability spread over a CFRP 
structure 

 

 

 

2.1 Problem statement 

One of the main challenges linked to the use of composite materials in 

structural applications is the difficulty to determine the effects on the mechanical 

performance that are due to the inherent variability of these type of materials [1]. 

Such variabilities do not only make the properties of two composite parts to be 

different to each other, but, they can also cause significant differences between two 

points in the same structure. 

In recent years, both designers and researchers are interested to integrate 

probability-based approaches in the analysis of composite structures like 

reliability and optimisation based methods [2–5]. Regardless of the type of 

approach employed, the Monte Carlo simulation (MCS) is still the most used 

method for solving problems with variable parameters, even though it is costly in 

terms of calculation time and resources [6]. For these probability-based 

approaches, the input values vary according to the probability distribution 

functions (PDF) of the composite mechanical properties, which are based on the 

statistical analysis of experimental data [7]. Furthermore, a proper process of 

identification and quantification of the input values and their variability must be 

performed in order to introduce realistic inputs to accurately predict the structural 

behaviour. 

It is also important to note that, in all the studies found in the open 

literature that deal with composite structures having continuous reinforcements at 

the meso and macro scales, the variation of the material properties is done for all 
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elements at each simulation. Indeed, the models do not take into consideration the 

property variations from one point to another within the same part. 

 

2.2 Proposal of a finite element analysis framework to take 
into account the variability of the composite material 

The principal aim of this work is the proposition of a framework for the 

finite element (FE) analysis of composite structures in which the element 

properties vary within the same composite structure. The gradients in the 

property changes within the FE model are controlled at the different composite 

scales by means of mathematical functions. This means that the element properties 

are not assigned in a purely random manner in order to avoid a maximal 

difference in the property value between two or more neighbouring elements. The 

mathematical functions that control the gradient of element values are based on 

physical measurements. This will ensure that the set of inputs of the FE model will 

be in agreement with the reality of the material.  

 

2.3 Inclusion of variability in finite element analysis of 
composite structures 

2.3.1 Description of the modelling proposal 

As an example to illustrate the concept of including and controlling a 

continuous variation of the properties within a single part, a composite plate 

consisting of a single ply divided into 40 x 20 elements is hereby presented. In this 

example the chosen property is the normalized stiffness in the x-direction NEx 

which is obtained by the relationship Ex / E̅x. The mean normalised Young’s 

modulus is 1 (GPa/GPa) with a coefficient of variation of 10 %. As explained, it is 

possible to assign to each element a different stiffness drawn from a known, or 

assumed, probability distribution. In this example, a normal distribution is used. 
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The distribution of the stiffness for each element is illustrated in Figure 2-1. As 

shown in the figure, some of the elements with a maximum normalised Young’s 

modulus are beside elements with minimum stiffness. Indeed, the distribution of 

stiffness has spatial discontinuities that do not have a physical meaning other than 

a localised defect in the material. In contrast, the goal of this approach, in this 

stage, is not the characterisation of local defects, but the determination of the 

distribution of the material properties.  
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Figure 2-1. Map of a randomly distributed normalised Young's modulus over a 

composite lamina with a mean of 1 (MPa/MPa) and standard deviation of 0.1.  

 

To control the variation of the stiffness over two different points of the 

composite lamina, the value assignation to each element can be done by means of 

known mathematical function. Thus, the change in the properties from one 

element to another maintains a spatial continuity without having significant 

changes between neighbouring elements. An example of a known function to 

introduce the values to the elements is a sine wave (cf. equation 2-1), where the 

parameters of each sinusoid can be controlled to maintain a specified mean and 

standard deviation. The resulting distribution does not contain discontinuities 

between neighbouring elements (cf. Figure 2-2).  

 yxNEx  2sin2sin1.0   (2-1) 
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Figure 2-2. Map of the distribution of the normalised Young's modulus spread over a 

composite lamina with a known distribution where the mean NEx still equal to 1 with a 

standard deviation of 0.1.  

 

The introduction of random phase shifts φ1 and φ2 to equation 2-1 that vary 

with each simulation (cf. equation 2-2) can be used to obtain a distribution of 

stiffness that is not as structured as the previous distribution, but still maintains a 

spatial continuity in the assigned values (cf. Figure 2-3). The resulting distribution 

still has a mean normalised Young’s modulus of 1 (GPa/GPa) and a standard 

deviation of 0.1, and since the phase shifts are variable, a different set of properties 

is assured at each simulation.  

    
21

2sin2sin1.0   yxNE
x

 (2-2) 
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Figure 2-3. Map of the distribution of the Young's modulus spread over a composite 

lamina with a known distribution with random phase shifts.  

 

Equations 2-1 and 2-2 are only meant to be examples on how the gradient of 

the element properties can be controlled whilst still maintaining the probability of 

generating randomly certain parameters so as to generate an infinity of different 

pieces at each simulation. It is not the goal of this work to introduce directly the 

material property values, such as Young’s moduli and Poisson’s ratios, to each 

element since the local values of these properties are not known. These material 

properties, however, can be derived from geometrical parameters that can be 

measured in the actual composite structure. Among the countless physical 

variables that affect the structure, the ply thickness and the reinforcement 

orientation are two parameters that can be quantified directly on the composite.  

It is important to notice, that the mathematical models hereby proposed do 

not try to reconstruct the original variables ‘as is’. The aim is to generate a 

property variation that exhibits the same order of magnitude as the real physical 

quantity. The introduction of random parameters within each model is to promote 

the variation at each simulation. These random parameters are also in agreement 

with the physical observations of the composite material.  
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2.3.2 Obtaining the material properties from the geometrical 
variations 

The input values for the FE model are the engineering constants such the 

Young’s and shear moduli, the Poisson’s ratios, and the coefficient of thermal 

expansion in the principal directions of the lay-up. The FE modelling will be 

performed in SAMCEF® software using composite shell elements. In this program, 

it is possible to introduce the ply thickness and the ply orientation per element. In 

a first phase, the material properties of the element can be derived from the local 

ply thickness and the engineering constants of the constituent materials by means 

of the law of mixtures. The modelling strategy is presented in Figure 2-4. Starting 

from the evolution of the ply thickness t, the porosity of the ply Vp and the mass 

per unit area of the reinforcement ρAf, the volume fractions of the reinforcement Vf 

and matrix Vm are calculated. Using these values, the elastic constants in the 

principal directions of each element are calculated. The ply orientation θ remains 

as an independent variable that is introduced directly in the lay-up attribute file 

for each element.  

To ensure a quality of data that can be used in a broad family of plates, we 

have chosen the generation of a material database that does not only draw data 

from probabilistic functions of the input variables, but generates continuous 

variations according with simple mathematical models to represent the spatial 

variation of certain properties.  
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Figure 2-4. Schema generation and assignment of elastic properties in the F.E. model, 

element per element and ply per ply. 

 

2.3.3 Value-added of the proposed methodology for the design 
and analysis of composite structures 

As explained in Chapter 1 and section 2.1, the usual path to analyse a 

composite structure by probabilistic analysis is to obtain from the normalised test 

the material properties and adjust such properties to the probability distribution 

functions that better describe the experimental data [4,7,8]. It is also noteworthy 

that the input variables come from material databases obtained during standard 

test coupons. These coupons deviate from the actual material used in the 

composite structure in terms of geometry and manufacturing process, thus 

skewing the values of the material [9]. After the model generation, the solution is 

usually determined by Monte Carlo simulations. This, however, does not prevent 
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the use of other types of stochastic analysis, such as reliability based methods [6], 

optimisation based procedures [10] and stochastic finite element methods [11]. The 

properties introduced into the model are thus homogenous in the sense that they 

represent the same set of properties from one point to another in the structure [12]. 

Nonetheless, the material properties are varied in all elements of the model at each 

individual simulation. This results in fact that, in the most extreme cases, the 

model outputs do not have a physical sense, since all the properties are either in 

the most favourable of the least favourable combination.  

This method proposes a thoughtful approach in the construction of the 

material database and preparation of the model. By introducing geometrical 

variabilities that are measured on the actual composite structure, such as the ply 

thickness and the fibre orientation, thus the derived mechanical properties are in 

agreement with these geometric variations inside the plate. The designer has more 

control on the assignation of values to each finite element through mathematical 

laws obtained from the observation of the physical structure. These laws can be 

modified accordingly with new observations. The input parameters of the 

mathematical function parameters are drawn from probabilistic distributions. This 

inhibits the possibility of having gradients of values comparable to a material 

defect or values that do not have a physical sense. 

The proposed method produces results that are in agreement with the 

physical reality of the structure. Thus, the obtained distributions can help to 

reduce the model uncertainties especially at the tails of the probability 

distribution. It is also noteworthy that having a heterogeneous solution can may 

be indicate a failure probability in a certain point of the structure that can be 

otherwise overlooked by more traditional methods of probability based 

approaches. 
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2.4 Measurements of variability in a composite structure 
cured in autoclave 

2.4.1 Choices for the identification and quantification of sources 
of variability in a CFRP structure 

Few research efforts are interested in the determination and measurement 

of sources of variability in order to give a physical meaning. The influence of these 

variabilities in the material properties before and after manufacturing is also 

scarcely studied. Potter [13–15] has worked in the identification of defects in the 

aeronautic structures produced from unidirectional prepregs. These defects 

include variation in density, fibre undulations (due to the storage of prepreg roll), 

wrinkles from folding and lay-up of curved forms, residual stresses and effects of 

'spring in/out' after polymerization. Therefore the identification and 

quantification of variability must be performed during the manufacturing stage of 

composite parts.  

The composite materials are multi-scale systems with complex interactions 

of variables through the different scales of the composite. One of the challenges 

that arise when dealing with this type of materials is the adequacy of such data to 

the scale at which this data is being assessed.  

 

2.4.2 Challenges in the multi-scale characterisation of the 
variability in composite structures 

The study of the variability in composite materials represents a challenge 

from the point of view of the measuring techniques, since it must take into account 

all the interdependencies among the variables, as well as the way they are coupled 

of all the scales of the composite material. Therefore, the main problem regarding 

the data collection deals with the methods needed to characterise any given 

property at a certain composite scale which is most probably incompatible with 

the measurement of the same property at another scale.  
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Considering the example of determination of the fibre volume fractions in 

the composite at a ply level and at the structure scale as depicted in Figure 2-5. 

The first step to determine the fibre content by volume in a composite material is 

to obtain a specimen from the mother plate. At this moment, due to the tools and 

technique to obtain the specimen, its exact position in the plate can only be known 

within certain margin. This can be critical if the zone of interest is near to 

singularity in the composite material. At this point, decisions must be made in 

order to determine the technique to evaluate the volume fractions of the 

elementary constituents. To determine the volume fractions at ply scale, the most 

common technique used is the micrographs of the cross-section in the composite. 

This implies that the specimen has to be placed in a mounting resin and prepared 

for optical or scanning electron microscopy to obtain images of the polished cross 

section of the specimen. The determination of the volume fractions is done by 

image analysis of the obtained micrographs. The results depend on the quality of 

the images, including the finishing quality of the cross section, the size of the 

images, and the ability of the operator to apply the correct filters and ceiling levels 

to determine the fibre, matrix and voids content. Conversely, for the 

determination of the volume fractions of the composite constituents of the whole 

specimen, one of the used methods for a carbon/epoxy system is by chemical 

digesting the composite matrix. This implies the measurement of the specimen 

density and applying the procedure indicated in the applicable standards (see NF 

EN 2564 [16] or ASTM D3171 [17]). The uncertainties in the measurements depend 

on the ability of the operator, the equipment employed, and the assumed values of 

the density of water and constituent materials. 
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Figure 2-5. Challenges in the determination of the volume fractions of the constituent 

material at local scale (ply scale) and global (specimen) scale. 

 

The obtained values for each scale cannot be cross-checked with the same 

specimen within an acceptable tolerance, since both techniques are mutually 

exclusive. The micrograph analysis implies the addition of an external material to 

the existing specimen (mounting resin) to facilitate the polishing of the 

cross-section, as well as its observation in the microscope. In case that one would 

like to obtain the volume fractions at the scale of the ply by means of matrix 

digestion of this particular specimen, the additional resin must be removed prior 

to the procedure. Nonetheless, the complete removal of the mounting resin is not 

guaranteed, and an impact on the measured values is therefore expected. On the 

other hand, the matrix digestion implies the destruction of the specimen as the 

determination of the ratios of the composite constituents are functions of the initial 

weight of the specimen and the final mass of the remaining fibres after the 

complete consumption of the resin. This hypothetical scenario does not take into 

account the use of a special mechanical mounting of the specimens for their 

preparation for microscopic observation, since the use of such equipment might 

not be available for every laboratory. 
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The measurement of the volume fractions, as explained above, is only an 

example to illustrate the difficulties to retrieve certain information at two different 

material scales. This kind of difficulty is present when measuring other physical 

variables at different scales of the composite material. 

 

2.5 Overall description of the methodology 

The autoclave curing of unidirectional (UD) prepregs remains the standard 

in the manufacturing of aircraft parts. Thus, the methods presented in this 

document are presented for this manufacturing method. 

The process of identification, quantification and modelling of variability in a 

composite structure is performed through the fabrication of composite plates (12) 

of dimensions 615 x 300 mm. The material used in this process is the HexPly® 

M10.1/38%/UD300/CHS which is a carbon/epoxy UD prepreg. The prepreg plies 

are cut and laid-up by hand. The chosen lay-up is a 16 ply quasi-isotropic with a 

stacking sequence of [90/-45/0/(+45)2/0/-45/90]s. The stacking sequence is 

chosen since it is representative of industrial parts.  

On one hand, since there are many variables and factors interdependent 

with each other, to quickly allow and to facilitate a physical interpretation of the 

data, the calculations and the statistical analysis are carried out with probabilistic 

distributions such as the uniform distribution and normal distribution. On the 

other hand, this does not mean that these distributions are the most adequate to 

represent the parameter variations. Other types of probability distribution 

functions, such as the 2-parameter Weibull and the lognormal distributions, can fit 

better the experimental data. Nevertheless, the scope of this work is not to perform 

an in-depth statistical analysis of the material properties, but to provide a 

methodology than can be used to enrich the material databases by providing a 

manner to control the parameters gradient within a structure composite and can 

be variable during multiple simulations. 
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All statistical moments (average, standard deviation, etc.), unless otherwise 

indicated, are reported with a 95 % confidence level. Additionally, the alpha value, 

which serves as a ceiling for the rejection of the null hypothesis in various 

statistical tests is 0.05. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
Chapter 2 

- 48 - 

2.6 References 

 

[1] US Department of Defense, “MIL-HDBK-17-3F: Composite Materials 
Handbook. Polymer matrix composites: materials usage, design, and 
analysis.” US Department of Defense, 2002. 

[2] C. C. Chamis, “Probabilistic simulation of multi-scale composite behavior,” 
Theor. Appl. Fract. Mech., vol. 41, no. 1–3, pp. 51–61, Apr. 2004. 

[3] C. C. Chamis, “Probabilistic Design of Composite Structures,” Int. Conf. 
Comput. Exp. Eng. Siences, 2007. 

[4] S. Sriramula and M. K. Chryssanthopoulos, “Quantification of uncertainty 
modelling in stochastic analysis of FRP composites,” Compos. Part A Appl. 
Sci. Manuf., vol. 40, no. 11, pp. 1673–1684, Nov. 2009. 

[5] A. Shaw, S. Sriramula, P. D. Gosling, and M. K. Chryssanthopoulos, “A 
critical reliability evaluation of fibre reinforced composite materials based 
on probabilistic micro and macro-mechanical analysis,” Compos. Part B Eng., 
vol. 41, no. 6, pp. 446–453, Sep. 2010. 

[6] M. Di Sciuva and D. Lomario, “A comparison between Monte Carlo and 
FORMs in calculating the reliability of a composite structure,” Compos. 
Struct., vol. 59, no. 1, pp. 155–162, Jan. 2003. 

[7] D. J. Lekou and T. P. Philippidis, “Mechanical property variability in FRP 
laminates and its effect on failure prediction,” Compos. Part B Eng., vol. 39, 
no. 7–8, pp. 1247–1256, Oct. 2008. 

[8] T. P. Philippidis, D. J. Lekou, and D. G. Aggelis, “Mechanical property 
distribution of CFRP filament wound composites,” Compos. Struct., vol. 45, 
pp. 41–50, 1999. 

[9] L. S. Sutherland, R. A. Shenoi, and S. M. Lewis, “Size and scale effects in 
composites : I. Literature review,” Compos. Sci. Technol., no. 59, pp. 209–220, 
1999. 

[10] M. Bouhafs, Z. Sereir, and A. Chateauneuf, “Probabilistic analysis of the 
mechanical response of thick composite pipes under internal pressure,” Int. 
J. Press. Vessel. Pip., vol. 95, pp. 7–15, Jul. 2012. 

[11] N. Hyuk-Chun, “Stochastic finite element analysis of composite plates 
considering spatial randomess of material properties and their 
correlations,” Steel Compos. Struct., vol. 11, no. 2, pp. 115–130, 2011. 

[12] M. C. Shiao and C. C. Chamis, “Probabilistic evaluation of fuselage-type 
composite structures,” Probabilistic Eng. Mech., vol. 14, no. 1–2, pp. 179–187, 
Jan. 1999. 

 



Towards the modelling of the variability 
spread over a CFRP structure  

- 49 - 

[13] K. D. Potter, M. Campbell, C. Langer, and M. R. Wisnom, “The generation 
of geometrical deformations due to tool/part interaction in the manufacture 
of composite components,” Compos. Part A Appl. Sci. Manuf., vol. 36, no. 2, 
pp. 301–308, Feb. 2005. 

[14] K. D. Potter, C. Langer, B. Hodgkiss, and S. Lamb, “Sources of variability in 
uncured aerospace grade unidirectional carbon fibre epoxy 
preimpregnate,” Compos. Part A Appl. Sci. Manuf., vol. 38, no. 3, pp. 905–916, 
Mar. 2007. 

[15] K. D. Potter, B. Khan, M. R. Wisnom, T. Bell, and J. Stevens, “Variability, 
fibre waviness and misalignment in the determination of the properties of 
composite materials and structures,” Compos. Part A Appl. Sci. Manuf., vol. 
39, no. 9, pp. 1343–1354, Sep. 2008. 

[16] AFNOR, “NF EN 2564: Série aérospatiale - Stratifiés de fibres de carbone - 
Détermination de la teneur en fibres en résine et du taux de porosité.,” 1998. 

[17] ASTM International, “ASTM D3171: Standard Test Methods for Constituent 
Content of Composite Materials,” 2011.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
Chapter 2 

- 50 - 

 

 



 

- 51 - 

Chapter 3: Variability in a CFRP part cured in 
autoclave 

 

 

 

 

3.1 Material and process 

The structural properties are heavily linked to the used material system 

(fibre and resin types), since many of the intrinsic characteristics of the final piece 

are given by the interactions between the resin, fibre architecture and other 

additives or elements present, such as the thermoplastic nodules contained in the 

HexPly® M21/T700GC prepreg. 

In this work, the employed material is the unidirectional prepreg HexPly® 

M10.1/38%/UD300/CHS from Hexcel Composites. It is a CFRP having 

mechanical properties similar to the UD M21/T700GC prepreg which is 

extensively used in the aerospace industry for the production of structural 

components. Indeed the M10.1/CHS is a non-controlled flow resin system, 

contrary to the M21 that is a quasi-net prepreg system. Table 3-1 shows the 

principal characteristics and the main differences between these two materials. 

The stated values are nominal values without information on their variability (e.g. 

standard deviation, or coefficient of variation). 

Two different batches of the prepreg rolls are investigated. The first roll 

(L-1, Lot No.: 10502F02) has a width of 0.46 m, a length of 110 m for a total area of 

50.6 m². The second roll (L-2, Lot No.: 2144E002A) has a width of 1 m and a length 

of 40 m, hence an area of 40 m². 

Table 3-1. Nominal properties of the prepreg s UD M10.1/CHS and M21/T700GC. 

Property M10.1/38%/UD300/CHS [1] M21/35%/268/T700GC [2] 
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Reinforcement High strength carbon UD 
Toray T700GC (high 
strength carbon) UD 

Mass per unit area of 
the reinforcement 

300 g m-² 268 g m-² 

Matrix M10.1 (epoxy) M21 (epoxy) 

Curing temperature 120°C 180°C 

Mass fraction of resin 
in the prepreg  

38 % 35 % (quasi-net) 

Density of prepreg  484 g m-² 412 g m-² 

Nominal thickness of 
the ply 

0.320 mm 0.262 mm 

Volume fraction of 
the reinforcement 

0.524 0.569 

Young modulus *. 130 GPa 148 GPa 

Ultimate tensile 
stress *. 

1700 MPa 2375 MPa 

* Values "normalised" to Vf = 0.6 

 

After preparation, the plates are put in the autoclave. M10.1 resin is an 

epoxy system that cures at a temperature of 120 °C. The typical cure cycle is 

shown in Figure 3-1. For a correct material consolidation and reduction of 

porosity, the cycle has two temperature dwells: the first is maintained at 80 °C (1) 

for 30 minutes, and the second at 120 °C for 60 minutes (2). A hydrostatic pressure 

is also applied by maintaining two dwells, the first at 2 bar (3) from the beginning 

of the cycle until the end of the second heating ramp, and the second pressure 

dwell of 5 bar (4) is applied until the end of the cycle. In order to avoid residual 

stresses, as well as thermal damage due to the exothermic peaks during 

polymerization, heating (5 and 5') and cooling (6) rates are set to 2 °C min-1. A 

vacuum load of - 0.9 bar (7) is applied throughout the curing cycle to ensure a 

good ventilation of the volatiles and a good compaction of the material. The total 

duration of the cycle is roughly 200 to 220 min. 
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Figure 3-1. Typical cure cycle for a thick plate manufactured in M10.1/38%/UD300/CHS. 

 

3.2 Determination of the mass per unit area of the UD 
prepreg 

3.2.1 Measurement protocol 

The density is a property of the material; it is also a source of variability 

related to the volume fractions of the fibre and matrix. Due to the difficulty to 

obtain the actual thickness of the prepreg films, this property cannot be easily 

assessed. Instead, as the mass of the prepreg m0 and the ply area A0 can be 

obtained separately, the mass per unit area ρA is determined by a simple 

relationship (cf. eq. 3-1). Therefore, this property can be used as an indicator of 

prepreg variability.  

0

0

A

m
A   (3-1) 

 

However, both, the mass and the ply area, cannot be obtained directly 

because the material is very flexible and its manipulation makes it 

unusable. Hence, to obtain the ρA two indirect methods are used. The first method 

involves the prepreg plies that will be used in the manufacturing of composite 

plates. The second method uses dedicated samples of material for the 
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determination of this property. The ply area, in both cases, is obtained indirectly 

by measuring the area of the white protective film (silicone paper), which is 

removed during the lay-up procedure (cf. Figure 3-2). Such protective paper is cut 

at the same time that the prepreg, thus sharing the same dimensions and it is only 

separated from the prepreg at the moment of the lay-up. 

 

Figure 3-2. Prepreg M10.1/38%/UD300/CHS (view from below). 

 

Method 1 - Ply prepregs for the manufacture of composite parts 

The mass of prepreg ply is determined indirectly by weighing it with its protective 

silicone film mf + p (cf. Figure 3-2). After the ply has been laid onto the stratification, 

the removed protective film is weighed (mf). The mass of the prepreg composite is 

obtained by subtracting these two values (cf. eq. 3-2). Since this method can be 

used to weigh a complete ply of dimensions 600 x 300mm that itself can weigh 

several hundred grams, the measurement was done in a weighing scale with a 

precision of 0.1 g. This was the only scale available at the moment of the mass 

determination that could handle the ply sizes.  

fpf mmm  0  (3-2) 

 

To obtain the ply area, the perimeter of the protective films is measured 

using a steel rule. Then the area of the ply is calculated using simple geometric 

formulae (cf. Table 3-2). 

Silicon-paper film 

Composite prepreg 

Plastic film 
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Table 3-2. Types, forms and formulas used for calculating the area. 

Type Shape Formula for calculating the area 

Type A 

(quadrangle) 

 








 







 


22
0

DCBA
A  (3-3) 

Type B 

(triangle) 

 








 


2
0

BA
A  (3-4) 

Type C 

(polygon) 

 

Sum of the areas 

)(0 dcba AAAAA   (3-5) 

 

Method 2 - Samples not used for the manufacture of parts 

Prepreg specimens of dimensions up to 100 x 100 mm are weighed directly 

in scale of precision of 0.0001 g without their protective films. The reasons of using 

a higher precision scale are that the prepreg specimens are not going to be used in 

the fabrication of composite plate, thus they can be deformed; and that the weight 

of the specimens are in the order of 1.5 g.  

The determination of the area of the ply is made by the digital scanning of 

the protective film (cf. Figure 3-3). The protective film is placed against a black 

background to improve the contrast at the edges of the film. The image is then 

processed in 'Image-J'. The area of the prepreg is determined by a correlation 

between the number of pixels in the image and the relative size of the pixel. 



 
Chapter 3 

- 56 - 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 3-3. Determination of ply areas in protection scan of the image with, (a) the raw 

image after the scan, (b) correcting the brightness and contrast, (c) binary image and (d) 

removal of black pixels and smoothing the edges. 

 

For the calibration of the pixel size, a steel rule was also scanned to 

determine the resolution. The rule is scanned in horizontal and vertical positions 

to verify that there is no distortion between the horizontal and vertical scan 

resolutions. The image is scanned using a resolution of 600 dpi (dots per inch) 

which gives a theoretical equivalence of 23.62 pixel mm-1. The calibration using the 

rule confirmed this correlation. The area of each pixel corresponds to 

1.792 x 10-3 mm² or 558 pixels mm-². 

Protection 
film 

Dark 
background 
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After the scanning of the protective films (cf. Figure 3-3a), the brightness 

and contrast of images are adjusted to improve the sharpness of the edges 

(cf. Figure 3-3b). Next, a binarization operation is performed on the image to 

obtain only white and black pixels (cf. Figure 3-3c). Then the black pixels 

remaining within the white area are removed as well as a few pixels around the 

edges (cf. Figure 3-3d). Using the histogram of the image, the number of white 

pixels is counted. The area of the film is therefore calculated from the correlation 

of the size of the pixel specified previously, by the number of white pixels Npx 

(cf. eq. 3-6). 

558
0

pxN
A   or  3

0 10792.1  pxNA  (3-6) 

 

3.2.2 Sampling 

Since the mass per unit area is the ratio of the mass of prepreg divided by 

the area of the ply, this property does not depend neither on the size of the coupon 

nor on its shape. The samples have areas ranging from 1 000 mm² to 200 000 mm². 

To be consistent with the literature, the area density is reported in g m-². 

Due to the use of several methods for the measurement of the mass and 

area of the prepreg composite, several types of samples were used. Table 3-3 

presents the definition of each measured sample, the method used for the 

determination of the area density and the number of elements contained in that 

sample. 

Samples A and B are obtained from the material cut to manufacture the 

plates of autoclave batches A and B. The sample DR is taken during the material 

cutting used in the repair of composite structure tests [3]. These three samples are 

controlled with method 1. Using method 2, a sample E of 35 elements is then 

considered. This sample is also used to check that the determined area density is 

not related to the size or shape of each element. 

A sample for more precise control of this property has been measured using 

the standard NF ISO 10352 [4]. According to this standard, the samples are cut 
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using a template with an area of 0.01 m² (100 x 100 mm). Then they are weighed in 

a balance with a precision of 0.0001 g. Due to the dimensions of the used template, 

which does not correspond to those specified in this standard (i.e., the template 

has approximate dimensions of 90 x 90 mm), the areas of the protective films are 

determined by method 2. It is also noted that there are differences in the size of the 

template and of the prepreg cut. Thus, the use of method 2 allows better accuracy 

of the measurement. This sample is named R1. It has 35 elements which are 

randomly taken from prepreg roll. On the roll L-2, a series of 10 samples (R2) are 

taken to verify if, indeed, there is a difference between the two batches of material. 

The number of elements in this series is limited depending on the available 

material after cutting and manufacture of composite plates. Samples, such as those 

from R1 and R2, were taken at random locations on the prepreg rolls. 

 
Table 3-3. Identification of groups for the determination of the mass per unit area. 

Group Method Description 
Number of 
elements 

A 1 Material cut to manufacture batch A plates 91 

B 1 Material cut to manufacture batch B plates 87 

DR 1 
Material cut to manufacture the evaluators of repair 
from the plates of the batches A and B 

72 

E 2 Sample to evaluate method 2 34 

R1 2 Sample roll R1 (ISO 10352) 90 x 90 mm 35 

R2 2 Sample of control of roll R2 (ISO 10352) 90 x 90 mm 10 

 

3.2.3 Results 

Table 3-4 shows the measurements taken during the manufacturing of 

composite parts of autoclave batches A and B, and the material cutting for repair. 

It must be observed that there is a significant difference in the average value for 

each sample. It was noted that variability is lower than the expected 2 %, even if 

the method for the measurement of the properties is not the optimum. 
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Table 3-4. Mass per unit area obtained with method 1. 

Sample 
Number of 
elements 

Average 
(g m-²) 

Standard 
deviation 

(g m-²) 

CV 
(%) 

A 91 502.5 8.24 1.64 

B 88 500.7 6.89 1.38 

DR 72 501.1 9.30 1.86 

Total method 1 251 501.5 8.13 1.62 

 

Sample E is used to assess the impact of the size and the shape of the 

elements on the variability of the area density of the material. Samples of group E 

have an area between 658 mm² and 19 725 mm² (i.e. a difference of 

19 067 mm²). However, the shape and the size of the elements that correspond to 

the R1 sample almost does not vary, i.e. the area of the plies is between 7 785 mm² 

and 8 251 mm². As noted above, there is no correlation between the dispersion of 

the mass per unit area and size of the ply. The two samples show very different 

shapes of ply areas although they have a similar mass per unit area dispersion 

(cf. Figure 3-4). The differences between the average value and standard deviation 

of the area density, as shown in Table 3-5, are possibly due to the accuracy of the 

measure of each of the properties, i.e. the mass and area of the protective film. 

However, this difference is not statistically significant, and the values of the mass 

per unit area are independent from the size and shape of the specimen. 

 
Table 3-5. Mass per unit area of material lot L-1 obtained with method 2 samples. 

Sample 
Number of 
elements 

Average 
(g m-²) 

Standard 
deviation 

(g m-²) 

CV 
(%) 

E1 14 500.8 7.58 1.51 

E2 10 505.5 7.59 1.50 

E3 10 506.8 8.87 1.75 

Total E 34 503.9 8.20 1.63 

R1 35 500.7 6.05 1.21 
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Figure 3-4. Mass per unit area compared to the area of the ply of samples E and R1. 

 

Figure 3-5 shows the average values for each sample and their confidence 

intervals for the mean. It is observed for samples obtained from material lot L-1 

(A, B, DR, E and R1) the average values have a good correlation with the sample 

R1, which is the sample measured with better precision. By contrast, the R2 

sample, used to control the prepreg roll L-2 shows a very different mean value of 

that observed for samples from the roll L-1. Since the values of the area density do 

not depend on the size of the specimen, as illustrated by the average values of the 

A and B samples compares to the R1 sample, the difference between the R2 and 

the rest of the specimens is purely due to the nature of the material of the roll L-2.  
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Figure 3-5. Average of the mass per unit area for each specimen with ± 1 standard 

deviation. 

 

A more precise comparison between R1 and R2 samples is presented in 

Table 3-6. The standard deviation of each batch of material is a priori different, 

with a value of 6.05 g m-² for lot R1 and 10.76 g m-² for lot R2. However, the 

average of the mass per unit area remains statistically different for these two lots: 

500.7 g m-² for R1 compared to 478.1 g m-² for R2. It is noted that the "nominal" 

value for this material is 484 g m-² [1]. The difference between the values of the 

standard deviation is feasibly explained by the reduced number of elements of R2 

compared to the R1s sample, 10 elements for the former and 35 for the later. 

However, it is also probably influenced by the nature of the material, since there is 

no specification for the actual type of fibres included in the M10.1/CHS.  

 
Table 3-6. Summary of samples for comparison between the values of the MS for R1 

and R2. 

Sample 
Number of 
elements 

Average 
(g m-²) 

Standard 
deviation 

(g m-²) 

CV 
(%) 

R1 35 500.7 6.05 1.21 

R2 10 478.1 10.76 2.25 

 



 
Chapter 3 

- 62 - 

To corroborate the mean values for each batch of material, a comparison 

between the actual weight and the theoretical is carried out in Table 3-7. The 

theoretical mass of the plate is calculated from the average mass per unit area 

(depending on the used lot of prepreg) and the theoretical surface of material 

draped to each plate. In any case the difference is not greater than 0.5 % of the 

actual weight of the plate, despite the differences between the theoretical and real 

surfaces. 

 
Table 3-7. Comparison between theoretical mass and the actual mass of the plates. 

Plate Roll 
MS 

average 
(g∙m-²) 

Theoretical 
plate area 

(m²) 

Theoretical 
mass 

(g) 

Measured 
mass 

(g) 

Difference 
(g) 

Difference 
(%) 

A-1 L-1 500.7 2.952 1478.07 1477.7 0.37 0.02 

A-2 L-1 500.7 2.952 1478.07 1476.1 1.97 0.13 

A-3 L-1 500.7 2.952 1478.07 1477.6 0.47 0.03 

B-1 L-1 500.7 2.952 1478.07 1483.2 -5.13 0.35 

B-2 L-1 500.7 2.952 1478.07 1483.2 -5.13 0.35 

B-2 L-1 500.7 2.952 1478.07 1485.1 -7.03 0.47 

C-11 L-2 478.1 2.961 1415.77 1415.1 0.67 0.05 

C-12 L-2 478.1 2.961 1415.77 1419.3 -3.53 0.25 

C-13 L-2 478.1 2.961 1415.77 1414.3 1.47 0.10 

C-21 L-2 478.1 2.961 1415.77 1415.4 0.37 0.03 

C-22 L-2 478.1 2.961 1415.77 1414.9 0.87 0.06 

C-23 L-2 478.1 2.961 1415.77 1418.9 -3.13 0.22 

 

From the gathered data, one can conclude that variability intra roll of the 

mass per unit area is lower than expected, approximately 2 %. By contrast, the 

difference in average value of the mass per unit area between two batches of 

material is large. The mass per unit area for lot 1 is 500 g∙m-² with a coefficient of 

variation (CV) of 1.3 %, and for the lot 2 it is 478 g∙m-² with a CV of 2.2 %. For 

reference, an aeronautical material has an average area density of 406 g∙m-² and a 

standard deviation 4.22 g∙m-² (i.e. a CV of 1.04 %) [5]. In this study, several batches 

of material were controlled (14 material batches in 127 different rolls). In our case, 

a comparison to this prepreg material is difficult due to the material availability. 
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However, in this study, several samples per roll have provided better accuracy for 

the mean and dispersion of the mass per unit area.  

 

3.3 General description of the polymerization cycle for the 
M10.1/CHS 

Composite plates are manufactured in autoclave batches called 

chronologically A, B and C. The first two batches include 3 plates each, identified 

as A-1, A-2 and A-3 for the first one, and B-1, B-2 and B-3 for the second one. The 

plate denominated -1 is placed at the bottom of the autoclave and the plate -3 is 

placed closest to the autoclave door (Figure 3-6). Additionally to the six plates 

produced in batches A and B, six additional plates are produced in batch C at the 

same time by arranging them on two levels. The plates are thus identified C-11, 

C-12, C-13 for the lower level and C-21, C-22 and C-23 for the upper level. 

 

 

Figure 3-6. Picture of the composite plates prior to introduction into the autoclave. 

 

For precise temperature control of the composite curing cycle, the plates 

placed at the centre of the tool (plates A-2, B-2, C-12 and C-22), were instrumented 

with thermocouples. One thermocouple is placed between the plate and the 

mould (identified as TC-1) and the second one is placed between the top plate and 

Plate A-1 

Plate A-3 

615 mm 
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vacuum bagging products (identified as TC-2, cf. Figure 3-7). These two 

thermocouples measure the temperature in the thickness of the composite. 

A priori, the TC-1 thermocouple measures the mould temperature, while TC-2 

measures the temperature between the composite plate and the vacuum bag 

products. An important difference between the temperatures measured by TC-2 

and TC-1 indicates an exothermic peak due to the polymerization reaction of the 

resin. For plates B-2, C-12 and C-22, a third thermocouple is installed in the core of 

the composite plate (identified as TC-3, cf. Figure 3-7) placed between the 8th and 

9th ply for more accurate tracking of the variation of temperature inside the 

composite during the curing cycle and the verification of the presence of 

exothermic peak. 

 

 

Figure 3-7. Diagram indicating the placement of thermocouples TC-1, TC-2 and TC-3 in 

the composite plates. 

 

Figure 3-8 shows the cycles of temperature for autoclave batches A, B and 

C. There is a difference of 10 min of the cycle A relative to cycle B due to a cooling 

at the beginning of the cycle. Apart from this variation in the ramps of warming at 

the beginning of the cycle, there are no significant differences between these two 

curves. The exothermic peak due to polymerization is greater for cycle B 

compared to cycle A. This peak is highlighted in Figure 3-9 which shows the 

differences in temperature between the thermocouples TC-1 and TC-2 

(cf. Figure 3-7). For cycle B, the difference of temperatures between TC-2 and TC-1 

remains zero most of the time, but for cycle A, TC-2 remains warmer for the 

Thermocouple TC-1 

Thermocouple TC-2 

Thermocouple TC-3 

Tool 

Composite plate 

Vacuum bag products 
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40 min mark (after the first isothermal dwell) till the end of the cycle. This 

difference can be explained by the fact that there is twice as much resin in the 

bleeder fabric and the breather. Finally, for cycle B, Figure 3-10 shows the 

difference in temperatures between the TC-2 placed between the upper plies and 

the vacuum products and TC-3 placed in the core of the composite. There are no 

significant differences between these two temperatures, except at the beginning of 

polymerization where one can observe a peak of 1° C between the two 

temperatures. 

 

 

Figure 3-8. Actual cycle of temperature for autoclave batches A, B and C. 
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Figure 3-9. Difference between the temperatures measured by thermocouples TC-1 and 

TC-2 to autoclave batch A and B. 

 

 

Figure 3-10. Temperature difference between TC-2 and TC-3 thermocouples for 

autoclave batch B. 
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3.4 Impact of the configuration of vacuum bagging on the 
thickness of the plates 

3.4.1 Vacuum bagging sequence 

The sequence of the vacuum bagging products has an influence on the 

properties of the cured piece. 

After the lay-up, the composite plates are placed in a mould and prepared 

for autoclave polymerization. Figure 3-11 shows the typical pattern of vacuum 

bagging to produce a composite part in the autoclave. The composite structure (4) 

is placed on a steel or aluminium tool (1) over a release agent or Teflon based 

release film between the mould and the laminate (2). A peel ply is placed below 

and above the composite (3 and 5) and it serves to improve the demoulding of the 

piece. It also produces a rough surface which can be employed for possible future 

surface treatment and the placement of tabs for mechanical testing. A perforated 

release film (6) is then placed to allow the ventilation of volatile fumes and the 

flow of excess resin into the bleeder fabric (7), which is typically made of 

fibreglass. A micro perforated release film (8) is placed between the bleeder fabric 

and the breather mat (9) to allow the evacuation of volatiles. The breather mat 

allows a uniform application of the vacuum (12) over the composite plate. A 

mosite barrier (11) is placed around the prepreg to ensure the dimensions of the 

plate by avoiding the lateral flow of the resin. Finally, the system is covered by the 

vacuum bag (10). A seal (13) ensures the correct fixation of the bag to the mould 

while providing an effective isolation from the ambient exterior. 
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Figure 3-11. Schematic of vacuum bagging for the autoclave polymerization. 

 

The preparation of the mould is based on our experience with a prepreg 

similar UD, the M21/T700GC. However, this prepreg is a quasi-net system, i.e. the 

resin flow remains minimal compared to the prepreg M10.1. Indeed, the M10.1 

resin has a lower viscosity of 0.4 Pa∙s at 110 °C compared to 1 Pa∙s at 140 °C for the 

M21, and higher mass fraction for the prepreg system M10.1/CHS, 38 % versus 

34 % of the M21/T700. In batch A, the bleeder fabric was not sufficient to contain 

the resin. Moreover, the excess of resin "filled" the breather mat (cf. Figure 3-12). 

Since the breather mat is essential to maintain a uniform application of the 

vacuum on the surface of the plates, it is necessary to prevent resin from flowing 

and clogging. In order to avoid this situation for batch B, the number of layers of 

the bleeder fabric is increased and the perforated release film is changed to a 

micro perforated type film to further block the flow of resin. This configuration, 

which effectively prevents the resin flowing in the breather, is retained for batch C. 

The vacuum bagging was conducted with the following differences: 

 except for plate B-3 (taken to the debulking station after the placement of 

8 consecutive plies), plates of batches A and B are debulked after laying 4 

plies. For logistical reasons, the debulking of the six plates of batch C is made 

after the placement of 8 consecutive plies; 
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 for plates manufactured in the batch A, mosite has been placed around the 

plates so as to contain the side overflow of resin. Having observed that this 

lateral overflow has no significant impact on the thickness in the middle of 

the plate, the rest of the plates do not make use of mosite; 

 a single layer of bleeder fabric and a perforated release film were used 

between the bleeder fabric and the breather in batch A. For autoclave 

batches B and C, two layers of bleeder fabric and a micro perforated film 

were used. 

 

Figure 3-12. The batch “A” plates after being taken out from the autoclave and the 

excess flow of resin impregnated the breather mat. 

 

After polymerization of composite plates, it was observed that the 

difference between curing cycles and vacuum bagging layers used for each 

autoclave batch, both have an influence on the final properties of the plates. Plates 

of batch A have lost on average 13 % of resin weight of compared with 6 % for 

those of batch B. There is a slight reduction in the plate thickness, and therefore in 

the average thickness of the ply. This observation allows the conclusion that 

manufacturing conditions have a direct influence on the geometry of the part. 

 

Dry breather mat 

Breather mat 
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excess resin 
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3.4.2 Resin flow 

Table 3-8 presents the results of the weighing of the plates before and after 

curing. In batch A, the use of a release film perforated between the absorber and 

the breather as well as the application of a single bleeder fabric caused a flow of 

resin in the breather until saturation (cf. Figure 3-12). This 13 % loss of resin by 

mass is assumed the product of a phenomenon of capillary action on the contact of 

the resin and the breather mat. There is also considerable variation between the 

quantities of resin lost by the plates, especially between the first two plates and the 

plate A-3. The origin of this variation in the mass of the plates is unclear. It is 

certainly linked to the saturation of the breather and the application of the vacuum 

during the curing cycle. 

 
Table 3-8. Weighing composite plates before and after curing. 

  

Batch A Batch B 

A-1 A-2 A-3 B-1 B-2 B-3 

Weight plates before curing (g) 1477.7 1476.1 1477.6 1483.2 1483.2 1485.1 

Weighing plates after curing (g) 1290.1 1284.3 1261.3 1392.3 1392.4 1388.7 

Resin lost by plates (g) -187.6 -191.8 -216.3 -90.9 -90.8 -96.4 

Lost resin ratio / plate weight (%) 12.7 13.0 14.6 6.1 6.1 6.5 

  

Batch C 

C-11 C-12 C-13 C-21 C-22 C-23 

Weight plates before curing (g) 1415.1 1419.3 1414.3 1415.4 1414.9 1418.9 

Weighing plates after curing (g) 1347.3 1361.1 1349.3 1347.4 1347.3 1341.7 

Resin lost by plates (g) -67.8 -58.2 -65.0 -68.0 -67.6 -77.2 

Lost resin ratio / plate weight (%) 4.8 4.1 4.6 4.8 4.8 5.4 

 

When, in batch B, the perforated film between the absorber fabric separator, 

and the breather is replaced by a micro perforated film and the addition of a 

second fabric absorber, the loss of resin by mass is then limited to 6 %. This 

implies that the plates from the batch A have the double of the average resin flow 

of batches B and C. 
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3.5 Measure of the thickness of plates 

In order to know the influence of the flow of resin on the geometry of the 

batches A and B plates, their thicknesses are controlled using a 3D 

coordinate-measuring machine (CMM). In this procedure, the composite plates are 

placed on a marble table and fixed it using clamps. The machine measures the 

thickness of the plate following a mesh of size of 30 x 30 mm. This mesh covers 

almost the entire surface of the plate by performing between 190 and 

220 measurement points. 

 

 

Figure 3-13. Positioning and clamping of a plate in the coordinate-measuring machine 

(CMM). 

 

After the demoulding of the plates, it is observed that they are not 

completely flat. They have a certain curvature that is due to residual strains 

caused by the mismatch between the tool thermal expansion and the composite 

plates, or by other effects [6]. This curvature is more evident on the plates of 

batch B. At this point, there is no interest in measuring the warpage of the 

composite plates but their raw thickness. Thus, the plates are fixed to the marble 

by using 6 or 7 clamps (cf. Figure 3-13).  

Granite surface plate 

Probe head 
Clamps 
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The edges of the plates also present a different morphology regarding the 

use or not of the mosite to retain the lateral resin flow. On the plates where the 

mosite was used, the edges are flat and perpendicular to the tool with a slight 

increase of the thickness near the edge, as shown in Figure 3-14a. For plates 

fabricated without mosite, the edges are concave with a progressive reduction of 

the thickness near the edges of the plate (cf. Figure 3-14b). Both types of edge 

shapes are not too significant since the edges of the plates are trimmed before 

employing them for constructing a technological evaluator.  

 

 
(a) (b) 

Figure 3-14. Schematic drawing of the profile of composite plates with, (a) with mosite 

and (b) without mosite. 

 

Due to the irregular nature of the edges of the plates, it was necessary to 

find a reference point for the coordinate-measuring machine. This reference was 

made by drilling two perforations near the corners of the plate which are used by 

the measuring machine to define the reference axes (cf. Figure 3-15). The y-axis is 

defined by the straight line passing through the centre of the two perforations. The 

x-axis is perpendicular to this straight line and parallel to the granite surface. The 

z-axis is thus perpendicular to the plane defined by x and y. The origin of the 

reference system is located arbitrarily in the centre of the left hand side 

perforation. 
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Figure 3-15. Reference system for the coordinate-measuring machine (CMM). 

 

The results of the measurement of thicknesses are shown in Table 3-9. As 

expected by the plates weighing, the average thickness of those manufactured first 

is lower compared with batch B, 4.700 mm compared to 5.100 mm. Thus, the 

average thickness of the plies for the plates of the batch A is 0.290 mm and 

0.320 mm for batch B. The nominal thickness for material M10.1/CHS is 

0.322 mm [1]. Anyhow, the coefficients of variation associated with the thickness 

of the plates are in the same order of magnitude among the plates within the same 

autoclave batch.  

 
Table 3-9. Measurement of thickness of composite plates. 

  Batch A Batch B 

A-1 A-2 A-3 B-1 B-2 B-3 

Thickness of plate t ̅plate (mm) 4.720 4.690 4.580 5.110 5,110 5.080 

Standard deviation (mm) 0.315 0.190 0.203 0.159 0.161 0.157 

CV (%) 6.7 4.1 4.4 3.1 3.2 3.1 

Average ply thickness t ̅k (mm) 0.295 0.293 0.286 0.319 0.320 0.317 

 

Composite plate 

Perforations used as a reference  

Z 

X 
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After having measured the thickness of the plates of batches A and B in the 

CMM, the average thickness is equal to 4.700 mm for the plates of batch A and 

5.100 mm for batch B, as shown in the mapping of the A-2 (cf. Figure 3-16) and B-2 

(cf. Figure 3-17) plates. It is evident that these plates do not have a constant 

thickness. The maximum thickness is located in the central section of all plates 

manufactured in this study, while the minimum thickness is always located in the 

corners. A similar effect was reported by Olave [7] for a 2/2 twill woven textile 

fabricated using a HexPly® M10.1/T700.  
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Figure 3-16. Thickness map of the A-2 plate. 
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Figure 3-17. Thickness map of the plate B-2. 
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It is important to mention that the UD prepreg M10.1/CHS has a nominal 

cured ply thickness of 0.320 mm. The difference in thickness between the 

minimum located at the edges of the plate and maximum values in the centre of 

the plate is 1.061 mm for the plate A2 and 0.706 mm for the plate B2. Thus, the 

variation in the thickness of the plate is 2 to 2.5 times the nominal thickness of a 

single ply. This difference can cause difficulties for the dimensioning of parts. 

It is assumed that the thickness variation of the plate is carried over the ply 

thickness. This variation can be modelled through the equation of a 3D sine wave 

or a 3D parabola. An example of a mathematical model that controls the evolution 

of the variation of the plate thickness through the ply δtplate is shown in equation 

3-7. 
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where Aplate is the difference between the maximum and minimum thickness 

value, λpla x and λpla y are half the plate length and width respectively, and Xc and Yc 

are the coordinates of the thicker zone. The generated thickness can be then used 

in the finite element model with a thickness variation (cf. Figure 3-18). 
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Figure 3-18. Plate thickness generated using eq. 3-7. 
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3.6 Volume fractions of the cured plate 

In order to link the mechanical properties to the geometrical properties of 

the composite material, the volume fractions of the constituent materials, fibre, 

resin and porosity must be determined. To maintain continuity in the modelling, 

the hypothesis that the quantity of fibres in a ply does not change from one 

element to another is made. Thus the fibre mass per unit area ρAf of 

M10.1/38%/UD300/CHS has a nominal value of 300 g∙m-2. However, to test this 

assumption and to determine the relationship between the ply thickness and the 

volume fractions of the composite plate, a physical characterisation of the real 

structure is made. Eight specimens are obtained from one of the fabricated plates 

(C-11). The volume fractions of their constituent materials are obtained using the 

standard test EN NF 2564 [8]. This method allows the separation of the 

reinforcement fibres by means of chemical digestion of the matrix. Initially, the 

specimens, being 20 mm long and 10 mm wide are weighed and their density 

calculated using the water displacement principle. After the chemical 

decomposition of the matrix, the fibres are then weighed. The weight difference 

between the specimen before and after the chemical decomposition indicates the 

quantity of the resin contained in the composite. An assumed density of the fibre 

(1 800 kg∙m-3) and the matrix (1 200 kg∙m-3) are used to calculate the volume 

fractions of the fibre and resin, being the difference between these two values the 

ratio of the porosity in the material. Since this type of measurement covers the 

whole specimen, these properties are considered to be distributed homogeneously 

through the 16 plies of the stratification.  

Figure 3-19 shows the plate porosity as function of the plate thickness. The 

trend of the least square fit indicates that effectively the porosity varies with the 

plate thickness. For these measurements, the thicknesses data set ranges from 

4.830 to 4.930 mm. A linear variation of the porosity is assumed with a zero 

porosity region for plate thicknesses less than to 4.800 mm (cf. eq. 3-8). Above the 

assumed zero porosity thickness, the increase in the plate thickness can be 
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explained by an accumulation of resin and an increase of the volume fraction of 

the entrapped voids in the resin. 








 800.4if490.0102.0

800.4if0

plateplate

plate

platep tt

t
V  (3-8) 

 

where Vp plate is the volume fraction of the porosity and tplate is the plate thickness. 

The coefficients 0.102 and 0.409 are obtained from a linear regression from the 

experimental data (cf. Figure 3-19). 

 

 

Figure 3-19. Evolution of the volume fraction of the porosity through the plate 

thickness. 

 

From experimental data, the actual fibre mass per unit area is calculated. 

The obtained value is 304.5 g∙m-2, which is within 2 % of the nominal value. Using 

the new mean ρAf, recalculated volume fractions of the constituent materials are 

obtained (cf. Figure 3-20 to Figure 3-22).  
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Figure 3-20. Evolution of the fibre mass per unit area ρAf with the ply thickness 

 

As shown in Figure 3-20, the mean value of the fibre mass per unit area 

shows a shift from the nominal data. This change in the fibre mass per unit area 

can be due to the use of a specific type of reinforcements. Unfortunately, the 

M10.1/CHs prepreg does not specify the exact type of reinforcement. The value of 

ρAf used in the calculations is thus 304.5 g∙m-2. The expected values of the 

constituent materials using the actual ρAf are in better agreement with the 

experimental data with a 1 % gain in the fibre volume fraction than the values 

calculated using the nominal data. The fibre volume depends only on the 

thickness of the composite and not on the porosity (cf. Figure 3-21). For the matrix 

volume ratio, since the variation of the resin content is linked to the presence of 

voids, an inflexion point of the calculated trend is present at 4.800 mm thickness. 

Beyond this point, the matrix volume fraction exhibits a rate of variation lower 

than in the first part of the curve. This is an indication that the change in the 

matrix is more dependent on the presence of voids (cf. Figure 3-22). Again, the 

difference between the nominal value and the experimental value for a ρAf is 

approximately 1 % of the volume fraction. 
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Figure 3-21. Change of the volume fractions of the fibre with respect the plate 

thickness. 

 

 

Figure 3-22. Change of the volume fractions of the resin respect the plate thickness. 
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3.7 Conclusions 

The variability in composite structures is strongly influenced by all the 

stages in its manufacturing, including the raw materials. In this chapter, the 

sources and effect of variabilities have been exposed.  

In a first stage, the variability of the prepreg plies is studied through the 

measurement of the mass per unit area. In this measurement campaign, several 

sets of information have been obtained during the different campaigns of 

fabrication procedures of composite plates. Also, a more precise method to 

measure the surface of the ply was proposed. The variability of the mass per unit 

area using the two exposed methods gives similar results, both in terms of means 

and variances. Two different lots of material were controlled. The lot L-1 has a 

mean value of 500.7 g∙m-2 with a CV of 1.21 % and the lot L-2 having a mean of 

478.1 % and a CV of 2.25 %. The variability between the different lots of material is 

more important than the variability from one point to another in the same material 

lot.  

However, to project an influence of the variability of the prepregs into the 

cured plate is difficult since the resin flow during the cure cycle is strongly 

dependent on the vacuum bagging products, the cure cycle and the stratification 

employed, as shown by the different quantities of resin lost during the cure cycle 

by changing the conditions of manufacturing and using another material lot. This 

does not inhibit the possibility of quantifying the effects of each change in the 

polymerised structures.  

As a direct effect of the resin loss between batches A and B, there is a 

significant difference in the plate thickness. The plates of batch A have an average 

thickness of 4.60 mm, while the plates of batch B have an average of 5.10 mm. It is 

also found that the composite plates do not have a constant thickness. These 

variations in thickness can affect the ply thickness and thus the local volume 

fractions of fibre.  
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Finally, the values of the plate porosity were obtained for a set of specimens 

by chemical digestion of the resin. It is noteworthy that the obtained values are 

very dependent on the assumed density for the fibre and matrix. It was measured 

that the porosity changes are maybe proportional to the plate thickness, indicating 

that, if the quantity of fibre filaments is constant, the porosities are effectively 

evacuated by the exceeding resin flow of this material. The measured volume 

fractions of porosity are less than 2 %. 
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Chapter 4: Determination and modelling of the 
in-plane local misalignments during 
a manual lay-up procedure of a 
CFRP laminate 

 

 

 

4.1 Introduction 

Variations in fibre orientation have an important impact on the composite 

structure performance [1]. These variations are the result of several factors present 

during the different stages of the structure manufacturing, resulting in global and 

local misalignments. A global misalignment happens when the mean orientation 

of the ply or fibre bundles differs from the intended ply orientation. Local 

misalignments are produced by the periodic undulations present in the prepregs 

and dry preforms [2], as well as the preform manipulation to give shape to the 

composite structure [3].  

Arao [4] suggests that ply misalignment can be assumed to be normally 

distributed with a mean of 0° and a standard deviation of 0.4°. These values have 

been confirmed by an inverse method while comparing a numerical analysis of the 

curvature induced to a composite plate subjected to a moist environment. Two 

values of SD of the fibre orientation, 1° and 0.4° respectively, using a Monte Carlo 

method were assessed. The model results were then compared against 

experimental data. The calculation using a SD 0.4° yielded the best correlation 

against the experimental points even though no actual measurements have been 

performed on the fibres.  

In order to measure the actual fibre orientation in a cured composite, 

Yurgartis [5] proposed a method in which a composite specimen is cut along the 

cross-section in a known angle. By observing the ellipsoidal form of the fibres, it 
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can be calculated the actual fibre misalignment along its intended axis. As a result 

of measuring a carbon/APC-2 composite a mean angle of 3.71° with a standard 

deviation of 0.794° was obtained. However, his method is sensitive to the assumed 

fibre diameter, which must be obtained by observing another cut from the 

composite cross-section perpendicular to the fibre axis. In any case, this method 

can be used to measure the in-plane and out-of-plane misalignment of the fibre 

bundles. Also, in this case there is no indication on the specimen manufacturing 

process. This technique has been used to identify fibre misalignment for pultruded 

composites identifying the number of fibres which present a higher misalignment 

than other fibres bundles in the same section [6]. Olave [7] used this technique to 

quantify the misalignment on woven composites with values of 1.71° and a SD of 

0.69° for a 3K fibres/yarn material and 2.88° with a SD of 1.23° for the 12K 

fibres/yarn material. This technique is used to compare the fibre orientation of flat 

specimen to curved specimen flat formed [8]. In this case, the materials and the 

manufacturing processes are not disclosed.  

The major drawback of this technique is that it requires a quality surface of 

the observed specimen, as well as the resolution and image quality. The variation 

in the fibre orientations must be calculated by the obtained mean of several 

hundreds to thousands of fibres (1.5 million in the case of [6]). Also, since the 

images are taken with microscopes, the measured zones are relatively small, in the 

range of 0.015 mm² to maximum 100 mm² (after assembling 6 624 micrographs), 

compared with the size of an industrial part. In order to overcome these 

drawbacks and reduce the analysis time, Sutcliffe [9–11] proposed the use of a fast 

Fourier transform (FFT) on low resolution images of the cross-sections coupled to 

an autocorrelation function to obtain the mean fibre orientation on a specific zone. 

To measure the orientation of a group of fibres, the use of the FFT coupled with 

filtering techniques means that the quality of the images of the cross-section can be 

lower and thus can be taken by other means than optic microscopy, like X-rays. 

Also, this methodology permits the measurement of the fibre waviness when 

observing the specimen along the fibre axis.  
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These techniques are applied to determine the fibre orientations at the 

cutting plane. To obtain the 3D behaviour of a fibre, a micro tomography 

technique (µCT) has been used [12] where 3D synchrotron tomography images are 

used in composite specimens to determine the local volume fractions and fibre 

orientations in their 3 major axes. The specimens have 1 x 1 mm² cross-section and 

a length of 6 to 10 mm. However the observable length accounts only for 1.43 to 

1.64 mm. In this study, misalignments of fibres were observed to have a 

preferential orientation of 7° with respect of the vertical axis of the sample with 

variations up to 20°.  

As can be seen, all these techniques depend on the specimen size, and 

cutting precision, since all these measurements are referred to the cutting plane of 

the specimen. Also, due to the size of the micrographs, a broad study of a 

composite part would be intensive time and resource consuming, in order to 

determine the actual trends of the orientation variability.  

In order to have a better understanding of the spatial variation of the fibre 

orientation, a set of images of the prepreg are used. Skordos [13] mounted a digital 

camera into a coordinate measuring machine to take a set of photos of a woven 

prepreg. The images covering each 100 mm² must be assembled into a grid. The 

630 images must be assembled to cover a surface of 103 500 mm² (300 x 345 mm). 

Each image is then processed using a FFT and an autocorrelation function was 

used to determine the angle of the warp and weft orientation and as well as the 

length of each unit cell. For the orientations, it was found that the mean warp 

direction was -0.1° with a standard deviation of 0.36°, and for the weft direction 

the orientation was 86.68° with a SD of 0.95°. The same methodology was applied 

by Mesogitis [14] for a ±45 non-crimp fabric (NCF) studying a prepreg using 748 

images over an area of 18 700 mm² (170 x 110 mm). The results yield a standard 

deviation of 1.22° for both directions. The mean in both cases is equal to the 

specified value. In these cases, the analysis time was not indicated. Regardless, 

processing the images with the FFT and the autocorrelation function can take 

several seconds per image. In both cases, only the fibre misalignments on the 
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composite fabric were studied. A great number of images were taken for a single 

layer, supposedly to reduce the image distortion due to the camera lens. Also the 

characteristics of the camera were not disclosed.  

Potter et al. [2,15] identified that the reinforcement of UD prepreg presents 

an undulation in the form of a sinusoidal wave. This effect is due to the fact that 

the composite prepreg is stored in rolls, and thus, there is a difference in length 

between the internal and the external side at the moment of rolling the prepreg 

onto the drum. The sine wave identified has a mean amplitude of 0.03 mm and a 

wavelength of 3 mm. 

In order to have an understanding of the effects caused by the fibre 

misalignment on the composite structure, a Finite Element Model (FEM) is 

proposed here, having these global and local misalignments. The inputs of the 

proposed model are based on the actual configuration of the material. Since the 

values obtained for the misalignment are highly depend on the manufacturing 

process of the composite structure, a methodology is developed to measure the 

actual fibre orientation in the stratification. 

The methodology described focuses on the ply lay-up before the curing of 

the plates and permits not only the evaluation of the local and global 

misalignments of the prepreg plies, it can also be used to assess the accuracy of the 

manufacturing technique to establish a benchmark for other types of lay-up 

techniques, operators and structure shapes. 

 

4.2 Optical analysis and image treatment 

4.2.1 Experimental setup and image treatment description 

A series of images are taken during the manufacturing of composite plates. 

The plates are fabricated by manual stacking of unidirectional plies of a 

carbon/epoxy prepreg. The images are taken by a DSLR camera Canon EOS 550D 

with an EF 50MM/macro lens mounted 1.7 m above the work area (cf. Figure 4-1). 
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The resulting images have a resolution of 5 184 x 3 456 pixels. The relationship 

between the image size and the work area is 6.48 pixels/mm with a pixel aspect 

ratio of 1. The working area includes a reference grid purposely made to lay up 

the composite plate in order to determine the location of defects and reduce the 

distortion in the images (cf. Figure 4-2). The grid dimensions are 700 x 400 mm (or 

4 536 x 2 886 pixels).  

 

Figure 4-1. DSLR Camera mounting on an adapted ceiling panel.  

 

 

Figure 4-2. Working area (reference grid). 

 

The principle of the measurement of ply orientation is based on the line 

detection of the fibre bundles in the surface of the prepreg by means of a Hough 

Adapted ceiling panel  
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transform on the filtered image based on the methodology proposed by 

Shi and Wu [16]. This technique is coupled with a convolution mask to enhance 

the edge detection along the intended fibre direction. The description of the steps 

to obtain the fibre orientation is as follows (cf. Figure 4-3): 

 since the image covers both the composite lay-up and the grid, the core of the 

prepreg must be selected as zone of interest. The boundaries of the plies can 

affect the measurement by disrupting the cut-off ceilings of pixel intensity 

(cf. Figure 4-3a and Figure 4-3b); 

 the images are then segmented into a predefined number of elements where 

the mean orientation is calculated. These elements are not constrained by a 

fixed size nor aspect ratio. This gives more flexibility to the calculation 

(cf. Figure 4-3b); 

 a Laplacian of Gaussian (LOG) kernel is created to enhance the edges created 

by the fibre bundles by filtering the image noise. The LOG filter is coupled 

with a series of compass convolution masks (type Robinson) to further 

filtering the image in the orthogonal directions to the desired orientation. For 

quantifying the misalignment at 0° direction, the convolution masks are 

applied in the +45°, -45° and 90° directions [17] (cf. Figure 4-3c); 

 an edge detection function is then applied to obtain the lines formed by the 

fibres [18] (cf. Figure 4-3d); 

 a Hough transformation is then performed in the resulting image to extract 

the lines following the fibre bundles. The lines obtained by the Hough 

transformation are used to obtain the angle of each fibre bundle. A test is 

performed in order to remove all the lines that have angles which are not 

within a tolerance set for the intended orientation. This is necessary since 

some of the Hugh lines are generated for all the orthogonal directions 0°, 

± 45° and 90°. To prevent abnormal values, a test is implemented to assure 

that the Hough line falls within a 7° tolerance of the intended measurement. 



Determination of the in-plane local 
misalignments of a CFRP laminate 

- 89 - 

For each element, a mean and standard deviation of the Hough lines are 

obtained (cf. Figure 4-3e);  

 the properties of the element are obtained by averaging the value of the 

angles of the Hough lines at each element. It is difficult to determine the real 

uncertainty of the measurement. Besides, the Hough lines can present values 

which are not contained within the expected value due to a lack of clarity in 

certain zones of the image, mostly due to reflection of the light source in the 

prepreg. 

a)  

 

 

b)  

 

c)  

 

d)  

 

e)  

 

Figure 4-3. Fibre orientation measurement in a composite prepreg with, a) laid ply onto 

the work zone, b) detail of an element image, c) the image after the application of the 

LOG filter and convolution masks, d) edge detection and e) Hugh lines along the fibre 

direction. 
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4.2.2 Precision of the measurement and selection of the size and 
number of elements 

The capabilities of the proposed method are tested by using a generated 

pattern at known angle variations. The calibration patterns consist of groups of 

lines oriented in a known angle at 8 different quadrants. The patterns are designed 

to measure very small angle increments (less than 1°) and more significant 

increments up to 3° difference from the intended orientation. Figure 4-4 shows the 

map of the obtained angle variations. For the 0° direction, the measurement is not 

too sensitive, because the lighting conditions make the image fuzzier at these 

orientations. For the 45° orientation, the sensitivity of the measurement is more 

adequate since the measured angles are closer to the predetermined directions.  

Since the measurement is based on the relative position of the start and end 

points for each Hough line along the fibres, the precision of the measurement is 

proportional to the image size. Likewise, the measurement precision changes 

accordingly to the intended direction. The minimum angle that can be measured is 

given by the change of one pixel over the distance between the start and the end 

points of the Hough line along the x or y-directions. Thus, this distance L can be 

either the length or the height of the image. For the 0° and 90° directions the 

minimum resolution is given by the relationship tan- 1(1/L). For the ± 45 directions 

the relationship is tan-1[(L-1)/L]. Figure 4-5 shows the evolution of the angle 

resolutions through the image length. Indeed the lines created by the Hough’s 

function do not cover in any case the total length of the element. It must be 

considered that the value found in each element is the mean value of all Hough 

lines inside each element. 
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Figure 4-4. Precision test on the orientation method by Hough lines comparing the 

theoretical value (written top) to the measured value (written between parentheses), 

each quadrant representing a different mean value with, (top) the 0° orientation and 

(bottom) the 45° orientation.  
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Figure 4-5. Maximum resolution of the determined angle for a single Hough line 

according to the maximum length of the image. 

 

To determine the optimal number of elements in the real images of the laid 

plies, several tests are performed varying the number of elements. Increasing the 

number of elements logically leads to a reduction of the size of the element, and 

thus, affecting the element average orientation since there is a variation in the 

number and length of the Hough lines. For the sake of simplicity, it is chosen that 

the number of vertical elements to be equal to half of the horizontal elements. 

Hence, the total number of elements in which the ply is divided increases by a 

factor of a2/2, being a the number of elements in which the ply is divided 

horizontally (x-direction). As shown in Figure 4-6, the number of Hough lines 

initially increases when increasing the number of elements from 50 to 200. From 

this point, the number of Hough lines decreases. Conversely, the average length of 

the Hough lines decreases with the augmentation of number of the elements. 
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Figure 4-6. Mean number of Hough lines per elements (error bars for ±1 SD from the 

mean value) and its length in function of the number of elements with, (top) a ply 

oriented at 0° and (bottom) a ply oriented at -45°. 

 

Figure 4-7 shows the average ply orientation of all the elements contained 

within a ply. In the case of the ply oriented at 0°, the mean value does not exhibit a 

significant change in value above the 200 elements. There is a 0.3° variation 

passing from 50 elements to 200 elements. On the contrary, the standard deviation 

goes from 0.5 to 1.0°. This means that the dispersion of the orientation has 

increased. It is not clear at this stage if the uncertainty increases due to the increase 

of the length and number of Hough lines, or if it is due to the variability of the 
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fibre orientations. It is evident when increasing the number of elements, the 

standard deviation does not show a significant change. On the contrary, for the -

45° orientation, the mean value varies from -45° to -44.5°. Conversely, the standard 

deviation continues to grow from 0.2° at 50 elements towards 1.2° at 1200 

elements. It seems that the standard deviation increases linearly with the number 

of elements across the length. This indicates an instability created by the Hough 

lines discarded at each element that are not contained between the tolerances set.  

The selection of the number and size of elements depends on the capacity to 

determine a trend in the variation of the fibre orientation along the ply surface. For 

example, an element that is relatively small can contain a single Hough line, in 

which case, its determined value can diverge from the expected values beyond the 

tolerance set in the angle of the fibre. Meanwhile a small number of elements can 

be used to determine a mean orientation with more accuracy, but at the same time, 

neglecting local changes in the fibre orientations. As previously mentioned, this 

method is very dependent on the lighting conditions since the patterns generated 

by the fibres reflect the lights in different directions.  
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Figure 4-7. Mean ply orientation in function the number of elements (error bars for 

a ±1 SD from the mean value) with, (top) a ply oriented at 0° and (bottom) a ply 

oriented at -45°. 

 

A 20 by 10 elements grid (200 elements in total) is chosen as a good 

compromise between the accuracy and the uncertainty of the measurements and 

the localisation of the deviation in the fibre orientations. One of the advantages of 

using the algorithm in 4.2.1 is the possibility of sectioning the image into elements 

having arbitrary sizes and shapes that are not limited to be in function of power of 

2. The dimensions of the elements are approximately 30 x 30 mm. Unfortunately, 

this element size does not allow the identification of small variations in the fibre 
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direction such as the waviness in the fibre. Regardless, this size is more than 

enough to characterise the overall variations in the fibre orientations due to 

in-plane shear forces when laying-up the ply. To accurately determine a localised 

defect, a clear image should be taken with better resolution. However this 

operation can overlook the global misalignment of the fibres.  

The image analysis is not computationally intensive as it can process a large 

quantity of images in relatively short time, even though there must be a careful 

memory management. The time of the calculation is roughly constant per element 

image, therefore, it only depends on the number of analysed images. The 

processing time for each image at full resolution is approximately 40 s using a 

64 bits “Core i3 processor” running at 2.40 GHz and 4 GB in RAM.  

 

4.3 Materials and methods  

The variability of a composite plate is very dependent on the 

manufacturing process, materials and geometry of the structure. The presented 

results are derived from the methodology explained in section 4.2 and are valid 

for the manufactured plates as described below. However, the methodology is still 

valid for other types of material and lay-up techniques.  

A batch of six composite plates are produced by manually stacking the 

unidirectional carbon/epoxy prepreg HexPly® M10.1/38%/UD300/CHS, 

furnished by Hexcel Composites. The dimensions of the manufactured plates are 

615 mm long and 300 mm wide. The 16 ply stratification is chosen to be 

quasi-isotropic with the lay-up sequence [90/-45/0/(+45)2/0/-45/90]s. The plates 

are cured in an autoclave using the recommended cure cycle, with a consolidation 

dwell at 90°C for 15 minutes and a cure dwell at 120°C for 120 minutes. The 

heating and cooling rates were set to 2 °C min-1. The consolidation pressure and 

curing pressure are set to 2 and 5 bar, respectively.  
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The procedure to form a composite plate starts with cutting the prepreg 

plies from a roll of the prepreg M10.1/38%/UD300/CHS. The size of the plies is 

given by the dimensions of the composite plates, 615 x 300 mm. The plies are cut 

following a pattern designed to reduce material waste. Some of the plies need to 

be assembled from two or more pieces increasing the probability of a change of 

the fibre direction within a single ply. After the preform cut, the ply lay-up is done 

manually by two operators. Each operator is placed at one side of the work zone 

and holds the composite plies at his (her) own side. All the composite plates were 

laid by the same operators using the same technique to reduce operator induced 

variability. The plate must be moved from the working area after the placement of 

8 plies to the debulking area to remove the entrapped air ensuring a better contact 

between the plies prior to the curing phase. The replacement at the exact position 

of the composite plate on the work zone after the debulking operation cannot be 

assured. Thus, the lay-up must be self-referenced at any moment during the 

fabrication in order to have a common reference for all the 16 plies forming each 

single plate. The first ply (oriented at 90°) is 10 mm larger than the rest of the plies, 

having dimensions of 625 x 310 mm. Plies 2 to 16 are then referenced to this ply 

#1. 

An image of each ply is then taken after it is laid onto its position for all six 

manufactured plates. The optics of the DSLR camera and its relative positioning to 

the work zone generate optical distortions (barrel and perspective) on the acquired 

images. To reduce the error in the fibre orientation measurement, DxO Optics Pro® 

commercial software was used to reduce these distortions before the analysis of 

the images. After a correction of the images, these are then treated in an in-house 

program to determine the orientation angles of each ply described in section 4.2. 
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4.4 Results analysis of the optical measurements 

4.4.1 Overall ply misalignment 

During the lay-up procedure, the complete stratification can be moved from 

its starting position, mostly due to transporting the lay-up to the debulking area 

after the placement of 8 plies. In order to determine the true orientation of all the 

plies with respect to the composite plate, all the measurements are referenced to 

the first ply which is 10 mm longer than the rest of the plies in order to be visible 

in all the images taken of the lay-up procedure. Figure 4-8 shows the differences 

between the actual ply orientation and its theoretical orientation, the dashed lines 

show the mean squares linear fit for each plate. For plates C-11 through C-22 these 

differences range between -0.5° to 0.5°. The standard deviation of the ply 

misalignment ranges from 0.34 to 0.41° for each plate. As it is shown in the figure, 

the overall misalignment is shifted towards a positive angle. This effect is more 

noticeable in the plate C-23. However, for the rest of the plates this derive is not 

significant and no correlation was found between the ply theoretical orientation 

and its measured misalignment. 

 

 

Figure 4-8. Difference between the theoretical orientation and the measured orientation 

in the ply. 
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To ensure that the values are valid and representative, the misalignments 

are verified by manual measurements of the ply orientation. This procedure is 

performed by manually tracing a line following the fibre lines [19]. The 

comparison between the manual and the automatic procedure yields the same 

results. The dispersion compared to the manual measurements is negligible with a 

difference lower than 0.2°. The global differences between the intended orientation 

and the measured fibre directions are lower than the expected values. The 

obtained values are lower than the values reported by Yurgartis [5] and Olave [7], 

and are in good agreement with the values obtained by Skordos [13].  

The low value of ply misalignment is partly due to the size of the ply, since 

a misplacement of 10 mm in a 600 mm long ply is noticeable. This ratio of 1 to 60 is 

roughly 1° of difference. Nevertheless in much smaller plies, the global 

misalignment could be more significant, since the errors in the ply positioning are 

less noticeable [20].  

This characterisation is proper to our own lay-up technique. The zones with 

internal variability can exhibit more significant changes than the global 

misalignments of each ply compared to its mean and theoretical orientation. 

Nevertheless the local changes in the fibre direction cannot be described by this 

technique. 

 

4.4.2 Local misalignments 

To evaluate the internal dispersions of the composite plate, the standard 

deviation of the ply angles is determined by 200 elements. At first sight, the most 

deformed plies are the 0° plies with a mean of 1.02°. The least scattered ply 

undulations are for the ± 45° orientations. However, plies oriented at 0° and 90° 

exhibit a large number of elements to be discarded since any of the Hough lines of 

the element falls within the imposed tolerance. In average, 48 elements for the 0° 

direction and 19 elements for the 90° orientation are thus discarded. For both of 

± 45° directions, none of the elements have been discarded. Another effect that 
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must be taken into account is that the elements surrounding the discarded 

elements exhibit a significant dispersion in the measured orientation, while the 

elements in the core of the plate have the narrowest range of values closer to the 

mean ply orientation (cf. Figure 4-9).  

For the plies oriented at 0°, the highest variations are found on the left hand 

and upper part of the ply. This is not explained by the internal variation of the 

fibre bundles, but by the lighting conditions. Since having the objective of the 

camera and the light source in a fixed position, the reflecting light and shadows in 

the composite rend these zones unable to determine the fibre direction. The few 

elements that can be measured exhibit great uncertainties. This effect is not found 

in the other directions. Nevertheless, the central zone and right hand side corner 

are not affected and exhibit the least variability of the ply. This effect is thought to 

be the same for all the plates of the same type. This is due to the architecture of the 

0° plies. Since they are more rigid than the other preform cuts in the other 

directions, hence they have better support for handling and placing onto the lay-

up structure. 

Plies oriented at ± 45° shows a greater variability at the corners of the ply. 

For the +45° the variations are more significant in the lower left and the upper 

right hand side corners. It could be thought that the variations are more 

predominant in the upper left and lower right hand side corners since the fibres at 

the corner are shortened towards the corner. Also these fibres are more prone to 

being deformed during the lay-up sequence.  

For the plies oriented at 90°, it is more difficult to define a zone that exhibits 

more variability since the preforms have a very low transverse rigidity compared 

to the plies oriented at 0°. Also, the nature of the ply cutting implies the use of 

strips of composite prepreg laid side by side.  
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Figure 4-9. Orientation maps of 4 different plies from plate C-11 oriented, from top to 

bottom 0°, +45°, -45° and 90° respectively. 
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The measurements of the local misalignments within a ply (due to the 

juxtaposition of prepreg strips) are strongly correlated to the ply orientations. A 0° 

orientation offers the largest stiffness and best support along the fibres. Thus, it is 

more difficult to deform while performing the lay-up. By contrast, the ± 45° 

directions offer the least support and are more prone to deformation due to the 

manipulation of the prepreg. This is more evident in the corners of the ply or in 

zones where there is juxtaposition of two or more ply strips. 

 

4.5 Modelling the fibre misalignments 

4.5.1 General description of the mathematical model  

In order to evaluate the effects of the variability of fibre orientation θ in a 

composite part, the fibre misalignments are introduced into a finite element (FE) 

model as the sum of three different scales (cf. eq. 4-1). The first scale is the mean 

ply misalignment δθ which is the average deviation for all the plies from the 

theoretical ply orientation θth (“th” for theoretical). The second scale is the local 

variability due to the deformation θpert (“pert” for perturbation), and finally, a 

continuous variability produced by the fibre in-plane undulations θwav (“wav” for 

waviness). 

       yxkyx pertthkwavkthkk ,,     (4-1) 

 

The global ply misalignment values are obtained in section 4.4. While the 

local continuous undulations are obtained from the literature, the undulation in 

form of a sinusoidal wave has a mean amplitude of 0.03 mm and a mean 

wavelength of 3 mm being its extreme values found between 2.2 and 4 mm [2,15].  

To model the in-ply fibre orientations observing a continuity in the 

orientation values, the local variation of the misalignment can be described as a 

sum of ith pseudo-Gaussian surfaces (cf. eq. 4-2 and Figure 4-10), having a central 

point with coordinates Xi and Yi, the length and the width of each perturbation is 

described by the parameters αi and βi, homologues to the standard deviation in a 
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normal distribution. The amplitude of this perturbation is controlled by the 

parameter Bi. This set of equations allows the modelling of a continuous change in 

the fibre orientation properties [21].  
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Figure 4-10. Schematic description by a pseudo-Gaussian surface (on right) of a 

localized zone of fibre orientation perturbation (on left). 

 

4.5.2 Data set analysis for the continuous misalignment  

To obtain the values of the representative peaks of the perturbation that 

define the fibre misalignment, an optimisation algorithm is applied to the 

amplitude, position and shape of the perturbations. This algorithm is performed 

by minimizing the values of the function in eq. 4-2 under a series of constraints 

(minimum and maximum limits) of the variables in this function. In this case, 12 

peaks have been chosen in a trade off or matching the original pattern, the 

calculation time and convergence of the algorithm. The computation time is 

between 60 to 80 seconds for each ply in a CPU with the characteristics explained 

in section 4.2.  

Before applying the detection algorithm, the mean value of the ply 

orientation is subtracted from the elements in order to consider only the local 



 
Chapter 4 

- 104 - 

misalignments. The centre of the ith perturbation can be located anywhere between 

-60 and 660 mm in the x-direction and -60 and 360 mm in the y-direction. The 

placement of the centre of the perturbation can be outside the plate since a part of 

it can be modelled. The size of the perturbations αi and βi are set between +30 and 

210 mm. The perturbation amplitude is maintained between -1 and 1 mm. The 

reconstructed surface using the values found by the optimisation algorithm is 

shown in Figure 4-11 as an example. In this example, the extreme values are not 

correctly predicted by the optimisation algorithm. Nonetheless, these extreme 

values can be a result of errors of the image processing. The shape of the surfaces 

is however in good agreement with the experimental data.  
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Figure 4-11. Comparison of the misalignment maps for the plate C-11 ply #15 oriented 

at -45° with, (top) the measurements and (bottom) the ply reconstructed using the 

identification algorithm. 

 

The generation of a data set to produce a digital fibre misalignment using 

equation 4-2 is challenging since there is an interaction between the different 

variables. Also, the in-ply misalignment is the product of pre-existing local 

prepreg misalignments coupled with its manipulation during the cutting and 

lay-up phases. Zones that exhibit a larger variability can be identified, for 

example, on the ply corners, where the fibres have less support from the 

contiguous prepreg. The mathematical interpretation of these local misalignments 
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is thus produced by the interdependency of five variables: the amplitude of the 

perturbation that can be either positive or negative, the position of the 

perturbation and the shape of the perturbation, both parameters varying in two 

dimensions. To keep the calculation and analysis of the identification results as 

simple as possible, the shape of the perturbation is only considered for its major 

and minor axis with no rotation with respect to the z-axis.  

The values of Bi are obtained by the identification algorithm, ranging from 

-0.800 to 1.000 mm. A gap in the values near the amplitude of 0 mm is found 

(cf. Figure 4-12). Nevertheless, these values are not important since the variation of 

the peak is small. The values are found in the negative side ranges from -0.800 to 

-0.106 mm and in the positive side from 0.173 to 1.000 mm. Additionally, 44 % of 

the values are negative and 56 % positive.  

To draw the amplitudes, both negative and positive values are brought into 

a continuous distribution by removing the gap between the highest negative value 

and the lowest positive value. The continuous distribution of Bi has a mean of 

0.049° and a standard deviation of 0.340°. A normal distribution is used to draw 

the amplitude values. The amplitude Bi gap is restored by subtracting 0.106 mm if 

the drawn value is less than or equal to 0, or adding 0.173 mm if the draw value is 

greater than 0. If after restoring the gap, the amplitude Bi is less than -0.800 mm or 

greater than 1.000 mm, the value of Bi is substituted by its corresponding limit.  
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Figure 4-12. Cumulative distribution function of the Amplitude Bi acquired by the 

optimisation algorithm. 

 

The amplitudes αi and βi are generated independently, and are drawn from 

a uniform distribution with its limits ranging from 30 to 210 mm. The data are 

chosen from 46 different plies.  

The positions of the centre of each perturbation are also drawn from a 

uniform distribution. Since the original identification algorithm accounts for a 

perturbation that has its maximum value outside the plate, with limits ranging 

from -30 to 660 mm in the x-direction and from -60 to 360 mm in the y-direction. 

To avoid the superposition of two peaks, a minimum distance between the centres 

of each peak of d = 15.6 mm is introduced for the generation of the digital 

perturbations, which is coherent with the experimental results. To achieve this 

condition, a first peak is generated inside the boundaries of the composite plate 

(within a range of 60 to 540 mm in the x-direction and 60 to 240 mm in the 

y-direction). After the insertion of the next peak, the minimum distance is 

calculated between all the existing points. This cycle is continued if the distance is 

less than the cut of distance d = 15.6 mm. 12 peaks are considered to be spread 

over a surface of 500 x 800 mm (the plate dimensions plus the overrun area to 

accommodate a peak external to the plate). In this analysis, the number of peaks is 
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chosen as a compromise between the accuracy of the mathematical representation 

and computation time.  

 

4.6 Generation of a digital misalignment  

The main goal of the procedure is to create a data set that will be introduced 

into a finite element model to take into account the variability in fibre orientations. 

Using the recompiled data from sections 4.4 and 4.5, the fibre orientations are 

generated using the proposed algorithms. The reconstructed misalignment using 

the variables from the identification algorithm shows that the mean in all the cases 

is zero, as shown in the cumulative distribution function (CDF) of the analysed 

plies (cf. Figure 4-13). On the contrary, the generated misalignments have a 

different distribution with a minimum mean value of -0.5° and a maximum mean 

value of 0.8°. This means that the algorithm to generate the different sets of values 

is not optimised. The CDF of the standard deviation of the ply misalignment 

within a ply exhibits a similar value, even though the CDFs do not completely 

match. This mismatch is due to the random generation of the pair of values. 

However for modelling the fibre orientation, the difference between the standard 

deviation CDF for experimental data and for generated data is not significant. 

Since the mean ply orientation is introduced into the model as an independent 

variable (cf. eq. 4-1), the generated misalignments can be forced to have a 

zero-mean orientation by subtracting its own mean. This procedure does not 

impact the standard deviation of the ply misalignment but only the maximum and 

minimum misalignments, as shown in Figure 4-14. A gap between the CDF for the 

original values and the generated values is observed. Also the shapes of the 

distributions do not match. Nevertheless after subtracting the mean value from the 

obtained misalignment, the maximum and minimum misalignments are in better 

agreement with the experimental distribution at the exception of the tails of the 

distributions.  
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Figure 4-13. Cumulative distribution functions for the reconstructed misalignment 

using equation 5-2 (square markings) compared to experimental data (diamond 

markings) with, (top) the mean misalignment and (bottom) the standard deviation of 

the in-ply misalignment. 
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Figure 4-14. Cumulative distribution functions for the reconstructed misalignment 

using equation 5-2 (square markings), corrected for a zero mean (cross markings) 

compared to experimental data (diamond markings) with (top) the maximum values 

and (bottom) the minimum values. 

 

This methodology can be used to draw different sampling for Monte Carlo 

simulations. Figure 4-15 shows the location and the amplitude Bi for the 12 peaks 

randomly generated within the imposed restrictions. The reconstructed 

misalignments (cf. Figure 4-16) show lower in-plane variability than the rest of the 

studied plate, with values ranging from 1° to -0.5°. The resulting misalignment 

map can be further optimised to obtain values closer to the reality. Regardless, as a 
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first approach to model the local change in the fibre orientation accounting for a 

spatial variability the results are encouraging. 

 

Figure 4-15. Localisation and amplitude of the 12 perturbation peaks used to generate 

digital in-plane misalignments, the diameter of the circles indicating the values of the 

amplitudes Bi in degrees.  
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Figure 4-16. Map of the generated in-plane fibre misalignment with the size of the 

element of 30 x 30 mm. 
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4.7 Conclusions 

The variability in the fibre orientation was measured on the uncured 

prepreg during the lay-up procedure of a composite plate. The orientations are 

assumed to be unchanged during the curing phase of the composite material. 

However, this hypothesis cannot be proven, since the determination of actual fibre 

orientation after curing involves destructive techniques to measure the fibre in the 

composite cross-sections.  

An optical method has been proposed using the Hough transform in order 

to detect the fibre orientation using images of the complete ply (600 x 300 mm). 

The method yields good results in terms of calculation time and overall 

misalignments. The use of the Hough transform allows the selection of any 

arbitrary element size. In our case, the selected elements size is approximately 

30 x 30 mm.  

The variation in the mean ply orientation is found lower than the expected 

values, ranging from -0.5 to 0.5°. The standard deviations for the overall 

misalignment within the 16 plies lead to stratification ranges between 0.34 and 

0.41°. No correlation was found between the overall ply misalignment and the 

intended orientation of such ply. An increasing misalignment is noted through the 

lay-up sequence. 

A model was proposed for the fibre misalignments where the fibre 

misalignment is due to the overall ply misalignment, the local perturbations 

formed during the prepreg manipulation and the fibre periodic undulations. The 

values of fibre orientations will be used in a finite element model with the 

inclusion of variability. 

An identification algorithm of the local perturbations is also proposed, in 

which the geometrical parameters of a pseudo-Gaussian surface are obtained. 

Using these parameters, a model of local perturbations is provided. The resulting 

misalignments have the same behaviour as the real ply.  
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Chapter 5: Spatial evolution of the variability of 
ply thickness over a CFRP laminated 
structure 

 

 

 

5.1 Introduction 

For design purposes, the structure thickness is given by the sum of the ply 

thicknesses that form the laminate, or alternatively the thicknesses of the plies are 

obtained by dividing the total structure thickness by the number of plies of the 

given stratification. The thickness of the structure is thus considered as constant 

and equal for all plies, provided that there is not a change of the geometry of the 

cross-section and stratification [1]. In reality, each ply in the stratification does not 

present a constant thickness (cf. Figure 5-1).  

 

 

Figure 5-1. Micrograph showing the ply thickness variations spread over a layered 

composite plate. 
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The effects of the ply thickness variations have been studied in the literature 

as localized defects, like wrinkles and warpings [2,3], on thickness variations in 

the singular zone like L-shaped stringers due to manufacturing conditions [4]. 

However, there are few publications that address the representation of thickness 

variations spread over a laminated structures. Collombet et al. [5] reported for a 

28-ply M21/T700 carbon/epoxy laminate a mean ply thickness of 0.264 mm with a 

standard deviation of 0.002 mm, with extreme values of 0.258 and 0.270 mm. 

However, the determination of the ply thickness was performed through the 

measurement of the laminate thickness. A further inspection of the cross section of 

the specimens revealed that the ply thicknesses deviated up to 21 % from the 

mean ply thickness, with extreme values of 0.245 and 0.314 mm.  

As explained, the composite structure cannot be dissociated from its 

manufacturing conditions. The volume fractions of fibres and porosities are 

directly linked to the stratification of the composite, the nature of the raw 

materials and the curing cycle [6, 7]. These changes in the volume fraction can be a 

source of warpages for thin laminates (global on the scale of the plate and spread 

on the scale of the plies) [9]. However, a link between the thickness evolution and 

the spatial distribution of the mechanical properties in a composite structure is 

another challenge that adds a new layer of complexity that goes beyond the scope 

of this study. 

Daniel et al. [8, 9] have studied the effects of the fibre waviness on thick 

unidirectional stratifications (up to 150 plies) generated by local and periodic 

perturbations in the stratification. The proposed method calls for a modification in 

the compliance matrix by adding an out-of-plane component to the fibre 

orientation. Nonetheless the problem is treated as a local effect related to a defect 

present in the material.  

During the computational analysis of a composite structure, the magnitude 

of the ply thickness is changed for a unique value at each simulation for all the 

elements [10,11]. Conversely in the literature, no methodology was found that 
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accounts for the local changes spread over the composite structure applied to 

multidirectional laminates fabricated with UD prepregs. 

The aim of this chapter is to propose a modelling strategy which will be 

used to generate the input parameters of a finite element model based on the 

reality of the material. A set of digital lay-ups containing the variations of the plate 

and ply thicknesses is proposed. The main and original contribution of this work 

is the introduction of a concept of spatial continuity on the ply thickness variation. 

The main model parameters are obtained by using a discrete Fourier transform 

(DFT) of the ply thickness profiles of a real composite plate. The generation of a 

digital lay-up is not done using only a random ply thickness generator, but by 

proposing a mathematical model based on the actual ply profile. This 

mathematical model contains parameters that can be modified to generate 

different digital lay-ups at each simulation while maintaining similar values of 

dispersion to the original plate.  

To retrieve the required information needed for the numerical model, the 

cross-section of a 16-ply composite plate is analysed to obtain, not only the 

dispersion in plies and plate thicknesses, but the real profiles of the thicknesses of 

the plies spread over the plate. 

 

5.2 Materials  

The study focuses on composite plates with a constant number of plies and 

cross sections, without additional structural features, e.g. ply drop-offs. As 

presented in Chapter 3, we recall that the composite plates are produced by 

manually stacking a unidirectional carbon/epoxy prepreg HexPly® 

M10.1/38%/UD300/CHS, supplied by Hexcel Composites. The dimensions of the 

manufactured plates are 615 mm long and 300 mm wide. The 16 ply stratification 

is chosen to be quasi-isotropic with the lay-up sequence 

[90/-45/0/(+45)2/0/-45/90]s. The plates were cured in an autoclave using the 

recommended cure cycle, with a consolidation dwell at 90 °C for 15 minutes and a 
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cure dwell at 120 °C for 120 minutes. The heating and cooling rates were set to 

2 °C min-1. The consolidation pressure and curing pressure were 2 and 5 bar for 

each plateau.  

The ply thickness is measured on the cross-section of two different sets of 

specimens obtained from the cured composite structure. The first set is devoted to 

the statistical control of the variability in the ply thicknesses regardless of the 

position along the width (x-coordinate) of the specimen. The second set is 

dedicated to the determination of a mathematical model of the ply variability 

maintaining a continuity of the measurement variation over the plate. All the 

specimens were cut from the composite plates using a cutting disc. The surface of 

the cross-sections was prepared by grinding the surface with abrasive paper, 

followed by surface polishing. Figure 5-1 shows the cross-section of the 16 ply 

laminate exhibiting variability in the ply thicknesses. Due to the lay-up sequence, 

the pairs of plies 4/5, 8/9 and 12/13 cannot be distinguished individually because 

the inter-ply of the cured M10.1/38%/UD300/CHS is almost non-existent. For 

their analysis, the thickness of these dual plies was divided by two. 

 

5.3 Variability of ply thicknesses 

5.3.1 Variation in the mean ply thickness 

The ply thickness is measured using the micrographs taken from the 

composite cross-section. An initial set of four specimens of 130 mm long and 

20 mm wide was obtained from one of the cured plates. After polishing the 

cross-section to reveal the stratification, a DSLR camera Canon 550D with an 

EF-100mm macro lens was used to record the micrographs of the cross-section of 

the specimens. The image resolution is 150 pixels/mm. The ply thicknesses were 

measured at 12 different locations in each specimen, for a total of 48 measuring 

points per ply, considering all 4 specimens.  
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Figure 5-2 shows the distribution of the ply mean thicknesses with ± 1 

standard deviation. As seen in the figure, the mean thicknesses are randomly 

distributed along the cross-section of the composite plate. It is also shown that the 

variability of each ply is different and it is uncorrelated to its position within the 

stratification. The measurements of the cross section reveal that the thicknesses of 

the plies have coefficients of variation (CV) ranging from 5 % to 11 %. The extreme 

values are 0.247 and 0.366 mm, which deviate 17 and 22 % respectively from the 

mean ply thickness which is 0.300 mm. By comparison, the mean thickness of the 

plate is 4.789 mm with a CV of 1.7 %. This apparent mismatch between the 

variability of the ply thicknesses and the variation plate is due to the coupling of 

the local thickening or thinning of the adjacent plies as seen in Table 5-1. 

 

 

Figure 5-2. Mean ply thicknesses listed for each of the 16 plies ± 1 standard deviation, 

the measured thickness divided by 2 for the pair of plies 4/5, 8/9 and 12/13. 

 

Table 5-1. Thickness comparison between the ply and the plate averages. 

Data 
Mean ply 
(all plies) 

Plate 

Average thickness (mm) 0.300 4.789 

Standard deviation (mm) 0.027 0.081 

CV of the ply mean thickness (%) 8.9 1.7 
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Since the measurements were taken at irregular intervals, the variability of 

the thicknesses is only expressed by the mean values and standard deviations of 

the ply thicknesses. However, by observing the cross section of the composite, it is 

evident that there is a continuity in the variation of the ply thicknesses in the form 

of waviness spread over the plate. It is also clear that a statistical description of the 

ply thickness is not enough to describe entirely its behaviour, hence the necessity 

to consider the spatial evolution of the thickness profiles through the length of the 

specimen. 

 

5.3.2 Evolution of the ply thickness profile  

To study the spatial evolution of the thickness variation, a single specimen 

of 45 x 45 mm was obtained from one of the manufactured plates. The dimensions 

of the specimen permit a better handling during the preparation of the 

cross-section of the composite plate by placing the specimen on the mounting 

resin. A set of micrographs of the cross-section was taken with a Dino-Lite® optical 

microscope. The micrographs are 1600 x 1200 pixels and have a resolution of 

161 pixels/mm. Even though the image resolution is similar to that obtained with 

the DSLR camera, this method is preferred since images taken with the microscope 

exhibit a lower distortion than the images captured with the DSLR camera. In 

addition, the images have lower noise and lower compression improving the 

quality of the visible ply interfaces. 

Each micrograph covers approximately only 7 mm of the length of the 

specimen. To determine the spatial evolution of the ply thicknesses in a long 

continuous section avoiding duplicated points on the interface of the plies, the 

micrographs were assembled into a single image containing the full length of the 

specimen. In the assembled image, the plies were delimited by a manual selection 

of the points along the ply interface. A grid on top of the image was used as 

reference to roughly control the number of points and their spacing. 

Approximately 220 points were selected for each interface. Nevertheless, these 
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points were still placed at irregular intervals along the x-axis. To obtain the ply 

thickness profile, it is necessary to subtract the z-coordinates of the lower and 

upper interfaces of said ply at the same x-coordinate. To achieve this, the 

coordinates of the selected points were interpolated into a regular mesh consisting 

of 1024 points along the x-axis. Figure 5-3 shows the ply boundaries delimited by 

the upper and lower interfaces, while Figure 5-4 shows the resulting thickness 

profile. The uncertainty of the ply thickness measurement technique is determined 

to be ± 0.013 mm.  

 

 

Figure 5-3. Profiles for the #2 and #3 interfaces delimiting the #2 ply, the crosses 

showing the selection points along the ply interface, while the continuous lines 

showing the interpolated interfaces. 

 

Using the 45 x 45 mm specimen, the profile of the ply #2 was determined. 

This ply exhibits a mean thickness of 0.309 mm with a CV of 5.31 %. In this case, 

both the mean and the CV are calculated by using a sample of 1024 measurement 

points. It is important to mention that the difference between the maximum and 

minimum values is 0.097 mm. This difference is approximately 1/3rd of the mean 

ply thickness.  
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As mentioned in section 5.3, it is apparent that the variation of the plate and 

variation of the ply thicknesses have no correlation between each other. However, 

by tracing a least squares linear fit of the thickness profile of a single ply it t is 

shown that the slope is not aligned with the mean thickness (cf. Figure 5-4). 

By comparing the slopes of the linear fits of the ply profiles to the one of the 

plate, the slopes of the linear fits follow the same direction (cf. Figure 5-5). As 

expected the sum of the least squares slopes of the plies is equal to the slope of the 

plate profile. Indeed, the variation of the overall plate thickness contributes with a 

certain variation for each ply thickness profiles. This contribution can be expressed 

in the form of a function δtplate(x). 

 

 

Figure 5-4. Thickness profile for the #2 ply and the least squares linear fit (dashed line) 

and the mean thickness fit (dashed horizontal line). 
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Figure 5-5. Profile of the plate thickness. 

5.4 Modelling the ply thicknesses profile for use in a FE 
model 

5.4.1 Formulation of the mathematical law of the thickness 
profile 

We have to keep in mind that the measured ply variability is used to feed a 

finite element (FE) model to test different material configurations and loading 

scenarios by means of a Multi-Instrumented Technological Evaluator [12]. The FE 

model is required to be robust and light-weight, since the principle of modelling is 

based on Monte Carlo simulations (MCS). The intended FE program is SAMCEF® 

using two-dimensional Mindlin shell elements. This type of element is chosen 

since the ply thickness can be controlled locally for each element. 

As explained, the ply thicknesses exhibit variability in the order of 5 to 15 % 

of their mean thicknesses. Likewise, the overall plate thickness has variations 

which are up to 2 % of the mean plate thickness. Therefore a special control of the 

coupling of the thicknesses at any given point in the plate must be followed in 

order to keep within this restriction. One solution to model the composite is to 

assign a random thickness to each element of the plate for each ply. However, to 

comply with the imposed restrictions it should be verified that the adjacent 
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elements thicknesses are maintained within certain limits. By randomly assigning 

the thickness to each element, the continuity of the ply is not completely assured. 

Also, to comply with these restrictions, computationally intensive algorithms are 

necessary. 

To overcome this limitation, from Figure 1 and Figure 5-4, it is seen that the 

ply thickness profiles exhibit a wave shape with different frequencies. This signal 

can be decomposed into its basic frequencies and then reconstructed by the 

summation of sinusoids of different frequencies and amplitudes. Thus, a digital 

stratification can be generated by the use of a representative set of frequencies 

based on the measurements performed on the composite cross-section. The 

parameters of the digital lay-up can be adapted to reach values of ply variability 

similar to the real plies, while having a precise control on the shape of plate 

thickness. The proposed model is as follows: 
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where tk(x) is the evolution of the thickness of the kth ply through x, t̄k is the mean 

thickness of the kth ply, Ai is the amplitude of the corresponding wavelength λi (or 

the inverse of the frequency fi -1) of the ith peak, δtplate(x) is the contribution of the 

thickness variation of the plate on the ply mean thicknesses. In other words, 

δtplate(x) is the desired plate profile divided by the number of N plies (cf. Chapter 3, 

eq. 3-7 for a bidirectional representation).  

To plate thickness profile is effectively controlled by the expression δtplate(x), 

it is necessary to assure the coupling of the variability of the different plies using a 

pseudo random phase shift k,i. The phase shift ranges from –π to π for each ith 

sinusoid. To maintain a constant plate thickness profile, the sum of the kth ply 

phases must be equal for all the ith sinusoids: 
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To achieve this condition, the phase shift is obtained with:  
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where ik ,  is a vector containing the kth ply numbers randomly shifted for each ith 

frequency peaks.  

Indeed, the use of different phase shifts for each frequency peak assigned 

by equation 5-3 permits the generation of a broad number of stratifications 

maintaining the plate shape and, at the same time, the ply profiles will be different 

while maintaining similar levels of variability. 

5.4.2 Determination of the representative frequency peaks 

The inputs of the proposed model in equation 5-1 are the representative 

frequencies of the composite ply thickness profiles. To determine the ith frequency 

peaks representative of the measured composite plate, a discrete Fourier transform 

(DFT) is performed on the thickness profiles. In order to apply the DFT, it is 

necessary to keep the mean value of the thickness profile at 0 mm. In this step, the 

plate thickness contribution to the ply profile (cf. Figure 5-4) is taken into account 

to avoid spurious frequency peaks at the low frequencies of the spectrum. These 

values, represented by the function δtplate(x) will be restored when generating the 

digital stratification. The high frequencies in the spectrum are attributed mostly to 

the selection of points at the ply interfaces, indicated by the serrated shape of the 

thickness profile. 
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Figure 5-6. Zero mean thickness profile of the #2 ply before and after the application of 

a low pass filter with a cut-off frequency of 1 Hz. 

 

A low pass Butterworth filter is used to remove the frequencies higher than 

1 mm-1 present in the thickness profile (cf. Figure 5-6) since these frequencies are 

in the range of uncertainty of the point selection at the ply interface. The mean 

thickness values do not show any difference between the filtered and unfiltered 

data after the application of the low pass filter. However, the standard deviation 

of the thickness is reduced from 0.0191 mm to 0.0169 mm. This means that the CV 

of the filtered thickness shows an average reduction of 0.8 % compared to the 

original CV of 6.6 %. The same procedure is applied to the plate profile with no 

change of the mean and standard deviation of the plate thickness. The reduction of 

variability of the plies has little impact on the main properties since this value is 

still 2.5 to 4 times greater than the variability of the plate thickness. 

Using the DFT spectrum of the ply thickness profile (cf. Figure 5-7), the 

representative frequency peaks for each ply are manually selected. The proposed 

element size of the FEA model is 1 mm. The element size is chosen as a 

compromise between the fineness of the mesh and the number of the elements in 

the model. Hence, the effect of the thickness variations of peaks having a 

wavelength lower than 2 mm, corresponding to frequencies higher than 0.5 mm-1, 

are not considered. Likewise, the peaks that show amplitudes lower than 
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0.0035 mm are not taken into account in order to keep a consistent number of 

peaks through all the plies. This is also done to neglect the impact of the resolution 

of the image in the selection of the points and to distinguish between the main 

lobes and the side lobes in the DFT spectra.  

 

 

Figure 5-7. Amplitude spectrum of the thickness profile of #2 ply with selected 

frequency peaks. 

 

The number of peak frequencies selected from the DFT spectra is different 

for each ply (cf. Figure 5-8) along with their pairing of frequencies and amplitudes. 

The relationship between the number of peaks, frequencies and amplitudes for 

each ply, as well as their position on the composite plate is not yet understood. 

The necessity to propose a solution that takes into consideration the number of 

variables involved is difficult as the relationship between the frequency and its 

associated amplitude does not generate any clear trend (cf. Figure 5-8).  
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Figure 5-8. Distribution of the number of peaks per ply (top) and amplitude 

distribution in function of the frequency peaks (bottom) with the double plies 4/5, 8/9 

and 12/13 considered as single plies. 

 

To overcome this problem, a new set of frequency peaks can be generated 

using the acquired data as an input base for a pseudo random amplitude spectrum 

generator. The complete spectra are divided into ten frequency bands of 0.05 mm-1 

each from 0 to 0.50 mm-1 (cf. Figure 5-8). A pair of values (frequency and 

amplitude) is selected within each frequency band. Table 5-2 shows the range of 

values of frequency and amplitude that are used to generate the digital 

stratification. Double plies 4/5, 8/9 and 12/13 are listed once since there is only 
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one profile for each pair of plies. To form the peaks that constitute the digital 

lay-up, the spectrum generator operates as follows: 

1. a single peak is generated from each of the 10 frequency bands; 

2. not all the plies have peaks contained within certain frequency bands. Only 

the first two frequency bands contain the spectral peaks for all the plies. The 

peaks in each band of frequency are generated according to their probability 

of appearance. The probability of appearance for the rest of the peaks goes 

from 30 to 90 %. More than one peak can appear within a frequency band, 

but at this time this effect is not considered in order to maintain a consistent 

number of peaks; 

3. the correlation between the frequency and amplitude was not found, both 

magnitudes are generated independently; 

4. to select the probability distribution to draw the frequency peaks, a 

goodness-of-fit test was applied to the set of points contained in each band. 

The tested distributions are the normal distribution and the uniform 

distribution. The Kolmogorov-Smirnov (KS) test confirms the null hypothesis 

that the values, from each frequency band, come from an either uniform or 

normal distributions (p-values>0.05). A uniform distribution is preferred for 

the frequency since the points seem to be continuously distributed without 

any noticeable agglomeration. For each frequency band, Table 5-2 shows the 

values of the lower bound a and upper bound b; 

5. to ensure that the frequencies from adjacent bands are not superposed, a 

minimum distance between the peaks D= 0.023 mm-1 is introduced. This 

value represents the absolute minimum distance measured between the 

identified frequencies per ply; 

6. The KS test is also applied to the amplitude values contained within each 

band for normal and uniform distributions. In this case, the null hypothesis 

that these values come from a uniform distribution is rejected 

(p-values<0.05). On the contrary, the null hypothesis for a normal 
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distribution is maintained. Table 5-2 shows the amplitude mean x̄ and 

standard deviation s for each ith peak.  

 

5.5 Generation of a digital stratification 

5.5.1 Digital profile 

The values expressed in Table 5-2 are used to generate a digital set of 

variables which will be used to reconstruct a lay-up with variable ply thicknesses 

using equation 1. Table 5-3 shows an example of the set of variables that can be 

generated. Note that according to their probability of appearance, there are no 

parameters contained within the 0.25-0.30 mm-1 and 0.40-0.45 mm-1 frequency 

bands. The generated thickness profile of the ply #2 is presented in Figure 5-9 

together with the real ply profile.  

 
Table 5-2. Parameters of the distribution for the Frequency (uniform) and Amplitude 

(normal) associated with the probability of appearance of the ith peak within a 

frequency band. 

ith 
peak 
No. 

Frequency 
band limits 

(mm-1) 

Probability of 
appearance 

(%) 

Frequency 
(mm-1) 

Amplitude 
(mm) 

a b x̄ s 

1 0.00 to 0.05 100 0.020 0.049 0.0081 0.0033 

2 0.05 to 0.10 100 0.054 0.099 0.0088 0.0036 

3 0.10 to 0.15 80 0.106 0.146 0.0095 0.0026 

4 0.15 to 0.20 70 0.161 0.200 0.0069 0.0021 

5 0.20 to 0.25 70 0.206 0.248 0.0065 0.0026 

6 0.25 to 0.30 70 0.253 0.299 0.0065 0.0024 

7 0.30 to 0.35 90 0.307 0.347 0.0076 0.0035 

8 0.35 to 0.40 50 0.350 0.386 0.0064 0.0018 

9 0.40 to 0.45 60 0.407 0.450 0.0057 0.0018 

10 0.45 to 0.50 30 0.463 0.498 0.0056 0.0007 
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Figure 5-9. Digital profile generated by the model with equation 1 compared to the real 

profile of #2 ply. 

 

Table 5-3. Frequencies and amplitudes of the thickness evolution for the digital 

stratification. 

ith peak 
(N°) 

Frequency 
(mm-1) 

Amplitude 
(mm) 

1 0.027 0.0049 

2 0.097 0.0065 

3 0.110 0.0132 

4 0.162 0.0110 

5 0.235 0.0052 

6 0.330 0.0035 

7 0.374 0.0081 

8 0.470 0.0047 

 

As explained, the main goal is not to reproduce the exact form of the 

composite ply spread over the plate, but to generate a geometry having the same 

characteristics in terms of variability of the ply thickness profile. Consequently, the 

real and the generated profiles do not completely match since the form of the real 

profile is the product of a unique combination of number of frequencies, 

amplitudes, and phase shifts. However in terms of the statistical values, the mean 

and standard deviations of both profiles are very similar. The mean ply thickness 
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for both profiles is 0.291 mm, while the standard deviation is 0.018 mm for the 

original ply and 0.016 mm for the digital one. This comparison is valid for all the 

ply thicknesses, showing negligible differences in their mean values. The CV for 

the rest of the generated plies is within the values of the original measurements as 

illustrated in Figure 5-10. 

 

 

Figure 5-10. Comparison of the CV between the real plies (diamond markings) and the 

generated profiles (circle markings). 

 

In comparison with the normal modelling of a composite stratification, 

where the thickness of the different lamina takes into account major changes in the 

plate thickness (cf. Figure 5-11a), a real stratification exhibits variations in the ply 

thickness which differs from half to one magnitude order of the variations in the 

thickness of the overall stratification (cf. Figure 5-11b). Any effort made in order to 

completely model the behaviour of the thickness variation will take considerable 

computing and analytical resources since there are four highly interdependent 

variables that give shape to the thickness profile. The model must account for the 

number of the different frequencies and the distance between each major peak, the 

associated amplitude for each frequency and the phase shifts. All these variables 

also depend on the ply position in the stratification. Different solutions to the 
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problem, such as using the frequency values “as is” from one single ply, or 

randomly selecting the frequencies and their associated amplitudes from all the 

identified peaks were discarded, since the selected points come from a very 

specific zone in the plate that may or may not describe completely the behaviour 

of the thickness variation along the full composite plate.  

Indeed, the data collection cannot be performed in all types of composite 

structures and various composite plates due to its destructive nature, as well as 

the time and resources that this task demands. Therefore, simplifications must be 

made in order to obtain accurate data to be introduced into the model. The 

variability of the ply thickness, as well as the coupling between the different plies 

to obtain a constant plate thickness, can be controlled by using pseudo-random 

algorithms to vary the parameters involved in the thickness profile generation 

(cf. Figure 5-11c).  

The proposed method, although it does not contain any of the actual peaks 

retrieved from the DFT spectra, generates a set of values that encompasses all the 

different frequencies and amplitudes found in these DFT spectra. This generator 

can then be used to produce a family of different laminates that observe similar 

levels of ply variability and it can be easily adapted into a finite element analysis 

model. 
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Figure 5-11. Representation of the cross section of the 16 ply stratification (plies 4/5, 8/9 

and 12/13 shown as independent plies) with, a) reconstruction from the actual ply 

thickness profiles (after filtering), b) constant ply thickness accounting the 

contribution of the plate thickness variation in each ply and c) digital stratification 

generated by the proposed model. 
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5.5.2 FE model of the residual strains of a composite plate with 
variable thicknesses 

To demonstrate that the variation of the ply thicknesses affects the 

mechanical properties of the composite part, a finite element model of a plate is 

subjected to a temperature change of ΔT = -120 °C. This temperature change is 

applied in order to calculate the residual strains at the end of the cooling phase. 

The analysis is based on the assumption that the composite at cure temperature is 

stress free, and by inducing a temperature variation, due to the mismatch of the 

thermal properties of the constituent materials, residual strains and stresses are 

generated [13].  

To illustrate the procedure, a section of the plate, having dimensions of 

100 x 50 mm is analysed in SAMCEF® using a 2D Mindlin composite shell 

(element type T028/T029). The element size is set to be 1 mm per side in order to 

model the lower and upper peaks corresponding to a minimum wavelength of 

2 mm of the amplitude spectra of the thickness. 

Two cases are analysed, the first one considering constant plate and ply 

thicknesses, and the second one considering random laminate profiles generated 

by the algorithm explained in section 5.4. For the latter case, the mean of the plate 

and ply thicknesses are also considered as constant. The algorithm is performed 

three times to obtain different configurations. It is noteworthy that in this analysis 

the material properties are not dependent on the ply thickness. The homogenised 

coefficients of linear expansion of the principal axes of the lamina are 

1 = 0.54∙10-6 °C-1 and 2 = 14.85∙10-6 °C-1. The mean ply thickness for each plate is 

0.302 mm, thus the plate thickness is 4.838 mm. 

Figure 5-12 shows the strain field of the upper layer for both cases, constant 

and variable thickness. As expected, the plate with a constant thickness has a 

constant strain field equal to -91∙10-6. Conversely, the plates with variable 

thicknesses exhibit strain fields with values ranging from -85 to -95∙10-6 implying a 

variation up to 11 % of the residual strain spread over the composite plate. As 

shown in Figure 5-12, the three cases show different patterns.  
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Figure 5-12. Strain field of the upper skin of a 16-ply composite plate subject to a 

thermal of -120 °C simulating the cooling process of a composite (on the left hand side) 

with constant thickness and (on the right hand side) with variable ply thickness. 

 

5.6 Conclusions 

The first input parameter towards the creation of a finite element model, 

affected by material variability, is the geometry variation of the ply thickness over 

the plate. Indeed, the geometry characteristics such as the ply thickness impact on 

the material properties such as the volume fractions of the elementary materials. 

An identification and correlation between the ply thickness and the material 

properties through the variation of the fibre volume fractions require a deeper 

study that is costly in both time and resources, since a simple correlation between 

the volume fractions and the thickness must be made by respecting the spatial 

continuity as defined in the proposed methodology. However, the variation of the 

thickness and, thus, its position in the stratification, impact also the structural 
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properties for bending and torsional loading cases, as well as the residual 

stresses/strains. 

Variations up to 15 % of the mean ply thicknesses have been observed. The 

cross-section reveals a continuous variation in the ply thickness, and a non-linear 

coupling between the variations of the plate thickness and the variations of the ply 

thicknesses, that reflects the low variability of the plate thickness with a CV less 

than 2 %.  

A mathematical model of the ply variability was proposed in order to 

generate a digital laminate that contains the same dispersion as the ply thickness 

under the condition of a controlled plate thickness. The values of frequency and 

amplitude used to generate the digital ply are the identified by a DFT of the real 

ply and plate thickness profiles. The thickness of the digital stratification that was 

generated by the proposed method shows coefficients of variation between 4.5 % 

and 6.5 %. These values are comparable to the real ply CV ranging from 4.5% to 

9 %, while maintaining an overall plate variability of 2 %. This method produces 

relevant ply thickness variability through valuable frequencies and amplitudes in 

terms of number and magnitude. Thus, a different set of relevant parameters can 

be generated at each simulation. Although at this moment the set of parameters 

has been obtained from a single specimen (45 x 45 mm) studied in only one 

direction, the current data allows the generation of a complete dataset since the 

influence of the ply orientation, a priori, does not affect the behaviour of the 

thickness undulations since the stratification of the plates is both balanced and 

symmetrical. 
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Chapter 6: Proposition of a finite element 
model for the introduction of local 
variabilities with controlled 
gradient 

 

 

 

 

6.1 Introduction 

This chapter deals with the convergence of the measured quantities and the 

proposed method to generate a finite element model taking into account the 

variabilities of composite material. 

As explained in Chapter 1, the majority of studies that deal with stochastic 

analysis of composite materials, vary the material properties in all the structure at 

each simulation performed. Crouzeix [1] noted that a composite structure has local 

variations in the local elastic moduli that can be identified through an inverse 

method. Feraboli [2] introduced into a FE model elements with different elastic 

moduli identified from the strain field of a discontinuous composite material 

during a traction test. For continuous materials, Karami [3] presented a model that 

measures the impact on the elastic moduli of the fibre waviness out-of plane along 

a unitary cell. For direct formulations using true parameters, Spanos [4] proposed 

the calculation of the elastic modulus in different parts of a discontinuous 

nanocomposite using the local mass fractions of its elementary constituents.  

In the present chapter, a direct formulation of the variability of the 

composite properties is proposed by means of the introduction of a variable 

morphology that includes the ply thicknesses, the plate thickness and the in-plate 

fibre misalignments, as well as a variable material parameter such as the porosity 
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volume fraction, in order to determine the elastic inputs in the FE model. Three 

different examples are proposed: the first is the calculation of the flexural modulus 

of a composite beam in a 4 points bending test, the second is a study on the 

residual thermal strains of a composite plate during the cooling phase after 

polymerisation, and the third example presented is the analysis of a technological 

evaluator in a flexion-compression test. 

In these models, the input values are based on the gradients observed in a 

real composite plate in order to maintain a spatial continuity of the material 

property variation. However, the scope of this work is not to restore exactly the 

properties as they are obtained during the measurement of variability. 

 

6.2 Description of the characteristics of the finite element 
model 

The commercial software SAMCEF® is used to perform the different FE 

analyses, using a 2D Mindlin composite shell (T028/T029 element type). This type 

of element allows the modelling of the transverse displacement of the plate (see 

SAMCEF® library). With this type of element, the individual input material 

properties, thickness and orientation for each ply and each element can be 

considered. Thus, it is possible to introduce individual properties that change 

from one point to another in the analysed composite plate. The elastic quantities 

required for this element are shown in Table 6-1 for the fibre direction 1 and the 

transversal directions 2 and 3. These quantities are derived from the volume 

fractions of constituent materials, such as the fibre, matrix and porosity 

(cf. Chapter 3), the material morphology, such as the orientation of the 

reinforcements (cf. Chapter 4) and the ply and the plate thicknesses (cf. Chapter 5). 

The calculations of these properties are done by means of the law of mixtures in 

taking into account the anisotropic nature of the carbon fibre. The constituent 

material properties are assumed as being deterministic (cf. Table 6-2). The 

elements used in the following analysis are linear elastic. 
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Table 6-1. Homogenized elastic constants necessary for the composite shell element 

according to the SAMCEF® software syntax. 

“material_number” Material number 

YT E1 E2 E3 Young’s moduli (MPa) 

G G12 G23 G13  Shear moduli (MPa) 

NT ν12 ν23 ν13 Poisson's ratios 

A α12 α23 α13 Coefficients of linear thermal expansion (°C-1) 

 

The creation of the input file, including the geometry, the elastic properties 

calculation and their assignation to the elements for each FE model is written in 

MATLAB® software. This allows the capacity of generation multiple sets of input 

files with variable properties. 

 
Table 6-2. Mechanical properties of the CHS reinforcement and M10.1 resin. 

Property Manufacturer Value 

Young’s modulus of the carbon fibre in the longitudinal 
direction E1f (GPa) 

230 

Young’s modulus of the carbon fibre in the transverse 
direction E2f (GPa) 

15 

Shear modulus of the carbon fibre G12f (GPa) 50 

Poisson’s ratio of the carbon fibre ν12f  0.4 

Density of the carbon fibre ρf (kg∙m-3) 1800 

Mass per unit area of the carbon fibre ρAf (kg∙m-2) 0.305 

Coefficient of linear thermal expansion of the carbon 
fibre α1f (°C-1) 

-1∙10-6 

Young’s modulus of the epoxy resin Em (GPa) 3.6 

Poisson’s ratio of the epoxy resin νm 0.3 

Density of the epoxy resin ρm (kg∙m-3) 1200 

Coefficient of linear thermal expansion of the epoxy 
resin αm (°C-1) 

25∙10-6 

 

The elastic quantities E1, E2, E3, G12, G13, G23, ν12, ν13 and ν23 must guarantee 

the following standard inequalities in order to correctly setting the Hooke matrix: 
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0,,,,, 231312321 GGGEEE  
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(6-1) 

 

The basis of the modelling is the distribution of thicknesses of the ply tk, 

which varies as a function of a mean thickness per ply t ̅k. The change of the ply 

thickness, described in Chapter 5, is: 

     yxtyxttyxt platekkk ,,,    (6-2) 

 

where the periodic variation of the ply ξtk can be rewritten in 2-dimensions in 

assuming the same undulation repartition along the x and y axes because the 

composite stratification is quasi-isotropic, and therefore, the variation is of the 

same order of magnitude for both principal directions of the laminate:  
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with Ai and λi are the parameters of the ith frequency peak retrieved from the 

amplitude spectrum of the ply thickness. In order to obtain a coupling between the 

ply thickness and the plate thickness, a pseudo-random phase shift ϕk,i is 

introduced.  

The contribution of the plate variation δtplate to the ply thickness, based on 

the results of Chapter 3, is: 
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It is noteworthy that, due to the previous remark, the values of the 

amplitude and the wavelength for each of the ith frequency peak of the ply 

thickness amplitude spectrum are the same for both x and y-directions. Thus, a 

very distinctive and regular pattern appears when mapping the ply thickness 

(cf. Figure 6-1). 
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Figure 6-1. Map of the generated ply thickness in a ply of 200 x 100 mm dimensions. 

 

Using the thickness of the ply tk, the local changes in the porosity volume 

fraction Vpk are calculated from a random parameter ξk (cf. Chapter 3). This 

random parameter has a zero-mean.  

      yxyxtfyxV kkkp ,,,,   (6-5) 

 

At this point, the mass per unit area of the reinforcement ρAf is considered 

as constant over all the manufactured plates (i.e. for a given plate and from one 

plate to another). However, this value is calibrated from observations of the 

manufactured plates and is set, for the M10.1/CHS, to a value of 305 g∙m-2. 

constantAf  (6-6) 

 

To obtain the local volume fractions of the fibre and the matrix, in a first 

step, an equivalent thickness of the reinforcement tf is calculated. This parameter, 

which is constant through the plate, is obtained from the relationship of the mass 

per unit area of the reinforcement ρAf and the density of the reinforcement ρf: 
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  (6-7) 
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Therefore, the volume fractions of reinforcement Vfk(x,y) and matrix Vm(x,y) 

are obtained from: 
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,   
(6-8) 

 

     yxVyxVyxV kpkfkm ,,1,    (6-9) 

 

Afterwards by using the law of mixtures, the values of the volume 

fractions, the elastic quantities for each element (cf. Table 6-1) can be calculated 

using the properties of the constituent materials expressed in Table 6-2. 

The local variations of the reinforcement directions θk are given by the sum 

of the theoretical orientation (according to the stratification) θth, the global ply 

misalignment δθ, the local fibre undulations [5] θwav and the local perturbations 

that are due to the manipulation of the prepreg θpert as discussed in Chapter 4. 

The local fibre waviness can be expressed as a function of the amplitude 

Awav and the wavelength λwav of the undulations. 
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Finally, the distribution of local perturbations is introduced by the sum of 

12 pseudo-Gaussian surfaces as identified in Chapter 4, where its parameters Bi, αi, 

βi, Xi, and Yi are chosen in accordance with the measurements and analysis done 

in the related Chapter. 
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A theoretical example using (6-10) and 6-11) of the resulting map of the 

fibre orientation is shown in Figure 6-2, for a ply oriented at 45°. The visible lines 

are the periodic undulations of the fibre; they appear perpendicular to the fibre 

direction. 
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Figure 6-2. Theoretical example of the reinforcement misalignment in a +45° 

200 x 100 mm ply. 

 

To illustrate the effects of the continuous variability of an elastic quantity in 

a composite ply, Figure 6-1 through Figure 6-3 show the spatial evolution of the 

ply thickness, the fibre orientation and the Young’s modulus in the x-direction of a 

single composite ply of dimensions 200 x 100 mm and oriented at 45°. 

The law of mixtures is applied to obtain the lamina compliance matrix in 

the fibre direction [S]lt. The compliance matrix is then transformed into the general 

laminate coordinates [S ̅]xy. The Young’s modulus Ex in the laminate direction xy 

for each element of the lamina is thus:  

11

1

S
Ex   (6-12) 
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Figure 6-3. Theoretical example of a map of the Young’s modulus Ex distribution in a 

200 x 100 mm ply oriented at +45°. 

 

The Young’s modulus of the lamina depends on both the ply thickness and 

the fibre orientation and with variations up to 3 GPa from one point of the ply to 

another. In the case of a lamina oriented at ± 45°, the mechanical variations in the 

directions of the laminate coordinates xy depend on both the ply thickness and the 

fibre orientations (cf. Figure 6-3). For the 0° and 90° orientations, the mechanical 

properties in the laminate coordinates xy are more dependent on the ply thickness 

variations than the fibre orientation.  

 

6.3 Four-point bending test 

6.3.1 Introduction and experimental results 

As a first example to test the feasibility of a finite element model with 

varying properties, a four-point bending test is performed on the composite 

material. At this stage, a comparison between the analytical analysis, numerical 

analysis and experimental data is performed. The test was initially chosen to 

determine the stress properties of the plates in pure bending, since one of the 

[0°] 

[+45°] 
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objectives of this study is to test a technological evaluator in a flexion-compression 

loading.  

The stratification employed for this test is still [90/45/0/(-45)2/0/45/90]s as 

discussed previously. The specimens were cut such both the outer plies are 

oriented at 90°. The specimen dimensions are w = 15 mm and Lspec = 100 mm. A 

controlled displacement is applied through the loading noses. The span is 

L = 81 mm and between the loading noses L’ = 27 mm (cf. Figure 6-4). 

 

 

Figure 6-4. Schema of the 4-point bending test with front view (top) and top view 

(bottom). 

 

During the tests, the obtained data is the load-displacement curve for each 

specimen. The flexural modulus is then computed using the following equation, in 

which ΔP is the variation of the load and Δsc is the variation of the displacement 

between two points at the centre of the specimen. 
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However, the obtained displacement is not measured at the mid-span of the 

specimen (cf. point c in Figure 6-4), but at the position of the loading nose Δsa 
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(cf. point a in Figure 6-4), the formula is used for a loading span one third of the 

support span: 
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The specimens are obtained by water jet for cutting from the composite 

plates. Two composite plates from the autoclave batch C (cf. Chapter 3) have been 

employed. From the plate C-11, 7 specimens are obtained. Plate C-22 has been 

sectioned in 2 halves of dimensions 600 x 130 mm. Section C-22.1 is used to 

generate a technological evaluator in a compression-bending test. The other 

section, C-22.3 is used to obtain 8 additional specimens for the bending tests. The 

specimens are evenly spread over the plates. 

The 15 specimens were tested in an Instron universal testing machine, in 

accordance with the standard test EN ISO 14125 [6] for a third of the support 

span L. Both the support noses and the loading noses in the testing fixture have 

lateral stops to guarantee that the positioning of the specimens is the same 

between the tests. The first two specimens C-11-1 and C-11-2 were tested using a 

100 kN load cell which does not provide the required accuracy for the range of 

loading during the test (see in italics in table 6-3). The rest of the specimens were 

tested using a 10 kN load cell. Due to possible differences in the calibration of the 

two load cells, and to the dispersion linked to the demounting and mounting the 

test fixture to install the load cells, the results of the first two specimens are not 

taken into account with the rest of the samples. Notwithstanding the behaviour of 

the C-11-1 and C-11-2 is completely coherent with the rest of the specimens. 

The slope of the load–displacement diagram m4p is taken between a 

displacement of 1 and 3 mm (cf. Figure 6-5), with the exception of the specimen 

C23.2-6 which failed prematurely at 1.5 kN (cf. Figure 6-6). The strength of the 

composite plate is taken at the maximum load value recorded during the test. 

After the first ply failure, the composite can still carry some load, albeit with a 

significant loss of stiffness, until the ultimate failure of the composite structure. In 
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the present case, the interest is to study the elastic behaviour of the composite 

before the first failure. 

 

Figure 6-5. Load as function of the displacement in a 4-point bending test. 

 

Table 6-3 summarises the geometrical and mechanical values obtained 

during the test for all the 15 specimens. All the specimens are taken from two 

different plates manufactured in autoclave batch C. To test whether the results 

obtained for the two different plates can be grouped as a single sample, an 

analysis of the variance (ANOVA) is performed. The null hypothesis is made that 

all the specimens are part of the same sample regardless the used plate. The 

ANOVA results show that there is no statistically significant difference between 

these two sub-samples for both specimen thicknesses and flexural modulus. Thus, 

the tested specimens can be considered as a single sample. 

Figure 6-7 shows the two types of failure of the coupons during the bending 

tests. From the 15 tested specimens, 13 failed by compression of the 0° ply closer to 

the upper skin (ply #14) followed by the delamination and rupture of the second 

0° ply in compression (ply #11). The remaining two specimens (C-23.2-6 and 

C-23.2-8) failed by delamination between the 7th and 8th plies. The delamination 

probably occurred at a surface defect generated by the water jet cutting procedure, 

possibly due to an irregular abrasive stream.  
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Table 6-3. Measurements and calculations coming from the 4-point bending test. 

Specimen 
Mean 

thickness 
(mm) 

Mean 
width 
(mm) 

m4p 

(kN/mm) 
Efx 

 (GPa) 
Pf 

 (kN) 

C-11-1 4.788 14.932 0.613 34.116 2.350 

C-11-2 4.776 14.814 0.617 34.859 2.213 

C-11-3 4.844 14.804 0.571 30.965 2.404 

C-11-4 4.855 14.826 0.573 30.805 2.228 

C-11-5 4.899 14.853 0.607 31.713 2.230 

C-11-6 4.840 14.820 0.572 31.050 2.180 

C-11-7 4.812 14.818 0.573 31.638 2.116 

C-23.2-1 4.774 14.834 0.573 32.372 2.370 

C-23.2-2 4.867 14.897 0.591 31.416 2.309 

C-23.2-3 4.820 14.850 0.567 31.107 2.347 

C-23.2-4 4.818 14.829 0.564 30.995 2.299 

C-23.2-5 4.833 14.837 0.581 31.656 2.151 

C-23.2-6 4.899 14.831 0.594 31.049 1.323 

C-23.2-7 4.875 14.854 0.586 31.050 2.220 

C-23.2-8 4.872 14.832 0.573 30.479 2.276 

Mean 4.847 14.837 0.579 31.253 2.189 

Std. dev. 0.036 0.023 0.012 0.491 0.274 

CV (%) 0.7 0.2 2.1 1.6 12.5 

 

 

Figure 6-6. Flexural break load Pf of the tested specimens. 
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Figure 6-7. Composite failure in a 4 points bending test with (on the left hand side) the 

expected failure of the 0° oriented plies under compression, and (on the right hand 

side) delamination of the mid plane. 

 

The calculated flexural modulus Efx is shown in Figure 6-8. The variation 

exhibits a reduction of this modulus with the increase of the plate thickness. It also 

exhibits a scatter around the linear fit. The mean Efx is 31.253 GPa with a 

coefficient of variation of 1.6 %. 

 

Figure 6-8. Flexural modulus Efx of the tested specimens. 

 

6.3.2 Analytical simulations in bending 

An analytical calculation using the classical stratification theory is used to 

obtain the variations of the flexural modulus Efx. This analysis considers that all 

the plies have the same property, without local variations from one point to 

Fracture of ply 

#14 

Fracture of ply 
#11  

Delamination 
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another, but with variation of thicknesses and orientation for each ply. This 

analysis can be considered as intermediate to determine the influence of the major 

morphological properties of the plate. First, a deterministic case is done using the 

classical stratification theory without any variations (case 1). Then four different 

cases are analysed. In the case 2, the ply thickness is obtained dividing the plate 

thickness by the number of plies with a variation of 1.11 % of the plate thickness. 

In the case 3, the ply thicknesses are assigned with a mean of 0.302 mm and 

coefficient of variation of 4.5 %. In the case 4, the orientation angle is variable 

assigning a variation on the overall misalignment of the ply of 0.33°. In the last 

case 5, both the ply thickness and the angle orientation are variables. 

The variation of 1.11 % of the plate thickness, applied in case 2, has the 

same order of magnitude than the thickness variation observed in cases 3 and 5 

(except case 4). The flexural modulus Efx is obtained from the element D 11 of the 

compliance matrix ABBD-1 of the laminate using the relationship: 

3

11

12

plate

xf
tD

E   (6-15) 

 

Figure 6-9 exhibits the results for cases between 2 and 5. Table 6-4 

summarizes all cases. In the 2nd case when the variation of the plate thickness is 

proportional to the variation of the ply thickness, the evolution of Efx is linear 

without scatter, since all the plies carry the same load. 

When varying the ply thickness (case 3), a linear variation is no longer 

possible, and a significant scatter is observed, which for a given plate thickness 

this variation is up to ± 3 GPa (± 3.3 %) on the mean Efx for such plate thickness. In 

the 4th case, the ply thickness is maintained constant and the ply orientation is 

affected by a general misalignment. The variation created for the ply 

misalignments accounts for approximately ± 1 GPa (0.27 %) of the mean flexural 

modulus. In the case 5 where the structure has both the fibre orientation and the 

ply thickness variable, the change in the CV is due to the combination of the 

effects in ply thickness and fibre orientations. 
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The shape of the Efx distributions is very similar for all cases, with the 

distribution of the case 3 slightly flatter. As expected, the variations in the ply 

thickness have a greater effect on the composite laminate in flexion.  
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Figure 6-9. Distribution of the flexural modulus Efx for a 16-ply laminate for a mean ply 

thickness of 0.302 mm and standard deviation of 0.014 mm with (a) the plate thickness 

with the values x 16 (case 2); (b) each ply thickness different (case 3); (c) the ply 

thickness constant with ply misalignments (case 4) and (d) both the ply thicknesses and 

misalignments variables (case 5). 

 

Table 6-4. Statistical values of the plate thickness and flexural modulus Efx. 

Cases 
Plate thickness Flexural modulus Efx 

Mean (mm) CV (%) Mean (GPa) CV (%) 

Deterministic 4.832 0 45.092 0 

Case 2 4.834 1.11 45.084 1.08 

Case 3 4.832 1.10 45.125 1.68 

Case 4 4.832 0 45.092 0.27 

Case 5 4.832 1.12 45.110 1.71 
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6.3.3 FE model of the four points bending test 

The element size is 1 x 1 m in agreement with the minimum wavelength of 

the ply thickness variation set to 2 mm (cf. Chapter 5). For simplification of the 

calculations and reduction of the input file, the range of the ply thickness is 

discretised in 29 sections starting from 0.230 mm to 0.370 mm (for a median ply 

thickness equal to 0.300 mm) with a step of 0.050 mm. The elastic quantities are 

calculated for each of these discretised thicknesses and then assigned individually 

to each element according to its ply thickness. In Table 6-5, the median value of the 

elastic quantities is shown for the two principal lamina directions 1 (fibre 

direction) and 2 (transversal direction). The median is used instead the mean in 

order to give an estimation of the order of magnitude of the elastic quantities 

which depend on the ply thickness, which can exhibit different mean values across 

the Monte Carlo simulations. 

 
Table 6-5. Elastic quantities for the principal directions 1 and 2 calculated for the 

median ply thickness of 0.300 mm. 

Elastic property Direction 1 (or 12) Direction 2 (or 21) 

Young’s moduli (GPa) 131.44 9.71 

Shear moduli (GPa) 4.26 4.20 

Poisson's ratios 0.332 0.025 

Coefficients of thermal 
expansion (°C-1) 

-0.56∙10-6 14.34∙10-6 

 

The composite plate model considers the dimensions of the test specimen 

with length Lspec = 100 mm and width w = 15 mm. The length between the support 

noses is L = 81 mm and the distance between the loading nose is L’ = 27 mm (same 

as in tests). The number of elements is 1 500 elements per 16 plies corresponding 

to 9 661 degrees of freedom (DOF). The boundary conditions are applied in 

accordance to the real test, in which the nodes sitting over the support noses have 

their displacement along the z-axis is inhibited, and the nodes along the loading 

noses are imposed a displacement in the z-axis of -3 mm. Figure 6-10 shows the 
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deformed shape and the strain field along the x-axis of the upper skin of one of the 

numerical 4-point bending test. 

 

Figure 6-10. Strain field of the upper skin along the x-axis εx in a 4-point bending test 

for Δsa = 3 mm (nose displacement). 

 

In a first experience, both the plate and the ply mean thicknesses have been 

maintained as constants in order to determine the sole contribution of the ply 

waviness to the flexural modulus Efx. It is important to determine whether the 

material properties have a significant impact on the calculated material properties, 

or not. In first place, a deterministic model without any property nor geometrical 

variations is used as a comparison point (case 1). Case 2 refers to a variation of the 

thicknesses profile while maintaining constant material properties given by the 

mean ply thickness. And case 3 refers to a variation in the ply thicknesses profiles, 

and the material properties are calculated for each element in accordance with the 

local ply thickness. 20 Monte Carlo simulations are performed for cases 2 and 3.  

Erreur ! Source du renvoi introuvable. shows the mean values for the 

flexural modulus and coefficient of variations for the three different cases. For the 

variation of the ply thickness, both stochastic solutions show an increase of the 

flexural modulus by 180 MPa.  
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Table 6-6. FE model results for a digital 4-point bending test with constant plate 

thickness. 

Type 
Plate 

thickness 
(mm) 

Flexural modulus Efx 

Mean 
(GPa) 

CV 
(%) 

Dif. max min 
(%) 

Case 1: Deterministic 4.838 40.881 0 0 

Case 2: Constant material 4.838 41.047 0.11 0.47 

Case 3: Material variation 4.838 41.062 0.10 0.37 

 

It is noteworthy that all the simulations with variable ply thickness exhibit a 

flexural modulus higher than that from the deterministic solution. The coefficients 

of variation (CV) for both cases are very close with a difference that is not 

statistically significant. Even though, by observing the cumulative distribution of 

Efx, for the simulations with constant material properties, the slope of the 

distribution is steeper than the case with material variation, regardless of the 

increased CV and maximum difference between extreme values (cf. Figure 6-11). 

This can lead to the conclusion that the impact of using constant material 

properties is the same as if variable properties would be used. However, the 

extreme values are responsible for the increased variability, while the core of the 

distribution that the flexural modulus with a constant material is less sensitive the 

in majority of the cases and much more sensitive towards the tail of the 

distribution.  

By introducing a variable geometry in the composite ply, the plate gains in 

rigidity. In this case, the variabilities in the flexural modulus are purely function of 

the local thickness undulations, since the cross-section of the composite beam is 

the same for all cases. In any case, by only varying the local values of ply 

thicknesses without affecting the mean value, only accounts for 0.1 % of the 

variation in the properties. This however can may be impact on the calculations of 

safety margins when adding more features to the analysed system. 
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Figure 6-11. Cumulative distributions for the flexural modulus of the 4-point bending 

test FE model for the deterministic case (dashed line), constant material properties 

(square markings) and material properties varying according to the local ply thickness 

(triangle markings). 

 

Unfortunately, the chosen element type, a 2D Mindlin composite shell, 

overestimates the flexural modulus by 30 %. Since the interest of this exercise is to 

study the variability around the mean values, a normalised flexural modulus NEfx 

is used to compare the numerical data against the experimental data. The 

normalised modulus is: 

xf

xf

xf
E

E
NE





   (6-16) 

 

The results comparison between the model without any variations other 

than the plate along with the full stochastic model and the experimental data is 

shown in Figure 6-12. As expected, the model with constant properties, in which 

the ply thicknesses are obtained by dividing the thickness of the plate by the 

number of plies, the flexural modulus Efx of the laminate are aligned to the 

theoretical curve as a function of the plate thickness. On the contrary, the model 

with all the variabilities exhibits a significant scatter from the expected value 

(constant thickness) and it is within the same order of magnitude as the 
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experimental data. These results effectively prove that the variability in the 

macroscopic property such as the flexural modulus can be recreated by the 

proposed modelling strategy. 

 

Figure 6-12. Comparison of the normalised flexural moduli as function of the plate 

thickness for 3 cases with constant thickness with ply thickness divided by 16 (cross 

markings), all parameters variable (triangle markings) and experimental (square 

markings). 

 

6.4 Residual strains of a cured plate subject to cooling 

Another application of the proposed model concerns the residual 

deformation of the composite plate subject to cooling at the end of the cure dwell. 

It is assumed that at this point the composite material is already consolidated and 

in a zero-residual strains/stress state [7]. Thus, due to a mismatch between the 

coefficients of thermal expansion of the fibre and the matrix, residual stresses and 

strains can be generated by the uneven deformation of these two materials. In this 

test, only the thermal properties of the element obtained by the law of mixtures 

are considered, as the micromechanical interactions between the fibre and matrix 

are beyond the scope of this work. Likewise, the interaction between the piece and 

the tool are not considered in this exercise [8].  
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The FE model considered the whole composite plate of dimensions 

300 x 600 mm, subjected to a temperature change of ΔT = -120 °C. The total 

number of elements for this simulation is 180 000 and 16 plies per element, for a 

total of 1 085 400 DOF.  

Figure 6-13 shows the plate profile and Figure 6-14 shows the shape of a 

randomly chosen ply (ply #7). It must be noticed the piece does not have a 

uniform thickness, but it exhibits a thicker zone at the centre of the plate, as the 

measurements of the composite plates has shown (cf. Chapter 3). Similarly, the ply 

thickness accounts for the variations of the plate. The composite ply also presents 

local variations due to the local undulations.  

 

Figure 6-13. Thickness variation of the composite plate. 
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Figure 6-14. Thickness variation of ply #7.  

 

Figure 6-15 shows the fibre orientation, accounting for the general 

misalignment of the ply, the local perturbations created by the manipulation of the 

ply and the continuous waviness of a randomly chosen ply. In this case the ply #4 

ply oriented at +45°. 

 

Figure 6-15. Variation of the fibre misalignment in a ply (ply #4) with a theoretical 

orientation (at +45°). 

 

The nodal displacements w of the composite plate along the z-axis are 

shown in Figure 6-16. The plate was supported at 3 corners, points A, B and C, in 

[0°] 

[+45°] 
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the z-direction and points B and C, the movements are blocked in the x-direction 

and the A point in the y-direction. The plate exhibits a significant deflection of 

0.5 mm in the edge near the free corner. The deformation of the plate is only due 

to the morphological variabilities present in the model. In comparison, a model 

without the inclusion of variabilities, the nodal displacements w will be equal to 

zero. Also in the manufactured plates, a similar deformed shape was observed, 

albeit with less significant warping.  

 

Figure 6-16. Nodal displacements w along the z-axis. 

 

Finally in Figure 6-17, the strain fields in the x-direction εx for the upper and 

lower skins of the composite plate are shown. There are some differences in the 

strain field due to the different shapes of the upper and lower skins of the 

composite, where all the plate is under compression along the x-axis. There is a 

difference of 40∙10-6 between the values from the upper and lower skins, being the 

lower skins that exhibit a lower deformation than the upper one. These values are 

in agreement with the deformed shape of the plate. It is also noteworthy that there 

is a difference of 70∙10-6 between the extreme values in both skins. This difference 

is mainly due to the difference in thickness at the centre of the plate and its 

corners. 
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Figure 6-17. Strain field along the x-axis εxx for the upper skin ply#16 (top) and the 

lower skin ply #1 (bottom). 

 

6.5 Technological evaluator under flexion-compression 
loading 

6.5.1 Presentation of the ‘toolbox’: Multi-instrumented 
Technological Evaluator  

The Multi-instrumented Technological Evaluator toolbox (MITE toolbox) [9] 

is designed to study composite structures developed at the Clément Ader 

Institute. One of the components of the MITE toolbox is the experimental 

equipment composed by an original multi-axial testing machine, which is used to 

apply combined loads to a predefined composite structure. The ability to applying 

complex loading scenarios is coupled with the possibility to use various 
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instrumentation methods. The experimental setup is also combined by the 

numerical models to design and analyse the defined tests in a loop of optimization 

[10,11]. 

The multi-axial testing machine (cf. Figure 6-18) consists of 

4 electro-mechanical actuators with hinged attachments to the frame-side end. In 

their other end, these actuators are attached to a steel quadrangle. This quadrangle 

transmits the load to one end of the composite evaluator. The independent 

movements of the four actuators permit to obtain four elementary displacements 

and loadings: tension/compression along the x-axis, and three bending moments 

around the x, y and z-axes (cf. Figure 6-19). An articulated arm attached to the steel 

rectangle is to prevent its displacement along the y and z-axes. This offers the 

possibility to place composite evaluators in a multi-axial state of stresses, which 

could be representative of stresses chosen and/or encountered during the service 

life of a structural part. 

 

electromechanical actuators
frame

articulated arm

mobile grip

fixed grip

ball joint

 

Figure 6-18. Side view of the multi-axial testing machine. 

 

The evaluators are fixed between the frame and the mobile rectangle. In the 

current configuration of the modular testing machine, the maximal dimensions of 

the test coupons are 600 mm long and 300 mm wide. The maximum loads are 

specimen 
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approximately 140 kN in traction and compression, 8 kN∙m of bending moment 

around x, 30 kN∙m of bending moment around y, and 40 kN∙m of bending 

moment around the z-axis. 

 

Fx

Mz

Mx

My

x

y

z

 

Figure 6-19. Different loading scenarios possible with the actual configuration of the 

multi-axial testing machine. 

 

To ensure a correct load transfer from the testing machine, at the place of 

the attachment, composite tabs are bonded to the composite using an epoxy 

adhesive. These tabs are designed to transfer the loads to the coupon, particularly 

to bending and flexural moments, and they have a variable thickness to avoid 

stress concentrations. They are designed to be easily moulded using the 

HexTOOL® M61, whose stiffness is chosen to be similar to that of the testing 

coupon.  

The tested structure is shown in Figure 6-20. It consists of a composite plate 

of 600 x 130 mm, with a stratification of [90/-45/0/(45)2/0/-45/90]s obtained from 

the composite plates fabricated in Chapter 3. The composite is prepared with a 

black and white pattern to be tested using a digital image correlation (DIC). In 

conjunction with the DIC, the composite evaluators are instrumented by strain 

gages to assess the strain variation at different zones of interest. 
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Figure 6-20. Composite evaluator to be tested in the multi-axial testing machine. 

 

The loading case is imposed to the evaluator by the movement of the steel 

rectangle. The displacement of the point between the clamps follows a rotation 

along the y-axis of -5°. The eccentricity between this point and the attachment to 

the swinging arm creates a displacement of this point along the z-axis. After the 

angle of the rectangle reaches its intended rotation, the actuators push the 

rectangle in the x-direction, effectively compressing the composite plate. The angle 

of the rectangle is maintained at -5° for the rest of the test. The first phase of the 

test lasts 4 minutes and while the second lasts at least 6 minutes (cf. Figure 6-21).  

 

 

Figure 6-21. Boundary conditions in displacements imposed to the composite evaluator 

by mobile clamp. 

 

The loading imposed by the displacements effectively sets the composite 

plate in bending and afterwards in buckling. The ultimate failure of the composite 

plate was near the fixed clamps, at the frame end (cf. Figure 6-22). The ply #5 
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oriented at 0° failed by compression near the clamp area. The fracture of ply# 5 

propagates delamination in the surrounding area generating the rupture of the 

first 5 plies.  

 

 

Figure 6-22. Composite evaluator during the testing, (right hand side) deformation of 

the plate in bucking moments before failure, (left hand side) failure of the composite, 

fracture of the outermost 0° ply subjected to compression near the clamp area. 

 

6.5.2 FE model of the technological evaluator under a 
flexion-compression loading case 

The initial results of the model are shown as the analysis is currently under 

development. The analysis is done using the non-linear solver to perform an 

iterative simulation, since the objective over time is the study of the buckling 

behaviour of the technological evaluator. The properties of the elements are 

maintained as linear elastic (cf. Table 6-5). The model was generated for the 

effective length of the evaluator of 440 mm. The first rows of elements were 

clamped at each end of the digital evaluator (cf. Figure 6-23). The size of the 

element is retained at 1 x 1 mm.  

The testing kinematics is applied to a master node placed at the theoretical 

coordinates of the centre of the ball joint (cf. Figure 6-18). The load is then 

transferred to the composite plate through rigid elements between the master 

node and the first two rows of elements at the loading end of the composite 

evaluator. To evaluate the large displacement of the loading end, 20 increments 
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are applied between the initial and final position of the mobile clamps as shown in 

Figure 6-21. 

 

Figure 6-23. Numerical representation by composite shell elements of the composite 

evaluator tested in a flexion-compression test.  

 

The strain field εx for the lower skin of the technological evaluator subject to 

flexion-compression loading is shown for a homogenous model without 

variabilities in Figure 6-24 and for the model including all variabilities (ply and 

plate thickness, and fibre misalignments) in Figure 6-25. Both figures illustrate the 

strain field at the last incremental step. 

In the classical analysis the strain field, shown in Figure 6-24, is mostly 

symmetric with exception of the corners of the plate. This dissymmetry, however, 

is mostly due to the effect of a ply oriented at +45 near the exterior skins of the 

composite plate (plies # 2 and # 15). It is noteworthy that the strain bands are well 

defined, and run almost straight from one side of the plate to the other side. By 

comparing the classical homogeneous model to the model with variabilities 

(cf. Figure 6-25) it is evident that the strain field of the latter is not symmetric 

along the x-axis. This dissymmetry is most notably in the zone near the clamped 

end. In this area, a difference of 3 300∙10-6 between the right hand side and the left 

hand side of the evaluator is observed. Also at the mid part of the evaluator, the 

edges present a larger deformation than the centre (3 300∙10-6). In comparison the 
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model without variabilities shows a homogeneous strain field from the right hand 

side to the left hand side of the evaluator. 

 

Figure 6-24. Strain field along the x-axis εx for the lower skin of a technological 

evaluator in a flexion-compression test with a homogenous material. 

 

 

Figure 6-25. Strain field along the x-axis εx for the lower skin of a technological 

evaluator in a flexion-compression test with material variabilities. 
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This difference in the symmetry of the strain field is due to the local 

variabilities introduced to the model, most notably the plate thickness and ply 

misalignments. As can be seen in the homogenous analysis (cf. Figure 6-24), the 

difference between the absolute maximum and minimum strain values is roughly 

500∙10-6. In this case, a fracture could be produced near the clamping end or the 

mid part of the evaluator. For the model including variabilities (cf. Figure 6-25), 

this difference is almost 4 000∙10-6. This means that there is a higher probability of 

failure near the clamping area than the mid part of the evaluator. These results 

show that the proposed approach restores local phenomena not present in the 

analysis of homogenous materials. These heterogeneities in the strain field maybe 

indicate a possible failure initiation zones with more precision than classical FE 

models without material variability.  

 

6.6 Conclusions 

This chapter describes the application of the FE model with use of 

variability. The material elastic quantities are derived from the volume fractions of 

the constituent materials of the composite that depend on the local ply thickness 

and volume content of the porosity. To obtain the fibre and resin ratios, it is 

assumed that the mass per unit area ρAf is constant for all the points of the plate. 

From the calculated volume fractions, the elastic quantities of the element for the 

fibre direction 1 and both transverse directions 2 and 3 are obtained by the law of 

mixtures.  

The geometrical parameters, ply thickness and ply orientation, as well as 

the elastic constants, are assigned directly to each finite element in the FE input 

file. This FE input file is generated using the mathematical laws and parameter 

databases identified in Chapters 3 through 5, as well as the material property 

database described in this Chapter 6.  
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It is noteworthy that the selection of the finite element size, and thus the 

number of elements in the analysis, as well as the method to assign the material to 

each element must be performed at the discretion of the designer in a case by case 

scenario. Although, the method is not dependent on a fixed mesh size, the 

amplitude of the perturbations and their physical dimensions must be taken into 

account when defining the element size. 

Three different cases were presented as examples of the use of the proposed 

methodology in a FE analysis: 

1. the first case deals with a 4-point bending test, in which the results of 

experimental test were compared to the FE analysis, for the flexural modulus 

of a composite beam of 100 x 15 mm dimensions. The results show a good 

agreement between the experimental data and the FE simulations in terms of 

variability of the flexural modulus;  

2. the second case deals with the cooling phase after the curing dwell of a 

composite plate of 600 x 300 mm dimensions . The out-of-plane deflection and 

the upper and lower skin strain field show that both the geometry of the piece 

and the material properties have an important role in the cured state of the 

composite plate. This state would be otherwise overlooked in a test with 

constant geometry and material properties; 

3. the third case deals with the technological evaluator, an experimental and 

numerical set-up in accordance with the proposed multi-instrumented 

technological evaluators approach.  

The input files are generated in Matlab® in order to perform a large number 

of simulations required for a complete probabilistic analysis. The Matlab® scripts 

can generate from one to many thousands different input files for Monte Carlo 

simulations. However, mainly due to time constraints and a complex results 

post-treatment, only the feasibility of the method is presented for a limited 

number simulations in each case. For the 4-point bending tests, “only” 20 different 

simulations were performed for each of the FE analysis cases. For the both the 

analysis of the residual strains under cooling of the composite plate and the 
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technological evaluator, “only” one simulation was performed in each case due to 

the technical complexity of the complete analysis.  

The principal issue with the actual programming is that the input files are 

not optimised for a rapid reading by the FE code due to the size of the generated 

input and output files, the latter being approximately at least 5 times the size of 

the input file. This constraint creates 2 major problems with the analysis and post-

treatment of the results. The first problem deals with the loading time of the input 

file and the writing time of the output database. The second problem is related to 

managing both available RAM and disk storage memory during the analysis. 

These problems can be solved by the optimisation of the input file and proper 

memory management server side. Indeed, the CPU power and thus the calculation 

time are however not limiting factors for the different analysis hereby presented. 

The present analysis demonstrates the feasibility of a FE model including 

material and geometrical variabilities with controlled gradients in both within a 

plate and from one composite plate to another. The next natural step is the 

optimisation of the FE models for their introduction in larger Monte Carlo 

simulations for a complete probabilistic assessment of the composite structure. 
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General conclusions and future work 

 

 

 

 

The main goal of this dissertation is the study of morphological variations 

in a composite structure in order to enrich its performance analysis. The main 

motivation of this work is to introduce into finite element models the local 

variations of geometry and material properties. What distinguishes this 

dissertation from the works found in the literature is the demonstration that the 

material and geometry variations are not randomly assigned to each element into 

the FE model, but they are controlled by laws of spatial evolution to manage the 

gradient of properties between two different points within a single structure, in 

agreement with the reality of the material. The introduction of laws for managing 

spatial evolution is the main driver of the analysis, identification, and 

quantification at the core of this work. Additionally, one of the objectives is not to 

recreate an exact representation of a unique composite structure by employing 

fixed laws of evolution, but to propose a modelling strategy that respects the 

reality of the material. It deals with including physical quantities that are 

determined from mathematical laws that represent the dispersion of properties 

with a random generation of the parameters of these laws. 

The literature review, presented in Chapter 1, demonstrates that there is no 

common framework for the study of variabilities in composite structures 

regardless of the evidence that composite materials exhibit, indeed, a dispersion in 

their properties. Usually during research, the variability in composite structures is 

considered either as local defects or as uncertainties in stochastic analysis. For the 

former consideration, dedicated models are created in order to study the effects of 

that particular localised defect on the composite structure. For the latter, a broader 

set of general approaches is employed such as probabilistic studies, reliability 
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based approaches and stochastic finite element methods. The Monte Carlo 

simulation is still the most common solution method due to the simplicity of its 

formulation. The model variables include the material properties which are 

obtained from probability density functions. Such material properties are varied 

through the composite structure at each simulation regardless of the method for 

the solution of the problem.  

Based on the conclusions of the literature review, a methodology to 

introduce material variability into a FE model to study the behaviour of composite 

structures is presented in Chapter 2. The originality of the proposed methodology 

is the inclusion of mathematical laws to introduce and control the gradient of local 

property variations from one point of the structure to another. These laws do not 

only introduce a controlled and continuous variation of the properties, but they 

are based on the observation of a real composite structure. The material properties 

are introduced element per element in the FE model. These properties are thus 

derived from morphological and material properties such as the reinforcement 

angle, the geometry of the structure (plate and ply thicknesses), and porosity 

volume fractions.  

To ensure that the laws of spatial evolution and the probability 

distributions of their associated variables are in agreement with the reality of the 

material, the identification and quantification are performed through the life cycle 

of composite plates fabricated with the carbon/epoxy unidirectional prepreg 

HexPly® M10.1/38%/UD300/CHS. The composite plates have 16 plies 

quasi-isotropic stratification and are cured in an autoclave. The identification and 

quantification of the variables are presented following the chronological order of 

the fabrication of the composite plates in Chapter 3, with the exception of the 

determination of the local fibre angles, which are measured during the lay-up 

phase, and the ply thickness variations, that are measured from the cured plates. 

These variables require a more in-depth analysis presented in Chapters 4 and 5 

respectively. 
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In Chapter 3, the first parameter that has been studied is the variation of the 

mass per unit area of the prepreg plies. Two different methods have been used for 

the measurement of this quantity. The first method measured all the prepreg plies 

that were used by the fabrication of different composite plates. The second 

method, inspired from the standard NF ISO 10352, is used to obtain more precise 

measurements. The difference between the proposed method and the standard is 

the digitalisation of the specimen in order to determine its surface regardless the 

geometrical irregularities near the edge of the specimen. Nevertheless, the 

differences between the method 1 and method 2 are not statistically significant 

since the variability of the prepreg is greater than the uncertainty of the 

measurements. The method 2 is thus the preferred method to measure this 

quantity since it can be used to obtain trends through the prepreg roll. Regarding 

the prepreg material, a dispersion of the mass per unit area less than to 2 % was 

determined for each of the two prepreg lots that were studied. In contrast, a 

significant variation is shown between the two different rolls. It is difficult, at this 

stage, to assess the effects of the variability of the mass per unit area of the prepreg 

on the cured properties of the composite, notably the volume fractions of the 

constituents. Notwithstanding, it is proposed as a strong hypothesis that the fibre 

quantity, and thus its mass per unit area, is constant. This hypothesis is used to 

calculate the volume fractions of the constituent materials that are, in turn, used 

for the calculation of the elastic quantities of the element. This hypothesis must be 

confirmed in due course through more measurements. 

During the curing stage of the composite plates, it is shown that the 

configuration of the vacuum products affects the characteristics of the final 

composite plates. In the first autoclave batch A, the resin impregnated the breather 

mat resulting in an average resin mass flow of 12 % of the uncured plate weight. 

When changing the vacuum products configuration for the second batch B, an 

average resin flow of 6 % was determined. The plates from the third autoclave 

batch C, that were fabricated using the same vacuum products sequence as batch B 

but using a different material lot, exhibit a resin flow of the same order of 

magnitude as batch B. After polymerisation, the composite plates of batches A 
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and B were measured in a coordinate-measuring machine to determine the 

distribution of thickness of the plates. This measurement has not only confirmed a 

difference in the average thickness between batches A and B, but has shown that 

there is a significant variation on the thickness within a single composite plate. 

The amplitude of these differences, most notably between the centre and the 

corners of the plate, is larger than the thickness of a ply. This difference in 

thickness is a major factor in the evolution of the mechanical properties at the scale 

of the composite plate. Likewise, it is assumed that this thickness variation is 

distributed evenly in the 16 plies forming the composite plate. A mathematical law 

is thus generated to introduce this variation in the models of variation of the ply 

thickness. 

The last study presented in this Chapter 3, is a thermo-chemical analysis 

performed on the cured plates in order to determine the volume fractions of the 

constituents, especially the porosity content. This analysis, performed at the scale 

of the polymerised plate, showed that the porosity appears to linearly increase 

with the thickness. A mathematical law was thus proposed to link the plate 

thickness with the porosity content, though limited to have zero porosity under a 

certain thickness. The values of porosity were found less than 2 %. The low 

porosity content is linked to the non-controlled flow nature of the M10.1 resin that 

permits the evacuation of volatiles and entrapped air.  

For the determination of the actual fibre orientation, presented in Chapter 4, 

an optical system is employed to obtain a single digital image of the complete 

prepreg ply during the lay-up sequence. By means of the development of a script 

based on the Hough transform, the fibre orientations have been determined. In the 

first place, the mean ply misalignment was determined, with a value less than 2°. 

This error appears to be more dependent on the ability (and fatigue) of the 

operator than the theoretical orientation of the ply. Due to the quality of the 

images and the resolution of the digital camera employed, the procedure has not 

permitted to obtain the misalignments up to the scale of the fibre mesh, and thus 

the periodic undulations created by the storage of the prepreg in rolls. 
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Nevertheless, this procedure was enough to identify local evolutions of fibre 

orientations that do not exhibit a periodic behaviour. These perturbations, 

covering several cm2 exhibit completely random characteristics such as sizes, 

origins and magnitudes. Through the magnitude of these perturbations does not 

exceed ± 1°. To model the behaviour of the ply orientation, three scales have been 

proposed. The first is a mean ply misalignment. The second is the effect produced 

by the periodic undulations of the fibre, in which a value obtained from the 

literature is employed. And third, the local perturbation of the fibre orientation, 

modelled by the sum of Gaussian surfaces. The parameters of these surfaces were 

obtained from the image analysis. 

It is very important to keep in mind that, although the images are taken 

from the prepreg plies, it is assumed that the fibres do not move considerably 

during the curing phase. This consideration must be made since it is the only 

manner to obtain a complete field of fibre misalignments in a composite ply, 

which in turn will be used to determine a law for the continuous variation of this 

quantity.  

The last variability source is presented in Chapter 5. It is the evolution of 

the ply thickness profiles in the cured composite plate. It is shown that the 

thickness within the same ply can exhibit variations up to 20 % of its mean ply 

thickness. It is also shown the mean of the ply thicknesses within a composite 

stratification are different, with a coefficient of variation (the ratio between the 

standard deviation and the mean) of 4.5 %. These two results cast doubt on the 

classical geometry modelling of composite structures, where the ply thickness is 

considered as constant and is obtained by dividing the thickness of the structure 

by the number of plies.  

The analysis of the ply thickness was performed by optical analysis of 

images acquired from the cross-section of the cured plate. The profiles of the ply 

thicknesses appear to have some regularity with periodic wavelengths. This 

hypothesis was confronted by a frequency analysis using a discrete Fourier 

transform of the ply thickness variations on a given direction. This analysis 
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showed that the undulations of each ply can be described by the sum of sinusoids, 

and that can be transcribed by the use of 10 frequency peaks from the amplitude 

spectrum of each profile. Although the analysis of the numerous plies (here 16) 

seemed to be difficult due to, on one hand, the interdependency of the number of 

wavelengths, their amplitude and phase shifts for each spectrum, and on other 

hand, the apparent randomness with which these 3 parameters appear for each 

ply. Regardless, by the use of a phase shift coupled to the ply position, it is 

possible to generate a digitally modelled plate with variations of ply thickness 

comparable to the real values and respecting a variation of the overall plate 

thickness, which is controlled by the spatial law established in Chapter 3. 

Finally, Chapter 6 presents of the whole of mathematical models that are 

proposed for a control of the spatial properties evolution in a composite plate. It is 

employed in the creation of FE models with local material variations. The 

proposed FE modelling is based on the use of 2D Mindlin composite shell type 

elements. This is done in order to perform a significant number of simulations by 

changing the variable parameters in the proposed mathematical laws. In this 

modelling proposal, all the material and geometrical parameters change, not only 

from one element to another, but within the same composite shell elements, 

among the 16 different plies that constitute the composite shell element. It is very 

important to note that the material properties not only vary for one unique 

analysis, but for a set of different FE models that allow the generation of sets of 

different properties for the composite plate. 

The elastic quantities of the element are derived from the geometrical 

variations of the ply thickness and from the volume fraction of the porosity. By 

maintaining the hypothesis that the mass per unit area of the fibre is constant, the 

volume fractions of the constituent materials (fibre and matrix) are calculated. 

Then, the geometrical parameters, ply thickness and fibre orientation are 

introduced element by element into the FE model.  

The usability of this proposal is shown by the modelling of three different 

cases. First, in order to compare the FE model to experimental data, a 4-point 
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bending test of specimens with dimensions 100 mm x 15 mm was performed. In 

this test, the FE model is performed by varying all the material and geometrical 

properties at each performed simulation. In this study, the impact of the influence 

of variabilities is limited to the production parameters described for 2 “parent” 

plates. The realisation of this test, allowed to obtain variations of the flexural 

elastic modulus that are coherent with the variations of the experimental data, 

irrespective to significant error in the mean value, that is probably due to the 

modelling strategy rather than the strategy of introduction of variabilities. In a 

second case, to show the feasibility of the proposed strategy in the analysis of 

composite pieces of larger dimensions, an analysis of the residual strains was 

performed on the whole composite plate of 600 mm x 300 mm. The performed 

calculation has shown that, at this scale, the strain variability is significant 

(Δεx = 100∙10-6) within a single plate. Finally in the third case the modelling 

strategy has been employed for the analysis of a complex multi-axial test of a 

technological evaluator of dimensions of 600 mm x 130 mm. The FE analysis 

demands incremental simulations in order to simulate the buckling of the 

structure when applying a combined flexion-compression load. The first 

application of the proposed modelling makes appear a dissymmetry in the strain 

field (Δεx = 3 300∙10-6) that is due to the material and geometrical variability of the 

composite material. The effects of introducing of variable material and geometrical 

variabilities could be used to reveal unexpected risk zones that would otherwise 

be overlooked by classical FE analysis. 

The whole of the studies described in this dissertation illustrates the 

existence of variabilities present in composite structures, an occurrence that is 

widely recognized but that is not properly taken into consideration when 

designing composite structures. An innovative methodology is proposed to take 

into account such variabilities in finite element models based on the observation of 

the material through the composite part. 

 

 



 
 

- 184 - 

Future work 

During the preparation of this dissertation, the case of a theoretically 

homogenous composite plate is presented with the finality of showing the 

feasibility of the studied approach and associated models. A unique stratification 

and a unique material have been employed during this study. Indeed, the 

proposed methodology can be applied to a broad number of composite 

applications. 

Thus, the first action is to apply the proposed methodology to different 

stratifications and other material systems, in order to create a database to further 

enrich the FE models that are already in place. This is not a small task, since the 

number of data points is considerable, as equally are the resources and time 

needed to perform these tasks. To illustrate the size of the tasks involved, the 

orders of magnitude of obtained data points are: 600 points per each 10 mm for the 

ply thickness study (comprising the 16 plies); one point per 100 mm² for the plate 

thickness study; and 5 points per 100 mm² for the ply orientation study. This leads 

to a rough estimation of 7 000 data points presented on Chapters 3 to 5. Alas, the 

identification and quantification methodologies must be performed continuously 

to gather as much data as possible over time. There is no shortcut in the study of 

variability due of the interdependencies of the actors and parameters that are 

involved from design to service of the composite structure. 

Regarding the characterisation of the volume fractions of the constituent 

materials in all the stages of the fabrication of a composite part, it is necessary to 

confirm the assumptions that the mass per unit area of the fibre is constant within 

the composite part. Likewise, the link between the ply thickness and the fibre 

volume fraction must be assessed in order to confirm the hypothesis that the 

variation of the ply thickness does not impact the repartition of the reinforcements 

along the plies. For the ply thickness, at the moment only one direction was 

considered, assuming the same behaviour for the transverse direction of the plate. 

This gives as a result a very distinctive straight pattern in the two principal 

directions of the composite plate. This pattern however is not likely to be present 
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in the actual structure. Therefore, further studies must be conducted on the 

transversal direction of the composite plate applying the same method as 

explained in Chapter 5. This study will lead to further developments of the 

mathematical laws describing the two dimension evolution of the ply thickness.  

Additional developments on the algorithms for the image analysis are 

required in order to increase the measurements precision, of both fibre orientation 

and ply thickness. In the case of the ply thickness, it would be necessary to 

automate the procedure to reduce the uncertainties that are due to the manual 

selection of points along the ply interfaces. This action will also increase the 

number of points measured along the ply interfaces allowing a better distinction 

between the noise and the physical information obtained by the discrete Fourier 

transform. 

 It was demonstrated that with the proposed finite element model, we are 

capable to highlight the influence of variabilities on the mechanical responses of a 

composite structure. However, the FE model continues to be a work in progress, 

hence, efforts leading to its constant development must be made. 

The technical aspects of the FE model that should be addressed on the short 

term deal with the automation of the input files generation, analysis and post-

processing. This step is mandatory in order to be able to evaluate the very large 

number of simulations needed for the probabilistic analysis of composite 

structures. An optimisation of the input files is necessary to reduce their size and 

computing time (loading, calculation and writing). It is also necessary to improve 

the management for both, the memory needed by the FE code solver and the disk 

memory used to store the model output files. The inclusion of damage analysis of 

the composite structure could be envisaged using current criteria. To properly 

asses this condition, failure criteria need to be updated in function of variations of 

geometry and fibre and matrix volume fractions, thus, leading to an iterative 

calculation per finite element. 

An assessment on mesh size must be performed in order to determine 

influence of each studied variable on behavior at different scales and sizes. 
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Compromises must be done when choosing between the number of elements, the 

size of the composite structure and the scale at which the studied variables is 

performed.   

It is important to underline that this work follows previous developments 

on the framework Multi Instrumented Technological Evaluators (MITE) made by 

ICA and Composites, Expertise & Solutions (CES) during the last 15 years. One of 

the goals of the MITE framework, in its digital component (FE models), is to 

establish efficient links between “refined” models and simulations adequate to 

structural scale (e.g. the upper part of the test pyramid like a curved panel or even 

the complete aircraft). One way to reach these goals is to implement “digital 

markers” which benefit from results obtained from “refined” models that can 

deliver reliable information at a structural level. In our case, the first level of such 

markers is to consider material properties that are either the most representative 

or the minimum based on one or several elements of the structure model. A priori, 

the proposed approach interests to both researchers and industrials and begins to 

be operational. 

Finally, although the proposed approach seems to yield adequate results, it is 

indispensable to compare the proposed calculation methodology versus a purely 

stochastic approach, such as the one proposed by prof. A. Chateauneuf. 
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