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Summary

This thesis focuses on the study of special solutions (traveling wave and stand-
ing wave type) for nonlinear dispersive partial differential equations in RN . The
considered problems have a variational structure, the solutions are critical points of
some functionals. We demonstrate the existence of critical points using minimiza-
tion methods. One of the main difficulties comes from the lack of compactness.
To overcome this, we use some recent improvements of P.-L. Lions concentration-
compactness principle.

In the first part of the dissertation, we show the existence of the least energy
solutions to quasi-linear elliptic equations in RN . We generalize the results of Brézis
and Lieb in the case of the Laplacian, and the results of Jeanjean and Squassina in
the case of the p-Laplacian.

In the second part, we show the existence of subsonic travelling waves of finite
energy for a Gross-Pitaevskii-Schrödinger system which models the motion of a non
charged impurity in a Bose-Einstein condensate. The obtained results are valid in
three and four dimensional space.

Keywords. Nonlinear elliptic equations · nonlinear Schrödinger equation · Gross-
Pitaevskii-Schrödinger system · standing wave· travelling wave · minimization · con-
strained minimization · concentration-compactness principle.
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Résumé

Cette thèse porte sur l’étude des solutions spéciales (de type onde progressive et
onde stationnaire) pour des équations aux dérivées partielles dispersives non-linéaires
dans RN . Les problèmes considérés ont une structure variationnelle, les solutions
sont des points critiques de certaines fonctionnelles. Nous démontrons l’existence
des points critiques en utilisant des méthodes de minimisation. Une des principales
difficultés vient du manque de compacité. Pour y remédier, on utilise quelques raf-
finements récents du principe de concentration-compacité de P.-L. Lions.

Dans la première partie du mémoire on montre l’existence des solutions d’énergie
minimale pour des équations elliptiques quasi-linéaires dans RN . Nous généralisons
les résultats de Brézis et Lieb dans le cas du Laplacien, ainsi que les résultats de
Jeanjean et Squassina dans le cas du p-Laplacien.

Dans la seconde partie on montre l’existence des ondes progressives subsoniques
d’énergie finie pour un système de Gross-Pitaevskii-Schrödinger qui modélise le mou-
vement d’une impureté non chargée dans un condensat de Bose-Einstein. Les résul-
tats obtenus sont valables en dimension trois et quatre d’espace.

Mots-clés. Équations elliptiques non-linéaires · équation de Schrödinger nonlinéaire
· système de Gross-Pitaevskii-Schrödinger · onde stationnaire · onde progressive ·
minimisation · minimisation sous contrainte · principe de concentration-compacité.
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Introduction

In the class of nonlinear dispersive partial differential equations, the nonlin-
ear Schrödinger (NLS) equation is one of the most widely applicable equations in
Physics. It describes a large class of phenomena e.g., modulational instability of
water waves, propagation of heat pulses in anharmonic crystals, helical motion of a
very thin vortex filament, nonlinear modulation of collision-less plasma waves, and
self trapping of a light beam in a color dispersive system [65]. Additionally, the
equation appears in the studies of the Bose-Einstein condensate confined to highly
anisotropic cigar-shaped traps, in the mean-field regime, both with the attractive
and repulsive nonlinearities, where the nonlinear term models the interaction be-
tween the particles and represents the Planck constant. It also arises in the descrip-
tion of nonlinear waves, for example light waves propagating in a medium whose
index of refractionis sensitive to the wave amplitude, water waves at the free surface
of an ideal fluid, and plasma waves [61]. More generally, the NLS equation appears
as one of universal equations that describe the evolution of slowly varying packets
of quasi-monochromatic waves in weakly nonlinear media that have dispersion.

In this thesis we are interested in the existence of the special solutions (standing
waves and traveling waves) for NLS equations. The considered problems have a
variational structure and their solutions are critical points of some functionals. The
main difficulty in the problems is the lack of compactness which originates from
the invariance of RN under the action of the noncompact group of translations
and dilations, and manifests itself in the noncompactness of the Sobolev imbedding
H1(RN) ↪→ Lp(RN). Thus, except for the special case of convex functionals, the
standard convexity-compactness methods used in problems set in bounded domains
fail to treat problems in unbounded domains. To overcome this, we use some recent
improvements of P.-L. Lions concentration-compactness principle.

We present, in more detail, physical motivations of the considered problem
and known results on the quasilinear elliptic equations, the defocusing nonlinear
Schrödinger flow past an obstacle and the Gross-Pitaevskii-Schrödinger system.
Then we introduce our results.
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2 INTRODUCTION

1. Physical motivation and overview

1.1. General quasilinear elliptic systems

Standing waves for the nonlinear Schrödinger equations.

It is well known that the NLS equation has not only been extensively used in
the scalar case, but has also been largely studied in the vector case. For instance,
several years after the discovery of Zakharov and Shabat [67] about the integrability
of the scalar NLS equation, Manakov [45] showed that a special form of a two-
component vector NLS equation with isotropic nonlinearity has the same property.
More precisely, he considered the system

iut +
1

2
uxx + (|u|2 + |v|2)u = 0

ivt +
1

2
vxx + (|u|2 + |v|2)v = 0

as a model governing the propagation of the electric field in a waveguide, where each
equation governs the evolution of one of the components of the field transverse to the
direction of propagation. Generally, it can be used as a model for wave propagation
under conditions similar to those where the NLS equation applies and there are two
wave trains moving with nearly the same group velocity [58, 66].

Moreover, the NLS equation has been recently applied to the study of the propa-
gation of pulses in a single-mode optical fiber. Nevertheless, according to Kaminow
[40], a single-mode optical fiber is not really “single-mode” in the usuals, it is ac-
tually bimodal due to the presence of birefringence. While the linear birefringence
makes a pulse split in the two polarization directions, nonlinear birefringence can
trap them together against splitting. Menyuk [52] showed that the evolution of two
polarization components in birefringent optical fiber satisfy the Coupled Nonlinear
Schrödinger system, which is a generalization of Manakov’s system,

iut +
1

2
uxx + (|u|2 + β|v|2)u = 0

ivt +
1

2
vxx + (β|u|2 + |v|2)v = 0.

where β is a real positive constant which depends on the anisotropy of the fiber. This
system also appears in the Hartree-Fock theory for a binary mixture of Bose-Einstein
condensates in two different hyperfine states [26].

We refer to them component vector generalization of the two-component system,

(1.1) iψt + ∆ψ + f(ψ) = 0,

where ψ : R×RN → Rm and f : Rm → Rm. Like the scalar case, the vector NLS
equation plays an important role in many branches of physics. It has been used as
models for the interaction of m waves, propagating in a regime that for one wave
leads to the scalar nonlinear Schrödinger equation. These can be for example water
waves in a deep fluid, interacting on the surface or propagating at different levels.
Especially, in recent years, it has been widely applied for light-wave propagation in
optical fibers ([27, 46, 52, 63]) where the components of ψ in eq. (1.1) correspond
to components of the electric field transverse to the direction of wave propagation.
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These components of the transverse field compose a basis of the polarization states.
Besides that, the nonlinear Schrödinger equation and its vector generalizations have
been shown to be gauge equivalent to the Heisenberg ferromagnet equations and
their generalizations [2, 3].

The name “NLS equation” comes from a formal analogy with the Schrödinger
equation of quantum mechanics where a nonlinear potential appears to describe
interacting particles. In the wave context, the second-order linear operator describes
the dispersion and diffraction of the wave-packet, and the nonlinearity presentes the
sensitivity of the refractive index to the medium on the wave amplitude.

Heuristically, the nonlinear term in the NLS equation has a focusing effect which
tends to concentrate the solution and compensates the dispersive effect of the linear
terms, which tends to flatten the solution as time goes on. Therefore, it can be
expected that the NLS equation has solitary waves as solutions whose energy travels
as localized packets and which preserve their shape under perturbations. This kind
of phenomena was first observed in 1834 by John Scott Russel on the Edinburgh to
Glasgow canal, while he was working on the design of the keels of canal boats. Most
of the scientists of that time did not believe the existence of such a wave, which does
not disperse. In 1895, Korteweg and de Vries derived an equation for the motion
of water admitting solitary wave solutions. Nonetheless, it was not until the 1960’s
and the advent of modern computers that the study of solitary wave evolution in
a uniform medium began to be extended, not only because of their observations
in experiments but also because of their diverse potential applications to ultrafast
signal processing such as optical switching, computing, filtering, and beam splitting
([18, 61, 25, 24]). It is natural to ask whether similar solutions exist for the vector
NLS equation. Their properties have been investigated experimentally [6, 9, 41].

The focusing vector NLS equation, where the sign of the nonlinear term is posi-
tive, has solitary wave solutions of "standing wave" type, which are solutions of the
form

ψ(t, x) = e−iEtu(x),

where E is the energy of the wave and u : RN → Rm satisfies

(1.2) −∆u = ∇G(u) in D′(RN),

where G : Rm −→ R is a C1 function. The system (1.2) also appears in the
study of standing waves for systems of coupled nonlinear Klein-Gordon equations.
Moreover, it appears in various other contexts of physics, for example, the classical
approximation in statistical mechanics, constructive field theory, false vacuum in
cosmology, etc ([7, 8, 22, 29, 4]).

Variation methods and least energy solutions for some quasilinear elliptic equa-
tions. A natural method to solve (1.2) would be to look for critical points of the
functional

E(u) =
1

2

∫
RN

|∇u|2dx−
∫
RN

G(u)dx.

This method was used by Strauss [59] in the case m = 1 (the scalar case) for N > 3,
and was extended to the vector case and to the "zero mass" by Strauss and Vázquez
[60]. But their work required severe restrictions on the function G and they did not
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explicitly consider the question whether or not their solution to (1.2) minimized the
action E.

A first difficulty in this approach lies in the fact that for the focusing nonlinearity,
E is not bounded from below. To see this it suffices to take u such that

∫
RN G(u)dx >

0, to put uσ = u( ·
σ
) and to take the limit as σ → ∞ of E(uσ). Another difficulty

comes from the fact that E does not satisfy conditions of the type (PS+) or (PS−)
in an obvious way.

On the other hand, physically meaningful solutions to (1.2) have finite energy
and, if they exist, one is interested in the least energy solution u0 which has the
property 0 < E(u0) ≤ E(u) for any solution u to (1.2). Such a solution u0 is also
called a "ground state".

In 1978, Coleman et al. [23] not only made an important contribution to the
problem by their "constrained minimization method" which yields a least energy
solution for N > 3 but also discovered almost optimal assumptions on G so that
the scalar problem (1.2) has a solution. However, their method was restricted in
an essential way to N > 3 and m = 1. Berestycki and Lions presented some
improvements of the Coleman, Glaser, Martin method, other theorems and related
problems in [12, 13]. They also proved in [13] the existence of infinitely many finite
action solutions to (1.2). However, all of these results were proven for N > 3 in the
scalar case. In 1982, Berestycki, Gallouet and Kavian [10] solved the N = 2,m = 1
case.

One had to wait until the 1984 for the proof of the existence of least energy
solutions to (1.2) in the vector case (m > 1) by Brezis and Lieb [16]. They assumed
that G is a C1 function on Rm\{0}, locally Lipschitz around the origin and having
suitable subcritical bounds at the origin and at infinity. To our knowledge, the
assumptions in [16] are still the most general in the literature. Unlike in the previous
works, the problem of minimizing

∫
RN |∇u|2dx at fixed

∫
RN G(u)dx is solved in

[16] without using symmetrization and some compactness properties for arbitrary
minimizing sequences are given. Other interesting properties of solutions (general
Pohozaev identities, behavior at infinity or compact support in some cases) are also
proven in [16].

At the same time, P.-L. Lions introduced his celebrated concentration-
compactness method [42, 43, 44], which allowed him (among many other important
applications) to deal with the cases N > 2, m > 1. The author constructed a
concentration-compactness lemma which was derived, at least heuristically, from
the fact that, essentially, the loss of compactness may occur only if either the
minimizing sequence slips to infinity, or the minimizing sequence breaks into at
least two disjoint parts which are going infinitely far away from each other. Then he
formulated a concentration-compactness principle which states that all minimizing
sequences are relatively compact if and only if a subadditivity inequality is strict.
In this way he could overcome the difficulties of loss of compactness coming from
unbounded domains to solve different minimization problems. In many applications
this method implies the precompactness of any minimizing sequence, which leads to
the orbital stability of the minimizers, in the sense that a time-depending solution
which starts near the set of global minimizers will remain close to it for all time.
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Recently, in the vector case with the specific functions G, existence results have
been established in many papers (e.g. [5, 56, 55]).

In the 2000’s, many researchers have extended the existence results for the least
energy solution to (1.2) to the p-Laplacian case, which has the following form:

(1.3) −∆pu = ∇G(u) in D′(RN).

In [28, 31], the authors proved the existence of non-negative, nontrivial radial solu-
tions vanishing at infinity of (1.3) but they require some regularity of the function
G. The issue of least energy solutions is not considered in these papers. In [54],
under assumptions on G allowing to work with regular functionals in W 1,p(RN), the
existence of a least energy solution is derived. For more general scalar equations the
existence of solutions was shown by Jeanjean and Squassina in [38]. In this work
we find least energy solutions to the general vector equations under nearly optimal
assumptions.

1.2. The Gross-Pitaevskii-Schrödinger system

Nucleation by impurities. We are interested in an application of the NLS equation
which concerns the modelling of vortex nucleation by an impurity, e.g. an electron
[32]. In the Hartree approximation, Gross [35] and Clark [21] initially established
that the one-particle wave function of the condensate ψ, and the wave function of
the impurity φ, satisfy the coupled equations

ih∂tΨ = − h2

2M
∆Ψ +

(
U0|φ|2 + V0|Ψ|2 − E

)
Ψ(1.4)

ih∂tΦ = −h
2

2µ
∆Φ +

(
U0|Ψ|2 − Ee

)
Φ,

where M and E are the mass and single-particle energy for the bosons, and µ and
Ee are the mass and energy of the impurity. The normalization conditions on the
wave functions are

(1.5) N =

∫
|ψ|2dV, 1 =

∫
|φ|2dV,

where N is the total number of bosons in the system. The interaction potentials
between boson and electron and between bosons are here assumed to be of δ-function
form U0δ(x−x′) and V0δ(x−x′) where x and x′ are their positions. To lowest order,
perturbation theory predicts such pseudopotentials, with

U0 =
2πlh2

µ
and V0 =

4πdh2

M
,

where l is the boson-impurity scattering length, and d is the boson diameter. The
healing length is defined by

a = h(2ρ∞V0)
−1
2 = (8πdψ2

∞)
−1
2

where ρ∞ = Mψ2
∞ = EM

V0
is the mean condensate mass density. Using the system

(1.4), Grant and Roberts studied the motion of a negative ion moving with speed v.
They used an asymptotic expansion in v

vs
, where vs is the speed of sound. Treating
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ε =
(

4πa3ψ2
∞V0

U0

) 1
5

=
(
aµ
lM

) 1
5 as a small parameter they calculated the effective (hy-

drodynamic) radius and effective mass of the electron bubble (in applications ε is
about 0.2).

We introduce the transformations

r → ar

ε
, t→ a2M

hε2
t, ψ → ψ∞ψ, φ→ ε3

4πa3
φ.

Then the system (1.4) becomes

2i∂tΨ = −∆Ψ +
1

ε2

(
1

ε2
|Φ|2 + |Ψ|2 − 1

)
Ψ(1.6)

2iδ∂tΦ = −∆Φ +
1

ε2
(
q2|Ψ|2 − ε2k2

)
Φ,

where δ = µ
M

is the ratio of the mass of the impurity over the boson mass (δ),
q2 = δU0

V0
, and k10 =

µ5E5
eU

2
0

2π2M2E4h6 is a dimensionless measure for the single-particle
impurity energy. Assuming that the condensate is at rest at infinity, the solutions
Ψ and Φ must satisfy the "boundary conditions"

|Ψ(x)| → 1, Φ(x)→ 0 as |x| → ∞.

Based on formal asymptotic expansions and numerical experiments, Grant and
Roberts [32] computed the effective radius and the induced mass of the uncharged
impurity.

Traveling waves for a Gross-Pitaevskii-Schrödinger system. Traveling wave so-
lutions for the system (1.6) are solutions of the form

Ψ(x, t) = ψ(x− cty), Φ(x, t) = φ(x− cty)

where y is the direction of propagation and c is the speed of the traveling wave.
Without loss of generality, we may assume that y = (1, 0, . . . , 0), and then such
solutions must satify the equations

(1.7)
2ic

∂ψ

∂x1

= −∆ψ +
1

ε2

(
1

ε2
|φ|2ψ + |ψ|2 − 1

)
ψ

2icδ
∂φ

∂x1

= −∆φ+
1

ε2
(q2|ψ|2 − ε2k2)φ = 0.

By extending the analysis of [33, 34] for the GP equation, Bouchel [15] showed
decay estimates for finite energy traveling waves of the GP system and the non-
existence of supersonic traveling waves in dimension three. In space dimension one,
Mariş [48] proved the existence of a global subcontinua of finite energy subsonic
traveling waves. In [49] he proved the nonexistence of supersonic solutions in any
space dimension.

To our knowledge, there have been no existence results in the literature for the
system (1.7) in dimension N > 2.
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2. Main results

2.1. Existence of least energy solutions for general quasilinear elliptic
systems

We study the existence of solutions for nonlinear elliptic systems of the form

(2.1) ∂uia(u,∇u)− div (∇ξia(u,∇u)) = gi(u) in D′(RN),

where u = (u1, . . . um) : RN → Rm, ∇u =
(
∂ui
∂xk

)
16i6m
16k6N

, a is a real-valued function

defined on Rm × Rm×N , where {ξ 7−→ a(s, ξ)} is p-homogeneous and gi(u) = ∂G
∂ui

,
where G : Rm −→ R is a C1 function.

The system (2.1) admits a variational formulation. As in [13] or [16], we will
find solutions to (2.1) by solving the minimization problem

(Pλ) minimize A(u) for u ∈ X under the constraint V(u) = λ,

where λ ∈ R, the function space X will be introduced in Chapter I and

A(u) =

∫
RN

a(u(x)),∇u(x)) dx, V(u) =

∫
RN

G(u(x)) dx, E(u) = A(u)− V(u).

Under suitable assumptions, it can be shown that the solutions of (2.1) (or
equivalently, the critical points of E ) satisfy the Pohozaev identity (N − p)A(u) =
NV(u). Therefore, we should consider (Pλ) for λ > 0 in the case p < N and for
λ = 0 if p = N . In the case p > N , it has been shown in Remark 5 p. 486 in
[11] that (Pλ) cannot have solutions (although (2.1) may sometimes have solutions
and even least energy solutions, see e.g. [28]). Here, we focus on the minimization
problem (Pλ) and we do not consider the supercritical case p > N .

Moreover, on the second term in (2.1), in the previous works it was assumed that
g(0) = 0 (which means that 0 is an equilibrium point for (2.1)) and the authors were
looking for solutions converging to 0 at infinity. However, many physical systems
have more equilibria (often a manifold) and there is no a priori reason that the
system would choose one equilibrium rather than another. This is the case, for
instance, for models in condensed matter theory, superfluids, nonlinear optics or
micromagnetics. Here, we assume that the set of interesting equilibria is a compact
set S ⊂ Rm; we require no manifold structure on S.

In the case p < N , under general assumptions on a and G that we will present
in detail later, by using P.-L. Lions’ concentration-compactness principle we show
the existence of minimizers of (Pλ) and then we obtain the existence of least energy
solutions for (2.1). In the particular case when a(u,∇u) = |∇u|2 and 2 < N , this
existence result has been proven in [16]. However, even in that case we improve the
results in [16] in the sense that we provide a more precise description of the behavior
of minimizing sequences and we show that the technical assumption (2.5) p. 99 in
[16] is unnecessary. That assumption has been used in [16] to perform an appropriate
cut-off in the nonlinear term. In our proof we do not use a cut-off, but instead we
use "localized scaling," that is, we "zoom in" or "zoom out" some regions in the
Euclidean space. This is possible in view of the results in [51] which provide large
regions in the space with small energy. In the case p = N any (sufficiently smooth)
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solution u ∈ X of (2.1) must satisfy the Pohozaev identity
∫
RN G(u) dx = 0. At first

glance, one might think of finding solutions to (2.1) by solving the minimization
problem (P0). However, it is easily seen that the only solutions of (P0) are the
constant ones. In order to find nontrivial solutions to (2.1) it is natural to minimize
A in the set X0 = {u ∈ X | V(u) = 0 and u is not constant}. This problem is
significantly more difficult than the problem (Pλ) considered above for at least two
reasons: firstly, one needs to prevent minimizing sequences to converge to constant
functions (and this is not so obvious since constant functions are global minimizers
in X ); and secondly, the problem is invariant by scaling.

It is well known that when using P.-L. Lions’ concentration-compactness prin-
ciple, the difficult part is to understand the dichotomy case. In [51], Mariş has
improved the principle in the sense that whenever dichotomy occurs, we can choose
a "dichotomizing subsequence" µnk = µk,1 + µk,2 + o(1) such that µk,1 and µk,2 have
supports far away from each other and, in adition, the sequence µk,1 ”concentrates.”
Iterating this argument he is able to prove a profile decomposition result for arbi-
trary sequences of bounded Borel measures. By using this method, we obtain the
existence of least energy solutions to (2.1) in the case p = N .

We consider a more general problem: we denote G1 = G−, G2 = G+ and we min-
imize A in the set of functions u ∈ X satisfying

∫
RN G2(u) dx = λ

∫
RN G1(u) dx > 0,

where λ > 0 is arbitrary. Then, of course, we will take λ = 1. However, it is
important to consider the minimization problem for any λ > 0 in order to get an
accurate information for λ = 1. We also allow a nontrivial set of equilibria S and
we show the existence of minimizers as well as the precompactness of minimizing
sequences under mild assumptions. For instance, we need only the continuity of G,
while the corresponding result in [16] (see Theorem 3.1 p 106 there) requires either
the differentiability of G on R2 \ {0}, or the assumption that |G(tv)| 6 C|G(v)| for
all t ∈ [0, 1] and |v| 6 ε, where C, ε are positive constants.

2.2. Existence of nontrivial finite energy traveling waves for a Gross-
Pitaevskii-Schrödinger system

This work focuses on the study of the existence of traveling wave solutions to
the system

(2.2)
2i
∂Ψ

∂t
= −∆Ψ +

1

ε4
|Φ|2Ψ− F (|Ψ|2)Ψ,

2iδ
∂Φ

∂t
= −∆Φ +

1

ε2
(q2|Ψ|2 − ε2k2)Φ

with "boundary conditions"

|Ψ(x)| → 1, Φ(x)→ 0 as |x| → ∞,
and F (1) = 0, F ′(1) < 0. Denoting V (s) =

∫ 1

s
F (τ)dτ , at least formally, traveling

waves are critical points of the functional

Ec(ψ, φ) =

∫
RN

(
|∇ψ|2 +

1

ε2q2
|∇φ|2 + V (|ψ|2) +

1

ε4
|ψ|2|Φ|2 − k2

ε2q2
|φ|2
)
dx

+ 2cQ(ψ) + 2
cδ

q2ε2
Q(φ),
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where Q is the momentum with respect to the x1 direction. Under suitable assump-
tions on F , it can be shown that any traveling wave (ψ, φ) ∈ E ×H1(RN) of (2.2)
must satisfy the Pohozaev-type identity Pc(ψ, φ) = 0, where

Pc(ψ, φ) =

∫
RN

(∣∣∣∣ ∂ψ∂x1

∣∣∣∣2 +
1

q2ε2

∣∣∣∣ ∂φ∂x1

∣∣∣∣2
)
dx+

N − 3

N − 1

N∑
k=2

(∣∣∣∣ ∂ψ∂xk
∣∣∣∣2 +

1

q2ε2

∣∣∣∣ ∂φ∂xk
∣∣∣∣2
)
dx

+

∫
RN

V (|ψ|2)dx+
1

ε4

∫
RN

|ψ|2|φ|2dx− k2

ε2q2

∫
RN

|φ|2dx+ 2cQ(ψ) + 2
cδ

q2ε2
Q(φ).

Using the concentration-compactness principle, we prove the existence of traveling
waves in space dimension N = 3 and N = 4 by minimizing the action Ec under the
Pohozaev constraint Pc = 0 under general conditions on the nonlinearity F and for
any speed c ∈ (0, vs) satisfying ε2(c2δ2 + k2) < q2.

3. Outline of the manuscript

This thesis contains two chapters that correspond to the following contributions.

I. Mihai MARIŞ and Lien Thuy NGUYEN, Least energy solutions for general
quasilinear elliptic systems.
We prove the existence of least energy solutions for a large class of quasi-
linear systems with variational structure. Our method consists in solving
appropriate constrained minimization problems. We show a stability prop-
erty of solutions in the sense that any minimizing sequence has convergent
subsequences. We are able to deal with very general assumptions thanks to
the concentration-compactness principle and the new results in [51].

II. Lien Thuy NGUYEN, Traveling waves for a Gross-Pitaevskii-Schrödinger
system.
We show the existence of subsonic traveling waves of finite energy for a
Gross-Pitaevskii-Schrödinger system which models the motion of a non
charged impurity in a Bose-Einstein condensate. The obtained results are
valid in three and four dimensional space.

4. Other results and perspectives

As mentioned above, NLS equations have been used as models for supercon-
ductivity, superfluid Helium II, Bose-Einstein condensation and nonlinear optics.
When impurities or obstacles are present in the superfluid, the new elements may
be modeled by adding an external potential U to the equation. Following [36] in the
one-dimensional case, the flow of a superfluid past an obstacle moving at velocity
c > 0 in the x1 direction may be described by the NLS equation with an external
repulsive potential U , namely

(4.1) i
∂Φ

∂t
= ∆Φ+F (|Φ|2)Φ−U(x1−ct, x′)Φ = 0, x ∈ RN , t ∈ R, x′ = (x2, ..., xN),

where Φ is a complex-valued function on RN satisfying the "boundary condition"
|Φ(x)| → r0 as |x| → ∞. The nonlinear term has a repulsive sign (F ′(r0) < 0), so
that a constant density solution is stable away from the impurity.



10 INTRODUCTION

In (4.1) the superfluid is supposed to be at rest at infinity. Equation (4.1) may
be recast in the frame of the moving obstacle as

(4.2) i
∂Ψ

∂t
− ic ∂Ψ

∂x1

+ ∆Ψ + F (|Ψ|2)Ψ− U(x)Ψ = 0,

where Ψ(x, t) = Φ(x1 + ct, x′, t). This equivalent formulation describes the flow of
an NLS fluid injected with constant speed c at infinity past a fixed obstacle. A
stationary solution ψ satisfies the elliptic equation

(4.3) − ic ∂ψ
∂x1

+ ∆ψ + F (|ψ|2)ψ − U(x)ψ = 0.

Equation (4.2) remains formally Hamiltonian. Denoting V (s) =
∫ r2

0

s
F (τ)dτ , the

Hamiltonian can be written as

FU
c (Ψ) =

∫
RN

|∇Ψ|2dx+

∫
RN

V (|Ψ|2)dx+

∫
RN

U(x)(|Ψ|2−r2
0)dx−c

∫
RN

〈i ∂Ψ

∂x1

,Ψ−r0〉dx.

The study of superfluid flows past an obstacle and the nucleation of vortices
(especially for the Gross-Pitaevskii (GP) equation, which is a particular case of the
NLS equation with nonlinearity F (s) = 1 − s) have been considered in a series of
papers (see e.g. [30, 37, 39, 53, 57]). For instance, Raman et al. have studied
dissipation in a Bose-Einstein condensed gas by moving a blue detuned laser beam
through the condensate at different velocities [57]. In the homogeneous two dimen-
sional case, Frisch et al. [30] performed direct numerical simulations of the NLS
equation to study the stability of the superflows around a disk. They observed a
transition to a dissipative regime characterized by vortex nucleation that they in-
terpreted in terms of a saddle-node bifurcation of the stationary solutions to the
NLS equation. A saddle-node bifurcation was explicitly found by Hakim [36] when
studying the stability of one-dimensional NLS flows across obstacles described by a
potential.

In [36], below a critical velocity (which depends on the obstacle and is always
less than the sound velocity), Hakim [36] performed a formal and numerical anal-
ysis of stationary one-dimensional solutions to the GP equation in three cases: for
weak potentials, for potentials of short range, and for slowly varying potentials. He
showed the existence of two stationary solutions: one stable, the other unstable.
The latter may be interpreted as the transition state towards the creation of gray
solitons corresponding to vortices in the one-dimentional case. Moreover, in all three
cases considered, at the critical velocity the two solutions become identical and no
stationary solution exists above the critical velocity.

If the potential U is a bounded measure with small total variation, Mariş [47]
proved the existence of solutions to the GP equation by minimizing the Hamiltonian
FU
c . When, in addition, U has compact support, he also established that (4.1) has

exactly two solutions.

In dimension two, the existence of finite energy solutions was obtained in [14] by
locally minimizing the Hamiltonian FU

c near the constant solutions to the GP equa-
tion when ‖U‖L2(R2) is small. These solutions have small energy and momentum;
in fact, they are perturbations of the constant solutions of (4.3) in the case when
the potential is zero. To avoid the lack of compactness, the minimization problem
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is solved first on a torus. It is shown that there exists a minimizer on each torus
and then one may pass to the limit when the size of the torus tends to infinity.
Unfortunately this method cannot be used in higher dimensions.

In a work in progress (that we choose not to incorporate in this PhD thesis) we
prove the existence of traveling wave solutions of (4.1) in dimension N > 2.

If the potential U (modeling the obstacle) is sufficiently localized and is not too
large, we show that Ec attains a local minimum in a neighbourhood of the set of
constant functions {ψ ∈ E |EGL(ψ) 6 k1}. Any local minimizer ψ0 satisfies (4.3)
and we have Ec(ψ0) < 0. The solutions obtained in this way have small energy and
small momentum. We also show that there is a second family of solutions, with high
energy and momentum, obtained by minimizing the energy at constant momentum.
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I

Least energy solutions for general quasilinear elliptic systems∗

Mihai MARIŞ and Lien Thuy NGUYEN

Abstract. We prove the existence of least energy solutions for a large class of
quasilinear systems with variational structure. Our method consists in solving
appropriate constrained minimization problems. We show a stability property of
solutions in the sense that any minimizing sequence has convergent subsequences.
We are able to deal with very general assumptions thanks to the concentration-
compactness principle and the new results in [22].

1. Introduction

In this paper we study the existence of solutions for nonlinear elliptic systems of
the form

(1.1) ∂uia(u,∇u)− div (∇ξia(u,∇u)) = gi(u) in D′(RN),

where u = (u1, . . . um) : RN −→ Rm, ∇u =
(
∂ui
∂xk

)
16i6m
16k6N

, and a is a real-valued

function defined on Rm ×Rm×N , where {ξ 7−→ a(s, ξ)} is p-homogeneous. Given a
matrix ξ =

(
ξki
)

16i6m
16k6N

, we will write ξi = (ξ1
i , . . . , ξ

N
i ), 1 6 i 6 m for the rows of ξ

and ζk = (ξk1 , . . . ξ
k
m) for its columns. If s ∈ Rm and ξ ∈ Rm×N we write either a(s, ξ)

or a(s, ξ1, . . . , ξm) or a(s, ζ1, . . . , ζN). Given a function u = (u1, . . . , um) : RN −→
Rm, we write either a(u,∇u) or a(u1, . . . , um,∇u1, . . . ,∇um) or a(u, ∂u

∂x1
, . . . , ∂u

∂xN
),

all of this having the same (obvious) meaning. By ∇ξia we denote
(
∂a
∂ξi1
, . . . , ∂a

∂ξiN

)
.

Finally, we assume that gi(u) = ∂G
∂ui

, where G : Rm −→ R is a C1 function.

Systems of the form (1.1) arise in a large variety of situations in physics and
life sciences (see, for instance, the introduction of [2] for some standard applica-
tions of the simplest model case). In the model case a(s, ξ) = |ξ|p =

∑m
i=1 |ξi|p =

∗Paper submitted for publication.
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i=1

(
(ξ1
i )

2 + · · ·+ (ξNi )2
) p

2 , the system (1.1) becomes

(1.2) − div
(
|∇ui|p−2∇ui

)
=

1

p
gi(u) in D′(RN)

where the differential operator ∆p(v) = div (|∇v|p−2∇v) is the usual p-Laplacian.
For p = 2 (1.2) reduces to the classical nonlinear vector field equations (m > 2) or
scalar field equation (m = 1), which have been extensively studied in the literature.

The system (1.1) admits a variational formulation. Indeed, let us introduce the
functionals
(1.3)

A(u) =

∫
RN

a(u(x)),∇u(x)) dx, V(u) =

∫
RN

G(u(x)) dx, E(u) = A(u)−V(u).

At least formally, solutions of (1.1) are critical points of the "energy functional" E.
It is easy to see that the energy E cannot have global minimizers or maximizers.
It is a natural idea to look for solutions of (1.1) as minimizers of A(u) under the
constraint V(u) = λ, where λ ∈ R is a constant. It has been shown in [5] that in
the case a(s, ξ) = |ξ|p with 1 < p 6 N the solutions of (1.1) obtained in this way
are precisely the least energy solutions, which means that they minimize the energy
E among all solutions of (1.1).

The problem of minimizing A under the constraint that V is fixed was con-
sidered in a series of papers, starting with the pioneer work of Strauss [24], who
used this approach to show the existence of radial solutions for the nonlinear scalar
field equation. Almost at the same time, Coleman, Glaser and Martin [6] discov-
ered almost optimal assumptions on the nonlinearity that guarantee the existence
of least energy solutions for the nonlinear scalar field equation, but their method
was limited in an essential way to N > 3 and m = 1. In the celebrated papers
[2], the authors presented in detail the method of Coleman, Glaser and Martin with
some improvements, gave further properties of the solutions and proved the exis-
tence of infinitely many solutions with energies going to infinity. The case N = 2,
m = 1 has been solved in [1]. In their seminal work [4], Brezis and Lieb extended
the previous results in several directions. They were able to find minimal energy
solutions to the vector field equations (N > 2, m > 1) under nearly optimal as-
sumptions (to our knowledge, the assumptions in [4] are still the most general in
the literature). Unlike in the previous works, the problem of minimizing A at fixed
V is solved in [4] without using symmetrization and some compactness properties
for arbitrary minimizing sequences are given. Other interesting properties of solu-
tions (general Pohozaev identities, behavior at infinity or compact support in some
cases) are also proven in [4]. At the same time, P.-L. Lions introduced his celebrated
concentration-compactness method [19], which allowed him (among many other im-
portant applications) to deal with the cases N > 2, m > 1. More recently, the
problem (1.2) has been considered in [9], where the authors followed the approach
in [2] and found sufficient conditions for the existence of radial solutions in the scalar
case (m = 1). We also refer to [9] for an interesting discussion on the existence of
radial ground states for (1.3) in the case of supercritical nonlinearities by using ODE
methods. For more general scalar equations the existence of solutions was shown
by Jeanjean and Squassina in [16]. It was proved in [5] that the minimum action
solutions of (1.2) are radial; moreover, in the scalar case they are monotonic with
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respect to the radial variable. The proof easily extends to more general equations
provided that the solutions of these equations are smooth (at least C1).

As in [2] or [4], we will find solutions to (1.1) by solving the minimization problem

(Pλ) minimize A(u) for u ∈ X under the constraint V(u) = λ,

where λ ∈ R and the function space X will be introduced later (see (1.5) and (1.13)
below). The situation is very different if p < N (subcritical case), p = N (critical
case) or p > N (supercritical case). Indeed, under suitable assumptions it can be
shown that the solutions of (1.1) (or equivalently, the critical points of E) satisfy the
Pohozaev identity (N − p)A(u) = NV(u). (This is a consequence of the behavior of
E with respect to dilations: if u is a critical point of E and uσ(x) = u(x

σ
), formally

we should have d
dσ |σ=1

E(uσ) = 0. Since V(uσ) = σNV(u) and assumption (a2) below
implies A(uσ) = σN−pA(u), the identity follows. Of course, this is only a formal
argument because we do not know that the curve σ 7−→ uσ is differentiable, but it
can be made rigorous by using a cut-off argument provided that u is a little bit more
regular than arbitrary functions in X ; see e.g. Lemma 2.4 p. 104 in [4] in the case of
the Laplacian, or [23] for more general results). Therefore we should consider (Pλ)
for λ > 0 in the case p < N and for λ = 0 if p = N . In the case p > N it has
been shown in Remark 5 p. 486 in [5] that (Pλ) cannot have solutions (although
(1.1) may sometimes have solutions and even least energy solutions, see e.g. [9]). In
this paper we focus on the minimization problem (Pλ) and we do not consider the
supercritical case p > N .

We will consider (1.1) and (Pλ) under general conditions. We will work only
with the following set of assumptions on the function a:

(a1) The function a : Rm ×Rm×N −→ R+ is Borel measurable, lower semicontin-
uous in (s, ξ) and convex in ξ, where s ∈ Rm, ξ ∈ Rm×N .

(a2) Homogeneity: a is p-homogeneous in ξ, that is, a(s, λξ) = λpa(s, ξ) for all
λ > 0, s ∈ Rm and ξ ∈ Rm×N .

(a3) There are positive constants C1, C2 such that

C1|ξ|p 6 a(s, ξ) 6 C2|ξ|p for all (s, ξ) ∈ Rm ×Rm×N .

(a4) Symmetry: a has a one-dimensional symmetry, for instance

a(s,−ζ1, ζ2, . . . , ζN) = a(s, ζ1, ζ2, . . . , ζN) for all s, ζ1, . . . , ζN ∈ Rm.

(a5) Regularity: a ∈ C1
(
Rm ×Rm×N) and there is C > 0 such that∣∣∣∣ ∂a∂si (s, ξ)

∣∣∣∣ 6 C(1 + |s|q + |ξ|p),
∣∣∣∣ ∂a∂ξik (s, ξ)

∣∣∣∣ 6 C(1 + |s|q + |ξ|p)

for all s ∈ Rm and ξ ∈ Rm×N , where q = p∗ = Np
N−p if p < N and q ∈ [1,∞) if

p = N .

Now let us discuss our assumptions on the second term in (1.1). In the previous
works it was assumed that g(0) = 0 (which means that 0 is an equilibrium point for
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(1.1)) and the authors were looking for solutions converging to 0 at infinity. However,
many physical systems have more equilibria (often a manifold) and there is no a
priori reason that the system would choose one equilibrium rather than another.
This is the case, for instance, for models in condensed matter theory, superfluids,
nonlinear optics or micromagnetics. In the present paper we assume that the set of
interesting equilibria is a compact set S ⊂ Rm; we require no manifold structure on
S. Our assumptions on the nonlinear potential G as well as our results are slightly
different if p < N or p = N . We consider separately the two cases.

Notation. If 1 6 p < N we denote by p∗ = Np
N−p the Sobolev exponent

corresponding to p. By µ we denote the Lebesgue measure in RN and dist(s, A) =
inf{|t−s| | t ∈ A} is the distance from s ∈ Rm to the set A ⊂ Rm. Given a function
u defined on RN and σ > 0 we denote

(1.4) uσ(x) = u
(x
σ

)
.

The case 1 < p < N . We assume that G : Rm −→ R is continuous and there
exists a compact, nonempty set S ⊂ Rm such that G = 0 on S. We consider the
following set of assumptions:

(G1) lim sup
dist(s,S)→0

G(s)

dist(s,S)p∗
6 0.

(G2) lim sup
|s|→∞

G(s)

|s|p∗ 6 0.

(G3) There exists s0 ∈ Rm such that G(s0) > 0.

(G4) The function G is C1 on Rm, ∂G
∂si

= gi and there exists C > 0 such that
|gi(s)| 6 C(1 + |s|p∗) for all s ∈ Rm, i = 1, . . . ,m.

Denote G+ = max(G, 0), G− = −min(G, 0), so that G = G+ − G−. Notice
that assumptions (G1) and (G2) are only on the behavior of G+ in a neighborhood
of S and of infinity, respectively; nothing is assumed about G−, except that it is
continuous.

In view of the above assumptions, the natural function space to study (Pλ) is

(1.5) X =
{
u ∈ L1

loc(R
N ,Rm) | ∇u ∈ Lp(RN), G(u) ∈ L1(RN),

and µ
(
{x ∈ RN | dist(u(x),S) > α}

)
<∞ for all α > 0

}
.

Using the notation (1.4) it is easy to see that for any u ∈ X there holds

(1.6) A(uσ) = σN−pA(u) and V(uσ) = σNV(u).

If (G3) is satisfied then for any λ > 0 there exists u ∈ X such that V(u) = λ.
To see this consider a function I ∈ C∞(R) such that I = 1 on (−∞, 0], I = 0 on
[1,∞) and −2 6 I ′ 6 0. Fix s1 ∈ S and s0 ∈ Rm such that G(s0) > 0. For R > 0
let wR(x) = s1 + I(|x| − R)(s0 − s1). It is obvious that wR ∈ X and V(wR) −→ ∞
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as R −→ ∞. Hence there is R0 > 0 such that V(wR0) > 0 and then V((wR0)σ) = λ
for a some σ > 0.

For λ > 0, denote

(1.7) Amin(λ) = inf{A(u) | u ∈ X ,V(u) = λ}.
It is obvious that 0 6 Amin(λ) <∞ and (1.6) implies that

(1.8) Amin(λ) = λ
N−p
N Amin(1) for all λ > 0.

We have the following:

Theorem 1.1. Assume that 1 < p < N and the assumptions (a1), (a2), (a3), (G1),
(G2), (G3) are satisfied. Then Amin(1) > 0.

Moreover, for any λ > 0 and any sequence (un)n>1 ⊂ X satisfying V(un) −→ λ
and A(un) −→ Amin(λ) there exist a subsequence (unk)k>1, a sequence of points
(xk)k>1 ⊂ RN and a function u ∈ X satisfying V(u) = λ, A(u) = Amin(λ) and

(1.9) ∇unk(·+ xk) ⇀ ∇u weakly in Lp(RN),

(1.10) unk(·+ xk) −→ u a.e. and in Lqloc(R
N) for 1 6 q < p∗,

(1.11) G((unk(·+ xk)) −→ G(u) in L1(RN).

Furthermore, for each ε > 0 there exists Rε > 0 such that
∫
RN\B(xk,Rε)

|∇unk |p +

|unk |p
∗
dx < ε for all k.

In particular, the problem (Pλ) admits solutions.

In addition, if assumptions (a5) and (G4) hold, then any minimizer of (Pλ)
satisfies

(1.12) ∂uia(u,∇u)− div (∇ξia(u,∇u)) = αgi(u) in D′(RN),

where α = N−p
N
λ−

p
NAmin(1), and there is a unique λ > 0 such that minimizers of

(Pλ) satisfy (1.1).

The case p = N . In the case p = N any (sufficiently smooth) solution u ∈ X
of (1.1) must satisfy the Pohozaev identity

∫
RN G(u) dx = 0. At first glance, one

might think of finding solutions to (1.1) by solving the minimization problem (P0).
However, it is easily seen that the only solutions of (P0) are the constant ones,
u(x) = s∗ with s∗ ∈ S. In order to find nontrivial solutions to (1.1) it is natural
to minimize A in the set X0 = {u ∈ X | V(u) = 0 and u is not constant}. This
problem is significantly more difficult than the problem (Pλ) considered above for
at least two reasons: firstly, one needs to prevent minimizing sequences to converge
to constant functions (and this is not so obvious since constant functions are global
minimizers in X ); and secondly, the problem is invariant by scaling (see (1.6)). To
overcome these difficulties, we notice that under suitable assumptions on G we may
write X0 = {u ∈ X |

∫
RN G+(u) dx =

∫
RN G−(u) dx > 0}. In fact, we will consider a

more general problem: we denote G1 = G−, G2 = G+ and we minimize A in the set
of functions u ∈ X satisfying

∫
RN G2(u) dx = λ

∫
RN G1(u) dx > 0, where λ > 0 is

arbitrary. Then, of course, we will take λ = 1. However, it is important to consider
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the minimization problem for any λ > 0 in order to get an accurate information for
λ = 1.

As in the case 1 < p < N , let S ⊂ Rm be a compact, nonempty set. Let
G1, G2 : Rm −→ [0,∞) be two continuous functions (one might think of as G1 = G−,
G2 = G+, but we do not need to restrict ourselves to this case; in particular we do not
need that G1G2 = 0). We assume that G1 and G2 satisfy the following properties:

(g1) G1 = 0 on S and there is an open set U ⊃ S such that G1 > 0 on U \ S.

(g2) There is s ∈ Rm with G2(s) > 0, there is an open set V ⊃ S such that G2 = 0
on V and there are C, q > 0 verifying 0 6 G2(s) 6 C(1 + |s|q) for all s ∈ Rm.

We consider the function space

(1.13) X =
{
u ∈ L1

loc(R
N ,Rm) | ∇u ∈ LN(RN), G1(u), G2(u) ∈ L1(RN)

and µ({x ∈ RN | dist(u(x),S) > α}) <∞ for all α > 0
}
.

For all u ∈X such that
∫
RN

G1(u(x)) dx > 0 we define K(u) =

∫
RN G2(u(x)) dx∫
RN G1(u(x)) dx

.

For any λ > 0, let

Amin(λ) = inf

{
A(u)

∣∣∣ u ∈X ,

∫
RN

G1(u(x)) dx > 0, K(u) = λ

}
.

Let Λ = sups∈RN
G2(s)
G1(s)

. It is easy to see that the set

(1.14) Xλ =

{
u ∈X

∣∣∣ ∫
RN

G1(u(x)) dx > 0, K(u) = λ

}
is not empty and Amin(λ) < ∞ if and only if 0 6 λ < Λ. Indeed, fix s1 ∈ S and
s2 ∈ Rm such that G2(s2) > 0. For R > 0 define wR(x) = s1 + I(|x| − R)(s2 − s1),
where I ∈ C∞(R) satisfies I = 1 on (−∞, 0], I = 0 on [1,∞) and −2 6 I ′ 6 0. The
mappings R 7−→

∫
RN Gi(wR(x)) dx are continuous for i = 1, 2, K(wR) is well-defined

for R sufficiently large and K(wR) −→ G2(s2)
G1(s2)

as R −→∞. Then we infer easily that
Xλ 6= ∅ if λ < Λ. It is clear that Xλ = ∅ if λ > Λ. We have always XΛ = ∅. Indeed,
if u ∈ XΛ we should have G2(u(x)) = ΛG1(u(x)) for a.e. x ∈ RN ; using (g1), (g2)
and Lemma 3.2 below it is not hard to see that this is impossible.

Our main results in the case p = N are as follows.

Theorem 1.2. Assume that p = N and the conditions (a1), (a2) (a3), (a4), (g1),

(g2) hold. Let (un)n>1 ⊂X be a sequence of functions satisfying
∫
RN

G1(un) dx > 0

for all n and

(1.15) K(un) −→ λ > 0 and A(un) −→ Amin(λ) as n −→∞.
There exist a subsequence (unk)k>1, a sequence (σk)k>1 ⊂ (0,∞), a sequence of points
(xk)k>1 ⊂ RN and u ∈X such that K(u) = λ, A(u) = Amin(λ) and

(1.16) ∇(unk)σk(·+ xk) ⇀ ∇u weakly in LN(RN),

(1.17) (unk)σk(·+ xk) −→ u a.e. and in Lr(RN), 1 6 r <∞,
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(1.18) Gi((unk)σk(·+ xk)) −→ Gi(u) in L1(RN) for i = 1, 2,

and for any ε > 0 there is Rε > 0 such that
∫
RN\B(xk,Rε)

|∇(un)σk |N dx < ε for all k.

Corollary 1.3. Assume that p = N , (a1)-(a5) hold, the function G ∈ C1(RN)
satisfies (G4) (with some q <∞ instead of p∗), and G1 = G−, G2 = G+ satisfy (g1)
and (g2).

Let (un)n>1 ⊂ X be a sequence such that K(un) −→ 1 and A(un) −→ Amin(1).
Then there exists u ∈X with K(u) = 1, A(u) = Amin(1) and there are a subsequence
(unk)k>1, a sequence (σk)k>1 ⊂ (0,∞) and a sequence of points (xk)k>1 ⊂ RN such
that (1.16)-(1.18) hold.

Any u as above minimizes A in the set {w ∈ X | V(w) > 0 and
∫
RN |G(w)| dx >

0}, and conversely. Moreover, there exists α > 0 such that u solves (1.12). If α > 0,
then uσ solves (1.1) for σ = α−

1
N .

To prove Theorem 1.2 we need the following proposition, which is of independent
interest.

Proposition 1.4. Let p = N and suppose that the assumptions (a1), (a2) (a3),
(g1), (g2) are satisfied. The function Amin has the following properties:

i) There exists C > 0, independent of λ, such that for all λ > 0 there holds

Amin(λ) > Cλ
N(N−1)
N+(N−1)q ,

where q is as in (g2). In particular, we have Amin(λ) > 0 for all λ > 0.

ii) Amin(λ) −→ 0 as λ −→ 0.

iii) Assume, moreover, that a has a one-dimensional symmetry, that is, (a4)
holds. Consider u ∈ X such that

∫
RN G1(u) dx > 0 and K(u) = λ > 0. Then for

all λ̃ ∈ (0, λ) we have
Amin(λ̃) < A(u).

In particular, Amin is nondecreasing.

Theorem 1.1 will be proven in the next section. We prove Proposition 1.4,
Theorem 1.2 and Corollary 1.3 in Section 3. We end this section by discussing our
assumptions and the relationship between our results and the existing literature.

Remark 1.5. In most applications one may get a much stronger convergence of
minimizing (sub)sequences than provided by Theorems 1.1 and 1.2. For instance, if
A(u) =

∫
RN |∇u|p dx the weak convergence (1.9) together with the convergence of

norms ‖∇unk(· + xk)‖pLp(RN )
= A(unk) −→ A(u) = ‖∇u‖p

Lp(RN )
implies the strong

convergence ∇unk(· + xk) −→ ∇u in Lp(RN). We get the same strong convergence
whenever A 1

p is a uniformly convex norm on Ẇ 1,p(RN). It is beyond the scope of
the present article to investigate optimal "abstract" conditions on the integrand a
that guarantee the strong convergence of minimizing subsequences.
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Remark 1.6. In the case 1 < p < N it follows from Lemma 7 p. 774 and Remark
4.2 p. 775 in [11] that for any u ∈ X there exists c(u) ∈ Rm such that u − c(u) ∈
Lp
∗
(RN), that is, u− c(u) ∈ Ẇ 1,p(RN) (see also Theorem 4.5.9 in [14] for a different

proof). Since G is continuous and G(u) ∈ L1(RN), it is easy to see that necessarily
c(u) ∈ S. Denoting Xs =

{
u ∈ X | u− s ∈ Lp∗(RN)

}
, we have thus X = ∪s∈SXs.

For each s ∈ S we may consider the problem (Pλ) in the space Xs instead of X .
Theorem 1.1 applies and we get minimizers of A in the set {u ∈ Xs | V(u) = λ}
for any s ∈ S, as well as the precompactness of minimizing sequences in Xs. In
particular, for any s ∈ S there exist solutions us of (1.1) which minimize A at fixed
V in the set Xs. However, given s1, s2 ∈ S, s1 6= s2, and two such solutions us1 and
us2 it is not clear whether there is a relationship between A(us1), V(us1), E(us1)
and A(us2), V(us2), E(us2), respectively. The advantage of Theorem 1.1 is that it
provides minimizers for (Pλ) as well as the precompactness of minimizing sequences
in the whole space X .

If 1 < p < N and we replace (G1) by the weaker assumption lim sup
t→s

G(t)

|t− s|p∗ 6 0

for any s ∈ S we still get minimizers for (Pλ) and solutions for (1.1) in each Xs.
However, this weaker assumption is not enough to guarantee that Amin(1) > 0. For
instance, let m = 2, 1 < p < N and A(u) =

∫
RN |∇u|p dx. Taking G(s1, s2) =

min

(
1,max

(
(|s1| − 1)+ ,min

(
|s1|p∗+1,

∣∣∣ s2s1 ∣∣∣p∗+1
)))

and S = [−1, 1]×{0}, we can

prove that Amin(λ) = 0 for any λ > 0. We can "mollify" G to get a C1 function G̃
with the same property.

The situation is more complicated if p = N : functions in X may oscillate at
infinity and it is no longer true that X = ∪s∈SXs. See Remark 4.2 p. 775 in [11]
for a simple example. Our results concerning the existence of minimizers and the
precompactness of minimizing sequences are thus far more interesting if p = N and
it seems that they cannot be deduced in a simple way from the corresponding results
in the case when S is reduced to a single point.

Remark 1.7. Under various additional assumptions one can prove the C0,α or even
the C1,α regularity of solutions to (1.1) provided by Theorem 1.1 or Corollary 1.3
above. We refer to [7], [12], [13], [20], [26] and references therein for regularity
results. However, the counterexamples in the literature (see e.g. [10], [25]) indicate
that one should not expect a good regularity theory for solutions of (1.1) with only
the general assumptions considered in this paper.

Not too much regularity is needed to show that any solution u of (1.1) satisfies the
Pohozaev inequality (N − p)A(u) = NV(u). Whenever all solutions of (1.1) satisfy
this identity, it follows from Lemma 1 p. 484 in [5] that the minimizers of (Pλ)
are (after scaling) precisely the least energy solutions of (1.1), i.e. they minimize
E among all solutions of (1.1). The same is true about the solutions provided by
Corollary 1.3, and this justifies the title of the paper.

In all cases when the solutions of (Pλ) are at least C1 and the integrand a has
some symmetry in the variable ξ, Theorem 2 p. 314 in [21] implies that all minimizers
of (Pλ) inherit the symmetry properties of the functional A. For instance, if a
depends only on s and |ξ|, all minimizers of (Pλ) are radially symmetric. The same
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is true for the solutions given by Corollary 1.3 in the case p = N . Moreover, if we are
in the scalar case and we assume that a depends only on |ξ|, the proof of Theorem
7 in [5] implies that the radial profile of any least energy solution is monotonic.

Remark 1.8. In the particular case when A(u) =
∫
RN |∇u|2 dx, Theorem 1.1 has

been proven in [4] (see the proof of Theorem 2.1 p. 100 there). However, even in
that case we improve the results in [4] in the sense that we provide a more precise
description of the behavior of minimizing sequences and we show that the technical
assumption (2.5) p. 99 in [4] is unnecessary. That assumption has been used in [4]
to perform an appropriate cut-off in the nonlinear term. In the present paper we
do not use a cut-off, but instead we use "localized scaling," that is, we "zoom in"
or "zoom out" some regions in the Euclidean space. This is possible in view of the
results in [22] which provide large regions in the space with small energy.

The improvement is still greater in the case p = N . We solve a more general
minimization problem (see Theorem 1.2) and we allow a nontrivial set of equilibria
S. We show the existence of minimizers as well as the precompactness of minimizing
sequences under mild assumptions. For instance, we need only the continuity of G,
while the corresponding result in [4] (see Theorem 3.1 p 106 there) requires either
the differentiability of G on R2 \ {0}, or the assumption that |G(tv)| 6 C|G(v)| for
all t ∈ [0, 1] and |v| 6 ε, where C, ε are positive constants.

If S is finite and a regularity theory is available for the solutions of (1.1) (with an
additional term h(x) ∈ L∞(RN) in the right side), we may relax the differentiability
assumptions on G in Theorem 1.1 and Corollary 1.3 and we can show that the
minimizers satisfy (1.1) if we require only G ∈ C1(RN)\S. The proofs are the same
as in [4].

2. The case p < N

Proof of Theorem 1.1. It follows from (G1) and (G2) that there is C > 0 such that

(2.1) G+(s) 6 C dist(s,S)p
∗

for any s ∈ Rm.

Consider u ∈ X such that V(u) = 1. By Remark 1.6 there is c(u) ∈ S such that
u− c(u) ∈ Lp∗(RN). Using (2.1), the Sobolev inequality and (a3) we get

1 =

∫
RN

G(u) dx 6
∫
RN

G+(u) dx 6 C

∫
RN

dist(u,S)p
∗
dx 6 C

∫
RN

|u− c(u)|p∗ dx

6 C

(∫
RN

|∇u|pdx
) p∗

p

6 C

(∫
RN

a(u,∇u)dx

) p∗
p

= C (A(u))
p∗
p .

Passing to the infimum we get Amin(1) > 0.

Assume that λ > 0 and (un)n>1 ⊂ X satisfies V(un) −→ λ and A(un) −→
Amin(λ). Let c(un) be as in Remark 1.6. Since A(un) is bounded, using (a3) we
infer that ‖∇un‖Lp(RN ) is bounded and then the Sobolev embedding implies that
‖un − c(un)‖Lp∗ (RN ) is bounded. Using (2.1) we infer that (G+(un))n>1 is bounded
in L1(RN). Since V(un) =

∫
RN G+(un) dx −

∫
RN G−(un) dx −→ λ, it follows that



24 I. LEAST ENERGY SOLUTIONS FOR GENERAL QUASILINEAR ELLIPTIC SYSTEMS

(G−(un))n>1 is bounded in L1(RN), and consequently (G(un))n>1 is bounded in
L1(RN).

We will use the concentration-compactness principle for the sequence of functions

(2.2) ρn = |∇un|p + |un − c(un)|p∗ + |G(un)|.
Clearly, (ρn)n>1 is bounded in L1(RN) and lim inf

n→∞

∫
RN ρn(x) dx > lim

n→∞
V(un) = λ.

Passing to a subsequence (still denoted (un)n>1) we may assume that

(2.3)
∫
RN

ρn(x) dx −→ α > 0 as n −→∞.

We denote by qn the concentration function of ρn, that is,

qn(t) = sup
y∈RN

∫
B(y,t)

ρn(z) dz.

By Helly’s theorem there are a subsequence of (un, qn)n>1, still denoted (un, qn)n>1,
and a nondecreasing function q : [0,∞) −→ [0,∞) such that qn(t) −→ q(t) as
n −→ ∞ for all t > 0. Let β = lim

t→∞
q(t). It is clear that β ∈ [0, α]. We will show

that β = α (that is, the sequence (ρn)n>1 "concentrates"). In order to do that we
rule out the cases β = 0 ("vanishing") and β ∈ (0, α) ("dichotomy").

Let us show that β > 0. It follows from (G1) and (G2) that for any ε > 0 there
exist d(ε) > 0, D(ε) > 0 such that S ⊂ B

(
0, 1

2
D(ε)

)
and

(2.4)
G+(s) 6 ε·dist(s,S)p

∗
for any s ∈ Rm satisfying dist(s,S) 6 d(ε) or |s| > D(ε).

Let Mε = max{G+(s) | s ∈ Rm, |s| 6 2D(ε)}. If s ∈ Rm satisfies dist(s,S) 6
3
2
D(ε), then G+(s) 6 Mε, and if there is s1 ∈ S such that |s − s1| > 3

2
D(ε) then

s satisfies (2.4). Using (2.4), the Sobolev inequality and (a3) we infer that for any
u ∈ X there holds
(2.5)

V(u) =

∫
RN

G(u) dx 6
∫
RN

G+(u) dx

6
∫
{|u−c(u)|6d(ε)}∪{|u−c(u)|> 3

2
D(ε)}

ε |u− c(u)|p∗ dx+

∫
{d(ε)<|u−c(u)|< 3

2
D(ε)}

G+(u) dx

6 ε
∥∥u− c(u)

∥∥p∗
Lp∗ (RN )

+Mεµ
(
{x ∈ RN | d(ε) < |u(x)− c(u)| < 3

2
D(ε)}

)
6 CεA(u)

p∗
p +Mεµ

(
{x ∈ RN | d(ε) < |u(x)− c(u)| < 3

2
D(ε)}

)
.

We write (2.5) for each un. Since A(un) is bounded, we may fix ε0 > 0 such that
Cε0A(un)

p∗
p 6 λ

4
for all n, where C is as in (2.5). Using the fact that V(un) −→

λ > 0, there exist m0 > 0 and n0 ∈ N such that

(2.6) µ
(
{x ∈ RN | |un(x)− c(un)| > d(ε0)}

)
> m0 for all n > n0.

We will use the following lemma, due to E. H. Lieb ([18]):
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Lemma 2.1 ([18]). Let p ∈ [1,∞). Consider w ∈ L1
loc(R

N ,R) such that ∇w ∈
Lp(RN). Assume that w satisfies ‖∇w‖Lp(RN ) 6M and µ

(
{x ∈ RN | w(x) > ε}

)
>

α, where M,α, ε > 0. Let δ ∈ (0, ε). There exist a positive constant β depending
only on N, p,M, α, ε, δ, but not on w, and y ∈ RN such that

µ ({x ∈ B(y, 1) | w(x) > δ}) > β.

The proof is similar to Brezis’ proof of Lemma 6 in [18] (see [18] p. 447-448), so
we skip it.

Using Lemma 2.1 for wn = |un − c(un)|, it follows that there exists m1 > 0 and
for any n > n0 there is yn ∈ RN such that

µ

(
{x ∈ B(yn, 1) | |un(x)− c(un)| > 1

2
d(ε0)}

)
> m1 for all n > n0.

Hence for n > n0 we have

qn(1) >
∫
B(yn,1)

ρn(x) dx >
∫
B(yn,1)

|un(x)− c(un)|p∗ dx > 2−p
∗
d(ε0)p

∗
m1.

Passing to the limit as n −→ ∞ we get qn(1) > 2−p
∗
d(ε0)p

∗
m1, thus necessarily

β > 0.

Next we show that we cannot have β ∈ (0, α). We argue by contradiction and
we assume that β ∈ (0, α). Using Lemma 3 in [22] there is a sequence Rn > 1,
Rn −→ ∞ such that qn(Rn) −→ β and qn(R3

n) −→ β as n −→ ∞. For each n > 1
we fix xn ∈ RN such that

∫
B(xn,Rn)

ρn(x) dx > qn(Rn)− 1
n
. Then∫

RN\B(xn,R3
n)

ρn(x) dx >
∫
RN

ρn(x) dx− qn(R3
n) −→ α− β as n −→∞, and

∫
RN\B(xn,R3

n)

ρn(x) dx 6
∫
RN

ρn(x) dx−
∫
B(xn,Rn)

ρn(x) dx 6
∫
RN

ρn(x) dx−qn(Rn)+
1

n
.

Therefore

(2.7)
∫
B(xn,Rn)

ρn(x) dx −→ β,

∫
RN\B(xn,R3

n)

ρn(x) dx −→ α− β and

(2.8)
∫
B(xn,R3

n)\B(xn,Rn)

ρn(x) dx −→ 0 as n −→∞.

After translation we may assume that xn = 0, and we will do so to simplify notation.
Let
(2.9)

un,1(x)=



un(x) if |x| 6 Rn,

un

(
|x|
Rn
x
)

if Rn < |x| < R2
n,

un(Rnx) if |x| > R2
n,

un,2(x)=



un(Rnx) if |x| 6 1,

un

(
Rnx

|x|
1
2

)
if 1 < |x| < R2

n,

un(x) if |x| > R2
n.
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For a, b ∈ [0,∞] denote Ωa,b = {x ∈ RN | a < |x| < b}. It is easy to see that
un,1, un,2 ∈ X and a straightforward computation gives
(2.10)∫

Ω
Rn,R

2
n

|G(un,1(x))| dx =

∫
Ω
Rn,R

2
n

∣∣∣∣G(un( |x|Rn

x

))∣∣∣∣ dx
=

∫
Ω
Rn,R

3
n

|G (un (y))| · 1

2

(
Rn

|y|

)N
2

dy 6
1

2

∫
Ω
Rn,R

3
n

|G (un (y))| dy 6 1

2

∫
Ω
Rn,R

3
n

ρn(y) dy,

(2.11)
∫
RN\B(0,R2

n)

|G(un,1(x))| dx =
1

RN
n

∫
RN\B(0,R3

n)

|G(un(y))| dy,

(2.12)∫
B(0,1)

|G(un,2(x))| dx =

∫
B(0,1)

|G(un(Rnx))| dx =
1

RN
n

∫
B(0,Rn)

|G(un(y))| dy,

(2.13)

∫
Ω

1,R2
n

|G(un,2(x))| dx =

∫
Ω

1,R2
n

∣∣∣∣G(un( Rn

|x|1/2x
))∣∣∣∣ dx

=

∫
Ω
Rn,R

2
n

|G (un (y))| · 2
( |y|
R2
n

)N
dy 6 2

∫
Ω
Rn,R

2
n

ρn(y) dy.

Using (a2) we get
(2.14)∫

RN\B(0,R2
n)

a(un,1(x),∇un,1(x)) dx =

∫
RN\B(0,R2

n)

a
(
un(Rnx), Rn∇un(Rnx)

)
dx

= Rp−N
n

∫
RN\B(0,R3

n)

a(un(y),∇un(y)) dy,

and similarly

(2.15)
∫
B(0,1)

a(un,2(x),∇un,2(x)) dx = Rp−N
n

∫
B(0,Rn)

a(un(y),∇un(y)) dy.

It is easy to see that there is a positive constant C such that

|∇un,1(x)| 6 C
|x|
Rn

∣∣∣∣∇un( |x|Rn

x

)∣∣∣∣ for a.e. x ∈ ΩRn,R2
n
.

Using (a3) we get
(2.16)∫

Ω
Rn,R

2
n

a(un,1,∇un,1) dx 6 C
∫

Ω
Rn,R

2
n

|∇un,1|p dx 6 C
∫

Ω
Rn,R

2
n

|x|p
Rpn

∣∣∣∇un ( |x|Rnx)∣∣∣p dx
6 C

∫
Ω
Rn,R

3
n

|∇un(y)|p · 1
2

(
Rn
|y|

)N−p
2

dy 6 C
∫

Ω
Rn,R

3
n

ρn(y) dy.

In the same way, there is C > 0 such that

|∇un,2(x)| 6 C
Rn

|x|1/2
∣∣∣∣∇un( Rn

|x|1/2x
)∣∣∣∣ a.e. in Ω1,R2

n
.
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Consequently,
(2.17)∫

Ω
1,R2

n

a(un,2,∇un,2) dx 6 C

∫
Ω

1,R2
n

|∇un,2|p dx 6 C

∫
Ω

1,R2
n

∣∣∣∣∇un( Rn

|x|1/2x
)∣∣∣∣p( Rn

|x|1/2
)p

dx

6 C

∫
Ω
Rn,R

2
n

|∇un(y)|p · 2
( |y|
R2
n

)N−p
dy 6 C

∫
Ω
Rn,R

2
n

ρn(y) dy.

From (2.7)-(2.17) it follows that as n −→∞ we have
(2.18)

V(un,1) =

∫
B(0,Rn)

G(un) dx+ o(1), V(un,2) =

∫
RN\B(0,R2

n)

G(un) dx+ o(1),

(2.19)

A(un,1) =

∫
B(0,Rn)

a(un,∇un) dx+o(1), A(un,2) =

∫
RN\B(0,R2

n)

a(un,∇un) dx+o(1).

Passing again to a subsequence we may assume that

V(un,1) −→ v1, V(un,2) −→ v2, A(un,1) −→ a1, A(un,2) −→ a2 as n −→∞.
From (2.7), (2.8), (2.18), (2.19) and the fact that V(un) −→ λ, A(un) −→ Amin(λ)
we get

(2.20) v1 + v2 = λ and a1 + a2 = Amin(λ) = Amin(v1 + v2).

It is clear that a1, a2 > 0. We claim that a1 > 0 and a2 > 0. To see this we argue
by contradiction and we assume, for instance, that a1 = 0. Using (a3) this implies
‖∇un,1‖Lp(RN ) −→ 0 and the Sobolev embedding gives ‖un,1−c(un,1)‖Lp∗ (RN ) −→ 0.
By (2.1) we get

∫
RN G+(un,1) dx −→ 0 as n −→ ∞. It is obvious that c(un) =

c(un,1) and estimates similar to (2.10)-(2.11) imply that
∫
B(0,Rn)

|un − c(un)|p∗ dx =∫
RN |un,1− c(un,1)|p∗ dx+ o(1) −→ 0 as n −→∞. From (2.2) and (2.7) we infer that∫
B(0,Rn)

G−(un) dx −→ β as n −→∞. Therefore

v1 = lim
n→∞

V(un,1) = lim
n→∞

∫
B(0,Rn)

G+(un)−G−(un) dx = −β,

and consequently v2 = λ+ β > λ. It is clear that A(un,2) > Amin(V(un,2)). Passing
to the limit and using the continuity of Amin we get
(2.21)
Amin(λ) > a2 = lim

n→∞
A(un,2) > lim sup

n→∞
Amin(V(un,2)) = Amin(v2) = Amin(λ+ β),

and (2.21) contradicts the fact that Amin is increasing. We conclude that necessarily
a1 > 0. A similar argument shows that a2 > 0.

We have v1, v2 ∈ (0, λ). Indeed, if v1 6 0 then (2.20) implies v2 > λ and then
a2 > Amin(v2) > Amin(λ), which contradicts Amin(λ) > a2 since a1 > 0. Thus v1 > 0
and a similar argument shows that v2 > 0.

Since A(un,i) > Amin(V(un,i)), i = 1, 2, passing to the limit as n −→ ∞ we get
a1 > Amin(v1) and a2 > Amin(v2), hence

Amin(v1 + v2) = Amin(λ) = a1 + a2 > Amin(v1) +Amin(v2).
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On the other hand, using (1.8) we obtain Amin(v1 + v2) < Amin(v1) + Amin(v2), a
contradiction. We conclude that we cannot have β ∈ (0, α), thus necessarily β = α.

Arguing as in [19] we see that there exists a sequence of points (zn)n>1 ⊂ RN

and for any ε > 0 there are Rε > 0 and nε ∈ N such that

(2.22)
∫
B(zn,Rε)

ρn dx > α− ε,
∫
RN\B(zn,Rε)

ρn dx 6 2ε, for all n > nε.

Let ũn = un(·+zn). Since∇un is bounded in Lp(RN) and un is bounded inW 1,p
loc (RN),

there exist a subsequence (unk)k>1 and u ∈ Ẇ 1,p(RN) that satisfy (1.9), (1.10), and
c(ũnk) −→ c ∈ S. Using (1.10), the Fatou lemma and the Sobolev embedding we
get

‖u− c‖Lp∗ (RN ) 6 lim inf
k→∞

‖ũnk − c(ũnk)‖Lp∗ (RN ) <∞.
Hence c(u) = c ∈ S. Using again the Fatou lemma we obtain

(2.23)
∫
RN

G±(u) dx 6 lim inf
k→∞

∫
RN

G±(ũnk) dx 6 α.

In particular, we have u ∈ X . We will show that

(2.24) G+(ũnk) −→ G+(u) in L1(RN).

To see this fix ε > 0. Then take Rε > 0 such that (2.22) holds. Since∫
RN\B(0,Rε)

G+(ũnk) dx 6 2ε if nk > nε, the Fatou lemma implies
∫
RN\B(0,Rε)

G+(u) dx 6
2ε. Take D(ε) > 0 as in (2.4) and let Mε = max{G+(s) | s ∈ Rm, |s| 6 2D(ε)}.
Let H1(s) = min(G+(s),Mε) and H2(s) = G+(s) − H1(s), so that H1, H2 are
continuous, H1 is bounded and 0 6 H2(s) 6 ε · dist(s,S)p

∗ for all s ∈ Rm by (2.4).

Since ũnk −→ u a.e., the Lebesgue dominated convergence theorem gives∫
B(0,Rε)

|H1(ũnk)−H1(u)| dx −→ 0 as k −→∞.

Hence there exists kε > nε such that
∫
B(0,Rε)

|H1(ũnk)−H1(u)| dx < ε for all k > kε.

On the other hand,

0 6
∫
B(0,Rε)

H2(ũnk) dx 6 ε

∫
RN

|ũnk − c(ũnk)|p
∗
dx 6 ε

∫
RN

ρnk(x) dx 6 2αε

for all k > k′ε, where k′ε > kε. It is obvious that a similar estimate holds with u
instead of ũnk . Thus we find∫

RN

|G+(ũnk)−G+(u)| dx 6
∫
RN\B(0,Rε)

|G+(ũnk)|+ |G+(u)| dx

+

∫
B(0,Rε)

|H1(ũnk)−H1(u)| dx+

∫
B(0,Rε)

H2(ũnk) +H2(u) dx 6 (5 + 4α)ε

for all k > k′ε. Since ε is arbitrary, (2.24) follows.

From (2.23) and (2.24) we get

(2.25) V(u) =

∫
RN

G+(u)dx−
∫
RN

G−(u)dx > lim inf
k→∞

∫
RN

G(ũnk) dx = λ.
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We will use the following result which is a consequence of Theorem 1 p. 522 and
Theorem 3 p. 524 in [15]:

Lemma 2.2 ([15]). Assume that the function i : Rm1 × Rm2 −→ R+, (s, ξ) 7−→
i(s, ξ) is nonnegative, Borel measurable on Rm1×Rm2, lower semicontinuous in (s, ξ)
and convex in ξ ∈ Rm2 . Let A ⊂ RN be a Borel measurable set with µ(A) <∞. For
f ∈ Lq(A,Rm1) and g ∈ Lq(A,Rm1) (where q, r ∈ [1,∞]) we define

I(f, g) =

∫
A

i(f(x), g(x)) dx.

Assume that I is finite at one point (f, g) ∈ Lq(A,Rm1)× Lr(A,Rm2).

Then I is (sequentially) lower semicontinuous on Lq(A,Rm1)× Lrw(A,Rm2), where
Lrw(A,Rm2) denotes Lr(A,Rm2) endowed with the weak topology.

It follows from (1.9), (1.10) and Lemma 2.2 that for any Borel measurable set A of
finite measure,∫

A

a(u,∇u) dx 6 lim inf
k→∞

∫
A

a(ũnk ,∇ũnk) dx 6 lim inf
k→∞

∫
RN

a(unk ,∇unk) dx.

Taking A = B(0, n), then passing to the limit as n −→∞ we get

(2.26) A(u) 6 lim inf
k→∞

A(unk) = lim
k→∞
A(unk) = Amin(λ).

From (2.25), (2.26) and the fact that Amin is increasing we infer that necessarily
V(u) = λ, A(u) = Amin(λ), that is, u is a solution of (Pλ). Moreover, we have∫

RN

G−(u) dx = lim
k→∞

∫
RN

G−(ũnk) dx.

Since G−(ũnk) > 0 and G−(ũnk) −→ G−(u) a.e. in RN as k −→∞, we deduce that
G−(ũnk) −→ G−(u) in L1(RN). Combined with (2.24), this gives G(ũnk) −→ G(u)
in L1(RN).

Assume that, in addition, assumptions (a5) and (G4) are satisfied. Let u ∈ X
be a minimizer for the problem (Pλ). By (G4) there is C > 0 such that for any
w1, w2 ∈ Rm and any t ∈ [−1, 1] there holds

|G(w1 + tw2)−G(w1)| 6 C|t|
(
1 + |w1|p

∗
+ |w2|p

∗) |w2|.
Hence for any φ ∈ C1

c (RN ,Rm) and t ∈ [−1, 1], t 6= 0 we have 1
|t| |G(u+tφ)−G(u)| 6

C
(
1 + |u|p∗ + |φ|p∗

)
|φ| and the right hand side is in L1(RN). Using the dominated

convergence theorem we get

1

t
(V(u+ tφ)− V(u)) −→

∫
RN

m∑
i=1

∂G

∂ui
(u)φi dx

as t −→ 0, or equivalently,

(2.27) V(u+ tφ) = V(u) + tΦu(φ) + o(t), where Φu(φ) =

∫
RN

m∑
i=1

gi(u)φi dx.
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Similarly, assumption (a5) implies that for any φ ∈ C1
c (RN ,Rm) and any t ∈ [−1, 1],

t 6= 0 there holds∣∣∣∣a(u+ tφ,∇u+ t∇φ)− a(u,∇u)

t

∣∣∣∣ 6 C
(
1 + |u|p∗ + |φ|p∗ + |∇u|p + |∇φ|p

)
(|φ|+|∇φ|)

and the right hand side in the above inequality is in L1(RN). Using again the
dominated convergence theorem we obtain A(u+ tφ) = A(u) + tΨu(φ) + o(t), where

(2.28) Ψu(φ) =

∫
RN

m∑
i=1

∂a

∂si
(u,∇u)φi +

m∑
i=1

N∑
k=1

∂a

∂ξki
(u,∇u)

∂φi
∂xk

dx.

In particular, we see that u+ tφ ∈ X . By the definition of Amin and (1.8) we have

A(v) > Amin(1)V(v)
N−p
N for any v ∈ X with V(v) > 0.

Writing the above inequality for u + tφ instead of v, using (2.27) and (2.28) and
recalling that V(u) = λ, A(u) = Amin(λ) = Amin(1)λ

N−p
N we get

tΨu(φ) + o(t) > tAmin(1)
N − p
N

λ−
p
N Φu(φ) + o(t)

for small t. Taking −φ instead of φ we infer that necessarily

Ψu(φ) = Amin(1)
N − p
N

λ−
p
N Φu(φ)

for any φ ∈ C1
c (RN ,Rm) and (1.12) is proven. �

3. The case p = N

In the proof of Theorem 1.2 we will use the following lemmas.

Lemma 3.1 ([4]). Let q ∈ [1,∞). There is Cq > 0 such that for any function
φ ∈ L1

loc(R
N ,R) satisfying ∇φ ∈ LN(RN) and µ

(
{x ∈ RN | φ(x) 6= 0}

)
<∞ there

holds
‖φ‖Lq(RN ) 6 Cq‖∇φ‖LN (RN )µ

(
{x ∈ RN | φ(x) 6= 0}

) 1
q .

The proof of Lemma 3.1 is very similar to the proof of inequality (3.10) p. 107
in [4] and we omit it.

Lemma 3.2. Assume that v ∈ L1
loc(R

N ,R) is nonnegative, µ
(
{x ∈ RN | v(x) > ε}

)
<

∞ for all ε > 0 and ∇v ∈ Lp(RN), where p ∈ (1,∞). Let h : [0,∞) −→ [0,∞) be a
continuous function and let H(t) =

∫ t
0
h(τ)1− 1

p dτ. Then we have for all a > 0,
(3.1)

H(a)|SN−1| 1
N µ
(
{x∈RN | v(x) > a}

)N−1
N 6

(∫
{v<a}

|∇v|p dx
)1
p
(∫
{v<a}

h(v(x)) dx

)1− 1
p

,

where |SN−1| is the surface measure of the unit sphere SN−1 ⊂ RN .

Proof. Fix a > 0. Let va = min(v, a). Then ∇va = 1{v<a}∇v a.e. Denote by
w(x) = ϕ(|x|) the Schwarz rearrangement of va. Let A = {x ∈ RN | v(x) > a} and
let A∗ = B(0, Ra) be the Schwarz rearrangement of A. If µ(A) = 0 then (3.1) is
obvious, hence we may assume that µ(A) > 0. We have ϕ(Ra) = a and ϕ(t) < a
for t > Ra. The assumption µ

(
{x ∈ RN | v(x) > ε}

)
< ∞ for all ε > 0 implies
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ϕ(r) −→ 0 as r −→ ∞. By the Pólya-Szegö inequality we have ‖∇w‖Lp(RN ) 6

‖∇va‖Lp(RN ) =
(∫
{v<a} |∇v|p dx

) 1
p
. Theorem 1 p. 163 in [8] implies ϕ ∈ W 1,p

loc (R).
Therefore(∫

{v<a}
|∇v|p dx

)1
p
(∫
{v<a}

h(v(x)) dx

)1− 1
p

> ‖∇w‖Lp(RN )

(∫
{w<a}

h(w(x)) dx

)1− 1
p

= |SN−1|
(∫ ∞

0

|ϕ′(r)|p rN−1 dr

) 1
p
(∫ ∞

Ra

h(ϕ(r))rN−1 dr

)1− 1
p

> |SN−1|
∫ ∞
Ra

|ϕ′(r)| (h(ϕ(r)))1− 1
p rN−1 dr (by Hölder’s inequality)

> |SN−1|RN−1
a

∫ ∞
Ra

|ϕ′(r)| (h(ϕ(r)))1− 1
p dr

> |SN−1|RN−1
a

∫ ∞
Ra

− (H(ϕ(r)))′ dr = |SN−1|RN−1
a H(a) = H(a)|SN−1| 1

N µ(A)
N−1
N .

�

Proof of Proposition 1.4. For α > 0 we denote Sα = {x ∈ Rm | dist(x,S) < α}. Fix
δ > 0 such that G1 > 0 on S32δ\S and G2 = 0 on S32δ (this is possible in view of (g1)
and (g2)). Choose R > 100δ such that S100δ ⊂ B(0, R) and a function ρ ∈ C∞c (Rm)
such that ρ > 0,

∫
Rm ρ(x) dx = 1 and supp(ρ) ⊂ B(0, δ). Let d0 = ρ ∗ dist(·,S2δ).

Fix a nondecreasing function I ∈ C∞(R) such that I = 0 on (−∞, R] and I = 1 on
[2R,∞). Define d : Rm −→ [0,∞) by

(3.2) d(s) = I(|s|)|s|+ (1− I(|s|))d0(s),

so that d ∈ C∞(Rm), d > 0, d = 0 on Sδ, d > 0 on Rm \ S3δ and d(s) = |s| if
|s| > 2R.

By (g2) there is C > 0 such that

(3.3) 0 6 G2(s) 6 C
(
d(s)− 16δ

)q
+
6 C

(
d(s)− 9δ

)q
+

for all s ∈ Rm.

Let D = inf{G1(x) | x ∈ S8δ \ Sδ}. By (g1) and the choice of δ we have D > 0.
Choose h ∈ C∞c (R) such that 0 6 h 6 D, h = 0 on R \ [2δ, 5δ] and h = D on
[3δ, 4δ]. We claim that

(3.4) G1(s) > h(d(s)) for all s ∈ Rm.

It is obvious if d(s) 6 2δ or d(s) > 5δ. If 2δ < d(s) < 5δ we have δ < dist(s,S2δ) <
6δ. Indeed, if dist(s,S2δ) 6 δ then dist(t,S2δ) 6 2δ for any t ∈ B(s, δ) and d(s) =∫
B(s,δ)

dist(t,S2δ)ρ(s − t) dt 6 2δ, a contradiction; a similar argument shows that
we cannot have dist(s,S2δ) > 6δ. The estimate δ < dist(s,S2δ) < 6δ implies δ <
dist(s,S) < 8δ, hence G1(s) > D > h(d(s)).
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We have
{s ∈ Rm | d(s) > 13δ} ⊂ {s ∈ Rm | dist(s,S2δ) > 12δ} ⊂ {s ∈ Rm | dist(s,S) > 12δ}

⊂ {s ∈ Rm | dist(s,S2δ) > 10δ} ⊂ {s ∈ Rm | d(s) > 9δ} ⊂ {s ∈ Rm | dist(s,S) > 8δ}.
Since G2(s) = 0 if dist(s,S) < 16δ, for any function u ∈X with

∫
RN G2(u(x)) dx >

0 there holds

(3.5) 0 < µ
(
{x ∈ RN | d(u(x)) > 9δ}

)
<∞.

i) Denote Xλ = {u ∈X |
∫
RN G1(u(x)) dx > 0 and K(u) = λ}. If Xλ = ∅ then

Amin(λ) =∞ and (i) is obvious. Otherwise consider an arbitrary u ∈Xλ and denote
v = d ◦ u, where d is as in (3.2). Proceeding as in the proof of Proposition IX.5 p.

155 in [3] it is easy to see that v ∈ W 1,N(RN) and
∂v

∂xj
=

m∑
k=1

∂d

∂sk
(u) · ∂uk

∂xj
a.e. in

RN . In particular, there is C > 0 (depending only on d) such that |∇v| 6 C|∇u|
a.e. in RN .

We have
∫
RN G2(u(x)) dx = λ

∫
RN G1(u(x)) dx > 0, hence u satisfies (3.5). Using

Lemma 3.2 with v = d ◦ u, p = N , a = 9δ, the function h introduced above and
H(t) =

∫ t
0
h(τ)

N−1
N dτ we get H(9δ) > 0 and

(3.6)

0 < µ
(
{x ∈ RN | d(u(x)) > 9δ}

)
6 C

(∫
{v<9δ}

|∇v|N dx
) 1

N−1
∫
{v<9δ}

h(v(x)) dx

6 C

(∫
{v<9δ}

|∇v|N dx
) 1

N−1
∫
RN

G1(u(x)) dx (by (3.4))

=
C

λ

(∫
{v<9δ}

|∇v|N dx
) 1

N−1
∫
RN

G2(u(x)) dx

6
C

λ

(∫
{v<9δ}

|∇v|N dx
) 1

N−1
∫
RN

(v − 9δ)q+ dx (by (3.3))

6
C

λ

(∫
{v<9δ}

|∇v|N dx
) 1

N−1

‖∇
(
(v − 9δ)+

)
‖q
LN (RN )

µ
(
{x ∈ RN | d(u(x)) > 9δ}

)
.

Here the last inequality is obtained due to Lemma 3.1. From (3.6) it follows that

(3.7) C

(∫
{v<9δ}

|∇v|N dx
) 1

N−1
(∫
{v>9δ}

|∇v|N dx
) q

N

> λ.

In particular, (3.7) implies ‖∇v‖
N
N−1

+q

LN (RN )
> Cλ. Therefore

A(u) =

∫
RN

a(u,∇u) dx > C

∫
RN

|∇u|N dx > C

∫
RN

|∇v|N dx > Cλ( 1
N−1

+ q
N )
−1

,

where the constants do not depend on λ and u. Since the above inequality is true
for any u ∈Xλ we get (i).



3. The case p = N 33

ii) Choose α ∈ (0, 1− 1
N

). For R > 0 we define wR : RN −→ R+ by

wR(x) =


1 if |x| 6 e−(R+1)

1
α ,

|ln |x| |α −R if e−(R+1)
1
α < |x| < e−(R)

1
α ,

0 if |x| > e−(R)
1
α .

It is easy to see that wR ∈ W 1,N(RN) and

|∇wR(x)| =
{

0 if |x| 6 e−(R+1)
1
α or |x| > e−(R)

1
α ,

α|ln |x| |α−1

|x| if e−(R+1)
1
α < |x| < e−(R)

1
α ,

hence

‖∇wR‖NLN (RN ) = αN |SN−1|
∫ e−(R)

1
α

e−(R+1)
1
α

| ln r|N(α−1)

r
dr −→ 0 as R −→∞.

Choose m0 ∈ S and s0 ∈ Rm such that G2(s0) > 0 and define uR(x) = m0 +
wR(x)(s0 −m0). It is easy to see that uR ∈ X , A(uR) 6 C‖∇wR‖NLN (RN ) −→ 0 as
R −→ ∞ and the mappings R 7−→

∫
RN Gi(uR(x)) dx are continuous, i = 1, 2. We

have
∫
RN G2(uR(x)) dx > |SN−1|e−N(R+1)

1
αG2(s0) > 0 for all R > 0. The following

observation is very useful.

Remark 3.3. Whenever u ∈X satisfies
∫
RN G2(u(x)) dx > 0 it also satisfies (3.5)

and the third inequality in (3.6) implies
∫
RN G1(u(x)) dx > 0.

We infer that the mapping Λ(R) = K(uR) is well-defined, positive and continuous
on (0,∞). We claim that Λ(R) −→ 0 as R −→ ∞. For otherwise, there would be
λ0 > 0 and a sequence Rn −→∞ such that K(uRn) > λ0 for all n, and part (i) would
imply that A(uRn) is bounded from below by a positive constant, a contradiction.
Let (εn)n>1 ⊂ (0,Λ(1)] be a sequence such that εn −→ 0 as n −→ ∞. There exists
a sequence Rn −→ ∞ such that Λ(Rn) = εn (take Rn = max Λ−1({εn})). We have
K(uRn) = εn, hence Amin(εn) 6 A(uRn) −→ 0 as n −→ ∞. We conclude that
Amin(λ) −→ 0 as λ −→ 0.

iii) Given a function f defined on RN and t ∈ R we define

S−t f(x) =

{
f(x) if x1 6 t,
f(2t− x1, x2, . . . , xN) if x1 > t,

S+
t f(x) =

{
f(x) if x1 > t,
f(2t− x1, x2, . . . , xN) if x1 < t.

If u ∈X it is easy to see that S+
t u, S

−
t u ∈X and∫

RN

Gi(S
−
t u) dx = 2

∫
{x16t}

Gi(u) dx,

∫
RN

Gi(S
+
t u) dx = 2

∫
{x1>t}

Gi(u) dx, i = 1, 2,

A(S−t u) = 2

∫
{x16t}

a(u,∇u) dx, A(S+
t u) = 2

∫
{x1>t}

a(u,∇u) dx

(for the last equalities we use (a4)).

Let u ∈ X be as in Proposition 1.4 (iii). We claim that there is ũ ∈ X such
that

∫
RN G1(ũ) dx > 0, K(ũ) > K(u), A(ũ) = A(u) and ũ is symmetric with respect
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to x1. Indeed, after a translation we may assume that A(S−0 u) = A(S+
0 u) = A(u).

We have
∫
RN Gi(S

−
0 (u) dx+

∫
RN Gi(S

+
0 (u) dx = 2

∫
RN Gi(u) dx for i = 1, 2. We infer

that there is ũ ∈ {S−0 u, S+
0 u} satisfying

∫
RN G2(ũ) dx > K(u)

∫
RN G1(ũ) dx > 0

(here we use Remark 3.3). From now we replace u by ũ (and drop the ˜).

Since Gi(u) ∈ L1(RN), the mappings t 7−→
∫
{x16t}Gi(u) dx = 1

2

∫
RN Gi(S

−
t u) dx

are continuous, nonnegative and nondecreasing on R. Let

T1 = inf

{
t ∈ R

∣∣∣ ∫
{x16t}

G1(u) dx > 0

}
.

It is clear that T1 < 0 and the mapping t 7−→ K(S−t u) is well-defined and continuous
on (T1,∞). We claim that

(3.8) lim
t↓T1

K(S−t u) = 0.

To see this we argue by contradiction and we assume that (3.8) is false. Then
there exist a decreasing sequence (tn)n>1 ⊂ (T1, 0), tn −→ T1 and λ0 > 0 such that
K(S−tnu) > λ0 for all n. Let v = d ◦ u and vn = d ◦ (S−tnu) = S−tnv. For all n > 1 we
have

∫
RN |∇vn|N dx 6

∫
RN |∇v|N dx. Each vn satisfies (3.7) with λn = K(S−tnu) > λ0

instead of λ. Since ‖∇vn‖LN (RN ) is bounded, we infer that there is a constant k0 > 0
such that

k0 6
∫
{vn>9δ}

|∇vn|N dx = 2

∫
{v>9δ}∩{x16tn}

|∇v|N dx.

We have |∇v|N ∈ L1(RN) and the absolute continuity of the Lebesgue integral
implies that there is µ0 > 0 such that

µ ({v > 9δ} ∩ {x1 6 tn}) > µ0 for all n.

We use the first three inequalities in (3.6) for S−tnu to get

µ0 6 µ
(
{x ∈ RN | vn(x) > 9δ}

)
6 C

(∫
{v<9δ}

|∇v|N dx
) 1

N−1
∫
RN

G1(S−tnu(x)) dx

for all n. In particular, this implies T1 > −∞; then passing to the limit as n −→∞ in
the above inequality we find

∫
RN G1(S−T1

u) dx = 2
∫
{x16T1}G1(u(x)) dx > 0. Then we

infer that
∫
{x16t}G1(u(x)) dx > 0 for some t < T1, t close to T1, and this contradicts

the definition of T1. The claim (3.8) is thus proven.

Fix λ̃ ∈ (0,K(u)). The continuity of t 7−→ K(S−t u) implies that there exists
t∗ ∈ (T1, 0) such that K(S−t∗u) = λ̃. We have

(3.9) A(S−t∗u) = 2

∫
{x16t∗}

a(u,∇u) dx 6 2

∫
{x160}

a(u,∇u) dx = A(u).

If A(S−t∗u) < A(u) we get Amin(λ̃) 6 A(S−t∗u) < A(u), as desired. Otherwise we
must have equality throughout in (3.9) and assumption (a3) implies |∇u| = 0 a.e.
in the strip {(x1, . . . , xN) ∈ RN | t∗ < x1 < 0}, hence u must be constant on that
strip, say u(x) = s1 ∈ Rm. Since µ

(
{x ∈ RN | dist(u(x),S) > α}

)
< ∞ for all

α > 0, we infer that necessarily s1 ∈ S. Then we have∫
{x16t∗}

Gi(u) dx =

∫
{x160}

Gi(u) dx
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for i = 1, 2 and this implies K(S−
t̃
u) = K(u), a contradiction. Thus we have always

A(S−∗ u) < A(u) and the proof of Proposition 1.4 is complete. �

Lemma 3.4. Let M,λ > 0, let the function d be as in (3.3) and q as in (g2).

i) There exist R0, η,D1 > 0 such that for any function u ∈ X satisfying
‖∇u‖LN (RN ) 6 M , K(u) > λ and µ

(
{x ∈ RN | d(u(x)) > 9δ}

)
= 1 there is

x0 ∈ RN such that

µ
(
{x ∈ B(x0, 1) | d(u(x)) > 12δ}

)
> η and

∫
B(x0,R0)

|∇u|N dx > D1.

ii) There exists D2 = D2(M,λ) > 0 such that for any function u ∈X satisfying
‖∇u‖LN (RN ) 6M ,

∫
RN G1(u(x) dx > 0 and K(u) > λ there holds

sup
x∈RN

∫
B(x,1)

|∇u|N +
(
d(u)− 9δ

)q
+
dx > D.

Proof. i) Let u be as in (i) and let v = d ◦ u. By the first inequalities in (3.6) we
have

∫
RN G1(u) dx > C and we infer that

∫
RN G2(u) dx > λC. On the other hand,

using (3.2) and Lemma 3.1 we get

(3.10)

∫
RN

G2(u) dx 6 C

∫
RN

(
v(x)− 13δ

)q
+
dx

6 C‖∇v‖q
LN (RN )

µ
(
{x ∈ RN | d(u(x)) > 13δ}

)
6 CM qµ

(
{x ∈ RN | d(u(x)) > 13δ}

)
.

and we infer that µ
(
{x ∈ RN | d(u(x)) > 13δ}

)
> Cλ. It follows from Lemma 2.1

that there are η > 0 (with η independent of u) and x0 ∈ RN such that

(3.11) µ
(
{x ∈ B(x0, 1) | d(u(x)) > 12δ}

)
> η.

Using Lemma 3.1 we get∫
RN

(
v(x)− 9δ

)
+
dx 6 C‖∇v‖LN (RN )µ

(
{x ∈ RN | d(u(x)) > 9δ}

)
6 CM.

We denote by m(f, A) the mean value of an integrable function f on a set A, that
is, m(f ;A) = 1

µ(A)

∫
A
f(x) dx. For any x ∈ RN and R > 0 we have

m
((
v(x)− 9δ

)
+

;B(x,R)
)
6

1

µ(B(x,R))

∫
RN

(
v(x)− 9δ

)
+
dx 6

C

RN
.

Hence there is R0 > 1 (depending only on N,G1, G2, δ,M, λ) such that for any u as
in Lemma 3.4 (i) and for any x ∈ RN there holds m

((
v(x)− 9δ

)
+

;B(x,R0)
)
6 δ,

where v = d ◦ u. Then (3.11) implies∫
B(x0,R0)

∣∣∣(v(x)− 9δ
)

+
−m

((
v(x)− 9δ

)
+

;B(x0, R0)
)∣∣∣ dx > 2ηδ.
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Using the above inequality and the Poincaré inequality we get

2ηδ 6
∫
B(x0,R0)

∣∣∣(v(x)− 9δ
)

+
−m

((
v(x)− 9δ

)
+

;B(x0, R0)
)∣∣∣ dx

6 CP

∥∥∥∇((v(x)− 9δ
)

+

)∥∥∥
LN (B(x0,R0))

6 C‖∇u‖LN (B(x0,R0))

and (i) follows.

ii) Let u ∈ X be as in (ii). Let µ0 = µ
(
{x ∈ RN | d(u(x)) > 9δ}

)
. By (3.5) we

have 0 < µ0 < ∞. Denote uσ(x) = u
(
x
σ

)
. For σ0 = µ

− 1
N

0 , the function uσ0 satisfies
the assumptions of Lemma 3.4 (i). By (i) there exists x0 ∈ RN such that

(3.12) D1 6
∫
B(x0,R0)

|∇(uσ0)|N dx =

∫
B(µ

1
N
0 x0, µ

1
N
0 R0)

|∇u| 1
N dx.

If µ
1
N
0 R0 6 1, (3.12) implies the desired conclusion. If µ

1
N
0 R0 > 1 we have µ0 > R−N0 ,

where R0 > 0 is independent of u. Proceeding as in the proof of (3.10) and (3.11)
above we see that there are x1 ∈ RN and η̃ > 0, η̃ independent of u, such that µ

(
{x ∈

B(x1, 1) | d(u(x)) > 12δ}
)
> η̃, and this implies

∫
B(x1,1)

(
d(u(x)) − 9δ

)q
+
dx > 3δη̃.

Hence Lemma 3.4 (ii) holds true with D2 = min(D1, 3δη̃). �

Proof of Theorem 1.2. Eliminating a finite number of terms, we may assume that
K(un) > λ

2
for all n. Then for each n we choose σn > 0 such that

(3.13)
∫
RN

G1((un)σn) dx = 1 and
∫
RN

G2((un)σn) dx = K(un) = λn.

To simplify notation, from now on we replace (un)σn by un, where σn is as above.
For convenience we split the proof into several steps.

Step 1. Selection of an appropriate subsequence.

Since A(un) is bounded, (a3) implies that ∇un is bounded in LN(RN) Let vn =
d ◦ un, where d is as in (3.2). The first inequalities in (3.6) (with un instead of u)
imply that there is a positive constant K such that µ

(
{x ∈ RN | vn(x) > 9δ}

)
6 K

for all n. Then Lemma 3.1 implies that
(
d(un) − 9δ

)
+

is bounded in all spaces
Lr(RN), 1 6 r < ∞. Using (3.10) with un instead of u we see that there is κ > 0
such that
(3.14)
κ 6 µ

(
{x ∈ RN | vn(x) > 13δ}

)
6 µ

(
{x ∈ RN | vn(x) > 9δ}

)
6 K for all n.

Let

(3.15) ρn = |∇un|N +G1(un) +
(
d(un)− 9δ

)q
+
.

It is clear that (ρn)n>1 is bounded in L1(RN) and
∫
RN ρn dx >

∫
RN G1(un) dx = 1.

Passing to a subsequence if necessary we may assume that

(3.16)
∫
RN

ρn dx −→ α as n −→∞, where α ∈ [1,∞).

We will use a refined version of the concentration-compactness principle (Theorem
in [22]) for the sequence (ρn)n>1
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Let M = supn>1 ‖∇un‖LN (RN ) and let D = min
(

1
2
D1

(
M + 1, λ

4

)
, 1

2
D2(M, λ

4
)
)
.

By Theorem in [22] there exist an increasing mapping j : N∗ −→ N∗, an integer
k > 0, k sequences of points (xin)n>1 ⊂ RN and k increasing sequences of positive
numbers (Ri

n)n>1, i = 1, . . . , k, such that Ri
n −→ ∞ as n −→ ∞ and positive

numbers α1, . . . , αk with the following properties:

(P1) For each n the balls B(xin, (R
i
n)3), i ∈ {1, . . . , k} are disjoint.

(P2) For each i ∈ {1, . . . , k} we have∫
B(xin,R

i
n)

ρj(n)(x) dx −→ αi and
∫
B(xin,(R

i
n)3)\B(xin,R

i
n)

ρj(n)(x) dx −→ 0 as n −→∞.

(P3) For each i ∈ {1, . . . , k} the sequence ρj(n)1B(xin,(R
i
n)3) "concentrates around

(xin)n>1," which means that for any ε > 0 there exist Ri
ε ∈ (0,∞) and n(ε, i) ∈ N

such that ∫
B(xin,(R

i
n)3)\B(xin,R

i
ε)

ρj(n)(x) dx < ε for all n > n(ε, i).

(P4) The sequence ρ̃n = ρj(n)1RN\∪ki=1B(xin,(R
i
n)3) satisfies

(3.17) lim
R→∞

(
lim sup
n→∞

(
sup
x∈RN

∫
B(x,R)

ρ̃n(y) dy

))
< D.

If k = 0 we have ρ̃n = ρj(n) and from property (P4) above we get

sup
x∈RN

∫
B(x,1)

ρ̃n(y) dy < 2D 6 D2(M,
λ

4
) for all sufficiently large n.

Then Lemma 3.4 (ii) implies K(uj(n)) 6 λ
4
for n large, contradicting the fact that

K(un) > λ
2
. Thus necessarily k > 1.

The sequences
((
d(un)− 9δ

)
+

)
n>1

and (∇un)n>1 are bounded in LN(RN), hence

sup
n∈N∗

sup
x∈RN

‖un‖W 1,N (B(x,1)) <∞.

Using the diagonal extraction procedure we see that there is an increasing mapping
` : N∗ −→ N∗ and there are functions u1, . . . uk ∈ W 1,N

loc (RN ,Rm) such that for any
i ∈ {1, . . . , k} we have

(3.18) uj(`(n))(·+ xi`(n)) ⇀ ui weakly in W 1,N(B(0, R)) for any R > 0,

(3.19)
uj(`(n))(·+xi`(n)) −→ ui a.e. and in Lp(B(0, R)) for any R > 0 and any p ∈ [1,∞).

Step 2. Properties of the limit functions u1, . . . , uk.
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It follows from Lemma 2.2 that for any fixed R > 0,∫
B(0,R)

a(ui,∇ui) dx 6 lim inf
n→∞

∫
B(0,R)

a(uj(`(n))(x+ xi`(n)),∇uj(`(n))(x+ xi`(n))) dx

6 lim inf
n→∞

∫
B(xi

`(n)
,Ri
`(n)

)

a(uj(`(n)),∇uj(`(n)) dx

Letting R −→∞ and using the monotone convergence theorem we find

(3.20)
∫
RN

a(ui,∇ui) dx 6 lim inf
n→∞

∫
B(xi

`(n)
,Ri
`(n)

)

a(uj(`(n)),∇uj(`(n))) dx.

Using the Fatou lemma and proceeding as above we discover

(3.21)
∫
RN

G1(ui) dx 6 lim inf
n→∞

∫
B(xi

`(n)
,Ri
`(n)

)

G1(uj(`(n))) dx

and for all R > 0,

(3.22)
∫
RN\B(0,R)

G2(ui) dx 6 lim inf
n→∞

∫
B(xi

`(n)
,Ri
`(n)

)\B(xi
`(n)

,R)

G2(uj(`(n))) dx.

We claim that for any i ∈ {1, . . . , k},

(3.23)
∫
B(xi

`(n)
,Ri
`(n)

)

G2(uj(`(n))) dx −→
∫
RN

G2(ui) dx as n −→∞.

To see this fix ε > 0. Using property (P3) in step 1 and the fact that 0 6
G2(uj(n)(x)) 6 C

(
d(uj(n)(x)) − 9δ

)q
+
6 Cρj(n)(x) we may find Ri

ε > 0 and n(ε, i) ∈
N∗ such that

(3.24)
∫
B(xi

`(n)
,Ri
`(n)

)\B(xi
`(n)

,Riε)

G2(uj(`(n))) dx < ε for all n > n(ε, i).

Then (3.22) and (3.24) imply
∫
RN\B(0,Riε)

G2(ui) dx 6 ε.

Since G2 is continuous, G2(s) 6 C(1 + |s|q) and (3.19) holds, we have∫
B(xi

`(n)
,Riε)

G2(uj(`(n))) dx =

∫
B(0,Riε)

G2(uj(`(n))(x+ xi`(n))) dx −→
∫
B(0,Riε)

G2(ui) dx

as n −→ ∞ (see, for instance, Lemma 16.1 p. 60 in [17] or Theorem A2 p. 133 in
[28]). Hence there is n′(ε, i) > n(ε, i) such that for all n > n′(ε, i),∣∣∣∣∣

∫
B(xi

`(n)
,Riε)

G2(uj(`(n))) dx−
∫
B(0,Riε)

G2(ui) dx

∣∣∣∣∣ < ε.

From the above estimate, (3.24) and the same for ui we get∣∣∣∣∣
∫
B(xi

`(n)
,Ri
`(n)

)

G2(uj(`(n))) dx−
∫
RN

G2(ui) dx

∣∣∣∣∣ 6 3ε

for all n > n′(ε, i) and (3.23) is proven.
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Let us show that ui ∈X . Denoting Aiβ = {x ∈ RN | dist(ui(x),S) > β}, it only
remains to prove that µ(Aiβ) <∞ for any β > 0. Using the Fatou lemma we get, as
in (3.21),

∫
RN

(
d(ui(x))− 9δ

)q
+
dx 6 lim inf

n→∞

∫
B(xi

`(n)
,Ri
`(n)

)

(
d(uj(`(n))(x))− 9δ

)q
+
dx

6 lim
n→∞

∫
RN

ρn dx = α.

From the above we infer that µ
(
{x ∈ RN | d(ui(x)) > 10δ}

)
< ∞. We have Aiβ ⊂

{x ∈ RN | d(ui(x)) > 10δ} ∪ {x ∈ RN | β < dist(u(x),S) < 13δ} = A1 ∪ A2.
We already know that µ(A1) < ∞. Let us prove that µ(A2) is finite. Denoting
Kβ = inf{G1(s) | β 6 dist(s,S) 6 13δ} we have

Kβ · µ(A2) 6
∫
RN

G1(ui) dx 6 1,

hence µ(A2) <∞, as desired.

Step 3. Estimates on uj(`(n)) outside the balls B(xi`(n), R
i
`(n)).

We define
(3.25)

wn(x) =



uj(`(n))

(
xi`(n) +Ri

`(n)(x− xi`(n)

)
if x ∈ B(xi`(n), 1),

uj(`(n))

(
xi`(n) +

Ri
`(n)

|x−xi
`(n)
|
1
2

(x− xi`(n))

)
if 1 6 |x− xi`(n)| 6 (Ri

`(n))
2,

uj(`(n))(x) if x 6∈ ∪ki=1B(xi`(n), (R
i
`(n))

2).

It is easy to see that wn ∈X . Since
∫
B(xin,(R

i
n)3)\B(xin,R

i
n)
ρj(n)(x) dx −→ 0 as n −→∞

(see (P2) above), a straightforward computation gives
(3.26)∫

RN

Gγ(wn(x)) dx =

∫
RN\ ∪ki=1B(xi`(n), R

i
`(n))

Gγ(uj(`(n))(y)) dy + o(1), γ = 1, 2,

(3.27) µ
(
{x ∈ RN | d(wn(x)) > 9δ}

)
6 2µ

(
{x ∈ RN | d(uj(`(n))(x)) > 9δ}

)
6 2K,

(3.28)

A(wn) = A(uj(`(n))) + o(1) and
∫
RN

|∇wn|N dx =

∫
RN

|∇uj(`(n))|N dx+ o(1)

as n −→∞. In particular, for all sufficiently large n we have
(3.29)∫

RN

G1(wn(x)) dx 6 2,

∫
RN

G2(wn(x)) dx 6 λ+1 and
∫
RN

|∇wn|N dx 6M+1.

We prove that

(3.30)
∫
RN

G2(wn(x)) dx 6
λ

2

∫
RN

G1(wn(x)) dx+ o(1).
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To do this we argue by contradiction and we assume that (3.30) does not hold. Then
there exists a positive constant K such that, passing to a subsequence (still denoted
the same) of (wn)n>1 we may assume that for all n, (3.30) is satisfied and we have

(3.31)
∫
RN

G2(wn(x)) dx > K and
∫
RN

G2(wn(x)) dx >
λ

4

∫
RN

G1(wn(x)) dx

Using (3.10) for wn we infer that there is κ1 > 0 such that for any n,
(3.32)

κ1 6 µ({x ∈ RN | d(wn(x)) > 13δ}) 6 µ({x ∈ RN | d(wn(x)) > 9δ}) 6 2K.

Hence for any n there is σn ∈ [(2K)−
1
N , κ

− 1
N

1 ] such that µ({x ∈ RN | d((wn)σn(x)) >
9δ}) = 1. Moreover, by (3.29) and (3.31) we have

∫
RN |∇ ((wn)σn) |N dx 6 M + 1

and K((wn)σn) > λ
4
. We may thus use Lemma 3.4 (i) for (wn)σn and we infer that

there exists xn0 ∈ RN such that
(3.33)

µ

({
x ∈ B

(
xn0 ,

1

σn

) ∣∣∣ d(wn(x)) > 12δ

})
> σ−Nn η

(
M + 1,

λ

4

)
> κ1η

(
M + 1,

λ

4

)
and

(3.34)
∫
B

(
xn0 ,

R0(M+1, λ4 )

σn

) |∇wn|N dx > D1

(
M + 1,

λ

4

)
.

For each n there are only two possibilities:

Case A: B
(
xn0 , (2K)

1
N (1 +R0)

)
∩B(xi`(n), 1) 6= ∅ for some i ∈ {1, . . . , k}.

Case B: B
(
xn0 , (2K)

1
N (1 +R0)

)
∩B(xi`(n), 1) = ∅ for all i ∈ {1, . . . , k}.

Assume that we are in case A and n is sufficiently large, so that 1 + 2(2K)
1
N (1 +

R0) < (Ri
`(n))

2. Then we have B(xn0 ,
1
σn

) ⊂ B(xn0 , (2K)
1
N ) ⊂ B(xi`(n, (R

i
`(n))

2). By
(3.33) we get∫

B(xi
`(n)

,(Ri
`(n)

)2)

(d(wn)− 9δ)q+ dx >
∫
B(xn0 ,

1
σn

)

(d(wn)− 9δ)q+ dx > 3qκ1ηδ
q.

On the other hand, using the definition of wn in (3.25) we get∫
B(xi

`(n)
,(Ri

`(n)
)2)

(d(wn)− 9δ)q+ dx 6
1

(Ri
`(n))

N

∫
B(xi

`(n)
,Ri
`(n)

)

(
d(uj(`(n)))− 9δ

)q
+
dx

+2

∫
B(xi

`(n)
,(Ri

`(n)
)2)\B(xi

`(n)
,Ri
`(n)

)

(
d(uj(`(n))) − 9δ

)q
+
dx

and the right hand side in the above inequality tends to 0 as n −→∞ by (P2) and
the fact that Ri

n −→ ∞. We conclude that here is n1 ∈ N∗ such that the property
in Case A cannot be satisfied for n > n1.

Assume that we are in case B. ThenB

(
xn0 ,

R0(M + 1, λ
4
)

σn

)
⊂ B(xn0 , (2K)

1
NR0) ⊂

RN \ ∪ki=1B(xi`(n), 1). Denoting R̃0 = (2K)
1
NR0, using (3.34) and the definition of
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wn we get

D1

(
M + 1,

λ

4

)
6
∫
B(x0,R̃0)

|∇wn|N dx

6
k∑
i=1

∫
B(xi

`(n)
,(Ri

`(n)
)2)\B(xi

`(n)
,1)

|∇wn|N dx+ sup
z∈RN

∫
B(z,R̃0)\∪ki=1B(xi

`(n)
,(Ri

`(n)
)2)

|∇wn|N dx

6 C
k∑
i=1

∫
B(xi

`(n)
,(Ri

`(n)
)2)\B(xi

`(n)
,Ri
`(n)

)

|∇uj(`(n))|N dx+ sup
z∈RN

∫
B(z,R̃0)

ρ̃`(n) dx,

where ρ̃`(n) is as in (P4). By (P2) and the choice of D in (P4) (recall that D 6
1
2
D1

(
M + 1, λ

4

)
), the last quantity above is smaller than 3

4
D1

(
M + 1, λ

4

)
for all n

sufficiently large. We infer that there is n2 > n1 such that Case B cannot hold either
for n > n2. Hence we have got a contradiction and the proof of (3.30) is complete.

Step 4. There is i ∈ {1, . . . , k} such that

(3.35)
∫
RN

G2(ui) dx > λ

∫
RN

G1(ui) dx.

We argue by contradiction and we assume that (3.35) is false. Taking into
account Remark 3.3, it follows that for each i ∈ {1, . . . , k} there is λi < λ such that∫
RN G2(ui) dx 6 λi

∫
RN G1(ui) dx. Then using (3.21) and (3.23) we find

(3.36)
∫
B(xi

`(n)
,Ri
`(n)

)

G2(uj(`(n))(x)) dx 6 λi

∫
B(xi

`(n)
,Ri
`(n)

)

G1(uj(`(n))(x)) dx+ o(1).

From (3.30) and (3.26) we get

(3.37)

∫
RN\∪ki=1B(xi

`(n)
,Ri
`(n)

)

G2(uj(`(n))(x)) dx

6
λ

2

∫
RN\∪ki=1B(xi

`(n)
,Ri
`(n)

)

G1(uj(`(n))(y)) dy + o(1).

Fix λ̃ such that max(λ
2
, λ1, . . . , λk) < λ̃ < λ. Adding (3.36) (for i = 1, . . . , k) and

(3.37) we find∫
RN

G2(uj(`(n))(x)) dx 6 λ̃

∫
RN

G1(uj(`(n))(x)) dx+ o(1).

Since
∫
RN G1(un(x)) dx = 1 for all n (see (3.13), the above inequality implies

K(uj(`(n))) 6 λ̃ + o(1), contradicting the fact that K(uj(`(n))) −→ λ > λ̃ by (1.15).
The proof of (3.35) is thus complete.

Step 5. Conclusion.

We may assume that (3.35) holds for i = 1. Then we have u1 ∈X and K(u1) >
λ. From Proposition 1.4 (iii) it follows that A(u1) > Amin(λ). On the other hand,
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by (3.20) and (1.15) we get
(3.38)

A(u1) 6 lim inf
n→∞

∫
B(xi

`(n)
,Ri
`(n)

)

a(uj(`(n)),∇uj(`(n))) dx 6 lim
n→∞

A(uj(`(n))) = Amin(λ).

Therefore A(u1) = Amin(λ). If K(u1) > λ by Proposition 1.4 (iii) we would have
A(u1) > Amin(λ), a contradiction. Hence K(u1) = λ. From (3.38) and the fact that
A(uj(`(n))) −→ A(u1) as n −→∞ (see (1.15)) we infer that

(3.39)
∫
RN\B(x1

`(n)
,R1
`(n)

)

a(uj(`(n)),∇uj(`(n))) dx −→ 0 as n −→∞.

Next we claim that

(3.40)
∫
RN\B(x1

`(n)
,R1
`(n)

)

G2(uj(`(n))) dx −→ 0 as n −→∞.

To see this we argue again by contradiction. If (3.40) is not true, there is a sub-
sequence of (uj(`(n)))n>1, denoted the same, such that along this subsequence the
integral in (3.40) tends to some β > 0. Define w̃n as in (3.25), except that k = 1.
Then w̃n ∈X and, as in (3.26), we have∫

RN

G2(w̃n(x)) dx =

∫
RN\B(x1

`(n)
,R1
`(n)

)

G2(uj(`(n))(y)) dy + o(1) = β + o(1)

and ∫
RN

G1(w̃n(x)) dx =

∫
RN\B(x1

`(n)
,R1
`(n)

)

G1(uj(`(n))(y)) dy + o(1) 6 1 + o(1).

Using Remark 3.3 we see that for n sufficiently large K(w̃n) is well-defined and
K(w̃n) > β

2
. It is also easy to see that (3.27) - (3.29) hold with w̃n instead of wn.

Using (3.10) we see that there exists κ2 > 0 such that (3.32) holds with κ1 and
wn replaced by κ2 and w̃n, respectively. Then we proceed exactly as in the proof
of (3.30) to get a contradiction (notice that we use (3.39), which is equivalent to∫
RN\B(x1

`(n)
,R1
`(n)

)
|∇uj(`(n))|N dx = o(1), to eliminate the case B).

Using (3.40) and (3.13) we get
∫
B(x1

`(n)
,R1
`(n)

)
G2(uj(`(n))) dx −→ λ, and then (3.23)

implies
∫
RN G2(u1(x)) dx = λ. Then we infer that

∫
RN G1(u1(x)) dx = 1 because

K(u1) = λ. For γ = 1, 2 we know that the functions Gγ(uj(`(n))) are nonnegative,
belong to L1(RN), converge to Gγ(u

1) a.e. on RN and
∫
RN Gγ(uj(`(n))(x)) dx −→∫

RN Gγ(u
1(x)) dx as n −→ ∞; this implies that Gγ(uj(`(n))) −→ Gγ(u

1) in L1(RN),
as desired. �

Proof of Corollary 1.3. The precompactness of minimizing sequences follows di-
rectly from Theorem 1.2.

Let u be a minimizer of Amin(1). Then
∫
RN G+(u) dx =

∫
RN G−(u) dx > 0 and

V(u) = 0. For any w ∈ X with
∫
RN |G(w)| dx > 0 we have

∫
RN G−(w) dx > 0

by Remark 3.3. If V(w) > 0 we have
∫
RN G+(w) dx >

∫
RN G−(w) dx > 0, hence

K(w) > 1 and A(w) > Amin(K(w)) > Amin(1) = A(u), with equality if and only if
K(w) = 1 (that is, V(w) = 0) and A(w) = Amin(1).
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Let φ ∈ C1
c (RN ,Rm). Exactly as in the proof of Theorem 1.1 we show that

u+ tφ ∈X and

(3.41) V(u+ tφ) = V(u) + tΦu(φ) + o(t), A(u+ tφ) = A(u) + tΨu(φ) + o(t)

as t −→ 0, where Φu and Ψu are as in (2.27) and (2.28), respectively. By dominated
convergence we have

∫
RN G−(u + tφ) dx −→

∫
RN G−(u) dx > 0 as t −→ 0, hence∫

RN G−(u + tφ) dx > 0 for t sufficiently small. If Φu(φ) > 0 we have V(u + tφ) > 0
and K(u + tφ) > 1 for t small, t > 0 and we infer that A(u + tφ) > A(u) for t
close to 0, t > 0, which implies Ψu(φ) > 0. Similarly if Φu(φ) < 0 we deduce that
Ψu(φ) 6 0. It is not hard to see that Φu 6≡ 0 and Ker(Ψu) ⊂ Ker(Φu). Hence there
exists α ∈ R such that Ψu = αΦu. Since Φu(φ) > 0 implies Ψu(φ) > 0 we have
necessarily α > 0. �
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II

Traveling waves for a Gross-Pitaevskii-Schrödinger system∗

Lien Thuy NGUYEN

Abstract. We show the existence of subsonic traveling waves of finite energy for
a Gross-Pitaevskii-Schrödinger system which models the motion of a non charged
impurity in a Bose-Einstein condensate. The obtained results are valid in three-
and four-dimensional space.
Keywords. traveling wave, constrained minimization, nonlinear Schrödinger
equation, Gross-Pitaevskii equation, Gross-Pitaevskii-Schrödinger system,
Ginzburg-Landau energy.

1. Introduction

This paper focuses on the study of the system

(1.1)
2i
∂Ψ

∂t
= −∆Ψ +

1

ε4
|Φ|2Ψ− F (|Ψ|2)Ψ,

2iδ
∂Φ

∂t
= −∆Φ +

1

ε2
(q2|Ψ|2 − ε2k2)Φ

which describes the motion of an uncharged impurity in a Bose condensate. Here,
Ψ and Φ are the wavefunctions for bosons, respectively for the impurity, δ = µ

M
is

the ratio of the mass of the impurity over the boson mass (δ � 1), q2 = l
2d
, l is the

boson-impurity scattering length and d is the boson diameter, k is a dimensionless
measure for the single-particle impurity energy, and ε is a dimensionless constant
(ε =

(
aµ
lM

) 1
5 , where a is the "healing length"; in applications, ε ≈ 0.2).

Assuming that the condensate is at rest at infinity, the solutions Ψ and Φ must
satisfy the "boundary conditions"

|Ψ(x)| → 1, Φ(x)→ 0 as |x| → ∞.
The first equation in (1.1) can be recast into a hydrodynamical form by using the
Madelung transformation Ψ(x, t) =

√
ρ(x, t)eiθ(x,t), which is meaningful where ρ

∗Paper submitted for publication.
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does not vanish. By a straightforward computation, we find that ρ and θ satisfy the
equations

(1.2) ρt + div(ρ∇θ) = 0,

(1.3) 2θt + |∇θ|2 − ∆ρ

2ρ
+
|∇ρ|2
4ρ2

+
1

ε4
|Φ|2 − F (ρ) = 0.

These equations are similar to a system of Euler equations for a compressible inviscid
fluid of density ρ and velocity ∇θ. If F is C1, taking the derivative with respect to
t of (1.3) and substituting ρt from (1.2) we obtain

(1.4) 2θtt + F ′(ρ)(ρ∆θ +∇ρ.∇θ) +
∂

∂t

(
|∇θ|2 − ∆ρ

2ρ
+
|∇ρ|2
4ρ2

+
1

ε4
|Φ|2

)
= 0.

For a small oscillatory motion (i.e. a sound wave), all the nonlinear terms appearing
in (1.4), except ρ∆θ, may be neglected and in a neighborhood of infinity, the velocity
potential θ satisfies the wave equation 2θtt + F ′(1)∆θ + 2

ε4
|φ|φt = 0. We find that

sound waves propagate with velocity
√
−2F ′(1)

2
and therefore the sound velocity at

infinity associated to the first equation of (1.1) is vs =

√
−2F ′(1)

2
.

Let V (s) =
∫ 1

s
F (τ) dτ . As in the case of the Gross-Pitaevskii equation, the

following Hamiltonian is formally conserved by (1.1):
(1.5)

E(Ψ,Φ) =

∫
RN

(
|∇Ψ|2 +

1

ε2q2
|∇Φ|2 + V (|Ψ|2) +

1

ε4
|Ψ|2|Φ|2 − k2

ε2q2
|Φ|2

)
dx.

We are interested in traveling wave solutions for the system (1.1), i.e., solutions
of the form Ψ(x, t) = ψ(x − cty),Φ(x, t) = φ(x − cty), where y is the direction of
propagation and c is the speed of the traveling wave. Without loss of generality, we
may assume that y = (1, 0, . . . , 0). Such solutions must satisfy the equations

(1.6)
−2ic

∂ψ

∂x1

+ ∆ψ − 1

ε4
|φ|2ψ + F (|ψ|2)ψ = 0,

−2icδ
∂φ

∂x1

+ ∆φ− 1

ε2
(q2|ψ|2 − ε2k2)φ = 0.

It is clear that (ψ, φ) satisfies (1.6) for some velocity c if and only if (ψ(−x1, x
′), φ(−x1, x

′))
satisfies (1.6) for the velocity −c. Thus it suffices to consider the case c > 0. We say
that (ψ, φ) has finite energy if ∇ψ ∈ L2(RN), V (|ψ|2) ∈ L1(RN) and φ ∈ H1(RN).

In the particular case where F (s) = 1
ε2

(1 − s), the system (1.1) has been con-
sidered in several papers. Base on formal asymptotic expansions and numerical
experiments, Grant and Roberts [2] computed the effective radius and the induced
mass of the uncharged impurity. In space dimension one, Mariş [7] proved the ex-
istence of a global subcontinua of finite energy subsonic traveling waves. In higher
dimensions he proved the nonexistence of supersonic solutions to the system (1.1)
in [8].

Here, our goal is to prove the existence of nontrivial finite energy traveling waves
of the system (1.1) in space dimension N = 3 and N = 4, under general conditions
on the nonlinearity F and for any speed c ∈ (0, vs) and ε2(c2δ2 + k2) < q2.
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Notation. Throughout the paper, LN is the Lebesgue measure on RN . For
x = (x1, . . . , xN) ∈ RN , we put x′ = (x2, . . . , xN) ∈ RN−1. Given a function f on
RN and λ, σ > 0, we define dilations of f as

fλ,σ(x) = f

(
x1

λ
,
x′

σ

)
.

We consider the following set of assumptions:

(A1) The function F is continuous on [0,∞), C1 in a neighborhood of 1, F (1) = 0
and F ′(1) < 0.

(A2) There exist C > 0 and p0 <
2

N−2
such that F (s) 6 C(1+sp0) for any s > 0.

(A3) There exist C, α > 0 and r∗ > 1 such that F (s) > −Csα0 for any s > r∗.

If (A1) is satisfied, denote V (s) =
∫ 1

s
F (τ)dτ and a =

√
−1

2
F ′(1), then the

sound velocity at infinity associated to the first equation of (1.1) is vs = a, and
using Taylor’s formula for s in a neighborhood of 1 we have

V (s) =
1

2
V ′′(1)(s− 1)2 + (s− 1)2ε(s− 1) = a2(s− 1)2 + (s− 1)2ε(s− 1),

where ε→ 0 as t→ 0. Hence, for |ψ| close to 1, V (|ψ|2) can be approximated by the
Ginzburg-Landau potential a2(|ψ|2 − 1)2. If (A1) and (A3) are satisfied, it follows
from Proposition 2.2 p. 1078 in [8] that |ψ| is bounded by a universal constant; hence
we can modify F in a neighborhood of infinity such that the modified function F̃
satisfies (A1), (A2), (A3) and the first equation of (1.1) has the same traveling waves
as the equation obtained from it by replacing F by F̃ (see the introduction of [9]
for more details).

Fix an odd function ϕ of class C∞ such that ϕ(s) = s for s ∈ [0, 2], 0 6 ϕ′ 6 1
on R and ϕ(s) = 3 for s > 4. Denote

E = {ψ ∈ L1
loc(R

N) | ∇ψ ∈ L2(RN), ϕ2(|ψ|)− 1 ∈ L2(RN)},
then according to [1],

E = {ψ : RN → C | ∇ψ ∈ L2(RN), |ψ| − 1 ∈ L2(RN)}.
Moreover, if N ≤ 4 it can be proved that

(1.7) E = {ψ : RN → C | ∇ψ ∈ L2(RN), |ψ|2 − 1 ∈ L2(RN)}.
We claim that for φ ∈ D1,2(RN), there holds φ ∈ L2(RN) if and only if ϕ(φ) ∈
L2(RN). Indeed, if |φ| 6 1 then ϕ(φ) = φ. If |φ| > 1 then

(1.8) 0 6 |φ| − |ϕ(φ)| < |φ| < |φ| 2
∗
2 .

Since φ ∈ D1,2(RN), by the Sobolev embedding we have |φ| 2
∗
2 ∈ L2(RN) and the

claim follows.

Our main result is as follows.

Theorem 1.1. Assume that N ∈ {3, 4}, 0 < c < vs and ε2(c2δ2 + k2) < q2.
Suppose that the function F satisfies the conditions ((A1) and (A2)) or ((A1) and
(A3)). Then the system (1.6) admits a nontrivial finite energy solution (ψ, φ) ∈
E ×H1(RN).
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At least formally, traveling waves are critical points of the functional

Ec(ψ, φ) = E(ψ, φ) + 2cQ(ψ) + 2
cδ

q2ε2
Q(φ),

where Q is the momentum with respect to the x1 direction. A rigorous defini-
tion of the momentum for all functions in E has been given in [9], section 2 if
N ≥ 3. Notice that in the case when 〈i ∂ψ

∂x1
, ψ〉 ∈ L1(RN) we have Q(ψ) =∫

RN 〈i ∂ψ∂x1
, ψ〉dx =

∫
RN Re

(
i ∂ψ
∂x1
ψ̄
)
dx. If φ ∈ H1(RN), the momentum of φ is simply

Q(φ) =
∫
RN 〈i ∂φ∂x1

, φ〉dx. To simplify notation, we denote by Q the momentum on
both E and H1(RN).

If assumptions (A1) and (A2) above are verified, arguing as in the proof of [8,
Proposition 4.1] it can be shown that any traveling wave (ψ, φ) ∈ E × H1(RN) of
(1.1) must satisfy the Pohozaev-type identity Pc(ψ, φ) = 0, where

Pc(ψ, φ) =

∫
RN

(∣∣∣∣ ∂ψ∂x1

∣∣∣∣2 +
1

q2ε2

∣∣∣∣ ∂φ∂x1

∣∣∣∣2
)
dx+

N − 3

N − 1

N∑
k=2

(∣∣∣∣ ∂ψ∂xk
∣∣∣∣2 +

1

q2ε2

∣∣∣∣ ∂φ∂xk
∣∣∣∣2
)
dx

+

∫
RN

V (|ψ|2)dx+
1

ε4

∫
RN

|ψ|2|φ|2dx− k2

ε2q2

∫
RN

|φ|2dx+ 2cQ(ψ) + 2
cδ

q2ε2
Q(φ).

Following the approach in [9] we will prove the existence of traveling waves by
minimizing the action Ec under the Pohozaev constraint Pc = 0.

In the next section we present the main tools used in the proof of Theorem 1.1.
In section 3 we prove the existence of traveling waves in space dimension N = 4,
and the last section is devoted to the case N = 3 (which is more difficult because
the minimization problem is invariant by dilations).

2. The variational framework

In this section we study the properties of the functional Ec.

Let ψ ∈ E . The modified Ginzburg-Landau energy of ψ in RN is defined as

EGL(ψ) =

∫
RN

|∇ψ|2dx+ a2

∫
RN

(ϕ2(|ψ|)− 1)2dx.

If Ω ⊂ RN is a measurable set, we define

EΩ
GL(ψ) =

∫
Ω

|∇ψ|2dx+ a2

∫
Ω

(ϕ2(|ψ|)− 1)2dx.

The modified Ginzburg-Landau energy is finite for any ψ ∈ E in any space dimension
N . If N ≤ 4, it follows from (1.7) that the Ginzburg-Landau energy EGL(ψ) is finite,
where

EGL(ψ) =

∫
RN

|∇ψ|2dx+ a2

∫
RN

(|ψ|2 − 1)2dx.
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Moreover, if N ∈ {3, 4} denoting 2∗ = 2N
N−2

and using the Sobolev inequality we
have

(2.1)

0 6 EGL(ψ)− EGL(ψ) = a2

∫
RN

(|ψ|2 − ϕ2(|ψ|))(|ψ|2 + ϕ2(|ψ|)− 2) dx

6 C

∫
RN

|ψ|41{|ψ|≥2} dx 6 C

∫
RN

|ψ|2∗1{|ψ|≥2} dx 6 C‖∇ψ‖2∗

L2(RN ).

By [9, Lemma 4.3] we have V (|ψ|2) ∈ L1(RN) whenever ψ ∈ E , hence we may define

Ẽ(ψ) =

∫
RN

|∇ψ|2 dx+

∫
RN

V (|ψ|2) dx.

We will always assume that q2 − ε2k2 > 0. On the space H1(RN) we will consider
the norm

(2.2) ‖φ‖2
H1 =

∫
RN

|∇φ|2 dx+
q2 − ε2k2

ε2

∫
RN

|φ|2 dx.

Then we have

(2.3) E(ψ, φ) = Ẽ(ψ) +
1

ε4

∫
RN

(|ψ|2 − 1)|φ|2 dx+
1

ε2q2
‖φ‖2

H1(RN ).

We list some useful results from [9].

Lemma 2.1 ([9, Lemma 4.3]). Assume that N > 3, 0 6 c < vs, and let ε1 ∈
(0, 1− c

vs
). There exists a constant K1 = K1(F,N, c, ε1) > 0 such that for any ψ ∈ E

satisfying EGL(ψ) < K1, we have

Ẽ(ψ)− 2c|Q(ψ)| > ε1EGL(ψ).

Lemma 2.2 ([9, Lemma 4.5]). For any k > 0, the functional Q is bounded on the
set {ψ ∈ E | EGL(ψ) 6 k}.
Lemma 2.3 ([9, Lemma 3.3]). Let A > A3 > A2 >

5
4
. Assume that (Rn)n≥1 ⊂

[1,∞), (yn)n≥1 ⊂ RN and (ψn)n≥1 ⊂ E are sequences verifying

E
B(yn,ARn)\B(yn,Rn)
GL (ψn) =

∫
B(yn,ARn)\B(yn,Rn)

(
|∇ψn|2 + a2

(
ϕ2(|ψn|)− 1

)2
)
dx→ 0

as n → ∞. Then for each n there exist two functions ψn,1, ψn,2 ∈ E and a constant
θn,0 ∈ [0, 2π) satisfying the following properties:

(i) ψn,1 = ψn on B(yn,
5
4
Rn) and ψn,1 = eiθn,0 on RN\B(yn, A2Rn),

(ii) ψn,2 = ψn on RN\B(yn, ARn) and ψn,2 = eiθn,0 = constant on B(yn, A3Rn),

(iii)
∫
RN

∣∣∣∣∣
∣∣∣∣∂ψn∂xj

∣∣∣∣2 − ∣∣∣∣∂ψn,1∂xj

∣∣∣∣2 − ∣∣∣∣∂ψn,2∂xj

∣∣∣∣2
∣∣∣∣∣ dx→ 0 as n→∞ for j = 2, . . . , N ,

(iv)
∫
RN

∣∣(ϕ2(|ψn|)− 1)2 − (ϕ2(|ψn,1|)− 1)2 − (ϕ2(|ψn,2|)− 1)2
∣∣ dx→ 0 as n→

∞,
(v) |Q(ψn)−Q(ψn,1)−Q(ψn,2)| → 0 as n→∞,
(vi) If assumptions (A1) and (A2) hold then∫

RN

∣∣V (|ψn|2)− V (|ψn,1|2)− V (|ψn,2|2)
∣∣ dx→ 0 as n→ 0.
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We have the following result for E(ψ, φ), quite similar to Lemma 2.1 above.

Lemma 2.4. Assume that N ∈ {3, 4}, 0 6 c < vs and ε2(c2δ2 + k2) < q2. Let

ε̄ > 0 be such that ε̄ < min

{
1− c

vs
, 1− cδε√

q2−ε2k2

}
. Then, there exists a constant

K̄ = K̄(N, c, ε̄, q, k, δ) such that for any (ψ, φ) ∈ E×H1(RN) satisfying EGL(ψ) < K̄
and ‖φ‖2

H1(RN ) < K̄ we have

Ec(ψ, φ) > ε̄

(
EGL(ψ) +

1

ε2q2
‖φ‖2

H1(RN )

)
.

Proof. Fix ε1 such that ε̄ < ε1 < min

{
1− c

vs
, 1− cδε√

q2−ε2k2

}
. Using Lemma 2.1,

there exists a constant K1 = K1(N, c, ε1) such that

(2.4) Ẽc(ψ) =

∫
RN

|∇ψ|2dx+

∫
RN

V (|ψ|2)dx+ 2cQ(ψ) > ε1EGL(ψ),

for any ψ ∈ E satisfying EGL(ψ) < K1.

Using the Cauchy-Schwarz inequality and (2.2) we have for any φ ∈ H1(RN)

(2.5) |Q(φ)| 6 ‖φ‖L2

∥∥∥ ∂φ
∂x1

∥∥∥
L2(RN )

6
ε

2
√
q2 − ε2k2

‖φ‖2
H1(RN ).

If N ∈ {3, 4} using the Cauchy-Schwarz inequality, then the Sobolev inequality we
get

(2.6)

∫
RN

∣∣|ψ|2 − 1
∣∣|φ|2 dx 6 ∥∥|ψ|2 − 1

∥∥
L2(RN )

‖φ‖2
L4(RN )

6 C (EGL(ψ))
1
2 ‖φ‖2

H1 6 C‖φ‖H1(RN )

(
EGL(ψ) + ‖φ‖2

H1(RN )

)
.

From (2.1)-(2.6) we obtain

Ec(ψ, φ)− ε̄
(
EGL(ψ)) + 1

ε2q2‖φ‖2
H1(RN )

)
=
(
Ẽ(ψ) + 2cQ(ψ)− ε1EGL(ψ)

)
+
(
ε1EGL(ψ)− ε̄EGL(ψ)

)
+ 1
ε2q2

(
(1− ε̄)‖φ‖2

H1(RN ) + 2cδQ(φ)
)

+ 1
ε4

∫
RN (|ψ|2 − 1) |φ|2 dx

>
(

(ε1 − ε̄)EGL(ψ)− ε̄C‖∇ψ‖2∗

L2

)
+ 1

ε2q2

(
1− ε̄− cδε√

q2−ε2k2

)
‖φ‖2

H1(RN )

− C
ε4
‖φ‖H1(RN )

(
EGL(ψ) + ‖φ‖2

H1(RN )

)
.

It is clear that the last quantity is nonnegative if EGL(ψ) and ‖φ‖H1(RN ) are suffi-
ciently small and Lemma 2.4 is proven. �

By combining (2.3), (2.1), (2.5), (2.6), [9, Lemma 4.1] and Lemma 2.2, we infer
that for any k > 0, the function Ec is bounded from below on the set {(ψ, φ) ∈
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E ×H1(RN)|EGL(ψ) + 1
ε2q2‖φ‖2

H1(RN ) = k}. For k > 0, we define

Ec,min(k) = inf{Ec(ψ, φ) | (ψ, φ) ∈ E ×H1(RN), EGL(ψ) +
1

ε2q2
‖φ‖2

H1(RN ) = k}.

Lemma 2.5. Assume that N ∈ {3, 4}, 0 < c < vs and ε2(c2δ2 + k2) < q2. The
function Ec,min has the following properties:

(i) There is k0 > 0 such that Ec,min(k) > 0 for all k ∈ (0, k0).
(ii) limk→∞Ec,min(k) = −∞.
(iii) Ec,min(k) < k for any k > 0.

Proof. Assertion (i) follows from Lemma 2.4. We have
Ec,min(k) 6 inf{Ec(ψ, 0) | ψ ∈ E , EGL(ψ) = k}

= inf{Ẽ(ψ) + 2cQ(ψ) | ψ ∈ E , EGL(ψ) = k}.
This together with [9, Lemma 4.6] gives (ii)–(iii). �

Let
(2.7) Sc = sup

k>0
Ec,min(k).

By Lemma 2.5 (i) we have Sc > 0.

Lemma 2.6. Assume that N = 3, 4, 0 < c < vs and ε2(c2δ2 + k2) < q2. Then, the
set C = {(ψ, φ) ∈ E × (RN) | (|ψ|, |φ|) 6= (1, 0), Pc(ψ, φ) = 0} is not empty and

Tc := inf{Ec(ψ, φ) | (ψ, φ) ∈ C } > 0.

Proof. Let (ψ, φ) ∈ E × (RN) and denote

(2.8) A(ψ, φ) =
N∑
k=2

∫
RN

(∣∣∣∣ ∂ψ∂xk
∣∣∣∣2 +

1

q2ε2

∣∣∣∣ ∂φ∂xk
∣∣∣∣2
)
dx,

(2.9)

Bc(ψ, φ) =

∫
RN

(∣∣∣∣ ∂ψ∂x1

∣∣∣∣2 +
1

q2ε2

∣∣∣∣ ∂φ∂x1

∣∣∣∣2
)
dx+

∫
RN

V (|ψ|2)dx

+
1

ε4

∫
RN

|ψ|2|φ|2dx− k2

ε2q2

∫
RN

|φ|2dx+ 2cQ(ψ) + 2
cδ

q2ε2
Q(φ).

Then we have Pc(ψ, φ) = N−3
N−1

A(ψ, φ) +Bc(ψ, φ) and Ec(ψ, φ) = A(ψ, φ) +Bc(ψ, φ).

We first show that C 6= ∅. By Lemma 2.5, there exists (u, v) ∈ E × (RN) such that
Ec(u, v) < 0, and then Pc(u, v) < 0. Moreover,

(2.10) Pc((u, v)σ,1) =
1

σ

∫
RN

(∣∣∣∣ ∂u∂x1

∣∣∣∣2 +
1

q2ε2

∣∣∣∣ ∂v∂x1

∣∣∣∣2
)
dx+ σ

N − 3

N − 1
A(u, v)

+ σ

∫
RN

V (|u|2)dx+
σ

ε4

∫
RN

|u|2|v|2dx− σ k2

ε2q2

∫
RN

|v|2dx+ 2cQ(u) + 2
cδ

q2ε2
Q(v).

Since limσ→0 Pc((u, v)σ,1)) = +∞ and Pc((u, v)1,1) < 0, there is σ0 ∈ (0, 1) satisfying
Pc(uσ0,1, vσ0,1) = 0, and so C 6= ∅.
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Next we prove that Tc > 0 in the case N = 4. Let (ψ, φ) ∈ C . We have

Ec((ψ, φ)1,σ) = σN−3A(ψ, φ) + σN−1Bc(ψ, φ),

which implies that
d

dσ
(Ec((ψ, φ)1,σ)) = (N − 3)σN−4A(ψ, φ) + (N − 1)σN−2Bc(ψ, φ).

Since A(ψ, φ) > 0 and Bc(ψ, φ) = −N−3
N−1

A(ψ, φ) < 0, we see that d
dσ

(Ec((ψ, φ)1,σ))
is positive for σ ∈ (0, 1) and negative for σ ∈ (1,∞). It follows that Ec((ψ, φ)1,σ) 6
Ec((ψ, φ)1,1) = Ec(ψ, φ) for any σ > 0. In addition,

EGL(ψ1,σ) +
1

ε2q2
‖φ1,σ‖2

H1 = σN−3A(ψ, φ) + σN−1D(ψ, φ),

where
(2.11)

D(ψ, φ) =

∫
RN

[∣∣∣∣ ∂ψ∂x1

∣∣∣∣2 +
1

q2ε2

∣∣∣∣ ∂φ∂x1

∣∣∣∣2 + a2
(
ϕ2(|ψ|)− 1

)2
+
q2 − ε2k2

q2ε4
|φ|2
]
dx.

We see that the mapping σ 7−→ EGL(ψ1,σ) + 1
ε2q2‖φ1,σ‖2

H1(RN ) is strictly increasing
and one-to-one from (0,∞) to (0,∞). Thus, for any k > 0, there exists a unique
σ(k, (ψ, φ)) > 0 such that EGL(ψ1,σ(k,(ψ,φ)))+ 1

ε2q2‖φ1,σ(k,(ψ,φ))‖2
H1(RN ) = k. Therefore,

Ec,min(k) 6 Ec((ψ, φ)1,σ(k,(ψ,φ))) 6 Ec(ψ, φ).

Since the last inequality holds for any (ψ, φ) ∈ C and any k > 0, using Lemma 2.4
we infer that Tc > supk>0Ec,min(k) = Sc > 0.

Next consider the case N = 3. Let (ψ, φ) ∈ C . Then Pc(ψ, φ) = Bc(ψ, φ) = 0
and Ec(ψ, φ) = A(ψ, φ) > 0. For any σ > 0 we have (Ec(ψ1,σ, φ1,σ)) = A(ψ, φ) and

EGL(ψ1,σ) +
1

ε2q2
‖φ1,σ‖2

H1(RN ) = A(ψ, φ) + σ2D(ψ, φ).

It is easy to see that the mapping σ 7−→ EGL((ψ, φ)1,σ) is increasing and one-to-one
from (0,+∞) to (A(ψ, φ),+∞). Fix ε̃ > 0. By the definition of Sc (see (2.7)) there
exists kε̃ > 0 such that Ec,min(kε̃) > Sc − ε̃. If A(ψ, φ) > kε̃, using Lemma 2.5 (iii)
we get

Ec(ψ, φ) = A(ψ, φ) > kε̃ > Ec,min(kε̃) > Sc − ε̃.
If A(ψ, φ) < kε̃, there exists σ(kε̃, (ψ, φ)) > 0 such that EGL(ψ1,σ(kε̃,(ψ,φ))) +

1
ε2q2‖φ1,σ(kε̃,(ψ,φ))‖2

H1(RN ) = kε̃. Then

Ec(ψ, φ) = A(ψ, φ) = Ec((ψ, φ)1,σ(kε̃,(ψ,φ))) > Ec,min(kε̃) > Sc − ε̃.
Taking limit as ε̃→ 0 we obtain Tc > Sc > 0.

�

Lemma 2.7. Let (ψn, φn)n>1 ⊂ E × H1(RN)(RN) be a sequence such that
(EGL(ψn)n>1 and (‖φn‖H1(RN ))n>1 are bounded and limn→∞ Pc(ψn, φn) = m < 0.
Then

lim inf
n→∞

A(ψn, φn) >
N − 1

2
Tc.
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Proof. Since limn→∞ Pc(ψn, φn) = m < 0, we have (|ψn|, |φn|) 6= (1, 0) and∫
RN

(∣∣∣∣∂ψn∂x1

∣∣∣∣2 +
1

q2ε2

∣∣∣∣∂φn∂x1

∣∣∣∣2
)
dx > 0 for n sufficiently large.

It follows from (2.10) that limσ→0 Pc((ψn, φn)σ,1) = +∞ for each n. Since
Pc((ψn, φn)1,1) = Pc(ψn, φn) < 0 for n large enough, there exists σn ∈ (0, 1) such
that Pc((ψn, φn)σn,1) = 0. From the definition of Tc, Ec((ψn, φn)σn,1) > Tc, and so

A((ψn, φn)σn,1) =
N − 1

2
(Ec((ψn, φn)σn,1)− Pc((ψn, φn)σn,1)) >

N − 1

2
Tc.

This gives

(2.12) A(ψn, φn) >
N − 1

2

1

σn
Tc.

We claim that lim supn→∞ σn < 1. Indeed, assume on the contrary that there exists a
subsequence (σnk)k>1 → 1 as k →∞. Using Lemma 2.2, (2.5) and the boundedness
of (EGL(ψnk)k>1 and (‖φn‖H1(RN ))n>1 we obtain that

(Q(ψnk))k>1, (Q(φnk))k>1, (A(ψnk , φnk))k>1 are bounded.

Moreover, from [9, Lemma 4.1] it follows that
∫
RN V (|ψnk |2)dx is bounded, too.

Using (2.6) and (2.1), we obtain the boundedness of
(∫

RN |ψnk |2|φnk |2dx
)
k>1

. Passing
to a subsequence (still denoted (ψnk , φnk)k>1) and using (2.10), we get

lim
n→∞

Pc(ψnk , φnk) = lim
n→∞

Pc((ψnk , φnk)σnk ,1) = 0,

contradicting the assumption limn→∞ Pc(ψn, φn) = m < 0. Thus lim supn→∞ σn < 1,
which together with (2.12) implies that lim infn→∞A(ψn, φn) > N−1

2
Tc. �

3. The case N = 4

Lemma 3.1. Assume that N > 4. Let (ψn, φn)n>1 ⊂ E × H1(RN) be a sequence
satisfying:

(i) There exist M1, M2 > 0 such that M1 6 EGL(ψn) + 1
ε2q2‖φn‖2

H1(RN ) and
A(ψn, φn) 6M2 for any n > 1.

(ii) Pc(ψn, φn)→ 0 as n→∞.

Then lim infn→∞Ec(ψn, φn) > Tc, where Tc is as in Lemma 2.6.

Proof. For any σ > 0,

(3.1)
Pc((ψn, φn)1,σ) = σN−3N − 3

N − 1
A(ψn, φn) + σN−1Bc(ψn, φn)

= σN−3

(
N − 3

N − 1
A(ψn, φn) + σ2Bc(ψn, φn)

)
.

We claim that
M := lim inf

n→∞
A(ψn, φn) > 0.

We argue by contradiction and assume that there is a subsequence, still denoted
(ψn, φn)n>1 such that A(ψn, φn)→ 0 as n→∞. Fix k0 > 0 such that Ec,min(k0) > 0.
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As in the proof of Lemma 2.6, we see that for each n there exists a unique σn > 0
such that

EGL((ψn)1,σn) +
1

ε2q2
‖(φn)1,σn‖2

H1(RN ) = σN−3
n A(ψn, φn) + σN−1

n D(ψn, φn) = k0,

where D(ψn, φn) is as in (2.11). Thus Ec((ψn, φn)1,σn) > Ec,min(k0) > 0. Moreover,
(σn)n≥1 is bounded because

k0 = EGL((ψn)1,σn) +
1

ε2q2
‖(φn)1,σn‖2

H1(RN )

> min(σN−3
n , σN−1

n )

(
EGL(ψn) +

1

ε2q2
‖φn‖2

H1(RN )

)
> min(σN−3

n , σN−1
n )M1.

On the other hand,
Ec((ψn, φn)1,σn) = σN−3

n A(ψn, φn) + σN−1
n Bc(ψn, φn)

= σN−3
n A(ψn, φn) + σN−1

n

(
Pc(ψn, φn)− N − 3

N − 1
A(ψn, φn)

)
.

Passing to the limit as n → ∞ we get 0 > Ec,min(k0) > 0, a contradiction. Hence
lim infn→∞A(ψn, φn) > 0. Using the assumption (ii) and the fact that Bc(ψn, φn) =
Pc(ψn, φn)− N−3

N−1
A(ψn, φn), we obtain

lim sup
n→∞

Bc(ψn, φn) = −N − 3

N − 1
M.

Thus, for n large enough, we can choose σ̄n =

(
−

N−3
N−1

A(ψn,φn)

Bc(ψn,φn)

) 1
2

. Then (3.1) implies

that Pc((ψn, φn)1,σ̄n) = 0, and so
Ec((ψn, φn)1,σ̄n) > Tc,

that is
(3.2)

Ec(ψn, φn)+(σ̄N−3
n −1)A(ψn, φn)+(σ̄N−1

n −1)

(
Pc(ψn, φn)− N − 3

N − 1
A(ψn, φn)

)
> Tc.

We observe that σ̄n → 1 as n → ∞ because σ̄n =
(
− Pc(ψn,φn)
Bc(ψn,φn)

+ 1
) 1

2 and
Pc(ψn, φn) → 0 as n → ∞. Letting n → ∞ in (3.2) and using the fact that
(A(ψn, φn))n>1 and (Pc(ψn, φn))n>1 are bounded, we deduce

lim inf
n→∞

Ec(ψn, φn) > Tc.

�

Theorem 3.2. Assume that N = 4, the conditions (A1) and (A2) are satisfied,
0 < c < vs and ε2(c2δ2 +k2) < q2. Let (ψn, φn)n>1 ⊂ E ×H1(R4) be a sequence such
that (|ψn|, |φn|) 6= (1, 0) for all n and

Pc(ψn, φn)→ 0 and Ec(ψn, φn)→ Tc as n→∞.
Then there exist a subsequence (ψnk , φnk)k>1, a sequence (xk)k>1 ⊂ R4 and (ψ, φ) ∈
C such that

∇ψnk(.+ xk)→ ∇ψ, |ψnk(.+ xk)| − 1→ |ψ| − 1 in L2(R4) and

φnk(.+ xk)→ φ in H1(R4).
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Moreover, Ec(ψ, φ) = Tc and (ψ, φ) is a minimizer of Ec in C .

Proof. First, we see that (EGL(ψn) + 1
ε2q2‖φn‖2

H1(RN ))n>1 is bounded. Indeed, from
the assumptions and the fact that 2

N−1
A(ψn, φn) = Ec(ψn, φn)−Pc(ψn, φn), we infer

that A(ψn, φn) is bounded.

Next we show thatD(ψn, φn) is bounded, whereD(ψn, φn) is as in (2.11). Assume
that there exists a subsequence, still denoted (ψn, φn), such that D(ψn, φn)→∞ as
n→∞. Fix l0 > 0 such that Ec,min(l0) > 0. By the same argument as in the proof
of Lemma 2.6, there is a sequence (σn)n>1 such that

(3.3) EGL((ψn)1,σn)+
1

ε2q2
‖(φn)1,σn‖2

H1(RN ) = σN−3
n A(ψn, φn)+σN−1

n D(ψn, φn) = l0.

Therefore, σn → 0 as n→∞. It is easy to see that (Bc(ψn, φn))n>1 is bounded since
Bc(ψn, φn) = −N−3

N−1
A(ψn, φn) + Pc(ψn, φn). Hence

Ec(ψ1,σn , φ1,σn) = σN−3
n A(ψn, φn) + σN−1

n Bc(ψn, φn)→ 0 as n→∞,
contradicting the fact that Ec,min(l0) > 0. Thus there exists M such that
D(ψn, φn) 6M for n large enough. We conclude that EGL(ψn) and ‖φn‖H1(RN ) are
bounded.

On the other hand,

(3.4)
2

N − 1
A(ψn, φn) = Ec(ψn, φn)− Pc(ψn, φn)→ Tc as n→∞,

and so

lim inf
n→∞

(
EGL(ψn) +

1

ε2q2
‖φn‖2

H1(RN )

)
> lim

n→∞
A(ψn, φn) =

N − 1

2
Tc.

We will use Lions’ concentration-compactness principle. Let

(3.5) qn(t) = sup
y∈RN

E
B(y,t)
GL (ψn) +

∫
B(y,t)

1

ε2q2
|∇φn|2 +

q2 − ε2k2

ε4q2
|φn|2 dx.

Proceeding as in [9, Theorem 5.3], we infer that there exist a subsequence
of (((ψn, φn), qn))n>1, still denoted (((ψn, φn), qn))n>1, a nondecreasing function
q : [0,∞)→ R and α ∈ [0, α0] such that

qn(t)→ q(t) a.e on [0,∞) as n→∞ and q(t)→ α as t→∞.

We will prove first that α > 0. We argue by contradiction. Assume that there
exists a subsequence (still denoted (ψn, φn)n>1) such that

(3.6) lim
n→∞

sup
y∈RN

qn(1) = 0.

Arguing as in the proof of [9, Lemma 5.4] we get

(3.7) lim
n→∞

∫
RN

∣∣∣V (|ψn|2)− a2
(
ϕ2(|ψn|)− 1

)2
∣∣∣ dx = 0.

Since EGL(ψn) is bounded and supy∈RN E
B(y,1)
GL (ψn) → 0 as n → ∞, using [9,

Lemma 3.1 and Lemma 3.2] we infer that there exists a sequence (ζn)n>1 ⊂ E such
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that

(3.8) ‖|ζn| − 1‖L∞(RN ) −→ 0,

(3.9) ‖ψn − ζn‖L2(RN ) → 0,

(3.10) |Q(ψn)−Q(ζn)| → 0 as n→∞,

(3.11) EGL(ζn) 6 EGL(ψn) for all n.

By (3.8) we have |ζn| 6 2 a.e. on RN for all n sufficiently large. For any such n we
have ϕ(ζn) = ζn a.e. and |ϕ2(|ψn|) − ϕ2(|ζn|)| 6 6|ϕ(|ψn|) − ϕ(|ζn|)| 6 6|ψn − ζn|.
Using (3.9) we infer that

‖ϕ2(|ψn|)− |ζn|2‖L2(RN ) = ‖ϕ2(|ψn|)− ϕ2(|ζn|)‖L2(RN ) −→ 0 as n→∞.
We have

(3.12)

∫
RN

(|ψn|2 − 1)|φn|2 dx >
∫
RN

(ϕ2(|ψn|)− 1)|φn|2 dx

=

∫
RN

(ϕ2(|ψn|)− |ζn|2)|φn|2 dx+

∫
RN

(|ζn|2 − 1)|φn|2 dx

We know that ‖φn‖L4(RN ) is bounded because N 6 4 and ‖φn‖H1(RN ) is bounded.
Using the Cauchy-Schwarz inequality we get∫
RN

∣∣ϕ2(|ψn|)−|ζn|2
∣∣|φn|2 dx 6 ‖ϕ2(ψn)−|ζn|2‖L2(RN )‖φn‖2

L4(RN ) → 0 as n→∞.

On the other hand we have∫
RN

∣∣|ζn|2 − 1
∣∣|φn|2 dx 6 ‖|ζn|2 − 1‖L∞(RN )‖φn‖2

L2(RN ) → 0 as n→∞.

Coming back to (3.12) we find

(3.13) lim inf
n→∞

∫
RN

(|ψn|2 − 1)|φn|2 dx > 0.

Let (ψ̄n, φ̄n) = (ψn, φn)1,σ0 and ζ̄n = (ζn)1,σ0 , where σ0 =
√

2(N−1)
N−3

. It is clear

that supy∈RN E
B(y,1)
GL (ψ̄n) → 0 as n → ∞, ‖φn‖H1(RN ) is bounded and (3.7)–(3.11)

hold with ψ̄n, φ̄n and ζ̄n instead of ψn φn and ζn, respectively.

Using (3.8), [9, Lemma 4.2] and the assumption that 0 < c < vs we infer that
EGL(ζ̄n) + 2cQ(ζ̄n) > 0 for all sufficiently large n. Then using (3.10) and (3.11) we
obtain

(3.14) lim inf
n→∞

(
EGL(ζ̄n) + 2cQ(ζ̄n)

)
> 0.

From (2.5) and the fact that ε2(c2δ2 + k2) < q2 we deduce that

(3.15)
1

q2ε2

∫
RN

|∇φ̄n|2dx+
q2 − ε2k2

q2ε4

∫
RN

|φ̄n|2dx+ 2
cδ

q2ε2
Q(φ̄n) > 0.
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It is obvious that
Ec(ψ̄n, φ̄n) > EGL(ψ̄n) + 2cQ(ψ̄n)

+
1

q2ε2

∫
RN

|∇φ̄n|2dx+
q2 − ε2k2

q2ε4

∫
RN

|φ̄n|2dx+ 2
cδ

q2ε2
Q(φ̄n)

+
1

ε4

∫
RN

(
|ψ̄n|2 − 1

)
|φ̄n|2 dx−

∫
RN

∣∣∣V (|ψ̄n|2)− a2
(
ϕ2(|ψ̄n|)− 1

)2
∣∣∣ dx.

Using (3.14), (3.15), (3.13) and (3.7) we infer that

(3.16) lim inf
n→∞

Ec(ψ̄n, φ̄n) > 0.

On the other hand, Pc(ψn, φn) = N−3
N−1

σ3−N
0 A(ψ̄n, φ̄n) + σ1−N

0 Bc(ψ̄n, φ̄n)→ 0 as n→
∞, which implies that

lim
n→∞

(
N − 3

N − 1
σ2

0A(ψ̄n, φ̄n) +Bc(ψ̄n, φ̄n)

)
= lim

n→∞

(
A(ψ̄n, φ̄n) + Ec(ψ̄n, φ̄n)

)
= 0.

Hence

lim sup
n→∞

Ec(ψ̄n, φ̄n) 6 − lim inf
n→∞

A(ψ̄n, φ̄n) = −σN−3
0 lim inf

n→∞
A(ψn, φn)

6 −N − 1

2
σN−3

0 Tc < 0,

which contradicts (3.16). We conclude that α > 0.

Next assume that α ∈ (0, α0). Arguing as in [9, p. 156] there exist
a sequence of points (yn)n>1 ⊂ RN and a sequence Rn → ∞ such that
εn = E

B(yn,2Rn)\B(yn,Rn)
GL (ψn) + 1

ε2q2‖φn‖2
H1(B(yn,2Rn)\B(yn,Rn)) → 0 as n → ∞.

After a translation, we may suppose that yn = 0.

Let χ1 ∈ C∞c such that 0 6 χ1 6 1, χ1 = 1 on B(0, 1) and supp(χ1) ⊂ B(0, 5
4
)

and let χ2 ∈ C∞(RN) such that χ2 = 0 on B(0, 7
4
) and χ2 = 1 on RN \ B(0, 2).

Denote φn,1 = χ1( x
Rn

)φn and φn,2 = χ2( x
Rn

)φn. It is easily seen that, as n→∞,∫
RN

∣∣|φn|2 − |φn,1|2 − |φn,2|2∣∣ dx→ 0,

∫
RN

∣∣∣∣∣
∣∣∣∣∂φn∂xj

∣∣∣∣2 − ∣∣∣∣∂φn,1∂xj

∣∣∣∣2 − ∣∣∣∣∂φn,2∂xj

∣∣∣∣2
∣∣∣∣∣ dx→ 0 for j = 1, . . . , N,

|Q(φn)−Q(φn,1)−Q(φn,2)| → 0.

We apply Lemma 2.3 with A = 2, A2 = 7
5
and A3 = 7

4
. We infer that there

exist two functions ψn,1, ψn,2 ∈ E satisfying properties (i)-(vi) in Lemma 2.3. In
particular, we have

|EGL(ψn)− EGL(ψn,1)− EGL(ψn,2)| → 0,∣∣∣Ẽ(ψn)− Ẽ(ψn,1)− Ẽ(ψn,2)
∣∣∣→ 0,

|Q(ψn)−Q(ψn,1)−Q(ψn,2)| → 0 as n→∞.
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Moreover, by the choice of A2, A3 and χ1, χ2 above we get∫
RN

|ψn|2|φn|2 dx >
∫
RN

|ψn|2|φn|2(|χ1(
x

Rn

)|2 + |χ2(
x

Rn

)|2) dx

>
∫
RN

|ψn,1|2|φn,1|2 + |ψn,2|2|φn,2|2 dx.

From the above we conclude that

lim inf
n→∞

(Ec(ψn, φn)− Ec(ψn,1, φn,1)− Ec(ψn,2, φn,2)) > 0 and

lim inf
n→∞

(Pc(ψn, φn)− Pc(ψn,1, φn,1)− Pc(ψn,2, φn,2)) > 0.

In addition, it is clear that the sequence (Ec(ψn,i, φn,i))n>1 and (Pc(ψn,i, φn,i))n>1)
are bounded for i = 1, 2. Passing to a subsequence (still denoted (ψn, φn)n>1), we
may assume that limn→∞ Pc(ψn,1, φn,1) = p1 and limn→∞ Pc(ψn,2, φn,2) = p2, where
p1 + p2 = 0. We distinguish two cases.

Case 1. If p1 = p2 = 0, then using Lemma 3.1 and the fact that there exists Ki such
that EGL(ψn,i) + 1

ε2q2‖φn,i‖2
H1(RN ) > Ki for n large enough, i = 1, 2, we infer that

lim infn→∞Ec(ψn,i, φn,i) > Tc for i = 1, 2, which yields lim infn→∞Ec(ψn, φn) > 2Tc.
This contradicts the assumption Ec(ψn, φn)→ Tc.

Case 2. We have p1 < 0 or p2 < 0. If pi < 0, it follows from Lemma 2.7 that

lim inf
n→∞

A(ψn,i, φn,i) >
N − 1

2
Tc.

Then lim infn→∞A(ψn, φn) > lim infn→∞A(ψn,i, φn,i) >
N−1

2
Tc, which is in contra-

diction with (3.4).

So far we have proved that α = α0. Then there exists a sequence (xn)n>1 such
that for any ε̄ > 0, there is Rε̄ > 0 satisfying EB(xn,Rε̄)

GL (ψn) + 1
ε2q2‖φn‖2

H1(B(xn,Rε̄))
>

α0− ε̄ for all sufficiently large n. Denoting ψ̃n = ψn(.+ xn), φ̃n = φn(.+ xn), we see
that for any ε̄ > 0, there are Rε̄ > 0 and nε̄ ∈ N such that

(3.17) E
RN\B(0,Rε̄)
GL (ψ̃n) +

1

ε2q2
‖φ̃n‖2

H1(RN\B(0,Rε̄))
< ε̄ for all n > nε̄.

Furthermore, (∇ψ̃n)n is bounded in L2(RN) and (φ̃n)n>1 is bounded in H1(RN).
Thus there exist functions ψ ∈ H1

loc(R
N) with ∇ψ ∈ L2(RN), φ ∈ H1(RN) and a

subsequence (ψ̃nk , φ̃nk)k>1 such that

∇ψ̃nk ⇀ ∇ψ weakly in L2(RN), φ̃nk ⇀ φ weakly in H1(RN),

ψ̃nk → ψ in Lploc(R
N), φ̃nk → φ in Lploc(R

N), for all p ∈ [1, 2∗),

ψ̃nk → ψ and φ̃nk → φ a.e on RN .

By the proof of [9, Theorem 5.3] or by [1, Lemma 4.11 and Lemma 4.12] we have

(3.18) lim
k→∞

∫
RN

V (|ψ̃nk |2)dx =

∫
RN

V (|ψ|2)dx,

lim
k→∞

∥∥∥|ψ̃nk | − |ψ|∥∥∥
L2(RN )

= 0,
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lim
k→∞

Q(ψ̃nk) = Q(ψ).

Using the a.e convergence ψ̃nk → ψ, φ̃nk → φ and Fatou lemma we get∫
RN

|ψ|2|φ|2dx 6 lim inf
k→∞

∫
RN

|ψ̃nk |2|φ̃nk |2dx.

The weak convergence ∇ψ̃nk ⇀ ∇ψ and ∇φ̃nk ⇀ ∇φ in L2(RN) implies that

(3.19) A(ψ, φ) 6 lim inf
k→∞

A(ψnk , φnk) =
N − 1

2
Tc

and then using Lemma 2.7 we get Pc(ψ, φ) > 0.

Next we see that limk→∞Q(φ̃nk) = Q(φ). Indeed, the fact that ∂φ̃nk
∂x1

⇀ ∂φ
∂x1

weakly in L2(B(0, Rε̄)) and φ̃nk → φ in L2(B(0, Rε̄)) imply∫
B(0,Rε̄)

〈
i
∂φ̃nk
∂x1

, φ̃nk

〉
dx→

∫
B(0,Rε̄)

〈
i
∂φ

∂x1

, φ

〉
dx.

Moreover,∫
RN\B(0,Rε̄)

∣∣∣∣∣
〈
i
∂φ̃nk
∂x1

, φ̃nk

〉∣∣∣∣∣ dx 6 ∥∥∥φ̃nk∥∥∥L2(RN )

∥∥∥∥∥∂φ̃nk∂x1

∥∥∥∥∥
L2(RN\B(0,Rε̄))

6M
√
ε̄.

Thus Q(φ̃nk) → Q(φ) as k → ∞. Hence Pc(ψ, φ) 6 lim infk→∞ Pc(ψ̃nk , φ̃nk) = 0.
Combining with Pc(ψ, φ) > 0, we obtain Pc(ψ, φ) = 0.

We show that (|ψ|, |φ|) 6= (1, 0). To see this, we observe that

− 2cQ(ψ̃nk)− 2
cδ

q2ε2
Q(φ̃nk)−

∫
RN

V (|ψ̃nk |)dx+
k2

ε2q2

∫
RN

|φnk |2dx

>
N − 3

N − 1
A(ψ̃nk , φ̃nk)− Pc(ψ̃nk , φ̃nk).

Passing to the limit as k →∞ we find

−2cQ(ψ)− 2
cδ

q2ε2
Q(φ)−

∫
RN

V (|ψ|)dx+
k2

ε2q2

∫
RN

|φ|2dx > N − 3

2
Tc > 0,

which implies (|ψ|, |φ|) 6= (1, 0). It follows that (ψ, φ) ∈ C , and so A(ψ, φ) >
N−1

2
Tc. This together with (3.19) gives A(ψ, φ) = N−1

2
Tc. Therefore, Ec(ψ, φ) =

2
N−1

A(ψ, φ) = Tc and (ψ, φ) is a minimizer of Ec in C .

Since A(ψ, φ) = N−1
2
Tc = limk→∞A(ψ̃nk , φ̄nk) and

Pc(ψ, φ) = 0 = lim
k→∞

Pc(ψ̃nk , φ̄nk),

we get
∫
RN | ∂ψ∂xi |

2dx = limk→∞
∫
RN |∂ψ̃nk∂xi

|2dx and
∫
RN | ∂φ∂xi |

2dx = limk→∞
∫
RN |∂φ̃nk∂xi

|2dx
for i = 1, . . . , N . Thus

lim
k→∞

∥∥∥∇ψ̃nk∥∥∥2

L2(RN )
= ‖∇ψ‖2

L2(RN ) and lim
k→∞

∥∥∥∇φ̃nk∥∥∥2

L2(RN )
= ‖∇φ‖2

L2(RN ) .

Together with the weak convergence this implies ∇ψ̃nk → ∇ψ and ∇φ̃nk → ∇φ
strongly in L2(RN). This completes the proof of the theorem.
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�

Next we show that the minimizers provided by Theorem 3.2 are solutions to
(1.6). We start with a regularity result.

Lemma 3.3. Assume that N = 3 and conditions (A1) and (A2) hold, or that N
is arbitrary and the assumptions (A1) and (A3) hold. Let (ψ, φ) be a finite energy
solution of (1.6). Then ψ, φ ∈ W 2,p

loc (RN) for any p ∈ [1,∞), ∇ψ,∇φ ∈ W 1,p(RN)
for any p ∈ [2,∞), ψ, φ and ∇ψ,∇φ are bounded and ψ, φ ∈ C1,α(RN) for α ∈ [0, 1).
Moreover, |ψ(x)| → 1 as |x| → ∞ and φ(x)→ 0 as |x| → ∞.

Proof. If (A1) and (A3) are satisfied, this follows from [8, Proposition 2.2]. If (A1)
and (A2) hold and N 6 3 (which means that the system is subcritical), the proof is
essentially the same as in [9, Lemma 5.5 and Proposition 5.6], so we omit it. �

Proposition 3.4. Assume that N = 4 and the conditions (A1) and (A2) in the
introduction are satisfied. Let (ψ, φ) ∈ E × H1(RN) be a minimizer of Ec in C .
Then (ψ, φ) is a solution of the system (1.6).

Proof. The proof is similar to the proof of [9, Proposition 5.6]. Let P̃c(v1, v2) =
Pc(ψ + v1, φ+ v2). We proceed in four steps.

Step 1. There exists a function ω = (ω1, ω2) ∈ C1(RN ,C2) such that P̃ ′c(0, 0).ω 6=
0.

Step 2. Existence of a Lagrange multiplier α. We have
(3.20)
A′(ψ, φ).v = αP ′c(ψ, φ).v for any v = (v1, v2) ∈ H1(RN ,R2) with compact support.

Step 3. We have α < 0. Indeed, suppose that α > 0. We may assume that
∇P̃c(0, 0).ω > 0. Then for t < 0, t sufficiently close to 0, we have Pc(ψ + tω1, φ +
tω2) < Pc(ψ, φ) = 0 and A(ψ + tω1, φ + tω2) < A(ψ, φ) = N−1

2
Tc, contradicts

Lemma 2.7. Thus α 6 0. If α = 0, it follows that A′(ψ, φ).v = 0 for any v =
(v1, v2) ∈ H1(RN ,R2). Let χ ∈ C∞c (RN) be such that χ = 1 on B(0; 1) and
supp(χ) ⊂ B(0; 2). Put vn(x) = (χ(x

n
)ψ(x), χ(x

n
)φ(x)). Replacing v by vn and

passing to the limit as n→∞, we get A(ψ, φ) = 0, which contradicts the fact that
A(ψ, φ) = N−1

2
Tc and so α < 0.

Step 4. Conclusion. From (3.20), it follows that ψ, φ satisfy
(3.21)

− ∂2ψ

∂x2
1

−
(
N − 3

N − 1
− 1

α

) N∑
k=2

∂2ψ

∂x2
k

+ 2icψx1 − F (|ψ|2)ψ +
1

ε4
|φ|2ψ = 0 in D′(RN),

(3.22)

− ∂2φ

∂x2
1

−
(
N − 3

N − 1
− 1

α

) N∑
k=2

∂2φ

∂x2
k

+ 2icδφx1 +
1

ε2
(q2|ψ|2 − ε2k2)φ = 0 in D′(RN).

Then (ψ1,σ0 , φ1,σ0) satisfy (1.6), where σ0 =
(
N−3
N−1
− 1

α

)− 1
2 . Therefore the conclusion

of Lemma 3.3 holds for (ψ1,σ0 , φ1,σ0), and so for (ψ, φ). By the same argument as in
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the proof of [8, Proposition 4.1], we have (ψ1,σ0 , φ1,σ0) satisfies the Pohozaev identity
N − 3

N − 1
A(ψ1,σ0 , φ1,σ0) +Bc(ψ1,σ0 , φ1,σ0) = 0,

which gives that N−3
N−1

σN−3
0 A(ψ, φ) + σN−1

0 Bc(ψ, φ) = 0 and thus,

N − 3

N − 1

(
N − 3

N − 1
− 1

α

)
A(ψ, φ) +Bc(ψ, φ) = 0.

Combining with the fact that Pc(ψ, φ) = N−3
N−1

A(ψ, φ)+Bc(ψ, φ) = 0 and A(ψ, φ) > 0,
we get N−3

N−1
− 1

α
= 1. Then (ψ, φ) satisfies (1.6).

�

4. The case N = 3

If N = 3 the minimization problem considered in the previous section is more
difficult because it is invariant by scaling with respect to the (x2, x3) variables.
Indeed, for (ψ, φ) ∈ E × H1(RN) let A(ψ, φ), Bc(ψ, φ) and D(ψ, φ) be as in (2.8),
(2.9) and (2.11), respectively. Note that forN = 3 we have Pc = Bc and Ec = A+Bc.
For any σ > 0 we have

A(ψ1,σ, φ1,σ) = A(ψ, φ), Bc(ψ1,σ, φ1,σ) = σ2Bc(ψ, φ) and D(ψ1,σ, φ1,σ) = σ2D(ψ, φ).

Since Ec(ψ1,σ, φ1,σ) = Ec(ψ, φ) for all σ > 0 and all (ψ, φ) ∈ C , there exists a
sequence (ψn, φn)n>1 such that

(4.1) D(ψn, φn) = 1 and Ec(ψn, φn) = A(ψn, φn)→ Tc as n→∞.
We denote

Λc = {λ ∈ R | there exists a sequence (ψn, φn)n>1 ⊂ E ×H1(RN) such that
D(ψn, φn) > 1, Bc(ψn, φn)→ 0 and A(ψn, φn)→ λ as n→∞}.

It is easy to see that

Λc = {λ ∈ R | there exists a sequence (ψn, φn)n>1 ⊂ E×H1(RN) and C > 0 such that
D(ψn, φn) > C,Bc(ψn, φn)→ 0 and A(ψn, φn)→ λ as n→∞}.

Denote λc = inf Λc > 0. Arguing as in [9, Lemma 6.1] we infer that λc > Sc, where
Sc is given in (2.7). From (4.1) we have Tc ∈ Λc. Moreover, we see that Λc is closed
in R, and so λc ∈ Λc. Therefore

0 < Sc 6 λc 6 Tc.

Theorem 4.1. Assume that N = 3, (A1) and (A2) are satisfied, 0 < c < vs and
ε2(c2δ2 + k2) < q2. Let (ψn, φn)n>1 ⊂ E ×H1(R3) be a sequence such that

D(ψn, φn)→ 1, Bc(ψn, φn)→ 0 and A(ψn, φn)→ λc as n→∞.
Then there exist a subsequence (ψnk , φnk)k>1, a sequence (xk)k>1 ⊂ R3 and (ψ, φ) ∈
C such that

∇ψnk(.+ xk)→ ∇ψ, |ψnk(.+ xk)| − 1→ |ψ| − 1 in L2(R3) and

φnk(.+ xk)→ φ in H1(R3).

Moreover, Ec(ψ, φ) = Tc and (ψ, φ) is a minimizer of Ec in C.
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Proof. We have EGL(ψn) + 1
ε2q2‖φn‖2

H1(R3) = A(ψn, φn) + D(ψn, φn) → λc + 1 as

n → ∞. Let qn(t) = supy∈R3

(
E
B(y,t)
GL (ψn) + 1

ε2q2‖φn‖2
H1(B(y,t))

)
. Proceeding as

in [9, Theorem 5.3], there exist a subsequence of ((ψn, φn), qn)n>1, still denoted
((ψn, φn), qn)n>1, a nondecreasing function q : [0,∞)→ R and α ∈ [0, α0] such that

qn(t)→ q(t) a.e on [0,∞) as n→∞ and q(t)→ α as t→∞.
First we show that α > 0. Arguing by contradiction, we assume that there exists a
subsequence (still denoted (ψn, φn)n>1) such that

(4.2) lim
n→∞

sup
y∈R3

(
E
B(y,1)
GL (ψn) +

1

ε2q2
‖φn‖2

H1(B(y,1))

)
= 0.

If the sequence (φn)n>1 ⊂ H1(RN) is bounded in H1(RN) and satisfies

lim
n→∞

sup
y∈RN

‖φn‖2
H1(B(y,1)) = 0,

it is standard to prove that φn −→ 0 in Lp(RN) for any p ∈ (2, 2∗). For N = 3 we
find φn −→ 0 in Lp(R3) for any p ∈ (2, 6). In particular, since |ψn|2 − 1 is bounded
in L2(RN) we get

(4.3)
∫
R3

∣∣|ψn|2 − 1
∣∣ |φn|2 dx 6 ‖ |ψn|2 − 1‖L2(R3)‖φn‖2

L4(R3) → 0 as n −→∞.

As in the case N = 4, we have

(4.4) lim
n→∞

∫
R3

∣∣V (|ψn|2)− a2(ϕ2(|ψn|)− 1)2
∣∣ dx = 0.

From (4.3), (4.4) and the assumption that Bc(ψn, φn) → 0, D(ψn, φn) → 1 as
n→∞ we get

(4.5) lim
n→∞

[
2cQ(ψn) + 2

cδ

q2ε2
Q(φn)

]
= −1.

Fix c1 ∈ (c, vs) such that ε2(c2
1δ

2+k2) < q2. Then fix σ > 0 such that σ2 > (λc+2)c
c1−c .

Let (ψ̄n, φ̄n) = (ψn, φn)1,σ. Then (ψ̄n, φ̄n)n>1 also satisfies (4.4). Moreover, EGL(ψ̄n)

is bounded and limn→∞ supy∈R3 E
B(y,1)
GL (ψ̄n) = 0. By [9, Lemma 3.2], there is a

sequence (ζn)n>1 ⊂ E such that (3.8)–(3.11) hold for ψ̄n and ζn. Proceeding as in
the proof of Theorem 3.2 we infer that

lim inf
n→∞

Ec1(ψ̄n, φ̄n) > 0,

that is

lim inf
n→∞

[
A(ψn, φn) + σ2Bc(ψn, φn) + σ2(c1 − c)

(
2Q(ψn) + 2

δ

q2ε2
Q(φn)

)]
> 0.

Taking into account (4.5), this implies λc − σ2 c1−c
c
> 0, contradicting the choice of

σ. Thus we cannot have α = 0.

Next suppose that α ∈ (0, λc + 1). Then there exist a sequence of points
(yn)n>1 ⊂ R3 and a sequence Rn → ∞ such that εn = E

B(yn,2Rn)\B(yn,Rn)
GL (ψn) +

1
ε2q2‖φn‖2

H1(B(yn,2Rn)\B(yn,Rn)) → 0 as n → ∞. After a translation, we may assume
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that yn = 0. Proceeding as in the proof of Theorem 3.2 in the case N > 3 and using
the same cut-off functions χ1 and χ2, we infer that there exist functions ψn,1, ψn,2
and φn,1, φn,2 satisfying
(4.6)

EGL(ψn,1) +
1

ε2q2
‖φn,1‖2

H1(R3) → α, EGL(ψn2) +
1

ε2q2
‖φn,2‖2

H1(R3) → λc + 1− α,

(4.7) |A(ψn, φn)− A(ψn,1, φn,1)− A(ψn,2, φn,2)| → 0,

|D(ψn, φn)−D(ψn,1, φn,1)−D(ψn,2, φn,2)| → 0.

Exactly as in the proof of Theorem 3.2 we find

lim inf
n→∞

(Bc(ψn, φn)−Bc(ψn,1, φn,1)−Bc(ψn,2, φn,2)) > 0.

From the boundedness of (EGL(ψn,i)n>1 and of (‖φn,i‖H1(R3))n>1 we obtain that
(Bc(ψn,i))n>1 are bounded. Passing to a subsequence (still denoted (ψn, φn)n>1), it
may assume that

lim
n→∞

Bc(ψn,1, ψn,1) = b1, lim
n→∞

Bc(ψn,2, ψn,2) = b2, where bi ∈ R, b1 + b2 6 0,

lim
n→∞

D(ψn,1, ψn,1) = d1, lim
n→∞

D(ψn,2, ψn,2) = d2, where di ∈ R, d1 + d2 = 1.

If one of the bi’s is negative, say b1 < 0, proceeding as in the proof of [9, Lemma
4.8] it follows that

lim inf
n→∞

A(ψn,1, φn,1) > Tc > λc,

contradicting the assumption limn→∞A(ψn, φn) = λc. Thus necessarily b1 = b2 = 0.
We distinguish two cases.

Case 1. If di > 0 for i = 1, 2, the definition of λc implies that lim infn→∞A(ψn,i, φni) >
λc for i = 1, 2. By combining with (4.7),

lim inf
n→∞

A(ψn, φn) > lim inf
n→∞

A(ψn,1, φn,1) + lim inf
n→∞

A(ψn,1, φn,1) > 2λc,

contradicting the assumption limn→∞A(ψn, φn) = λc.

Case 2. If one of the di is zero, assume that d1 = 0, then d2 = 1. From (4.6) and
the fact that EGL(ψn,2) + 1

ε2q2‖φn,2‖2
H1(R3) = A(ψn,2, φn,2) +D(ψn,2, φn,2), we obtain

A(ψn,2, φn,2)→ λc − α. This together with d2 = 1, b2 = 0 implies that λc − α ∈ Λc.
This is a contradiction with the definition of λc.

Therefore we cannot have α ∈ (0, λc + 1) and so necessarily α = λc + 1. As
in the case N > 4, there exist a subsequence (ψnk , φnk)k>1, a sequence of points
(xk)k>1 ⊂ R3 and (ψ, φ) ∈ E × H1(R3) such that, denoting (ψ̃nk(x), φ̃nk(x)) =
(ψnk(x+ xk), φnk(x+ xk)), (3.17) holds and we have

∇ψ̃nk ⇀ ∇ψ weakly in L2(R3), φ̃nk ⇀ φ weakly in H1(R3),

ψ̃nk → ψ in Lploc, φ̃nk → φ in Lploc, where p ∈ [1, 6),

ψ̃nk → ψ a.e , φ̃nk → φ a.e on RN .

Moreover,

(4.8)
∫
R3

|ψ|2|φ|2dx 6 lim inf
k→∞

∫
R3

|ψ̃nk |2|φ̃nk |2dx by Fatou Lemma,
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(4.9) lim
k→∞

∫
R3

V (|ψ̃nk |2)dx =

∫
R3

V (|ψ|2)dx and

(4.10) lim
k→∞

∥∥∥|ψ̃nk | − |ψ|∥∥∥
L2(R3)

= 0 by [1, Lemma 4.11]

(4.11) lim
k→∞

Q(ψ̃nk) = Q(ψ) and lim
k→∞

Q(φ̃nk) = Q(φ) by [1, Lemma 4.12].

The weak convergences ∇ψ̃nk ⇀ ∇ψ and φ̃nk ⇀ φ in L2(R3) imply that

(4.12)
∫
R3

∣∣∣∣ ∂ψ∂xj
∣∣∣∣2 dx 6 lim inf

k→∞

∫
R3

∣∣∣∣∣∂ψ̃nk∂xj

∣∣∣∣∣
2

dx for j = 1, 2, 3,

and

(4.13)
∫
R3

∣∣∣∣ ∂φ∂xj
∣∣∣∣2 dx 6 lim inf

k→∞

∫
R3

∣∣∣∣∣∂φ̃nk∂xj

∣∣∣∣∣
2

dx for j = 1, 2, 3.

Thus

(4.14) A(ψ, φ) 6 lim inf
k→∞

A(ψ̃nk , φ̃nk) = λc 6 Tc.

This together with Lemma 2.7 gives Bc(ψ, φ) > 0. From (4.8), (4.9), (4.11), (4.12)
and (4.13), we obtain Bc(ψ, φ) 6 lim infk→∞Bc(ψ̃nk , φ̃nk) = 0 and so Bc(ψ, φ) = 0.
We claim that (|ψ|, |φ|) 6= (1, 0). Indeed,

−2cQ(ψ̃nk)−2
cδ

q2ε2
Q(φ̃nk)−

∫
R3

V (|ψ̃nk |2)dx+
k2

ε2q2

∫
RN

|φnk |2dx+a2

∫
R3

(
ϕ2(|ψ̃nk |)− 1

)2

dx

> D(ψ̃nk , φ̃nk)−Bc(ψ̃nk , φ̃nk).

Passing to the limit as k →∞,

−2cQ(ψ)−2
cδ

q2ε2
Q(φ)−

∫
RN

V (|ψ|2)dx+
k2

ε2q2

∫
RN

|φ|2dx+a2

∫
R3

(
ϕ2(|ψ|)− 1

)2
dx > 1,

which yields that (|ψ|, |φ|) 6= (1, 0). Hence A(ψ, φ) > Tc. Using (4.14), we ob-
tain A(ψ, φ) = Tc = λc = limk→∞A(ψ̃nk , φ̃nk). Moreover, since Bc(ψ, φ) = 0 =

limk→∞Bc(ψ̃nk , φ̃nk) it follows that∫
R3

∣∣∣∣ ∂ψ∂x1

∣∣∣∣2 dx = lim
k→∞

∫
R3

∣∣∣∣∣∂ψ̃nk∂x1

∣∣∣∣∣
2

dx,

and ∫
R3

∣∣∣∣ ∂φ∂x1

∣∣∣∣2 dx = lim
k→∞

∫
R3

∣∣∣∣∣∂φ̃nk∂x1

∣∣∣∣∣
2

dx.

Thus limk→∞

∥∥∥∇ψ̃nk∥∥∥2

L2(R3)
= ‖∇ψ‖2

L2(R3) and limk→∞

∥∥∥∇φ̃nk∥∥∥2

L2(R3)
= ‖∇φ‖2

L2(R3).

Together with the weak convergences ∇ψ̃nk ⇀ ∇ψ and ∇ψ̃nk ⇀ ∇ψ in L2(R3), this
implies that ∇ψ̃nk → ∇ψ and ∇φ̃nk → ∇φ strongly in L2(R3). �
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Proposition 4.2. Assume that N = 3, the conditions (A1) and (A2) in the intro-
duction are satisfied. Let (ψ, φ) ∈ E × H1(R3) be a minimizer of Ec in C . Then
ψ, φ ∈ W 2,p

loc (R3) for any p ∈ [1,∞), ∇ψ,∇φ ∈ W 1,p(R3) for any p ∈ [2,∞) and
there exists σ > 0 such that (ψ1,σ, φ1,σ) is a solution of system (1.6).

Proof. We have A(ψ, φ) = Ec(ψ, φ) and (ψ, φ) is a minimizer of A in C . It is clear
that for any (ψ, φ) ∈ E×H1(RN) and for any R > 0, the functionals B̃(ψ,φ)

c (ω1, ω2) :=
Bc(ψ + ω1, φ + ω2) and Ã(ω1, ω2) := A(ψ + ω1, φ + ω2) are C1 on H1

0 (B(0, R),C2).
We proceed in four steps.

Step 1. There exists a function ω = (ω1, ω2) ∈ C1(R3,C2) such that
dB̃

(ψ,φ)
c (0, 0).ω 6= 0, where d denotes the Gâteaux differential. To see this we

argue as in the proof of [9, Lemma 6.4].

Step 2. Existence of a Lagrange multiplier α. We have
(4.15)
Ã′(0, 0).v = αd

˜
B

(ψ,φ)
c (0, 0).v for any v = (v1, v2) ∈ H1(R3,C2) with compact support.

Step 3. We have α < 0.

Note that the proof of Step 2 and 3 is the same as the proof of Step 2 and 3 in
Proposition 3.4.

Step 4. Conclusion. From (4.15), it follows that ψ, φ satisfy

(4.16) − ∂2ψ

∂x2
1

+
1

α

N∑
k=2

∂2ψ

∂x2
k

+ 2icψx1 − F (|ψ|2)ψ +
1

ε4
|φ|2ψ = 0 in D′(R3),

(4.17) − ∂2φ

∂x2
1

+
1

α

N∑
k=2

∂2φ

∂x2
k

+ 2icδφx1 +
1

ε2
(q2|ψ|2 − ε2k2)φ = 0 in D′(R3).

Then (ψ1,σ0 , φ1,σ0) satisfy (1.6), where σ0 =
(
− 1
α

)− 1
2 . It is clear that (ψ1,σ, φ1,σ) ∈ C

and minimizes A (respectively Ec) in C . From Lemma 3.3 we obtain the regularity
of (ψ1,σ, φ1,σ) and of (ψ, φ).

�
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Résumé

Cette thèse porte sur l'étude des solutions spéciales (de type onde progressive et onde sta-
tionnaire) pour des équations aux dérivées partielles dispersives non-linéaires dans RN . Les
problèmes considérés ont une structure variationnelle, les solutions sont des points critiques de
certaines fonctionnelles. Nous démontrons l'existence des points critiques en utilisant des méth-
odes de minimisation. Une des principales di�cultés vient du manque de compacité. Pour y
remédier, on utilise quelques ra�nements récents du principe de concentration-compacité de
P.-L. Lions.

Dans la première partie du mémoire on montre l'existence des solutions d'énergie minimale pour
des équations elliptiques quasi-linéaires dans RN . Nous généralisons les résultats de Brézis et
Lieb dans le cas du Laplacien, ainsi que les résultats de Jeanjean et Squassina dans le cas du
p-Laplacien.

Dans la seconde partie on montre l'existence des ondes progressives subsoniques d'énergie �nie
pour un système de Gross-Pitaevskii-Schrödinger qui modélise le mouvement d'une impureté non
chargée dans un condensat de Bose-Einstein. Les résultats obtenus sont valables en dimension
trois et quatre d'espace.

Mots-clés. Équations elliptiques non-linéaires · équation de Schrödinger nonlinéaire · système de
Gross-Pitaevskii-Schrödinger · onde stationnaire · onde progressive · minimisation · minimisation
sous contrainte · principe de concentration-compacité.

Summary

This thesis focuses on the study of special solutions (traveling wave and standing wave type)
for nonlinear dispersive partial di�erential equations in RN . The considered problems have a
variational structure, the solutions are critical points of some functionals. We demonstrate the
existence of critical points using minimization methods. One of the main di�culties comes from
the lack of compactness. To overcome this, we use some recent improvements of P.-L. Lions
concentration-compactness principle.

In the �rst part of the dissertation, we show the existence of the least energy solutions to quasi-
linear elliptic equations in RN . We generalize the results of Brézis and Lieb in the case of the
Laplacian, and the results of Jeanjean and Squassina in the case of the p-Laplacian.

In the second part, we show the existence of subsonic travelling waves of �nite energy for a
Gross-Pitaevskii-Schrödinger system which models the motion of a non charged impurity in a
Bose-Einstein condensate. The obtained results are valid in three and four dimensional space.

Keywords. Nonlinear elliptic equations · nonlinear Schrödinger equation · Gross-Pitaevskii-
Schrödinger system · standing wave· travelling wave · minimization · constrained minimization ·
concentration-compactness principle.
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