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Chapter I: Introduction 
 

 

I.1. Drought issues and challenges of agronomy in a context of global 

warming 

In 2013, the Food and Agriculture Organization (FAO) estimated that 842 million people 

(around one in eight people in the world) suffer from chronic hunger (report 40 of the Committee on 

world Food Security, 2013). Increase of demography has for consequences that food demand and 

therefore risks of hunger will also rise. Moreover, climate change will also affect at least two 

dimensions of the food security i.e availability and stability. Indeed, global climate change not only 

involves temperature increase and precipitation diminution, which lead to changes in land suitability 

and crop yield but also increases in the frequency and severity of extreme events such as droughts 

(Schmidhuber & Tubiello, 2007). Drought is one of the most important constraints to plant 

productivity (Farooq et al., 2009). Hence, increasing population pressures and climate change is likely 

to emphasize the effects of drought (Somerville & Briscoe, 2001). 

Depending on the climatic scenario studied by the Intergovernmental Panel on Climate Change 

(IPCC), the number of people at risk of hunger in the world in 2080 would increase by 5 to 26% due 

to climate change (Schmidhuber & Tubiello, 2007). 

Moriondo et al., (2010) projected a scenario of European agriculture in +2°C (above pre-

industrial levels) world in order to estimate potential effects of climate change and variability on crop 

production in this region. With this scenario, in the area of the Mediterranean basin, the summer 

period is projected to exhibit a rainfall decrease up to 35% (Figure I.1.A) and an increase of higher 

temperatures implying more frequent drought stress events. These changes in average climate and 

climate variability would affect yields according to crop type and geographical areas. Some northern 

regions are expected to benefit from this average increase of temperature; however, southern zones 

could largely suffer of the impact of climate change. For example, sunflower crop in the 

Mediterranean basin, in the period 2071-2100, is expected to have a yield reduced by 13% in average 

with respect to the baseline 1961-1990. Depending on the scenario for future climate defined by the 

IPCC (A2: medium-high greenhouse gases emission and B2: low-medium greenhouse gases emission) 

this loss of yield could rise to 35% (Figure I.1.B) due in particular to higher drought stress frequency 

at anthesis (Moriondo et al., 2011).  

 

  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure I.1: Projections of rainfall and sunflower yield for the 
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1: Projections of rainfall and sunflower yield for the Mediterranean Basin
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Therefore, many efforts have been made to improve crop productivity under water-limiting 

conditions. The negative impacts of drought stress on yield have been reduced thanks to, firstly 

better crop management and secondly breeding activities. However, there is still a large gap between 

yields in optimal and in water stress conditions (Cattivelli et al., 2008). For instance for sunflower 

crops in France, potential of production due to genetic gain increases regularly since 1970 at the rate 

of 1.3% per year (Vear et al., 2003). However, while the potential sunflower yield can reach 40 qx/ha, 

the actual average yield in 2012 was 23 qx/ha in France and only 15 qx/ha in Europe (FAOstat, 2014). 

In this context, selection of drought tolerant varieties remains an important goal for breeders and is 

of strategic importance to minimize hunger risks for the future. In order to achieve this goal, a better 

understanding of plant drought stress responses is necessary at physiological, molecular and genetic 

levels.  

 

I.2. Drought stress in plant physiology 

Soil water is used by plants during their development to transport nutrients and to produce 

biomass through the mechanism of photosynthesis. However, plants lack the capacity to perform 

photosynthesis without water losses. Therefore, depending on the species, the variety and the 

environmental conditions, their water use efficiency (WUE), i.e the ratio of CO2 assimilation or 

biomass accumulation to water losses, varies. For example, sunflower and soybean have been shown 

to have a WUE of 54 and 30kg.ha-1.cm-1 respectively (Anderson et al., 2003). Plants lose water 

through the phenomenon of the evapotranspiration (ET). This last one, for crops, takes into account 

water evaporation at soil and leaf surfaces and also transpiration of free water in plant tissues 

through stomata (Figure I.2). Evapotranspiration is dependent on climatic and environmental 

conditions such as the evaporative demand of the atmosphere as well as on plant characteristics. The 

part of the evapotranspiration due to weather conditions (radiation, air temperature, humidity and 

wind speed) is called reference evapotranspiration ET0 and can be calculated with the Peinman-

Monteith equation (Monteith, 1965). Evapotranspiration of a crop can be estimated from ET0 to 

which cultural and stress coefficients are applied in order to take into account plant characteristics 

and crop management that influence evapotranspiration (Figure I.2). Indeed, water demand of a crop 

will vary depending on the crop species, variety, and phenological stage. Maximal crop 

evapotranspiration (ETM) evaluates these plant characteristics and refers to the evaporating demand 

of a crop that grows in large fields under optimum soil water, excellent management, and 

environmental conditions, and that achieves full production under the given climatic conditions 

(FAO, Irrigation and drainage paper 56). Moreover, plant physiology and crop management factors 



such as soil salinity, fertilizers application

content affect the crop development and 

Therefore, adopting an eco

difference between the soil water available for the plant and water losses due to evapotranspiration 

(Tardieu & Tuberosa, 2010). Drought stress 

occurs (i.e if the water losses are m

this definition of drought stress is not only dependent 
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Figure I.2: Principal components of the evapotranspiration (adapted from 

drainage paper 56) 

ET0: reference evapotranspiration; 

cultural coefficient; ks: stress coefficient; 

 

I.3. Plant traits affected by drought stress
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on crop yield. In the following sections, we will 
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fertilizers application, penetrability of soil horizon, diseases contro

the crop development and therefore the real evapotranspiration (ET)

Therefore, adopting an eco-physiological point of view, water status can be defined as the 

soil water available for the plant and water losses due to evapotranspiration 

Drought stress is perceived by the plant when an important 

occurs (i.e if the water losses are more important than the soil water availability)

his definition of drought stress is not only dependent on the environmental conditions 

precipitation frequency, evaporative demand or amount of available soil water but also on pla

2: Principal components of the evapotranspiration (adapted from 

: reference evapotranspiration; ETM: maximal evapotranspiration; ET: real evapotranspiration;

: stress coefficient;  

Plant traits affected by drought stress 

Drought stress affects the plant at different levels: morphological, physiological

occur at all the phenological stages of the crop and

on crop yield. In the following sections, we will broach the different plant traits affected by drought.

diseases control or soil water 

(ET).  

can be defined as the 

soil water available for the plant and water losses due to evapotranspiration 

an important water deficit 

ore important than the soil water availability). Most importantly, 

the environmental conditions such as 

le soil water but also on plant 

2: Principal components of the evapotranspiration (adapted from FAO Irrigation and 

evapotranspiration; kc: 

Drought stress affects the plant at different levels: morphological, physiological, and 

at all the phenological stages of the crop and have a final impact 

broach the different plant traits affected by drought. 



I.3.1. Whole plant scale 
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reduce leaf area. During reproductive stages, grain 

germination rate, grains initiation

is why many drought-induced yield reductions have been reported in 

though it depends upon the severity and duration of the stress period 

example, in sunflower a drought stress during the reproductive stage can lead to a yield reduction of 

60% (Farooq et al., 2009). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure I.3: Whole-plant level traits affected by water deficit and leading to yield losses under water 

deficit (adapted from CETIOM). 

 

I.3.2. Tissue or cellular scales

Underlying morphological traits or whole plant level traits 

several physiological processes observ

During drought stress, changes 

modifications of relative water content, leaf water potential, stomatal resistance, 

or canopy temperature (Farooq
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scale, drought stress affects different traits according to the phenological 

stage, drought affects seed germination. Later, during 

increases leaf wilting and senescence. All these phenomena

reduce leaf area. During reproductive stages, grain initiation and filling can be impacted.

initiation and filling are directly correlated to the crop yield 

induced yield reductions have been reported in several

it depends upon the severity and duration of the stress period (Farooq

example, in sunflower a drought stress during the reproductive stage can lead to a yield reduction of 

plant level traits affected by water deficit and leading to yield losses under water 

 

scales 

orphological traits or whole plant level traits affected by drought, there are 

observable at tissue or cellular scales.  

During drought stress, changes appear in plant water relationships. They are consequences of 

relative water content, leaf water potential, stomatal resistance, 

(Farooq et al., 2009). Therefore the tissue and cellular water 

, drought stress affects different traits according to the phenological 

seed germination. Later, during the vegetative 

phenomena lead to a 

and filling can be impacted. Moreover, 

and filling are directly correlated to the crop yield (Figure I.3). That 

several crop species even 

(Farooq et al., 2009). For 

example, in sunflower a drought stress during the reproductive stage can lead to a yield reduction of 

plant level traits affected by water deficit and leading to yield losses under water 

affected by drought, there are 

are consequences of 

relative water content, leaf water potential, stomatal resistance, transpiration rate 

Therefore the tissue and cellular water statuses in 
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leaves are affected during drought. It can lead to a loss of turgor and therefore to a diminution of the 

growth and to an increase of leaves wilting described at the whole plant level (Taiz & Zeiger, 2006). 

Another point is that decreasing water availability under drought generally results in limited total 

nutrient uptake. Therefore nutrient tissue concentrations diminish. Even though plant species and 

genotypes may vary in their responses to mineral uptake under water stress, in general, it induces an 

increase in nitrate, a decline in phosphate and no clear effects on potassium (Garg et al., 2004). 

Moreover, the nutrient utilization efficiency is also lower under drought stress (Farooq et al., 2009). 

During drought stress, the photosynthesis is affected too. Several factors are in cause in this 

loss of photosynthetic activity: decrease in leaf expansion and premature leaf senescence, stomatal 

oscillations (Mansfield et al., 1990) and decline in photosynthetic enzymes activity (Bota et al., 2004) 

(Loreto et al., 1995).  

Respiration is also increased during a drought event. One of the consequences to this 

respiration rate augmentation is the imbalance in the utilization of carbon resources (Farooq et al., 

2009). 

All together, limitation in nutrient utilization efficiency, decrease in photosynthetic activity 

and augmentation of the respiration rate can lead to a decrease in biomass production and changes 

in assimilate partitioning. For example, drought stress frequently enhances allocation of dry matter 

to the roots (Leport et al., 2006). This phenomenon can lead to the limitation in grain initiation and 

filling observed at the whole plant level (Asch et al., 2005). 

Finally, as other abiotic stresses, drought leads to the production of reactive oxygen species. 

They can cause oxidative damage and prevent the normal functioning of the cells (Foyer & Fletcher, 

2001). 

 

I.4. Drought stress resistance mechanisms 

To cope with drought stress, plants develop mechanisms and defense strategies to prevent 

water deficit and maintain their ability to grow, flower, and produce seeds that are commonly the 

main valuable production in crops. However, economic yield can be dramatically affected by a deficit 

in water supply conditions (Chaves & Oliveira, 2004). 

A first strategy to deal with water deficit is referred as the escape strategy. Drought escape 

occurs when phenological development is successfully altered to match with the periods of soil 

moisture availability (Araus et al., 2002). Therefore tolerance to cold during the early stages, 

flowering time and length of life cycle appear as key traits that can lead to drought escape. However, 

yield is generally correlated with the length of crop duration under favorable growing conditions 



(Turner et al., 2001). This is why,

yield. 

A second strategy to cope with water stress is the 

tend to maintain high tissue water potential through different mechanisms. At one end of the water

flux, there is the increase of the water uptake through an extensive and more efficient root system. 

At the other end of the flux, there 

to reduce the transpiration rate.

Finally, plants can develop a range of mechanisms involving 

water deficit: the phenotype of the plant will be modified and then 

yield crop under drought stress. 

preventing the water deficit events (inte

to a strategy of adaptation. The strategy of 

physiological mechanisms. For example morphological mechanisms, under drought stress, lead som

plants to reduce their leaf area by leaf shedding 

transpiration. Figure I.4 shows morphological and phenological mechanisms that lead to drought 

tolerance. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure I.4: Morphological and phenological 

avoidance, and phenotypic plasticity strategies
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, a strategy as the escape can also lead to a reduction of the potential 

A second strategy to cope with water stress is the avoidance. Plants that follow this strategy 

end to maintain high tissue water potential through different mechanisms. At one end of the water

is the increase of the water uptake through an extensive and more efficient root system. 

there are a small leaf area and the control of the stomatal conductance 

. Both of these mechanisms help avoid water losses 

Finally, plants can develop a range of mechanisms involving phenotypic plasticity

water deficit: the phenotype of the plant will be modified and then increase its ability

yield crop under drought stress. In contrast to the first two strategies described above

preventing the water deficit events (intensity, duration and frequency), this last strategy corresponds 

The strategy of phenotypic plasticity includes both

physiological mechanisms. For example morphological mechanisms, under drought stress, lead som

plants to reduce their leaf area by leaf shedding (Farooq et al., 2009) in order to limit plant 

Figure I.4 shows morphological and phenological mechanisms that lead to drought 

4: Morphological and phenological responses to drought stress involved in the escape, 

and phenotypic plasticity strategies (Adapted from CETIOM). LAI: Leaf Area Index

can also lead to a reduction of the potential 

. Plants that follow this strategy 

end to maintain high tissue water potential through different mechanisms. At one end of the water 

is the increase of the water uptake through an extensive and more efficient root system. 

the control of the stomatal conductance 

avoid water losses  

phenotypic plasticity to adapt to 

increase its ability to maintain 

two strategies described above that aim at 

nsity, duration and frequency), this last strategy corresponds 

both morphological and 

physiological mechanisms. For example morphological mechanisms, under drought stress, lead some 

in order to limit plant 

Figure I.4 shows morphological and phenological mechanisms that lead to drought 

responses to drought stress involved in the escape, 

LAI: Leaf Area Index.  
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Osmotic adjustment is one of the

injuries by maintaining high cell water potential through active accumulation of solutes in the 

cytoplasm (Turner et al., 2001). It delays damage due to dehydration through the maintenance of cell 
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cell membrane integrity and stability under a water st

at the cellular level (Bajji et al., 2002)

understood, it increases the chances of protein denaturation and membrane fusion due to molecular 
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and oligosaccharides (Hoekstra et al.

drought tolerance through a phenotypic plasticity

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure I.5: Physiological mechanisms for drought tolerance

catalase, APX: ascorbate peroxydase; AA: ascorbic acid; GR: gluthatione reductase (adapted from 

Farooq et al., 2009). 

22 

At the physiological level, several mechanisms occur to produce phenotype plasticity

one of these mechanisms that may confer tolerance against cell drought 

injuries by maintaining high cell water potential through active accumulation of solutes in the 

It delays damage due to dehydration through the maintenance of cell 

processes (Taiz & Zeiger, 2006). In a similar way, antioxidant defenses 

help prevent drought damages in the cell. The reactive oxygen species in plants are removed by a 

zymes, lipid-soluble and water soluble scavenging molecules 

carotenes, ascorbic acid, α-tocopherol, reduced glutathione fo

enzymatic antioxidant molecules and peroxide dismutase, peroxidase, catalase and glutathione 

reductase for the enzymatic compartment. Finally, it is generally accepted that the maintenance of 

cell membrane integrity and stability under a water stress is a major component of drought tolerance 

, 2002). Although the causes of membrane disruption are not well 

understood, it increases the chances of protein denaturation and membrane fusion due to molecular 

, 2009). A range of compounds have been identified that

effects of membrane disruption as for example, proline, glutamate, glycinebetaine, polyols, trehalose 

et al., 2001). Figure I.5 illustrates physiological mech

phenotypic plasticity at the cell level. 

5: Physiological mechanisms for drought tolerance. SOD: superoxide dismutase; CAT: 

catalase, APX: ascorbate peroxydase; AA: ascorbic acid; GR: gluthatione reductase (adapted from 
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To conclude about the strategy of phenotypic plasticity, plants can tolerate drought stress by 

developing physiological and morphological mechanisms that aimed at the conservation of cell and 

tissue water by reducing water losses by transpiration reduction, osmotic adjustment, scavenging of 

reactive species, and keeping the cell membrane stabilized (Farooq et al., 2009). However, these 

physiological mechanisms as well as the stomatal aperture are under a complex genetic and 

molecular control that needs to be deciphered in order to clearly understand how drought tolerant 

species and genotypes accommodate to water limiting conditions. 

 

I.5. Molecular mechanisms and regulatory networks for drought stress 

responses 

During a drought stress event, changes in the expression of various genes take place. The 

transcriptional regulations of these genes in response to drought induce molecular mechanism 

involved in drought tolerance. However, drought tolerance is a complex phenomenon involving the 

combined regulation and action of many genes (Cattivelli et al., 2008). 

In this section, we will first describe genes which, according to the literature, encode cell effectors 

proteins involved in generic molecular mechanisms that allow drought tolerance. In this case and 

throughout this work, we use the term “effectors proteins” as opposed to “receptors and signal 

transducer proteins”. These proteins are largely involved in cell protection mechanisms. Then we will 

discuss a second type of genes which are differentially expressed during drought event and 

contribute to signal transduction and encodes for regulatory proteins. 

 

I.5.1. Molecular mechanisms for cell protection during drought stress 

Aquaporins are membrane proteins that can be involved in generic molecular mechanisms for 

drought tolerance. They facilitate and regulate passive exchange of water across membranes. 

Although their role in plant drought stress tolerance has not been clearly understood yet, it is 

generally admitted that they can regulate the hydraulic conductivity of membranes and increase 

water permeability (Maurel & Chrispeels, 2001). They probably play a role in soil water uptake by the 

roots as they are abundantly expressed in this tissue. 

Synthesis of stress proteins is also a generic molecular response to drought stress. Among 

these stress proteins, the heat shock proteins that belong to a larger group of molecules called 

chaperones is of particular importance. Many heat shock proteins have been found to be induced by 

different abiotic stresses and in particular by drought (Coca et al., 1994). They play a role in 

stabilizing the structure of other proteins to maintain their activities in adverse biophysical 

conditions. Late Embryogenic Abundant (LEA) proteins are another important group of stress 
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proteins. Also known as a class of dehydrins, they are accumulated in the tissues during the 

desiccation stage of the seed but also in vegetative tissues during periods of water deficit (Farooq et 

al., 2009). Their particular structure with the highly conserved Lysin-rich domain allows them to be 

involved in hydrophobic interactions and in macromolecule stabilization (Nylander et al., 2001). They 

also play a major role in the concentrations of ions that are accumulated during desiccation events in 

the cell (Gorantla et al., 2007).  

All these molecular drought responses are triggered by complex signaling and regulatory 

pathways that involve the interaction of various genes between them. 

I.5.2. Regulatory networks of drought stress responses 

During drought stress, various genes have been shown to be induced or repressed at the 

transcriptomic level using different tools such as microarray and RNA sequencing analysis on 

Arabidopsis thaliana and rice (Shinozaki & Yamaguchi-Shinozaki, 2007; Hirayama & Shinozaki, 2010; 

Todaka et al., 2012). Transcriptional changes could be induced by drought stress, in particular, via the 

action of several phytohormones. An important and well-described plant hormone for drought stress 

is the abscisic acid (ABA). Its production is triggered by water deficit which in turn causes stomatal 

closure and regulates expression of drought responsive genes. Indeed, many genes involved in ABA 

biosynthesis were shown to be up-regulated during dehydration in Arabidopsis (AtNCED3, AAO3, 

AtABA3 and AtZEP). Over-expression of AtNCED3 in transgenic plants improved drought tolerance 

while, on the contrary the knockout mutants for this gene showed drought sensitive phenotypes. 

This suggests that NCED3, in particular, plays an important role in ABA accumulation during a drought 

event (Endo et al., 2008). Accumulation of ABA in guard cells of mature leaves not only induces 

stomatal closure, as already mentioned, but also plays a role in stomata initiation in young leaves 

(Chater et al., 2014) and help prevent water losses.  

ABA role and signal transduction during drought stress has been studied thanks to mutants, in 

particular in the plant model Arabidopsis. Mutants for the genes abi1 and abi2 (ABA insensitive 1 and 

2) present a wilty phenotype, that let think that ABI1 and ABI2 genes have important roles in ABA-

dependent signal transduction pathways during a water deficit (Shinozaki & YamaguchiShinozaki, 

1997; Shinozaki et al., 2003). They encode type 2C protein Ser/Thr phosphatases (PP2C). This 

suggests that a phosphorylation/ dephosphorylation cascade might be involved in ABA signal 

transduction. 

ABA-induced stomatal closure, as a model of plant cell responses to a water stress, has been 

largely studied. This phenomenon is due to a multiple chain of cellular events involving second 

messengers. To sum up, ABA is perceived by receptors in the guard cells. ABA-perception induces 

Ca2+ cytosolic concentration and pH increase. It causes first K+ and anion efflux and then water efflux. 
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Finally, water efflux induces guard cell volume reduction and stomatal closure (Zhu et al., 2012). This 

is why Ca2+ is considered to be likely the most important second messenger in the water-stress 

responses in plant cells. Then, ABA signal transduction of a drought event is mediated by second 

messengers and various phosphorylation events in the vegetative tissues. 

A fraction of drought responsive genes have been shown to be induced by the application of 

exogenous ABA whereas another group of genes were not affected. This demonstrates the existence 

of both ABA-independent and ABA-dependent regulatory pathways to regulate drought-inducible 

genes. Moreover, Shinozaki and Yamaguchi-Shinozaki (1997) hypothesized that four pathways play a 

role in the activation of stress inducible-genes: two ABA-dependent and two ABA-independent. 

The first ABA-dependent pathway gathers together genes which contain ABA-Responsive Elements 

(ABRE) in their promoter regions. Therefore the ABRE functions as a cis-acting regulation. cDNAs for 

ABRE-binding (AREB) proteins, also called ABRE-binding factors (ABF) have been isolated (Choi et al., 

2000) and show a basic region adjacent to a Leu-zipper motif (bZIP). The ABRE motif is PyACGTGGC. 

The specificity of the bZIP protein binding to ABRE is due to nucleotides around the core motif ACGT. 

However, for ABA-responsive transcription, a single copy of ABRE is not sufficient (Yamaguchi-

Shinozaki & Shinozaki, 2006). For example, ABA-responsive expression of the Arabidopsis gene 

RD29B in vegetative tissue requires two ABRE sequences (Uno et al., 2000). Activation of AREB/ABF 

genes by ABA is not completely understood. However, phosphorylation/dephosphorylation events 

seem to play a key role in this ABA signaling pathway. In Arabidopsis, five of the nine type-2 SNF1-

related protein kinases (SnRK2) are activated by ABA (Boudsocq & Lauriere, 2005). These ABA-

activated SnRK2 protein kinases were shown to phosphorylate the conserved regions of AREB/ABF 

and therefore possibly activate them in Arabidopsis (Furihata et al., 2006). Similar observations were 

made for the rice (Kobayashi et al., 2005).  

There are other types of ABA-dependent expressive genes involved in response to drought 

which could be grouped in a second ABA-dependent pathway: genes induced by MYB and MYC 

factors. For example, RD22 expression is induced by ABA and is not activated through ABRE cis-acting 

regulation. A MYC and a MYB transcription factors (AtMYC2/RD22BP1 and AtMYB2) bind MYC and 

MYB recognition sites in the RD22 promoter. These recognition sites act as cis-acting elements and 

cooperatively activate expression of RD22 under drought stress (Abe et al., 2003). Various other cis-

acting elements have been found in drought and ABA-responsive genes. Arabidopsis RD26 encodes a 

NAC protein. Microarray analysis showed that ABA and stress inducible genes were up-regulated in 

RD26-overexpressing plants and on the contrary down-regulated in RD26-repressed plants indicating 

that the NAC recognition sites may function as a cis-regulatory factor in ABA-dependent gene 

expression under drought stress conditions (Fujita et al., 2005). Another example is the Arabidopsis 

gene AtERF7 which binds to a cis-acting element of ABA-drought responsive genes and acts as a 
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repressor of their expressions. Indeed, over-expression of AtERF7 in transgenic plants decreased 

drought tolerance by a reduction of ABA responses in guard cells (Yamaguchi-Shinozaki & Shinozaki, 

2006). 

Some genes are differentially expressed during drought events in ABA-deficient (aba) or ABA-

insensitive (abi) Arabidopsis mutants, indicating that they are regulated by ABA-independent 

pathways (Shinozaki & YamaguchiShinozaki, 1997). The first ABA independent pathway gathers 

together genes with cis-acting elements in their promoters called DRE (TACCGACAT). DRE-binding 

proteins, called DREB1 and DREB2, contain the conserved DNA-binding domain found in the ERF 

(ethylene-responsive element binding factor) and AP2 proteins cells (Yamaguchi-Shinozaki & 

Shinozaki, 2006). The DREB1 proteins are mainly involved in cold stress responses, whereas DREB2 

proteins are more involved in responses to drought stress. DREB2A has been shown to be a major 

transcription factor that functions in particular under water deficit stress. However, simple over-

expression of DREB2A in transgenic plants, does not improve drought tolerance. Activation 

mechanisms of DREB2A are not clearly understood and could involve phosphorylation processes (Liu 

et al., 1998). Finally there is a class of drought inducible genes that show no differential expression 

under cold or ABA application. It suggests that these genes belong to a second ABA-independent 

pathway. These genes are called ERD1 (early response to dehydration1). Promoter analysis of ERD1 

allows identifying two novel cis-acting elements: a MYC like sequence and a RPS1 site 1-like sequence 

that are involved in induction of ERD1 during cell dehydration (Simpson et al., 2003). cDNAs encoding 

MYC-like and a RPS1 site 1-like sequences binding proteins are NAC sequences and transcription 

factor with zinc-finger homeodomain (ZFHD) respectively. They are both necessary to activate 

expression of ERD1 (Yamaguchi-Shinozaki & Shinozaki, 2006).  

The ABA-dependent and ABA-independent pathways present cross-talks between them. For 

example, the well studied drought differentially expressed gene RD29A has a promoter sequence 

with both ABRE and DRE cis-acting elements. This gene is governed by both ABA-dependent and 

ABA-independent regulations. It was confirmed by its induction by ABA and drought in non-

transformed plants and by its induction by drought only in aba or abi mutants.  

Figure I.6 schematizes the four regulatory pathways for drought responsive genes presented 

above. 

  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure I.6: Four regulatory pathways for drought responsive genes. 

Pathways I and II are ABA-dependent. Pathways III and IV are ABA

Responsive Element; SNRK2: type

ABRE-binding factors; ABRE: ABA Responsive Element; DREB2: one DRE

acting element with the conserved sequence 

RD29A is a drought responsive gene with ABRE and DRE cis

ABA-dependent and ABA-independent pat

YamaguchiShinozaki, 1997; Yamaguchi
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6: Four regulatory pathways for drought responsive genes.  

dependent. Pathways III and IV are ABA-independent. ERF: Ethylene 

Responsive Element; SNRK2: type-2 SNF1-related protein kinase; AREB: ABRE-binding 

binding factors; ABRE: ABA Responsive Element; DREB2: one DRE-binding protein; DRE: c

acting element with the conserved sequence TACCGACAT; ERD1: early response to dehydration1. 

RD29A is a drought responsive gene with ABRE and DRE cis-sequences and therefore induced by 

independent pathways I and III. (Adapted from 

Yamaguchi-Shinozaki & Shinozaki, 2006)  
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Besides cross-talks between ABA and non ABA pathways during drought stress regulation, 

some interactions with other hormonal pathways are very likely to happen. An example is the 

interaction between ABA and ethylene pathways. It has been shown that ethylene can antagonize 

drought and ABA-induced stomatal closure (Wilkinson et al., 2012). On the contrary, jasmonate is, 

like ABA, a positive regulator of stomatal closure (Zhu et al., 2012). Again, cytokinins are a class of 

plant hormones that are known to prevent leaf senescence (Davies et al., 2005) and therefore help 

maintain photosynthetic activity during drought stress. Brugiere et al. (2003) demonstrated that 

expression of genes coding for cytokinin oxydase and enzymes involved in cytokinins degradation 

were induced by ABA. Antagonistic signal between ABA and brassinosteroid have also been recently 

demonstrated. Effectively ABA slows leaf expansion rates during a water soil deficit event (Tardieu, 

2013), whereas brassinosteroid biosynthesis promotes leaf cell division and expansion (Zhiponova et 

al., 2013). However, in most of the cases, knowledge on how the different hormonal pathways 

interact is lacking. 

As for hormonal signals, direct environmental signal is transduced by a various set of genes such as 

those encoding for calmodulins, G-proteins, protein kinases and transcription factors. This is the case 

for example, with the Arabidopsis genes AtCDPK1 and AtCDPK2 (Calcium Dependent Protein Kinases), 

which are rapidly induced by drought and therefore are involved in the transduction cascade under 

drought stress. Another example is the genes involved in the MAPK (Mitogen-activated protein 

kinase) cascade. 

I.5.3. Generic genes expression pathway during a drought stress event 

Finally, we have seen that various genes are induced during drought stress: genes encoding for 

effectors proteins that are involved in cell protection against water-deficit damages and genes 

involved in signal transduction and regulatory pathways. Main regulatory pathways linking all these 

genes begin to be understood thanks to studies conducted mainly in the plant model Arabidopsis. 

However, in general, relationships between drought stress inducible genes remain largely unknown.  

From the analysis of the various drought responsive genes described above, we can however 

draw a generic pathway of genes involved in responses to water stress and more generally in 

response to abiotic stresses (Shinozaki & YamaguchiShinozaki, 1997; Wang et al., 2003). Figure I.7 

illustrates this cascade. We can class genes in different groups. The first group brings together genes 

acting as the receptor of environmental signals. Mechanisms and genes involved in drought 

perception are not clearly known. Several hypotheses can be raised involving osmosensors, an 

oxidative burst or a change in cytoskeletons tension that could trigger the MAPK cascade and signal 

transduction. However their functioning in water stress perception by the cell is not entirely 

demonstrated (Shinozaki & Yamaguchi-Shinozaki, 2007). After the stress perception by the receptor 
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genes, the environmental signal is transduced by a second class of genes or molecular components 

(see figure I.7). As described before, transduction of the environmental signal involves secondary 

messengers such as Ca2+, phosphorylation cascades and/or plant hormones. In a third step, the signal 

transduction leads to a regulatory network that controls gene transcription. Examples of ABA-

dependent and ABA-independent regulatory pathways have been largely described in the previous 

sections. The fourth class represented in figure I.7 comprehends genes coding for effectors proteins 

involved in cellular and molecular drought cell responses such as the dehydrins and the aquaporins 

presented previously. Finally, this generic pathway, triggered by drought stress, results in various 

physiological and morphological responses to water deprivation that can be read into cellular, tissue 

and plant phenotypes.  

It appears that gene expression corresponds to an important link between the environmental 

signal perception and the morphological and physiological responses that confer drought stress 

tolerance. Therefore the study of the gene regulatory networks (GRN) and their cross-talk appears to 

be a main goal in order to clearly understand drought stress tolerance. Systems biology approaches 

could be interesting and provide a better knowledge of the implication of the different signaling 

pathways (Ahuja et al., 2010). Indeed, these approaches at the systems level permit to examine the 

structure and dynamics of the cellular and organismal functions instead of studying the 

characteristics of isolated parts of a cell or of an organism (Kitano, 2002) such as the work presented 

previously from Arabidopsis studies. The application of this new strategy has been allowed by the 

recent and simultaneous progresses in genotyping technologies on one hand, transcriptomic tools 

(such as microarray technology) on the other hand, and high-throughput phenotyping. 

  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure I.7: Generic pathways for plant 

2012). 

Ca2+: calcium; ROS: Reactive oxidative species; InsP: Inositol Phosphate;CDPK: Calcium dependent 

protein kinase; MeJA: Methyl Jasmonate; LE
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7: Generic pathways for plant responses to drought stress (adapted from 

: calcium; ROS: Reactive oxidative species; InsP: Inositol Phosphate;CDPK: Calcium dependent 

protein kinase; MeJA: Methyl Jasmonate; LEA: Late Embryo genesis-Abundant  

 

(adapted from Huang et al., 

: calcium; ROS: Reactive oxidative species; InsP: Inositol Phosphate;CDPK: Calcium dependent 
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I.6. Genotype x Environment interactions during drought stress 

responses 

In the previous sections, we have seen that the plants are able to adapt to various 

environments, as for example, environments with limited water resources. It is done by changing 

their phenotype, a phenomenon called “phenotypic plasticity” (El-Soda et al., 2014) and that allows 

implementation of tolerance mechanisms for drought stress. Genotypes do not have identical 

phenotypic responses for the same environmental constrains. This can be clearly demonstrated by 

the comparison of a drought-sensitive genotype with a drought-tolerant genotype but also of 

different drought tolerant genotypes which have different strategies. Although, the plant phenotype 

is dependent on the genotype and on the environmental factors, phenotypic plasticity itself also 

depends on the genotype, i.e two genotypes do not present the same variation of phenotypes 

between two environments (Des Marais et al., 2013). This last phenomenon is called genotype x 

environment interaction (GxE interaction) and can be identified by the variation of the reaction 

norms. Reaction norms are graphical representation of phenotypes expressed by a genotype under 

varied environmental conditions. Figure I.8 illustrates the different cases that reaction norms could 

highlight: phenotypic plasticity only and phenotypic plasticity with different types of GxE interaction 

models.  

 

 
 

Figure I.8: Reaction norm plots for various patterns of phenotypic plasticity (Des Marais et al., 

2013). 

Thin lines show the plastic response of a single genotype, whereas the thick line represents the 

population average plasticity. The x-axis represents different environmental conditions and the y-axis 

represents the trait of interest; the series represent different genotypes. (a) Plasticity without 

genotype x environment interaction (GxE); (b) plasticity with variance changing GxE; (c) plasticity 

with rank changing GxE.  
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As described above, drought stress responses run under a complex genetic control involving 

various genes that interact between them and whose expressions depend on the environment. 

Another important aspect of this gene regulatory network is the GxE interaction effects that play a 

role in the variations of these gene expressions. Up to now, molecular geneticists have studied GxE 

interactions using the traditional tools of forward and reverse genetics and the evaluation of 

condition-dependent mutants (Des Marais et al., 2013). This has led to the identification of important 

signaling pathways for key environmental interactions, as the drought regulatory network discussed 

in the previous section, and the establishment of hypotheses about crosstalk and pleiotropy of 

responses across various environmental signals (Todaka et al., 2012). However, many questions 

remain concerning GxE interactions, their different patterns (illustrated in figure I.8) and their 

underlying genetic control.  

Different genetic architectures cause GxE interactions (Des Marais et al., 2013). First, a 

change in phenotypic rank between two genotypes can be interpreted as a genetic trade-off through 

antagonistic pleiotropy. It means that an allele may have an additive effect that increases the 

phenotypic trait value in one environment and decreases it in another (figure I.9.A). In a second case 

called differential sensitivity, the magnitude of the allelic effect on phenotype depends on the 

environment (figure I.9.B). Conditional neutrality is a particular case of differential sensitivity: an 

allele has a phenotypic effect in one environment and no effect in another (figure I.9.C). Finally, GxE 

interactions can be also due to a various range of non-additive effects. Among these non-additive 

effects, we can cite dominance, epistasis, genetic linkage and epigenetics (El-Soda et al., 2014).  

Knowledge of GxE interactions of genes involved in the drought regulatory network is 

important. It can help refine the interaction between genes involved in those responses to the 

environment. It can also be useful for breeders if they want to select for tolerance in a precise 

environment (therefore GxE interactions will be important) or if they search for an ideotype tolerant 

in a various range of environmental scenarios.  

  



 

 

 

 

 

 

 

 

 

 

 

 

 

Figure I.9: Patterns of quantitative trait loci additive effects for

environment interactions (GxE) can fall into four main categories

(a) Antagonistic pleiotropy (AP): the result of sign changing additive effects; 

(CN): additive effects limited to only specific environmental conditions

(DS): the results of changes in magnitude of additive effects; 

additive effects across environments. 
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9: Patterns of quantitative trait loci additive effects for trait that show genotype x 

environment interactions (GxE) can fall into four main categories (Des Marais et al.

Antagonistic pleiotropy (AP): the result of sign changing additive effects; (b) Conditional neutral

(CN): additive effects limited to only specific environmental conditions; (c) Differential sensitivity 

(DS): the results of changes in magnitude of additive effects; (d) no GxE: no detectable change in 

additive effects across environments.  
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Figure I.10: Evolution of sunflower yield since 1961 to 2012 (from FAOstat, 2014). 

Blue curve refers to the average yield in France. Red curve refers to the average yield in all European 

countries. Green curve refers to the average yield in the world.

 

I.7.2. Sunflower germplasm adapted to various environments with strong drought 
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of sunflower production. For instance, in Europe the average 
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the real ones obtained in the field. Among several factors, 
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mains one of the main targets for sunflower breeders.

Figure I.10: Evolution of sunflower yield since 1961 to 2012 (from FAOstat, 2014). 

Blue curve refers to the average yield in France. Red curve refers to the average yield in all European 

. Green curve refers to the average yield in the world. 
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Figure I.11: Phylogenetic trees for Helianthus (Kane et al., 2013). 

(a) Phylogenetic tree for sections of the genus. Number of species in each clade are given in 

parentheses following the section name. Sections Ciliares and Divaricatus are polyphyletic. (b) 

Phylogenetic network for section Helianthus. Putative hybrid speciations are indicated in dashed 

lines.  

 

The section Helianthus comprehends 12 species that occupy a diverse range of habitats. For 

example, H. argophyllus is native to the dry, sandy soils in Southern Texas, an arid environment that 

imposes strong selection for tolerance to drought stress (Seiler & Rieseberg, 1997). Helianthus 

annuus is the most widespread species of Helianthus and is adapted to numerous habitats from 

Mexico to Canada (Rieseberg et al., 1999). It is sympatric to the H.petiolaris species. Hybridization 

between these two last species occurred three times during Helianthus evolution, creating the three 

hybrid species H.anomalus, H.deserticola and H.paradoxus particularly adapted for sand dunes, 

desert floors and salt marshes respectively (Rieseberg et al., 1999). Hybridization as described above 

allows a large distribution of Helianthus and a better adaptation to specific environments with 

various and strong constrains for drought tolerant traits. Therefore, wild sunflower germplasm is a 

potential source of abundant genetic resources for drought tolerance.  

On the contrary, due to its breeding history sunflower elite lines show a narrower genetic 

variability than wild species. The sunflower family (Asteraceae) comes from North America (Stuessy, 

2010). The origin of its domestication has been a subject of controversy for a long time, and evidence 

would place the origin of domestication either in Mexico (Lentz 2008) or in eastern North America 

(Heiser 2008) 6300 years ago. More recently, evidence from multiple evolutionarily important loci 

and from neutral markers supports a single domestication event in eastern North America (Blackman 

et al., 2011). Sunflower was introduced in Europe by the Spanish during the 16th century mainly as 

ornamental flower. It is only at the beginning of the 19th century that important breeding programs 

have been developed in Russia in particular to improve oil production thanks to the work of 

a b 



36 

(Pustovoit, 1964). Until the middle of the 20th century, sunflower production was based on 

population variety. The discovery of the cytoplasmic male sterility (CMS) (Leclercq, 1969), then of the 

fertility restoration genes (Kinman, 1970) led, since 1978, to the spread of hybrid sunflower crops 

throughout Europe. On the one hand, hybrid culture has allowed important genetic progresses in 

productivity and tolerance to diseases. However, on the other hand breeding history of cultivated 

sunflower has led to a reduction of the genetic diversity. Utilization of wild sunflower lines could be 

an important asset in breeding programs where wild alleles of tolerant species can be introgressed in 

elite lines in order to improve their drought tolerance. Moreover, the wild sunflower germplasm, 

described above, constitutes an adequate object of study that can help decipher the different 

mechanisms allowing drought tolerance. 

I.7.3. Sunflower morphological and physiological responses to drought stress 

The main morphological and physiological responses to drought stress previously reviewed 

were discovered and described in model plants and other crops (such as rice) and are generally valid 

in all higher plants such as sunflowers. However, because of the interest of the sunflower community 

in developing drought-tolerant genotypes and understanding ecological adaptation of wild sunflower 

species, some knowledge was gathered specifically on the species’ responses to water deficit. 

Indeed, the sunflower has a strong capacity to extract and conduct water from soil to leaves, 

although in the meantime its water consumption is important due to a high photosynthesis potential 

and stomata location on both leaf surfaces (Herve et al., 2001). 

Few studies report specific sunflower responses to drought stress. For example, (Casadebaig et 

al., 2008) observed leaf expansion and transpiration rates of different sunflower genotypes in 

response to soil water deficit measured through the Fraction of Transpirable Soil Water (FTSW). Leaf 

expansion of sunflower decreases for FTSW values inferior to 0.6 and transpiration rate diminishes 

for FTSW values inferior to 0.4. Moreover, these two variables show different thresholds for their 

decreasing in response to drought depending on the genotype. This highlights two different 

strategies among sunflowers for drought stress responses. The first strategy called conservative 

distinguishes sunflower genotypes that reduce leaf expansion and close stomata when water deficit 

is still low. Genotypes adopting this strategy can keep high water content to the detriment of 

biomass production. This conservative strategy can be related to the avoidance strategy described 

above that has for goal to maintain the water content. On the contrary, genotypes of the second 

strategy called productive maintain leaf expansion and stomatal aperture even for low values of 

FTSW and therefore favor biomass production over water content. These two strategies are not 

efficient in the same drought scenarios: the first is better adapted for environments with long and 

severe drought events and the second works better in environments with short and moderate water 
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deficit. Leaf development under water deficit has been particularly studied because leaf area is 

important for radiation interception and therefore biomass synthesis and final yield (Aguirrezabal et 

al., 2003). However, a reduced leaf area can lead to a lower transpiration rate and a better tolerance 

to water deficit. In sunflower, it has been demonstrated that cell expansion and division during leaf 

development is affected by water stress (Tardieu, 2013) and the effects are more important if 

drought occurs during the early stage of leaf development when cell division happens (Granier & 

Tardieu, 1999).  

I.7.4. Molecular and genetic responses to drought stress in sunflower 

The molecular and genetic architecture controlling the different drought tolerance strategies 

are far from being well described and understood in most plants. Sunflower is a case in point. The 

main molecular responses described for the plant model Arabidopsis or other crops could be inferred 

to sunflower. However, there is no species close enough to sunflower to infer the genetic 

architecture through synteny. Several studies attempted to describe the genetic basis of 

physiological traits associated with drought tolerance in sunflower. For example, quantitative trait 

loci (QTL) were found for Relative water content (RWC), water potential and stomatal conductance 

using a RIL population under drought conditions in greenhouse (Kiani et al., 2007b). Several gene 

expressions were found to be correlated to different physiological variables used to estimate drought 

tolerance: stomatal conductance, osmotic adjustment, RWC, Carbon Isotopic Discrimination (CID) 

(Kiani et al., 2007a; Kiani et al., 2007b; Rengel et al., 2012). However, a complete view of the 

relationships between those genes and detailed mechanisms of their role in drought tolerance is still 

to be determined. Plant hormones in sunflower, as in Arabidopsis, seem important in signal 

transduction and gene regulatory network for drought stress responses. The sunflower HD-Zip 

protein gene HaHB4 was shown to be induced by water stress and ABA treatment. Moreover, a DRE 

motif was identified in its promoter suggesting that an ABA-dependent pathway involved in drought 

response signaling is similar between Arabidopsis and Helianthus (Dezar et al., 2005). It shows 

evidence that at least a part of regulatory mechanisms involved in water deficit tolerance is 

conserved between these two species. In another study, modified Arabidopsis plants over-expressing 

HaHB4 were found to be less sensitive to external ethylene treatment. Identification of the potential 

target of HaHB4 revealed genes related to ethylene synthesis and ethylene signaling suggesting that 

HaHB4 may improve drought tolerance through the control of leaf desiccation. Therefore, in 

sunflower, a crosstalk between ABA and ethylene pathways seems to be involved in plant responses 

to drought events (Manavella et al., 2006). 

These works at the genetic and molecular levels start to unveil the complex networks of 

molecular sensing, signaling and responding to drought stress in sunflower. Together with the 
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evidences collected in other plants, they suggests a complex system, whose mechanisms are 

challenging to understand and thus to harness in order to develop more tolerant sunflower varieties 

in the future. 

I.8. Objectives of the PhD works: 

Plants are sessile organisms and thus have to cope with the pressures of their environment. 

Among these constraints are abiotic stresses and in particular drought stress that occurs when water 

supply is not sufficient to compensate water losses due to evapotranspiration. Throughout this 

introductive chapter, we have seen that plants develop complex responses to drought in order to 

become tolerant to water deficit. These responses involve not only morphological and physiological 

mechanisms that occur at the whole plant scale but also molecular events at the cell level. Genetic 

control of these responses engages various genes. Up to now, thanks mostly to studies on model 

plant as Arabidopsis, some key regulatory pathways have been described such as, for instance, the 

ABA-independent pathways described above. A generic pathway of genes involved in drought stress 

responses can be drawn from these results (see section I.5.3 and figure I.8). It identifies various 

classes of genes that allow the environmental signal perceived (here drought stress) to be linked to 

morphological and physiological mechanisms that allowed water deficit tolerance. However, this 

schematic representation does not translate the complex underlying gene regulatory network that 

involves many genes, not always identified, interacting between them and with the environment. A 

better understanding of this network could explain the differences of behavior between species 

under limited water supply and also differences of phenotypes between tolerant and sensitive 

genotypes among the same species. It could also help to understand the genetic control of drought 

tolerance mechanisms observed at the whole plant level and clarify the genetic processes of 

environmental signal perception by the plant.  

 

The aim of this PhD work is to study the gene regulatory network that leads to morphological 

and physiological mechanisms developed by plants in order to cope with water deficit. We propose 

to use the cultivated sunflower Helianthus annuus as object of our studies because it has been shown 

that drought stress is one of the major issues that impact yield for this crop. Therefore breeding for 

drought tolerance is still one of the main goals in the sunflower selection programs. Moreover, due 

to the history of its evolution, the genus Helianthus offers a wide germplasm interesting for drought 

tolerance studies. 

 

To achieve our goal, we chose to articulate our work on the generic pathway described in 

figure I.8 and successively study the different classes of genes identified in this gene cascade.  
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The first category of genes that we would like to study is composed of genes involved in 

environmental signal reception. Indeed, among the questions still opened, stands the perception of 

drought stress by the plants, or in other words the description of the mechanisms that trigger genes 

involved in the regulation of drought stress responses. Practically, the knowledge of this class of 

genes could lead to a better estimation of the drought stress perceived by the plant and help with 

genotype comparisons. One can also wonder if the expression of this kind of genes is dependent of 

the genotype or if general sunflower mechanisms can be identified. Therefore, the first part of our 

work describes the identification of genes whose expression is correlated to plant water status. We 

then discuss their place in the generic pathway for drought responses and how they can improve our 

understanding of the dialog between the plant and its direct environment. 

In a second time, we will identify genes involved in the genetic control of physiological 

mechanisms for drought stress tolerance. These genes are represented at the end of the generic 

pathway for water deficit responses (figure I.8). As the behavior regarding drought stress is not 

identical between genotypes, the expression of those genes depends on the genotype, the 

environment, and also on the interaction between genotype and environment. The gene regulatory 

network formed by those genes can help understanding the phenotypic plasticity observed among 

genotypes of the same species. Thus, another aim of this work is, through an association study, to 

reconstruct the underlying gene regulatory network and the pattern of the genetic control due to 

genotype x environment interactions. 

Finally, in the last section we will study genes involved in the environmental signal 

transduction and transcriptional regulation parts. Through the study of these genes and of the gene 

regulatory network they belong to, we propose to answer two questions. First, how this GRN is 

involve in phenotypic changes that allow drought stress tolerance and second, how the specific 

design of the inferred drought GRN could have played a role in Helianthus evolution and sunflower 

breeding? We will try to answer these questions with a systems biology approach that allows us to 

reconstruct the gene regulatory network and organize relationships between genes involved in the 

environmental signal transduction.  
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Chapter II: The expression of genes possibly 

involved in the perception of the drought stress 

signal can help to characterize the plant water 

status via a biomarker construction 
 

 

 

II.1. Challenges and issues in the studies of genes receptors of the 

drought environmental signal  

Responses to drought stress are triggered by plant water deficit perception. Then, the 

understanding of the mechanisms of environmental signal reception and the genes underlying them 

is an important goal in the process of drought tolerance study. In this chapter, we propose to focus 

on those genes which are possible receptors of the stress signal or tightly connected to the 

environmental signal in the regulatory cascade leading to water deficit responses (Figure II.1). Several 

genes that suit this definition, i.e. with expression levels correlated only to the applied water stress 

intensity but not to major physiological and morphological plant responses to drought, have already 

been identified in sunflower (Rengel et al., 2012). Additional knowledge for this type of genes could 

lead to a better estimation of the water status perceived by the plant. So, in this chapter we describe 

the construction of a biomarker for plant water status based on the expression of genes involved in 

perception of water deficit environmental signal.  

The term biomarker was first used in the field of human medicine and therefore defined as a 

characteristic that is objectively measured and evaluated as an indicator of normal biological 

processes, pathogenic processes, or pharmacologic responses to a therapeutic intervention (Strimbu 

& Tavel, 2010). Thereafter, various biomarkers have been developed in different scientific fields and 

then can be defined more generally as an indicator of specific or general stresses. They concern 

different biological levels, from molecules to ecosystems. Depending of the studied biological object, 

a biomarker could be a biochemical, physiological or a morphological change that can be used as a 

proxy for the tested environmental variable (Ernst & Peterson, 1994), for instance water stress. Such 

biological indicators are now widely used in human cancer research. For example, beta-galactosidase 

concentration was found as a biomarker for aging cells in the skin and therefore allows distinction 

between healthy tissues and tumor (Dimri et al., 1995). Biomarkers were also used more recently to 

characterize ecosystems in the field of ecology. In this case, microbial biomarkers were used as an 

indicator of ecosystem recovery following surface mineral exploitation (Mummey et al., 2002). 
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Figure II.1: Genes studied for the water status biomarker construction and hypothesis about their 

gene expression independent of the genotype.
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on gene expression levels are now available thanks to progress

throughout transcriptomic technologies and meta-analyses of these large transcriptomic datasets. 

A tool as a biomarker for sunflower water status would be useful in genetic studies that 

involve an important number of genotypes studied in field conditions with variable water availability. 

reover, in these studies, each genotype, due to its specific development and physiology, have a 

specific water status and drought stress perception, even if other environmental variables are 

identical for all the genotypes. Therefore, one major issue of our study is to develop a

for a range of sunflower genotypes. That is why, genes introduced in such a 

biomarker should have an expression not only correlated to water stress intensity but also 

independent of the considered genotypes. In addition, the number of genes used should be 

in order to obtain a tool easy to exploit. 

The present chapter describes the identification of such genes and the water status biomarker 

. From results of this work, we also have tried to address different issues about genes 

involved in environmental signal perception. Where in the regulatory pathway 

involved in the perception of the environment and (2) the genes with genotype

(i.e candidate genes for the biomarker construction)? 

distribution give us some insight about which part of the regulatory cascade is 

dependent or independent? Indeed, genes located upstream the genotype independent 

genes are supposed to be genotype-independent as well. 

Figure II.1: Genes studied for the water status biomarker construction and hypothesis about their 

gene expression independent of the genotype. 
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ave tried to address different issues about genes 

pathway is the location of (1) 

genes with genotype-

(i.e candidate genes for the biomarker construction)? Could knowledge 

which part of the regulatory cascade is 

enotype independent 

Figure II.1: Genes studied for the water status biomarker construction and hypothesis about their 
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II.2.1. Abstract 

Plant or soil water statuses are required in many scientific fields to understand plant 

responses to drought. Because the transcriptomic response to abiotic conditions, such as water 

deficit, reflects plant water status, genomic tools could be used to develop a new type of molecular 

biomarker. 

Using the sunflower (Helianthus annuus L.) as a model species to study the transcriptomic 

response to water deficit both in greenhouse and field conditions, we specifically identified three 

genes that showed an expression pattern highly correlated to plant water status as estimated by the 

pre-dawn leaf water potential, fraction of transpirable soil water, soil water content or fraction of 

total soil water in controlled conditions. We developed a generalized linear model to estimate these 

classical water status indicators from the expression levels of the three selected genes under 

controlled conditions. This estimation was independent of the four tested genotypes and the stage 

(pre- or post-flowering) of the plant. We further validated this gene expression biomarker under field 

conditions for four genotypes in three different trials, over a large range of water status, and we 

were able to correct their expression values for a large diurnal sampling period. 
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II.2.2. Keyword index  

Soil water deficit, sunflower, Helianthus annuus L., transcriptomic, drought, biomarker, leaf 

water potential, FTSW, soil water content, indicator. 

II.2.3. Introduction 
Water deficit in plants can be defined as the imbalance between the actual evaporative 

demand resulting from climatic conditions and the available water in the soil (Tardieu et al., 2011) 

This major environmental stress affects the growth and physiology of the entire plant and can 

therefore dramatically reduce crop yield and quality (Bhatnagar-Mathur et al., 2008). Recent 

intensification of drought events in Europe, Australia and North America, together with climatic 

model forecasts, suggest that drought will continue to dramatically affect crop productivity in the 

21st century (Moriondo et al., 2010). At the same time, the reduction of arable land area, the scarcity 

of water resources and the development of the human population all amplify the need to develop 

agrosystems that are more tolerant to water deficit or less water-consuming. 

In this context, plant molecular physiologists, eco-physiologists and agronomists conduct 

experiments to estimate the plant response to water stress. One major requirement of these 

experiments is the estimation of soil water available to crops, at least at the most critical points of 

the developmental process. The direct estimation of water accessible to individual plants can be very 

difficult or even impossible in natural environments such as the field. Water status indicators can be 

of two types: soil- or plant-based measurements.  

Soil-based measurements use either thermogravimetry, which requires samples for over-

drying, or physical measurements of soil properties varying with its water content (Dobriyal et al., 

2012). Neutron probes have been widely used since the 1960s (reviewed by Gardner et al., 1991; 

Klenke & Flint, 1991), and dielectric methods, such as time-domain reflectometry (Topp & Davis, 

1985) or capacitance sensors (Whalley et al., 1992), have been used since the 1980s. Generally, these 

techniques can only describe limited soil regions that may not correctly represent the plant 

rhizosphere (Ferreira et al., 1996). The access tube used for the probe measurement is difficult to 

install and often modifies the water circulation and root dynamics surrounding the tube. 

Furthermore, these tools are time-consuming and labor-intensive and cannot be scaled up for high-

throughput evaluation, which is needed in genetic analyses. 

Therefore, plant-based measurements are often preferred. These measurements are based 

on the fact that the plant status reflects soil water availability. Morphological indicators can be used 

to evaluate drought stress. For example, breeders often score leaf rolling to estimate plant water 

status in monocots (O'Toole et al., 1979). For perennial species, trunk diameter reflects water fluxes 
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in the plant and can be used to manage irrigation (Goldhamer & Fereres, 2001). In eco-physiological 

studies, different indicators of plant status are commonly measured at different organizational levels, 

such as whole-plant transpiration, leaf water potential or stomatal conductance. For example, water 

transpiration cools the leaves and can therefore be monitored through thermal infrared 

measurements such as in wheat (Blum et al., 1982). The measurement of pre-dawn leaf water 

potential (ΨPD) has been largely used for decades and is considered to be a standard. It is based on 

the fact that at dawn, water equilibrates between the rhizosphere and leaves, reflecting the water 

available to the plant. Therefore, it is subject to some limitations for heterogeneous soils (Ameglio et 

al., 1999) and its determination in numerous plants is restricted by the need of operating at pre-

dawn.  

Another method that is successfully used in controlled environments is based on the 

measurement of the daily transpiration of water-stressed plants relative to well-watered controls. 

This method defines a scale for water available for plant transpiration between an upper and lower 

limit of soil water content (SWC). The upper limit matches the SWC at field capacity and the lower 

limit is the SWC where relative transpiration decreases to less than 0.1 (Sinclair, 1986). According to 

(Sinclair, 2005), plants respond to the progressive drying of soil in a similar manner across a wide 

range of environmental conditions when this scale is used, where water stress is expressed as the 

fraction of transpirable soil water (FTSW). Variability in the leaf expansion and plant transpiration 

rate in response to water stress has been previously reported in different sunflower genotypes by 

using this method (Casadebaig et al., 2008). When dealing with field conditions, several main 

drawbacks limit the applicability of this method. First the need for a control plot (in order to measure 

transpiration in well-watered conditions) doubles the experimental space required, which thus 

precludes the use of this indicator for large-scale genetic programs in crops. More importantly, to 

estimate FTSW in field environment, measurements of soil depth (soil profile, endoscopy), portion of 

soil explored by roots and soil water content (probes, soil cores) are required but are often 

unrealistic for genetic studies at microplot scale or poorly estimated.  

In the context of the development of high-throughput phenotyping platforms, the need to 

develop a tool that would allow the early quantification of water deficit in a dose- and time-

dependent manner is even more acute. Following the definition of (Ernst & Peterson, 1994) a soil 

water content biomarker could be a biochemical, physiological or morphological change in plants 

that measures their exposure to the environment (i.e., water deficit). This biomarker could therefore 

be used to reveal the status and trends in environmental assessment and also to predict crop 

responses to other biotic and abiotic stresses that interact with drought. 

The transcriptomic response to water deficit is a widely described molecular process that 

allows plants to adapt to the water imbalance between supply and demand, and to develop a large 
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range of morpho-physiological changes (Shinozaki & Yamaguchi-Shinozaki, 2007). The gene 

regulation cascade begins from the composite molecular perception of the environmental signal (the 

biophysical water imbalance) and moves via signal transduction down to the level of enzymes and 

structural proteins to produce biochemical compounds, fluxes and developmental adaptations. In 

accordance, some transcript expression levels are correlated only to FTSW but not to other major 

plant responses (Rengel et al., 2012). Such genes correspond to the definition of biomarkers that 

reflect soil water status. Assembling several genes robustly correlated to soil water content appears 

to now be an attainable goal given recent progress in the description of the transcriptomic response 

to water deficit at the interface of molecular biology and eco-physiology (Ingram & Bartels, 1996; 

Ramanjulu & Bartels, 2002; Bartels & Sunkar, 2005; Harb et al., 2010; Aasamaa & Sober, 2011). 

In fact, gene expression biomarker search and development is a long-standing goal of the 

reference meta-analysis platform Genevestigator (Zimmermann et al., 2008). Recently, a successful 

meta-analysis of a large transcriptomic data set in maize allowed the development of a composite 

gene expression scoring system to quantitatively assess the response of maize to nitrogen conditions 

(Yang et al., 2011). Importantly, this first gene expression biomarker for in planta nitrogen status is 

independent of genotype, does not vary throughout plant development and was validated in field 

and greenhouse conditions. 

The development of such tools has certainly been hampered by the rapid variation of plant 

transcriptome in response to many external factors, such as illumination and handling/wounding, as 

well as internal factors, such as the circadian clock. However, whole transcriptomic studies now show 

that part of the transcriptome robustly reacts to the plant environment in a dose- and time-

dependent manner, which allows statistical models to be built, notably for the sunflower (Rengel et 

al., 2012). 

In this context, we used the sunflower as a model to develop a composite gene expression 

biomarker that is independent of genotype, developmental stage and time of day and that allows the 

estimation of soil water constraint in greenhouse and field experiments. This biomarker was 

standardized using the pre-dawn leaf water potential, FTSW, soil water content and fraction of total 

soil water when available. 

II.2.4. Material and methods 

II.2.4.1. Plant material and growing conditions 

Four experiments, i.e., one in greenhouse conditions and three in field conditions, using the 

four sunflower (Helianthus annuus L.) inbred lines XRQ, PSC8, their F1 named Inedi and another 

cultivated hybrid Melody were conducted in 2012 near Toulouse (Haute-Garonne, France). 
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For the greenhouse experiment conducted from May to June 2012, bleach-sterilized seeds 

were germinated on Petri dishes with Apron XL and Celeste solutions (Syngenta, Basel, Switzerland) 

for 3 days at 28°C. Plantlets were transplanted in 236 individual pots, and each pot contained one 

single plant. 

Pots were filled with 15 L of a substrate composed of 10% sand, 40% P.A.M.2 potting soil 

(Proveen distributed by Soprimex, Chateaurenard, Bouches-du-Rhône, France) and 50% clay loam 

from the INRA site in Auzeville-Tolosane (Haute-Garonne, France). 

Plantlets were sown on two different dates to obtain plants at two different stages (before 

and after flowering) respectively, 10 weeks and 4 weeks before the beginning of the stress 

treatment. 

For each phenological (pre-flowering or post-flowering) stage with, respectively, 144 and 92 

plants, the pots were arranged in a split-split-plot design with three blocks. The stress intensity (i.e., 

FTSW values of 0.8, 0.7, 0.5, 0.35, 0.20 and 0.12) was the main factor within the block, the genotype 

was the second factor, and finally the treatment (control plants were well-watered and treated 

plants were water-deprived) was the third factor. After an assessment of Alternaria blight evolution, 

plants of genotype PSC8 were not considered in the experiment dedicated to the post-flowering 

stage. Each pot was fertilized and irrigated as in Rengel et al. (2012) before the beginning of the 

water stress application. 

In field conditions, the same genotypes were sown at three different locations: Samatan 

(Gers, France), Fleurance (Gers, France) and Auzeville-Tolosane. In Samatan, the four genotypes were 

sown on April 20, 2012 and grown without irrigation. In Fleurance, PSC8, Melody and Inedi were 

sown on April 6, 2012 and grown without irrigation. In Auzeville-Tolosane, Inedi and Melody were 

sown on May 25, 2012 and grown in both irrigated (163 mm) and non-irrigated conditions. 

The field experiments were designed in six randomized blocks for each location or 

location*condition combination. Each plot consisted of 12 rows with a length of 10 m, 12 rows with a 

length of 6 m and 9 rows with a length of 5.2 m for each genotype in Samatan, Fleurance and 

Auzeville-Tolosane, respectively, at the same plant population density (6.5 plants.m-2). 

Soil analysis 

An 800-g soil sample was taken at depths of 60 cm and 30 cm in each trial and sent to the 

INRA LAS laboratory (Arras, Pas-de-Calais, France) for physical and chemical analyses. 

Water stress treatment 

In the greenhouse experiment, the pots were saturated with water 31 and 73 days after 

germination, respectively, for pre-flowering and post-flowering plants. The following morning, 

excessive water was drained for two hours and pots were weighed to obtain the saturation mass. 
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From this point, irrigation was stopped for water-deprived (WD) plants. Both control and WD plants 

were weighed every day between 16:00 and 17:00 to determine the daily evapotranspiration. The 

water lost was added back to the control plants. To prevent soil evaporation, pots were covered with 

a 3-mm-thick polystyrene sheet. However, soil evaporation could not be neglected. 

In the field experiments, 53, 70 and 40 mm of water were provided, respectively, on June 29, 

July 11 and August 13 2012 in the irrigated condition in Auzeville-Tolosane. 

Soil evaporation estimation in the greenhouse 

Six pots without plants that represented the different water content were also weighed 

every day for two weeks during the experiment. Climate conditions, such as relative humidity and 

average temperature in the greenhouse, were monitored daily. The soil evaporation could, 

therefore, be estimated by performing a linear regression with pot water content, relative humidity 

and average temperature using the function regress (MATLAB version 7.13.0.564, Statistics Toolbox 

7.6). This model is detailed in Appendix II.1 and was used to estimate the soil evaporation during the 

greenhouse experiment. 

Plant leaf area and transpiration in the greenhouse 

For all plants, the length and width of odd leaves were measured every other day. The total 

leaf area was calculated from these measurements as described in (Casadebaig et al., 2008) 

The plant transpiration (E in g.mm-2) for each pot was calculated every day as the difference 

between the water lost by the pot and the water lost by soil evaporation divided by the total plant 

leaf area. 

The normalized transpiration (EN) for each WD plant was calculated every day as the ratio 

between its transpiration and the average transpiration of control plants of the same genotype in the 

same block. 

II.2.4.2. Estimation of the fraction of transpirable soil water (FTSW) in the greenhouse 

experiment 

The total transpirable soil water (TTSW) is the maximum amount of soil water available to 

the plant. In our experiment, 8 treated plants reached EN values less than or equal to 10% and were 

used to estimate the TTSW. This weight (W10%) corresponded to the dry soil plus 26% (w/w) of the 

water contained in the saturated pot. The fraction of transpirable soil water (FTSW) was finally 

calculated as follows: 

FTSW = (Wd-W10%)/TTSW, where Wd is the weight of the pot at day d. 

The FTSW value was used to determine whether a plant had reached the target stress intensity.  
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II.2.4.3. Estimation of the soil water content (SWC) in the greenhouse experiment 

At the end of the greenhouse experiment, a soil core was collected from each pot. The soil samples 

were weighed to obtain the fresh weight and then dried for 48 h at 120°C before a second weighing 

to obtain the dry weight. The soil water content (SWC in percentage w/w) was calculated daily as 

follows:  

SWCj = (Wfi-Wd)/(Wd-Wd’), where Wfi is the weight of the fresh soil and plant at day i, Wd is the 

weight of the dry soil and plant and Wd’ is the weight of the dry plant.  

The weight of the fresh plant at day i is estimated using the dry weight of the plant and based 

on the assumption that the plant water content was, on average, 81% for post-flowering plants and 

87% for pre-flowering plants and was the same for the different plant tissues. 

II.2.4.4. Estimation of the fraction of total soil water (FtotSW) in the greenhouse 

experiment 

Another soil water content indicator is the fraction of total soil water (FtotSW), which was 

estimated as follows: FtotSW=(Wfi-Wd)/(Wsat -Wd), where Wsat is the weight of the water-saturated 

pot. 

II.2.4.5. Measurement of leaf water potential (Ψ) in greenhouse and field experiments 

In the greenhouse experiment, the harvested plants for transcriptomic analysis (WD and 

control plants) were placed in a dark room until the next morning. The water status at the time of 

harvest (between 11:00 and 12:30) was noted ΨPD’ and estimated as the leaf water potential, after 

equilibrium with the soil was reached. ΨPD’ was measured on the nth leaf for each harvested plant 

using a Scholander’s pressure chamber (Soil Moisture Equipment Corp., California, U.S.A.), where n 

was 2/3 of the total leaf number Ntot. 

In the field experiments, the water status at dawn was estimated as the classical pre-dawn 

leaf water potential ΨPD and was measured for one plant per plot between 4:00 and 5:30 once a 

week for three weeks. Measurements began when plants were at the F1 stage (CETIOM 

nomenclature). In the Fleurance and Samatan trials, the first measurement occurred, respectively, on 

July 18 and 19, 2012. In Auzeville-Tolosane, the measurements began on July 31, 2012. The water 

potential was measured for the 5th leaf from the head (Ntot -5) using a Scholander’s pressure 

chamber. 

It is important to note that contrary to the transcriptomic harvests that were always 

performed at noon (except for the diurnal variation study), ΨPD and ΨPD’ are slightly different 

measurements of plant water status. ΨPD was measured at dawn (between 4:00 and 5:30) after a 

normal night, thus representing soil-plant water status the day before leaf harvest (Figure II.2.a). In 
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contrast, ΨPD’ was measured after the soil-plant water equilibrium had been reached during artificial 

night in dark room representing the exact plant water status at leaf harvest time (between 11:00 and 

12:30) (Figure II.2.b). 

  In the Auzeville-Tolosane trial, to study the influence of the diurnal variations on leaf water 

potential and gene expression, leaves were harvested in each of 3 blocks for each genotype, both in 

irrigated and non-irrigated conditions, in the same order, between 4:00 and 5:30, 7:00 and 8:30, 

10:00 and 11:30, 11:30 and 13:00, 13:00 and 14:30, 16:00 and 17:30, 19:00 and 20:30, 22:00 and 

23:30, and 1:00 and 2:30 (Figure II.2.c). Separate leaves were used from the same plant for the leaf 

water potential measurement and for transcriptomic analysis. This study occurred on August 9 and 

10, 2012 under high evaporative demand and constant sunny conditions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure II.2: Sampling and leaf water potential measurements timing.  

a) Field trials: Leaf water potential was measured before leaf harvest for transcriptomic data. b) 

Greenhouse experiment: leaf harvest for transcriptomic occurs at day1 before artificial night and pre-

dawn leaf water measurement. c) Diurnal variation study: Pre-dawn leaf water potential was 

measured at day 1 at 4:00. Eight leaf water potential measurements were performed during the next 

24 hours. At the same time of each measurement of Ψ or ΨPD leaves were harvested for 

transcriptomic study.   
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II.2.4.6. Transcriptomic analysis 

Selection of genes 

Gene indicators of water status 

From the study of Rengel et al. (2012), we selected genes that were found to (1) be 

correlated to the integrated transpired water (ITW) in fixed duration stress and in fixed intensity 

stress (R2>0.65) and (2) show a treatment or a treatment*genotype interaction effect in the ANOVA 

for either type of stress. From this list of 143 genes, we chose to focus on sunflower homologues of 

Arabidopsis genes that have been described in the literature to be involved in abiotic stress 

responses. We finally kept 28 genes. Detailed descriptions of these genes are presented together 

with all the genes in this study in Appendix II.2. 

Circadian clock-related genes 

Numerous genes have been identified to vary according to the circadian clock. We chose the 

four Arabidopsis circadian clock regulators TIMING OF CAB EXPRESSION 1 (TOC1), LATE ELONGATED 

HYPOCOTYL (LHY), CONSTANS (CO) and ZEITLUPPE (ZTL) (Alabadi et al., 2001; Wilkins et al., 2010) and 

identified the best BLAST hits in the sunflower transcriptome (https://www.heliagene.org/HaT13l). 

HaDHN1 and HaDHN2 of the sunflower were first described by (Cellier et al., 2000) to vary during the 

circadian cycle and were re-examined in this study. All correspondences are summarized in Appendix 

II.2. 

Genes showing a genotype*treatment interaction effect in ANCOVA 

In addition to the 28 genes correlated to water stress intensity, we studied the gene 

expression levels of four transcripts: HaT13l002164, HaT13l009999, HaT13l009995 and 

HaT13l020030. The expression of these transcripts was found to be correlated to three other 

morpho-physiological variables in (Rengel et al., 2012): carbon isotopic discrimination (CID), 

evapotranspiration (ET) and osmotic potential (OP). The identification of Arabidopsis homologs was 

performed according to the best BLAST hits. These four genes and a fifth gene originally correlated to 

ITW in Rengel et al., (2012) study, were used to illustrate a genotype*WSB interaction effect in 

ANCOVA analysis explained below. Detailed descriptions of the corresponding genes are presented in 

Appendix II.2. 

Primer design 

Primers were designed using the HaT13l transcript sequence and Primer3 web tool 

(http://probes.pw.usda.gov/batchprimer3/index.html) using the default parameters with an optimal 

product size of 60bp (min=50bp, max=80bp). All primers are summarized in Appendix II.3. 
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Tissue harvest and RNA extraction 

One non-senescent and non-growing leaf by plant was harvested between 11:00 and 13:00, 

except during the diurnal variation study. Each leaf was sampled and treated separately. After 

freezing and grinding the samples, RNA was extracted and checked for quality and quantity. Detailed 

protocol of these steps and the cDNA synthesis is provided Appendix II.4. 

Estimation of gene expression by qRT-PCR 

Gene expression was estimated by qRT-PCR. and was normalized according to the 

amplification efficiency and the expression levels of seven reference genes identified in Rengel et al. 

(2012). Detailed protocol of these steps is provided in Appendix II.4. and reference gene information 

is summarized in Appendix II.2. 

Gene expression correction following the time of the day 

The linear regression of gene expression as a function of the hour of the day was performed 

on the diurnal variation study’s data between 10:00 and 20:00 for genes chosen for the biomarker 

model using the robustfit function in MATLAB. The linear regression was set to pass by means of the 

expression levels of samples harvested between 11:00 and 12:00, to match with the harvest time 

observed in the field and greenhouse experiments that were used to calibrate and validate the 

biomarker models. We corrected the gene expression for samples harvested at different times of the 

day to obtain an estimated gene expression at 11:30 using linear regression parameters. 

II.2.4.7. Statistical analysis 

Test of genotypic effect on the models 

For each selected gene correlated with water stress intensity, we performed a covariance 

analysis (aoctool function in MATLAB) by testing genotype-dependent (1) and non-genotype-

dependent (2) models for the gene expression level as a function of water stress status as follows: 

(1)   Yi,t=ai+biXi,t+Zit  : genotype-dependent model and 

(2)   Yi,t=a+bXi,t+Z’it  : genotype-independent model, 

where Yi,t is the expression level of the gene for genotype i and for the actual water stress intensity t 

(with different values in each of the three blocks), Xi,t is the value of the stress intensity, and Zi,t and 

Z’i,t are the residues. 

The gene expression was considered to not have no genotypic effect if the F-test performed 

as follows was not significant (p>0.01): 

F = (SSE2-SSE1/(2*(G-1))/(SSE1/df1), 

where SSE1 and SSE2 are, respectively, the sum of the squared errors for model (1) and model (2), G is 

the number of genotypes and df1 is the number of degrees of freedom attached to the error in the 
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model (1). 

Statistical calibration and validation of the water status biomarker (WSB) 

All combinations of 3, 4, 5 or 6 genes that were correlated to stress intensity and presented 

no genotypic effect were tested to construct a model to estimate the pre-dawn leaf water potential. 

The model fitting was performed by the GeneralizedLinearModel.fit function in MATLAB using the 

greenhouse data as the calibration set. For each of the four types of models, we selected the 50 best 

models according to the AIC criterion. 

Selected models were then tested using the predict function in MATLAB, and field data served 

as the validation set. For each of the four types of models, we selected the best model according to 

the R² of the correlation between WSBΨPD predictions and the corrected values of observed ΨPD.using 

the regress function in MATLAB (corrections are described in Appendix II.4.and Figure II.3). We 

compared the four types of models and chose the best one according to the R² of the correlation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure II.3: Comparison ln(-ΨPD ) with biomarker prediction of ln(- ΨPD ) for the four best models.  

Red points show comparison between model prediction and raw observation of ΨPD observed in field 

experiments. Blue points show comparison between model prediction and corrected observations 

similar to ΨPD’ used for model calibration.  
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II.2.4.8. Genes with Genotype*WSB interaction 

Test of trial effect 

We considered samples harvested only in non-irrigated conditions for the three field trials. 

For the four genes correlated to morpho-physiological traits and and one gene to ITW, we performed 

an ANOVA using the anovan function in MATLAB to test the genotypic, trial and genotypic*trial 

interaction effects. 

Test of the genotype*WSB interaction 

Genes found to have no trial effect were tested for the genotype*WSB interaction. We 

performed a covariance analysis using the aoctool function in MATLAB with the following model: 

Yi,b = ai +biXi,b+Zi,b,  

where Yi,b is the expression level of the gene for genotype i and biomarker level b, Xi,b is the value of 

the WSB level and Zi,b is the residue.  

II.2.5. Results 

II.2.5.1. Greenhouse results 

Selection of candidate genes 

Based on our previous results (Rengel et al., 2012), we selected 28 genes that were found to 

be correlated to the integrated transpired water (ITW) in fixed duration stress and in fixed intensity 

stress (R2>0.65). As the expression of these genes was independent of the tested genotypes, they 

were strong candidates to build a biomarker for plant water status. To assess a particular level of 

gene expression that reflects stress intensity, we needed to study these genes through a larger range 

and at a finer scale of drought stress. 

Establishment of a fine scale of drought stress 

To study changes in gene expression at different stress levels, we established a large range of 

drought stress with a fine scale. For the treated plants, the water status indicators ranged from 0.97 

to -0.087 for the FTSW, from -0.2 to -2.4MPa for the pre-dawn leaf water potential (ΨPD’), from 

54.3% to 5.98% for the soil water content (SWC) and from 0.13 to 1 for the FtotSW. The four 

genotypes and the two stages were represented through the entire range. 

The four water status indicators measured during the greenhouse experiment were highly 

correlated with the R2 values, ranging from 0.65 to 0.96 (Figure II.4). Interestingly, the ΨPD’ was only 

correlated with FTSW values below 0.4, SWC values below 25% and FtotSW values below 0.5. This 

selective correlation reflects that, in our data, ΨPD’ did not discriminate high water status levels. 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure II.4. The distributions and correlations between the four water status 

in the greenhouse experiment: Ψ

 

 

 

 

 

 

 

 

 

55 

Figure II.4. The distributions and correlations between the four water status indicators measured 

in the greenhouse experiment: ΨPD’ expressed in bar (1bar=0.1MPa), FTSW, SWC and FtotSW. 

indicators measured 

’ expressed in bar (1bar=0.1MPa), FTSW, SWC and FtotSW.  
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Correlation between gene expression and water status indicators  

As a confirmation of our previous results using the FTSW (Rengel et al., 2012), we estimated 

the correlations of 28 selected genes to the four water status indicators over the new finer and larger 

scales of water status, considering together the treated plants of all genotypes and growth stages. 

Raw data of the gene expression level compared to FTSW level for the 28 candidate genes are shown 

in Appendix II.5. We identified 18 genes whose expression was correlated (p<0.01) to the FTSW, 20 

for ΨPD’, 21 for the SWC and 18 for FtotSW (Table II.1 and Appendix II.6). 

A covariance analysis was used to test genotype-dependent correlations (p<0.01). Among the 

correlated genes, we found two genes (according to the water status indicator) whose correlations 

were genotype-dependent (summarized in Table II.1 and Appendix II.7). 

Finally, among the 28 initial genes, we retained 14 genes that showed neither genotype nor stage 

effects in the greenhouse experiment and that were technically robust in both greenhouse and field 

experiments. These first steps of gene selection for biomarker construction are summarized in Figure 

II.5.  

 

 

 

  FTSW ΨPD' SWC FtotSW 

Number of genes 

correlated to 

water indicators 

18 

0.22<R²<0.75 

20 

0.19<R²<0.91 

21 

0.18<R²<0.0.8 

18 

0.18<R²<0.77 

Number of genes 

correlated to 

water indicators 

without genotype 

effect 

16 

0.22<R²<0.71 

19 

0.19<R²<0.83 

21 

0.18<R²<0.77 

21 

0.18<R²<0.8 

Table II.1: The number of genes correlated (p<0.01) to each water deprivation indicator and 

genotype effects to be used in gene combinations for biomarker fitting. 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure II.5: A schematic description of the water status biomarker construction. 

WSBΨPD was developed in greenhouse conditions and validated in the field. WSB

WSBSWC were built in the greenhouse environment using field
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A schematic description of the water status biomarker construction. 

was developed in greenhouse conditions and validated in the field. WSB

were built in the greenhouse environment using field-robust genes used for WSB

A schematic description of the water status biomarker construction.  

was developed in greenhouse conditions and validated in the field. WSBFtotSW, WSBFTSW and 

robust genes used for WSBΨPD.  
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II.2.5.2. Construction of Generalized Linear Models to estimate plant water status 

Model for ΨPD’ in glasshouse 

According to the AIC criterion, we selected the 50 best generalized linear models with 3, 4, 5 

and 6 genes to fit the ΨPD’ from the greenhouse data (Figure II.5). The adjusted R² and RMSEc for the 

different types of models are presented in Table II.2. Considering only these glasshouse data, the 

adjusted R² increased with the number of genes introduced in the model, and the RMSEc values for 

the four types of models were similar. 

 

 

 3 gene models 4 gene models 5 gene models 6 gene models 

Adjusted R² 0.73-0.82 0.80-0.83 0.82-0.85 0.84-0.86 

RMSEc 0.61-0.66 0.64-0.66 0.64-0.67 0.65-0.68 

Table II.2: The range of adjusted R² and RMSEc for the 50 best linear models with 3, 4, 5 and 6 

genes fitting the ΨPD' in the greenhouse experiment. 

 

Field experiment validation with ΨPD 

We used the results of three field trials to select the best predictive model for ΨPD’ (Figure 

II.5). The field trial experiments were implemented in environments with deep (Auzeville-Tolosane) 

or shallow (Fleurance and Samatan) soils. The Fleurance and Samatan trials had clay soils 

(respectively in average 52.5% and 52.8% of clay) with a low water-holding capacity. The Auzeville-

Tolosane trial had soil with an equilibrate texture between the silt loam and sand (composed in 

average of 24.3% of clay, 29.8% of silt and 45.9% of sand), and therefore, with a high water holding 

capacity and therefore with a high field capacity (Table II.3). Trials were chosen with different soil 

characteristics to ensure a wide range of plant water statuses. For the same reason, we harvested 

samples and measured ΨPD over 3 weeks for six repetitions per genotype. Finally, the Samatan data 

over the last week was disturbed by an important rain event and was discarded. Overall, we obtained 

a good range of water stress across the entire experiment: ΨPD ranged from -0.5 to -2.2 MPa in the 

Fleurance trial and from -0.7 to -2.3 MPa in the Samatan trial, whereas in Auzeville-Tolosane, where 

we set up irrigated and non-irrigated conditions, ΨPD ranged from -0.3 to -1.5 MPa. 
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 Clay  

(< 2 µm) 

Fine silt  

(2-20 µm) 

Coarse silt  

(20-50 µm) 

Fine Sand 

(50-200 µm) 

Coarse sand  

(200-2000 µm) 

pH 

AUZ 0-30 cm 203 185 96 180 336 5.85 

AUZ 30-60 cm 283 221 95 138 263 6.91 

FLE 0-30 cm 531 301 88 45 35 8.43 

FLE 30-60 cm 520 327 56 30 67 8.6 

SAM 0-30 cm 534 336 68 35 27 8.38 

SAM 30-60 cm 522 316 71 48 43 8.38 

Table II.3: Soil analyses. AUZ: Auzeville; FLE: Fleurance; SAM: Samatan. 

 

Using field experiment data, we compared the models’ prediction (WSBΨPD) and ΨPD’ 

estimated from the measured ΨPD. We observed that models with 6 genes that were better in the 

greenhouse environment introduced errors in field predictions. We selected the three-gene model 

that showed the best correlation between the observed and predicted ΨPD’ with an R² equal to 0.61 

(Figure II.6) and an RMSEp of 0.67. With this model, the WSBΨPD was estimated as follows: 

WSBΨPD=ln(-ΨPD’) = 1.53 + 0.35*ln(dCtHaT13l002207) – 0.39*ln(dCtHaT13l002636) +0.16*ln(dCtHaT13l5199). 

where ψPD’ is expressed in 0.1MPa. 

In the greenhouse, this model had an adjusted R² of 0.78 and an RMSEc of 0.64 and therefore 

offered better prediction in both controlled and field environments. 

Models for water stress indicators not accessible in field conditions 

The three genes used in the model to predict ΨPD’ appeared to be robust enough in 

predicting the stress intensity in both the greenhouse and field environments. We used these same 

genes in the construction of models for water stress indicators that are not accessible in field 

conditions. FTSW, SWC and FtotSW were estimated by generalized linear modeling using gene 

expression levels of HaT13l002722, HaT13l002636 and HaT13l005199 as follows: 

WSBFTSW = 0.42 - 0.0618*ln(dCtHaT13l2207) +0.21*ln(dCtHaT13l002636) - 0.04*ln(dCtHaT13l005199), 

WSBSWC = 27.70 - 3.83*ln(dCtHaT13l002207) + 8.51*ln(dCtHaT13l002636) - 1.79*ln(dCtHaT13l005199), and 

WSBFtotSW = 0.54 - 0.06*ln(dCtHaT13l002207) + 0.17*ln(dCtHaT13l002636) - 0.03*lnd(CtHaT13l005199). 

Models had adjusted R² values of, respectively, 0.69, 0.72 and 0.74 for FTSW, SWC and FtotSW, and 

their RMSEc values were, respectively, 0.20, 9.31 and 0.18. 
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Figure II.6: Correlations between corrected field data ln(-ΨPD’) and predicted ln(-ΨPD’) by 

WSBΨPD of the corresponding best model with 3, 4, 5 or 6 genes (n=142 individual plants), where 

ΨPD’ is expressed in bar (1bar=0.1MPa). Validation of the models were performed with samples 

harvested between 11:00 and 12:30 without correction for harvest time. a) Correlation with 

predictions of the best three-gene model. b) Correlation with predictions of the best four-gene 

model. c) Correlation with predictions of the best five-gene model. d) Correlation with predictions of 

the best six-gene model. Field data of the three trials are represented: Samatan (SAM, in red), 

Fleurance (FLE, in green) and Auzeville-Tolosane (AUZ, in blue). Note that the three-gene model, 

represented by the regression line in violet, produced better predictions, with an R² value of 0.61.  
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Correction of gene expression level for diurnal variation 

To build these models, we used samples harvested between 11:00 and 12:30. So, the 

biomarker was calibrated and validated only for samples harvested during this period of the day. To 

use this model as a biomarker and a practical tool in experiments involving large numbers of 

genotypes or conditions, it appeared to be useful to obtain a biomarker valid for a larger sampling 

time period. Therefore we needed to correct for the time of the sampling, at least for genes showing 

modification of their expression according to the diurnal variation. This variation of expression of the 

three genes included in the models (shown in Figure II.7.a-c) throughout a 24-hour period could not 

be neglected in comparison to the variation of known circadian genes (Figure II.8). The kinetic curves 

of gene expression levels over 24 hours showed that between 10:00 and 20:00, the variation of gene 

expression could be estimated through a linear regression. We used kinetic curves over 24 hours to 

estimate the expression at 11:30 from the expression at any time over this specific timeframe as 

shown in Figure II.7.d-e. The correction was efficient for samples harvested from 10:00 to 17:30; 

however, for samples harvested out of this timeframe, the correction was not sufficiently reliable to 

estimate the gene expression at 11:30. Sampling out of this timeframe should therefore be avoided. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure II.7. Diurnal variation of biomarker genes expression and correction efficiency for 

prediction from samples harvested at different times of the day. 

a) Twenty-four hours kinetic curves of expression level for transcript HaT13l002207. 

hours kinetic curves of expression level for transcript HaT13l002636. 

curves expression level for transcript HaT13l005199. Dotted lines represent kinetic curves for 6 

irrigated plots and 6 non-irrigated plots. One plant by plot was harvested for each harvest time. The 

solid line is the regression line betw

Comparison between biomarker predictions using gene expression between 11:30 and 12:00 and 

biomarker predictions using raw gene expression at different times of the day. 

between biomarker predictions using gene expression between 11:30 and 12 and corrected gene 

expression at different times. As biomarker model was calibrated and validated with samples 

harvested between 11:30 and 12:00, correction aimed at estimating gene express

samples harvested between 10:00 and 20:00 and showing a linear variation. Note that the correction 

is efficient only for samples harvested between 10:00 and 17:30. WSB 

with ΨPD in bar.  

  

a 
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. Diurnal variation of biomarker genes expression and correction efficiency for 

prediction from samples harvested at different times of the day.  

four hours kinetic curves of expression level for transcript HaT13l002207. 

hours kinetic curves of expression level for transcript HaT13l002636. c) Twenty

for transcript HaT13l005199. Dotted lines represent kinetic curves for 6 

irrigated plots. One plant by plot was harvested for each harvest time. The 

solid line is the regression line between 10:00 and 20:00 used for transcript expression correction. 

Comparison between biomarker predictions using gene expression between 11:30 and 12:00 and 

biomarker predictions using raw gene expression at different times of the day. 

n biomarker predictions using gene expression between 11:30 and 12 and corrected gene 

expression at different times. As biomarker model was calibrated and validated with samples 

harvested between 11:30 and 12:00, correction aimed at estimating gene express

samples harvested between 10:00 and 20:00 and showing a linear variation. Note that the correction 

is efficient only for samples harvested between 10:00 and 17:30. WSB ΨPD is expressed as ln(

 

d 

e 

. Diurnal variation of biomarker genes expression and correction efficiency for biomarker 

four hours kinetic curves of expression level for transcript HaT13l002207. B) Twenty-four 

Twenty-four hours kinetic 

for transcript HaT13l005199. Dotted lines represent kinetic curves for 6 

irrigated plots. One plant by plot was harvested for each harvest time. The 

een 10:00 and 20:00 used for transcript expression correction. d) 

Comparison between biomarker predictions using gene expression between 11:30 and 12:00 and 

biomarker predictions using raw gene expression at different times of the day. e) Comparison 

n biomarker predictions using gene expression between 11:30 and 12 and corrected gene 

expression at different times. As biomarker model was calibrated and validated with samples 

harvested between 11:30 and 12:00, correction aimed at estimating gene expression at 11:30 from 

samples harvested between 10:00 and 20:00 and showing a linear variation. Note that the correction 

is expressed as ln(- ΨPD ) 
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Figure II.8 : Kinetic curves of circadian genes expressions during 24 hours.  

Dotted lines show gene expression over 24 hours for 12 plots representing two genotypes (Inedi, 

Melody) and two conditions (irrigated and non-irrigated conditions). a) Transcript HaT13l000567 

homologous to the circadian Arabidopsis gene ZTL. b) Transcript HaT13l007116 homologous to the 

circadian Arabidopsis gene TOC1. c) Transcript HaT13l011336 homologous to the circadian 

Arabidopsis gene LHY. d) Transcript HaT13l015763 homologous to the circadian Arabidopsis gene CO. 

e) Transcript HaT13l005099 homologous to the sunflower dehydrin HaDN1 (Cellier et al., 2000). f) 

Transcript HaT13l011509 homologous to the sunflower dehydrin HaDN2 (Cellier et al., 2000). 

 

 

 

II.2.5.3. Use of the Water Status Biomarker 

Identification of gene expression profiles showing a genotype*WSB interaction in field 

conditions 

The water status biomarker (WSB) built in this study could be applied to characterize the 

environments for water stress for different genotypes. This application would allow the identification 

of genes showing genotype*water status interactions that could explain the genotypic variation for 

drought tolerance. To illustrate this, we chose five genes correlated to other morpho-physiological 

variables or water stress intensity in (Rengel et al., 2012), that did not show a trial effect in field 

experiments (p>0.05 in ANOVA over the three non-irrigated trials) as summarized in Table II.4. 
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Genes AGI trial effect (p-value>0.05) 

HaT13l009400 AT1G64230 0.054555846 

HaT13l002164 AT5G12840 0.141579354 

HaT13l009999 AT5G15600 0.14513769 

HaT13l009995 AT5G58070 0.180341098 

HaT13l020030 AT5G39720 0.098184115 

Table II.4: Genes with no trial effect over the three non-irrigated trials. 

 

 For these five genes, a covariance analysis showed significant genotypic and genotype*WSB 

interaction effects as shown in Table II.5 and Figure II.9. These results exemplify a possible use of the 

WSB when searching for genetic variation of the drought response. 

 

Gene 
Genotype effect (p-

value) 

WSB effect (p-

value) 

Genotype*WSB 

interaction effect 

(p-value) 

HaT13l009400 4.98E-12 1.62E-17 1.90E-02 

HaT13l002164 9.00E-04 1.52E-04 3.90E-04 

HaT13l009999 8.35E-05 1.25E-08 1.75E-02 

HaT13l009995 5.70E-01 6.37E-08 4.83E-0.2 

HaT13l020030 3.41E-05 3.78E-03 7.23E-03 

Table II.5: Results of covariance analysis for five selected genes.  

 

These genes shown G*WSB interaction effect (p<0.05) and illustrate the use of the biomarker to 

detect differential plant drought responses according to the genotype and the plant water status as it 

is identified by the WSB.  

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure II.9: Gene expression showing genotype*WSB interactions in ANCOVA study (p<0.05).

The four genotypes Melody (green), Inedi (black), PSC8 (blue), and XRQ (red) showed different 

interactions with the environment described by the 

with ΨPD expressed in bar (1 bar=0.1MPa) 

transcript. (b) HaT13l009400, homologous to the 

homologous to the Arabidopsis 

HAP2A transcript. (e) HaT13l020030, homologous to the 

 

II.2.6. Discussion 

II.2.6.1. Description of the three genes selected for the water status 

The water status biomarker was defined from the expression levels of three genes 

normalized by the expression levels of reference genes. HaT13l002207 is homologous to the 

Arabidopsis transcript of TUA5 (AT5G19780). This gene encodes a tubulin. Microtubules are polymers 

of tubulin heterodimers. The relationship between microtubules and ABA in plant cells has been 

extensively studied, although the exact mechanisms involving the microtubule response to dro

stress remain largely unknown. Dynamic microtubules in guard cells are sensitive to extracellular 

a 

c 

e 
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Gene expression showing genotype*WSB interactions in ANCOVA study (p<0.05).

The four genotypes Melody (green), Inedi (black), PSC8 (blue), and XRQ (red) showed different 

interactions with the environment described by the WSBΨPD. WSBΨPD is the prediction of ln(

PD expressed in bar (1 bar=0.1MPa) (a) HaT13l009995, homologous to the 

HaT13l009400, homologous to the Arabidopsis UBC28 transcript. 

 SP1L4 transcript. (d) HaT13l002164, homologous to the 

HaT13l020030, homologous to the Arabidopsis AIG2L transcript. 

Description of the three genes selected for the water status biomarker

The water status biomarker was defined from the expression levels of three genes 

normalized by the expression levels of reference genes. HaT13l002207 is homologous to the 

(AT5G19780). This gene encodes a tubulin. Microtubules are polymers 

of tubulin heterodimers. The relationship between microtubules and ABA in plant cells has been 

extensively studied, although the exact mechanisms involving the microtubule response to dro

stress remain largely unknown. Dynamic microtubules in guard cells are sensitive to extracellular 

b 

d 

Gene expression showing genotype*WSB interactions in ANCOVA study (p<0.05). 

The four genotypes Melody (green), Inedi (black), PSC8 (blue), and XRQ (red) showed different 

is the prediction of ln(-ΨPD') 

HaT13l009995, homologous to the Arabidopsis TIL1 

transcript. (c) HaT13l009999, 

HaT13l002164, homologous to the Arabidopsis 

transcript.  

biomarker 

The water status biomarker was defined from the expression levels of three genes 

normalized by the expression levels of reference genes. HaT13l002207 is homologous to the 

(AT5G19780). This gene encodes a tubulin. Microtubules are polymers 

of tubulin heterodimers. The relationship between microtubules and ABA in plant cells has been 

extensively studied, although the exact mechanisms involving the microtubule response to drought 

stress remain largely unknown. Dynamic microtubules in guard cells are sensitive to extracellular 
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stimuli and drought stress, which affect both the microtubule dynamics and ABA accumulation 

(Marcus et al., 2001). Moreover, Lu et al. (2007) demonstrated that changes in microtubule dynamics 

have an effect on ABA accumulation in root cells of Zea mays. 

HaT13l005199 is homologous to the Arabidopsis transcript of XTR7 (AT4G14130). This second 

gene encodes for a concanavalin that is a xyloglucan endotransglycosylase (XET). XETs form a large 

family, of which some members are involved in cell wall biogenesis or rearrangement (Van Sandt et 

al., 2007), which are processes inherent to growth. Moreover, a relationship between the response 

of the growth rate under water stress and XET activity has been previously suggested (Thompson et 

al., 1997). 

HaT13l002636 is homologous to the Arabidopsis transcript of GBF3 (AT2G46270). This last 

gene is a transcription factor that encodes a bZIP G-box binding protein, and its expression was found 

to be induced by ABA, cold and water deprivation (Lu et al., 1996).  

These three genes were shown to have direct or indirect links with water deficit or ABA, which 

is the drought stress hormone. Although these links were demonstrated in Arabidopsis and in the 

microtubule dynamics of maize, our biomarker gene selection and model calibration may be specific 

to the sunflower. Accordingly, new WSB development would be required for other species. 

II.2.6.2. Comparison between the WSB and classical water status indicators 

From the correlations observed between the ΨPD’, FTSW, SWC and FtotSW, we confirmed 

that plant-based water status indicators, such as ΨPD’ and FTSW, reflect the soil water content. The 

expression levels of genes selected to construct the WSB were highly correlated to the water status 

indicators, especially to the plant-based indicator ΨPD’. Therefore, the expression of these three 

genes reflects the environmental water status as integrated by the plant. As the expression of these 

genes was independent of genotype and stage, the determination of a given drought stress based on 

the water status biomarker was the same for all genotypes and stages tested. 

We obtained a better WSB for ΨPD because we selected genes using the ΨPD’ measurements 

but also because gene expression levels and ΨPD’ are both plant-based measurements. Therefore, to 

characterize the water available for the plant in the field, WSBΨPD was the most robust biomarker. 

II.2.6.3. Advantage of WSB over environmental data 

The WSB built in this study represents the environmental water status perceived by the plant. 

The expression of the selected genes was correlated to the environmental water status and 

independent of genotypic diversity and stage. However, the water status described by the biomarker 

was not exactly the same as the water status described by soil-based water indicators. For example, 

the SWC reflected the water status of the soil, but according to the type of soil, the availability of 
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water to the plant could vary. As a plant-based water status indicator, gene expression levels have 

the advantage of offering a better representation of the environment perceived by the plant than 

raw soil and climatic data. 

II.2.6.4. WSB genes and environmental signal integration 

Gene regulatory networks integrate the environment to drive morphological and physiological 

responses (Shinozaki & Yamaguchi-Shinozaki, 2007). Any genotypic variability in a step of the 

response cascade would translate in further genotypic variations in the overall drought response 

process. Therefore, we can argue that the genes used in our genotype-independent biomarker are 

involved in upper steps of this cascade close to the integration of the environmental signal or in 

general genotype-independent pathways (maybe illustrated by the presence of the tubulin gene in 

our WSB). 

II.2.6.5. Validity of the WSB 

The water status biomarker was developed using the correlation with ΨPD’ in a greenhouse 

and validated with field ΨPD data (Figure II.5). Because they are not easily tractable in field conditions, 

the estimation of FTSW, SWC and FtotSW using our gene expression biomarker was only validated in 

the greenhouse experiment. However, to account for greenhouse and field variations, we built 

WSBFTSW, WSBSWC and WSBFtotSW with the same genes used for the WSBΨPD, as they were shown to be 

robust in both environments. This robustness allows us to be confident in our predictions of the 

WSBFTSW, WSBSWC and WSBFtotSW in the field and makes these indicators accessible in this 

environment; providing a new tool for plant biologists. 

 

The circadian regulation of gene expression has been documented for a couple of sunflower 

genes (Cellier et al., 2000). However, to construct the biomarker, we did not take into account that 

the diurnal variation of our genes expression could be important. To calibrate and validate the water 

status biomarker, we sampled plant tissues between 11:00 and 12:30, so the problem of sampling 

period was not crucial. With the diurnal variation study, we were also able to infer the gene 

expression level at 11:30 from samples harvested between 10:00 and 17:30, which thus defined a 

valid timeframe for sampling. This correction was specific to the day of study (sunny and warm) and 

might at least improve the prediction in most of the drought studies.  

The biomarker construction was based on samples harvested from May 31 to June 15 2012, 

including average relative humidity varying from 63 to 80% on cloudy and sunny days reflecting 

variable evaporative demands. It selected genes that were not affected by this kind of climatic 

variations. This was confirmed in the field experiments performed two months later in shorter day 
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conditions, in three different locations with higher evaporative demands. 

In these conditions, the biomarker gene expression was not correlated to diurnal water potential and 

was not influenced by the specific climatic conditions of the day of harvest. So in all these different 

relative humidity and average temperature conditions, we could validate our model for both 

experimental conditions.  

 

Both in the greenhouse experiment and in field trials, we managed to obtain a large range of 

water stress, and we showed that the WSB was able to characterize the environment for this entire 

range of water statuses. However, in all experiments, we only applied a continuous deficit of water. 

We did not test the ability of our WSB to describe plant recovery if, for example, rain events occur 

after a long period of water deficit. 

Importantly, the expression of the three genes chosen to the build biomarker appears to be 

independent of the tested genotypic diversity. This independence is a particular characteristic of the 

selected genes and makes them distinct from many other genes as we describe below. 

II.2.6.6. Use of the WSB 

Breeding for a trait affected by drought (G*E) 

For crop breeding, environmental characterization is critical to understand the 

genotype*environment interaction. Climate and crop management data alone are not sufficient to 

obtain a good definition of the environment perceived by the plant. Therefore, the WSB developed in 

this study could be useful for characterizing the environment with regard to water availability, 

allowing breeders to better understand genotype*drought stress interactions. Accordingly, this WSB 

could be a powerful tool to study any trait affected by drought and help to breed drought tolerance 

in sunflower. 

 

Example: identification of gene expression responses depending on the water status biomarker 

Following this G*E identification strategy, we looked for genes showing significant 

genotype*WSB interaction effect and whose expression levels were independent of trials. 

Our results suggest that five genes could show this pattern (Figure II.9). Among these genes, four 

were found correlated with morpho-physiological variables and the last one to water stress intensity 

in (Rengel et al., 2012). These genes were examples of genes related to plant drought responses and 

whose expression changed according to the genotype and the plant water status as predicted by the 

WSB. The expression of HaT13l002164 and HaT13l009999 was correlated with carbon isotopic 

discrimination (CID). These transcripts are respectively homologous to the Arabidopsis transcripts of 

HAP2A (AT5G12840), which codes for a subunit of the CCAAT-binding complex, and SP1L4 
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(AT5G15600), which regulates cortical microtubule organization. The third gene encodes 

HaT13l009995, whose expression is correlated with evapotranspiration (ET). This transcript is 

homologous to the Arabidopsis transcript of ATTIL (AT5G58070) involved in thermotolerance (Chi et 

al., 2009). The fourth gene encodes HaT13l020030, whose expression is correlated with the osmotic 

potential (OP). Its Arabidopsis homolog is the avirulence-induced gene AIG2L (AT5G39720). Finally, 

HaT13l009400 expression was found to be correlated with water stress intensity but was not used to 

build the biomarker because it showed a genotype effect in the greenhouse experiment. This 

transcript is homologous to the Arabidopsis transcript of UBC28 (AT1G64230), which codes for a 

ubiquitin-conjugating enzyme. 

Following the signaling cascade from the environmental signals down to the genotype-

specific responses, these genes would be responsible for the final responses and belong to the end of 

the gene signaling cascade. Because we were able to identify environment-related genes and 

response-related genes, this approach could allow us to model the gene regulatory network from the 

global gene expression dataset. 

Crop model 

Crop models represent dynamic crop processes and are used to simulate crop development 

and behavior as a function of the environment, management conditions and genetic variations 

(Sinclair & Seligman, 2000). Such tools may also benefit from the use of the WSB. For example, 

SUNFLO (Casadebaig et al., 2011) is a crop model that is able to simulate biomass yield and 

transpiration of the sunflower genotypes in contrasting environments. In this model, the FTSW is an 

output variable of a water budget module based on climatic and management input variables and 

plant parameters (expansion and transpiration sensitivity to water stress, soil depth and water 

holding capacity). The simulated FTSW is thereafter used to model the effects of water stress on crop 

growth and performance. 

In this context, WSBFTSW could be a tool to readjust the simulated FTSW values with 

observations to improve crop performance prediction for a specific site. It appears impossible to 

harvest plants every day to obtain a daily WSBFTSW. However, harvesting at a few key stages of crop 

development appears to be a good compromise and could help to perform a more accurate 

simulation of crop development. 

 

Distinction between traits of interest and drought stress responses 

In the field, crops are actually subjected to both abiotic and biotic stresses. These two types 

of stresses are in interactions. A biomarker characterizing water status could be a tool to distinguish 

the part of genetic variation in a trait of interest, such as distinguishing the resistance to a disease 
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from drought stress responses that could interfere in phenotyping. As an example, it has been shown 

that water deficit conditions were significantly involved in the disease severity of premature ripening 

induced by Phoma macdonaldii susceptibility (Seassau et al., 2010). In this case, the biomarker for 

characterizing the water status environment perceived by the plant could be used to perform a 

screening of Phoma-tolerant genotypes adjusting for different water statuses. 

Drought stress management feasibility: time and cost of the WSB 

Our goal in this study was not only to demonstrate the possibility to characterize the water 

status environment from gene expression levels but also to design a practical tool that could be 

easily used. To achieve this goal, we paid particular attention to the cost and time needed to run the 

new biomarker. 

Important parameters to consider in the development of a cost- and time-effective 

biomarker are the sampling time window and the number of genes used. 

Concerning the time window for sampling, the diurnal variation study allowed us to estimate gene 

expression levels at 11:30 from samples harvested between 10:00 and 17:30. Therefore, the WSB can 

be used with samples harvested during a large diurnal sampling period, in contrast to the ΨPD, that 

can only be measured at pre-dawn. 

Regarding the number of genes, we developed a WSB based on the expression of only a few 

genes, i.e., the three genes included in the generalized linear models and reference genes used for 

normalization. Therefore, it is possible to easily test very large numbers of samples using q-PCR with 

minimal time and cost. 

However, because of the delay between harvest and q-PCR results, the WSB seems more 

relevant for breeding or studying genotype behavior than for drought stress management during 

crop production. 

II.2.7. Conclusions 

In this study, we developed a gene expression biomarker that was able to estimate the plant 

water status expressed as the ΨPD’, FTSW, FtotSW or SWC (Figure II.5). This tool is independent of the 

tested genotypes and the developmental stage. A correlation between the WSB and ΨPD’ was 

validated in greenhouse and in field conditions with different soil properties. Other classical water 

status indicators showed robust correlations with the WSB in greenhouse experiments. The water 

status biomarker developed here could be a useful tool in different scientific fields for characterizing 

the water status in plants. 

 

End of article: “A biomarker based on gene expression indicates plant water status in 

controlled and natural environments” published in December 2013 in Plant Cell & Environment. 
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II.3. Conclusion and outlooks regarding the Water Status Biomarker 

Several leads can be followed up in order to improve the Water Status Biomarker (WSB) 

described above or to avoid some problems during the future development of new plant biomarkers.  

First, as already mentioned, the WSB was not tested for plants recovering from a drought stress, i.e. 

when the water status improves after a severe drought event. Knowledge about gene expressions in 

such situation could be useful to circumscribe the validity domain of the WSB. For example, the 

nitrogen status biomarker for maize developed by Yang et al. (2011) was tested and still valid for 

recovering plants. However, testing this hypothesis for our WSB raises the question of the rate of 

recovery for the gene expression following a water stress, even if it is very likely that ARN turn over 

and gene induction should happen faster than the morpho-physiological responses to rehydration. 

Photosynthesis, transpiration, and stomatal conductance were shown to be correlated to leaf water 

potential in kidney bean during the recovering following a drought stress (Miyashita et al., 2005). If 

the recovery of drought stress is similar in sunflower, it suggests that the utilization of a WSB to study 

physiological traits related to drought stress would remain valid in this drought scenario followed by 

recovery. However, it does not imply that the expression of genes used in the biomarker will have a 

similar rate of recovery. A new study, addressing those different issues, will provide more knowledge 

about gene expression and regulatory network under drought recovery. 

Another important aspect of the WSB that needs to be discussed is its stability under a wider 

genetic variability. Expression of genes involved in the biomarker was found independent of the 

genotype. However, only a small genetic diversity (8 genotypes in Rengel et al., (2012) and then 4 in 

this study) was used to build the WSB. We can argue that genotypes used for the biomarker 

construction have different strategies regarding drought stress. The Melody hybrid closes its stomata 

under a low water potential whereas Inedi reduces stomatal conductance at a higher water status. 

Despite this choice in the genotypes, we might expect that the biomarker genes are differentially 

expressed in a panel of genotypes with a larger genetic diversity, as for example wild species 

compared to elite lines. This aspect will be discussed again in the chapter III of this PhD work.  

Finally, when using the WSB to estimate the plant water status, we have to keep in mind that 

it is a predictive model for water status with a non-negligible margin of error. However, this 

inconvenient has to be compared with the precision of the measure performed by the Scholander’s 

chamber used for the pre-dawn leaf water potential measurements. Moreover, measuring each 

genotype water status with the standard water stress indicators in the experiments set up for wide 

genetic study involving hundreds of genotypes is not realistic. We agree that using WSB as sole 

indicator of water stress is probably not sufficient and should be combined with climatic and 

environmental data as well as water status measurements (ΨPD for example) on a limited number of 
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control genotypes. Those measures could be introduced in a crop model to estimate water status of 

genotypes via another method which could be compared with the WSB predictions. However, the 

introduction of the WSB in genetic experiments in order to compare genotypes while correcting for 

their water status will certainly help reducing the Genotype x Environment (GxE) bias even if it does 

not eliminate it completely.  

To conclude, we could plan to build others biomarkers based on gene expression for eco-

physiological traits with a high throughput and in field conditions. It could be very useful for complex 

traits that are difficult and time consuming to measure with traditional tools and methods. It points 

out two types of biomarkers. The first group, as in our study, aims at characterizing the environment 

and its perception by the biological organisms (here the sunflower). The second type of biomarkers is 

used to study and characterized complex physiological traits to characterize the development of the 

organism, population or community, and/or its response to environmental factors. In crops, there is 

a clear interest to develop proxies for photosynthesis or transpiration rate for example. Scalable at 

high throughput, such biomarker would greatly help the identification of the genetic control of these 

traits and therefore the construction of ideotypes. Biomarker could also be developed in order to 

characterize biotic stress. Indeed phenotyping for disease resistance in a quantified manner is a 

difficult work. Therefore, biomarker utilization could be a way to tackle this difficulty. 

 

II.4. Discussion about genes receptor of the environmental signal 

The first criterion for WSB genes was the correlation between their expression level and the 

water stress intensity. On this account, we can state that they are part of the regulatory cascade 

leading to drought stress responses. The second criterion for those genes selection was that their 

expressions were not correlated to other main morpho-physiological traits involved in water deficit 

responses. Finally, their expression was not dependent on the genotype. All together, this suggests 

that they are (i) part of the receptor system of the environmental signal (ii) involved in signal 

transduction and/or in particular responses that were neither studied nor genotypically variable.  

The hypothesis that they are part of a receptor system is reinforced by the functional 

annotation of their Arabidopsis homologues. Shinozaki and Yamaguchi-Shinozaki (1997) reported 

that a change in the physical tension of the cytoskeleton during water stress might triggers osmotic 

responses and that the xyloglucan endotransglycosylase are part of the touch-genes that induce 

water-stress-inducible genes. Other studies reported in literature, reported similar description of 

these types of genes in drought responses (Van Sandt et al., 2007; Thompson et al., 1997). Therefore, 

we can propose the hypothesis that the WSB genes are, at least for the genes encoding a tubulin 

(TUA5) and a concanavalin (XTR7), part of a receptor system of the environmental signal.  
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The expression of the genes selected for the WSB are independent of the genotype at least for 

the genotypic diversity tested. However, drought stress can differ between two genotypes due to the 

genotype-dependent expression of some genes in the regulatory cascade for drought stress 

responses. There is no clear knowledge of the stage where some genetic variability arises in the gene 

regulatory pathway. A hypothesis that needs to be verified is that different cascades regulate 

drought stress responses: some that involve only genotype-independent genes and the others 

involving a mix of genotype-dependent and genotype-independent genes. Cross-talks and 

connections between these cascades would be common. Based on this assumption, genes used for 

the WSB construction would either be at the beginning of the overall cascades (starting from the 

environmental stimulus) or anywhere in a genotype-independent cascade that would not control the 

characterized morpho-physiological responses (Figure II.10). 

 

 

  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure II.10: Localization of WSB genes and hypothesis of two regulatory cascades 

stress responses regarding genotype dependency of the gene expressions. 

(a) case of a separate genotype

represent the hypothesized localization of genotype

 

 

This work about genes that are receptors of the environmental signal raises other questions. 

Plant water status evolves: it is a constant adjustment between drought stress responses of the plant 

and water constraint of the environment. A first question that nee

control of the plant water statu

focus our research on the genetic control the genes underlying the major morpho

involved in drought stress responses. It could help understanding the GRN that link receptor genes 

and effector genes for water deficit responses. Moreover, the utilization of the WSB in such analyses 

allows the comparison of genotypes with the same plant water status.
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Chapter III: Linking complex morpho-

physiological traits involved in drought 

tolerance to the underlying genomic loci. 

Reconstruction of a regulatory network 

through a genome wide association study of 

gene expression levels. 
 

 

 

In this third chapter, we choose to focus on drought responsive genes encoding for cell effectors 

proteins as opposed to receptors and signal transducer proteins. This class of genes regulates the 

main morphological and physiological traits involved in water deficit tolerance. Those traits are 

complex quantitative traits under the control of many genes interacting between them and with the 

environment. To link DNA sequences variation to the diversity of phenotypes, two main genetic 

approaches, described in the next section, have been developed. 

  

III.1. Deciphering the genetic control of complex traits: Quantitative Trait 

Locus (QTL) analyses or association studies. 

Many traits of agronomical interest, such as drought tolerance, are quantitative traits 

controlled by several genes and their interaction with the environment and between them. 

Deciphering this genetic control is a major goal for breeder in an objective of varieties improvement. 

To aim at this goal two main approaches have been developed these last decades: quantitative trait 

locus (QTL) detection (Lander & Botstein, 1989), also called linkage mapping, and association 

mapping. Improvement in both methods has been made possible thanks to major progresses not 

only in the genotyping technologies (Jiménez-Gómez, 2011) but also in the statistical methods used 

(Yu et al., 2006; Mackay & Powell, 2007). These approaches lead to the improvement of the breeding 

practices (Morgante & Salamini, 2003). Both approaches have for final goal to find significant 

statistical correlation between the genotype and the observed phenotype. The two approaches do 

not use the same type of genetic material. Linkage mapping focuses on families of known pedigrees 

as for example a RIL (Recombinant Inbred Line) population. On the contrary, association mapping 

used a collection of individuals whose ancestry is often unknown in plant (Yu & Buckler, 2006). Both 

methods rely on the principles of genetic recombination and exploit the shared inheritance of two 

loci: the targeted functional polymorphism and an adjacent marker. This shared inheritance is due to 
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the linkage disequilibrium (LD). LD is defined by the nonrandom association of alleles at different loci 

(Flint-Garcia et al., 2003). If a LD occurs, an allele at a locus is found associated to a second locus 

more often than if the two loci segregate independently in the population. In the case of the QTL 

detection approach, LD level between two loci is caused by the linkage between them, i.e the 

physical distance between the two loci. In association mapping, the studied genotypes are the result 

of a complex and unknown evolution history. This approach exploits historical and evolutionary 

recombination at the population level (Yu & Buckler, 2006). Therefore LD between two loci is due to 

linkage but also to various mechanisms related to population history and that influence LD level and 

decay. 

Mutations are the initial mechanisms which provide the polymorphisms that will occur in LD. 

In addition to recombination events LD is influenced by the mating pattern of the species, the 

selection, the reduction of the population size, the admixture and the genetic drift (Flint-Garcia et al., 

2003). Table III.1 sums up the major phenomena affecting LD.  

 

Mechanisms Effect on LD 

Mutation Temporary increasing of LD around the locus 

affected by the mutation 

Recombination Decreasing of LD 

Admixture LD extends even to unlinked sites but breaks 

down rapidly with random mating 

Reduction of population size (bottleneck) Conservation of few allelic combination induces 

increasing LD 

Selection Increasing of LD 

Mating pattern: 

 

LD decay more rapidely in outcrossing species as 

compared to selfing species, because 

recombination is less effective in selfing species 

that are largely homozygous 

Genetic drift In small population it goes with the loss of rare 

allelic combinations and therefore with an 

increase in LD level 

Table III.1: Mechanisms that influence LD level and decay 

 

Due to the difference of genetic populations used by the two methods, association mapping 

has the advantage over linkage mapping that it takes into account a greater number of alleles and 
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has a broader reference population. Another distinction involved by the difference of genetic 

material is the mapping resolution for the same size of population. In families with known ancestry, 

there are only few opportunities for recombination to occur. It results in a low mapping resolution. 

On the contrary, association mapping exploits historical recombination and natural genetic diversity, 

resulting theoretically in a higher mapping resolution (Zhu et al., 2008). Figure III.1 illustrates the 

difference in mapping resolution for the two methods. However, this difference between linkage and 

association mapping is in reality not so categorical. Indeed, the comparative theoretical high 

resolution of association mapping is dependent of the structure of the LD across the genome that can 

limit recombination events.  

 

 

Figure III.1. Schematic comparison of linkage analysis and association mapping 

(a) linkage analysis with designed mapping populations and (b) association mapping with diverse 

collections (Zhu et al., 2008). 

 

So, the decay of LD over physical distance in a population determines the necessary marker 

density coverage. As LD has been shown to vary between species and within species it is necessary to 

study LD level and extent in the population before performing an association analysis (Flint-Garcia et 

al., 2003). LD decay varies also from one locus to another with a larger extent of LD for loci target of 

the selection: for example, adh1 (alcohol deshydrogenase 1) was shown to have LD extend over 

500kb in Maize elite lines (Jung et al., 2004). Several studies on Arabidopsis thaliana (Nordborg et al., 

2002) and Maize (Tenaillon et al., 2001) have been conducted. Thanks to the new sequencing 

technologies and high throughout genotyping, a more and more important number of markers is 

available. It made easier the association mapping development and the transition between the 

candidate genes approaches and the genome-wide strategies (Rafalski, 2002). The first association 

mapping studies on plants have been conducted by Buckler and his collaborators on flowering time 

in maize (Remington et al., 2001; Thornsberry et al., 2001). Since this first study, many were 
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Globally, those methods use genotypic information from random molecular markers across the 

genome to account for structure population and familial relatedness in association tests (Figure III.2).

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure III.2:  Schematic diagram of genome

The inclusion of population structure (Q), relative kinship (K) or both in final association analysis 

depends on the genetic relationship of the association mapping panel. E stands for residual variance. 

(adapted from Zhu et al., 2008) 
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published in a variety of plant species as rice (Agrama et al., 2007), rapeseed (Honsdorf

and even sunflower as detailed below. 

Despite some advantages of the association mapping, this method can lead to the

of numerous false positive associations. However, as already discussed above, LD in an association 

panel can be due not only to linkage but also to various mechanisms, such as the panel structure and 

the familial relatedness between individuals. Indeed, if in reality the association panel is composed 

groups, each with different allele frequencies, the union of such sub

one population leads to a modification of the LD and therefore to a risk for false positive det

This risk increases with the population size (Yu & Buckler, 2006; Thornsberry et al.

statistical methods have been proposed to account for population structure and familial relatedness 

as for example the structure association computed by the software STRUCTURE 

the principal components approach (Patterson et al., 2006) or the mixed model approach 

into account the genotypic effect through a random factor and combines 

structure population estimation (matrix Q) and relative kinship for each genotype pairs (matrix K). 

genotypic information from random molecular markers across the 

genome to account for structure population and familial relatedness in association tests (Figure III.2).

Figure III.2:  Schematic diagram of genome-wide association mapping. 

The inclusion of population structure (Q), relative kinship (K) or both in final association analysis 

depends on the genetic relationship of the association mapping panel. E stands for residual variance. 

 

(Honsdorf et al., 2010), 

Despite some advantages of the association mapping, this method can lead to the detection 

above, LD in an association 

as the panel structure and 

the association panel is composed of 

groups, each with different allele frequencies, the union of such sub-groups in 

a risk for false positive detection. 

et al., 2001). Several 

statistical methods have been proposed to account for population structure and familial relatedness 

STRUCTURE (Pritchard et al., 

or the mixed model approach (Yu 

into account the genotypic effect through a random factor and combines 

each genotype pairs (matrix K). 

genotypic information from random molecular markers across the 

genome to account for structure population and familial relatedness in association tests (Figure III.2). 

The inclusion of population structure (Q), relative kinship (K) or both in final association analysis 

depends on the genetic relationship of the association mapping panel. E stands for residual variance. 
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Linkage mapping and association mapping are two complementary approaches with both advantages 

and disadvantages. More recently, another type of mapping population, the nested association 

mapping (NAM) population has been developed in order to overcome, in particular, the issue of 

marker density for a genome-wide association study. A NAM population consists of a large set of 

related mapping progenies (for example RIL) developed from diverse selected founders. The 

sequencing or the dense genotyping of the founders associated to the genotyping of both founders 

and the progenies thanks to a small number of tagging markers allow projecting the high-density 

marker information from the founders to the progenies. Therefore a GWAS study can be conduct on 

the progenies with a high marker density (Yu et al., 2008). Such population is developed, for 

example, for maize by the Maize Diversity Group (http://www.panzea.org) in order to dissect 

complex traits. Close to the Maize NAM population, in Arabidopsis and in rice, Multiparent Advanced 

Generation Inter-Cross lines have also been developed to improve the power to detect and localize 

QTL (Kover et al., 2009; Bandillo et al., 2013). A MAGIC population is initiated by intermating the 

founder accessions during several generations (for example, four in the Arabidopsis MAGIC lines). In 

a second step the outcrossed families produced by the intermating are inbred for several generations 

in order to produce a stable panel RIL composed of nearly homozygous lines. The Figure III.3 shows 

an example of MAGIC population development as realized in the study of Bandillo et al. (2013). 

Analytic methods have been developed to fine-mapping QTL in the MAGIC lines by reconstructing the 

genome of each line as a mosaic of the founders (Kover et al., 2009). 
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Figure III.3. Crossing scheme to produce multi-parent advanced generation inter-cross (MAGIC) 

population (Bandillo et al., 2013).  

 

III.2 Association studies in sunflower  

III.2.1 Three association mapping researches on sunflower 

Various papers have already reported linkage disequilibrium studies on sunflower (Kolkman et 

al., 2007; Fusari et al., 2008). For example, Kolkman et al., (2007) estimated SNP density across the 

sunflower genome (∼3500 Mbp). They predicted that sunflower harbors at least 76.4 million 

common SNP among modern cultivar alleles. They also show for their panel that in the inbred lines 

LD level declined to 0.32 by 5.5 kbp and that this decay happened slower in inbred lines than in wild 

population due to history of domestication and breeding pressure. These studies revealed the 

potential of linkage disequilibrium mapping studies on this species thanks to the sufficient SNP 

frequencies and LD decay in modern sunflower cultivars. Indeed, several association studies 

conducted on sunflower have then followed and confirm this. Fusari and co-workers (2012) 

developed an association mapping approach to detect loci involved in Sclerotinia head rot resistance. 

For this first study, a collection of 94 sunflower inbred lines was used in a candidate gene strategy (43 

genes). Another association study with a genome-wide strategy was then developed for the 

detection of loci involved in branching and flowering time (Mandel et al., 2013). In this work, 271 
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sunflower lines were genotyped on an Illumina Infinium 10k SNP array. In a third study, Cadic and co-

workers (2013) combined results of an association mapping study and of a linkage mapping approach 

to identify QTL involved in the control of flowering time in sunflower. Using these two 

complementary approaches allowed the authors to overcome the downsides of each one, explore 

more environments and therefore produce robust association results. As the same sunflower 

association panel is used in this work, we will use the next sections to give more detail on results 

concerning LD and structure of this core collection. 

III.2.2 Association panel used and described in the work of Cadic et al., 2013 

To achieve their work that concerned a core collection of 384 sunflower genotypes, Cadic and 

co-workers (2013) evaluated the linkage disequilibrium as well as the structure of their panel and the 

kinship between each pair of genotypes. Linkage disequilibrium decay ranged from 0.08 to 0.26 cM, 

after correcting for a structure effect, depending on the linkage group (LG) and the status of the 

inbred lines (B-lines: maintainers of cytoplasmic male sterility or R-lines: fertility restorers). Figure 

III.4 shows the LD decay in this panel. 

 

 

 

 

 

 

 

 

 

 

 

Figure III.4: Distribution of LD decay across chromosomes for the entire panel and for each 

breeding pool (B-lines: maintainers of cytoplasmic male sterility and R-lines: fertility restorers). 

LD decay was calculated using the r2vs statistic (Mangin et al., 2012) that includes correction for the 

structure effect (Cadic et al., 2013). 
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Analysis of the panel structure thanks to a Principal Component Analysis (PCA) revealed 

differences between R-lines and B-lines (Cadic et al., 2013). Indeed the first component of the PCA, 

explaining 5.91% of the variability, separated the B-pool on the right side and the R-pool on the left 

side (Figure III.5). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure III.5: Structure of the association panel used in Cadic et al., 2013. 

The top two principal components of the PCA analysis are represented. Percentages in parentheses 

refer to the proportion of variance explained by the principal components. Symbols represent the 

two breeding pools: x for R-lines (red) and triangles for B-lines (green). (Cadic et al., 2013) 

 

Therefore, the structure used in the association model of the study of Cadic et al. (2013) 

reflected the belonging of the lines to the B- or R-pools. 

  



To study the genetic control of 

genes that support physiological and morphological traits involved in water deficit tolerance (

III.6), we carry out an association mapping study

subset (N=275) of the same association panel described and studied in the work of 

(2013). Then, we base our work on their results 

population structure and linkage disequilibrium in this panel 

model to use. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure III.6: Genes studied for their response to 

response to water deficit. 
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genetic control of drought response through the control of the expression of

physiological and morphological traits involved in water deficit tolerance (

), we carry out an association mapping study on a selection of these genes

of the same association panel described and studied in the work of 

work on their results that provides the necessary knowledge about 

population structure and linkage disequilibrium in this panel and, as well as 

: Genes studied for their response to drought stress and inducing morpho

response through the control of the expression of 

physiological and morphological traits involved in water deficit tolerance (Figure 

on a selection of these genes. This work uses a 

of the same association panel described and studied in the work of Cadic et al., 

the necessary knowledge about 

as well as the best association 

drought stress and inducing morpho-physiological 
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III.3 Issues and challenges in the study of genes correlated to water 

stress responses  

The goal of the work described in the next part of this chapter is to study the genetic control of 

genes whose expression is correlated to main morphological and physiological traits involved in 

drought tolerance, such as, for example, relative water content (RWC) or the evapotranspiration (ET). 

The gene expression is an upstream phenotype which not accounts for the final, integrated 

and complex phenotypic response. However, due to the strong improvement of molecular 

technologies aiming to quantify the transcription for a large number of samples and genes, 

characterizing the phenotype through a transcriptomic quantification of genes related to the 

complex traits, appears now as a competitive approach when compared to physiological 

phenotyping. Moreover, this approach will allow reinforcing the bridge of knowledge between the 

genotype and its specific phenotypic response.  

Therefore, in this chapter we describe and present the results of an association mapping study 

on these gene expression levels in order to unravel the gene regulatory network that controls them. 

This will also permit us to identify cis- (proximal) and trans- (distant) regulations of those gene 

expressions. The second aspect of this work is to highlight the differences between the genotype x 

environment interaction effect and genotype effect of genetic variants on gene expression. We will 

then address the distinction between the part of the drought stress response that is plastic (changing 

in function of the environment water status) and that which is solely genotypic. To answer this 

question we will use the Water Status Biomarker described in the previous chapter in order to 

normalize water status of the genotypes and compare them in a similar environment regarding 

drought stress. 
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III.4. Article: Integration of the environment in gene regulatory 

networks. Identification of plastic regulations in the case of drought 

stress in sunflower via an association study on gene expression. 

Article status: to be submitted 

Authors 

Gwenaëlle Marchand, Baptiste Mayjonade, Stéphane Muños, Didier Varès, Nicolas Blanchet, Brigitte 

Mangin, Patrick Vincourt, and Nicolas B. Langlade 

 

III.4.1.Abstract 

Organisms adapt their phenotype to the environment through the gene regulatory networks 

(GRN) that control their development and physiology. Regulation modifications in these networks 

can code constitutive expression differences between species or genotypes but also differences in 

the expression modulation i.e. plasticity. A better understanding of the genetic control of complex 

traits and knowledge of the part in which the plasticity is involved, is of particular interest for fields 

as physiology, evolution, and breeding. The approaches that treat transcript abundances as 

quantitative traits appeared to be a way to decipher the genetic control of those complex traits and 

their underlying gene regulatory network. We studied the genetic basis controlling the expression 

variation of 86 genes previously shown to be involved in various morpho-physiological responses to 

drought stress in sunflower (Helianthus annuus). This was achieved through an association mapping 

approach on a panel of 275 sunflower hybrids grown and studied in field conditions. The water status 

of each genotype was estimated with a Water Status Biomarker, related to the pre-dawn leaf water 

potential, and was exploited as an environmental covariate. This allowed to perform the genetic 

analysis using two association models. The first one did not correct for the environment and 

compared genotypes at different water statuses. The second model corrected the environmental 

effect and therefore compared genotypes at similar water status. Comparison of both models gave 

access to the genotypic and genotype-environment interaction parts of the gene expression genetic 

control. Indeed, three genes showed significant plastic responses to drought intensity. From this 

analysis, we constructed a gene regulatory network linking 78 genetic loci to 33 gene expression 

levels correlated to 6 morpho-physiological responses. This systems biology approach integrated 

genetic and transcriptomic data to characterize which part of GRN allows phenotypic plasticity and 

species adaptation to new environments. 
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III.4.2. Authors summary 

Expressions of genes underlying complex traits are modulated in function of (1) genetic 

variants i.e genotypes under same environment could have different phenotypes, (2) environment 

variation i.e a single genotype could present different phenotypes under different environmental 

conditions and (3) genotype x environment variation i.e each genotype do not vary in the same way 

following the environment. The two last parts represent the phenotypic plasticity of the trait. A 

better understanding of the genetic control of such complex traits, as for example drought tolerance, 

is of particular interest for different disciplines. As transcript is the first step between genome 

information and phenotypes, the utilization of transcript abundances as quantitative traits appears 

as a powerful way to understand genetic control of complex traits and the underlying gene 

regulatory network.  

In this context, we studied the genetic basis of expression levels variation of 86 genes 

correlated to drought tolerance on sunflower through an association study on 275 sunflower 

genotypes. We evaluated the water environment perceived by each genotype and we compared 

results of two statistic models to estimate the genetically-variable part of the plasticity in the genes’ 

expression regulation. Finally, we could reconstruct a drought gene regulatory network that links the 

genes, correlated to molecular and physiological processes to drought responses, to the genomic loci 

involved in their control. Moreover the influence of the environment in the genetic control could be 

identified. 

III.4.3. Introduction 

Phenotypic variation within a species shows a large diversity for plant traits as morphology, 

physiology or disease susceptibility. These complex traits, with very important phenotypic variation, 

are the product of a genetic control with multiple loci interacting between them and with the 

environment (Mackay et al., 2009). To link DNA sequences variation to the diversity of phenotypes, 

different genetic approaches as linkage mapping (Lander & Botstein, 1989) or association mapping 

(Remington et al., 2001) have been used before. These studies allowed the identification of many 

regions in the genome involved in complex traits control (Mackay, 2001) but the complex gene 

regulatory network that links genes and phenotype remains largely unknown.  

Gene transcription is the first molecular step between genome information and the final, 

integrated, complex phenotype. So, changes in transcription levels are generally considered to be 

essential factors that reflect, at least for a part, the production of different phenotypes. Variation in 

gene expression levels were shown to be highly heritable (West et al., 2007) and transcript 

abundance of a gene can be considered as a quantitative trait (Brem et al., 2002). Therefore, Jansen 

and Nap (2001) introduced the idea of genetical genomics, in which linkage or association mapping 
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could be applied to gene expression levels. This new approach allowed the identification of loci in the 

genome underpinning the observed variation in transcript abundance and then the reconstruction of 

the gene regulatory network that controls the complex physiological traits. 

The application of this new strategy has been allowed by the progress of genotyping 

technologies on one hand and transcriptome arrays on the other hand.  

Several linkage mapping studies on gene expression have been performed in a variety of organisms: 

first on yeast (Bing & Hoeschele, 2005; Brem et al., 2002), as it is a well studied organism for gene 

expression, but also on plants, with several studies on maize (Schadt et al., 2003) and on the model 

plant Arabidopsis thaliana (West et al., 2007; Cubillos et al., 2012b; Keurentjes et al., 2007). These 

studies highlighted and described thousands of expression QTL (eQTL) with, as for classical traits, a 

large variation in the number of controlled transcripts for each locus. 

However, Cubillos and co-workers (2012b) demonstrated that transcriptome architectures 

were moderately conserved between crosses for the plant model Arabidopsis thaliana. This 

emphasizes the need for new studies, taking into account a larger genotypic diversity, in order to 

better understand the transcriptomic control within a species and produce a regulatory network 

integrating differences between a large diversity of genotypes.  

In this context, association mapping on gene expression appeared to be a promising strategy. 

This approach has been largely used on Human, for example to better understand the cellular 

biochemical processes associated to susceptibility loci for complex diseases such as diabetes (Schadt 

et al., 2008) or degenerative diseases (Dixon et al., 2007). One genome-wide association study 

(GWAS) has been performed for the plants on Arabidopsis thaliana (Gan et al., 2011), in which whole 

genome seedling transcriptomes were used on a small association panel of only 19 accessions. 

If gene expression levels are highly heritable, the interaction between genotype and 

environment is also an important factor that could modify transcript abundance (Smith & Kruglyak, 

2008) and this issue has to be taken into account particularly when studying the expression of genes 

related to responses to biotic and abiotic stresses. Indeed, understanding the ability of plants to 

adapt to their environment is a major issue that could have numerous applications in several fields as 

physiology, evolution or crop breeding. Plant response to environment also referred as phenotypic 

plasticity can be defined as the ability of a genotype to produce multiple phenotypes in response to 

the environmental variations (Des Marais et al., 2013). In his study, Bradshaw (1965) highlighted the 

importance of genetic variation in plasticity, which was then measured as a genotype x environment 

interaction (GxE). Since this first study conceptualizing GxE interactions, there is now accumulating 

evidence that GxE interactions are very common and account for a non negligible part of the 

phenotypic variation (Grishkevich & Yanai, 2013). Because gene expression variation could be 

considered as phenotypic quantitative traits, study of their plasticity and in particular of their GxE 
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interactions could be of great interest to analyze gene regulatory network involved in abiotic plant 

responses. For example, it will help to answer questions about the molecular and genetic 

mechanisms that underlie gene expression plasticity, since all genes do not show equivalent 

plasticity. In their review, Grishkevich and Yanai, (2013) reported that promoter architecture, 

expression level and regulatory pattern correlate with the differential regulation of a gene by the 

environment. The understanding of these different components could therefore help to breed and 

construct novel ideotypes based on more accurate model predictions for environmental adaptation.  

In this study, we performed a GWAS on expression levels of genes involved in drought stress 

responses for sunflower (Helianthus annuus). Drought is one of the major environmental stresses. It 

limits the productivity of all major crops, and is expected to become more frequent and widespread 

in the future. It affects the expression of numerous genes that are the first step toward changes in 

the morphology and in the physiology of the plant (Bhatnagar-Mathur et al., 2008). The GWAS 

strategy allowed us to take into account the large genetic diversity of Helianthus annuus through an 

association panel, and we studied the genetic variation of plasticity thanks to a newly developed 

water status biomarker in order to evaluate the drought stress perceived by each genotype. This 

allowed us to make the distinction between the genotypic effect, constitutive of the genotype, and 

the GxE effect, corresponding to the plastic part of the response to the environment i.e. the 

genetically-variable part of the plasticity. 

 

III.4.4. Results 

III.4.4.1. Estimation of drought stress perceived by each genotype in the association 

panel  

A core collection of 384 sunflower inbred lines was built using a nested core collection strategy 

from an initial set of 752 inbred lines (Cadic et al., 2013). The association panel used in this study 

contains 275 inbred lines and is a subset of the initial core collection described above. The lines of 

this panel were crossed with two testers according to their status (maintainers of cytoplasmic male 

sterility “B-Lines” or fertility restorers “R-Lines”), and grown in agronomic conditions in Villenouvelle 

(Haute-Garonne, France) during summer 2011. The field experiment design was formed of blocks 

with 24 entries replicated in two sub-blocks. Each sub-block was randomized separately and 

contained two check hybrids: Melody and Pacific. The field trial was conducted without irrigation.  

As we aim at finding the genetic architecture of drought stress responses, it was important to 

determine the water stress perceived by the plants. To estimate water status of the 275 genotypes of 

the association panel, we calculated the Water Status Biomarker WSBΨPD, i.e. a biomarker that 
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estimates the pre-dawn leaf water potential (ΨPD) from a linear combination of three gene 

expression levels (Marchand et al., 2013). ΨPD is a classical indicator of plant water status that 

evaluates water available in the soil for the plant. Values of the WSBΨPD observed for the association 

panel genotypes in field conditions after a period of moderate drought in a deep soil corresponded 

to a range of ΨPD between -0.38MPa and -1.52MPa. This variability could be due to (1) the variability 

of the environment i.e. the position of the genotype in the trial design, (2) the specific morphology 

and physiology of the genotype involving that, for the same amount of water in the soil at the 

beginning of the experiment and the same meteorological conditions, different genotypes had 

different access to soil water and consumed it more or less rapidly. Consequently, at the day of 

harvest, the 275 genotypes of our panel had different water statuses and perceived different drought 

stresses. 

The ΨPD values of the two check hybrids, Pacific and Melody, repeated at each block of the 

experimental design ranged from -0.55MPa to -0.82MPa and from -0.54MPa to -1.0MPa respectively 

(Figure III.7.a). This result showed that the variability due to the spatial variation in the field could not 

be neglected for the association study. 

We then corrected the water status WSBΨPD of each genotype by the block effect (calculated in 

an analysis of variance, ANOVA) that captured the spatial variation but was not due to rainfall 

differences (Appendix III.1). For all the genotypes, the normalized values of WSBΨPD corresponded to 

values of ΨPD with a reduced standard deviation of 1.09 (instead of 1.34 for the raw data) and range 

from -0.33MPa to -1.29MPa (Figure III.7.b).  

 

These results showed that the panel genotypes accessed and used water in different ways 

although they were subjected to the same external environment. The observed variation in water 

status (i.e. the environmental factor) resulted from the genotype x environment interaction. It results 

in a range of environments that can be used to correct our variables of interest and access their 

genetic control, but it also can be exploited to reveal the dynamic response to water availability in 

sunflower.  

  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure III.7: Variability of the water status perceived by the genotypes in the field trial

Each bar represents a field plot with one genotype

dawn leaf water potential (ΨPD

perceived by the check genotype Melody, without correction for spatial variation

Water status perceived by each genotype after correction for spatial variation. 
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Variability of the water status perceived by the genotypes in the field trial

a field plot with one genotype. Bar height and color represent 

PD) i.e water status perceived by the genotype. 

genotype Melody, without correction for spatial variation

perceived by each genotype after correction for spatial variation.  

Variability of the water status perceived by the genotypes in the field trial 

. Bar height and color represent the estimated pre-

) i.e water status perceived by the genotype. (a) Water status 

genotype Melody, without correction for spatial variation in each block. (b) 
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III.4.4.2. Selection of genes reporting drought responses 

From a previous study (Rengel et al., 2012), we selected genes found to be correlated, using 

a sparse partial least squares approach using mixOmics (González et al., 2011), to (i) Carbon Isotopic 

Discrimination (CID), (ii) Osmotic Potential (OP), (iii) Evapotranspiration (ET), (iv) Relative Water 

Content (RWC), (v) Specific Leaf Area (SLA), and (vi) Total Leaf Area (TLA) in two different drought 

scenarios conducted in controlled conditions (R²>0.65). In addition to those genes, we also selected 

genes that showed a Genotype x Environment interaction effect in the ANOVA performed in (Rengel 

et al., 2012) with 8 genotypes and a fixed intensity of stress scenario. We finally studied the 

expression of 86 transcripts. Detailed descriptions of these genes are presented together with all the 

genes in this study in Appendix III.2. 

III.4.4.3. Gene expression data analysis 

The expression levels of the 86 transcripts were determined by qRT-PCR on the 275 

genotypes of the panel and on the check genotypes included in each block. For each gene expression 

level, the best linear unbiased predictors (BLUP) of genotypes were calculated for two models as 

described in the Materials and Methods section. The first model only corrects the spatial variation in 

the field and compares genotypes in different environments. The resulting BLUPs captured together 

the genotypic, the environmental and the genotype-environment interaction effects on the gene 

expression. This first model was therefore noted GE. The second model corrects both the spatial 

variation in the field and the environmental effect and compares genotypes in a similar environment 

(Figure III.8). Accordingly, the resulting BLUPs reflect mainly the genetic control of the studied gene 

and the model was noted G.  

Using the GE model, we calculated BLUPs for 86 gene expressions and the WSB. Out of the 86 

genes, 17 did not vary when corrected spatially, and the genetic control of their expression could not 

be performed. Similarly, for the G model, we calculated BLUPs for the 86 gene expressions. Among 

them 70 were found with BLUPs different from zero. All the BLUPs values are reported in the 

Appendix III.3. 

In total, 140 variables were studied: the WSB and 69 BLUPs of gene expression in the GE 

model, and 70 in the G model. 

  



 
  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure III.8: G and GE models explanation.

The variability captured by the GE model is due to the genotype (y

environment (x-axis) and therefore represented by the blue plane. Normalization in the G model 

permits to compare different genotypes at the same water status. Theref

by the G model is only due to a genotypic effect and is represented only by 

Phenotype is the result of the G and GxE variability and is represented in the z

plants and vertical bars whose height and colors represent expression level of a gene

control of genotypic, environmental and GxE effects

 

III.4.4.4. Association mapping

Association analysis 

To perform association tests between gene expression variation and SNP var

selected 62,820 SNPs showing polymorphism for the association panel with MAF > 

redundancy out of the 197,914 SNPs of 

The association model was chosen according to the study o

models of association were investigated for the same core collection of sunflower. We used a mixed 

model that corrects for structure and kinship between the lines of the associa

appeared to be the best association model
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: G and GE models explanation. 

The variability captured by the GE model is due to the genotype (y-axis) and to the water 

axis) and therefore represented by the blue plane. Normalization in the G model 

permits to compare different genotypes at the same water status. Therefore the variability explored 

by the G model is only due to a genotypic effect and is represented only by one dimension

Phenotype is the result of the G and GxE variability and is represented in the z

height and colors represent expression level of a gene

control of genotypic, environmental and GxE effects. 

Association mapping 

To perform association tests between gene expression variation and SNP var

selected 62,820 SNPs showing polymorphism for the association panel with MAF > 

of the 197,914 SNPs of the sunflower AXIOM array (see Materials and Methods). 

The association model was chosen according to the study of Cadic et al. (2013)

models of association were investigated for the same core collection of sunflower. We used a mixed 

model that corrects for structure and kinship between the lines of the association panel. This model 

appeared to be the best association model for our panel according to BIC, 

axis) and to the water 

axis) and therefore represented by the blue plane. Normalization in the G model 

ore the variability explored 

one dimension (y-axis). 

Phenotype is the result of the G and GxE variability and is represented in the z-axis by schema of 

height and colors represent expression level of a gene with under the 

To perform association tests between gene expression variation and SNP variation, we 

selected 62,820 SNPs showing polymorphism for the association panel with MAF > 5% and without 

array (see Materials and Methods).  

2013), in which several 

models of association were investigated for the same core collection of sunflower. We used a mixed 

tion panel. This model 

 p-value criteria, and 
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reductions of false positives (Cadic et al., 2013). Associations with an adjusted FDR p-value <0.05 

were considered to be robust. 

Association studies with and without correction for the environment provide distinct results 

For most of the gene expression levels, associations found with the GE model (with the 

correction for the environment effect) and the G model (without the correction) were similar. 

However, it was interesting to note that depending on the model considered, with or without the 

WSB correction, the adjusted p-values for the phenotypic traits were not exactly identical. Twenty-six 

gene expression levels had lower adjusted p-values using the GE model and 42 using the G model. 

Results of a paired t-test on adjusted p-values (Appendix III.4) showed that 62 gene expressions 

(91%) had different p-values between G and GE models and four did not shown significant 

differences between the two models. 

Moreover, among the 66 gene expression levels studied in the two models, 33 presented 

significant associations: 26 with both models, and 4 and 3 only for the G model and the GE model 

respectively. Among these 26 genes, 18 did not present the same number of significant associations 

in G and GE model respectively.  

These results suggest that the two models give complementary results and allow making a 

distinction between genotypic, GxE interaction, and environment control of the gene expression in 

order to understand the genetic architecture of drought stress responses. 

Association mapping results 

For the G model, 30 expression levels out of the 70 studied presented significant associations 

with 1 up to 443 markers. For the GE model, 29 expression levels and the WSB presented significant 

associations with 1 up to 437 markers. Table III.2 and Appendix III.5 summarize results of the 

association study. 

The 1364 SNPs found in association were mapped on a consensus map of two genetic maps 

generated from two RIL populations named INEDI (XRQxPSC8) and FUxPAZ2 (see Materials and 

Methods). The SNPs were mapped thanks to different sources of information: INEDI and/or FUxPAZ2 

mapping, Linkage Disequilibrium (LD) mapping and alignment comparison of markers context-

sequences on genomic and transcriptomic sequences of the sunflower genotype XRQ. Finally, 649 

SNPs could be positioned using the genotyping data information on INEDI or FUxPAZ2, 488 were 

mapped using LD information and 106 using sequence alignment comparison. In total, 1243 SNPs 

associated to 27 and 26 gene expression level in  the G and GE models respectively (91% of the 

associated SNPs), were mapped on the consensus map and 121 remained unmapped. In each model, 

three gene expression levels were only associated with unmapped SNPs. 
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Gene ID 

Correlated 

phenotypic 

variable 

Arabidopsis name/ AGI Model 

Number of 

associated 

SNP 

Most significant 

FDR adjusted 

pval 

Number 

of QTL 

Number 

of 

mapped 

QTL 

HaT13l000239 OP SEC, SECRET AGENT 
GE 58 1.47E-05 6 4 

G 55 1.26E-05 6 5 

HaT13l001185 RWC 
AXS2, UDP-D-XYLOSE 

SYNTHASE 2 

GE 5 3.66E-02 1 1 

G 0 _ _ _ 

HaT13l001663 OP 
ATFC-II, 

FERROCHELATASE 2 

GE 4 8.77E-03 2 2 

G 4 9.35E-03 2 2 

HaT13l002091 CID EMB1873 
GE 41 4.29E-12 3 1 

G 41 4.38E-12 3 1 

HaT13l002581 OP 
ATSUC2, SUCROSE 

TRANSPORTER 1 

GE 2 7.31E-03 2 1 

G 2 5.75E-03 2 1 

HaT13l002627 ET ASB1; TRP4; WEI7 
GE 437 5.71E-10 6 6 

G 443 6.27E-10 6 6 

HaT13l002719 GE candidate KUP10 
GE 24 5.47E-05 4 3 

G 25 3.73E-05 4 3 

HaT13l002773 GE candidate SRF3 
GE 3 4.93E-05 1 1 

G 3 1.71E-05 1 1 

HaT13l002800 CID 
ATKRS-1, LYSYL-TRNA 

SYNTHETASE 1 

GE 0 _ _ _ 

G 1 6.64E-03 1 0 

HaT13l002822 GE candidate AT2G42490 
GE 6 3.73E-03 1 0 

G 6 4.88E-03 2 1 

HaT13l003718 ITW.RWC BETA-6 TUBULIN, TUB6 
GE 1 3.70E-02 1 0 

G 2 1.22E-02 1 0 

HaT13l004212 ET AT3G19320 
GE 2 4.92E-02 1 1 

G 0 _ _ _ 

HaT13l005549 RWC PMSR3 
GE 4 1.12E-02 3 1 

G 4 1.10E-02 2 1 

HaT13l006786 ET AT2G22420 
GE 114 8.14E-13 4 3 

G 113 1.42E-12 3 2 

HaT13l007963 ITW.RWC AT3G18050 
GE 36 3.25E-05 4 3 

G 34 5.60E-05 3 2 

HaT13l008198 GE candidate MBR2 
GE 16 1.23E-02 6 5 

G 15 1.63E-02 6 5 

HaT13l008549 GE candidate SARK 
GE 0 _ _ _ 

G 25 4.05E-02 2 2 

HaT13l009999 CID SP1L4, SPIRAL1-LIKE4 
GE 181 3.32E-15 15 10 

G 179 7.92E-15 14 9 

HaT13l010540 CID AT5G47390 
GE 1 2.63E-02 1 1 

G 1 2.33E-02 1 1 

HaT13l011270 CID AT1G76020 
GE 76 2.30E-07 9 8 

G 76 2.26E-07 9 8 

HaT13l011662 CID 
FAD2, FATTY ACID 

DESATURASE 2 

GE 3 9.05E-03 2 2 

G 3 8.16E-03 2 2 
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HaT13l012070 CID PAT1 
GE 10 9.23E-03 1 1 

G 10 8.11E-03 1 1 

HaT13l013507 ET ABH1 
GE 3 3.13E-02 1 0 

G 3 3.36E-02 1 0 

HaT13l013529 OP CRK5; RLK6 
GE 25 5.48E-04 3 3 

G 31 3.47E-04 3 3 

HaT13l016627 CID AT5G42250 
GE 0 _ _ _ 

G 5 1.67E-02 2 1 

HaT13l025285 OP TINY2 
GE 2 4.41E-03 2 1 

G 6 6.68E-03 4 2 

HaT13l033242 ET AT1G78070 
GE 0 _ _ _ 

G 6 4.12E-02 3 1 

HaT13l059347 ET PLDALPHA1 
GE 16 1.33E-02 6 4 

G 17 2.00E-02 6 4 

HaT13l060757 GE candidate _ 
GE 1 4.96E-02 1 1 

G 0 _ _ _ 

HaT13l068709 CID _ 
GE 168 9.31E-13 7 5 

G 168 4.82E-13 7 5 

HaT13l200063 OP ACHT4 
GE 6 9.96E-06 2 1 

G 6 8.47E-06 2 1 

HaT13l200627 GE candidate EDF4 
GE 5 2.83E-04 1 1 

G 4 6.71E-05 1 1 

HaT13l201322 RWC AT1G22930 
GE 5 1.64E-02 2 2 

G 10 9.70E-03 3 3 

Table III.2: Summary of associations and QTL detected 
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III.4.4.5. QTL detection and identification of cis- and trans-regulations 

On the INEDI, FUxPAZ2 and consensus maps, SNPs associated to the same trait and distant 

from less than 5 cM from the next associated SNP were considered to form one single QTL. This 

binning allowed us to account for Linkage Disequilibrium between SNPs and to synthesize the genetic 

information for further analysis. Again, if two or more genes were controlled by adjacent QTL, those 

QTL were considered to be a single one if they were distant from less than 5cM. 

In total, 50 QTL were found for all gene expression levels (corrected by both models) and were 

placed on 16 out of the 17 different chromosomes of sunflower. In addition to those mapped QTL, 

we found 12 QTL with only LG information and we grouped unmapped associated SNP in 16 other 

QTL depending on the trait associated.  

 

Considering only the mapped QTL, between 1 and 10 QTL per trait were detected (TableIII.2). 

The expression levels of HaT13l009999 and HaT13l011270 were found associated with the highest 

number of QTL (10 and 9 for the first one in the GE and G model respectively and 8 in both models 

for the last one). Mapped associations for these traits are represented in Figure III.9. Linkage group 

14 had the highest number of regions in association with 7 QTL spread over 101.8cM. A hot spot 

spanning 14.3 cM could be identified on linkage group 16 (QTL16_46) where it was associated to 10 

gene expression levels (5 genes found with expression associated in both, GE and G models). 

  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure III.9: Manhattan plot representing FDR adjusted p

expression levels corrected or not by the environment and mapped 

Point color represents the type of information used to map the SNPs: black points correspond to the 

INEDI or FUPAZ2 RIL maps information, blue points to linkage

points to context-sequences comparison. Red arrows represent QTL as defined in the Material and 

Methods. (a) Manhattan plot of the gene HaT13l009999 for the G model (left) and the GE model 

(right). (b) Manhattan plot of the gene HaT13l011270 for the G model (left) and the GE model (right).
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: Manhattan plot representing FDR adjusted p-values for the association between gene 

expression levels corrected or not by the environment and mapped SNPs. 

Point color represents the type of information used to map the SNPs: black points correspond to the 

INEDI or FUPAZ2 RIL maps information, blue points to linkage disequilibrium information, and green 

sequences comparison. Red arrows represent QTL as defined in the Material and 

Manhattan plot of the gene HaT13l009999 for the G model (left) and the GE model 

of the gene HaT13l011270 for the G model (left) and the GE model (right).

association between gene 

Point color represents the type of information used to map the SNPs: black points correspond to the 

disequilibrium information, and green 

sequences comparison. Red arrows represent QTL as defined in the Material and 

Manhattan plot of the gene HaT13l009999 for the G model (left) and the GE model 

of the gene HaT13l011270 for the G model (left) and the GE model (right). 
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Comparison of the studied gene position in the genome and QTL locations allowed to make 

distinction between associations with loci near the gene Open Reading Frame (ORF) that indicate 

local regulations hereafter called cis-regulations and associations with loci far from the regulated ORF 

that indicate distant regulations, hereafter called trans-regulations.  

To group the associations corresponding to cis- and trans-regulations, we either directly 

mapped the genes studied for expression level or we used the homology between the context-

sequence of the markers with sunflower transcriptomic available in the public database Heliagene 

(https://www.heliagene.org/HaT13l). Among the genes whose expression levels were in association, 

21 presented polymorphism between XRQ and PSC8 (INEDI population parents) or FU and PAZ2 and 

then could be mapped on the consensus genetic map. A regulation was considered to be a cis-

regulation if the gene was distant from less than 10cM of the QTL associated to its expression level.  

Finally, we found 22 QTL in cis (corresponding to 11 genes with association in the two 

models), 115 QTL in trans and 64 QTL of undetermined type. QTL of undetermined type are due to 

the fact that we were missing the exact gene or marker position information and marker context-

sequence could not be aligned with sequences on sunflower transcriptomic database Heliagene. 

However, QTL found in local association had more significant p-values and grouped from 4 and up to 

423 SNPs. Less SNPs were found in distant associations. Actually, the trans-QTL included between 1 

and 32 associated SNPs to the gene expression. 

We observed that the cis-associations were more significant than the trans-associations with 

adjusted p-value ranging from 9.23x10-3 to 3.32x10-15 and from 4.49x10-2 to 1.71x10-5 respectively. 

The Figure III.10 shows the distribution of the adjusted p-value comparing trans- and cis-regulations 

on one hand and trans- and cis-QTL on another hand. 

  



 

 

 

Figure III.10: Distribution of p-values 

Trans-regulations are represented in black and cis

models are grouped. (a) Distribution of associations (SNP). 
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values adjusted by FDR of cis- and trans-regulation

regulations are represented in black and cis-regulation in white. Results of both G and GE 

Distribution of associations (SNP). (b) Distribution of the QTL.

Adjusted p-value (-log10) 

Adjusted p-value (-log10) 
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III.4.4.6. Comparison of genotypic effect between G and GE models 

The genotypic effects of the 1364 associated SNPs and their variance were calculated (see 

Material and Methods) and are presented in Appendix III.6. Genotypic effect of an SNP was 

considered significantly different between G and GE model if the confidence intervals of its effects in 

the two models did not overlap. Among the 33 genes studied for gene expression level and with 

significant associations in at least one model, we found that the associations between HaT13l002800, 

HaT13l010540 and HaT13l008549 expression levels and SNPs were significantly different between G 

and GE models. This shows that for these three genes, the two models allow to identify and evaluate 

the importance of the genotypic and GxE control of their expression. 

III.4.4.7. Building a gene regulatory network 

From this overall analysis, we were able to build a network that represented links between 

QTL on one hand and gene expression on the other hand (Figure III.11).  

In this gene regulatory network, the source nodes are the QTL and the target nodes are the 

genes (expression levels), that we characterized to be correlated to phenotypic traits such as osmotic 

potential (OP), transpiration (ET), carbon isotopic discrimination (CID) or relative water content 

(RWC). This GRN was composed in total of 111 nodes (78 for QTL and 33 for genes) and 201 edges. 

Approximately half of the associations were found using the GE model (98) and half with the G model 

(103). Among the 78 QTL detected, 65 controlled the expression of the same genes in the G and in 

the GE models as shown in Figure III.11.  

However, we could observe 8 associations that were only detected with the GE and 12 with the G 

model. But these corresponding QTL were also associated with expression levels of other genes using 

the two models. Interestingly, 6 different QTL were only found associated to gene expression using 

the GE model and 8 others only using the G model.  

Depending on the physiological variable to which they were found correlated, connectivities 

between the genes were different (Appendix III.7). For example, genes correlated to CID and ET were 

grouped respectively in 4 and 3 connected components. Genes correlated to these two physiological 

traits appeared to be regulated by the same QTLs. On the contrary, genes correlated to OP and RWC 

were not grouped together, each gene was controlled by a different QTL.  

  



  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure III.11: Gene regulatory network for drought responses reconstructed from associations 

gene expression levels corrected or not for the environment.

(a) Entire gene regulatory network. Black s

unmapped ones. Circles represent the 

represent the phenotypic variable correlated to the gene 

Light blue represents genes correlated to CID, green represents genes correlated to 

Evapotranspiration, yellow represents genes with interaction genotype treatment in Rengel et al. 

2012), pink represents genes correlated to osmotic potential, dark blue represents genes correlated 

to the RWC and red represents genes correlated to stress intensity and RWC. Red arrow represents 

associations found by the G model and blue arrows represents associations found in t

Cis-regulations are represented by lines in zigzag and trans

lines represent regulations of unknown type. 

associations found in one model only.
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: Gene regulatory network for drought responses reconstructed from associations 

gene expression levels corrected or not for the environment.  

regulatory network. Black squares represent the mapped QTL

represent the genes studied for their expression levels. Circle

represent the phenotypic variable correlated to the gene in a previous study (Rengel

Light blue represents genes correlated to CID, green represents genes correlated to 

Evapotranspiration, yellow represents genes with interaction genotype treatment in Rengel et al. 

nes correlated to osmotic potential, dark blue represents genes correlated 

to the RWC and red represents genes correlated to stress intensity and RWC. Red arrow represents 

associations found by the G model and blue arrows represents associations found in t

regulations are represented by lines in zigzag and trans-regulations by solid lines. Finally, dotted 

lines represent regulations of unknown type. (b) Same gene regulatory network colored only with the 

associations found in one model only. 

: Gene regulatory network for drought responses reconstructed from associations for 

QTLs and grey squares 

genes studied for their expression levels. Circle colors 

(Rengel et al., 2012): 

Light blue represents genes correlated to CID, green represents genes correlated to 

Evapotranspiration, yellow represents genes with interaction genotype treatment in Rengel et al. 

nes correlated to osmotic potential, dark blue represents genes correlated 

to the RWC and red represents genes correlated to stress intensity and RWC. Red arrow represents 

associations found by the G model and blue arrows represents associations found in the GE model. 

regulations by solid lines. Finally, dotted 

colored only with the 
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III.4.4.8. Association to the Water Status Biomarker WSBΨPD 

During this study, we also identified through our genome scan, QTL regions that can account 

for the observed variation in the water status estimated by the Water Status Biomarker WSBΨPD. The 

WSBΨPD is correlated to the pre-dawn leaf water potential (ΨPD) which is a classical water status 

indicator that estimates the water available for the plant in the soil. Eleven SNPs were found 

associated with WSBΨPD and grouped in one QTL on LG4. As WSBΨPD is an indicator of water status at 

the time of measurement, one possibility to interpret these polymorphisms is that they could be 

associated to genetic variation in the access and use of water before sample harvest. 

III.4.5. Discussion 

The genome-wide association study performed allowed us to identify several QTL associated to 

the expression levels of the selected genes. Those genes were chosen from the results of the 

previous study of Rengel et al. (2012) because they had their expression levels correlated to 

physiological traits linked to drought stress responses and could therefore be considered as proxies 

for these physiological traits. This strategy of GWAS on gene expression has already been performed 

in human (Stranger et al., 2005; Cheung et al., 2005; Dixon et al., 2007) and on 19 genotypes in the 

plant model Arabidopsis (Gan et al., 2011). The other studies using quantitative genetics to 

understand the transcriptomic regulation in plants are based on linkage mapping performed on RILs 

(on maize (Holloway et al., 2011) and on Arabidopsis (Cubillos et al., 2012a)). With this new GWAS, 

we showed that this approach can be also successful to understand transcriptomic regulation 

underlying complex phenotypic traits in plants. More interestingly, we aimed at understanding how 

the environment plays a role in gene regulatory networks. To achieve this goal for the particular case 

of genetic regulation of drought stress responses, we combined the classical GWAS with an 

estimation of water status perceived by each genotype in the association panel thanks to the use of a 

Water Status Biomarker, WSBΨPD. 

With this approach, we were able to (1) identify the polymorphism associated to the control of 

the water status of the plant in the case of the GE model and (2) decipher the genetic architecture of 

the transcriptome regulation for the selected drought genes and make a distinction between 

genotypic and GxE interaction effects . 

III.4.5.1. Sunflower controls water status of its micro-environment 

In our experiment, the water status of the plants estimated through WSBΨPD (Marchand et 

al., 2013), showed a variability according to the genotypes. It demonstrated that even placed in a 

similar “starting” environment and subjected to identical crop management conditions, the 

genotypes of the association panel exploited their water reserves in different ways and placed 
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themselves in variable water statuses through their development. So, in the GE model, we used the 

genotypic variability of water use to generate a range of environmental situation (estimated with the 

WSBΨPD) and to decipher the drought response plasticity (Figure III.8). 

Indeed, the plant water status WSBΨPD can be considered as a classical phenotypic trait. Our 

results showed that WSBΨPD was associated to eleven SNPs co-localized in one QTL. As in the GE 

model each genotype represented a different drought stress level, we can hypothesize that the 

identified polymorphisms might play a role in the use and access of water of the genotypes from the 

sowing to the time of sample harvest of this study. So, this result may highlight the fact that the 

plants can indirectly control their micro-environment through their physiology and development. 

Despite the fact that the identified loci cover a large region with very likely a lot of genes, we can 

hypothesize that causal genetic variants affect processes involved in the plant capacity to access and 

use the soil water. Therefore, those genetics variants play a role in the modification of the original 

amount of soil water. This could be seen as a dialog between the plant and its micro-environment to 

switch from one water status to another. (Figure III.8). 

The WSBΨPD has been calibrated and validated with a narrower genetic diversity than the one 

explored by the association panel. Therefore, we also have to envisage that the detection of SNPs 

associated to the WSBΨPD could be due to the fact that the biomarker is not genotype-independent 

for the whole genetic diversity presented by the association panel. However, this verification is not 

experimentally tractable. 

 

III.4.5.2. Identification of plasticity QTL thanks to the G and GE models 

Genotype-constitutive and plastic parts of the drought stress response 

We used two estimations of gene expression levels in our GWAS. In the G model, we corrected 

the gene expression levels with the WSBΨPD in order to compare genotypes in a similar environment 

considering the drought stress perceived. The part of the regulation detected only with the G model 

represents the genotypic part, dependent only on the genotype and its alleles, and is not due to the 

GxE interaction. We propose to call this part of the QTL effect “genotype-constitutive” regulation, as 

it is not dependent on the drought stress intensity but only on the genetic variant at this locus. On 

the contrary, the GE model did not include correction for the effect of drought stress perceived by 

the plant and estimated by WSBΨPD. Associations in this model were therefore based on a genotype-

constitutive effect, but also on a genotype x water status (GxE) interaction effect because the 

different genotypes were not at the same water status. In the GE model, the genotype-constitutive 

regulation is therefore modulated depending on the environment by this second component of the 

QTL effect due to the genetically-variable part of the plasticity that we will also call the “plastic” 
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response. In fact, with this GE model, we used panel genotypes diversity to examine GxE interactions 

as recently suggested by Grishkevich & Yanai (2013). With this method we try to understand the 

genetic control of plasticity for drought responses. 

Throughout these last decades, the genetic control of plasticity has been the subject of several 

studies that developed several approaches to measure genetic variation for plasticity based on 

variation in slope, curvature, and other characteristics of the genotype reaction norms (Gavrilets & 

Scheiner, 1993). Simultaneously, various genetic models have been theorized in order to explain the 

genetic control of plasticity. Three models that are not mutually exclusive have been proposed 

(Scheiner, 1993). The terminology used to name the different models can be confusing as the terms 

are similar to standard terminology used in genetics but have a different signification. Therefore, the 

reader has to keep in mind this distinction when reading a discussion about plasticity models. The 

first model called overdominance hypothesized that plasticity is a function of homozygosity. In the 

pleiotropy model, plasticity is a function of differential expression of the same gene in different 

environments. Finally, in the epistasis model, plasticity is due to genes that determine the level of 

response to the environment and that interact with genes that determine the average expression of 

the trait: therefore plasticity of a trait is independent of its average value. The pleiotropy and the 

epistasis models are both supported by results of several studies, whereas, on the contrary, no 

evidence was found to support the overdominance model (Scheiner, 1993).  

Our approach of GWAS on gene expression level, allowed us to decipher the genetic control of 

the phenotypic plasticity in a different way that the one described above (Scheiner, 1993). In our 

study, comparison of the results obtained with the G and GE models allows to answer the following 

questions: (1) is expression of the studied genes regulated by the environment and does it present 

GxE interactions? (2) what part of the genetic variability of the expression is due to the genotypic 

effect and what part is due to the GxE interaction effect in the GE model?  

If the two models (G and GE) show association with the same SNPs, or QTL, but with 

significant differences in their effects, we can conclude that regulation of the gene is responsible for 

the plasticity of the controlled trait. In the case when the QTL showed no significantly different 

effects in both models, we can consider that, in the present experimental conditions and for the 

selected gene, the identified regulation was only genotype-constitutive and not involved in genetic 

variation of the plasticity of response to drought stress. 

In our study, we used the two models and detected several types of QTL. The first class is 

represented by one QTL detected equally with the G and the GE model and that showed genotype-

constitutive and plastic responses to drought stress. The second class regrouped 3 QTL that were 

detected only with the G model and showed genotype-constitutive and plastic responses to drought 

stress as their effects in the two models had significant differences. In those cases, the genetically-
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variable part of plasticity for drought stress response (the plastic response) introduced some noise 

that did not allow the associations detection by the GE model. Therefore, the G model was also able 

to reveal regulations that were not detectable with the GE model only. So, even if the two models 

detected the same associations and gave similar SNP effect for the majority of the genes, the 

comparison revealed some associations with small genotypic effects that were concealed in the GE 

model due to the loss of detection power. The third class regrouped other QTL detected either by G, 

GE models or both but they did not show a significant difference in SNP effects between the two 

models. The non-detection of a genetic variation for plasticity in response to drought stress can be 

explained by different likely causes. First, we can suppose that for some genes the experimental 

conditions did not represent a large enough range of drought stress. Then, the selected genes were 

not regulated by G x water status interactions as all the genes are not equally likely to exhibit GxE 

interactions due for example to their promoter architecture or their regulatory complexity 

(Grishkevich & Yanai, 2013). 

A last class of possible QTL was not detected in our study. It groups QTL detected only in the 

GE model and with significant differences between the effects of the two models. If such QTL were 

found, it would have indicated that for those genes the genotype-constitutive response should be 

not significant. One possible cause would have been the too small genotypic variability explored by 

the association panel. Therefore, only the genetically-variable part of the plasticity of the drought 

stress responses would have been revealed by the GE model. The absence of this last class of QTL is 

also consistent with the results of Lacaze et al., (2009). In this study about genetics of phenotypic 

plasticity for barley, Lacaze and co-workers compared the localization of traits QTL (yield and its 

components) showing QTLxE interaction effect to the localization of plasticity QTL i.e QTL for slope 

and variance of reaction norm for the same traits. All plasticity QTL were co-localized with trait QTL. 

Therefore, as in our results, there were no QTL that only affected plasticity. 

Biomarker utilization advantages and application on drought tolerance selection 

Thanks to the estimation of a Water Status Biomarker, genotypes of the association panel 

were shown to perceived different water status even if they were placed in the same “starting” 

environment. Therefore, the gene expression variation across genotypes could be used to explore 

the responses to different water status variation and therefore to identify the probable GxE 

interactions. This approximation has its the real advantage in drastically decreased experimental 

costs in comparison to Multi Environment Trials that are usually set up to identify these interactions 

(Grishkevich & Yanai, 2013).  

Moreover, Water Status Biomarker utilization in the G model and comparison with the GE 

model allowed the distinction between the genotype-constitutive and the plastic parts of the 
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regulation of the drought responsive genes. Knowledge on the importance of these two components 

of the regulation could be useful in several goals. Considering one locus independently of the others, 

a QTL with only a genotype-constitutive regulation of drought responses will be useful in the 

construction of ideotypes adapted to different water status environments. In addition, the 

knowledge of the relative importance of the G and GxE effects of a QTL for drought stress responses 

could be exploited in order to breed genotypes efficient for this particular water status. Moreover, 

considering several loci, the knowledge of the importance of their different genotype-constitutive 

and plastic effects could be even more important. In this context, we could combine several loci with 

QTL presenting strong plastic effects and breed ideotypes adapted to non-predictable environments.  

 

Ratio of local and distant regulations in the drought regulatory network 

Knowing localization of the studied genes for transcripts level and localization of the 

associated markers permitted to group QTL in two classes: local (cis) and distant (trans) regulations. 

Results in the present study concerning the ratio of cis/trans-regulations and their effects on 

transcript level variations are consistent with findings reported in studies based on linkage mapping 

for RILs in other plants such as Arabidopsis (Cubillos et al., 2012a), maize (Swanson-Wagner et al., 

2009) and rice (Wang et al., 2010). In the maize and rice studies, approximately 70% of the 

expressions QTLs were distant and explained a small fraction of the variation of each transcript 

(Cubillos et al., 2012a). This is comparable to our results: among the identified cis/trans-regulations, 

85% were distant but showed smaller genotypic effects. Concerning the GWAS, in humans, Dixon and 

co-workers (2007) found similarly numerous trans-regulations but with weaker effects than those in 

cis. On the contrary, in Arabidopsis on a study with 18 accessions, (Gan et al., 2011) found more local 

associations than distant. However, this uniquely small ratio of trans- over cis-regulations could be 

due to the weaker effect of the trans-regulations and very small size of the studied panel that did not 

provide enough statistical power to detect trans-regulation effects (Gan et al., 2011). 

In our study, identical cis-regulations were found in both, G and GE models, and comparison of the 

effects of the associated SNPs between the two models showed that there was no significant 

difference. This suggests that local genetic variation affects gene expression in a consistent manner 

over a large range of environments. This finding is consistent with the results obtained in yeast 

(Smith & Kruglyak, 2008) as they showed that variation in local-regulatory sites induced change in 

transcripts levels that are less condition dependent than those induced by trans-acting factors.  

On the contrary, the three genes previously demonstrated as to be involved in a GxE 

interaction were found to be controlled by distant QTL. This type of results was also found in 

C.elegans (Li, Y et al., 2006). Therefore we can suppose that in sunflower as well, trans-regulations 
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are more likely involved in the genetically-variable part of the plasticity of response to drought stress. 

Our experimental conditions and results were not able to highlight a GxE interaction in the other 

distant QTL. However, we could suppose that with more stringent drought stress conditions, more 

genetic variability, and more repetitions, several other trans-regulations with GxE effects could be 

revealed. Indeed, several studies (Grishkevich & Yanai, 2013; Brem et al., 2002; Des Marais et al., 

2013) demonstrated accumulating evidence that GxE likely accounts for the greater part of the 

phenotypic variation, and therefore gene expression, seen across genotypes. 

III.4.6. Materials and Methods 

III.4.6.1. Plant material 

A core collection of 384 sunflower inbred lines has been built by a nested core collection 

strategy from an initial set of 752 inbred lines (Cadic et al., 2013). It includes 176 public lines, 

whereas the others are private lines of the breeding companies: Soltis, R2N and Syngenta Seeds. 

Association panel used for the present association study contains 275 inbred lines and is a subset of 

the core collection described above. 

Testcross progeny were obtained by crossing association panel lines with two testers 

according to their status (maintainers of cytoplasmic male sterility “B-Lines” or fertility restorers “R-

Lines”), as described in Cadic et al. (2013). The R-Lines were crossed with the tester FS71501 and the 

B-Lines with the tester 83HR4gms. 

III.4.6.2. Tissue harvest and RNA extraction 

In the field, each sub-block of the first repetition was harvested on the 12th July 2011 when 

the plants were at post-flowering stage. For each genotype, the fourth leaf from the head was 

harvested on four plants and pooled. Samples of different genotypes were treated separately.  

The leaves were cut without their petiole and immediately frozen in liquid nitrogen. Grinding was 

performed using a ZM200 grinder (Retsch, Haan, Germany) with a 0.5-mm sieve. Total RNA 

extraction of samples was performed using Qiazol (Qiagen, Hilden, Germany) and following the 

manufacturer’s instructions. The quantity of RNA was estimated using a ND-1000 spectrophotometer 

(Nanodrop, Wilmington, DE, USA). cDNA synthesis was performed from 1g of total RNA using 

Invitrogen Super Script VILO cDNA synthesis Kit with random hexamer N6. 

III.4.6.3. Gene expression quantification by qRT-PCR 

Primers for qRT-PCR were designed using the sunflower reference transcriptome HaT13l 

(https://www.heliagene.org/HaT13) and Primer3 web tool 

(http://probes.pw.usda.gov/batchprimer3/index.html) using the default parameters with an optimal 
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product size of 60bp (min=50 bp, max=80 bp). We checked the target sequences of the primers 

according to the best BLAST hits in the sunflower transcriptome HaT13l. 

Gene expression was estimated by qRT-PCR using the BioMark system (Fluidigm Corporation, 

San Francisco, CA, USA) with a 96.96 Dynamic Array IFC and EvaGreen (Bio-Rad, Hercules, CA, USA) as 

the DNA binding dye (Spurgeon et al., 2008). The expression level of gene i expressed as the 

threshold cycle (Ct) was normalized according to the amplification efficiency (noted effi below) and 

the expression levels of seven reference genes (noted r below) identified in (Rengel et al., 2012) and 

was estimated as follows: 

���� 	 = 	 (1 + ����)���

∑ (1 + ����)�����
��� ��

 

with ��  the number of reference genes. 

III.4.6.4. Two models to analyze gene expression data 

We proposed to analyze gene expressions with two different mixed models using the 

function lmer in the R package lme4.  

The first model is called GE model: 

 

����� = � +	�� +	�� +	���  

 

where ����� is the phenotypic observation for the ith genotype in the jth block, µ is the intercept term, 

Gi is the genetic effect of the ith genotype and is considered to be a random effect, bj is the effect of 

the jth block and is considered to be a fixed effect, and εij is the residual error. 

The second model is called G model and introduced a correction to take into account the 

water status of the plant using WSBΨPD as a covariable in the model: 

 

���� = �′ +	�′� +	�′� +	!"#�� +	�′�� 

 

 

where ����  is the phenotypic observation for the ith genotype in the jth block with the WSB value WSBij, 

µ’ is the intercept term, G’i is the genetic effect of the ith genotype and is considered to be a random 

effect, b’j is the effect of the jth block and is considered to be a fixed effect, WSBij is the corresponding 

WSB value of the ithgenotype in the jth block and ε’ij is the residual error. 
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The GE model corrects only the spatial variation in the field and the genotypes are compared 

at different water statuses. The G model corrects both the spatial variation and the water status; 

therefore the genotypes were compared in similar water environment. 

III.4.6.5. Genotyping of the association panel 

An AXIOM chip (Affymetrix, Santa Clara, CA, USA), with a total of 197,914 single nucleotide 

polymorphism (SNP) markers was used to genotype the association panel. These SNPs were selected 

from either genomic re-sequencing or transcriptomic experiments. An additional set of 6800 non-

polymorphic sequences were added as controls. Combined with internal technical controls, the 

AXIOM chip was designed with a total of 445,876 probesets. The 275 panel lines were genotyped 

with the AXIOM chip. All hybridization experiments were performed by Affymetrix  and the genotypic 

data were obtained with the GTC software (Affymetrix). In total, 62,820 SNPs that showed 

polymorphism for the association panel with MAF > 5% and no redundancy between them were used 

as genotyping data for the association study. 

III.4.6.6. Association analyses 

Association between SNPs and traits was performed using Emma R package (Kang et al., 2008). 

According to the study of Cadic et al. (2013), we used the mixed model that corrects for structure 

and kinship between the lines of the panel association: 

 

��$%&' = 	 ( )�*+* +	,�-.- +	/� 	+	�� 

 

where ��$%&' is BLUP for the ith hybrid, Xic is the tester category, ac is the effect of the tester category 

c, Mil is genotype of the ith hybrid at locus l, θl is the effect of locus l. ac and θl are considered to be 

fixed effects, and εi is the residual. ui is the random polygenic effect modeling kinship between panel 

lines with:  

	
0+1(/) = 	 23/4 

 

where K is kinship matrix. 

The kinship matrix K used in the association model (Cadic et al., 2013) is estimated with 

Emma version 1.1.2 R package (Kang et al., 2008) using the 62,820 SNPs set. It is an Identical By State 

(IBS) allele-sharing matrix. The population structure taken into account in the model is the structure 

due to the testers (FS71501 and 83HR4gms crossed with the R- and B-lines of the panel respectively) 

and is a binary covariate.  
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A False Discovery Rate (FDR) (Benjamini & Hochberg, 1995) was applied on p-values to 

correct for multiple testing using the p.adjust function in R. Associations with an adjusted FDR p-

value <0.05 were considered to be robust. 

III.4.6.7. G and GE models comparison 

Comparison of the adjusted p-values for the two models 

We first tested that G and GE models gave results with statistically significant differences 

considering the whole set of 62820 SNPs. We performed for each expression gene a paired t-test to 

compare FDR adjusted p-values. The t-test was performed using the function ttest in MATLAB 

(version 7.13.0.564, Statistics Toolbox 7.6. The Mathworks, Natick, MA, US) 

Estimation of the SNP effects and comparison of G and GE effects 

Using the Emma package (Kang et al., 2008) in R and the association model described above, 

for each SNP in the G and GE models, we retrieved the predictors of the genotypic variance (2563)and 

of the variance of the residual error (2573). We estimated the predictor of .8-, matrix of the effect of 

the locus l, as follow: 

 

.8- = 	 9,-� 	:;�	,-	<;�	9,-� 	:;�	�$%&'< 

 

where, 

: = 256	34 +		2573=� 

with K the Kinship matrix, Id the Identity matrix, Ml  the genotyping data at locus l 

Effects of a same SNP in the G and in the GE model were considered to be with significant differences 

if their confidence intervals (CI) at 95% did not overlap. The CI at 95% were calculated as follow: 

 

�= = 	.8- 	± 1.96	2BCD  

 

where 2BCD  is the standard deviation of	.C - 

III.4.6.8. Building genetic maps 

To map the SNPs found in association with the gene expression traits, two genetic maps from 

two RILs populations were built with CarthaGène v1.3 (de Givry et al., 2005). INEDI and FUPAZ2 

populations, obtained from the cross between XRQ and PSC8 lines (180 samples) and from the cross 

between FU and PAZ2 lines (87 samples) respectively, were genotyped with the same AXIOM chip as 

for the association panel. From the 197,914 SNPs, 35,562 were polymorphic between XRQ and PSC8 
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and 28,529 between FU and PAZ2. To build the INEDI genetic map, we first added the genotypic data 

of markers from a consensus map, described in a previous study (Cadic et al., 2013) to the set of 

AXIOM SNPs of the INEDI population to assign AXIOM markers to the appropriate LG. The INEDI 

genetic map consisted of 31,757 markers that were located on the 17 LGs for a total genetic distance 

of 1487.7 cM and grouped in 1861 different loci. We then built a FUPAZ2 genetic map using the 

AXIOM markers. We attributed all markers to the appropriate LG thanks to the previous genetic map 

from the INEDI population. The FUPAZ2 genetic map consisted of 17,901 markers that were located 

on the 17 LGs for a total genetic distance of 1425.3 cM and grouped on 807 different loci. We built a 

new consensus map to compare positions in FUPAZ2 and INEDI genetic maps. First, we selected the 

common SNPs polymorphic in both populations in order to obtain a consensus map by merging the 

two data sets in CarthaGène. This first-step produced a first consensus genetic map that was 

composed of 7076 markers in 1113 different loci located on the 17 LGs for a total genetic distance of 

1471.1 cM. It was used as a skeleton on which we projected the INEDI and FUPAZ2 maps to produce 

the final consensus map. This latter map comprised 45,566 markers in 2711 different loci for a total 

genetic distance of 1,794.19 cM.  

III.4.6.9. SNP mapping by Linkage Desequilibrium 

Not all the SNP found in association with the gene expressions were mapped on the final 

consensus genetic map. LD was calculated between associated SNPs that were unmapped in one 

hand and all the 17,902 and 30,066 SNPs respectively mapped on FUxPAZ2 and INEDI genetic maps in 

the other hand. We used the statistics r²vs and r²v (Mangin et al., 2012) that correct for biases 

caused by structure and kinship between individuals. For each unmapped marker, in each genetic 

map, we selected the ten mapped markers with maximum LD according to r²vs statistic and the ten 

mapped markers with maximum LD according to r²v. If the positions of these 20 markers were not 

more than 5 cM distant from the position of the marker with the maximum LD statistic (all methods 

considered), unmapped SNP was assigned to the same position as the mapped SNP that was in 

maximum LD. 

III.4.6.10. SNP mapping using marker context-sequence alignment 

The context sequences of the associated SNPs (71 bp-long) were aligned on the genomic and 

transcriptomic sequences of the sunflower genotype XRQ available on the Heliagene web-portal 

(https://www.heliagene.org/HaT13l). Transcripts and genomic scaffolds corresponding to the best 

BLAST hits were retrieved for each SNP context-sequence. If the context-sequences of an unmapped 

SNP and of a mapped SNP had the same best BLAST hit, we placed the two SNP, mapped and 

unmapped, at the same locus on consensus map. 
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III.4.6.11. Genes mapping 

Mapping of the likely drought responsive genes was necessary in order to characterize the 

associations found in local or distant regulations. Transcript sequences of the genotype XRQ for each 

gene were retrieved from sunflower transcriptomic database (https://www.heliagene.org/HaT13l). 

Using alignments of these sequences with PSC8, FU and PAZ2 transcriptomic databases and XRQ and 

PCS8 genomic sequences, we looked for polymorphisms between INEDI population parents in one 

hand and FUPAZ2 population parents in the other hand. 

Primers for Kaspar markers were designed on the HaT13l transcript sequence with Primer3 web tool 

(http://probes.pw.usda.gov/batchprimer3/index.html) using the parameters for allele specific 

primers and allele flanking primers with an optimal product size of 60bp (min=50 bp, max=80 bp). 

Genotyping using Kaspar technology (KBioscience UK Ltd., Hoddeston, UK) of 86 RILs for the INEDI 

population and 44RILs for FUPAZ2 population was performed. We mapped Kaspar markers on INEDI 

or FUPAZ2 genetic maps using AXIOM genotyping data of the corresponding RILs. 

III.4.6.12. QTL definition from the association results 

On the three maps (INEDI, FUxPAZ2 and consensus), SNP associated to the same gene expression 

trait and less than 5 cM distant from the next associated SNP, were considered to form one single 

QTL. If associated SNPs were distant from more than 5cM on the consensus map but are part of the 

same QTL on INEDI or FUPAZ2 maps, they were considered to belong to the same QTL even on 

consensus map. Again, if two QTL, associated to different genes, were distant from less than 5cM 

those QTL were considered to be a single one. 

 

 

End of the project of article: “Integration of the environment in gene regulatory networks: 

Identification of plastic regulations in the case of drought stress in sunflower via an association 

study on gene expression” 
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III.5 Conclusion and outlook concerning eQTL detection with gene 

correlated to drought responses 

III.5.1 Genes grouped in regulatory pathways for two drought tolerance traits 

Genes selected for the association study were described as having their expression correlated 

significantly to only one physiological trait of drought responses (Rengel et al., 2012) using a sparse 

partial least square analysis. As several genes were actually found correlated to the same 

physiological trait, this suggests that they are involved in the same regulatory pathway and therefore 

share some genetic control. During our GWA study and the reconstruction of the underlying GRN, we 

characterized the genetic control of such genes. We observed that each group of genes correlated to 

Carbon Isotopic Discrimination (CID) in one hand and to the Evapotranspiration (ET) in another hand 

were associated to several common QTL. Therefore the hypothesis of a common regulatory pathway 

for the genes involved in ET and in CID respectively is consistent with the results of our GWA study 

on those gene expressions. On the contrary, no common QTL were found for genes correlated to 

Relative Water Content (RWC) and Osmotic Potential (OP). Thus, the hypothesis of a same regulatory 

pathway for those traits could not be confirmed by the present study.  

This common regulation between CID and ET could be explained by their functional 

relationships. CID measures the ratio of incorporation of 13C/12C by the RUBISCO and varies according 

to stomatal closure. Then, discrimination against 13C is proportional to plant water use efficiency 

(Farquhar et al., 1989). Therefore, CID integrates the stress of the plant through its levels of 

regulation of transpiration over a long period of time (Araus et al., 2003). On the opposite, ET reflects 

the transpiration of the plant at the specific time of harvest when gene expression levels were 

estimated as well. Our results characterize the genetic control of these temporally different 

measures of transpiration and allowed us to identify genetic variation that controls the stomatal 

closure threshold all over the plant life cycle. This simple genetic architecture and regulatory 

pathways for CID and ET make them maybe a more direct and easier target to breed for drought 

tolerance than OP and RWC.  

III.5.2 Utilization of the Water Status Biomarker 

During this GWA study we used WSB to estimate water status of each genotype of the 

association panel. As already mentioned, the WSB was built and validated for only four genotypes. 

Thus, it is very likely that the biomarker’s genes are differentially expressed in a panel of genotypes 

with a larger genetic diversity. However, in this part of the project we took as a hypothesis that the 

WSB model was valid for all the genotypes of the association panel. Indeed, all these genotypes are 

modern sunflower cultivars, despite the introgression of wild alleles in some of them. Then, we have 

to keep in mind that the correction for water status introduced thanks to WSB estimation is not 
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completely accurate for all genotypes of the panel. However, the WSB likely allowed us to eliminate 

at least a part of the bias due to the different water status of each genotype, even if a part of the 

genotype x environment (GxE) effect is very likely still “captured” at the same time of the genotypic 

effect for the G model. 

In this part of the project, the utilization and comparison of the two models (correcting or not 

for the plant water status) enabled us to evaluate the plastic and the constitutive parts of the 

drought gene expression. However, we have to keep in mind that the ratio between plastic and 

constitutive parts is dependent to the environmental conditions of the experiment and also to the 

genetic diversity present in the association panel. As the genotypes of the panel are chosen to 

represent a large variability of modern cultivars, results found in this study concerning genotypic and 

genotype x environment effect could probably be generalized for cultivated sunflowers.  

Moreover, WSB utilization allowed comparing genotypes in the exact same environment 

regarding soil depth and composition, climate, and crop management. Traditionally, the evaluation 

of the QTL effects through various environments is performed thanks to multi-environment trials. 

This method is expensive in particular for the acquisition of the phenotyping data. Moreover, in 

addition to the water status, several other components of the environment can change from a trial 

to the other. Therefore, even if the correction with the WSB is not optimal, its cost and accuracy have 

to be compared with multi-environment trials. Another possibility would be to combine these two 

approaches. Indeed it would allow a better characterization of the multi-environment trials. 

 

III.5.3 Association study with an association panel using hybrids: advantages and 

drawbacks 

In this study, the lines of the association panel were crossed with testers and thus, the 

genotypes used for the association study were hybrids. Utilization of hybrids instead of inbred lines 

has both advantages and drawbacks.  

Sunflower lines are more susceptible to diseases or other environmental stresses. In the panel, 

those stresses could be very important due to the presence of lines with wild introgression into 

modern cultivars more sensitive to diseases. Moreover, since the discovery of the cytoplasmic male 

sterility (CMS) (Leclercq, 1969) and of the fertility restoration genes (Kinman, 1970), sunflower 

breeding is based on hybrids. Therefore, the hybrids utilization in this study is more realistic in a 

context of a breeding program.  

However, as genotypes were hybrids, we could not know if the allelic effect was due to the line 

or to the tester, even if the structure of the panel introduced in the GWAS took into account this 

distinction between male and female testers.. Indeed, the loci associated to the phenotype are 
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heterozygous with one allele from the tester and one allele from the line. Moreover, as female (B) 

and male (R) lines are comprised in the panel, two different testers were used (one for the B-line and 

one for the R-line). Therefore, testing this panel with other testers could help to determine which 

genotype brings which allelic effect and to test the stability of the QTL. 

III.5.4 Expanding the study to the whole sunflower transcriptome 

The genome-wide association mapping described here studies the genetic control of 86 expression 

genes with finally 33 genes involved in the reconstructed GRN. To obtain a more complete view of 

the GRN for drought responses it would be interesting to take into account the whole transcriptomes 

of the sunflower genotypes. A similar approach has been conducted by Gan et al. (2011) on 19 

parents of the Multiparent Advanced Generation Inter-Cross (MAGIC) population in Arabidopsis. The 

sequencing, assembly and annotation of the genomes of these 19 lines were part of the A.thaliana 

1001 Genomes Project (Weigel & Mott, 2009). Similar information for the sunflower association 

panel could be useful in order to map associated SNP in a more accurate way and to make 

hypotheses about the function of the candidate genes under those QTL. 

In our study, only three genes appeared to have a significant plastic part in their response to drought. 

Expanding the study to the whole sunflower transcriptome would certainly lead to the identification 

of genes with more important GxE effect and complete what we have found in our GWAS.  

 

 

III.6 Discussion about drought responsive genes correlated to traits of 

drought stress tolerance 

III.6.1 Attempt in the distinction between the genetically-variable part of plasticity and 

the genotype-constitutive response to drought 

The utilization of both models, with and without correction for the water status, allowed the 

distinction and the quantification of the plastic (GxE effect) and the constitutive (G effect) parts in 

the effect of some eQTL detected. As already discussed, the GxE part is likely to exist for a greater 

number of genes than found in our study (three eQTL). It is certainly due to the limited number of 

genes studied in this work (other genes not selected for this study may be controlled by a GxE 

interaction effect) but also to the relatively limited range of drought conditions in our experiment 

and the limited number of repetitions. Distinction between these two parts of the genetic control of 

genes involved in drought stress responses can be useful and help in the choice of breeding strategy. 

Considering genes and their effects independently, genes with an important known plastic part in the 

genetic control of their regulation should be favored in a strategy where genotypes are bred for a 

specific environment (if the GxE effect is advantageous in this environment). On the contrary, if the 
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breeding strategy is to identify genotypes adapted to a large range of environment, genes with an 

important constitutive part and a small plastic part in the genetic control of their regulation will be 

researched. Another strategy to build an ideotype, adapted to an environment with variable drought 

stress would be the combination of various genes with GxE effect in order to adapt to different stress 

intensity. 

Figure III.12 illustrates the different parts of genetic control of genes involved in drought stress 

responses. 

III.6.2 Genotypic control of the plants micro-environment 

Water status of the plant estimated via the WSB has also been used in the genome-wide 

association study as a classical phenotypic trait. One QTL was found associated to this trait. If we 

assume that this QTL is not the sign of the fact that the WSB is not completely genotype-independent 

in our association panel, then, we can consider that it highlights regions in the sunflower genome 

that are associated to the water status (estimated through the WSB). This implies that a feedback 

loop exists and allows the adjustment of plant water status in function to the drought responses 

developed by the plant. This feedback loop is represented in the Figure III.12. It can be interpreted as 

the plant’s control of its hydric micro-environment. There is a permanent dialogue between the plant 

and its micro-environment in order to adjust the response to water deficit. We can hypothesize that 

genes underlying the QTL associated to the water status might likely be involved in mechanisms that 

harness soil water and in the regulation of the water losses. 

This result gives us some details about the relationships between genes involved in drought 

responses and other genes involved in the regulatory cascade of water deficit responses such as 

genes involved in the environmental signal perception (Figure III.12). 

  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure III.12: Results about genes correlated to morphological and physiological traits for drought 

tolerance. 

Identification of the plastic and constitutive part

and hypothesis of a feedback loop implying a control of its hydric micro
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: Results about genes correlated to morphological and physiological traits for drought 

Identification of the plastic and constitutive parts in the genetic control of drought responsive genes 

and hypothesis of a feedback loop implying a control of its hydric micro-environment

 

: Results about genes correlated to morphological and physiological traits for drought 

in the genetic control of drought responsive genes 

environment by the plant.  
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Chapter IV: Drought Gene Regulatory Network 

and implication in the evolution of 

annuus and its relatives

approach. 
 

 

 

In this fourth chapter, we propose to focus on regulatory genes involved in transcription 

control and genes involved in functional responses to drought in order to understand how they 

interact between them (Figure IV.1).

approach in order to obtain a global view of the relationships between genes involved in the drought 

gene regulatory network and relate it to the genetic variability in 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure IV.1: Genes studied are involved in transcription regulation

generic cascade induced by water deficit
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rought Gene Regulatory Network 

and implication in the evolution of Helianthus 

and its relatives, a systems biology 

n this fourth chapter, we propose to focus on regulatory genes involved in transcription 

and genes involved in functional responses to drought in order to understand how they 

(Figure IV.1). We propose to study those genes through a system biology 

approach in order to obtain a global view of the relationships between genes involved in the drought 

gene regulatory network and relate it to the genetic variability in Helianthus genus.

: Genes studied are involved in transcription regulation and functional responses

induced by water deficit. 

rought Gene Regulatory Network 

Helianthus 

, a systems biology 

n this fourth chapter, we propose to focus on regulatory genes involved in transcription 

and genes involved in functional responses to drought in order to understand how they 

We propose to study those genes through a system biology 

approach in order to obtain a global view of the relationships between genes involved in the drought 

nus. 

and functional responses in the 
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IV.1 Brief overview of systems biology approach 

The goal of biology has evolved during the past centuries. At its beginning, its main purposes 

were the description and classification of living objects. These objectives have then evolved and 

nowadays the final goal appears as the understanding of every details and principles that govern the 

functioning of biological systems (such as plants or animals). Since the emergence of the field of 

molecular biology, substantial progress has been made that enables us to identify essential parts of 

the biological systems: genes and their products. The next major challenge is to understand at the 

system level the rules that govern the molecular components (genes, proteins, etc …) that have been 

revealed and studied individually by the molecular biology (Kitano, 2000). A system is a concept that 

basically refers to an assembly of components in a particular pattern. The term systems biology can 

be used in different contexts. It can mean a dynamic modeling or it can be used to refer to a 

multidimensional data analysis (Yuan et al., 2008). An exhaustive definition could be stated with 

respect to its main objectives (Kitano, 2002) which consist in the four following points: 

 

• Identification of system structures: Genes, proteins, metabolic pathways but also physical 

structures of organisms, cells, organelles or chromatin can be involved in any system description. 

Regulatory relationships that connect those components have to be identified as well. 

Identification of gene regulatory network for multi-cellular organisms is more complex as the 

cell-cell communication has to be taken into account. Yeast and C.elegans are examples of 

organisms in which considerable efforts have been made to obtain spatiotemporal data for gene 

expression and protein level (The C.elegans Sequencing Consortium, 1998; Ito et al., 2000). 

Gathering of similar data is in progress for other biological systems such as Arabidopsis thaliana. 

Even if the first efforts are, up-to-now, limited to understanding components of the system and 

the local relationships between them, the results of these researches would be a first step for 

systems biology. 

• Analysis of system behavior: In addition to the system structure, the dynamics of the system has 

to be understood. This could help, for example, to find an answer to the following questions. 

How does the system behave over time under various external stimuli or perturbations? How 

quickly does the system go back to its initial state? Moreover, having knowledge about how a 

system respond to stimuli can help in its definition. For example, understanding the leaves 

expansion rate under drought conditions can give some insight about the minimal and maximal 

possible sizes of a sunflower leaf. 
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• Control of the system: This objective is an application of the insights provided by the 

identification of the system’s structures and its dynamics. This can provide the means to control 

the state of a system. 

• System design: This is the ultimate goal of systems biology that reaches engineering field. Once 

the knowledge of the biological system functioning will be assimilated, the next step would be 

the prediction and the design of biological systems. Examples of such knowledge are the 

construction of synthetic organisms (announced in a close future) or the construction of 

“ideotypes” for breeding programs. 

 

To achieve the four goals of a systems biology study, important efforts are required to obtain 

comprehensive, quantitatively accurate and systematic data sets. Such data sets are now possible to 

produce thanks to the important progress in the sequencing and transcriptomic technologies as for 

example the utilization of micro-fluidic systems or nano-technologies. Those technologies are the 

most exhaustive and affordable to date and facilitate the study of gene regulation. 

Inference of gene regulatory network (GRN) is one of the aspects of systems biology. To identify 

GRN components two approaches can be used. The bottom-up approach tries to construct a gene 

regulatory network based on the compilation of independent experimental data, mostly through 

literature. Extensive databases are now available for gene expression and protein in various 

conditions, in particular for model species such as Arabidopsis (Zimmermann et al., 2008). The top-

down approach uses high-throughput data from expression arrays design for the network inference. 

Hybrid methods combining the bottom-up and the top-down approaches have also been 

experimented (Kitano, 2002). As the large datasets can provide information about various genes and 

network components, in many cases, it is interesting to begin with a focus on small networks 

(Middleton et al., 2012)in order to make their understanding and utilization in future studies or 

research works easier. 

The work presented in this chapter aims to reconstruct a GRN involved in drought tolerance. 

Gene expression data were retrieved from experiments designed specifically on sunflower and 

slightly completed using model species information. Therefore our gene selection combined a 

bottom-up and a top-down strategy. 

 

IV.2 Main goals in the study of gene regulatory network 

Inference of the network that connects genes differentially expressed during drought stress 

should highlight the main regulatory pathways in which those genes are involved. Indeed, the 
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reconstruction of the network through a systems biology approach provides us insights into the 

topology of this network and the evolutionary history it resulted from. 

Therefore, a first aim of this work is the identification of key genes, such as hubs, that could 

explain robustness of the drought GRN across various drought stress scenarios and adaptation of the 

biological systems (here the plant) at an individual time-scale (that we will also call the physiological 

time-scale). This would reveal the relationships between regulatory genes and other genes involved 

in the generic cascade for drought responses. 

Another interesting question is how patterns of the regulatory network have been conserved 

through evolution. The particular topology of a network leads to different constraints on the genes 

that form this network. For example, we can hypothesize that genes which are highly connected do 

not have to cope with the same evolutionary forces as peripheral genes. Therefore we can use 

network topology as a way to investigate selection pressure that shapes the evolution of the 

sunflower and the Helianthus genus in dry environments. Due to its history of domestication and the 

range of various habitats that sunflower and its relatives occupy, Helianthus annuus appears to be a 

good model to investigate this question. 
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IV.3.1. Summary 

Gene regulatory networks (GRN) govern phenotypic adaptations and reflect the trade-offs 

between physiological responses and evolutionary adaptation that act at different time scales. To 

identify patterns of molecular function and genetic diversity in GRNs, we studied the drought 

response of the common sunflower, Helianthus annuus, and how the underlying GRN is related to its 

evolution. 

We examined the responses of 32,423 expressed sequences to drought and to abscisic acid 

and selected 145 co-expressed transcripts. We characterized their regulatory relationships in nine 

kinetic studies based on different hormones. From this, we inferred a GRN by meta-analyses of a 

Gaussian graphical model and a random forest algorithm and studied the genetic differentiation 

among populations (FST) at nodes. 

We identified two main hubs in the network that transport nitrate in guard cells. This suggests 

that nitrate transport is a critical aspect of sunflower physiological response to drought. We observed 

that differentiation of the network genes in elite sunflower cultivars is correlated with their position 

and connectivity.  

This systems biology approach combined molecular data at different time scales and identified 

important physiological processes. At the evolutionary level, we propose that network topology 

could influence responses to human selection and possibly adaptation to dry environments.  

IV.3.2. Keywords 

ABA, abscisic acid; CLC-A chloride channel protein; drought; FST; genetic differentiation; 

network inference; NRT1.1; nitrate transporter 1 

IV.3.3. Introduction 

Phenotype is shaped during an organism’s life by its physiological and developmental 

responses to environmental conditions and across generations through evolutionary genetic 

adjustments to new environments. On the time scale of individual organisms, the phenotype can 

change rapidly due to gene regulatory networks (GRNs), which translate environmental and internal 
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signals into physiological and developmental modifications. On an evolutionary time scale, such 

phenotypic modifications are based on changes in the genes composing the network that may alter 

this network at the structural or functional level. 

Relating phenotypic modifications occurring at physiological and evolutionary time scales has 

been a major focus of evolutionary biologists for more than a century (Osborn, (1896) and 

Waddington, (1942) as well as more recently Queitsch et al., (2002); Milo et al., (2007)). Researchers 

have theorized (and later demonstrated) that physiological adaptation (for example, via regulation of 

gene expression or biochemical characteristics) can be replaced by an evolutionary change that 

becomes constitutive and alleviates the fitness costs associated with plasticity. This paradigm can be 

revisited in the context of a gene network. While gene regulatory networks are products of 

evolution, similar to other biological objects, GRNs also shape and constrain the evolvability of 

phenotypic responses to the environment. 

Systems biology approaches, such as GRN inference, provide a global view of the different 

pathways that respond to environmental variation. A GRN is a genetic network based on gene 

expression levels (Wilkins, 2005). It describes transcriptional interactions and dynamics in response 

to environmental stressors, and therefore the GRN is key to understanding how organisms such as 

plants adapt to their environment. 

Responses to environmental signals are often mediated through hormones. For example, in 

plants, abscisic acid (ABA) is produced during water stress in the vasculature and in the guard cells of 

the vegetative part of the plant (Boursiac et al., 2013). Accordingly, the application of ABA induces 

the expression of genes involved in the response to dehydration and mimics drought stress. This 

interpretation has been confirmed by promoter analyses, which have demonstrated that these 

pathways share many targets (Shinozaki & Yamaguchi-Shinozaki, 1997). The signals of different 

hormones interact and are integrated to convey environmental signals through the plant (Wilkinson 

et al., 2012), suggesting that hormones should share transcriptomic targets. 

Drought stress is a major abiotic factor that drives dramatic phenotypic changes in plants, 

including Helianthus, in which drought stress appears to constrain the colonization of new 

environments in the arid regions of the southwestern USA (Seiler & Rieseberg, 1997). Therefore, the 

drought-stress GRN represents a tool for studying the interactions between organismal acclimation 

on the physiological time scale and population adaptation on the evolutionary time scale. 

Several hormones mediate drought-stress responses; thus, the utilization of multiple hormonal 

treatments can elucidate the underlying GRN and highlight possible relationships between the genes 

involved. However, there are practical difficulties associated with the study of genetic networks. For 

example, the GRN identified could be biased toward interactions that have been previously detected 

in model species (Wilkins, 2005). To date, systems biology approaches, such as GRN inference, have 
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been mostly restricted to model species, such as yeast (Dikicioglu et al., 2011), Drosophila (Crombach 

et al., 2012), or Arabidopsis (Ma et al., 2007), and are typically performed under laboratory 

conditions. However, modeling dynamic biological processes requires time-series gene expression 

data that are relevant to both the biological process of interest and to the species targeted by the 

study. To understand genome function and evolutionary processes in an organism such as the 

sunflower, it is important to infer the GRN for the gene sets that are actually involved in the 

responses to a given environmental stress and to avoid the pitfall of using non-adapted model 

species data. 

In this study, we used inference methods on sunflower data complemented with knowledge 

from Arabidopsis. These methods were specifically designed for time-series gene expression data and 

allowed us to reconstruct a sunflower GRN. The inferred GRN provides us a global view of the main 

physiological functions involved in the drought-stress responses occurring in the leaf, as well as their 

chronology. 

On the evolutionary time scale, studying the underlying GRN for responses to environmental 

stresses such as drought can help explain how plants evolved to become better suited to their 

environments. Knowledge of gene’s position in the GRN and its topological characteristics provides 

useful information about likely evolutionary constraints. For example, a highly connected gene is 

likely to be subject to many trade-offs, which would limit the accumulation of genetic diversity. Here, 

we identify correlations between network topology and genetic divergence between elite lines and 

landraces of sunflower and propose a mechanism to explain how sunflower genetic differentiation 

could be constrained in response to selective forces. 

IV.3.4. Material and methods 

IV.3.4.1. Plant Material and growth conditions 

Transcriptome interactions and dynamics were studied using the sunflower (Helianthus 

annuus) genotype XRQ. Plantlets were grown under hydroponic conditions in the previously 

described growth medium (Neumann et al., 2000) in a growth chamber. After 14 days, the plantlets 

were treated by adding either mock solution (DMSO only in controls) or one of the following 

hormonal solutions : auxine (IAA); ethylene (ACC), gibberellic acid (GA3), salicylic acid (SA), methyl-

jasmonate (MeJA), kinetin, ABA strigolactone (Stri) or Brassinol (Bras) Details about hormonal 

solutions are provided in Appendix IV.1. First pairs of leaves was harvested at 0 (just before 

treatment), 1, 3, 6, 9, 24, and 48 hours after treatment, immediately frozen in liquid nitrogen, and 

stored at -80°C. The whole procedure was repeated three times for ACC, Bras, GA3, IAA, kinetin, SA, 

and Stri and four times for ABA and MeJA. 
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IV.3.4.2. Gene selection  

To identify genes which likely play a role in the drought GRN, a global transcriptomic approach 

was employed using an Affymetrix chip containing 32,423 probesets corresponding to sequences 

expressed in Helianthus annuus (Rengel et al., 2012b). Three different global transcriptomic datasets 

were analyzed and used to select genes. We selected genes that responded to at least two of the 

following conditions: (1) drought stress under field conditions; (2) drought stress under greenhouse 

conditions; and (3) 10 µM ABA application under hydroponic conditions.  

The microarray data and analyses of the field and greenhouse conditions were previously 

reported by (Rengel et al., 2012b). Under field conditions, plants of the Melody genotype were 

harvested at the post-flowering stage at a stress intensity level of 0.63 and 0.22 (ratio between 

evapotranspiration and maximal evapotranspiration) for irrigated and non-irrigated plants, 

respectively. Under greenhouse conditions, we recorded data from Melody pre-flowering plants at a 

fraction of transpirable soil water (FTSW) of 0.83 and 0.03 for the irrigated and non-irrigated plants, 

respectively.  

The global transcriptomic data for the application of 10 µM ABA are new results and were 

obtained using the 6-hour treatment with ABA in the hydroponic experiment on the genotype XRQ 

(CATdb: AFFY_ABA_Sunflower or GEO accession: GSE22519). RNA quality verification, cDNA 

synthesis, and chip hybridization and washing were all performed using the Affymetrix platform at 

the INRA-URGV in Evry, France, following the protocol described in (Rengel et al., 2012). To identify 

the sunflower transcripts that were differentially regulated by ABA under our hydroponic conditions, 

the Affymetrix data were treated as previously described in (Bazin et al., 2011). 

This list was extended to 181 genes with genes known to respond to the application of ABA or 

other hormones (literature (Boudsocq & Lauriere, 2005; Kawaguchi et al., 2004; Miller et al., 2009; 

Seki et al., 2007; Umezawa et al., 2010; Shinozaki & Yamaguchi-Shinozaki, 2007; Wang et al., 2003; 

Wasilewska et al., 2008; Rook et al., 2006); Sirichandra et al., 2009; Pastori & Foyer, 2002; Hirayama 

& Shinozaki, 2010; Li, S et al., 2006; Bray, 2004; Valliyodan & Nguyen, 2006) or GO analysis). 

IV.3.4.3. Molecular analysis 

The extraction of total RNA and cDNA synthesis were performed as described in (Rengel et al., 

2012). The expression levels of the 181 selected genes were analyzed in all samples by q-RT-PCR 

using the BioMark system (Fluidigm Corporation, San Francisco, CA, USA) as previously described 

(Spurgeon et al., 2008). The q-RT-PCR results were analyzed following the 2ddCt method (Livak & 

Schmittgen, 2001). Gene expression levels were normalized to the mean of previously validated 

reference genes (Rengel et al., 2012) and to the corresponding control sample with the mock 

treatment. Detailed description of expression levels calculation is provided in the Appendix IV.1.  
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IV.3.4.4. Genetic differentiation among populations 

Genetic polymorphisms of drought GRN genes were characterized in five different Helianthus 

populations, as described in a previous study (Renaut et al., 2013): H. argophyllus (N=28), H. 

petiolaris (N=25), H annuus elite lines (N=9), H. annuus landrace lines (N=11), and wild H. annuus 

(N=11). Briefly, transcript sequences were obtained from young leave tissues with two RNAseq 

technologies (Roche 454 FLX and GAII Illumina pair-end sequencing 2x 100 bp). The transcript 

sequences were then aligned to the reference transcriptome using the Burros Wheeler Aligner (Li & 

Durbin, 2009). SNPs were called using the program SAMtools (Li et al., 2009) with a minimum with 

Phred scaled genotype likelihoods of 30, corresponding to a genotyping accuracy of at least 99.9%. 

The population genetics statistic FST was calculated between these populations for 89 of the 181 

candidate genes using the R package HIERSTAT (Goudet, 2005). FST is a widely used measure of 

genetic differentiation among populations.  

IV.3.4.5. GRN reconstruction 

Missing values of gene expression (expressed as ΔΔCt) at time t=0 were imputed as values of 1. 

Other missing values (less than 1% of the values) were imputed with the R package IMPUTE by 10-

nearest neighboring genes (Troyanskaya et al., 2001).  

After log transformation of the data, we performed an arithmetic mean over replicates to 

obtain a robust ΔΔCt expression value for each gene under each condition (time x treatment). We 

obtained nine datasets corresponding to the nine hormonal treatments and containing expression 

values for 145 genes with robust expression data at 7 different time points. From these nine 

datasets, we inferred 10 GRNs: one GRN from each hormonal treatment and a global GRN taking into 

account all treatments. Two complementary inference methods were used to achieve GRN 

predictions.  

The first method represents an extension of GENIE3 (Huynh-Thu et al., 2010) and was based 

on the random forest method (RF, (Breiman, 2001)). In summary, each gene expression at time t+1 

was successively considered as a target, and the method sought regulators of that gene via their 

expression at time t. Several regulator inclusion steps were successively performed: according to a 

variance reduction criterion in a regression tree framework, each step resulted in the inclusion in the 

model of the best regulator. The process was repeated on a randomized ensemble of trees, which 

made up the so-called random forest. This method allowed us to derive a ranking of the importance 

of all regulator expressions for the target by averaging the scores over all the trees of the random 

forest. The randomized subset of regulators allowed us to avoid the local minima of the global score, 

and the random subsample of the data used for each tree avoided over-fitting of the data and hence 

permitted more robust estimates. We tested on simulated data whether including auto-loops in the 



128 

model improved the performance. Results are presented in Appendix IV.1 and they show that no 

gain was obtained with such modified version of our RF algorithm. Compared to previously 

developed tree ensemble methods, our method is novel because our modeling explicitly accounted 

for the dynamical and multi-condition aspects of the data.  

The second method used a Gaussian graphical modeling (GGM) approach. In the GGM 

paradigm, an edge was inferred when a significant partial correlation was detected between the 

expressions profiles of two genes. Namely, the partial correlation between two genes is the 

correlation between the residuals of the expressions of these two genes after accounting for all other 

gene expressions patterns. A unique aspect of our approach is the combination of a temporal 

approach with a multiple graph structure inference scheme. The dynamic nature of the data allowed 

us to obtain directed edges between two genes (i.e., changes in the expression of gene p induced 

changes in the expression of gene q and not the converse). In addition, the multiple graph framework 

drove the inference of condition-specific networks. However, each of these hormonal networks took 

into account information from the others and therefore accounted for a coupled functioning of the 

biological mechanisms that they encoded. The details of the RF and GGM approaches are provided in 

the Appendix IV.1. For each of the ten GRNs, we selected only edges confirmed by both methods. 

The union of the nine hormonal consensus networks and the global consensus network formed a 

final unified network with hormone-specific edges and global edges. 

IV.3.4.6. Topological parameters 

The topology of a GRN depicts the relative positions of the genes in the network and their 

importance in the structure of the network. The topological parameters for each node therefore 

represent quantitative measures of gene connectivity and network position; these parameters are 

calculated from the oriented edges that connect one gene with another. The edge count, the 

indegree and the outdegree are three correlated parameters indicating the total number of edges (in 

and out) and the number of outgoing and ingoing edges respectively. The average shortest path 

length of a node p is the average length of the shortest path between p and any other node. The 

closeness centrality is the reciprocal of the average shortest path length. The eccentricity is the 

maximum non-infinite length of the shortest path between p and another node in the network. As 

the network is directed, if p is a node without outgoing edges, the values of the average shortest 

path length, the closeness centrality, and the eccentricity could not be calculated. The betweeness 

centrality of a node p is the number of shortest path from a node q to a node r (differents from p) 

divided by the number of shortest paths from q to r that pass through p. It reflects the amount of 

control that the node p exerts over the interactions of other nodes in the network. The stress 

centrality of a node p is the number of shortest paths passing through p. Finally, the neighborhood 
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connectivity of a node p is the average connectivity of all neighbors of p. These different metrics 

were calculated for all genes with the NetworkAnalyzer plugin for Cytoscape (Assenov et al., 2008). 

IV.3.4.7. Correlation between topological parameters and genetic differentiation 

First, we performed firstly a principal component analysis (PCA) on the topological parameters 

of the GRN to study the dependency of those parameters, with the function princomp. This allowed 

us to identify the components explaining the most parameters variability. From these PCA results, we 

selected the most representative topological parameters in order to avoid redundancy. The FST values 

were grouped into 5 subsets, each of them expressing the FST between one Helianthus population 

(Wild H.annuus, Landraces, Elite, H.argophyllus, H.petiolaris) and the other populations. We 

performed a canonical correlation analysis (R function cancor) in order to identify the canonical 

correlations between the selected topological parameters on one side and each FST subset on the 

other side. We tested their significance with the test of Wilks as provided by the function p.perm of 

the R package CCP with 10 000 permutations. 

IV.3.5. Results 

IV.3.5.1. Gene selection to infer the drought GRN 

Gene identification using a global transcriptomic approach 

To identify genes that play a role in the drought GRN, a global transcriptomic approach was 

employed using an Affymetrix chip containing 32,423 probesets, which corresponded to sequences 

expressed in H. annuus. The differential analysis identified 337 genes that responded to drought 

stress under field conditions and 447 genes that responded to drought stress under greenhouse 

conditions (Rengel et al., 2012). Because ABA is the major plant hormone involved in the drought-

stress response, we also identified genes displaying differential expression 6 hours after ABA 

treatment at the plantlet stage under hydroponic conditions, using a similar global transcriptomic 

analysis. A total of 463 sunflower transcripts were found to be differentially expressed after ABA 

application (Appendix IV.2). The 463 ABA-regulated sunflower genes were validated by comparison 

with the expression of 226 homologues in Arabidopsis based on expression data from the Bio-Array 

Resource database or in projects from the AtGenExpress Consortium retrieved on the website  

http://www.weigelworld.org/resources/microarray/AtGenExpress/AtGe_Abiostress_gcRMA.zip.  

The authors employed a kinetic analysis of three time points to assess the transcriptomic 

response to abiotic stresses such as cold, osmotic, salt, drought or heat stress in leaves using the 

Arabidopsis Affymetrix ATH1 microarray. This study was of particular interest because its kinetic 

approach imparts greater statistical power and avoids the issue of differences in kinetic parameters 
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between sunflower and Arabidopsis. The Arabidopsis homologs of the sunflower genes in this study 

are all BLAST reciprocal best hits between Helianthus ESTs and Arabidopsis. The covariance analysis 

(ANCOVA) showed that the expression modulation over time of 27% of these Arabidopsis 

homologues (60 genes) exhibited a treatment effect or a treatment x time interaction effect when 

exposed to abiotic stresses. This proportion of Arabidopsis genes homologous to Helianthus genes 

responding to ABA corresponds to a significant enrichment in Arabidopsis genes responding to 

abiotic stresses (hypergeometric test giving p=1.10-4). The ANCOVA analysis, hypergeometric test and 

results are described in detail in the Appendix IV.1 and Appendix IV.3, respectively. This finding 

confirms that at the transcriptomic level, ABA regulation and its role in abiotic stress responses are 

globally conserved between Arabidopsis and H.annuus, as it has been documented in many plants; 

this conservation has occurred even though sunflowers are a very distantly related lineage separated 

by more than 90 million years of evolution (Chinnusamy et al., 2004). 

These three lists contain gene groups that respond to two drought stress intensities and ABA 

application (mimicking a third drought stress condition) at different developmental stages. Together, 

they provide complementary views of the drought-regulated genes in sunflower. 

For inclusion in the GRN for drought stress, we stipulated that the genes must respond to at 

least two of the following conditions: (1) drought stress under field conditions, (2) drought stress 

under controlled greenhouse conditions, and/or (3) ABA under hydroponic conditions (FigureIV.2). As 

expected from the large variability of the biological material used to select the genes, the selected 

intersection was robust and should comprise the genes composing the core GRN for drought stress.  

In addition to these groups of genes, we selected 56 genes that are known from the literature or 

gene ontology (GO) analysis to be regulated in response to ABA or one of the other main plant 

hormones used for the treatment in our hydroponic experiment. 
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Figure IV.2: Selection of genes likely to be involved in the drought GRN. 

Genes that responded to drought stress under field conditions, drought stress under greenhouse 

conditions, and ABA application under hydroponic conditions are indicated in blue, red, and green, 

respectively. The genes that were responsive under at least two of the different conditions were 

selected as part of the inferred GRN for drought-stress responses. 
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In all, 181 genes were selected (see complete list of sunflower transcripts, Arabidopsis 

homologs and annotations in Appendix IV.4). 

Dissection of transcriptional regulation in the drought GRN by application of hormonal 

treatments 

The GRN of these drought-regulated genes was reconstructed from their expression levels 

measured by q-RT-PCR. To perturb the network and identify regulatory relationships, leaf samples 

were harvested at seven different times after hormone treatment from hydroponically grown plants. 

A total of nine different hormones representing the main plant hormone groups were used. From the 

181 selected candidate genes, we retained 145 robust genes based on technical filtering (efficiency, 

imputable missing data). The expression levels (expressed as ΔΔCt in reference to 5 control genes 

and the mock control) before and after imputation of missing data are shown in Appendix IV.5 and 

Appendix IV.6, respectively. 

 

IV.3.5.2. Inference of the drought GRN from the GGM and RF methods 

Inferences of a global GRN and nine hormonal GRNs lead to the identification of a robust 

unified drought GRN 

To identify the final regulatory network between the 145 genes shown to be co-expressed 

during drought stress, we studied their regulation after several hormonal applications. This strategy 

was chosen because the environmental signal is transduced by different hormones whose regulatory 

pathways are very connected. The application of different hormones can reveal hormone-specific 

and global regulatory connections. Because we selected genes shown to respond to drought, the 

revealed regulatory connections are likely involved in drought-stress responses. We generated nine 

datasets corresponding to the nine hormonal treatments and containing expression values for the 

145 robust genes at seven different time points. From these nine datasets, we established 10 GRNs: 

one GRN from each hormonal treatment and one global GRN, which represents a consensus array of 

all hormonal treatments. The GRNs were inferred using two different inference methods: Gaussian 

graphical modeling (GGM) and random forest (RF). These two approaches produce complementary 

predictions (Allouche et al., 2013), and merging their results was shown to yield more reliable 

predictions than predictions obtained by any single method (Marbach et al., 2012). 

With the GGM method, we obtained between 112 and 158 edges for each hormonal network and a 

global network with 95 edges (Figure IV.3). 

  



                                  

 

Figure IV.3: Drought GRN and selection of its edges.  

a-i: The Venn diagrams for each hormonal GRN and global GRN represent the edges selected by the RF method (dotted line) and the GGM method 

(solid line). a) ABA. b) Ethylene. c) Brassinosteroid. d) Gibberellin. e) IAA. f) Kinetin. g) Methyl-jasmonate. h) Strigolactone. i) Global. j) Unified drought 

GRN representation. Grey circles represent the genes. Arrows represent the relationships between two genes (oriented edges), and their color 

represents the hormonal treatment that led to their identification: Red = ABA; Orange = Ethylene; Dark blue = Brassinosteroid; Light blue = Gibberellin; 

Light green = IAA; Dark green = Kinetin; Violet = Methyl-jasmonate; Pink = Strigolactone; and Black = Global or non-hormone-specific edges.  
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With the RF method, the number of edges for each hormonal network was very different and 

varied from 11 to 174 edges. The global GRN with the RF inference was composed of 242 edges 

(Figure IV.3). 

Given the diversity in the inferred edges, we employed a very stringent approach to retain the 

core, most robust GRN. First, we discarded the results of SA treatment because the RF method 

inferred 629 edges. This number was far higher than that for the other hormones (49, 115, 38, 36, 

94, 134, 147, and 16 when including SA). We chose not to take into account the SA edges in the final 

GRN to avoid an over-representation (more than 25%) of specific edges for this hormone instead of 

drought edges. Second, for each GRN (hormonal or global), we considered an edge to be robust if it 

was selected by both the GGM and RF methods. This is a conservative approach that leads to high-

quality edges; we chose to focus on a network with very reliable edges at the expense of potentially 

missing some weaker associations that might be relevant. This trade-off was confirmed in very 

different scenarios based on both simulated and real data sets (Vignes et al., 2011; Marbach et al., 

2012). We validated both our models using simulated data that had the specific features of the data 

being studied (see the Appendix IV.1). Note that the numbers of robust edges were very different 

depending on the focal GRN. The final unified network, hereafter called the drought GRN, was 

formed by the union of all these robust edges (Figure IV.3) and comprised 69 connected nodes, 

representing the genes linked by 79 unique edges. Among the 69 genes, 49 were differentially 

expressed in one of the three global transcriptomic experiments using the Helianthus Affymetrix 

chip, and only 20 came from the literature or GO analyses using BLAST reciprocal best hits to infer 

homology. Figure IV.4 summarizes the origins of the 69 final genes of the network. 

The number of shared edges between the hormonal GRNs varied from 0 to 18 (Appendix IV.7 

and Table IV.1). The ethylene, cytokinin, and auxin networks shared the largest number of edges, 

whereas the ABA, brassinosteroid, and strigolactone networks had no edges in common with the 

other hormonal networks. 

 
ABA ACC Bras GA3 IAA Kine MeJA SA Global 

ABA 
         

ACC 0 
        

Bras 0 0 
       

GA3 0 4 0 
      

IAA 0 9 0 5 
     

Kine 0 18 0 6 15 
    

MeJA 0 6 0 3 4 5 
   

SA 0 0 0 0 0 0 0 
  

Global 0 18 0 7 16 30 8 0  

Specific 2 8 4 2 3 6 7 1 6 

Total 2 29 4 9 20 38 17 1 42 Table IV.1: Number of edges 

detected for each hormone 
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Figure IV.4: Origin of the selection for the inferred genes of the drought GRN. 

 

Comparison of the drought GRN to Arabidopsis data and prior knowledge of biological 

networks 

We compared our sunflower drought GRN to the model plant Arabidopsis thaliana using 

expression data from the AtGenExpress Consortium (Goda et al., 2008) (GEO accession: GSE39384 

from AtGenExpress Consortium). This Arabidopsis data set was similar to the Helianthus data and 

includes seven hormonal treatments but is limited to only three time points. Due to this difference in 

the sampling frequency, we were unable to define a network from these data using the inference 

methods described above. Therefore, we searched for gene expression correlations that were 

consistent (or inconsistent) with the sunflower data. Among the 116 Arabidopsis genes that were 

homologous to the 145 sunflower genes that were initially used to develop the consensus drought 

GRN, significant correlations between gene pairs were more frequent for pairs corresponding to the 

network edges, according to an exact hypergeometric test (p=0.005). The correlation analysis and 

hypergeometric test are described in the Appendix IV.1. This result demonstrated that the gene 

expression correlations identified from the Arabidopsis data were similar to the correlations 

identified in our sunflower drought GRN.  
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The topology of the drought GRN is consistent with what is known about biological networks. 

The degree distribution of the sunflower drought GRN followed a power law y = 20.57x-1.98 with an R² 

of 0.72 (Figure IV.5). This means that a few nodes had many connections and that the majority of the 

nodes had few edges, a finding that is a typical feature of the scale-free topology of biological 

networks (Barabasi & Oltvai, 2004). 

 

 

Figure IV.5:Degree distribution 

IV.3.5.3.Node connectivity defines different gene classes 

Identification of two hubs sharing common targets 

The average value for the connectivity of a node (i.e., the number of outgoing or ingoing edges 

connecting a node to the others) in the inferred drought GRN was 2.3. However, we identified nodes 

with important connectivity; in particular, two nodes had the highest number of outgoing edges: 8 

and 32 (with a connectivity of 9 and 32 respectively). These two genes were identified as important 

hubs in the inferred GRN. In addition, these genes shared 7 common targets, while no common 

sources (i.e., a gene q that targets the studied gene p) between these genes were identified. 

Relation between connectivity and gene function 

Gene ontology annotations of the Arabidopsis genes homologous to the 69 Helianthus genes 

connected in the unified drought GRN were retrieved from TAIR based on protein homology using 

the sunflower transcriptome web portal (www.heliagene.org/HaT13l).  

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure IV.6:Percentage of genes within the drought GRN in each class of gene connectivity, with the 

GO representation in each class indicated by different colored bars. 

a) Metabolism. b) Transcription factor or DNA binding. c) Transporters. Number of genes in each 

connectivity class is indicated between brackets. Note that the connectivity classes of 8 is

represented by a unique gene which does not belong to any of the three main classes of GO 

represented here (metabolism, transcription factor and transporters).
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Figure IV.6:Percentage of genes within the drought GRN in each class of gene connectivity, with the 

representation in each class indicated by different colored bars.  

a) Metabolism. b) Transcription factor or DNA binding. c) Transporters. Number of genes in each 

connectivity class is indicated between brackets. Note that the connectivity classes of 8 is

represented by a unique gene which does not belong to any of the three main classes of GO 

represented here (metabolism, transcription factor and transporters). 

Figure IV.6:Percentage of genes within the drought GRN in each class of gene connectivity, with the 

a) Metabolism. b) Transcription factor or DNA binding. c) Transporters. Number of genes in each 

connectivity class is indicated between brackets. Note that the connectivity classes of 8 is 

represented by a unique gene which does not belong to any of the three main classes of GO 
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We observed that genes in the GO metabolism category accounted for the majority of the 

genes with low connectivity values: 40%, 80% and 60% of the genes with a connectivity of one, two 

and three respectively, however there was no significant enrichment using a hypergeometric test 

(p=0.190). More interestingly, genes annotated as transcription factors and as having DNA-binding 

properties exhibited medium connectivity (i.e., four to five edges, p=0.002), with the exception of 

one gene that had a single edge, possibly because its targets were filtered out during our analysis. 

Finally, the most highly connected genes were anion transporters. While the GO transporter included 

20-30% of the genes with low connectivity, it also contained all the genes with high connectivity, 

including both hubs, which had 9 and 32 edges (Figure IV.6). The test showed that despite the very 

low number of highly connected genes, this trend was significant (p=0.059). 

IV.3.5.4.Canonical correlations between the topological parameters of the drought GRN 

and genetic differentiation statistics 

To examine how the drought GRN might be related to the evolution of wild and domesticated 

sunflower populations, we looked for canonical correlations between non redundant network 

topology parameters and the genetic differentiation statistics of the drought GRN nodes or genes. 

The topological parameters for each node represent quantitative measures of the gene position and 

relationships to others in the network. They are calculated from the number of oriented edges that 

connect one gene with another and are not independent by construction. In our GRN, edges are 

oriented, thus, we only considered genes with outgoing edges to compare the predictive value of the 

topological parameters. In addition, we were able to calculate FST for 15 of these genes among five 

populations of Helianthus: wild H. annuus, landrace lines of H. annuus, elite lines of H. annuus, H. 

petiolaris, and H. argophyllus.  

In a first step we used results from the PCA (cf Table IV.2.a and Figure IV.7) with topological 

parameters to reduce dimensionality and to obtain independent variables. The first and second 

components explained 67% of the variance. Regarding their loadings on the first two principal 

components, we selected ASPL and EdgeCount (cf Table IV.2.b). 

 

 
Comp.1 Comp.2 Comp.3 Comp.4 Comp.5 Comp.6 Comp.7 

Standard deviation of 

components 
1.771 1.484 0.973 0.902 0.862 0.017 0.002 

Proportion of cumulative 

variance 
0.4 0.681 0.801 0.905 1 1 1 

Table IV.2.a: Results of the Principal Component Analysis on the topological parameters for the 

drought GRN: standard deviation and proportion of cumulative variance of components 

 



139 

 Comp.1 Comp.2 Comp.3 Comp.4 Comp.5 Comp.6 Comp.7 

AverageShortestPathLength 0.517 -0.129   0.336 0.487 0.603 

BetweennessCentrality -0.257 -0.179 -0.249 0.785 0.466   

ClosenessCentrality -0.542 0.111   -0.190 -0.222 0.774 

Eccentricity 0.530   0.118 0.110 -0.813 0.157 

EdgeCount  0.659   0.221   

NeighborhoodConnectivity 0.303 0.159 -0.251 0.485 -0.733 0.210  

Outdegree  0.621 -0.336 -0.130 0.191   

Stress  0.307 0.862 0.332    

Table IV.2.b: Results of the Principal Component Analysis on the topological parameters for the 

drought GRN: loadings of the topological parameters on each components 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure IV.7: Bi-plot of the effects of the topological parameters in a Principal Component Analysis.  

Components 1 and 2 are shown. 
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Genetic differentiation was analyzed using five distinct FST subsets each of them expressing the 

FST between one Helianthus population and the other populations. Canonical correlation analysis 

(Table IV.3 and Appendix IV.8) between each of these five FST subsets on one side, and the two 

topological variables selected on the other side allowed to detect significant canonical correlations 

only for the Elite FST subset (Wilks’s test p= 2.00 x 10-3) and for the Landrace FST subset (p=1.00 x 10-4). 

As the intersection between these two subsets was FST between Elite and Landrace, this suggests that 

this variable in particular is correlated to the topological properties of the GRN. It was confirmed by 

the comparison of the canonical correlation analyses including only the FST value between Landraces 

and Elite lines (Wilks’s test p =1.90 x 10-3) or the FST value between Landraces and Wild (Wilks’s test p 

= 0.26). More specifically, we found a significant correlation of Pearson between FST value between 

Landraces and Elite lines and ASPL (R = 0.74, p=0.003).  

 

 Rho Correlation coefficient 1 Rho Correlation coefficient 2 

FST subset of H. argophyllus 0.672 (p-value= 0.299) 0.524 (p-value: NS) 

FST subset of H. petiolaris 0.493 (p-value=0.818) 0.369 (p-value: NS) 

FST subset of H. annuus Wild 0.728 (p-value= 0.362) 0.292 (p-value: NS) 

FST subset of H. annuus 

Landraces 
0.976 (p-value= 1x10-4) 0.299 (p-value: NS) 

FST subset of H. annuus Elite 

lines 
0.946 (p-value=0.002) 0.280 (p-value: NS) 

Table IV.3: Coefficients of canonical correlations between in one hand, topological parameters 

values of the drought GRN nodes and in another hand, their genetic differentiation measured as 

FST and grouped in five subsets. 

Each subset of FST compares genetic differentiation of one population Helianthus in comparison to 

the four other populations of Helianthus. Correlation superior to 50% were tested for significance 

with Wilks’s test. P-value of Wilks’s test are shown. 

IV.3.6. Discussion 

In this study, we reconstructed a GRN based on gene expression that portrays the 

transcriptional regulations that occur within a plant organ in response to environmental cues. As 

such, this drought GRN is not based on physical interactions between gene products and promoters 

and thus is not a molecular cell biology model. Instead, this GRN provides a more physiological view 

based on transcriptional events involved in drought stress responses similarly to the study of Hannah 

et al., (2006) on freezing tolerance in Arabidopsis. In addition, due to the temporal approach, the 

network edges are oriented and can be interpreted as dependent relationships. Together, these 

characteristics produce a network based on molecular regulations that also integrates physiological 
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processes with their chronology at the organ level. This provides a representation of plant 

physiological responses to dry conditions and therefore of the fitness in such an environment.  

IV.3.6.1. Network inference highlights the importance of nitrate transport in guard cells 

Drought GRN hubs are nitrate transporters and drive transcriptional regulation 

In the inferred network, two genes had many outgoing connections compared with other 

genes and could therefore be considered hubs. The first hub (HaT13l030730) is homologous to the 

transcript of the Arabidopsis gene chloride channel A (CLC-A, AT5G40890). CLC family members are 

involved in anion compartmentalization in intracellular organelles and in stomatal guard cell vacuoles 

(Jossier et al., 2010). More precisely, CLC-A and CLC-C are expressed in stomata and control their 

opening through translocation of NO-
3

 and Cl-, respectively. This difference in anion selectivity among 

the CLC family members is due to an amino acid change in the selectivity filter (Wege et al., 2010). 

The sunflower transcript HaT13l030730, which is homologous to Arabidopsis CLC-A, possesses the 

same amino acid conferring nitrate specificity. This suggests that the main hub identified in the 

drought GRN is likely a nitrate channel involved in stomatal aperture control and, therefore, 

transpiration. 

The second hub (HaT13l003541) is homologous to the transcript of the Arabidopsis gene 

NRT1.1 (AT1G12110), which encodes a dual-affinity nitrate transporter in Arabidopsis. Guo et al. 

(2003) demonstrated that this gene is expressed in guard cells of stomata and that transpiration is 

affected in mutants in an ABA-independent manner. The reduction of the stomatal aperture in 

mutants appeared to be due to nitrate uptake in guard cells. The control of stomatal transpiration by 

anion channels and transporters in guard cells was further confirmed (De Angeli et al., 2013) in 

Arabidopsis.  

Our approach identified the key role of two sunflower homologues of Arabidopsis anion 

transporters. This strongly suggests that this process is important for the regulation of the sunflower 

drought response. However, the two hubs do not directly regulate the expression of their target as 

transcription factors do; instead, the hubs drive downstream signaling cascades through indirect 

physiological and distant regulations.  

The drought GRN identifies connections between ABA-dependent and ABA-independent 

pathways 

In the inferred network, both hubs had seven common targets but no common source. This 

suggests that the NRT1.1 and CLC-A sunflower homologues could represent two pathways controlling 

drought stress responses. However, we could not exclude a cross-talk between NRT1.1 and CLC-A 

with an upstream regulator absent from our initial dataset. By inferring sunflower gene function 

based on Arabidopsis homology and the analogous expression response to drought, we could 
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tentatively investigate the molecular pathways characterized in the sunflower drought GRN. 

Functional annotation of the targets of the two hubs revealed genes that are directly involved in cell 

protection and stress tolerance, such as the ROS scavenger (APX1) and two enzymes involved in 

synthesis of an osmo-protectant,  choline (PMEAMT and CCT2). Interestingly, we also identified 

genes involved in signal transduction, such as kinases (HaT13l074901 and emb1075), phosphatases 

(HAB1), calmodulin-binding proteins (CPK5), and transcriptional regulators (MYC2, ARIA), 

downstream of the anion transporters, as described in Figure IV.8. 
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Figure IV.8: Functional 

network involving the two 

hubs of the inferred drought 

GRN, their sources, and their 

targets.  

Blank edges represent the 

ABA-dependent pathway, 

including the CLC-A. Solid 

edges represent the ABA-

independent pathway, 

including NRT1.1. Common 

targets involved in signal 

transduction are indicated in 

red, those involved in 

transcriptional regulation are 

shown in orange, and those 

involved in cell protection are 

shown in blue. 
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CLC-A and NRT1.1 define an ABA-dependent and an ABA-independent, respectively, pathway 

in our experimental results, as well as in Arabidopsis (Guo et al., 2003; Jossier et al., 2010). Both 

sources of CLC-A, SULTR1 and ABF2, are regulated by ABA in Arabidopsis (Fujita et al., 2005; Ernst et 

al., 2010) and also in our experiment for ABF2. In addition, specific targets of CLC-A are part of the 

ABA signaling cascade in Arabidopsis. HAB1 is a protein phosphatase that is strongly up-regulated by 

ABA (Rodriguez, 1998) and functions in ABA signaling. ABA1 is known to catalyze the first step of ABA 

synthesis (Rock & Zeevaart, 1991), and ARIA is an armadillo repeat protein that is known to interact 

with the transcription factor ABF2 (Kim et al., 2004). Together, these regulatory connections 

identified in Arabidopsis form a loop involving ABA synthesis (in vascular cells) (Boursiac et al., 2013) 

and a signaling pathway across the different cell types (including guard cells) throughout the leaf 

(Figure IV.8). In the drought GRN, we were able to partially identify the corresponding regulatory 

loop between sunflower homologues. These results suggest that the same ABA regulatory loop exists 

in the sunflower drought GRN and therefore could be largely shared across the plant kingdom. 

Similar to the shared targets of CLC-A and NRT1.1, specific targets of NRT1.1 are also involved 

in cell protection (PLDα2) and signal transduction (HaT13l028104). An interesting downstream target 

is MYC2, which is a central regulator of the hormone jasmonate, which is mostly involved in plant 

defense and the development and integration of many hormonal signals (Kazan & Manners, 2013). 

Across the sunflower drought GRN, several different pathways show some conservation across plant 

species, such as Arabidopsis. Therefore, the GRN inference approach developed in this study appears 

to be robust, and we can make the reasonable hypothesis that the main regulatory pathways and 

hubs identified in the drought GRN are likely conserved among distant plant species and therefore 

also across the Helianthus genus. Although, from our data we were not able to demonstrate the 

network conservation across Helianthus population (it would require inferring the network for each 

one which would be too laborious with the present technologies), this hypothesis allows us to 

explore new questions about how the GRN could constrain plant adaptation to dry environments.  

 

IV.3.6.2. Drought GRN topology and Helianthus evolution 

Network topology constrains genetic variation of the gene network 

Gene networks are the products of evolution, similarly to other biological objects, but gene 

network relationships can also constrain evolutionary changes, such as adaptations to new 

environments and responses to selective pressure during domestication or breeding. For example, 

(Rausher et al., 1999) demonstrated different evolutionary histories for upstream and downstream 

genes in the anthocyanin biosynthetic pathway. 
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The evolution of the GRN architecture can lead to new nodes, potentially introducing new 

functions and new edges between these nodes. Previous researchers (Hinman et al., 2003) examined 

GRN evolution in echinoderms and demonstrated that some features of developmental GRNs were 

conserved and that others were specific to each taxa. Network architecture is known to affect 

evolutionary rates (Ramsay et al., 2009), and we expect evolutionary changes to the nodes to be 

constrained by their connectivity and the number of neighbors. A hub in the network is involved in 

several pathways. The functional trade-offs for such genes are higher than those for peripheral genes 

that are neither involved in regulatory processes nor in the interaction with partners. 

To understand how populations and species evolve and adapt to a new environment, we examined 

the putative constraints of the network architecture on the genetic differentiation between 

populations of H. annuus, and two wild species that are cross-compatible with H. annuus: H. 

argophyllus and H. petiolaris.  

No evidence of network topology constraints during the divergence of H. argophyllus and H. 

petiolaris  

Helianthus argophyllus is native to the dry, sandy soils of southern Texas, an arid environment that 

imposes strong selection for tolerance to drought stress. Indeed, H. argophyllus is considered the 

most drought-tolerant sunflower species because its pubescent leaves reflect sunlight, reduce water 

loss, and exhibit low transpiration (Seiler & Rieseberg, 1997). However, network topology and FST 

values between H. argophyllus and other populations were not significantly correlated. This could be 

because the adaptation of H. argophyllus to dry environments involved physiological mechanisms 

that are not captured in our GRN or because the network topology has itself evolved and the 

topological parameters in H. argophyllus are too dissimilar to those in H. annuus. Interestingly, the 

highest value of FST between H. argophyllus and other populations was for the network hub, NRT1.1, 

which is involved in transpiration. This result is consistent with positive selection acting on NRT1.1 

during adaptation of the H. argophyllus to dry environments. Keeping in mind the overall non-

significant correlation, it suggests that NRT1.1 could be an example of the fore-mentioned 

hypothesis. 

In H. petiolaris, we observed no correlation between the GRN topology and FST for comparisons 

with other populations. Because H. petiolaris has a large geographic range that overlaps with that of 

H. annuus in the Great Plains of the USA, drought stress might not be the major selective force 

separating these species. This could explain the similar divergence patterns within the drought 

network genes between these two populations as illustrated in Figure IV.9.b. 
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Figure IV.9: (a) Representation of genetic differentiation between H. annuus Landraces and H. 

annuus Elite Lines in function of the gene positions in a schematic gene regulatory network.  

Colors of the genes in the schematic GRN represent the difference of heterozygocity between the 

two populations for the considered gene. Node color represents differentiation between elite and 

landrace sunflowers: darker nodes appeared more differentiated compared to lighter nodes. 

Canonical coefficients (ρ) and p-value of the Wilks’s test for the correlations between network 

topological parameters and FST values of one population compared to the others are indicated for 

Elite lines and landraces. (b). Hypothesis about differences of genetic differentiation between the 

five Helianthus populations. Note that only the five comparisons representing the selective history 

of the sunflower are shown. Black edges indicate no variability in the genetic differentiation within 

genes network between the two populations. White edges indicate changes in the genetic 

differentiation between populations as observed for the 15 genes in the drought GRN analyzed in the 

CCA. The coefficient of the Person’s correlation between the topological parameter Average Shortest 

Path Length (ASPL) and FST between H. annuus Elite lines and Landraces is indicated. 

 

 

 

a 
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Genetic diversity within the GRN was modified during modern breeding 

The network topological parameters and the FST between the landraces and elite lines of 

Helianthus annuus were correlated (Figure IV.9.a). This reflects a difference of genetic differentiation 

between these two populations between the center and the periphery of the network. We did not 

observe this correlation for FST between wild H. annuus and landraces. This suggests that the position 

and connectivity of genes in the drought GRN influenced the response to selection during the last 

century of genetic improvement but not during the initial domestication of H. annuus. This difference 

in selective responses could be due to the fact that highly connected genes are subjected to more 

trade-offs as they are master regulators with involvement in several genetic pathways in contrast to 

less connected terminal genes (Figure IV.9.a). Drought tolerance is considered to be a long standing 

goal of sunflower breeders. We would expect that the selection they exert had led to a global 

reduction of genetic diversity in the drought GRN. However, we observed a higher divergence of 

terminal genes compared to central ones, which implies a stabilizing selection acting on the network 

hubs. Interestingly, our FST studies in H. argophyllus, suggest that a different selective pressure acted 

on one of the network hub (Figure IV.9.b). This highlights our lack of global understanding on how 

evolutionary forces and functional relationships interacted to produce contemporary phenotypic 

diversity and suggests a potentially important way of improving the breeders' methods, through the 

integration of regulatory networks in quantitative genetics models such as genomic selection.  

In conclusion, this work investigates the interaction between physiological and evolutionary 

processes in the context of a genetic network for the drought-stress response. Interactions between 

physiological and evolutionary time scales could be revealed in the future through global 

transcriptomic studies, although some limitations of network inference methods remain to be 

overcome. This type of work will facilitate the study of responses to other environmental factors and 

clarify whether physiological mechanisms and evolutionary adaptation, which are reciprocally 

constrained in the gene regulatory network, are similar in abiotic and biotic interactions. 

 

 

End of article “Bridging physiological and evolutionary time scales in a gene regulatory 

network”, accepted on March 2014 in New Phytologist 
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IV.4 Main conclusions about the drought GRN and transcription 

regulation  

In this work we have been able to build a drought GRN thanks to a systems biology approach. 

In the inferred network, main groups of regulatory pathways already identified in literature have 

been highlighted as phosphatase cascades or the induction of genes involved in cell protection (see 

previous section). The gene regulatory network also distinguishes an ABA-dependent pathway and an 

ABA-independent pathway as documented in numerous studies about responses to drought stress 

(Bray, 2004; Shinozaki & Yamaguchi-Shinozaki, 2007; Todaka et al., 2012). 

Several transcription factors in this inferred GRN have numerous connections with other 

genes, suggesting that they directly or indirectly regulate their transcription levels. This result is 

consistent with the concept of transcription factors that are considered to be the main actors of 

transcription regulation at the molecular level. Surprisingly, however, the most highly connected 

genes in the inferred regulatory network are two anions transporters. As already detailed in the 

previous section, anion transporters have been demonstrated to be involved in stomatal movement, 

in the model plant Arabidopsis. We can draw new hypotheses to explain the high connectivity of 

those anions transporters in the network. Changes in stomatal aperture and in cell osmotic potential 

might have a dramatic impact of the cell state and produce a major physiological reprogramming 

that would indirectly induce changes in transcription level of other genes involved in drought stress 

responses. Therefore, genes originally classified in the group of the effectors genes, as the anion 

transporters described in our work, also play an indirect but important role in the transcription 

regulation of drought responsive genes. It highlights that feedback loops between effectors genes 

and transcription factor exists and might have a major role. Then, the two distinct groups identified 

in the generic cascade for drought stress (transcription factor for transcription regulation and 

effectors genes involved in drought tolerance mechanisms) are likely involved in a same GRN with 

permanent feedback loops between them.  

 

IV.5 Outlooks for the drought GRN study 

In order to carry on the study of the drought GRN several complementary researches could be 

conducted with different objectives. 

IV.5.1 Functional characterization of the inferred drought GRN 

The gene regulatory network is inferred thanks to partial correlation between gene 

expressions. The connections between two genes are not completely demonstrated adopting a point 

of view of molecular biology. Therefore, for some important regulatory pathways, demonstration of 
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the functional link between two genes could be envisaged using mutant and knock-out strategies. In 

particular, this complementary approach could be used for the functional characterization of the 

regulatory pathways involving the two anion transporters. Indeed anions transport seems to be an 

important mechanism in drought tolerance and the detailed characterization of the genes involved in 

this pathway should be interesting and examined more closely in order to improve the tolerance of 

sunflower to water deficit. 

IV.5.2 Toward a more complete systems biology study 

Systems biology is the understanding of a biological systems (here the sunflower) at the 

system level i.e. in a holistic perspective. The study that we have conducted is only the first step 

towards this challenging goal and many other research projects will be necessary to achieve this aim. 

Here, I would like to present some example of studies that would help to gain a global understanding 

of the sunflower system under drought stress. 

First, sunflower is a multi-cellular organism. Therefore, one important question that needs to 

be answered is the spatial characterization of gene regulation. For the GRN inference presented 

previously, we used the entire leaf tissue. However, it would be interesting to know in which type of 

cells the different genes, which are involved in this network, are expressed. For example, we could 

verify that the anions transporters are indeed expressed in guard cells. This supplementary 

knowledge about the GRN can now be obtained for example thanks to single-cell RNA-seq 

experiments (Tang et al., 2009; Brennecke et al., 2013). Still in the same objective of a better 

understanding of the drought gene regulatory pathways in a multi-cellular organism, the inference of 

drought GRN could be conducted in other plant tissue such as, for example, the root system, which 

plays a major role in drought tolerance. Comparison of the leaf and root GRNs would allow us to 

gather information on the communication between the different plant organs and to define a unified 

drought GRN which would be even more relevant in predictive biology. 

A second enhancement of the inferred GRN would be to improve our understanding of the 

edges linking two genes. In the work described in this chapter, connection between two genes gives 

no indication about the relationship between them and how expression level of the first regulate 

expression of the second. The detection of one edge indicates that a change in expression of the first 

at one time accounts for a change in the expression of the second at the following time. It is a 

Boolean relationship. Instead of this Boolean look at edges, a more powerful insight would be 

achieved by understanding how the expression of a target gene is dependent of the expression of its 

source genes in a quantitative way. In this new model, edges would represent a function of gene 

expression with expression level of source genes, stress intensity and time as parameters. This would 

be the first step in the study of the system dynamics while for the moment only system structures 
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and their relationships have been described. To achieve this goal, a method such as the bifurcation 

analysis can be used. Bifurcation analysis traces time-varying changes in the state of the system in a 

multidimensional space where each dimension represents a particular intensity of the perturbation 

involved or level of gene expressions (Kitano, 2002). 

Such modeling and level of system understanding could be interesting in order to compare 

gene regulatory network for various environmental stresses or to compare GRN between species. 

Actually, several abiotic stresses, such as for example drought, cold or salt stresses, share pathways 

and molecular responses. Therefore, it is very likely that several genes would be found in common in 

their regulatory pathways using these modeling techniques. Distinction between two pathways that 

involve similar genes would be accessible with an accurate and detailed knowledge of the 

mathematical function linking gene expressions in a time and dose-dependent manner. 

Finally, as already suggested above, a gene regulatory network should be inferred for the 

different stresses that are likely to perturb the biological system. This goal can be achieve using 

whole transcriptomic studies with different datasets for each stress. This will give a complete picture 

of the system dynamics and lead to the next steps of a system biology approach i.e the learning of 

the system control and finally of system design.  

 

IV.6 Conclusions and outlooks about Helianthus evolution study thanks 

to GRN 

In the work presented in this chapter, we inferred a drought GRN accounting for physiological 

adaptation for water deficit tolerance. These modifications reflect biochemical, morphological, and 

phenological changes occurring at the time-scale of an organism life. However, the ambition of this 

study was also to understand how the particular topology of the gene regulatory network could 

constrain the adaptation on a longer time-scale such as the evolutionary time-scale. Then it could 

help to understand how phenotypic plasticity produces phenotypes that can become constitutive in 

order to adapt species in a new constrained environment. Figure IV.10 presents a schematic view of 

the generic cascade involved in drought responses and integrates results of this chapter concerning 

evolutionary constraints. To investigate this process, we made the strong hypothesis that the GRN, 

that we inferred from cultivated H.annuus, is conserved across Helianthus annuus and its relatives. 

An important improvement of this work would be to demonstrate this assumption. It could be 

verified if the same whole transcriptomic strategy and system biology approach were set up in order 

to infer a new GRN for each species. Nevertheless, this strategy would not be easy to set up because 

it is very expensive and time-consuming. Actually, a lot of samples have to be harvested in order to 

have important dataset for each species. It would also be difficult to obtain the exact same 
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Figure IV.10: Two gene regulatory cascades for drought stress responses in different 

annuus species. 

This figure shows a schematic representation of the drought GRN explaining the link between 

physiological changes to cope with environment stress and the ev

species to distinct environments. The network topology gives some insights about how phenological 

changes could become constitutive and contribute to species evolution history.
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Chapter V: Conclusions and perspectives 
 

 

 

Drought stress is one of the main abiotic stresses that occur in the field and constrain plants’ 

growth, development, fitness, and yield (concerning species with agronomic interest). To cope with 

this environmental pressure, plants have developed a large range of mechanisms that take place 

from the whole plant scale to the molecular level. Moreover, these drought tolerance mechanisms 

impact various plant functions such as phenology, biomass allocation, transpiration or development. 

Thanks to numerous studies, major morphological and physiological phenomena that allow drought 

tolerance begin to be well known. However, their genetic control is far from being completely 

understood. Although some major regulatory pathways and key genes have been identified, mainly 

for model plants, a global view of the genetic control of drought stress responses is still lacking. 

Knowledge about gene regulatory network (GRN) underlying traits involved in drought tolerance 

could be very useful to answer various questions about drought tolerance: What is the genetic 

control of the perception of the environmental signal by the plants? How is controlled the 

phenotypic plasticity for traits involved in drought tolerance? How does the physiological adaptation 

to drought relate to species evolution? For the particular case of the sunflower, bringing to light 

these points could be interesting for breeders since one of their major challenges for the coming 

years is the improvement of drought tolerance. 

Throughout this PhD work, I have attempted to answer those questions. The strategy was to 

study the main classes of drought responsive genes involved in the different steps of the response to 

the environmental signal in order to obtain more insight into the gene regulatory network(s) 

underlying morphological and physiological traits that confer drought tolerance.  

 

V.1. A more complex picture of the genetic control of drought stress 

responses 

V.1.1. Genes involved in the perception of the drought signal and cross-talk between 

the plant and its environment 

The first class of genes that we studied comprised genes involved in the drought perception. 

The goal of this first part of the work was to highlight some genes whose expressions only depend on 

the intensity of the water stress. Response to drought stress differs between two genotypes. It can 

be explained by the genotype-dependent expression of genes involved in the cascade for water 

stress responses. Several hypotheses can be constructed concerning which class of genes is 
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genotype-dependent or genotype-independent. The two extreme hypotheses would be (1) all genes 

are genotype-dependent and (2) no genes are genotype-dependent (this last one not being able to 

explain the difference of response for drought between genotypes). A transitional hypothesis, our 

original one, would be that the genes first involved in the perception of the environmental signal 

could be genotype-independent and then genes involved in transcription regulation and coding for 

effector proteins could be variably expressed according to the genotypes. Therefore genes involved 

in the environmental perception are assumed to be candidates for genotype-independent genes. In 

our results we identified three genes with expression correlated to plant water status (genes used to 

build the water status biomarker described in chapter II) and with no genotype effect in the range of 

the genetic diversity observed (four genotypes in our study and eight in the previous study of Rengel 

et al., 2012). Those genes were either transcription factor or genes coding for effectors involved in 

the molecular responses to drought. Therefore a reasonable hypothesis would be that (at least 

within an operational range of genetic variability and of environmental conditions, both of them 

being of interest for sunflower breeding) likely two cascades for drought stress responses are 

involved and probably with cross-talk between them: one with only genotype-independent genes 

and the second with a mix between genotype-dependent and genotype-independent genes. 

Therefore genes used for the WSB construction would be either at the beginning of the mix cascade 

or anywhere in the genotype-independent cascade (figure V.1). It is also important to keep in mind 

that genotype-independent expression of the genes was evaluated on a limited genetic variability 

taking into account only eight (Rengel et al., 2012) and then four (Marchand et al., 2013) genotypes. 

Widening the genetic diversity of the study could lead to restrict the number of genotype-

independent genes and make a stronger hypothesis about where those genes are located in the 

generic cascade controlling drought stress responses.  

The first part of the PhD work shows the existence of an oriented link between expression of 

genes involved in environmental signal perception and genes directly supporting responses to water 

deficit as, for example, genes coding for effectors proteins involved in physiological responses to 

drought. During the association study (see chapter III), genetic loci responsible for water status 

variations (estimated through the use of the WSB) were identified. This genetic control is the sign of 

a link between effectors or regulatory genes involved in water deficit responses and the genes 

involved in the water status perception (figure V.1). A possible interpretation of this result would be 

the existence of a system where the plant controls its water status and therefore its micro-

environment. This adjustment toward a new water status is genotype-dependent, as it is the 

consequence of the genotype-dependent strategy of the plant to tolerate drought stress. It can 

therefore be interpreted as a cross-talk between the plant and its environment, each influencing the 

other. 
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In conclusion about the genes receptor or indicator of the water status, we can retain that at 

least a part of those genes could be genotype-independent observing a narrow genetic diversity (i.e. 

few genotypes express those genes in a same way that depends only on their water status). They are 

located at different levels along the generic cascade for drought stress responses. Moreover, the very 

likely existence of a feedback loop between these classes of genes allows adjustment between the 

plant, the water status, and its micro-environment. This adjustment is proper to the genotype and 

reflects its strategy for drought tolerance. 

V.1.2. Existence of feedback loops between regulatory genes and effectors genes 

The second class of genes that we studied was involved in the signal transduction and the 

control of the transcription regulation for down-stream genes. Selecting a part of those down-stream 

genes, we reconstructed the GRN that links them through network inference in a systems biology 

approach (see chapter IV). It allowed us to identify the hubs of this network. Those highly connected 

genes induce many downstream genes and therefore are important factors in the transcriptional 

regulation. Surprisingly, the main hubs of our re-constructed GRN are two anion transporters. The 

transcription factors, known for their action in transcription regulation, are found only in the second 

rank of gene connectivity. Anion transporters in the model plant Arabidopsis are involved in stomatal 

closure. The functional protein domains are likely conserved in the Helianthus homologues. Hence, 

anion transporters may occupy a major role in drought tolerance regulation in sunflower. We can 

discuss the fact that the most highly connected genes were not transcription factors as we could 

originally supposed. The first hypothesis would be that in our genes selection we missed major 

sunflower transcription factors that regulate the transcription of downstream genes or failed, in the 

GRN inference, to link them with their target genes. However, the connections between anion 

transporters and their target genes could not be false positives and therefore those hubs are very 

likely important genes for the sunflower GRN. That leads us to our second hypothesis where genes 

such as anion transporters, originally classified in effectors genes for drought stress responses also 

play a role in the regulation of the drought responsive genes. This indicates that the genes involved 

in the transcriptional regulation as transcriptional factors and effectors genes are involved in a same 

GRN with permanent feedback loops between them. The links between those genes are represented 

in Figure V.1. 

 

  



                                

Figure V.1: Generic cascade of genes involved in drought stress responses with a summary of all results pointed out throughout the 

PhD work. 

Additions in comparison to the cascade adapted from Huang et al., 2011 are in grey and related to the respective chapter. Genes with 

expression independent of the genotype are either at the end of a whole pathway of genotype independent genes or at the beginning 

of a mixed pathway with expression of genes genotype-dependent and independent (Chapter II). There are feedback loops between 

effectors genes and regulatory genes and genes preceptor of the environment. Expression of effectors genes can be governed by 

genotypic (G) effects and Genotype x environment (GxE) effects. 
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V.1.3. Genetic architecture of genes underlying morphological and physiological traits 

conferring drought tolerance 

The last class of genes that we studied in this PhD project concerned the genes involved in the 

physiological and morphological traits that drive drought stress tolerance in the plant. Genes with 

expression correlated to those traits (Rengel et al., 2012) were used as phenotypic traits in the 

association study (see chapter III). This allowed us to link the physiological level to the genetic level 

using the intermediate molecular level in drought stress responses. Therefore the results give us a 

first look of the genetic control of those genes whose expression is genotype-dependent and also 

water status-dependent. This study was also a first attempt at understanding the genetic basis of the 

phenotypic plasticity of traits involved in drought tolerance and at identifying the underlying 

mechanisms such as the genotype x environment interaction. Associations between gene expression 

levels and SNPs found in the vicinity of the genes (cis-regulations) had only genotype-dependent 

effects, whereas the distant (trans-) regulations were more likely subjected to a genotype x 

environment interaction effect that can modulate the genotype-dependent effect. In our study, we 

found only few genes under the control of a significant genotype x environment effect. This could be 

due to different factors: choice of genes, not enough stressful conditions in our experiment (see 

chapter III). However, it can open the way for a more important study comprising, for example, a 

wider selection of genes. Differences between genetic controls of the drought responsive genes are 

summarized in Figure V.1. 

V.1.4. From a “simple” gene cascade to a more complex picture of the drought gene 

regulatory network 

All these different parts of the PhD work permit to detail the generic pathway for drought 

stress responses. They gave supplementary information about the location of the genes and the 

interaction between them that allow the complex regulation of the drought responses. This work 

also yielded some evidence about the genetic architecture of the regulation of these genes, with the 

distinction between genes whose expression is genotype-dependent/independent and the intensity 

of the genotype x environment interactions effects involved in their regulations. Our original and 

naive vision of the generic pathway (presented in chapter I) was linear with different classes of genes 

that take part successively in the responses to drought stress. This background picture of the drought 

tolerance genetic control has been very useful to conduct the first approaches to study water deficit 

stress and gain a first understanding of the drought tolerance phenomenon at the genetic level. 

However, from the results obtained during this PhD work and several other research projects using 

systems biology approaches, this first version is obviously too simple. A more appropriate model for 

sunflower drought regulatory pathways implying several feedback loops can be drawn as shown in 

Figure V.1.  
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V.1.5. Limits of our approach and future perspectives 

Results provided by the different sections of this work provide some insights into genetic 

control of drought stress responses with a first attempt to obtain an overview of the regulatory 

processes involved in sunflower drought responses. Indeed, we used systems biology approaches 

and whole-genome association mapping strategy to explore the genetic architecture of drought 

tolerance traits. This led to the reconstruction of several drought GRNs based on different 

experimental data sets or approaches. If these representations of the water stress genetic regulation 

allow approaching a more complete view of their complexity than the previous linear cascade, we 

have to keep in mind that this model is still a largely incomplete vision. It only allows one to perceive 

the complexity of these regulatory mechanisms. In addition to that, at each step, only a small fraction 

of sunflower genes was studied. Therefore, the picture can still only be considered to be 

fragmentary. 

For the future, as already discussed in a previous chapter of this work (see chapter IV), a more 

complete systems biology approach should be considered. The next studies should, hence, tend to 

take into account the whole sunflower gene set and the kinetics of their expression in different water 

stress intensity in order to achieve a global reconstruction of the drought GRN. This is in fact an 

ambitious work and a major challenge. Nowadays, obtaining expression levels of thousands of genes 

does not form an obstacle any more, but there are still other technical problems to overcome to 

obtain the final GRN model. The first one is the important phenotyping investment necessary to draw 

the kinetic curves of gene expression in several drought stress conditions. The second one is the 

computational problems that involved a GRN inference with thousand of genes in different 

conditions. Nevertheless, systems biology approaches seem a promising way to obtain a more 

complete picture of the drought regulatory pathway that govern responses to water deficit.  

 

V.2. From physiological acclimation of a genotype to the species 

evolution and adaptation 

In the last part of this work we adopted an even broader point of view. The GRN we built in 

this last part of the project is a way to aggregate different information (direct environmental signal, 

plant physiology and phenological stages, molecular levels, etc). This involves many genes in order to 

control physiological and morphological responses to adapt the phenotype of a genotype to its 

environment. Assuming that main regulatory pathways are conserved among Helianthus species, 

GRN can be a prism to interpret species evolution and how they can adapt to and colonize new 
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environments with a different drought constraint. According to the GRN topology, selection pressure 

should be different between genes (see chapter IV).  

Once again, the results about Helianthus evolution described in this work are only preliminary 

findings that should be treated with caution. Indeed, the study is far from taking into account all 

genes involved in the mechanisms driving to evolution and adaptation of sunflower to dry 

environments. However, we believe that using GRN to draw a link between physiological adaptation 

that occurs at the organism time-scale and the species evolution could yield interesting results in 

specific contexts..   

It could be used, for example, to study evolution of species due to an environmental constraint that 

could be biotic or abiotic. This could also help predict the liable target genes for heterozygosis losses 

and establish long-term scenarios about genetic diversity losses after selection for the specific trait 

regulated by the observed GRN.  

 

V.3. Perspectives of utilization in a crop model  

A crop model is a way to simulate the functioning of a plant i.e. development (including growth and 

phenology) and physiology (including environmental response and biomass allocation), in order to 

predict the yield of the crop. To achieve this goal, the complex system that the plant represents is 

simplified in order to keep only the major factors that impact the final output of the model i.e the 

crop yield. Therefore, a crop model has three main objectives. The first one is to gather 

interdisciplinary knowledge of plant and crop functioning. The second is to introduce enough 

complexity and knowledge about plant functioning in order to have a good estimate of the yield and 

an accurate view of the crop development. The third is to be flexible and open to further 

development, which means that knowledge has to be simplified in order to keep the model easy to 

manipulate. The challenge of crop modeling is, therefore, to compromise between these different 

goals.  

A crop model for sunflower, called SUNFLO has been developed by Casadebaig et al., (2011). This 

crop model has input parameters taking into account information about the environment on one 

hand (climate, soil, crop management, nitrogen availability) and information about plant 

development in non-constraining conditions and about abiotic stresses sensibility (which are 

considered genotype-dependent) on another hand. All this information is crossed in a stress module 

that adjusts the plant functioning according to the environmental parameters (figure V.2).  

Among the different applications of this crop model, it can be used to make prediction about the 

yield under specific environmental conditions, or to help define new ideotypes. Up-to-now, plant 

parameters implemented in SUNFLO are physiological, phenological and morphological parameters 
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Figure V.2. Functional schema of the crop model SUNFLO.

Environmental and plant parameters relative to stress sensitivity are used in the stress module to 

adjust the standard yield estimation provided via 
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and are determined experimentally. Genotypic and molecular knowledge 

upstream in SUNFLO and used to estimate the present phenotypic parameters. 

implies the identification of the main regulatory genetic pathways that influence the phenotypic 

parameters already developed in SUNFLO such as, for example, the transpiration rate and the leaf 

expansion. An allelic combination could replace the phenotypic parameters by 

the genotypic effect and the genotype x environment interaction effect of each genetic variant. 

Therefore the preliminary results obtained in the present work and that aimed at identifying the 

genetic control of the main regulatory pathways of drought stress responses could be integrated
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Appendices 
 

 

Appendices Chapter II 

 

Appendix II.1: Model for soil evaporation 

Epd=aPpd+bHd+cTd+d 

 

Where  

Epd is the soil evaporation for the pot p at the day d,  

Ppd is the wheight of the pot p at the day d 

Hd is the average humidity in glasshouse at the day d 

Td is the average temperature in glasshouse at the day d 

a, b, c and d are constants with the following values: 

a=19.86902302 

b=-3.425441698 

c=-5.025490995 

d=126.0254727 

 

Appendix II.2: List of selected genes for the WSB construction and their 

functional annotations. 

This appendix is available on line at the address: 

https://www.heliagene.org/cgi/heliagene.cgi?__wb_session=WBoOPfh9&__wb_main_menu=Publica

tions&__wb_function=PhDThesis 

It presents the genes selected from Rengel et al. 2012 for the WSB construction, circadian clock 

genes, sunflower dehydrins and reference genes (Excel file). 

 

Appendix II.3: List of primers for candidate genes of the WSB construction. 

This appendix is available on line at the address: 

https://www.heliagene.org/cgi/heliagene.cgi?__wb_session=WBoOPfh9&__wb_main_menu=Publica

tions&__wb_function=PhDThesis 

It presents the primers for the candidate genes for WSB construction (Excel file). 
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Appendix II.4: Supporting Materials and Methods of article describing the 

WSB construction 

Transcriptomic analysis 

Tissue harvest and RNA extraction 

Leaves were harvested between 11:00 and 13:00, except during the diurnal variation study To 

harvest non-senescent and non-growing leaves, the total leaf number (Ntot) was estimated, and two 

thirds of the total leaves from the bottom were tagged and termed the nth leaf. In the greenhouse 

experiment, we selected the n+1 leaf, and in the field experiment, we selected the Ntot-4 leaf of one 

plant. Each leaf was sampled and treated separately. 

The leaves were cut without their petiole and immediately frozen in liquid nitrogen (greenhouse) or 

in dry ice (field). Grinding was performed using a ZM200 grinder (Retsch, Haan, Germany) with a 0.5-

mm sieve. Total RNA was extracted using QIAzol Lysis Reagent following the manufacturer’s 

instructions (Qiagen, Dusseldorf, Germany). The quantity of RNA was estimated using a ND-1000 

spectrophotometer (Nanodrop, Wilmington, DE, USA). The RNA quality was checked by 

electrophoresis on an agarose gel. The cDNA was synthesized from 2 µg of total RNA using an 

anchored oligo dT (dT15-V) and the Transcriptor First Strand cDNA Synthesis Kit (Roche, Basel, 

Switzerland). 

 

Estimation of gene expression by qRT-PCR 

Gene expression was estimated using the BioMark™ HD System (Fluidigm, San Franscisco CA, 

USA) with a 96.96 Dynamic Array IFC and EvaGreen® (Bio-Rad, Hercules CA, USA) as the DNA binding 

dye (Spurgeon et al., 2008). 

Primers and cDNA samples were adjusted to a concentration of 20 µM and 5 ng/µl, 

respectively. 

A specific target amplification (STA) was performed for each sample using TaqMan® PreAmp 

Master Mix (Applied Biosystems/Life Technologies, PN 4361128, Carlsbad CA, USA). The reaction 

mixture and thermal cycling were performed according to the Fluidigm protocol PN100-1208 B1. 

After the STA step, an exonuclease treatment (M0293S, New England Biolabs, Ipswich MA, USA) was 

performed following the manufacturer’s instructions to remove any primers still present in the 

reaction mixture. 

Finally, all samples were diluted 1:5 in water (taking into account the dilution of the 

exonuclease treatment). Further steps concerning the loading chip and thermal cycling were 

performed following the Fluidigm Protocol PN100-1208 B1. 

The expression levels of gene i expressed as the cycle threshold Ct were normalized according to the 
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amplification efficiency (noted effi below) and the expression levels of seven reference genes (noted 

r below) identified in (Rengel et al., 2012) were estimated as follows: 

dCti = ((1+effi)
Cti) / mean((1+effr)

Ctr ). 

 

Statistical analysis 

Statistical construction of the water status biomarker (WSB) 

The pre-dawn leaf water potentials were not measured at the same time in field and in 

greenhouse experiments. ΨPD’ in the greenhouse experiment measured the water status at the time 

of the transcriptomic harvest and ΨPD in field measured the water status at the end of the day before 

the transcriptomic harvest. These two measurements allowed us to access to water available for the 

plant at two different time of the experiment (Figure II.2). The WSB was calibrated with greenhouse 

data to estimate ΨPD’. Using ΨPD in the field experiments, that did not account for WS variation in the 

morning between the WS measurement and the transcriptomic harvest, and introduced a bias for 

field validation. To correct it and compare equivalent WS in greenhouse and in field experiments, we 

estimated ΨPD’ from the pre-dawn leaf water potential measured in the field by subtracting the mean 

difference between WSBΨPD and ΨPD as follows: 

ΨPDi’ =ΨPDi - mean (WSBΨPDim - ΨPDi),  

where ΨPDi is the pre-dawn leaf water potential of plant i measured in the field between 4:00 and 

5:30 and WSBΨPDim is the pre-dawn leaf water potential value for plant i predicted by the model m 

calibrated in the greenhouse. This transformation allowed us to choose the best model with 

observed data from field equivalent those from greenhouse (used to calibrate the model). In fact this 

correction accounted for the over-estimation by ΨPD of the WS at the time of the transcriptomic 

harvest, it didn’t modify the model ranking based on R² of the correlation between predicted and 

observed data, but only reduced the RMSE (Figure II.3). 
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Appendix II.5: Raw data of gene expression level function of FTSW values. 

The histogram shows average gene expression level for the corresponding FTSW level. Inedi is 

represented in black, PSC8 in blue, XRQ in red and Melody in green. The error bars represent the 

standard deviation for each genotype and each FTSW condition. The scatter plot shows gene 

expression level in function of FTSW value. One point represents one individual plant. 
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Appendix II.6: P-value distribution for the correlation between expression 

level of the 28 candidate genes and the four WSI. 

The red line show the threshold selection p-value < 0.001  

 

a) Correlation with FTSW 
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b) Correlation with SWC 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

c) Correlation with FtotSW 
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Appendix II.7: P-value distribution of F-test for comparison between 

correlation model independent of genotypes and correlation model 

dependent of genotypes between candidate gene expression and the four 

WSI. 

The red line show threshold selection : p-value > 0.001.  

a)For FTSW 

 

 

 

 

 

 

 

 

 

 

 

 

b)For Ψ’PD 

 

 

 

 

 

 

 

 

 

 

 



193 

c)For SWC 
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Appendices Chapter III 

 

Appendix III.1: Raw and normalized values of WSB for each genotypes of tha 

association panel 

This appendix is available on line at the address: 

https://www.heliagene.org/cgi/heliagene.cgi?__wb_session=WBoOPfh9&__wb_main_menu=Publica

tions&__wb_function=PhDThesis 

It presents: (1) raw data for WSB and corresponding ΨPD; (2) corresponding block effect; (3) 

normalized data for the block effect (Excel File) 

Block effect were calculated using the following ANOVA model 

Yij=µ +Gi +Bj+εij , 

Where Yij is the WSB observation for the ith genotype in the jth block, µ is the intercept term, Gi is 

the genetic effect of the ith genotype, Bj is the effect of the jth block and εij is the residual error 

 

Appendix III.2: List of selected genes for GWA study and their functional 

annotations. 

This appendix is available on line at the address: 

https://www.heliagene.org/cgi/heliagene.cgi?__wb_session=WBoOPfh9&__wb_main_menu=Publica

tions&__wb_function=PhDThesis 

It presents the 86 genes selected from Rengel et al. 2012 and used in the GWA study, the reference 

genes and the 3 genes used to calculate the WSB. (Excel File) 

 

Appendix III.3: BLUPs for the 86 gene expressions and WSB using G or GE 

models 

This appendix is available on line at the address: 

https://www.heliagene.org/cgi/heliagene.cgi?__wb_session=WBoOPfh9&__wb_main_menu=Publica

tions&__wb_function=PhDThesis 

It presents (1) BLUPs for the 86 studied genes for each panel lines caculated with the G model; (2) 

BLUPs for the 86 studied genes for each panel lines caculated with the GE model; (3) BLUP for the 

WSB for each panel lines caculated with the GE model. (Excel File) 
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Appendix III.4: Paired t-test results to compare G and GE models 

This appendix is available on line at the address: 

https://www.heliagene.org/cgi/heliagene.cgi?__wb_session=WBoOPfh9&__wb_main_menu=Publica

tions&__wb_function=PhDThesis 

It presents for the 68 genes with results in both G and GE models, results of the t-test, its p-value and 

the confidence intervalle bounds (Excel File) 

 

Appendix III.5: Complete results of association and QTL detection 

This appendix is available on line at the address: 

https://www.heliagene.org/cgi/heliagene.cgi?__wb_session=WBoOPfh9&__wb_main_menu=Publica

tions&__wb_function=PhDThesis 

It presents a description of the association study results for the gene expression with BLUPs different 

from zero (Excel File). 

 

Appendix III.6: Effect of the associated SNP and comparison between G and 

GE model 

This appendix is available on line at the address: 

https://www.heliagene.org/cgi/heliagene.cgi?__wb_session=WBoOPfh9&__wb_main_menu=Publica

tions&__wb_function=PhDThesis 

It presents for each gene the effect of the associated SNP its confidence intervalle and the 

comparison between the two models (Excel Files) 
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Appendix III.7: Gene regulatory Network and physiological variable correlated 

to genes expressions 
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Appendices Chapter IV 

 

Appendix IV.1: Supporting Materials and Methods for the article about GRN 

inference and diversity study 

Plant hormonal treatment 

After 14 days, the sunflower XRQ plantlets (grown in hydroponic conditions in growth 

chamber) were treated by adding either mock solution (DMSO only in controls) or one of the 

following hormonal solutions to the hydroponic solution : (i) 0.1 µM indole acetic acid (IAA); (ii) 0.25 

µM 1-aminocyclopropane-1-carboxylic acid (ACC); (iii) 10 µM gibberellic acid 3 (GA3); (iv) 0.05 \micro 

M salicylic acid (SA); (v) 1 µM methyl-jasmonate (MeJA); (vi) 0.5 µM kinetin; (vii) 10 µM ABA (viii) 0.1 

µM rac-GR24, a strigolactone (Stri) analog; or (ix) 1 µM 24-epibrassinolide (Bras). 

 

Molecular analysis 

The extraction of total RNA and cDNA synthesis were performed as described in (Rengel, D. et 

al., 2012b). The expression levels of the 181 selected genes were analyzed in all samples by q-RT-PCR 

using the BioMark system (Fluidigm Corporation, San Francisco, CA, USA) as previously described 

(Spurgeon et al., 2008) The q-RT-PCR results were analyzed following the 2ddCt method (Livak & 

Schmittgen, 2001). The threshold cycle Ct, which indicates the cycle number when the signal reaches 

the detection threshold, was calculated using Fluidigm Biomark software. The amplification efficiency 

for gene target X, denoted EffX was estimated using the robustfit function in the Matlab (version 

7.11) Statistics Toolbox (version 7.4): 

 

 

where XT is the threshold number of target molecules, X0 is the initial number of target molecules, 

and Ct,x is the threshold cycle for target amplification. 

The amount of target was then normalized to the mean of previously validated reference 

genes (Rengel, D. et al., 2012b) and to the corresponding control sample with the mock treatment at 

the studied time, as shown in the following equation: 

 

Normalized amount of target 

 

where Ct,x,q is the threshold cycle for gene target X for hormone q; Ct,x,c is the threshold cycle for 

gene target X for the corresponding control C; and EffR, Ct,R,q, and Ct,R,c are the corresponding 
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values for each reference gene. We refer to the quantity in ΔΔCt defined for each gene and each 

condition (time x hormonal treatment). 

Five reference genes were chosen (HuCL00387C002, HuCL02526C001, HuCL05491C001, 

HuCL03058C001, and HuCL06237C001 available on www.heliagene.org) as they showed no response 

to drought stress in our previous study (Rengel, D. et al., 2012b). 

 

Validation of ABA responding genes identified from a global transcriptomic approach 

In order to select robust genes regulated by drought in sunflower, we performed a global 

transcriptomic analysis where we compared the gene expression in control and ABA (10 µM) treated 

plants. We performed a t-test with a Bonferoni correction and selected genes with p-values<0.05 as 

sunflower genes differentially expressed after ABA application. 

To validate the ABA-regulated sunflower gene set identified thanks to results of the global 

transcriptomic analysis, we studied and compare the expression of 226 Arabidopsis homologs. 

Arabidopsis homologs to all the sunflower genes in this study are BLAST reciprocal best hits of 

Helianthus ESTs and Arabidopsis.  

The Arabidopsis data for all genes on the Affymetrix ATH1 microarray were collected from the 

AtGenExpress Consortium at 

http://www.weigelworld.org/resources/microarray/AtGenExpress/AtGe_Abiostress_gcRMA.zip/view

. The authors followed through a kinetic of three points the transcriptomic response to abiotic 

stresses as cold, osmotic, salt, drought or heat stress in leaves. This study was of particular interest 

because its kinetic aspect brings more statistical power and avoids the issue of differences in kinetic 

parameters between sunflower and Arabidopsis. We performed an analysis of covariance (ANCOVA) 

to explain each Arabidopsis transcript expression by time (as a covariate) and treatment (as a factor) 

using Mathworks Matlab (version 7.13) Statistical toolbox (version 7.6). A Bonferroni method 

(Shaffer, 1995) was applied to identify significant effect of treatment, time and treatment x time 

interaction by setting the p-value threshold to 0.05/number of comparisons. Globally we found in 

Arabidopsis 3852 probesets (out of 22591 with an AGI annotation) significantly affected by these 

factors under these treatments in shoots.  

Then, we compared the ABA regulated genes in sunflower having a AGI homologue (226) to 

this list and found 60 in common. We performed a hypergeometric test to determine if the 

Arabidopsis homologues of the sunflower ABA regulated genes are more likely to be differentially 

regulated during abiotic stress in Arabidopsis. For this, we used the Matlab function hygecdf.  
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Comparison of the drought GRN to Arabidopsis data 

To compare the sunflower drought GRN to the model plant Arabidospsis thaliana, we collected 

expression data from the AtGenExpress Consortium (Goda et al., 2008) (GEO accession: GSE39384 

from AtGenExpress Consortium). This Arabidospsis data set includes seven hormonal treatments 

(Indole Acetic Acid, Cytokinin, Gibberellic Acid, Methyl Jasmonate, ABA, ACC, Brassinolide) and three 

time points (30 mn, 1h, 3h). We studied the expression of Arabidopsis homologs to the 145 

sunflower genes used for network inference. Arabisopsis homologs to all the sunflower genes in this 

study are BLAST recipsocal best hits of Helianthus ESTs and Arabidopsis. We calculated the 

correlation between all selected Arabidopsis genes using Mathworks Matlab (version 7.13) Statistical 

toolbox (version 7.6). We applied an exact hypergeometric test (p=0.005) with the function hygepdf 

(Mathworks Matlab) to find if significant correlations between gene pairs were more frequent for 

pairs corresponding to the Arabidopsis homologs of the sunflower network edges. 

 

GRN reconstruction  

Problem definition 

We address the problem of recovering gene regulatory networks (GRNs) from time series 

expression data. The targeted GRNs are directed graphs with p nodes, where each node represents a 

gene and an edge directed from one gene i to another gene j indicates that the expression of gene j is 

directly explained by that of gene i. However, an edge between i and j does not necessarily stand for 

a direct regulation in a biological sense, e.g. when a transcription factor regulates its target genes. 

We only consider unsigned edges; when gene i is connected to gene j, the former can be either an 

activator or a repressor of the latter. 

In this paper, we assume that we have at our disposal an ensemble of n datasets Dk (k=1,…,n). We 

assume that these datasets are respectively obtained from n different perturbations of a system 

governed by a general regulatory network that specifies the plant response to an abiotic stress. Each 

perturbation corresponds to the induction of a specific hormone as described in the Methods 

Section. Each dataset Dk contains gene expression levels measured at T=7 different time points 

following a perturbation k: 

 

 

where                                          is a vector containing the expression values of all p genes at the time 

point t: 
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 where            is the transpose of  

From these n datasets, our goal is to learn n+1 GRNs: one GRN resulting from each 

perturbation and a global consensus GRN taking into account all the perturbations. Two 

complementary inference approaches were considered in this paper, respectively based on random 

forests and Gaussian graphical models. The results of these methods were then combined to achieve 

robust GRN predictions. 

 

GRN inference with random forests 

We extended a method called GENIE3 (Huynh-Thu et al., 2010), which is based on Random 

Forests (RF, (Breiman, 2001)) and that was originally proposed for the inference of GRNs from 

steady-state expression data. 

As in the original GENIE3 procedure, the problem of recovering a network of p genes is decomposed 

into p feature selection subproblems, where each of these subproblems consists in identifying the 

regulators of one gene of the network. 

In the presence of time series data, we make the assumption that the expression of each gene of the 

network at time point t+1 is a function of the expression of the other genes of the network at the 

preceding time point t. Denoting by the vector           containing the expression values at time point t 

of all the genes except gene j, we thus write: 

 

where          is a random noise and functions       only exploit the expression in X-j of the genes that 

directly regulate gene j in the underlying network. Recovering the regulatory links pointing to target 

gene j thus amounts to finding those genes whose expression at time t is predictive of the expression 

of the target gene at time t+1. 

As in GENIE3, our procedure exploits feature importance scores derived from RF models to rank a 

candidate regulator i of gene j for perturbation k by its importance         . 

First, a RF model is trained to predict the expression of the target gene at time t+1 (i.e ) from 

the expression levels of all other genes at time t (i.e ). 

Then, candidate regulators are ranked according to variable importance scores derived from the RF 

model. Importance scores are computed as the total variance reduction due to splits based on the 

corresponding regulator expression, averaged over all nodes and trees in the forest (Breiman, 2001). 
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Then a global ranking of all regulator-target gene edges is obtained by merging all individual target 

gene rankings with their associated importance scores and a network prediction is obtained by 

thresholding these scores. 

RF importance scores are not statistically interpretable, which makes difficult the determination of 

an importance threshold to obtain a single and interpretable network prediction. We therefore 

propose to replace these scores by a new score that can be interpreted statistically. 

To compute this score, we add to the dataset an artificial p+1
th random gene, whose expression 

values are obtained by randomly permuting the n x T expression values of a gene randomly selected 

among the p original genes (making the new gene uncorrelated to all other genes). We then run the 

RF learning procedure described above to obtain a ranking of the GRN edges, including edges 

involving the random gene. 

We repeat the experiment 1000 times and take as score for a GRN edge, the proportion of the 1000 

rankings where this edge was ranked above all the edges involving the random gene. The resulting 

edge score is then interpreted as the probability that this edge is ranked by the RF model at a higher 

level than a spurious edge (the higher, the better). 

The previous procedure can be applied separately on each time series Dk, k=1,...,n or on the union of 

all time series to obtain respectively the $ n $ perturbation-specific GRNs and the global consensus 

GRN. However, each individual time series being rather small and expecting only limited differences 

between these networks, we preferred the following procedure to obtain the n perturbation-specific 

GRNs: first, RF models for all genes are trained on the union of all time series. Then, pertubation-

specific importance scores are obtained by re-propagating the instances from each dataset Dk 

separately into these RF models and re-computing variable importance scores only from these 

instances. The whole procedure is summarized in Algorithm 1. 
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Comparison of two random forest algorithms: authorizing and not authorizing auto-loops 

prediction 

The Random Forest algorithm used does not allow the gene j at time t to be a predictor of this 

same gene j at time t+1, therefore excluding auto-loops from the model prediction. In order to test if 

this exclusion is justified, we ran an additional test on a new simulated data set containing 100 genes 

related by 209 edges including 10 auto-loops. We tested both the algorithm used in our analyses (RF-

NAL, for Random Forest No Auto-Loops) and a modified version which authorizes the discovery of 

auto-regulations (RF-AL for Random Forest Auto-Loops). We compared the capacity of both models 

to recover true edges and to avoid false positive by comparing the areas under the precision-recall 

curves. The areas are very similar (0.108 for RF-NAL and 0.110 for RF-AL), so the two methods 

perform equally well.  

More specifically, we focused on a fixed number of edges by considering only edges which have a 

score no smaller than 1; it means that they were always ranked above the artificially introduced 

random edges. RF-NAL allowed the prediction of 422 edges, and RF-AL predicted 425 edges including 

3 auto-loops. The two methods predicted 378 edges in common, 44 edges were found only by RF-

NAL and among them only two were true positives. Among the edges predicted only by RF-AL 

algorithm, the 3 auto-loops were true positives, however, the 44 others were all false positive. In 

light of these results, we observe that (i) global performance are the same for RF-NAL and RF-AL, (ii) 
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the vast majority of edges predicted by either version of RF are common to both of them and (iii) few 

auto-loops are actually retrieved by RF-AL when producing a reasonable amount of edges. 

Since we are more interested in edges linking different nodes, we believe that the choice of the RF-

NAL algorithm is more suited regarding the biological question that focuses on relationships between 

genes (estimated by the network topological parameters) and sunflower evolution. 

 

Inferring multiple GRN structures with Gaussian Graphical Models 

We used here a Gaussian Graphical Modelling (GGM), a widely used statistical tool for the 

reconstruction of networks of regulatory relationships between genes. The main difficulty stands in 

the high-dimensionality of the data set: the number of variables (genes) exceeds the number of 

samples (combination of treatment x time point). If samples are considered independent, each of 

them is considered as the observation of a multivariate Gaussian random variable whose dimension 

is the number of considered genes in the network. Intrinsic dependencies between genes are 

encoded in the associated covariance matrix or more precisely in the inverse of this matrix, the 

precision matrix: non-zero entries of the precision matrix fully determine non independent couples 

of variables in the network; notice that they also exactly determine non-zero regression parameters 

of the regression of each gene against all other genes (Whittaker, 1990); (COX & WERMUTH, 1993). 

Because of the high-dimensionality of the data set at hand, we chose to rely on the lasso (Tibshirani, 

1996), a widely used     -penalization technique, which basically assumes sparsity of the network 

topology. 

More precisely, using notations previously introduced, we first assumed a first-order auto-regressive 

model on centred data in each condition k: 

 

where matrix Ak contains the effects of all genes at time t-1 onto genes at time t. This modeling is 

close to that of RF of Equation (1). 

In fact,  

 

 

 

If we treat the case of one hormonal treatment and omit subscript k, maximizing the log-likelihood of 

the model is equivalent to the following optimization problem: 
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and the solution (maximum likelihood estimator) is given by                                  , where we denoted 

by S the empirical variance-covariance matrix and by V the empirical temporal covariance matrix 

(Charbonnier et al., 2010) and we omitted subscript k which referred to the hormonal treatment.  

An      -penalty on matrix A which encodes non-zero coefficient of the auto-regressive model can be 

used to circumvent the high-dimensionality of the problem (S being not invertible) under sparsity 

assumptions: matrix A has few non-zero elements with a minimum intensity (Verzelen, 2012). The 

multi-perturbation version of the likelihood of Equation (10) includes this        -penalization. 

More specially to choose the       penalty parameter lambda, we used a similar algorithm to the LARS 

(Efron et al., 2004). It gives the model estimate for all values of the penalty parameter: from 0, no 

penalty, the solution is then the ordinary least square estimate, to infinity, which leads to a void 

model. In fact, the number of different model estimates is finite, so the number of computation is 

finite. Moreover, the LARS algorithm proposes a solution path, which make the computation of the 

different estimates which correspond to different penalty parameter values very efficient. From this 

comprehensive list of model estimates, we decided to select the penalty level which leads to a 

number of edges of the order of magnitude of the number of nodes in the network, a situation which 

is often encountered in sparse network settings. Since this number varies from one network to 

another, we arbitrarily fixed it to be as close as possible from 200.  

In our framework, 9 different perturbations, which correspond to 9 different matrices (Ak)k=1,…,9, have 

to be considered. If we ignored the relationships between the different hormonal treatments, we 

would simply optimize a problem which would be the sum of 9 problems similar to the one of the 

previous paragraph. We instead combined the temporal approach of (Charbonnier et al., 2010) to 

the multiple graph structure inference scheme of (Chiquet et al., 2011), which is written for 

independent identically distributed (iid) Gaussian graphical models. We used a so-called 

''intertwined'' estimation of matrices Ak's. It renders the model parameter estimation over different 

hormonal conditions not separable anymore. More precisely, the objective function (the log-

likelihood) is slightly modified and instead of using the 9 matrices Vk and Sk separately, we used a 

convex combination that accounts for a part which is specific to the hormonal treatment and the 

other part which is a mean of each matrix over all conditions. The objective function to be maximized 

can be expressed as  

 

 

 

Where 

 

and  
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So the coupling between the Ak's which translates how the 9 networks are related to each other is 

made through the fitting term (likelihood of the data), not through the penalty term. Each empirical 

covariance Sk is being replaced by a mixture         of a covariance specific to the perturbation and to a 

pooled estimate                      Similarly, each empirical temporal covariance matrix Vk is being replaced 

by a mixture           of a temporal covariance specific to the perturbation and a pooled estimate 

                         . Note that approaches exist in which the coupling is made cooperatively through the 

penalty term: model with too many different edges (possibly accounting for edge sign) between 

different treatments are heavily penalized. 

The mixing parameter α of the convex combination is arbitrarily set to 1/2 in our experiments; if it 

were equal to 1, all data sets would be pooled as a single one and if it were set to 0, the estimate of 

the matrices corresponding to each hormonal treatment would be independent. We restricted the 

number of edges in each network to be no more than 200 for computational reasons. 

We used the R package SIMONe (Chiquet et al., 2009) to obtain estimation of matrices Ak's. We made 

the prediction over edges from matrices Ak more robust by applying the method we just described 

200 times on bootstrapped version of the samples, in the spirit of the bootstrap lasso introduced in 

(Bach, 2008). A time series length was first uniformly chosen between 3 and 7 and then time points 

were picked up at random for each treatment, with the same time series length preserving the time 

ordering, so that different response times to different hormones could be considered. An edge was 

identified as being significant when it was predicted over 20% of the bootstrapped runs of the 

algorithm. The rationale behind this heuristics is that we preferred to focus on edges that appear in 

most bootstrapped repeats of the algorithms but in possibly varied contexts for each edge. 

We summarized our Gaussian Graphical Model approach in Algorithm (2). 
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GGM and RF model validation in a simulated framework 

To test the accuracy of both our models and of the implementation we used, we built a 

simulated data set, which shares the specific features of the dynamical response to hormonal 

treatments data. 

First, we fixed the topology of a gene network. The network is oriented, is signed and has a 

scale-free topology and was specifically built to assess GRN inference performances (Mendes et al., 

2003). It comprises 100 nodes (corresponding to genes) and 200 edges (corresponding to gene direct 

interactions): the density of the (undirected) network is thus approximately 

equal to 4%. The term 'scale free' indicates that the network has been generated from a preferential 

attachment model, as described in (Barabasi & Albert, 1999). 

Next, we generated 9 'child' networks from this reference network by randomly perturbing it: 

edges could be removed, added or reversed. 3 child networks had a 10% low perturbation level, 3 

other child network had a 20% moderate perturbation level, while the last 3 child network had a 30% 

considerable perturbation level as compared to the 'parent' network. Hence these networks can 

differ up to 60% of their edges. They each model the hormone-specific GRN which could be relatively 

similar to a central 'stress' GRN or which could be quite different from each other. 

Lastly, for each of these 9 child networks, we generated a random partial correlation matrix, 

whose non-zero entries exactly encode the 200 edges of the network. These partial correlation 

matrices are then used to simulate 9 time-series (auto-regressive model of order 1) gene expression 

'ddCt-like' data. The variance was assumed to be the same for all genes. 

The goal then was to reconstruct GRN from these 9 dynamical gene expression data sets using 

the two methods which were described above, GGM and RF. The advantage is that results could be 

quantitatively assessed in terms of precision, the ability of a method to produce correct edges among 

its predictions and of recall, the ability of the method to retrieve edges of the network used to 

generate the data. 

As an example, we give figures which correspond to one of the moderately perturbed 

networks. Similar results are obtained for all networks with a slight degradation when the 

perturbation level is higher. Additionally, the numbers of total, specific and shared predicted edges 

can vary from one network to another, without it is related to the perturbation level. GGM lead to a 

92 edge network and RF infers a 94 edges network for one of the child network (which had 200 

correct edges to be predicted). GGM achieves a recall of 29% while RF achieves a recall of 18% at 

precision levels of respectively 65% and 67%. Edge prediction is hence quite good but the total 

network coverage is relatively poor. We prefer to produce reliable edges and accept to potentially 

miss some correct interactions weakly supported by the data. 



210 

Another interesting aspect, which confirmed previous observations in different settings, is that 

both approaches lead to good quality predictions with limited overlap (Marbach et al., 2012); 

(Allouche et al., 2013): 33 edges are jointly predicted by GGM and RF. The very interesting point here 

is that 32 out of these 33 edges in common to GGM and RF are true positives. Hence the intersection 

of both networks lead to a 97% precision , 16% recall network. A small loss in prediction coverage 

allows us to produce very reliable predictions. We concede that these figures are probably over-

optimistic since they are only valid on simulated data. However, the trends presented here are very 

consistent with those obtained on the real data sets and make us confident about the networks 

which were produced when analyzing these data sets. 
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Appendix IV.2: Results of t-test demonstrating the differential expression of 

genes upon application of 10 µM ABA. 

This appendix is available on line at the address: 

https://www.heliagene.org/cgi/heliagene.cgi?__wb_session=WBoOPfh9&__wb_main_menu=Publica

tions&__wb_function=PhDThesis 

It presents the Results of t-test demonstrating the differential expression of genes upon application 

of 10 µM ABA (Excel File) 

 

Appendix IV.3: Results of ANCOVA showing the validation of the ABA genes 

dataset. 

This appendix is available on line at the address: 

https://www.heliagene.org/cgi/heliagene.cgi?__wb_session=WBoOPfh9&__wb_main_menu=Publica

tions&__wb_function=PhDThesis 

It presents the results of ANCOVA (Excel File) 

 

Appendix IV.4: Description of the genes selected for GRN inference. 

This appendix is available on line at the address: 

https://www.heliagene.org/cgi/heliagene.cgi?__wb_session=WBoOPfh9&__wb_main_menu=Publica

tions&__wb_function=PhDThesis 

It presents selected genes used in the GRN inference and their origin (literature and sunflower 

transcriptomic experiments) (Excel File) 

 

Appendix IV.5: Raw gene expressions. 

This appendix is available on line at the address: 

https://www.heliagene.org/cgi/heliagene.cgi?__wb_session=WBoOPfh9&__wb_main_menu=Publica

tions&__wb_function=PhDThesis 

It presents raw expressions of selected genes for the GRN inference (Excel File) 

 

 

 

 

 



212 

Appendix IV.6: Gene expressions after log transformation and missing data 

imputation. 

This appendix is available on line at the address: 

https://www.heliagene.org/cgi/heliagene.cgi?__wb_session=WBoOPfh9&__wb_main_menu=Publica

tions&__wb_function=PhDThesis 

It presents expressions of selected genes for the GRN inference after log transformation and missing 

data imputation. These values are directly used for the network inference (Excel File). 

  



Appendix IV.7: Hormonal network representations

Grey circles represents genes. Red edges represent specific hormonal edges. Grey edges represent 

edges inferred with the global dataset. Black edges represent edges inferred with both the global and 

the specified hormonal dataset. 

a) ABA and global networks

 

 

 

 

 

 

 

 

 

 

 

 

b) ACC and global networks
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IV.7: Hormonal network representations 

Red edges represent specific hormonal edges. Grey edges represent 

edges inferred with the global dataset. Black edges represent edges inferred with both the global and 

the specified hormonal dataset.  

s 

tworks 

Red edges represent specific hormonal edges. Grey edges represent 

edges inferred with the global dataset. Black edges represent edges inferred with both the global and 



c) Bras and global networks

 

 

 

 

 

 

 

 

 

 

 

 

 

 

d) GA3 and global networks
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Bras and global networks 

GA3 and global networks 



e)  IAA and global networks

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

f) Kinetin and global networks
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IAA and global networks 

Kinetin and global networks 



g) MeJA and global networks

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

h) Strigolactone and global 
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MeJA and global networks 

Strigolactone and global networks 



 

i) Global network 
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Appendix IV.7: Canonical analysis complete results 

 

Argophyllus Subset 

Canonical coefficients of correlation (rho) 

 0.6721059 0.5243957 

   

     xcoef 

    

 

Component1 Component2 

  ASPL -0.4474753 -0.105491 

  EdgeCount                   0.0124323 -0.1131035 

  

     ycoef 

    

 

Component1 Component2 Component3 Component4 

fstArgvsElite         3.05982547 2.9540319 0.4602359 -1.8484929 

fstArgvsLandrace   -2.77771813 -5.2569105 -1.6538927 -0.4080627 

fstArgvsPet        -0.01483693 -0.7577599 1.6324079 0.3938518 

fstArgvsWild        1.00345336 2.1867725 0.5463695 2.8968148 

 

 

 

Petiolaris Subset 

Canonical coefficients of correlation (rho) 

 0.4930524 0.3693907 

   

     xcoef 

    

 

Component1 Component2 

  ASPL -0.32715772 0.32300211 

  EdgeCount                   -0.08920463 -0.07063646 

  

     ycoef 

    

 

Component1 Component2 Component3 Component4 

fstArgvsPet -1.0040332 -1.8153277 0.5135624 0.06727046 

fstElitevsPet 0.2352018 0.7120162 5.0738005 -1.19216826 

fstLandracevsPet 4.8594038 -2.015399 -6.1378372 1.89442128 

fstPetvsWild -3.771505 1.7248486 -0.2025232 -1.93987094 
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Wild Subset 

Canonical coefficients of correlation (rho) 

  0.7282873 0.2922409 

   

     xcoef 

    

 

Component1 Component2 

  ASPL -0.38242723 -0.2551704 

  EdgeCount                   0.05116187 -0.1016338 

  

     ycoef 

    

 

Component1 Component2 Component3 Component4 

fstArgvsWild        1.3544178 -0.5737768 -0.7474485 0.2208294 

fstElitevsWild    -1.7916661 2.1437681 -1.6415964 0.3512176 

fstLandracevsWild   3.0080055 0.9725076 2.9611102 -0.3469812 

fstPetvsWild 0.5266618 -0.5729598 -0.0935532 -1.5043243 

 

 

 

 

 

 

Landrace Subset 

Canonical coefficients of correlation (rho) 

 0.9757625 0.2986421 

   

     xcoef 

    

 

Component1 Component2 

 ASPL -0.379509 -0.2594907 

  EdgeCount                   0.0523111 -0.1010471 

   

 

 

    ycoef 

    

 

Component1 Component2 Component3 Component4 

fstArgvsLandrace 0.4958675 -0.7035161 -0.8604868 -0.7221756 

fstElitevsLandrace -2.1322542 0.239832 -1.5931857 -0.9086869 

fstLandracevsPet 0.4605054 0.7421679 1.1422655 -1.0628351 

fstLandracevsWild 0.7258354 2.7453314 -1.9398949 0.9560778 

 

 



220 

Elite Subset 

Canonical coefficients of correlation (rho) 

  0.946278 0.2805252 

   

     xcoef 

    

 

Component1 Component2 

  ASPL -0.38304268 -0.2542456 

  EdgeCount                   0.05091614 -0.1017572 

  

     ycoef 

    

 

Component1 Component2 Component3 Component4 

fstArgvsElite        0.544304 -0.5846516 -0.7700024 -1.0952447 

fstElitevsLandrace  -2.1462581 -0.4355321 -1.0276413 -1.7020776 

fstElitevsPet        0.2666276 0.5114767 1.2074469 -0.7237683 

fstElitevsWild       0.2503657 2.1229694 -0.9414516 1.1935652 
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Abstract:  

Drought is a major stress that affects growth, physiology and therefore yield of crops as 

sunflower. To become more tolerant, plants develop complex morpho-physiological responses. 

Various genes interacting between them and with the environment are involved in the genetic 

control of those responses. They form together a gene regulatory network (GRN). Here, we focused 

on this drought GRN, its different gene groups and their interactions in the cultivated sunflower. 

First, we highlighted three genes reflecting the environmental signal. From their expression we built 

a plant water status biomarker. Then, through an association study we built the GRN connecting 

drought responsive genes and we deciphered their genetic control. Finally, thanks to a systems 

biology approach we inferred the GRN linking regulatory and drought responsive genes. Studying this 

network, we examined how it could drive phenotypic changes and how it was related to Helianthus 

evolution and sunflower breeding. 

 

Keywords: drought, sunflower, transcriptomic, gene regulatory network, Helianthus, association 

mapping, systems biology, biomarker, plant physiology. 

 

Scientific field: genetics and interaction plant-environment 

 

Laboratory: Laboratoire des interactions Plantes Microorganismes, UMR INRA/CNRS 441/2594, 

Chemin de Borde Rouge, BP52627 Castanet-Tolosan, France 

  



222 

Auteur : Gwenaëlle Marchand 

 

Titre : Etude des réseaux de régulation impliqués dans la réponse au stress hydrique : caractérisation, 

contrôle génétique et rôle au cours de l’évolution du tournesol cultivé, Helianthus annuus. 

 

Directeurs de thèse : Patrick Vincourt, Nicolas Langlade 

 

Soutenance : Vendredi 6 juin 2014 

 

Résumé : 

La sécheresse affecte le rendement des plantes de grande culture comme le tournesol. Ces 

plantes développent des réponses morpho-physiologiques pour améliorer leur tolérance au manque 

d’eau. De nombreux gènes formant un réseau de régulation (GRN) contribuent à un contrôle 

génétique complexe de ces réponses. Le travail présenté étudie ce réseau, ses différents gènes et 

leurs interactions chez le tournesol. Tout d’abord, nous avons mis en évidence trois gènes récepteurs 

du signal environnemental afin de construire un biomarqueur du statut hydrique. Puis, par une étude 

d’association, nous avons reconstruit le GRN reliant les gènes de réponse au stress et déchiffré leur 

contrôle génétique. Enfin, par une approche de biologie des systèmes, nous avons inféré le GRN 

groupant des gènes de régulation et de réponse. Cette étude nous a permis d’identifier des 

mécanismes majeurs de tolérance à la sécheresse chez le tournesol, ainsi que le rôle de ce réseau 

dans l’évolution du genre Helianthus. 
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