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Résumé

Dans cette thése, nous érudions le comportement collectif de particules auto-propulsées, Ce travail
comporie Lrois partics,

Daus la preaniere partie, noos eonsidérons un modele individu-centré pour ley purlicules d'auto
rotarion intevagissant par une régle d'alipnement ot étuclions s limites mmeroseepiques. Ce
modele déerit des particudes auto-propulsées qui ont des rlguences de rotation propre ot s’alignent
i chaque pas de temps avec la vitesse movenne de leurs voising. Deux cos de scaling ont été érudiés.
Dans le ras de pelite vilesse angulaire, le modle obtenu esl wne légere modification du modéle
"Hydrodynamique auto-nrganisé’ quii avair été introdunit précédemment par Dogond ot Mosteh. Dang
le cas de grande vitesse angulaive. ¢ ymodele oblenu est plus compliqué. Une étude prélimilaire de
la stabilité lincairc a &¢ ¢galement proposée.

Le principal ohjet de la deuxieme partio est le madéle de Viesek avec répulsion. [Plus précisément.
nons étudions un systéme de particules auto-propulsées iuteragissant avec leurs voising par nne ragle
d'alignement et de répulsion. Les vitesses des partienles résultent de Uauto-prapulsion ot de la foree
répulsive. La direcrion de auta-propulsion ast alignée 3 celle de leurs voising, & un bruit pris. Un
modeéle continu a &€ dérivé & partir d'une équation cinélique du systéme de particnles. 1l wous
amene A un sysleme déguations hvdrodvinanugne non-canservatif. Nons fournissons une valicdatjon
numérique de ce modetle en le comparant avec le modele individu centré. Lexistence de solutions
a denx dimensians est prouvée en vtilisant la méthode standard de Giulerkin pour les équations
guasi-linéaires paraboliques. D'antre part, nous avons effectué des sinmilarions ponr conpaver les
résullats thdoriques et nnmériques

La dernidre partie est congacrée d Pétude expérimentale du compaontascnt collecetit de vabots
aulo-propulsés dons une enceinte annulaire confinée. Lea phservations mettent un évidence une
organisation du mouvement ot les individues s'alignent orthogoualeiment au bord de Penceinte
anhnlaire, ponr fomer des parets {elusters) dérivants, Un wodéle microscopuyne numdrique est
cipable de reproduire gualitativement ces comportements.






Contents

1 General Introduction 9
1.1 Aotivation . .. ... ... 9
1.2 Overview of thesubject . o L 0 0 0 o oo 000 N 10

1.2.1  Pure alignment model The Vicsek model snd its variante .o .0 0L 10
1.2.2  Purve ativaction-repulswon models .0 .0 0o 0oL o 12
1.2.3  Cowmbined aligiment sind attraction-repulsion models . .00 0 L L. cee 13
1.2.4  Synchronization and combined alipumad and senclivowmzation models . .. 13
1.2.5  Models and expernnents . . . .. e e e e e e e 14
1.3 Presentation of main reswdes © . . . 0 L Lo oo Lo s 14
1.8.1  Chapler 1 The Viesek - Kurmnotomodel . 0 oo 00 0000000 0L td
132 Chapter 20 The Vicwek model with vepulsion . . . .. 00 0. ... ... 15
1.3.3  Chapter 8. The existenee of solution of the SOHR model: coimpirison belween
theory and shmlations . . . .. . L e e e e e 16
L34 Chapler 4 Experiments . .. .. 000 o oo 17

Part T: The Vicsck-Kuramoto model 21

2 Ilydrodynamies of the Kuramoto-Vicsek mode! of rotaling self-propelled parti-
cles 21
21 Introduction . . . . . ... Lo o oo e e e e e e 21
2.2 Ludivichial-Based modal, mean-field limit and sealing . . .. . .. . ... .. ... 23
2.3  Small angulan velocilios . . 0 L L L L 27
21 Latge angatar velocities . . . . ... ..o 0oL S .80
2.5 Properties of the SOHPR-L hydradynamiemodel .00 00 0000 0000000000 3

2.5.1  Linearized stability of the SOHPI-L system . . L 0 000 00000 co 34
252  Small angular velocily it of the SOHPR-Lmodel ... .. .. ... .. 3G
26 Conclosion and perspectives . . . . . . . L Lo e 38
Appendix A Sinall ampulan veloeity . C .. P (1
Al Determination of the equililnia . . .0 0 ... .. R oo .40
A2 Generalized Collision Invaviants (GCT) ... . 00 0 o oo .0 oL .4l
A3 Hvdrodyvuainic imit e =0 . . 0 0 0 . oL o s 4
Appendix B Large angular velocity . o 0. . 0 L oo oo 44
R1  Determination of equilibrin. . . . .. . .0 oL e 44
B2 CGeneralized collisiow mvaviants © 0 -0 . C ... .00 o oL .. 46
B3 Hydvodvuamic imit ¢ » 0 e 12
Appendix € Small angular veloeity limit of the SOHUPR-L wmaodel . .
C1 Proof of Proposition 253 . 0 . o0 0 o000 oL s
2 Proot of Proposition 25.1 . . . .. ..o 0oL o

Appendix D Graphical representations . .. . . . L L oL L e e ad



Part II: The Vicsek model with repulgion

(Contents

61

3 A macroscopic model for a system of self-propelled partieles with aligniment and

repulsion 61
31 Intraducrion . Lo L e e e e Gl
3.2 Model hivrarehy al amain resolts .. e G4
321  The individual based model and the mean field limit .. 00000 0L L. 65+

322 Sealing . L e e GG

4.2.3  Hydrodynamic imit . . . .. .0 00000000 67

3.8 Numerical discrerization of the SOIIR wodel e 11
Aok Numetical Lests . o o 0 0 e e e e e e e e e e e e e e e e 72
JoLl o Convergence test . .0 0 L o e e .. 73

3.4.2  Companson between the SOHR and the Viesck model with repalsion . .. 73

343 Comparison between the SOH and the SOHR maoded . . 0 0 00 000 L L 77

A4 Comparison between the SOHR snd the DLMP model . . . 00 00 00 0 77

3.5 Conclusion ... Lo 79
Appendic A Proof of lonulas (3.221) and (3.222) .. 0 0000000 79
Appendiv 3 Proof of Theorem 321 . . . .0 oo 0o oo 80
Appendix € Proof of Propusition 3.3.1 . . .. .. e Rl

4 Existence of solution for a system of repulsion and aligmnent 83
4.1 Introduction . . .. ... oL L. e e 83
12 Existence theory in 2D 0 0 0 0 00 00 e 85
421 Maximum principle and syamsetrization . .0 .00 oo o0 ... .. ... 8b

4.2.2  Existence of approsimating solutam . . . C Lo 0oL Lo L]

123 Fstineetion of the approximating solution . . . .. .. 0oL L. 86

4.3 Siimlations Lo L L e e e e e 90
4.4 Couclusion . .. ... oo e 03
Part 111: Experiments 99
5 Collective motion of self-propelled robots )
o1 Introduction . o . 0 0 L e e e e e e e e e e e 09
32 Results. . . o o e e e 100
5.3 Ducussion . .. .. Ce e C. 102
Sob Material and Methads . . 0 0 0 L Lo e e e e 103
5.4.1  Experimental setup and dats processing . . . . . .. . .. ... ... ... 103

542 Dalaanahss ..o 00000 oL Lo oL L. o 1 o]}

5.13  Clustering Nethod 00 00 000 00 oo 105

544 Siwmdacien Moadel . . . . .0 oL e 106
Clonclusion 109



Chapter 1

General Introduction

1.1 Maoativation

Collective motion can be observed evorywhiere aud at every seales, from fish school. bivd flock to
bacteria, aperm cells ag well as molecnlarwnators in the cell. In spite of complexity of these systeins,
we see that there are some conunon features:

s Individuals have only local interaction,
o There is 110 leader inside these groups:
» The global organization of the gronps is at nch larger scale than the individhial size

By this way these groups forin coherent structures which can be seent as a resnlt of the local inter-
action between the agents without intervenor of leader. One asks the Tollowing natural questions.

» How these individuals coordinate thetr belinvior to form groups that nove collectively?
o What are interaction mles batween particles inside the groupa?

One can answer these questions by experiment method. First, mathematical models ave constructed
by observing phenomena in the real life. Then the validity of these models will be tested by perform-
ing simulations or experitnents. 1wo kinds of model are often used. Individual Basced Model(1BM)
focus an the evolution ol each particle in time while continuous model describes the evolntion of
macrosconic quantities such as density or the mean velocity. In many works the [1iMs have been
used. Its advantage is able (v test difterent hypotheses on the individual mechanisi, However, the
macroscopic inodels allow one to better understand and study the beliavio of the systems at large
acales. In order to benefit from hoth madels, a solution is to derive the macroscopic models from
thie particle models, To do so, one can change time and space variables of the microscopic imodels,
sa that the dynammics of the individual hased models are considered over long periods of time and
lager distances. In arder ta establish a link between mierascopic models and macroscopic models,
we uge an intermediate description. so-called meacorcopic models or mean-Beld kineric models,
where the state of the system iz described by the probability distribution of a single particle. The
I1BA s, the kinetic models and the continuons modals constitute a hicearchy of models in the sense
that each level can be deduced from tha provions one by a madel reduction methodology. More
precisely, kinctic models are deduced from IBMs by considering the probability distribntion of a
single particle while continuous model are reduced from kinetic model hy taking averages over the
velocity variable,

We focus on systems of dense suspensions of active partivles, We refer to 63] for reeent develop-
nents on the subject. Suspensions of active particles are floid consisting of self-propelled particles
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such as water including of Lacleria, sperm cells, ete, When particles are highly concentrated, they
may induce turbnlences. A typical example of such fluid is sperm. The flow finernations induced
by sperinatozoa motion, that can be observed (hrough a micrescope, are known Lo be an excellent
fertility eriterion for the semple considered while the individual spermnatozon motility is not. This
suggests the existence af a collective unknown effect which seemis to have significant influence an
the fertility of the zample.

Tlie Seminal Motility Tmaging and Modeling project (RIOTINO) has been recently created and
supervised by the company IN[V-Technologies. The goal of the MQTIMO project is to develop con-
cepls wlhich are necessary 1o Lhe design of aulomated fertility tests of animal semen samples. My
thesis. as a parl of the MOTINIO project, results from a collaboration between seveial institbutions:
L'Institot de Mathématigques de ‘Toulouse (INT), I'Insritur de Mécaniyne des Fluides de Tonlonse
(IMEFT), I'lustitut National de la Recherehie Agronomigue de Tours (INRA Tours). le Laboratoire
d'Informatioue, Signanx et Systées de Sophia-Antipolis {(T38) in Niee and transuationsl eom-
pauy, INV-Technalogies. the world leader in the reproduction hiotechnelogies. This manuscript
will provide a better understanding in modelling of the collective nechanisms of dense suspension
of nctive particles with a specific application concerning the so-ralled “massal motility™ induecad
by the maovement of spermatozoid in the semen.,

1.2 Overview of the subject

This thesis aims to construct wmodel hierarchies for active suspensions of particles including not
only mdividual particles and their hydrodynamic interaction but alse fhnd. Many related works
have been done, for example {81, 83, 81) to mention a few. Ilowever, most of these works deal
with diluled suspensions of the active particles for which 1t is possihle to develop a micro macro
approach, wherein active particles are deseribed hy @ distribution function satisfyving an equation
of Fokker-Planck, conpled with the Navier-Stokes equation for the fluid motion via tlie expression
of the extra-constraint tensors [5, Y.

On the other hand, some experinental observations in raw ram sperm reveal that nearly 50%
af the total volune of sperm is canstituted of sperne eells, the vemaining vohune being filled with
the seminal plasma, It is thus expacted that sperm cells in raw ram sperm have extremely high
concentration. In this situation, sperm cells are very close to each other and interactions via volunie
exclusion are certamly very important. The volinne exclusion wteraction has been ennsidered by
Peruaui et al [75] where it was shown that the volume exclusion between elongated selt-propelled
particles results in alignment [5, 23, 8, 75). Under these conditions, micro-macro approaches can be
madified to account for these effects One should also ronsider collective effects, the synchrontzation
of beating {lagella, which explain why spermatozoon individual motility is not well correlated with
masgal motility.

The first model of collective motion has been proposed by Aoki (3], More receutly, a simplified
version of this madel was intraduced by Couzin et al [207. These models (the so-called three zone
model) in whidh the authors considered (hree Lypes of interaction rules: long-range ativaclion,
medivm-range aligninent and shor-range repnlsion o cxplain three different behaviors of particles:
avoidance of being isolated. collective novement, avoidance of collisions, respectively. T'his model
can he considered as a good comproniise between plivsical accuracy and simplicity.

1.2.1 Pure alignment model: The Vicsek model and its variants

Microscopic model: The shimplest model of collective motion that is based on the aligument
interaction introduced by Vicsek [93] has attracted a lot of attention in the recent years. Inn this
maodel, one merely assumes that individuals move at coustant speed and update their direction so as
Lo align with their neighbors up Lo a certain noise Ievel. Alignrnent interaction can be classified into
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polar and apolar aliginent mechanisms. The polar interactions can he considered as ferromagiclic
interaction (m F-alignment) wheve particles end up moving in the same direction. T'he apolar
inraraction cansos offect similar to those in hguid-eryatais at high density where particles get
locally atigned. Degond and Motseh [24) (see the review [25)} have proposed » time contimious
version of this vodel by replacing the thue step Al by callizion frequency v. Let X (t) € & and
Vi (t) € 8771 e the position and the velocity direction of the k-th particle at time ¢. The model is
deseribed by the following equations

AdX)
At Vi
Vi = Py o (wWidt+ V2DdB;)
" L7k
ll_ [ , L:] _ ‘.’I
: |7 | ¢ Z l

WX =Xy |7 R

where, for V € "L, Pyy — [d V&V is the orthogonal projection onto ihe plan orthogonal to
V. This projection insures that the resulting solution V(1) slays on the nnit sphere. Finally 4B,
denotes the Brownian motion wills inlensity V2D.

[ spite of its stimplicity. this model 15 able to exhibit complex phase transitions from disorderad
to order states when the noise decreases or when the density increases (see e.p. [2, 16, 27, 52, 93)).
We refer to [94) for a recent survey on this study. The phase transition is studied throngh the order
parawcter which is defined by

= N‘ ) (1.2.1)
=1

This parancter measures the global alipnment. of particles, which tends to [ as the motion is order

and whiclt is close 1o 0 az the motion is disordered. In '93], the nuthors showed that the Viesek

madel exhibits a second order plinse Lransition which results in & eemtinuons eliange of the order

parameter, By contrast, phase Lransition s of first-order during which, by definition, the order

parameter jumips from one value to another,

Variants af the Viecsek model:

e In [52), the authors changed the way in which the noise is introduced. Move precisely, “vec-
tovial naise™ is added to J, iustead of angle i the ortginal model,

s The Cicket-Smale model 21 asswines that particles tend to algn thew speed with the speed
of their ncighbors and does not impose any constraint on the paiticle speed. Denote hy
(NL(H), Vi(1)) the position and 1he velocity of the b-particle at time 7. T'he stare of this
system is described by the lollowing eqnations

(}Ark
it Vi,
N
dV
a =n[:21\,.“(1/ - Vi)

where o i constant and the functions ¢, quantily the way the particles influence each
other. It is assumed thai the influence only depend on the thstanee beiween (he particles y.e
ea — 2Ny = Xi|). When ¢ decays sufficiently slowly. one can observe flocking hehaviar,
This model has triggered considerable mathematical activity |15, 55, 56, 72].

o Frounvelle [43" proposed a variant of the time continuous version by assuming the parameter v
depending on the density and introducing an anisotropy in tlie keruel of observation. In [24],
the anthors assume that v is proportional to the absoluite valne of the mean momentum of
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Ue neighbors [ Ji]. Lhis assuinption allows one to get s macroscopic phase transition. Under
this assnmption, the continuous tine version is very close to the discrete one.

Mean-field model: Trom the continuous time version of the Viesek mode], a mean-lield model
is obtained by letling the wamber of particles N — oc The kinetir model ¢can be deseribed by the
one-particle distribution f{xov 1) where (x,2) is the position in the phase space R™ x "=, The
evolution equation for f is given by the following Fokker-Planck equation:

Bf | Ny (uf) = Gy (Fp )+ DAL, (1.2.2)
. i} _ 1 )

Fr{r.w W t) = Pa(vip(z.b)). Bylat) = % (1.2.3)

Tr{w.¥) = / h(%) Fly 1) v dydu (1.2.4)

S (ye)CR™ %8

where V.-, A, stand for the divergence and the Laplace-Beltrami operators on the sphere. The
kernel K depends on Lthe distance belween the parlicle and is neighbors w0 — y| within the range
with radius R.

Kinetic madels have been nropored for some variants of the Vicsek model (e.g. [12, 13, 157). Tn [14],
the authors proved that the kinetic Cucker-Stnale model converges to the kinetic Viesek model.
Peruani et al [76] have proposed a mean-iicld approach o self-propelled particles which mteract
through ferromagnetic and liquid-erystal alignment wechanismes.

Macroscopic model: Many macroscopic models have been proposed for the Vieseh model [9,
29, 90]. However, most of then ave based on the phenamenalogical method and closure mement
[9, 79, 90, 91]. The first rigorous devivation of hydrodynamic model from kinelic one of the Vicsek
model has been proposed by Degond and Matsch (29 (see [21) for a survey). This model is ealled
Sclf-Organized Hydrodynamic (SOH) madel . The main eontribition of thig work is to introduce
a wew concept “Generalized Invariant Collision” which allows one to derive hydrodynamic maodels
despite a lack of momentim conservation. The lack of conscrvations is acknowledged (see ey
the discussion in the introduction of {94]) as ane of the essential differences between colleative
phenamenn in standard statistical physics and biology.

The SOH model deseribes the evolution of the density g and the wean divection () given by

p+ Ty (er1pf2) =0,
PR+ epp(- V) =d TV, p— v Py A {pf0)

where Lhe cocflicients ¢y, 3, 7.d salisly ¢ > ¢z, d > 0 and v > 0. 'This model consigts first of a
comanrvarive equation of mass, second of un evolution cquation for the mean direction Q. 'he two
cquations are suppleeenied by a geotnelrie constraint [} = 1. The SOH wmodel is not Galilean-
wvariant. hecanse of this consiraint, Shimulations of thie SOH wmodel without diffusion terin bave
been perfermed to validate the SOH model [71). Furthermore, several works on the SOH mode] have
been investigaled as existence of solution [32]. Phase transitions have Lieen analyzed [, 24, 27, 44].

1.2.2 Pure attraction-repulsion models

Microscopic - Macrascopic models:  In contrast to the Vicsek model, many other models
consider only short reuge nteraction and long range attraction of particles (19, 37, G9]. Within
these fraumne works, a foree field is mtroduced which allows parlicles push or atbract tooether.
The attractive-repulsive force are described through a Morse type of potential. 'I'he long-range
attraction accounts for how social groups form. The short range repulsion is motivated [rom the
tact thal the dinite size paviicles can not overlap and repel each other when they are too closce.
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So. there exists a maximuin valne thal the particle density can not pass. This maximum value of
density comes from voluue exelusion interaction which is referrved to as a congestion coustraint, Ihe
congestion phenomena also aceurs in vehicular wraffic [3]. The first work dealing with sinndtancons
scli-propulsive and volume cxclusion interactions was published by Pernani et al [73]. Voltime
exclusion ean result in apolar alignment [76] as well a3 polar aligimment (53], ln 87, 58, the anthors
took care of the emergence of colleciive motion of observed from experiments with bacteria. as
a consequence of direct cell-to-cell interactions which are modelled by a short-range attractive-
repulsive meer-cellular forees.

It [49]. & model deseribing the moveent of clongated sell-propelled pardcles mnder the influence
ol nematic collision and of noise was mtroduced. Consider two particles and let ~ be the inclnded
angle of their velacity vectors at some time before impingement. Then nematic collision means
that if & is sialler than 180°, the particles will move in the same divecetion afrer collision and if
a in bigger than 180° they will move 1n the opposite direction. However, this interaction rule can
also be regarded as resulting from volume exclusion aud alignment.

1.2.3 Combined aligmnent and attraction-repulsion modcls

Microscopic model: We are interested in modelling of collective motion in large systenis of
self-propelled pardicles (hrough mediwn-range aligiment and short-range repulsion. As mentioned
above, the three zones model is the fivet model of collective motion which accounts for three different
riles of interaction: alignment, attraction and repulsion. Some variants of this model have been
proposed in [57, 68). Thwese niodels are nsed to deseribe the motion of fish. Degond et al hava alan
proposed [32] a waniant of £his model by adding a pawwise attractive-vepulsive foree to the lime
continuang version of the Viesek model. In 1517, a Lennard-Jones type loree was added into the
Vicsek model to take into secount siimultaneously collective and cohesion motion.

Wilh refleeting bonneary condition, the Viesek model represents an acenmulation of particles
switnmiug along the boundary. In ovder to avaid this effect, a repulsion is added mta the Viasek
model 23] 1, was observed that refieeting boundary breaks the lutge-seale order and thal domwing
of ardered particles are separated by slip lines, in a similar fashion as wall domain in spin systems.
1t iy also observed that the Viesek mode] with repulsion exhibit symmetry breaking in an annular
domain with reflecting bonndaries: after some time, all particles choose (o swin iy one direetion,
either clockwise ar anti-clockwise.

Macroscopic model: One method to accownt for both aligument and repulsion interactions is
to consider the SOH model with the congestion constraint. As mentioned above. in the congestion
chsg, the demsity of individuals cannot exceed a wnaximmal density threshold at which they are
in contact with each other. To analyse this problem, in [28. 331 the authors consider a singular
pressure when the density p approaches the congestion density p*. This model is used to describe
the congestion phenonena of auiral living in group such as sheep,

Tn chapter 2, we will build up a model hicrarcliy for active suspensions of particles from tle
mieroscapic model ta the macroscopic wodel based on aligmuent and voliime exclusion. In [77),
valume exclusion effects are presented via lattice nodes: nodes can he oceupied at most by one
particle. In our mudel, steric interaction is modelled by a repulsive foree,

1.2.4 Synchronization and combined alignment, and synchronization mod-
els

Microscopic model: The Kuramoto model [65) describes synchronization which is observed in
hiologteal, chemical. physical, and social systems. A paradigmalic example illustrating synchro-
nization is the synchronous flashing of ficeflies observed i some South Asian foreats. This mode]
has found widespread anplications such as in neuroscience. It cansists of N-oscillators 4,{t) having
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intrinsic frequencies w, distributed with a wiven probability density g(w). Oscillators are related
to all other ascillators threugh the sine of their difference. Their dynaniics are described hy the
tollowing cquation

PR
: { . .
0,(1) = w, ~ ~ 5 sin(d, — ). § 1.--- N,

J J_l
Wlhen the coupling is large enough, collective synchronization emerges spontancously. In spite of
siniplicity, Uids model can display a large variety synchronization patterns. Several variants of the
Kuramoto inadel have been proposed such as the Kimranioto miodel with noise. short-range model,
wodels with disorder. models with exiernal fields. 'These vanant models and their applications have
been disevssed in [1] Some works have acknowledged the proximity between the Kuramoto and
Vicsek models. such as [18, 54).

Meau-ficld madel: Nean-ficld models have been proposed for the Kurammoto model aiel with
noise. Move studies on the Knramoto model have been done in |1, 10, 11, 47, 48, G7).

In chapter 1, we introduce a madel which combines the Vicsek model and the Kuramoto model.
It borrows fronn the ICuramots model (e way Lthe agents svnclironize the phase of their rotation
and from the Viesck model the wav this synclronization is coupled with the spatial localization of
the agents. The goal of this work is to derive hydrodymamic models for this model and to study
sonle properties of the hvdrodynaniic wmodels oblained.

1.2.5 Models and cxperiments

As mentioned above, studying intevaction rules hetwean particles insicde aystems playg an huportant
role ro 1mderstanding collective phenomensn. Many works have explored interaction rules belween
particles (rom the abservatian of global dynamics Several models have been bulle from experiment
data. Tor examples, the so-called "Dersistent Turner” madel has been huilt step by step from
experiment data of fish [43]. Some projects have been built Lo study collective behavior based on
expertment data sich as the PEDIGRELDL moject (PEDestrlan GRoups @ EmErgence of collective
Lehaviour through experiments, modelling and shmulation) or the PANURGE project (Stndy of
glegariousness in vertebrate spedies).

Tu ayder to mvestigate 1f elongauted self-propelled particles underpoing volnme exclusion inter-
actions may exhibit emergent phenomena, we have nerformed experbnents with a model system
consisting of simple self-propelled robots, Experiments consist of placing the hexahugs in a ring
and the video tracking of the bugs sand the enlibration of the wmodels agamst these data. There
alrcady exists some works based on robots such as the work of TaylorKing et al on F-Puck rohots
[89]. Sonte microscopic models have been proposcd to deseribe the motion of robols such as the
model of Sugawara of al [36].

1.3 Presentation of main results

1.3.1 Chapter 1: The Vicsek - Kuramoto model

In this chapter, we inlroduce 2 new model for large systein of rotating self-propelled particles
subject to alignment interaction. ‘I'hia model contbines the Kuramato and Viesek dynamics. We
denote by (X (O V(1) Wi 21, v the positions, the normalized velocities and the proper angular
velocities of the particles, vespectively, with X1(!) € B2, Vi.(¢) € § and 1% & R. The particles inove
at constant speed ¢. The dynamical system satisfies the following stochastic diffevential cquations:
AX;

dt
dVp — Pp.o(WVidl + V2ZDdB) + W Vi dt.

= W,
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where Py1 = fd -V, & Vi, the quantity dB, refers to the standard white noise in R with intensity

V2D, V2 denote the vector obtained from % by a rotation a angle 7/2. ‘I'he quantity v refers to
the relavation constant of the velocity of vne particle towards the neighbors' average velocity V.
The average divection mound the particle Xg(t) with vading B is defined by

- Jr
P P r
p— e = Y W
I
| N, Xe|2N
After scaling, the kinetie equations are then given by
- . i . I .
Sy — Ve {uf) = E( Vo (PuaQye ) + dAFF) - EH‘Vu v f)
Jy(aot)
WG, O

Twa regimens will e investigated following two scaling assumptions on y

Qr(x.t) Jila t) = fle o, W Hudr 1
! I
(v U8 ¥R

(i} Small angular velacities: 5 = O(1). In this regime. the equilibrium of the syslem is still a
Von-Mises-Fisher distribution Minction. Taking the imit £ 3 0, we obtain an equation for
the deusity py (x4} and the velocity diveetor Q(a,7) as follows:

Bipw ~ Vi (crpwt?) =0, V¥ € R,
PP+ e (- V)0 = YQE) +dPq Vup =0,

pla. ) — / oy (x, ) dIV. (Y )z, t) — / oy (e )W A
Jwez Jiwer
(it) Large angular velocilies: n = O(z). This changes siguificnitly thie equilibrivin velocity dis-
teibution of the particles Tn order to preserve the parvticle propensity to locally align with
their neighbors, we are led to maodify the interaction force. Then the density pw(z, 1) and
the wean dircction e, £) sacisty the following system of hydrodynamic equations:

Opy T Vo (Epun ) 0, VW e R,
mpw O = mafpw] (0 TR ~ mig o] (1 9,0
—0t (mapu (W, Q) = (- V) mslpw + Q- V) mglpn 1) = 0.
where ma|pw). ... mglpw| are monents of prr. Some properties of this inodel are nvesti-
aated as the linearized stability in somne particular cases and the asymptoticas when the proper

rotation is small. We show that this hydrodynamic model is reduced to the SOH mwodel in
this limit. bw with different. coeflicients.

1.3.2  Chapter 2: The Vicsek model with repulsion

In this chapter we intreduce a new nodel to describe the movement of elongated self-propelled
particles like bacterin, sperm cells in Jarge systems. We consider a system of N-particles which
interact through volume exclusion interaction and aligninent. Let Xp(2) deuote the position of
k-particle at time 4. and 14 (1), wx (1) denate the velocity and the ovientation, respectively. Volume
exclusion 1mreractions are modelled by a repulsive foree whieh is defined through a vepulsive poteu-
tial ¢ with mbility g, The particle orieutations relax towards the neighbors’ average arientation
&, with relaxation canstant v, The dynamics are deseribed by the following equations

X &
!

N
VW = UValk u(-;:ZVé(I-\’: X.|))-
i—1

== ey

dwy, F s o (vindt + audt + v 2DdB,).
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where the projection £, = (Il & w) lusures that e orientation of vach particle remains on
the nuit sphere. The parameter a represents the relaxation rate of the omentation &y towards the
velocity V.. vy is the constant self-propulsion speed of particles. B, is the Brownian motion with
intensity v2D. The mesn orientation &y is defined hy

_ T
[/
| 7]

.'\l
o T Z K{|X, - N
=1

wlhiere the keruel £ measures how the oricitation of ooe particle is inflacenced by its neighbors.
The mean-field equation with hydrodynamic scaling reads

e(BFF + V0 (V5 ) + Vo (Pt 1) 4 Voo (Par G [)) = QU
ky
| Tge]
whare the cocfficienta ®g, kg come from the kernels o, 1, aud the collision operator @(f) is given
hy

Ve (row ) = wow  pPoV. g, C},(:t'.t) - P”T A

Q) = Vo (- P ) +dALf.
The loca] densily py, the lacal corrent density Jy and local average onentation 2y ave defined by

pr(a.t) / flr w t)dw,

Jgna-

Jr(at) - / f(x o e,

Jweln
Jy(ent)

YN =g en

Due Lo thie couvept of GCI, the rigorous derivation of hydrodynamic wodel is possible. The evolu-
tion of densdty p(er. #) and the wean orientation Qe 1) satisfy the following equations

op+V, (pU)=0.
PO+ p(V -V )2+ Poa Vop(p) — P-4 (p0).
[ - 1.

where

U= C]U(].Q - ‘u@uv;—p. V = CQL‘UQ - jl@ov,ﬁ.

2
plp) - vpdp + ap®y((n L)l ~ (:2)%. T -- kg((n - Dd ) ).

and ¢, &y are constants depending on d. T'his model is called the ™ Self-Organized Hydvodynamics
with Repulsion™ (SOHR). Nwmerical sitmulations Lave been performed for (wo purposes. The fiest
one 15 to validate the SOHR model by compm ison to those of the particle model. The second one
is to highlight the difference between the SOH model and the SOHR model.

1.3.3 Chapter 3: The existence of solution of the SOHR model: compar-
ison between theory and simulations

In this chapter, we study the existence of solution of the following system in two dimeusions:

2
p ., )
p+ i Vi () = HA(T) =0,
O 3p(Q- VAR KWplVp - VIQ | PaeVop(p) — 7P Ay (pC1)
[« =1,
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where plp) - c1p + c20% /2 and the constants 3¢,-++  Sq.7, ¢y 07 are non-negarive. By using the
method in ‘88 and the technigues to estimate the solution in [32 , we obtain the following theorcm

Theorem L1.3.1. We assume that the iitial duto belong to H™(TI?) with m > 2. Then there
caists @ bime T > 0 und 2 undgue solubion (p,y) m L20. T H(IT2)) o 1[0, T, "~ 2(T1%))
sueh Hunt p is positive. Moreover, if the coefficients B,y > O then the solulion also belonys (o
LA([0.777); H (T2 n H ([0, 7). H™(IT2)).

Ou the other hand. by simulations, we show that the termn 3ip(Vp - V) plavs a 10le of an
unstable term. When we change of 35 by a amall ¢uantity, the stability of the systom will be
changed. As 3; exceeds all of the covtlivients 3o, 7, ep ez. (he nunierical solution exists only for
short Limne. The solutiou will beeome regular if one of 1he coefficients 3a. y.¢p, ¢ are large enough.
Therefore. the exisrence of numerical solution depends an the relation between the coefficients.

1.3.4 Chapter 4: Experiments

This chapter is devoted to investigate experimentally collective hahavion in systems of elongated
self-propelled particles which interacl through volume-exelusion interactions. For (his purpose, we
perfommed experiments with simple sell-propellad robots. A systein consisting of 80 Hexbug (see
fig 5.9) was used. Experiments were condneted with 2,5,10, 15, 20. 40 bugs in confined ring shaped
avellas. We obscrve o new organisalion of molion where (e parlicles align orthogouully at the
boundary of the ring ko form drifted clusters.

Figure 1.1: A sclf-propelled robot of the brand Hexbug: s smull battery-powered electric engine
triggers the viliration of the device. Tle bended plastic Jegs offer differential {riction witl L
substrate. As a result. the device moves ahead. Due to unbalanced bending, most of these deviees
move along circles of various radii.

To study this phenomena of the hugs. we measitre some characteristics for ¢lusters as cluster size
and cluster tfetime. This study provides some stalistical measures to validate a model between
bugs. We also constructed a model which is able to reproduce ¢ualitatively this behavior, We
consider a system of N-rod particles, Each rod particle consists of 11-beads with its 1adius v, aud
its sy g, Let X, (1) € B2 denote the centre position of i-rod at time #, and »,(#).w, (1), (#)
denote the velocity and the ovientation and the angular velocity, respectively. "The position of the
J-th bead of the 1-th rod X,; is compuled by the following formunla:

Xop=X+wi(~n=1)+2(- !))?‘b].

The dynamics are deseribed by the following equations:

i.X,
— N,
dt !
] ao
mﬁ =Moyw, ¢)*F. L,— =7 g0,

ar At
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where the mass of the rod m is equal nmy. The rvepulsive force I, acts on each rod given by

Ft—z Z F!)J:I

Jol k=1
I=1.n

where £, = IT(X,; — Xy) is the repulsive force hetween the s-th bead of the -th rod and the
the £-tlr Lead of the &-th rod, given by

EN
i) - F()I .(1 . yaf jua] <

0  otherwises.

7
@t (1.3.5)

The coefficients A, Fj; vepresent the intensities of self-propulsive and vepilsive forea, vespectively.
The torque 7, und the moment of inerda 7, arc given by

1]

n=3 (X, -X)x 3 Fau)

)—1 k'—].l\"
I=1n

n
[, = Z X\, X,|27l!b.
=1



Part I: The Vicsek-Kuramoto
model






Chapter 2

Hydrodynamics of the
Kuramoto-Vicsek model of
rotating self-propelled particles

‘I'his chapter has given an article in collaboration with 1. Degond and G, Dimareo and published
in the Journal of Mathematical Models and Methods in Applied Sviences: Rydroadvnames of the
Kunramoto-Viesek model of vatating self-propelled pavticles, M3AS, (2014).

2.1 Introduction

This chapter is concerned with the study of large system of rolating sell-propelled particles subject
to colleclive ‘social” interactions. Specifically, we consider particles evolviug in the plane under
the following influences. (1) welf-propulsion, (i) proper rotation, (i} ‘soew! mteraction’ resulting
in velocity alignment. with theit neighbors' average velocity and (iv) random velocity flucluations
in Lthe form of Brownian motions in the velocity direction, Proper rotation means that the self-
propelled particle trajectorics, in the absence of any othey inflnence (.o without (i) or {iv)) are
civeles of constant centers and radii. Moreover, the centers and radii of different particles can
e dillerent. The gonl of the present work is to establish a set of hydrodynamic equaciona for
the density and mean-veloeity of these particles. Such hydrodynamie equations will be valid at
large time and space scales compared with the Gy pical interaction Ume and distance hetween the
particles.

Systems of self propelled particles intevacling through local alignment have received consider-
able interest since the early work of Viesck and coanthors 93, This is because despite 1ts sim-
plicity, this paradigin iz able to reproducs many of the callective patterns ohserved in nature. It
also exhibits complex Behaviors such as pliase transitions which have motivated a hoge literature
(2, 16, 27, 52, 93] We refer to |34] for 8 recent review on the subject. But in the vast majority of
previens warks, the influence of praper rotation (see item (i) above) has heen ignored.

Furtherinore, a majority of worky on such systems nse Individual-Based NModels (113M) which
consist in following the evolution of each particle {or individual, or agent) in lime [L5. 16, 19, 21,
85. 69, 72]. These models alin al deseribing systews of swanning biological agents such as ammals
living in groups 4, 20. 16] or bacterial calonies |22 among others. Alignment interaction has also
heen shown Lo result from volume exclusion interaction in the case of elongnted self-propelled
particles [6, 75).

\When the number of agents is lavge, it is legitimate to consider mean-Geld kinclic models,
(7.9, 13, 42, 56] where the state of the system is described by the probahility distribntion of a single
particle. Tt is even possible Lo reduee the deseviption further by considering Lydrodynamic models.
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which follow the evolution of average guantities snch us the local density or average velocity. Until
recently, hvdredynaniie models of interacting self-propelled particle svstems were mostly derived
on phenouenologival considerations [5, 8079, 90, 91, A series of works [20, 32, 43 have finnly
estalilished the derivation of such hydradynamie models from micrascopie anes, and particularly
of one of them, the "Self-Organized Hydrodynmmics' (SOH) (sce the review 23)), Witlin this
framework, phase transitions have heen aunlyzed [4. 2427 11] (see aleo the review [26]). We wixh
to follow the same methodology here and derive hydrodynamic models of rotating self-propellerd
particles interacting through local alignment. This work is focused an model derivation. So. we
defer the analysis of phase transitions to future work.

Situations where swanning agents are trapped in a rotation motion are not uncommon. A
typical exainple is given by swimming agents such as bacteyia or algae in a shear flow. In the case of
elongaied particles, the veloeity shear induces a votation of the particles in a4 motion named Jeffrey's
orhits (2. The eombination of this effect with swimming leads bacreria to undergo a cirevlar
wiolion near boundaries [33, 667 Thiy uurtures the su-ealled gyrotactic eflect which 1s responsible
for accnumlation of phytoplankton in layers 39 and patches 0. Staying in thie biological realm,
we note that some strainag of swarming bacteria exhibit civenlar motion and vortex formation
[22]. In some cirenmstances. covrdination of flagella beads leads sperm cells (o self-organize in a
collective formation of vortices |30]. Tn a different context. roboticists ave keen to find decentralized
control algarithms of rohat swarms inducing a callective eireular motion of the swarm {17, 73, 86].
Applications target the design of mobile sensor networks for mapping or monitoring.

‘I'he goal of this chapter is o previde a continnmum deseription of these systems wlen the
mumber of agents s large. We start by proposing an IBA which encompasses leatures (i) Lo (iv)
above. This [BX combines the Kuramoto [65] and Viesek (93] dvuamics (see i) and [0 for
reviews on the Knramaoto and Viesek models respectively). [t borvows from the Kuramoto model
Lhe way the agents synchironize Lhe phase of their rolation and from the Viesek model the way
this synchronization is coupled with the spatial localization of the acenis. Indeed, agents look for
neighbors, compute the average phage of their rotation motion and choose this phase as their target
far their own phase. In the ahbsence of proper rotation of the particles, one recovers exactly the
Viesck mode] in its time continuous form 22, 29) By coutrast, if the synchronization is global, i.c.
the agents campute the average phase over the whole ensewble of particles, the ariginal IGmramoto
moadel is recovered. Previous works have acknowledged the proximity hetween the Kuramoto and
Viesek models (18, 54]. The present model is close to that proposed in i73, 85). A different, but
related appronch where the oscillators move diffusively in space, has bheen studied in [78]. But none
of them have proposed a hydrodynaniic description of a system of particles undergoing a combined
Kuramoto-Viesek dvnainics. This is the goal pursued here.

Similar to the present work, previous works have used circular mation as the free motion of
the ngeuts. In particular, the so-called "Persistent Turner” model has been proposed Lo describe
the dynaniics of fish :30, 45] and fish schools |31, 6] However, there are significant differences. In
the ‘Persistent. Turmer' model, the curvature of the imotion underpgoes stochastic changes. In the
mean over time, the curvature is zero, and there is no preferred turning direction. By contrast,
in the present work, the curvalure is constant and so is its mean over time. Consequently, there
is o definite preferred tning direction. These differences are sipuificant and cau be yead on the
stiucrure of che vesulting hydrodynamic models.

After writing the combined Kuramoto-Viesek IBA], we propose a mean-ficld kinetic description
of this gyatem by means of a Fokker-Planck type equation for the one-particle ensemble distribution
[unetion. After scaling the kinelic cyuation Lo dimncusionless variables, we vealize that Gwo regimes
are of inerest. In e first. one, the proper rolation of the paiticles is stow enough, s thal the
particles can reach an equilibnonm norler the combined infinences of the aliphinent and noise withant
deviating fron a straipht line too mucl. In this regime, the hydrvodynaniic liwit yiclds the SOH
model [25, 29, 32, 13] with an additional source term in the velocity evolution equation stemming
{rom the average proper rotaiion of the particle ensemble. This regimie is called the slow angulax
velocity repime and the associated hydrodynamic models, the *Self-Organized IIydyodynamics
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with Proper Rotation (Small angular velocity case)’ or SOHPR-S .

Another vegime is possible, where the proper rotation 1s of the same arder ay (Lt alignment
interaction and noise. This changes significanely the equilibrium velocity distribution of the parti-
cles. In order to maintain the propensity of the particles to align with the enseinble of neighboring
particles, we are led to modify the defuition of the divection Lo wlneh clementary particles align.
This modification is commmented in great length in the corresponding scetion below, At this point,
lel us simply niention thal this modilication could aceonng for the mfuence of volunw exclusion
interaction in the spirit of [6, 75). Tn this regime, the oblained hydrodynamic model involves sig-
nificant modiRcations compared with the previcus SOH model and is called the *Self-Organized
Hydrodynamics with Proper RRotation {Large angular velocity case)* or SOHPR-L

The changes compared with the previous SOH model conaist of two aspects. First. the velocity
equation is coupled to the whole angular velocity distribution function (and not through simple
montents such as the densiry or average angular momentiun, by coitrast with the SOHPR-S model).
Second, this equation involves additional terms which correspond to transport in the direetion
normal to the velocity, or ofl-diagonal terms in ihe pressure (ensor. 1n spite of its eoniplexity, the
moddl is shown to be linearly well-posed when the angulie velocity distribution function is wi cven
function (i.e. there is no preferred turning divection when averaged over Lhe particles). Alkso, the
asymplotics {or small nngolay velocities reduces the vomplexity of the svsten ro that of three fivst
order partial diffevential equations. More deiailed analytical studies of this system aye i1 progress.

In both reginws, the derivation of hydrodynamic models iz possible, in spite of the lack of
momentun conservapion. The lack of conservations is acknowledged {gee e.g. the discussion in
the introdnetion of (04) as one of the major differences and sources of aualytical difficulties that
complex systems in biology and sacial sciences present. The main coutribution of previons works
o the SOH model (see e.g. the review [25]) has been to provide a way to bypass this lack of
momentum conservalion. The main tool fov this {3 the concepl of Generalized Collision Invariant
(GCI). Again, this concept will be the key ol the derivation ol the SOHPR niodels, in botl the
siall and the large angular velocily cases.

The paper i organized as follows. In section 2.2, the IBAM and its mean-field kinetie limit are
introduced and scnling considerations are developed. Section 2.3 is devoted to the statement of the
converzence of the mean-field kinetic model towards the hydrodynamice limil in (he small angular
velocity case. Some properties of the SOHPR-S miodel are discussed. The case of the large angular
velocily regimne is then treated i section 2.4, Scetion 2.5 details some of the properties of the
SOIIPR-L. model. such as its lincarized stability or its asymptotics in the smiall angular velocity
limit. A counclusion is drawn in section 2.6, Then. thres appendices are devoted 1o the prooafs of
Lhe fornl convergence results towards the hydrodynamic limit in the amall angular velocity caxse
(Appendix A) and in the large angninr velocity case (Appendix B) and to the tormal asymptotics
of the SOHPR-L model when the angnlar velecities become smadl (Appendix C) Finally Appendix
ID presents some graphical illustrations.

2.2 Individual-Based model, mean-field limit and scaling

We constder a systemn of N particles or agents meving with constant speed ¢ i tlie two-dimensional
plane 2. We denate by (X (3}, Ve(!))k-1,..5 the positions and the normalized velocities of the
particles, with X;(t) € R? and Vi(#) < §', where §8' denotes the unit circle in R% The actual
vilocitics of the particles are V), = ¢l Each particle is subject to three different actions. I'he
fist. one is a proper angulin velocity Wy, which, in the absence of any other action, would resnlt
in a civcular motion of radius By = ﬁ rotating counier-clockwise if 1V > 0 and clackwige if
Wy < 0. Then. each particle is subject to independent Brownian white noises 3, o(v2D dBF) with
uniform difusivity D. The guantity dB: refers to the standard white noisc in R2. It is projected
onlo a stawelard white neige on 8§ thanks to the projection operaton P Denoting by V,‘,l the
[

veclor obtained franm Vi by a rotation of angle x/2, Dy is the orthogonal projection ante the
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line senerated by Vi-oie. B - Vkl SV - Id - Vi @ V. where R denotes the tensor product
of two vectors and Id is the identity matrix. The savmbol ‘o' indicates that the corresponding
stochastic differential cqualion js (aken in the Siratonovich sense. The faet that the prajechon of
a standard white nase in R? onto the tangent line to the arele in the Stiatonovich sense leads to
a standard white noise on §!' can be found e.g. in [61]. Finally, the particle velocities velax towards
the neighbors’ average velocity V) with relaxntion constant ». The quamlity ¢ is also supposed
uniform (f.c. all particles have identical ») and constawnt in time for simplicity. Following these
rules, the particles cvolve according Lo (he following stochastic differential eyquations:

d X

— . 2.
T, vy (2 2 1)
dVi = Py. o (wVidt - VRDAB,) | Wy Ve dt. (2.2.2)

The vector ¥} may be computed by different 1oles, leading to different types of models. For
the time being, we asswine that 1} is obtained by novmalizing the averape J; of the velocities V)
of the particles § lying in a disk of given radius R centered at Xy, ie

_ T 1
Ve Y5 T = Z V. (2.2.3)
VA N .
J..,\:—\'”\_\R
In the absence of self-rotation velocity . - 0, the system reduces to the time-continuous

version of the Viesek alighmemt model [93] as propased in |22, 29]. On the other hand, if the
neighbor's average velority is computed over all the particles, i.e. if (2.2.3) is replaced hy

_ 1
k=v=|%‘ j=ﬁ21g, (2.2.4)

then, the evolution of the velocities (Vi}p-y. ~ does not depend on the positions (X )e—y ... a
and the resulling system for (Vi)x_1 15 nothing but the noisy Kuramoto model of oscillator
syuchronization [1]. Indeed, considering the noiseless case 1) = 0 for simplicity, we ¢an write
Vi = (cos 8y, 5in 6),), V = (cor 0. sin 5) and Eq. {2.2.2) with {2.2.4) vun be written:

a8 =
—  — wsin(@ )1 W
d! ¥ l‘“l( K) 13
ro1 N
= — = sin(d, — &) - Wy.
J—1
This is (e Kuramoto model with a coupling constant K = . In the standard Kurainoto model

the coupling coustant K is supposcd independent of [, The reason for taking K = I_‘;i here is

that the original time-contintons version of the Viczek model as in (22, 20] corresponds to this
choice. Additionally, with this choice, the macroscopic limit s simpler

I1 the context of the Viesek model, Lhe case where ﬁ is a constant (or more generally a
smaoth function of | 7]} has beeu stndied iy (21, 26, 27]. In this case, multiple equilibria and phase
{ransitions may appear. Phase transitions are alsa seen in the IKaramoto model.[1, 16, 11, 17, 1%, (7]
This makes the physics inore mteresting but on the other hand, complicates tlic derivalion of
hyvdrodynamic models. Hence, in the present work. we keep the assumption of constant v for the

1

sake of siuplicity and differ the study of Lhe constant 77 Case to future work.

It the limir of an infinite ;moaber of particles N — o, the systemn can be deseribed by the
one-particle distribulion function f{r, r. W.t) where (7,7, W) is the position in the phase space
R? x & x R. The quantity f(a. 2. W, 1} dr dodiV represents the probability of finding a particle in



Individuni-Bused modet. mean-frdd limit end .sial_i_ng 23

a neighborhaod da de dV of (v, v, IV). The evoluiion equation for f deduced from svstein (2.2.1).
(2.2.2) is given by the following Fokker-Planck equation|[12]:

Mf=cV - (vfy+ Ve - (Fy f)— DA -0, (2.2.5)
Frlzoo. Wity Po(vup(z,0) + Wot, (2.2.6)

This equation expresses that the tie derivative of f is balanced by, on the one hand, first order
fluxes in the (x.v) space describing spatial transport by the velocity cv (the sccond term) and
velocity transporl by the force Fy (the thixd (erm) and by, on the other hawd. velocity dilfusion
due to the DBrownian noige (the fowrth tevm). ‘I'he aperators V- and A, reapectively stand tor the
divergenee of tangent veclor fields to 8 and thie Laplace-Beltrami operator ou 8t For later usnge,
we also introduce the symbol ¥, which denotes the tangencial gradient of sealar fields defined on
$'. Let (v} be a scalar inction defined on 8! and let £(v)¢' a tangent vector field to &', Denote
by p(0) the expression of () in a polar voordinate system. Then, these operators are expressed
as follows:

Vo (p(0)ot) = Bog, Tople) — dppet, Awplv) 3.

Eq. {2.2.6} deseribes how the foree termn i computed. The first term describes the interaction
foree: it has has the form of a relaxation towards the neighbors’ average velacity #4(a#) with a
relaxation frequency v, The second term is the self-rotation force with angular velocity 1. We
note that there is no operator explicitly acting on the angular velocity 1V, Indeed, this quantity is
supposed attached to each particle and invariant aver tinte. System (2.2.5). {2.2.6) 15 supplemented
with ow inftial condition fy{a. v, W) - [z, 0. W L — 0).

We will present several ways of computing the neighbors” average velocity By (4 £). To make the
nioclel specific at this paineg, we simply consider the case where it is compurted by the continnwm
counlerpmt of Lhe diserete formula (2.2.3), nawely:

- ._7](.1',!)

YD = g 2.2.

Met) N/TERS] (2.2.7)

= | e (B gy vy deary (225)
(g 1V YER2 X5 xR I

Here the siunmation of the neighbor's velosities over a disk centered at the loeation r of the particle
and of vadius / which was nsed in the discrete model (formwula (2.2.3)) is replaced by a more general
forinula jnvolving a radially symmetric interaction kernel AL We recover an inlegration sver sucl a
disk if we choose K (&) = \jp.a: (), with § = !-T-E’—' and )y is the indicator Tunction of the interval
[0, 1]. For simplicity, we vow normalize £ such that fRQ K{ t])de = 1. The paraneter f2 will be
refecred to as the internetion yange

In arder to define the hydrodynamic scaling, we first nod-dimensionalize the system. We intro-
duce the time seale $5 — 171 angd the associated space seale 2o — fy — ¢/v. With these choices,
the time unit is the time needed by a particle ta adjust its velocity due to interactions with other
particles {or mean interaction time) and the space unit is the mean distance (raveled by the par-
ticles during the mean interaction time. We set 1y the typieal angular freqmency. For instance,
we can assign fo Wy the value Wy + Wy wheee Wy and Wy are respectively the mean and the
standind deviation of W oover the initial probability distribution function fy da dedW. Similarly,
we intradnee a distribution function scale fq = ?r:I\T/U and a force scale Fj, = ﬁ

We introduce dimensionless variables v = apa’s t = ta! . W = W W' f — fof'\ Fy — IR F },
as well as the following dimensionless parameters:

=2 oy B
v v (.

{2.2.9)

These parameters are respectively the dimensionless diffusivity, the dimensionless intrinsic angun-
lar velocity and the dimensionless interaction range. The nen-dinmensionlized system solved hy
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F(@ v W) is written as follows (dvopping the primes for simplicity):

WS+ (e )+ V(P f) —dAf - 0. (2.2.10)
Feleowm, Wty = Dot - TWot, {2.2.11)
where, in the simple example given ahave, the neighhors’ average velocity is now given by
Jr(2. )
Ui 2212
(e t) = N (22.12)
Tl t) = f K(|7 ) Sy oWty v dydvd1” (2.2.13)
(v IV)ER? x5! xR r

So far, the chiasen Ltime and space scales are inicroscopic ones: they are set up to describe the
evohition of the svstem at the scale of the interactions hetween the agents. We are now interested
by a descriplion of the svsiem al macroscopic zcales, i.e. at scales which are described by units
Fg= " andiy = :‘ where & 4 1 iy a nmall parameter. By changing these anits, we correspondingly
chang@ the variables 2 and f and the unknown § to new variables and unknowns F — 1,7 — of.
= 4. In perlonming this chauge of variables, we must stale how the dimensionless parameters
(2.2. 9) Iu—*lm\'e as ¢ = 0. We nssime that o = O(1) and r = O(1) as = > 0. and {or sinplicity,
we assume that ¢ and » vemain constant. By contvasr, we will invesrigate two different sealing
assumptions for T and we define a new parmmeter ¢ = £. Alter changing Lo the niacroscopic
variables i, { the system reads (dropping the tildes for simpliciey):

1
hfm v V- (ufY = }r( Vo (Prdg [7) —dALf) - =WV, (ot F9, (2.2.14)
J)
wliere again in the siniplest case, the neighbors’ average velocity is given by
Ji(a. )
Br(a ) — =, (2.2.15)
d |77 (.0
TE(, 1) = e (k= | 5 W) v dy dv diF 2.2.16
Tf(m ) = iy, v, Yudydv (2.2.16)
SR ‘(—'i*x!w? 7

Next, hy Taylor expansion and owing to the rotationsl symmetry of the function x € B2 v > IC{|r]),
we have 29]:

Jr(2, )

Fa(ad) = Q(x, 1) = OFD). Qe g) = L2 2.2.17)

Pty =Qy(a, t) = OfFF) (1) 70 (

Ji(u.t) = [ flr. s Wot)ade W (2.2.18)
e W jER R R

In otlier words, up to O(£?) terns, the interaction force is given by a loeal expression, involving
only the distribution function f ar position ». "T'he quantity Jy(z,t) is the local particle flux at
point 2 and liwme 1. By conlrast, the expression (2.2.15). (2.2.16) of @} 1s spatially non-local: it
involves a convolution of f with respect to the non-local kerel K. We now omit the O(?) terms
as they have no contribution to the hydrodynamic limit at leading order (which 15 what we are
interested m).

The remwainder of this work is concerned willy the Tormal limit £ — 0 of the following pertwr-
bation problem:

af +V. (vf)= %(— Vo - (PeQpe f) +dALf7) - %er (ot f9), (2.219)
Qrfa. ) — i 1) Jrle t) —/ Jloov, W D ededly. (2.2.20)
e E/C ) wW)enxx ' o

We will he interasted in the following two scaling assumptions for i
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(i} Sowmllangnlar velocities: 3 = OQ1). [ this regime, the characteristic angulan velocity satishes
T = O(s). It takes the pariicles a macroscopic Lime inlerval to perform a Gnite angle xotat oo,

(ii} Large angular velovities: oy = O(¢). In thic cace, the chiavactenstie angular velocity satisties
Y = (1). It rakes the particles a microscopic tine interval to perform finite angle rotations.
Owvur o wacroscopic lime interval. the nunmber of rotations is (’}( é )

We expeet that ease (1) is just a pertwrbation of the case where there is no proper rotation,
and which has previously heen investigated in [29]. On the other hand, ecase (ii) involves a lurger
modification and we expeel that signilicanl new bebaviors are caplured. However, we will see
that case (i) reguives a modificarion of rhe way the agenrs’ raming valocairy is computed. Indeed.
the agents need to take their proper angulm veloeily into account in the evaluation of the tarning
velocity that produces aligrminent with their neighhors. Therefare, according to whether that proper
velocity goes along or against theiv will, the agents vieed to achieve smaller or larger turning,
Precisely, (he chianges (o Eq. (2.2.20) that arce necded will be deseribed in greater detail below,
The next section is devoted ta the investigation of case (1).

2.3 Smnall angular velocitics

In the case of small angular velocities, we have 4y = (2(1}. We make 4 = 1 for shmplicily, The
problemn is now writben:

AfF+ T, (55 = WO, () = ZQUP). (23.21)

where the ‘collision operator’ Q(f) is given hy:

QUf) = =V - (P Qs f) +dA, (2.3.22)
_Jp(1) o S
Qflx,t) = m Jr(z. ) ./(u,u-)cﬁlx& Jlz. v W v du d1T (2.3.23)

Tlhie formul limit & » 0 has been established in 29, 32] when there 15 no self-rotation term
WV, (1% F) and no dependence of f npon W, The present analysis is a somewhat straightforward
exlension of this earlier work. Belove stating the thcoren, we need 1o reeall the definition of the
vor Mises-Fisher (VMF) distribution Alg(v) . Tis expression is given by:

v- 0

u-sz)_ th=_/ exp (L20) dr (2.3.24)
ves! d

Ma(n) = Zd_l exp (
Iy construction, Alg{1) is a probability density and dne to retational svmmetry. the constant 2,4
does not depend on €2 The Tux of the VALEF distribution is given by:

e txw (P e - Q) dv
Joes exp (&7) dv

/ Mo(v)vde — ¢ Q. ¢y — cyld) — (2.3.25)
VLAl

The parameter ry(d} daes not. depend on Q. It is given by

[ e“F cos0dO (3
- 1

o]
TeTar ()

r{d) = -

where 3 € W~ 1, (3) € R is the modified Bessel function:

b
I(3) = % [ exp(,J cosf} cos(kO)dh. VScR, VkeN,
7 Jp
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It verifies 0 < e9(d) < 1 and is a sirictly decreasing function of ¢ ¢ [0.20). When ¢y is sniall,

the VAE distribntion iz close ta the uniform distribution. By contrast, when ¢ s close to 1, the

VAIE distribulion is close (o the Dirac delta at v = Q. The parnmeter o) mcasures Uhe degree of

alignment of the VMFE distribntion abont the direction of 2, hience its uame of ‘order parameter’
Now, we can state the thearem which establishes the limit £ — 0 of (2.3.21).

Theorem 2.3.1. We assume thot the it f' = lin, o f7 erisis and that the convergence iz 0s
reqular as needed {i.e, occurs in funclional spaces thai allow the rigorous justification of all lhe
computations below). Then, we have

Fola i, W1y = (a1 Mo n (). (2.3.26)

where, for any (v, t), the function W € R — pw (x.8) € R belongs to LY(R) and has first moment
finite, and the vector (. 1) belongs to 81, The functions pu (&,1) and Q(x, 1) satisfy the following
system of hydrodynamie equations:

0¢p||' + V- (CIPH Q) =0, ViV ek, (2327)

P(Q (0 V)0 - VA +d Py Vyp=0), (2.3.28)

plxr.1) / pn (z.t)dW, (pY)(x. 1} ] pry (x, ) W A1V, (2.4.29)
Jwer WeR

The constonts c1, ey are vespectively given by formmiaa (4. 25) and (2.6 100) in 2 G below.
Moreover, the ‘avernge rotation velocity’ Y sabisfies the following transpovt equation {for smooth
solutions ).

&Y +ep0-V, Y =), (2.3.30)
uwhdeh simply crpresses that the avemge rotation velocity Y is convected nf the fow speed (1.

The proof of Theorem 2.3.1 is developed in 2.6. We now discuss the significance of the resulls,
L. (2.3.27) is a continuily equation (o1 the density of particles of given proper angnlar velovity 147
Incleed, since rlie inseractions do not modify the proper angular velocities of the particles, we must
hiave an equation expressing the conservation of particles for cuch of Lhese velocities 11, However,
the self aligiuent foree madifies the actual direction of motion o of the particles. This interaction
connles particles with different proper angular velocities. ‘I'hareforve, the mean direction of mation
iy common w all particles (and consequently, does not depend on W) and obeys o balance
equation which hears similarities with the gas dynanties momentam conservation eruations.

Since 7 and €1 do not depend on W, the dependence om W in er. (2.3.27) can be integrated
out, which leads to the tollowing svstemn of cyuations:

Oip+ Ve (eyfl) — 0. (2.3.31)
B pY )+ Vo (e1pY ) — 0. (2.3.32)
PO 1282 V) YQT)+d gV, p=0. (2.3.33)

Therclore, p, ¥ and £ can fivst be computed by solving the systen (2.3.31), (2.3.32), (2.3.33). Once
15 known, eq. (2.3 27) i3 just a transport equation with given coefficients, which can be easily
integrated (provided that the vector ficld € is smooth). Eq. (2.3.31) expresses Lhie couservation of
the total density of particles (i.e. integrated with respect to W € R), while (2.3.32) expresses the
conservation of (lic ‘angular momentum density' pY'. Eq. (2.3.30) can be deduced Trom ey, (2.3 32)
(Tor smooth selutions) by nsing the mass conservation eq. (2.3.31).

Snppose that Y,—y = 0. Then, by (2.3.30), we have Y({x.£) = 0 for all (2.¢) € R? x [0.0¢). In
this case. the systeuy reduces to the following one:

I+ V. (erp02) — 0 (2.3.44)
P 2 (Q-VIQ) 1 dPyuVep=0, (2.3.35)
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which lias been studied in earlier work.[25, 29, 32. 71| This system is referred to as the 'Self-
Organized Hydradynamics® (SOTI). Awnentioned above, it bears siiilarities with the isother-
mal conipressible gas dynamics cquarions, bur differs from it by several aspeets, which have bren
developed i earlier wark {see e.g. vhe review [23)). These are:

(i) The wean velocity Q iz a vecror of mnit novm (specifically. it is the divection of the mean
velocity rather than the mean velocily juself).

(ii) The projection operator Fna multiplies the presswre gradient term d¥,p. U is required to
maintain the constraint that [ = 1. lndegd, mulliplying sealarly (2.4.28) by (b we realize
that (& + ¢, 9)|Q)? = 0. Therefore, if [ = 1 uniformly at ¢ = (), il slays of unit norm
at all tmes. The projection operator Po. brings a non-conscrvative term in this equation.
Hence, (2.3 28) is not a conservation equation: it does not expreas any momentunt balance.

(i) The convectian velocity of @ is ¢ and is different from rhe convection velocity ¢y of p.
In classical Huids, these two velocities are equal. This results from the Galilean imvariance
of the gas dynamies system. Here, the system is not Galilean invariant (the velocities are
norvmelized to 1: this properly is not invaciant under Galilean transforms) and consequently,
these two convection veloeities may differ. 1he loss of Galilean invariance by fluid models of
sclf-propelled pariicles lias been noted eailier [31, 92| As a consequence, in such fnids, the
propagation of sound is anisotropic (92’

The model willl von-vanishing average rotation velocity (2.3.31)-(2.3.33) appears as an enrich-
menl of the standavd SOH model by the following two aspects:

(i) An additional term. namely - YL, is present in the velocity evolution eq. (2.3.33). This term
oxpresses how the seli-rotaliou of the paeticles influences the evolution of the mean velority
direction (2. Quile naturally, il depends on the angulal momentum density gY which provides
the contribution of the proper angular ratation of the particles to the evelution of {he mean
veloctty

(1) An addftional equation, namely (2.3.32) (or (2.3.30} in non-conservative form) is added to
the gystem. TUshows that the average augular velucity Y is passively transported by the How
velocity (L

This mode] will be referred Lo as the 'Self-Organized Hydrodynamics with Proper Ro-
tulion {small angular velocity case)' or SOHPR-S .

T |29, 32, 1t is shown that wlie SOH model (2.3.31), (2.3.35) is hyperbolic. [ts two cigenvalues
evaluated at a state (p, ©2) are given by

1 .
= [(m +ea)cos 0 & ((ep e eas? 8 + 4dsin? #) ]/2]. (2.3.36)

where 2 = (cos8,sin@)7 and the exponent 17 denotes the Lrmnspuse of a veetor. Apart Trom
additional zero-th order texins, the SOHPR-S mode] is derived from the SOH model by the addition
of the canvection equation (2.3 30) with convection velacity ouQ2. It is o hyperbolie problem. whose
cigenvalues consist of the two eigenvalues (2.3.36) of the SOIT model on the one hand, and of
the conmvection speed ¢ vos # of the additional aquation (2.3.30) on the other hand. These three
eipenvalues are real samd distuict, except in the case & — 0. Therelore, the problemt is strictly
hyperbolic in most of the damain where Lhe state vavinhles (p. Q) are deflined. This gives a good
indication that ut least local well-pnsedness of the SOHPR-5 model can be achieved.



30 Hydvodynaniics of the Kuiuniolo-Viesc maodel of rolating self-propelled particles

2.4 Large angular velocities

Now, we investigate the case of large proper angular velocitics, e 5 = O}, We make i = ¢ for
simplicity. The problem is now wrilien:

DS Vg (o) -

T |

(Ve (Pyrwpe(W) ) = WV, - (Uhf5) + dA, f5). (2.4.37)

Now. by conbrast Lo the small angular velocity case (section 2.3), we abandon the hypothesis that
aty which is defined by (2.1.37), is equal to Oy, where we recall that (see 2.3.23):

M| Jp(rt) = f f(:r, v W) vdedll, (2.4.38)
|7 ¢{E. )] (0. W e xR

Indeed. the ngents’ proper angular velocity heing larse, it influences theiv evalnation of the rurning
veloeity that produces alignment with their neighbors. According to the situation, the propo
angular volocily goes along or againsl the turning chvection they want to achieve. Therclore, the
agents ueed to compensate for it by realizing smaller or Jayger tuming speeds. ‘T'his resnlts in a
prescription for wyp which is difficrent from Q5 and which requires wy to be dependent of 1V, as
indicated in {2.4.37).

'The precise determination of wy requires several steps, Belore going into this determination.
we wiite (2.4.37) as follows:

(2, 8) =

| .
T+ Vo (ef) - EQ(I ) (2.4.39)
where Q( f) is a new collision operator given by:

Q(f) = A, (N (2.4.40)

where wy: W e Xk s w; (W) ¢ S! iy the function to be delermined below and where, for any given
function w: B C R = w(W) € 8. we define:

Qulf)i= =V (Fu [) 1 dAL, (2.4.41)
Fo(v, W) i— Pew(iV) + Wo-. (2.4.42)

We define £, the set of equilibria of @.,, ns follows:

Definition 2.4.1, Letw: W CR > w(W) € 8' le given. The set b of equilibria of Q,, is defined
by
£y - [fe L'R.CABN) | F 20 and Qu(f) =0}

To determine £,. we frst defiue what are the analogs of the von Mises-Fisher distvibutions in the
present case. The existence of these objects requires the following preliminary lemma.

Lemma 2.4.2. Let VW C R be given, There caists o unique 2% periodic solution of the followring
problem:

1

2r
% (8) = (W — s B) by Y(8) =0, /D By (0)db = 1. (2.4.43)

where the primes denote derivatives with respect 1o 0. We denoie by &y this unigue solution. It is
positioe and it belonge (o C>(8Y).
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We can now define the analogs of the von Mises-Fisher distributions:

Definition 2.4.3. Lei ®yi- be the function defined in the premous lemmea Letw: W e R —» w(V) €
S be fired. We define AL, such that:

Moo WY =@ (6),  with 6= (w(W).2). (2.4.44)

Por any given W € R, the distribution My(v, W) du is n probability measure on §'. We refer Lo il
us the "Generelized von Misea-Fishey' (G VA1) distribution .

Thanks to the definition of AL, . we can deseribe the ser £, as done in the lenna just below:
Lemma 2,44, The sef £, 15 the set of all functions of the form
(. W) s pu Moo W), (2.4.45)
where the function W o py € R s arbitvary in LM R).
We now <define the divection of the flix assaciated o a GVM equilibriwn A/,

Definition 2.4.5. Givenw: W € R » w(W) c 8! and W & R. we define:

4 (1F) = / N (e W) v de, (2.4-6)
et
s (V) Sy .
G = B 6L (V) (2.4 47)

We have u.(\W) € R2, W, (W) C 8. The vector T,(1V) is the direction of the GVM M, for
a given angnlar votation W and the real number é1.,(W) s its order purameter for tis angudar
rotation (again. we hare 0 < & (W) < 1)

We stress the fact that W,(1F) / w unless W = 00 This is in marked eontrast with Lhe snall
angular velocity case, where the direction of the VMY distribution Mg s precisely equal 1o €
This i the reasan why, m the present case, we caiot sel wy — {17 (we recall that, for a given
distvibution f. the dircetion of the local flux Q) s given hy (2.4.38)). Indeed. the consislency
relution® that the direction of the equilibvinm Ay, should be €y would not be realized. So for
a given local veloeity divection €y, we will have to look for wy (W) which realizes that, for any
value af the angular velocity W7 the direction of the assocated GV 1\\1.“ s cqual W Q. ie.
¥, (W) Qg From the present considerations, we will have wp(1) / Qp, unless W = 0. To do
this, we have a few steps Lo go. For later usage, we fivst state rhe following auxiliary lemma:

Lemma 2.4.6. The renl namber &, {1V does not depend vn w and is denoted below & (1V).

Now, as developed above, for a fixed dircction Q. we are interested in finding a fonclion w sudh
that the direction V(W) of M, coincides with €. for all angular velocities 1V, Sucl an w ¢an he
uniquely determined, as the lemma elow shows,

Lemma 2.4.7. Let O € 8" Then, the equation V,(W) = Q, YW € R, delermines a unique
function w: IV € R+ w(W) € 81, We denote this wnigue solution by wa. By definition, we have

U, (W) =0, YW eR (2.4.48)

Now. as explained above, we define wy such that the direetion \I‘w[(ll') of the nassociated GV
.. coincides with the local Aux £ty for all values of the angular velocity W € R. This leads to

M,
the following definition:
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Definition 2.4.8. GYven a distribution function flw W), we define w; by.
wf = Lu‘g')},‘ (2.1.']9)
Le. we have,

Vo, (V) -y, VIV e R (2.4.50)

The proofs of Lemmas 2. 1.2 to 2.4.7 are given in 2.6,

We now conment on the rationake for the defmition of wy. The Individual-Based model whose
mean-field limit gives rise to the kinetic equation (2.1.37) is obvionsly as follows (with the notations
of section 3.2):

d.Xs
_ E/ R ) ll'l
" Vi, {24.51)
dVi = Py ofwg (We)dl + VZDIB) + 1) Vit . (2.4.52)

Here, wyr, is the fimection defined by (2.4.48) where () is substituted by Vi, The goal is Lo model a
relaxation dynsmic towards the local mean aligiiment dicection, i.e. the divection V4. Far this to
liappeun, the particles have to choose the alignment force P"r wy, in a proper way. Becanse of the

self-rotation veloeity Wy, this force cannol be eyual Lo P.,L_- Vi. Indeed, if this were the case, the

relaxation foree would vanish when Vi = V) and could nat compensate for the self-rotation foree
Wy Vi Tn the absenve of noise, the aligmnent foree Py 1usy, which compensates for self rotation
is given by

P\,‘ﬂJ-I'-L’\')* + “'k V)\.‘ — P“l.‘ VA—.

(which has a solution wyp, only in a finite range of values of 1) In the presence of noise. the
alignment force wineh eompensntes for self-rotation cannol he computed a priorl. To proposc an
explicit value of wg, . we assume that the distribution of rthe particles in (. W)-space is locally at
cyuilibriuny, ie. is a GVAL distribution M“’h.' Then, the ahgnment force By, wy, vanishes when
Vi is equal to wy, , i.e. when V) coincides with the direction wy, such that there is no action on the
particles when they are distributed according (o a GVM. Indeed. when Vi = wy, , the right-hand
side of (2.052) s zevo on thic average in Lhe sense 1hat the assoriated Fokker-I*Janck operatar
resulting frant applying the Ito formula to (2. 1.52) vanishes (which is what saying that the particle
distribution is a GVAM means). ‘This means that the relaxation has been achieved ‘statistically’
Omee translated in the mean-ficld frnmework of (2.1.37). this leads Lo owr definition {2.4.30).

Obvionsly, the use of the equilibrium Lo compute wy restriets the applicability of this mmedel to
a situation close to such an equilibvinm. Since the goal ia precisely ta explore the hydrodynamic
regiine which prevails in such situntions of cluseness (0 equilibrivan, thig approach is still consistent,
Another guestion 15 about the likeliness thal agents are able to perform such a complicated con-
putation. However, we can think that this dynami¢ is a simple outcame of collisions hetween the
particles. Imagine a set of self-rotating robots with elongated shapes. Thie volnne-exclusion inter-
action between clongated sell-propelled obyects through hard-core collisions resilts in an slignment
dvunumic. as already shown in ep. [5, 23, 58, 75). Therefore, the ‘computation’ of the magnitucde of
the self-alignment force may be just an outeame of an eqnilibration between the self rotation force
and the pressure exerted by the neighboring agents through the collisions.

The goal is now Lo investigate the limit £ = 0 of the solution of {2 4.39). Move precisely, we
cow the:
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Theorem 2.4.9, Let f* be a solution of {2.4.27) with wy ylven by (2.4.49). We axswme that the
it fO — Mineg f° exvists and that the convergenes is as reqular as needed. ‘Then, we have

e W) = pw(a.1) A, (T w). (2.4.53)

where, for any (01), the function W C Xy piy{a.1) € R belongs to LY{R) and the vector O{a. 1)
belongs to 81, The functions py (v, t) and $Hx.t) satisfy the following system of hydrodynamic
cquations:

e + V- (C|[J||/!!) =0, VIVCR. (2.4.54)
my o] Q0 + malpy (0 V)80 + myglpy [ (OF - V)0
+0! ( m;l[/J”'] (V- Q) + (Q" -V, 7!'15[,’)w] + (Q -V2) m(;[/)“/] ) =0, (2.4.55)

where mu[pw]. ..., e pw. ore moments of gy given by fermulas (2 6.137) in 2.6 below.

Eq. (2.4.54) expresses the conservation of particles of given angnlar momentum 1) exactly in
the same way as in the small angular velocity case (see Eq. (2.3.27)). The velocity evolution eq.
(2.4.55) has also & similar structure {(sce By. (2.3.28)) but conlains more lerms. The aualog terins
(o those of (2.3.28) wue the fisst Lerm (concesponding 1o the fiest term of (2.3.28)), tlhie second one
(corvesponding to the second term of (2.3.28)) and the fifth one (corresponding to the fourth teym
of (2.3.28)). The differcuce is the replacenent of g, which appears i the three terms of (2.3.28)
by three different moments of pyy. This is a consequence of the dependence of the GV .\-!MJU and
the GCI Yo {which will he foomd in section 2.6) on the anguiar velocity W. There was no such
dependence of the VME 8l and of the GCI y g in the simall angular velocity case.

The third terin of (2.3.28) which originated from the particle self-rotation disappears i the
large angular velocity case investigated here, but three new terms appear. The third term of
(2.4.55) deseribes (ransport in the irection perpendicular Lo the mean velocity €2, The divection of
transport is determined hy the sign of mg. The fourth term is a contribution of the compressibility
ol the velocity field to its transport: regions of compression or rarefaction mduce rofation of (he
velocity field in one direction or the other one according ro the sign of mry. Finally, the sixth teim
is mn off-diagonsl term in the pressure tensor, where gradients of the moment my of the density
distribution gy induoce rotation of the veloeity field. All these three terms obviously transtale LLe
average influence of the individual particle sell-rotation.

By analogy with the previons model, this model will be referved 10 as the 'Self-Organized
Hydrodynamics with Proper Rolatlon (Large angular velocily case)® or SOHPR-L .

The proof of Theorem 2.1.9 follows the same structure as the sinall angnlar velocity case We
start wirh the deflinition of the equilibria, follawed by 1he determination of the GCl. We end up
wilh the convergence © -y 0.

2.5 Properties of the SOHPR-L hydrodynamic modecl

We investigate some praperties of the SONMPR-L hydiodynsimic model (2.4.54). (2.4.53). In a first
gection, we study its linearized stability abour a nniforim steady-state, For the sake of simplicity, we
restrict ourselves to the erse where the unperturbed density distribution gy s even in 117 (which
means that there are as many particles rotating in the clockwise dircetion with angular speed |W|
as particles ratating counter-clockwise with the same angular speed). In (his case, we prove the
lineaxized stahility of the model. This is a good indication of the wall-posediioss of the SOHPR-I.
model m this ease, although a rigorous proof of this fael is still lacking. The investigation of the
linearized stability of the SOTTPR-L model in the general ease is deferred to futnre work

In a second section, we investigate the asymptotics of the SOHPR-L model (as well as that
of tlie SOHPR-S model) when T8 is snwll. We show that both models reduce to the SO model
{(2.3.34), (2.3 35} in this lunit, but with different coefficients. We also establish the asymplotics
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of the SOHPR-L model to sccond order (or small W oand compare the resulting model to the
SOHPR-S model.

2.5.1 Linearized stability of the SOHPR-L systein

We tivst consider a pair {paw, £1n) such that (i) ppy and {2 ave independent of ». (1) the function
W & R poy belongs to LY(R), (ili) pov > 0. (iv) all the moments my [pow |, & — 1...., 6 exist,
{v) [Qu} = L. Such a pair (par. Q) is a steady-state of the SOHPR-L system (2.4.54), (2.4.55).
The ponl of this seetion is to study tie lincarised stability ol the SOHI'R-L svsteimn aboul such a
mniform stpeady-state.,

We lincarize the systent. We introduce o small parameter 4 <€ 1 and look for solutions such
that,

pa (e t) = pow + 5[)|u (x.t) + 0(52), Q(J:, f-) =y 468 + O(JJ) (2.5.56)
The constraint [(3{z. t)] — 1 translates into the constraing
Qu - Ql = U (2557)

The linearized system obiained by introducing (2.5.56) inlo (2.4.54). (2.4.55) and neglectiug terms
of order O(6%) reads as follows:

Oipw + 0 On-Vopw +é1pow V-0 =0, YW ER, (2.5.58)
ing £y 4+ me (8y - V30— my (7 - V0
1 (ma (V- @) 1 (95 - V) ms[owe] + (- Vi) mglpw)) — 0. (2.5.59)

where n1y, ...y ave evaluated on pgy- except otherwise stated and where the index 1" on the
perturbation is omitled for the sake of clavity. Next, we consider plane-wave solutions:

purla d) = gy ™ €00 Qrted (2.5.60)

where ppe, Q are the wave nmplitudes, £ ¢ X is the wave-nmimber and p € € 3s the frequency.
Here. 1 € K is a ane-dimensional spatial variable. corresponding to the divection of propagation af
the plane wave, Indeed, the SOHPR-L being invariant under rolations, the plane-wave analysis is
independent of the choice of the direction of propagation We let Qp = (cas 6. sin 8). The constraint
(2.5.57) ranslates into Q- Q@ — 0, e, @ = F(—=ind,eos#) with 7 € R. Inserting (2.5.60) into
(2.5.58), (2.5.59), we get (again, owitting the tildes on pwe and €2 for the sake of clarity);

( -t € cosn‘?) p = pow EsimbPo =0 VIV e R, (2.5.61)
(—umy+mafoos®—(my+mg)€sind)a
—& sin O mslow . + £ cos inglpy] 0. (2.5.62)

From (2.5.61), we get:

1 Py

I R 1L, YW eR. 56
_/[+216(m95311105 YW e R (2.5.63)

v —

‘T'herefore,

1 pow

n)]\.[[)uzl = P?);.:[
Tuserling (2.5.64 ) into {2.5.G62), we geb a non-lrivial zolution @ if and only if the following dispersion
relation is satigficd:

oy Ling € cos@  (mig | mg) € siug

_ [ &1 pou
-my| ———
—j+ 7€ eosd

€y pory

2 .2
0 L L
7 sin” @+, Tt Ay £ con B

£% cosd sing = 0. (2.5.65)
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Next. we seek some simplifications io the case where the funcoon 117 € R — pyie i3 even, For
this purpose, we will need the following lemma about the evenness /odduess of the voeffivients ag,
k=1,...,6 of the covresponding momeuts ey,

Lemima 2.5.1. (1) e hove:
.o () = 2w (-0). KL-w(®) — Xw(-9), (2.3.66)
where Oy is defined by (2.4 43) and Xy by (2 6.130).

(i) The following functions of W onre cuen: &1, X, @y, w2, @, (see (2.4.47), (2.6.128), (£.6.1491),
(2 6.132), (2.0.135) for the defindtions of these functions).

(iti) The jellowing functions of W ave odd: C, W, 0y, as, ag (see (2.6.002), (2.6.107), (2.6.133),
(2.6.114), (2.6.136) for the dufinitions of these functions).

Proof. (i) We form Egs. (2.443) and (2.6.130) for $y (—0) and X {—8). By changing W™ into
— I wevecover the same cquations for & i (#) and —X_p/(#) respectivelv. which shows (2.5.66).
(i) and (it) By (2.L.17) @5 ia elearly even, By writing (2.G.103) at £ and for -1 and nsing
the first equation of {2.5.66), we get that C is odd. Now, using the first equation of (2.5.66) into
(2.6.106) and changing 8 into —8. we get that ¥.(—W) is the symmetric of @ (W) about the line
spanned by w. As an immediate consequence, ¥ is even. Clanging 8 into —6 in (2.6.128) and using
the st equation of (2.5.66), the evenness of & and the addness of &, we gel that A is even By
gimilar eonsiderntions, we get that ay, as, a; are even and as, ¢4 and ag vre odd.

Now, we assuine thal pgy is even with rvespect to W, Then, Tri’a'-.ﬂ%“cm 5 1% also even with
1espect to W, Therefore, the coefficients my, gy and ”‘5[—;7%J vanialt in (2.5.65). as the
restilt of the integration ol an odd coceflicient of 117 against the even function pyy . The resulting

dispersion relation is written:

€1 fony’ E2sn?g =0, {2.5.67)

tmy | Mo & ensfl — m,[ -
’ d o1& € eonbl

We now show that for all £ € R and 0 ¢ (0,277, the voots pi of (25.67) can only be real, which
proves the linearized stability of the aystem. Indeed. suppose that g — a +14 with o, 4 € [, taking
tlie imaginary part of ('2.-‘3,0'7). we get

£1 oW . o
—Any - S e ;32]52 sin2d — 0. {2.5.68)

If 3 # 0, we deduce fram (2.5.68) that.

&1 o Yo oo o v
My = —my [ e & sint O 2.5.69

7 (—a+c]§c059)2+,jﬁ_£ ( }
Numerically, we realize below that the coefficients o) and a5 are non negative (sce 2.6). Since we
know that ¢, is also non negative, (2.5.69) carmol have auy root. Thus, 2 - 0. We summarize this
in the following result.

Proposition 2.5.2. Consider o uniform steady-slale (pgw, Q) where pyy > 0 is such that (1 +
(W pow s integrable for k large enough, and where Q| = 1. We asswme that the coefficient
ay ond ag given by (2.6 131) and (2.6.135) aie posilive (and this is verified numevically). if pow
13 enen with vespect fo W, the SOHPR-L aodel (2.4.54), (2.4 55) 13 lineurly stable aboun! this
steady-state.

‘Lhis linear stability result is a firat step towavds a local-in-time existence resudi for the full
SONPR-T, system. Proviing such an exislenee result is outside the scape of the present paper.
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Remark 2.5.1. in the special cases 8§ = 0 (the plane-wmate perturbation propagates in the same
direction ns the unpeviurbed velocily field Qg ) or 0 — 5 (the propagation direction is perpendiculor
(v it), the dispersion velation (2.5.67) cen be solved explicatly:

{i) Cuse 0 — 0. Then the dispersion rvelalion reduces tn

Ry
m,

h=

This corresponds to a pwre convection waie of £ in the a-direction. It comes from the con-
veetron operator:

m][/)w] Qg b le:pw: (ﬂ ' v_,)ﬂ‘

(ti} Case 6 =L Then, the dispersion velation reads:
ns(Epon |\ /2
o (el

iy

T'his eorreaponds fo acoustic warnes propaguting syrometvically in bolh Whe positive end negative
directions. They come from the aconslic aperotor:

malp) O + Q- (Y- V1) ms[oe]-

2.5.2 Small angular velocity Iimit of the SOHPR-L model

In tlus seetion, we study the asyimptotics of the SOTIPR-L modal (2.4.34}, (2.4.35) when the angulay
velocity is small. For this purpose, we change the sealing 5 = # which was made at the beainning
of seetion 2.4 iwto - ¢/¢. We fivst keep ¢ = (1) when performing the limit £ — (). ‘The resulting
model is the SOIIPR-L model {2.4.54), (2.4.53), where now, the moments my[pu] (see (2.6.137))
and the associated coefficients a), {see (2.6 131) to (2 6.136)) depewd on the parameter . In a
second step, we investigate the limit ¢ — 0 in this SOHPR-I model with (-dopendent coefficients.

First step: limit £ = 0. Derivation of the SOHPR-L: madel with (-dependent coeffi-
cients, Intracucing the parameter ¢ transtorins (2.4.37) inle

Dft+ Ty (0f*) - f(—vu-(P,.mrtW)f‘) (WY, (7Y +dAS7). (2570)

It is an easy matter to show that the assaciated equilibria ave of the form pyy- J\]’wn(v,(W) where
o and € dre arbitrary and AL, (0. W) is the GVM defined ar Definition 2.4 3 n particular. we
can write

——

AL (0. OW) = Dav(®),  wilth 8 = (wp((1V) ©). (25.71)

Similarly. the GCLare of the form #xole. V) + (1i7), where 3 and ¢ are arhiteary and (e W)
is tha GCI defined in Prop. 2.6.10. Thus,

fofe. (W) = Xoaw(D), (2.5.72)

with the same definition of 8. It follows that f® = lim,_¢ f° where f is the solution of {2.5.70} is
given by
Fole, v, W1 = pyw i, 1) A< )(-:',(, W)
[+IPM
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where
wh (W) = wo(( W). (2.5.73)

The functions pe (r.1) aud Q(x, 1) satisfy the systemn (2.4.54), (2.1.53), with coefficients &, m§ [py)
such thnt

W) =&, ((P). m{[pu ] = / _a(SW)pn AW k=106 (2.5.74)
€Ex

Second step: limit ¢ — 0 in the SOHPR-L model with {-dependent coefficients. We can
naw state the (ollowing proposition, whose proof can be found in 2.6:

Proposition 2.5.3. The formal small enguler oclovity limit ( = 0 of the SOHPR-L model
(¢ 4 54), (2 4.88) with (-dependent coefficients is the model

Dpw eV (ep ) =0 YW e I}, (2.5.75)
P ke (R VI)Q) +e5 Py Vep=0, (2.5.76)
with p given by (2.3.29), ¢ by (2.6.408) and cg, by
2w cosp 1
o = ﬂ’g,ﬁ L:u sin? § 49 1 To(3) —112(§) (257
fol e cosdd 2 71(;)

Tlhe sane study can be performied in the small angular velocity case. Replacing I by (11 in
the kinetic equation (2.3.21) and perfarmmg the limit £ — 0 keeping ¢ fixed leads ro the SOHPR-5
svstein (2.8.27), (2.0.28) with a factor { wltiplying the term Y= in (2.3.28). "I'herefore, the linit
¢ » ¢in the SOLUPH-S system with -depeudent parameters s immediate and leads to the system:

Opw V.- (e1pndd) — U, YW € R, (',2_5_78)
7 (3,!2 + e () V_,.)Q) +d PaeVep =0, (2.5.79)

we see Uhat the structure of Lhis system is thie sane as that of (2.5.73), (2.5.76). However, the
coefficients of the pressure Lern: Py Vg of the two systems are different. While it is simply the
nolse covflicient ¢ in the SOHPR-S case, it is equal to a new coelficient ¢y in the SOHPR-L ease.
Therefore, even far very small angular velocities, the two syatems do not coinclde. This is dne to
the different wavs ol computing the interaction force.

Like in the care of the SOHPR-S model, the density equations (2.5.75) or (2.5.78) can he
integrated with respecl to W, since ¢y does not depend on W, In both cases, Hie resulting system
is nothing Lot the standard SOH inodel (2.3.34), {2.3.35) (see section 2.3). Hawever, again, the
cocfficients of che pressure torm Ppa Vep in the volocity eq. (2.3.33) dilier. [t is indced equal ro
d in the cose of the SOHPR-S model (2.5.78), (2.5.79), while it is cqanl ta 5 11 the case of Lhe
SOHPR-L madel (2.53.73), {2.5.76).

Approximation up to O((?) of the SOHPR-L model in the limit ¢ — (. Proposition
2.3.3 shows that the small anpular velocity limit of the SOHPR-L wmodel leads to the standard
SOH Model {wilh slightly modified enefficients) for the total densily p and velocity divection Q.
Therefore, information about the selt-rolation of the particles is lost. Indeed. since the SOII model
also deseribes particles with no self-rotation 29 , ane eannot distinguish any influence of rhe partiele
sell-rotation by locking at it. In arder to vetain some of the influence of the self-rotation of the
particles m this Himit, it is interesting to compure the firat-arder correction torms in 63(¢). In this
way., we will get the corrections to the SOH model induced by the self-rotation. The resulting model
is stated in the lollowing proposition, whose proof is sketchad 1n 2.G:
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Proposition 2.5.4. The O(?) appirorimation of the SOHPR-L model (2.4.54), (2.4.55) with
C-dependent cocfliciends, in the il ( — 0, 18 the modrl

Gpw + 9, (crpwt) =0, Y € R, (2.5.80)
P (DfQ =+ Ca (Q - V,).Q) + ¢y P“ VL[)
~(pY (e {8 -V (V. - DAY+ (e (- V,)(pY) Ot =10 (2.5 81)

with p and pY given by (2.3 20), 3 by (26.400), 5 by (2.5.77) and ¢, = 71—:1‘(:[,—). k=24,6, a,1(0)
Leing given by (2.6.14%).

Here. compared to the SOHPR-S system (2.3.27), (2.3.28), the particle sell-rotation introduces
strueturally different. terms, In the SOHPR-S system, self-rotarion is rakeu into account through
the source term =YL in the velocity direction equativu (2 3.28). This (ern corresponds to an
acceleration in the diveetion of the average self-rotation miud proportional to i, Tu the systen issited
from the SOHPR-L model (2.5.80), {2.3.81), scl-rotation introduces differential terima. "Lhe Rrsr
two ones (those mnltiplied by ¢ aud cy) Are proportionsl to both, the average sell-rotation Y and
differential terins acting ou the velocity direetion Q (nantely (0! - V)2 and (V- Q). So, in (he
case of a uniform vector field 0, these two Lerins would not induce any acceleration, by contrast (o
what happens in the SOHPH-S system. The opevator (31 V,)Q produces an acecleration if the
vector fields varies in the divection normal Lo itself. Regions of compression or ravefaction also give
risc ta an acceleration dua to the tenin (Vy - ). The last term (mudtiplicd by ¢g) is propartional
Lo the pradient of the average angnlar momentum pY in the direction of Q. Thercfore, variations
of the average angulsr womenium in Ui direetion of the flow produce an aceeleration feum as
well, Again, i the case where pV s uniforin, this acceleration term vanishes, by contrast to what
huppens in the case of the SOHPR-S system.

One can interpret thia difference as follows, In (he kinetic equation leading to the SOHPR-L
system (2.4.37), the particle acceleration F,_wq, is modificd compared to that used in the kinetie
equation leading Lo the SOHPR-S system (2.3.21) namely P, Q. The use of wg, instead of Qf
intradnees some kind of compensation for the selt rotation Wot and reduces iis influence. This is
wliy, in Llie hydrodynamic model {(2.5.80), (2 3.81). self-rotation appears 1 hrough differential terms
instead of souree terms like in the SOHPR-5 model. In a spatially homogeneons sitnation. where
p and (2 are uniform, the compensation of self-rotation by the use of wo, in Lhe acceleration is
total, aud Lhere is no influence of self-rotation in the hydrodynamic model. By contrast, in the
SOHPR-8 case, even in the spatially homogencous situation, there cammot be any compensation,
andt the influence of self-rotation in the hydvodynanne model persisis.

2.6 Conclusion and perspectives

In this chapter, we have darived hydiadynamic models for a systemn of noisy self-propellad pavticles
nwoving in a plane. The particles arve subject to proper rotation on the one haud and interactions
with their neighbors through local slignment on the other hand. 'I'wo regimes have been investi-
galed. In the sinall angular velocity regime, the hydrodynamic model consist of a slight modification
of the previously oblained Sell-Organized Hydrodynamic (SOH) model, including a source term
to account for a net average angular velocity. In the large angular velocity regine, after modifyving
the interaction force to preserve the particle propensity to loeally align with their ncighbors. the
resulting hydrodynamic model involves additioual Lerms accounting for such effects as tranaport in
the narmal direction to the velacity and off-diagonal pressure tensor torms, A lincarized slability
analysis has been performed showing the stability of the mode) in some particular case. Perspactives
include a deeper analytieal study of the models, sich as proving lincarized stability in the general
cane: and local well-poscedness of smooth selutions. Numerical simnlations will be performed with
two purposes. The first one is ro validare the hydrodynamic muodel by comparison to simulations
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of the 1130, The second one is ta explore whal new strmetwres and features ave exhibited by these
models,
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Appendix A Small angular velocity case

Tn this appendix we shall give n proof of Theorem 2.3.1 involving three steps which are developed
in the fullowing sections.

Al Determination of the equilibria

Thanks lo (2.3.21), we have Q(fF) = ©(2). Taking the Limit ¢ » 0 inaplies Q(f9) = 0. Theretore,
/U s a so-called equihbrium, ie. a solntion of Q(f) = 0 Since @ onlv operates on the (v, W)
variables, we fivst ignare the spatio-temparal dependence.

Let (1 € §' be given and define the linear operator

Qa (). W) =d ¥, P’n(*')‘?r (%)J '

Fasy computations!29° show that:
QN — Q).

We now introduce the functional setting. Let f and g be smiooth finctions of {», ) with fast
decay when 137y oo, We deline the duality products:

L
Do = / v IV g(u, W dvdW,
(f Bun . )es.'y<f( Yol )y Ma{v)

f(u 1 ))-v.(”(“‘“ )

- I ' 7
(fky)ll” .[ﬂ.“ yCst x}tv“( ﬂ{ﬂ(v) 3110(7-') ) “!”(1)(“, v

, 3)n.a defines a duality (i.e. & continuous bilinear farm) between f € L'(X, L7(8!)) and
(IR LAY Similarly, {f, 414 defines a duality berween f € LY(R, HI(EY) and f &
H'(8"}). Thanks to Green's formula applied with smooth fimetions, we have

Then {f
>
Lx

—{Qal(f). 2o =af ghia (2.6.82)

‘Thercfore, for f € L™>(R. L2(8')). we define @a(f) as a linear form on L7(R. L2(§8")). Actually,
since this livear form is defined and continuous on C'[(}(R, L2(8YY), where C’S denotes the space of
conrimions fimetions tending to zero at infinity, Qa(f) is a honnded measure on R with valnes in
HU(EH) bl we will not use this characterization, \We now define the set of cquilibria:

Definition 2.6.1. The set £ of equilibria of (@ is gluen by
={fc LR IS f20and O, (f)=0}.

The characterization of £ is given in the fellowing lemma.
Lemma 2.6.2. The set £ of equilibvia 1s the sel of ol functions of the Jorm
1= v ."\{{Q(?'}, (2()83)

where the function W — py € Ry and the vector ) are arbitrary in the sets LYR) and §!
respectively.

Proof. First, suppose that f € £. Then, thanks to (2.6.82), we have 0 — —{Qn,(f). flon, =
d{f. Hr.a, It ollows that V,,{ﬂ""’)) = 0, L.e. there exists piv € R, independent of v, such that
FO W) — pw JUQ, Additionally, t]ldl fe LI(R Hl(Sl)) and f > 0 iinplics Lhat pye > 0 and that

the function W € R = pyy € Ry belongs to LY([E). TIhevefora, f is of the form (2.6. ?H)

Conversely, suppose that [ is ol the (orm (2.6.83) with gy as regular as in (he lermma, The,
the results follow obvionsly if we can show that Qp = Q. Bt thanks to (2.3.23), we have J, 4y, =

fu‘em py dWV ey Ll and since ey > 0 and py > 0, we have Q. 4, = {2, which shows the result,
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From this lenvma, and the fact that f0 is an cquilibrium, we deduce that ¢ is given by (2 3.26)
Now, pu = pw () and £ — Q{r. t) are a priori arbitrary functions of (2. ¢). Indeed,  only acts
on the (i, T} varinbles. Hence, the fact that Q(f%) = 0 does nol hupose any condition on the
dependence of f on (r,¢). In order o determine how pre and Q depend on (1), we need the
second stepr of the proof, developed in the following section.

A2  Generalized Collision Invariants (GCI)

We first recall the concept of a Collision [uvariaul.

Definition 2.6.3. A colligion snrariant (Cl) is a function ¢ € LR, HY(8Y)) such thet for afl
functions f € LY (R, R1(8")), we have

— / QN Oded\V = d{BAMn, g, - O (2.6.81)
(¢, HNEI =R

We denote by C the set of C1. The sef C i3 o veclor space,
\¥e fivst have Lhe vbvious resull;
Proposition 2.6.4. Any function $: W € R = a(W) € B belonging to L™(R) is o CL
Proof. Let ¢ € L (R} und f ¢ LYR. IT'(S")). Then, obviously ¢ fo, € L* (R H'(S")) and since
¢ does not depend on r, it sarisfies (2.6.81).

We will see that this set of (T does not suffice to provide the spatio-lempaoral evolution of
s and € in the hydrodynamie [imit, In the absence of othier obviong CI we introduce a weaker
coneept, that of ‘Generalized Collision Invariant® {GC1). ‘The vationaie Tor introducing this concepl
is diseussed in details in {25, 29].

Defluyition 2.8.5. Let (3 ¢ 8! be given. A Generalized Collision Invariant (GC1) assorinied to €}
is a function ¥ € L*(R. HYS")) whirhk satisfies the following property: for oll functions f(v, W)
such that f & LY (R HV(SY)) und that PoaQy - 0. we hove

- / Qo(f)dr dW = d{wdfy  flio=0 {2.6.85)
S UWEST R

We denote by Gy the sel of GCT ussociuted to ). Il is « veclor spuce.

Of course, if 1 € L™(R. H'(§")). so does v and (2.6.85) is well-defined. Betore determining
. we introduce an appropriate functionnl settiug for hnctions of 5 only. We cansider the space
Vo = {¢ ¢ HY(SY). Lcu @(r)de = 0}, Let Q € 8! be given. We define the following norms or
semi-norms ou L2(8') and (8" reapectively, by:
1 f(} ()
2 2 2 .
= v —-, | du = |V. ———— ]| AMofr)du.
Shae= [ W0l gyt ia= [ (9G] )

Of course, these two semi-norms are respectively equivalent (o the classival L? novm and 11!
semii-norm on L2(8') and H'(8'). We have the following PoincarA @ ineguality:

welia 2 Clelia, Ve €W, (2.6.86)

willh a positive constant . We denote by (£, 9)a.a and (f-9)1.a the associaled bilincar forns,
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Proposition 2.6.6. We heoe
Ga -- {.-'3,\()(1') +(MY, dck. ocC L“‘(R)}‘
where o = yadln 15 the unigque solution in Vy of the varetional formulation

Find ¢ £ Vo such that (i, fhio — (= v My, Noo. ¥f € H'(ﬁ'). (2.6.87)

Proof. Tle existence of a mique solition ¢n € Vy of the variational problem (2.6.57) is an easy
conscquence ol Lax-Milgram's theorem and (he Poincaré incquality (2.6.86). \We refer the reader
Lo 29, 13,

Now. let §1 € 8! be given, ' € Gy and f € LYR, H'(8")). First we note that the condition
P8 = 0 is equivalent to Py Jp — 0 and can be written

/ fal edudit =10
Jle yest v

or equnvalently, (2 v Mq. fg.a = 0. Then, by (2 6.83), wisa GClifand only if v € L>* (R, H1(S"))
and the following implicarion holds: for all f &« LR, H'($").

<QJ' -1 '1[“ f)“_n =0 Ed (f-l‘l’-ljﬂh.ﬂ =0

By a standard functional analytic argument, this nieans that there exists a real numher J such
that

(¥ho Mg — 3@ v Mo flow, Ve LR ITHEY). (2.6.88)

Therefore, ¢ is the solution of an lliptic variational probleni,

Now, we remark that thie function (v, W) 5 Iqlv) + (1Y), with & € L>X(K) belongs to
Loo(R, H'(8")) and satisties the variational problem (2.6.88). These are the only ones. Indeed, by
lincarity, the difference ¥ of two such solutions is an element of L*{R, II*(5!)) and satisfies

(zfu\]gyf)ug - 0. Vf S LI(R,_HI(SI)).

Then, introducing the indicatar function (4(W) of the interval [—A, A]. with A > 0 and takiug
J = v Mo as o test Tunetion in LYR, FIY(E')). we get

/ |vbtl‘|2 A[{) t: i = 0.
(v 33 x| - A4,

which implies that ¥ does not depend on v and is Ltherefore of thie form (W) with o &€ L™¥(R).
This concludes the proof.

Literpreting the variational problem {2.6.87) in the distributional sense, we see that yq is a
solution of the following clliptic problem:

Vo (MaVina)=v OF Mol / a(v) Ma(v)de = 0. (2.6.89)
Joegt

Additionally, we can write[H3] ya{v) = g{8), where 8 = (. e.:) and g is Uhe odd 2x-periodic uclien
in L. (R) (which can be identificd to 778(0, 7)) which inignely sobves the problem

d fuse dq

pAGEREA D) - ¢in0¢BF (2.6.90)
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A closed formula for g can be nhtaived| 1Y)

A cof
eT T dg
oty = d8 (nrfﬂ_—l“” (2.6 91)
fg ¢ T dp
Since the function ‘% is even and 27-periodic, it can e expressed as a function of cos® Thus,
we introduce the function h defined on [—1.1] such that
4(9)
h(cos8) = =—=. 2.6.92
( ) sin @ (2:6.92)
Then, we can write
ao()=h(Q )0ty (2.6.93)

and the function i s bonnded, We are now well equipped to derive the hydrodynamic mit £ - 0
of (2.3.21). This is done in the next section.

A3 1lydrodynamic limit ¢ - 0

‘This section ig devoted e Lhe proof of Theorem 2.3 1,

Proof of Theorem 2.3.1. We recall that. as a consequence of Lemnmnan 2.6.2 and the fnct that
SO = linop 75 is an equilibriom, F© is given by (2.1.26). In the remainder of the proof, we omit
the superservipt O for the sake of clarity.

We fivst prove (2.3.27). Taking an achitrary function @ € L(R), wulliplviug {2 3.21) by ¢,
integrating with respect to (¢, [V} € 8' x R, using the fact that ¢ is a Gl thanks to Proposition
2 6.6 and taking the lunit € — 0, we get:

/ {(Pupu = Ty - (r1pw Q) $H) AW = 0.
11 el

In the sceond term, we have used (2.4.23), 88 well as the definition (2.3.29). Since this ernation is
valid for any o € L™(R). we mmmediately dedure (2.4.27).

We now prove (2.3.28), We multiply (2.3.21} by xu,. and integiate with vespeet to z. Sinee
Xty i¢ 0 GCT associated to Qe and since f* has preciscly mean divection (., we have

/ Y xa, dodlVV =0.
S yes! Xk
Then we get.
/ (TS + T ) xa,. dodW = 0. (2.6.94)
fu 1)eBr x 1
where 75 &k — 1,2 are the following operalors:

TV =af+9,-@fy. T W9, . (vt)).

Taking the limit £ = D in (2.6.94) and using the fact that f& — py M we get,

/ (T s Ma) + THpw M) \ndodW =T +°1, = 0, (2.6.95)

{0 IV)e5 xR

The contribution of the tirst term of (2.6.93) has been computed in [32, 43]. Using the expression
(2.6.93) ot yp, it leads to

£y =0t f [pnl (% 0.0 1 (0 V) - 4Py Vepy | dW. (2.6.96)
Wea d J
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with
a= f Ma(e) (1 — (v %) k(v Q)
veS!
1 4
== / Ma(n) (1 = (v- ) A(x - Q) cos(v- ) dv,
d velt
Siuce o and v do not depend on W, we can integrate the variable W aut and (2.6.96) leads to:
Ty = Q. f,)(% A + {8 - V)40 — aPle,p]. (2.6.97)
We now turn towavds the second terin. We have

T - ] wv, - (iJ_pu'ﬁfﬂ} (v- Ql) (e €)) dv dW.
(e WV)e &l xR

Owing to the fact that ¥V, - (1" A Ip_) = —%}—l Mg, we pel
o — —l / "'pw g —/- .'”ﬂ (T.‘ 4 QJ‘)2 h(v ' Q) dv (2698)
e veg!
= Z,)"_ (2.6.09)
Now, collecting (2.6.97) and (2.6.99) and nmltiplying hy %‘ we get (2.3.28) with ¢3 — “T'i.. i.e.

_ Jocgr Male) (1= (v-Q)?) h{v- Q) cos(r - Q) dn .
©o- Soest Ma(@) (1 — (v Q)2) h(v- Q) du ' (26.100)

7 sin? @ h(cos0) cos§d0

= : T fOE ‘ (2.6.1(”-
Jeor sin? 0 hicosd) do )
S e SF g(8) sing cosfuf (2.6.102)

fO“ ¢ g(8) singdb

where we 1156 (2.6.92) in the last equality-

Appendix B Large angular velocity case

This appendix is devoted for the proof of Theorem 2.4.9 which is divided into the same three steps
as that of Theorem 2.3.L IMowevar, there are substantial differences and new difficulties which
justify why we develop rhis proof in filll detail below.

Bl Determination aof the equilibria
We first prove Lemirmis 2.4.2 to 2.4.7,
Proof of Lemnima 2.4.2. We show the existence anrd uniquencss of ¢ . For simplicily, we omit
the index V. Defining ({8} — ]Z(TV —sin ). (2.4.43) can be rewrilten
- G =, (2.6.103)

where C is a consranr. ‘TI'hiz equation can be integrated elementarily on the interval [0, 2#] and
leadls to

[
lb(o)zl_”i”)(c/ M 45— DY, e o, 2r,
4O
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where D is another constant and 77 is the antiderivative of G which vanishes at 0: H(#) (W0 +
cos 6 — 1). The constants C' and D are deternined from the requirenient that, on the one hand @
is 2r-periodic and smoolh. hience eading, ro ®(0) = $(25) and on the other hand i is norialized

‘ N 27 e N . .
to unity, i.e. [n (P df? = 1. Thase two conditions lead Lo Lthe following lincar svsten for € and
D:

(Hiz2s) J;?ﬂ e H) da C - (e””"} -1 D=0.
}5” R f(? M dgdo &+ [T D=1,

The determinant A of this system can be written

2r r 25 1.4
A= L:t(z«)/ Rty / e~ 1) gy d0+/ ‘,HU’)/ e~ MG de g,
{0 78 0 0

and is elearly strictly positive. Therefore, there exists a wnique pair of constanly (€. D) whicl
aatisfies the requived eomditians, These constants calt he compuled eadily and are given by:

r
C— 1 (t'”(h) 1). D= L pH2m e Mgy,
A A 0
Thar. the selution can finally he wrillew:
O . 25 I )
B(8) = —— (M7 / e HOV s+ / e ®&de), 0 (0,24, (2 6.104)
0 0

and is apain, clearly positive, Fioally, {2.6.101) shows that the fonction & i smaoth. except may
be at the ent point 8 = 0. However, by using the equation recursively, it is casy to sce that
(I>“')(2)r) = 3(*1(0), chowing that & defines a function of C=(§!). This concludes thic prooi.

Prool of Lemuna 2.4.4, Let f(n», W) be such thar Q..f = 0. Using the angular coordinate

i = (w. ;:‘)) and writing f{e, WY — pw Ow (0), with pie - ft_‘:slf(u.l-l')u'u‘ we find that oy
salisfies (2.4.43). Hence, by the nniqueness of the solution of (2.1.43), ¥y mnst. be equal ta By,
leading to the expression (2.4 13). The converse is obvions.

Proof of Lemma 2.4.6, Let 0 — (:u_(?i_—)_;) Then, we have:
2w
E1W) = | / By (B){cos6.5in )7 de]. (2.6.105)
Jo

and is clearly independent of w (W),

Proof of Lemmna 2.4.7. We compute the components of ¥,(1) in Lhe basis (w.wt). We get:

2
V(W) = ;/ My (8){cosb.sin 8) 0. (2 6.106)
& (W) Jo

where the expanent “T7 denotes the transpose of a vector or mnalrix. This expression shows that
the angle

B(W) = (i ). Lo (W), (2.6.107)

does not depend on w and can be computed a priori from the knowledpe of Sy Thue, given O if

we choose w el that (;([V),E) = (W), YV g &, we get thar ¥, (W) = 1 and that this is the
unicue choice of w which realises this equality.
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Now, we recall that O(f) 1s defined by (2.4.40). We turn Lo the definition and determination of
the equilibria of Q.

Definition 2.6.7. The sct & of equililivia of & is defined by

E={fel"R.CYEY) f>0 ad Q(f)=0).

The following proposition charactevizes the elentents of &:

I'roposition 3.6.8. The sut £ 15 the set of all functions of the formn
(. W) = pu- M, (v, W), (2.6.108)
where the fanction W - py ¢ Ry and the vector Y are avbitrary in L}(R) and §8' respectively.

Proof, We lirst show (hat all equilibria are necessarily of the form (2.6.108). Indeed, let f(x, W)
e sueh that Q(f) = 0. Then, it satisfics @,,(f) = 0 and is therefore an element of E?_,J,. From
Lemma 2.1.1, there exists py- > 0 such that f = py M-.u,- But, by Definition 2. 1.8, wy = wp,.
Lherefore, there exist €1 (namely €p) sueh that f is of the form (2.6.108). )

Clonversely, suppose that f is of the form (2.6.108). By Leuina 2200, [ € &, . By (2.4.10)
Definition 2.1.1 and Definition 2.6.7. we have the equivalence:

fetf = fek,,.

Therelore, Lo pruve that f C £, it is sufficient to prove that wy — wg. But from (2.6.108), we have
Jr— / my (V) Dy, (W) W
we R
But, with (2 4.43}, we deduce that

Jr= f par L {H) 7 12,
wCxX

and that

by
{ = — .
==

Therefore, by (2.1 18}, we have wy = wn, = wno- This coneludes the proof.

B2 Generalized collision invariants
We define the notion of a GCT for the collision operatm €
Dcfinition 2.6.9. Let Q € 8! be giaen. A Generalized Collision Invariont (GCT) associated 1o Q
is a function i € L7 (R, H1(]'")) which satisfies the following property:
f Q_t,,.“{f) GdediV — 0. V[ sneh thal Fa.Qp — 0, (2.6.109)
L IV )eR xik?

where the idlegral is anderstood in the distribulional sense. We denote by G the set of OCI asso-
ciated to Y. It is n vector spnce.

The determination of Gp is performed in the next proposition. We introduce H}(8") = {¢ €
HUB'Y | [ eq #(r)de = 0},

o
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Proposition 2.6.10. We have
Go = {830 1) FO(W). SCR. ¢e L (R)}

where for each W € R, the funclion v € 8" » ia(x. V) is the unigue solution in IIL(8Y) of the
profdlem

dAy (P, wo(IV)+1Wet) Ty =0+ {2.6.110)

Proof. The proof starts like that of Prop. 2.6.6. Lt §2 € §! be given. The constraint Py Q=0
is a linear constraint on f. which van be written [‘,‘- iW)es xR £ Ot - udvdV = (. By Delinilion

2.0.9, ¢ i3 a GCI if and only it the following implication holds:
/ o vdodV =0 — - / Q__m(f) ddedlV = 0.
(e WHES x e (v W)ed xRk

which is egnivalent 1o the existence of a rea) mumber /7 snch thai

/ O, (f) vdodiV = ;’3f ;O v dudly,
Sl W)HCS xR (n M8 xk

for all fumetions £. By intraducing the formal L? adjoint Q

2, of Q..,,. this is again equivalent to
the problem.

Qr v =030t (2.6.111)

which s nothing bul the ¢lliptic problem (2.6.110). We note that the diffevent values of 117 are
decoupled in problem {2.6.110) and that, for nuy given 7 € R, it can be solved as a (unction of v
onlv. Therefore, from uow o, we omit the dependence ol wy in W and sinply write it w

We solve this cquation in the space HU(S') by using a variational formulation. For w.y ¢
HY(SY), we denote by ¢y, p) the bilinear farm associated to (2.6.110), i,

£(1.15) ci/ Ui Vg dv / ((w+ W'L'J‘) Vo) e dv.,
1eq! Jel?

The bilivear form £ in continuous on H'(8!), By Young's incquality applied to the secand term,
we have

4

‘) .
Hog) 2 3 f Vpldo-C f ol do.
vC8l

-2 viR!

for all » € HY(SY). Therefore, there exists \ large enongh such that the bilinear form

a(y.¢) = {1y, ¢) +A/ Ve din.
Jregl
is coercive on H1(8!). ‘Then, by Lax-Milgramn theoren, for all ¢ € L#(8') there exists a unique
solution » & {F1(8') such that

{1

—

@) = [ Cede, Ve e H'Y(SY). (2.6.112)
S eESY

and (he wapping T which to each ¢ € L2(8') associates (his solution ¢ ¢ H(S!) is a bounded
linear aperator. Ry the compact embedding of T11'(8') into L2(8!), the mapping T2 is a compact
operalor of L#(81).
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Now, we specify { = (o = - 0t G is a function of L2{EY). The variational solulion & of
(2.G.111) can be written:

afy, £) = f (o + A¢)pde, Ve e HY(EY,
LE3?
or equivalently
=T + Ap).
This is a fixed point equation. Changing unknown to £ — (g + Az, the equation is transformed into
(Id — ATA)E = (g (2.6.113)

We denote by [m(ld = X1*) and Ker (1d = A7) the image of Id = X1 and the kevnel of itg adjoinr
respectively (where 2 denotes thie adjoint of 12). Eq (2.6.113) has a solution if and only if
(o € Tm(1d = AT). Since T2 16 compact, we ean apply the Frodhilom alternative and this condition
is equivalent to (p € (Ker{ld — AT**)) "

We show that Ker(ld - )\T’\') - Spﬂn{.’l—! .}, where, by abuse of notation, we denote by A, the
function v — M, (v. 1), for the considered particular value of W. First, T2* js defived as follows:
let ¢ ¢ L3(R). Then, & -- TA ¢ if and ouly if ¥ is the solution of the vatiational lormulation:

aly, d’)=[ Copde, Voo HU(S'),
v§!
or equivalently, using Green's formula:
df Vo V.ogdet / Ve ((w+ Wothw) pdv + /\f hedn =
res! e vES!
_/ Codv. Vg o ITNSY). (2.6.114)
l'cfll‘

When ¢ — A, we see that this variational formulation is solved with ¥ = }ﬂu. This is due to the
fact thai, by construction, M., cancels the first two terms of {2.6.114). Therefare, TN = %,17[ o
or {1d — ATM)M,, — 1. Thus Span{AL.} ¢ Ker(ld — AT**). Reciprocally, let u € Ker(ld — XT*").
Theu I = yp. Inserting ¥ = 3p and { = pin (2.6.114), we see thal p satisfies

d Vit Vg dr + Vo (w + Wolhy) pdv=0. Vpe H'(§).
et ves!

which is the weak formnlation of:
AN TV ((P‘;.WQ(LP') + 1-{-’1."");1) =

By Lemma 211, we know that the only solutions to this equation are prapoitional Lo XT,,. This
shows that Ker(ld — A7) C Span{ Al } and finally proves the identity of these twa apaces.

Now, (2.6.113) has a solution if and only if {y € (Span{ pf!,‘.})". We campute:

/ G ALG)d — o= f A, (2. W
rext IR aicL

38 (W) 1= D, (W)
= ﬂ‘

by virtue of (2.4.43). Cansequently, there exists a sohition in IF1(8") to (2.6.113).
Now, the Fredbolm theory also tells that dim(Ker(ld — A27)) = diin(Ker{ld — X877) = 1,
where dim gtands for the dimension of a space. Tnt, we casily sce that the constants belong to
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Ker(1d — )\T’\)‘ Indeed, v = % solves the variational formulation (2.6.112) for ¢ = 1. Therefore.
YRS I % and (I AT = 0. 1t follows that Ker(ld — M) = Span{l}. Therefore, the general
solution of (2.6.113) is ohtained from any particular solutiou by adding an arhitrary constant. We
can select a unigue solution, denoted by thz by imposing the extra constraint that f gy wade 0.
We venlize that gg = 34y (which follows casily from the unigueness), ’

Now, we construct the function yo(s. W) such that for all W € R, the function v — yy(v. W)
coineides with the funcrion ¢4 obtained by the construction above for thie conaidered value of
TF. Thig function is a solution ot (2.6,111) with § — 1. We obtain a solution of {2.6.111) for an
arbitrany 3 by taking 3ya(v. W). Now, suppose that there ave Lwo solutions of (2.6.111) for the
same value of ;3. T'he difference is a solution of (2.6.111} oy 7 = 0. We obtain such solutions
Ly following the same steps above, except that the vight-hand side (5 s now equal to 0. The
corresponding changed unknown £ solves the homogencous version of {2.6.113), ie. is an element
of Ier(Jd = M), Therefore, £ is a constant in v, and sa is 9. When restoring the dependence in W,
this means that the solutions of (2.6.111) for 7 = 0 consist of the functions of W only. Therefore,
sy solution of (2.6.111) is writien Fyo (e, 1) | ¢(1), with an arbityary function ¢(IV). Since 3
is any real number, the sel of GCU is spanned hy such elements when o € R and the [unction o(117)
are arbitrary. This is what is stated in Proposition 2 6.10, and ends the proof,

B3 I[Hydrodynamic limit ¢ — 0
‘1his seetion is devoted to the proot of Theoveny 2.4.9.

Proof of Theorem 2.4.9. The beginning of (he proof is anulogous to that of Theorem 2.1.1. Let
F* beasolution of (2.4.37) with wy given by (2-1.19). Thauks to Proposition 2.6.8, there exist two
funcuions py(a:,¢) and Q(x, 1) where, for fixed (2, 1), the fimetion W = pye . t) and the vector
Q(a,t) belong to L'{R) and 8! respectively, such thal (2 4.53) holds. The derivation of (2. 1.54) is
also similar as in the proof of Theorcm 2.3.1.

We concentrate on the proof of {2 1.55). We omit the superseript 0 on £ for the suke of clavity.
Again, the beginning of the proof is similar and we end up petting

/ T{pwily,) iq dedW =0, {2.6.113)
(r WHes 2
wilthh 77 = Oy + - V. We compute:

Tl Koy) = A, {4, + pyAa). (2.6.116)

where. using (2. 1.5:1),

‘4[) = Tpul = (UI | (1!) ' v,)pw i ('U Cll (2) - v,va

= =&V, ) + (v - HQ) - Viepu, (2.6.117)
and dg =T In A‘Iwu ic.
A A
Aplzt) = ——2¢ Q(r,t). 2.6.11
lt) 50 e sy ) (2.6.115)

. oIn N . . . . . ;
The quantity %&k’ is a linear forin acting on the (angent line to §! at Q. By the chain
rule:

G, dmil,

tio |
O o i

Ry (l)() I(ZI

(2.6.119)

wheve % w08 & lncar formn acting on the tangent line to 8' at wpn and %&h; i3 a lincar

application from the tangent line to §' at £ into the tangent line Lo 5! at wo. We compute the
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fust Factor. Since In AT, = I dy-(8) with 8 = (w, ) and D,y given at Lemma 2.4 2, we can write,
thanke to (2.6.103):

aln _n_j‘.l C omder dw)
o LT T 08 i e T
1 C ,
= y (w=-v—1V) - v Ywt T, (2.6.120)
4 Ly

for all tangent vectors 7 to §' at w. We now compute the sccond factor. We differentiate relation
{2.44R) with vespent (o Q and we aef that

dua) o
a0 la Fhu

(2.6.121)

wy

Let T be a tangent vector to §' at w. We have, nsing Lemma 2.4.6 and Faqs. (2.4.46), (2.6.120),

Wo| o Liw,
(,)uJ & - (“1 (')w !
= l / ((),Mw T) v du
&1 Jeeqr - Ow lu
1 ! Y |
= — (s vb=NMYM, —C)edow -1
cr o, 168 EI
1 N
= — (w v WYM,vedow -1 (2.6.122)
déy Jyca

where the term in factor of G vamislies by nddness considerations. Now, we note that
/ (Wt v - WM, v T, dv--0. {2.6.123)
uER:

Indecd, differentiating tlie cquation w,| -- é; with respect to w, we get

_ Ju.| _ du,
0= |f = w“'ELT i
DALy
= 0, ‘/;':g‘ ( S ‘ur) veli

/ (w' v WYM_ (LW de wo e,
v

31

3

o,

which iinplies (2.6.123). Then, decomposing v — (0 - W)W, + (v 5L (2.6.122) leads Lo

o, 1 /‘ | . | |

—= = — v WYAM,(v-Y, . ! B

P o di .L\L_Sl(w t YAL (-, ) dv (w -7y, (2.6.124)
= Q‘J- T ’I’i" (26125)

with
1

= — wh oy (WE )AL, du.
S "ESI( vy (W o) M, du

using that the second tern i {2.6.124) vanishes, thanks to the definition of ¥,. Now, using
(2.6.121) and {2.6.125), we get, for all tangent vector 7 to 8! at Q

Duwgy
aqQ o

7o i(gl et (2.6.16)
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Then, mserting (2 6.120) and (2.6.126) into (2.6 119), we get, for all tangent vector T to 8! at Q

O, L1 a A
Y Lf = 3(50ws-v-W) - ——)at -7 (2.6.127)

Ay,
with

l . .
A - fz—s,L_c,m-vnszl-umrw d.

\Ve note that A = A{W) only depends on 1 . Indeed, introducing # = (;.;3 t_‘) and ¢(1 ) = (_..J‘(;‘!?_)
we can wiile

1

n
AW) = ———— f sin B sin(@ — (W )) du: (8) d8, (2.6.128)
’ deg(WY Sy

which clearly defines a imetion of 117 anly.

Inserting (2.6.127) into (2 6.418) und collecting it with (2.6.117) to ingert it into (2.6.116), we
get

T(pw M) = Ao { — E(IV) oy (V- Q) + (0 = H(W)HQ) -V, py

my 1 Wy
S (w0 — WY - Qb (8 =0T,
)\(W)(d(‘““ =W - ) 0% (B v V0 )

iy

which can be rewritten, by decomposing v = (u- Q) + (v Q1)0L:
Tlow o) = =& (W) pw My, V-0 = (v-Q—g, (1) M., ©O-Vipn
- . 1 -
- QY AL, O Ve 1 S Sl v = ) Mo, = GOV)) 0020

MY
1 - .
+/\-’(’[‘% (2w v = W) KT, = C(W)) (v-0) (2-V,)0-Q°
a1

0 (9 (wif - v = WYL, — C(HY) (- Q1) {05 -V,)Q. 0 {2.6.129)

Kow, we define Lhe {ollowing quanticics:

1 N -
R VTGY 1(“;,'1-1- STO) AL, Ralr 1V da,
U]
1 . - N
“ = Sy / 1(u1l1‘1.'—1-"'){11-(2).41u;(., Fo(u, W)de
TN
cvy f .
- Q) Vol W) dn.
V) “&S](v Y ia(e Wid
] . . S ,
@ = g L e W9t A, Salo V) de
1eES
cwy . )
- ) S le ) dr,
AT Sy ) TR0 I
ay = EI(W)/ 1."I-Iw“(v,ﬂ'),\'Q(?'.“’)du,
Jees
a5 — /q\(v-ﬂ')1\71',‘,”)['“(1',1-1")dv.
HUCH:

ag = f ) (v — & (W) ﬂ]w“ yo(v,W)dv.

C5:
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From (2.6.11(}), the faction Fq(n, W) ean be written To(r, IV) = Xy (4}, with ¢ = (:.'()\-;) and
Xiv the unigue 2%-periodic solution ol

2r
SXU ~ (sinf - WYXl —sin(f (1)), ] X (8} dit = 0, (2.6.130)
0

with (V) = (. Qj Therefore, the quantities o, thvough o, can be wrilten:

27

1 T
- 'X('?V)d./o (sind W)y (6) X (8} 8. (2.6.131)

ay = A(“l,)dfu"(sine—w)cos(a - (W) ) e (8) Xu (6) db.
vy e
5 . cos( 8 — (W) Xy (8) de. (2.6.132)
2%
a3 = —)‘(‘;,)df{ (sin® — W) sin{ 8 — (W) ) Dy (0) X () dB,
T2tV 2%
(A({i":)) [0 sin( 8 — (W) Xy (8) a8, {2.6.183)
2w
gy = —E‘ﬂ[«V}/ @uf(e)Xu‘(B)de. (2.6.134)
20 0
s = _/ sin( 0 (1)) Pu-(0) Xy (0) 0, (2.6.115)
0
2n
wg — (cos(()—r,-’)(”'))—ﬁ,(ﬂ-’))dm-(()))(n (#) db. (2.6.130)

4]

We notice that they depend only on W and we shall denote them by (149, £ == 1., 8. We now
define the followimg nioments of pje

mylow] — f ar(MY oy W k1. 8. (2.6.137)
R

With these definitions, we can mulriply (2.6.129) by yn 2= and integrate the vesulting expression
on (r. W) & 8! x R, ‘I'hanks to {2.6.115), we get (2.4.55), which ends the proot of Theorem 2.4.9.

Appendix C Small angular velocity limit of the SOHPR-L
model. Proofs

C1 Proof of Proposition 2.5.3

We st need to let €y 0 in thie cocllicients (2.5.74) of the SOHPR-L nodel. For this, we need
the following lennna:

Lemma 2.6.11. (i) For fired \V', the functions Pw and Xy respectyeely yiven by (2.4.43) end
(2.6.130) ere such that

@ (8) = Ou(B) + (W1 (8) + O(CH). Xew(8) = Xo(0) + QVX1(8) 1 OKT)., (2.6.138)
where &g X are cven and Xo, ©1 mve odd funclions of 8. Furlhermeore, we have

cusé

dy(3) = Ma(v) = ;a eI Xo(8) = xa(v) = 9(?), {2.6 139)
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where 8 = (§2. t_') Mole) and xp(v) are the VMF distribution (2.2.24) and the GCT (2.6.49)
associnted to the small ongular velocily case, g i given by (2.0.90) or (2.6.91) and Z; is the
normalization factor (2.3.24) .

(1) We have

F{CWY = & (0) + O, #(0) - ﬁ 2"«110{0) cos 08 — ry. {2.6 110)
MEWY = M0) + O{¢H).,  AM0) = ﬁ UM By () sin® 0 do, {2.6.141)
w({W) =m(0) 1 0" m(@® -~ /\l@- | ﬁ - $o(0) Xo(0) sin 0 d, (2.6.112)
ay(CW) = ax(0) = O(CY),  ax(0) = m fo v Bo(6) Xo(8) cosd sin@db.  (2.6.143)
as(CV) - as(0) + O(C%).  as5(0) -- dA(0)ay (0), (2.6.111)

nwhere ey as the order parameter of the VMF distribution in the small angulor cose, gven by (2.5.25).

Proof of Lemmnia 2.6.11. Chauging W into {117 into (2.5 86) and mserting expansions (2 (.138),
wa immediately get that &, X, are even and Xy, ®; are odd Minctions of 4.

Now, changing 1V into 3V into (2.4.43) and again inserting the expansion (2.6.138). we pet
that Py is 2 smoath peradic solution of

1 2n
rbﬁ . a(ﬁm gquo)’ =1, / a»(,(g) g =1
0

Such a solution is unigue and given by the fist eg. (2.6.139). Inserting expansion (2.6.138) o
(2.6.105) gives (2.6.3-10).

Before expanding Xu- (), we need to expand ({W) — (L.:f?(li"). ). Wa have, by (2.5.71) and
(2.4.1%). N N _
PCW) = (0 (CIV).0) = (aalCW). Wuy (CTVY) = (ar, D (CTTY).
The last equality comes from the fact that $(117) does not depend on the particular choice of w(137).
Then, inserting expansion (2.6 138) into (2.6.106) and using the evenness of @y, and the oddness

of B, we get

.3 , Pl
o, (1) —w-l—(—Cle — O(¢?). .3—/ by (0) sin 6 dd.
-1

[}]

It follows 11t

3

3
YWy = =W+ ). (2.6.143)
1
We dechice that the right-hand side of (2.6.130) {with IV changed into IV} can be expanded into:
gin(f - H{CH)) - sind —[j— CIV cos 0+ O3, (2.6.116)
iy

Now, insetting (2.6.138) into (2.6.130) {(with W changed into (1), we God tud Xp(0) is a smooth
periodic solntion of

27
-Xg + (—l{sin P X, = sin 6, / Xy(6)dé = 0.
0
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Now, by comparing with (2.6.89), we realize that the second relation (2.6.139) holds.

Now, inserting the expansions (2.6.138), (2.6.140) and (2.6.145) successively into (2.6.128) anc]
(2.6.131), (2.6.132), (2.6.135), we get (2.6.141), (2.6.142), (2.6.143), (2.6.144), which ends the proof
of the Lemma.,

End of proof of Proposition 2.5.3. Since ag, a4 and ag are even functions of W, the expansion
ap({W) = O(C) for k = 3,4, 6, when ¢ — 0 holds. Therefore, in this limit, m$[pn] — 0 for
k=3, 4, 6. Now, using (2.6.142), (2.6.143), (2.6.144), we have mf.{pu-] -+ ag(0) p, with p given by
(2.3.29)., This leads to:
pa (D)8 + paa(0) (- V)0 + ﬂ-:,l:ﬂ) FPpuVep=0.
Dividing by a,;(0), we get (2.5.76) with the coefficients ¢z and ey given hy:
a2(0) a5(0)
g = ——, 5 = ——.
7 w(0) )
Now, using (2.6.142), (2.6.143), (2.6.144) together with (2.6.139), we notice that the first eq.

(2.6.147) is nothing but (2.6.100), while the second eq. (2.6.147) can be recast into (2.5.77). Finally,
Eq. (2.5.75) directly follows from (2.4.54) and (2.6.140), This ends the proof of Proposition 2.5.3,

(2.6.147)

C2 Proof of Proposition 2.5.4

To compute the order Q(¢) terms in the expansion of the SOHPR-L model when ¢ — 0, we need
to complement Lemma 2.6.11 by information about the first-order corrections to the terms ay, a4
and ag (see (2.6.133), (2.6.134), (2.6.136)). This is the purpose of the following lemma:

Lemma 2.6.12. (i) The perturbations ®, and Xy are the unique smooth 27 periodic solutions to
the problems

1 n
oY + R(sinb‘ﬂh Y = }f@},. ‘/n. &y (0) di = 0, (2.6.148)
I 2 2%
Xy - : sinf X{ = X _ A cos @, Oy(0)di = 0. (2.6.149)
d d 1 0
We have the expansions:
az(CW) = aj CW + O(¢Y),
1 viy .ﬂ
al = —— [ [ —sinf @y Xo(1+ =) +sin? 0 (Do Xy + &, Xp)]dd  (2.6.150)
d A(0) Jq o
2
ag((W) = n_’,(W’+ oY), u,', = mf (DX + ©yXy) do. (2.6.151)
0
2x
ag(CW) = ag (W + O(Cs), aj = / (cos@ — o) (D Xy + DXy db, (2.6.152)
Jo

Proof of Lemma 2.6.12. Eqs. (2.6.148) and (2.6.149) follow easily from (2.4.43) and (2.6.130)
(changing 1 into {1V and expanding up to second order in ¢). Then, from (2.6.103) and (2.5.66),
we find that the constant C'(W) is odd with respect to W, Therefore, C((W) is expanded in ¢
according to C(W) = C, ¢ W, where the expression of the constant ) can be obtained from @y,
Py but will not be needed. Indeed, in the expansion of az((W), the term containing C' has non
contribution by oddness with respect to @, The other term can be expanding using the auxiliary
computations already done in the proof of Lemma 2.6.11. They lead to the expressions (2.6.150),
(2.6.151), (2.6.152).

Onece Lemma 2.6.12 is proved, the proof of Proposition 2.5.4 is straighforward and left to the
reader.
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Appendix D Graphical representations

In this appendix, we provide some graphical representations of the equilibrium GVM distribution,
of Lhie QCI and of Lhe coeflicients ay.. .ag of the large angular rotation case. Fig. 2.1 provicdes
the Generalized von AMises-Fisher (GVD distribution M, (¢ 1) (2.4.44) as o function of the angle

0 — (wq. ), ie Lhie funetion o (0) defined at Def. 2.1 2 Fig. 2 2 provides the Genervalized Collision

Invariant (GCL) va(w, 1) defined aL Prop. 2.6.10 as o function of the angle ¢ {wo,v), i.e. the
fuuction Xy () defined by (26 130). The GCT have been sealed to present sinlay wavima and
be more easily compared (In other words. the hunction vepresented is JXyv(8) lor some value of
the sealing parameter 8 ; we nolice that the final SOHPR-L mwdel is independent of the use of
BXw (#) instead of X (0), as the GOT formn v veetor space). The GVAL and GCT are represented
for three values of the noise parameter: d = 0.2 (Fig. 2.1a and 2.2a), = 1 (Fig. 2 1b and 2 213) and
d =5 (Fig. 2.le and 2.2¢). ln each figwe, ur values of e anguwlar velocity W oare represented:
W =0 (blue curve), W -1 (red carve), W — 5 (green enrve) and 18 = 20 (insgents curve)

On Fig. 2.1, we ohserve that the GVl have Gaussian shapes which becomea mora nneven with
mavinma driftieg towards the right when the angular veloeily W oinereases. As [V beecomws Jarge (see
the magenta curves eorrvesponding to W — 207, the GVAL becones elose to namniforin distrmibution,
and the difference to the wiforin distribution seems close to an odd function. 'l be inflnence of
IV iy atronger when the noise parameter « is small. Indeed, comparivg the blue and red cueves
respectively corvespending to 117 — 0 aud W - 1. we observe a faitly large difference in the ense
« — 0.2 (Pig. 2.1n) while the difference is tiny in the case 4 — 5 (Fig. 2.1¢). In paricular, we
ohserve that the position of the peak is strongly drifted towards the right in the case o = 0.2 {Fig,
2.1a) and to a lesser extent, in the case d — 1 (Fig. 2.1b). The diift of the peak towards the right

shows thnt the angle w(W) — (wo (1), Q) can be significane. For instance. here, in the eaze d = 0.2
(Fig. 2.1a), we see that this angle 13 about 1 radian (if we estiinate it as the position of the prak).
As expected, the width of the peak increnses with the noise parmane(er d.

On Fig. 2.2, we notice that the GCI are close Lo odd functions of ¢ and are rigorously add
funetions in the case 1V -- . The influence of increasing values of 1V ia similar as for the GVNAI,
with » deformation of the GCT towards the night (compare the cases VW = 0 (blue curve) and 1V =1
(red cuvve} for the noise parameter d — 0.2 (Fig. ? 2a)). The influence of 11 is less prononneed for
iercasing values ol d, with ahimost no diference between the cases 1% — {) (blue curve) and 1V = 1
(redd cnrve) for the nolse pavaneter f = 5 (Fig. 2 2¢). When both 117 and d ave small, the GCI have
sharp variations arannd @ = +1 and smoother vaviation around 8 — 0 (sce the cases 117 0 (blue
curve) tor d = 0.2 (Fig. 2.20)). When cither d or 1 increases, the GCU becomes closer and closer
Lo 1T sine funetion.

Finally, on Fig. 2.3, the coefficients ay through oy as hmetions of 17 in the range 117 ¢ 0.10)
are represented. Again, three values of the noise paranscter o are investigated: d — 0.2 (red dors),
d — 1 {blue stars), d — 3 (black dinmonds). As ammounced in Prop. 2.5.2, we realize that a; and
n; are positive, We also observe that ay through ay are quite small for large values of d (sec the
case d = 5) and thal ay. ¢y and ws seem Lo converge Lo 0 as IV > oc, By contrast. 2z and aj seem
Lo have a linear hehavior as 1V 3 . while ag seems to canverge to a non-zera value. Finally, as
expected, the vange of vaviarion of the paramaters as a hinction of WV is narrawer in the low noise
case (i = 0.2) Uhan in the lrge noise case (¢ = 5). All Usese observations need to be confirmed by
theoretical investipations, which will be developed in future work












Part II: The Vicsek Model with
Repulsion






Chapter 3

A macroscopic model for a system
of self-propelled particles with
alignment and repulsion

Lhis chapler is & joint work with I'. Degond, G. Dimarco, N. Wang. ‘I'he paper has been accepled
Lo Le publislicd on Commimications in Mathematical Seiences (CMS), The ides of constructing the
made! is due to Pv. Degond. 1 was in charge of the passage fromn iniernsecapic model to macroscopic
mmodel while Wang took eare of numerical simlations for the particle madel. Thank lo coustant
help from Pr Degond and Pr. Dimarco, Wang and 1 have also been working together on the ende
for the macroscopic model. By using these codes, 1 Lhave done mmumerical tests 1 section 3.4 (of
course with helps from Degond and Giacoino)

3.1 Introduction

Tle study of volleetive motion in systems consisting of a large number of agents, such as bird
focks, fish schoaols, suspensions of active swimmers (bacieria, sperm cells ), ete has friggered an
intense literature i the recent years. We refer Lo [94, 63) for recent reviews on the subject. Many of
such studics rely on a particle maodel or Individnal Based Nodel (JBM) that desciibes the motion
of each individual separately (see e.g in (3, 16, 19, 20, 21, 58, 69, 72, 87]).

In Lkis work, we aimn to describe dense suspensions of elongated self-propelled particles in a
fluid, sueh as sperm Tn such dense snspensions, steric repulsion is on essential ingredient of the
dynamics, A large part of the literature is concerned with dilute suspensions |59, 63, 74. 82, 96),
In these npproaches, the Stokes equation for the fluid is coupled to the orientational distribution
function of the self-propelled pariicles, However, these approaches are of "mean-tield type” ie,
assume that particle interactions are mediated by the flnid through sone kiuds of averages. These
approaches do not deal easily with short-range inleractions such as steric repulsion o1 interactions
mediated by lubrication forees, Additionally, these models assmiie a rather simple geomety of the
swinuners, wlhich are vedneed to a force dipole, while the irue geometry and motion of an actwal
swimmer. like a spenin cell, is considerably more complex

In a recent work (73], Peruani et al showed that, [or dense systems of clongated self-propelled
patticles, the steric interaction resulls in alipument. Relyiupg on this work, and owing to the fact
that the deseription of swimmers inreractions from first physical prineiples is by ar Loo complex,
we choose to replace the fluid-medialed inleraction by a simple alignment interaction of the Vicsek
type [93]. In the Viesek moidel, the agents imove with constant speed and atlempl Lo align witl their
neighbors up to some naise. Many aspects of the Viesck wodel have been stodied, such as phase



62 A macroscopic model for a system of self-propeticd particles with alignment and repulsion

transidions (2, 16, 24, 27, 52, 93], munerical simulations 71], derivation of maeroscopie models
0, 29].

The alignuient interaction acting alone may trigger the formation of high particle concentra-
tions. However, in dense suspensions, volume exclusion prevent such high densitics to occur, When
distances between particles hecore roo small, repulsive forees are generated by the fluid oy by the
divect reaction of the bodies cne to each otheir. These forces contribute to repel the particles and
to prevent further contacts. To model this hehavior, we must add a repulsive force to the Vicrek
alignment model, Inspired by [6, o8, 87] we consider the possibility that the particle orientations
(i.c the diveetions of the sel-propulsion foree) and the parlicle veloeities may be different. Indeed,
sterie interaction may ymsh the partieles in a divection differenr from thar of their self-propulsion
force,

We consider an overdsmped regime in which the velocity is proportional to the foree tliongh
a mobility coefficient. 'I'he overdamped limit is justified by the fact that the background Huid is
viscous awd s the forees due o Iriction are very large compared to those duc to motion. Indeed.
for micvo size. particles, the Reynolds ninnber is very small (~ 107%) and thus the effect of inertia
can be neglected, Finally. differently from [8, 58, 87] we consider an additional terin describing the
relaxation of the particle orientation towards the dircetion of the particle velocity. We alse take
into accownt a Brownian noise in the orientation dvnamics of the particles This noise imay take
into acconnt the finid turbnlence for instance. Thevefore. the particle dymamics vesults from an
interplay between relaxation towards the mean orvientation of the surrownding particles, relaxation
towards the direction aof the velocity vector and Browman noise. Fram now on we refer to the ahove
described maodel as the Vicsek madel with repnlsion.

Starting fromn the abave described microscopic dvnamical svatem we successively derive mean-
ficld cquations and hydrodynanie equations, Mean field eyuations are valid when the number of
particles is large and desciibe Lhe evolution of the one-particle distribution, i.e. thie probability
for a particle to have a given ovientation and position at a given histant of time. Expressing that
the spatio-temiporal scales of interest ave large compared to the agents’ scales leads to a singilay
perturbation problemn in the kinetie equation. Faking the hydrodynamic linit, (i.c. the limit of
the singular perturbation parameier to zero) leads to the hydrodvnanice model. vdredynamie
models are particularvly well-suited to systems consisting of a large number of agents and to the
obyervation of Lhe systemn s large scale struclures. Indeed, Lthe computational cost of IBA iercases
dranatically with the nmber of ageuts, while that of liydrodynamie models is independent. of it.
With L3N, it is also sometimes quite cumberaome ta access observables sich as arder parameters,
while these quantitics ure usually directly encoded into the hydrodynamic cquations,

The derivition of hydrodynmmic models has boen intensely studied by aany anthors. AMany of
these models are hased on phenowmenological constderations [91] or derived from nioment approaches
and ad-hoc closure relatious |6, 9, 79]. The first mathematical derivation of a Liydrodynaniic system
for the Viesek madel hias been proposed wn [29]. We refer to this madel ta as the Self-Organized
Hydrodynamic (SOH) model. One of the main contributions of 29" is the concept of “Generalized
Collision Invariants™ (GCI) which permits the derivation of macroscopic equations for a particle
gystem in spite of its lack of momentuin conservation. ‘The SOH model has heen further refined in
(32, 43].

Performing the hydrodynamic limit i the kineric equations associated o the Viesek madel with
repulsion leads Lo the se-called “Sclf-Organized Hydrodynamics with Repulsion” (SOHR) system .
The SOHR model consists of 5 continuity equation for the density g and an evolution equation for
the average arientation {} € 877" where p indicates the spatial dimension. The average orientation
of the fluid at (z,£) represents the total sum of the particles orientations in & small volune around
a at time ¢, normalized (o nnil norm. More precisely, the model reads

Do+ Y, (pU) -- 0, (3.1.1)
phS) -+ plV + 9200 = Pas Vo p) — ~ Doz Ag(pQ). (3.1.2)
|Q| =1, (3.1.3)



Introduction ] 63

whore
U —eiof n@V,ep, V=cuw - ndeV.op {4.1.4)

2
(o) - wodp 1V op®o((n —1)d + e2) %, v=ky({n 1)1 c2)- {1.1.5)
The eocficients ¢1, co. vo, g0 P d, oy kg are associated to the microscapic dynamies and will be
defined lates on. The symbol Py stands for the projection matrix

Py =Td—QxQ

of B” on the hyperplane 4. The SOHR model is sinilar 1o tlie SO model obtained m [32], i
with several additional terms which ure consequences of the repulsive force at the particle level.
The repulsive force intensity 15 charactervized by the paramcter gdy. In the case j;1&y = 0, the
SOIIR system i veduced to the SOH one,

We firs( briclly describe the original SOII model. Inserting (3.1.4), (3.1.5} with &g = 0 into
(3.1.1). (1.1.2) leads to

ihp+ ey Ve - (0Q) =0, (3.1.6)
PO + covgp(l- V )Q 2@ Iz Viep = v Py Ay (pth), (3.1.7)

together with (3.0.3). This model shares similarities witl the isotliernial compressible Navier-
Stokes (NS) equations. Both madels consist of a non linear hyperholic part supplemented by a
diffusion term. Eq. (8.1.6) expresses conservation of mass, while Fq. (3.1.7) is an cqualion fo1 the
mean orientation of the particles. To 15 not conservatlive, contrary to the corresponding momentun
conservation equation in NS, The (wa equations are supplemented by the grometric constraint
(3.1.3). Thig constraint is satisficd at all times, as soon as it is satisfied initially. Indeed, owing to
the prescuce of the projection aperator Fyy o, dodting (1.7) with 2, we get (provided that p # Q)

B,|Q|2 I covg(2 -V:)Q|2 -0,

showing that [%(x, 1) — 1 for all times as soon as Q[%(2.0) = I for all 2. A second important
difference between the SOH model and NS cquations is that the convection velocities lor e
density and the orientation, gy and ogee respeerively arve different while for NS they are eqnal.
That ¢; # ¢3 is a consequenee of the lack of Galilean invariance of the model (there 15 a preferred
frame, which is that of the finic). The main conscyueuce is that, the propagation of sound waves is
anisotropic for this (ype of fuids |91).

The first main difference hetween the SOH and the SOHI systein is the presence of the terms
1190V, p in the expressions of the velocities U nned V. Tnsarting this tevm iu the density Eq. (3.1.1)
vesulls in a diffusion-like term —pdy ¥, - (p(V.p)) which avoids (he foimation of high particle
voncentrations. This term shows similacities with the non-linear diffusion term in porous media
models. Similarly. ingerting the tern 0y Ve pin the orientation Eq. (3.1.2) results in 8 convection
texn i the direction of the gradient. of the density. Its effect is to foree pvarticles to change direction
and move towards regions of lower concentration. The second main difference is the replicement
of the Hnear (with raspeet to p) pressore term 1ad - V.p by a uonlinear presaure p(p) in the
orientation . (3.1.2). The nonlinear parl of the pressine enhances the effects ol Lhe repulsion
forees when concentrations become high.

To further establish the validity of the SOHR medel {3.1.1)-(3.1.5), we perform numerical sim-
tilations and compare them Lo thase of the underlying IBA To nwinerically solve the SOIIR made],
we adapt the relaxation method of [71]. In this method, the unit notn constraing (3.1.3) 15 aban-
donned and replaced by a [ully conservative hyperbolic model in which  is supposed (o be in R
However, at tlic end of each time step of this conservative model, the vector £ ig normalized. Motsch
and Navoret showed that the relaxatlion method provides numerieal sotutions of (he SCH model
which are consisteut with those of the patrticle model. The resolution of the concervative model
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van take wdvantage of the huge literature oo the numerical resolution of hyperbolic conservation
laws (here specifically, we use [34]). We adapt the technigue of [71) 1o include the diffusion Buxes.
Using these approximations, we numerically demonstrate the good ronvergence of the schewme for
snioath initial data and the consistency of the zolutions with those of the particle Vicsek model
with repulsion.

The eutline of the paper is as follows. In seclion 3.2, we iutroduce the pariicle model, ils
mean field limit, the scaling and the hydrodynamic limit. In Seetion 3.3, we present the numevical
discretization of the SOHR model. while in Scction 3.4 we present several numerical {ests Lor the
macroscopic niodel and s conparison Letween the microscopic and microscopie models. Section
3.5 18 devoled (o draw a conclusion. Some technical proots will be given in the Appendices,

3.2 Model hierarchy and main results

3.2.1 The individual hazed model and the mean field limit

We consider a system of N-particles cach ol which is deseribed by its position X ({) € E", ils
velacity m(t) € R and 1n divection we(t) € § ') where & € {1,-- . N}, n is the spatial
dimension and $"~! denotes the unit spheve. The particle ensemblo sarisfies the following stochastic
differential equations

dX,

dYL = u, (3.2.8)
v — ey —p VL B(X(), 1), (3.2.9)
du = Puuo(v@(Xy(t),1)dt + 0w dt+ V2D dBY). (3.2.10)

Eq. (3.2.8) simply expresses the spatial inolion of a particle of velocity 1. Eq (3.2.9) shows that the
velovily my is comnposed of (wo components: a self-propulsion velocily of constant magnitude vg in
direction wy and a vepulsive force proportional to the gradient of a potential £ (x,t) with mobility
coctlicient g Equadion (3.2.10) desaiibes the (inie evolution of the orientation. The Brst term
wodels the relaxation of the particle orientation towaids (he average orientation w( X (2),1) of its
neighbora with vate v. The second tarm models the relaxation of the particle ovientation towards
tlie direction of the particle velocity vy with rate o. Finally, the last term describes standayd
independent white noises :H}f of intensity V2D. The symbol o reminds that the eguation s to
be wnderstoad in the Stratonovich sense. Under this condition and thanks to the presence of P._,
lic orthegonal projection onto the plane sethogonal 1o w (e I’ = (Id —w & w), where ¥ denotes
the tensor praduct of two vectors and Id is the identity matrix), the orientation wy remains on the
unit sphere. We assume that vg, 3¢, ¥ a, L) are strictly positive constants.

The repulsive potential O(x,#) is the resultant of binary intcractions mediated by the binacy
interaction polential ¢. It is given by-

o(et) = + in('“‘x"') (1.2.11)
_N,_li -
whiere the binary repulsion potential @(|2|) only depends on the distance. We suppose that z —

¢(|x]) is smooth (i particular implying that ¢'(0) = 0 where the prime denotes the derivalive with
respect to |27). We alsa supposa that

o >0, / &{lx]) dr < o0,
Jrn

in particular implying that ¢(|7|) = 0 ar |&| = oo. The quantity r denotes the typical range of
#. We consider repulsive potentials fesuch that ¢ < 0. Since ¢ — 0 as @] — o¢, Lhis Luplics
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that ¢ > ¢ and that &, = f:.-‘)(i:r|)d:t > 0. In the numerical test Section, we will propose precise
eapressions for Lhis potential foree.
The mean orientation J(x.t) is defined by

- T(x,t) i LN XN
Bt = e J(:c.t)—ﬁ%{!& (79 Jes. (3.2.12)

It is constraeted as the normalization of the veetor F(x, 1) whicl swuns up all orientation veetors
w, of all the particles which helong Lo the vange of the “inflnence kernel® K{|2]). The quantity
I > 0 is Lhe typical range of the influence kernel KK {|x|/A), which is supposed to depend only
on the distance It imeasures how the mean oricintation at the orvigin is influenced by particles at
position . Here, we asswine that &y (|77} s smooth at the origin and compactly supported,
Tor instance, if I is the indicator function of the ball of rvadius 1, the quantity w(x, £) compnutes
the mean direction of tlie particles which lic in the sphere of radins It centered at o at time .

Remarvk 3.2.1. (i) In the chseriee of repulsive force (Ve yr = 0), the syslein redures to the tnae
eontinuous version of the Vicsek model proposed in [29].

(i) The model presenied is the so valled overdamped limat of the model consisling of (2.2.8) and
(3.2, 40)) and where (7.2.8) is replaced by:

duyy

(W Al(f-'n’_u'k 1‘1‘-) /\QVIGJ(X;\.U) f). (3213)

with p — Aa/Xy. Taking the imit ¢ — 0 in (5.2 138), we obtain (4.2.9). As whrvady mentioned in the
Introduction, for mivroscopic swimmers. this timil is justificd by the very small Reynolds number
and the very smull inevtia of the particles.

We now introduce the niean field kinetic equation which desciibes the Lime evolution of the
particle system in the large A" limit. The unknown here is the oue particle distrihntion function
[, .4} which depends o the position z ¢ R, orientation w € 87! and tiwe ¢. The evolution
of [ 15 zoverned hy the following systemn

DS - Vo ()4 vV (Posidsf) ~a V- (P vy f) = DALS = 0. (3.2.14)
ug(t) = vyw — pVbp(a ), (3.2.15)

where the repulsive potential and the average orientation are giveir by

G !) = / o(i};yl) Sy w,t) dws dy, {3.2.16)
BTN BNcAll

Sy(row )= 17,00 (3.217)

Tilaly - [ 1((;”-;{-’") [l £y wdw dy (3.2.18)
JEn=yp qn

Equation (3.2.14} is # Fokker-Planck type equation. The second term at the left-liand side of (3.2.14)
describes particle transport in physical space with velocity ¢; and is the kinelic counterpart of Fq.
(3.2.8). The third, (fourth and Ll terms deseribe transport in orientation space and are the kinetic
counterpart of Eq. (3 210). The alignment mteraction is expressed by the thisd term, while the
relaxation force towards the velocity #y is expressed by Lhe fourth term. Tlie fifth tevm veprosents
the diftusion due to the Brownian noise in orientation space. The projection /2,1 insures that the
foree terms ave normal to w. ‘The svinbols V- and A, respectively stand for the divergence of
tangent vector fields ta 877! and the Laplace-Beltrani operator on 8771, Eq. (3-2.15) is the divect
comiuterpart of (1.2.9).
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Eg. (3 2.16) 18 the continnous counterpart of Fr. (3.2.11). Indeed, letting f be the empirical
IHCHSIre

|
f= w ga(r,(f).m,{l)](r =)

in {3.2.16) (wheve &gy, () . 10yy (£, w) is the Dirac delta at (7,(1),w,(1))) leads to (3.2.11). Similarly.

Eqs. (3.2.17), {3.2.18) are the continuous counterparts of (3.2.12) {(by the same kind of argument).

The rigorous convergence of the particle system to the above Fokker-Planck equation {3.2 14) is an

open problem. We recall however that, the derivation of the kinetic equation for the Viesek maodel

without repulsion has been done in [12] in a shightly modified context.

3.2.2 Scaling

In order to hightlight the rale of the various renms, we first write the system in dimensionless form.
We chose 1, as unit of thime and choose

1 2,
- — _lolo
an = oo, Jo==. 0 = ,
Ty It
as unils ol space. distribntion funclion and polential. We introduce the dimensionless viiables:

» ;o = ! 9

]-. . R [y L
&€ ta fu &y

and the dimenzionless parameters

. n : §
BE=", w=1.  D=wD, b=ty d&-=ax,.
In xn

In the new set of variables (¥, 1), Ka. (3.2.13) hecomes (dropping the rildes and the” for simplicity):
rp=w—Vedp(nt)

while f, &y, &y, Jrave still given by (1.2.15), (1.2.16). (3.2.17), {L218) (now written in the new
variables).

\We now define the regime we are 1mierested in. We assumie that the ranges R aud r of the
imteraction kevnels K and ¢ are both amall but with R much larger than »r. Mare specifically, we
asrume the existence of a amall parameter £ « 1 such thau

R= \_/;7:?, r =&t with B += o)

We also assime that the diffusion coefficient 1 and the relaxation tate to the mean otientation v
are large aud of the samne orders of inagnitude (ie. o = D/w = O(1)), while Lhe relaxation (o the
velocity o stays of order 1, i e

v=2 u=P_on, a=owm

& v

With rthese new notations, dropping all hats’, the distribntion function f°(2r,w. ) {where the

superseript ¢ now liglights the dependence of £ upon the small parameter ¢ satislies the following
Fokker-Plank equation

F(o, fE+ Y, - (v f=')) SV (P @ f) eV (Pt /) —dALfT =0, (3.2.19)

vf = w— V., (e t), (3.2.40)
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where the vepulsive potential and the average orientation are now given by

‘[’}(-‘ ) = -[_‘w-'x?.-- d(l—l_—yl) Iy e, t) dudy.

cr
Ti{x,t) |22 =
— 7 ; - ny -
o= T gey :/ K{—=) [ (y.w. Owdwdy
1= T T L ( JR )

Now, by Taylor expanscion and the fact that the kernels K. ¢ only depend on ||, we obiain
(pvovided that J is normalized to 1 ie, [y N(al)de 1):

v{xt) - w - 0oV, p% + O(F7), {3.2.2)
D50 t) = G t) +eGy(at) + Oe?). {3.2.22)
_ k

GYrt) = Qp(at), Gi(af) = |7_‘;IP”?A"]"

whore the coclivients kg $p ave given by

2
bp = K f () x| 2, &y = /’ olx)dr, (3.2.23)
20 S Jrexn

For example, if /S is the indicator fuuclion of the ball of radius 1, then ky = 1S"7' /2n{n — 2),
where 877 s the volume of the sphere 87 1. In the cases d = 2 and d = 3. we respectively get
ko = n/8 and ky = 27/15. Lhe local densily py. (hie local current depsily J; and local average
oricutation £ are defined Ty

pr(x.t) - [ 1 [l . 1) dw. (3.2.24)
Jplo f .
Ji{x,1) = j(;es-- . flrve AHwdw, Qe t) = ”ﬁi)f;l (3.2.25)

More details ahout this ‘Taylor expansion are given m Appendix A, Let us observe that this sealing,
firdl proposed in [32] is different from the one wsed in 29 and results in the appearance of the
viscosity term ot the right-hand side of Fg. (3 1.2).
Finally, if we neglect the terms of order £2 and we define the so-called eollision operator Q(f)
by
QU =~V (FaoQp ) + dAL S,

thie resenled syntem (3.2.19), (3.2.20) can be rewnitten as follows
f(ﬁ‘,ff +V, (15 f) + 0 Ve (Path f)+ Vo, (B2 G, f’)) —QUY, (3.2.26)

}‘.
vy ) =w  BV,pp. Cp(et) = 79..1;’(,7134.@ (3.2.27)
e

3.2.3 Hydrodynamic limit

The am is now to derive a hydrodynainic model by taking the limit ¢ > 0 of systemn (3.2.26),
(3.2.27) where the local deusity py, Lhe local current Jr and the loeal average orientation Oy are
defined by (3.2.24), (1.2.25).

We first inwroduce the vou Mises-Fisher (VAIF) probability distribution Meo{w) of nrientation
O 8 defined for w e § 1 by

we w-0
My(w) =27 exp (JJ—) . zZ - / Cxp( ) o
a wrgn 1 d
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An important parameter will be the Hux of the VMF distribntion, i.e, f 1 Mo(whadu:. By

weE
ohvious synimetry consideration, we have

/ Ma(w)wdar — {1,

g1

where the quanuty ¢ = ¢i(d) does not depend on @, is such that 0 < oy (d) < 1 and is given by
e (dy — / M(w) (- Q) duw, (13.2.28)
oy

When d is small, Aly is close (0 a Dirac delta dyy and represents a disteibution of perfecetly aligned
particles in the direction of 2. When d is large, Mo is close ta a uniform distribution on the
sphere and represents a distribution of almost totally disordered oricutations. The function d €
Er o a{d) C [0,1) is strictly decreasing with Yimyg oo {d) = 1, limg e vi(d) = 0 Therefore,
¢1(1) represents an order parameter, which corresponds ta perfect disorder when it is close 1o 0
amd perfect alignment ovder when it Iy close to 1.

We have following theoren:
Theorem 3.2.1. Let f€ be the solution of (3.2 26), (3.2.27). Assune that there cxists § such that
= f as =20, {3.2.29)
pointunise as well as all s derivatives. Then. there exist p(x,t) end Q(z, 1) such thal
Jlrw t) = plo, )M, n(w), (3 2.30)

Moreover, the functions ple.t), Qw, t) satisfly the following egualions

Qo+ N (pll) 0. (3 2.31)
(AR~ (V- )0) + PV, 5(p) = vFpe A (o), (3.2.32)
where
U=60~d,V.p, V=000 — &V, (3.2.33)
p(p) = dp+a®y((n — 1)+ ey) F;—Q v =ky((n — D+ 0y). (3.2.34)

and the coefficients ¢y, ca will be defined in formulas (3.2.28), (3.2.42) below.

Going back to unsealed vatiables, we find the model (3.1.1)-(3 1.3) prezented 11 the Introduection.
Proof: The proof of this theorem is divided into three steps: (i) determination of the equilibrivm
states ; (ii) determination of the Generalized Collision Invariants ; (iit) hydrodynamic limit. We
give a sketch of the proof for each step.

Step (i}: determination of the cquilibrium states We define the cquilibria as the elements
of the null space of (@, constderad as an operator acting on functions of w only.

Definition 3.2,2, The sei £ of equilibrin of () is defined by
E={fe A" S| f>0and Q(f) =0}
We have the following:

Lemma 3.2.3. The set £ is given by

£ — {P-'”sr(h-') lpeR-. Q2e S”_l}
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For a prool of this lemma, see [29]. The proof relics on writing thie collision operator ns

Q)= Vo (Mo, 9o (7))

Step (ii): Generalized Collision Invariants (GCI). We hophin with tlie definition of a collision
invanant.
Definition 3.2.4, 4 collision muariant (Cl) ix a function ¢(w) such thal for all Jeuclions f(w)

with sufficiend reqular ity we hooe

/ CQ(f)rdw = 0.

We denote by € the set of CL The sel C is u vector space,

As seen in [20], Lhe space of CI s one dimensional and spanued by the constants Phivsieally, this
corresponds to conservation of mass during particle intevactions. Since enevgy and momentum are
not conserved, we caunot hope for more plysical conservations. Thus the set of Clis not large
cnouch Lo allow us to detive £he evoluton of the macroscopic quantities p and 1. To overcome this
diffierlte, a weaker coneept of eollision invariant, rthae se-called »Generalized collisional hivariant™
(GCI) hay been introduced in [29). To introduce this coneept, we fivst define the operator Q{€). f),
which, for a given Q@ € §"7' is given hy

Q. f) = V- (M Ve (\f ))

We note that
QU — 2082 N (3.2.35)

, the operator f— Q€2 f) i3 a linear operatar. 'Lhen we have the

n—1

and that fo1 a piven 2 € §
Definition 8.2.5. Let Q € §"7' be gueen. A Generalized Collision Invariant (GCI) associnted to
2 is a function i € HLE™Y) which satisfies:

/ QUL flofw)dw =0, YfeH(S" Y  suchthat Dpldy =0 (3.2.36)
weln !

We denote by Go the sel of GOT nssacinted 1o QO
The following Lenuna characterizes the set of generalized eollision fivwariants.
Lermina 3.2.6. Theie evists a posdive funchon h-|-1,1] 5 R such that

Ga ={C+ hw DI wunth arbidrary & € R and 3 € R"™ such that 3-Q =0}

The funetion h iz sweh that h(cos8) = 3—9 und g(8) is the wnique solution in the space V definrd
by
V_{yl(n 2sin®)E 25 c L30.n), (smd)T 'y c Hi(0. 1))

(denoting by 1y (0. %) the Sobalev space of functions which are squave tntegrable as well as their
derivatine and vanish at the boundary) of the problem

L rué A i , n\n dq -2
—sin® Rfe "0 h?( L 20e ( )+

Y sind
e gl sind

‘The set Go s a n-dimensional vector space.
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For a proof we refer to [29] for i = 3 and o 43} for general 2 > 2. We denole by wo the veetor
GCl

7."'1; = h(w ' “) PQ_';',U'. (3237)
We note that, thanks to (3.2.35) and (3.2.36), we have

fﬂ\ QU v, (W) do = 0. ¥fe H'(@E ). (3.2.38)

Step (iii): Hydrodynamic limit ¢ = 0. In the limit # — 0, we asswne that (3.2.29) holds.
Then, thanks to (3.2.26), we liave Q(f) — 0. In view of Lenuma 3.2.3, this iniplies that f has the
form (3.2.30}. We now need to deterimine the equations satisfied by p and €.

Tor this purpose, we divide Eq. (3.2 26) by 2 aud inlegrate it with respeel (o 0. Wriling (3.2.26)
a4

(ﬂ*n+%m_£me (3.2.39)

whera
T|f=f'_'];f—v:'('t'j_f); ’EJ.:LYV_.J'(P_QJ- vy f) ')?;f=Vm-(P‘,¢ G}f), (3240)

we ohserve that the ntegral of T5f° and 7y f over w is zero since it is in divergence form and the
integral of the right- hand side of (3.2.39) i3 zero since 1 is a Cl. The integral of T, f° gives'

Oipge + V¢ (ﬂ. l Sz wd) vpe (2w, d) du) =0.
We take the limit 7 — 0 and wse (3.2.29) to get Fq. (3.2.31) with
U= [a lP(T-f)Mn(,,u(w) vpar, (2w, ) dw.
Using (3.2.27), we get 1,0, (n.w t) = w =3V, p(r. ). With (3.2.28). this teads ro the first equuarion

(3.2.33).
Multiplymg (3.2.39) by wg,. integrating with respert to w and using (3 2.38), we got

/ (M+ T+ D) w ) o, (e D de = 0.
=1
and taking the limit ¢ 5 0, we got

[ . ((ﬂ + 7.2 + E)(pﬂ[g))(r.w,t) !,-,".‘Q“_..,)(u:) dw — 0, (3241)

This equation deseribes the evolution of the niean direction Q0 The compulations whiely lead o
(3.2.32) are proved in Appendix B. The coefficient ¢y in (3.2.32) & defined by

P2 Tt - )
eald) = (ﬁm_I();QS_O__1_1)__.\_,ﬁ _ IN s:m 'F)cnaallnhdf)l (3.2.42)
(sin? 8 W} as,, I sin® 0 XM hdd

where for any function g{cosf). we denote (g by

!r: gleos8) 7 s 2 0 d

- wn il . -
.!n T sin®"? 649

(9) 214 =/ Ma(w) g(w - Q) dw =
weEgn o
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Remark 3.2.2. The SOHR maodel (5.2 81), (3.2.82) can be reuritten as follows

¢
B~ a1V (p2) = Dotz ().

AV VI PV h(p) P AL,

where the vectors V and the funciion h(p) are defined by
- |
V=00 (01 20)Vip, W(p)=- 7{p),
P

and where the primes denote derivoatives with respeet o p. This writing displays this systcm in the
furm of coupled nonhnear advection-diffusion equations.

3.3 Numerical discretization of the SOHR model

In this section, we develon the numerical approximation of the system (3.2.31)-(3.2.34) in the two
dimengional case, As mentioned above, this system is not conservative beeause of the geoinetric
coustraint [Q = 1. Weak solutions of non-conservative systenis are not unique hecanse jump
relations acrass discontinuities are not uniquely cdefined. This indeterminacy cannot be waived hy
micans of an entropy inequality. by contrast to the case of conservative systems. In [T1] the anthors
address this problem for the SOH model. They show that the model 18 a zero-relaxation Jimit of a
conservative system where the velocity Q is non-constrained (i.e. belougs to B"). Additionally, they
show that the mumerical solutions build from the relaxation system are consistent with those of
the underlying particle model, while other numerical solutions built directly froni the SOH model
ave not. Here we extend this idea to the SOHR model. More precisely, we introduce the following
relaxation model (in dimensiou n - 2).

A = Wy - (P = 0, (3.3.43)
DR - T - (V8 )+ W, p(p") — 72707 = £ (1 — M. (3.3.44)
DV = e ) @V V7 = 07 - BTy, ! (3.3.45)
p(p") — dp" 1 a®o(d | (.-2)-(-”;)?. n=lo(d o). (3.3.16)

Lhe left-hand sides forin @ conservative system. We gel the ollowing proposition:

Proposition 3.3.1. The reloxalion model (4.3.33)-(3.3.46) converges tu the SOHR model (3.2.31)-
(3.2.34) us iy goes to zero.

The proof of proposition 3.3.1 is given in Appendix G This allows us Lo use well-established mn-
mnerical techniques for solving the conservative system (L.e. the left-hand side of (4.3.33). (1.3.34)).
The schieine we propose relics on a tue splitting of step Al between the couservative part

D" + Vs - (V") = 0, (3.3.47)
BUpQ) + Ve - (VT 2.Q) + Top(p?) — 1AL (2707 = ) (3.3.18)

and the relaxation part

30" =0, (3.3.49)
"

D) = %( 1Y e, (3.3.50)
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Svsten (1.3.-47-1.3.48) can be rewritten in the following form (we omit the supevacript 7 far shn-
plicity)
Qi+ (F(Q.Qv))r +(G(Q.Qy))y =0,

where
P ol
R=|ph |, F(@QQ:)=| PV + p(p) — ~0:(p).
o Vs (o)
!y
G(Q.Qy) = P2V =20, (pfh)

mKuVy - p(p) 20, (p2)

We consider now the following nunierical scheme where we denoted QF ] the approximation of )

at Gime 17+ = (5 | 1)Af and posttion 1, — iAw, y; — jAy:
At H H At 17| H 4
Q:.J - :-I.J Ar {Fx-o-l/‘z-) Fz—l/‘lq} L\y [er.J | L/2 ‘xl.) 1/2},
where the menerical fhix £)7 120 is given by
n _ F"{Q:},)‘Q?h._)) | F”(( ;,'H-J‘(‘?:(v'+‘l),j) . Pl—i—é a_F(_n (_u ) ( n n )
172, D 2 ()Q L7 g 4. v 4

with
n _ (Q:l-—l._x - Q:‘.-J) An Q‘"-J + Q?-H-_l An Q:""-J' - Q:(" 1}
rig — Ax ' Ly 5 v 2Ly 2 1

and the analogong diseretization holds for G;'H_. .
b 2

4% . . . . .
In the above formula, P 1 is a polynomial of matrices of dexree 2 caloulated with the eigen-
b 2 3 . o

values of the Jacobian matrices at an intermediate state depending on (Q),. Q7, ) wnd
. .

0
Q1 Q_,’:,(” l).j) as delailed in |34? To ensure stability of the srheme, the time step Al satis-
fies a Courant-Fricdrichs-Lewy (CFL) condition computed ns the minimum of the CFL conditions
required (or (he hvperbaolic and diffusive pares of the system.

Once the approvimate solntion of the conservative system is computed, equations {3.3.49) and
(3.3.50) can be solved explicitly, In the linit > 0 they give

. O
a1 Qu+1 — o
n ”, ]
wheve (p*, €*) 15 the numencal solution of system (3.3.47-3.2.48). Vs ends one step of the nu-
mearical schene for the system (4.3.33--1.3.34).

3.4 Numerical tests

The poal of this section is to present some mnnevical solutions of the svstem (3.2.31)-(3.2.34)
which validate tie unumnerical scheme proposed 1 the previows scetton, We will first perform a
canvergence test. We then successively compare the solutions obtained with the SOHR model wilh
those computed hy numerically solving the individual based model (3.2.8) in regimes in which the
o models should provide shnilar results. We will finally perforin some comparisons herweeil rhe
SOH and the SOHR system Lo highlight the difference between the (wo mwsdels. We will cowpare
the SOHR model with anolher way to incorporate repulsion in the SOII Model, the so-called DLAIP
imodel of 32
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For all the tests, we use the model in uscaled variables as deseribed in (e Intreducton (ee
(3.1.13-(3.1 5. The potentinl keruel ¢ is chosen as

= i ws, .
alar) - 3451
o) {D I (3:451)

which gives g — . while for A, by assunption normalized o 1. we chaose the following form
5 !

I'his leads ta ky = g The other parameters, which are fined for all shinulalions if not differeatly
stated, are ;

1
g — L e — oy = 1.d=01 7, =10 L,=10,

which, i dimension - — 2, lead to {after nnerically computing the GCT and the associated
integrals):
¢p - 09488, ¢y — D886,

In the visnalization of the resnlts. we will uge the angle 8 of the vector () velative to the a-axis. 1e.
(1 = {cosf.sind).

3.4.1 Convergence test

‘I'he hrst test is targeted at the validation of the proposed numerical scheme, Tor (li- purpose,
we investigate Lhe convergence when the space step (Ar. Ay) tends to (3, 0}, refining the prid and
checking how the error belinves asymptotically The initial mesh gize is Ar = Ay = 0.23 while
Ax Ay Ar Ay Ax Ay
> o G g
‘I'he convergence rate is estimated (hrough the micasure ul the L' porm of the arror for thie vectors
{p.cosd) by using lor cach grid Lhe nexe Auer grid as reference solution. The initisl data s

the time step is Af — 0.001. We repeat the computation for (

m'cmn('%l-) - %._ﬂ'gn(arl) if 0y £ 0,

-

po=1 uley) =< i Ly Oaud gy >0 (3.4.52)
Oilry Oand gy <0

wlhere
. r L,
X — = . M=y - = .

2 2

The hbowndary conditions are fixed in tine on the four sides of the squave : {p".8") = (py. fn)- The
error curves for the density and lor cos 8 are plotled in figure 3.1 as & function of the space step in
lop-log scale at time T — 1« The slope of the error carves ave compared to a strmght Iine of slope
1. From che figure, we observe the converpenee of the scheme with accuracy close to 1.

3.4.2 Comparison between the SOHR and the Viesek model with repul-
sion

In this subsection, we validate thie SOHR modet by couwparing it to the Viesek model with re-
pulsion on two different tesl cases. We investizate the convergenre af the microseopic IBAT to the
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where kg 3 given by (3 2.23) and D3 is the Hesvian matrix of f with respect to thie variable w.
Here, we have used that the O(/g) and O(zY2) tenng vanish afrer utegration in = by oddness

with respect to o
By the siune vompualtalion for the kernel @0 wi have
1

1 "): - -Ill ra \ 3 A
(E?')“ -/T.:"_‘xj)' &( er W (yow, Ddiydw

—f S (e + vz w. Ddadw
::'n—'_)(__.{u
= / Sz ST +erVof 24+ 0ED)) (o w. Ndzdw
= d’nf filr w da + O,
Zn-)

with &g =[5, &(lz Mz

Appendix B IProof of Theorem 3.2.1

We prove that (3.2.41) leads to (3.2.32). Thanks to (3.2.37). Fq. (3.2.41) can he written:

P '/ (Ti{pMy) + Ta(phfn) + Ta(pMaDh(w wdw =Ty + 7o+ =0,
wes?
where Tk, E— 1.2,3 arc given by (3.2.40). Now. T3(pAln) can be written:

P
T| ([JA[()) — l:')g([).".{ﬂ) + V‘r ' (:ﬂ])ﬁf{)) — tI)(,V,, . (V, (%) J\f;)) .

(3.5.1)

(3.5.2)

We recall that the fivst two ternes of T)oat the right lmnd side of (3 3.2) and the corresponding
terms in 17 have heon compated in (29]. 'The computation for the third term of 77 ir easy and we

gel:
2

Ty = hphQ + Bap(- V)0 + B4Po Vop + (Y, (%) -V, )0

where the coeflicients are given by

gy = WD J){siu20 Mty 82 — YO, (sin2 0 cos O hyar,,
1 2 Oy 9

Ja — sin Wy, 5 — ——————(sin" ¢ )y,

Ia . ]( in*hyay,. 5 o l)(ﬁm Uh)ag,

Now abserve that for a consrant vector A € B”, we have
Vol - 4=, A, Ve (P d)y==(n=1w A

Thus, using (3.2.40). {3 3.3} and the chain rule, we get for Talplln)
TolpAla) = z.ut’u((n —Nw O, (p?2)—d 'V (p7/2) O
+d l(w . \7,.(/)2/2)}((:) . !2)).-”;)

Finally, we obtain:

p
Ty~ e Pa YV, (?) .

(3.5.3)
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whore

Hs — oy ((hiIIQF)h)h{“ + (s @ cosB h) \!”)-

1
din 1)
The tevms TifpMa) and 25 have been computed in [32]. In particular, it is easy to see thar we
gel thewt from the formwlne for Ta(pAia) and To by changing —a®p V. (p*/2) inlo kolq- A {(ptl).
Therefore, we get:

Ty — 8¢ Por 8, {p02),

where

35 = ka ((:Sill‘ZUfl)J\,l“ + ;1‘(5“1-2 D cos Gh).‘-ln) .
1

d(n

Inserting the expressions of 71.7% and T into (3.5.1) we get (3.2.32).

Appendix C [Proof of Proposition 3.3.1

We Tollow thie lings of the proof of Proposition 3.1 of 171]. Aasume that p? — p and 09 = (0 as
1) tends to zero. Then,| set

R L[ han.

Multiplving equation {(4.3.34) by n and then taking the limit 4 » 0 vields B7 3 0. T follows that
|O¥[2 — 1. Since the vector R" is paralle] to O, we have Figmys BY = 00 whiclt imiplies that

Py (B"Q7) 4 V- (V7 R 1)+ Top(p) 28027 — 0.
T'herefore, letting n — 0, we obtain
("% + Vo (0"V0 0% + Vop(p®) — 2 AL (0% = 30 (3.54)

where 3 {5 a veal number, p{p?) = p(p®) = dp + ado(d + r2)(p")2/2. VO 00 B;9,0° and
U0 =00 @6V, 0% By taking the scalar produet of (3.5.4) wirh U, we get

B=0p"+ 9, (p°V) ~ Typ(p") - OF = yA,(p"00) . QF,

[userting this expression of 8 inlo (3.5.1) we il the equation for the evolntion of the average
direction (3.2.32) and thus the SGHR model (3.2.31)-(3.2.34).
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Chapter 4

Existence of solution for a system
of repulsion and alignment:
comparison between theory and
simulation

‘T'his chapter is a work in progress.

4.1 Introduction

We consider a macvoscopic mutlel of dense suspension of clongated self-propelled particles in a fluid
such as bacteria, sper eclls, et The partiele model from which this hydrodynamic model comes
considers the movement of particles via alignment intevaction and exclusive volome interaction.
"I'he aligmmnent interaction leads vo particles aligiment with the nean divection of their neighbours
while the steric repulsion rules out the formation of high concentration of patticles. "Lhis model is
moativated by recent experimental observations in raw ram sperm which indicate that sperm eells
occupy about 50% of the total voluune of sperm. Therefore, it is lezitimate to consider hoth volume
oxelusion and alignment intevactions. The goal of the present work is (o study the existence of
soltion of this continuous model by both theory and simulations.

The simplest model, proposed by Viesck and his contthors 937, considers alignment interaction
in which particles move at a constant speed and have rendency ta align to their neighbowrs with
some additional random noise. Despite ils simplicily bl appearance. this mode]l can find many
important applicatious in wide range of hiclogical systems sueh as cluster, migration.

Volume exclusion internction hiave been studied intensively m the recent years[s, 23. 58, 75.
In syatems of dense suspension, particles are very close together. Therefore, steric repulsion plavs
an important role in the movenent of particles. In [75]. the authors have shown that elongated
self-propelled pavticles interacting through volume exclusion result in alignuent,

Macroscapic models ig well sniled to study modelling ol large scale systeims in contrast with
particle models (also kunown as "Tudividial-Basced Models' or IBM) which foeus on the inter-particle
interaction acale. When the number of particles are large. the computational cost of [BM models
becomes very large, Morcover, the macroscopic models allows us Lo study the qualitative bebaviors
of the system at large scale such as equilibrnun solution. long Liine behaviors, phiase Lransition,
etc. The derivation of such ynodels has studied by many authors 5. 9, 28, 79.. In particnlar, a rig-
orous derivation (the so-called ‘Self-Organized Iydrodynamics’ (SOH)) through kinetic equation
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has been done in [29] (see the review [25]). Some related research on the SOH inodel have heen
established such as the existence of solntion in two and three dimensions [29], mumevical simula-
tions [71]. Within this framewark, phase transition have been analyzed 4. 24, 27. 44). By following
the methiod used in [29], thie hydrodyiamic model of selfpropelled particles interacting throngh
lacal alignment and repulsion is derived in the chaptar 3, the o called Sell-Orvgavized Hydrody-
namic model witlh Repulsion (SOHR). This model presents a new way Lo incorporale repulsion i
macroscapie models of self-orgamized dynamics. Tn the same work, the anthors also present some
numerical simulations which validate their munerical scheme and validate the SOHR model by
comparvison with those of the particle oue.

T he SOHR model desenibes the evolution of two macroseopie quantitics: the dengity of particles
plt-x) © Ry and the average orienfation Q(i.r) € 8" ' of the fow at a piven point (f, 2} C
|0. 7] x R™. » is the spatial dimension and $% ! denates the mnit sphera in R, 'I'he avolntion of p
wid € are governed by the following cquations:

Bup - Vg (pU) = 0 (1.1.1)
PB4 p(17 - V) + Py Vilp) = 3 Pas A(pR) (4.1.2)
G =1 (4.1.3)

where the veetor . V and the pressure p(p) are grven by
U=380-8V.n V=230-3Vp plp)=cp+cp/? (4.1.4)

and the coefficients 3;,- -, 34 v, oy~ ave constants depending on the inlensity nofse. o chapter 3,
we always have 33 — 85 Poe — (10 Q90) is the orthogonal projection onto the plan orthegonal
ro {1, where & denotes the tensor product of two vectors and Id is the identiry matrix. This moclel
Is stmilar to the SOH maedel [25]. The sigiilicant differences ave additional (crims coming from
the repulsive force at thie particle level, Equation (4.1.1) is a couscrvative cquation of mass. The
density moves with the velocity 7 consisting of a tenm 318, the same as the SO model, and an
additional term which plays the role of a diffusion tern in porous wmedia which prevents the high
concentration of particles. Equation (4.1.2) deseribes the movement of the mean orvientation with
the velocity Vooinfluencad by a termt playing the role of pressuve due to gradient of the dansity.
The appearance of the teym — 3V, p in the velocity vector ¥V makes change the moving direction
of the mean oricutation towards regions of low concentration it the cocficient i34 is positive and
towards regions of high concentration if the coefficient ;35 is negative. The prassure p{p) conwste of
a linear part, the same as in the 50H model. and a non linear part which incveases the repulsive
forve when concerrations become high. A different poiit between the Navier-Stokes equations
and the SOH model [25] is that the convection velocities of the density and the mean orientation
are different while those of the Navier-Stokes equations are equal. Morcover, the cocflivients . s
satisfy 0 < fHy < 31 where 3, — 43 if and only if the naise is abgent. Fov the SOH model, in
[43], it was shown that the coeflicient §3 may be negative. In Uhns case, the mcan orientation {2 iy
transporled inepposite divection to the fow. An exammple ol such svstem is a car traflic in conpested
sittations. ‘e two equations is anpplemented of 4 peometric constraine [€)] = 1. T'his sonstraing
is preserved at all times by the projection operator Jqo. This proporty vesults from the loss of
Galilean invariance |92] which is an essential difference between collective phennmens in standard
statistical physics and hiolagy,

This chapter iz devated ta study the existence of sohitions of the SOHR model from both theory
aud simulation point of view. By wsing lechnigues in [32]. we also show (hal o local solution of the
syster (1.1.1), (1.1.2) exists uniquely on (0.7 for #) > 0 and B3, ¢y, 02,7 non-negative constants.
In order to perform siimulations, we follow the sclieme itsed in the chapter 3 where the convergence
of this schenie ncd the vonvergence of munerical solutions of the SOHR model lave been already
ghown . The nnmerical results reveal that the existence time of numerical solution depends on the
relationship between the coeflicients. hMore precisely, when 3, is sufficiently large. the mnnerical
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solutions exist only for short tbne. By conlrast, when 3, is small enoughl, the numerical solution
eaists for loug Lime.

The outliue of the paper is as follows. In section 1. we present the theorem for the existence
of the solution. In section 3. we report the solulions for the vortex problem in some cases of the
coofticients. A conchimion will he drawn in section 3

4.2 Existence theory in 2D

In this section we study the existence of the local solntion of the systemn (L1.1), (4.1.1) in 2-
dimenstons with the initial condition

plE=0)=py >0, Qt=0)=0y [ =1

We assumie that the domain is the square box TI% - [0, 1] with periodic boundary conditions. The
coeflicient ¥y is positive constant and 33, ¢y, €9, 7 Are non-negative constants.

Theoremn 4.2.1. We assume tha? the indtial date belong to H'™{II%) with m > 2. Then there
e.cists o time 1" > 0 and o unigue solution (p.+d) in Lo(I0.T): (12 N JTH([0. T): I 2(ITHY)
such that p is positive. Moreover, if the coefficients 3.,y > 0 then the solution also belongs to
L[0T i+ Iy n Ao, T), A 1(TT2)).

I 2 dimensions, we can write 2 = (costh,siny?). Then the systen (4.1.1). (1.1.2) can be
rewritten as lellows:
Qip+ BV ep @~ 3Ot - Ty 84072 (1.2.3)

/
ey + 180 VO 4 H(TP)Q LaUp =31V Vp— (A~ 2V,p Y9/ (1.2.6)

4,2.1 Maximum principle and symmetrization

We denote g, Aimay DV

Puun = ;\L}j\;?pn(n‘)‘ Pimas = MAX mla). (1.2.7)
Lot p*(x) — p{kh.x). i > 0. then the equation { 1.2.5) can be writton as follows
(¥ - PN h + 3V Q8 4 B8 () - et = Jupk Ak — B VoM e(n) (4.2.8)
wheve ¢(h) = 0 as 1 — 0+, We assume that p”(rn) = miax, p(ih. &), This weans that
V,oplkho o) — 0. Aplkh,rp) <0,
From (4.2.3) we oblain

pHag) = pt ()

; ((h) < 810" @ITHH () D ey (1.2.9)

Taking the lhnit h = 0. and applying Gronwall's inequality, we hiave the following a prior estimate

0 (
Porin EXP(j = IV o )~ (l'l’)ds) < p(tan) < pmar cX]’(‘/‘ SVl 8) |L°‘(IJ?)dS)'
0 (]
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We introduce the fonctions 5= a(p). A(H). A(p). such that

dp = YOy

; 5)=d(p)p. hip)=2lnp.

Ihen. the system (4.2.5), (1.2.6) becomes:

hp=—ihQ Vap— AP -V + 3.V (« 1 (HIVP)

= RVAP - V(a () + 3Va Yp)-Vh (4.2.10)
B = — BB Q- Ve - BIMP)IY - Tp— 318V, Ve i)
P (A L Vo (p) - Ve (4.2.11)
since
2
V(AL = V(@ ()p9p) - ¢ (p)pVp- Vs

V-

V(& (peVp) (NP (p) ' (pVp-Vp

V- (pVj) = VA(R) - Vo + Vi Vp

D (a” (M)A VAP Ve (B) 1 Va (5) - Op

Now, the existence of local solutions of this svstem follows from the modified Garlerkin method for
quasi-linear parabolie equations (kee e.g. Taylor's book [88]}. The a prioti estimate of the salnfions
can bie provad using the same techuigues in (32 and exploiling the syimnelrization of {he terns

MM T and AMHOQL - Th

4.2.2 Existence of approximating solution

We congider the approximmating ayvsten:
B = JEAS e T (4.2.12)
Oy T AT pey T yis) [1.2.13)

where the funclions Ay (p. v}, As(H, 20} denote the right hand side of the squations (4.2.10), (1.2.11),
respectively. Here, J* is a Friedrichs mollifier, which we can take to be of rhe form

J' _g(eV-A) (A.2.14)

with an even function ¢ ¢ §(IT). and () - 1. Equivalently, for f ¢ D'(I1%) the Tourier transform
F of J°f is given hy
F(IAURY - (2 kDF LK) (k e R?). (1.2.18)

We see (hat the uoetion 4 = (4, Ap) is Lipscliitz thanks to Plancherel's theoreun. By classival
theory of ODE this yields the existence of a short-time solntion of the system (4.2.12). (4.2.13).

4.2.3 Esthmation ol the approximating solution

In this subsection, we will show that the solution (J.. . ) exists for { in a tinie interval independent
of £ and has a lunit as € — 0. For this purpose, we estimate the ™ —nonm of the solution (f.,4.).
We denote D% .= &y aw with le = S @ We take the D®- dedivative of (£.2.12), mulliply
it by D™, and intcgrulc it with respect to . We do the same thing for cquation (4.2.13). but we
nmltiply 1t by D®g.. Then we snm np the resulting wdeatities to get.
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0 = SIDBOF - 1t Do
(DTS VW), D fe) + 31 Ba (D (T, - V)T ), D)
HAUD (T (ACT PUQE - VI D25y~ B (D (JT QL - DV ). DV o)
+ 32 DU(FEV (a7 (IEpAC I DB
— 3D (FCNIp:) - Va~ NIy D ped
+ 32 (D (JTVa NI B ) V(I ). DA
A3 (D TEAT ., D)
Br3a{ D (J* VI, - Va'l(l‘p)] D%y
— BUD (JECR{TE e - VI e ). D™y
= LD+ +i
It in ot hard to see that
By w3 VDM )| (4 2.16)
Now, we estimate Ty. Since J° commutes with 3" and is self-adjoint. we can wrile
Iy = 3D (I be) YOI i) VD T* ;)
= Bala” NI pe)V DO (JP), VD T e )
- B(D” (™ (T )V I be) — a” NI p)VD (D). VDI )

= In+ /i
We need the following lemima whose proof can he found later on.
Lemma 4.2.2. We have

Sp < QT pe B s A+ 90, e YA Bl = 156 l1). K =23 (1217)
1T > fodal VDT a1 (4.2.18)

[Ilul < ff’JQ

N2 Sy
(IJCP [ fore QR )0 28 N A N I, & — 42,5.6 (1.2.29)
7k :—|IVD“(7‘ 2l

O pellipre V1T 0 By )T Dellfp + 080 T )y R =89 (4.2.20)

where C' demole generic constanls depending on the paramceters of the problem.
Now, comiug buck to our estimates. Summing all terms (ogether for all possible indices ¢ snch

that |a] < m, we obtain

d )

—t(nnf(f)n?,m + Sl (O3 )
fol . N
| =229 e +—|vu B[

< G A MR« + W78 s« + DT AN o + 1750l F) - (42.20)
n . . . .
Tor m > 3 + 1, nsing the Sobolev imbedding theorem, we have

(1% Be livrse + ([T Nawrise) £ CUTE e llppee + (S50 L ) (1.2.22)
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So, we get

d " y , , 2 . PSP For ] 2

LN 1 0D < COUL PN +17 Gye + 1) (4.2.23)
Siuce the sequence {J9. 0 < & < 1} is wniformly bounded on cach space €™ (T1%) and H™(I12).

inequality (1.2.24) yields

d A P i ' L ~ : v
POl + BlWe) Fr) < Sl DT + N (@ + D (4.2.24)

It follows from Crouwall’s inequality (hat there exists a function £(2), linite on some intervall
[0.7) such that
A (37, + e (M7 < K(E). Ve (4.2.23)

Thercfore, the approximating solutions (p. . y7) belong to GO, T 1IM(II2). On the other haud.
/
taking the H'=2 norm in equations (4.2.12), (4.2.13), we ohtain

1A illirm 2+ Bill(8 e lbpre 2 £ CUAA o + I8 10 )
VE([| e [rpm-1 ) ||'l,-"c-'|”.n—1](||f):- e~ 4l wis) (—1.2.26)

56, the approximating solutions belong to G (0. T, H™M=2(T12)),

Limit of the approximating solution
Trom the above results, the bounded family
(Pes ) € COZTH™ (I2) N GO H™ #(UI)

has a weak’ limit {p, 3} € L™(0. 1" B"™). Let [H(R"), H*' (K"), be the interpolation space of
two spaces TI9 (B and 32(R") o1 51,82 € B and ¢ € (0. 1), We lave

[H.tl {R“). Hs? (IK")],, = Hs)n i1 a)sg{IRn) (4227)
Ry setting w. ‘= (-, 4. ) and choosing &y = 1 — 2, 4a = 11, we get
Ntte [ 2w < 1tz tte | 3407 (4.2.28)

C'onsider now

[w-(ts} — uc(2)lin. 2o

lullcago e 2oy = ltclleorgm 20y + 5up (4.2.29)

{112 Hh =t
Lsing inequality (4.2.28), we get
1

Wu“‘({‘) —ue(ta)|l g - o

I

1 ,, .
< et el Foallu () weleadi

1 1
- ) . ) .
< m“ [0 Bpus (WA + (1= A)dA G o = 81w () — w= (L)l 37

1
< II/ Bt (T A + (1= M)A (T2 [ug (1) — uelta)ll}r
0

< +00.

So, the fanily {(p..4) 0 < ¢ < 1} is bownded in (0, T JI™ 24 (11%)) for cach o ¢ (0.1),
Applying Ascoli’s theorem. there exists a subsequence {(A.,, vy, )} aof the sequence {(4,. 1), 0 <

£ < 1} such that
(B, ¥e,) = {p.w) in CO.T CHIT?Y) (4.2.30)
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since the inchmwion =20« 07 is compact for snwll o nnd 2 > n/2 + 2. Taking the lbmit
£; = 0 in the systein (4.2.12), (1.2.13), we conclnde that (5, ¢) is a solution of the svstem (4.2.10),
(4.2.11). Moreover, if 3.4 > . taking the integral of the inequality (1.2.2)) with respect to f, we
see that the solution (3, v) alsv belougs to L*(0, T; H™ ' (11%Y). ‘Taking the I~ —norm of the
gystem (42,10}, (12.11) and nging the same computahion as in the proof of Lenmug 4.2.2, we get

1Ahore + + A e s S COF s 1 [l 00)
FCU e+ Pl ) (1w~ + s ).

This incyuality implies that {3.4:) also belongs to A'(0,7", H™~{11?)}. Since the function a(p)
is smooth and Invertible fur p > 0. the eshiinates on j immediately transfer to p. ‘I'he proof is
complete,

Proof of Lemnma 4.2.2
We recall the following leunua (.11 in 88 )
Lewma 4.2.3. For aeny puir of funchion f ¢ in IPP(RAMYN LY (R1), we have

£l < CUS N gl + Nalls 1Nl 2o ) (4.2.31)
If additionally. we suppose that ¥ f C L™ (X7, we have for uny a € N, with |aj =3 1y 0, —m
ND*{(Fgy = FDglles < CUSlam gl = Mgl o] VSlh=), (1.2.32)

where D _ 0 _y

PRRRIIT AL

The terwis Iy, 13, Iy have been estimated in [43].
Estimule of 1y Since J* comniutes to D and is self-adjoint, using Green's formula, Lemma 1.2.3
und Canchy-Selnvartz inequality, we gel

Lial = Bal(D* {0 (F* ) V5. — 0 MI%5 )0 D (J* 3), VD" J* )]
< BlD (0 (T VI B — wT TP (TR IV DT

< CLI pellar VT bl | CT* pellgym
. Bafp o .\ L o
< T“VJ'Pz”frm + O e o IV IB T
B2 fo o il re 30 ‘s ;
= THVJ Bellipe U CUS BT + 1 2 L YT e Fir = + 15wl

where the third ineguality uses Lemma 4.2.3 and the fourth one nses Young's nequality AR <
CoA? + B2 J(A05) with Cy = B2 fy-

Estimale of I, Ig: Due to similarity of f5 and 7, it suffices to estimate f5. By using Green's formula,
Lemma {:1.2.3) and Canchy-Schwartz’s iuequality, we have

15 = B)(D*(JVAW ) Va~ ' (Jp.)). DO e
CIvD* I p 21D (VA 8:) - Va= L (I 5:) 1

IA

< CIUD I VA B - Vam (T B s
< CIVDASEp a2 lld=pe [ | el
84§ R .. . .l S
SOOI 1 U e Ty + U0 T el 178 i~ ).
Estimate of 15 The Lenns Iy s estimated similarly ag I, Is. We get
Ll - BBND (VI - VaT (JTH)). D)
< i |VD“er'J:||r‘2||D”_]{VJSL'J; - Vn'l(J’ﬁr_)) |2
< CIVD I el 2] T Belligm |70 lwres + WT5 e[ 19 (172 Allry 1.2}
vy ; (1 TE A L o e
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Existence of solution for o system of repulsion and alignment

4.3 Simulations

In this section, we will compare the theoretical ancd numerical results of the system (1.1.1), (1.1.2)
in two ditmensions. Num¢rical methods for wiis system have been presented in chapler 3. We recall
that this svsten is not conservative beenuse of the geametric constraint |€, = 1. However, we
conld consider this system as the zero relaxstion limit of the conserved one. This idea has heen
introduced by Motsch and Navoret [71) to numerically solve the SO model. By this way, the
nmmencal solutions af the SOHR model are considered s those of the following relaxation system:

Hp + o (PUT) — . (4.4.43)

DAY + Vo (VI R O1) + Voplph) = a8, (p"0) = (1 = a2y, (4.3.34)
U
U= 300 8BV 0 V=300 800 (4.3.35)

where e gevmetric constraint [ = 1 s removed. The seheme proposed Tor this model can Le
formd in cliapter 3.

n this section, we will study the role of additional terms (the texms ¥ in U and V) in the SOHR
model (o the SOH wode! obtained in [29]. Initial condition are eliosen as follows.

fo= l: Q" = (CGS 9“. s1n 9[)), (4336)
arctan( o ) ;:{ign(:ﬂ]] if o #£0
Ly
B2 1) = < iy =0 g > 0 (4.3.37)

Oilay =0nnd yy <0
where

wy = r-Lfdogi—y Ly/s i w<Ly/2,y < Ly/2,

vy == =y —Ly/d IF 22 Laj2oy £ Ly/2
vy=a =L g=y =304 o 22,2 02 Dy /[2,
vy -cax—3 /4y y—3L,4 i =2 L. f2y=L,/2

and L, . L, are the length of domain in v y-directions, respectively. Simulation will be performed
with perviodic boundary conditions in bhoth directions. In order to avoid the coniplexity of houndary
behaviors, we choose L, = L, = 10 Parameters, which are fixed for all sinulations if not diffevently
stated. are Az - Ay — 0.2, At -.00L, 3y - 0.8, B3 — 08, ¢y -- Gl,ea — 0.2, 0.1, We let Lhe
parameters [3,, 3 vary.

Fivstly, we will verify the rale like a non-linear difusion texm of the texrm - 3aVp in the expression
of the velocity U by shinulations. Tuserting this term in egquacion (4.1.1) results i - 3A(p?/2).
For this purpose. we will perform simulations for different values of 5,. To do so, we fix 8y = 0,
and let 3y vary. Figure 4.1, 4.2, 4.3 illustrate the solulion of the systen (4.1.10), (4.1.2) for 4y — 0,
By — (0.6 and F, — 2, respectively. It is elear that this term contributes to prevent the formation
ol high concentration of the deunsily p.

Sceondly, we will investipate the role of the ternt Vg in the expression of the velocity V' oin the
system (4-1.1), {4.1.2) by sinwlations. For this purpose, we fix the coefficients 32 = 0 and let 34
vitty, Simulations are performed lor some cases ol coellicients which are shown in the table 1.1,

In figures 4.4 4.5, 4.6, we report the density p (left) and the mean orientation € {right) of the
SOHIRR model at time T — 1.55 in Lhe cases 1, 2, 3, respectively. We observe that in the alisence
of the porous term f3;, when 3y > #34.,, a critical value, the solutien becomes singnlar. When
B4 < Faee. the solution is regular. For 8 = 0.3, the solulion is regular (see figire 4.4) hut staris





















Part I1I: Experiments






Chapter 5

Collective motion of self-propelled
robots

This chapter is & work in collaboration with P Degoned, F. Plonraboué, E- Climent, G. Dimnareo,
0. Praud, N. Wang. The idea of stadying collective nmation of hexbugs is due to Degond {7). Wany
was i clrge of the numerical codes to find the positions amd the orientations of the hexhugs. The
numerical model far the hexbugs is due (o Wang. 1 1ouk care of perfonnng all experiments with
Praud and Plouraboué. I have also done data processing, developed and simulated (he numerical
iodel thanking to Degond and Plouraboué, ‘Then all of us lave met (o finish this work.

5.1 Introduction

Large-scale structures van be observed 1n systems of selt-propelled particles with local interaction
such as fish school. spernt eell, hnman crowd, ete. Many madels have been proposed Lo capture awd
deseribe such phenomena. Lhe Viesek model [937 is considered as the simplest inodel wlhich exhibits
collective behavior. In this modcel, point particles move with constant speed and rend to align their
direction to the average direclion of Lheir neiglihors. This model also exhibits phase transition swhere
all particles move in the same divecrion. Morcover, elongaterd selt-propelled particles interacs by
sterie intevaction as in {73 alsa yesnlting in aligiuent. In j64], the authors studied with experiments
and simulatiaus collective behavior of vibrated polar rods. Thev shiowed that sell- propelled pariicles
aggregate at the boundary of arena. A similar phenomena also oveeurs for cibrated polar disks
'35, 36, 05

I thiz work, we veport on experiments condneted ou simple tobols (hexbugs) and sunulations where
clongated polar selt-propelled particles are used (see Agure 5.9). We find a similar phenomena as
A5, 6] ohserved for vibrated polar particles. After some transient tinie, the bugs aggregates and
collectively align perpendicularly 1o the domnain houndary, This phenomenn ocors even with small
packing fraction. In order to model this collective behavior. we build a microscopic miodel in which
particles interact through voluine exclusion and chaunge their angular velocity as they hit a wall
ar collide. The amplitude of angular acecleration depends on that of repulsive force Our maodel
iy able to reproduce qualitatively the behaviors of liexbugs. Nost of our findings, are shmilar to
that of Ciami et coauthars [30], a reference that we found lately. (30} also performed experinents
and sinulations an elongated sell-propelled robots i civenlar confined domain, wsing individual
tracking mid simulations. Thev provide a phase diagram for the collective pattern of motion with
three states: Swirling, stasis and disordered. "Lhe (irst phase correspounds to the formation of mobile
clusters near the boundary with local orientation close 1o tangent. The second ane, is the same as
the first one except for the chisters are non-mabile and orthogonal to the local tangent. Finally
the disorderad phase corresponds (0 ho apparcut collective structures, In the phase space they
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(a) 20bugs (b) 30Lugs

Figure 5.5 'This Apure illuserates the motion of clusters along the border [or vne of e experimental
replications with 20, 30 bugs in the secand ring using a space-time diagram. The angular position of
cach clusters frontier has been segmented and represented in black (no clnater) and white (cluster)
wnapges. Horizontal axis shosw ealues of angle ¢ in polar coordinates and vertical axis is L,
running downwards. As Lhme goes by, one can see that larger and larser clusters cinerge from the
dynamic, so that after a transient, only one bip drifting chister i3 form, the velocity of which is
related to the lacal slope of the white stripes.

dwming collisions as repulsive forees acts on each particle. Furthennore, the total dinmensionless time
T — 20 seconds hag been chosen g0 as to match the one uged in the experimenta (it has been made
dmiensionless by convective time v = 61y /g whare iy, vp ave the buy length and the bng speed,
respectively.

Pavameters of Lhe microscopic model have been chiosen as follows: vy = 0.5, Fy =50, A = 7,
B3 = 1.5, » = (1.205. Figure 5.6 shows size distrihution and litetime distribution of clusters for both
experiment and model with 20 (ligure 5.6n) and 30 bugs (figure 5.061).

Tlis figure shows a excellent niatell between the model and the experiment for the size distr-
hution of clusters. Llowever, the density of the Lifetiine of chisters obtained fram experiments is
more concentrated near zeros (lian (he one obiained from simulations.

Figuies 5.7, 5.7b show lifetime distribution in log-log seale with different number of bugs for
hoth the experiments and the madel, respectively. 'T'he ohsevved behavior is close to a power-law
distribution, whose stope simikn Irom oue experinwend 1o another one and close to 2, so that the
slope lovks independent. of {hie bug nnmber.

I'lig is the signature af a universal dynamics to reach the stacking phase, so that we found that
(hwe stacking plase establishinent follows a eritical law whose exponent does wot depend on the
distanee to the eritieal ovder paranieter (the eritieal density) smee the exponent weakly depends
on the bngs number for a given arena. It is striking to observed that the exponent found from the
stimulations is very siimilar to the one found from thic experinents.

Figure 5.5 shows mean speed as function of inverse mean size of clustera, \We just compute
speed for clusters that liletinie is inorve than 2 seconds. This figure shows thal the larger wean size
of clusters is, the smaller menn speed is.

5.3 Discussion

In this work, we have studied experimentally the cuergence of clusters of the hexbugs confined
iuto an mmmtar donain to 1each a steady collective motion. We show the stacking phase which s
clnse to the static phase of Giomi et al [50] so that self-propelled elongated particles can exhibit
new organization of wotion where the particles align orthogoually at the Loundary of the arena
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{a) A bug attached tag (b) a tag

Figure 5.10: A bug is labelled by a tag.

5.4.2 Data analysis

Images recorded for each session were analyzed according to the following data:

¢ We assigned a code number identifying for each bug and this number was fixed throughout
a session,

s Data of each bug consists of the number of frame, its position and its orientation according
to this frame.

e The position of the centre of the ring.

All recorded images were converted to binary images with a given value threshold. Each bug
is correspond to a connected component of binary images. The position of the bug was described
as the center of mass of the connected component with no holes. Similarly, we also compute the
center of mass of the cirele which allows us to define the orientation of the bug. In order to find out
to which bug each connected component is related in the library, we compare it to all the bugs in
the library from a pixel based ervor distance. Error distance of this connected component to each
element in the bug library is computed by the sum of all pixels where two images are different.
The code number of this connected component is the index of the bug in the library for which
the obtained ervor distance is minimum. Because of the noise, the program could not find out the
position of some connected components or, in some case error distance might have several minima.
In these cases, the program was run with different image thresholds. It the program still find no
solution, the bug position in these frames were computed by linear interpolation. Sum of all frames
for each bug that we could not find out the position is always less than 5%.

5.4.3 Clustering Method

The collected data give access to the two dimensional Cartesian coordinates (2, yi. ;)(t") of each
bug. In polar coordinate, the position of each bug is defined by a pair (i, ;) (#™)

T; = 1i COSP; + Toentery i = TiSINP; + Yeenter (5.4.1)
where Teenters Yeenter 15 the center of the ring in the Cartesian coordinate and " = nAt with
At = (. 1s.

Cluster: Two bugs belong to the same cluster at a given moment of time if their positions
satisfy the following conditions

& They move close to outer boundary
s They move close together

® Their lifetime needs to be more than a time {5,
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The boundary condition: The bowulary vondilion chosen is repulsive. When a1od is close
to the bowlary of the ring, a repulsive Figydury acts on this rod make it change the orientation
of the motion. 1his foree is computed by

Rt Huul =], .
Fﬂ]'t‘ (1- -----)I-,-—u) if Rout — |21 < Ypoun
. N = x x| - ﬁ-m S g
anl"lda""'("'J - Ft)m(l - %) i |3'l - Hm < Phoun {O'—Lm

0 otherwises,

‘The parameters: In ovder to compare some cluster chavacteristics of the experiment with
those of the model, we perforniu sitmulations for the model. The parameters are chosen as followings:
rp =00y =05, 0 =3 A=7 Fy =50, r =0.205. rypen = 0.105, 3 = 15.my = 1. This leads
to chose At = 10 7. Indeed, parameters ;3 should verify Af < 1/3 so that. the time step At
periits Lo capture the angular relaxation time 1/ due to the friction parameter . Similarly,
since the divnension of A denoted by [N = m/T and m = nm, = 3, we set 8/ a typical relaxation
time for velocity, which shonld be c¢hosen as 3/A > At (here 3/7 = 107%). Tinally, there is
a third characteristic thne in (be muodel, provided Ly the angular relaxation (5.4.4), given by
T ~ /iy /Py and the thue step shonld also verify At & \/mnry/Fy. which i our case given
for m —= 34, ry = 0.1, Fy = 50, is verified since 1/7 3 1073, To ensure packing fraction being
equal between simulationg and experituents, we chose R, — 1.2, R, — 2.4 for the first ring and
Rin - 145, Rpue — 125 for the second riug. With these choiees, the niodel ran be consider as an
overdamped nodel.



Conclusion

In this thesis, we have studied Ulicoretically aud nmuerieally wiodels of self-propelled particles such
us fish school, sperm cells, etc. In chapter | we have derived hydradynamic models for systeins of
nosy self rataiing parlicles in plane. The particles have angular velocities snd interact through
alignment rule, In vhe first one where proper vofation is small compared with the ahgnment interac-
tion. In this 1egime, the hydrodynamic limit yields the SOH (Self-Organized Hydrodynanic) inodel
with an addition term frown (he angular velocity. In the second one, where the proper rotation is
of the same order s the ahgnment interaction This changes the equilibrinm velacity distribution
of the particles. In order to preserve the propensity of the particles align with tlicir neighbors, we
modily the interaction foree. The obtained hydrodynamic model involves significant modifications
compared with the SOH model.

We have also proposed a new model for motion of sell-propelled particles which interact through
alignment and repulsion. In chapter 2. & macroscopic macel (whiceh is called Self-Organized Hydra-
dynanic with Repulsion or SOHR miodel) have been derived from the corresponding nicroscopic
madel. To numerically validate this hydrodynaiic madel. we have studied its nunerieal solitions
and compare them with thase of the particle model. Ixistence of this continuunt model has been
considered for hoth theory and simulations in chapler 3. \Ve have proved the local existence of
solution in twe dimensions, On the other lund, we lave performed sinmdations to compare the
numerical and theoretical results,

Finally in chapter -1 we have investigated collective hehaviors of simple robots (hexbug) into
an amilar domain. Qur experiments display two phases: stacked and disordered where stacking
phase appears when hups are loenally align perpencicular to the houndary whereas they genily
nove along it. Somea characteristics for clusters like size and lifetime have invesligated. We also
built a microscopic model which is able to reproduce gquantitatively this phenomena.

There are some direetions in which we can extend known works in the literature. In the chapler
2, nerspeactive inciude a deeper analytical study of the models, such as proving linearized stability
in general coase and local well-posedness of aimooth selnzions. Simulations will he performed to
validante the models.

We have derived macroscopic modcels from microscopic models via kinetie equations. Howeves
all wean feld linits and hydrodvnamic limits are formal. 'Lhicredove, it is necessary to study theo-
vetical framework for these lmits, 1L would also be irlevesting o {ind wenk solution of the SOHR
model,

For futiy stiudy we would like to consider binarvy collision, collective properties of systein of
hexbugs such as L prabability density function of angle before und alter collision. We expect that
this ntndy will develop a model of mteraction belween hexbogs based on experiniental data.

It would be interesting Lo study collective heliaviors from kinelie equations. We could perform
simulations for kinetic equations ro compare with those of microscopic models and macroscapic
models.
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Résumé

Dans cette thése, nous étudions le comportement collectif de particules anco-propulsées.
Ce travail comporte trois parties.

Dans la premiére partie, nous considérong un modéle individu-centré pour les particules
d’auto rotation inleragissant par ure régle d'alignement ¢t étudions leurs limites macro-
scopiques. Deux cas de scaling ont été étudiés. Dans le cas de petite vitesse angulaire, le
modéle vbtenu est une légére modification du modéle "1lydrodynamique auto-organisé’ qui
avait éré introduit précédemment par Degond et Mostch, Dans le cas de grande vitesse
angulaire, le modéle obtenu est plus compliqué. Une étude prélimilaire de la stabilité
linéaire & &Lé également proposéc.

Dans la deuxidme partie, nous étudions un modeéle macroscopique du systéme de par-
ticules auto-propulsées interagissant avec leurs voising par une régle d'alignement et de
répulsion. Nous fournissons une validation numérique de ce modéle en le comparant avec
le modéle individu centré. L’existence de solutions du modelé macroscopique & deux
dimensions est prouvée.

La cderniére partie est consacrée 3 ’étude expérimentale du comportement collectif de
robots auto-propulsés dans une enceinte annulaire confinée.

Mots clés: Mathématiques et Biologie, Modéle Individu Centré, Equations Ciné-
tiques, Modéles Macroscopiques. Solutions numeriques, Suspensions actives, Mouvement
collectif.

Abstract,

In this thesis we study collective motions of sell-propelled particles. This work consists
of three parts.

In the first part, we consider an Individual-Based Model for self-rotating particles
mmteracting through local alignment and investigate its macroscopic limit. We study the
mean-field kinetic and hydrodynamic limits of this system within two different scalings.
In the small angular velocity regime, the resulting model is a slight modification of the
'Self-Organized [lydrodynamic’ model which has beer previously introdnced by Degond
and Motsch. In the large angular velocity case, the macroscopic model obtained is more
complex. A preliminary study of the linearized stability is proposed.

In the second part, we study a macroscopic model for a system of self-propelled par-
ticles which interact with their neighbors via alignment and repulsion. We provide a
numerical validation of the continuum model by comparison with the particle model. The
existence of local solutions of this macroscopic model is also studied.

The last part concerns experimental investigation of collective behavior of simple
robols in a conlined ring,

Key words: Mathematics and Biology, Individual Based Model, Kinetic Lqualions,
Macroscopic Models, Numerical solutions, Active Suspensions, Collective Motion.
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