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ABSTRACT 
Here, we ask the question, “How much information do available epigenomic data sets 

provide about human genomic function, individually or in combination?”  We consider nine 

epigenomic and annotation features across 115 cell types and measure genomic function by 

using signatures of natural selection as a proxy.  We measure information as the reduction in 

entropy under a probabilistic evolutionary model that describes genetic variation across ~50 

diverse humans and several nonhuman primates.  We find that several genomic features yield 

more information in combination than they do individually, with DNase-seq displaying 

particularly strong synergy.  Most of the entropy in human genetic variation, by far, reflects 

mutation and neutral drift; the genome-wide reduction in entropy due to selection is equivalent 

to only a small fraction of the storage requirements of a single human genome.  Based on this 

framework, we produce cell-type-specific maps of the probability that a mutation at each 

nucleotide will have fitness consequences (FitCons scores).  These scores are predictive of 

known functional elements and disease-associated variants, they reveal relationships among 

cell types, and they suggest that ~8% of nucleotide sites are constrained by natural selection.   
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INTRODUCTION 

Recent technological advances have enabled the generation of massive quantities of 

genomic data describing natural genetic variation as well as diverse epigenomic features such 

as chromatin accessibility, histone modifications, transcription factor binding, DNA 

methylation, and RNA expression1-5.  However, the capability to gain insight into key cellular 

functions from this noisy, high-dimensional data has considerably lagged behind the capacity 

for data generation.  Indeed, while the available data allows the vast majority of the human1 

and mouse2 genomes to be associated with some type of “biochemical function”, often in a 

cell-type-specific fashion, it is unclear—and highly controversial6-9—to what degree this 

biochemical function reflects critical roles in cellular processes that have bearing on 

evolutionary fitness, as opposed to representing, say, noisy or incidental chromatin 

accessibility, protein/DNA binding, or transcription.  This uncertainty about the true biological 

significance of many high-throughput epigenomic measurements is a critical barrier not only 

for interpretation of the available data, but also for prospective decisions about how much new 

data to collect, of what type, and in what combinations.  

Numerous computational methods have recently been developed to address the 

problem of extracting biological meaning from large, heterogeneous collections of high-

throughput genomic data by a variety of different strategies.  These include methods that 

cluster genomic sites based on epigenomic patterns10-12, machine-learning predictors of 

pathogenic variants13,14 or molecular phenotypes15-17, and methods that combine epigenomic 

data with patterns of polymorphism or cross-species divergence to identify regions under 

evolutionary constraint18-20.  Our contribution to this literature has been to develop a 

probabilistic framework, called INSIGHT 21,22, for measuring the bulk influence of natural 

selection from patterns of polymorphism and divergence at collections of target sites, and 

methods that combine this framework with epigenomic data to estimate the probability that a 

mutation at any position in the genome will have fitness consequences23,24.  Our predictors of 
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fitness consequences, called FitCons and LINSIGHT, are competitive with the best available 

methods for predicting known regulatory elements and disease-associated variants, but, 

importantly, they also provide insight into how much of the genome is influenced by natural 

selection and the distributions of fitness effects at selected sites.  Nevertheless, neither our 

methods, nor other available methods, directly address questions about the global information 

associated with epigenomic data, such as, “How much did data set X reveal about genomic 

function?” or “How much new information will experiment Y provide?”  

Here, we adapt our evolution-based INSIGHT framework to directly address the 

question of how much information about genomic function is provided by general epigenomic 

“features,” including both genome annotations and high-throughput epigenomic data sets.  The 

premise of our approach is that signatures of natural selection in DNA sequences can serve as 

a proxy for genomic function by reflecting fitness constraints imposed by cellular 

functions.  We develop a novel information-theoretic framework for simultaneously clustering 

genomic sites by combinations of epigenomic features and evaluating the strength of natural 

selection on these sites.  In addition to allowing us to evaluate relative amounts of global 

information provided by these epigenomic features, individually and in combination, this 

approach produces a collection of 115 cell-type-specific genome-wide maps of probabilities 

that mutations at individual nucleotides have fitness consequences (FitCons maps), which we 

demonstrate are richly informative.  Together, our analyses not only provide a guide for data 

interpretation and experimental design, but they also shed light on the fundamental manner in 

which biological information is stored in the genome.    
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RESULTS 

FitCons2 finds a clustering of genomic sites that maximizes information about natural 

selection 

The main idea behind the FitCons2 algorithm is to recursively partition sets of 

genomic sites into two subsets, according to their associated epigenomic and annotation 

features (Figure 1).  For example, at a particular step the algorithm might subdivide a given set 

of genomic sites, itself defined by a previous partitioning, into sites showing high and low 

transcriptional activity, based on counts of aligned RNA-seq reads, or those showing high and 

low chromatin accessibility, based on DNase-seq data.  At each step in the algorithm, all 

candidate partitions of all currently active sets are considered, based on a collection of pre-

discretized data types (Figure 1a&b).  The algorithm selects the decision rule for partitioning 

that most improves the goodness of fit of the INSIGHT evolutionary model to the set of 

genomic sites under consideration when the model is fitted separately to the two proposed 

subsets rather than once to the entire set (see Methods).  The procedure terminates when no 

partition improves the fit of the model by more than a predefined threshold (Figure 1c).  In 

this way, the recursive algorithm produces a K-leaf binary decision tree that applies to each 

genomic site, causing the site to be assigned one of K labels based on its combination of local 

features (Figure 1d).  When applied to all sites, the algorithm defines K clusters of genomic 

sites that reflect the natural correlation structure of both the functional genomic and the 

population genomic data.  Importantly, the identified clusters tend to be homogeneous but 

distinct from one other in terms of their influence from natural selection on the relatively 

recent time scales measured by INSIGHT, based on both human polymorphism and divergence 

with nonhuman primates.  The overall influence of natural selection on each cluster is 

summarized by the associated estimate of the INSIGHT parameter ρ, which can be interpreted 

as the probability that a point mutation will have fitness consequences.  As in the original 
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FitCons algorithm, these ρ estimates are mapped back to the corresponding genomic sites and 

treated as nucleotide-specific fitness-consequence (FitCons) scores (Figure 1e).  

When evaluating candidate decision rules, the FitCons2 algorithm measures the 

goodness of fit of the INSIGHT model in terms of its log likelihood.  The negated log 

likelihood, however, can be viewed as an estimate of the entropy of the probability 

distribution induced by the model, which in this case can in turn be viewed as a measure of the 

genetic entropy in a human population, generated and maintained since our divergence from 

our non-human primate ancestors (see Discussion and Methods).  Therefore, the increase in 

log likelihood associated with a decision rule in the FitCons2 algorithm can be interpreted as a 

reduction in entropy, or equivalently, as a measure of the information gain associated with the 

corresponding bi-partition of genomic sites.  This quantity can further be interpreted as an 

indirect measure of information about genomic function in humans, under the assumption that 

the tendency for natural selection to constrain genetic variation is a reasonable proxy for the 

functional importance of DNA sequences.  Thus, the recursive bi-partitioning algorithm finds 

a clustering of genomic sites that maximizes information about natural selection in humans, 

and approximately maximizes information about genomic function.  Moreover, as explored 

below, the algorithm naturally provides a quantitative measure of how much information is 

contributed by individual or combined decision rules or feature types.   

 

An analysis of Epigenomic Roadmap data yields an informative decision tree and fitness-

consequence maps for 115 cell types  

We applied FitCons2 to functional genomic data for human cells from the Roadmap 

Epigenomic Project5, together with population genomic data previously compiled for 

INSIGHT 22-24, consisting of polymorphism data from 54 unrelated humans and phylogenetic 

divergence data from alignments of the chimpanzee, orangutan and rhesus macaque genomes 

to the human reference genome.  (Larger data sets of human polymorphism data are now 
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available but have negligible impact in this setting; see Methods.)  To summarize the 

Roadmap data and associated genomic annotations, we made use of nine feature types 

spanning a broad range of biological processes, levels of genomic resolution, and degrees of 

cell-type specificity, including RNA-seq, DNase-seq, small RNAs (smRNA), chromatin states 

(ChromHMM), annotated coding sequences (CDS) and splice sites (Splice), transcription 

factor binding sites (TFBS), and predicted DNA melting temperatures (MeltMap) (see Table 

1).  The cell-type-specific “Epigenomic” features were collected separately for each of the 115 

karyotype-normal cell types represented in the Roadmap Epigenomic Project.    

The recursive FitCons2 algorithm was applied to these data as described above, 

except that a single decision tree was estimated by averaging across all cell types when 

evaluating candidate decision rules (see Methods).  The algorithm identified 61 classes, each 

defined by a distinct combination of epigenetic features and selective pressure (Figure 2 and 

Supplementary Tables 1 & 2). Importantly, while each of these 61 classes is associated with a 

single estimate of ρ (representing its FitCons2 score), each class corresponds to a different set 

of genomic sites in each cell type, owing to differences in the cell-type-specific 

features.  Therefore, when these class-specific estimates of ρ are mapped to the genome, 115 

cell-type-specific FitCons2 maps are obtained.  (These maps are available as genome-browser 

tracks at http://compgen.cshl.edu/fitCons2/.) 

The decision tree estimated by FitCons2 (Figure 2) is richly descriptive about the 

distribution of evolutionarily relevant information across the human genome.  Not 

surprisingly, the first partition the algorithm selects (node #1 in Figure 2) is between about 31 

Mbp of annotated protein-coding sequences (CDS; ρ = 0.641) and the remaining noncoding 

sites (ρ = 0.067) in the genome.  The partitions at the second level are based on ChromHMM 

states.  In noncoding regions, the second split (node #3) is between a diverse collection of 20 

chromatin states that are associated with regulatory and transcriptional activity (ρ = 0.14) and 

the remaining five states associated with repression, quiescence, or heterochromatin (ρ = 
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0.055).  In coding regions, the second split (node #2) is between chromatin states that are 

associated with active transcription (ρ = 0.70), and ones that are not (ρ = 0.58).   

Beginning at the third level in the tree, the partitions become highly dependent on 

previous splits.  For example, in noncoding regions labeled with regulation-associated 

chromatin states, which tend to fall near exons, the next split (node #6) distinguishes a small 

set of nucleotides (685 kbp) that are associated with splicing and display exceptionally strong 

constraint (ρ = 0.88) from the remaining nucleotides (ρ = 0.14).  Subsequent splits in this 

subtree make use of MeltMap (node #13), RNA-seq (node #18), chromatin states that identify 

CDS- and UTR-adjacent sites (node #12), and annotated TFBSs (nodes #16 & #17).  Some 

similar patterns are observed outside concentrated regulators in noncoding regions, but here 

MeltMap is used earlier (node #7; in part as a guide to promoters and UTRs), splice sites show 

up later (node #15), chromatin states are used to identify promoters (node #14), and RNA-seq 

does not appear, presumably because these regions tend to be farther from exon 

boundaries.  Interestingly, TFBSs are particularly informative in combination with promoter-

associated chromatin states (nodes #14 & #19), which signal cell-type-specific activity.  In 

coding regions, the third level in the tree distinguishes “high information” positions (such as 

start codons and 1st and/or 2nd codon positions) from “low information” positions (nodes #4 

& #5).  The subsequent splits in this subtree make use of information such as RNA-seq and 

overlap with splice sites, all features that are naturally more informative inside coding regions 

than outside. Notably, exons with high RNA-seq signal are found to be substantially more 

constrained than those with lower RNA-seq signal (nodes #8 & #10), consistent with previous 

findings25.   Altogether, FitCons2 identifies a diverse collection of clusters in the genome, 

ranging in size from very small (~60 kbp) to very large (the “NULL” class [58] accounts for 

over 1 Gbp), and with ρ values from <1% to 93%.   The information-based algorithm naturally 

finds tradeoff between large clusters with weak signals of constraint and small clusters with 
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strong signals of constraint, both of which can produce large aggregate reductions in entropy, 

and it also discovers highly informative combinations of features.    

 

A few genomic features contribute most of the information about selection 

The reduction in entropy across the entire decision tree, measured at 58,759 bits, can 

be interpreted as the total information about selection (and, indirectly, about genomic 

function) provided by all of the available functional genomic data and annotations.  Moreover, 

feature-specific contributions to this total can be obtained by summing over all nodes 

(decision rules) that make use of each feature.  These estimates (Figure 3a, orange bars) 

suggest that 62.9% of all of the available information is attributable to CDS annotations (as 

reported above), followed by 11.0% from ChromHMM, 8.4% from MeltMap, 7.2% from 

Splice, 4.8% from RNA-seq, 2.9% from TFBSs, and < 2% from each of DNase-seq, WGBS, 

and smRNA.    

The greedy algorithm used to construct the tree, however, will tend to overestimate 

the information attributable to features selected early in the process at the cost of features 

selected later.  Therefore, we also considered (1) the marginal contribution of each feature in 

the absence of all others (gray bars in Figure 3a); and (2) the reduction in the total information 

when each feature is removed from the analysis (blue bars).   The marginal method attributes 

36.6% of all available information to RNA-seq, whereas the reduction method finds that only 

3.7% of the available information is specific to RNA-seq.   This difference reflects the strong 

correlation of RNA-seq with CDS annotations.  Under the marginal method, the contribution 

of ChromHMM rises to 17.7% (from 11.0%) and that of DNase-seq to 5.9% (from 1.8%), 

suggesting substantial correlation of these covariates with one another and/or CDS and RNA-

seq.  Under the reduction method, the contribution of ChromHMM falls to 3.3%, that of 

DNase-seq to 2.0%, and that of Splice to 0.3%, with other features being less dramatically 

affected.   Altogether, this analysis shows that the largest share of information about sites that 
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are under selection comes from CDS annotations and RNA-seq data, with ChromHMM 

coming next and DNase-seq third, but these features are highly correlated with one 

another.  The other annotation types contribute smaller amounts of total information but are 

less correlated.  

 

Some genomic features exhibit synergy  

The FitCons2 framework also allows us to ask if there are combinations of features 

that exhibit synergy, in the sense that they yield more total information about natural selection 

in combination than they do individually.  We looked for synergy using a simple pairwise 

measure defined as the excess in information, in bits, obtained by considering a pair of 

features together in comparison to the information obtained by considering each feature 

separately (see Methods).  This measure is positive when the combination of two features 

allows for a better explanation of genome-wide variation as measured by INSIGHT, and it is 

equal to zero when this combination offers no improvement over the individual features (as 

when the features are nonoverlapping).  This measure of synergy can also be negative if two 

features provide redundant information about how the genome should be partitioned to 

account for patterns of variation (as when they are strongly correlated along the genome).  

We found that most pairs of annotations displayed at most weak synergy (Figure 3b), 

probably because they tend to identify largely nonoverlapping regions of the genome, and/or 

to account for few bases overall (as with TFBS, smRNA, and Splice).   By contrast, pairs of 

cell-type-specific epigenomic features often displayed substantial synergy.  DNase-seq, in 

particular, showed synergy with all other epigenomic features, and particularly strong synergy 

with ChromHMM.  In terms of total numbers of bits of synergy, DNase-seq dwarfed all other 

features.  ChromHMM and WGBS also displayed substantial synergy, but at a considerably 

lower level than DNase-seq.  Interestingly, RNA-seq exhibited negative synergy with all 

epigenomic features except DNase-seq, apparently due to high levels of redundancy.   
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When pairs of annotations and cell-type-specific epigenomic features were 

considered, synergy was generally negative or weakly positive, with the exception of DNase-

seq, which showed strong positive synergy with all annotations, likely because it signals cell-

type-specific activity (see Discussion).  In addition, ChromHMM and WGBS each showed 

weak positive synergy with several annotations, including TFBS and CDS.  Altogether, 

DNase-seq stands out in this analysis as the largest single contributor to synergy, with respect 

to both annotations and other epigenomic features.  ChromHMM and WGBS show some 

similar trends but to a lesser degree, whereas RNA-seq appears to be the most redundant with 

other features.  These observations have implications for future efforts in data collection and 

analysis (see Discussion).  

 

Most entropy derives from mutation and drift  

The entropy measured by FitCons2 reflects a balance of mutation (which acts to 

increase entropy) with drift and natural selection (which act to reduce entropy)26-29.     We 

attempted to separate the contributions of natural selection and the neutral processes of 

mutation and drift by applying FitCons2 to a subset of sites assumed to be free from selection 

for our INSIGHT analyses.  To allow for heterogeneity across the genome in mutation rates 

and selection at linked sites, we separately considered such “neutral” sites in each of the 61 

clusters identified by FitCons2 (Methods).   By contrasting the entropy per nucleotide site for 

these neutral sites with the entropy per site for all nucleotides in each cluster, we were able to 

quantify the reduction in entropy (gain in information) specifically associated with natural 

selection per cluster.   

Across the entire genome, we estimated the neutral entropy per site to be 0.1234 bits, 

but the actual entropy per site to be 0.1189 bits, indicating a reduction of 0.0045 bits per site 

from natural selection (Supplementary Table 3).  Thus, according to the INSIGHT model, 

natural selection only reduces the entropy in genetic variation that derives from neutral 
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processes by ~3.6%.  However, the relative contributions of neutral processes and natural 

selection differ considerably by cluster.  For example, in cluster 04, which represents splice 

sites in strongly transcribed coding regions, the neutral entropy per site is estimated at 0.0783 

bits, and the observed entropy is 0.0237 bits, a difference of 0.0546 bits.  Thus, in this case, 

most of the available neutral entropy is removed by natural selection.  By contrast, in cluster 

58, the “NULL” class, the neutral entropy per site is 0.1282 bits and that value is reduced only 

to 0.1248 bits (a reduction of 2.7%) by natural selection.  In general, the reductions in entropy 

per site due to natural selection are well correlated with estimates of ρ (Supplementary Figure 

1).      

 

FitCons2 scores are informative about the genome-wide distribution of fitness effects, 

genomic function at individual loci, and relationships among cell types 

The average FitCons2 score per site, across cell types and positions, is 0.082, 

indicating that an expected ~8% of nucleotide sites are subject to natural selection, in 

reasonable agreement with previous measures based on population genetic and phylogenetic 

data23,30-33.  These selected sites include an expected 64% of all protein-coding bases (CDS) 

and 7.6% of all noncoding bases, with more than 90% of sites expected to be under selection 

falling in noncoding regions.   Overall, the highest-scoring positions are in splice sites of 

annotated genes, followed by protein-coding sequences (CDS), TFBSs, 3’ and 5’ untranslated 

regions (UTRs), and promoters, with only slight elevations above the background in other 

annotated elements (Figure 4).  These annotation-specific score distributions are often 

multimodal in a manner that reflects informative combinations of features in the decision 

tree.  For example, the distribution for TFBSs has modes that reflect the partitioning of 

individual motif positions by information content and the combination with DNase-seq 

data.  Similarly, the UTR and promoter distributions have modes reflecting locally elevated 

scores, from binding sites, DNase-seq, RNA-seq, WGBS, and related features. Interestingly, 
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the annotation-specific bulk distributions are highly similar across cell types (Supplementary 

Figure 2), despite considerable differences among the sets of genomic positions they 

summarize.  Thus, while the position-specific FitCons2 maps are highly cell-type-specific, the 

differences among cell types are largely explained by cell-type-specific activity.    

The FitCons2 scores across the human genome can be viewed and downloaded via a 

UCSC Genome Browser track (publicly available at  http://compgen.cshl.edu/fitCons2/).  This 

track reveals elevated scores at many enhancers and promoters as well as genes and it often 

highlights unannotated regulatory elements (Figure 5; see also Supplementary Figures 3 & 

4).  By zooming into the base level, it is possible to observe high-resolution texture 

corresponding to features such as individual codon positions, TFBSs, and splice sites (Figure 

5a-d).  The browser track includes subtracks for the FitCons2 scores in each of the 115 cell 

types, which can easily be compared to assess cell-type specificity.  In addition, the track 

includes an “integrated” score that summarizes the scores across all cell types (see Methods) 

and highlights both cell-type-specific activity and activity shared across cell types 

(Supplementary Figure 5).  This score provides a useful summary when it is not clear to the 

user what cell type is most relevant in evaluating the functional significance or evolutionary 

importance of a given site, or when scores are needed for a known cell type that is not among 

those for which functional genomic data is available.    

While the FitCons2 scores are primarily designed as an evolutionary measure, we 

asked whether they are also useful as predictors of genomic function at individual 

nucleotides.  We evaluated the performance of FitCons2 on two representative prediction 

tasks: (1) identifying bound TFBSs in a cell-type-specific manner; and (2) distinguishing 

pathogenic from benign noncoding single-nucleotide variants (SNVs).  For comparison, we 

also considered the original FitCons23 method (here called FitCons1), two well-established 

measures of phylogenetic conservation (phyloP34 and GERP++35), and several other methods 

that consider both functional and evolutionary genomic information (CADD18, LINSIGHT24, 
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FunSeq220 , and Eigen36).  For the first task, we tested all methods on a high-confidence set of 

55,024 predicted binding sites for 12 TFs based on motif matches and supporting cell-type-

specific ChIP-seq data from ENCODE37, focusing on the H1-hESC and K562 cell-types.  On 

this task, FitCons2 showed substantially higher sensitivity than all competing methods across 

score thresholds.  For example, at the threshold corresponding to a noncoding coverage equal 

to the expected fraction of noncoding sites under selection (7.6%; gray vertical line in Figure 

6a), the sensitivity for TFBSs of the H1-HESC-specific FitCons2 scores is 76.8%, compared 

with 55.2% for LINSIGHT, 50.1% for FunSeq2, 42.1% for Eigen, 39.9% for FitCons1, 31.9% 

for CADD and <30% for GERP++ and phyloP.  Results for K562 cells were similar 

(Supplementary Figure 6).  These differences in performance are largely a consequence of 

FitCons2’s unique strategy for making use of information about cell-type-specific “activity” 

(see Discussion). Nevertheless, the integrated FitCons2 scores perform roughly as well as the 

H1-hESC-specific ones, suggesting that our integration scheme is effective in capturing cell-

type-specific activity even when cell types differ.  

For the pathogenic SNVs, we tested the ability of FitCons2 to distinguish noncoding 

variants associated with inherited diseases in the Human Gene Mutation Database 

(HGMD)38 from likely benign variants matched by their distance to the nearest transcription 

start site.  In this case, we used our cell-type-integrated scores, because the cell-types of 

interest vary by disease and in many cases are not known.  In this test, FitCons2 (area under 

the receiver operating characteristic curve [AUC]=0.650) performs similarly to CADD 

(AUC=0.657) and Eigen (AUC=0.643), somewhat better than FitCons1 (AUC=0.592), phyloP 

(AUC=0.579), and GERP++ (AUC=0.571), but not as well as LINSIGHT (AUC=0.759) or 

FunSeq2 (AUC=0.691) (Figure 6b; see also precision-recall curve in Supplementary Figure 

7).     We also examined variants from the National Center for Biotechnology Information 

(NCBI) ClinVar database39 with similar results, although all methods performed better in this 

case (and especially the conservation-based methods) owing to an enrichment for splice-site 
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variants (Supplementary Figure 8).   Altogether, we find that FitCons2 is reasonably 

competitive with other methods in identifying pathogenic noncoding SNVs, despite its 

different design goals and its advantages in interpretability and cell-type specificity (see 

Discussion).  

Finally, we asked whether the patterns of cell-type-specific FitCons2 scores were 

informative about the relationships among cell types.  To address this question, we performed 

hierarchical clustering of the cell types based on their genome-wide FitCons2 maps (Figure 7), 

measuring pairwise distances between cell types in terms of the sum of absolute differences in 

FitCons2 scores across all genomic sites.  This distance measure is interpretable as the 

expected total number of nucleotide sites under selection (SUS) based on one cell-type-

specific map but not the other (see Methods).  This representation naturally groups the 

Roadmap Epigenomic cell types into ones associated with blood and the immune system, 

internal organs, the digestive system, neural tissues, skin and connective tissue, and stem cells.  

Interestingly, induced pluripotent stem cells show similar patterns of genome-wide activity to 

embryonic stem cells.  Brain and neural cells generally cluster together regardless of 

developmental stage, but within the neural tissue cluster, embryonic brain tissues cluster 

together and separately from adult brain tissues (see Figure 7 and legend). Similarly, fetal 

organ and fetal digestive cell-types form sub-clusters within their respective groups. 

 

DISCUSSION 

In this article, we have presented a method for simultaneously clustering genomic 

sites based on epigenomic features and estimating the probabilities that mutations at those 

sites will have fitness consequences.  Our recursive bi-partitioning algorithm finds clusters of 

genomic sites that not only share epigenomic features but at which mutations also have similar 

fitness effects. In statistical terms, our algorithm can be thought of as a model selection 

procedure that identifies combinations of epigenomic covariates that allow global patterns of 
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genetic variation to be explained by an evolutionary model using the fewest possible free 

parameters.  The algorithm weighs the cost of introducing each new submodel (cluster) 

against the corresponding benefit in improved model fit.  In this way, the procedure resembles 

stepwise variable selection approaches for regression. Unlike regression methods, however, 

FitCons2 is based on a probabilistic evolutionary model and it produces interpretable 

maximum-likelihood estimates of key evolutionary parameters for each cluster, including, 

most notably, the probability of fitness consequences, or FitCons2 score, ρ.  The 

interpretability of the FitCons2 scores—both in terms of the discrete combinations of 

epigenomic features that define the clusters and the evolutionary meaning of the scores 

themselves—represents a key advantage in comparison with other available scores for 

functional relevance or pathogenicity of single nucleotide variants13-20.  Another major 

advantage of the scores is that they can be separately computed for each of many cell types to 

reflect cell-type-specific differences in epigenomic features.  We have made available scores 

for 115 cell types as a UCSC Genome Browser track (http://compgen.cshl.edu/fitCons2/), 

allowing for convenient visualization, comparison with other genomic annotations, and bulk 

downloading of data files.  

Importantly, this method also allows us to evaluate how informative these features 

are, both individually and in combination.  The individual contributions to information, 

predictably, are dominated by CDS annotations, with broad, diffuse cell-type-specific 

epigenomic features such as ChromHMM, RNA-seq, and WGBS, on one hand, and more 

focused annotations, such as Splice and TFBS, on the other, making smaller but still 

substantial contributions.  The RNA-seq feature stands out as being highly informative by 

itself but only weakly informative when conditioning on other features, owing to its high 

degree of redundancy.  In our analysis of combinations of features, DNase-seq shows, by far, 

the most synergy with other features, including both annotations and other cell-type-specific 

epigenomic features.  This synergy appears to result from the ability of DNase-seq to 
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distinguish between “active” and “inactive” elements in a cell-type-specific fashion.  For 

example, the combination of DNase-seq and our cell-type-general annotations of TFBSs 

provides information about which binding sites are, and are not, occupied in each cell 

type.  When averaging over cell types, this combination further allows for a distinction 

between TFBSs active in many and those active in few cell types, which are known to 

experience different levels of constraint22,24.  This property of DNase-seq suggests that it is a 

particularly valuable data type to collect in studies in which the budget for functional 

genomics is limited.  Interestingly, while synergy is not directly considered in our recursive 

bi-partitioning algorithm, the tendency of both DNase-seq and ChromHMM to exhibit synergy 

with other features appears to be picked up indirectly. For example, at several key nodes (e.g., 

nodes #2, #3, #11, #12, and #14 in Figure 2), ChromHMM is selected as the most informative 

feature given previous splits based on CDS, Splice, or MeltMap. DNase-seq has relatively low 

marginal information so it tends not to get selected early in the recursive algorithm, but it is 

frequently used near the leaves of the tree (e.g., to distinguish between classes 44 vs. 45 and 

28–32 vs. 33–38). 

A strength of our method is that it nominally provides cell-type-specific FitCons2 

scores.  It is worth emphasizing, however, that the notion of cell-type-specific “fitness” is 

subtle and potentially misleading.  The FitCons2 scores are ultimately measures of natural 

selection at the level of whole organisms, based on patterns of genetic variation across a 

population.  The probability that a mutation has fitness consequences at the organism level is 

not determined separately in each cell type but rather reflects some unknown integral over cell 

types that depends not only on the importance of the mutation to each cell type but also on the 

importance of each cell type to the fitness of the organism.  Differences across cell types in 

FitCons2 scores actually represent differences across cell types in the way sites are grouped 

by their epigenomic fingerprints, rather than true differences in cell-type-specific fitness 

consequences.  Nevertheless, these cell-type-specific maps are useful in that they effectively 
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capture cell-type-specific activity, allow for sensitive detection of cell-type-specific elements, 

and reflect the global correlation structure of epigenomic data across cell types.  Moreover, 

our cell-type “integrated” scores attempt appear to provide a useful summary of these scores 

across all cell types.  One way of thinking about these “integrated” scores is that they attempt 

to approximate the integral across cell types considered by natural selection, making use of 

our decision tree framework to weight the cell types appropriately (Methods).  

The question of how much information is contained in the human genome is not a new 

one, but that question is typically taken to mean how many bits would be required to encode a 

single “reference” genome.  The answer for the human assembly we have examined here 

(hg19) is roughly 5.7 billion bits for a simple single-base encoding, or as few as 5.2 billion 

bits if dependencies between neighboring bases are considered (see Supplementary Text).  

From an evolutionary perspective, however, this method of measuring information produces a 

vast overestimate, because most nucleotides in the human genome apparently have no effect 

on fitness, and in a sense, are not truly “informative” (see ref. 40 for a related recent 

discussion).  In addition, human genomes are highly correlated with one another and with the 

genomes of other primates: given one human genome, or given a chimpanzee genome, another 

human genome contains much less information that it does alone (roughly 1000th or 100th as 

much, respectively).  Thus, an evolutionary measure of information should consider both 

fitness effects and population-genetic correlations.  With this goal in mind, we use a 

population-based measure of information, and condition on the genome sequences of 

nonhuman primate outgroups (chimpanzee, orangutan, and rhesus macaque).   By making use 

of a set of putatively neutral sites, we can further decompose the information in a human 

population into a neutral component (due to a balance between mutation and drift) and 

component specifically associated with natural selection.  Thus, we are able to obtain an 

approximate measure of the fitness-relevant genetic information in a population of humans, 

generated and maintained since the human/chimpanzee.  
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This decomposition reveals that the vast majority of the population-genetic entropy in 

a collection of human genome sequences, given their primate relatives, can be attributed to a 

balance between mutation and genetic drift, and that natural selection only slightly diminishes 

this entropy.  This qualitative observation is not surprising, since it is well known that a small 

minority of nucleotides in the genome are under selection, but it is nevertheless striking that 

the absolute reduction in entropy, or the information, associated with natural selection is only 

~13 million bits, or ~1.6 MB—about the size of a typical smartphone snapshot or email 

attachment.  Thus, the fitness-relevant genetic information in a human population, given 

nonhuman primate genomes, is minimal on the scale of modern digital information, and 

dramatically smaller than the storage requirements for a single human genome sequence.  Our 

recursive bi-partitioning algorithm can be seen as a way of maximizing the information 

attributed to selection by making use of heterogeneity along the genome and its epigenomic 

correlates.  However, the genomic features result in an overall information increase of only 

58,759 bits (Figure 2), less than half of 1% of the ~13 million bits associated with selection in 

the final model.  As revealed by the decision tree and our downstream analyses, the 

information associated with selection is naturally concentrated in coding regions, splice sites, 

small RNAs, transcription factor binding sites, and other known functional elements, and we 

find that the FitCons2 score, ρ, is a reasonable surrogate for the degree to which selection 

contributes to entropy in each of our 61 clusters (Supplementary Figure 1).  Nevertheless, it is 

worth noting that most information still comes from sparsely annotated regions of the genome, 

because of their enormous size.  This apparent information in noncoding regions may be 

overestimated somewhat in our analysis due to model misspecification, but our estimation 

method should minimize this effect owing to its reliance on a comparison between neutral and 

selected regions. 

Our approach for measuring evolutionary information bears some resemblance to 

techniques that make use of an analogy with thermodynamics to quantify an “entropy” 
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associated with natural selection26-29.  These methods consider the time-dependent distribution 

of allele frequencies in a population subject to selection and random drift as it approaches 

equilibrium (stationarity).  They define an expectation, called “free fitness” by Iwasa26, that is 

guaranteed to increase to zero as the system approaches its stationary distribution.  This 

quantity is essentially a (negative) relative entropy between the time-dependent and stationary 

distributions of allele frequencies.   Similar to in our analysis, the free fitness can be expressed 

as a sum of components related to selection, mutation, and drift (see ref. 29).  However, this 

framework differs from ours in important respects: for example, the free fitness is an 

expectation defined with respect to a hypothetical ensemble of independently evolving 

populations, quantifying it requires knowledge of the population mean fitness, and the 

emphasis in these papers is on non-equilibrium conditions.  Overall, our framework is more 

heuristic and indirect, but it does allow us to empirically estimate an entropy that results from 

a balance between mutation and drift by working from a subset of the genome that is 

putatively free from natural selection, and then to approximate the degree to which selection 

decreases this entropy by examining the remaining portion of the genome.  This reduction of 

entropy, or information, associated with selection is particularly useful as a relative measure, 

both for the impact of selection on various genomic regions, and on the relative contributions 

of selection and neutrality to genomic entropy.    
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ONLINE METHODS 

Data Sources and Pre-processing 

Comparative and population genomic data 

We measured natural selection using INSIGHT and data describing both genetic 

divergence across primates and polymorphism within human populations.  We reused the 

same data from several previous INSIGHT-based analyses21-24 (see ref. 22 for complete 

details).  Briefly, these data consist of genome assemblies for chimpanzee (panTro2), 

orangutan (ponAbe2), and rhesus macaque (rheMac2) aligned to the human reference genome 

(hg19), together with human polymorphism data extracted from the high-coverage “69 

Genomes” data set from Complete Genomics, which was reduced to 54 unrelated 

samples.  Genomic sites were rigorously filtered to eliminate repetitive sequences, recent 

duplications, CpG sites, and regions not showing conserved synteny across primates.  Our 

analysis considered only the autosomes (chromosomes 1–22) because of substantial 

differences in mutation rates and distributions of selective effects on the sex chromosomes (X 

and Y).   INSIGHT was run using putatively neutral regions identified by starting with all 

noncoding sites and excluding annotated RNA genes, TFBSs, phastCons-predicted 

evolutionarily conserved elements, and immediate flanking regions21,22.  Notably, while much 

larger population genomic data sets are now available41-44, our experiments have shown that 

the use of even ~20 times more human individuals makes a negligible difference in estimates 

of the key parameter ρ, owing to the efficiency with which INSIGHT pools information across 

sites in the genome and the property that much of the information about natural selection 

derives from divergence rather than polymorphism (data not shown).   Therefore, we opted to 

reuse a data set that has already been extensively processed and validated, and whose 

properties are well known to us. 
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Genomic features 

We considered the nine genomic features described in Table 1.  For the four 

epigenomic features, we obtained the imputed RNA-seq, DNase-seq, WGBS, and 

ChromHMM data sets for each of the 127 cell types (numbered E001–E129, with E060 and 

E064 omitted) represented in the Roadmap Epigenomic Project data5.  After initial processing, 

seven cell types were discarded due to deficiencies in data quality (E001, E003, E017, E027, 

E098, E104, and E113), and five additional cell types were discarded due to abnormal 

karyotypes (E114, E115, E117, E118, and E123), which could lead to alignment difficulties 

and major epigenomic perturbations.  For each of the remaining 115 cell types, the 

“consolidated imputed” RNA-seq and DNase-seq data (representing log RPKM and p-values, 

respectively) were discretized into 4 levels each, using an exhaustive search over possible 

partition boundaries with an entropy-based objective function (see Supplementary Text for 

details).  The labels from the 25-state version of the Roadmap ChromHMM analysis5 were 

used directly as feature values.  The raw WGBS data was partitioned into two classes, 

corresponding to hypomethylated and non-hypomethylated regions, using the HMR program 

from the MethPipe package45.    

The five annotations were defined as follows for all cell types.  The protein-coding 

gene (CDS) and Splice annotations were derived from the GENCODE V19 database46, 

considering only “KNOWN” “protein_coding” transcripts with a single annotated start and 

stop codon.  Based on CDS annotations, we labeled positions as falling in start codons, codon 

position 1, codon position 2, codon position 3, and noncoding positions. A position belonging 

to more than one class across isoforms was assigned to the class under greatest constraint 

(start > 2 > 1 > 3 > noncoding).   For the splice feature, we considered the fifty intronic sites 

flanking each annotated CDS exon boundary and labeled them, by distance from the exon 

boundary, as under high, medium, low, or no average constraint, based on pooled data from all 
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splice sites (Supplementary Text).  The two positions within CDS immediately adjacent to the 

exon boundary displayed similar levels of constraint to the “high” intronic class and were 

included with them.  Based on an initial exploratory analysis of potentially relevant genomic 

features, we also identified predicted DNA melting temperature (MeltMap) as a feature that 

correlates significantly with selective constraint, although it is likely that this relationship is at 

least partially explained by the strong correlation of melting temperature with G+C content, 

which in turn correlates strongly with the presence of functional elements in the genome.   In 

particular, we observed minimal selective pressure at intermediate melting temperatures and 

elevated selective pressure at more extreme melting temperatures (Supplementary 

Text).  Based on these observations, we discretized the predicted melting temperature into five 

levels ranging from “very low” to “very high”, with constraint levels such that {very low, very 

high} > {low, high} > medium. 

Because they were available for only a limited collection of cell types, the 

transcription factor binding site (TFBS) and small RNA-seq (smRNA) features were based on 

pooled data and treated as annotations.  For the TFBSs, we combined 588,958 binding sites 

from Ensembl Regulatory build V75 (ref. 47) with 2,595,018 predicted sites we had previously 

assembled using ENCODE data22.  Both sets were derived from ChIP-seq peaks, with 

bioinformatic post-processing to identify likely TFBSs under the peaks.  After merging 

overlapping predictions, the final set consisted of 1,994,905 TFBSs spanning 23.6Mbp and 

representing 86 TFs.  We partitioned nucleotides into four constraint classes based on the 

information content of the corresponding position in the position weight matrix for the TF in 

question (Supplemenary Text).  The smRNA data set was based on a combination of the 

UCSF-4Star composite, the UCSF Brain Germinal Matrix, the UCSC Penis Foreskin 

Keratinocyte (PFK) composite, and smRNA data from ENCODE for the CD20 and HUVEC 

cell types.  Sites were also partitioned into four levels of constraint based on smRNA data 

(Supplementary Text).  
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Theory and Algorithms  

Recursive bi-partitioning algorithm 

The FitCons2 algorithm begins with the complete set of genomic sites and an 

associated collection of D functional genomic and annotation-based features.  Each genomic 

site is labeled with a particular combination of features, a D-dimensional vector known as that 

site’s functional genomic fingerprint.  As described above, each of the D feature types i is 

discretized into mi possible values, where mi ranges between 2 and 25.  If these possible values 

do not have a natural ordering, they are ordered according to their marginal information about 

natural selection, as measured by the ρ parameter from INSIGHT.  (This ordering by ρ is 

actually performed dynamically at every node in the tree, to allow for changes conditional on 

previous partitions; see Supplementary Text.) Thus, each nucleotide is assigned one of ki 

possible ordered values for each of D feature types, i ∈ {1, …, D}.   

The algorithm then considers a family of possible decision rules for splitting the set of 

genomic sites into two subsets.  Each candidate decision rule is based on a single feature type 

and a threshold.  For example, RNA-seq read counts are summarized by four feature values, 

corresponding to (1) no reads, and (2) low, (3) medium, or (4) high read counts.  The 

algorithm considers partitioning the genome by the decision rules 1|234, 12|34 and 123|4, 

where uv | xy indicates a partitioning between sites labeled u or v and sites labeled x or 

y.  Because the feature labels are ordered, the number of possible decision rules for each 

feature type i is always linear in mi.  These possible rules must be considered for each of the D 

feature types. 

The algorithm selects the decision rule that maximizes the gain in information about 

natural selection.  This choice is made by fitting the INSIGHT model separately to the two 

subsets of genomic sites defined by each candidate decision rule, and deriving a measurement 

of gain in information from the likelihoods of these models (see below).  Choosing partitions 
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that maximize this gain in information has the effect of maximizing the degree to which the 

resulting two subsets of sites are homogeneous and distinct from one other in terms of their 

influence from natural selection.  Importantly, the gain in information associated with each 

candidate decision rule is computed as an average over all cell types, that is, by weighting 

each genomic position by the number of cell types displaying the specified feature value (or 

range of values) in the INSIGHT likelihood function.  In this way, the decision tree is fitted to 

all cell-type-specific data sets simultaneously. 

The same procedure is then applied recursively to each of the two subsets of sites, and 

in turn, to subsets of those subsets, until no subset meets the criterion for further partitioning. 

Thus, a binary tree is defined with internal nodes representing decision rules and leaves 

representing particular combinations of decision rules (Figure 1).  Furthermore, these leaves 

define genomic clusters that are maximally homogeneous and distinct in selective 

pressure.  (This greedy algorithm finds a local maximum, but not necessarily a global 

maximum, according to the objective function used.)  Because the algorithm is driven both by 

the genomic features and the patterns of genetic variation, it tends to find clusters that reflect 

the natural correlation structure of both the functional genomic and population genomic data.   

In practice, we initially had the recursive algorithm terminate when no remaining 

candidate decision rule provided more than 5 bits of information, which produced a tree with 

195 leaves, but then we pruned the tree based on a 50-bit threshold, to obtain a more 

interpretable 61-leaf tree.  This final tree (Figure 1) is unbalanced, with depths ranging from 

five to twelve.  Each step of the recursive algorithm can be viewed as a likelihood ratio test 

with four degrees of freedom (three free parameters and an addition degree of freedom for the 

choice of partition), so a 50-bit (69.4-nat) threshold corresponds to a nominal p-value of 

approximately 3 × 10'().		Even allowing for the hundreds of tests carried out by the 

algorithm, this threshold is still conservative.  Notice also that, at each step of the algorithm, 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 23, 2018. ; https://doi.org/10.1101/317719doi: bioRxiv preprint 

https://doi.org/10.1101/317719
http://creativecommons.org/licenses/by/4.0/


25 

all internal nodes at a given tree depth can be examined in parallel. Execution of the full 

algorithm completed in about 57 hours of wall time on a shared computer cluster.    

 

Algorithm for cell-type integration   

To obtain an “integrated” score that summarizes the FitCons2 scores across cell types, 

we reused our decision-tree framework to find combinations of cell-type-specific scores that 

are predictive of overall selective pressure.  Our goal was to find a way of summarizing the 

cell-type specific scores that was not too complex but avoided the pitfalls of a simple average 

or weighted average — which would tend to be too low in the common case of a site that 

receives a high score in only one or a few cell types and low scores in many more cell types 

— or a simple maximum — which would “saturate” quickly and fail to distinguish sites with 

high scores in many cell types from those with high scores in few cell types.   

Briefly, we first summarize the collection of 115 cell-type-specific scores at each 

position by calculating, at each of 12 different score thresholds between 0 and 1, the number 

of cell types having scores that exceed that threshold.  These numbers of cell types are 

summarized using five discrete classes per threshold, resulting in a kind of discretized 

cumulative distribution function at each nucleotide position describing numbers of cell types 

as a function of score threshold.  This calculation is done not with raw counts of cell-types, but 

using a weighting, based on principal component analysis, that considers the global 

correlations among cell-type-specific FitCons2 scores (see Supplementary Text); thus, the 

CDF can be thought of as describing the number of “effectively independent” cell types 

exceeding each of the twelve thresholds at each nucleotide site.  Our recursive bi-partitioning 

algorithm is then used to map this 12-dimensional feature vector to a single estimate of ρ per 

nucleotide site.  Specifically, the algorithm clusters nucleotide sites across the genome based 

on the associated numbers of effectively independent cell types that exceed each designated 

score threshold, in such a way that the clusters are relatively homogeneous, and relatively 
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distinct from one another, in terms of their influence from natural selection (as measured by 

INSIGHT).  Thus, it summarizes the cell-type-specific scores in a manner that reflects the 

associated global, cell-type-independent patterns of genetic variation.  For example, one leaf 

of the decision tree (one cluster) might represent sites that have at least five (effective) cell 

types with ρ > 0.2; these sites might be assigned an “integrated” estimate of ρ = 0.35, based on 

a direct application of INSIGHT.  Another leaf of the tree (cluster) might represent sites that 

have at least ten (effective) cell types with ρ > 0.5, and these sites might be assigned an 

integrated estimate of ρ = 0.7.  In practice, we use a decision tree with 37 leaves, representing 

37 distinct classes. 

This approach produces cell-type-integrated scores that summarize the cell-type-

specific scores effectively both for sites that are active across many cell types and for sites that 

are active in a relatively cell-type-specific manner.  These integrated scores can not only be 

used in cases where the desired cell type is not available or not known, but they also provide a 

good comparison point for non-cell-type-specific scores from other methods.  Finally, they 

provide a useful summary for visualization in the Genome Browser, allowing users to scan the 

genome for regions of general interest, and then drill down to study the specific patterns of 

cell-type-specific scores in those regions. 

 

Measuring Entropy with INSIGHT 

From an information theoretic perspective, mutation generates entropy in the genome 

sequences of a population, while genetic drift removes entropy by allowing mutations to 

become fixed in or lost from the population.  Natural selection primarily acts as an additional 

force for the removal of entropy, by accelerating fixation and loss.   (Notably, some forms of 

selection, such as balancing selection, can act to promote or maintain entropy; we assume such 

diversifying selection is rare, as it appears to be in humans48.)  At mutation/selection balance 
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these forces offset one another, and the entropy created by mutation is exactly offset by the 

removal due to drift and selection26,29. 

We wish to measure this population genetic entropy from a collection of genome 

sequences.  Moreover, as suggested in the Discussion, we wish to condition on the genome 

sequences of closely related species and focus on the entropy specific to human 

populations.  Thus, we seek to estimate the entropy of a distribution, P(X | θ), where X is a 

collection of human genome sequences and θ is a parameter set that governs the distribution 

(we implicitly condition also on O, a collection of closely related nonhuman primate 

“outgroups”).  As shown below, once we can measure this entropy, we can decompose it in 

various ways, such as by considering contributions from neutral and selective forces, and 

considering the effects of conditioning on various genomic features. 

There is no known algorithm for efficiently characterizing the distribution P(X | θ) in a 

general setting with mutation, recombination, selection, and a complex demographic history, 

let alone with genomic duplications and rearrangements.  Nevertheless, the probabilistic 

evolutionary model used by INSIGHT 21 provides an approximate description of P(X | θ) that 

is useful for the purposes of quantifying entropy.  Importantly, the INSIGHT model is 

specifically designed to condition on outgroup sequences using a statistical phylogenetic 

model and to allow for several types of directional selection (including both positive and 

negative, and both weak and strong, selection).  The INSIGHT model does not allow for 

recombination but it does capture aspects of haplotype structure by characterizing a collection 

of genomes as a series of genomic blocks, each of which has its own mutation and coalescence 

parameters.    In addition, because the INSIGHT model describes polymorphisms in terms of 

allele frequency classes (“low” or “high” derived allele frequencies), it can be thought of as 

describing the entropy of the entire population, rather than of the sample X (modulo sampling 

error in allele frequency estimates).     
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The INSIGHT model is fitted to a collection of genomic sites by maximum 

likelihood.  In the limit of a large number of sites, the maximized log likelihood of the model 

is closely related to the entropy of the distribution P(X | θ), as follows.  Conditional on the 

parameter set, θ, and the assumed block structure, INSIGHT assumes independence of 

nucleotide sites, with P(X | θ)  = ∏ 𝑃(𝑋0	|	𝜃)0 .  Thus, the maximized log likelihood can be 

written ℒ(𝜃5, 𝑋) = max	
:

log 𝑃(𝑋	|	𝜃) = 	max
:
∑ log 𝑃(𝑋0	|	𝜃)0 .  The entropy of 𝑋	|	𝜃5, in turn, 

can be written, 𝐻(𝑋) = −𝐶 ∑ 𝑃B𝑥	D	𝜃5E log 𝑃(𝑥	|	𝜃5) ,F  where the sum is over all possible 

alignment columns x and C is the number of columns in the actual alignment X.  Assuming the 

model fits the data well, in the sense that the distribution of alignment columns under the 

model is close to the empirical distribution in X, then as C grows large, 

 
ℒB𝜃5; 𝑋E =Hlog 𝑃B𝑋0	D	𝜃5E

0

≈ 𝐶H𝑃B𝑥	D	𝜃5E log 𝑃(𝑥	|	𝜃5)
F

= −𝐻(𝑋).	

In other words, the negative log likelihood under INSIGHT is an estimator for the population 

genetic entropy.  Throughout this article, we assume base-2 logarithms and express entropy in 

bits.  

Note that, in practice, we often compute the log likelihood as an average across cell 

types, which can be interpreted as the expected complete data log likelihood under a mixture 

model with a uniform prior.  Specifically, for a collection of sites X, we assume,  

 

ℒB𝜃5;𝑋E =HJ
∑ log 𝑃B𝑋0	|	𝜃50,KEK∈LM	

|𝐽0|
O

0

, 

where  𝐽0 is the set of cell-types for which data is available at genomic position i and 𝜃50,K  

represents the INSIGHT model parameters associated with the features in cell-type j at 

position i.  
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Information associated with features 

Suppose a genomic feature F allows sites to be partitioned into those having a label 

(or set of possible labels) A,  𝑋PQR = {𝑋0	|	𝐹(𝑋0) = 𝐴}, and the complement of that set, 

𝑋PWR = {𝑋0	|	𝐹(𝑋0) ≠ 𝐴}.  A new entropy can be computed based on this partitioning by 

fitting the INSIGHT model separately to 𝑋PQR and 𝑋PWR, with two separate sets of free 

parameters: 𝐻(𝑋;𝐹/𝐴) ≈ −ℒB𝜃5PQR;	𝑋PQRE − ℒ(𝜃5PWR;	𝑋PWR).  This entropy, 𝐻(𝑋; 𝐹/𝐴), 

must always be less than or equal to the original entropy, 𝐻(𝑋) (modulo optimization 

error).  The reason is that the pair of INSIGHT models for the two subsets, 𝑋PQR and 𝑋PWR, 

directly generalizes the single model applied to all sites and must fit the data at least as well, 

meaning that it will yield a maximized log likelihood at least as large.  Thus, 

ℒB𝜃5PQR;	𝑋PQRE + ℒB𝜃5PWR;	𝑋PWRE ≥ ℒB𝜃5;𝑋E, which implies 𝐻(𝑋;𝐹/𝐴) ≤ 𝐻(𝑋).  We can 

therefore define the nonnegative quantity, Δ𝐻(𝑋;𝐹/𝐴) ∶= 𝐻(𝑋) − 𝐻(𝑋; 𝐹/𝐴) ≈

ℒB𝜃5PQR;	𝑋PQRE + ℒB𝜃5PWR;	𝑋PWRE − ℒB𝜃5; 𝑋E = Δℒ(𝐹/𝐴; 𝑋), as the “information” associated 

with feature F having label A.  This is the measure used for the information associated with 

each decision rule in our recursive bi-partitioning algorithm.   

In some cases, it is also useful to have a measure of the overall “marginal” 

information associated with a feature F, considering all of its possible values (e.g., see 

Synergy, below).  For this measure, we use: 

Δ𝐻(𝑋; 𝐹) ≈ _HℒB𝜃5PQ`;	𝑋PQ`E
`

a − 	ℒB𝜃5; 𝑋E. 

 

Partitioning entropy into neutral and selective components  

The entropy H(X) of a sample of genomic sequences X can be described as an additive 

combination of entropic contributions from mutation, drift, and selection:  

𝐻(𝑋) = 𝐻mut(𝑋) − 𝐻drift(𝑋) − 𝐻sel(𝑋) 

= 𝐻neut(𝑋) − 𝐻sel(𝑋) 
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where Hneut(X) is the entropy that would exist in the sample if it were evolving free from 

natural selection, which is itself determined by a balance between the addition of entropy due 

to mutation, Hmut(X), and the subtraction of entropy due to drift, Hdrift(X); and Hsel(X) is the 

additional entropy removed by (directional) natural selection. In this view, the reduction in 

entropy represented by Hsel(X) can be thought of as the information in X that is associated with 

natural selection.  We can similarly write, 

ℎ(𝑋) = ℎneut(𝑋) − ℎsel(𝑋), 

where h(X) represents a measure of entropy per nucleotide. 

If a subset XN of alignment columns in X can be reasonably assumed to be evolving 

freely from natural selection, then the neutral entropy per nucleotide, hneut(X), can be estimated 

using a specialization of the INSIGHT model that omits natural selection (i.e., with ρ = 0) and 

describes neutral evolution only: 

ℎneut(𝑋) ≈
−ℒB𝜃5l; 𝑋lE

|𝑋l|
,	

where 𝜃5l indicates the fitted neutral model and |𝑋l| is the number of nucleotides in XN.  The 

per-nucleotide reduction in entropy associated with selection can therefore be estimated as, 

ℎsel(𝑋) = 	ℎneut(𝑋) − ℎ(𝑋) ≈
ℒB𝜃5;𝑋E
|𝑋|

−
ℒB𝜃5l;𝑋lE
|𝑋l|

.	

This is a general and interpretable measure of how strongly natural selection has 

constrained the genetic diversity of the sample. It can be considered a measure of genetic load 

that does not require the estimation of selection coefficients.  Notice also that as increasingly 

rich and precise models of natural selection are considered (as in our recursive bi-partitioning 

algorithm), hneut(X) will remain constant while h(X) decreases, making hsel(X) grow larger and 

maximizing the information in the sample that can be attributed to natural selection.  

In practice, we estimated hsel(X) separately for each of our 61 classes of sites.  In order 

to minimize biases from variation in features such as mutation rate or selection from linked 

sites, we also estimated hneut(X) separately for each class, using a subset of sites in that class 
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that also fell in our designated putatively neutral sites. In a few cases, this subset was too small 

to allow the analysis to proceed, so we supplemented the neutral sites in the class with ones 

located nearby.  Our estimates of hsel(X) were generally positive and well correlated with ρ, as 

expected, except for three cases where they turned out to be slightly negative (Supplementary 

Table 3), apparently because of weak selection and/or sparse data.   

 

Data Analysis 

Synergy  

We define the pairwise synergy between features F and G as, 

𝑆(𝐹, 𝐺) ∶= Δ𝐻(𝑋; 	𝐹, 𝐺) − [Δ𝐻(𝑋; 𝐹) + Δ𝐻(𝑋; 𝐺)], 

where Δ𝐻(𝑋; 𝐹) and Δ𝐻(𝑋; 𝐺) represent the marginal information associated with F and G, 

respectively, and Δ𝐻(𝑋; 	𝐹, 𝐺) is computed analogously by considering the Cartesian product 

of feature values for F and G.  S(F, G) is positive when there is synergy between F and G, 

meaning that more information can be obtained by considering them together than by 

considering each of them separately; negative when they are “redundant” or highly correlated; 

and zero when they are, in a sense, orthogonal or “independent”.  

In computing S(F, G), some special handling is required for sites at which features 

have a “null” value (meaning a signal that is absent or at background levels).  The reason is 

that there is a kind of trivial “synergy” that derives from sites being removed from the null 

class of one feature based on a second feature.  For example, the null class for feature F 

generally consists of a mixture of true “background” sites and sites that have a positive signal 

for feature G.  When F and G are considered in combination, a component of that mixture is 

effectively removed from the null class for F, making the remaining sites more homogeneous 

and improving the fit of the model.   Thus, a positive “synergy” can be measured even for 

features with nonoverlapping positive (non-null) values.   We therefore exclude all sites at 
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which either F or G is “null,” which eliminates this trivial contribution to synergy and 

provides a measure that reflects overlapping positive feature values only.    

In most cases, the null feature value is straightforward to define.  For example, for 

epigenomic features such as DNase-seq, RNA-seq, and WGBS, it is the category that 

represents an absence of any aligned reads, and for annotations such as CDS, TFBS, or 

smRNA, it generally corresponds to sites at which no annotation is present.  In the case of 

ChromHMM, the null value was taken to be the “quiescent” state, and for MeltMap, it was 

taken to be the value associated with the weakest selective constraint according to INSIGHT. 

Notice that S(F, G) is similar in spirit to mutual information but conceptually distinct, 

because it is based on probabilities of a fixed data set X conditional on various values of the 

features F and G, rather than being based on a probability distribution for F and G.    

 

Analysis of predictive power for noncoding genomic function 

We examined prediction power for both transcription factor binding sites (TFBSs) and 

pathogenetic single nucleotide variants (SNVs), limiting our analysis to noncoding regions in 

both cases.  To obtain cell-type specific TFBSs, we obtained the predicted binding sites from 

ref. 37 and intersected them with cell-type-specific ChIP-seq peaks (<500bp in width) from 

ENCODE.  After an examination of five cell-types (GM12878, H1-hESC, He-Las3, HepG2, 

K562) for which we could identify fairly large numbers of cell-type-specific binding sites for 

a diverse collection of TFs, we settled on two that were particularly data rich: (1) H1-hESC 

cells, containing 55,024 TFBSs for 12 TFs (ATF3, CTCF, NANOG, NRF1, NRSF, POU5F1, 

RFX5, SIX5, SP1, SRF, TCF12, and YY1) spanning 941,645 genomic positions; and (2) 

K562 cells, containing 66,892 TFBSs for 16 TFs (ATF3, BHLHE40, CEBPB, CTCF, ELF1, 

NFE2, NRF1, NRSF, RFX5, SIX5, SP1, SRF, TAL1, YY1, ZBTB7A, and ZNF143) spanning 

1,080,771 genomic positions.  At various score thresholds, we plotted the fraction of 

nucleotides in TFBS whose FitCons2 scores exceed the threshold, versus the fraction of all 
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noncoding sites whose FitCons2 scores exceed the same threshold (Fig 6a and Supplementary 

Figure 6).  This approach produces curves similar to receiver operator characteristic (ROC) 

curves, but avoids the problem of measuring absolute false positive rates, which is difficult in 

the presence of incomplete annotations.   We plotted analogous curves with scores 

from phyloP34, GERP++35, CADD18, LINSIGHT 24, FunSeq220, Eigen36, and FitCons123.   

For the pathogenic SNVs, we considered noncoding variants associated with inherited 

diseases in the Human Gene Mutation Database (HGMD)38 and the ClinVar database39.  For 

each scoring method, we computed false-positive versus true-positive rates for the complete 

range of score thresholds, displayed the results as ROC and precision-recall curves, and 

measure prediction power by the area-under-the-curve (AUC or prAUC) statistic.   To control 

for differences in the bulk distributions of scores near and far from genes, we used a matching 

of HGMD variants with likely benign variants by their distances to the nearest transcription 

start site that we had previously defined24.  For FitCons2, we based this analysis on the cell-

type-integrated scores, because the cell types of interest vary by disease and in many cases are 

not known.      

 

Annotation-specific distributions of FitCons2 Scores 

The cell-type-specific bulk distributions of scores for various annotation types (Figure 

4 and Supplementary Figure 2) were based on regions “active” in each cell type of 

interest.  For annotations associated with protein-coding genes (CDS, splice site, 5’ & 3’ UTR, 

promoter, and intronic), we defined “active” elements as ones associated with the top third of 

all annotated genes after ranking them by RPKM based on cell-type-matched RNA-seq data. 

TFBSs were considered active if they coincided with ChIP-seq peaks in the matched cell 

type.  The notion of cell-type-specific “activity” was not applied to intergenic sites.  We took 

care to exclude any positions that overlapped annotated CDSs from all other categories.  
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Hierarchical clustering   

The hierarchical clustering of the 115 cell types was based on an L1 or “Manhattan" 

distance between each pair of cell types, C1 and C2, given by 𝐷(𝐶(, 𝐶r) = ∑ D𝑠(,0 − 𝑠r,0D0 , 

where s1,i and s2,i are the FitCons2 scores at nucleotide i for cell types C1 and C2, respectively, 

and the sum is over all genomic positions.  Because s1,i and s2,i represent probabilities of 

natural selection at site i, D(C1, C2) can be interpreted as the expected total number of 

nucleotide sites under selection (SUS) based on one cell-type-specific map but not the 

other.  The 6,555 pairwise distances ranged from 11,433,006 – 61,602,121 SUS.   The 

diagram in Figure 7 was obtained by processing the distance matrix with the default Ward-D2 

clustering method in R (V3.3.1).  
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Table 1: Summary of Epigenomic and Annotation Features Used by FitCons2 

 

Name Description Type1 Levels2 Source 

CDS Coding sequences Annotation 5: Start, Codon 
pos. 1,2,3, Non GENCODE46  

Splice Splice sites Annotation 4: Core, Prox, 
Dist, Non GENCODE46  

MeltMap3 Predicted DNA 
melting temperature Annotation 5: VHi, Hi, 

Med, Lo, VLo ref. 49 

TFBS Transcription factor 
binding sites Annotation4 4: Hi, Med, Lo, 

None5 
Ensembl50 & ref. 
22  

smRNA Small RNAs Annotation4 4: Hi, Med, Lo, 
None 

ENCODE & 
Human 
Epigenome Atlas6. 

RNA-seq Transcription Epigenomic 4: Hi, Med, Lo, 
None Roadmap 

DNase-seq Chromatin 
accessibility Epigenomic 4: Hi, Med, Lo, 

None Roadmap 

ChromHMM7 Chromatin 
modifications Epigenomic 25: (see ref. 5) Roadmap  

WGBS DNA methylation Epigenomic 2: Hypo, non-
Hypo Roadmap 

 
	  

                                                   
1 Annotations are shared across all cell types, whereas Epigenomic data sets are specific to 

each cell type (115 instances of each). 
2 Number of discrete levels followed by labels for levels.  Features that had no natural ordering 

(CDS, Splice, MeltMap, TFBS, ChromHMM) were ordered by estimates of ρ (see Methods). 
3 Predicted DNA melting temperature (MeltMap) is highly correlated with G+C content on a 

global level but carries additional local information.  Predictions depend on the DNA sequence only and 
are therefore considered “Annotations”. 

4 Owing to sparse data, the TFBS and smRNA features were based on data pooled across cell 
types and therefore were treated as Annotations rather than as cell-type-specific Epigenomic data (see 
Methods) 

5 Grouped by information content of motif position (see Methods) 
6 Based on ENCODE cell types CD20 and HUVEC, and Human Epigenome Atlas V9 samples 

BGM (Brain Germinal Matrix), UCSF4 embryonic stem cells, and PFK (Penis Foreskin Keratinocyte). 
7 Based on the 25-state version of the Roadmap ChromHMM model, which makes use of 11 

histone marks and DNase-seq data (imputed where necessary).   
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FIGURES 

 
Figure 1.  Conceptual diagram of FitCons2 
algorithm.  (a) The algorithm starts with raw 
data describing genomic features along the 
human genome sequence (assembly hg19).  Two 
types of features are considered: four 
Epigenomic features, represented separately for 
each of 115 cell types, and five Annotations, 
shared across cell types (see Table 1).  In pre-
processing, the raw data sets are discretized into 
between 2 and 25 feature classes, which are 
ordered by their estimated ρ values (Methods 
and Table 1).  (b) The algorithm builds a 
decision tree by recursively finding binary 
partitions of “active sets” of genomic positions 
(corresponding to leaves in the growing 
tree).  At each step, it considers all possible 
binary partitions of each active set.  Each binary 
partition is defined by applying a threshold to an 
ordered, discretized feature (gray arrow). The 
algorithm selects the active set (leaf) and binary 
partition that are maximally informative about 
selection.  Information is measured by the 
increase in log likelihood (ΔL) obtained by 
fitting the INSIGHT model separately to each 
subset of genomic sites rather than once to the 
entire active set (Methods).  During this 
procedure, the algorithm averages over cell-type-
specific locations for the Epigenomic features.  
(c) The recursive process is repeated until the 
improvement in information fails to exceed a 
minimal threshold.   (d) The end result is a K-
leaf decision tree such that each internal node 
represents a binary decision rule and each leaf 
corresponds to a combination of decision rules 
that can be applied to each nucleotide site in the 
genome.  Each of these K combinations of 
decision rules induces a cluster of genomic sites 
that share a particular epigenomic 
“fingerprint”.  Each of these K clusters is also 
associated with an estimate of ρ from INSIGHT 
(its FitCons2 score).  (e) These estimates of ρ 
can be mapped back to the genome sequence 
separately for each cell type.  An “integrated" 
score that summarizes all cell types is also 
computed (Methods).  
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Figure 2.  Decision tree and clusters for the human genome.  The decision tree obtained by applying 
FitCons2 to the human genome sequence (hg19 assembly; autosomes only). Nodes (ovals) represent 
decision rules (bi-partitions) and are labeled with the feature on which each rule is based as well as the 
associated increase in information (in bits).  Nodes are colored by feature type.  Edges extending from 
parent nodes to children are labeled with descriptions of partitions, their sizes in millions of basepairs 
(Mbp), and corresponding estimates of ρ.  Edge widths are proportional to log(size).  Dashed circles 
indicate successive binary partitions based on MeltMap that effectively create three-way splits.  For 
simplicity, only the first 4–5 levels of the tree are shown in detail.  The 61 leaves of the tree (at right) 
are labeled by unique identifiers, estimates of ρ, sizes in Mbp, and brief descriptions of the associated 
clusters (see Supplementary Tables 1 & 2 for additional details). Heatmap to left of cluster IDs displays 
relative enrichments for several annotations (Coding Sequences [CDS], Untranslated Regions [UTRs], 
Promoters, Enhancers, annotated Transcription Factor Binding Sites [TFBS], Splice sites, DNase-seq, 
and RNA-seq data).  
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Figure 3. Information and synergy.  (a) Information about natural selection is attributed to each 
individual genomic feature by three methods: (1) summing over the associated decision rules in the tree 
(tree, orange); (2) measuring the information of the feature in isolation (marginal, gray); and (3) 
measuring the reduction in total information when that feature is excluded from the complete tree 
(reduction, blue).  These measures are similar when a feature is largely orthogonal to other features 
(e.g., MeltMap) but different in the presence of strong correlations with other features (e.g., RNA-seq, 
ChromHMM).   (b) Synergy between all pairs of features measured as the excess in information 
obtained by considering a pair of features together relative to the information obtained by considering 
the two features separately (Methods).  Each cell gives a value in bits.  Cells are colored on a spectrum 
from red (large negative values, indicating redundancy) to green (large positive values, indicating 
synergy).  Note that the matrix is symmetric. 
	  

a 

b 
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Figure 4.  Annotation-specific distributions of FitCons2 scores.  Violin plots showing score 
distributions for annotated coding regions (CDS), 5’ and 3’ untranslated regions (UTRs), splice sites, 
transcription factor binding sites (TFBS), core promoters, and remaining intronic and intergenic 
regions.  Scores are for GM12878 cells and reflect regions “active” in that cell type (see 
Methods).  These annotation-specific marginal score distributions are highly similar across cell types, 
despite differences in regions of the genome they summarize owing to cell-type-specific activity (see 
Supplementary Figure 2).  Splice sites were defined as the two intronic bases immediately adjacent to 
exon boundaries.  Promoters were defined as 1,000 bp upstream of annotated transcription start sites.  
TFBS annotations based on ENCODE ChIP-seq data were obtained from ref. 22. 
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Figure 5.  Genome Browser display.  UCSC Genome Browser display for a region of chromosome 22 
overlapping the 5’ end of the gene encoding caspase recruitment domain-containing protein 10 
(CARD10), which participates in apoptosis signaling and activates NF-KB via BCL10.  FitCons2 
scores (dark blue, near middle) are shown for the ES-WA7 (embryonic stem cell from blastocyst) cell 
type.   Annotation features are shown above the FitCons2 scores and cell-type specific epigenomic 
features are shown at bottom.  For reference, predicted enhancers from EnhancerAtlas51 (longer bars) 
and  FANTOM552,53 (shorter bars; in both cases, brown indicates enhancers specifically associated with 
CARD10), eQTL from GTEx54 (brown indicates specific association with CARD10), and the gene 
annotation from GENCODE46 are also shown (top).  Insets show zoomed-in displays of (a) an apparent 
cluster of enhancers showing a high DNase-seq signal, ChromHMM states suggesting regulatory 
activity (orange: enhancer; red: promoter), and a high concentration of TFBSs; (b) the core promoter 
and transcription start site showing similar indications of regulatory activity; (c) a 5’ splice site and 
adjoining CDS and intronic sequences; and (d) GWAS and eQTL hits coinciding with a 
TFBS.  Additional examples are shown in Supplementary Figures 3–5. 
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Figure 6.  Predictive power for genomic function.  (a) Sensitivity of various computational prediction 
methods (see text) for cell-type-specific transcription factor binding sites (TFBSs).  Sensitivity is 
evaluated using 55,024 motif matches for 12 transcription factors in ChIP-seq peaks for H1-hESC 
cells37 (Methods).  Sensitivity is plotted against total coverage outside of annotated coding regions as 
the prediction threshold for each method is varied.  Results for two sets of FitCons1 and FitCons2 
scores are shown: integrated scores across cell types (I) and cell-type-specific scores for H1-hESC 
cells.  For reference, the vertical gray bar shows the expected fraction of the noncoding genome that is 
under selection according to FitCons2 (i.e., the average score in noncoding regions).  (b) Receiver 
operating characteristic (ROC) curves for human disease-associated (pathogenic) single nucleotide 
variants (SNVs) listed in HGMD.  The same computational methods are shown, but in this case only 
integrated scores are used for FitCons1 and FitCons2.  The area-under-the-curve (AUC) statistic is 
listed after each label in the key.  False positives are assessed using likely benign variants matched by 
distance to the nearest transcription start site (Methods). 
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Figure 7.  Hierarchical clustering of 115 cell types based on FitCons2 scores.  Dendrogram is 
derived from a “Manhattan” or L1 distance matrix defined such that the distance between every pair of 
cell types is equal to the sum of the absolute differences of their nucleotide-specific FitCons2 scores 
(see Methods).  Clustering was done using the default Ward-D2 clustering method in R.  Major groups 
in the dendrogram correspond to cell types associated with (clockwise from top left) blood and the 
immune system (brown), internal organs (red), the digestive system (gray), neural tissues (blue), skin 
and connective tissue (purple), and stem cells (green).  Insets show examples of closely related cell 
types from each group. Notice that the digestive cell types are nested within the internal organ-related 
cell types. Within the neural tissue cluster, separate groups are evident for embryonic and adult brain 
tissues (blue inset; embryonic cell types highlighted at bottom). Similarly, fetal cell types form 
subclusters within the internal organ (red inset, entire group) and digestive system (gray inset, gray 
background) groups.   SUS = sites under selection (see text and Methods). 
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