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1
I N T R O D U C T I O N

In this chapter, we present the main idea and background behind
our work. Then we explain our methodology and the main focus of
our work, which is about logical modeling of Molecular Interaction
Maps (MIM). And finally we outline the content of this dissertation.

1.1 background and motivation

Regulation is a very important factor for the survival of a biologi-
cal environment, ranging all the way from the molecular level to the
ecological one. Systems biology is a discipline that emerged from the
collaboration of biologists, mathematicians, physicists, and computer
scientists [Wie48, IGH01, Kit02], notably with the advances on high-
throughput technologies, with the goal of understanding how these
regulations work. In order to achieve that, interactions between differ-
ent components in a biological system must be studied and analyzed
to see how they impact the functions and behavior of the system as a
whole. One of the most complex subsets of these studies is research
targeting genetics. And due to the recent advances in the field of
molecular biology, scientists were able to map the genomes of many
living organisms, but a big part of the remaining gene and molecular
interactions are still a mystery for the human being.

Collaborations between scientists of different fields often leads to
a conceptual and philosophical change in the way they think about
and tackle their subjects. Biology is no exception. From the early be-
ginning of the molecular biology, it has been thought that Deoxyri-
bonucleic Acid (DNA) sequences specify how cells should normally
behave, as does instructions in a computer program. But recently,
with the evolution of systems biology and its many breakthroughs,
the focus shifted from what and how the genome dictates the cell’s
execution and life cycle, to what the cell does with and to its genome
products [Sha09]. So the group of biological entities facilitating the in-
teractions between the genotype and its environment form what we
call metabolic networks. After identifying this group of entities, what re-
mains is to clarify how they interact with each other in order to carry
out their biological functions. Therefore, the focus on the nature, type,
number, and effects of these connections is now considered more im-
portant than focusing on the entities themselves. Unfortunately, and
for unknown reasons, some unexpected behaviors sometimes occur

1



2 introduction

in a biological network, that are more likely to be caused by yet
undiscovered interactions between entities in and with the environ-
ment. However, molecular biology studies carried with these holistic
approaches would have never been possible without prior knowledge
gathered about the entities using reductionist approaches. In fact, sys-
tems biology is not considered by some as a new field of research, but
as a combination of holistic and reductionist approaches applied to
biological research [KCQN10].

Metabolic networks are formed by a series of metabolic pathways.
These pathways are composed of a series of intracellular and extracel-
lular interactions that determine the biochemical properties of a cell.
These interactions are formed by both positive (activation) and nega-
tive (inhibition) reactions, and they range from simple and chain reac-
tions and counter reactions, to simple and multiple regulations and
auto-regulations. One of the best examples we can use to illustrate
these unexpected behaviors in metabolic networks is cancer. Gener-
ally speaking, cancer can start in a normal cell as a result of DNA
damage. It starts to grow in the body when these cells, that failed to
repair the DNA damage or kill themselves, start replicating. Cancer
can also grow out of control when cancer cells start invading normal
cells in other tissues. Countless biomedical researches focus on under-
standing what is causing cells to act strangely. One approach is to in-
vestigate the molecular determinants of the tumor’s response. These
molecular parameters include cell cycle checkpoints, DNA repair, and
programmed cell apoptosis pathways [PSR+

05, KP05, GMP+
11, LKLC07,

PZL+
11]. When DNA damage occurs, cell cycle checkpoints are ac-

tivated and can rapidly kill the cell by apoptosis, or stop the cell
cycle progression to allow DNA repair before cellular reproduction
or division. Two important checkpoints that appear to function when
parallel transduction cascades from DNA damage to the cell cycle
checkpoint effectors are the ATM-CHK2 (Figure 1.1) and ATR-CHK1

pathways [PSR+
05]. As a result, many treatments and cures have been

developed and successfully administered, but in many other cases
therapeutic responses are limited and tumors relapse or fail to re-
spond in a large fraction of patients. There is currently no way to pre-
dict how a tumor will respond to some treatment. Experiments also
show that there are many unknown interactions that lead to those
checkpoints and many others that come after. Hence the importance
of the role of systems biology in helping with the process of under-
standing why in some cases cells fail to go through these checkpoints
when DNA damage occurs.
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Figure 1.1: ATM-Chk2 molecular interaction map

1.2 methodology and results

For this purpose, many efforts have been made to propose model-
ing frameworks that take into account the complexity of biological
systems. Among them, Mathematical (quantitative) and computational
(qualitative) approaches [FH07] are basically designed by reverse en-
gineering existing knowledge and experimental data. Basically, math-
ematical models use denotational semantics. That means that mathe-
matical equations that describe how entities, concentrations and tem-
peratures change over time are what specify the model. On the other
hand, computational models use operational semantics. That means
that sequences of steps describing abstract interactions between enti-
ties are what specify the model. With this, different kinds of questions
can be addressed using each of those models. But, it is known that



4 introduction

knowledge in biology is often ambiguous, contradictory, incomplete,
or incorrect. Combined with the fact that absolute certain mathemati-
cal formulations of biological systems are likely to never exist, that is
why handling qualitative representations of such data is often easier.
Then Hybrid models were introduced with the aim to use best of both
approaches. These frameworks are considered as the source and mo-
tivation of the development of Hypothesis-driven research in biology
that mainly follows two phases, the Construction and Validation phase
and the Analysis and Prediction phase. The first one starts by defining
new hypothesis by combining prior knowledge about the studied sys-
tem and either mathematical, computational and hybrid models. This
new model should be validated with experimental data, and should
be manually refined in case of inconsistencies. Then comes the second
phase where we could extrapolate new experimental data to test the
generated hypothesis, or use the model to simulate the system and
make predictions, and the loop is started all over again.

As a result, there exist nowadays public repositories such as Path-
way Commons [CGD+

11] and Pathway Interaction Database [SAK+
09]

that contain a huge number of organized knowledge about intracel-
lular interactions in metabolic networks. This huge number of dis-
covered interactions, that form intricate and complex networks of
chain reactions, is what makes them complicated to be represented
using a physical model. MIM (Figure 1.1) have been introduced to
organize and present, in a more or less intuitive graphical fashion,
information known about these interactions [Koh99, KAWP06]. Fig-
ure 1.2 presents some map conventions used to define interactions be-
tween different entities in MIM. Information represented in this type
of maps can quickly become very dense due to constantly new dis-
covered interactions and their corresponding information (references,
date, authors, etc.). Although essential for knowledge capitalization
and formalization, MIM become very difficult to use:

• Reading is complex due to the very large number of elements.

• A map is not an easy representation to express complex queries.

• Annotating is tedious due to the lack of space and an already
great wealth of grammar.

• Extending a map is difficult since graphic editing is not flexible.

• Using a map to communicate goals is only partially suitable
because the representation formalism requires expertise.

There exist several other methods of representing information about
metabolic networks. Boolean networks [Kau69, WSA12], Thomas net-
works [Tho91], causal graphs [IDN13], and Petri nets [CRT08] are among
the most widely used. Although being able to fully fulfill the purpose
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they were initially used for, they do not feel as expressive as MIM
from a biological point of view.

In this dissertation, we will focus on the computational approaches
that allow us to reason about systems biology. First, we will present
an overview of the different logic models and reasoning methods
running these processes. We will also introduce different methods
capable of representing information about metabolic networks, and
show how they can be integrated with the different reasoning phases.
Then we will propose a new logical model capable of describing in-
formation gathered in MIM. This new model will contribute to the
readability, flexibility, and use of these maps. In addition, this model
would make MIM queryable. Questions answered by deductive rea-
soning would be used to predict results of some interactions and ones
answered by abductive reasoning would be used to infer interactions
and the state of participating entities.

Figure 1.2: Symbol definitions and map conventions
(a) Proteins A and B can bind to each other. The node placed on the line
represents the A:B complex. (b) Multimolecular complexes: x is A:B and
y is(A:B):C. (c) Covalent modification of protein A. (d) Degradation of
protein A. (e) Enzymatic stimulation of a reaction. ( f ) Enzymatic stim-
ulation in transcription. (g) General symbol for stimulation. (h) A bar
behind the arrowhead signifies necessity. (i) General symbol for inhibi-
tion. (j) Shorthand symbol for transcriptional activation. (k) Shorthand
symbol for transcriptional inhibition.

Some material from this dissertation has been published in [DFdCO14]
and presented in [DFdCO13a, DFdCO13c, DFdCO13b].
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1.3 thesis outline

The rest of this dissertation is organized as following:

In Chapter 2 we will go through various qualitative representa-
tion methods used in systems biology, from Boolean (Section 2.2.1)
to multi-valued (Section 2.2.2) networks, going through Petri nets
(Section 2.2.3) and causal graphs (Section 2.2.4). We will also present
some implementations based on answer set programming, temporal
logics, and classical logics, that are capable of representing the dy-
namics of the previous representations, allowing to address the dif-
ferent aspects of knowledge representation and reasoning methodolo-
gies. And finally we will introduce the different reasoning paradigms
(Section 2.1) that might be used when querying qualitative systems
biology models, that are deduction, induction, and abduction.

We will present, in Chapter 3, a new logical model for MIM. First
we will define predicates capable of describing the activation, inhibi-
tion, phosphorylation, autophosphorylation, and binding actions between
two or more entities. Then relations between these predicates and the
different states that these entities can have are introduced in form of
first-order formulas. We will also compare and evaluate the model we
proposed with the previous representations used in systems biology
presented in the previous chapter.

Then in Chapter 4 we will define a new fragment of first-order logic
with constants and equality, called Restricted formulas that includes, as
a subset, the relational formulas defined previously. These formulas
are a special case of Evaluable formulas [Dem92] and Domain Inde-
pendent formulas [Ull80, Kuh70], and are a generalization of Guarded
formulas [ANvB98]. We then introduce a translation procedure that
eliminates the quantifiers in these formulas, transforming them into
propositional formulas, with the goal of making the automated de-
duction procedure as efficient as possible.

In Chapter 5, we will present different modeled MIM examples,
alongside the results returned by SOLAR (Section A.3) [NIIR10], for
asking different types of questions answered by either abductive or
deductive reasoning.

And finally in Chapter 6, we will summarize the work that has been
done in term of modeling MIM. We will propose several other ways
to extend the model for both quantitative and qualitative approaches,
alongside the notion of Aboutness [DL10] which offers a new way
of querying these maps. We will also present an application for this
model that is still currently under development, aiming to contribute
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to the readability, flexibility, and use of MIM. The assisted computer
visualization component should offer different levels of map reading
to collect sets of relevant information at a given time and thus help
the user to find content easily. The user interaction component should
enable biologists to manipulate these maps to enrich, extend, or dis-
tribute their content more adequately.

A small background introduction to propositional and first-order
logics is given in Appendix A, temporal logic and answer set pro-
gramming will also be introduced in Appendix B and Appendix C
respectively, and finally in Appendix D we will present a proof for
the main theorem of Chapter 4.





2
F O R M A L M O D E L S U S E D I N S Y S T E M S B I O L O G Y

We will start by giving in the first section this chapter a small in-
troduction about the different reasoning paradigms, like deduction,
induction, and abduction, that are used to address the different types
of questions that can be asked. We will then present different network
models that can be used in systems biology to model interactions be-
tween different entities in a biological network. Boolean networks,
multi-valued networks, Petri nets, causal graphs are among these
models. And finally we will present some implementations of these
models based on the definition of propositional and first-order logics
in Appendix A, temporal logics in Appendix B, and answer set pro-
gramming in Appendix C, that can be used to resolve queries defined
in any of the previous network models. These application can handle
the different reasoning methodologies, allowing the reconstruction,
revision, and validation of the networks and their experimental data.

2.1 reasoning paradigms

Logician and philosopher Charles Sanders Peirce has been interested
in how arguments might be classified as deductive, inductive, or ab-
ductive based on how the premises support the conclusion [Pei31].
According to Peirce, all deduction is nothing more than the applica-
tion of a general rule to particular cases in order to state results. But
not all forms of reasoning can be reduced to deduction. In the fol-
lowing section, we will illustrate the differences between deduction,
induction, and abduction, and see, using minimal examples, how they
can be applied to systems biology.

2.1.1 Deduction

According to Peirce, Deductive Reasoning (DR) is the kind of reason-
ing where the truth of the premises logically guarantees the truth of
the conclusion. The scientific method uses deduction to test hypothe-
ses and theories where the premises may be propositions that the
reasoner believes or assumptions he is exploring.

In deductive reasoning, a conclusion is true for a class in general
if it is true for all members of that class. For example, if we take the
proposition All men are mortal, and if we know that Socrates is a man,

9



10 formal models used in systems biology

we can deduce that Socrates is mortal. For deductive reasoning to be
sound, the hypothesis must be correct. Here it is assumed that the
premises All men are mortal and Socrates is a man are true. Therefore,
the conclusion is logical and true.

It is also possible to derive a logical conclusion even if the gener-
alization is not true. In this case the conclusion is logical but it may
be untrue. For example, if we take the proposition All bald men are
grandfathers, and if we know that Georges is bald, we can deduce that
Georges is a grandfather. This conclusion is valid from a logical point
of view, but it is untrue because the original proposition All bald men
are grandfathers is false.

So deduction is an inference of a result from a rule and a case. For-
mally, answers returned by deduction are defined as follows: we sup-
pose that our knowledge base KB is represented by a set of formulas,
the query is represented by a formula F(x) that may have zero or
several free variables, and the answer is the set of entities a such that:

{a : ` KB→ F(a)}

Example 2.1.1: Let us suppose we enter a room in which there are sev-
eral bags of beans. If we take a handful from a bag of beans of which
we know that all are white, we can assert before looking at them that
the handful of beans would be white. This has been a necessary de-
duction, where we applied a general rule to a special case to state a
result:

• Rule: All the beams from this bag are white.

• Case: These beans are from this bag.

• Result: These beans are white.

By using logical formulas, the above syllogism can be represented
by the following:

• Rule: ∀x(From_this_bag(x)→ white(x))

• Case: From_this_bag(hand f ul)

• Result: White(hand f ul)

Example 2.1.2: In systems biology, we suppose that we have the fol-
lowing knowledge base about protein interactions containing the fol-
lowing information:
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• A protein is phosphorylated if it is present and there exit another pro-
tein that is present and has the capacity to phosphorylate it.

• A protein is phosphorylated if it is present and it has the capacity to
autophosphorylate.

• The proteins p53 and chk2 are present.

• The protein p53 is phosphorylated.

The KB is formally represented by:

∀x(∃yPresent(x) ∧ Present(y) ∧ Phos(y, x)→ Phosphorylated(x))

∀x(Present(x) ∧ Autophos(x)→ Phosphorylated(x))

Present(p53)

Present(chk2)

Phosphorylated(p53)

If we are interested in knowing which protein is present and phos-
phorylated, the query is formally represented by:

F(x) = Present(x) ∧ Phosphorylated(x)

Then answer returned by deduction would be: {p53}.

Deductive reasoning is analytic, since the conclusion does not add
anything to what is already in the premises.

2.1.2 Induction

Contrary to deductive reasoning, Inductive Reasoning (IR) is syn-
thetic, since what is asserted in the conclusion was not initially in
the premises. So induction is a non-necessary inference of a rule from
a case and a result. For example, using induction, if we take the fact
that every book I have seen in the library is more than one year old, we can
rule that All books in the library are over a year old. It might be that all
books in the library are more than one year old, but it is not neces-
sary since we do not know if the first statement means that I have seen
every book in the library. If that is the case, there might be books that
are less than one year old.

Example 2.1.3: Following example 2.1.1, let us imagine that we take a
handful from a random bag without knowing the color of the beans



12 formal models used in systems biology

in the bag. Finding that all of the beans in the handful are white, we
conclude that all the beans in the bag are white. That is the inference
of rules from cases and results:

• Case: These beans were in this bag.

• Result: These beans are white.

• Rule: All the beans in the bag are white.

By using logical formulas, the above syllogism can be represented
by the following:

• Case: From_this_bag(hand f ul)

• Result: White(hand f ul)

• Rule: ∀x(From_this_bag(x)→White(x))

Example 2.1.4: From a systems biology point of view, if for every ex-
periment we made on a certain cell, we noticed that a protein that is
present is active whenever the cell’s temperature is above a certain
threshold, we can conclude that every protein that is present in the
cell is active if the cell’s temperature is above this threshold.

• Case: A protein is present and the cell’s temperature is above
the threshold.

• Result: The protein is active.

• Rule: All proteins are active if the cell’s temperature is above the
threshold.

By using logical formulas, the above syllogism can be represented
by the following:

• Case: Present(protein) ∧ cell_temp_above_threshold

• Result: Active(protein)

• Rule: ∀x(Present(x) ∧ cell_temp_above_threshold→ Active(x))
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2.1.3 Abduction

Alongside deduction and induction, the term Abductive Reasoning
(AR) was first introduced to explain reasoning patterns that occur in
everyday life where the fundamental logical inference process aims to
produce a sufficient but not necessary hypothesis that explains given
observed phenomena. The generated hypothesis is subjected to some
minimality criterion, which is why abduction is often referred as a
form of inference to the best explanation [JT96]. So abduction, like in-
duction, is synthetic and is an inference of a case from a rule and a
result.

Abduction concludes that a hypothesis is the cause of some obser-
vation if it is sufficient and is the most plausible explanation. For ex-
ample, my car wouldn’t start because its starter battery is discharged.
The competing hypotheses for this observation are that the battery is
simply worn out and couldn’t hold the charge, that I haven’t started
my car for a long period of time, the lack of maintenance, ..., or that
I forgot to turn off the headlights the day before when I got back
home late at night. Forgetting to turn of the headlights is not a nec-
essary condition, for the battery would have also discharged if I had
forgotten to turn off the radio. On the other hand forgetting to turn
off the headlights is a more plausible explanation than the fact that
batteries can discharge if the car wasn’t used for a long period of time
because I use the car on a daily basis. It is also more a more plausi-
ble explanation than the lack of maintenance because the battery was
checked less than two weeks ago during a scheduled maintenance
visit. It was also the case that the battery wasn’t worn out because it
held its charge normally after a jump start. Thus I concluded that for-
getting to turn off the headlights is the cause and the most plausible
explanation for the battery discharge.

Formally, answers returned by abduction are defined as follows:
we suppose that our knowledge base KB is represented by a set of
formulas, the query is represented by a formula F that may have zero
or several free variables, and the answer is the set of formulas H
which is minimal such that:

{H : ` KB→ (H → F)}

Any formula H in this set which is added to KB allows the deriva-
tion of F.

Example 2.1.5: Following examples 2.1.1 and 2.1.3, let us suppose a
new situation in which we enter the room and find on the table a
handful of white beans, and after some searching we find that one of
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the bags contains only white beans. Then we infer that very likely the
handful present on the table was taken out of that bag. That is the
inference of cases from rules and results:

• Rule: All the beans from this bag are white.

• Result: The beans on the table are white.

• Case: These beans are from this bag.

By using logical formulas, the above syllogism can be represented
by the following:

• Rule: ∀x(From_this_bag(x)→White(x))

• Result: White(beans_on_the_table)

• Case: From_this_bag(beans_on_the_table)

Example 2.1.6: If we take the same KB seen in 2.1.2, having the query:

F = Phosphorylated(p53)

The answer would be: {Autophos(p53), Phos(chk2, p53)} because F
would be derivable if either Autophos(p53) or Phos(chk2, p53) were
added to KB. That means that the protein p53, that is present, can be
phosphorylated if it has the capacity to autophosphorylate or if the
protein chk2, that is present, has the capacity to phosphorylate it.
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2.2 qualitative models used in systems biology

In systems biology, many qualitative models have been used to rep-
resent information about metabolic networks. Among these models,
we will introduce in the following sections Boolean and multi-valued
networks, Petri nets, and causal graphs, alongside their applications
using answer set programming, propositional logic, and first-order
logic, in order to solve questions be either deductive, inductive, or
abductive reasoning, with the goal of analyzing, validating, and re-
constructing all possible networks consistent with experimental data,
detecting inconsistencies and repairing, and proposing revisions to
metabolic networks.

2.2.1 Boolean Networks

Boolean Networks (BN) were initially introduced by [Kau69] to rep-
resent gene regulatory networks, and were widely used in several
other fields of study including biology, physics, and bioinformatics
[Kau93, HB97, LSYH03, GCX+

08, KSRL+
06].

A Boolean network is a pair (N, F) where:

• N = {n1, ..., nk} a finite set of nodes or variables. Each ni(t)
represents the value of ni at time step t where ni takes either 1
(activated or expressed) or 0 (inhibited or not expressed).

• F = { f1, ..., fk} a corresponding set of Boolean functions.

A vector of states s(t) = (n1(t), ..., nk(t)) represents the expression
of each node in N at time t. There are 2k possible distinct state for each
time step. Furthermore, the state of a node ni at the next time step
t + 1 is determined by ni(t + 1) = fi(ni1(t), ..., nip(t)) where ni1 , ..., nip

are the nodes that directly influence ni, called regulation nodes of ni.

Boolean networks are generally represented by a graph with two
types of edges:

• Positive edges of the form ni −→ nj in which ni(t) takes part
positively in the regulation of another node nj(t + 1)

• Negative edges of the form ni | > nj in which ni(t) takes part
negatively in the regulation of another node nj(t + 1).

There exist three different ways to represent Boolean networks:

• Interaction graphs.

• State transition graphs represent transitions between ni(t) and
ni(t + 1) using Boolean functions.
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• State transition tables which are basically equivalent to the state
transition graphs.

Let w ∈ {0, 1}n be a state, and R(w) be the states reachable in
all directions starting from w. Then, a set of states S is an attrac-
tor if R(w) = S holds for every w ∈ S [GCX+

08]. If any trajectory
from a node in an attractor S composes a single loop, w0, ..., wp where
wp = w0 and p = |S|(1 ≤ p ≤ 2k), S is called a point attractor when
p = 1, and is called a cycle attractor when p > 1. The set of states that
reach the same attractor is called its basin of attraction [Kau93].

In systems biology, nodes are used to represent genes, proteins, or
any other entity. Boolean functions are used to represent interactions
between these entities. The stable states and dynamics of Boolean
networks are characterized by their attractors, which play an essen-
tial role in such systems.

Nodes values in a Boolean networks can be updated synchronously
or asynchronously [Ino11].

2.2.1.1 Synchronous Boolean Networks

In a Synchronous Boolean Network (SBN), all node values are up-
dated at the same time. And the successive sequence of states dur-
ing an execution obtained by state transition, called trajectory of N,
is deterministic and a trajectory starting from any state is uniquely
determined.

Example 2.2.1: Let us consider a Boolean network (N, F) where N =

{x, y, z} and F contains the following Boolean functions:

x(t + 1) = y(t)

y(t + 1) = x(t) ∧ z(t)

z(t + 1) = ¬x(t)

Figure 2.1 shows its associated interaction graph, Figure 2.2 its state
transition diagram, and Table 2.1 its corresponding state transition ta-
ble.

From the initial state (0, 1, 1) the trajectory becomes

(0, 1, 1), (1, 0, 1), (0, 1, 0), (1, 0, 1), ....

Then (1, 0, 1) → (0, 1, 0) → (1, 0, 1) is considered as a cycle attrac-
tor.

N has another point attractor (0, 0, 1) whose basin of attraction is
(1, 1, 1), (1, 1, 0), (1, 0, 0), (0, 0, 0), (0, 0, 1).
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X

Y Z

Figure 2.1: SBN interaction graph example

111 110 100 000 001

011 101 010

Figure 2.2: SBN state transition graph example

Any state in a synchronous Boolean network belongs to the basin
of attraction of only one attractor, which is either a cycle attractor or
a point attractor.

2.2.1.2 Asynchronous Boolean Networks

In an Asynchronous Boolean Network (ABN), node values may or may
not be updated at a given time. In this case state transitions cannot
be deterministic.

Example 2.2.2: Let us consider a Boolean network (N, F) where N =

{x, y} and F contains the following Boolean functions:

x(t + 1) = ¬y(t)

y(t + 1) = ¬x(t)

Figure 2.3 shows its associated interaction graph. In Figure 2.4 that
shows the state transition diagram, thick lines represent the determin-
istic update scheme, that means that all node values are updated at
the same time. And dotted lines represent the nondeterministic up-
date scheme, that means that only a set of selected nodes and rules
are updated.
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Table 2.1: SBN state transition table example

t t+1

x y z x y z

0 0 0 0 0 1

0 0 1 0 0 1

0 1 0 1 0 1

0 1 1 1 0 1

1 0 0 0 0 0

1 0 1 0 1 0

1 1 0 1 0 0

1 1 1 1 1 0

XY

Figure 2.3: Synchronous and asynchronous BN interaction graph example

10 01

11

00

Figure 2.4: Synchronous and asynchronous BN state transition graph

The states (0, 1) and (1, 0) always remain themselves whichever
set of rules are chosen as an update. We consider that these states
are point attractors in both synchronous and asynchronous update
schemes.

However, The cycle attractor (0, 0) → (1, 1) → (0, 0) in the syn-
chronous update is not an attractor in the asynchronous update since
there are transitions outgoing from this cycle. In fact, states (0, 0) and
(1, 1) are soon trapped by one of the point attractors (0, 1) or (1, 0).
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Boolean networks applied for systems biology try to provide a sim-
ple and effective modeling approach that is capable of capturing in-
teresting and relevant qualitative information when quantitative in-
formation is hard to obtain. Many comprehensive studies reviewing
the methodology can be found in [AW09, MSRSL10, WSA12, SA13],
and in particular, it has been shown that the response in signaling
networks can be modeled with Boolean networks concerning diverse
processes such as proliferation, cell cycle regulation, or apoptosis
[SRSL+

07, SSRA+
09, CTF+

10].

From a logical model point of view, gene expression has been ad-
dressed using different hypotheses and methods [LFS98, AMK00, LSYH03]
mostly using reverse engineering techniques that rely on available
data, prior knowledge and modeling hypotheses. The authors in [Sha09,
CSJ+09] showed that errors from experimental measurements make
it very hard for an exact model to exist. So, instead of looking for the
optimal Boolean model, one should be interested in finding optimal
models within certain tolerances.

In the next section, we will introduce multi-valued networks, an
extension of the Boolean network approach that allows the state of
each entity to be represented by a range of discrete values.

2.2.2 Multi-Valued Networks

A Multi-valued network [RSV87] is a pair (N, F) where:

• N = {n1, ..., nk} a finite set of nodes or variables. Each ni(t)
represents the value of ni at time step t where its associated
state space is Sni = {0, 1, ..., li}.

• F = { f1, ..., fk} a corresponding set of multi-valued functions.

A vector of states s(t) = (n1(t), ..., nk(t)) represents the expression
of each node in N at time t. There are lik possible distinct state for each
node ni for each time step. Furthermore, the state of a node ni at the
next time step t + 1 is determined by ni(t + 1) = fi(ni1(t), ..., nip(t))
where ni1 , ..., nip are the nodes that directly influence ni, called regula-
tion nodes of ni. Boolean networks defined in Section 2.2.1 are simply
a special case of multi-valued networks in which Sni = {0, 1} for ev-
ery node in N.

In many cases binary description is considered too simple, espe-
cially when variables have more than one possible action and that
these actions requires different levels of the element in order to be
launched. In systems biology, most interactions are non-linear, in the
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sense that a regulator is usually inefficient below a threshold concen-
tration and that the effect of the regulator rapidly levels off above
the threshold. Here, multi-valued networks can be used to express
that genes have several discrete levels of concentration, as opposed
to Boolean networks where nodes can take only two values that rep-
resent the active or inhibited states. For example, if a certain entity
acts both as an inhibitor to other entities and as an activator to its
own synthesis, it might be plausible to consider that the threshold
concentration for these two actions is different. In this case two thresh-
olds can be associated with the variable, thus it would be treated as
a three-level variable. We note that when we are looking for a specific
effect of a variable x, we are not interested whether x = 0, 1, 2, ..., but
whether the level of the variable is above or below a certain threshold
related to that effect.

As in Boolean networks, nodes in multi-valued networks might be
updated either synchronously or asynchronously.

2.2.2.1 Synchronous Multi-valued Networks

Example 2.2.3: Let us consider a synchronous multi-valued network
[BS07], similar to example 2.2.1, (N, F) where N = {x, y, z}, and their
corresponding state spaces Sx = {0, 1, 2}, Sy = {0, 1, 2}, and Sz =

{0, 1}.
Figure 2.1 shows its associated interaction graph and Table 2.2 its

corresponding state transition tables.

From Table 2.2, x(t + 1) = 0 (noted x(t + 1){0}) when the current
state x(t) = 0 and y(t) = 0 (noted x{0}y{0}). We can combine all
the product terms representing the states to get the update function
for a certain node. From this, we derive for x the following equations
which completely specify when its next state will be 0, 1, or 2:

x(t + 1){0} = x{0}y{0} ∨ x{0}y{1} ∨ x{1}y{0} ∨ x{1}y{1}
x(t + 1){1} = x{0}y{2} ∨ x{2}y{0} ∨ x{2}y{1}
x(t + 1){2} = x{1}y{2} ∨ x{2}y{2}

2.2.2.2 Thomas Networks

Thomas Networks (TN) [Tho91] are generally described as an exten-
sion of asynchronous multi-valued networks. They are also consid-
ered as an approximation of models based on differential equations.
These networks are better explained though an example:



2.2 qualitative models used in systems biology 21

Table 2.2: Synchronous multi-valued network state transition tables example

t t+1

x z z

0 0 1

1 0 1

2 0 0

0 1 1

1 1 1

2 1 0

t t+1

x y x

0 0 0

0 1 0

0 2 1

1 0 0

1 1 0

1 2 2

2 0 1

2 1 1

2 2 2

t t+1

x y z y

0 0 0 0

1 0 0 0

2 0 0 0

0 1 0 0

1 1 0 0

2 1 0 0

0 2 0 1

1 2 0 1

2 2 0 1

0 0 1 0

1 0 1 1

2 0 1 1

0 1 1 0

1 1 1 1

2 1 1 2

0 2 1 1

1 2 1 1

2 2 1 2

Example 2.2.4: Let us consider a negative feedback loop multi-valued
network (N, F) where N = {x, y, z} and F contains the following
functions:

x(t + 1) = ¬z(t)

y(t + 1) = x(t)

z(t + 1) = y(t)

Figure 2.5 shows its associated interaction graph, Figure 2.6 its state
transition diagram, and Table 2.3 its corresponding state transition ta-
ble.

X Y Z

Figure 2.5: TN interaction graph with negative feedback loop
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000 100 110

111011001

010 101

Figure 2.6: TN state transition graph with negative feedback loop

Table 2.3: TN state transition table with negative feedback loop

t t+1

x y z x y z

0 0 0 1 0 0

0 0 1 0 0 0

0 1 0 1 0 1

0 1 1 0 0 1

1 0 0 1 1 0

1 0 1 0 1 0

1 1 0 1 1 1

1 1 1 0 1 1

At first one might think that this negative loop (cycle attractor) will
generate a periodic behavior. However it is known from biological
experiments that this behavior will occur only if the appropriate pa-
rameters are present, and that it will stale in the stable state of the
system otherwise.

In order to include that in the model we introduce logical param-
eters [Sno89] K1, K2, and K3 that can take values 0 or 1 according to
the strength of the interaction. We then have:

x(t + 1) = K1 ¬z(t)

y(t + 1) = K2 x(t)

z(t + 1) = K3 y(t)

The periodic behavior will then be active if all interactions are
strong enough, this means that all parameters are equal to 1. But
if any of the interactions is weak, this correspond to any parameter
being equal to 0, the system will have a stable state. For example, if
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only K1 = 0 the stable state will be 000, if only K2 = 0 the stable state
will be 100, and if only K3 = 0 the stable state will be 110.

Example 2.2.5: Let us consider another multi-valued network with
positive and negative feedback loops (N, F) where N = {x, y} as
seen in Figure 2.7 in which x = {0, 1} because it has only one action
and y = {0, 1, 2} because it has two actions and thus two thresholds.

X Y

2

1

Figure 2.7: TN interaction graph with positive and negative feedback loop.
Digits 1 and 2 indicate that the amount necessary to inhibit x is less than
the necessary amount for the autocatalysis of y.

Before the introduction of the logical parameters F would have
been like the following:

x(t + 1) = ¬y1(t)

y(t + 1) = x1(t) ∨ y2(t)

This means that x(t + 1) is inhibited if y1 is active, and that y(t + 1)
is active if at least one of the condition x1 = 1 or y2 = 1 is fulfilled. In
other words x should be above its first threshold or y should be above
its second threshold for y to be activated. In this definition x1 or y2

have the same weight, that means that y(t + 1) has the same value 1
irrespective of whether x1, y2, or both have the value 1.

With the logical parameters, F is rewritten to:

x(t + 1) = dx(K1 ¬y1(t))

y(t + 1) = dy(K2 x1(t) + K3 y2(t))

Where x1, y1, and y2 are the same Boolean variables defined previ-
ously, Ks are real numbers, the + is the algebraic sum, and finally dx

and dy are operators which discretize the value in the brackets accord-
ing to the scale of variables x and y. With this we can define the state
transition table for y(t + 1) in Table 2.4.

But what is really important in this context are not the real values
but their location in the scale of the variable considered. That is why
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Table 2.4: TN state transition table for y(t + 1)

0 (if x1 = 0 and y2 = 0)

K2 (if x1 = 1 and y2 = 0)

K3 (if x1 = 0 and y2 = 1)

K2 + K3 (if x1 = 1 and y2 = 1)

the scaling operators, dx and dy, are used. In this case y has three log-
ical values 0, 1, or 2. We can then write dy(K2) = K2 and dy(K3) = K3

that means that K2 and K3 can take the values 0, 1, or 2 according to
whether they are less than a certain threshold θ1, comprised between
θ1 and another threshold θ2, or greater than θ2. Similarly dy(K2 + K3)

will be written K23. The state transition table of y(t + 1) would then
be Table 2.5.

Table 2.5: Modified TN state transition table for y(t + 1)

0 (if x1 = 0 and y2 = 0)

K2 (if x1 = 1 and y2 = 0)

K3 (if x1 = 0 and y2 = 1)

K23 (if x1 = 1 and y2 = 1)

From this we can define the complete system’s state transition table
in Table 2.6.

Table 2.6: Modified TN complete state transition table

t t+1

x y x y

0 0 K1 0

0 1 0 0

0 2 0 K3

1 0 K1 K2

1 1 0 K2

1 2 0 K23

In both examples 2.2.4 and 2.2.5 stable states were defined for state
vectors that are identical in both t and t + 1. In these cases there are
no commands to change the value of any variable, and the situation
will not change in absence of a major perturbation. But it was soon
realized that there are other stable states that are not included in the
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previous logical descriptions we saw previously. These states can be
located at the level of one or more thresholds as seen in Table 2.7.

Table 2.7: Thresholds as stable states

(Logical description) (Real description)

x = 0 if x < θ1

x = θ1 if x = θ1

x = 1 if θ1 < x < θ2

x = θ2 if x = θ2 etc.

Example 2.2.6: Let us consider a system where one of the logical equa-
tion is of the form:

x(t + 1) = dx(K x2)

Table 2.8 shows the new extended state table that contains thresh-
olds as variable values.

Table 2.8: State transition table with thresholds

x(t) x(t+1)

0 0

θ1 0

1 0

θ2 [0, K]

2 K

Table 2.9 shows the three possible state transition tables for the
three different values of K.

Table 2.9: State transition table for K = 0, K = 1, and K = 2

K = 0

x(t) x(t+1)

0 0

θ1 0

1 0

θ2 0

2 0

K = 1

x(t) x(t+1)

0 0

θ1 0

1 0

θ2 [0, 1]

2 1

K = 2

x(t) x(t+1)

0 0

θ1 0

1 0

θ2 [0, 2]

2 2
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In case K = 2 the values of x(t) and x(t + 1) are consistent with the
stable state because θ2 is included in the interval [0, 2]. We can then
consider that for this particular case θ2 is a stable state, which gives
us the final Table 2.10.

Table 2.10: State transition table θ2 as a stable state

x(t) x(t+1)

0 0

θ1 0

1 0

θ2 θ2

2 2

2.2.2.3 Relational Approaches based on ASP and Temporal Logics

As it has already been stated, for systems biology, multi-valued net-
works extend Boolean networks (Section 2.2.1) by allowing the state
of each entity to be represented by a range of discrete values instead
of the two states 1 and 0 for active and inhibited respectively. Most
of the reasoning methods, models, and implementations that can be
applied to multi-valued networks can also be applied to Boolean net-
works in general, and what is applicable to Boolean networks can
also be applied to multi-valued networks under the condition that
the evaluated experimental data is expressive enough.

Answer set programming, introduced in Appendix C, has been
used to represent the dynamics of Boolean and multi-valued net-
works [FJV+

11], address different aspects of knowledge representa-
tion and reasoning methodologies [BCT+

04], reconstruct all possible
networks consistent with experimental data [OSD+

11], detect incon-
sistencies and repair [GSTV11, GGI+10], and propose revisions to
metabolic networks [RWK10]. Moreover, authors in [KSSV13] show
that existing approaches dedicated to computing minimal interven-
tion sets, which is the minimal set of activation and inhibition entities
that forces a set of target entities into a desired state, are computa-
tionally demanding due to the highly combinatorial mechanisms in
signaling networks. This problem introduces shortcomings regarding
the scalability and exhaustiveness over large search spaces that might
compromise the robustness of the proposed solutions and limit the in-
sights provided to the biologists. As a solution to this problem, they
propose to look for robust insights by reasoning over the complete
search space of feasible solutions, relying on methods such as answer
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set programming that are capable of addressing problems of elevated
complexity.

Temporal logics, and especially LTL and CTL, defined in Appendix B
have been also used in systems biology to formalize the properties of
Boolean and multi-valued (Section 2.2.1 and Section 2.2.2) networks
of the behavior of biochemical reaction systems [EKL+

02, CF03] or
gene regulatory networks [BCRG04, BRdJ+05]. Temporal logics have
also been used to describe hybrid biological systems [FR08]. An an-
swer set programming implementation of both LTL and CTL models
have been presented in [RRI13]. In particular the authors in [BCRG04]
propose a discrete model of gene networks using Thomas networks
and temporal logics, focusing at first on establishing the consistency
of hypothesis forcing to explicit restrictions and exceptional cases,
then on validating or refuting the hypothesis. At first, the process
starts by enumerating all possible valuation parameters, constructing
the state graphs, and getting rid of all models that do not satisfy
known temporal properties in the in vivo system. Then, the known
temporal properties are transcribed in CTL to test whether specifica-
tions are satisfied by a particular model. CTL can be considered well
suited for the formulation of properties of non-deterministic state
graphs, permitting the expression that some events occur before some
others, or that a specific event has to take place in order to reach a
certain state.

In the next section, we will introduce Petri nets, another way of
representing information about biological networks. We note that the
authors in [BS07] presented a formal framework for modeling and
analyzing multi-valued genetic regulatory networks using high-level
Petri nets.

2.2.3 Petri Nets

Petri Nets (PN) are graphs of finite sets of nodes and directed arcs.
Nodes can be of two types, places or transitions, and each place has a
number of tokens. Arcs either connect a place to a transition or a tran-
sition to a place, and each arc has a corresponding weight. When miss-
ing, arc weights are assumed as one and place tokens are assumed as
zero.

A Petri net is a tuple PN = (P, T, f , m0) where:

• P = {p1, ..., pn} is a finite set of places.

• T = {t1, ..., tm} is a finite set of transitions, and P ∩ T = ∅.
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• f : ((P × T) ∪ (T × P)) → N1 defines the set of directed arcs
from places to transitions and from transitions to places, weighted
by nonnegative integer values.

• m0 : P→N0 gives the initial markings.

The set of places on incoming arcs of a transition are called input-
set and the set of places on outgoing arcs of a transition are called
output-set. A transition t is considered enabled if each of its input-set
places p tokens are greater or equal to the arc-weights from p to t.
Thus an enabled transition may fire and consume tokens equal to the
arc-weights from each place in its input-set, producing tokens equal
to arc-weights from t to each output-set place p (Figure 2.8).

2

2

2

2

Figure 2.8: Petri net enabled transition fire example

2.2.3.1 Qualitative Petri Nets

Petri nets were initially designed to represent concurrent and discrete
processes, but they can also be used as simple and flexible modeling
languages. They combine an intuitive and qualitative graphical repre-
sentation of arbitrary processes with formal semantics.

That is why Qualitative Petri Nets (QPN) have been used in systems
biology to represent bio-chemical reactions, signal transduction and
gene expressions [GSAK08, MCN08, KJH05, SFF+

07]. Abstract rep-
resentations of biochemical network are qualitative and minimally
described by their topology, usually as a bipartite directed graph
with nodes representing biochemical entities or reactions (places or
transitions). The qualitative description can also be backed up by the
abstract representation of discrete quantities, in other words to repre-
sent the number of molecules or the level of concentration of a certain
entity, and that is achieved by using tokens at places.
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In order to reinforce expressiveness of Petri nets, new arcs can be
introduced:

• Read arcs can only connect a place to a transition. They are rep-
resented by arcs with dots at the edge pointing to the transition.
If a place p is connected to a transition t via a read arc, the tran-
sition is enabled if p and all other connected places to t via stan-
dard arcs are sufficiently marked. If the t is fired, the amount of
tokens in p does not change. Read arcs can be replaced by op-
posed standard arcs, thus the qualitative analysis techniques to
Petri nets can be applied to models with read edges. Figure 2.9
shows an example of firing a transition of a Petri net with read
arcs.
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Figure 2.9: Petri net read arc example

• Inhibitor arcs can only connect a place to a transition. They are
represented by arcs with lines at the edge pointing to the tran-
sition. If a place p is connected to a transition t via an inhibitor
arc, the transition is enabled if p is not sufficiently marked (the
amount of tokens of p is less than the arc weight from p to t),
and all other places connected to t via standard arcs are suffi-
ciently marked. If t is fired, the amount of tokens in p does not
change. Inhibitor arcs cannot be reduced to the standard edges.
Thus qualitative analysis techniques are not applicable to mod-
els containing inhibitor edges. Figure 2.10 shows an example of
firing a transition of a Petri net with inhibitor arcs.

These qualitative Petri nets does not associate a time with transi-
tions in their standard semantics. Their qualitative analysis considers
all possible behaviors at any time. Timed information can be mod-
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Figure 2.10: Petri net inhibition arc example

eled in two ways, using stochastic Petri nets or continuous Petri nets
[HGD08].

2.2.3.2 Stochastic Petri Nets

Stochastic Petri Nets (SPN) preserve the discrete state description found
in qualitative Petri nets, but associate in addition a probabilistically
distributed firing rate with each transition t, which are random vari-
ables Xt = [0, ∞). So theoretically all reactions can still occur, but their
likelihood depends on the probability distribution. So all qualitative
properties valid in a qualitative Petri net are still valid in a stochastic
Petri nets, this allows the use of the same analysis techniques in both
types of Petri nets.

A Stochastic Petri net is a tuple PN = (P, T, f , v, m0) where:

• P = {p1, ..., pn} is a finite set of places.

• T = {t1, ..., tm} is a finite set of transitions, with P ∩ T = ∅,

• f : ((P × T) ∪ (T × P)) → N1 defines the set of directed arcs
from places to transitions and from transitions to places, weighted
by nonnegative integer values.

• v : T → H is a function which assigns a stochastic hazard func-
tion ht to each transition t, where:
H :=

⋃
t∈T{ht|ht : N

|•t|
0 → R+} is the set of all stochastic func-

tions, and v(t) = ht for all transitions t ∈ T. Note: •t represents
the input set of t.

• m0 : P→N0 gives the initial markings.
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2.2.3.3 Continuous Petri Nets

Continuous Petri Nets (CPN) replace discrete values of species in a
qualitative Petri net with continuous values, which we are going to
interpret as the concentration of the entities modeled by the place.
Timed information is also introduced by the association of a deter-
ministic rate with each transition, permitting the continuous model
to be represented as a set of ordinary differential equations, thus con-
centration of a certain entity in this model will have the same value
at each point of time in repeated experiments.

A continuous Petri net is a tuple PN = (P, T, f , v, m0) where:

• P = {p1, ..., pn} is a finite set of places.

• T = {t1, ..., tm} is a finite set of transitions, with P ∩ T = ∅,

• f : ((P × T) ∪ (T × P)) → N1 defines the set of directed arcs
from places to transitions and from transitions to places, weighted
by nonnegative integer values.

• v : T → H is a function which assigns a firing rate function ht

to each transition t, where:
H :=

⋃
t∈T{ht|ht : R|•t| → R} is the set of all firing rate func-

tions, and v(t) = ht for all transitions t ∈ T. Note: •t represents
the input set of t.

• m0 : P→N0 gives the initial markings.

Stochastic Petri nets can be used as basis for deriving continuous
Petri nets by approximating rate information. We can also derive
Stochastic Petri nets from the continuous model by approximating
concentration levels as tokens [CVGO06].

A range of qualitative modeling techniques for Petri nets can be
found in the literature, a few examples include [RLM96, CRRT04,
SBW06, MLM06]. However the authors in [HGD08] give a good com-
parison and implementation of both qualitative and stochastic meth-
ods using LTL (Appendix B). Answer set programming has also been
used to represent the dynamics of Petri nets [ABI13b, ABI13a].

And finally in the final section of this chapter, we will present
causal networks, generally represented using first-order logic.

2.2.4 Causal Networks

Causal Networks (CN) [IDN13] represent background theory as a net-
work structure. They are generally constituted of a set of nodes and a
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set of directed or non-directed arcs. Each node can represent an event,
a fact, a proposition, or in the case of systems biology nodes can rep-
resent genes, proteins, or any other entity. For two different nodes a
direct causal relation represents direct arc between these nodes and a
causal chain corresponds to their accessibility.

In systems biology, a cause can refer to a mathematical, statisti-
cal, physical, chemical, biological, conceptual, structural dependency
[Pea00], that is why its definition is kept informal and just represents
a connectivity between nodes. So a direct cause simply refers the adja-
cent connectivity where its effect is direct or relative to a certain level
of abstraction.

Generally Causal Networks can be represented using first-order
logic, where nodes are represented by ground atoms in the language
and causal relations by predicates or facts. For example, Figure 2.11

shows that if there is a direct causal relation between a node x and
another node y, we can define a predicate connected for the relation
where connected(x, y) is true, and where connected(x, y) corresponds
to the rule (x → y). And if a direct causal relation between x and y
cannot exist, this constraint is represented by ¬connected(x, y).

y x

y x�

connected(x, y)

¬connected(x, y)

Figure 2.11: Causal Network representation of the connected predicate

Figure 2.12 shows that a nondeterministic causal relation between
a node x and its multiple effects y1, ..., yn>1 can be represented by a
disjunction of connected predicates of the form connected(x, y1)∨ ...∨
connected(x, yn), and where this disjunction corresponds to the rule
(x → y1 ∨ ...∨ yn).

x

y

z

connected(x, y) ∨ connected(x, z)OR

Figure 2.12: Causal Network representation of a nondeterministic causal re-
lation

Figure 2.13 shows that a joint causal relation between two or more
nodes y1, ..., yn>1 and a node x can be represented by a disjunction of
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connected predicates of the form connected(y1, x)∨ ...∨ connected(yn, x),
and where this disjunction corresponds to the rule (y1 ∧ ...∧ yn → x).

x

y

z

connected(y, x) ∨ connected(z, x)AND

Figure 2.13: Causal Network representation of a joint causal relation

Complex direct causal relations that correspond to rules (x1 ∧ ... ∧
xn → y1 ∨ ... ∨ ym) that have more than one node on both sides
can be decomposed into two relations (x1 ∧ ... ∧ xn → z) and (z →
y1 ∨ ...∨ ym) where z is an intermediate node.

The predicate connected can also be used express inferred rules by in-
troducing another predicate caused where caused(x, y) is true if there
is a causal chain from x to y. Causal chains are generally defined
transitively like the following (Figure 2.14):

connected(x, y)→ caused(x, y)

caused(x, z) ∧ connected(z, y)→ caused(x, y)

zy x

Figure 2.14: Causal Network representation of a transitive causal relation

Similarly, we can define other types of causalities, like positive and
negative clausal effects for example. The link predicate connected can
be replaced by the predicates triggered and inhibited.

triggered(x,y) is true if x is an initiator of y, which is represented by
x → y in a causal network. On the other hand, inhibited(x,y) is true if
x in an inhibitor of y, which is represented by x ⊥ y in a causal net-
work. From this, nondeterministic, joint, and complex direct causal
relations can be introduced to show relations between two or more
nodes.

Inferred rules can also be expressed by introducing two other pred-
icates promoted and suppressed, where promoted(x, y) is true if there
is a initiator causal chain from x to y and suppressed(x, y) is true if
there is an inhibitor causal chain from x to y defined transitively like
the following:
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triggered(x, y)→ promoted(x, y)

promoted(x, z) ∧ triggered(z, y)→ promoted(x, y)

suppressed(x, z) ∧ inhibited(z, y)→ promoted(x, y)

inhibited(x, y)→ suppressed(x, y)

promoted(x, z) ∧ inhibited(z, y)→ suppressed(x, y)

suppressed(x, z) ∧ triggered(z, y)→ suppressed(x, y)

The different reasoning paradigms introduced in Section 2.1 have
also been used alongside classical logics, defined in Appendix A, to
reason about systems biology, where deduction has been presented in
[AECBF+

12], abduction in [IDN13, RFYI13], and induction in [TNKMP04,
RWK10] to help reason and discover missing links and unknown
nodes from incomplete causal networks (Section 2.2.4) with Meta-
level abduction [IDN11, IDN13].

Classical logics have also been used to model the Systems Biol-
ogy Graphical Notation (SBGN) [NHM+

09], which is, like MIM, a
graphical notation used to represent molecular networks, especially
metabolic and signaling networks. SBGN is divided into three differ-
ent types of diagrams: Systems Biology Graphical Notation Process
Diagram (SBGN-PD), Systems Biology Graphical Notation Entity Rela-
tionship Diagram (SBGN-ER), and Systems Biology Graphical Notation
Activity Flow Diagram (SBGN-AF), where each diagram has a different
purpose and different features. Mainly, SBGN-PD is used to represent
processes that make the state of biological entities change, SBGN-ER
to represent interaction rules between biological entities, and SBGN-
AF to represent influences of biological activities on each other. The
authors of [RFYI14] proposed a translation of the different symbols
of SBGN-AF into first-order logic, where biological entities are rep-
resented by unary predicates and relations between such entities by
binary predicates. Then, these predicates are used to define different
axioms, where logically deduced facts from transformed SBGN-AF
networks can be interpreted back as elements of these networks. The
dynamics and the steady states of the network can be deduced from
there axioms in different ways using non-monotonic reasoning. In
[FJV+

11], answer set programming is used to compute all state transi-
tion, allowing to get the full dynamics of the network. Quantifier elim-
ination procedures, like the one we will present in Section 4.3, that
consist of eliminating the quantifiers of the theory under the close
world assumption, can also be used to compute the steady states,
that are the models of the resulting quantifier free theory.
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We presented in this chapter different qualitative models capable
of representing information about biological networks. Then we pre-
sented applications to these models that have different target results,
some of which focus on model checking and validation, others focus
on checking and validating experimental data, detecting and repair-
ing inconsistencies, and generating new hypotheses.

In the next section we will propose a new logical model based on
first-order logic capable of describing the dynamics of MIM.





3
A L O G I C A L M O D E L F O R M I M

In this chapter we will present a new logical model based on first-
order logic capable of describing both positive and negative interac-
tions between two or more entities in MIM. We will focus at first on
the activation and inhibition actions, and then show how this language
can be extended to describe the different other interactions, as the
phosphorylation, autophosphorylation, and binding actions, seen in Fig-
ure 1.2.

3.1 formal language

Let us consider a fragment of first-order logic (Section A.2) with equal-
ity (=) where formulas are formed by basic predicates, the Boolean
connectives and (∧) and or (∨), the negation (¬), the implication (→),
the equivalence (↔), and the universal (∀) and existential (∃) quantifiers.

First, we introduce three basic states in which entities in a MIM can
be. These states are defined by the following predicates:

• A(x): Means that the entity x is Active.

• I(x): Means that the entity x is Inhibited.

• P(x): Means that the entity x is Present.

Then we define the basic relations that bind these predicates to
each other:

• An entity can never be in both active and inhibited states at the
same time.

¬∃x(A(x) ∧ I(x)) (3.1)

• Every entity that is present is either active or inhibited, and
every active or inhibited entity is present.

∀x(P(x)↔ A(x) ∨ I(x)) (3.2)

In order to model the different interactions between different en-
tities, we extend our model in the next section with new predicates
allowing the representation of concepts like activation, inhibition, phos-
phorylation, autophosphorylation, and binding.

37
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3.2 activation and inhibition

The activation and inhibition actions can be defined by the following
predicates:

• CA(y, x): the Capacity of Activation expresses that the protein y
has the capacity to activate the protein x.

• CAe(y, x): the Effective Capacity of Activation expresses that the
protein y has the effective capacity to activate the protein x.

• CAdi(y, x): the Direct or Indirect Capacity of Activation expresses
that the protein y has the capacity to directly or indirectly acti-
vate the protein x.

• CICA(z, y, x): the Capacity to Inhibit the Capacity of Activation ex-
presses that the protein z has the capacity to inhibit the capacity
of the activation of x by y.

• CACA(z, y, x): the Capacity to Activate the Capacity of Activation
expresses that the protein z has the capacity to activate the ca-
pacity of the activation of x by y.

• CI(y′, x): the Capacity to Inhibit a Protein expresses that the pro-
tein y′ has the capacity to inhibit the protein x.

• CIe(y′, x): the Effective Capacity to Inhibit a Protein expresses that
the protein y′ has the effective capacity to inhibit the protein x.

• CIdi(y′, x): the Direct or Indirect Capacity of Inhibition expresses
that the protein y′ has the capacity to directly or indirectly in-
hibit the protein x.

• CACI(z′, y′, x): the Capacity to Activate the Capacity of Inhibition of
a Protein expresses that the protein z′ has the capacity to activate
the capacity of inhibition of x by y′.

• CICI(z′, y′, x): the Capacity to Inhibit the Capacity of Inhibition of
a Protein expresses that the protein z′ has the capacity to inhibit
the capacity of inhibition of x by y′.

Example 3.2.1: Considering we have a certain metabolic network where
a protein b has the capacity to activate another protein a. This fact is
represented by the predicate CA(b, a). If we have another protein c
that has the capacity to inhibit the activation of a by b, this will be
represented by the predicate CICA(c, b, a). And if d has the capac-
ity to activate the capacity of activation of a by b, this fact would be
represented by the predicate CACA(d, b, a).

Similarly if we have a certain protein e that has the capacity to in-
hibit the protein a, this fact would be represented by the predicate
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CI(e, a). And if we have another protein f that has the capacity to
activate the inhibition of a by e, this will be represented by the predi-
cate CACI( f , e, a). And if g has the capacity to inhibit the capacity of
inhibition of a by e, this fact would be represented by the predicate
CICI(g, e, a).

Then we introduce causality relations between two or more protein
states by defining the axioms that are used to model these activation
and inhibition actions. We will also define relations that exist between
the different causal relations.

3.2.1 Relations Between the Activation and Inhibition Causes and Effects

Given the fact that a protein can acquire the state active or inhibited
depending on different followed pathways, we define the relations
between the causes and effects like the following:

Activation axiom: A protein x is active if there exists at least one
active protein y that has the effective capacity to activate it. Also, for
every protein z that has the capacity to inhibit this capacity, z should
not be active . Finally, for every protein w that has the capacity to
activate this activity, w should be active. (Figure 3.1)

∀x∀y(A(y) ∧ CAe(y, x)→ A(x)) (3.3)

y x

z

w

Figure 3.1: Activation

Having CAe defined by the following:

CAe(x, y) def
== CA(x, y) ∧ ¬∃z(CICA(z, x, y) ∧ A(z))

∧ ∀w(CACA(w, x, y)→ A(w)) (3.4)

Inhibition axiom: A protein x is inhibited if there exists at least one
active protein y that has the effective capacity to inhibit it. Also, for ev-
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ery protein z that has the capacity to inhibit this capacity, z should not
be active. Finally, for every protein w that has the capacity to activate
this inhibition, w should be active. (Figure 3.2)

∀x∀y(A(y) ∧ CIe(y, x)→ I(x)) (3.5)

y x

z

w

Figure 3.2: Inhibition

Having CIe defined by the following:

CIe(x, y) def
== CI(x, y) ∧ ¬∃z(CICI(z, x, y) ∧ A(z))

∧ ∀w(CACI(w, x, y)→ A(w)) (3.6)

3.2.2 Relations Between Causal Relations

The activation pathways seen in Figure 3.3 can also be defined by the
following axioms:

∀x∀y(CAe(y, x) ∨ ∃z(CAdi(y, z) ∧ CAe(z, x))↔ CAdi(y, x))
(3.7)

xz...y

Figure 3.3: Direct or indirect capacity of activation

The inhibition pathways seen in Figure 3.4 can also be defined by
the following axioms:

∀x∀y(CIe(y, x) ∨ ∃z(CAdi(y, z) ∧ CIe(z, x))↔ CIdi(y, x)) (3.8)
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xz...y

Figure 3.4: Direct or indirect capacity of inhibition

From formulas 3.3, 3.5, 3.7, and (3.8) we can deduce:

Observation 3.2.1:

∀x∀y(A(y) ∧ CAdi(y, x)→ A(x)) (3.9)

Observation 3.2.2:

∀x∀y(A(y) ∧ CIdi(y, x)→ I(x)) (3.10)

Proof 3.2.1: The proof of observation 3.2.1 is constructed by induction
over the number of active proteins in the pathway. We have:

CAdi
n (yn, x) def

== ∃yn−1, ..., ∃y(CAe(yn, yn−1)∧ ...∧CAe(y1, y)∧CAe(y, x))

(3.11)

• Base case:

Let us consider that there exist one active protein y that inter-
vene in the pathway of the protein x. For n = 0 we have:

CAdi
0 (y, x) def

== CAe(y, x) (3.12)

Thus we can deduce from formula 3.3 that the base case holds:

∀x∀y(A(y) ∧ CAdi
0 (y, x)→ A(x)) (3.13)

• Inductive step:

Let us now consider that there is an finite number n of active
proteins that intervene in pathway of the protein x. We suppose
that the following property holds for n:

∀x∀yn(A(yn) ∧ CAdi
n (yn, x)→ A(x)) (3.14)
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Let us also consider that there is a protein yn+1 that has the
capacity to activate yn and there is no protein z that has the
capacity to inhibit this activation.

From this assumption we have CAe(yn+1, yn) and from the defi-
nition of CAdi

n+1(yn+1, x) we have:

CAdi
n+1(yn+1, x) def

== ∃yn, ..., ∃y(CAe(yn+1, yn)∧CAe(yn, yn−1)∧ ...∧CAe(y, x))

(3.15)

That is expressed as:

CAdi
n+1(yn+1, x) def

== ∃yn(CAe(yn+1, yn)∧ CAdi
n (yn, x)) (3.16)

From formula 3.3 we have:

∀yn∀yn+1(A(yn+1) ∧ CAe(yn+1, yn)→ A(yn)) (3.17)

Unifying the induction hypothesis 3.14 and the formula 3.17 we
get:

∀x∀yn∀yn+1(A(yn+1)∧ CAe(yn+1, yn)∧ CAdi
n (yn, x)→ A(x))

(3.18)

From properties 3.16 and 3.18 we can deduce:

∀x∀yn+1(A(yn+1) ∧ CAdi
n+1(yn+1, x)→ A(x)). (3.19)

Thus proving observation 3.2.1.

Proof 3.2.2: Similarly the proof of observation 3.2.2 is constructed by
induction over the number of active proteins in the pathway. We have:

CIdi
n (yn, x) def

== ∃yn−1, ..., ∃y(CAe(yn, yn−1)∧ ...∧CAe(y1, y)∧CIe(y, x))

(3.20)
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• Base case:

Let us consider that there exist one active protein y that inter-
vene in the pathway of the protein x. For n = 0 we have:

CIdi
0 (y, x) def

== CIe(y, x) (3.21)

Thus we can deduce from formula 3.5 that the base case holds:

∀x∀y(A(y) ∧ CIdi
0 (y, x)→ I(x)) (3.22)

• Inductive step:

Let us now consider that there is an finite number n of active
proteins that intervene in pathway of the protein x. We suppose
that the following property holds for n:

∀x∀yn(A(yn) ∧ CIdi
n (yn, x)→ I(x)) (3.23)

Let us also consider that there is a protein yn+1 that has the
capacity to activate yn and there is no protein z that has the
capacity to inhibit this activation.

From this assumption we have CAe(yn+1, yn) and from the defi-
nition of CIdi

n+1(yn+1, x) we have:

CIdi
n+1(yn+1, x) def

== ∃yn, ..., ∃y(CAe(yn+1, yn)∧CAe(yn, yn−1)∧ ...∧CIe(y, x))

(3.24)

That is expressed as:

CIdi
n+1(yn+1, x) def

== ∃yn(CAe(yn+1, yn) ∧ CIdi
n (yn, x)) (3.25)

From formula 3.3 we have:

∀yn∀yn+1(A(yn+1) ∧ CAe(yn+1, yn)→ A(yn)) (3.26)

Unifying the induction hypothesis 3.23 and the formula 3.26 we
get:

∀x∀yn∀yn+1(A(yn+1) ∧ CAe(yn+1, yn) ∧ CIdi
n (yn, x)→ I(x))
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(3.27)

From properties 3.25 and 3.27 we can deduce:

∀x∀yn+1(A(yn+1) ∧ CIdi
n+1(yn+1, x)→ I(x)) (3.28)

Thus proving observation 3.2.2.

3.3 model extension

This basic language defined in Section 3.2 can be easily extended to
express different and more precise state and actions of entities that
exist in MIM as shown in Figure 1.2.

3.3.1 Phosphorylation

The action of phosphorylation can be defined by the following predi-
cates:

• CP(z, y, s, x): the Capacity of Phosphorylation expresses that the
protein z has the capacity to phosphorylate the protein y on a
certain site s, having x as the result of the phosphorylation.

• CPe(z, y, s, x): the Effective Capacity of Phosphorylation expresses
that the protein z has the effective capacity to phosphorylate the
protein y on site s, where x is the result of the phosphorylation.

• CPdi(z, y, s, x): the Direct or Indirect Capacity of Phosphorylation
expresses that the protein z has the capacity to directly or indi-
rectly phosphorylate the protein y on site s, where x is the result
of the phosphorylation.

• CICP(t, z, y, s, x): the Capacity to Inhibit the Capacity of Phosphory-
lation expresses that the protein t has the capacity to inhibit the
capacity of the phosphorylation of y on site s by z leading to x.

• CACP(t, z, y, s, x): the Capacity to Activate the Capacity of Phospho-
rylation expresses that the protein t has the capacity to activate
the capacity of the phosphorylation of y on site s by z leading
to x.

Example 3.3.1: Considering we have a certain metabolic network where
a certain protein c has the capacity to phosphorylate another protein
b on a certain site s where a is the result of the phosphorylation. This
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fact is represented by the predicate CP(c, b, s, a). If we have another
protein d that has the capacity to inhibit this phosphorylation, this
will be represented by the predicate CICP(d, c, b, s, a). And the fact
that another protein e has the capacity to activate this phosphoryla-
tion is represented by CACP(e, c, b, s, a).

And the phosphorylation axiom seen in Figure 3.5 can be defined
as follows:

A phosphorylated protein x is active if there exists at least one
active protein z that has the effective capacity to phosphorylate the
protein y leading to x. Also, for every protein t that has the capacity
to inhibit this capacity, t should not be active. Finally, for every protein
w that has the capacity to activate this phosphorylation, w should be
active.

∀x∀y∀s∀z(A(z) ∧ A(y) ∧ CPe(z, y, s, x)→ A(x)) (3.29)

y

z

 
x

s

t w

Figure 3.5: Phosphorylation

Having CPe defined by the following:

CPe(z, y, s, x) def
==CP(z, y, s, x) ∧ ¬∃t(CICP(t, z, y, s, x) ∧ A(t))

∧ ∀w(CACP(w, z, y, s, x)→ A(w)) (3.30)

3.3.2 Autophosphorylation

The action of autophosphorylation can be defined by the following pred-
icates:

• CAP(y, s, x): the Capacity of Autophosphorylation expresses that
the protein y has the capacity of autophosphorylating on a cer-
tain site s, having x as the result of the autophosphorylation.

• CAPe(y, s, x): the Effective Capacity of Autophosphorylation expresses
that the protein y has the effective capacity of autophosphorylat-
ing on site s, where x is the result of the autophosphorylation.
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• CAPdi(y, s, x): the Direct or Indirect Capacity of Autophosphoryla-
tion expresses that the protein y has the capacity to directly or
indirectly autophosphorylate on site s, where x is the result of
the phosphorylation.

• CICAP(t, y, s, x): the Capacity to Inhibit the Capacity of Autophos-
phorylation expresses that the protein t has the capacity to inhibit
the capacity of the autophosphorylation of y on site s leading to
x.

• CACAP(t, y, s, x): the Capacity to Activate the Capacity of Autophos-
phorylation expresses that the protein t has the capacity to acti-
vate the capacity of the autophosphorylation of y on site s lead-
ing to x.

Example 3.3.2: Considering we have a certain metabolic network where
a certain protein b has the capacity to autophosphorylate on a certain
site s where the result a is the result of the autophosphorylation. This
fact is represented by the predicate CAP(b, s, a). If we have another
protein c that has the capacity to inhibit this autophosphorylation,
this will be represented by the predicate CICAP(c, b, s, a). And the
fact that another protein d has the capacity to activate this phospho-
rylation is represented by CACAP(d, b, s, a).

And the autophosphorylation axiom as seen in Figure 3.6 can be
defined as follows:

An autophosphorylated protein x is active if there exists at least
one active protein y that has effective the capacity to phosphorylate
leading to x. Also, for every protein t that has the capacity to inhibit
this capacity, t should not be active. Finally, for every protein w that has
the capacity to activate this autophosphorylation, w should be active.

∀x∀y∀s(A(y) ∧ CAPe(y, s, x)→ A(x)) (3.31)

y 
x

s

t w

Figure 3.6: Autophosphorylation
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Having CAPe defined by the following:

CAPe(y, s, x) def
==CAP(y, s, x) ∧ ¬∃t(CICAP(t, y, s, x) ∧ A(t))

∧ ∀w(CACAP(w, y, s, x)→ A(w)) (3.32)

3.3.3 Binding

The action of binding can also be defined by the following predicates:

• CB(z, y, x): the Capacity of Binding expresses that the protein z
has the capacity to bind to the protein y, resulting in the new
protein x.

• CBe(z, y, x): the Effective Capacity of Binding expresses that the
protein z has the effective capacity to bind to the protein y,
where x is the result of the binding.

• CBdi(z, y, x): the Direct or Indirect Capacity of Binding expresses
that the protein z has the capacity to directly or indirectly bind
to the protein y, where x is the result of the binding.

• CICB(t, z, y, x): the Capacity to Inhibit the Capacity of Binding ex-
presses that the protein t has the capacity to inhibit the capacity
of the binding of y and z leading to x.

• CACB(t, z, y, x): the Capacity to Activate the Capacity of Binding
expresses that the protein t has the capacity to activate the ca-
pacity of the binding of y and z leading to x.

Example 3.3.3: Considering we have a certain metabolic network where
a certain protein c has the capacity to bind to another protein b where
the result a is the result of the binding. This fact is represented by the
predicate CB(c, b, a). If we have another protein d that has the capac-
ity to inhibit this binding, this will be represented by the predicate
CICB(d, c, b, a). And the fact that another protein e has the capacity
to activate this binding is represented by CACB(e, c, b, a).

And the binding axiom as seen in Figure 3.7 can be defined as fol-
lows:

A bound protein x is active if there exists at least one active protein
y that has the effective capacity to bind to a protein z where x is
the binding’s result. Also, for every protein t that has the capacity to
inhibit this capacity, t should not be active. Finally, for every protein w
that has the capacity to activate this binding, w should be active .

∀x∀y∀z(A(z) ∧ A(y) ∧ CBe(z, y, x)→ A(x)) (3.33)
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 x

y

z

t
w

Figure 3.7: Binding

Having CBe defined by the following:

CBe(z, y, x) def
==CB(z, y, x) ∧ ¬∃t(CICB(t, z, y, x) ∧ A(t))

∧ ∀w(CACB(w, z, y, x)→ A(w)) (3.34)

3.4 causality relations redefinition

Using the axioms defined in the Section 3.2 and Section 3.3 we can re-
define the positive connotation causality relations like the following:

3.4.1 Activation

CAdi - (Figure 3.8)

xz... CA

CA

CP

CAP

CB

CA

CP

CAP

CB

Figure 3.8: Direct or indirect capacity of activation

∀x∀y(CAe(y, x)∨∃a(CAdi(y, a) ∧ CAe(a, x))∨
∃b∃c∃s1(CPdi(y, b, s1, c) ∧ CAe(c, x))∨
∃d∃s2(CAPdi(y, s2, d) ∧ CAe(d, x))∨
∃e∃ f (CBdi(y, e, f ) ∧ CAe( f , x))↔ CAdi(y, x))
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3.4.2 Phosphorylation

CPdi - (Figure 3.9)
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Figure 3.9: Direct or indirect capacity of phosphorylation

∀x∀y∀w∀s(CPe(y, w, s, x) ∨ ∃a(CAdi(y, a) ∧ CPe(a, w, s, x))∨
∨ ∃b∃c∃s1(CPdi(y, b, s1, c) ∧ CPe(c, w, s, x))∨
∨ ∃d∃s2(CAPdi(y, s2, d) ∧ CPe(d, w, s, x))∨
∨ ∃e∃ f (CBdi(y, e, f ) ∧ CPe( f , w, s, x))↔ CPdi(y, w, s, x))

3.4.3 Autophosphorylation

CAPdi - (Figure 3.10)
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Figure 3.10: Direct or indirect capacity of autophosphorylation

∀x∀y∀s(CAPe(y, s, x) ∨ ∃a(CAdi(y, a) ∧ CAPe(a, s, x))∨
∨ ∃b∃c∃s1(CPdi(y, b, s1, c) ∧ CAPe(c, s, x))∨
∨ ∃d∃s2(CAPdi(y, s2, d) ∧ CAPe(d, s, x))∨
∨ ∃e∃ f (CBdi(y, e, f ) ∧ CAPe( f , s, x))↔ CAPdi(y, s, x))

3.4.4 Binding

CBdi - (Figure 3.11)
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Figure 3.11: Direct or indirect capacity of binding

∀x∀y∀w(CBe(y, w, x) ∨ ∃a(CAdi(y, a) ∧ CBe(a, w, x))∨
∨ ∃b∃c∃s1(CPdi(y, b, s1, c) ∧ CBe(c, w, x))∨
∨ ∃d∃s2(CAPdi(y, s2, d) ∧ CBe(d, w, x))∨
∨ ∃e∃ f (CBdi(y, e, f ) ∧ CBe( f , w, x))∨ ↔ CBdi(y, w, x))

3.4.5 Inhibition

And the negative connotation causality relation CIdi like the follow-
ing:

∀x∀y(CIe(y, x) ∨ ∃a(CAdi(y, a) ∧ CIe(a, x))∨
∨ ∃b∃c∃s1(CPdi(y, b, s1, c) ∧ CIe(c, x))∨
∨ ∃d∃s2(CAPdi(y, s2, d) ∧ CIe(d, x))∨
∨ ∃e∃ f (CBdi(y, e, f ) ∧ CIe( f , x))↔ CIdi(y, x))

As in observations 3.2.1 and 3.2.2, we can deduce and prove in a
similar fashion the following observations:

Observation 3.4.1:

∀x∀y∀s∀z(A(z) ∧ A(y) ∧ CPdi(z, y, s, x)→ A(x))

Observation 3.4.2:

∀x∀y∀s(A(y) ∧ CAPdi(y, s, x)→ A(x))

Observation 3.4.3:

∀x∀y∀z(A(z) ∧ A(y) ∧ CBdi(z, y, x)→ A(x))
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Example 3.4.1: Considering the case where two proteins b and c can
bind together to form the complex bc, CB(b, c, bc). If there are no other
proteins that are capable of inhibiting this binding reaction, we say
that b and c have the effective capacity to bind together, CBe(b, c, bc).

If we also know that a certain protein a has the capacity to activate
the protein b, CA(a, b), and there are no other proteins capable of
inhibiting this activation, we can say that a has the effective capacity
to activate b, CAe(a, b).

From these propositions and the formulas we saw previously, we
can deduce that a has the capacity to directly or indirectly activate
the protein b, CAdi(a, b), causing the binding between b and c. There-
fore we say that a has the capacity to directly or indirectly bind to c,
CBdi(a, c, bc).

And if we also have a protein e that has the capacity to phosphory-
late f on a certain site s where a is the result of said phosphorylation,
CP(e, f , s, a), and there are no other protein capable of inhibiting this
phosphorylation, we can say that e has the effective capacity to phos-
phorylate f on site s, CPe(e, f , s, a).

From this proposition we can deduce that e has the capacity to di-
rectly or indirectly phosphorylate the protein f on site s, CPdi(e, f , s, a),
causing the activation between a and b, which in its turn causes the
binding between b and c. There fore we can say that e has the capacity
to directly or indirectly bind to c, CBdi(e, c, bc).

3.5 evaluation

In the following section we will evaluate the MIM representations,
present their positive and negative points, pinpoint some of their
flaws, and compare them with the other models presented in Chap-
ter 2.

One of the major flaws of MIM is that some parts of the graphical
representation can sometimes be misleading as they can have more
than one meaning. For example, let us take the graphical representa-
tion of the binding process shown in Figure 3.7, where y can bind to
z giving x as the resulting complex. In this context, the effect of t can
be interpreted in two different ways:

• As a condition: The effect of t on the binding can be considered
as a necessary condition to this binding process, where the bind-
ing between the two active proteins y and z cannot take place
if t is active. This case can be represented by one reaction that
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can be formulated by the binding axiom defined in Section 3.3.3,
where we have CB(y, z, x) and CICB(t, y, z, x).

• As an action: The effect of t on the binding can be considered
as an unrelated activity to the binding process. The binding be-
tween the two active proteins y and z can take place without any
other restrictions. On the other hand, t can inhibit the action of
the complex x which is the result of the binding between y and z.
This case can be represented by two reactions that can be formu-
lated first by the binding axiom defined in Section 3.3.3, where
we have CB(y, z, x) and no other protein is capable of inhibit-
ing this binding, and second by the inhibition axiom defined in
Section 3.2, where we have CI(t, x).

Seeing that these two interpretations have the same graphical rep-
resentation can lead to a false interpretation. It is then necessary to
refer back to the literature of the MIM to be able to decide which in-
terpretation better suits each case.

Compared to the Boolean and multi-valued networks (Section 2.2.1
and Section 2.2.2), our logical representation of MIM have the advan-
tage of being able to represent complex reactions, where interactions
of different types can be expressed between two entities or more, as
well as interactions that affect other reactions. Whereas reactions in
classic Boolean and multi-valued networks are limited to positive and
negative actions represented by positive and negative atoms respec-
tively. However, a feature that is missing from our interpretation of
MIM, is the ability for multi-valued networks, and especially Thomas
networks, to offer the possibility for each node to have more than two
meaningful states depending on various thresholds.

Petri nets models’ (Section 2.2.3) comparison can somehow be con-
sidered similar to the comparison of multi-valued networks to our
representation of MIM, where weighted arcs and tokens can be con-
sidered as thresholds for a transition to fire. However, similar prob-
lems arise with the problem of representing different types of com-
plex reactions.

On the other hand, the representation of causal networks (Sec-
tion 2.2.4) can be considered very similar to the representation of
MIM we defined previously in this chapter. Having the same flexibil-
ity and freedom in term of modeling, the main difference is that the
predicates and axioms defined in causal networks often focus on the
interaction between entities rather than focusing on the state of each
entity.
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In this chapter we presented a logical model for MIM. We proposed
axioms for the dynamics of its main types of interactions, mainly
the activation, inhibition, phosphorylation, autophosphorylation, and
binding actions, and showed the different causal relations between
these different reactions.

In the following section we will present a quantifier elimination
procedure, based on a fragment of first-order logic, that can be ap-
plied to these interaction axioms in order to be able to efficiently run
the various reasoning procedures defined in Section 2.1.





4
R E S T R I C T E D F O R M U L A S A N D Q U A N T I F I E R
E L I M I N AT I O N

In this chapter we define a fragment of first-order logic with constants
and equality, and without functions, that we call Restricted formulas.
These formulas are a special case of domain independent [Ull80, Kuh70]
and evaluable [Dem92] formulas, and a generalization of guarded for-
mulas [ANvB98]. The properties of this fragment allow us to define a
procedure capable of eliminating the quantifiers in this fragment, in
other words to transform the first-order formulas to formulas without
variables, in order to obtain an efficient automated deduction proce-
dure for these fragments.

4.1 background

We will present in this section a small introduction about domain in-
dependent, evaluable, and guarded formulas.

4.1.1 Domain Independent Formulas

Domain Independent Formulas (DIF) of first-order logic were first in-
troduced in [Ull80, Kuh70]. The evaluation of these formulas does not
change in a given interpretation when a new constant is added to the
interpretation’s domain.

First of all, considering a first-order language without function
symbols, we define stable formulas as follows:

Let F be a formula in which only the predicate symbols P1, ..., Pt oc-
cur, I and I ′ two interpretations where I [P1] = I ′[P1] ∧ ... ∧ I [Pt] =

I ′[Pt], meaning that the each predicate P1, ..., Pt is interpreted by the
same relation R1, ..., Rt in both I and I ′. The interpretations are de-
fined like following:

I =< D, R1, ..., Rt, Rt+1, ..., Rn >

I ′ =< D′, R1, ..., Rt, R′t+1, ..., R′n >

From this, we can say that I and I ′ are equivalent with regard to
F, noted E(F, I , I ′).

55
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Stable formulas

A formula F is stable if and only if:

∀I∀I ′(E(F, I , I ′)⇒ IV [F] = I ′V [F])

Safe formulas

A formula F(x1, x2, ..., xr) whose free variables are x1, x2, ..., xr is safe
if and only if:

• F(a1, a2, ..., ar)⇒ DF(a1) ∧ DF(a2) ∧ ...∧ DF(ar)

• For each sub-formula of F of the form ∃xjF′(x1, x2, ..., xj, ..., xs)

and for each a1, a2, ..., aj, ..., as we have:

F′(a1, a2, ..., aj, ..., as)⇒ DF(aj)

• For each sub-formula of F of the form ∀xkF′′(x1, x2, ..., xk, ..., xt)

and for each a1, a2, ..., ak, ..., at we have:

¬DF(ak)⇒ F′′(a1, a2, ..., ak, ..., at)

where each ai is a constant symbol.

Domain independent formulas

Domain independent formulas, also called definite formulas, were de-
fined by J.L. Kuhns [Kuh70]. Their definition refers to the concept of
the ∗ − extension of an interpretation.

Let I be an interpretation < D, R1, R2, ...Rn >. The ∗ − extension
of I , called I∗, is an interpretation which has the same domain plus
a new constant, ∗, that is different from all the elements of D, and
where the predicates are interpreted by the same relations. That is:

I =< D, R1, R2, ..., Rn >

I∗ =< D′, R1, R2, ..., Rn >

D′ = D ∪ {∗}
So a formula F is domain independent if and only if:

∀I(IV [F] = I ∗V [F])

It has been formally proved in [Nic82] that the class of stable for-
mulas is identical to the class of domain independent formulas. This
class is also identical to the class of formulas which are equivalent to
a safe formula.
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4.1.2 Evaluable Formulas

In practice, domain independent formulas are of great interest, but
the class of such formulas is not decidable. A new decidable sub-class
of domain independent formulas, called Evaluable Formulas (EF) has
been introduced in [Dem92].

The syntactic characterization of evaluable formulas based on the
concept of restricted, unrestricted, positive, and negative variables, using
the following notation:

• FRes(x,F): means that the free variable x is restricted in the for-
mula F.

• FUnres(x,F): means that the free variable x is unrestricted in the
formula F.

• FPos(x,F): means that the free variable x is positive in the formu-
las F.

• FNeg(x,F): means that the variable x is negative in the formula
F.

• Free(x,F): means that the variable x is free in the formula F.

Restricted variables

A restricted variable x in a formula F is defined like the following:

• FRes(x, F)⇔ Free(x, F) ∧ FResCase(x, F)

• FResCase(x, F) is defined like the following:

– FResCase(x, F1 ∨ F2)⇔ FRes(x, F1) ∧ FRes(x, F2)

– FResCase(x, F1 ∧ F2)⇔ FRes(x, F1) ∨ FRes(x, F2)

– FResCase(x, ∃yF1)⇔ FRes(x, F1)

– FResCase(x, ∀yF1)⇔ FRes(x, F1)

– FResCase(x,¬F1)⇔ FUnres(x, F1)

• AtomicFormula(F)⇒ FResCase(x, F)⇔ True

Unrestricted variables

An unrestricted variable x in a formula F is defined like the following:

• FUnres(x, F)⇔ Free(x, F) ∧ FUnresCase(x, F)
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• FUnresCase(x, F) is defined like the following:

– FUnresCase(x, F1 ∨ F2)⇔ FUnres(x, F1) ∨ FUnres(x, F2)

– FUnresCase(x, F1 ∧ F2)⇔ FUnres(x, F1) ∧ FUnres(x, F2)

– FUnresCase(x, ∃yF1)⇔ FUnres(x, F1)

– FUnresCase(x, ∀yF1)⇔ FUnres(x, F1)

– FUnresCase(x,¬F1)⇔ FRes(x, F1)

• AtomicFormula(F)⇒ FUnresCase(x, F)⇔ False

Positive variables

Also, a positive variable x in a formula F is defined like the following:

• FPos(x, F)⇔ Free(x, F) ∧ FPosCase(x, F)

• FPosCase(x, F) is defined like the following:

–

FPosCase(x, F1 ∨ F2)⇔(Free(x, F1)⇒ FPos(x, F1))∧
(Free(x, F2)⇒ FPos(x, F2))

–

FPosCase(x, F1 ∧ F2)⇔
(Free(x, F1) ∧ Free(x, F2)⇒

(FPos(x, F1) ∧ FPos(x, F2)) ∨ FRes(x, F1) ∨ FRes(x, F2))

– FPosCase(x, ∃yF1)⇔ FPos(x, F1)

– FPosCase(x, ∀yF1)⇔ FPos(x, F1)

– FPosCase(x,¬F1)⇔ FNeg(x, F1)

• AtomicFormula(F)⇒ FPosCase(x, F)⇔ True

Negative variables

Finally, a negative variable x in a formula F is defined like the follow-
ing:

• FNeg(x, F)⇔ Free(x, F) ∧ FNegCase(x, F)

• FNegCase(x, F) is defined like the following:
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–

FNegCase(x, F1 ∨ F2)⇔
(Free(x, F1) ∧ Free(x, F2)⇒

(FNeg(x, F1) ∧ FNeg(x, F2)) ∨ FUnres(x, F1) ∨ FUnres(x, F2))

–

FNegCase(x, F1 ∧ F2)⇔(Free(x, F1)⇒ FNeg(x, F1))∧
(Free(x, F2)⇒ FNeg(x, F2))

– FNegCase(x, ∃yF1)⇔ FNeg(x, F1)

– FNegCase(x, ∀yF1)⇔ FNeg(x, F1)

– FNegCase(x,¬F1)⇔ FNeg(x, F1)

• AtomicFormula(F)⇒ FNegCase(x, F)⇔ False

From these definitions, new propositions can be derived, such as:

• FRes(x, F)⇒ FPos(x, F)

• FUnres(x, F)⇒ FNeg(x, F)

• FUnres(x, F)⇔ FRes(x,¬F)

• FNeg(x, F)⇔ FPos(x,¬F)

• A variable may neither be restricted or unrestricted in a for-
mula.

• A variable may neither be positive or negative in a formula.

Evaluable formulas

From this, a formula F is evaluable if and only if:

• Each free variable of F is restricted in F.

• Each existentially quantified variable is positive in the sub-formula
which is in the range of its quantifier.

• Each universally quantified variable is negative in the sub-formula
which is in the range of its quantifier.

Example 4.1.1: The following formulas are evaluable:

• ¬¬Q(x)
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• P(x) ∧ ¬Q(x)

• ∃x∃y(P(x) ∨Q(x))

• ∃y∀x(¬P(x) ∨Q(x, y))

Example 4.1.2: The following formulas are not evaluable:

• P(x) ∨ ¬Q(y)

• ∀x(¬P(x) ∨Q(x, y))

• ∀x(¬(P(x) ∨Q(a)) ∨ R(x))

4.1.3 Guarded Formulas

The interest in logic and computation made decidability problem a
first condition to be checked. Having the first-order logic as semi-
decidable, it is natural to consider fragments of such logics where
decidability holds. Guarded Formulas (GF), introduced in [ANvB98],
form a basic core upon which new formalisms can be build, address-
ing specific modeling and computational needs.

Starting from a first-order language with equality and without func-
tion symbols, where Free(F) denotes the set of free variables in a for-
mula F. Guarded formulas are defined by induction as follows:

• An atomic formula is a guarded formula.

• If ϕ and ψ are guarded formulas, then ϕ∧ψ and ¬ϕ are guarded
formulas.

• If v is a finite and non-empty sequence of variables, ϕ a guarded
formula, and G an atom such that Free(ϕ) ⊆ Free(G), then
∃v(G ∧ ϕ) is a guarded formula. G is then called the guard of
the quantifier.

The guarded fragment is the smallest fragment of first-order logic
containing all guarded formulas.

Example 4.1.3: The following formula is a guarded formula:

∀v1∀v2(v1 = v2 → v2 = v1)
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And the formula

∃v2(v1 = v2 ∧ ψ(v2) ∧ ∀v3[(v3 = v2 ∧ v2 = v3)→ ϕ(v3)])

which is the standard translation of the temporal formula Until(ϕ, ψ),
is non-guarded, as the sub-formula ∀v3[(v3 = v2 ∧ v2 = v3)→ ϕ(v3)]

is not atomic.
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4.2 restricted formulas

In this section we will introduce a new fragment of first-order logic
with constants and equality, and without function symbols, called
restricted formulas. This fragment is capable of describing all interac-
tion axioms defined in Chapter 3.

4.2.1 Domain Formulas

First, we introduce Domain Formulas (DF) that are defined as follows:

• An atomic formula P(x, c) is a domain formula, where x and c
are respectively finite sets of variables and constants.

• If ϕ and ψ are domain formulas, then:

– ϕ ∨ ψ is a domain formula, where Free(ϕ) = Free(ψ).

– ϕ ∧ ψ is a domain formula with no special constraints.

– ϕ ∧ ¬ψ is a domain formula, where Free(ψ) ⊆ Free(ϕ).

With Free(ϕ) is the set of free variables in a formula ϕ.

4.2.2 Restricted Formulas

Restricted Formulas (RF) are formulas without free variables defined
as follows:

• ∀x(ϕ→ ψ)

• ∃x(ϕ ∧ ψ)

Where ϕ is a domain formula and ψ is either a restricted formula
or a formula without quantifiers.

Every variable appearing in a restricted formula must appear in a
domain formula, and the set of variables x should be included in the
set of free variables of ϕ and the set of free variables of ψ.

Example 4.2.1:

∀x(P(x)→ Q(x))

∀x(P(x)→ ∃y(Q(y) ∧ R(x, y)))
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4.2.3 Completions Formulas

Completion Formulas (CF) are formulas of the following forms:

∀x1, ..., xn (P(x1, ..., xn, c1, ..., cp)↔((x1 = a11 ∧ ...∧ xn = a1n) ∨ ...∨
(x1 = am1 ∧ ...∧ xn = amn)))

(4.1)

Where ai are constants and P is a predicate symbol of arity n + p
where n ≥ 1 and p ≥ 0. Completion formulas are similar to the com-
pletion axioms defined by Reiter in [Rei87a] where the implication is
substituted by an equivalence.

Definition 4.2.1: Given a domain formula ϕ and a set of completion
formulas α1, ..., αn such that for each predicate symbol in ϕ there ex-
ists a completion formula α for this predicate symbol, we say that the
set of completion formulas α1, ..., αn covers ϕ and will be noted C(ϕ).

It may be that for some predicate, or some atomic formula, there is
no completion formula. In that case C(ϕ) is not defined. For instance,
if for the predicate P we only have α : ∀y(P(c2, y) ↔ y = c3), there
is no completion formula for P(x1, c1) while there is a completion
formula for P(c2, x2).

4.2.4 Domain of Domain Formulas

Given a domain formula ϕ, we define the domain of the variables of
ϕ with respect to C(ϕ), denoted D(V(ϕ), C(ϕ)), as follows:

• If ϕ is of the form P(x1, ..., xn, c1, ..., cp) and C(ϕ)1 is of the form
4.1 then:

D(V(ϕ), C(ϕ)) = {< a11 , ..., a1n >, ...,< aq1 , ..., aqn >} (4.2)

For

∀x1, ..., xm(P(x1, ..., xn, c1, ..., cp)↔((x1 = a11 ∧ ...∧ xm = a1n) ∨ ...∨
(x1 = aq1 ∧ ...∧ xm = aqn)))

1 If there isn’t a completion formula for a certain predicate P, that means
that the extension of that predicate is empty. Formally this is represented by
∀x1, ..., xm(P(x1, ..., xn, c1, ..., cp)↔ f alse.



64 restricted formulas and quantifier elimination

• If ϕ is of the form ϕ1 ∨ ϕ2 then:

D(V(ϕ1 ∨ ϕ2), C(ϕ1 ∨ ϕ2)) =D(V(ϕ1), C(ϕ1))t
D(V(ϕ2), C(ϕ2))

(4.3)

Where t is the union of the values of the Cartesian product of
the values of the domain of the shared variables of ϕ1 and ϕ2.

• if ϕ is of the form ϕ1 ∧ ϕ2 then:

D(V(ϕ1 ∧ ϕ2), C(ϕ1 ∧ ϕ2)) =D(V(ϕ1), C(ϕ1))⊗c

D(V(ϕ2), C(ϕ2))
(4.4)

Where ⊗c [Ull80] is a join operator and c is a conjunction of
equalities of the form i = j where the same variable symbol
appears in ϕ1 ∧ ϕ2 in position i in ϕ1 and in position j in ϕ2.

• if ϕ is of the form ϕ1 ∧ ¬ϕ2 then:

D(V(ϕ1 ∧ ¬ϕ2), C(ϕ1 ∧ ¬ϕ2)) =

D(V(ϕ1), C(ϕ1)) \ D(V(ϕ1 ∧ ϕ2), C(ϕ1 ∧ ϕ2))
(4.5)

Where \ denotes the complement of the domain of each shared
variable of ϕ2 with respect to ϕ1.

Example 4.2.2: Considering the three domains formulas P(x), Q(x),
R(x, y) and their corresponding completion formulas as follows:

• ∀x(P(x)↔ x = a ∨ x = d) we have:

D(V(P(x)), C(P(x))) = {< a >,< d >}

• ∀x(Q(x)↔ x = b ∨ x = c) we have:

D(V(Q(x)), C(Q(x))) = {< b >,< c >}

• ∀x∀y(R(x, y) ↔ (x = a ∧ y = b) ∨ (x = a ∧ y = c) ∨ (x =

b ∧ y = e)) we have:

D(V(R(x, y)), C(R(x, y))) = {< a, b >,< a, c >,< b, e >}

If we have:

• ϕ1 = P(x) ∨Q(x) then:

D(V(ϕ1), C(ϕ1)) = {< a >,< b >,< c >,< d >}
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• ϕ2 = R(x, y) ∧ P(x) then:

D(V(ϕ2), C(ϕ2)) = {< a, b >,< a, c >}

• ϕ3 = R(x, y) ∧ ¬P(x) then:

D(V(ϕ3), C(ϕ3)) = {< b, e >}
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4.3 quantifier elimination procedure

Let ϕ be a restricted formula of the following forms:

∀x(ϕ1(x)→ ϕ2(x))

∃x(ϕ1(x) ∧ ϕ2(x))

Let C(ϕ1(x)) be a set of completion formulas for ϕ1, we define re-
cursively a translation T(ϕ, C(ϕ)), allowing to replace the universal
and existential quantifiers by conjunctions and disjunctions of formu-
las where quantified variables are substituted by constants as follows:

• if D(V(ϕ1), C(ϕ1)) = ∅ :

T(∀x (ϕ1(x)→ ϕ2(x)) , C(ϕ)) = True

T(∃x (ϕ1(x) ∧ ϕ2(x)) , C(ϕ)) = False

• if D(V(ϕ1), C(ϕ1)) = {< c1 >, ...,< cn >} with n > 0:

T(∀x(ϕ1(x)→ ϕ2(x)), C(ϕ)) =T(ϕ2(c1), C(ϕ2(c1))) ∧ ...∧
T(ϕ2(cn), C(ϕ2(cn)))

T(∃x(ϕ1(x) ∧ ϕ2(x)), C(ϕ) =T(ϕ2(c1), C(ϕ2(c1))) ∨ ...∨
T(ϕ2(cn), C(ϕ2(cn)))

Note 4.3.1: It is worth noting that in this translation process each
quantified formula is replaced in the sub-formulas by constants. The
consequence is that if a sub formula of a restricted formula is of the
form ∀x(ϕ1(x) → ϕ2(x, y)) or ∃x(ϕ1(x) ∧ ϕ2(x, y)) where the quan-
tifiers ∀x or ∃x are substituted by their domain values, the variables
in y must have been already substituted by their corresponding con-
stants.

Then in the theory T in which we have the axioms of equality
and axioms of the form ¬(a = b) for each constant a and b, which
are called unique name axioms by Reiter in [Rei87a], we have the
following main theorem:

Theorem 4.3.1: Let ϕ be a restricted formula, and C(ϕ) a completion
set of formulas of the domain formulas of ϕ, then:

T , C(ϕ) ` ϕ↔ T(ϕ, C(ϕ)) (4.6)
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Proof 4.3.1: The proof in Appendix D consists of applying induction
on the number of instances of V(ϕ) to prove that the theorem holds
for any number of instances of variables of the domain formula ϕ.

Example 4.3.1: Let us consider the following restricted formula:

∃x(P(x) ∧Q(x))

And its corresponding completion formula:

∀x(Q(x)↔ x = a ∨ x = b)

Using the translation procedure we can eliminate the existential
quantifier from the restricted formula giving us a propositional logic
formula like the following:

P(a) ∨ P(b)

Example 4.3.2: Let us consider another example of a restricted formula
like the following:

∀x(P(x)→ ∃y(R(y) ∧ S(x, y))) (4.7)

And its corresponding completion formulas:

∀x(P(x)↔ x = a) (4.8)

∀y(S(a, y)↔ y = b ∨ y = c) (4.9)

Using the translation procedure we can eliminate the universal
quantifier from the restricted formula ∀x(P(x) → ϕ) in formula 4.7
as follows:

T(∀x(P(x)→ ϕ), C(P(x))) = T(ϕ(a), C(ϕ(a)))

= T(∃y(R(y) ∧ S(a, y)), C(S(a, y)))

Similarly using the translation procedure we can eliminate the ex-
istential quantifier from the restricted formula ∃y(R(y) ∧ S(a, y)) giv-
ing us a propositional logic formula as follows:

T(∃y(R(y) ∧ S(a, y)), C(S(a, y))) = R(b) ∨ R(c)

Thus transforming formula 4.7 into the propositional formula:

R(b) ∨ R(c) (4.10)





5
R E A S O N I N G A B O U T I N T E R A C T I O N S I N M I M

We presented in Chapter 3 a logical model for MIM capable of de-
scribing different types of node states (such as present, active, and in-
hibited) and actions (such as activation, inhibition, phosphorylation,
autophosphorylation, and binding). And in Chapter 4 we introduced
a translation procedure that can be applied to a new fragment of
first-order logic, called restricted formulas, that makes possible the
quantifier elimination out of such formulas.

Having the protein interaction axioms fall into the restricted formu-
las fragment, it is possible to apply this translation procedure to our
knowledge base consisting of completion formulas, thus transform-
ing these first-order logic axioms into propositional logic formulas of
the form conditions→ results that can be chained to create a series of
reactions that form the pathway.

5.1 example

Let us consider the case of Figure 5.1 where a protein b has the capac-
ity to activate another protein a, two other proteins c1 and c2 have the
capacity to inhibit the capacity of activation of a by b, and that there
is no protein capable of activating this capacity of activation. This
proposition can be expressed by the following completion axioms:

b a

c1

c2

d

Figure 5.1: Basic MIM interaction example

• ∀y(CA(y, a) ↔ y = b) where b is the only protein that has the
capacity to activate a.

• ∀z(CICA(z, b, a) ↔ z = c1 ∨ z = c2) where c1 and c2 are the
only proteins that have the capacity to inhibit the capacity of
activation of a by b.

69
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• ∀z(CACA(z, b, a) ↔ f alse where there are no proteins capable
of activating the capacity of activation of a by b.

Using the activation axiom defined in Section 3.2 and the transla-
tion procedure, we can deduce:

A(b) ∧ ¬A(c1) ∧ ¬A(c2)→ A(a)

Which means that the protein a is active if the protein b is active
and the proteins c1 and c2 are not active.

Let us also consider that a protein d has the capacity to inhibit
the protein b and that there is no proteins capable of inhibiting nor
activating the capacity of inhibition of a by d. This proposition can be
expressed by the following completion axioms:

• ∀y(CI(y, b) ↔ y = d) where d is the only protein that has the
capacity to inhibit b.

• ∀z(CICI(z, d, b) ↔ f alse) where there are no proteins capable
of inhibiting the capacity of inhibition of b by d.

• ∀z(CACI(z, d, b) ↔ f alse) where there are no proteins capable
of activating the capacity of inhibition of b by d.

Using the previous inhibition axiom and these completion axioms
we can deduce:

A(d)→ I(b)

Which means that the protein b is inhibited if the protein d is active.

We can then start by asking questions answered by either abductive
or deductive reasoning.

5.2 example - apoptosis induced by p53

In the following we are going to show an example, based on Fig-
ure 5.2, demonstrating abduction type queries where three coherent
pathways have been found [KP05].

From Figure 5.2 we can deduce the following completion formulas:

• ∀x∀y(CB3(x, y, bak_p53)↔ (x = p53∧ y = bak))
Means that p53 and bak are the only proteins that can bind to-
gether to create the bak_p53 complex.
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Figure 5.2: Mitochondrial apoptosis induced by p53 independently of tran-
scription

• ∀x∀y(CB3(x, y, bak_mcl)↔ (x = mcl ∧ y = bak))
Means that mcl and bak are the only proteins that can bind to-
gether to create the bak_mcl complex.

• ∀x(CICB4(x, mcl, bak, bak_mcl)↔ (x = bak_p53))
Means that bak_p53 is the only protein that can inhibit mcl from
binding to bak.

• ∀x∀y∀z(CB4(x, y, z, p53_bb_complex) ↔ (x = p53 ∧ y = bcl_2 ∧
z = bcl_x))
Means that p53, bcl_2, and bcl_x are the only proteins that can
bind together to to create the p53_bb_complex complex.

• ∀x∀y∀z∀k∀q(CB6(x, y, z, k, q, bbbbb_complex) ↔ (x = bcl_2 ∧
y = bcl_x ∧ z = bak ∧ k = bad ∧ q = bax))
Means that bcl_2, bcl_x, bak, bad, and bax are the only proteins
that can bind together to create the bbbbb_complex complex.

• ∀x(CA(x, bbbbb_complex_int)↔ x = bbbbb_complex)
Means that bbbbb_complex is the only proteins that can activate
the bbbbb_complex_int intermediary complex.

• ∀xCI(x, bbbbb_complex_int)↔ (x = p53_bb_complex))
Means that p53_bb_complex is the only protein that can inhibit
the bbbbb_complex_int intermediary complex.

• ∀x∀y(CB3(x, y, bax_p53)↔ (x = p53∧ y = bax))
Means that p53 and bax are the only proteins that can bind
together to create the bax_p53 complex.
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• ∀x(CACA(x, bak, apoptosis)↔ (x = bak_p53)
Means that bak_p53 is the only protein that can activate the
activation of the apopotosis by bak.

• ∀x(CICA(x, bak, apoptosis) ↔ (x = bbbbb_complex_int) ∧ (x =

bak_mcl))
Means that both bbbbb_complex_int and bak_mcl are the only
proteins that can inhibit the activation of the apopotosis by bak.

• ∀x(CACA(x, bax, apoptosis)↔ (x = bax_p53)
Means that bax_p53 is the only protein that can activate the
activation of the apopotosis by bax.

• ∀x(CICA(x, bax, apoptosis)↔ (x = bbbbb_complex_int))
Means that bbbbb_complex_int is the only protein that can in-
hibit the activation of the apopotosis by bak.

• ∀x(CICA(x, bad, apoptosis)↔ (x = bbbbb_complex_int))
Means that bbbbb_complex_int is the only protein that can in-
hibit the activation of the apopotosis by bad.

• ∀x(CA(x, apoptosis)↔ (x = bad) ∨ (x = bak) ∨ (x = bax))
Means that bad, bak, and bax are the only proteins that can acti-
vate the apoptosis.

Using the relational axioms and these completion formulas that
define our knowledge base we can apply the translation procedure,
that returns the following:

1. A(p53) ∧ A(bcl_2) ∧ A(bcl_x)→ A(p53_bb_complex)
Means that p53_bb_complex is active if p53, bcl_2, and bcl_x are
active. In other words, p53 can bind to bcl_2 and bcl_x, where
the result of the binding is p53_bb_complex complex.

2. A(bcl_2)∧A(bcl_x)∧A(bak)∧A(bad)∧A(bax)→ A(bbbbb_complex)
Means that bbbbb_complex is active if bcl_2, bcl_x, bak, bad, and
bax are active. In other words, bcl_2, bcl_x, bak, bad, and bax
can bind to each other, where the result of the binding is the
bbbbb_complex complex.

3. A(bbbbb_complex)→ A(bbbbb_complex_int)
Means that bbbbb_complex_int is active if bbbbb_complex is also
active. In other words, bbbbb_complex can activate the bbbbb_complex_int
intermediary complex.

4. A(p53_bb_complex)→ I(bbbbb_complex_int).
Means that bbbbb_complex_int is inhibited if p53_bb_complex
is active. In other words, the complex formed by the binding of
p53, bcl_2, and bcl_x can inhibit the activity of the bbbbb_complex_int
intermediary complex.
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5. A(p53) ∧ A(bak)→ A(bak_p53)
Means that bak_p53 is active if p53 and bak are active. In other
words p53 can bind to bak, where the result of this binding is
the bak_p53 complex.

6. A(bak) ∧ A(mcl) ∧ ¬A(bak_p53)→ A(bak_mcl)
Means that bak_mcl is active if bak and mcl are active and under
the condition that bak_p53 is not active. In other words, bak can
bind to mcl if bak is not bound to p53 and the result of this
binding is the bak_mcl complex.

7. A(bak)∧A(bak_p53)∧¬A(bbbbb_complex_int)∧¬A(bak_mcl)→
A(apoptosis)
Means that the apoptosis state is active if bak is active and under
the condition that bak_p53 is active and that both bak_mcl and
bbbbb_complex_int are not active. In other words, the apoptosis
state is reached if bak is active, bak is bound to p53, bak is not
bound to mcl, and bbbbb_complex_int is not active.

8. A(p53) ∧ A(bax)→ A(bax_p53)
Means that bax_p53 is active if p53 and bax are active. In other
words p53 can bind to bax, where the result of this binding is
the bax_p53 complex.

9. A(bax)∧A(bax_p53)∧¬A(bbbbb_complex_int)→ A(apoptosis)
Means that the apoptosis state is active if bax is active and under
the condition that bax_p53 is active and that bbbbb_complex_int
is not active. In other words, the apoptosis state is reached if
bax is active, bax is bound to p53, and bbbbb_complex_int is not
active.

10. A(bad) ∧ ¬A(bbbbb_complex_int)→ A(apoptosis)
Means that the apoptosis state is active if bad is active and
under the condition that bbbbb_complex_int is not active. In
other words, the apoptosis state is reached if bad is active and
bbbbb_complex_int is not active.

If we want to know what are the proteins and their respective states
that should be present in order to derive that the cell reached apopto-
sis, the answer is given by applying abduction over the previous set
of compiled clauses. The set of consequences SOLAR can find is the
following:

Listing 5.1: SOLAR - Apoptosis induced by p53

SOLAR (SOL for Advanced Reasoning) 2.0 alpha (build 310)

SATISFIABLE
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16 FOUND CONSEQUENCES

[-a(bax), -a(p53_bb_complex), -a(p53)]

[-a(bak), +a(bak_mcl), +a(bbbbb_complex_int), -a(mcl)]

[-a(bak), -a(bak_p53), -a(p53_bb_complex)]

[-a(bax), +a(bbbbb_complex_int), -a(bax_p53)]

[-a(apoptosis)]

[-a(bax), -a(p53_bb_complex), -a(bax_p53)]

[-a(bax), +a(bbbbb_complex_int), -a(p53)]

[-a(bak), -a(p53), +a(bbbbb_complex_int)]

[-a(bak), -a(bak_p53), +a(bbbbb_complex_int)]

[-a(bad), -a(p53), -a(bcl_2), -a(bcl_x)]

[-a(bax), -a(p53), -a(bcl_2), -a(bcl_x)]

[-a(bak), -a(p53), -a(p53_bb_complex)]

[-a(bad), +a(bbbbb_complex_int)]

[-a(bak), -a(p53), -a(bcl_2), -a(bcl_x)]

[-a(bad), -a(p53_bb_complex)]

[-a(bak), +a(bak_mcl), -a(p53_bb_complex), -a(mcl)] �
We can find in those consequences some interesting answers:

• Answer 10: A(bad) ∧ A(p53) ∧ A(bcl_2) ∧ A(bcl_x)
is a plausible answer, because p53 can bind to bcl_2 and bcl_x
giving the p53_bb_complex, which can in return inhibit the bbbbb_complex_int
that is responsible of inhibiting the capacity of bad to activate
the cell’s apoptosis.

• Answer 11: A(bax) ∧ A(p53) ∧ A(bcl_2) ∧ A(bcl_x)
is a plausible answer, because p53 can bind to bcl_2 and bcl_x
giving the p53_bb_complex, which can in return inhibit the bbbbb_complex_int
that is responsible of inhibiting the capacity of bax to activate
the cell’s apoptosis. And p53 can bind to bax giving the bax_p53
complex that is responsible of activating the capacity of bax to
activate the cell’s apoptosis.

• Answer 14: A(bak) ∧ A(p53) ∧ A(bcl_2) ∧ A(bcl_x)
is a plausible answer, because p53 can bind to bcl_2 and bcl_x
giving the p53_bb_complex, which can in return inhibit the bbbbb_complex_int
that is responsible of inhibiting the capacity of bak to activate
the cell’s apoptosis. And p53 can bind to bak, thus inhibiting
the bak_mcl complex that is also responsible of inhibiting the
capacity of bax to activate the cell’s apoptosis.

5.3 example - chk2 mim (part 1)

Figure 5.3 shows another example taken from [PWAK06].
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Figure 5.3: Chk2 molecular interaction map

Some of these interactions have been transformed into completion
formulas as follows:

• ∀x(CP(x, chk2, pt68, chk2_pt68)↔ (x = atm))

Means that atm is the only protein that can phosphorylate chk2
on site pt68, where chk2pt68 is the result of the phosphorylation.

• ∀x(CACP(x, atm, chk2, pt68, chk2_pt68)↔ (x = dsb))
Means that dsb is the only protein that can activate the phospho-
rylation of chk2 by atm on site pt68.

• ∀x(CICP(x, atm, chk2, pt68, chk2_pt68)↔ (x = atm_atm))

Means that the complex atm_atm is the only protein that can
inhibit the phosphorylation of chk2 by atm on site pt68.

• ∀x∀y(CB(x, y, atm_atm)↔ (x = atm ∧ y = atm))

Means that atm is the only protein that can bind to another atm
protein to create the atm_atm complex.
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• ∀x(CAP(x, ps1981, atm_ps1981)↔ (x = atm))

Means that atm is the only protein that can autophosphorylate
on site ps1981, where atmps1981 is the result of the autophos-
phorylation.

• ∀x(CI(x, atm_atm)↔ (x = atm_ps1981))
Means that atmps1981 is the only protein that can inhibit atm
from binding to another atm.

• ∀x(CACAP(x, atm, ps1981, atm_ps1981)↔ (x = atm_atm_dsb))
Means that atm_atm_dsb is the only protein that can activate the
autophosphorylation of atm on site ps1981.

• ∀x∀y(CB(x, y, atm_atm_dsb)↔ (x = atm_atm ∧ y = dsb))
Means that atm_atm is the only protein that can bind to dsb
complex in order to create the atm_atm_dsb complex.

Using the relational axioms and these completion formulas that
define our knowledge base we can apply the translation procedure,
that returns the following:

1. A(atm) ∧ A(chk2) ∧ ¬A(atm_atm) ∧ A(dsb)→ A(chk2_pt68)
Means that if atm, chk2, and dsb are active, and if atm_atm is
not, we have chk2_pt68 active. In other words, chk2 can be phos-
phorylated on site pt68 if atm and chk2 are active, under the
condition that atm isn’t bound to another atm, and that dsb is
active.

2. A(atm) ∧ A(atm_atm_dsb)→ A(atm_ps1981)
Means that atm_ps1981 is active if atm and atm_atm_dsb are ac-
tive. In other words, atm can autophosphorylate on site ps1981
under the condition that the atm_atm complex is bound to dsb,
where atm_ps1981 is the result of the autophosphorylation.

3. A(atm) ∧ A(atm)→ A(atm_atm)

Means that atm_atm is active if atm is also active. In other words,
atm can bind to another atm, where atm_atm is the result of the
binding.

4. A(atm_atm) ∧ A(dsb)→ A(atm_atm_dsb)
Means that atm_atm_dsb is active if atm_atm and dsb are also
active. In other words, atm_atm can bind to another protein dsb,
where atm_atm_dsb is the result of the binding.

5. A(atm_ps1981)→ ¬A(atm_atm)

Means that atm_atm is not active if atm_ps1981 is active. In
other words, atm phosphorylated on site ps1981 can inhibit the
atm_atm complex, thus inhibiting the binding between two atm
proteins.
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If we want to know what are the proteins and their respective states
that should be present in order to derive that chk2 was phosphory-
lated on site pt68, the answer is given by applying abduction over the
previous set of compiled clauses. The set of consequences SOLAR can
find is the following:

Listing 5.2: SOLAR - Chk2 MIM (Part 1)

SOLAR (SOL for Advanced Reasoning) 2.0 alpha (build 310)

SATISFIABLE

7 FOUND CONSEQUENCES

[-a(chk2_pt68)]

[-a(atm), -a(chk2), -a(dsb)]

[-a(atm), -a(chk2), -a(dsb), +a(atm_atm_dsb)]

[-a(atm), -a(chk2), -a(dsb), -a(atm_atm_dsb)]

[-a(atm), -a(chk2), -a(dsb), +a(atm_ps1981)]

[-a(atm), -a(chk2), -a(dsb), -a(atm_ps1981)]

[-a(atm), -a(chk2), -a(dsb), +a(atm_atm)] �
We can also find some interesting answers in these consequences:

• Answer 7: A(atm) ∧ A(chk2) ∧ A(dsb) ∧ ¬A(atm_atm)

is a plausible answer, because atm can phosphorylate chk2, un-
der the condition that dsb is active and atm is not bound to
another atm.

• Answer 2: A(atm) ∧ A(chk2) ∧ A(dsb)
is also a plausible answer, because atm can phosphorylate chk2,
under the condition that dsb is active. Having atm and dsb active,
that means that atm can bind to another atm protein, creating
the atm_atm complex, that can in return bind to dsb, giving us
the atm_atm_dsb complex. atm_atm_dsb can then activate the
autophosphorylation of atm, giving atm_ps1981 that can in re-
turn inhibit the atm_atm complex, taking us back to the case of
the previous answer.

• Answer 6: A(atm) ∧ A(chk2) ∧ A(dsb) ∧ A(atm_ps1981)
is a plausible answer, because atm can phosphorylate chk2, un-
der the condition that dsb is active and atm is not bound to
another atm. And atm cannot be bound in this case to another
atm because of the fact that atm_ps1981 is active. This answers
contrasts the meaning of answer 5 that contains the fact that
atm_ps1981 is not active, which cannot lead us to the conclusion
that atm_atm is not active. Thus we can rule out that answer 5
is not plausible, but it is still logically correct because, when
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transformed to CNF, the propositional formulas 1 and 4 can be
unified resulting:

¬A(atm)∨¬A(chk2)∨¬A(dsb)∨ A(chk_pt68)∨ A(atm_atm_dsb)

That can in return unify with the CNF transformation of propo-
sitional formula 2, resulting:

¬A(atm)∨¬A(chk2)∨¬A(dsb)∨ A(chk2_pt68)∨ A(atm_ps1981)

Leading us back to answer 5. The same reasoning process can
be applied with answers 3 and 4.

5.4 example - chk2 mim (part 2)

Let us take the same MIM from Section 5.3, and add to the following
completion formulas to the ones we already defined:

• ∀x∀y(CB(x, y, chk2_chk2)↔ (x = chk2∧ y = chk2))
Means that chk2 is the only protein that can bind to another
chk2 protein to create the chk2_chk2 complex.

• ∀x(CACB(x, chk2, chk2, chk2_chk2)↔ (x = chk2_pt68))
Means that chk2_pt68 is the only protein that can activate the
binding of chk2 to another chk2 protein.

• ∀x(CAP(x, pt3837, chk2_pt3837)↔ (x = chk2))
Means that chk2 is the only protein that can autophosphorylate
on site pt3837, where chk2_pt3837 is the result of the autophos-
phorylation.

• ∀x(CACAP(x, chk2, pt3837, chk2_pt3837)↔ (x = chk2_chk2))
Means that chk2_chk2 is the only protein that can activate the
autophosphorylation of chk2 on site pt3837.

• ∀x(CAP(x, ps516, chk2_ps516)↔ (x = chk2))
Means that chk2 is the only protein that can autophosphorylate
on site ps516, where chk2_ps516 is the result of the autophos-
phorylation.

• ∀x(CACAP(x, chk2, ps516, chk2_ps516)↔ (x = chk2_chk2))
Means that chk2_chk2 is the only protein that can activate the
autophosphorylation of chk2 on site ps516.

• ∀x(CP(x, p53, ps20t18, p53_ps20t18)↔ (x = chk2))
Means that chk2 is the only protein that can phosphorylate p53
on site ps20t18, where p53_ps20t18 is the result of the phospho-
rylation.
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• ∀x(CACP(x, chk2, p53, ps20t18, p53_ps20t18)↔ (x = chk2_pt3837)∧
(x = chk2_ps516))
Means that both chk2_pt3837 and chk2_ps516 are the only pro-
teins that can activate the phosphorylation of p53 by chk2 on
site ps20t18.

• ∀x(CP(x, p53, ps15, p53_ps15)↔ (x = atm))

Means that atm is the only protein that can phosphorylate p53
on site ps15, where p53_ps15 is the result of the phosphoryla-
tion.

• ∀x(CACP(x, atm, p53, ps15, p53_ps15)↔ (x = dsb))
Means that dsb is the only protein that can activate the phospho-
rylation of p53 by atm on site ps15.

• ∀x∀y(CB(x, y, mdm2_p53)↔ (x = p53∧ y = mdm2))
Means that mdm2 is the only protein that can bind to p53 in
order to create the mdm2_p53 complex.

• ∀x(CI(x, mdm2_p53)↔ (x = p53_ps15) ∨ (x = p53_ps20t18))
Means that p53_ps15 and p53_ps20t18 are the only proteins that
can inhibit mdm2_p53.

• ∀x(CA(x, mdm2_p53_int)↔ (x = mdm2_p53))
Means that mdm2_p53 is the only protein that can activate the
intermediary complex mdm2_p53_int.

• ∀x(CACA(x, mdm2_p53, mdm2_p53_int)↔ (x = mdm2_mdmx))
Means that the complex mdm2_mdmx is the only protein that
can activate the activation of mdm2_p53_int by mdm2_p53.

• ∀x(CA(x, p53_deg)↔ (x = p53))
Means that p53 is the only protein that can activate it’s degra-
dation.

• ∀x(CACA(x, p53, p53_deg)↔ (x = mdm2_p53_int))
Means that the intermediary complex mdm2_p53_int is the only
protein that can activate the degradation of p53.

• ∀x(CP(x, mdmx, ps2367, mdmx_ps2367)↔ (x = chk2))
Means that chk2 is the only protein that can phosphorylate
mdmx on site ps2367, where mdmx_ps2367 is the result of the
phosphorylation.

• ∀x(CACP(x, chk2, mdmx, ps2367, mdmx_ps2367)↔ (x = chk2_pt3837)∨
(x = chk2_ps516))
Means that both chk2_pt3837 and chk2_ps516 are the only pro-
teins that can activate the phosphorylation of mdmx by chk2 on
site ps2367.
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• ∀x(CA(x, mdmx_deg)↔ (x = mdmx))
Means that p53 is the only protein that can activate it’s degra-
dation.

• ∀x(CACA(x, mdmx, mdmx_deg)↔ (x = mdmx_ps2367))
Means that the intermediary complex mdmx_ps2367 is the only
protein that can activate the degradation of mdmx.

• ∀x∀y(CB(x, y, mdm2_mdmx)↔ (x = mdm2∧ y = mdmx))
Means that mdm2 is the only protein that can bind to mdmx in
order to create the mdm2_mdmx complex.

• ∀x(CA(x, bax_noxa_puma_ f as)↔ (x = p53))
Means that p53 is the only protein that can activate the complex
bax_noxa_puma_ f as.

• ∀x(CACA(x, p53, bax_noxa_puma_ f as) ↔ (x = p53_ps15) ∨
(x = p53_ps20t18))
Means that both p53_ps15 and p53_ps20t18 are the only pro-
tein complexes that can activate the activation of the complex
bax_noxa_puma_ f as by p53.

• ∀x(CICA(x, p53, bax_noxa_puma_ f as)↔ (x = mdm2p53))
Means that the complex mdm2p53 is the only protein that can in-
hibit the activation of the complex bax_noxa_puma_ f as by p53.

• ∀x(CA(x, apoptosis)↔ (x = bax_noxa_puma_ f as))
Means that bax_noxa_puma_ f as is the only protein that can ac-
tivate the apoptosis of the cell.

• ∀x(CA(x, p21cip1_gadd45)↔ (x = p53))
Means that p53 is the only protein that can activate the complex
p21cip1_gadd45.

• ∀x(CACA(x, p53, p21cip1_gadd45) ↔ (x = p53_ps15) ∨ (x =

p53_ps20t18))
Means that both p53_ps15 and p53_ps20t18 are the only pro-
tein complexes that can activate the activation of the complex
p21cip1_gadd45 by p53.

• ∀x(CICA(x, p53, p21cip1_gadd45)↔ (x = mdm2p53))
Means that the complex mdm2p53 is the only protein that can
inhibit the activation of the complex p21cip1_gadd45 by p53.

• ∀x(CA(x, cell_cycle_arrest)↔ (x = p21cip1_gadd45))
Means that p21cip1_gadd45 is the only protein that can activate
the cell_cycle_arrest of the cell.

Using the relational axioms and these completion formulas that
define our knowledge base we can apply the translation procedure,
that returns the following:
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1. A(chk2) ∧ A(chk2) ∧ A(chk2_pt68)→ A(chk2_chk2)
Means that if chk2 and chk2_pt68 are active then chk2_chk2 is
active. In other words, chk2 can bind to another chk2 protein
under the condition that the one of them is phosphorylated on
site pt68, where chk2_chk2 is the result of the binding.

2. A(chk2) ∧ A(chk2_chk2)→ A(chk2_pt3837)
Means that if chk2 and chk2_chk2 are active then chk2_pt3837 is
active. In other words, the complex chk2_chk2 has the capacity
to autophosphorylate on site pt3837, where chk2_pt3837 is the
result of the autophosphorylation.

3. A(chk2) ∧ A(chk2_chk2)→ A(chk2_ps516)
Means that if chk2 and chk2_chk2 are active then chk2_ps516 is
active. In other words, the complex chk2_chk2 has the capacity
to autophosphorylate on site ps516, where chk2_ps516 is the
result of the autophosphorylation.

4. A(chk2)∧A(p53)∧A(chk2_ps516)∧A(chk2_pt3837)→ A(p53_ps20t18)
Means that if chk2, p53, chk2_ps516, and chk2_pt3837 are active
then p53_ps20t18 is active. In other words, chk2 has the capac-
ity to phosphorylate p53 on site ps20t18 under the condition
that chk2 is phosphorylated on sites ps516 and pt3837, where
p53_ps20t18 is the result of the phosphorylation.

5. A(atm) ∧ A(p53) ∧ A(dsb)→ A(p53_ps15)
Means that if atm, p53, and dsb are active then p53_ps15 is ac-
tive. In other words, atm has the capacity to phosphorylate p53
on site ps15 under the condition that dsb is active, where the
p53_ps15 is the result of the phosphorylation.

6. A(p53) ∧ A(mdm2)→ A(mdm2_p53)
Means that if p53 and mdm2 are active then mdm2_p53 is active.
In other words, p53 has the capacity to bind to mdm2 in order
to create the mdm2_p53 complex.

7. A(p53) ∧ A(mdm2_p53) ∧ A(mdm2_mdmx)→ A(p53_deg)
Means that if p53, mdm2_p53 and mdm2_mdmx are active then
p53_deg is active. In other words, p53 can start its degradation
if it is activated by mdm2_p53 and mdm2_mdmx.

8. A(p53_ps15)→ negA(mdm2_p53)
Means that if p53_ps15 is active mdm2_p53 is not. In other words,
p53_ps15 has the capacity to inhibit the activity of mdm2_p53.

9. A(p53_ps20t18)→ negA(mdm2_p53)
Means that if p53_ps20t18 is active mdm2_p53 is not. In other
words, p53_ps20t18 has the capacity to inhibit the activity of
mdm2_p53.
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10. A(chk2)∧A(mdmx)∧A(chk2_ps516)∧A(chk2_pt3837)→ A(mdmx_ps2367)
Means that if chk2, mdmx, chk2_ps516, and chk2_pt3837 are ac-
tive, then mdmx_ps2367 is active. In other words, chk2 must be
active and phosphorylated on site ps516 and pt3837 in order to
phosphorylate mdmx on site ps2367, giving mdmx_ps2367.

11. A(mdm2) ∧ A(mdmx)→ A(mdm2_mdmx)
Means that if mdm2 and mdmx are active, then mdm2_mdmx
is active. In other words, mdm2 can bind to mdmx in order to
create the mdm2_mdmx complex.

12. A(mdmx) ∧ A(mdmx_ps2367)→ A(mdmx_deg)
Means that if mdmx and mdmx_ps2367 are active then mdmx_deg
is active. In other words, mdmx can start its degradation if it is
activated by mdmx_ps2367.

13. A(p53) ∧ ¬A(mdm2_p53) ∧ A(p53_ps20t18) ∧ A(p53_ps15) →
A(bax_noxa_puma_ f as)
Means that if p53, p53_ps20t18, and p53_ps15 are active and
mdm2_p53 is not then bax_noxa_puma_ f as is active. In other
words p53 must be active and it must be phosphorylated on
site ps20t18 and ps15 and it must not be bound to mdm2 in
order to activate bax_noxa_puma_ f as.

14. A(bax_noxa_puma_ f as)→ A(apoptosis)
Means that if bax_noxa_puma_ f as, we have the apoptosis active.

15. A(p53) ∧ ¬A(mdm2_p53) ∧ A(p53_ps20t18) ∧ A(p53_ps15) →
A(p21cip1_gadd45)
Means that if p53, p53_ps20t18, and p53_ps15 are active and
mdm2_p53 is not then p21cip1_gadd45 is active. In other words
p53 must be active and it must be phosphorylated on site ps20t18
and ps15 and it must not be bound to mdm2 in order to activate
p21cip1gadd45.

16. A(p21cip1_gadd45)→ A(cell_cycle_arrest)
Means that if p21cip1_gadd45, we have the cell_cycle_arrest ac-
tive.

If we want to know what are the proteins and their respective states
that should be present in order to derive that the degradation of p53
is not active, the answer is given by applying abduction over the pre-
vious set of compiled clauses. The set of consequences SOLAR can
find is the following:
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Listing 5.3: SOLAR - Chk2 MIM (Part 2)

SOLAR (SOL for Advanced Reasoning) 2.0 alpha (build 310)

SATISFIABLE

8 FOUND CONSEQUENCES

[-a(p53_ps15), -a(chk2), -a(p53), -a(chk2_ps516), -a(chk2_pt3837)

]

[+a(mdm2_p53)]

[-a(atm), -a(p53), -a(dsb), -a(chk2)]

[-a(p53_ps15), -a(chk2), -a(p53), -a(chk2_chk2)]

[+a(mdm2_mdmx)]

[-a(atm), -a(p53), -a(dsb), -a(p53_ps20t18)]

[-a(p53_ps15), -a(p53_ps20t18)]

[-a(p53_ps15), -a(chk2), -a(p53), -a(chk2_pt68)] �
From these consequences, we find some interesting answers:

• Answer 7: A(p53_ps15) ∧ A(p53_ps20t18)
is a plausible answer, because p53 being phosphorylated on
both ps20t18 and ps15 sites is a necessary condition to inhibit
the complex mdm2_p53 that is capable of activating the degra-
dation of p53.

• Answer 3: A(atm) ∧ A(p53) ∧ A(chk2) ∧ A(dsb)
is a plausible answer, because atm can phosphorylate both chk2
and p53, leading to p53 being phosphorylated on both ps20t18
and ps15 sites, which are necessary conditions to inhibit the
complex mdm2_p53 that is capable of activating the degradation
of p53.

5.5 example - chk2 mim (part 3)

If we also take the same MIM from Section 5.3 with the new added
information from Section 5.4, and want to know what are the proteins
and their respective states that are the result of the dsb, atm, chk2, and
p53 being active. The answer is given by deduction over the previous
set of compiled clauses. In the set of consequences SOLAR can find
is the following:

Listing 5.4: SOLAR - Chk2 MIM (Part 3)

SOLAR (SOL for Advanced Reasoning) 2.0 alpha (build 310)

SATISFIABLE
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11 CHARACTERISTIC CLAUSES

...

[-a(bax_noxa_puma_fas), +a(apoptosis)]

[-a(p21cip1_gadd45), +a(cell_cycle_arrest)] �
From these consequences, we find some interesting answers:

• Answer: A(bax_noxa_puma_ f as)→ A(apoptosis)
Means that from the set of initial proteins being active, we can
get to the apoptosis state that is activated by bax_noxa_puma_ f as.

• Answer: A(p21cip1_gadd45)→ A(cell_cycle_arrest)
Means that from the set of initial proteins being active, we can
get to the cell_cycle_arrest state that is activated by p21cip1_gadd45.

5.6 example - chk2 mim (part 4)

In this final example of MIM from Section 5.3 with the new added
information from Section 5.4, we want to know what are the proteins
and their respective states that should be active in order to activate
the cell_cycle_arrest knowing that chk2 is inhibited. The answer is
given by abduction over the previous set of compiled clauses. In the
set of consequences SOLAR can find is the following:

Listing 5.5: SOLAR - Chk2 MIM (Part 4)

SOLAR (SOL for Advanced Reasoning) 2.0 alpha (build 310)

SATISFIABLE

7 FOUND CONSEQUENCES

[-a(cell_cycle_arrest)]

[-a(p21cip1_gadd45)]

[-a(p53), +a(mdm2_p53), -a(p53_ps20t18), -a(p53_ps15)]

[-a(p53), +a(mdm2_p53), -a(p53_ps20t18), -a(atm), -a(dsb), +a(atm
_atm)]

[-a(p53), +a(mdm2_p53), -a(p53_ps20t18), -a(atm), -a(dsb), -a(atm
_ps1981)]

[-a(p53), +a(mdm2_p53), -a(p53_ps20t18), -a(atm), -a(dsb), -a(atm
_atm_dsb)]

[-a(p53), +a(mdm2_p53), -a(p53_ps20t18), -a(atm), -a(dsb)] �
From these consequences, we find among answers 3-7 the fact that

p53 should be phosphorylated on site ps20t18 in order to reach the
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cell_cycle_arrest. And knowing from the data we already gathered
about the networks that chk2 is the only protein that has the capacity
to phosphorylate p53 on site ps20t18, then we can say, from a biolog-
ical point of view, that cell_cycle_arrest cannot be reached if chk2 is
inhibited.

5.7 example - test basis

Let us consider the case where proteins b and c have the capacity to
activate the protein a, b can also inhibit d, and e can inhibit b. This
proposition can be expressed by the following axioms:

A(b)→ A(a)

A(c)→ A(a)

A(b)→ I(d)

A(e)→ I(b)

In order to derive A(a), one of the following hypotheses H should
be considered: A(b) or A(c). For H = A(b) we can deduce the follow-
ing TBA(b) consistency conditions: ¬A(e) and ¬A(d), that describe
that for A(b) to be consistent with the main proposition, which is
A(a), as a condition the protein e should not be active, and as a result
the protein d is inhibited (not active). These new conditions can help
us reason about consistency because if we know, by means of scien-
tific experiments or as a result of some observations, that either d or
e is active, this means that b is not active, which leaves us with c as
the only protein that activates a.





6
C O N C L U S I O N S A N D F U T U R E W O R K

In the introduction of this dissertation, we hoped that our work would
be a first step towards modeling molecular interaction maps. In this
chapter, we will conclude by describing the progress made towards
our goals in term of modeling MIM and their different applications.
We will also suggest some future research directions that could pro-
vide the next step along the path to defining a more precise hybrid
model that might include concentration and temporal information.
We will also introduce a project that is still under development aim-
ing to make these theoretical concepts available for biologists in a
user friendly manner.

6.1 conclusion

The main focus of this thesis, was to develop a qualitative logical
model capable of describing the state of entities and the different pos-
sible interactions that may appear in MIM. First, in Chapter 1, we
introduced systems biology, and showed the motivation and benefits
to introduce different science domains, as mathematics, physics, and
computer science to biology to study biological environments. Then
in Chapter 2, we described different reasoning paradigms, like deduc-
tion, induction, and abduction, that can be used to answer different
types of queries. Deductive reasoning is mainly used to infer results
from rules and cases, whereas inductive reasoning is used to infer
rules from cases and results, and where abductive reasoning is used
to infer cases from rules and results. We also showed some different
existing ways that can be used to represent network information, and
how they can be used to represent similar information about biologi-
cal networks. Boolean networks are networks consisting of nodes and
arcs that are typically used in cases where nodes can only have two
states, 0 (active) or 1 (inhibited). Multi-valued networks extend Boolean
networks, in which the restriction on the number of states is lifted,
thus allowing the introduction of thresholds that needs to be met in
order to activate or inhibit certain nodes. On the other side, nodes in
Petri nets can be of two types, places or transitions, where a transition
is considered enabled if each of its input places have tokens greater
or equal to their corresponding arc weights. As for causal networks,
the network structure is generally represented using first-order logic
where nodes are represented by ground atoms and their causal re-
lations by predicates. We finally presented different works related
to these models that were applied using Answer Set Programming,

87



88 conclusions and future work

temporal logics, and classical logics, where all these representations
greatly serve their purposes, but none are expressive enough to be
able to represent complex information found in MIM.

Chapter 3 introduced a new logical model based on first-order
logic aiming to represent the different types of interactions found
in MIM. First we defined three different states, present, active, and
inhibited, and their respective relations to each other, in which en-
tities in MIM (proteins) can be. Then different types of interactions
were presented. The actions of activation and inhibition were first de-
scribed by various formulas formed by predicates such as CA(y, x)
expressing that the entity y has the capacity to activate the entity x,
CI(y, x) expressing that the entity y has the capacity to inhibit the en-
tity x, and CICA(z, y, x) expressing that the entity z has the capacity
to inhibit the activation of x by y. Based on these actions, we also pre-
sented different other formulas for interactions such as the action of
phosphorylation described by the predicate CP(z, y, s, x), the action
of autophosphorylation described by the predicate CAP(y, s, x), and
the action of binding described by the predicate CB(z, y, x). We in-
troduced causality relations that show the direct and indirect effects
that chain reactions formed by different types of interactions can have.
And finally, we presented one major flaw in the graphical represen-
tation of MIM and compared the dynamics the representation we
presented with the other representations defined in Chapter 2.

In Chapter 4 we aimed to introduce a quantifier elimination pro-
cedure that transforms first-order logic formulas into propositional
logic formulas. Having noticed some recurrent patterns in the inter-
actions formulas defined previously, we first defined a fragment of
first-order logic with equality and without functions called restricted
formulas that are recursively built using domain formulas, which can
describe all these interaction rules. Then we introduced another type
of formulas called completion formulas that are used to describe the
domain of the variables of a domain formula, in other words, they
are used to describe the background knowledge. And then we pro-
posed a quantifier elimination procedure that eliminates the quanti-
fiers from restricted formulas using completion formulas, thus trans-
forming first-order logic formulas that fall into the restricted formulas
fragment into propositional logic formulas.

Finally in Chapter 5 we showed various dummy and real exam-
ples, that applies the quantifier elimination procedure to the interac-
tion formulas defined in Chapter 3 and to background knowledge
represented by completion formulas. The resulting propositional for-
mulas were run using SOLAR where queries answered by abductive
or deductive reasoning were asked.
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6.2 future work

A number of open problems must be solved in order to get as pre-
cise as possible in the description of MIM and metabolic pathways
in general. One of those issues is transforming the qualitative model
we presented into a hybrid model that takes into consideration time,
quantity, and concentration in order to fire an activity. Similar hybrid
models have been introduced in [TNKMP04, ARB+

08, CFBR10]. Also,
the automated reasoning process can also be extended using the no-
tion of aboutness [DL10] that has the capacity to limit and focus search
results to what seems relevant to a single or a group of entities.

This work takes part in a bigger project, that is still under devel-
opment, called P3M (A Platform for logical Modeling and processing
Molecular interactions Maps) that aims to create a user-friendly and
intuitive tool, helping biologists target their experiments, answering
questions of the following form:

• Questions answered by abductive reasoning look for minimal
assumptions that must be added to the knowledge base to de-
rive that a certain fact is true.

• Questions answered by deductive reasoning search for minimal
consequences that can be derived from a certain set of hypothe-
ses.

• Completion questions have the goal to help find new links and
proteins in the metabolic network. In order to be able to answer
such queries, a new capacity-centered model must be proposed
instead of the state-centered model we proposed, where asked
questions should be able target the capacities of entities instead
of their states.

This project is mainly composed by the following three main inter-
connected parts, seen in Figure 6.1, that include the graphical manip-
ulation of MIM and the necessary background operations to answers
queries asked by the biologists.:

• The graphical representation and manipulation of MIM.
These are the set of operations used to graphically represent
and update MIM in an efficient and user friendly way.

• Logical modeling and representation of the molecular interac-
tion maps.
The logical model that is based on a clear syntax of map ele-
ments that allows the use of automated proof methods. This
type of models allows us not only to represent knowledge found
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Graphical Representation

Logical Representation

Reasoning

P3M

Questions Answers Modifications

Figure 6.1: P3M basic functions

in MIM, but to reason about them and make predictions in par-
ticular.

• Data processing of the molecular interaction maps.
This part is constituted by a set of algorithms used for the ma-
nipulation of the maps and for the implementation of the au-
tomatic deduction methods. They also include the necessary al-
gorithms to transform information about entities found in MIM
from their graphical representation into a logical form and then
show back in graphical manner that follow MIM guidelines, the
results of the queries asked on the logical model. Figure 6.2, for
example, shows a generated graphical representation starting
from completion formulas examples found in Section 5.3 and
Section 5.4 about Figure 5.3.

With this, we hope that we would be able to create a complete
set of tools for biologists interested in systems biology. These tools
would turn these MIM into updatable and maintainable maps, thus
helping with the reasoning and targeting of experiments with hopes
of discovering new entities and relations between these entities, and
trying to understand the secrets of metabolic networks.
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Figure 6.2: P3M generated MIM





7
R É S U M É E N F R A N Ç A I S

7.1 introduction

La régulation est un facteur important pour la survie d’un environ-
nement biologique, et plus précisément pour tous ses niveaux allant
du moléculaire à l’écologique. La Biologie des Systèmes est une dis-
cipline émergeante de la collaboration entre biologistes, mathémati-
ciens, physiciens et informaticiens [Wie48, IGH01, Kit02] suite aux
avancées technologiques, ayant comme but d’essayer de compren-
dre le fonctionnement de ces régulations. Pour arriver à ces fins, les
interactions entre les différents composants du système biologique
doivent être analysées pour connaitre leur impact sur les fonctions et
le comportement du système tout entier.

En plus, la collaboration entre scientifiques de différents domaines
nous conduit souvent à des changements philosophiques et conceptuels
dans la manière dont un sujet est traité. La biologie n’est pas une ex-
ception. Dès le début de la biologie moléculaire, il a été jugé que
les séquences d’ADN spécifient, comme pour les instructions d’un
logiciel informatique, comment les cellules devraient normalement
se comporter. Mais plus récemment, avec l’évolution de la biologie
des systèmes et ces percées scientifiques, les recherches se concen-
trant sur les effets du génome sur le cycle de vie d’une cellule ont été
abandonnés pour le profit des recherches concernant les effets que
peuvent apporter les cellules à leurs propres génomes [Sha09].

Un Réseau Métabolique est formé par un groupe d’entités biologiques
qui facilitent les interactions entre le génotype et son environnement.
Après avoir identifié ce groupe d’entités, ce sont leurs rôles et inter-
actions et tout ce qui les pousse à remplir leurs fonctions biologiques
qui restent à clarifier. Malheureusement, et pour des raisons incon-
nues, des comportements inattendus se produisent parfois dans un
réseau biologique et qui sont probablement le résultat de quelques
interactions inconnues entre les entités elles-mêmes et avec leurs en-
vironnements. Cependant, les études réalisées à l’aide d’approches
holistiques n’auraient jamais été possibles sans connaissances préal-
ables sur les entités recueillies à l’aide d’approches réductionnistes.
De ce fait, certains ne considèrent pas la biologie des systèmes comme
une nouvelle discipline, mais plutôt la combinaison des approches
holistiques et réductionnistes appliquées à la biologie [KCQN10].

93
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Ces réseaux métaboliques sont formés par des séries de voies métaboliques
qui sont-elles mêmes composées par des séries d’interactions intra-
cellulaires et extracellulaires qui déterminent les propriétés biochim-
iques d’une cellule. Ces interactions sont formées par des réactions
positives (activations) et des réactions négatives (inhibitions) qui vari-
ent de simple et contre réactions et réactions en chaines à de sim-
ple et multiples régulations et autorégulations. Le cancer est l’un des
meilleurs exemples capable d’illustrer ce type de comportements inat-
tendus dans un réseau métabolique. Généralement, un cancer nait
dans une cellule saine suite à une malformation de l’ADN, et com-
mence à se développer et se rependre quand les cellules comportant
cet ADN endommagé commencent à se répliquer sans pouvoir ré-
parer la séquence malformée ou se détruire par apoptose.

Dans le but de résoudre les problèmes introduits par ces interac-
tions inconnues plusieurs structures de modèles ont été proposées
prenant en compte la complexité des systèmes biologiques. Parmi
ceux, les approches Mathématiques (quantitatives) et Informatiques (qual-
itatives) [FH07] sont conçues en se basant sur les connaissances exis-
tantes et des données expérimentales. Principalement, les modèles
mathématiques utilisent une sémantique dénotationnelle, ce qui sig-
nifie que les équations dérivées décrivent comment les entités et con-
centrations et températures changent au fil du temps. D’autre part,
les modèles informatiques utilisent une sémantique opérationnelle,
ce qui signifie que les séquences de pas qui décrivent des interactions
abstraites entre les entités sont ce qui spécifie le modèle. Mais il est
bien connu que les connaissances en biologies sont souvent ambiguës,
incomplètes, ou contradictoires, et combiné avec le fait que des formu-
lations mathématiques absolues et certaines décrivant des systèmes
biologiques sont susceptibles de ne jamais exister, c’est pour cela que
manipulation des modèles qualitatifs pour ce type de données est sou-
vent plus convenable. Ces modèles sont considérés comme la source
de motivation pour les recherches fondées sur des hypothèses qui
suivent principalement deux phases, la phase de Construction et Vali-
dation et celle de l’Analyse et Prédiction. La première phase commence
par la définition de nouvelles hypothèses par la combinaison des con-
naissances déjà acquises sur le système et de l’un des modèles math-
ématiques ou informatiques. Ce nouveau modèle devrait ensuite être
validé par des données expérimentales et devrait être manuellement
raffiné en cas de contradictions. Et puis la seconde phase intervient
pour extrapoler de nouvelles données expérimentales pour tester la
véracité des hypothèses initiales ou pour simuler le système et faire
des prédictions.

Par conséquent, il existe de nos jours plusieurs bases de données
publiques comme Pathway Commons [CGD+

11] et Pathway Interaction
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Database [SAK+
09] qui contiennent un grand nombre de données à

propos d’interactions intracellulaires dans les réseaux métaboliques.
Ce grand nombre d’interactions découvertes qui forme un réseau
complexe de réactions est ce qui rend difficile la tâche de leur représen-
tation par un modèle visuel intuitif, d’où l’introduction des Molecular
Interaction Maps (MIM) [Koh99, KAWP06]. Bien qu’essentiels à la for-
malisation et la capitalisation des connaissances, les MIM peuvent
devenir difficile à utiliser pour les raisons suivantes :

• Leurs interprétations peuvent devenir complexes en raison du
très grand nombre d’interactions.

• Leurs annotations peut devenir fastidieuse à cause du manque
d’espace et à la richesse de la grammaire.

• Une carte n’est généralement pas le bon support pour exprimer
des requêtes complexes.

• L’extension des cartes est une tâche difficile puisque leur édition
n’est pas flexible.

Il existe aussi d’autres méthodes pour le raisonnement et la représen-
tation d’information en rapport à des réseaux métaboliques comme
les Réseaux Booléen [Kau69, WSA12], les Réseaux multivalués [Tho91],
les Graphes Causals [IDN13] et les Réseaux de Petri [CRT08]. Bien
qu’ils soient en mesure de compléter pleinement les taches pour lesquelles
ils ont été conçus, ils ne sont pas aussi expressifs que les MIM d’un
point de vue biologique.

Dans cette dissertation nous avons présenté premièrement un aperçu
rapide sur les différentes méthodes déjà existantes pour le raison-
nement à propos des réseaux métaboliques. Nous avons ensuite pro-
posé un nouveau model logique capable de décrire les informations
recueillies dans des MIM dans le but de contribuer à la lisibilité, flexi-
bilité et au raisonnement à propos de ces cartes. Une méthode efficace
de déduction automatique a aussi été présentée ayant comme rôle
d’aider à répondre à des questions de types déductives pour prédire
les résultats des interactions et a d’autres questions de type abduc-
tives pour inférer les interactions et les états des entités participantes
au graphe.

7.2 modèles formels utilisés dans la biologie des sys-
tèmes

Il existe plusieurs modèles qualitatifs qui ont été introduit pour le
raisonnement à propos des systèmes biologiques. Parmi ceux-ci, nous
avons introduit les Réseaux Booléen, les Réseaux multivalués, les
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Graphes Causals et les Réseaux de Petri, ainsi que leurs applications
qui ont comme but de répondre à des questions déductives, induc-
tives ou abductives ayant comme but d’analyser, de valider, et de
reconstruire tous les réseaux consistants avec les données expérimen-
tales, de détecter les inconsistances et de les réparer.

7.2.1 Réseaux Booléen

Les réseaux booléens ont été initialement introduis par [Kau69] pour
présenter des réseaux de régulations génétiques, mais sont toujours
utilisés dans plusieurs autres domaines comme la biologie, la physique,
et la bio-informatique [Kau93, HB97, LSYH03, GCX+

08, KSRL+
06].

Un réseau booléen est une paire (N, F) où :

• N = {n1, ..., nk} est un ensemble fini de nœuds ou de variables.
Chaque ni(t) représente la valeur de ni au temps t où ni prend
la valeur 1 si elle est activée et la valeur 0 si elle est inhibée.

• F = { f1, ..., fk} est un ensemble de fonctions booléennes.

Un vecteur d’états s(t) = (n1(t), ..., nk(t)) représente l’expression
de chaque nœud dans N a un temps t où Il existe 2k possibles états
distincts pour chaque pas. En plus, l’état d’un nœud ni a un temps
t + 1 est déterminé par ni(t + 1) = fi(ni1(t), ..., nip(t)) où ni1 , ..., nip

sont les nœuds qui influencent directement ni.

Les réseaux booléens sont généralement représentés par un graphe
comprenant deux types de flèches :

• Les flèches positives ont la forme ni −→ nj dans lesquelles ni(t)
prend part positivement dans la régulation de l’autre nœud
nj(t + 1).

• Les flèches négatives ont la forme ni | > nj dans lesquelles ni(t)
prend part négativement dans la régulation de l’autre nœud
nj(t + 1).

Dans la biologie des systèmes, les nœuds d’un réseau booléen sont
utilisés pour représenter des gènes, des protéines où toute autre entité
et leurs fonctions booléennes sont utilisées pour représenter les inter-
actions entre ces différents nœuds. La dynamique et les états stables
d’un réseau booléen sont caractérisés par leur attracteurs qui jouent
un rôle essentiel dans le système.

7.2.2 Réseaux multivalués

Les réseaux multivalués sont une extension des réseaux booléens qui
permettent aux valeurs de chaque entité d’être représentées par une
série de valeurs discrètes.
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Un réseau multivalué [RSV87] est une paire (N, F) où :

• N = {n1, ..., nk} est un ensemble fini de nœuds ou de variables.
Chaque ni(t) représente la valeur de ni au temps t où ni prend
à chaque pas sa valeur associée dans Sni = {0, 1, ..., li}.

• F = { f1, ..., fk} est un ensemble de fonction multivaluées.

Un vecteur d’états s(t) = (n1(t), ..., nk(t)) représente l’expression
de chaque nœud dans N a un temps t où Il existe lik possibles états
distincts pour chaque pas. En plus, l’état d’un nœud ni a un temps
t + 1 est déterminé par ni(t + 1) = fi(ni1(t), ..., nip(t)) où ni1 , ..., nip

sont les nœuds qui influencent directement ni. Les réseaux booléens
sont simplement un cas spécial des réseaux multivalués dans lesquels
Sni = {0, 1} pour chaque nœud dans N.

Dans beaucoup de cas une description binaire est considérée trop
simple, spécialement quand les nœuds ont plus qu’une seule action
possible et que ces actions requiers des conditions différentes pour
pouvoir être déclenchées. Dans la biologie des systèmes, la plupart
des interactions sont non linéaires, dans le sens qu’un régulateur ne
fonctionne pas en dessous d’un seuil de concentration et que son effet
se stabilise en dessus de ce seuil. Dans ce cas les réseaux multivalués
peuvent être utilisés pour ce type de représentations, contrairement
aux réseaux booléens où les valeurs des nœuds ne peuvent représen-
ter que les états actifs ou inhibés. Par exemple, si une certaine en-
tité agit simultanément comme inhibiteur pour une autre entité et
comme activateur pour sa propre synthèse, on pourrait considérer
que le seuil de concentration de chaque action est différent. Dans ce
cas deux seuils pourront être associés au nœud, le transformant ainsi
en un variable a trois valeurs.

7.2.3 Réseaux de Petri

Les réseaux de Petri sont des graphes contentant un ensemble fini de
nœuds et arcs. Les nœuds peuvent être de deux types différents, les
places et les transitions, où chaque place contient un nombre fini de
jetons. Chaque arc possède sont propre poids et connecte une place à
une transition ou une transition à une place.

Un réseau de Petri est un tuple PN = (P, T, f , m0) où :

• P = {p1, ..., pn} est un ensemble fini de places.

• T = {t1, ..., tm} est un ensemble fini de transitions, sachant que
P ∩ T = ∅.

• f : ((P× T)∪ (T× P))→N1 définie l’ensemble d’arcs orientés
d’une place vers une transition ou d’une transition vers une
place, et marqués par des valeurs entières non négatives.
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• m0 : P→N0 représente les valeurs initiales du réseau.

L’ensemble des places sur des arcs arrivant sur une transition sont
appelés ensemble d’entrées et l’ensemble des arcs sortant d’une tran-
sition sont appelés ensemble de sorties. Une transition t est consid-
érée comme active si chacune des places de son ensemble d’entrées
contient un nombre de jetons supérieur ou égal au poids de l’arc entre
p et t. Ainsi une transition activée peut être déclenchée et consomme
le nombre de jetons égal au poids de chaque arc de son ensemble
d’entrées, produisant un nombre de jeton égal au poids des arcs de
son ensemble de sorties.

Les réseaux de Petri ont été initialement développés pour représen-
ter des processus concurrents, mais ils peuvent être considérés comme
un simple et flexible langage de modélisation combinant une représen-
tation graphique qualitative et intuitive a une sémantique formelle.
C’est pour cela qu’ils sont utilisés dans la biologie des systèmes pour
représenter des réactions biochimiques et des signaux de transduc-
tion et d’expression génétiques [GSAK08, MCN08, KJH05, SFF+

07].
La description qualitative peut aussi être soutenue par la représen-
tation abstraite de quantités en utilisant les jetons pour désigner le
nombre de molécules ou les degrés de concentration.

7.2.4 Graphes Causals

Les graphes causals [IDN13] sont utilisés pour représenter des théories
sous forme de graphes. Ils sont généralement constitués d’un en-
semble de nœuds et un ensemble de d’arcs non orientés. Chaque
nœud représente un évènement, un fait ou une proposition et peuvent
représenter dans le cas de la biologie des systèmes des gènes, des pro-
téines ou toute autre entités. Pour deux nœuds une relation de causal-
ité directe représente un arc entre ces nœuds, et une chaine causale
représente leur accessibilité. Dans la biologie des systèmes une cause
peut faire référence à une dépendance mathématique, statistique, physique,
chimique, biologique, conceptuelle ou structurelle [Pea00]. C’est pour
cela que sa définition reste informelle et représente simplement la
connectivité entre les deux nœuds.

Généralement les graphes causals sont définis en utilisant la logique
de premier ordre, où les nœuds sont des atomes du langage et où les
relations causales sont des prédicats. Par exemple s’il existe une rela-
tion causale directe entre un nœud x et un autre nœud y, on pourrait
définir le prédicat connecté pour la relation où connecté(x, y) est vrai
et où connecté(x, y) correspond à la règle x → y. De même si une re-
lation de causalité directe entre x et y ne peut exister, cette contrainte
est représentée par ¬connecté(x, y).
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Des relations de causalités non déterministes entre un nœud x
et ses effets multiples y1, ..., yn peuvent être représentées par une
disjonction de prédicats connecté de la forme connecté(x, y1) ∨ ... ∨
connecté(x, yn) et où la disjonction correspond à la règle (x → y1 ∨
...∨ yn). De même une relation causale commune entre deux ou plusieurs
nœuds y1, ..., yn et un nœud x peut être représentée par une disjonc-
tion de prédicats connecté de la forme connecté(y1, x)∨ ...∨ connecté(yn, x)
et où cette disjonction correspond à la règle (y1 ∧ ...∧ yn → x).

Le prédicat connecté peut être aussi utilisé pour inférer d’autres
règles en introduisant le prédicat cause où cause(x, y) est vrai s’il
y a une chaine causale entre x et y. Ces chaines sont généralement
définies transitivement comme ce qui suit :

connecté(x, y)→ cause(x, y)

cause(x, z) ∧ connecté(z, y)→ cause(x, y)

7.3 un model logique pour les cartes d’interactions

moléculaires

Dans ce chapitre nous avons présenté un nouvel model logique basé
sur la logique de premier ordre capable de décrire tous les type
d’interactions entre deux ou plusieurs entités dans une carte d’interactions
moléculaires. Nous nous somme concentré premièrement sur les réac-
tions d’activations et d’inhibitions et nous avons ensuite montré com-
ment le langage peut être étendu pour décrire d’autres type de réac-
tions comme la phosphorylation, l’autophosphorylation et la liaison.

7.3.1 Langage Formel

Considérant un fragment de logique de premier ordre avec égalité et
sans fonctions, nous avons introduit trois états basiques dans lesquels
les entités des cartes d’interactions moléculaires peuvent êtres, définis
par les prédicats suivants :

• A(x) signifie que l’entité x est activée.

• I(x) signifie que l’entité x est inhibée.

• P(x) signifie que l’entité x est présente.

Nous avons ensuite définit les relations entre ces prédicats par les
formules suivantes :

¬∃x(A(x) ∧ I(x))
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Qui signifie qu’une même entité ne peut pas être activée et inhibée
simultanément.

∀x(P(x)↔ A(x) ∨ I(x))

Qui signifie qu’une entité présente est activée ou inhibée. Et qu’une
entité activée ou inhibée est présente.

7.3.2 Activation et Inhibition

Les actions d’activation et d’inhibition ont été définies en utilisant les
prédicats suivants:

• CA(y, x) : exprime que y a la capacité d’activer x.

• CAe(y, x) : exprime que y a la capacité effective d’activer x.

• CAdi(y, x) : exprime que y a la capacité directe ou indirecte
d’activer x.

• CICA(z, y, x) : exprime que z a la capacité d’inhiber la capacité
d’activation de x par y.

• CACA(z, y, x) : exprime que z a la capacité d’activer la capacité
d’activation de x par y.

• CI(y, x) : exprime que y a la capacité d’inhiber x.

• CIe(y, x) : exprime que y a la capacité effective d’inhiber x.

• CIdi(y, x) : exprime que y a la capacité directe ou indirecte
d’inhiber x.

• CICI(z, y, x) : exprime que z a la capacité d’inhiber la capacité
d’inhibition de x par y.

• CACI(z, y, x) : exprime que z a la capacité d’activer la capacité
d’inhibition de x par y.

Compte tenu du fait qu’une entité peut acquérir l’état actif ou in-
hibé selon différentes voies suivies, nous avons défini les relations
entre les causes et effets comme ce qui suit

L’axiome d’activation est formalisée par :

∀x∀y(A(y) ∧ CAe(y, x)→ A(x))

Où CAe est définie par :

CAe(x, y) def
== CA(x, y) ∧ ¬∃z(CICA(z, x, y) ∧ A(z))

∧ ∀w(CACA(w, x, y)→ A(w))
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Ce qui signifie qu’une entité x est active s’il existe au moins une
entité y active et qui a la capacité effective de l’activer. Pour toute en-
tité z ayant la capacité d’inhiber cette capacité, z ne devrait pas être
active. Et finalement, pour toute entité w ayant la capacité d’activer
cette capacité, w devrait être active.

L’axiome d’inhibition est aussi formalisée par :

∀x∀y(A(y) ∧ CIe(y, x)→ I(x))

Où CIe est définie par :

CIe(x, y) def
== CI(x, y) ∧ ¬∃z(CICI(z, x, y) ∧ A(z))

∧ ∀w(CACI(w, x, y)→ A(w))

Ce qui signifie qu’une entité x est active s’il existe au moins une
entité y active et qui a la capacité effective de l’inhiber. Pour toute
entité z ayant la capacité d’inhiber cette capacité, z ne devrait pas être
active. Et finalement, pour toute entité w ayant la capacité d’activer
cette capacité, w devrait être active.

7.3.3 Relations entre les Relations Causales

Nous avons défini les chaines d’activations par la formule suivante :

∀x∀y(CAe(y, x) ∨ ∃z(CAdi(y, z) ∧ CAe(z, x))↔ CAdi(y, x))

De même pour les chaines d’inhibitions :

∀x∀y(CIe(y, x) ∨ ∃z(CAdi(y, z) ∧ CIe(z, x))↔ CIdi(y, x))

C’est à partir des formules précédentes que nous avons prouvé, par
inductions sur le nombre d’entités actives dans la chaine, les formules
suivantes :

∀x∀y(A(y) ∧ CAdi(y, x)→ A(x))

∀x∀y(A(y) ∧ CIdi(y, x)→ I(x))

7.3.4 Extension du Model

Le langage basique défini précédemment peut être facilement étendu
pour exprimer d’autres interactions qui existent dans les cartes d’interactions
moléculaires. La phosphorylation, par exemple, peut être définie par
les prédicats suivants :

• CP(z, y, s, x) : exprime que z a la capacité de phosphoryler y sur
le site s donnant x comme resultat.

• CPe(z, y, s, x) : exprime que z a la capacité effective de phospho-
ryler y sur le site s donnant x comme resultat.
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• CPdi(z, y, s, x) : exprime que z a la capacité directe ou indirecte
de phosphoryler y sur le site s donnant x comme resultat.

• CICP(t, z, y, s, x) : exprime que t a la capacité d’inhiber la capac-
ité de phosphorylation de y par z donnant x comme resultat.

• CACP(t, z, y, s, x) : exprime que t a la capacité d’activer la capac-
ité de phosphorylation de y par z donnant x comme resultat.

L’axiome de phosphorylation sera formalisée par :

∀x∀y∀s∀z(A(z) ∧ A(y) ∧ CPe(z, y, s, x)→ A(x))

Où CPe est définie par :

CPe(z, y, s, x) def
==CP(z, y, s, x) ∧ ¬∃t(CICP(t, z, y, s, x) ∧ A(t))

∧ ∀w(CACP(w, z, y, s, x)→ A(w))

Ce qui signifie qu’une entité x est active s’il existe au moins une
entité z active et qui a la capacité effective de phosphoryler y sur le
site s. Pour toute entité t ayant la capacité d’inhiber cette capacité, t
ne devrait pas être active. Et finalement, pour toute entité w ayant la
capacité d’activer cette capacité, w devrait être active.

Avec l’introduction de nouveaux prédicats décrivant de nouvelles
interactions, de nouvelles relations de causalités doivent être intro-
duites, et celles déjà existantes doivent être modifiées pour prendre
en compte les nouveaux cas possible. Dans ce cas, les relations de
causalité de l’activation seront :

∀x∀y∀z(CAe(y, x) ∨ (CAdi(y, z) ∧ CAe(z, x))↔ CAdi(y, x))

∀x∀y∀w∀s∀z(CAe(y, x) ∨ (CPdi(y, w, s, z) ∧ CAe(z, x))↔ CAdi(y, x))

7.4 formules restreintes et procédure d’elimination de

quantificateurs

Nous avons introduit aussi un second fragment de logique de pre-
mier ordre, plus général que celui défini dans le chapitre précédent,
que nous appelons Formules Restreintes. Les propriétés de ce frag-
ment nous ont permis de définir une procédure d’élimination de
quantificateurs, ou en d’autres termes la transformation des formules
de premier ordre en formules propositionnelles pour obtenir une
procédure efficace de déduction automatique.
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7.4.1 Formules Domaines

Premièrement, nous avons défini un premier type de formule appelé
f ormulesdomaines comme ce qui suit :

• Une formule atomique P(x, c) est une formule domaine ou x
and c sont des ensembles finis de variables et de constantes
respectivement.

• Si ϕ et ψ sont des formules domaines donc :

– ϕ ∨ ψ est une formule domaine sachant que Free(ϕ) =

Free(ψ).

– ϕ ∧ ψ est une formule domaine.

– ϕ ∧ ¬ψ est une formule domaine sachant que Free(ψ) ⊆
Free(ϕ).

7.4.2 Formules Restreintes

Ensuite, nous avons introduit le concept de Formules Restreintes qui
sont des formules de premier ordre sans variables définies comme ce
qui suit :

• ∀x(ϕ→ ψ)

• ∃x(ϕ ∧ ψ)

Sachant que ϕ est une formule domaine et ψ est une formule re-
streinte ou une formule sans quantificateurs.

7.4.3 Formules de Complétion

Nous avons aussi proposé une définition des formules de complétion
de la forme suivante :

∀x1, ..., xn (P(x1, ..., xn, c1, ..., cp)↔((x1 = a11 ∧ ...∧ xn = a1n) ∨ ...∨
(x1 = am1 ∧ ...∧ xn = amn)))

Où ai est une constante et P est un prédicat d’arité n + p sachant
que n ≥ 1 et p ≥ 0.

Etant donné une formule domaine ϕ et un ensemble de formules
domaines α1, ..., αn tel que pour chaque prédicat appartenant à ϕ il ex-
iste une formule de complétion α pour ce prédicat, on dit que α1, ..., αn

couvre phi et sera noté C(ϕ).
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7.4.4 Domaine des Formules Domaines

Nous avons aussi défini le domaine des variables d’une formule do-
maine ϕ par rapport a C(ϕ), noté D(V(ϕ), C(ϕ)) comme ce qui suit:

• Si ϕ est de la forme P(x1, ..., xn, c1, ..., cp) alors:

D(V(ϕ), C(ϕ)) = {< a11 , ..., a1n >, ...,< aq1 , ..., aqn >}

Sachant que

∀x1, ..., xm(P(x1, ..., xn, c1, ..., cp)↔((x1 = a11 ∧ ...∧ xm = a1n) ∨ ...∨
(x1 = aq1 ∧ ...∧ xm = aqn)))

• Si ϕ est de la forme ϕ1 ∨ ϕ2 alors:

D(V(ϕ1 ∨ ϕ2), C(ϕ1 ∨ ϕ2)) =D(V(ϕ1), C(ϕ1))t
D(V(ϕ2), C(ϕ2))

Où t est l’union des valeurs du produit cartésien des valeurs
du domaine des variables communes de ϕ1 et ϕ2.

• Si ϕ est de la forme ϕ1 ∧ ϕ2 alors:

D(V(ϕ1 ∧ ϕ2), C(ϕ1 ∧ ϕ2)) =D(V(ϕ1), C(ϕ1))⊗c

D(V(ϕ2), C(ϕ2))

Où ⊗c est un opérateur de jointure et c est la conjonction des
égalités de la forme i = j sachant qu’une même variable appa-
rait dans ϕ1 ∧ ϕ2 en i dans ϕ1 et en j dans ϕ2.

• Si ϕ est de la forme ϕ1 ∧ ¬ϕ2 alors:

D(V(ϕ1 ∧ ¬ϕ2), C(ϕ1 ∧ ¬ϕ2)) =

D(V(ϕ1), C(ϕ1)) \ D(V(ϕ1 ∧ ϕ2), C(ϕ1 ∧ ϕ2))

Où \ désigne le complement du domaine de chaque variable
commune de ϕ2 par rapport à ϕ1.

7.4.5 Procédure d’Elimination des Quantificateurs

Soit ϕ une formule restreinte de la forme :

∀x(ϕ1(x)→ ϕ2(x))

∃x(ϕ1(x) ∧ ϕ2(x))

Soit C(ϕ1(x)) un ensemble de formule de complétion couvrant ϕ1,
on définit récursivement une translation T(ϕ, C(ϕ)) permettant de
remplacer les quantificateurs universels et existentiels par de conjonc-
tions et disjonctions de formules où les variables ont été substituées
par des constantes comme ce qui suit :
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• Si D(V(ϕ1), C(ϕ1)) = ∅ :

T(∀x (ϕ1(x)→ ϕ2(x)) , C(ϕ)) = True

T(∃x (ϕ1(x) ∧ ϕ2(x)) , C(ϕ)) = False

• SI D(V(ϕ1), C(ϕ1)) = {< c1 >, ...,< cn >} avec n > 0:

T(∀x(ϕ1(x)→ ϕ2(x)), C(ϕ)) =T(ϕ2(c1), C(ϕ2(c1))) ∧ ...∧
T(ϕ2(cn), C(ϕ2(cn)))

T(∃x(ϕ1(x) ∧ ϕ2(x)), C(ϕ) =T(ϕ2(c1), C(ϕ2(c1))) ∨ ...∨
T(ϕ2(cn), C(ϕ2(cn)))

Alors dans la theorie T nous avons le théorème suivant : Soit ϕ

une formule restreinte et C(ϕ) les formules de complétion pour les
formules domaines de ϕ, nous avons :

T , C(ϕ) ` ϕ↔ T(ϕ, C(ϕ))

Ce théorème a été prouvé par induction sur le nombre d’instances
des variables de ϕ.

7.5 raisonnement à propos des cartes d’interaction molécu-
laires

Nous avons présenté dans les chapitres précédents un model logique
pour les cartes d’interactions moléculaires capable de décrire les dif-
férents type d’états dans lesquels une entité peut être, et les dif-
férentes interactions deux ou plusieurs entités peuvent avoir. Nous
avons ensuite introduis une procédure d’élimination de quantifica-
teurs qui pourrait être appliquée au fragment de logique de pre-
mier ordre décrivant ces cartes pour les transformer en formules
propositionnelles de la forme Conditions → Résultats qui pourront
être enchainées pour créer une série de réactions formant des voies
métaboliques.

7.5.1 Exemple

Considérons le cas où une protéine b a la capacité d’activer une autre
protéine a et deux autres protéines c1 and c2 ont la capacité d’inhiber
cette activation, et qu’il n’y a aucune autre protéine capable d’activer
cette capacité d’activation. Cette proposition est exprimée par les for-
mules de complétions suivantes :
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• ∀y(CA(y, a)↔ y = b) où b est la seule protéine capable d’activer
a.

• ∀z(CICA(z, b, a)↔ z = c1 ∨ z = c2) où c1 and c2 sont les seules
protéines capable d’inhiber la capacité d’activation de a par b.

• ∀z(CACA(z, b, a)↔ f alse où il n’existe aucune protéine capable
d’activer l’activation de a par b.

En utilisant l’axiome d’activation et la procédure d’élimination des
quantificateurs on déduit :

A(b) ∧ ¬A(c1) ∧ ¬A(c2)→ A(a)

Ce qui signifie que la protéine a est active si la protéine b est ac-
tive et les protéines c1 et c2 ne le sont pas. C’est à l’aide de formules
pareilles nous aurons la possibilité de répondre à des requêtes déduc-
tives ou abductives comme nous l’avons montré à l’aide de plusieurs
autres exemples.

7.6 conclusion et perspectives

A travers cette thèse, nous espérions que nos travaux accomplis seraient
un premier pas vers une modélisation plus complète et plus précise
des cartes d’interactions moléculaires. Pour y parvenir, un nombre
de problèmes doit être résolu. Une de ces modifications proposée est
la transformation de notre modèle qualitatif en un modèle hybride
prenant en considérations certaines notions de temps, de quantités
et de concentrations. D’autres modifications pourront aussi être ap-
portées à la procédure automatique de raisonnement pour l’étendre
avec la notion d’aboutness qui a la capacité de limiter l’espace de
recherche à ce qui semble pertinent à une ou un ensemble d’entités.

Ce projet prend aussi part à un projet plus général, appelé P3M,
qui a comme but de créer un outil intuitif pour aider les biologistes
à cibler leurs expériences. II est principalement composé de trois par-
ties interconnectées qui incluent la manipulation graphique de cartes
d’interactions moléculaires et toutes les opérations nécessaires pour
répondre aux différents types de questions que peuvent se poser :

• Le module responsable de la représentation et la manipulation
graphique et intuitives des cartes d’interactions moléculaires.

• Le module responsable de la modélisation et de la représenta-
tion en logique des cartes d’interactions moléculaires.

• Et finalement, le module du traitement des données, constitué
par un ensemble d’algorithmes formant un lien entre les deux
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précédents modules, pour transformer les informations à pro-
pos des cartes de leur représentation graphique à leur représen-
tation logique, et puis réafficher les résultats des requêtes tout
en suivant normes ces cartes d’interactions moléculaires.





A
C L A S S I C A L L O G I C S

We introduce in this section the propositional and first-order logic and
show their key features, based on [CL73]. Every logic in general con-
tains a syntax, that is a formal notation for writing the assertions, a
semantics that gives a meaning to the assertions, and finally a proof
theory that gives methods of reasoning about assertions.

In the final part of this section, we present SOLAR, a first-order
clausal consequence finding system that can be used to prove propo-
sitional and first-order logic problems.

a.1 propositional logic

Propositional Logic (PL) is a simple language without variables of
any kind used for showing key and simple ideas and definitions, that
deals with truth values and logical connectives. Most propositional
logic concepts have an equivalent in first-order logic.

a.1.1 Syntax

• Logical constants: true, false.

• Propositional symbols: P, Q, R... A formula consisting of a propo-
sitional symbol is called an atomic formula. A literal can be an
atomic formula or the negation of an atomic formula.

• Formulæ are constructed from atomic formulæ using the con-
nectives:

¬ : negation (not)

∧ : conjunction (and)

∨ : disjunction (or)

→ : implication / conditional (implies)

↔ : biconditional (i f and only i f )

These connectives are listed in order of precedence, where ¬ is
the highest. For example the following formula:

(((¬P) ∧Q) ∨ R)→ ((¬P) ∨Q)

109
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Is equivalent to writing:

¬P ∧Q ∨ R→ ¬P ∨Q

a.1.2 Semantics

Propositional logic is a formal language, where each formula is ei-
ther true or false relative to the semantics of the atomic formulas they
contain. The semantics of a logic formula can be calculated using
standard truth tables, as shown in Table A.1 for example.

Table A.1: Truth table of propositional Logic formulæ where 0 represents
f alse and 1 represents true

A B ¬A A ∧ B A ∨ B A→ B A↔ B

1 1 0 1 1 1 1

1 0 0 0 1 0 0

0 1 1 0 1 1 0

0 0 1 0 0 1 1

We can now define the following:

• An interpretation for a set of formulæ is a function from its set
of propositional symbols to {true, f alse}.

• An interpretation satisfies a formula if the formula evaluates to
true under the interpretation.

• A set S of formulæ is valid, or is a tautology, if every interpreta-
tion of S satisfies every formula in S. For example, A → A and
¬(A ∧ ¬A) are both valid for every formula A.

• A set S of formulæ is satisfiable if there is some interpretation for
S that satisfies every formula in S. For example, P ∧ (P→ Q) is
only satisfiable under the interpretation that maps P and Q to
true.

• A set S is unsatisfiable if it is not satisfiable. For example, the set
¬P ∨ ¬Q is unsatisfiable for every valid formulæ P and Q.

• A set S of formulæ entails A if every interpretation that satis-
fies all elements of S, also satisfies A. We write S � A. So two
formulas A and B are equivalent provided A � B and B � A.
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Example A.1.1: Chemical synthesis is represented by formulæ such as
the following:

HCl + NaOH → NaCl + H2O

C + O2 → CO2

These formulæ can be formalized in propositional symbols like the
following:

HCl ∧ NaOH → NaCl ∧ H2O

C ∧O2 → CO2

a.1.3 Proof Systems

Verifying any tautology in a set of propositional formulas can be
made by checking all possible interpretations using the truth tables.
This method is called a semantic approach, since it appeals to the
meanings of the connectives.

The syntactic approach is a formal proof that generates theorems
or reduces a conjecture to a known theorem. There exist a multitude
of syntactic proof methods based on Natural Deduction [Gen69] and
Hilbert-style [NS97, BM77, Kle62] systems. most of them are based
on axioms and inference rules.

Logical inference is used to create new sentences that logically follow
from a given set of predicate sentences S. We say that an inference
rule is sound if every formula X produced by an inference rule oper-
ating on S is logically entailed by S, that is S � X. An inference rule
is complete if it is able to produce every expression that is entailed by
S.

Here are some examples of sound inference rules:
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Modus Ponens :
A→ B, A

B

And Introduction :
A B
A ∧ B

And Elimination :
A ∧ B

A
A ∧ B

B

Double Negation :
¬¬A

A

Unit Resolution :
A ∨ B, ¬B

A

Resolution :
A ∨ B, ¬B ∨ C

A ∨ C

a.2 first-order logic

Unlike propositional logic, First-Order Logic (FOL) allows the repre-
sentation of members and individuals, their properties and relations,
and more importantly the introduction of generalizations and pat-
terns. First-Order logic extends propositional logic to allow reasoning
about members of some non-empty universe, uses universal (∀) and
existential (∃) quantifiers, and has variables ranging over individuals.

a.2.1 Syntax

In a first-order language, terms stand for individuals and formulæ stand
for truth values, and every symbol that may appear in these terms
and formulæ are already defined. A first-order language L contains,
for all n ≥ 0, a set of n-place function symbols f, g, ... and n-place predi-
cate symbols P, Q, ..., where these sets may be empty, finite, or infinite.
Constant symbols a, b, ... can be considered as 0-place function symbols.
Predicate symbols are also called relation symbols.

• Terms are defined recursively as follows:

– A variable is a term.

– A constant symbol is a term.
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– If t1, ..., tn are terms and f is an n-place function symbol,
then f (t1, ..., tn) is a term.

– A ground term, formula, or clause does not contain any
variables at all.

• Well-formed formulæ A, B, ... are defined recursively as follows:

– If t1, ..., tn are terms and P is an n-place predicate symbol
then P(t1, ..., tn) is a formula, called atomic formula.

– If A and B are formulæ then ¬A, A∧ B, A∨ B, A→ B, A↔
B are also formulæ.

– If x is a variable and A is a formula then ∀xA and ∃xA are
also formulæ.

• A closed formula is a well-formed formula that does not contain
any free variables.

Quantifiers ∀xA and ∃xA bind tighter than the binary connectives.
Thus ∀xA ∧ B is equivalent to (∀xA) ∧ B. Nested quantifiers such as
∀x∀y are abbreviated as ∀xy.

Example A.2.1:

• Everyone is the friend of someone:

∀x(∃y(Is_ f riend_o f (y, x)))

• Everyone who eats ramen is either homeless or is a graduate
student:

∀x(Eats_ramen(x)→ Is_homeless(x)∨ Is_a_grad_student(x))

• Sister-in-law:

∀xy(Sister_in_law(x, y)→ ∃z(Female(z)∧Spouse(y, z)∧Siblings(x, z)))

a.2.2 Semantics

Let L be a first-order language. An interpretation I of L is a pair (D, I),
where D, the domain or universe, is a non-empty set, and I the opera-
tion that maps symbols to individuals, functions, or sets:

Interpretations are defined as follows:

• If c is a constant symbol then I [c] ∈ D.
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• If f is an n-place function symbol then I [ f ] ∈ Dn → D, which
means that I [ f ] is an n-place function on D.

• If P is an n-place relation symbol then I [P] ⊆ Dn, which means
that I [P] is an n-place relation on D.

There are many ways of defining values of variables under an in-
terpretation. One way is to introduce a constant symbol for every
element of D. A more natural way of representing the values is to use
an environment, known as valuation. A valuation V of L over D is a
function from variables of L into D. We define IV [t] for the value of
t with respect to I and V by the following:

IV [x]
def
== V(x) if x is a variable.

IV [c]
def
== I [c] if c is a constant symbol.

IV [ f (t1, ..., tn)]
def
== IV [ f ](IV [t1], ..., IV [tn])

if f is a function symbol.

IV [P(t1, ..., tn)]
def
== IV [P](IV [t1], ..., IV [tn])

if P is a relation symbol.

We write V{a/x} for the valuation that maps x to a. Typically the
valuation is modified one variable at a time, and this semantic is ana-
logue to the substitution applied to the variable x.

Let A be a formula. For an interpretation I = (D, I) we write
�I ,V A if A is true in I under V. This is defined by the following:

• �I ,V P(t1, ...tn) if IV [P](IV [t1], ..., IV [tn]) holds, that means that
the actual relation I [P] holds for the values of the arguments.

• �I ,V t = u if IV [t] equals IV [u], where the predicate symbol =
denotes equality.

• �I ,V ¬B if �I ,V B does not hold.

• �I ,V B ∧ C if both �I ,V B and �I ,V C hold.

• �I ,V B ∨ C if either �I ,V B or �I ,V C holds.

• �I ,V B→ C if �I ,V B does not hold or �I ,V C holds.

• �I ,V B↔ C if �I ,V B and �I ,V C both hold or neither does.

• �I ,V ∃xB if there exists m ∈ D such that �I ,Vm/x B holds, that is
B holds when x has the value m.

• �I ,V ∀xB if for all m ∈ D we have that �I ,Vm/x B holds.
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From that, we can say that:

• An interpretation I satisfies a formula if �I A holds.

• A set S of formulæ is valid if every interpretation of S satisfies
every formula in S.

• A set S of formulæ is satisfiable or consistent if there is some
interpretation of S that satisfies every formula in S.

• A set S of formulæ is unsatisfiable or inconsistent if it is not satis-
fiable, where each interpretation falsifies some formula of S.

• A model of a set S of formulæ is an interpretation that satisfies
every formula in S. We also consider models that satisfy a single
formula.

But unlike in propositional logic, models can be infinite and there
can be an infinite number of models. We cannot prove the validity of
a formula by checking all models.

a.2.3 Proof Systems

Many proof methods for first-order logic are based on propositional
logic, where eliminating the quantifiers from a first-order formula re-
duces it nearly to a propositional logic.

We start by defining substitution. If A is a formula, t a term, and x
a variable, then A[t/x] is the formula obtained by substituting t for
x throughout A. Substitutions only affect the free occurrences of the
variables.

The following equivalences are useful for transforming and sim-
plifying quantified formulæ. First we can pull quantifiers through
negation using De Morgan’s laws like the following:

¬(∀x A)⇔ ∃x¬A

¬(∃x A)⇔ ∀x¬A

We can also pull quantifiers through conjunction and disjunction
like the following, provided that x is not free in B:
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(∀xA) ∧ B⇔ ∀x(A ∧ B)

(∀xA) ∨ B⇔ ∀x(A ∨ B)

(∃xA) ∧ B⇔ ∃x(A ∧ B)

(∃xA) ∨ B⇔ ∃x(A ∨ B)

Distributive laws can also be applied to pull quantifiers like the
following:

(∀xA) ∧ (∀xB)⇔ ∀x(A ∧ B)

(∃xA) ∨ (∃xB)⇔ ∃x(A ∨ B)

The implication A → B (used as ¬A ∨ B) can also be used to pull
quantifiers, provided that x is not free in B:

(∀xA)→ B⇔ ∃x(A→ B)

(∃xA)→ B⇔ ∀x(A→ B)

And finally the quantifiers ∀ and ∃ can be expanded as infinitary
conjunction and disjunction like the following:

∀xA⇔ (∀xA) ∧ A[t/x]

∃xA⇔ (∃xA) ∨ A[t/x]

Example A.2.2: Many first-order formulæ have easy proofs using equiv-
alences:

∃(x = a ∧ P(x))⇔ ∃x(x = a ∧ P(a))

⇔ ∃x(x = a) ∧ P(a)

⇔ P(a)

So, in order to eliminate quantifiers from a formula, we first have to
put it in prenex normal form, that is, moving all quantifiers to the front
using the previously defined equivalences. Then we replace every
existentially bound variable by a Skolem constant or function. With
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this transformation, the meaning of the formula is not preserved, but
its consistency is, which is the critical property, since resolution works
by detecting contradictions.

a.3 solar

SOL for Advanced Reasoning (SOLAR) [NIIR10] is a first-order clausal
consequence finding system based on the Skip Ordered Linear (SOL)
tableau calculus. Unlike theorem proving that aims to test whether
a given theorem follows from a set of axioms, consequence finding
seeks to generate the theorems of interest. It is worth noting that
many practical reasoning tasks are special cases of consequence find-
ing. For example, showing that the empty clause is a consequence of
some axioms and the negation of a certain theorem is equivalent try-
ing to prove that theorem. Abductive reasoning is also another special
case of consequence finding where adding a certain hypothesis to a
given theory entails a set of observations.

SOLAR is based on Inoue’s SOL-resolution [Ino92], which is as a
complete method of mechanically finding the characteristic clauses
of a theory. Iwanuma et al. reformulated SOL-resolution within the
framework of connection tableau [Let98, LMG94], and proposed sev-
eral pruning methods [II02, IIS00] for removing redundant branches
of the search space.

A SOLAR program describing a consequence finding problem is
compatible with the TPTP [SS98] format version 2, where clauses are
in a Clausal Normal Form (CNF). The first argument represents the
name of the clause, the second one represents its kind, and the third
its definition. A top_clause is the starting clause. A pf syntax defines
a production field which is a certain condition to be satisfied. If there
are no top_clause and pf, SOLAR tries to find a refutation as a theorem
prover.

Example A.3.1: In the following example the production field allows
the generation of consequences of less than 2 positive literals.

cnf(clause1, top_clause, [p(X), s(X)]).

cnf(clause2, axiom, [q(X), -p(X)]).

cnf(clause3, axiom, [-s(Y)]).

cnf(clause4, axiom, [-p(Z),-q(Z), r(Z)]).

pf([POS] < 2).
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The output of SOLAR is the set of found consequences:

3 FOUND CONSEQUENCES

[p(_0)]

[q(_0)]

[r(_0)]
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Temporal logics [Pnu77] can be considered as an extension of the clas-
sical logics, defined in Appendix A, that are mainly used to describe
the properties of the dynamics of a system, for model checking, and
as formal verification of the safety, liveness, and fairness properties of
a model. In this section we will introduce two main temporal logics,
the Linear Temporal Logic and the Computational Tree Logic.

Temporal logics are defined using Kripke semantics, where a Kripke
model is a 4-tuple, M = (S, I, R, L), as follows:

• S is a finite set of states.

• I is a set of initial states, where I ⊆ S.

• T is the set of the transition relations of the system, where T ⊆
S× S

• L is a labeling function L : S → P(A), with A a set of atomic
properties, and P(A) the power set of A.

For each state s ∈ S, L(s) is the set of atomic properties which are
true for s. The behavior of M is defined by its execution paths, where
a path p of M is a succession of states (s0, s1...), where si ∈ S and
T(si, si+1) is true for all i > 0. The ith state of a path is written p(i).

Example B.0.2: Figure B.1 is a representation of the following Kripke
model M where:

• S = {s0, s1, s2, s3}

• I = {s0}

• T = {{s0, s1}, {s0, s2}, {s1, s1}, {s1, s3}, {s2, s0}, {s2, s3}, {s3, s0}}

• L = { {s0, {p}}, {s1, {p, q}}, {s2, {p, r}}, {s3, {v}} }

b.1 linear temporal logic

Linear Temporal Logic (LTL) describes properties on linear execution
paths, from the initial state s0. It is defined as follows:

ϕ ::= >|⊥|a|¬ϕ|ϕ1 ∧ ϕ2|ϕ1 ∨ ϕ2|Gϕ|ϕ1Uϕ2|Xϕ|Fϕ

119
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p p, q

vp, r

s0 s1

s3s2

Figure B.1: Kripke model example

Where lowercase letters such as a denote atomic propositions, Greek
letters such as ϕ1 and ϕ2 denote formulas, and G, U, X, F denote al-
ways, until, next time, eventually respectively.

The semantics of LTL for a path p is defined as follows:

• p � > is always satisfied.

• p 2 ⊥ is never satisfied.

• p � a iff a ∈ L(p(0)).

• p � ¬ϕ iff p 2 ϕ.

• p � ϕ1 ∧ ϕ2 iff p � ϕ1 and p � ϕ2.

• p � ϕ1 ∨ ϕ2 iff p � ϕ1 or p � ϕ2.

• p � Gϕ iff p(i) � ϕ ∀i > 0.

• p � ϕ1Uϕ2 iff ∃i ≥ 0, p(i) � ϕ2 and ∀0 ≤ k < i, p(k) � ϕ1.

• p � Xϕ iff p(1) � ϕ.

• p � Fϕ iff p � >Uϕ.

Example B.1.1: Figure B.2 shows the next property p � Xa

a ...

p(0) p(1)

Figure B.2: p � Xa

Example B.1.2: Figure B.3 shows the (eventually) property p � Fa



B.2 computational tree logic 121

a ...

p(0) p(1) p(2) p(3)

Figure B.3: p � Fa

Example B.1.3: Figure B.4 shows the (always) property p � Ga

a a a a ...

p(0) p(1) p(2) p(3)

Figure B.4: p � Ga

Example B.1.4: Figure B.5 shows the (until) property p � aUb

a a a b ...

p(0) p(1) p(2) p(3)

Figure B.5: p � aUb

b.2 computational tree logic

Computational Tree Logic (CTL) describes properties on a branching
execution paths. From this LTL seems like a subset of of CTL, but
LTL and CTL are in fact two distinct set of properties. CTL* is a logic
that is capable of describing both LTL and CTL. CTL formulas are
separated in two categories, the Global and the Existential formulas
denoted by A and E respectively. It is defined as follows:

ϕ ::=>|⊥|a|¬ϕ|ϕ1 ∧ ϕ2|ϕ1 ∨ ϕ2|
AGϕ|ϕ1AUϕ2|AXϕ|AFϕ|
EGϕ|ϕ1EUϕ2|EXϕ|EFϕ

The semantics of CTL for a state s and a model M is defined as
follows:

• M, s � > is always satisfied.

• M, s 2 ⊥ is never satisfied.

• (M, s � a) iff a ∈ L(s).
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• (M, s � ¬ϕ) iff (M, s 2 ϕ).

• (M, s � ϕ1 ∧ ϕ2) iff (M, s � ϕ1) and (M, s � ϕ2).

• (M, s � ϕ1 ∨ ϕ2) iff (M, s � ϕ1) or (M, s � ϕ2).

• (M, s � AGϕ) iff ∀p such that p(0) = s, ∀i such that p(i) � ϕ).
In other words, for all paths starting at s, always ϕ.

• (M, s � AXϕ) iff ∀p such that p(0) = s, p(1) � ϕ. In other
words, for all paths starting at s, next time ϕ.

• (M, s � AFϕ) iff ∀p such that p(0) = s, ∃i such that p(i) � ϕ).
In other words, for all paths starting at s, eventually ϕ.

• (M, s � ϕ1AUϕ2) iff ∀p such that p(0) = s, ∃i such that (∀j <
i(p(j) � ϕ1)∧ (p(i) � ϕ2)). In other words, for all paths starting
at s, ϕ1 until ϕ2.

• (M, s � EGϕ) iff ∃p such that p(0) = s, ∀i such that p(i) � ϕ).
In other words, there exists a path such that always ϕ.

• (M, s � EXϕ) iff ∃p such that p(0) = s, p(1) � ϕ. In other words,
there exists a path starting at s such that next time ϕ.

• (M, s � EFϕ) iff ∃p such that p(0) = s, ∃i such that p(i) � ϕ).
In other words, there exists a path starting from s such that
eventually ϕ.

• (M, s � ϕ1EUϕ2) iff ∃p such that p(0) = s, ∃i such that (∀j <
i(p(j) � ϕ1) ∧ (p(i) � ϕ2)). In other words, there exists a path
such that ϕ1 until ϕ2

Example B.2.1: From example B.0.2 we can have the following proper-
ties verified:

• M, s0 � AXp

• M, s0 � EFv

• M, s0 � AG(p ∨ v)

• M, s0 � pEUv



C
A N S W E R S E T P R O G R A M M I N G

Answer Set Programming (ASP) [Lif08] is a form of declarative pro-
gramming primarily oriented towards difficult and NP-hard search
problems. It is based on stable model (answer set) semantics [GL88],
that apply ideas of autoepistemic logic [Moo85] and default logic
[Rei87b] to analyze negation as a failure. In ASP, search problems
are reduced to computing stable models. Unlike SLDNF resolution
used in Prolog, the search algorithms used in the design of many an-
swer set solvers always terminate. They are based on Davis-Putnam-
Logemann-Loveland procedure, and they are somewhat similar to the
algorithms used in efficient SAT solvers [GKSS08].

Problems are expressed in a logical format is ASP, and the solu-
tions to these problems are the models of their representations. These
models are referred as answer sets. ASP solvers should not only de-
termine if a program has an answer set, but also support several
reasoning modes that are needed to cover the variety of reasoning
problems encountered in applications, among them, regular and pro-
jective enumeration, intersection and union, and multi-criteria opti-
mization. These reasoning modes can be combined for example to
compute the intersection of all optimal models.

A logical ASP program written in the gringo language [GKK+
08] is

a finite set of rules like the following:

a0 : −a1, ..., am, not am+1, ..., not an.

Where 0 ≤ m ≤ n and ∀i|0 ≤ i ≤ n, ai is an atom. The connectives
:- and , can be read as if and and respectively. And finally the not
corresponds to the default negation.

And for any rule r:

hear(r) = a0

body(r) = {a1, ..., am, not am+1, ..., not an}

If head(r) is empty, r is called integrity constraint. And if body(r) is
empty, r is a fact.
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Formally let A be a set of atoms, body+(r) = {a ∈ A|a ∈ body(r)}
represents the set of positive atoms, and body−(r) = {a ∈ A|not a ∈
body(r)} represents the negative as a failure atoms.

A set X ⊆ A is an answer set or stable model of a program P if X
is the minimal model of the reduct PX = {head(r) ← body+(r)|r ∈
P, body−(r) ∩ X = ∅}.

Example C.0.2: Let P be the following ASP program:

a :- not b,c.

b :- not a.

c.

Considering X = {a, c}. The minimal model of the reduct PX =

{c, a← c} is {a, c}. X is then a stable model of P.
If we now consider X′ = {a, b, c}. The corresponding reduct PX′ =

{c}, and the minimal model of the reduct is {c}. Then X′ is not a
stable model of P.

Example C.0.3: Let P be the following ASP program:

a :- not b.

b :- not a.

P has two stable models {a} and {b}. If we add to this program
the integrity constraint : −a., the only remaining stable model would
be {b}. But if we add to this program the integrity constraint : −nota,
we remove the stable model {b} because it does not contain {a}.



D
P R O O F O F T H E Q U A N T I F I E R E L I M I N AT I O N
P R O C E D U R E

We here present in this section the proof of Theorem 4.3.1. We will
first show in Lemma D.0.1 that the theorem holds for any restricted
formula where the domain of the vatriables of its completion formula
is empty. Then, in Lemma D.0.2, we will apply induction on the num-
ber of instances of V(ϕ) to prove that the theorem holds for any num-
ber of instances of variables of the domain formula ϕ in any form of
restricted formulas.

Lemma D.0.1: Let F and G be restricted formulas as defined in Sec-
tion 4.2.2 of the form:

• F : ∀x(ϕ(x)→ ψ(x))

• G : ∃x(ϕ(x) ∧ ψ(x))

where ϕ is a domain formula of any form defined in Section 4.2.1.

Let C(ϕ) be a set of completion formulas for ϕ where:

D(V(ϕ), C(ϕ)) = ∅

From this we have ϕ(x) true in F and false in G, thus proving The-
orem 4.3.1 for this particular case, where the domain of the variables
of ϕ is empty.

Lemma D.0.2: Let F, G, H, I be restricted formulas of the form:

Fa : ∀x(P(x)→ ψ(x))

Fe : ∃x(P(x) ∧ ψ(x))

Ga : ∀x((ϕ1(x) ∨ ϕ2(x))→ ψ(x))

Ge : ∃x((ϕ1(x) ∨ ϕ2(x)) ∧ ψ(x))

Ha : ∀x((ϕ1(x) ∧ ϕ2(x))→ ψ(x))

He : ∃x((ϕ1(x) ∧ ϕ2(x)) ∧ ψ(x))

Ia : ∀x((ϕ1(x) ∧ ¬ϕ2(x))→ ψ(x))

Ie : ∃x((ϕ1(x) ∧ ¬ϕ2(x)) ∧ ψ(x))
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Where P, ϕ1, and ϕ2 are domain formulas.

There exist translations

• T(F, C(P))

• T(G, C(ϕ1 ∨ ϕ2))

• T(H, C(ϕ1 ∧ ϕ2))

• T(I, C(ϕ1 ∧ ¬ϕ2))

for any saturated completion set where:

• D(V(P), C(P)) 6= ∅

• D(V(ϕ1 ∨ ϕ2), C(ϕ1 ∨ ϕ2)) 6= ∅

• D(V(ϕ1 ∧ ϕ2), C(ϕ1 ∧ ϕ2)) 6= ∅

• D(V(ϕ1 ∧ ¬ϕ2), C(ϕ1 ∧ ¬ϕ2)) 6= ∅

The proof of Theorem 4.3.1 is constructed by induction on the num-
ber of instances of V contained in D.

d.1 base case for Fa and Fe

Fa : ∀x(P(x) → ψ(x))
Fe : ∃x(P(x) ∧ ψ(x))

Given P is a domain formula, C(P) its corresponding completion
set, and D(V (P) , C(P)) 6= ∅, we have:

D(V (P) , C(P)) = {< c1 , c2 , . . . , cn >}

If C(P) is of the following form:

∀x(P(x) ↔ x1 = c1 ∧ x2 = c2 ∧ . . . ∧ xn = cn )

We can deduce Fa ↔ F ′a such that:

F ′a : ∀x((x1 = c1 ∧ . . . ∧ xn = cn ) → ψ(x))

With the equality substitution axiom scheme we have:

x1 = c1 → (ψ(x1 , . . . , xn ) → ψ(c1 , . . . , xn ))

. . .

xn = cn → (ψ(x1 , . . . , xn ) → ψ(x1 , . . . , cn ))

Therefore F ′a → F ′ ′a with F ′ ′a : ψ(c1 , . . . , cn )
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We also have:

ψ(c1 , . . . , cn ) → ∀x((x1 = c1 ∧ . . . ∧ xn = cn ) → ψ(x1 , . . . , xn ))

Then we can derive that F ′ ′a → F ′a , then F ′ ′a ↔ Fa and verify that
the base case holds for Fa .

We can also deduce Fe ↔ F′e such that:

F′e : ∃x((x1 = c1 ∧ ...∧ xn = cn) ∧ ψ(x))

With the equality substitution axiom scheme we have:

x1 = c1 → (ψ(x1, ..., xn)→ ψ(c1, ..., xn))

...

xn = cn → (ψ(x1, ..., xn)→ ψ(x1, ..., cn))

Therefore F′e → F′′e with F′′e : ψ(c1, ..., cn)

We also have:

ψ(c1, ..., cn)→ ∃x((x1 = c1 ∧ ...∧ xn = cn) ∧ ψ(x1, ..., xn))

Then we can derive that F′′e → F′e , then F′′e ↔ Fe and verify that the
base case holds for Fe.

d.2 base case for Ga and Ge

Ga : ∀x((ϕ1 (x) ∨ ϕ2 (x)) → ψ(x))
Ge : ∃x((ϕ1 (x) ∨ ϕ2 (x)) ∧ ψ(x))

Given ϕ1 ∨ ϕ2 is a domain formula, C(ϕ1 ∨ ϕ2 ) its corresponding
completion set, and D(V (ϕ1 ∨ ϕ2 ) , C(ϕ1 ∨ ϕ2 )) 6= ∅:

If C(ϕ1 ) and C(ϕ2 ) are of the following form:

∀x ∀y(ϕ1 (x , y) ↔x1 = c1 ∧ . . . ∧ xn = cn∧
y p = c p ∧ . . . ∧ y p+q = c p+q )

∀x ′ ∀y(ϕ2 (x ′ , y) ↔x ′1 = c ′1 ∧ . . . ∧ x ′n = c ′m∧
y p = c ′p ∧ . . . ∧ y p+q = c ′p+q )

q is the number of shared variables between V (ϕ1 ) and V (ϕ2 ).
Then, we have:
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D(V (ϕ1 ) , C(ϕ1 )) = {< c1 , . . . , cn , c p , . . . , c p+q >}
D(V (ϕ2 ) , C(ϕ2 )) = {< c ′1 , . . . , c ′m , c ′p , . . . , c ′p+q >}

And

D(V (ϕ1 ∨ ϕ2 ) , C(ϕ1 ∨ ϕ2 )) = { < c1 , . . . , cn , c ′1 , . . . , c ′m , c p , . . . , c p+q > , . . .

< c1 , . . . , cn , c ′1 , . . . , c ′m , c p , . . . , c ′p+q > , . . .

< c1 , . . . , cn , c ′1 , . . . , c ′m , c ′p , . . . , c p+q > , . . .

< c1 , . . . , cn , c ′1 , . . . , c ′m , c ′p , . . . , c ′p+q >}

We can deduce Ga ↔ G′a such that:

G′a : ∀x ∀x′ ∀y((x1 = c1 ∧ ...∧ xn = cn∧
x′1 = c′1 ∧ ...∧ x′n = c′m∧
(yp = cp ∨ yp = c′p) ∧ ...∧
(yp+q = cp+q ∨ yp+q = c′p+q))→ ψ(x, x′, y))

With the equality substitution axiom scheme we have:

x1 = c1 → (ψ(x1, ..., xn, x′, y)→ ψ(c1, ..., xn, x′, y))

...

yp+q = c′p+q → (ψ(x, x′, yp, ..., yp+q)→ ψ(x, x′, yp, ..., c′p+q))

Therefore G′a → G′′a with

G′′a : ψ(c1, ..., cn, c′1, ..., c′m, cp, ..., cp+q) ∧ ...∧
ψ(c1, ..., cn, c′1, ..., c′m, cp, ..., c′p+q) ∧ ...∧
ψ(c1, ..., cn, c′1, ..., c′m, c′p, ..., cp+q) ∧ ...∧
ψ(c1, ..., cn, c′1, ..., c′m, c′p, ..., c′p+q)

We also have:

ψ(c1, ...,cn, c′1, ..., c′m, cp, ..., cp+q)→
∀x ∀x′ ∀y((x1 = c1 ∧ ...∧ xn = cn

∧ x′1 = c′1 ∧ ...∧ x′n = c′m∧
yp = cp ∧ ...∧ yp+q = cp+q)→ ψ(x, x′, y))

...
and

ψ(c1, ...,cn, c′1, ..., c′m, c′p, ..., c′p+q)→
∀x ∀x′ ∀y((x1 = c1 ∧ ...∧ xn = cn

∧ x′1 = c′1 ∧ ...∧ x′n = c′m∧
yp = c′p ∧ ...∧ yp+q = c′p+q)→ ψ(x, x′, y))
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Then we can derive that G′′a → G′a, then G′′a ↔ Ga and verify that
the base case holds for Ga.

We can also deduce Ge ↔ G′e such that:

G′e : ∃x ∃x′ ∃y((x1 = c1 ∧ ...∧ xn = cn∧
x′1 = c′1 ∧ ...∧ x′n = c′m∧
(yp = cp ∨ yp = c′p) ∧ ...∧
(yp+q = cp+q ∨ yp+q = c′p+q)) ∧ ψ(x, x′, y))

With the equality substitution axiom scheme we have:

x1 = c1 → (ψ(x1, ..., xn, x′, y)→ ψ(c1, ..., xn, x′, y))

...

yp+q = c′p+q → (ψ(x, x′, yp, ..., yp+q)→ ψ(x, x′, yp, ..., c′p+q))

Therefore G′e → G′′e with

G′′e : ψ(c1, ..., cn, c′1, ..., c′m, cp, ..., cp+q) ∨ ...∨
ψ(c1, ..., cn, c′1, ..., c′m, cp, ..., c′p+q) ∨ ...∨
ψ(c1, ..., cn, c′1, ..., c′m, c′p, ..., cp+q) ∨ ...∨
ψ(c1, ..., cn, c′1, ..., c′m, c′p, ..., c′p+q)

We also have:

ψ(c1, ...,cn, c′1, ..., c′m, cp, ..., cp+q)→
∃x ∃x′ ∃y((x1 = c1 ∧ ...∧ xn = cn

∧ x′1 = c′1 ∧ ...∧ x′n = c′m∧
yp = cp ∧ ...∧ yp+q = cp+q) ∧ ψ(x, x′, y))

...
and

ψ(c1, ...,cn, c′1, ..., c′m, c′p, ..., c′p+q)→
∃x ∃x′ ∃y((x1 = c1 ∧ ...∧ xn = cn

∧ x′1 = c′1 ∧ ...∧ x′n = c′m∧
yp = c′p ∧ ...∧ yp+q = c′p+q) ∧ ψ(x, x′, y))

Then we can derive that G′′e → G′e, then G′′e ↔ Ge and verify that
the base case holds for Ge.
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d.3 base case for Ha and He

Ha : ∀x((ϕ1 (x) ∧ ϕ2 (x)) → ψ(x))
He : ∃x((ϕ1 (x) ∧ ϕ2 (x)) ∧ ψ(x))

Given ϕ1 ∧ ϕ2 is a domain formula, C(ϕ1 ∧ ϕ2) its corresponding
completion set, and D(V(ϕ1 ∧ ϕ2), C(ϕ1 ∧ ϕ2)) 6= ∅:

If C(ϕ1) and C(ϕ2) are of the following form:

∀x ∀y(ϕ1(x, y)↔x1 = c1 ∧ ...∧ xn = cn∧
yp = cp ∧ ...∧ yp+q = cp+q)

∀x′ ∀y(ϕ2(x′, y)↔x′1 = c′1 ∧ ...∧ x′n = c′m∧
yp = cp ∧ ...∧ yp+q = cp+q)

q is the number shared variables between V(ϕ1) and V(ϕ2). Then,
we have:

D(V(ϕ1), C(ϕ1)) = {< c1, ..., cn, cp, ..., cp+q >}
D(V(ϕ2), C(ϕ2)) = {< c′1, ..., c′m, cp, ..., cp+q >}

And

D(V(ϕ1 ∧ ϕ2), C(ϕ1 ∧ ϕ2)) = {< c1, ..., cn, c′1, ..., c′m, cp, ..., cp+q >}

We can deduce Ha ↔ H′a such that:

H′a : ∀x ∀x′ ∀y((x1 = c1 ∧ ...∧ xn = cn∧
x′1 = c′1 ∧ ...∧ x′n = c′m∧
yp = cp ∧ ...∧ yp+q = cp+q)→ ψ(x, x′, y))

With the equality substitution axiom scheme we have:

x1 = c1 → (ψ(x1, ..., xn, x′, y)→ ψ(c1, ..., xn, x′, y))

...

yp+q = cp+q → (ψ(x, x′, yp, ..., yp+q)→ ψ(x, x′, yp, ..., cp+q))

Therefore H′a → H′′a with

H′′a : ψ(c1, ..., cn, c′1, ..., c′m, cp, ..., cp+q)

We also have:

ψ(c1, ...,cn, c′1, ..., c′m, cp, ..., cp+q)→
∀x ∀x′ ∀y((x1 = c1 ∧ ...∧ xn = cn

∧ x′1 = c′1 ∧ ...∧ x′n = c′m∧
yp = cp ∧ ...∧ yp+q = cp+q)→ ψ(x, x′, y))
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Then we can derive that H′′a → H′a, then H′′a ↔ Ha and verify that
the base case holds for Ha.

We can also deduce He ↔ H′e such that:

H′e : ∃x ∃x′ ∃y((x1 = c1 ∧ ...∧ xn = cn∧
x′1 = c′1 ∧ ...∧ x′n = c′m∧
yp = cp ∧ ...∧ yp+q = cp+q) ∧ ψ(x, x′, y))

With the equality substitution axiom scheme we have:

x1 = c1 → (ψ(x1, ..., xn, x′, y)→ ψ(c1, ..., xn, x′, y))

...

yp+q = cp+q → (ψ(x, x′, yp, ..., yp+q)→ ψ(x, x′, yp, ..., cp+q))

Therefore H′e → H′′e with

H′′e : ψ(c1, ..., cn, c′1, ..., c′m, cp, ..., cp+q)

We also have:

ψ(c1, ...,cn, c′1, ..., c′m, cp, ..., cp+q)→
∃x ∃x′ ∃y((x1 = c1 ∧ ...∧ xn = cn

∧ x′1 = c′1 ∧ ...∧ x′n = c′m∧
yp = cp ∧ ...∧ yp+q = cp+q) ∧ ψ(x, x′, y))

Then we can derive that H′′e → H′e, then H′′e ↔ He and verify that
the base case holds for He.

d.4 base case for Ia and Ie

Ia : ∀x((ϕ1 (x) ∧ ¬ϕ2 (x)) → ψ(x))
Ie : ∃x((ϕ1 (x) ∧ ¬ϕ2 (x)) ∧ ψ(x))

Given ϕ1 ∧ ¬ϕ2 is a domain formula, C(ϕ1 ∧ ¬ϕ2 ) its correspond-
ing completion set, and D(V (ϕ1 ∧ ¬ϕ2 ) , C(ϕ1 ∧ ¬ϕ2 )) 6= ∅:

If C(ϕ1 ) and C(ϕ2 ) are of the following form:

∀x(ϕ1 (x) ↔ x1 = c1 ∧ . . . ∧ xn = cn )

∀x(ϕ2 (x) ↔ x1 = c ′1 ∧ . . . ∧ xn = c ′m )
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Where there exist no shared variables between V (ϕ1 ) and V (ϕ2 ).
Then, we have:

D(V (ϕ1 ) , C(ϕ1 )) = {< c1 , . . . , cn >}
D(V (ϕ2 ) , C(ϕ2 )) = {< c ′1 , . . . , c ′m >}

And

D(V(ϕ1 ∧ ¬ϕ2), C(ϕ1 ∧ ¬ϕ2)) = {< c1, ..., cn >}

We can deduce Ia ↔ I′a such that:

I′a : ∀x((x1 = c1 ∧ ...∧ xn = cn)→ ψ(x))

With the equality substitution axiom scheme we have:

x1 = c1 → (ψ(x1, ..., xn)→ ψ(c1, ..., xn))

...

xn = cn → (ψ(x1, ..., xn)→ ψ(x1, ..., cn))

Therefore I′a → I′′a with I′′a : ψ(c1, ..., cn)

We also have:

ψ(c1, ..., cn)→ ∀x((x1 = c1 ∧ ...∧ xn = cn)→ ψ(x1, ..., xn))

Then we can derive that I′′a → I′a, then I′′a ↔ Ia and verify that the
base case holds for Ia.

We can also deduce Ie ↔ I′e such that:

I′e : ∃x((x1 = c1 ∧ ...∧ xn = cn) ∧ ψ(x))

With the equality substitution axiom scheme we have:

x1 = c1 → (ψ(x1, ..., xn)→ ψ(c1, ..., xn))

...

xn = cn → (ψ(x1, ..., xn)→ ψ(x1, ..., cn))

Therefore I′e → I′′e with I′′e : ψ(c1, ..., cn)

We also have:

ψ(c1, ..., cn)→ ∃x((x1 = c1 ∧ ...∧ xn = cn) ∧ ψ(x1, ..., xn))

Then we can derive that I′′e → I′e, then I′′e ↔ Ie and verify that the
base case holds for Ie.
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d.5 inductive step for Fa and Fe

Fa : ∀x(P(x) → ψ(x))
Fe : ∃x(P(x) ∧ ψ(x))

Supposing that Ck(P) is of the following form:

∀x(P(x)↔ (x1 = c11 ∧ ...∧ xn = c1n)∧ ...∧ (x1 = cm1 ∧ ...∧ xn = cmn))

We have:

D(V(P), Ck(P)) = {< c11 , ..., c1n >, ...,< cm1 , ..., cmn >}

Thus, we suppose that Fak ↔ F′ak
↔ F′′ak

such that:

F′ak
: ∀x(((x1 = c11 ∧ ...∧ xn = c1n) ∧ ...∧

(x1 = cm1 ∧ ...∧ xn = cmn))→ ψ(x))

and

F′′ak
: ψ(c11 , ..., c1n) ∧ ...∧ ψ(cm1 , ..., cmn)

For Ck+1(P) of the following form:

∀x(P(x)↔(x1 = c11 ∧ ...∧ xn = c1n) ∧ ...∧
(x1 = cm1 ∧ ...∧ xn = cmn)∧
(x1 = cm+11 ∧ ...∧ xn = cm+1n))

We have:

D(V(P), Ck+1(P)) = { < c11 , ..., c1n >, ...,< cm1 , ..., cmn >,

< cm+11 , ..., cm+1n >}

We suppose that Fak+1 ↔ F′ak+1
↔ F′′ak+1

such that:

F′ak+1
: ∀x(((x1 = c11 ∧ ...∧ xn = c1n) ∧ ...∧

(x1 = cm+11 ∧ ...∧ xn = cm+1n))→ ψ(x))

and

F′′ak+1
: ψ(c11 , ..., c1n) ∧ ...∧ ψ(cm1 , ..., cmn) ∧ ψ(cm+11 , ..., cm+1n)

From F′ak
and F′′ak

we can deduce:

F′′ak+1
: F′′ak
∧ ψ(cm+11 , ..., cm+1n)
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and

F′′ak+1
: F′ak
∧ ψ(cm+11 , ..., cm+1n)

Having

ψ(cm+11 , ..., cm+1n)→ ∀x((x1 = cm+11 ∧ ...∧ xn = cm+1n)→ ψ(x1, ..., xn))

We can deduce that:

F′′ak+1
:
∀x(((x1 = c11 ∧ ...∧ xn = c1n) ∧ ...∧

(x1 = cm+1n ∧ ...∧ xn = cm+1n))→ ψ(x))

↔ F′ak+1

Proving that Fak+1 ↔ F′ak+1
↔ F′′ak+1

, thus proving the theorem for Fa.

Now, supposing that Ck(P) is of the following form:

∀x(P(x)↔ (x1 = c11 ∧ ...∧ xn = c1n)∨ ...∨ (x1 = cm1 ∧ ...∧ xn = cmn))

We have:

D(V(P), Ck(P)) = {< c11 , ..., c1n >, ...,< cm1 , ..., cmn >}

We can also suppose that Fek ↔ F′ek
↔ F′′ek

such that:

F′ak
: ∃x(((x1 = c11 ∧ ...∧ xn = c1n) ∨ ...∨

(x1 = cm1 ∧ ...∧ xn = cmn)) ∧ ψ(x))

and

F′′ak
: ψ(c11 , ..., c1n) ∨ ...∨ ψ(cm1 , ..., cmn)

For Ck+1(P) of the following form:

∀x(P(x)↔(x1 = c11 ∧ ...∧ xn = c1n) ∨ ...∨
(x1 = cm1 ∧ ...∧ xn = cmn)∨
(x1 = cm+11 ∧ ...∧ xn = cm+1n))

We have:

D(V(P), Ck+1(P)) = { < c11 , ..., c1n >, ...,< cm1 , ..., cmn >,

< cm+11 , ..., cm+1n >}
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We suppose that Fek+1 ↔ F′ek+1
↔ F′′ek+1

such that:

F′wk+1
: ∃x(((x1 = c11 ∧ ...∧ xn = c1n) ∨ ...∨

(x1 = cm+11 ∧ ...∧ xn = cm+1n)) ∧ ψ(x))

and

F′′ek+1
: ψ(c11 , ..., c1n) ∨ ...∨ ψ(cm1 , ..., cmn) ∨ ψ(cm+11 , ..., cm+1n)

From F′ek
and F′′ek

we can deduce:

F′′ek+1
: F′′ek
∨ ψ(cm+11 , ..., cm+1n)

and

F′′ek+1
: F′ek
∨ ψ(cm+11 , ..., cm+1n)

Having

ψ(cm+11 , ..., cm+1n)→ ∃x((x1 = cm+11 ∧ ...∧ xn = cm+1n)∧ψ(x1, ..., xn))

We can deduce that:

F′′ek+1
:
∃x(((x1 = c11 ∧ ...∧ xn = c1n) ∨ ...∨

(x1 = cm+1n ∧ ...∧ xn = cm+1n)) ∧ ψ(x))

↔ F′ek+1

Proving that Fek+1 ↔ F′ek+1
↔ F′′ek+1

, thus proving the theorem for Fe.

d.6 inductive step for Ga and Ge

Ga : ∀x((ϕ1 (x) ∨ ϕ2 (x)) → ψ(x))
Ge : ∃x((ϕ1 (x) ∨ ϕ2 (x)) ∧ ψ(x))

Supposing that Ck (ϕ1 ) and Ck (ϕ2 ) are of the following form:

∀x ∀y(ϕ1 (x , y) ↔ (x1 = c11 ∧ . . . ∧ xn = c1n∧
y p = c1 p ∧ y p+q = c1 p+q ) ∧ . . .∧
(x1 = cm1 ∧ . . . ∧ xn = cmn∧
y p = cm p ∧ y p+q = cm p+q ))
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∀x ′ , y(ϕ2 (x ′ , y) ↔ (x ′1 = c ′11
∧ . . . ∧ x ′r = c ′1r

∧
y p = c ′1 p

∧ y p+q = c ′1 p+q
) ∧ . . .∧

(x ′1 = c ′s1
∧ . . . ∧ x ′r = c ′sr

∧
y p = c ′s p

∧ y p+q = c ′s p+q
))

Where q is the number of shared variables between V(ϕ1) and
V(ϕ2).

We have:

D(V(ϕ1), Ck(ϕ1)) = { < c11 , ..., c1n , c1p , ..., c1p+q >, ...,

< cm1 , ..., cmn , cmp , ..., cmp+q >}

D(V(ϕ2), Ck(ϕ2)) = { < c′11
, ..., c′1r

, c′1p
, ..., c′1p+q

>, ...,

< c′s1
, ..., c′sr

, c′sp
, ..., c′sp+q

>}

Thus, we suppose that Gak ↔ G′ak
↔ G′′ak

such that:

G′ak
: ∀x ∀x′ ∀y(((x1 = c11 ∧ ...∧ xn = c1n ∧ x′1 = c′11

∧ ...∧ x′r = c′1r
∧

(yp = c1p ∨ ...∨ yp = c′1p
) ∧ ...∧

(yp+q = c1p+q ∨ ...∨ yp+q = c′1p+q
))

∧ ...∧
(x1 = cm1 ∧ ...∧ xn = cmn ∧ x′1 = c′s1

∧ ...∧ x′r = c′sr
∧

(yp = cmp ∨ ...∨ yp = c′sp
) ∧ ...∧

(yp+q = cmp+q ∨ ...∨ yp+q = c′sp+q
)))

→ ψ(x, x′, y))

and

G′′ak
:ψ(c11 , ..., c1n , c′11

, ..., c′1r
, c1p , ..., c1p+q) ∧ ...∧

ψ(c11 , ..., c1n , c′11
, ..., c′1r

, c′1p
, ..., c′1p+q

) ∧ ..∧

ψ(cm1 , ..., cmn , c′s1
, ..., c′sr

, cmp , ..., cmp+q) ∧ ..∧
ψ(cm1 , ..., cmn , c′s1

, ..., c′sr
, c′sp

, ..., c′sp+q
)

For Ck+1(ϕ1) and Ck+1(ϕ2) of the following form:
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∀x ∀y(ϕ1(x, y)↔ (x1 = c11 ∧ ...∧ xn = c1n∧
yp = c1p ∧ yp+q = c1p+q) ∧ ...∧
(x1 = cm1 ∧ ...∧ xn = cmn∧
yp = cmp ∧ yp+q = cmp+q)∧
(x1 = cm+11 ∧ ...∧ xn = cm+1n∧
yp = cm+1p ∧ yp+q = cm+1p+q))

∀x′ ∀y(ϕ2(x′, y)↔ (x′1 = c′11
∧ ...∧ x′r = c′1r

∧
yp = c′1p

∧ yp+q = c′1p+q
) ∧ ...∧

(x′1 = c′s1
∧ ...∧ x′r = c′sr

∧
yp = c′sp

∧ yp+q = c′sp+q
)∧

(x′1 = c′s+11
∧ ...∧ x′r = c′s+1r

∧
yp = c′s+1p

∧ yp+q = c′s+1p+q
))

We have:

D(V(ϕ1), Ck+1(ϕ1)) = { < c11 , ..., c1n , c1p , ..., c1p+q >, ...,

< cm1 , ..., cmn , cmp , ..., cmp+q >,

< cm+11 , ..., cm+1n , cm+1p , ..., cm+1p+q >}

D(V(ϕ2), Ck+1(ϕ2)) = { < c′11
, ..., c′1r

, c′1p
, ..., c′1p+q

>, ...,

< c′s1
, ..., c′sr

, c′sp
, ..., c′sp+q

>,

< c′s+11
, ..., c′s+1r

, c′s+1p
, ..., c′s+1p+q

>}

We suppose that Gak+1 ↔ G′ak+1
↔ G′′ak+1

such that:
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G′ak+1
: ∀x ∀x′ ∀y(((x1 = c11 ∧ ...∧ xn = c1n∧

x′1 = c′11
∧ ...∧ x′r = c′1r

∧
(yp = c1p ∨ ...∨ yp = c′1p

) ∧ ...∧

(yp+q = c1p+q ∨ ...∨ yp+q = c′1p+q
))

∧ ...∧
(x1 = cm+11 ∧ ...∧ xn = cm+1n∧
x′1 = c′s+11

∧ ...∧ x′r = c′s+1r
∧

(yp = cm+1p ∨ ...∨ yp = c′s+1p
) ∧ ...∧

(yp+q = cm+1p+q ∨ ...∨ yp+q = c′s+1p+q
)))

→ ψ(x, x′, y))

and

G′′ak+1
:ψ(c11 , ..., c1n , c′11

, ..., c′1r
, c1p , ..., c1p+q) ∧ ...∧

ψ(c11 , ..., c1n , c′11
, ..., c′1r

, c′1p
, ..., c′1p+q

) ∧ ..∧

ψ(cm+11 , ..., cm+1n , c′s+11
, ..., c′s+1r

, cm+1p , ..., cm+1p+q) ∧ ..∧
ψ(cm+11 , ..., cm+1n , c′s+11

, ..., c′s+1r
, c′s+1p

, ..., c′s+1p+q
)

From G′ak
and G′′ak

we can deduce:

G′′ak+1
↔ G′′ak

∧
ψ(cm+11 , ..., cm+1n , c′s+11

, ..., c′s+1r
, cm+1p , ..., cm+1p+q) ∧ ..∧

ψ(cm+11 , ..., cm+1n , c′s+11
, ..., c′s+1r

, c′s+1p
, ..., c′s+1p+q

)

G′′ak+1
↔ G′ak

∧
ψ(cm+11 , ..., cm+1n , c′s+11

, ..., c′s+1r
, cm+1p , ..., cm+1p+q) ∧ ..∧

ψ(cm+11 , ..., cm+1n , c′s+11
, ..., c′s+1r

, c′s+1p
, ..., c′s+1p+q

)

Having

ψ(cm+11 ,..., cm+1n , c′s+11
, ..., c′s+1r

, cm+1p , ..., cm+1p+q)

→ ∀x ∀x′ ∀y((x1 = cm+11 ∧ ...∧ xn = cm+1n∧
x′1 = c′s+11

∧ ...∧ x′n = c′s+1r
∧

yp = cm+1p ∧ ...∧ yp+q = cm+1p+q)

→ ψ(x, x′, y))
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... and

ψ(cm+11 ,..., cm+1n , c′s+11
, ..., c′s+1r

, c′s+1p
, ..., c′s+1p+q

)

→ ∀x ∀x′ ∀y((x1 = cm+11 ∧ ...∧ xn = cm+1n∧
x′1 = c′s+11

∧ ...∧ x′n = c′s+1r
∧

yp = c′s+1p
∧ ...∧ yp+q = c′s+1p+q

)

→ ψ(x, x′, y))

We can deduce that G′′ak+1
↔ G′ak+1

Proving that Gak+1 ↔ G′ak+1
↔ G′′ak+1

, thus proving the theorem for
Ga.

Now, supposing that Ck(ϕ1) and Ck(ϕ2) are of the following form:

∀x ∀y(ϕ1(x, y)↔ (x1 = c11 ∧ ...∧ xn = c1n∧
yp = c1p ∧ yp+q = c1p+q) ∨ ...∨
(x1 = cm1 ∧ ...∧ xn = cmn∧
yp = cmp ∧ yp+q = cmp+q))

∀x′, y(ϕ2(x′, y)↔ (x′1 = c′11
∧ ...∧ x′r = c′1r

∧
yp = c′1p

∧ yp+q = c′1p+q
) ∨ ...∨

(x′1 = c′s1
∧ ...∧ x′r = c′sr

∧
yp = c′sp

∧ yp+q = c′sp+q
))

Where q is the number of shared variables between V(ϕ1) and
V(ϕ2).

We have:

D(V(ϕ1), Ck(ϕ1)) = { < c11 , ..., c1n , c1p , ..., c1p+q >, ...,

< cm1 , ..., cmn , cmp , ..., cmp+q >}

D(V(ϕ2), Ck(ϕ2)) = { < c′11
, ..., c′1r

, c′1p
, ..., c′1p+q

>, ...,

< c′s1
, ..., c′sr

, c′sp
, ..., c′sp+q

>}
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We also suppose that Gek ↔ G′ek
↔ G′′ek

such that:

G′ek
: ∃x ∃x′ ∃y(((x1 = c11 ∧ ...∧ xn = c1n ∧ x′1 = c′11

∧ ...∧ x′r = c′1r
∧

(yp = c1p ∨ ...∨ yp = c′1p
) ∧ ...∧

(yp+q = c1p+q ∨ ...∨ yp+q = c′1p+q
))

∨ ...∨
(x1 = cm1 ∧ ...∧ xn = cmn ∧ x′1 = c′s1

∧ ...∧ x′r = c′sr
∧

(yp = cmp ∨ ...∨ yp = c′sp
) ∧ ...∧

(yp+q = cmp+q ∨ ...∨ yp+q = c′sp+q
)))

∧ ψ(x, x′, y))

and

G′′ek
:ψ(c11 , ..., c1n , c′11

, ..., c′1r
, c1p , ..., c1p+q) ∨ ...∨

ψ(c11 , ..., c1n , c′11
, ..., c′1r

, c′1p
, ..., c′1p+q

) ∨ ..∨

ψ(cm1 , ..., cmn , c′s1
, ..., c′sr

, cmp , ..., cmp+q) ∨ ..∨
ψ(cm1 , ..., cmn , c′s1

, ..., c′sr
, c′sp

, ..., c′sp+q
)

For Ck+1(ϕ1) and Ck+1(ϕ2) of the following form:

∃x ∃y(ϕ1(x, y)↔ (x1 = c11 ∧ ...∧ xn = c1n∧
yp = c1p ∧ yp+q = c1p+q) ∨ ...∨
(x1 = cm1 ∧ ...∧ xn = cmn∧
yp = cmp ∧ yp+q = cmp+q)∨
(x1 = cm+11 ∧ ...∧ xn = cm+1n∧
yp = cm+1p ∧ yp+q = cm+1p+q))

∃x′ ∃y(ϕ2(x′, y)↔ (x′1 = c′11
∧ ...∧ x′r = c′1r

∧
yp = c′1p

∧ yp+q = c′1p+q
) ∨ ...∨

(x′1 = c′s1
∧ ...∧ x′r = c′sr

∧
yp = c′sp

∧ yp+q = c′sp+q
)∨

(x′1 = c′s+11
∧ ...∧ x′r = c′s+1r

∧
yp = c′s+1p

∧ yp+q = c′s+1p+q
))

We have:

D(V(ϕ1), Ck+1(ϕ1)) = { < c11 , ..., c1n , c1p , ..., c1p+q >, ...,

< cm1 , ..., cmn , cmp , ..., cmp+q >,

< cm+11 , ..., cm+1n , cm+1p , ..., cm+1p+q >}
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D(V(ϕ2), Ck+1(ϕ2)) = { < c′11
, ..., c′1r

, c′1p
, ..., c′1p+q

>, ...,

< c′s1
, ..., c′sr

, c′sp
, ..., c′sp+q

>,

< c′s+11
, ..., c′s+1r

, c′s+1p
, ..., c′s+1p+q

>}

We suppose that Gek+1 ↔ G′ek+1
↔ G′′ek+1

such that:

G′ek+1
: ∃x ∃x′ ∃y(((x1 = c11 ∧ ...∧ xn = c1n∧

x′1 = c′11
∧ ...∧ x′r = c′1r

∧
(yp = c1p ∨ ...∨ yp = c′1p

) ∧ ...∧

(yp+q = c1p+q ∨ ...∨ yp+q = c′1p+q
))

∨ ...∨
(x1 = cm+11 ∧ ...∧ xn = cm+1n∧
x′1 = c′s+11

∧ ...∧ x′r = c′s+1r
∧

(yp = cm+1p ∨ ...∨ yp = c′s+1p
) ∧ ...∧

(yp+q = cm+1p+q ∨ ...∨ yp+q = c′s+1p+q
)))

∧ ψ(x, x′, y))

and

G′′ek+1
:ψ(c11 , ..., c1n , c′11

, ..., c′1r
, c1p , ..., c1p+q) ∨ ...∨

ψ(c11 , ..., c1n , c′11
, ..., c′1r

, c′1p
, ..., c′1p+q

) ∨ ..∨

ψ(cm+11 , ..., cm+1n , c′s+11
, ..., c′s+1r

, cm+1p , ..., cm+1p+q) ∨ ..∨
ψ(cm+11 , ..., cm+1n , c′s+11

, ..., c′s+1r
, c′s+1p

, ..., c′s+1p+q
)

From G′ek
and G′′ek

we can deduce:

G′′ek+1
↔ G′′wk

∨
ψ(cm+11 , ..., cm+1n , c′s+11

, ..., c′s+1r
, cm+1p , ..., cm+1p+q) ∨ ..∨

ψ(cm+11 , ..., cm+1n , c′s+11
, ..., c′s+1r

, c′s+1p
, ..., c′s+1p+q

)

G′′ak+1
↔ G′ak

∨
ψ(cm+11 , ..., cm+1n , c′s+11

, ..., c′s+1r
, cm+1p , ..., cm+1p+q) ∨ ..∨

ψ(cm+11 , ..., cm+1n , c′s+11
, ..., c′s+1r

, c′s+1p
, ..., c′s+1p+q

)

Having
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ψ(cm+11 ,..., cm+1n , c′s+11
, ..., c′s+1r

, cm+1p , ..., cm+1p+q)

→ ∃x ∃x′ ∃y((x1 = cm+11 ∧ ...∧ xn = cm+1n∧
x′1 = c′s+11

∧ ...∧ x′n = c′s+1r
∧

yp = cm+1p ∧ ...∧ yp+q = cm+1p+q)

∧ ψ(x, x′, y))

... and

ψ(cm+11 ,..., cm+1n , c′s+11
, ..., c′s+1r

, c′s+1p
, ..., c′s+1p+q

)

→ ∃x ∃x′ ∃y((x1 = cm+11 ∧ ...∧ xn = cm+1n∧
x′1 = c′s+11

∧ ...∧ x′n = c′s+1r
∧

yp = c′s+1p
∧ ...∧ yp+q = c′s+1p+q

)

∧ ψ(x, x′, y))

We can deduce that G′′ek+1
↔ G′ek+1

Proving that Gek+1 ↔ G′ek+1
↔ G′′ek+1

, thus proving the theorem for
Ge.

d.7 inductive step for Ha and He

Ha : ∀x((ϕ1 (x) ∧ ϕ2 (x)) → ψ(x))
He : ∃x((ϕ1 (x) ∧ ϕ2 (x)) ∧ ψ(x))

Supposing that Ck (ϕ1 ) and Ck (ϕ2 ) are of the following form:

∀x ∀y(ϕ1 (x , y) ↔ (x1 = c l1 ∧ . . . ∧ xn = c ln∧
y p = c l p ∧ . . . ∧ y p+q = c l p+q ) ∧ . . .∧
(x1 = c l+k1 ∧ . . . ∧ xn = c l+kn∧
y p = c l+k p ∧ . . . ∧ y p+q = c l+k p+q ))

∀x ′ ∀y(ϕ2 (x ′ , y) ↔ (x ′1 = c ′l1
∧ . . . ∧ x ′r = c ′lr

∧
y p = c l p ∧ . . . ∧ y p+q = c l p+q ) ∧ . . .∧
(x ′1 = c ′l+k1

∧ . . . ∧ x ′r = c ′l+k r
∧

y p = c l+k p ∧ . . . ∧ y p+q = c l+k p+q ))
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Where q is the number of shared variables between V (ϕ1 ) and
V (ϕ2 ) that have k shared instances.

We have:

D(V(ϕ1), Ck(ϕ1)) = { < c11 , ..., c1n , c1p , ..., c1p+q >, ...,

< cl1 , ..., cln , clp , ..., clp+q >, ...,

< cl+k1 , ..., cl+kn , cl+kp , ..., cl+kp+q >, ...,

< cm1 , ..., cmn , cmp , ..., cmp+q >}

D(V(ϕ2), Ck(ϕ2)) = { < c′11
, ..., c′1r

, c′1p
, ..., c′1p+q

>, ...,

< c′l1 , ..., c′lr , clp , ..., clp+q >, ...,

< c′l+k1
, ..., c′l+kr

, cl+kp , ..., cl+kp+q >, ...,

< c′s1
, ..., c′sr

, csr , ..., c′sp+q
>}

Thus, we suppose that Hak ↔ H′ak
↔ H′′ak

such that:

H′ak
: ∀x ∀x′ ∀y(((x1 = cl1 ∧ ...∧ xn = cln∧

x′1 = c′l1 ∧ ...∧ x′r = c′lr∧
yp = clp ∧ ...∧ yp+q = clp+q)

∧ ...∧
(x1 = cl+k1 ∧ ...∧ xn = cl+kn∧
x′1 = c′l+k1

∧ ...∧ x′r = c′l+kr
∧

yp = cl+kp ∧ ...∧ yp+q = cl+kp+q))

→ ψ(x, x′, y))

and

H′′ak
:ψ(cl1 , ..., cln , c′l1 , ..., c′lr , clp , ..., clp+q) ∧ ...∧
ψ(cl+k1 , ..., cl+kn , c′l+k1

, ..., c′l+kr
, cl+kp , ..., cl+kp+q)

For Ck+1(ϕ1) and Ck+1(ϕ2) of the following form:

∀x ∀y(ϕ1(x, y)↔ (x1 = cl1 ∧ ...∧ xn = cln∧
yp = clp ∧ ...∧ yp+q = clp+q) ∧ ...∧
(x1 = cl+k1 ∧ ...∧ xn = cl+kn∧
yp = cl+kp ∧ ...∧ yp+q = cl+kp+q))∧
(x1 = cl+k+11 ∧ ...∧ xn = cl+k+1n∧
yp = cl+k+1p ∧ ...∧ yp+q = cl+k+1p+q))
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∀x′, y(ϕ2(x′, y)↔ (x′1 = c′l1 ∧ ...∧ x′r = c′lr∧
yp = clp ∧ ...∧ yp+q = clp+q) ∧ ...∧
(x′1 = c′l+k1

∧ ...∧ x′r = c′l+kr
∧

yp = cl+kp ∧ ...∧ yp+q = cl+kp+q))∧
(x′1 = c′l+k+11

∧ ...∧ x′r = c′l+k+1r
∧

yp = cl+k+1p ∧ ...∧ yp+q = cl+k+1p+q))

We have:

D(V(ϕ1), Ck+1(ϕ1)) = { < c11 , ..., c1n , c1p , ..., c1p+q >, ...,

< cl1 , ..., cln , clp , ..., clp+q >, ...,

< cl+k1 , ..., cl+kn , cl+kp , ..., cl+kp+q >,

< cl+k+11 , ..., cl+k+1n , cl+k+1p , ..., cl+k+1p+q >, ...,

< cm1 , ..., cmn , cmp , ..., cmp+q >}

D(V(ϕ2), Ck+1(ϕ2)) = { < c′11
, ..., c′1r

, c′1p
, ..., c′1p+q

>, ...,

< c′l1 , ..., c′lr , clp , ..., clp+q >, ...,

< c′l+k1
, ..., c′l+kr

, cl+kp , ..., cl+kp+q >,

< c′l+k+11
, ..., c′l+k+1r

, cl+k+1p , ..., cl+k+1p+q >, ...,

< c′s1
, ..., c′sr

, csr , ..., c′sp+q
>}

We suppose that Hak+1 ↔ H′ak+1
↔ H′′ak+1

such that:

H′ak+1
: ∀x ∀x′ ∀y(((x1 = cl1 ∧ ...∧ xn = cln∧

x′1 = c′l1 ∧ ...∧ x′r = c′lr∧
yp = clp ∧ ...∧ yp+q = clp+q)

∧ ...∧
(x1 = cl+k+11 ∧ ...∧ xn = cl+k+1n∧
x′1 = c′l+k+11

∧ ...∧ x′r = c′l+k+1r
∧

yp = cl+k+1p ∧ ...∧ yp+q = cl+k+1p+q))

→ ψ(x, x′, y))

and

H′′ak+1
:ψ(cl1 , ..., cln , c′l1 , ..., c′lr , clp , ..., clp+q) ∧ ...∧
ψ(cl+k+11 , ..., cl+k+1n , c′l+k+11

, ..., c′l+k+1r
, cl+k+1p , ..., cl+k+1p+q)

From H′ak
and H′′ak

we can deduce:
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H′′ak+1
↔ H′′ak

∧
ψ(cl+k+11 , ..., cl+k+1n , c′l+k+11

, ..., c′l+k+1r
, cl+k+1p , ..., cl+k+1p+q)

H′′ak+1
↔ H′ak

∧
ψ(cl+k+11 , ..., cl+k+1n , c′l+k+11

, ..., c′l+k+1r
, cl+k+1p , ..., cl+k+1p+q)

Having

ψ(cl+k+11 ,..., cl+k+1n , c′l+k+11
, ..., c′l+k+1r

, cl+k+1p , ..., cl+k+1p+q)

→ ∀x ∀x′ ∀y((x1 = cl+k+11 ∧ ...∧ xn = cl+k+1n∧
x′1 = c′l+k+11

∧ ...∧ x′n = c′l+k+1r
∧

yp = cl+k+1p ∧ ...∧ yp+q = cl+k+1p+q)

→ ψ(x, x′, y))

We can deduce that H′′ak+1
↔ H′ak+1

Proving that Hak+1 ↔ H′ak+1
↔ H′′ak+1

, thus proving the theorem for
Ha.

Now, supposing that Ck(ϕ1) and Ck(ϕ2) are of the following form:

∀x ∀y(ϕ1(x, y)↔ (x1 = cl1 ∧ ...∧ xn = cln∧
yp = clp ∧ ...∧ yp+q = clp+q) ∨ ...∨
(x1 = cl+k1 ∧ ...∧ xn = cl+kn∧
yp = cl+kp ∧ ...∧ yp+q = cl+kp+q))

∀x′∀y(ϕ2(x′, y)↔ (x′1 = c′l1 ∧ ...∧ x′r = c′lr∧
yp = clp ∧ ...∧ yp+q = clp+q) ∨ ...∨
(x′1 = c′l+k1

∧ ...∧ x′r = c′l+kr
∧

yp = cl+kp ∧ ...∧ yp+q = cl+kp+q))

Where q is the number of shared variables between V(ϕ1) and
V(ϕ2) that have k shared instances.

We have:
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D(V(ϕ1), Ck(ϕ1)) = { < c11 , ..., c1n , c1p , ..., c1p+q >, ...,

< cl1 , ..., cln , clp , ..., clp+q >, ...,

< cl+k1 , ..., cl+kn , cl+kp , ..., cl+kp+q >, ...,

< cm1 , ..., cmn , cmp , ..., cmp+q >}

D(V(ϕ2), Ck(ϕ2)) = { < c′11
, ..., c′1r

, c′1p
, ..., c′1p+q

>, ...,

< c′l1 , ..., c′lr , clp , ..., clp+q >, ...,

< c′l+k1
, ..., c′l+kr

, cl+kp , ..., cl+kp+q >, ...,

< c′s1
, ..., c′sr

, csr , ..., c′sp+q
>}

We can also suppose that Hek ↔ H′ek
↔ H′′ek

such that:

H′ek
: ∃x ∃x′ ∃y(((x1 = cl1 ∧ ...∧ xn = cln∧

x′1 = c′l1 ∧ ...∧ x′r = c′lr∧
yp = clp ∧ ...∧ yp+q = clp+q)

∨ ...∨
(x1 = cl+k1 ∧ ...∧ xn = cl+kn∧
x′1 = c′l+k1

∧ ...∧ x′r = c′l+kr
∧

yp = cl+kp ∧ ...∧ yp+q = cl+kp+q))

∧ ψ(x, x′, y))

and

H′′ek
:ψ(cl1 , ..., cln , c′l1 , ..., c′lr , clp , ..., clp+q) ∨ ...∨
ψ(cl+k1 , ..., cl+kn , c′l+k1

, ..., c′l+kr
, cl+kp , ..., cl+kp+q)

For Ck+1(ϕ1) and Ck+1(ϕ2) of the following form:

∀x ∀y(ϕ1(x, y)↔ (x1 = cl1 ∧ ...∧ xn = cln∧
yp = clp ∧ ...∧ yp+q = clp+q) ∨ ...∨
(x1 = cl+k1 ∧ ...∧ xn = cl+kn∧
yp = cl+kp ∧ ...∧ yp+q = cl+kp+q))∨
(x1 = cl+k+11 ∧ ...∧ xn = cl+k+1n∧
yp = cl+k+1p ∧ ...∧ yp+q = cl+k+1p+q))



D.7 inductive step for Ha and He 147

∀x′ ∀y(ϕ2(x′, y)↔ (x′1 = c′l1 ∧ ...∧ x′r = c′lr∧
yp = clp ∧ ...∧ yp+q = clp+q) ∨ ...∨
(x′1 = c′l+k1

∧ ...∧ x′r = c′l+kr
∧

yp = cl+kp ∧ ...∧ yp+q = cl+kp+q))∨
(x′1 = c′l+k+11

∧ ...∧ x′r = c′l+k+1r
∧

yp = cl+k+1p ∧ ...∧ yp+q = cl+k+1p+q))

We have:

D(V(ϕ1), Ck+1(ϕ1)) = { < c11 , ..., c1n , c1p , ..., c1p+q >, ...,

< cl1 , ..., cln , clp , ..., clp+q >, ...,

< cl+k1 , ..., cl+kn , cl+kp , ..., cl+kp+q >,

< cl+k+11 , ..., cl+k+1n , cl+k+1p , ..., cl+k+1p+q >, ...,

< cm1 , ..., cmn , cmp , ..., cmp+q >}

D(V(ϕ2), Ck+1(ϕ2)) = { < c′11
, ..., c′1r

, c′1p
, ..., c′1p+q

>, ...,

< c′l1 , ..., c′lr , clp , ..., clp+q >, ...,

< c′l+k1
, ..., c′l+kr

, cl+kp , ..., cl+kp+q >,

< c′l+k+11
, ..., c′l+k+1r

, cl+k+1p , ..., cl+k+1p+q >, ...,

< c′s1
, ..., c′sr

, csr , ..., c′sp+q
>}

We suppose that Hak+1 ↔ H′ak+1
↔ H′′ak+1

such that:

H′ek+1
: ∃x ∃x′ ∃y(((x1 = cl1 ∧ ...∧ xn = cln∧

x′1 = c′l1 ∧ ...∧ x′r = c′lr∧
yp = clp ∧ ...∧ yp+q = clp+q)

∨ ...∨
(x1 = cl+k+11 ∧ ...∧ xn = cl+k+1n∧
x′1 = c′l+k+11

∧ ...∧ x′r = c′l+k+1r
∧

yp = cl+k+1p ∧ ...∧ yp+q = cl+k+1p+q))

∧ ψ(x, x′, y))

and

H′′ek+1
:ψ(cl1 , ..., cln , c′l1 , ..., c′lr , clp , ..., clp+q) ∨ ...∨
ψ(cl+k+11 , ..., cl+k+1n , c′l+k+11

, ..., c′l+k+1r
, cl+k+1p , ..., cl+k+1p+q)

From H′ek
and H′′ek

we can deduce:



148 proof of the quantifier elimination procedure

H′′ek+1
↔ H′′ek

∨
ψ(cl+k+11 , ..., cl+k+1n , c′l+k+11

, ..., c′l+k+1r
, cl+k+1p , ..., cl+k+1p+q)

H′′ek+1
↔ H′ek

∨
ψ(cl+k+11 , ..., cl+k+1n , c′l+k+11

, ..., c′l+k+1r
, cl+k+1p , ..., cl+k+1p+q)

Having

ψ(cl+k+11 ,..., cl+k+1n , c′l+k+11
, ..., c′l+k+1r

, cl+k+1p , ..., cl+k+1p+q)

→ ∃x ∃x′ ∃y((x1 = cl+k+11 ∧ ...∧ xn = cl+k+1n∧
x′1 = c′l+k+11

∧ ...∧ x′n = c′l+k+1r
∧

yp = cl+k+1p ∧ ...∧ yp+q = cl+k+1p+q)

∧ ψ(x, x′, y))

We can deduce that H′′ek+1
↔ H′ek+1

Proving that Hek+1 ↔ H′ek+1
↔ H′′ek+1

, thus proving the theorem for
He.

d.8 inductive step for Ia and Ie

Ia : ∀x((ϕ1 (x) ∧ ¬ϕ2 (x)) → ψ(x))
Ie : ∃x((ϕ1 (x) ∧ ¬ϕ2 (x)) ∧ ψ(x))

Supposing that Ck (ϕ1 ) and Ck (ϕ2 ) are of the following form:

∀x(ϕ1 (x) ↔ (x1 = c11 ∧ . . . ∧ xn = c1n∧
x p = c1 p ∧ . . . ∧ x p+q = c1 p+q ) ∧ . . .∧
(x1 = cm1 ∧ . . . ∧ xn = cmn∧
x p = cm p ∧ . . . ∧ x p+q = cm p+q ))

∀x ′ (ϕ2 (x ′ ) ↔ (x ′1 = c ′11
∧ . . . ∧ x ′n = c ′1r

∧
x ′p = c ′1 p

∧ . . . ∧ x ′p+q = c1 ′p+q
) ∧ . . .∧

(x ′1 = c ′s1
∧ . . . ∧ x ′n = c ′sr

∧
x ′p = c ′s p

∧ . . . ∧ x ′p+q = c ′s p+q
))
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Where q is the number of shared variables between V (ϕ1 ) and
V (ϕ2 ) that have t shared instances.

We have:

D(V(ϕ1), Ck(ϕ1)) = { < c11 , ..., c1n , c1p , ..., c1p+q >, ...,

< cl1 , ..., cln , clp , ..., clp+q >, ...,

< cl+t1 , ..., cl+tn , cl+tp , ..., cl+tp+q >, ...,

< cm1 , ..., cmn , cmp , ..., cmp+q >}

D(V(ϕ2), Ck(ϕ2)) = { < c′11
, ..., c′1r

, c′1p
, ..., c′1p+q

>, ...,

< c′l1 , ..., c′lr , clp , ..., clp+q >, ...,

< c′l+t1
, ..., c′l+tr

, cl+tp , ..., cl+tp+q >, ...,

< c′s1
, ..., c′sr

, c′sp
, ..., c′sp+q

>}

From which we deduce:

D(V(ϕ1 ∧ ¬ϕ2), Ck(ϕ1 ∧ ¬ϕ2)) = { < c11 , ..., c1n , c1p , ..., c1p+q >, ...,

< cm1 , ..., cmn , cmp , ..., cmp+q >}

Thus, we suppose that Iak ↔ I′ak
↔ I′′ak

such that:

I′ak
: ∀x(((x1 = c11 ∧ ...∧ xn = c1n∧

xp = c1p ∧ ...∧ xp+q = c1p+q)

∧ ...∧
(x1 = cm1 ∧ ...∧ xn = cmn∧
xp = cmp ∧ ...∧ xp+q = cmp+q))

→ ψ(x))

and

I′′ak
:ψ(c11 , ..., c1n , c1p , ..., c1p+q) ∧ ...∧
ψ(cm1 , ..., cmn , cmp , ..., cmp+q)

We also have Ck+1(ϕ1) of the following form:
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∀x(ϕ1(x)↔ (x1 = c11 ∧ ...∧ xn = c1n∧
xp = c1p ∧ ...∧ xp+q = c1p+q) ∧ ...∧
(x1 = cm+11 ∧ ...∧ xn = cm+1n∧
xp = cm+1p ∧ ...∧ xp+q = cm+1p+q))

We have:

D(V(ϕ1), Ck+1(ϕ1)) = { < c11 , ..., c1n , c1p , ..., c1p+q >, ...,

< cl1 , ..., cln , clp , ..., clp+q >, ...,

< cl+t1 , ..., cl+tn , cl+tp , ..., cl+tp+q >, ...,

< cm1 , ..., cmn , cmp , ..., cmp+q >,

< cm+11 , ..., cm+1n , cm+1p , ..., cm+1p+q >}

D(V(ϕ2), Ck+1(ϕ2)) = { < c′11
, ..., c′1r

, c′1p
, ..., c′1p+q

>, ...,

< c′l1 , ..., c′lr , clp , ..., clp+q >, ...,

< c′l+t1
, ..., c′l+tr

, cl+tp , ..., cl+tp+q >, ...,

< c′s1
, ..., c′sr

, c′sp
, ..., c′sp+q

>}

We suppose that Iak+1 ↔ I′ak+1
↔ I′′ak+1

such that:

I′ak+1
: ∀x(((x1 = c11 ∧ ...∧ xn = c1n∧

xp = c1p ∧ ...∧ xp+q = c1p+q)

∧ ...∧
(x1 = cm+11 ∧ ...∧ xn = cm+1n∧
xp = cm+1p ∧ ...∧ xp+q = cm+1p+q))

→ ψ(x))

and

I′′ak+1
:ψ(c11 , ..., c1n , c1p , ..., c1p+q) ∧ ...∧
ψ(cm+11 , ..., cm+1n , cm+1p , ..., cm+1p+q)

From I′ak
and I′′ak

we can deduce:

I′′ak+1
: I′′ak
∧ ψ(cm+11 , ..., cm+1n , cm+1p , ..., cm+1p+q)

and
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I′′ak+1
: I′ak
∧ ψ(cm+11 , ..., cm+1n , cm+1p , ..., cm+1p+q)

Having

ψ(cm+11 ,..., cm+1n , cm+1p , ..., cm+1p+q)

→ ∀x((x1 = cm+11 ∧ ...∧ xn = cm+1n∧
xp = cm+1p ∧ ...∧ xp+q = cm+1p+q)→ ψ(x))

We can deduce that I′′ak+1
↔ I′ak+1

Proving that Iak+1 ↔ I′ak+1
↔ I′′ak+1

, thus proving the theorem for Ia.

Now, supposing that Ck(ϕ1) and Ck(ϕ2) are of the following form:

∀x(ϕ1(x)↔ (x1 = c11 ∧ ...∧ xn = c1n∧
xp = c1p ∧ ...∧ xp+q = c1p+q) ∨ ...∨
(x1 = cm1 ∧ ...∧ xn = cmn∧
xp = cmp ∧ ...∧ xp+q = cmp+q))

∀x′(ϕ2(x′)↔ (x′1 = c′11
∧ ...∧ x′n = c′1r

∧
x′p = c′1p

∧ ...∧ x′p+q = c1′p+q
) ∨ ...∨

(x′1 = c′s1
∧ ...∧ x′n = c′sr

∧
x′p = c′sp

∧ ...∧ x′p+q = c′sp+q
))

Where q is the number of shared variables between V(ϕ1) and
V(ϕ2) that have t shared instances.

We have:

D(V(ϕ1), Ck(ϕ1)) = { < c11 , ..., c1n , c1p , ..., c1p+q >, ...,

< cl1 , ..., cln , clp , ..., clp+q >, ...,

< cl+t1 , ..., cl+tn , cl+tp , ..., cl+tp+q >, ...,

< cm1 , ..., cmn , cmp , ..., cmp+q >}
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D(V(ϕ2), Ck(ϕ2)) = { < c′11
, ..., c′1r

, c′1p
, ..., c′1p+q

>, ...,

< c′l1 , ..., c′lr , clp , ..., clp+q >, ...,

< c′l+t1
, ..., c′l+tr

, cl+tp , ..., cl+tp+q >, ...,

< c′s1
, ..., c′sr

, c′sp
, ..., c′sp+q

>}

From which we deduce:

D(V(ϕ1 ∧ ¬ϕ2), Ck(ϕ1 ∧ ¬ϕ2)) = { < c11 , ..., c1n , c1p , ..., c1p+q >, ...,

< cm1 , ..., cmn , cmp , ..., cmp+q >}

Thus, we suppose that Iek ↔ I′ek
↔ I′′ek

such that:

I′ek
: ∃x(((x1 = c11 ∧ ...∧ xn = c1n∧

xp = c1p ∧ ...∧ xp+q = c1p+q)

∨ ...∨
(x1 = cm1 ∧ ...∧ xn = cmn∧
xp = cmp ∧ ...∧ xp+q = cmp+q))

∧ ψ(x))

and

I′′wk
:ψ(c11 , ..., c1n , c1p , ..., c1p+q) ∨ ...∨
ψ(cm1 , ..., cmn , cmp , ..., cmp+q)

We also have Ck+1(ϕ1) of the following form:

∀x(ϕ1(x)↔ (x1 = c11 ∧ ...∧ xn = c1n∧
xp = c1p ∧ ...∧ xp+q = c1p+q) ∨ ...∨
(x1 = cm+11 ∧ ...∧ xn = cm+1n∧
xp = cm+1p ∧ ...∧ xp+q = cm+1p+q))

We have:

D(V(ϕ1), Ck+1(ϕ1)) = { < c11 , ..., c1n , c1p , ..., c1p+q >, ...,

< cl1 , ..., cln , clp , ..., clp+q >, ...,

< cl+t1 , ..., cl+tn , cl+tp , ..., cl+tp+q >, ...,

< cm1 , ..., cmn , cmp , ..., cmp+q >,

< cm+11 , ..., cm+1n , cm+1p , ..., cm+1p+q >}
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D(V(ϕ2), Ck+1(ϕ2)) = { < c′11
, ..., c′1r

, c′1p
, ..., c′1p+q

>, ...,

< c′l1 , ..., c′lr , clp , ..., clp+q >, ...,

< c′l+t1
, ..., c′l+tr

, cl+tp , ..., cl+tp+q >, ...,

< c′s1
, ..., c′sr

, c′sp
, ..., c′sp+q

>}

We suppose that Iek+1 ↔ I′ek+1
↔ I′′ek+1

such that:

I′ek+1
: ∃x(((x1 = c11 ∧ ...∧ xn = c1n∧

xp = c1p ∧ ...∧ xp+q = c1p+q)

∨ ...∨
(x1 = cm+11 ∧ ...∧ xn = cm+1n∧
xp = cm+1p ∧ ...∧ xp+q = cm+1p+q))

∧ ψ(x))

and

I′′ek+1
:ψ(c11 , ..., c1n , c1p , ..., c1p+q) ∨ ...∨
ψ(cm+11 , ..., cm+1n , cm+1p , ..., cm+1p+q)

From I′ak
and I′′ak

we can deduce:

I′′ek+1
: I′′ek
∨ ψ(cm+11 , ..., cm+1n , cm+1p , ..., cm+1p+q)

and

I′′ek+1
: I′ek
∨ ψ(cm+11 , ..., cm+1n , cm+1p , ..., cm+1p+q)

Having

ψ(cm+11 ,..., cm+1n , cm+1p , ..., cm+1p+q)

→ ∃x((x1 = cm+11 ∧ ...∧ xn = cm+1n∧
xp = cm+1p ∧ ...∧ xp+q = cm+1p+q) ∧ ψ(x))

We can deduce that I′′ek+1
↔ I′ek+1

Proving that Iek+1 ↔ I′ek+1
↔ I′′ek+1

, thus proving the theorem for Ie.
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